
Documentation | EN

EtherCAT
System Description

2022-03-29 | Version: 5.6

Table of contents

EtherCAT 3Version: 5.6

Table of contents
1 Foreword .. 7

1.1 Notes on the documentation.. 7
1.2 Safety instructions ... 8
1.3 Documentation issue status .. 9

2 EtherCAT basics.. 10
2.1 System overview ... 10

2.1.1 Limits of existing Ethernet communication approaches... 10
2.1.2 New approach.. 10
2.1.3 System properties.. 12
2.1.4 Application areas ... 16
2.1.5 EtherCAT is open .. 18
2.1.6 Summary and Outlook ... 19

2.2 Basic principles.. 19
2.2.1 EtherCAT State Machine ... 19
2.2.2 CoE interface ... 21

2.3 System features... 29
2.3.1 EtherCAT cable redundancy.. 29
2.3.2 HotConnect.. 37
2.3.3 EtherCAT data exchange .. 58
2.3.4 Safety over EtherCAT - TwinSAFE.. 60

3 Setup in the TwinCAT System Manager.. 62
3.1 TwinCAT Quick Start ... 62

3.1.1 TwinCAT 2 ... 65
3.1.2 TwinCAT 3 ... 75

3.2 EtherCAT master in TwinCAT ... 88
3.3 General notes on the use of Beckhoff EtherCAT IO components ... 93

3.3.1 Technical classification .. 93
3.3.2 Change management by Beckhoff .. 96
3.3.3 Procurement/update of the elements... 97
3.3.4 Application project planning in the TwinCAT System Manager 2.x/3.x - creating the con-

figuration .. 98
3.3.5 Configuration comparison in the project .. 99
3.3.6 Determining the installation version in the application... 100

3.4 Version identification of EtherCAT devices ... 101
3.4.1 General notes on marking ... 101
3.4.2 Version identification of EK Couplers .. 102
3.4.3 Version identification of EL terminals... 103
3.4.4 Version identification of ELX terminals .. 104
3.4.5 Version identification of ELM terminals.. 105
3.4.6 Version identification of EJ moduls.. 106
3.4.7 Version identification of EP/EPI/EPP/ER/ERI boxes ... 108
3.4.8 Version identification of CU Switches .. 109
3.4.9 Beckhoff Identification Code (BIC)... 110
3.4.10 Electronic access to the BIC (eBIC) .. 112

Table of contents

EtherCAT4 Version: 5.6

3.5 Online version identification of EtherCAT devices... 114
3.6 TwinCAT Development Environment .. 118

3.6.1 Installation of the TwinCAT real-time driver... 118
3.6.2 Notes regarding ESI device description... 124
3.6.3 TwinCAT ESI Updater ... 128
3.6.4 Distinction between Online and Offline.. 128
3.6.5 OFFLINE configuration creation .. 129
3.6.6 ONLINE configuration creation .. 134
3.6.7 Standard behavior of the EtherCAT master... 142

3.7 Notes on distributed clocks.. 154
3.7.1 EtherCAT Distributed Clocks - default settings.. 154
3.7.2 EtherCAT Distributed Clocks - coupling of EtherCAT systems 161

4 EtherCAT diagnostics ... 165
4.1 General Notes - EtherCAT Slave Application.. 165
4.2 EtherCAT AL Status Codes... 173
4.3 EtherCAT AL Status Codes... 195

4.3.1 Error Code 0x0000 .. 195
4.3.2 Error Code 0x0001 .. 195
4.3.3 Error Code 0x0002 .. 195
4.3.4 Error Code 0x0004 .. 196
4.3.5 Error Code 0x0011 .. 196
4.3.6 Error Code 0x0012 .. 197
4.3.7 Error Code 0x0013 .. 197
4.3.8 Error Code 0x0014 .. 198
4.3.9 Error Code 0x0015 .. 198
4.3.10 Error Code 0x0016 .. 199
4.3.11 Error Code 0x0017 .. 199
4.3.12 Error Code 0x0018 .. 200
4.3.13 Error Code 0x0019 .. 200
4.3.14 Error Code 0x001A .. 201
4.3.15 Error Code 0x001B .. 201
4.3.16 Error Code 0x001C.. 201
4.3.17 Error Code 0x001D.. 202
4.3.18 Error Code 0x001E .. 202
4.3.19 Error Code 0x001F .. 203
4.3.20 Error Code 0x0020 .. 203
4.3.21 Error Code 0x0021 .. 203
4.3.22 Error Code 0x0022 .. 204
4.3.23 Error Code 0x0023 .. 204
4.3.24 Error Code 0x0024 .. 205
4.3.25 Error Code 0x0025 .. 205
4.3.26 Error Code 0x0026 .. 206
4.3.27 Error Code 0x0027 .. 206
4.3.28 Error Code 0x0028 .. 206
4.3.29 Error Code 0x0029 .. 207
4.3.30 Error Code 0x002A .. 207

Table of contents

EtherCAT 5Version: 5.6

4.3.31 Error Code 0x002B .. 208
4.3.32 Error Code 0x002C.. 208
4.3.33 Error Code 0x002D.. 208
4.3.34 Error Code 0x0030 .. 209
4.3.35 Error Code 0x0031 .. 209
4.3.36 Error Code 0x0032 .. 210
4.3.37 Error Code 0x0033 .. 210
4.3.38 Error Code 0x0034 .. 211
4.3.39 Error Code 0x0035 .. 211
4.3.40 Error Code 0x0036 .. 211
4.3.41 Error Code 0x0037 .. 212
4.3.42 Error Code 0x0041 .. 212
4.3.43 Error Code 0x0042 .. 212
4.3.44 Error Code 0x0043 .. 213
4.3.45 Error Code 0x0044 .. 213
4.3.46 Error Code 0x0045 .. 214
4.3.47 Error Code 0x004F .. 214
4.3.48 Error Code 0x0050 .. 214
4.3.49 Error Code 0x0051 .. 215
4.3.50 Error Code 0x0060 .. 215
4.3.51 Error Code 0x0061 .. 216
4.3.52 Error Code 0x00F0 .. 216

5 EtherCAT operation - control ... 217
5.1 Operation... 217

6 EtherCAT operation - timing... 218
6.1 Concept mapping .. 218
6.2 Mapping Types and Graphical Display.. 219

6.2.1 Mappings ... 219
6.2.2 Context Menu .. 221
6.2.3 Tab "A -> B" or "B -> A" ... 221
6.2.4 Online tab .. 222

7 Distributed Clocks... 224
7.1 TwinCAT & time... 224

7.1.1 TwinCAT time sources... 224
7.1.2 Internal and external EtherCAT synchronization ... 226
7.1.3 Sample programs .. 232

7.2 Basic principles.. 234
7.2.1 EtherCAT Distributed Clocks ... 234
7.2.2 Distributed Clocks settings in the Beckhoff TwinCAT System Manager (2.10) 243
7.2.3 Distributed Clocks settings in the Beckhoff TwinCAT System Manager (2.11) 249
7.2.4 Distributed Clocks & TwinCAT PLC... 258
7.2.5 Synchronization modes of an EtherCAT slave .. 262
7.2.6 EKxxxx - Optional Distributed Clocks support ... 277

7.3 External synchronization ... 279
7.3.1 Basic principles.. 279

Table of contents

EtherCAT6 Version: 5.6

7.3.2 Sample: EL6692 bridge terminal ... 282

8 Configuration of the terminals ... 290
8.1 General configuration .. 290

8.1.1 EtherCAT subscriber configuration.. 290
8.1.2 Fast mode.. 299

8.2 Advanced configuration ... 301
8.2.1 Behavior... 301
8.2.2 Timeout Settings.. 306
8.2.3 FMMU / SM.. 307
8.2.4 Mailbox .. 308
8.2.5 Smart View .. 310
8.2.6 Memory.. 312

8.3 Firmware Update EL/ES/EM/ELM/EPxxxx .. 313
8.3.1 Device description ESI file/XML... 314
8.3.2 Firmware explanation .. 317
8.3.3 Updating controller firmware *.efw... 318
8.3.4 FPGA firmware *.rbf... 320
8.3.5 Simultaneous updating of several EtherCAT devices.. 324

9 FAQ ... 325
9.1 Windows Memory Dump.. 325
9.2 MessageBox in the target system ... 329

10 Appendix .. 331
10.1 UL notice ... 331
10.2 Training.. 332
10.3 Support and Service .. 332

Foreword

EtherCAT 7Version: 5.6

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning these components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by
third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding
applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

EtherCAT8 Version: 5.6

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of instructions

In this documentation the following instructions are used.
These instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow this safety instruction directly endangers the life and health of persons.

 WARNING
Risk of injury!
Failure to follow this safety instruction endangers the life and health of persons.

 CAUTION
Personal injuries!
Failure to follow this safety instruction can lead to injuries to persons.

NOTE
Damage to environment/equipment or data loss
Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

EtherCAT 9Version: 5.6

1.3 Documentation issue status
Version Comment
5.6 • Addenda chapter “System overview”

• Structural update
5.5 • Addenda chapter “Displaying channels in InfoData”

• Structural update
5.4 • Update chapter “Setup in the TwinCAT System Manager”

• Structural update
5.3 • Addendum sample program

• Structural update
5.2 • Update chapter „Distributed Clocks”, “TwinCAT & time“
5.1 • Addenda chapter „TwinCAT Quick Start“
5.0 • Migration

• Structural update
4.4 • Update section "Internal and external EtherCAT synchronization"
4.3 • Adjustment of CurTaskTime
4.2 • Update folder structure
4.1 • Addenda section "Notes on ESI device description"

• Section "EtherCAT AL Status Codes" added
4.0 • Addenda section "Setup in TwinCAT System Manager"
3.3 • Addendum section "Online version identification of EtherCAT devices"
3.2 • Addendum section "Hot Connect, Fast Hot Connect"
3.1 • Addendum section "Online configuration creation 'Scanning'"
3.0 • Addendum section "EtherCAT diagnostics"
2.9 • Addendum sample program
2.8 • Addendum section "CoE interface – parameter management in EtherCAT system"
2.7 • Addendum section "Identification of the current connection point"
2.6 • Addendum note on logger window
2.5 • Addendum section "EtherCAT PDO settings"
2.4 • Addendum section "EtherCAT"
2.3 • Addendum section "Cable redundancy"
2.2 • Addendum section "EtherCAT data exchange"
2.1 • Addendum section "Bus coupler DC support"
2.0 • Addendum UL note

• Addendum sample
1.9 • "Firmware" section updated

• Addendum sample
1.8 • Addendum section "Cable redundancy"
1.7 • Addendum CoE principles
1.6 • Correction TwinCAT times
1.5 • Addendum samples
1.4 • Correction TwinCAT times
1.3 • TwinCAT 2.11 description added
1.2 • HotConnect description added

• Addendum FastMode
1.1 • Master cable redundancy description added
1.0 • Corrections, 1st public issue

EtherCAT basics

EtherCAT10 Version: 5.6

2 EtherCAT basics

2.1 System overview

2.1.1 Limits of existing Ethernet communication approaches
There are many different approaches that try and provide real-time capability for Ethernet: for example, the
CSMA/CD access procedure is disabled via higher-level protocol layers and replaced by the time slices
procedure or polling; other propositions use special switches that distribute Ethernet packets in a precisely
controlled timely manner. Whilst these solutions may be able to transport data packets more or less quickly
and accurately to the connected Ethernet nodes, the times required for the redirection to the outputs or drive
controllers and for reading the input data strongly depend on the implementation. A sub-bus is usually also
required, particularly in modular I/O systems, which, like the Beckhoff K-Bus, can be synchronized and fast,
but nevertheless always adds small delays to the communication that cannot be avoided.

If individual Ethernet frames are used for each device, the usable data rate is very low in principle: The
shortest Ethernet frame is 84 bytes long (incl. inter-packet gap IPG). If, for example, a drive cyclically sends
4 bytes of actual value and state information and accordingly receives 4 bytes of set value and control word
information, at 100% bus load (i.e. with infinitely short response time of the drive) a usable data rate of only
4/84= 4.7% is achieved. At an average response time of 10 µs, the rate drops to 1.9%. These limitations
apply to all real-time Ethernet approaches that send an Ethernet frame to each device (or expect a frame
from each device), irrespective of the protocols used within the Ethernet frame.

2.1.2 New approach
EtherCAT technology overcomes these inherent limitations of other Ethernet solutions: the Ethernet packet
is no longer received, then interpreted and copied as process data at every connection. The newly
developed FMMU (fieldbus memory management unit) in each I/O terminal reads the data addressed to it,
whilst the telegram continues through the device. Similarly, input data are inserted while the telegram passes
through. The telegrams are only delayed by a few nanoseconds.

Fig. 1: Dynamic telegram processing

Since an Ethernet frame reaches the data of many devices both in send and receive direction, the usable
data rate increases to approx. 80%. The full-duplex features of 100BaseTx are fully utilized, so that effective
data rates of > 100 Mbit/s (up to 80% of 2 x 100 Mbit/s) can be achieved.

EtherCAT basics

EtherCAT 11Version: 5.6

Ethernet up to the terminal

The Ethernet protocol conforms to IEEE 802.3 remains intact right up to the individual terminals; no sub-bus
is required. Only the transfer physics is converted in the coupler from twisted pair or optical fiber physics to
E-bus, in order to meet the requirements of the electronic terminal block.

Fig. 2: Full duplex Ethernet in the ring, one frame for many devices. The EtherCAT system architecture
increases the communication efficiency.

On the control side, the TwinCAT Y driver for Ethernet complements the FMMU technology. This integrates
transparently into the system, so that it appears as an operating system-compatible network driver, and
additionally as a TwinCAT fieldbus card. An internal prioritization and buffer is provided at the transmitter end
which always finds a free transmission channel for Ethernet frames from the real-time system that may be
queuing. The operating system's Ethernet frames are only a later transmitted in the gaps if sufficient time is
available.

At the receiving end, all the Ethernet frames received are examined by the TwinCAT I/O system, and those
with real-time relevance are filtered out. All other frames are passed on to the operating system after
examination, outside the context of the real-time system.

EtherCAT basics

EtherCAT12 Version: 5.6

Fig. 3: Operating system-compatible TwinCAT Y driver:

Very inexpensive, commercially available standard network interface cards (NIC) are used as hardware in
the controller. The data transfer to the PC takes place via DMA (direct memory access). Therefore, no CPU
performance is lost for network access.

Since the Ethernet functionality of the operating system is fully maintained, all operating system-compatible
protocols can be operated in parallel on the same physical network. This not only includes standard IT-
protocols such as TCP/IP, HTTP, FTP or SOAP, but also practically all Industrial-Ethernet-protocols such as
Modbus TCP, ProfiNet or Ethernet/IP.

2.1.3 System properties

Protocol

The EtherCAT protocol is optimized for process data and is transported directly within the Ethernet frame
thanks to a special Ether-type. It may consist of several sub-telegrams, each serving a particular memory
area of the logical process images that can be up to 4 gigabytes in size. The data sequence is independent
of the physical order of the Ethernet terminals in the network; addressing can be in any order. Broadcast,
Multicast and communication between slaves are possible. Transfer directly in the Ethernet frame is used in
cases where EtherCAT components are operated in the same subnet as the control computer.

However, EtherCAT applications are not limited to a subnet: EtherCAT UDP packs the EtherCAT protocol
into UDP/IP datagrams. This enables any control with Ethernet protocol stack to address EtherCAT systems.
Even communication across routers into other subnets is possible. In this variant, system performance
obviously depends on the real-time characteristics of the control and its Ethernet protocol implementation.
The response times of the EtherCAT network itself are hardly restricted at all: the UDP datagram only has to
be unpacked in the first station.

EtherCAT basics

EtherCAT 13Version: 5.6

Fig. 4: EtherCAT protocol structure

Protocol structure: The process image allocation is freely configurable. Data are copied directly in the I/O
terminal to the desired location within the process image: no additional mapping is required. The available
logical address space is with very large (4 GB).

Topology

Line, tree or star: EtherCAT supports almost any topology. The bus or line structure known from the
fieldbuses thus also becomes available for Ethernet. Particularly useful for system wiring is the combination
of line and junctions or stubs. The required interfaces exist on the couplers; no additional switches are
required. Naturally, the classic switch-based Ethernet star topology can also be used.

EtherCAT basics

EtherCAT14 Version: 5.6

Fig. 5: Sample: Ethernet topology

Maximum wiring flexibility:
with or without switch, line or tree topologies, can be freely selected and combined.

Wiring flexibility is further maximized through the choice of different cables. Flexible and cost-effective
standard Ethernet patch cables transfer the signals in Ethernet mode (100Base-TX). The complete
bandwidth of the Ethernet network - such as different optical fibers and copper cables - can be used in
combination with switches or media converters.

Distributed Clocks

Accurate synchronization is particularly important in cases where spatially distributed processes require
simultaneous actions. This may be the case, for example, in applications where several servo axes carry out
coordinated movements simultaneously.

The most powerful approach for synchronization is the accurate alignment of distributed clocks, as described
in the new IEEE 1588 standard. In contrast to fully synchronous communication, where synchronization
quality suffers immediately in the event of a communication fault, distributed aligned clocks have a high
degree of tolerance vis-à-vis possible fault-related delays within the communication system.

With EtherCAT, the data exchange is fully based on a pure hardware machine. Since the communication
utilizes a logical (and thanks to full-duplex Fast Ethernet also physical) ring structure, the mother clock can
determine the run-time offset to the individual daughter clocks simply and accurately - and vice versa. The
distributed clocks are adjusted based on this value, which means that a very precise network-wide time base
with a jitter of significantly less than 1 microsecond is available.

EtherCAT basics

EtherCAT 15Version: 5.6

However, high-resolution distributed clocks are not only used for synchronization, but can also provide
accurate information about the local timing of the data acquisition. For example, controls frequently calculate
velocities from sequentially measured positions. Particularly with very short sampling times, even a small
temporal jitter in the displacement measurement leads to large step changes in velocity. With EtherCAT new,
extended data types are introduced as a logical extension (time stamp and oversampling data type). The
local time is linked to the measured value with a resolution of up to 10 ns, which is made possible by the
large bandwidth offered by Ethernet. The accuracy of a velocity calculation then no longer depends on the
jitter of the communication system. It is orders of magnitude better than that of measuring techniques based
on jitter-free communication.

Performance

EtherCAT reaches new dimensions in network performance. Protocol processing is purely hardware-based
through an FMMU chip in the terminal and DMA access to the network card of the master. It is thus
independent of protocol stack run-times, CPU performance and software implementation. The update time
for 1000 I/Os is only 30 µs - including terminal cycle time. Up to 1486 bytes of process data can be
exchanged with a single Ethernet frame - this is equivalent to almost 12000 digital inputs and outputs. The
transfer of this data quantity only takes 300 µs.

The communication with 100 servo axes only takes 100 µs. During this time, all axes are provided with set
values and control data and report their actual position and status. Distributed clocks enable the axes to be
synchronized with a deviation of significantly less than 1 microsecond.

The extremely high performance of the EtherCAT technology enables control concepts that could not be
realized with classic fieldbus systems. For example, the Ethernet system can now not only deal with velocity
control, but also with the current control of distributed drives. The tremendous bandwidth enables status
information to be transferred with each data item. With EtherCAT, a communication technology is available
that matches the superior computing power of modern Industrial PCs. The bus system is no longer the
bottleneck of the control concept. Distributed I/Os are recorded faster than is possible with most local I/O
interfaces. The EtherCAT technology principle is scalable and not bound to the baud rate of 100 Mbaud –
extension to Gbit Ethernet is possible.

Diagnostics

Experience with fieldbus systems shows that availability and commissioning times crucially depend on the
diagnostic capability. Only faults that are detected quickly and accurately and which can be precisely located
can be corrected quickly. Therefore, special attention was paid to exemplary diagnostic features during the
development of EtherCAT.

