
AS2000

Blindtext Blindtext Blindtext

Manual | EN

CXxxxx-M510/B510
CANopen Optional Interface for CX9020, CX5xx0 and CX20xx

2024-11-20 | Version: 1.0

Table of contents

CXxxxx-M510/B510 3Version: 1.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 Safety instructions... 6
1.3 Documentation issue status .. 7

2 CANopen system overview .. 8
2.1 Network Management ... 10

2.1.1 Boot-up message ... 12
2.1.2 Node Monitoring... 12
2.1.3 Process Data Objects (PDO) ... 13
2.1.4 Service Data Objects (SDO) .. 18

2.2 Technical Data - CANopen ... 22

3 Connection and cabling.. 23
3.1 CANopen connection .. 23
3.2 Cabling .. 24
3.3 Topology ... 29

4 TwinCAT tabs .. 30
4.1 Tree view... 30
4.2 CANopen master... 32

4.2.1 General .. 32
4.2.2 FC 51xx.. 33
4.2.3 ADS.. 34

4.3 CANopen slave ... 35
4.3.1 CAN node... 35
4.3.2 SDOs.. 37
4.3.3 PDO ... 38

5 Parameterization and commissioning .. 39
5.1 PDO Parameterization .. 39
5.2 Parameterization with TwinCAT 2... 42

5.2.1 Searching for target systems ... 42
5.2.2 Add CANopen slave... 44
5.2.3 Creating a virtual slave... 45
5.2.4 Setting the address .. 46
5.2.5 Creating further PDOs.. 47
5.2.6 Creating variables .. 48
5.2.7 Setting the transmission type ... 49
5.2.8 Creating a PLC project... 50
5.2.9 Linking variables .. 52
5.2.10 Load configuration to CX.. 53
5.2.11 Adding a CANopen master ... 55

5.3 Parameterization with TwinCAT 3... 57
5.3.1 Searching for target systems ... 57
5.3.2 Add CANopen slave... 59
5.3.3 Creating a virtual slave... 60

Table of contents

CXxxxx-M510/B5104 Version: 1.0

5.3.4 Setting the address .. 61
5.3.5 Creating further PDOs.. 62
5.3.6 Creating variables .. 63
5.3.7 Setting the transmission type ... 64
5.3.8 Creating a PLC project... 65
5.3.9 Linking variables .. 67
5.3.10 Load configuration to CX.. 68
5.3.11 Adding a CANopen master ... 70

6 Error handling and diagnostics ... 72
6.1 Diagnostic LEDs.. 72
6.2 Status messages... 73
6.3 Communication ... 74
6.4 PDOs... 75

7 Appendix.. 76
7.1 Accessories... 76
7.2 Certifications ... 77
7.3 Support and Service.. 78

Foreword

CXxxxx-M510/B510 5Version: 1.0

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC® and XTS® are
registered trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, DE102004044764, DE102007017835
with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

CXxxxx-M510/B5106 Version: 1.0

1.2 Safety instructions
Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of
persons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTICE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

CXxxxx-M510/B510 7Version: 1.0

1.3 Documentation issue status
Version Modifications
1.0 First version

CANopen system overview

CXxxxx-M510/B5108 Version: 1.0

2 CANopen system overview

The Beckhoff Embedded PCs can be ordered ex works with an optional interface, e.g. PROFIBUS,
CANopen or RS232. Some of the optional interfaces can be delivered as master or slave.

The following Embedded PCs can be ordered with an optional interface:

• CX9020
• CX50x0
• CX51x0
• CX20x0

CANopen master (M510)

The optional interface M510 is a CANopen master and enables a segment-like construction of control
structures in large plants and machines. Further Beckhoff fieldbus components such as Bus Couplers, Bus
Terminal Controllers, drive components, etc. can be used with an Embedded PC for configuring control
structures.

Fieldbus masters are used for decentralized collection of process data and signals in large machines and
plants. The number of slaves that can be connected to the master is only limited by the respective bus
system. Using master and slave connections makes it possible to link several Embedded PCs with each
other via the fieldbus level.

The optional interfaces are detected, parameterized and configured in TwinCAT, and the connected I/O
components are added. TwinCAT is also used for diagnostics.

CANopen slave (B510)

The optional interface B510 is a CANopen slave and enables an Embedded PC to be used as subordinate
decentral controller for configuring complex or modular systems.

The CANopen slave receives external process data from the master and processes them or returns data
from its own process periphery to the master after processing.

Like the CANopen master, the optional CANopen slave interface is parameterized and configured in
TwinCAT.

Functioning

CANopen is a widely used fieldbus system, which was developed by the CAN in Automation (CiA)
association and in the meantime has been adopted for international standardization.

Further Information
CAN in Automation (CiA) website:
www.can-cia.org

CANopen consists of the protocol definition (communication objects) and the device profiles.

The protocol definition includes the following communication objects:

• Network Management (NMT)

http://www.can-cia.org

CANopen system overview

CXxxxx-M510/B510 9Version: 1.0

• Process Data Objects (PDO)
• Service Data Objects (SDO)
• And protocols with special functions

The device profiles standardize the data content for the respective device class. The term device class
covers devices such as electric drives, I/O modules, sensors and controllers. The device profiles define the
functionality and the structure of the object directory.

The device parameters and process data are stored in a structured object directory. Any data in this object
directory is accessed via service data objects (SDO).

Process data objects (PDO) are used for fast communication of input and output data. There are,
additionally, a few special objects (such as telegram types) for network management (NMT),
synchronization, error messages and so on.

Communication Types

CANopen defines several communication types for process data objects:

• Event driven:
Telegrams are sent as soon as their contents have changed. This means that the process image as a
whole is not continuously transmitted, only its changes.

• Cyclic synchronous:
A SYNC telegram causes the modules to accept the output data that was previously received, and to
send new input data.

• Requested (polled):
A CAN data request telegram causes the modules to send their input data.

The required communication type is set via the transmission type parameter (see: PDO [} 38] tab).

Bus access procedures

CAN operates based on the Carrier Sense Multiple Access (CSMA) method, i.e. all devices have equal
rights and access the bus as soon as it is free (multi-master bus access). The exchange of messages is thus
not device-oriented but message-oriented. This means that every message is unambiguously marked with a
prioritized identifier.

In order to avoid collisions on the bus when messages are sent by different devices, a bit-wise bus
arbitration is carried out at the start of the data transmission. The bus arbitration allocates bus bandwidth to
the messages in order of priority. At the end of the arbitration phase only one bus devices occupies the bus;
collisions are avoided, and the bandwidth is optimally utilized.

Configuration and parameterization

The TwinCAT System Manager allows all the CANopen parameters to be set conveniently. An "eds" file (an
electronic data sheet) is available on the Beckhoff website (www.beckhoff.de) for the parameterization of
Beckhoff CANopen devices using configuration tools from other manufacturers.

Certification

The Beckhoff CANopen devices have a powerful implementation of the protocol, and are certified by the
CAN in Automation Association (www.can-cia.org).

http://www.beckhoff.de
http://www.can-cia.org

CANopen system overview

CXxxxx-M510/B51010 Version: 1.0

2.1 Network Management
The network management (NMT) defines the communication behavior of a CANopen device and consists of
the states initialization, pre-operational, operational and stopped.

When a device is switched on or restarted, the device automatically switches to the initialization state. When
the initialization state is completed, the device automatically switches to pre-operational state.

From this state any other state can be assumed. For sample, only a single CAN message is required to
make the devices start:
Start_Remote_Node: Identifier 0, two data bytes: 0x01, 0x00.
This message transfers the devices to the operational state.

The following diagram shows which states a CANopen device can assume:

• Initialization
The device automatically switches to the initialization state. When the initialization state is completed,
the device automatically switches to pre-operational state.

• Pre-Operational
After the initialization the device automatically switches to pre-operational state, i.e. without an external
command. In this state the service data objects (SDO) are already active, and the device can be
configured. The process data objects (PDO) are still locked.

• Operational
In operational state the process data objects (PDO) are active.
If the device is no longer able to set outputs, read inputs or communicate due to external influences
(e.g. CAN fault, no output voltage) or internal influences (e.g. K-bus error), it tries to send a
corresponding emergency message. The device then assumes error state and switches back to pre-
operational state. This enables the NMT status machine of the master to detect fatal errors
immediately.

• Stopped
In stopped state (previously prepared) no communication with the device is possible. Only network
management (NMT) messages are received. The outputs go into the fault state.

CANopen system overview

CXxxxx-M510/B510 11Version: 1.0

State transitions

State transitions are executed with a CAN message. The CAN messages have a very simple structure:
CAN identifier 0, with two bytes of data content.

• The first data byte contains the command specifier (cs),
• the second data byte contains the node address (node ID); node address 0 addresses all nodes

(broadcast).

11 bit identifier 2 byte of user data
0x00 cs Node ID

The following table provides an overview of all possible state transitions and the corresponding command
specifiers (cs). The diagram shown above, which illustrates the states, is part of the overview:

State transition Command Specifier cs Explanation
(1) -- The initialization state is reached

automatically at power-up
(2) -- After initialization the pre-

operational state is reached
automatically - this involves
sending the boot-up message.

(3), (6) cs = 1 = 0x01 Start_Remote_Node.
Starts the device, enables outputs
and starts the PDO transfer.

(4), (7) cs = 128 = 0x80 Enter_Pre-Operational.
Stops the PDO transmission, SDO
still active.

(5), (8) cs = 2 = 0x02 Stop_Remote_Node.
Outputs go into the fault state,
SDO and PDO switched off.

(9) cs = 129 = 0x81 Reset_Node.
Carries out a reset. All objects are
reset to their power-on defaults.

(10) cs = 130 = 0x82 Reset_Communication.
Carries out a reset of the
communication functions. Objects
0x1000 - 0x1FFF are reset to their
power-on defaults.

Sample 1
The following telegram puts all the modules in the network into the error state (outputs in a safe state):

11 bit identifier 2 byte of user data
0x00 0x02 0x00

Sample 2
The following telegram is used to reset (restart) node 17:

11 bit identifier 2 byte of user data
0x00 0x81 0x11

CANopen system overview

CXxxxx-M510/B51012 Version: 1.0

2.1.1 Boot-up message
After the initialization phase and the self-test the device sends the boot-up message, which is a CAN
message with a data byte (0) on the identifier of the guarding or heartbeat message:
CAN-ID = 0x700 + node ID.

In this way temporary failure of a module during operation (e.g. due to a voltage interruption), or a module
that is switched on at a later stage, can be reliably detected, even without Node Guarding. The sender can
be determined from the message identifier (see default identifier allocation).

It is also possible, with the aid of the boot-up message, to recognize the nodes present in the network at
start-up with a simple CAN monitor, without having to make write access to the bus (such as a scan of the
network by reading out parameter 0x1000).