During commissioning, the actual configuration of the I/O terminals should be checked for consistency with
the specified configuration. The topology should also match the saved configuration. Due to the built-in
topology recognition down to the individual terminals, this verification can not only take place during system
start-up, automatic reading in of the network is also possible (configuration upload).

Bit faults during the transfer are reliably detected through evaluation of the CRC checksum: The 32 bit CRC
polynomial has a minimum hamming distance of 4. Apart from breaking point detection and localization, the
protocol, physical transfer behavior and topology of the EtherCAT system enable individual quality
monitoring of each individual transmission segment. The automatic evaluation of the associated error
counters enables precise localization of critical network sections. Gradual or changing sources of error such
as EMC influences, defective push-in connectors or cable damage are detected and located, even if they do
not yet overstrain the self-healing capacity of the network.

Integration of standard Bus Terminals from Beckhoff

In addition to the new Bus Terminals with E-Bus connection (ELxxxx), all Bus Terminals from the familiar
standard range with K-bus connection (KLxxxx) can be connected via the BK1120 or BK1250 Bus Coupler.
This ensures compatibility and continuity with the existing Beckhoff Bus Terminal systems. Existing
investments are protected.

EtherCAT basics

EtherCAT16 Version: 5.6

2.1.4 Application areas

Control loops via the bus

In conjunction with fast machine control systems the outstanding performance of EtherCAT can be
demonstrated particularly well. The bus system offers access speeds similar to local I/Os. EtherCAT enables
not only the position control loop, but also the velocity control loop or even the current control loop to be
closed via the bus, resulting in cost-effective drive controllers. EtherCAT therefore takes full advantage of the
performance of fast PC-based control technology. The IPCs become small and economical, since slots are
avoided: Expansion cards are also controlled via EtherCAT.

EtherCAT is not only suitable for very fast applications. Since all protocol processing takes place in
hardware, the technology only places low demands on the master connection: a commercially available
Ethernet Controller is sufficient. The master only has to send EtherCAT frames cyclically or as required –
mapping, addressing, node monitoring etc. takes place in the slave ASICs. The input process image arrives
at the master fully sorted and therefore ready prepared for the control application. For simple cyclic
applications with a process image size of up to 1486 bytes, only one telegram has to be processed in the
master, consisting almost exclusively of the process data. Larger process images are distributed over
several frames.

EtherCAT may therefore be the fieldbus technology placing the lowest demands on the master.

EtherCAT instead of PCI

With increasing miniaturization of the PC-components, the physical size of Industrial PCs is increasingly
determined by the number of required slots. The bandwidth of Fast Ethernet, together with the data width of
the EtherCAT communication hardware (FMMU chip) enables new directions: Interfaces that are
conventionally located in the IPC are transferred to intelligent interface terminals at the EtherCAT. Apart from
the decentralized I/Os, axes and operating devices, complex systems such as fieldbus masters, fast serial
interfaces, gateways and other communication interfaces can be addressed. Even further Ethernet devices
without restriction on protocol variants can be connected via decentralized switch port terminals. The central
IPC becomes smaller and therefore cost-effective. An Ethernet interface is sufficient for complete
communication with the periphery.

Fig. 6: Decentralization through intelligent interface terminals on the EtherCAT fieldbus

EtherCAT basics

EtherCAT 17Version: 5.6

Fieldbus devices (e.g. Profibus, CANopen, DeviceNet, AS interface, etc.)
are integrated through decentral fieldbus master terminals.

EtherCAT basics

EtherCAT18 Version: 5.6

2.1.5 EtherCAT is open
The EtherCAT technology is not only fully Ethernet-compatible, but also characterized by a particular open
design: the protocol tolerates other Ethernet-based services and protocols on the same physical network -
usually only with minimum loss of performance: in EtherCAT OpenMode directly side by side, in EtherCAT
DirectMode tunneled "to" the EtherCAT frame. There is no restriction on the type of Ethernet device that can
be connected within the EtherCAT strand via a switch port. Devices with fieldbus interface are integrated via
EtherCAT fieldbus master terminals. The UDP protocol variant can be implemented on each socket
interface.

EtherCAT devices can additionally have a TCP/IP stack and therefore externally behave like a normal
Ethernet device. The master serves as a switch that transfers the frames to the respective devices according
to the address information. Instead of switch ports, only the EtherCAT addresses automatically assigned
during startup are used.

Fig. 7: Switch port terminals tunnel Ethernet frames through the EtherCAT protocol.
Note: the picture shows a mixture of EtherCAT OpenMode with Ethernet/EtherCAT via switches and
EtherCAT DirectMode with on-the-fly processing n the subordinated devices.

The switch port terminals work accordingly: any Ethernet devices can be connected. The Ethernet frames
are tunneled via the EtherCAT protocol, as usual in the Internet (e.g. VPN, PPPoE (DSL) etc.). The
EtherCAT network is fully transparent for the Ethernet device, and the real-time characteristics of the
EtherCAT are not impaired.

EtherCAT Technology Group

The EtherCAT Technology Group (ETG, http://www.ethercat.org) is the international manufacturer and user
association with a mission to disseminate, further develop and support EtherCAT. All companies are invited
to become members.

Internationally standardized

The EtherCAT Technology Group is an official standardization partner of IEC (International Electrotechnical
Commission). The EtherCAT specification was published by the IEC as IEC/PAS 62407 and is available from
the IEC (http://www.iec.ch). It is currently integrated in the following fieldbus standards: IEC 61158,
IEC 61800-7 and ISO 15745.

http://www.ethercat.org
http://www.iec.ch

EtherCAT basics

EtherCAT 19Version: 5.6

2.1.6 Summary and Outlook
EtherCAT is characterized by outstanding performance, very simple wiring and openness for other protocols.
EtherCAT sets new standards where conventional fieldbus systems reach their limits: 1000 I/O in 30 µs,
optionally twisted pair cable or optical fiber and, thanks to Ethernet and Internet-technologies, optimum
vertical integration. With EtherCAT, the costly Ethernet star topology can be replaced with a simple line
structure - no expensive infrastructure components are required. Optionally, EtherCAT may also be wired in
the classic way using switches, in order to integrate other Ethernet devices. Where other real-time-Ethernet
approaches require special connections in the controller, EtherCAT manages with very cost-effective
standard Ethernet cards (NIC).

With EtherCAT, Ethernet down to the terminal block becomes technically feasible and economically sensible.
Full Ethernet compatibility, Internet technologies even in very simple devices, maximum utilization of the
large bandwidth offered by Ethernet, outstanding real-time characteristics at low costs are outstanding
features of this new network. As a high-speed bus and I/O bus for Industrial PCs or in combination with
smaller control technology, EtherCAT is expected to be widely used in a wide range of applications.

2.2 Basic principles

2.2.1 EtherCAT State Machine
The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the
state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be
sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.

A distinction is made between the following states:

• Init
• Pre-Operational
• Safe-Operational and
• Operational
• Boot

The regular state of each EtherCAT slave after bootup is the OP state.

Fig. 8: States of the EtherCAT State Machine

EtherCAT basics

EtherCAT20 Version: 5.6

Init

After switch-on the EtherCAT slave in the Init state. No mailbox or process data communication is possible.
The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.

Pre-Operational (Pre-Op)

During the transition between Init and Pre-Op the EtherCAT slave checks whether the mailbox was initialized
correctly.

In Pre-Op state mailbox communication is possible, but not process data communication. The EtherCAT
master initializes the sync manager channels for process data (from sync manager channel 2), the FMMU
channels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDO
assignment. In this state the settings for the process data transfer and perhaps terminal-specific parameters
that may differ from the default settings are also transferred.

Safe-Operational (Safe-Op)

During transition between Pre-Op and Safe-Op the EtherCAT slave checks whether the sync manager
channels for process data communication and, if required, the distributed clocks settings are correct. Before
it acknowledges the change of state, the EtherCAT slave copies current input data into the associated DP-
RAM areas of the EtherCAT slave controller (ECSC).

In Safe-Op state mailbox and process data communication is possible, although the slave keeps its outputs
in a safe state, while the input data are updated cyclically.

Outputs in SAFEOP state
The default set watchdog monitoring sets the outputs of the module in a safe state - depending on
the settings in SAFEOP and OP - e.g. in OFF state. If this is prevented by deactivation of the watch-
dog monitoring in the module, the outputs can be switched or set also in the SAFEOP state.

Operational (Op)

Before the EtherCAT master switches the EtherCAT slave from Safe-Op to Op it must transfer valid output
data.

In the Op state the slave copies the output data of the masters to its outputs. Process data and mailbox
communication is possible.

Boot

In the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.

In the Boot state mailbox communication via the file access over EtherCAT (FoE) protocol is possible, but no
other mailbox communication and no process data communication.

EtherCAT basics

EtherCAT 21Version: 5.6

2.2.2 CoE interface

2.2.2.1 CoE interface – parameter management in the EtherCAT system

Background

Many different devices are used in an automation environment. These devices can be used separately or
together in a group on a bus system. Such devices can be controllers, shaft encoders, servo drives, motors,
I/O modules or sensors among other things.

Depending upon complexity, such a device must be parameterizable/adjustable for the respective
requirement. Parameterization is perhaps not necessary in the case of a simple digital 24 V input with a fixed
switching threshold and delay; in the case of a rotary encoder, however, it will not be possible to do without it
(e.g. number of lines, absolute or relative, data format, etc.)

On top of that it can be of interest to store data in the device during production or operation.
The manufacturer could store production data such as device name, serial number, firmware version,
calibration data or date of manufacture, if necessary provided with protection against access or amendment.
The user could store user calibration data and the application-specific settings in the device.

In order to create a user-friendly interface for device operation, different organizations have created various
standards in which the following are defined:

• The device classes that exist (e.g.: class ‘rotary encoder’, ‘analogue input module’)
• The parameters that each representative of such a class has (obligatory and optional elements)
• The place where these parameters are to be found and the mechanism with which they are to be

changed.

EtherCAT follows the so called CoE standard here: Can-Application-protocol-over-EtherCAT.

Can-over-EtherCAT

The CiA organization (CAN in Automation) pursues among other things the goal of creating order and
exchangeability between devices of the same type by the standardization of device descriptions. For this
purpose so-called profiles are defined, which conclusively describe the changeable and unchangeable
parameters of a device. Such a parameter encompasses at least the following characteristics:

• Index number – for the unambiguous identification of all parameters. The index number is divided into
a main index and a subindex in order to mark and arrange associated parameters.
- Main index
- Subindex, offset by a colon ‘:’

• Official name – in the form of an understandable, self-descriptive text
• Specification of changeability, e.g. whether it can only be read or can also be written
• A value – depending upon the parameter the value can be a text, a number or another parameter

index.

Sample: the parameter ‘Vendor ID’ might have the index number 0x4120:01 and the numerical value ‘2’ as
the ID of a Beckhoff device.
Since hexadecimal values are favored in the machine environment, the parameter is thus represented from
the user’s point of view as

with the property RO (read only), because the vendor ID should not be changed by the user.

Such a list of parameters, the whole of the device-specific CoE directory, can become very extensive. The
first entries of a Beckhoff EL3152 analog input terminal appear as follows in the TwinCAT System Manager:

EtherCAT basics

EtherCAT22 Version: 5.6

Fig. 9: EL3152 CoE directory

The index numbers are specified in the profile; they begin in EtherCAT with 0x1000, because the underlying
entries do not have to be displayed.

CoE directory – availability

An EtherCAT device can have a CoE directory, but does not need to have one. Simple slaves need no
parameter directory or do not have the controller required for administration. On the other hand, the
EtherCAT master (like TwinCAT) as a software EtherCAT device can also manage a CoE directory.

If present, the CoE directory is in operation from the PREOP state.

The object directory can be read via the SDO information service (Service Data Objects).

CoE directory – localization in the EtherCAT Slave

The CoE directory as a parameter system must be administrated in the device in the firmware (FW) in the
local controller. This is the so-called online directory, because it is only available to the user if the EtherCAT
slave is in operation with operating voltage supplied and, if applicable, can be manipulated via EtherCAT
communication.

So that the parameters can be viewed and changed in advance without the presence of a slave, a default
copy of the entire directory is usually stored in the device description file ESI (XML). This is called the offline
directory. Changes in this directory do not affect the later operation of the slave with TwinCAT. The xml files
can be obtained from the Beckhoff website in the Download area.

The TwinCAT system manager 2.11 can display both lists and marks this:

Fig. 10: Online/Offline display

https://download.beckhoff.com/download/configuration-files/io/ethercat/xml-device-description/Beckhoff_EtherCAT_XML.zip

EtherCAT basics

EtherCAT 23Version: 5.6

In the online directory In the offline directory
the actual current slave list is read. This may take
several seconds, depending on the size and cycle time

the offline list from the ESI file is displayed. In this
case modifications are not meaningful or possible.

the actual identity is displayed the configured status is shown under Identity
the firmware and hardware version of the equipment
according to the electronic information is displayed

no firmware or hardware version is displayed, since
these are features of the physical device

a green online is visible in the TwinCAT System
Manager, CoE Online tab

a red offline is visible in the TwinCAT System
Manager, CoE Online tab

Classification

Different CoE parameter types are possible, including string (text), integer numbers, Boolean values or larger
byte fields. They can be used to describe a wide range of features. Examples of such parameters include
manufacturer ID, serial number, process data settings, device name, calibration values for analog
measurement or passwords.

The ranges in the Slave CoE that are important for the application-oriented EtherCAT fieldbus user are

• 0x1000: This is where fixed identity information for the device is stored, including name, manufacturer,
serial number etc., plus information about the current and available process data configurations.

• 0x8000: This is where the operational and functional parameters for all channels are stored, such as
filter settings or output frequency.

The following ranges are also of interest

• 0x4000: In some EtherCAT devices the channel parameters are stored here (as an alternative to the
0x8000 range).

• 0x6000: Input PDOs ("input" from the perspective of the EtherCAT master)
• 0x7000: Output PDOs ("output" from the perspective of the EtherCAT master)

Channel-based order

The CoE directory is located in EtherCAT devices that usually encompass several functionally equivalent
channels. e.g. a 4-channel 0 – 10 V analog input terminal also has 4 logical channels and thus 4 identical
sets of parameter data for the channels. In order to avoid having to list each channel in the documentation,
the placeholder "n" tends to be used for the individual channel numbers.

In the CoE system 16 indices, each with 255 subindices, are generally sufficient for representing all channel
parameters. The channel-based order is therefore arranged in 16dec/10hex steps. The parameter range
0x8000 exemplifies this:

• Channel 0: Parameter range 0x8000:00 ... 0x800F:255
• Channel 1: Parameter range 0x8010:00 ... 0x801F:255
• Channel 2: Parameter range 0x8020:00 ... 0x802F:255
• tbc...

This is generally written as 0x80n0.

CoE directory – changes of value

Several parameters, in particular the setting parameters of the slave, are variable and can be written by the
user from the fieldbus side. This can be done in write or read mode

• via the system manager (Fig. Manual insertion of a start-up entry) by the operator clicking on it.
The values are then changed directly in the online-connected slave.
This is useful for commissioning of the system/slaves. Click on the row of the index to be
parameterized and enter a value in the "SetValue" dialog.

• from the control system/PLC via ADS, e.g. through blocks from the TcEtherCAT.lib library
This is recommended for modifications while the system is running or if no System Manager or
operating staff are available.

EtherCAT basics

EtherCAT24 Version: 5.6

• during the EtherCAT startup through predefined commands, the so-called startup list.
The TwinCAT configuration is usually created in advance without EtherCAT slaves actually being
present. Then it should be possible before commissioning to adjust known properties such as filter
settings offline in order to accelerate commissioning.

CoE directory – startup list

Start-up list
Changes made to the local CoE directory of the EtherCAT slaves are lost with the old device in
case of exchange. If a device is replaced with a new Beckhoff device, it will have the default set-
tings. It is therefore advisable to link all changes in the CoE list of an EtherCAT slave with the
Startup list of the slave, which is processed whenever the EtherCAT fieldbus is started. In this way
a replacement EtherCAT slave can automatically be parameterized with the specifications of the
user.

If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup
list must be used.

The startup list is used for these cases: the values here, which are entered by the user, are transmitted to
the respective slave upon each EtherCAT state transition/start. A startup entry consists of

• Time: the state transition in which the command is sent
PS (PREOP-->SAFEOP) is usually the correct choice, since an EtherCAT slave then switches to
operative input mode.

• Index: Subindex
• Data

The order of the entries is not taken into account: all entries to which a state transition applies are handed
over simultaneously as asynchronous commands to the EtherCAT system and executed there, as soon as
the bus load allows.

No check is made of whether an identical entry is already present in the slave.

Sample

In the following, the user scaling is activated in the startup list of an EL3152. Entries required for operation
that already exist in the list are marked with a grey background.

Upon right-clicking on the surface, the following dialog appears:

Fig. 11: Manual insertion of a startup entry

EtherCAT basics

EtherCAT 25Version: 5.6

Fig. 12: Edit

The corresponding values are adopted upon clicking the entry 0x8000:01; 01 is entered in Data as the
desired value. The entry ‘P->S’ marks the time of the execution.

Fig. 13: Changed startup list

Entries created by the user are marked with a light blue background.

CoE directory - data management

Data management
If slave CoE parameters are modified online, Beckhoff devices store any changes in a fail-safe
manner in the EEPROM, i.e. the modified CoE parameters are still available after a restart.
The situation may be different with other manufacturers.
If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup
list must be used.

EtherCAT basics

EtherCAT26 Version: 5.6

Summary of the characteristics
• Not every EtherCAT device must have a CoE directory
• If a CoE directory is present, it is administrated, prepared for querying and writing and stored in the

device by the controller.
• The EtherCAT master can be used for viewing/querying/changing, or a local user interface on the

device (keypad, screen) allows access.
• Changed settings are stored fail-safe in Beckhoff devices.

If the device is later exchanged, however, the settings that have been changed from the series
standard are lost. The EtherCAT master can then load the changed CoE parameters into the new
device at startup, if it is set up appropriately.

• So that a CoE directory is available offline during the preparation for configuration, it can be contained
in the device description as a copy.

• The extent to which the CoE directory is supported depends on the capabilities of the EtherCAT
master.

2.2.2.2 Example program R/W CoE

Program description/ function:

After starting this example program, by setting TRUE of the variable startRead or startWrite, read or write
access from/to the CoE directory of a particular EtherCAT participant can be made.

Notes:

• An EtherCAT slave with CoE directory on the EtherCAT Master is present; this example is initial
configured for usage of a EL3751 terminal;
configuration e.g.: IPC/CX + (EK1100) + EL3751 + EL9011

• AmsNetId of the EtherCAT Master is known (it has to be inserted in the code before starting the
program and can usually be found in the EtherCAT tab of the EtherCAT master)

• The address of the EtherCAT slave have to be adapted by variable declaration of userSlaveAddr as
the case may be (usually the terminal, which CoE directory have to be accessed, e.g. 1002, 1007, etc.)

• Depending on which EtherCAT slave is used, the corresponding nIndex for the CoE object ID as well
as the nSubIndex for the sub index of the CoE object must be entered at the places of the value
transfer for reading and writing. The correct data length and data type may also need to be adjusted.

• This example program only makes accesses to a specific value identified by the (sub) index of a CoE
object. If accesses are to be made to a complete object, the corresponding FB_EcCoeSdoReadEx and
FB_EcCoeSdoWriteEx function blocks must be used. See additional documentation of library:
Tc2_EtherCAT:
https://infosys.beckhoff.com/
TwinCAT 3 → TE1000 XAE → PLC → Libraries → TwinCAT 3 PLC Lib: Tc2_EtherCAT
→ CoE interface

This example writes into the CoE object 0x8000 with sub index 0x16 the value 22 and activates thereby
filter 1 to „IIR Butterw. LP 5th Ord. 1000 Hz“, or reads out the internal temperature value of the EL3751
terminal from CoE object 0x9000, Sub‑Index 0x01. The program variable for writing has already been
assigned the value in the variable declaration. For test of writing the CoE directory can be reviewed and the
variable (int16Buffer) can be watched to check reading.

Download: https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/5299954699.zip

Preparations for starting the sample programs (tnzip file / TwinCAT 3)
• Click on the download button to save the Zip archive locally on your hard disk, then unzip the *.tnzip

archive file in a temporary folder.

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/5299954699.zip

EtherCAT basics

EtherCAT 27Version: 5.6

Fig. 14: Opening the *. tnzip archive

• Select the .tnzip file (sample program).
• A further selection window opens. Select the destination directory for storing the project.
• For a description of the general PLC commissioning procedure and starting the program please refer to

the terminal documentation or the EtherCAT system documentation.

Declaration (ST)
PROGRAM MAIN
VAR
 fb_coe_write : FB_EcCoESdoWrite; // Function Block for writing in CoE
 fb_coe_read : FB_EcCoESdoRead; // Function Block for reading from CoE
 userNetId : T_AmsNetId := 'a.b.c.d.4.1'; // Have to be entered
 userSlaveAddr : UINT := 1002; // Have to be entered
 startWrite : BOOL := FALSE; // Sign for start writing
 startRead : BOOL := FALSE; // Sign for start reading
 nState : BYTE := 0; // RW-status
 // Example: Read EL3751 PAI Internal Data: Temperature Value
 int16Buffer : INT; // Buffer for reading
 // Example: Select EL3751 Filter1: 22 = IIR Butterw. LP 5th Ord. 1000 Hz:
 uint16Buffer : UINT:=22; // Buffer for writing
 bTxPDOState AT%I* : BOOL; // (PDO for synchronization)
END_VAR

Implementation (ST):
CASE nState OF
0:
 IF startWrite THEN
 // Prepare CoE-Access: Write value of CoE object/ sub index:
 fb_coe_write(bExecute := FALSE);
 nState := 1;// Next state for writing
 startWrite := FALSE;
 END_IF
 IF startRead THEN
 // Prepare CoE-Access: Read value of CoE object/ sub index:
 fb_coe_read(bExecute := FALSE);
 nState := 11;// Next state for reading
 startRead := FALSE;
 END_IF
// ============== COE WRITE ================
1:
 // Write entry
 fb_coe_write(
 sNetId:= userNetId,
 nSlaveAddr:= userSlaveAddr,
 nSubIndex:= 16#16,
 nIndex:= 16#8000,
 pSrcBuf:= ADR(uint16Buffer),
 cbBufLen:= 2,
 bExecute:= TRUE,
 tTimeout:= T#1S
);
 nState := nState + 1; // Next state
2:
 fb_coe_write(); // Execute CoE write until done
 IF fb_coe_write.bError THEN
 nState := 100; // Error case
 ELSE
 IF NOT fb_coe_write.bBusy THEN

EtherCAT basics

EtherCAT28 Version: 5.6

 nState := 0; // Done
 END_IF
 END_IF
// ============== COE READ =================
11:
 // Read entry
 fb_coe_read(
 sNetId:= userNetId,
 nSlaveAddr:= userSlaveAddr,
 nSubIndex:= 1,
 nIndex:= 16#9000,
 pDstBuf:= ADR(int16Buffer),
 cbBufLen:= 2,
 bExecute:= TRUE,
 tTimeout:= T#1S
);

 nState := nState + 1; // Next state
12:
 fb_coe_read(); // Execute CoE read until done
 IF fb_coe_read.bError THEN
 nState := 100; // Error case
 ELSE
 IF NOT fb_coe_read.bBusy THEN
 nState := 0; // Done
 END_IF
 END_IF
 100:
 ; // Error handling..
END_CASE

2.2.2.3 CoE reset, restoring the default values

The CoE object "Restore default parameters", subindex 001 (if present) can be used to restore the delivery
state of the changeable CoE objects in the ELxxxx terminals (see Fig. Selecting the "Restore default
parameters" PDO).

Fig. 15: Selecting the "Restore default parameters" PDO

All changeable entries in the slave are reset to the default values by writing the reset word to these indices.

• The values can only be successfully restored if the reset is directly applied to the online CoE, i.e. to the
slave. No values can be changed in the offline CoE.

EtherCAT basics

EtherCAT 29Version: 5.6

• TwinCAT must be in the RUN or CONFIG/Freerun state for this; error-free EtherCAT traffic must take
place.

• A changeable object can be manipulated beforehand for the purposes of checking; no separate
confirmation takes place.

• This reset procedure can also be adopted as the first entry in the startup list of the slave, e.g. in the
state transition PREOP->SAFEOP or, as in Fig. CoE reset as a startup entry, in SAFEOP->OP.
Hence any settings in the slave are reset.

Fig. 16: CoE reset as a startup entry

• The EtherCAT slave must be at least in the PREOP state for this
• Depending upon firmware and slave, the reset word reads:

◦ 64616F6C "load"hex (as a rule in the case of FW since approx. 2008) or
◦ 6C6F6164hex "daol" (in the case of earlier FW versions)

• An incorrect entry for the restore value has no effect.

Fig. 17: Entering a restore value in the Set Value dialog

2.3 System features

2.3.1 EtherCAT cable redundancy

2.3.1.1 The principle

Beckhoff TwinCAT cable redundancy is designed to compensate for the failure of a communication cable
section in the EtherCAT system. A ring topology, which normally is operated in both directions, is therefore
used. Both branches can nevertheless still be reached if the ring is interrupted at some point.

Fig. 18: The cable redundancy principle

A second network port is used for ring closure at the EtherCAT Master IPC. Both cyclic and acyclic frames
are sent simultaneously through both ports, and are transported through the system.

EtherCAT basics

EtherCAT30 Version: 5.6

• In the absence of any fault, all the EtherCAT slaves are reached in the forward direction from the
primary port. This means that they are processed, since the EtherCAT Slave Controller (ESC) is only
passed through in the forward sense.

• When there is no fault, all the EtherCAT slaves are reached from the secondary port in the reverse
direction - the data in the "redundancy" frame is therefore not changed.

In each case, the EtherCAT frames arrive, possibly modified, at the other port, and are combined again by
the EtherCAT Master. If, as a result of a broken cable, the redundancy comes into play, it is then unimportant
whether an EtherCAT slave is reached from the primary or redundancy port.

Assuming that, when the redundancy comes into play (due to a damaged cable, damaged plug or
electromagnetic interference) the two Ethernet frames are not, by coincidence, both directly affected, then
redundant operation continues without interruption or loss of data.

The supplement is single-fault tolerant, i.e. communication with the slaves can continue if the cable is
interrupted in one place. When the communication is restored the original communication direction is
restored. If the communication is interrupted in more than one places, all connections have to be restored
before another fault may occur.

It is also possible to start up the system under redundancy conditions.

Due to the nature of this principle, a closed ring topology is most suited to redundant cable operation.
Depending on the operating conditions, it is also possible to use a connection point other than the last one
for the redundant connection to the controller, see Fig. Special solution for cable redundancy.

Fig. 19: Special solution for cable redundancy

Due to the synchronization mechanism for Distributed Clocks, the CU2508 port multiplier must be used for a
combination of cable redundancy with Distributed Clocks slaves.

Failure of an EtherCAT slave
Note the following if the "Cable Redundancy" supplement is to be used to enable communication
with all remaining devices in the event of an EtherCAT device failure (e.g. EK1100 coupler or
EPxxxx box).
• Create SyncUnits for the I/O group that could be affected by failure
• Failure of several EtherCAT slaves is not covered. Depending on the location, number and order

of the failures the complete EtherCAT array may have to be restarted.
It is advisable to operate the master and slave states from the application and to disable the cor-
responding automatic mechanism under System Manager | EtherCAT Device | Advanced Set-
tings.

2.3.1.2 Conditions

The use of cable redundancy is subject to the following conditions:

• A supplementary license with the appropriate scope is installed on the IPC (XP/CE). At present,
licenses are available for a maximum of 250, 1000 or for an unlimited number of slaves.
The TwinCAT EtherCAT redundancy supplement for the Windows NT and CE family is offered for
download on the Beckhoff website

• Platform-dependent/operating system on the target device
◦ Windows NT family (XP/XPe/7): the supplement is installed on the target device. Starting in the

TwinCAT RUN mode with activated cable redundancy is prevented if no local license is present.

https://www.beckhoff.com/cu2508
https://www.beckhoff.com/en-us/products/automation/twincat/tsxxxx-twincat-2-supplements/ts622x.html

EtherCAT basics

EtherCAT 31Version: 5.6

◦ Windows CE family (CE, WES): the supplement must be installed on at least one NT platform.
After that the installation file ("TwinCAT_EtherCAT_Redundancy_CE.I586_250.cab") is present
under TwinCAT -> CE -> TwinCAT EtherCAT Redundancy. This must be copied to the embedded
device and executed there.

• Please refer to the appropriate documentation for the combination of cable redundancy with the
HotConnect principle.

• TwinCAT 2.10 from build 1313 or TwinCAT from version 2.11 is used.
• The user creates SyncUnits in the System Manager as required according to the configuration, see

section SyncUnits.
• The control PC has two full-value, real-time capable, non-switched Ethernet ports.

As a rule embedded devices (BXxxxx / CXxxxx) are not suitable.
• Parallel wiring from an EK1122 for the purposes of cable redundancy is not permitted.
• The supplementary EtherCAT cable redundancy secures against

◦ failure of Ethernet cable sections (e.g. between EK1100 couplers), provided the power supply to
the stations is not interrupted.

◦ failure of the communications segment of a single terminal, provided the power supply to the
subsequent terminals is not interrupted.

• The supplementary cable redundancy is only single-fault tolerant. If more than one malfunction occurs
in the topology, full I/O communication will only be restored when all the faults have been eliminated.
Manual or automation restart of the affected slaves may be required. This is partly also done by the
System Manager.

• A combination of cable redundancy with distributed clocks is possible only with the use of the additional
CU2508 device.

2.3.1.3 Setting up - Network settings

Creation of the configuration
It is not possible to set up a configuration through scanning in TwinCAT with redundancy path. You
should therefore disconnect the redundancy port in order to scan for or create the slaves.

Once the redundancy supplement has been installed, set up continues under TwinCAT 2.11 as follows:

• Create the primary port manually, or allow it to be found through a scan.

Fig. 20: Setting up the device

• Configure the redundancy properties of the EtherCAT system in the Advanced Settings. Specify the
location from which the connection to the redundancy port is to be created - entry points that are not
located at the end of a line topology can also be selected here.

https://www.beckhoff.com/cu2508

EtherCAT basics

EtherCAT32 Version: 5.6

Fig. 21: Parameterizing the redundancy

The cable redundancy is active following activation of the configuration.

2.3.1.4 Setting up - SyncUnits setup

SyncUnits only have to be created if failure of an EtherCAT slave is to be expected.

Cyclic data
SyncUnits are only relevant for communication via cyclic data. Acyclic communication, e.g. via mail-
box, is always controlled by the System Manager.

By default the System Manager tries to integrate all I/O data in a few Ethernet/EtherCAT frames as possible,
i.e. the System Manager tries to utilize the maximum frame size of 1518 byte per Ethernet frame or 15
datagrams. The aim is to achieve efficient and optimized communication with minimum load on the fieldbus.
A datagram is a telegram with exactly one read/write instruction. A datagram may be a read command over
2 bytes from an analog input terminal or a write command for 400 bytes of data to 10 servo drives.

Fig. 22: Structure of an Ethernet frame with EtherCAT protocol data

This is illustrated in Fig. Structure of an Ethernet frame with EtherCAT protocol data: the Ethernet frame (row
1) consists of a header (blue), data (yellow) and the checksum CRC (blue). If the Ethernet frame carries
EtherCAT protocol data, these data also consist of an EtherCAT header (red) and 1 to 15 datagrams
(green). The latter consist of a header, data and a WorkingCounter (WC).

The working counter is the key parameter for the cable redundancy principle. The working counter is a 16-bit
number sent by the EtherCAT master with the value "0". Each EtherCAT slave that is accessed by this
datagram in write or read mode increases this number by 1, 2 or 3, depending on the type of access. Once
the datagram has run through the complete configuration, the working counter therefore returns to the
master with a value greater than 0. The master expects a certain value, because it knows how many slaves

EtherCAT basics

EtherCAT 33Version: 5.6

have to process this datagram. If the WC returned by the datagram does not match the expected value, one
of the slaves did not fulfil its task. The master then has to employ special measures in order to establish
which slave is affected and whether the datagram has to be repeated.

The frame structure of the cyclic data based on the current configuration can be viewed in the TwinCAT
System Manager (EtherCAT tab of the respective EtherCAT device).

Example for a small configuration:

Fig. 23: TwinCAT view, frame structure - small topology

Only one Ethernet frame is used for the cyclic I/O data (red), carrying 3 EtherCAT datagrams, i.e. 2x LRD
(LogicalRead) and 1x BRD (BroadcastRead).
With 59 bytes of data the frame is 6.72 µs long and uses 0.17% of the cycle time of 4 ms.

The first datagram has an expected working counter of 1 and a BRD command of 2, see column WC.

In a larger configuration the frame structure becomes more complex:

Fig. 24: TwinCAT view, frame structure - larger topology

EtherCAT basics

EtherCAT34 Version: 5.6

With a cycle time of 1 ms 3 Ethernet frames are in transit carrying a total of 9 datagrams with expected
working counters between 3 and 52. This configuration uses 35.94% of the available bandwidth of 100 Mbit
FastEthernet at a cycle time of 1 ms.

Application to the cable redundancy in the event of slave failure

If a datagram returns to the master with an incorrect working counter, the master is initially unable to
determine which slave failed to deliver data. The master therefore has to declare all input data in this
datagram invalid, i.e. in all affected slaves the WC indicator switches to 1=invalidData.

Fig. 25: WC = 1 indicates invalid data

The System Manager sets this WC indicator immediately on receipt of the datagrams for the respective
slave. This is illustrated for an EL3162 in Fig. WC = 1 indicates invalid data, the input data are frozen,
WcState = 1 and the State in accordance with the bit meanings of 0x0101 "Slave in INIT" and "Slave not
present".

If an EtherCAT slave fails, e.g. an analog input box EP3174, this would mean other input data contained in
the same datagram to make the frame structure efficient would also be discarded. As a remedy the user can
manually assign each slave to a so-called SyncUnit. In extreme case each slave could have its own
SyncUnit, with associated negative consequences for the fieldbus efficiency and excessive bus load.

The corresponding dialog is accessible via the EtherCAT tab, see Fig. TwinCAT view, frame structure -
larger topology.

A slave is assigned to a SyncUnit, see Fig. Entering the SyncUnits in a default frame structure

• by clicking in the column
• Enter a name (any name) under SyncUnitNames

If a name is allocated more than once, the slaves are operated accordingly in a datagram (logical SyncUnit).

EtherCAT basics

EtherCAT 35Version: 5.6

Fig. 26: Entering the SyncUnits in a default frame structure

This results in a new structure of the cyclic Ethernet frame in accordance with Fig. New frame structure with
SyncUnits:

Fig. 27: New frame structure with SyncUnits

The System Manager will continue to automatically consolidate devices that are not set manually in
datagrams and may identify them as <default>.

Typically modules are defined as a separate SyncUnit and communicate via an Ethernet cable connection:

• EK11xx coupler including append EL/ES/EMxxxx terminals
• EP boxes
• AX drives

EtherCAT basics

EtherCAT36 Version: 5.6

• ...

If the communication with such a station fails, only the data for this SyncUnit become invalid. The data
exchange with all other stations remains unaffected.

2.3.1.5 System behavior

TwinCAT handles the redundancy case in real-time, and the user has no intervention option. However,
information on the current status is provided by variables in the System Manager.

Fig. 28: Available information

• SlaveCount/SlaveCount2
This indicates how many EtherCAT slaves are at present being reached through the primary or
redundancy port. This information refers to the most recent cycle.

• FrmXWcState
This information refers to the most recent cycle. It is recommended that this accumulated information
for all the working counters of an EtherCAT frame is monitored on the application level, even in
redundancy mode.

• DevState
The meanings of the bits

◦ 0x0001: Link error at primary port
◦ 0x0004: Link error at redundancy port
◦ 0x0008: Missing one frame

• refer to the cable redundancy. If all three bits are zero, then the status of the cable redundancy is
normal, and the next connection fault can occur.
Under some circumstances the link status messages can be delayed by a few milliseconds. They can
therefore not be used in a real-time context.

EtherCAT basics

EtherCAT 37Version: 5.6

The redundancy case is illustrated accordingly in the Topology display.

• Fig. Typical error patterns in the redundancy case, top: Interruption at redundancy port
• Fig. Typical error patterns in the redundancy case, center: 2 interruptions, communication failure to one

terminal block.
• Fig. Typical error patterns in the redundancy case, bottom: Terminal in the second terminal block

removed while running, causing interruption in power supply to subsequent terminals and failure of
communication with them.

Fig. 29: Typical error patterns in the redundancy case

The redundancy case
Redundancy is an irregular operating condition. It is recommended that occurrence of the redun-
dancy case is detected at an early stage through evaluation of the diagnostic variables shown
above, and that the cause is rectified promptly.

2.3.2 HotConnect

2.3.2.1 The principle

The Beckhoff TwinCAT EtherCAT Hot Connect function allows preconfigured sections to be removed from or
added to the data traffic before the start or during operation of the system. This can take place by
disconnecting/connecting the communication line, switching the device on or off or by some other measure.
This is called "flexible topology" or Hot Connect.

Sample:
In a modular production system, modules with integrated EtherCAT I/O are connected or disconnected with
respect to communication during operation.

Following the establishment of a connection to a Hot Connect group, some commissioning actions are
carried out that result in a boot up time of several seconds:

• establishment of an Ethernet link
• device parameterization
• EtherCAT boot up INIT -> OP
• if necessary Distributed Clocks synchronization

An accelerated boot up is advantageous in particular in applications in which topology changes are
frequently made, such as tool changers. In addition, special Fast Hot Connect components are available that
ensure a boot up time of less than 1 second. See Notes on Fast Hot Connect regarding this. [} 41]

The Hot Connect/Fast Hot Connect principle is thus an extension to the otherwise generally applicable rule
that the sequence/arrangement of the EtherCAT devices in the field must correspond precisely to the
configuration created.

No separate license is required for setup, just the EtherCAT devices (couplers and branches) conceived for
the purpose.

EtherCAT basics

EtherCAT38 Version: 5.6

TwinCAT
The use of the Hot Connect function in the form described here is possible only with TwinCAT 2.11
from build 1539 upwards. In particular, TwinCAT 2.10 does not support any combination with Dis-
tributed Clocks.

Properties and system behavior
• The information in this document applies to both XP and CE-based TwinCAT 2.11 systems.
• Hot Connect groups can be groups of slaves (couplers & terminals) or also individual slaves (drives,

terminals, sensors, position encoders).
• Although a Hot Connect group can be physically connected to the EtherCAT network and can receive

and send the EtherCAT frame, it only participates in the process data traffic from the point of view of
the controller if its address (see below) has been recognized by the master.

• The identification and start-up of a Hot Connect group by the master can take up to several seconds,
depending on the position.
Accelerated boot up can be realized with Fast Hot Connect components.

• The monitoring of the WcState, status and link information from the slaves is strongly recommended.
• Start-up of a Hot Connect group by the master

◦ if the EtherCAT master does not detect a valid address in the station, the station will not be
accepted into the process data traffic.

◦ after a valid address is detected (“switching in” with a DIP switch, changing the SSA), the station is
accepted.

◦ the above points remain unchanged until the station is switched off or disconnected from the
network.

• SyncUnit: The System Manager automatically creates its own SyncUnits for Hot Connect groups which
are separate from each other; hence, they are given their own WorkingCounter and their being taken
out of operation does not affect the process data of other devices.