Finally, the boot-up message communicates the end of the initialization phase. The device indicates that it
can now be configured or started.

Format of the Boot-up message

11 bit identifier 2 byte of user data
0x700 (=1792)+
node ID

0x00

2.1.2 Node Monitoring
The heartbeat and guarding mechanisms are available for monitoring CANopen device failures. These
mechanisms are particularly important for CANopen, since in the event-driven operating mode the devices
do not report on a regular basis. In the case of "guarding", the devices are cyclically interrogated about their
status by means of a data request telegram (remote frame), whereas with "heartbeat" the nodes transmit
their status on their own initiative.

Guarding: Node Guarding and Life Guarding

Node guarding is used to monitor the slaves, which themselves use life guarding to detect a faulty guarding
master.

Node guarding involves the master issuing request telegrams, referred to as remote frames (remote transmit
requests) to the guarding identifiers of the slaves to be monitored. The slaves respond with a guarding
message. The message contains the node state of the slave and toggle bit, which has to change after each
message. If the node state or the toggle bit do not match the values expected by the master or if there is a
general lack of response, the master assumes an error.

At the time of the first guarding message of the slave the toggle bit has the value 0. Subsequently, the toggle
bit alternates after each guarding message and enables lost messages to be detected. The remaining seven
bits contain the node state, thereby transferring the slave status to the master.

CANopen system overview

CXxxxx-M510/B510 13Version: 1.0

Node State Status
4 = 0x04 Stopped
5 = 0x05 Operational
127 = 0x7F Pre-Operational

Sample

The guarding message for node 27 (0x1B) must be requested by a remote frame having identifier 0x71B
(1819dec). If the node is Operational, the first data byte of the answer message alternates between 0x05 and
0x85, whereas in the Pre-Operational state it alternates between 0x7F and 0xFF.

Guard time and life time factor

If the master requests the guard messages in a strict cycle, the slave can detect the failure of the master. In
this case, if the slave fails to receive a message request from the master within the set Node Life Time (a
guarding error), the slave assumes that the master has failed (the watchdog function).

In this case the slave sets its outputs to error state, sends an emergency telegram and returns to pre-
operational state. After a guarding time-out the procedure can be triggered again with a new guarding
message.

The node life time is calculated based on the following parameters:

• guard time (object 0x100C) and
• life-time factor (object 0x100D)

Life time = guard time x life time factor

If one of the two parameters is 0 (default), the master is not monitored (no life guarding) (see: CAN node
[} 35] tab).

Heartbeat: Node Monitoring without Remote Frame

If the heartbeat method is active, the devices automatically send their respective status messages cyclically.
In contrast to the guarding method, the heartbeat method does not involve sending of remote frames,
resulting in less bus load. The master also sends its heartbeat telegram cyclically, enabling the slaves to
detect a master failure (see: CAN node [} 35] tab).

The toggle bit is not used with the heartbeat method, and the devices send their respective status cyclically.

2.1.3 Process Data Objects (PDO)
In many fieldbus systems the entire process image is continuously transferred - usually in a more or less
cyclic manner. CANopen is not limited to this communication principle, since with CANopen the process data
are transferred based on the producer/consumer model. It means that a device sends its process data
spontaneously (producer), while all other devices listen and use a CAN identifier to decide whether the
telegram is of interest for them, in which case they process it accordingly (consumer).

CANopen system overview

CXxxxx-M510/B51014 Version: 1.0

The process data in CANopen is divided into segments with a maximum of 8 bytes. These segments are
known as process data objects (PDOs). The process data objects (PDOs) each correspond to a CAN
telegram. They are allocated and prioritized based on a specific CAN identifier.

The process data objects (PDOs) are subdivided into receive PDOs (RxPDOs) and send PDOs (TxPDOs);
the ID is based on the device perspective. A device sends its input data with TxPDOs and receives the
output data in the RxPDOs.
This designation is retained in TwinCAT.

Communication parameters

The process data objects (PDOs) can be assigned different communication parameters, as required. Like all
CANopen parameters, these are also listed in the object directory of the device. The communication
parameters can be accessed via service data objects (SDOs).

The parameters for the receive PDOs are contained in index 0x1400 (RxPDO1) to 0x15FF (RxPDO512),
which means up to 512 RxPDOs can exist. In the same way, the entries for the transmit PDOs are located
from index 0x1800 (TxPDO1) to index 0x19FF (TxPDO512).

For each existing process data object (PDO) there is an associated communication parameter object.
TwinCAT automatically assigns the set parameters to the relevant object directory entries. These entries and
their significance for the communication of process data are explained below.

CAN identifier

The main communication parameter for process data objects (PDOs) is the CAN identifier (also referred to a
communication object identifier, COB ID). The CAN identifier is used to identify the CAN telegrams and
determines their priority for bus access. For each CAN telegram there can only be one sender (producer).
However, since CAN sends all messages based on the broadcast method, a telegram can be received by
any number of devices (consumers), as described. In other words, a device can make its input information
available to several devices at the same time, even without transfer by a logical master.

The CAN identifier is contained in subindex 1 of the communication parameter set. It is coded as a 32-bit
value in which the least significant 11 bits (bits 0...10) contain the CAN identifier itself. The 32-bit object data
width enables 29-bit CAN identifiers to be entered. The use of the 29-bit version is limited to special
applications and is therefore not supported by the Beckhoff CANopen devices. The highest bit (bit 31) can be
used to activate the process data object or to turn it off.

PDO linking

By default all devices (slaves) communicate with a central controller (master). By default no slave listens to
the process data objects (PDOs) and therefore the CAN identifiers of another slave.

Standard communication between several slaves and a master:

To exchange process data objects (SDOs) directly between the devices without a master, the CAN
identifiers have to be adjusted accordingly. The TxPDO identifiers of the producer must match the RxPDO
identifier of the consumer. This procedure is known as PDO linking. It permits, for sample, easy construction
of electronic drives in which several slave axes simultaneously listen to the actual value in the master axis
TxPDO.

CANopen system overview

CXxxxx-M510/B510 15Version: 1.0

Communication without master based on PDO linking:

PDO transmission types

CANopen offers following options for transferring process data objects (PDOs):

• Event driven
• By polling
• Synchronized

• Event driven:
If an input value changes, a device immediately transfers its process data objects (PDOs). This
enables optimum utilization of the transmission bandwidth, since only the change in the process image
is transferred, while the response time is short, since the devices do not wait for a query from a master
if the input values change.

As from CANopen Version 4 it is possible to combine the event driven type of communication with a
cyclic update. The process data objects (in this case the TxPDOs) are then transferred once a set time
(event timer) has elapsed. If an input value changes within the set time, the time (event timer) is reset.

With RxPDOs the set time (event timer) is used to monitor the arrival of the event-driven process data
objects (PDOs). A device switches to error state, if no process data objects (PDOs) arrived within the
set time.

• Polled:
The process data objects (PDOs) are polled through request telegrams (remote frames). In this way
the process data objects (PDOs) are transferred even if there is no change, for sample if a monitor or
diagnostic device is included in the network at runtime.

Function blocks with integrated full message filtering (FullCAN) usually respond to a request telegram
directly and immediately send the data contained in the corresponding send buffer. The application
must ensure that the data are continuously updated. CAN controllers with simple message filtering
(BasicCAN) on the other hand pass the request on to the application which can now compose the
telegram with the latest data. This does take longer, but does mean that the data is up-to-date.
Beckhoff use CAN controllers following the principle of Basic CAN.

CANopen system overview

CXxxxx-M510/B51016 Version: 1.0

Since this device behavior is usually not transparent to the user, and because there are CAN
controllers still in use that do not support remote frames at all, polled communication will only with
reservation be recommended for operative running.

• Synchronized
It is not only for drive applications that it is worthwhile to synchronize the determination of the input
information and the setting the outputs. For this purpose CANopen provides the SYNC object, a CAN
telegram of high priority but containing no user data, whose reception is used by the synchronized
users as a trigger for reading the inputs or for setting the outputs.

PDO transmission types: Parameterization

The PDO transmission type determines how the transfer of the process data objects (PDOs) is triggered and
how the received process data objects (PDOs) are treated:

Transmission
type

Cyclical Acyclical Synchronous Asynchronous

0 X X
1-240 X X
254, 255 X

The type of transmission is parameterized for RxPDOs in the objects at 0x1400ff, sub-index 2, and for
TxPDOs in the objects at 0x1800ff, sub-index 2. In TwinCAT the PDO transmission type is set on the PDO
tab under Transmission Type (see: PDO [} 38] tab).

• Acyclic Synchronous:
PDOs of transmission type 0 function synchronously, but not cyclically. An RxPDO is only evaluated
after the next SYNC telegram. In this way, for instance, axis groups can be given new target positions
one after another, but these positions only become valid at the next SYNC - without the need to be
constantly outputting reference points.
In contrast, a TxPDO determines its input data after a SYNC telegram (synchronous process image)
and forwards its input data if the input data have changed.
Transmission type 0 therefore combines the send reason „synchronized“ with the send reason “event-
driven”.

• Cyclic Synchronous:
With transmission types 1-240 the PDO is sent cyclically after each n-th SYNC (n=1...240). In this way
it is possible to parameterise a fast cycle for digital inputs (n=1), for sample, while the data of the
analog inputs are transferred in a slower cycle (e.g. n=10). RxPDOs generally do not differentiate
between the transmission types 0...240. A received PDO is set to valid with the next SYNC telegram.
The cycle time (SYNC rate) can be monitored (object 0x1006), so that if the SYNC fails the device
reacts in accordance with the definition in the device profile, and switches, for sample, its outputs into
the fault state.

The SYNC telegram is coupled with the link task, so that new input data are available with each task
start. If a synchronous PDO fails to materialize, this is detected and reported to the application.

• Asynchronous:
The transmission types 254 + 255 are asynchronous or event-driven. In transmission type 254, the
event is specific to the manufacturer, whereas for type 255 it is defined in the device profile. In the
simplest case, the event is the change of an input value - this means that every change in the value is
transmitted. The asynchronous transmission type can be coupled with the event timer, thus also
providing input data when no event has just occurred. Once the set time has elapsed, this is interpreted
as an additional event, and the input data are sent.

CANopen system overview

CXxxxx-M510/B510 17Version: 1.0

PDO Mapping

PDO mapping refers to mapping of the application objects (real time data) from the object directory to the
process data objects. The CANopen device profile provide a default mapping for every device type, and this
is appropriate for most applications. Thus the default mapping for digital I/O simply represents the inputs and
outputs in their physical sequence in the transmit and receive process data objects.

The default PDOs for drives contain 2 bytes each of a control and status word and a set or actual value for
the relevant axis.