• The first device/coupler after the master should not be a configured Hot Connect device, as this slows
down link detection in the master.

• The combination with the “cable redundancy” property is partly possible.
• Distributed Clocks-capable slaves can be used.

When a Distributed Clocks slave (DC slave) is put into operation, its local clock is initialized and then
continuously synchronized with the existing network.
The Hot Connect group is resynchronized following the establishment of a connection; this procedure
can take several seconds. The EtherCAT Slaves concerned are held in the SAFEOP state during this
time. After successful resynchronization they are switched to the OP state.

EL terminals as a Hot Connect group
The connection/disconnection of KL/KS/EL/ES Terminals when live is not allowed. Therefore, a
configuration of individual terminals or terminal blocks below a coupler as a variable Hot Connect
group does not make sense. The smallest unit at terminal level is a coupler (EK/BK) or an EP Box.

Topologies

The following topologies were checked:

Type 1: Star

Star topologies are particularly useful for the Hot Connect concept - the branching groups are defined as a
Hot Connect group and can be connected/disconnected during operation.

In general, any topology is possible in which an EtherCAT network is connected to an EtherCAT port.

EtherCAT basics

EtherCAT 39Version: 5.6

Fig. 30: Star topology

The following are suitable for use as branching points: EK110x, EK150x, EK1122, EP1122 and all slaves
that have more than one IN and OUT port.

A Hot Connect group can be connected to any regular free port in the topology.

The combination of cable redundancy (chargeable supplement) in the main circuit and branching Hot
Connect groups at radial connections is not permitted for the time being. The use of DC slaves is not yet
possible when using cable redundancy.

Fig. 31: Star topology with cable redundancy – presently not permitted

Type 2: Line

When using the line topology, all devices will be re-initialized when the connection is restored after a
separation point.

Fig. 32: Line topology

If HC groups and non-HC groups are mixed in the line topology, all non-HC groups must be placed in front of
the HC groups and (as is usual for EtherCAT) in the correct order.

In the picture here, a non-HC group is arranged in front of 3 HC groups. In an extreme case, all stations can
be HC groups.

The use of cable redundancy (chargeable supplement) with HC groups in the redundancy path is not
possible.

EtherCAT basics

EtherCAT40 Version: 5.6

Fig. 33: Line topology with cable redundancy is not possible

General notes
• Stacked Groups

If Hot Connect groups are operated in physical succession (“stacked”), the higher level group must
participate in traffic first before the lower level groups can be put into operation.

Fig. 34: Stacked groups

Sample: The groups A and B, each with their own address, are connected/switched on together. Group B (in
spite of a possibly valid address) is only put into operation if it was possible for Group A to be put into
operation regularly by the master.

• Regular free ports
The Hot Connect groups can only be connected to free Ethernet ports in the configuration - if a group
is connected to an irregular free port, the group is not put into operation, despite having a possibly valid
address.

Fig. 35: Free ports

Sample: The coupler D (not a Hot Connect group!) is disconnected from Port C. Hence, port C is irregularly
free. A Hot Connect group A or B connected to this port will not be put into operation by the master.

EtherCAT basics

EtherCAT 41Version: 5.6

2.3.2.2 Notes re. EtherCAT Fast Hot Connect technology

EtherCAT components that support Fast Hot Connect enable a faster fieldbus boot up following the
establishment of a connection. The boot up depends in detail on the number of devices, the topology and
activated Distributed Clocks. Whereas the normal establishment of a connection and communication takes
several seconds, less than 1 second is possible with FHC components.

Properties and system behavior
• Fast Hot Connect is supported from TwinCAT 2.11R3 Build 2221.
• Fast Hot Connect ports are specially marked.

Fig. 36: Identification of FHC port at EK1122-0080 and EK1101-0080

• Standard EtherCAT devices may not be connected to Fast Hot Connect ports. This is to be ensured by
measures on the application side, which is easy to implement by means of the topology change that is
usually carried out mechanically in such applications.

Fig. 37: Recommended combination of Ethernet ports

• If corresponding ports are nevertheless connected, a power reset of the devices involved (branch
terminal and coupler/box) is required.

EtherCAT basics

EtherCAT42 Version: 5.6

• With Fast Hot Connect devices the establishment of an Ethernet connection is accelerated compared
to the normal Fast Ethernet connection.
If in addition the use of Distributed Clocks functions is omitted in the entire topology, then the
resynchronization time of the components is also dispensed with. Group boot up of < 1 second is then
possible, from plugging in the Ethernet connection to the OP state.

• An incorrect port allocation is detected in the TwinCAT ADS Logger

Fig. 38: Detection of incorrect port allocation in the TwinCAT logger

Configuration

The configuration of Fast Hot Connect groups in the TwinCAT System Manager takes place in exactly the
same way as Hot Connect groups, specifying the associated group ID.

Fig. 39: Configuration of a Fast Hot Connect group

Corresponding Fast Hot Connect ports are marked red in the TwinCAT System Manager.

EtherCAT basics

EtherCAT 43Version: 5.6

Fig. 40: Marking in the TwinCAT System Manager

A configuration of FHC groups is possible only if at least 1 corresponding junction is present e.g.
EK1122-0080.

Distributed Clocks

If no Distributed Clocks functions are used, this is visible in the master settings by the absence of “DC in
use”:

Fig. 41: DC master setting

This setting is automatically selected by the System Manager if there are no EtherCAT slaves in the
configuration in which Distributed Clocks is activated. “DC in use“ should not be randomly deactivated by the
user, because otherwise these devices will no longer function.

2.3.2.3 Addressing

Addressing and identification

At present three different methods are defined for the explicit identification of Hot Connect stations:

EtherCAT basics

EtherCAT44 Version: 5.6

• SecondSlaveAddress (SSA)
Here, the station address [0..65536] is permanently stored in the E²PROM of the EtherCAT slave. At
the start the EtherCAT Slave Controller (ESC) loads this address into its register 0x0012, from where it
can be read by the EtherCAT master.
This address is written

◦ via the EtherCAT master/TwinCAT System Manager by the user during the system setup
◦ via a user interface on the slave (keyboard, display, selector switch, etc.) at device start-up

• In almost all cases they are used for unambiguous identification of a device, rather than as a flexible
station.
In case of exchange the current address must be stored again in the replacement device.
A changed SSA will usually only be accepted by the ESC after a power restart of the device.
The SSA can be checked by the user by reading the register 0x0012 from the PLC (see TcEtherCAT-
lib -> FB_EcPhysicalReadCmd)

• InputWord/IdentificationValue/Data Word
Here, a bit sequence corresponding to the station address [0...65535] is expected in the process data
area of an EtherCAT slave and is interpreted by the master as the station address.
TwinCAT 2.10 expects the 16 bits data starting from register 0x1000. From TwinCAT 2.11R2 the
information can be stored in any desired place in the slave; the EtherCAT master is informed of the
storage location via the ESI description, called ADO (Address Offset) in the dialog (see Fig. Default
setting of an EtherCAT slave that supports the DataWord identification mode).
The Input Word is usually displayed in the configuration as process data in the supporting slave (see
EK1501, EK1101).

• Explicit Device Identification
On request by the master the slave informs the master of its ID [0 to 65535] via the AL status register
0x0134 during the start-up phase.
This method is supported from TwinCAT 2.11R3.

Addressing method
In general the ESI file belonging to the EtherCAT device contains the information regarding which
addressing methods the slave supports. This is displayed in TwinCAT System Manager -> Ether-
CAT Slave -> Advanced Settings and in general should not be changed by the user.
See Fig. (Default setting of an EtherCAT slave that supports the DataWord identification mode) Ex-
ception: The SSA identification mode is possible in every slave that has an ESC EEPROM (refer to
the manufacturer's notes). Beckhoff EtherCAT terminals/boxes usually have an EEPROM.

Fig. 42: Default setting of an EtherCAT slave that supports the DataWord identification mode

All EtherCAT slaves are always initially addressed via the auto-increment procedure, after which the
EtherCAT master attempts to find the configured station addresses in the field and assign them to the
stations/couplers. To this end the outgoing port is opened and closed specifically for the purpose of
determining the IDs.

EtherCAT basics

EtherCAT 45Version: 5.6

Address allocation in the slave

Explicit Device Identification

The ID setting is to be carried out according to the device manual.

InputWord/IdentificationValue

As a rule, a selector switch accessible from the outside on such slaves allows the position to be set; the
selection switch can be sealable or protected via a software mechanism. Other devices offer a user interface
which allows ID setting.

Sample: Beckhoff EK1101 - free accessibility of the ID switch

Fig. 43: EK1101 with ID switch

SecondSlaveAddress

The SSA can be set by the master or via a user interface on the slave. The procedure for setting via the
Beckhoff TwinCAT master is described below:

• Put the EtherCAT slave into operation in a simple configuration without addressing.
The slave should be in OP, WorkingCounter = 0, no LostFrames

• Proceed via
Slave -> EtherCAT -> Advanced Settings -> E²PROM to the SecondAddress dialog.

• The current address is displayed there; write the New Second Address in the slave E²PROM.
• The address is accepted after a power restart.
• In this example, the new address 10dec/0Ahex is set.

EtherCAT basics

EtherCAT46 Version: 5.6

Fig. 44: setting the SSA

You can check whether the slave has accepted the address as follows:

Proceed in the same dialog to Memory and check the contents of register 0x0012.

Fig. 45: Checking the SSA

If nothing is displayed:

• Normally Wc = 0 is the “error-free” state; in this case WorkingCounter must be 1, otherwise there will
be no communication with the slave for other reasons.

• Check whether you are on the right slave.
• As can be seen by Length = 400, the dialog reads 400hex bytes from the ESC in one operation. Most

third party ESCs do not support this; in this case, no data will be displayed in the columns.
Try to find out from Length = 2, how many bytes your ESC supports.

Note about TwinCAT 2.11

The setting dialog for the SSA was slightly changed in TwinCAT 2.11, but retains the same properties.

EtherCAT basics

EtherCAT 47Version: 5.6

Fig. 46: Setting SSA under TwinCAT 2.11

Compatible Beckhoff devices

In general, every EtherCAT slave can be assigned a Hot Connect address, regardless of whether it is an IO
terminal, a drive or a module of couplers and terminals.

Hot Connect capability
Check whether the EtherCAT slave you are using is Hot Connect-capable. Beckhoff slaves cur-
rently support the function as follows (as of May 2012): (see following table)

Version SecondSlaveAddress InputWord Explicit Device
Identification

EK1100 from HW18 - -
EK1101, EK1501, EK1101-0080 all all -
BK1120 from HW09 - -
EL terminals In general yes for most series from an

XML version xxxx-xxxx-0016
- -

EP boxes In general yes for most series from an
XML version xxxx-xxxx-0016

- -

AX2xxx - - -
AX5xxx all see

documentatio
n

see
documentation

2.3.2.4 Setup TwinCAT 2.10

The configuration procedure effort under TwinCAT 2.10 is described below by means of an example.

Step 1: creating the initial configuration

First of all, all components must be present in the configuration; the components are then connected in the
(offline) topology view in the order prescribed by the configuration or the “PreviousPort” specification. Shown
here is the offline view of 4 stations with EK1100, output terminals (red) and an EK1122.

EtherCAT basics

EtherCAT48 Version: 5.6

Fig. 47: Creating the configuration

Fig. 48: Creating the configuration

Step 2: Define as a HotConnect group

Right clicking on the EtherCAT slave opens the HotConnect group dialogue.

Fig. 49: Assign HotConnect group

Now enter the desired address, paying attention to the method used.

EtherCAT basics

EtherCAT 49Version: 5.6

Fig. 50: Assign address

The success of the operation can only be seen in the configuration: the station is removed from the order
and is appended below, marked in red. The property “PreviousPort” can no longer be selected, as TwinCAT
is now expecting the station everywhere.

Fig. 51: Hot Connect group

The station similarly releases itself in the (offline) topology view and hangs without a connection in the air.

Fig. 52: Topology view

This also applies to all other HotConnect stations.

Fig. 53: Topology view

Step 3: Online operation

The actual arrangement can only be viewed in the online topology view if this configuration is in operation
after activation.

EtherCAT basics

EtherCAT50 Version: 5.6

Green bars over EtherCAT slaves display the OP state, red bars the INIT state.

In figure Online topology view it can be seen that HotConnect Station A was docked with the EK1122,
whereas station B does not participate in the data traffic due to absence.

Fig. 54: Online topology view

These slaves are also correctly displayed by station B in the online display as not present.

Fig. 55: Online display

The assigned address can also be subsequently changed via the HotConnect tab.

EtherCAT basics

EtherCAT 51Version: 5.6

Fig. 56: HotConnect tab

2.3.2.5 Setup TwinCAT 2.11R2

The configuration dialogs under TwinCAT 2.11R2 are different, although the principle is the same as for
TwinCAT 2.10.

Configuration parameterization

Alternatively, the EtherCAT configuration can be set up via an online scan or manually, as described below.

1. First set up a maximum configuration, i.e. the configuration should cover all bus coupler stations that
could be used in the system, even if they are not all operated at the same time. The order and the as-
sociated “Previous Port” parameter are irrelevant.

Fig. 57: PreviousPort at bus station

HotConnect units
Only units that communicate via Ethernet may be assigned an EtherCAT ID, because only these
units can be connected or disconnected during operation. These are devices with RJ45/optical fiber/
M8/M12 Ethernet port (couplers, EP boxes, drives, ...). Terminals may not be connected or discon-
nected while live. Specification as flexible HotConnect group therefore makes no sense.
Terminals may be used for unambiguous identification via SSA.

2. The designated flexible bus stations are assigned the HotConnect characteristic in the System Man-
ager. The dialog is called up by right-clicking on a coupler station/EP box.

EtherCAT basics

EtherCAT52 Version: 5.6

Fig. 58: Calling up the HotConnect dialog

3. In TwinCAT 2.11R2 a coupled bus station can be identified as the “right” one via two properties:
- the ID “identification value”
- the EtherCAT address of the previous slave
Activate the associated characteristic and specify the value [0; 65535]. The ID refers to identification
through InputWord and SecondSlaveAdress. The default setting is InputWord. To use SSA proceed
as follows.

Fig. 59: HotConnect features

Identification via “previous slave”
If "previous slave" is specified as the address, a bus station parameterized in this way can no longer
by inserted and operated at any port, but only at the specific EtherCAT port that follows directly after
the specified slave. This method therefore significantly restricts the location of such a station. “Pre-
vious” refers to the preceding slave in terms of the EtherCAT communication, not necessarily the
actual order in the topology. This is particularly relevant for the EK1122/EK1521 multi-port slaves.

4. The station then has an additional “HotConnect” tab, in which the attributes can be modified.

EtherCAT basics

EtherCAT 53Version: 5.6

Fig. 60: HotConnect features

Under Properties, the InputWord default identification (from the “DataWord” dialog under process data) can
be changed to SecondSlaveAdress via Configure (in dialog “Configured Station Alias” from slave register
12hex).

Fig. 61: Setting detail

In the System Manager the device is identified with a red HotConnect icon.

Identification via “Data Word”
The 16 bit identification data are read from the slave at a specified location. TwinCAT 2.10 only sup-
ports register 1000hex. TwinCAT 2.11 can read from any location, as shown in the dialog in Fig. Set-
ting detail “ADO (hex)”. The default setting is register 1000hex or the specification from the ESI file.

HotConnect operation

For HotConnect operation TwinCAT must be in Config/FreeRun or RUN mode. After changes in the
configuration (other ID, ID location etc.) the configuration must be reloaded or TwinCAT restarted.

Sample 1: Groups not identified but linked

If stations that have an ID are connected via Ethernet but are not yet identified, the respective slaves come
up with status messages:

EtherCAT basics

EtherCAT54 Version: 5.6

Fig. 62: Status messages

• “LNK_ADD” together with the port information is shown for the slaves at which the stations were
connected: this indicates an unsuspected LINK to unidentified devices.

• The stations themselves (in this case Group A, Group B) are still in INIT state. No communication is
possible.

TwinCAT will keep trying to identify the coupled devices.

Sample 2: Group identified

The EK1101 “Group A” is now set to the right ID via the ID switches. After a few seconds TwinCAT
recognizes this, includes the group in the process data traffic and changes the devices to OP state.

Fig. 63: Group A in operation

The control system indicates this via the process data (WC state, state) of the coupler:

Fig. 64: Process data of the ID module

Sample 3: Utilization of the topology view

The online topology view reflects the current actual link status and coupling location.

EtherCAT basics

EtherCAT 55Version: 5.6

The offline view shows the ID stations without communication connection, since the connection locations are
unknown.

Fig. 65: Offline view

Stations that are not identified or present are shown in red in the online view.

Fig. 66: Online view

If stations are activated by changing the ID (here: switch setting at EK1101) the green OP bar appears.

Fig. 67: Online view

Switching to offline view and back updates the current connection status.

EtherCAT basics

EtherCAT56 Version: 5.6

Fig. 68: Current connection status

2.3.2.6 Identification

If HotConnect is used, the current topology status can be viewed in the online topology view in the system
manager, i.e. which HotConnect group is connected and where. Several ADS accesses are necessary in
order to access this information from the controller/PLC.

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469147275.zip (PLC and System
Manager) takes the following approach:

• a function block contains the necessary code
• the FB can be instanced several times and must be linked with its I/O variables to a HotConnect head

(EK coupler, EP-box). As a result of this it receives information about the EtherCAT master and its own
ADS port.

• As soon as the Wc (Working Counter) reports operation, the device’s own data are queried from the
EtherCAT master via ADS, as are the data of the devices that directly follow.

• In addition the identities and names of the neighboring devices are determined. The identifier is the
EtherCAT address, which remains constant.

This https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469149451.zip also contains
a visualization template that uses placeholder variables.

EtherCAT topology in the PLC
In the introductory part of the documentation for the TcEtherCAT.lib there is an extensive sample
program for determining various items of information about an EtherCAT network. This documenta-
tion is to be found in the information system (online or on DVD): TwinCAT --> TwinCAT PLC --> PC
Libraries --> EtherCAT --> Overview.
This sample program uses function blocks from there.

The following structure is assumed:

Fig. 69: Demo structure

The first EK1100 coupler is equipped with EK1110 and EK1122 as branch stations for the EK1101s GroupA
and GroupB.

Regarding the procedure: the linking of the address information into the function block is crucial, see Fig.
AdsAddr.

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469147275.zip
https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469149451.zip

EtherCAT basics

EtherCAT 57Version: 5.6

Fig. 70: AdsAddr

In the example the EK1101 HotConnect coupler has the EtherCAT address 1007. The FB can also access
the EtherCAT Master NetId and the ADS Port = EtherCAT address via the link.

ADS address
If the ADS address is not displayed in the green InfoData, the display can be switched on in the Ad-
vanced Settings for the slave. (See Fig. "Switching on the "ADS Address" in the Advanced Set-
tings")

Fig. 71: Switching on the "ADS Address" in the Advanced Settings

The function block outputs a status structure, which supplies information about the own identities of the
linked coupler and the connected devices; see Fig. Information structure. Since an EtherCAT Slave has a
maximum of 4 ports, a maximum of 4 neighboring devices can be determined. The device names are taken
from the configuration.

EtherCAT basics

EtherCAT58 Version: 5.6

Fig. 72: Information structure

Most important for self-orientation is the predecessor slave on port A/0.

Via this mechanism an entire topology can also be determined from the PLC.

2.3.3 EtherCAT data exchange
A range of components are available for implementing direct synchronous data exchange between two
EtherCAT systems. Depending on the application requirements, the appropriate method can be selected
based on the following criteria. The characteristic features are:

• Synchronous data exchange with predefined process data that are specified in the configuration
• Asynchronous data exchange
• Support for ADS over EtherCAT (AoE)
• Support for synchronization of the distributed clocks (DC) in the two systems

Some characteristics are listed in the following table. This information is only intended as a guide. The actual
specification can be found in the respective online component documentation.

https://www.beckhoff.com/en-us/support/download-finder

EtherCAT basics

EtherCAT 59Version: 5.6

EL6692 Publisher/Sub-
scriber

EL6601 FC1100 CX50x0-B110

Maximum
synchronous
data quantity

480 bytes,
bidirectional

variable 1024 bytes,
bidirectional
(publisher/
subscriber method)

1024 bytes,
bidirectiona
l

Maximum
asynchronous
data quantity

 - - variable -

AoE support yes yes - yes yes
DC support yes - - - -
Note - recommended

for
synchronization
of EtherCAT
systems
- TwinCAT 2.11
required

- use of an
Ethernet port in
both systems as
real-time device
- recommended
for synchronous
data exchange

- transfer of the RT
devices into an
EtherCAT terminal
- recommended for
synchronous data
exchange

- requires
free PCI
slot in the
IPC
- TwinCAT
2.11 R2
required

- CX5000 as
subordinate
autonomous controller
with its own IOs is
integrated in the higher-
level system as an
EtherCAT slave
- option B110 required
- TwinCAT 2.11 R2
required

EtherCAT basics

EtherCAT60 Version: 5.6

Fig. 73: Topologies for different data exchange methods

2.3.4 Safety over EtherCAT - TwinSAFE
The Beckhoff EtherCAT safety products use the TwinSAFE protocol, which is transported as part of the data
within the EtherCAT datagrams. The TwinSAFE protocol is basically independent of the communication
channel and has its own error detection mechanisms.

In the EtherCAT system an EL6900 logic terminal deals with the safety functions and transfers data to the
input and output terminals (EL1904, EL2904) via the TwinSAFE protocol.

For the application and commissioning, the corresponding device documentation and a TwinSAFE
application manual are accessible in the Download section on the Beckhoff website.

https://download.beckhoff.com/download/Document/automation/twinsafe/applicationguidetwinsafeen.pdf

EtherCAT basics

EtherCAT 61Version: 5.6

Fig. 74: TwinSAFE application manual

Setup in the TwinCAT System Manager

EtherCAT62 Version: 5.6

3 Setup in the TwinCAT System Manager

3.1 TwinCAT Quick Start
TwinCAT is a development environment for real-time control including multi-PLC system, NC axis control,
programming and operation. The whole system is mapped through this environment and enables access to a
programming environment (including compilation) for the controller. Individual digital or analog inputs or
outputs can also be read or written directly, in order to verify their functionality, for example.

For further information please refer to http://infosys.beckhoff.com:

• EtherCAT Systemmanual:
Fieldbus Components → EtherCAT Terminals → EtherCAT System Documentation → Setup in the
TwinCAT System Manager

• TwinCAT 2 → TwinCAT System Manager → I/O - Configuration
• In particular, TwinCAT driver installation:

Fieldbus components → Fieldbus Cards and Switches → FC900x – PCI Cards for Ethernet →
Installation

Devices contain the terminals for the actual configuration. All configuration data can be entered directly via
editor functions (offline) or via the “Scan” function (online):

• “offline”: The configuration can be customized by adding and positioning individual components.
These can be selected from a directory and configured.

◦ The procedure for offline mode can be found under http://infosys.beckhoff.com:
TwinCAT 2 → TwinCAT System Manager → IO - Configuration → Adding an I/O Device

• “online”: The existing hardware configuration is read

◦ See also http://infosys.beckhoff.com:
Fieldbus components → Fieldbus cards and switches → FC900x – PCI Cards for Ethernet →
Installation → Searching for devices

The following relationship is envisaged from user PC to the individual control elements:

http://infosys.beckhoff.com
http://infosys.beckhoff.com
http://infosys.beckhoff.com

Setup in the TwinCAT System Manager

EtherCAT 63Version: 5.6

Fig. 75: Relationship between user side (commissioning) and installation

The user inserting of certain components (I/O device, terminal, box...) is the same in TwinCAT 2 and
TwinCAT 3. The descriptions below relate to the online procedure.

Sample configuration (actual configuration)

Based on the following sample configuration, the subsequent subsections describe the procedure for
TwinCAT 2 and TwinCAT 3:

• Control system (PLC) CX2040 including CX2100-0004 power supply unit
• Connected to the CX2040 on the right (E-bus):

EL1004 (4-channel digital input terminal 24 VDC)
• Linked via the X001 port (RJ-45): EK1100 EtherCAT Coupler
• Connected to the EK1100 EtherCAT coupler on the right (E-bus):

EL2008 (8-channel digital output terminal 24 VDC; 0.5 A)
• (Optional via X000: a link to an external PC for the user interface)

Setup in the TwinCAT System Manager

EtherCAT64 Version: 5.6

Fig. 76: Control configuration with Embedded PC, input (EL1004) and output (EL2008)

Note that all combinations of a configuration are possible; for example, the EL1004 terminal could also be
connected after the coupler, or the EL2008 terminal could additionally be connected to the CX2040 on the
right, in which case the EK1100 coupler wouldn’t be necessary.

Setup in the TwinCAT System Manager

EtherCAT 65Version: 5.6

3.1.1 TwinCAT 2

Startup

TwinCAT basically uses two user interfaces: the TwinCAT System Manager for communication with the
electromechanical components and TwinCAT PLC Control for the development and compilation of a
controller. The starting point is the TwinCAT System Manager.

After successful installation of the TwinCAT system on the PC to be used for development, the TwinCAT 2
System Manager displays the following user interface after startup:

Fig. 77: Initial TwinCAT 2 user interface

Generally, TwinCAT can be used in local or remote mode. Once the TwinCAT system including the user
interface (standard) is installed on the respective PLC, TwinCAT can be used in local mode and thereby the
next step is “Insert Device [} 67]”.

If the intention is to address the TwinCAT runtime environment installed on a PLC as development
environment remotely from another system, the target system must be made known first. In the menu under

“Actions” → “Choose Target System...”, via the symbol “ ” or the “F8” key, open the following window:

Setup in the TwinCAT System Manager

EtherCAT66 Version: 5.6

Fig. 78: Selection of the target system

Use “Search (Ethernet)...” to enter the target system. Thus a next dialog opens to either:

• enter the known computer name after “Enter Host Name / IP:” (as shown in red)
• perform a “Broadcast Search” (if the exact computer name is not known)
• enter the known computer IP or AmsNetID.

Fig. 79: Specify the PLC for access by the TwinCAT System Manager: selection of the target system

Once the target system has been entered, it is available for selection as follows (a password may have to be
entered):

After confirmation with “OK” the target system can be accessed via the System Manager.

Setup in the TwinCAT System Manager

EtherCAT 67Version: 5.6

Adding devices

In the configuration tree of the TwinCAT 2 System Manager user interface on the left, select “I/O Devices”
and then right-click to open a context menu and select “Scan Devices…”, or start the action in the menu bar

via . The TwinCAT System Manager may first have to be set to “Config mode” via or via menu
“Actions” → “Set/Reset TwinCAT to Config Mode…” (Shift + F4).

Fig. 80: Select “Scan Devices...”

Confirm the warning message, which follows, and select “EtherCAT” in the dialog:

Fig. 81: Automatic detection of I/O devices: selection the devices to be integrated

Confirm the message “Find new boxes”, in order to determine the terminals connected to the devices. “Free
Run” enables manipulation of input and output values in “Config mode” and should also be acknowledged.

Based on the sample configuration [} 63] described at the beginning of this section, the result is as follows:

Setup in the TwinCAT System Manager

EtherCAT68 Version: 5.6

Fig. 82: Mapping of the configuration in the TwinCAT 2 System Manager

The whole process consists of two stages, which may be performed separately (first determine the devices,
then determine the connected elements such as boxes, terminals, etc.). A scan can also be initiated by
selecting “Device ...” from the context menu, which then reads the elements present in the configuration
below:

Fig. 83: Reading of individual terminals connected to a device

This functionality is useful if the actual configuration is modified at short notice.

Programming and integrating the PLC

TwinCAT PLC Control is the development environment for the creation of the controller in different program
environments: TwinCAT PLC Control supports all languages described in IEC 61131-3. There are two text-
based languages and three graphical languages.

• Text-based languages
◦ Instruction List (IL)

Setup in the TwinCAT System Manager

EtherCAT 69Version: 5.6

◦ Structured Text (ST)
• Graphical languages

◦ Function Block Diagram (FBD)
◦ Ladder Diagram (LD)
◦ The Continuous Function Chart Editor (CFC)
◦ Sequential Function Chart (SFC)

The following section refers to Structured Text (ST).

After starting TwinCAT PLC Control, the following user interface is shown for an initial project:

Fig. 84: TwinCAT PLC Control after startup

Sample variables and a sample program have been created and stored under the name “PLC_example.pro”:

Setup in the TwinCAT System Manager

EtherCAT70 Version: 5.6

Fig. 85: Sample program with variables after a compile process (without variable integration)

Warning 1990 (missing “VAR_CONFIG”) after a compile process indicates that the variables defined as
external (with the ID “AT%I*” or “AT%Q*”) have not been assigned. After successful compilation, TwinCAT
PLC Control creates a “*.tpy” file in the directory in which the project was stored. This file (“*.tpy”) contains
variable assignments and is not known to the System Manager, hence the warning. Once the System
Manager has been notified, the warning no longer appears.

First, integrate the TwinCAT PLC Control project in the System Manager via the context menu of the PLC
configuration; right-click and select “Append PLC Project…”:

Fig. 86: Appending the TwinCAT PLC Control project

Setup in the TwinCAT System Manager

EtherCAT 71Version: 5.6

Select the PLC configuration “PLC_example.tpy” in the browser window that opens. The project including the
two variables identified with “AT” are then integrated in the configuration tree of the System Manager:

Fig. 87: PLC project integrated in the PLC configuration of the System Manager

The two variables “bEL1004_Ch4” and “nEL2008_value” can now be assigned to certain process objects of
the I/O configuration.

Assigning variables

Open a window for selecting a suitable process object (PDO) via the context menu of a variable of the
integrated project “PLC_example” and via “Modify Link...” “Standard”:

Fig. 88: Creating the links between PLC variables and process objects

In the window that opens, the process object for the variable “bEL1004_Ch4” of type BOOL can be selected
from the PLC configuration tree:

Setup in the TwinCAT System Manager

EtherCAT72 Version: 5.6

Fig. 89: Selecting PDO of type BOOL

According to the default setting, certain PDO objects are now available for selection. In this sample the input
of channel 4 of the EL1004 terminal is selected for linking. In contrast, the checkbox “All types” must be
ticked for creating the link for the output variables, in order to allocate a set of eight separate output bits to a
byte variable. The following diagram shows the whole process:

Fig. 90: Selecting several PDOs simultaneously: activate “Continuous” and “All types”

Note that the “Continuous” checkbox was also activated. This is designed to allocate the bits contained in the
byte of the variable “nEL2008_value” sequentially to all eight selected output bits of the EL2008 terminal. In
this way it is possible to subsequently address all eight outputs of the terminal in the program with a byte
corresponding to bit 0 for channel 1 to bit 7 for channel 8 of the PLC. A special symbol () at the yellow or
red object of the variable indicates that a link exists. The links can also be checked by selecting a “Goto Link
Variable” from the context menu of a variable. The object opposite, in this case the PDO, is automatically
selected:

Setup in the TwinCAT System Manager

EtherCAT 73Version: 5.6

Fig. 91: Application of a “Goto Link” variable, using “MAIN.bEL1004_Ch4” as a sample

The process of assigning variables to the PDO is completed via the menu selection “Actions” → “Generate

Mappings”, key Ctrl+M or by clicking on the symbol in the menu.

This can be visualized in the configuration:

The process of creating links can also take place in the opposite direction, i.e. starting with individual PDOs
to variable. However, in this example it would then not be possible to select all output bits for the EL2008,
since the terminal only makes individual digital outputs available. If a terminal has a byte, word, integer or
similar PDO, it is possible to allocate this a set of bit-standardized variables (type “BOOL”). Here, too, a
“Goto Link Variable” from the context menu of a PDO can be executed in the other direction, so that the
respective PLC instance can then be selected.

Activation of the configuration

The allocation of PDO to PLC variables has now established the connection from the controller to the inputs
and outputs of the terminals. The configuration can now be activated. First, the configuration can be verified

via (or via “Actions” → “Check Configuration”). If no error is present, the configuration can be

activated via (or via “Actions” → “Activate Configuration…”) to transfer the System Manager settings
to the runtime system. Confirm the messages “Old configurations are overwritten!” and “Restart TwinCAT
system in Run mode” with “OK”.

A few seconds later the real-time status is displayed at the bottom right in the System Manager.
The PLC system can then be started as described below.

Starting the controller

Starting from a remote system, the PLC control has to be linked with the Embedded PC over Ethernet via
“Online” → “Choose Run-Time System…”:

Setup in the TwinCAT System Manager

EtherCAT74 Version: 5.6

Fig. 92: Choose target system (remote)

In this sample “Runtime system 1 (port 801)” is selected and confirmed. Link the PLC with the real-time

system via menu option “Online” → “Login”, the F11 key or by clicking on the symbol . The control
program can then be loaded for execution. This results in the message “No program on the controller!
Should the new program be loaded?”, which should be acknowledged with “Yes”. The runtime environment
is ready for the program start:

Setup in the TwinCAT System Manager

EtherCAT 75Version: 5.6

Fig. 93: PLC Control logged in, ready for program startup

The PLC can now be started via “Online” → “Run”, F5 key or .

3.1.2 TwinCAT 3

Startup

TwinCAT makes the development environment areas available together with Microsoft Visual Studio: after
startup, the project folder explorer appears on the left in the general window area (cf. “TwinCAT System
Manager” of TwinCAT 2) for communication with the electromechanical components.

After successful installation of the TwinCAT system on the PC to be used for development, TwinCAT 3
(shell) displays the following user interface after startup:

Setup in the TwinCAT System Manager

EtherCAT76 Version: 5.6

Fig. 94: Initial TwinCAT 3 user interface

First create a new project via (or under “File”→“New”→ “Project…”). In the
following dialog make the corresponding entries as required (as shown in the diagram):

Fig. 95: Create new TwinCAT project

The new project is then available in the project folder explorer:

Setup in the TwinCAT System Manager

EtherCAT 77Version: 5.6

Fig. 96: New TwinCAT3 project in the project folder explorer

Generally, TwinCAT can be used in local or remote mode. Once the TwinCAT system including the user
interface (standard) is installed on the respective PLC, TwinCAT can be used in local mode and thereby the
next step is “Insert Device [} 78]”.

If the intention is to address the TwinCAT runtime environment installed on a PLC as development
environment remotely from another system, the target system must be made known first. Via the symbol in
the menu bar:

expand the pull-down menu:

and open the following window:

Fig. 97: Selection dialog: Choose the target system

Setup in the TwinCAT System Manager

EtherCAT78 Version: 5.6

Use “Search (Ethernet)...” to enter the target system. Thus a next dialog opens to either:

• enter the known computer name after “Enter Host Name / IP:” (as shown in red)
• perform a “Broadcast Search” (if the exact computer name is not known)
• enter the known computer IP or AmsNetID.

Fig. 98: Specify the PLC for access by the TwinCAT System Manager: selection of the target system

Once the target system has been entered, it is available for selection as follows (a password may have to be
entered):

After confirmation with “OK” the target system can be accessed via the Visual Studio shell.

Adding devices

In the project folder explorer of the Visual Studio shell user interface on the left, select “Devices” within

element “I/O”, then right-click to open a context menu and select “Scan” or start the action via in the

menu bar. The TwinCAT System Manager may first have to be set to “Config mode” via or via the
menu “TwinCAT” → “Restart TwinCAT (Config mode)”.

Fig. 99: Select “Scan”

Confirm the warning message, which follows, and select “EtherCAT” in the dialog:

Setup in the TwinCAT System Manager

EtherCAT 79Version: 5.6

Fig. 100: Automatic detection of I/O devices: selection the devices to be integrated

Confirm the message “Find new boxes”, in order to determine the terminals connected to the devices. “Free
Run” enables manipulation of input and output values in “Config mode” and should also be acknowledged.

Based on the sample configuration [} 63] described at the beginning of this section, the result is as follows:

Fig. 101: Mapping of the configuration in VS shell of the TwinCAT3 environment

The whole process consists of two stages, which may be performed separately (first determine the devices,
then determine the connected elements such as boxes, terminals, etc.). A scan can also be initiated by
selecting “Device ...” from the context menu, which then reads the elements present in the configuration
below:

Setup in the TwinCAT System Manager

EtherCAT80 Version: 5.6

Fig. 102: Reading of individual terminals connected to a device

This functionality is useful if the actual configuration is modified at short notice.

Programming the PLC

TwinCAT PLC Control is the development environment for the creation of the controller in different program
environments: TwinCAT PLC Control supports all languages described in IEC 61131-3. There are two text-
based languages and three graphical languages.

• Text-based languages
◦ Instruction List (IL)
◦ Structured Text (ST)

• Graphical languages
◦ Function Block Diagram (FBD)
◦ Ladder Diagram (LD)
◦ The Continuous Function Chart Editor (CFC)
◦ Sequential Function Chart (SFC)

The following section refers to Structured Text (ST).

In order to create a programming environment, a PLC subproject is added to the project sample via the
context menu of “PLC” in the project folder explorer by selecting “Add New Item….”:

Setup in the TwinCAT System Manager

EtherCAT 81Version: 5.6

Fig. 103: Adding the programming environment in “PLC”

In the dialog that opens select “Standard PLC project” and enter “PLC_example” as project name, for
example, and select a corresponding directory:

Fig. 104: Specifying the name and directory for the PLC programming environment

The “Main” program, which already exists by selecting “Standard PLC project”, can be opened by double-
clicking on “PLC_example_project” in “POUs”. The following user interface is shown for an initial project:

Setup in the TwinCAT System Manager

EtherCAT82 Version: 5.6

Fig. 105: Initial “Main” program of the standard PLC project

To continue, sample variables and a sample program have now been created:

Setup in the TwinCAT System Manager

EtherCAT 83Version: 5.6

Fig. 106: Sample program with variables after a compile process (without variable integration)

The control program is now created as a project folder, followed by the compile process:

Fig. 107: Start program compilation

The following variables, identified in the ST/ PLC program with “AT%”, are then available in under
“Assignments” in the project folder explorer:

Assigning variables

Via the menu of an instance - variables in the “PLC” context, use the “Modify Link…” option to open a
window for selecting a suitable process object (PDO) for linking:

Setup in the TwinCAT System Manager

EtherCAT84 Version: 5.6

Fig. 108: Creating the links between PLC variables and process objects

In the window that opens, the process object for the variable “bEL1004_Ch4” of type BOOL can be selected
from the PLC configuration tree:

Fig. 109: Selecting PDO of type BOOL

According to the default setting, certain PDO objects are now available for selection. In this sample the input
of channel 4 of the EL1004 terminal is selected for linking. In contrast, the checkbox “All types” must be
ticked for creating the link for the output variables, in order to allocate a set of eight separate output bits to a
byte variable. The following diagram shows the whole process:

Setup in the TwinCAT System Manager

EtherCAT 85Version: 5.6

Fig. 110: Selecting several PDOs simultaneously: activate “Continuous” and “All types”

Note that the “Continuous” checkbox was also activated. This is designed to allocate the bits contained in the
byte of the variable “nEL2008_value” sequentially to all eight selected output bits of the EL2008 terminal. In
this way it is possible to subsequently address all eight outputs of the terminal in the program with a byte
corresponding to bit 0 for channel 1 to bit 7 for channel 8 of the PLC. A special symbol () at the yellow or
red object of the variable indicates that a link exists. The links can also be checked by selecting a “Goto Link
Variable” from the context menu of a variable. The object opposite, in this case the PDO, is automatically
selected:

Fig. 111: Application of a “Goto Link” variable, using “MAIN.bEL1004_Ch4” as a sample

The process of creating links can also take place in the opposite direction, i.e. starting with individual PDOs
to variable. However, in this example it would then not be possible to select all output bits for the EL2008,
since the terminal only makes individual digital outputs available. If a terminal has a byte, word, integer or

Setup in the TwinCAT System Manager

EtherCAT86 Version: 5.6

similar PDO, it is possible to allocate this a set of bit-standardized variables (type “BOOL”). Here, too, a
“Goto Link Variable” from the context menu of a PDO can be executed in the other direction, so that the
respective PLC instance can then be selected.