The current mapping can be read by means of corresponding entries in the object directory. These are
known as the mapping tables. The first location in the mapping table (sub-index 0) contains the number of
mapped objects that are listed after it. The tables are located in the object directory at index 0x1600ff for the
RxPDOs and at 0x1A00ff for the TxPDOs.

Digital and analog input/output modules: Read out the I/O number

The current number of digital and analog inputs and outputs can be determined or verified by reading out the
corresponding application objects in the object directory:

Parameter Object directory address
Number of digital input bytes Index 0x6000, sub-index 0

Number of digital output bytes Index 0x6200, sub-index 0
Number of analog inputs Index 0x6401, sub-index 0

Number of analog outputs Index 0x6411, sub-index 0

Variable mapping

As a rule, the default mapping of the process data objects already satisfies the requirements. For special
types of application the mapping can nevertheless be altered: the Beckhoff CANopen Bus Couplers, for
instance, thus support variable mapping, in which the application objects (input and output data) can be
freely allocated to the PDOs. The mapping tables must be configured for this: as from Version 4 of
CANopen, only the following procedure is permitted, and must be followed precisely:

1. First delete the PDO (set 0x1400ff, or 0x1800ff, sub-index 1, bit 31 to "1")
2. Set sub-index 0 in the mapping parameters (0x1600ff or 0x1A00ff) to "0"
3. Change mapping entries (0x1600ff or 0x1A00ff, SI 1..8)

CANopen system overview

CXxxxx-M510/B51018 Version: 1.0

4. Set sub-index 0 in the mapping parameters to the valid value. The device then checks the entries for
consistency.

5. Create PDO by entering the identifier (0x1400ff or 0x1800ff, sub-index 1).

Dummy Mapping

A further feature of CANopen is the mapping of placeholders, or dummy entries. The data type entries stored
in the object directory, which do not themselves have data, are used as placeholders. If such entries are
contained in the mapping table, the corresponding data from the device is not evaluated. In this way, for
instance, a number of drives can be supplied with new set values using a single CAN telegram, or outputs on
a number of nodes can be set simultaneously, even in event-driven mode.

Also see about this
2 PDO Parameterization [} 39]

2.1.4 Service Data Objects (SDO)
The parameters listed in the object directory are read and written by means of service data objects. These
SDOs are Multiplexed Domains, i.e. data structures of any size that have a multiplexer (address). The
multiplexer consists of a 16-bit index and an 8-bit sub-index that address the corresponding entries in the
object directory.

SDO protocol: access to the object directory

The CANopen Bus Couplers are servers for the SDO, which means that at the request of a client (e.g. of the
IPC or the PLC) they make data available (upload), or they receive data from the client (download). This
involves a handshake between the client and the server.

When the size of the parameter to be transferred is not more than 4 bytes, a single handshake is sufficient
(one telegram pair): For a download, the client sends the data together with its index and sub-index, and the
server confirms reception. For an upload, the client requests the data by transmitting the index and sub-
index of the desired parameter, and the server sends the parameter (including index and sub-index) in its
answer telegram.

The same pair of identifiers is used for both upload and download. The telegrams, which are always 8 bytes
long, encode the various services in the first data byte. All parameters with the exception of objects 1008h,
1009h and 100Ah (device name, hardware and software versions) are only at most 4 bytes long, so this
description is restricted to transmission in expedited transfer.

CANopen system overview

CXxxxx-M510/B510 19Version: 1.0

Protocol

The structure of the SDO telegrams is described below.

Client -> Server, Upload Request

11 bit
identifier

8 bytes of user data

0x600
(=1536de
z) + node
ID

0x40 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Client -> Server, Upload Response

11 bit
identifier

8 bytes of user data

0x580
(=1408de
c) + node
ID

0x4x Index0 Index1 SubIdx Data0 Data1 Data2 Data3

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

Parameters whose data type is Unsigned8 are transmitted in byte D0, parameters whose type is Unsigned16
use D0 and D1.

The number of valid data bytes is coded as follows in the first CAN data byte (0x4x):

Number of param-
eter bytes

1 2 3 4

First CAN data byte 0x4F 0x4B 0x47 0x43

Client -> Server, Download Request

11 bit
identifier

8 bytes of user data

0x600
(=1536de
c) + node
ID

0x22 Index0 Index1 SubIdx Data0 Data1 Data2 Data3

CANopen system overview

CXxxxx-M510/B51020 Version: 1.0

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

It is optionally possible to give the number of valid parameter data bytes in the first CAN data byte

Number of param-
eter bytes

1 2 3 4

First CAN data byte 0x2F 0x2B 0x27 0x23

This is, however, not generally necessary, since only the less significant data bytes up to the length of the
object directory entry that is to be written are evaluated. A download of data up to 4 bytes in length can
therefore always be achieved in Beckhoff bus nodes with 22h in the first CAN data byte.

Client -> Server, Download Response

11 bit
identifier

8 bytes of user data

0x580
(=1408de
c) + node
ID

0x60 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Breakdown of Parameter Communication

Parameter communication is interrupted if it is faulty. The client or server send an SDO telegram with the
following structure for this purpose:

11 bit
identifier

8 bytes of user data

0x580
(client) or
0x600(ser
ver) +
node ID

0x80 Index0 Index1 SubIdx Error0 Error1 Error2 Error3

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Error0 SDO error code low low byte (LLSB)
Error3 SDO error code high high byte (MMSB)

CANopen system overview

CXxxxx-M510/B510 21Version: 1.0

List of SDO error codes (reason for abortion of the SDO transfer):

SDO error code Explanation
0x05 03 00 00 Toggle bit not changed
0x05 04 00 01 SDO command specifier invalid or unknown
0x06 01 00 00 Access to this object is not supported
0x06 01 00 02 Attempt to write to a Read_Only parameter
0x06 02 00 00 The object is not found in the object directory
0x06 04 00 41 The object can not be mapped into the PDO
0x06 04 00 42 The number and/or length of mapped objects would

exceed the PDO length
0x06 04 00 43 General parameter incompatibility
0x06 04 00 47 General internal error in device
0x06 06 00 00 Access interrupted due to hardware error
0x06 07 00 10 Data type or parameter length do not agree or are

unknown
0x06 07 00 12 Data type does not agree, parameter length too great
0x06 07 00 13 Data type does not agree, parameter length too short
0x06 09 00 11 Sub-index not present
0x06 09 00 30 General value range error
0x06 09 00 31 Value range error: parameter value too great
0x06 09 00 32 Value range error: parameter value too small
0x06 0A 00 23 Resource not available
0x08 00 00 21 Access not possible due to local application
0x08 00 00 22 Access not possible due to current device status

Further, manufacturer-specific error codes have been introduced for register communication (index 0x4500,
0x4501):

SDO error code Explanation
0x06 02 00 11 Invalid table: Table or channel not present
0x06 02 00 10 Invalid register: table not present
0x06 01 00 22 Write protection still set
0x06 07 00 43 Incorrect number of function arguments
0x06 01 00 21 Function still active, try again later
0x05 04 00 40 General routing error
0x06 06 00 21 Error accessing BC table
0x06 09 00 10 General error communicating with terminal
0x05 04 00 47 Time-out communicating with terminal

CANopen system overview

CXxxxx-M510/B51022 Version: 1.0

2.2 Technical Data - CANopen
Optional interface M510

Technical data M510
Fieldbus CANopen
Data transfer rate 10, 20, 50, 100, 125, 250, 500, 800, 1.000 kbaud
Bus interface 1 x D sub-socket, 9-pin
Bus devices max. 64
max. process image 512 Tx PDOs / 512 Rx PDOs
Properties CANopen – supported PD communication types:

event-driven, time-controlled, synchronous, polling;
emergency message handling, guarding and
heartbeat, boot-up after DS302; online bus load
monitor and bus trace, error management for each
device freely configurable

Optional interface B510

Technical data B510
Fieldbus CANopen
Data transfer rate 10, 20, 50, 100, 125, 250, 500, 800, 1.000 kbaud
Bus interface 1 x D sub-socket, 9-pin
Extendable process image Up to 15 virtual slaves in addition
max. process image 16 slaves x (16 Tx PDOs / 16 Rx PDOs (8 bytes per

PDO))

Device Profile

The BECKHOFF CANopen devices support all types of I/O communication, and correspond to the device
profile for digital and analog input/output modules (DS401 Version 1). For reasons of backwards
compatibility, the default mapping was not adapted to the DS401 V2 profile version.

Connection and cabling

CXxxxx-M510/B510 23Version: 1.0

3 Connection and cabling

3.1 CANopen connection

The CAN bus line is connected via a 9-pin D-sub socket with the following configuration:

Pin Assignment
1 not used
2 CAN low (CAN-)
3 CAN ground (internally connected to pin 6)
4 not used
5 Shield
6 CAN ground (internally connected to pin 3)
7 CAN high (CAN+)
8 not used
9 not used

Connection and cabling

CXxxxx-M510/B51024 Version: 1.0

3.2 Cabling
CAN is a 2-wire bus system, to which all participating devices are connected in parallel (i.e. using short drop
lines). The bus must be terminated at each end with a 120 (or 121) Ohm terminating resistor to prevent
reflections. This is also necessary even if the cable lengths are very short!

Since the CAN signals are represented on the bus as the difference between the two levels, the CAN leads
are not very sensitive to incoming interference (EMI): Both leads are affected, so the interference has very
little effect on the difference.

Additional shielding of the twisted wires can be used to further reduce EMI interference.

Connection and cabling

CXxxxx-M510/B510 25Version: 1.0

Bus length

The maximum length of a CAN bus is primarily limited by the signal propagation delay. The multi-master bus
access procedure (arbitration) requires signals to reach all the nodes at effectively the same time (before the
sampling within a bit period). Since the signal propagation delays in the CAN connecting equipment
(transceivers, opto-couplers, CAN controllers) are almost constant, the line length must be chosen in
accordance with the baud rate:

Baud rate Bus length
1 Mbit/s < 20 m*
500 kbit/s < 100 m
250 kbit/s < 250 m
125 kbit/s < 500 m
50 kbit/s < 1000 m
20 kbit/s < 2500 m
10 kbit/s < 5000 m

*) A figure of 40m at 1 Mbit/s is often found in the CAN literature. This does not, however, apply to networks
with optically isolated CAN controllers. The worst case calculation for opto-couplers yields a figure 5 m at 1
Mbit/s - in practice, however, 20 m can be reached without difficulty.

It may be necessary to use repeaters for bus lengths greater than 1000 m.

Connection and cabling

CXxxxx-M510/B51026 Version: 1.0

Drop lines

Drop lines must always be avoided as far as possible, since they inevitably cause reflections. The reflections
caused by drop lines are not however usually critical, provided they have decayed fully before the sampling
time. In the case of the bit timing settings selected in the Bus Couplers it can be assumed that this is the
case, provided the following drop line lengths are not exceeded:

Baud rate Drop line length Total length of all drop lines
1 Mbit/s < 1m < 5 m
500 kbit/s < 5 m < 25 m
250 kbit/s < 10 m < 50 m
125 kbit/s < 20 m < 100 m
50 kbit/s < 50 m < 250 m

Drop lines must not have terminating resistors.

Star Hub (Multiport Tap)

Connection and cabling

CXxxxx-M510/B510 27Version: 1.0

Shorter drop line lengths must be maintained when passive distributors ("multiport taps"), such as the
BECKHOFF ZS5052-4500 Distributor Box. The following table indicates the maximum drop line lengths and
the maximum length of the trunk line (without the drop lines):

Baud rate Drop line length with multiport
topology

Trunk line length (without drop
lines)

1 Mbit/s < 0.3 m < 25 m
500 kbit/s < 1.2 m < 66 m
250 kbit/s < 2.4 m < 120 m
125 kbit/s < 4.8 m < 310 m

CAN cable

Screened twisted-pair cables (2x2) with a characteristic impedance of between 108 and 132 Ohm is
recommended for the CAN wiring. If the CAN transceiver’s reference potential (CAN ground) is not to be
connected, the second pair of conductors can be omitted. (This is only recommended for networks of small
physical size with a common power supply for all the participating devices).

ZB5100 CAN Cable

A high quality CAN cable with the following properties is included in BECKHOFF's range:

• 2 x 2 x 0.25 mm² (AWG 24) twisted pairs, cable colors: red/black + white/black
• double screened
• braided screen with filler strand (can be attached directly to pin 3 of the 5-pin connection terminal),
• flexible (minimum bending radius 35 mm when bent once, 70 mm for repeated bending)
• characteristic impedance (60kHz): 120 ohm
• conductor resistance < 80 Ohm/km
• sheath: grey PVC, outside diameter 7.3 +/- 0.4 mm
• Weight: 64 kg/km.
• printed with "BECKHOFF ZB5100 CAN-BUS 2x2x0.25" and meter marking (length data every 20cm)

ZB5200 CAN/DeviceNet Cable

The ZB5200 cable material corresponds to the DeviceNet specification, and is also suitable for CANopen
systems. The ready-made ZK1052-xxxx-xxxx bus cables for the Fieldbus Box modules are made from this
cable material. It has the following specification:

• 2 x 2 x 0.34 mm² (AWG 22) twisted pairs
• double screened braided screen with filler strand
• characteristic impedance (1 MHz): 126 ohm
• conductor resistance 54 Ohm/km
• sheath: grey PVC, outside diameter 7.3 mm
• printed with "InterlinkBT DeviceNet Type 572" as well as UL and CSA ratings
• stranded wire colors correspond to the DeviceNet specification
• UL recognized AWM Type 2476 rating

Connection and cabling

CXxxxx-M510/B51028 Version: 1.0

• CSA AWM I/II A/B 80°C 300V FT1
• corresponds to the DeviceNet "Thin Cable" specification

Shielding

The screen is to be connected over the entire length of the bus cable, and only galvanically grounded at one
point, in order to avoid ground loops.
The design of the screening, in which HF interference is diverted through R/C elements to the mounting rail
assumes that the rail is appropriately earthed and free from interference. If this is not the case, it is possible
that HF interference will be transmitted from the mounting rail to the screen of the bus cable. In that case the
screen should not be attached to the couplers - it should nevertheless still be fully connected through.

Cable colors

Recommended application of Beckhoff CAN cables:

Function ZB5100 cable color ZB5200 cable color
CAN Ground black/ (red) black
CAN Low black blue
Shield Filler strand Filler strand
CAN high white white
not used (red) (red)

Connection and cabling

CXxxxx-M510/B510 29Version: 1.0

3.3 Topology
All devices are connected in parallel. The bus must be terminated at each end with a 120 ohm termination
resistor. CANopen limits the number of devices per network to 64.

The maximum possible network size is limited by the data rate. For sample, at 1 Mbit/s a network size of 20
m is possible, at 50 kbit/s a network size of 1000 m. At lower data rates the network size can be increased
with repeaters. Repeaters also enable the configuration of tree structures.

TwinCAT tabs

CXxxxx-M510/B51030 Version: 1.0

4 TwinCAT tabs
In TwinCAT, information and settings for the CANopen interface are added under tabs. The main TwinCAT
tabs are described in this section. In addition, the section illustrates how the CANopen interface is displayed
in the tree view under TwinCAT.

The tree view and the tabs for a CANopen interface are identical under TwinCAT2 and TwinCAT3.

4.1 Tree view
A CANopen master and a CANopen slave are displayed as follows in the tree view:

1

2

3

4

In this sample the slave was linked to the master. TwinCAT was then scanned for the master, and the master
was added in TwinCAT together with the slave.

No. Description
1 The device name of the master is shown in brackets. All CANopen slaves

are added under the master.
2 Under the CANopen master, status messages are listed as input variables.

The variables can be linked with the PLC and used for diagnostic purposes
(e.g. error codes, counters, etc.).

3 CANopen slaves are added under the master, labelled as box and
numbered consecutively. The device name appears in brackets after it.
Each CANopen slave has its own input variables for diagnostic purposes,
which indicate the state of the communication.

4 Further settings for the CANopen master or slave can be implemented
under the tabs.
Other tabs are displayed, depending on whether the master or slave is
selected in the tree view.

A CANopen slave and the corresponding tabs are shown as follows in the tree view:

TwinCAT tabs

CXxxxx-M510/B510 31Version: 1.0

2

3

1

No. Description
1 Under the CANopen slave, status messages are listed as input variables.

The variables can be linked with the PLC and used for diagnostic purposes.
2 The process data objects (PDO) are displayed under the CANopen slave.

At this point the variables for the data transfer are also created. The
variables can be linked with the PLC.
The data transfer direction is described from the perspective of the slave:
• RxPDOs are received by the device.
• TxPDOs are sent by the device.

3 Further settings for the CANopen slave can be implemented under the tabs.
Other tabs are displayed, depending on whether slave or other entries are
selected in the tree view.

When the PLC process image is read, the variables for status messages and the variables under the
process data objects can be linked with the variables from the PLC program. Double-click on a variable
name in the tree view to open the link dialog. The link variables are identified with a small arrow icon.

Further information about TwinCAT can be found in the TwinCAT documentation on the Beckhoff website:
www.beckhoff.com

http://www.beckhoff.com

TwinCAT tabs

CXxxxx-M510/B51032 Version: 1.0

4.2 CANopen master

4.2.1 General
The General tab contains general information for a CANopen device, including name, type and ID.

1 5

2

3

4

No. Description
1 Name of the CANopen device
2 CANopen device type
3 Here you can add a comment (e.g. notes relating to the system component)
4 Here you can disable the CANopen device
5 Running No.

The CANopen device can be switched off via this tab. A comment field offers the option to add a label, in
order to provide additional information on the device.

TwinCAT tabs

CXxxxx-M510/B510 33Version: 1.0

4.2.2 FC 51xx

1

2

3

7

8

4

5

6

No. Description
1 Name of the physical interface.

Name and type of the CANopen device.
2 Name of the CANopen master. Range between 1 and 127. Determines the

identifier of the master heartbeat telegram. Ensure that it is not the same as
a slave node address.

3 The baud rate is set here. Automatically tests whether the connected slave
supports this baudrate.

4 Displays the cycle time of the corresponding highest priority task.
5 With CANopen it is often the case that event-driven communication is

combined with cyclic synchronous communication. In order to be able to
respond to events quickly, the task cycle time must be less than the cycle
time of the sync telegram.
If the sync cycle multiplier is set to values > 1, the TwinCAT task is called
repeatedly before the sync telegram is sent again.

6 The cycle time of the sync telegram is displayed here. It is determined by
the cycle time of the highest priority task, its process data and the sync
cycle multiplier.
Sync cycle time = cycle time x sync cycle multiplier

7 The current firmware version is displayed here.
8 The Search button is used to find and select the required physical interface,

if not done automatically already.

TwinCAT tabs

CXxxxx-M510/B51034 Version: 1.0

4.2.3 ADS

The CANopen master is an ADS device with its own Net ID, which can be modified here. All ADS services
(diagnostics, acyclic communication) sent to the CANopen master must use this Net ID and port no.

TwinCAT tabs

CXxxxx-M510/B510 35Version: 1.0

4.3 CANopen slave

4.3.1 CAN node

1

3

7

11

13

5

6

2 12

8

9

4

10

TwinCAT tabs

CXxxxx-M510/B51036 Version: 1.0

No. Description
1 The address is set here.
2 After CANopen, the parameter 0x1000 "Device Type" contains the number

of the supported device profile in both the lowest value bytes. This number
is entered here and compared with the parameter in the device on system
startup. If no device profile is supported, the parameter will contain the
value 0.

3 Add. information:
Add. information is contained in the two most significant bytes of the object
directory entry 0x1000 (device type). A set/actual configuration comparison
is only made if the profile no. or add. information (i.e. object directory entry
0x1000) is set to a value other than zero. If the expected values do not
match the actual values on system startup, the node start is aborted and a
corresponding error message is displayed on the Diag tab.

4 Guard time:
The guard time determines the interval in which the node is monitored
(node guarding). The entered value is rounded up to the next the multiple of
10 ms. 0 signifies no monitoring.

5 Life time factor:
Guard time x life time factor determines the watchdog length for the mutual
monitoring of master and slave. The entry 0 means that the slave does not
monitor the master. If 0 is entered, the master directly takes the guard time
as watchdog length.
The heartbeat protocol is also supported, and the system initially tries to
initiate this form of node monitoring on the CANopen node. If this attempt
fails, guarding is activated.

6 Emcy COB ID / Guard COB ID are identifiers for emergency messages or
the guarding protocol. They result from the node address.

7 Heartbeat is used for monitoring of the node. If heartbeat is disabled,
guarding is used for monitoring.
The guard time as producer heartbeat time and (guard time x lifetime factor)
as consumer heartbeat time are entered. In this case a heartbeat telegram
with the smallest configured guard time sent. The guard time can be set
individually for each node.

8 If values other than zero are entered here, these identity object inputs
(0x1018 in the object directory) are read off at the system StartUp and
compared with the configured values. The corresponding node will be
started only if the values coincide. It is also possible to compare only some
of the values (e.g. the vendor ID and the product code). In this case,
parameters that are not used must be set to zero.

9 If this option is selected, the whole CANopen network management is
disabled for this device, i.e. it is not started and monitored etc. The PDO
entries are regarded as pure CAN telegrams (layer 2) and made available to
the controller on an event-driven basis.

10 Opens a window with further settings, which can be enabled:
• Switch off upload object 0x1000.
• Switch off download object 0x1006.
• Switch off automatic sending of start node (then has to be sent

manually).
• Continue to send start SDOs, in the event of a termination.