Note on the type of variable assignment
The following type of variable assignment can only be used from TwinCAT version V3.1.4024.4 on-
wards and is only available for terminals with a microcontroller.

In TwinCAT it is possible to create a structure from the mapped process data of a terminal. An instance of
this structure can then be created in the PLC, so it is possible to access the process data directly from the
PLC without having to declare own variables.

The procedure for the EL3001 1-channel analog input terminal -10...+10 V is shown as an example.

1. First the required process data must be selected in the “Process data” tab in TwinCAT.
2. After that, the PLC data type must be generated in the tab “PLC” via the check box.
3. The data type in the “Data Type” field can then be copied using the “Copy” button.

Fig. 112: Creating a PLC data type

4. An instance of the data structure of the copied data type must then be created in the PLC.

Fig. 113: Instance_of_struct

5. Then the project folder must be created. This can be done either via the key combination “CTRL +
Shift + B” or via the “Build” tab in TwinCAT.

6. The structure in the “PLC” tab of the terminal must then be linked to the created instance.

Setup in the TwinCAT System Manager

EtherCAT 87Version: 5.6

Fig. 114: Linking the structure

7. In the PLC the process data can then be read or written via the structure in the program code.

Fig. 115: Reading a variable from the structure of the process data

Activation of the configuration

The allocation of PDO to PLC variables has now established the connection from the controller to the inputs

and outputs of the terminals. The configuration can now be activated with or via the menu under
“TwinCAT” in order to transfer settings of the development environment to the runtime system. Confirm the
messages “Old configurations are overwritten!” and “Restart TwinCAT system in Run mode” with “OK”. The
corresponding assignments can be seen in the project folder explorer:

A few seconds later the corresponding status of the Run mode is displayed in the form of a rotating symbol

 at the bottom right of the VS shell development environment. The PLC system can then be started as
described below.

Setup in the TwinCAT System Manager

EtherCAT88 Version: 5.6

Starting the controller

Select the menu option “PLC” → “Login” or click on to link the PLC with the real-time system and load
the control program for execution. This results in the message No program on the controller! Should the new
program be loaded?, which should be acknowledged with “Yes”. The runtime environment is ready for

program start by click on symbol , the “F5” key or via “PLC” in the menu selecting “Start”. The started
programming environment shows the runtime values of individual variables:

Fig. 116: TwinCAT development environment (VS shell): logged-in, after program startup

The two operator control elements for stopping and logout result in the required action
(accordingly also for stop “Shift + F5”, or both actions can be selected via the PLC menu).

3.2 EtherCAT master in TwinCAT
The Beckhoff TwinCAT System Manager as configuration interface for the I/O environment in the application
supports configuration and commissioning of the EtherCAT fieldbus through various automatic actions. The
virtual EtherCAT "device" is set up as an independent element in the configuration tree of the System
Manager. Its properties can be accessed via associated Properties windows. EtherCAT is defined via the
following elements:

• EtherCAT master in TwinCAT [} 89]

• TwinCAT real-time environment [} 91]

• Ethernet interface [} 92]

• connected EtherCAT slaves [} 93]

Setup in the TwinCAT System Manager

EtherCAT 89Version: 5.6

Fig. 117: EtherCAT device in the configuration tree

The EtherCAT master as a virtual software device

EtherCAT as an Ethernet-based real-time fieldbus requires a physical Ethernet interface at the controller and
a real-time trigger as required for connection with the I/O environment. It enables the EtherCAT master to
communicate with the connected EtherCAT environment.

Fig. 118: EtherCAT master in the IPC environment

The EtherCAT master as a software device in TwinCAT:

• can assemble Ethernet telegrams with EtherCAT datagrams from the process data supplied by the
PLC/NC/task and send them via the assigned Ethernet port.

• can unpack process data received from the I/O environment and return them to the tasks.
• deals with the construction of cyclic and acyclic telegrams.
• controls the distributed clock synchronization.
• analyses the diagnostic information of the EtherCAT slaves.
• carries out event-oriented diagnostics or responds to modified topologies.
• can only manage one EtherCAT system with up to 65,535 slaves and is linked with one Ethernet

interface (“RJ45 port”) for this purpose. A second port can be allocated to the EtherCAT master for the
purpose of cable redundancy.

• manages the communication with other EtherCAT masters in the same TwinCAT system, if several
masters are present in the configuration.

• is the sole generator of EtherCAT telegrams in an EtherCAT system
•

EtherCAT communication consists of cyclic and acyclic Ethernet telegrams.

Setup in the TwinCAT System Manager

EtherCAT90 Version: 5.6

The cyclic telegrams form the normal process data and can usually not be modified during system runtime.
A known configuration, i.e. the number of connected EtherCAT slaves, always results in the same minimum
quantity of process data, which have to be sent with the master for cyclic communication between the
devices. The cyclic (i.e. at constant intervals triggering task, e.g. a PLC task with a 10 ms runtime) triggers
the communication with the EtherCAT field. Once the communication is complete the EtherCAT master
returns the process data. On IPC/embedded systems TwinCAT generally operates with constant cycle times
between 50 µs and > 100 ms. The arithmetic operations of the task must be completed within this cycle time.
The high communication performance of EtherCAT (high 100 Mbit/s data throughput) enables the sent
EtherCAT telegrams to return to the controller before the start of the next cycle, even in large configurations
containing more than 1000 devices. Task execution and bus communication is therefore configured as a
synchronous task in TwinCAT. A key factor for high-quality execution is low jitter, i.e. the tasks should be
executed and restarted with high time precision.

Fig. 119: synchronous execution of task and EtherCAT communication

In Fig. Synchronous execution of task and EtherCAT communication, the communication starts after the
task. It is also possible to send frames at the same time as the task start time (“I/O at task begin”).

The acyclic telegrams are created by the EtherCAT master as required and sent or received in the intervals
between the cyclic data. These telegrams are used for gathering diagnostic information and mailbox
communication with individual devices (e.g. for firmware updates) or subordinate fieldbuses. Acyclic
telegrams are sent from a pipeline without real-time claim in the order they are requested, depending on
space, and are therefore also referred to as “queues frames”.

Fig. 120: Distinction between fixed (cyclic) and variable EtherCAT telegrams (acyclic)

The TwinCAT System Manager also maps this time relationship in every configuration created. In Fig.
Configuration-dependent time division in the System Manager, a 100 µs task can be seen that
communicates with about 20 slaves and needs an Ethernet frame (red) with several datagrams for the cyclic
communication.

Setup in the TwinCAT System Manager

EtherCAT 91Version: 5.6

Fig. 121: Configuration-dependent time division in the System Manager

The real-rime environment

The EtherCAT master itself “only” controls the construction and interpretation of the EtherCAT telegrams. A
TwinCAT-based controller is based on cyclic execution of a task with constant repeat rate (cycle time). Usual
cycle times in a TwinCAT environment range from 50 µs over 1 ms to several 100 ms. The cycle time is
selected during configuration setup depending on the processing power of the controller, the bus devices,
the executed programs, the application requirements and other factors.

Cyclically executed task may include NC calculations, PLC code, visualizations or R3 applications created
and triggered by the customer. The tasks may have different cycle times, but have to be weighted in terms of
priority. Higher priority tasks may interrupt/pause lower priority tasks. The lower priority task continues as
soon as the priority list permits this. If more than one CPU core is used (only possible with TwinCAT 3),
several tasks can be executed in parallel.

In a correctly dimensioned and parameterized TwinCAT system all configured tasks can be executed within
the specified cycle time once during the whole cycle, even if they have different priorities. The settings
automatically applied by the System Manager during configuration setup usually ensure stable operation of
the configuration. The whole cycle is defined by the slowest task. For example, with a 1 ms and a 100 ms
task on the same system, the fast task is executed 100 times before the slow task is executed.

Setup in the TwinCAT System Manager

EtherCAT92 Version: 5.6

Fig. 122: Priority list in the TwinCAT System Manager

The real-time characteristics of TwinCAT in Windows-based systems (2000, NT, XP, 7, CE; WES, WEC)
ensure low jitter and therefore high constancy and exact timing, even with very short cycle times of 50 µs
and without dedicated timing hardware.

In principle each task can have its own I/O image and therefore control its own fieldbus cycle and devices. In
Fig. 2 Tasks with own Ethernet frames (Task 1 ms: "red" frame, task 10 ms: "yellow" frame), two tasks (1 +
10 ms) can be seen that each trigger their own I/O cycles and thus cause their own Ethernet frames.

Fig. 123: Tasks with own Ethernet frames (Task 1 ms: "red" frame, task 10 ms: "yellow" frame)

The Ethernet interface

EtherCAT is currently (2011) standardized based on ISO/OSI layer 2 with Fast Ethernet = 100 Mbit/s down
to the slave layer. The interface therefore has to support Fast Ethernet as a minimum. See also notes
regarding EtherCAT infrastructure.

The Ethernet interface allocated to the EtherCAT master must meet the requirements of the application:

• external requirements: temperature, vibration, pull-out protection, buckling protection, contamination.
An RJ45, M12 or M8 link is usually used for the connection to the controller/IPC.

• real-time capability
The time-critical properties of the Ethernet interface must meet the requirements of the application and
should not delay telegrams sent by the EtherCAT master at the correct time. This applies to the
software implementation (driver, stack management) and the electronic configuration (PCI or USB
connection, DMA, NDIS management, upstream switch).

https://download.beckhoff.com/download/Document/io/ethercat-terminals/ethernetcabling_en.pdf

Setup in the TwinCAT System Manager

EtherCAT 93Version: 5.6

EtherCAT Slaves

The following factors should be considered for the configuration:

• the properties of an EtherCAT slave are defined for the EtherCAT master in the device description file
ESI (EtherCAT Slave Information). This XML file is provided by the respective device manufacturer.
By default the TwinCAT System Manager looks for these ESI files under C:\TwinCAT\IO.
An ESI file may contain several device descriptions and revisions.

• For EL/ES terminals connected in the terminal strand (LVDS configuration) the E-bus current
consumption must be considered. The System Manager keeps track of the power demand specified in
the ESI description and issues a warning if there is a risk of overload of the previous coupler. The usual
capacity is 2 A. Negatives values in column “E-bus” are not allowed and may lead to errors that are
difficult to reproduce.

Fig. 124: System Manager view – current calculation

• the maximum cable lengths and attenuation values between devices in the FX/TX layer (Ethernet
cable, glass fiber, POF) specified in the physical layer may not be exceeded.

• the number and configuration of the EtherCAT slaves (max. 65,535) has influence on the cycle time of
the EtherCAT telegrams.

• the functional reliability of the screen connection of the couplers/terminals and the earthing of the
overall application must be ensured.

• supply lines/sensor cables may have to be screened separately.

3.3 General notes on the use of Beckhoff EtherCAT IO
components

Note: this document provides general assistance. For detailed questions (e.g. “Where can I find the
revision?”) please refer to the corresponding pages in this EtherCAT system documentation.

Overview:

3.3.1 Technical classification
The application and communication properties of a Beckhoff IO device (EtherCAT terminal EL/ES/EM/EK,
EtherCAT Box EP/EQ, special designs CU) are determined by the following three elements: the device, the
firmware (optional) and the EtherCAT slave device description (ESI).
An electronic automation device with fieldbus connection consists of many further (internal) components and
software such as the ESC (EtherCAT Slave Controller, the real-time communication IC); however, the three
mentioned above are those that outwardly define the device’s properties for the user.

Details of the three components:

The material device itself, the ‘hardware’ (HW)

• is marked by Beckhoff with the hardware version, e.g. HW01.
• in EtherCAT parlance the device is also often referred to as a slave in the sense of the fieldbus

topology, because it is addressed by the EtherCAT master.

http://download.beckhoff.com/download/Document/BusTermi/BusTermi/EthernetCabling_de.chm

Setup in the TwinCAT System Manager

EtherCAT94 Version: 5.6

• the hardware version.

◦ is printed on the outside of the device, see serial number/batch number [} 101]
◦ can be read from the CoE directory in devices that have one
◦ can be read by the EtherCAT master from the EtherCAT/ESI-EEPROM since 2012/01
◦ is coded in decimal or hexadecimal depending on the device series

The firmware that runs on it, if applicable

• Note: firmware (FW) is the name given to the program code made by the manufacturer (Beckhoff) and
executed on a µC (microcontroller, FPGA or processor). Not all devices have to have a µC and thus
firmware!

• this can consist of several files if necessary and must be loaded to the IO device. Usually these are
*.efw or *.rbf files

• is marked by Beckhoff with the firmware version, e.g. FW02
• the firmware version

◦ is printed on the outside of the device, see serial number/batch number [} 101].
◦ can be read from the CoE directory in devices that have one.
◦ can be read by the EtherCAT master from the ESI-EEPROM since 2012/01.
◦ if a firmware update of the device is carried out, the imprint on the housing is to be adapted

accordingly by the person performing the update or by the user.

The EtherCAT ESI communication description as the device description file for the EtherCAT master (in case
of Beckhoff: integrated in the TwinCAT software)

• describes the EtherCAT communication interface between device and master in all aspects that are
relevant to data communication and synchronization

• is on the one hand programmed by Beckhoff on the IO device itself (into the so-called EtherCAT/ESI-
EEPROM)

◦ so that the device can announce basic information of its own accord on being scanned by the
EtherCAT master: size of the process data (PDO), setting options (CoE) and others.

◦ in addition this ESI contains the basic settings for the IO device itself that are relevant to its
function and are read on the device by the µC or other control components at power-on.

• should on the other hand be available to the EtherCAT master as a file
◦ since the EtherCAT master software now ‘knows’ the slave even without electrical access, the

user can also create his bus configuration ‘offline’, i.e. without live contact to the IO device, as is
absolutely necessary when scanning.

◦ and in addition the EtherCAT master knows how it must address the slave over EtherCAT and the
functions that the latter offers. As a result, cyclic process data and CoE directory of the slave, for
example, are determined for the master. Without an ESI file the master does not know the device
at all.

◦ if an EtherCat slave is to be connected to the NC in TwinCAT, the availability of the ESI device
description is absolutely necessary

◦ Note: there are EtherCAT masters that obtain the device information from the slave only by
scanning and do not require any ESI file from the device.
If necessary TwinCAT can also operate ‘on-line’ without the availability of an ESI file; however, it is
recommended that the correct ESI file be available for TwinCAT for a simple reason: many
EtherCAT devices now have a wide range of functions and extensive setting options. This then
results in a large ESI file that can perhaps no longer be saved in the local EtherCAT/ESI-EEPROM
– although the reduced information which is then available there is sufficient for basic operation of
the device, the full function and diagnostic scope of the device is not available.
In addition, offline configuration is possible only if the ESi file is available.

• is marked by Beckhoff with the so-called revision e.g. -0018
if there is a change in the contents/function of the ESI, the revision number is usually increased by +1

• the revision
◦ can be read by the EtherCAT master from the EtherCAT/ESI-EEPROM.
◦ can also be read from the CoE directory in devices that have one.

Setup in the TwinCAT System Manager

EtherCAT 95Version: 5.6

◦ has been printed on the outside of the device since 2014/01 → "Rev. xxxx [} 101]"
◦ if a revision update of the device is carried out, the imprint on the housing (if there is one) is to be

adapted accordingly by the person performing the update or by the user.

Due to their properties, all three elements can have an effect on

• functional properties, e.g. filter, sample rate, output rate, input sensitivity and others
• temporal behavior e.g. during bootup,
• behavior and diagnosis in case of error
• communication features, e.g. process data, parameter directory,
• Distributed Clocks properties, e.g. types of trigger, synchronicity, latency and others
• exterior appearance

These three elements are to be found as follows in the application world:

Fig. 125: Components of the EtherCAT device

Explanations on the basis of the principles mentioned above:

• the ESI is programmed in the device (EtherCAT/ESI-EEPROM) and determines the EtherCAT interface
from the point of view of the µC; the EtherCAT real-time communication is performed by the ESC
(EtherCAT Slave Controller).

• the EtherCAT master requires the ESI in order, for example, to incorporate it into its system
configuration. To do this it can read the EtherCAT/ESI-EEPROM online. If the ESI is directly available
to it, however, then offline configuration is also possible.
As a result, master and slave/device now have the same definition of the EtherCAT interface and can
communicate with one another.

• the µC (if there is one) maps the function of the device and communicates with the ESC for this. It also
controls the IO side of the device, if this not already done by the ESC.

• the parameter directory ‘CoE’ (CANopen-over-EtherCAT) of the device is managed by the µC, i.e.
‘online’. The ESI file also contains a copy of this, the so-called ‘CoE offline dictionary’. This enables the
user to view the possible functions offline in advance and if necessary to preconfigure the start-up list.
Changes in the online CoE are saved fail-safe in Beckhoff IO devices and in the AX2000 in general in
a local EEPROM (unless parameterized differently). The AX5000, conversely, has an SoE directory
(Sercos-over-EtherCAT), which always starts in the default state on power on; changes required by the
user must be loaded to the slave, for example by startup list, on each bootup of the EtherCAT master.

Illustrated in a simplified manner, these three elements map the entire device, wherein the ESI is used both
in the device and in the master:

Setup in the TwinCAT System Manager

EtherCAT96 Version: 5.6

Fig. 126: Simplified illustration of the entire EtherCAT device

Depending on the type, the entire device can also be marked by a sequential, unique device number. See
also the Identification notes [} 101].

3.3.2 Change management by Beckhoff
Beckhoff reserves the right to change all three elements for itself and unannounced during the product
lifetime in order

• to introduce functional improvements and
• to implement new functions

Such a change by Beckhoff

• is then usually marked by a changed HW/FW/revision version.
• takes place in such a way that the Beckhoff EtherCAT IO compatibility rule can be adhered to in

existing applications:

device revision in the system >= device revision in the configuration

Background: The ESI description also defines the process image, the communication type
between master and slave/device and the device functions, if applicable. The physical device
(including firmware, if available) has to support the communication queries/settings of the master.
This is the case downwardly compatible, i.e. newer devices (higher revision, higher firmware
version, higher hardware version) should also support it if the EtherCAT master addresses them
as an older revision due to an existing configuration. This permits the later swapping/replacement
of devices if necessary without changing the configuration, i.e. without access to the application
files.
Sample: If the configuration provides for an EL2521-0025-1018 EtherCAT terminal (i.e. revision
-1018), then a terminal that is programmed as an EL2521-0025-1018 or higher (- 1019, -1020) can
be used as a real IO device. Higher revision also means in many cases a newer firmware version,
but at least the same firmware version on the part of Beckhoff production.
For Beckhoff and the user this means that the further developed or changed edition of an
EtherCAT IO product with incremented hardware, firmware or revision version should support all of
the properties and features of the predecessor products with a lower FW or revision version.

Setup in the TwinCAT System Manager

EtherCAT 97Version: 5.6

ESI device descriptions with revision history
The ESI-XML files (zipped) offered for downloading on the Beckhoff website contain almost all
EtherCAT devices ever published together with their complete revision history.
The user thus has the possibility to deliberately integrate predecessor revisions in his configuration.

Beckhoff ESI device descriptions, compatibility
From the IO compatibility rule it follows that, even if the default process data have been changed
with regard to the predecessor model in a newer firmware/revision, this device can nevertheless still
be converted via the PDO setting (e.g. PredefinedPDOsettings) to the "old" process data or should
at least "understand" them, because the new firmware/revision ought to support them without fail.
The respective device documentation provides assistance with this on the process data page.