11 The option StopNode is used to set the node to "stopped" state after a fault.
It can be used to set nodes to a safe state, although they can no longer be
addressed via SDO.

12 If the option is selected, entries are created automatically in TwinCAT,
which are transferred via SDO on system startup (see: SDOs [} 37] tab).

13 If the option is selected, the default identifiers of the process data objects
are automatically adjusted if the node ID changes (see: no. 6).

TwinCAT tabs

CXxxxx-M510/B510 37Version: 1.0

4.3.2 SDOs
The SDO tab is used to display/manage entries, which are sent to the node on startup.

1

2

4

53

No. Description
1 Object index entries in angle brackets were created automatically based on

the current configuration.
Further entries can be created and managed via "Append", "Insert", Delete"
and "Edit".

2 If this option is selected, the slave is restarted if no TxPDO was received
after 10 seconds.

3 This option can be used to set the maximum number of SDOs in the send
queue.

4 The maximum timeout (ms) for the SDO is set here.
5 The boot-up timeout (s) is set here.

TwinCAT tabs

CXxxxx-M510/B51038 Version: 1.0

4.3.3 PDO
This tab appears if you click on a process data object (PDO) in the tree view.

Process Data Objects (PDOs) are CAN telegrams which transport process data without a protocol overhead.

• RxPDOs are received by the device.
• TxPDOs are sent by the device.

A device sends its input data with TxPDOs and receives the output data in the RxPDOs. This designation is
retained in TwinCAT.

1

2

3

4

5

No. Description
1 CAN identifier of the PDO. For two send and receive PDOs per node,

CANopen provides Default Identifiers. These can then be changed.
2 The Transmission Type determines the send behavior of the PDO. 255

corresponds to the event-driven sending (see: Setting the transmission type
[} 64]).

3 The length of the PDO depends on the created variables and can therefore
not be edited here.

4 Enter the value for the Event Timer in ms. For send PDOs (RxPDOs), PDOs
are sent again after a timer has elapsed. For receive PDOs (TxPDOs), the
arrived PDOs are monitored, and the box state of the node may be
modified.
TwinCAT creates corresponding inputs in the node object directory on the
basis of the parameters entered here. These are transferred via SDO at the
system start. The entries can be viewed in the SDO tab (see: SDOs [} 37]).
This function can be deactivated via the checkbox Automatic PDO
Parameter Download on the CAN node tab (see: CAN node [} 35]).

5 The PDO length check can be disabled here.

Parameterization and commissioning

CXxxxx-M510/B510 39Version: 1.0

5 Parameterization and commissioning
This documentation uses CANopen devices to illustrate the commissioning procedure. The configuration
options shown in this section can be used for all Embedded PCs with CANopen interface.

The following devices are used in this documentation:

• CX2020-M510 (Embedded PC with optional CANopen master interface, D-sub socket, 9-pin)
• CX2500-B510 (Embedded PC with fieldbus module CX2500-B510 CANopen slave, D-sub socket, 9-

pin)
• BK5100 (CANopen slave, D-sub socket, 9-pin)

The TwinCAT 2 or TwinCAT 3 software is used for configuring the devices.

For further information see the TwinCAT 2 and TwinCAT 3 documentation, which is available from the
Beckhoff website:
www.beckhoff.de

5.1 PDO Parameterization
Even though the majority of CANopen networks operate satisfactorily with the default settings, i.e. with the
minimum of configuration effort, it is wise at least to check whether the existing bus loading is reasonable:
80% bus loading may be acceptable for a network operating purely in cyclic synchronous modes, but for a
network with event-driven traffic this value would generally be too high, as there is hardly any bandwidth
available for additional events.

Consider the Requirements of the Application

The communication of the process data must be optimized in the light of application requirements which are
likely to be to some extent in conflict. These include

• Little work on parameterization - useable default values are optimal
• Guaranteed reaction time for specific events
• Cycle time for regulation processes over the bus
• Safety reserves for bus malfunctions (enough bandwidth for the repetition of messages)
• Maximum baud rate - depends on the maximum bus length
• Desired communication paths - who is speaking with whom

The determining factor often turns out to be the available bus bandwidth (bus load).

Determine the Baud Rate

We generally begin by choosing the highest baud rate that the bus will permit. It should be borne in mind that
serial bus systems are fundamentally more sensitive to interference as the baud rate is increased. The
following rule therefore applies: just as fast as necessary. 1000 kbit/s are not usually necessary, and only to
be unreservedly recommended on networks within a control cabinet where there is no electrical isolation
between the bus nodes. Experience also tends to show that estimates of the length of bus cable laid are
often over-optimistic - the length actually laid tends to be longer.

Determine the Communication Type

Once the baud rate has been chosen it is appropriate to specify the PDO communication type(s). These
have different advantages and disadvantages:

• Cyclic synchronous communication provides an accurately predictable bus loading, and therefore a
defined time behavior - you could say that the standard case is the worst case. It is easy to configure:
The SYNC rate parameter sets the bus loading globally. The process images are synchronized: Inputs
are read at the same time, output data is set valid simultaneously, although the quality of the
synchronization depends on the implementation. The Beckhoff FC510x PC cards are capable of
synchronizing the CANopen bus system with the cycles of the application program (PLC or NC).
The guaranteed reaction time under cyclic synchronous communication is always at least as long as

Parameterization and commissioning

CXxxxx-M510/B51040 Version: 1.0

the cycle time, and the bus bandwidth is not exploited optimally, since old data, i.e. data that has not
changed, is continuously transmitted. It is however possible to optimize the network through the
selection of different SYNC multiples (transmission types 1...240), so that data that changes slowly is
transmitted less often than, for instance, time-critical inputs. It must, however, be borne in mind that
input states that last for a time that is shorter than the cycle time will not necessarily be communicated.
If it is necessary for such conditions to be registered, the associated PDOs for asynchronous
communication should be provided.

• Event-driven asynchronous communication is optimal from the point of view of reaction time and the
exploitation of bus bandwidth - it can be described as "pure CAN". Your choice must, however, also
take account of the fact that it is not impossible for a large number of events to occur simultaneously,
leading to corresponding delays before a PDO with a relatively low priority can be sent. Proper network
planning therefore necessitates a worst-case analysis. Through the use of, for instance, inhibit time, it
is also necessary to prevent a constantly changing input with a high PDO priority from blocking the bus
(technically known as a "babbling idiot"). It is for this reason that event driving is switched off by default
in the device profile of analog inputs, and must be turned on specifically. Time windows for the transmit
PDOs can be set using progress timers: the telegram is not sent again before the inhibit time has
elapsed, and not later than the time required for the progress timer to complete.

• The communication type is parameterized by means of the transmission type.

It is also possible to combine the two PDO principles. It can, for instance, be helpful to exchange the set and
actual values of an axis controller synchronously, while limit switches, or motor temperatures with limit values
are monitored with event-driven PDOs. This combines the advantages of the two principles: synchronicity for
the axis communication and short reaction times for limit switches. In spite of being event-driven, the
distributed limit value monitoring avoids a constant addition to the bus load from the analog temperature
value.

In this example it can also be of value to deliberately manipulate the identifier allocation, in order to optimize
bus access by means of priority allocation: the highest priority is given to the PDO with the limit switch data,
and the lowest to that with the temperature values.

Optimization of bus access latency time through modification of the identifier allocation is not, however,
normally required. On the other hand the identifiers must be altered if masterless communication is to be
made possible (PDO linking). In this example it would be possible for one RxPDO for each axis to be
allocated the same identifier as the limit switch TxPDO, so that alterations of the input value can be received
without delay.

Determining the Bus Loading

It is always worth determining the bus loading. But what bus loading values are permitted, or indeed
sensible? It is first necessary to distinguish a short burst of telegrams in which a number of CAN messages
follow one another immediately - a temporary 100% bus loading. This is only a problem if the sequence of
receive interrupts that it caused at the CAN nodes can not be handled. This would constitute a data overflow
(or CAN queue overrun). This can occur at very high baud rates (> 500 kbit/s) at nodes with software
telegram filtering and relatively slow or heavily loaded microcontrollers if, for instance, a series of remote
frames (which do not contain data bytes, and are therefore very short) follow each other closely on the bus
(at 1 Mbit/s this can generate an interrupt every 40 µs; for example, an NMT master might transmit all its
guarding requests in an unbroken sequence). This can be avoided through skilled implementation, and the
user should be able to assume that the device suppliers have taken the necessary trouble. A burst condition
is entirely normal immediately after the SYNC telegram, for instance: triggered by the SYNC, all the nodes
that are operating synchronously try to send their data at almost the same time. A large number of arbitration
processes take place, and the telegrams are sorted in order of priority for transmission on the bus. This is
not usually critical, since these telegrams do contain some data bytes, and the telegrams trigger a sequence
of receive interrupts at the CAN nodes which is indeed rapid, but is nevertheless manageable.

Bus loading most often refers to the value averaged over several primary cycles, that is the mean value over
100-500 ms. CAN, and therefore CANopen, is indeed capable of managing a bus loading of close to 100%
over long periods, but this implies that no bandwidth is available for any repetitions that may be necessitated
by interference, for asynchronous error messages, parameterization and so on. Clearly, the dominant type of
communication will have a large influence on the appropriate level of bus loading: a network with entirely
cyclic synchronous operation is always in any case near to the worst case state, and can therefore be
operated with values in the 70-80% range. The figure is very hard to state for an entirely event-driven
network: an estimate must be made of how many events additional to the current state of the system might
occur, and of how long the resulting burst might last - in other words, for how long the lowest priority

Parameterization and commissioning

CXxxxx-M510/B510 41Version: 1.0

message will be delayed. If this value is acceptable to the application, then the current bus loading is
acceptable. As a rule of thumb it can usually be assumed that an event-driven network running with a base
loading of 30-40% has enough reserve for worst-case scenarios, but this assumption does not obviate the
need for a careful analysis if delays could have critical results for the plant.

The BECKHOFF FC510x PC cards indicate the bus loading via the System Manager. This variable can also
be processed in the PLC, or can be displayed in the visualization system.

The amount data in the process data objects is of course as relevant as the communication parameters: the
PDO mapping.

Parameterization and commissioning

CXxxxx-M510/B51042 Version: 1.0

5.2 Parameterization with TwinCAT 2
This section illustrates how CANopen devices can be parameterized with the aid of TwinCAT 2. A total of
three devices are used for the sample, including a CANopen master, to which two CANopen slaves are
connected.

First, the process of finding and selecting a target system in TwinCAT is illustrated. Next, a CANopen slave
is added and parameterized in TwinCAT, and the CANopen address of the slave is set. Then a PLC project
is created and added in TwinCAT. Then, the variables from the PLC project are linked with the hardware,
and the finished configuration is loaded on the CANopen slave.

In the last step, the CANopen master is added in TwinCAT, and the two CANopen slaves are located via the
master.

5.2.1 Searching for target systems
Before you can work with the devices, you must connect your local computer to the target device. Then you
can search for the devices with the help of the IP address or the host name.

The local PC and the target devices must be connected to the same network or directly to each other via an
Ethernet cable. In TwinCAT a search can be performed for all devices in this way and project planning
subsequently carried out.

Prerequisites for this step:

• TwinCAT 2 must be in Config mode.
• IP address or host name of the device. The host name is composed of CX- and the last 3 bytes of the

MAC address. The MAC address is located on the side of the device.

Search for the devices as follows:
1. Click on File > New in the menu at the top.
2. Click on Choose Target System in the toolbar at the top.

3. Click on Search (Ethernet).

Parameterization and commissioning

CXxxxx-M510/B510 43Version: 1.0

4. Type the host name or the IP address of the device into the Enter Host Name / IP box and press
[Enter].

5. Mark the device found and click on Add Route.

The Logon Information window appears.

6. Enter the user name and password for the CX in the User Name and Password fields and click OK.

The following information is set as standard in CX devices:
User name: Administrator Password: 1

7. If you do not wish to search for any further devices, click on Close to close the Add Route Dialog.
The new device is displayed in the Choose Target System window.

8. Mark the device that you wish to set as the target system and click on OK.

ð You have successfully searched for a device in TwinCAT and inserted the device as the target system.
The new target system is displayed in the bottom right-hand corner together with the host name and IP
address (AMS Net ID).

Using this procedure you can search for all available devices and also switch between the target systems
at any time. Next, you can append the device to the tree view in TwinCAT.

Parameterization and commissioning

CXxxxx-M510/B51044 Version: 1.0

5.2.2 Add CANopen slave
The sample shows a CX2020 CANopen slave with CX2500-B510 fieldbus module, connected to the
CANopen master. In order to ensure that the CANopen slave is configured and subsequently detected by the
CANopen master with all inputs and outputs, the CANopen slave first must be added in TwinCAT.

Prerequisites for this step:

• A scanned and selected target device with CANopen slave. This sample uses a CX2020 with CX2500-
B510 fieldbus module.

Add the CANopen slave as follows:
1. In the tree view on the left, right-click on I/O Devices.
2. In the context menu click on Scan Devices.

3. Select the devices you want to use and confirm the selection with OK.

4. Confirm the request with Yes, in order to look for boxes.

ð The CANopen slave was successfully added in TwinCAT 2 and is displayed in the tree view with the
inputs and outputs.

In the next step you can extend the process image by creating additional virtual slaves. Or you can set
the address, once the slave configuration is complete.

Parameterization and commissioning

CXxxxx-M510/B510 45Version: 1.0

5.2.3 Creating a virtual slave
Additional virtual slaves can be created on the same hardware interface. This enables more data to be
exchanged with a CANopen master, or a connection with a second CANopen master can be established.

Each virtual slave is assigned a dedicated address via TwinCAT and is configured like an independent
device for the CANopen master.

Prerequisites for this step:

• A CANopen slave, created in TwinCAT.

Create a virtual slave as follows:
1. Right-click on a CANopen slave in the tree view on the left.

2. Click on Append Box in the context menu.

ð A further box (virtual slave) is created.

Variables for the virtual slave can now be created. In the next step you can set the address for the slave.

Parameterization and commissioning

CXxxxx-M510/B51046 Version: 1.0

5.2.4 Setting the address
Once the CANopen slave was successfully added in TwinCAT, the address of the CANopen slave can be
set. Devices with a DIP switch have a preset address. The address on the DIP switch must match the
address set in TwinCAT.

For devices without DIP switch the address is only set in TwinCAT.

In this step the address is set in TwinCAT, so that the CANopen slave can be reached by the CANopen
master via this address.

Prerequisites for this step:

• An added CANopen slave in TwinCAT.

Parameterize the CANopen slave as follows:
1. Click on a slave box.
2. Click on the CAN Node tab.
3. Enter a value for the CANopen address in the Node Id field, e.g. “31”.

ð You have set the address successfully. The CANopen master can reach the CANopen slave with the set
address.
You can now create further PDOs.

Parameterization and commissioning

CXxxxx-M510/B510 47Version: 1.0

5.2.5 Creating further PDOs
The CANopen slave can exchange up to 16 PDOs (each with 8 bytes of process data) with the CANopen
master in input and output direction. By default 2 PDOs are created in Tx and Rx direction.
Here we shown how to create further PDOs for a CANopen slave.

Prerequisites for this step:

• A CANopen slave added in the tree view.

Create the PDOs as follows:
1. Right-click on a CANopen slave in the tree view.
2. In the context menu, click on Insert TxPDO or Insert RxPDO in order to create PDOs in Tx or Rx

direction.

The new TxPDOs or RxPDOs are added in the tree view below the already created PDOs and numbered
consecutively.

Notice From the fifth PDO in Tx or Rx direction the COB ID is no longer entered automatically (see the
following diagram).

3. From the fifth PDO in Tx or Rx direction click on the PDO tab.
4. Enter the required value in the COB ID field.

ð You have successfully created further PDOs; in the next step you can create variables for the data
exchange under the PDOs.

Parameterization and commissioning

CXxxxx-M510/B51048 Version: 1.0

5.2.6 Creating variables
In TwinCAT the PDOs are filled with variables, which can later be linked with the PLC program. This section
describes how to create variables.

Prerequisites for this step:

• Newly created PDOs, which are to be filled with variables.

Create the variables as follows:
1. In the tree view click on a TxPDO or RxPDO to show more information.

2. Right-click on Outputs or Inputs, depending on whether a TxPDO or RxPDO is selected.

3. In the context menu click on Insert Variable.
The Insert Variable window appears.

4. Click on the required variable, then click OK.

ð You have successfully created a variable. The new variable is shown in the tree view on the left. In this
way you can add further variables for the CANopen slave.
In the next step you can specify the transmission type, thereby specifying how the process data objects
are transferred.

Parameterization and commissioning

CXxxxx-M510/B510 49Version: 1.0

5.2.7 Setting the transmission type
The transmission type determines how the process data objects are transferred. The transmission type for
the RxPDOs and TxPDOs is set on the PDO tab.

The available transmission types are: acyclic synchronous, cyclic synchronous, and asynchronous.

Transmission type: Acyclic Synchronous Cyclic Synchronous Asynchronous
Name in TwinCAT: (acyc, sync) (cyc, sync) (async)

Prerequisites for this step:

• A CANopen slave with process data objects (PDO) added in TwinCAT

Specify the transmission type as follows:
1. In the tree view, left-click on a process data object (PDO).

2. Click on the PDO tab.

3. Select the required transmission type under Trans. Type.

ð You have successfully specified a transmission type for a process data object. The transmission types
for the remaining process data objects are specified in the same way.
Next, you can create a PLC project for the CANopen slave.

Parameterization and commissioning

CXxxxx-M510/B51050 Version: 1.0

5.2.8 Creating a PLC project
Use PLC Control to create a PLC project. The next steps describe how to create a PLC project in TwinCAT
and add it in the tree view.

Prerequisites for this step:

• An Embedded PC, added in TwinCAT.

Create a PLC project as follows:
1. In the Start menu, right-click on the TwinCAT symbol.
2. In the context menu click on PLC Control.

The TwinCAT PLC Control window appears.
3. In the menu click on File > New and select the option PC or CX (x86).
4. Under Block type select the option Program, and under block language select the option ST

(Structured Text).

5. Write a small program.

6. Save the PLC project and click on Project > Compile in the menu.

ð Once the project has been compiled, a file with the extension .tpy is created in the same location as the
project file. The file name of the new file is the same as the file name of the PLC project.

In the next step you can add the compiled PLC project in the TwinCAT System Manager.

Parameterization and commissioning

CXxxxx-M510/B510 51Version: 1.0

Adding a PLC project

The PLC project can be added in the System Manager. The newly created variables from a PLC project are
integrated in the System Manager and can be linked with the inputs and outputs of the hardware.

Prerequisites for this step:

• An Embedded PC, added in TwinCAT.
• A correctly compiled PLC project and a .tpy file.

Proceed as follows:

1. Switch back to the System Manager window.
2. Right-click on PLC – Configuration in the tree view on the left.
3. In the context menu click on Append PLC Project.

4. Select a file with the extension .tpy in your system directory and confirm with OK.

The PLC project is added in the tree view under PLC – Configuration. The variables defined in the
project are shown under the inputs and outputs.

In the next step you can link the variables with the hardware.

Parameterization and commissioning

CXxxxx-M510/B51052 Version: 1.0

5.2.9 Linking variables
Once the PLC project was successfully added in the System Manager, you can link the newly created input
and output variables from the PLC project with the inputs and outputs of your devices.

Prerequisites for this step:

• An added PLC project in the System Manager.

Link the variables as follows:
1. Double-click on the input or output variables in the tree view under PLC - Configuration.

The Attach Variable window appears and shows which inputs or outputs can be linked with variables.

2. Double-click on the inputs or outputs in the Attach Variable window.
The input variables are linked with the inputs of your hardware, and the output variables with the outputs.

Variables that are already linked are indicated with a small arrow icon in TwinCAT.
3. In the toolbar click on Activate Configuration.

4. Confirm the request whether TwinCAT is to start in Free Run mode with Yes.

ð You have successfully linked variables with the hardware. Use Activate Configuration to save and
activate the current configuration.

The configuration can now be loaded on the CX, in order to automatically start TwinCAT in Run mode,
followed by the PLC project.

Parameterization and commissioning

CXxxxx-M510/B510 53Version: 1.0

5.2.10 Load configuration to CX
Once all variables are linked, the configuration can be saved and loaded on the CX. This has the advantage
that the PLC project is loaded and started automatically when the CX is switched on. The start of the
previously created PLC project can thus be automated.

Prerequisites for this step:

• A completed PLC project, added in the System Manager.
• Variables from the PLC project, linked with the hardware in the System Manager.
• A CX selected as target system.

Load the configuration on the CX as follows:
1. In the tree view on the left click on SYSTEM – Configuration.
2. Click on the Boot Settings (Target) tab.

3. Under Boot Settings select the option Run Mode (Enable) and tick the Auto Logon checkbox.

4. Enter the user name and password for the CX in the User Name and Password fields.
5. Click on Apply.

The Logon Information window appears.

6. Re-enter the user name and the password and click OK.

Parameterization and commissioning

CXxxxx-M510/B51054 Version: 1.0

7. In the tree view on the left click on PLC – Configuration, then on the PLC Settings (Target) tab.

8. Select the Start PLC under Boot Project and click on Apply.

9. Start PLC Control and open the PLC project.

10. In the menu bar at the top click on Online, and then on Choose Runtime System.

11. Select the runtime system from the CX and click on OK.

12. In the menu bar at the top click on Online, then Login.
The PLC project is logged in.

13. In the menu bar at the top click on Online, then Create Boot Project.

ð You have successfully loaded the CX configuration. From now on, TwinCAT will start in Run mode and
the PLC project will start automatically.