3.3.3 Procurement/update of the elements
The three elements can be procured:

HW:

• Procurement: only by purchase from/exchange by Beckhoff
• Update: An update of the hardware is usually possible only by exchanging the device.

FW:

• Procurement: by enquiry to Beckhoff/Support
• Update: An update of the firmware is usually described in the device documentation and must be

carried out using the Beckhoff System Manager. You must check with Beckhoff, or in the
documentation specifications, which possible firmware version a certain available device supports in
accordance with its hardware version.
Note/hint: the readable FW version on the exterior of the device must be manually adapted by the
person carrying out the update so that the new FW version is also visibly recognizable.

ESI/XML:

• Procurement: the current version is available for download on the Beckhoff website and, when a new
TwinCAT build is written, the ESI current at the time of writing is integrated into the TwinCAT
installation. Depending on which TwinCAT version is installed, the device descriptions located in C:
\TwinCAT\IO\ after the TwinCAT installation may not correspond to the current Beckhoff version.

• Update:
◦ in the System Manager: the ESI files (*.xml, *.xsd and if necessary further files in the same folder)

in the TwinCAT master directory (e.g. TwinCAT 2: C:\TwinCAT\IO\) must be exchanged.
Afterwards is it necessary to restart the System Manager.

◦ in the device: An update of the revision is usually described in the device documentation and must
be carried out using the Beckhoff System Manager. You must check with Beckhoff, or in the
documentation specifications, which possible revision version a certain available device supports
in accordance with its hardware version.
Note/hint: the readable revision version on the exterior of the device must be manually adapted by
the person carrying out the update so that the new revision version is also visibly recognizable.

"Never touch a running system!"

An update of firmware or revision should be carried out only if there is a justified cause to do so.
If both are changed, then as a rule the firmware is to be changed first, then the XML/revision in the
EEPROM. Notes in the documentation are to be observed!

There is no right to demand that Beckhoff hands out information on HW/FW/Revision changes.

https://download.beckhoff.com/download/configuration-files/io/ethercat/xml-device-description/Beckhoff_EtherCAT_XML.zip
https://download.beckhoff.com/download/configuration-files/io/ethercat/xml-device-description/Beckhoff_EtherCAT_XML.zip

Setup in the TwinCAT System Manager

EtherCAT98 Version: 5.6

Downloading ESI descriptions
Beckhoff makes the current versions of the ESI device descriptions available for download on its
website. These ESIs are thus available to every EtherCAT user, every configuration creator and ev-
ery customer. However, it is recommended that configuration creators/programmers internally clar-
ify within their company/firm/group which revision versions are to be released for internal company
use, so that a uniform configuration version can be maintained over the years in delivered ma-
chines. This simplifies the stocking of spare parts.

3.3.4 Application project planning in the TwinCAT System
Manager 2.x/3.x - creating the configuration

An EtherCAT configuration can be created in the TwinCAT System Manager in three ways:

• by manual configuration creation without an existing device, so-called offline creation → see chapter
"Configuration creation – manual [} 129]"

• by online scanning of the device connected to the master --> see chapter "Configuration creation –
online scan [} 134]"

• by automated configuration creation without operator intervention, e.g. via automation interface

The TwinCAT System Manager 2.x and TwinCAT 3.0/3.1 behave as follows:

• Offline creation: Chapter ‘Configuration creation – manual’ [} 129]

Fig. 127: Context menu "Append Box"

Primarily, only the highest/last revision that exists in the ESI directory on the local programming device is
presently offered for insertion by the System Manager in the selection dialogue for the IO device to be
inserted.

Fig. 128: Selecting and appending an EtherCAT device

Here, for example, the EL1008.

The corresponding checkbox must be activated in order to see the revision.

Fig. 129: Activate checkbox "Extended Information" to display revision

Setup in the TwinCAT System Manager

EtherCAT 99Version: 5.6

If a different/lower revision is to be inserted into the configuration, this must be displayed via Show Hidden
Devices and then selected.
Please observe the Beckhoff compatibility rule.

• Online scan: Chapter ‘Configuration creation – online scan’ [} 134]

Fig. 130: Context menu "Scan Boxes"

TwinCAT reads the manufacturer, name and revision from the ESI-EEPROM on the IO device found, e.g.
"Beckhoff EL2502-0000-0018". The System Manager then looks in its ESI directory for the associated ESI
file. If this is missing, the System Manager can read the online description from the device and use it (this is
not recommended; observe the ESi description in the technical classification and scan page [} 134]!).
Precisely this revision with its properties (process data, CoE directory, etc.) is then integrated into the
configuration (the Beckhoff compatibility rule must be observed).
In order to support all functions and diagnostic options of the IO device, users are urgently recommended to
interrupt the process if the corresponding ESI file is missing and to procure the corresponding ESI file from
the device manufacturer and place it in the ESI directory.

• Automated creation:
the revision stored in the control program is built into the configuration. Otherwise the previous
sentences apply.

NOTE
Revision and functions of the EtherCAT device
Care must be taken when creating a configuration that only those device functions and thus ultimately only
those revisions that are supported by the customer’s existing terminals are configured (e.g. in the spare
part stock).

3.3.5 Configuration comparison in the project
The TwinCAT System Manager allows a comparison between the configuration according to the *.tsm file
and the IO combination that is actually connected to the EtherCAT master. The comparison takes place
automatically if devices are found during the scanning process.

Fig. 131: Context menu "Scan Boxes"

An overview appears showing the differences; for further information see chapter ‘Configuration creation –
online scan [} 134]’

Setup in the TwinCAT System Manager

EtherCAT100 Version: 5.6

Fig. 132: Configuration comparison

3.3.6 Determining the installation version in the application
If an overview of the real EtherCAT IO components installed in the application is desired

• the imprinted designations and serial numbers of the terminals/boxes can be read.
• the HW/FW versions and production date can be read online from the ESI-EEPROM by the System

Manager from TwinCAT 2.11R3 b2235

Fig. 133: Reading product information from EEPROM

Blocks for reading this information from the PLC are being prepared.
It is possible to export this information to Excel:

Fig. 134: Exporting the information

See also the chapter "Online version identification of EtherCAT devices" [} 114]
• the information of the identity object can be read into the PLC from devices with a CoE directory by

online ADS access

Setup in the TwinCAT System Manager

EtherCAT 101Version: 5.6

Fig. 135: Reading the information from identity object 1018

See also the sample program in the chapter "Online version identification of EtherCAT devices" [} 114].

3.4 Version identification of EtherCAT devices

3.4.1 General notes on marking

Designation

A Beckhoff EtherCAT device has a 14-digit designation, made up of

• family key
• type
• version
• revision

Example Family Type Version Revision
EL3314-0000-0016 EL terminal

(12 mm, non-
pluggable connection
level)

3314 (4-channel thermocouple
terminal)

0000 (basic type) 0016

ES3602-0010-0017 ES terminal
(12 mm, pluggable
connection level)

3602 (2-channel voltage
measurement)

0010 (high-
precision version)

0017

CU2008-0000-0000 CU device 2008 (8-port fast ethernet switch) 0000 (basic type) 0000

Notes
• The elements mentioned above result in the technical designation. EL3314-0000-0016 is used in the

example below.
• EL3314-0000 is the order identifier, in the case of “-0000” usually abbreviated to EL3314. “-0016” is the

EtherCAT revision.
• The order identifier is made up of

- family key (EL, EP, CU, ES, KL, CX, etc.)
- type (3314)
- version (-0000)

• The revision -0016 shows the technical progress, such as the extension of features with regard to the
EtherCAT communication, and is managed by Beckhoff.
In principle, a device with a higher revision can replace a device with a lower revision, unless specified
otherwise, e.g. in the documentation.
Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave
Information) in the form of an XML file, which is available for download from the Beckhoff web site.
From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. “EL5021 EL terminal,
standard IP20 IO device with batch number and revision ID (since 2014/01)”.

• The type, version and revision are read as decimal numbers, even if they are technically saved in
hexadecimal.

Setup in the TwinCAT System Manager

EtherCAT102 Version: 5.6

3.4.2 Version identification of EK Couplers
The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or
on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole
production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version

Example with serial number 12 06 3A 02:
12 - production week 12
06 - production year 2006
3A - firmware version 3A
02 - hardware version 02

Fig. 136: EK1101 EtherCAT coupler with revision 0815 and serial number 41130206

Setup in the TwinCAT System Manager

EtherCAT 103Version: 5.6

3.4.3 Version identification of EL terminals
The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or
on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole
production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version

Example with serial number 12 06 3A 02:
12 - production week 12
06 - production year 2006
3A - firmware version 3A
02 - hardware version 02

Fig. 137: EL2872 with revision 0022 and serial number 01200815

Setup in the TwinCAT System Manager

EtherCAT104 Version: 5.6

3.4.4 Version identification of ELX terminals
The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or
on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole
production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version

Example with serial number 12 06 3A 02:
12 - production week 12
06 - production year 2006
3A - firmware version 3A
02 - hardware version 02

Fig. 138: ELX2002 with Beckhoff Traceability Number (BTN) 10000030 and Date Code 01200815

Setup in the TwinCAT System Manager

EtherCAT 105Version: 5.6

3.4.5 Version identification of ELM terminals
The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or
on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole
production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version

Example with serial number 12 06 3A 02:
12 - production week 12
06 - production year 2006
3A - firmware version 3A
02 - hardware version 02

Fig. 139: ELM3002-0000 with BTN 0000wwww and unique serial number 09200506

Setup in the TwinCAT System Manager

EtherCAT106 Version: 5.6

3.4.6 Version identification of EJ moduls
Product group Example

Product designation Version Revision
EtherCAT Coupler
EJ11xx

EJ1101 -0022
(Coupler with external connectors, power supply module and
optional ID switches

-0016

Digital input modules
EJ1xxx

EJ1008
8-channel

-0000
(basic type)

-0017

Digital output modules
EJ2xxx

EJ2521
1-channel

-0224
(2 x 24 V outputs)

-0016

Analog input modules
EJ3xxx

EJ3318
8-channel thermocouple

-0000
(basic type)

-0017

Analog output modules
EJ4xxx

EJ4134
4-channel

-0000
(basic type)

-0019

Special function modules
EJ5xxx, EJ6xxx

EJ6224
IO-Link master

-0090
(with TwinSAFE SC)

-0016

Motion modules
EJ7xxx

EJ7211
servomotor

-9414
(with ECT, STO and TwinSAFE SC)

-0029

Designation

A Beckhoff EtherCAT device has a 14-digit technical designation, made up as follows (e.g.
EJ1008-0000-0017)

• Order identifier
◦ family key: EJ
◦ product designation: The first digit of product designation is used for assignment to a product

group (e.g. EJ2xxx = digital output module).
◦ Version number: The four digit version number identifies different product variants.

• Revision number:
It is incremented when changes are made to the product.

The Order identifier and the revision number are printed on the side of EtherCAT plug-in modules (s.
following illustration (A and B).

Fig. 140: Order identifier (A), Revision number (B) and serial number (C) using the example of EJ1008

Setup in the TwinCAT System Manager

EtherCAT 107Version: 5.6

Notes
• The elements mentioned above result in the technical designation. EJ1008-0000-0017 is used in the

example below.
• EJ1008-0000 is the order identifier, in the case of “-0000” usually abbreviated to EJ1008.
• The revision -0017 shows the technical progress, such as the extension of features with regard to the

EtherCAT communication, and is managed by Beckhoff.
In principle, a device with a higher revision can replace a device with a lower revision, unless specified
otherwise, e.g. in the documentation.
Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave
Information) in the form of an XML file, which is available for download from the Beckhoff web site.

• The product designation, version and revision are read as decimal numbers, even if they are
technically saved in hexadecimal.

Serial number

The serial number for EtherCAT plug-in modules is usually the 8-digit number printed on the side of the
module (see following illustration C). The serial number indicates the configuration in delivery state and
therefore refers to a whole production batch, without distinguishing the individual modules of a batch.

Fig. 141: Order identifier (A), revision number (B) and serial number (C) using the example of EJ1008

Serial number Example serial number: 08 15 08 16
KK - week of production (CW, calendar week) 08 - week of production: 08
YY - year of production 15 - year of production: 2015
FF - firmware version 08 -f irmware version: 08
HH - hardware version 16 - hardware version: 16

https://www.beckhoff.de/english/download/elconfg.htm

Setup in the TwinCAT System Manager

EtherCAT108 Version: 5.6

3.4.7 Version identification of EP/EPI/EPP/ER/ERI boxes
The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or
on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole
production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version

Example with serial number 12 06 3A 02:
12 - production week 12
06 - production year 2006
3A - firmware version 3A
02 - hardware version 02

Exceptions can occur in the IP67 area, where the following syntax can be used (see respective device
documentation):

Syntax: D ww yy x y z u

D - prefix designation
ww - calendar week
yy - year
x - firmware version of the bus PCB
y - hardware version of the bus PCB
z - firmware version of the I/O PCB
u - hardware version of the I/O PCB

Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version
of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O
PCB: 1

IN/

R
oH

S
20

11
/6

5/
EU

3
4 2

1

D: 22090101
EP1258-0001

S-No: 158102

1 3Tx+ Rx-
OUT

ETHERCAT

Fig. 142: EP1258-00001 IP67 EtherCAT Box with batch number/DateCode 22090101 and unique serial
number 158102

Setup in the TwinCAT System Manager

EtherCAT 109Version: 5.6

3.4.8 Version identification of CU Switches
The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or
on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole
production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version

Example with serial number 12 06 3A 02:
12 - production week 12
06 - production year 2006
3A - firmware version 3A
02 - hardware version 02

Fig. 143: CU1521 switch with serial number 4820/ and the unique Beckhoff Traceability Number (BTN)
00007su0

Setup in the TwinCAT System Manager

EtherCAT110 Version: 5.6

3.4.9 Beckhoff Identification Code (BIC)
The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify
the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is
based on the ANSI standard MH10.8.2-2016.

Fig. 144: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

• on the packaging unit
• directly on the product (if space suffices)
• on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling
and product management.

Each piece of information can be uniquely identified using the so-called data identifier
(ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum
length according to the table below. If the information is shorter, spaces are added to it.

Following information is possible, positions 1 to 4 are always present, the other according to need of
production:

Setup in the TwinCAT System Manager

EtherCAT 111Version: 5.6

Posi-
tion

Type of
information

Explanation Data
identifier

Number of digits
incl. data identifier

Example

1 Beckhoff order
number

Beckhoff order number 1P 8 1P072222

2 Beckhoff Traceability
Number (BTN)

Unique serial number,
see note below

SBTN 12 SBTNk4p562d7

3 Article description Beckhoff article
description, e.g.
EL1008

1K 32 1KEL1809

4 Quantity Quantity in packaging
unit, e.g. 1, 10, etc.

Q 6 Q1

5 Batch number Optional: Year and week
of production

2P 14 2P401503180016

6 ID/serial number Optional: Present-day
serial number system,
e.g. with safety products

51S 12 51S678294

7 Variant number Optional: Product variant
number on the basis of
standard products

30P 32 30PF971, 2*K183

...

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

Structure of the BIC

Example of composite information from positions 1 to 4 and with the above given example value on position
6. The data identifiers are highlighted in bold font:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Accordingly as DMC:

Fig. 145: Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

An important component of the BIC is the Beckhoff Traceability Number (BTN, position 2). The BTN is a
unique serial number consisting of eight characters that will replace all other serial number systems at
Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for
safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet
coded in the BIC.

NOTE
This information has been carefully prepared. However, the procedure described is constantly being further
developed. We reserve the right to revise and change procedures and documentation at any time and with-
out prior notice. No claims for changes can be made from the information, illustrations and descriptions in
this information.

Setup in the TwinCAT System Manager

EtherCAT112 Version: 5.6

3.4.10 Electronic access to the BIC (eBIC)

Electronic BIC (eBIC)

The Beckhoff Identification Code (BIC) is applied to the outside of Beckhoff products in a visible place. If
possible, it should also be electronically readable.

Decisive for the electronic readout is the interface via which the product can be electronically addressed.

K-bus devices (IP20, IP67)

Currently, no electronic storage and readout is planned for these devices.

EtherCAT devices (IP20, IP67)

All Beckhoff EtherCAT devices have a so-called ESI-EEPROM, which contains the EtherCAT identity with
the revision number. Stored in it is the EtherCAT slave information, also colloquially known as ESI/XML
configuration file for the EtherCAT master. See the corresponding chapter in the EtherCAT system manual
(Link) for the relationships.

The eBIC is also stored in the ESI‑EEPROM. The eBIC was introduced into the Beckhoff I/O production
(terminals, boxes) from 2020; widespread implementation is expected in 2021.

The user can electronically access the eBIC (if existent) as follows:

• With all EtherCAT devices, the EtherCAT master (TwinCAT) can read the eBIC from the ESI‑EEPROM
◦ From TwinCAT 3.1 build 4024.11, the eBIC can be displayed in the online view.
◦ To do this,

check the checkbox "Show Beckhoff Identification Code (BIC)" under
EtherCAT → Advanced Settings → Diagnostics:

◦ The BTN and its contents are then displayed:

◦ Note: as can be seen in the illustration, the production data HW version, FW version and
production date, which have been programmed since 2012, can also be displayed with "Show
Production Info".

◦ From TwinCAT 3.1. build 4024.24 the functions FB_EcReadBIC and FB_EcReadBTN for reading
into the PLC and further eBIC auxiliary functions are available in the Tc2_EtherCAT Library from
v3.3.19.0.

• In the case of EtherCAT devices with CoE directory, the object 0x10E2:01 can additionally by used to
display the device's own eBIC; the PLC can also simply access the information here:

https://infosys.beckhoff.com/content/1033/ethercatsystem/2469086859.html

Setup in the TwinCAT System Manager

EtherCAT 113Version: 5.6

◦ The device must be in SAFEOP/OP for access:

◦ the object 0x10E2 will be introduced into stock products in the course of a necessary firmware
revision.

◦ From TwinCAT 3.1. build 4024.24 the functions FB_EcCoEReadBIC and FB_EcCoEReadBTN for
reading into the PLC and further eBIC auxiliary functions are available in the Tc2_EtherCAT
Library from v3.3.19.0.

• Note: in the case of electronic further processing, the BTN is to be handled as a string(8); the identifier
"SBTN" is not part of the BTN.

• Technical background
The new BIC information is additionally written as a category in the ESI‑EEPROM during the device
production. The structure of the ESI content is largely dictated by the ETG specifications, therefore the
additional vendor-specific content is stored with the help of a category according to ETG.2010. ID 03
indicates to all EtherCAT masters that they must not overwrite these data in case of an update or
restore the data after an ESI update.
The structure follows the content of the BIC, see there. This results in a memory requirement of
approx. 50..200 bytes in the EEPROM.

• Special cases
◦ If multiple, hierarchically arranged ESCs are installed in a device, only the top-level ESC carries

the eBIC Information.
◦ If multiple, non-hierarchically arranged ESCs are installed in a device, all ESCs carry the eBIC

Information.
◦ If the device consists of several sub-devices with their own identity, but only the top-level device is

accessible via EtherCAT, the eBIC of the top-level device is located in the CoE object directory
0x10E2:01 and the eBICs of the sub-devices follow in 0x10E2:nn.

Profibus/Profinet/DeviceNet… Devices

Currently, no electronic storage and readout is planned for these devices.

Setup in the TwinCAT System Manager

EtherCAT114 Version: 5.6

3.5 Online version identification of EtherCAT devices
The production information for an EtherCAT slave device

• Firmware version
• Hardware version
• Date of manufacture

is readable as described above by the serial number marked by laser on the side. The firmware /hardware
(FW/HW) version is also electronically readable from there in the case of "complex" devices with CoE
capability, but not in the case of simple devices without CoE.