Next, the master can be added in a new project in the System Manager and can then be used to find
slaves that have already been set up.

Parameterization and commissioning

CXxxxx-M510/B510 55Version: 1.0

5.2.11 Adding a CANopen master
The CANopen master is added with the TwinCAT System Manager, like the other devices. The attached
master can then be used to find all connected slaves. The following section illustrates how to add a
CANopen master in TwinCAT.

Prerequisites for this step:

• TwinCAT must be in Config mode.
• A selected target system (in this sample it is the Embedded PC CX2020-M510)

Add a CANopen device as follows:
1. Start the System Manager.
2. In the tree view on the left, right-click on I/O Devices.
3. In the context menu click on Scan Devices.

4. Select the devices you want to use and confirm the selection with OK.

5. Confirm the request with Yes, in order to look for boxes.
The Select Baud Rate window appears.

6. Under Baud Rate select the appropriate baud rate for the CANopen master.

Parameterization and commissioning

CXxxxx-M510/B51056 Version: 1.0

ð All devices and slave boxes that are found are displayed in the tree view on the left, including Bus
Terminals connected to the devices or slave boxes.

Repeat the steps if not all devices are displayed. If not all devices and slave boxes are found despite the
repeat operation, check the cabling of the devices and slave boxes.

Parameterization and commissioning

CXxxxx-M510/B510 57Version: 1.0

5.3 Parameterization with TwinCAT 3
This section illustrates how CANopen devices can be parameterized with the aid of TwinCAT 3. A total of
three devices are used for the sample, including a CANopen master, to which two CANopen slaves are
connected.

First, the process of finding and selecting a target system in TwinCAT is illustrated. Next, a CANopen slave
is added and parameterized in TwinCAT, and the CANopen address of the slave is set. Then a PLC project
is created and added in TwinCAT. Then, the variables from the PLC project are linked with the hardware,
and the finished configuration is loaded on the CANopen slave.

In the last step, the CANopen master is added in TwinCAT, and the two CANopen slaves are located via the
master.

5.3.1 Searching for target systems
Before you can work with the devices, you must connect your local computer to the target device. Then you
can search for devices with the help of the IP address or the host name.

The local PC and the target devices must be connected to the same network or directly to each other via an
Ethernet cable. In TwinCAT a search can be performed for all devices in this way and project planning
subsequently carried out.

Prerequisites for this step:

• TwinCAT 3 must be in Config mode.
• IP address or host name of the device.

Search for the devices as follows:
1. In the menu at the top click on File > New > Project and create a new TwinCAT XAE project.
2. In the tree view on the left click on SYSTEM, and then Choose Target.

3. Click on Search (Ethernet).

Parameterization and commissioning

CXxxxx-M510/B51058 Version: 1.0

4. Type the host name or the IP address of the device into the Enter Host Name / IP box and press
[Enter].

5. Mark the device found and click on Add Route.

The Logon Information window appears.
Enter the user name and password for the CX in the User Name and Password fields and click OK.

The following information is set as standard in CX devices:
User name: Administrator Password: 1

6. If you do not wish to search for any further devices, click on Close to close the Add Route Dialog.
The new device is displayed in the Choose Target System window.

7. Select the device you want to specify as target system and click OK.

ð You have successfully searched for a device in TwinCAT and inserted the device as the target system.
The new target system and the host name are displayed in the menu bar.

Using this procedure you can search for all available devices and also switch between the target systems
at any time. Next, you can append the device to the tree view in TwinCAT.

Parameterization and commissioning

CXxxxx-M510/B510 59Version: 1.0

5.3.2 Add CANopen slave
The sample shows a CX2020 CANopen slave with CX2500-B510 fieldbus module, connected to the
CANopen master. In order to ensure that the CANopen slave is configured and subsequently detected by the
CANopen master with all inputs and outputs, the CANopen slave first must be added in TwinCAT.

Prerequisites for this step:

• A scanned and selected target device with CANopen slave. This sample uses a CX2020 with CX2500-
B510 fieldbus module.

Add the CANopen slave as follows:
1. In the tree view on the left, right-click on Devices.
2. In the context menu click on Scan.

3. Select the devices you want to use and confirm the selection with OK.

4. Confirm the request with Yes, in order to look for boxes.

ð The CANopen slave was successfully added in TwinCAT 2 and is displayed in the tree view with the
inputs and outputs.

In the next step you can extend the process image by creating additional virtual slaves. Or you can set
the address, once the slave configuration is complete.

Parameterization and commissioning

CXxxxx-M510/B51060 Version: 1.0

5.3.3 Creating a virtual slave
Additional virtual slaves can be created on the same hardware interface. This enables more data to be
exchanged with a CANopen master, or a connection with a second CANopen master can be established.

Each virtual slave is assigned a dedicated address via TwinCAT and is configured like an independent
device for the CANopen master.

Prerequisites for this step:

• A CANopen slave, created in TwinCAT.

Create a virtual slave as follows:
1. Right-click on a CANopen slave in the tree view on the left.

2. Click on Add New Item in the context menu.

ð A further box (virtual slave) is created.

Variables for the virtual slave can now be created. In the next step you can set the address for the slave.

Parameterization and commissioning

CXxxxx-M510/B510 61Version: 1.0

5.3.4 Setting the address
Once the CANopen slave was successfully added in TwinCAT, the address of the CANopen slave can be
set. Devices with a DIP switch have a preset address. The address on the DIP switch must match the
address set in TwinCAT.

For devices without DIP switch the address is only set in TwinCAT.

In this step the address is set in TwinCAT, so that the CANopen slave can be reached by the CANopen
master via this address.

Prerequisites for this step:

• An added CANopen slave in TwinCAT.

Parameterize the CANopen slave as follows:
1. Click on a slave box.
2. Click on the CAN Node tab.
3. Enter a value for the CANopen address in the Node Id field, e.g. “31”.

ð You have set the address successfully. The CANopen master can reach the CANopen slave with the set
address.
You can now create further PDOs.

Parameterization and commissioning

CXxxxx-M510/B51062 Version: 1.0

5.3.5 Creating further PDOs
The CANopen slave can exchange up to 16 PDOs (each with 8 bytes of process data) with the CANopen
master in input and output direction. By default 2 PDOs are created in Tx and Rx direction.
Here we shown how to create further PDOs for a CANopen slave.

Prerequisites for this step:

• A CANopen slave added in the tree view.

Create the PDOs as follows:
1. Right-click on a CANopen slave in the tree view.
2. In the context menu, click on Insert TxPDO or Insert RxPDO in order to create PDOs in Tx or Rx

direction.

The new TxPDOs or RxPDOs are added in the tree view below the already created PDOs and numbered
consecutively.

Notice From the fifth PDO in Tx or Rx direction the COB ID is no longer entered automatically (see the
following diagram).

3. From the fifth PDO in Tx or Rx direction click on the PDO tab.
4. Enter the required value in the COB ID field.

ð You have successfully created further PDOs; in the next step you can create variables for the data
exchange under the PDOs.

Parameterization and commissioning

CXxxxx-M510/B510 63Version: 1.0

5.3.6 Creating variables
In TwinCAT the PDOs are filled with variables, which can later be linked with the PLC program. This section
describes how to create variables.

Prerequisites for this step:

• Newly created PDOs, which are to be filled with variables.

Create the variables as follows:
1. In the tree view click on a TxPDO or RxPDO to show more information.

2. Right-click on Outputs or Inputs, depending on whether a TxPDO or RxPDO is selected.

3. Click on Add New Item in the context menu.
The Insert Variable window appears.

4. Click on the required variable, then click OK.

ð You have successfully created a variable. The new variable is shown in the tree view on the left. In this
way you can add further variables for the CANopen slave.
In the next step you can specify the transmission type, thereby specifying how the process data objects
are transferred.

Parameterization and commissioning

CXxxxx-M510/B51064 Version: 1.0

5.3.7 Setting the transmission type
The transmission type determines how the process data objects are transferred. The transmission type for
the RxPDOs and TxPDOs is set on the PDO tab.

The available transmission types are: acyclic synchronous, cyclic synchronous, and asynchronous.

Transmission type: Acyclic Synchronous Cyclic Synchronous Asynchronous
Name in TwinCAT: (acyc, sync) (cyc, sync) (async)

Prerequisites for this step:

• A CANopen slave with process data objects (PDO) added in TwinCAT

Specify the transmission type as follows:
1. In the tree view, left-click on a process data object (PDO).

2. Click on the PDO tab.

3. Select the required transmission type under Trans. Type.

ð You have successfully specified a transmission type for a process data object. The transmission types
for the remaining process data objects are specified in the same way.
Next, you can create a PLC project for the CANopen slave.

Parameterization and commissioning

CXxxxx-M510/B510 65Version: 1.0

5.3.8 Creating a PLC project
The next steps describe how to create a PLC project in TwinCAT and add it in the tree view.

Prerequisites for this step:

• A newly created TwinCAT XAE project.

Create a PLC project as follows:
1. Right-click on PLC in the tree view.
2. In the context menu click on Add New Item and select the Standard PLC Project.

3. In the tree view click on the newly created PLC project, then double-click on MAIN (PRG) under POUs.

4. Write a small program, as shown in the diagram below.

Parameterization and commissioning

CXxxxx-M510/B51066 Version: 1.0

5. In the tree view right-click on the PLC project, then click on Build in the context menu.

ð You have successfully created a PLC project and added the project in TwinCAT. A PLC instance with the
variables for the inputs and outputs is created from the PLC project.

In the next step you can link the variables with the hardware.

Parameterization and commissioning

CXxxxx-M510/B510 67Version: 1.0

5.3.9 Linking variables
Once the PLC project was successfully added in the System Manager, you can link the newly created input
and output variables from the PLC project with the inputs and outputs of your hardware.

Prerequisites for this step:

• A PLC program attached in TwinCAT.

Link the variables as follows:
1. Double-click on the input or output variables in the tree view under PLC.

The Attach Variable window appears and shows which inputs or outputs can be linked with the
variables from the PLC project.

2. Double-click on the inputs or outputs of the hardware in the Attach Variable window.
Link the input variables with the inputs and the output variables with the outputs of the hardware.

Variables that are already linked are indicated with a small arrow icon in TwinCAT.
3. In the toolbar click on Activate Configuration.

4. Confirm the request whether TwinCAT is to start in Free Run mode with Yes.
ð You have successfully linked variables with the hardware. Use Activate Configuration to save and

activate the current configuration.

The configuration can now be loaded on the CX, in order to automatically start TwinCAT in Run mode,
followed by the PLC project.

Parameterization and commissioning

CXxxxx-M510/B51068 Version: 1.0

5.3.10 Load configuration to CX
Once variables are linked, the configuration can be saved and loaded on the CX. This has the advantage
that the PLC project is loaded and started automatically when the CX is switched on. The start of the
previously created PLC project can thus be automated.

Prerequisites for this step:

• A completed PLC project, added in the System Manager.
• Variables from the PLC project, linked with the hardware in the System Manager.
• A CX selected as target system.

Load the configuration from the System Manager to the CX as follows:
1. In the tree view on the left click on SYSTEM.

2. Click on the Settings tab.

3. Under Boot Settings select the option Run Mode (Enable) and tick the Auto Logon checkbox.

4. Enter the user name and password for the CX in the User Name and Password fields.

5. Click on Apply.

6. In the tree view on the left right-click on the PLC project under PLC.

Parameterization and commissioning

CXxxxx-M510/B510 69Version: 1.0

7. In the context menu click on Autostart Boot Project.
The setting is selected

8. Right-click on the project folder in the tree view.

9. In the context menu click on Auto Save to Target as Archive.
The setting is selected.

ð You have successfully loaded the CX configuration. From now on, TwinCAT will start in Run mode and
the PLC project will start automatically.

Next, the master can be added in a new project in the System Manager and can then be used to find
slaves that have already been set up.

Parameterization and commissioning

CXxxxx-M510/B51070 Version: 1.0

5.3.11 Adding a CANopen master
The CANopen master is added with the TwinCAT System Manager, like the other devices. The attached
master can then be used to find all connected slaves. The following section illustrates how to add a
CANopen master in TwinCAT.

Prerequisites for this step:

• TwinCAT must be in Config mode.
• A selected target system (in this sample it is the Embedded PC CX2020-M510)

Add a CANopen device as follows:
1. In the tree view on the left, right-click on Devices.
2. In the context menu click on Scan.

3. Select the devices you want to use and confirm the selection with OK.

4. Confirm the request with Yes, in order to look for boxes.
The Select Baud Rate window appears.

5. Under Baud Rate select the appropriate baud rate for the CANopen master.

Parameterization and commissioning

CXxxxx-M510/B510 71Version: 1.0

ð All devices and slave boxes that are found are displayed in the tree view on the left, including Bus
Terminals connected to the devices or slave boxes.

Repeat the steps if not all devices are displayed. If not all devices and slave boxes are found despite the
repeat operation, check the cabling of the devices and slave boxes.

Error handling and diagnostics

CXxxxx-M510/B51072 Version: 1.0

6 Error handling and diagnostics

6.1 Diagnostic LEDs
The diagnostic LEDs of a CANopen master and CANopen slaves are described here. The labelling of the
diagnostic LEDs on a CX2500 fieldbus module and an Embedded PC with optional interface is identical.

The LED description therefore only distinguishes between CANopen master and CANopen slave.

M510 (master)

Display LED Color Meaning
RUN Green CAN is OK

Red CAN in BUS off
Green 200 ms / Red 200
ms

CAN warning

Green and red flashing
rapidly

Baud rate search active

Green off / Red on CAN not configured
ERR Green on / Red off All nodes have NodeState

= 0
Green 200 ms / Red 200
ms

All boxes in OP state, but
the tasks have not yet
started

Green off / Red 200 ms Not all nodes in OP
Green off / Red on No boxes configured

B510 (slave)

Display LED Color Meaning
CAN
Shows the CAN status

Green CAN is OK
Red CAN in BUS off
Green 200 ms / Red 200
ms

CAN warning

Green and red flashing
rapidly

Baud rate search active

Green off / Red on CAN not configured
Tx/Rx
Indicates CAN errors

Green on Everything OK
Green 200 ms / Red 200
ms

All boxes in OP state, but
the task has not yet
started

Red 200 ms Not all boxes in OP
Green off / Red on No boxes configured

Error handling and diagnostics

CXxxxx-M510/B510 73Version: 1.0

6.2 Status messages
The CANopen status messages provide additional information and can be used for diagnostic purposes.

The following table shows which values the variables can assume:

Inputs Meaning
CycleInfo Cycle Counter:

This counter is incremented by one after each cycle.
Error:
Shows the number of boxes, with a non-zero BoxState.
ActualCycle Time:
Reserved for future use

DiagFlag This variable provides information on changes to the diagnostic
data.
• 0: Data unchanged.
• 1: Data changed. Use ADS Read to read the data.

GlobalState This variable provides information on the status of the master.
GlobalState[0]:
0: Device is in RUN status.
1: Device is in RESET status.
2: Device is in OFFLINE status.
3: Device is in STOP status.
GlobalState[1] (FW V02.14 or higher):
Bit 0-7: RxError counter of the CAN controller
Bit 8-15: TxError counter of the CAN controller
GlobalState[2]:
Bit 0: CAN controller is in BUS OFF.
Bit 1: CAN controller warning limit reached.
Bit 2: Rx queue exceeded.
Bit 3: Hi-Prio Tx queue exceeded.
Bit 4: Lo-Prio Tx queue exceeded.
Bit 5: CAN send error (FW V02.14 or higher).
Bit 6-14: Reserved for future use.
Bit 15: Switches with each sent SYNC message.
GlobalState[3]:
Bus load in %.

CycleFailedCounter This counter is incremented by one whenever the last bus cycle
is incomplete at the start of a TwinCAT cycle.

BusLoad Bus load in %.
InfoData

Error handling and diagnostics

CXxxxx-M510/B51074 Version: 1.0

6.3 Communication
In the tree view, input variables are listed under the Inputs menu item, which provide information about a
CANopen device.

The NodeState variable can be used to show the state of the CANopen communication, to indicate whether
the slave is in data exchange or an error is present.

The following table shows which values the variable NodeState can assume:

Value Meaning
0 No error
1 Node deactivated
2 Node not found
4 SDO syntax error at StartUp
5 SDO data mismatch at StartUp
8 Node StartUp in progress
11 FC510x Bus-OFF
12 Pre-Operational
13 Severe bus fault
14 Guarding: toggle error
20 TxPDO too short
22 Expected TxPDO is missing
23 Node is Operational but not all TxPDOs were received
31 only for EtherCAT gateways: WC-State of cyclic

EtherCAT frame is 1
128 Node is Operational but not all RxPDOs were received
129 Node is Pre-Operational
130 Node is Stopped

The following table shows which values the variable DiagFlag can assume. This variable provides
information on changes to the diagnostic data.

Value Meaning
0 Data unchanged.
1 Data changed. Use ADS Read to read the data.

The EmergencyCounter variable is incremented by one if an emergency telegram was received.

Error handling and diagnostics

CXxxxx-M510/B510 75Version: 1.0

6.4 PDOs
SendCounter

TxPDOs feature an additional SendCounter variable under the Control menu item.

The output variable is incremented by one whenever a PDO is sent.

ReceiveCounter

RxPDOs feature an additional ReceiveCounter variable under the Status menu item.

The input variable is incremented by one whenever a PDO is received. In this way newly arrived PDO are
always logged, even if the data in the PDO are unchanged. The variable nevertheless indicates whether a
device still sends data on a regular basis. It is useful to link variable with the PLC and monitor it.

Appendix

CXxxxx-M510/B51076 Version: 1.0

7 Appendix

7.1 Accessories
Cables and connectors for the connection of the CAN components.

Cable

Item number Description
ZB5100 CAN cable, 4-core, fixed installation 2 x 2 x 0.25

mm², price per meter

Connector

Item number Description
ZS1051-3000 Bus interface connector, D-sub for CANopen, in the

housing, with switchable termination resistor
ZS1052-3000 Bus interface connector, 5-pin for BK5xxx, in the

housing, with switchable termination resistor
ZS1052-5150 CAN diagnostics interface

Appendix

CXxxxx-M510/B510 77Version: 1.0

7.2 Certifications
All products of the Embedded PC family are CE, UL and EAC certified. Since the product family is
continuously developed further, we are unable to provide a full listing here. The current list of certified
products can be found at www.beckhoff.com.

FCC Approvals for the United States of America

FCC: Federal Communications Commission Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates, uses,
and can radiate radio frequency energy and, if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. Operation of this equipment in a
residential area is likely to cause harmful interference in which case the user will be required to correct the
interference at his own expense.

FCC Approval for Canada

FCC: Canadian Notice

This equipment does not exceed the Class A limits for radiated emissions as described in the Radio
Interference Regulations of the Canadian Department of Communications.

http://www.beckhoff.com

Appendix

CXxxxx-M510/B51078 Version: 1.0

7.3 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages:
http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
e-mail: info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
e-mail: service@beckhoff.com

http://www.beckhoff.de/english/support/default.htm
http://www.beckhoff.com
http://www.beckhoff.com/english/download/default.htm

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.com?subject=CXxxxx-M510/B510
https://www.beckhoff.com

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Documentation issue status

	2 CANopen system overview
	2.1 Network Management
	2.1.1 Boot-up message
	2.1.2 Node Monitoring
	2.1.3 Process Data Objects (PDO)
	2.1.4 Service Data Objects (SDO)

	2.2 Technical Data - CANopen

	3 Connection and cabling
	3.1 CANopen connection
	3.2 Cabling
	3.3 Topology

	4 TwinCAT tabs
	4.1 Tree view
	4.2 CANopen master
	4.2.1 General
	4.2.2 FC 51xx
	4.2.3 ADS

	4.3 CANopen slave
	4.3.1 CAN node
	4.3.2 SDOs
	4.3.3 PDO

	5 Parameterization and commissioning
	5.1 PDO Parameterization
	5.2 Parameterization with TwinCAT 2
	5.2.1 Searching for target systems
	5.2.2 Add CANopen slave
	5.2.3 Creating a virtual slave
	5.2.4 Setting the address
	5.2.5 Creating further PDOs
	5.2.6 Creating variables
	5.2.7 Setting the transmission type
	5.2.8 Creating a PLC project
	5.2.9 Linking variables
	5.2.10 Load configuration to CX
	5.2.11 Adding a CANopen master

	5.3 Parameterization with TwinCAT 3
	5.3.1 Searching for target systems
	5.3.2 Add CANopen slave
	5.3.3 Creating a virtual slave
	5.3.4 Setting the address
	5.3.5 Creating further PDOs
	5.3.6 Creating variables
	5.3.7 Setting the transmission type
	5.3.8 Creating a PLC project
	5.3.9 Linking variables
	5.3.10 Load configuration to CX
	5.3.11 Adding a CANopen master

	6 Error handling and diagnostics
	6.1 Diagnostic LEDs
	6.2 Status messages
	6.3 Communication
	6.4 PDOs

	7 Appendix
	7.1 Accessories
	7.2 Certifications
	7.3 Support and Service