Therefore, the production information listed above has been programmed into EtherCAT Terminals by
Beckhoff since the production date July 2012. It is located in the EtherCAT ESI EEPROM, which is a
component of every Beckhoff EtherCAT slave.

Information ESI/XML (config-
uration)

CoE or, if applicable, de-
fault data in the offline
dictionary

ESI EEPROM imprint/label on
the side

Availability all EtherCAT
slaves

only in case of complex
devices

all EtherCAT
slaves

all EtherCAT
slaves

Device name x 0x1008 x x
Hardware version 0x1009 x ("production

info")
x

Firmware version 0x100A x ("production
info")

x

Vendor ID (e.g.
Beckhoff: 0x2)

0x1018:01 x

Product code (32 bit) x 0x1018:02 x
Revision (32 bit) x 0x1018:03 x x
Serial number 0x1018:04 x (x)
ID number (in some series, see

respective documentation)
(x)

Date of manufacture x ("production
info")

x

Notices on electronic readout

• ESI/XML
◦ these data can be read by the user program (PLC, non-RT task) from the EtherCAT master being

used
◦ for TwinCAT the functions from the TcEtherCAT.lib are to be used here (other EtherCAT masters

depending on capability)
◦ the data are available online (with live connection to the device) and offline

• CoE (online)
◦ these data can be read by the user program (PLC, non-RT task) from the CoE directory of the

device over EtherCAT
◦ for TwinCAT the functions from the TcEtherCAT.lib are to be used here (other EtherCAT masters

depending on CoE capability)
◦ the data are available only online

(In the case of offline access, an EtherCAT master such as TwinCAT can present the data case by
case from the ESI Dictionary of the XML file - however, these are then only the data of a foreseen
slave).

• ESI EEPROM

Setup in the TwinCAT System Manager

EtherCAT 115Version: 5.6

◦ these data can
- be displayed online by a TwinCAT 2.11R3 from build 2035
- be read by the user program (PLC, non-RT task) from the ESI EEPROM of the device over
EtherCAT (see sample program)

◦ for TwinCAT the functions from the TcEtherCAT.lib are to be used here (other EtherCAT masters
depending on CoE capability)

◦ the data are available only online
• imprint on the side: not possible electronically.

Online Production Info (ESI EEPROM)

NOTE
Data storage in the ESI EEPROM
In case of an EEPROM update of the EtherCAT slave by the EtherCAT master, e.g. for the purpose of a re-
vision update, the production data located there are overwritten if the EtherCAT master does not exclude
these data from being overwritten. From TwinCAT 2.11 the System Manager monitors these data during
the update.

From TwinCAT 2.11R3 build 2035 the production information for HW, FW and date can be displayed in the
system manager and exported.

Fig. 146: System manager Online View -> Properties

Fig. 147: Activate “Show Production Info”

Setup in the TwinCAT System Manager

EtherCAT116 Version: 5.6

Fig. 148: Online display

Devices without this information display 0 in the overview.

From TwinCAT 3.1, the display is activated via the Advanced Settings of the EtherCAT master:

Fig. 149: TwinCAT 3.1: Activate "Show Production Info”

The data can be exported directly to a CSV file.

Fig. 150: Export

Fig. 151: Sample of the contents of the csv file

Setup in the TwinCAT System Manager

EtherCAT 117Version: 5.6

Sample program for reading and exporting the "production info" from the PLC

Using the sample programs
This document contains sample applications of our products for certain areas of application. The
application notices provided here are based on typical features of our products and only serve as
samples. The notices contained in this document explicitly do not refer to specific applications. The
customer is therefore responsible for assessing and deciding whether the product is suitable for a
particular application. We accept no responsibility for the completeness and correctness of the
source code contained in this document. We reserve the right to modify the content of this docu-
ment at any time and accept no responsibility for errors and missing information.
The program presented below serves as an initial introduction to the options for analyzing the slave
data and production information. The user is free to change the program to suit his ideas or to use
only part of the code.

 Sample program (https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/
zip/2469151627.zip)

In this sample program some identification data of the connected EtherCAT slave are read out and displayed
in a visualization (Fig. System Manager Online View -> Properties). The configured data are read out using
the function blocks from TcEtherCAT.lib. Online data such as manufacturer (vendor) and production date are
determined by access to the ESI EEPROM. Communication with the EEPROM can be established simply
and quickly by the use of the function block ‘FB_ReadEEPROM’ included in this project. In addition there is
an option to export the data in a file in the text table formats ‘*.txt’ and ‘*.csv’ . In the ‘*.csv’ option the
German standard with a semicolon as separator is selected.

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469151627.zip
https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469151627.zip

Setup in the TwinCAT System Manager

EtherCAT118 Version: 5.6

Fig. 152: Visualization in the sample program

In common spreadsheet programs various sorting and filtering options can be applied to the exported data,
e.g. "Table with headers".

Fig. 153: Filtering in the spreadsheet program

3.6 TwinCAT Development Environment

3.6.1 Installation of the TwinCAT real-time driver
In order to assign real-time capability to a standard Ethernet port of an IPC controller, the Beckhoff real-time
driver has to be installed on this port under Windows.

This can be done in several ways.

Setup in the TwinCAT System Manager

EtherCAT 119Version: 5.6

A: Via the TwinCAT Adapter dialog

In the System Manager call up the TwinCAT overview of the local network interfaces via Options → Show
Real Time Ethernet Compatible Devices.

Fig. 154: System Manager “Options” (TwinCAT 2)

This have to be called up by the menu “TwinCAT” within the TwinCAT 3 environment:

Fig. 155: Call up under VS Shell (TwinCAT 3)

B: Via TcRteInstall.exe in the TwinCAT directory

Fig. 156: TcRteInstall in the TwinCAT directory

In both cases, the following dialog appears:

Setup in the TwinCAT System Manager

EtherCAT120 Version: 5.6

Fig. 157: Overview of network interfaces

Interfaces listed under “Compatible devices” can be assigned a driver via the “Install” button. A driver should
only be installed on compatible devices.

A Windows warning regarding the unsigned driver can be ignored.

Alternatively an EtherCAT-device can be inserted first of all as described in chapter Offline configuration
creation, section “Creating the EtherCAT device” [} 129] in order to view the compatible ethernet ports via its
EtherCAT properties (tab “Adapter”, button “Compatible Devices…”):

Fig. 158: EtherCAT device properties(TwinCAT 2): click on “Compatible Devices…” of tab “Adapte””

TwinCAT 3: the properties of the EtherCAT device can be opened by double click on “Device .. (EtherCAT)”
within the Solution Explorer under “I/O”:

After the installation the driver appears activated in the Windows overview for the network interface
(Windows Start → System Properties → Network)

Setup in the TwinCAT System Manager

EtherCAT 121Version: 5.6

Fig. 159: Windows properties of the network interface

A correct setting of the driver could be:

Fig. 160: Exemplary correct driver setting for the Ethernet port

Other possible settings have to be avoided:

Setup in the TwinCAT System Manager

EtherCAT122 Version: 5.6

Fig. 161: Incorrect driver settings for the Ethernet port

Setup in the TwinCAT System Manager

EtherCAT 123Version: 5.6

IP address of the port used

IP address/DHCP
In most cases an Ethernet port that is configured as an EtherCAT device will not transport general
IP packets. For this reason and in cases where an EL6601 or similar devices are used it is useful to
specify a fixed IP address for this port via the “Internet Protocol TCP/IP” driver setting and to disable
DHCP. In this way the delay associated with the DHCP client for the Ethernet port assigning itself a
default IP address in the absence of a DHCP server is avoided. A suitable address space is
192.168.x.x, for example.

Fig. 162: TCP/IP setting for the Ethernet port

Setup in the TwinCAT System Manager

EtherCAT124 Version: 5.6

3.6.2 Notes regarding ESI device description

Installation of the latest ESI device description

The TwinCAT EtherCAT master/System Manager needs the device description files for the devices to be
used in order to generate the configuration in online or offline mode. The device descriptions are contained
in the so-called ESI files (EtherCAT Slave Information) in XML format. These files can be requested from the
respective manufacturer and are made available for download. An *.xml file may contain several device
descriptions.

The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website.

The ESI files should be stored in the TwinCAT installation directory.

Default settings:

• TwinCAT 2: C:\TwinCAT\IO\EtherCAT
• TwinCAT 3: C:\TwinCAT\3.1\Config\Io\EtherCAT

The files are read (once) when a new System Manager window is opened, if they have changed since the
last time the System Manager window was opened.

A TwinCAT installation includes the set of Beckhoff ESI files that was current at the time when the TwinCAT
build was created.

For TwinCAT 2.11/TwinCAT 3 and higher, the ESI directory can be updated from the System Manager, if the
programming PC is connected to the Internet; by

• TwinCAT 2: Option → “Update EtherCAT Device Descriptions”
• TwinCAT 3: TwinCAT → EtherCAT Devices → “Update Device Descriptions (via ETG Website)…”

The TwinCAT ESI Updater [} 128] is available for this purpose.

ESI
The *.xml files are associated with *.xsd files, which describe the structure of the ESI XML files. To
update the ESI device descriptions, both file types should therefore be updated.

Device differentiation

EtherCAT devices/slaves are distinguished by four properties, which determine the full device identifier. For
example, the device identifier EL2521-0025-1018 consists of:

• family key “EL”
• name “2521”
• type “0025”
• and revision “1018”

Fig. 163: Identifier structure

The order identifier consisting of name + type (here: EL2521-0010) describes the device function. The
revision indicates the technical progress and is managed by Beckhoff. In principle, a device with a higher
revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation.
Each revision has its own ESI description. See further notes [} 101].

https://download.beckhoff.com/download/configuration-files/io/ethercat/xml-device-description/Beckhoff_EtherCAT_XML.zip

Setup in the TwinCAT System Manager

EtherCAT 125Version: 5.6

Online description

If the EtherCAT configuration is created online through scanning of real devices (see section Online setup)
and no ESI descriptions are available for a slave (specified by name and revision) that was found, the
System Manager asks whether the description stored in the device should be used. In any case, the System
Manager needs this information for setting up the cyclic and acyclic communication with the slave correctly.

Fig. 164: OnlineDescription information window (TwinCAT 2)

In TwinCAT 3 a similar window appears, which also offers the Web update:

Fig. 165: Information window OnlineDescription (TwinCAT 3)

If possible, the Yes is to be rejected and the required ESI is to be requested from the device manufacturer.
After installation of the XML/XSD file the configuration process should be repeated.

NOTE
Changing the “usual” configuration through a scan
ü If a scan discovers a device that is not yet known to TwinCAT, distinction has to be made between two

cases. Taking the example here of the EL2521-0000 in the revision 1019
a) no ESI is present for the EL2521-0000 device at all, either for the revision 1019 or for an older revision.

The ESI must then be requested from the manufacturer (in this case Beckhoff).
b) an ESI is present for the EL2521-0000 device, but only in an older revision, e.g. 1018 or 1017.

In this case an in-house check should first be performed to determine whether the spare parts stock al-
lows the integration of the increased revision into the configuration at all. A new/higher revision usually
also brings along new features. If these are not to be used, work can continue without reservations with
the previous revision 1018 in the configuration. This is also stated by the Beckhoff compatibility rule.

Refer in particular to the chapter “General notes on the use of Beckhoff EtherCAT IO components” and for
manual configuration to the chapter “Offline configuration creation [} 129]”.

If the OnlineDescription is used regardless, the System Manager reads a copy of the device description from
the EEPROM in the EtherCAT slave. In complex slaves the size of the EEPROM may not be sufficient for the
complete ESI, in which case the ESI would be incomplete in the configurator. Therefore it’s recommended
using an offline ESI file with priority in such a case.

The System Manager creates for online recorded device descriptions a new file
“OnlineDescription0000...xml” in its ESI directory, which contains all ESI descriptions that were read online.

http://infosys.beckhoff.com/content/1033/ethercatsystem/2469088779.html

Setup in the TwinCAT System Manager

EtherCAT126 Version: 5.6

Fig. 166: File OnlineDescription.xml created by the System Manager

Is a slave desired to be added manually to the configuration at a later stage, online created slaves are
indicated by a prepended symbol “>” in the selection list (see Figure Indication of an online recorded ESI of
EL2521 as an example).

Fig. 167: Indication of an online recorded ESI of EL2521 as an example

If such ESI files are used and the manufacturer's files become available later, the file OnlineDescription.xml
should be deleted as follows:

• close all System Manager windows
• restart TwinCAT in Config mode
• delete “OnlineDescription0000...xml”
• restart TwinCAT System Manager

This file should not be visible after this procedure, if necessary press <F5> to update

OnlineDescription for TwinCAT 3.x
In addition to the file described above “OnlineDescription0000...xml”, a so called EtherCAT cache
with new discovered devices is created by TwinCAT 3.x, e.g. under Windows 7:

(Please note the language settings of the OS!)
You have to delete this file, too.

Faulty ESI file

If an ESI file is faulty and the System Manager is unable to read it, the System Manager brings up an
information window.

Fig. 168: Information window for faulty ESI file (left: TwinCAT 2; right: TwinCAT 3)

Setup in the TwinCAT System Manager

EtherCAT 127Version: 5.6

Reasons may include:

• Structure of the *.xml does not correspond to the associated *.xsd file → check your schematics
• Contents cannot be translated into a device description → contact the file manufacturer

Setup in the TwinCAT System Manager

EtherCAT128 Version: 5.6

3.6.3 TwinCAT ESI Updater
For TwinCAT 2.11 and higher, the System Manager can search for current Beckhoff ESI files automatically, if
an online connection is available:

Fig. 169: Using the ESI Updater (>= TwinCAT 2.11)

The call up takes place under:
“Options” → “Update EtherCAT Device Descriptions”

Selection under TwinCAT 3:

Fig. 170: Using the ESI Updater (TwinCAT 3)

The ESI Updater (TwinCAT 3) is a convenient option for automatic downloading of ESI data provided by
EtherCAT manufacturers via the Internet into the TwinCAT directory (ESI = EtherCAT slave information).
TwinCAT accesses the central ESI ULR directory list stored at ETG; the entries can then be viewed in the
Updater dialog, although they cannot be changed there.

The call up takes place under:
“TwinCAT” → “EtherCAT Devices” → “Update Device Description (via ETG Website)…”.

3.6.4 Distinction between Online and Offline
The distinction between online and offline refers to the presence of the actual I/O environment (drives,
terminals, EJ-modules). If the configuration is to be prepared in advance of the system configuration as a
programming system, e.g. on a laptop, this is only possible in “Offline configuration” mode. In this case all
components have to be entered manually in the configuration, e.g. based on the electrical design.

If the designed control system is already connected to the EtherCAT system and all components are
energised and the infrastructure is ready for operation, the TwinCAT configuration can simply be generated
through “scanning” from the runtime system. This is referred to as online configuration.

In any case, during each startup the EtherCAT master checks whether the slaves it finds match the
configuration. This test can be parameterised in the extended slave settings. Refer to note “Installation of
the latest ESI-XML device description” [} 124].

For preparation of a configuration:
• the real EtherCAT hardware (devices, couplers, drives) must be present and installed
• the devices/modules must be connected via EtherCAT cables or in the terminal/ module strand in the

same way as they are intended to be used later

Setup in the TwinCAT System Manager

EtherCAT 129Version: 5.6

• the devices/modules be connected to the power supply and ready for communication
• TwinCAT must be in CONFIG mode on the target system.

The online scan process consists of:

• detecting the EtherCAT device [} 134] (Ethernet port at the IPC)

• detecting the connected EtherCAT devices [} 135]. This step can be carried out independent of the
preceding step

• troubleshooting [} 138]

The scan with existing configuration [} 139] can also be carried out for comparison.

3.6.5 OFFLINE configuration creation

Creating the EtherCAT device

Create an EtherCAT device in an empty System Manager window.

Fig. 171: Append EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

Select type “EtherCAT” for an EtherCAT I/O application with EtherCAT slaves. For the present publisher/
subscriber service in combination with an EL6601/EL6614 terminal select “EtherCAT Automation Protocol
via EL6601”.

Fig. 172: Selecting the EtherCAT connection (TwinCAT 2.11, TwinCAT 3)

Then assign a real Ethernet port to this virtual device in the runtime system.

Fig. 173: Selecting the Ethernet port

Setup in the TwinCAT System Manager

EtherCAT130 Version: 5.6

This query may appear automatically when the EtherCAT device is created, or the assignment can be set/
modified later in the properties dialog; see Fig. “EtherCAT device properties (TwinCAT 2)”.

Fig. 174: EtherCAT device properties (TwinCAT 2)

TwinCAT 3: the properties of the EtherCAT device can be opened by double click on “Device .. (EtherCAT)”
within the Solution Explorer under “I/O”:

Selecting the Ethernet port
Ethernet ports can only be selected for EtherCAT devices for which the TwinCAT real-time driver is
installed. This has to be done separately for each port. Please refer to the respective installation
page [} 118].

Defining EtherCAT slaves

Further devices can be appended by right-clicking on a device in the configuration tree.

Fig. 175: Appending EtherCAT devices (left: TwinCAT 2; right: TwinCAT 3)

The dialog for selecting a new device opens. Only devices for which ESI files are available are displayed.

Only devices are offered for selection that can be appended to the previously selected device. Therefore the
physical layer available for this port is also displayed (Fig. “Selection dialog for new EtherCAT device”, A). In
the case of cable-based Fast-Ethernet physical layer with PHY transfer, then also only cable-based devices
are available, as shown in Fig. “Selection dialog for new EtherCAT device”. If the preceding device has
several free ports (e.g. EK1122 or EK1100), the required port can be selected on the right-hand side (A).

Overview of physical layer

• “Ethernet”: cable-based 100BASE-TX: EK couplers, EP boxes, devices with RJ45/M8/M12 connector

Setup in the TwinCAT System Manager

EtherCAT 131Version: 5.6

• “E-Bus”: LVDS “terminal bus”, “EJ-module”: EL/ES terminals, various modular modules

The search field facilitates finding specific devices (since TwinCAT 2.11 or TwinCAT 3).

Fig. 176: Selection dialog for new EtherCAT device

By default only the name/device type is used as selection criterion. For selecting a specific revision of the
device the revision can be displayed as “Extended Information”.

Fig. 177: Display of device revision

In many cases several device revisions were created for historic or functional reasons, e.g. through
technological advancement. For simplification purposes (see Fig. “Selection dialog for new EtherCAT
device”) only the last (i.e. highest) revision and therefore the latest state of production is displayed in the
selection dialog for Beckhoff devices. To show all device revisions available in the system as ESI
descriptions tick the “Show Hidden Devices” check box, see Fig. “Display of previous revisions”.

Setup in the TwinCAT System Manager

EtherCAT132 Version: 5.6

Fig. 178: Display of previous revisions

Device selection based on revision, compatibility
The ESI description also defines the process image, the communication type between master and
slave/device and the device functions, if applicable. The physical device (firmware, if available) has
to support the communication queries/settings of the master. This is backward compatible, i.e.
newer devices (higher revision) should be supported if the EtherCAT master addresses them as an
older revision. The following compatibility rule of thumb is to be assumed for Beckhoff EtherCAT
Terminals/ Boxes/ EJ-modules:
device revision in the system >= device revision in the configuration
This also enables subsequent replacement of devices without changing the configuration (different
specifications are possible for drives).

Example

If an EL2521-0025-1018 is specified in the configuration, an EL2521-0025-1018 or higher (-1019, -1020) can
be used in practice.

Fig. 179: Name/revision of the terminal

If current ESI descriptions are available in the TwinCAT system, the last revision offered in the selection
dialog matches the Beckhoff state of production. It is recommended to use the last device revision when
creating a new configuration, if current Beckhoff devices are used in the real application. Older revisions
should only be used if older devices from stock are to be used in the application.

In this case the process image of the device is shown in the configuration tree and can be parameterized as
follows: linking with the task, CoE/DC settings, plug-in definition, startup settings, ...

Setup in the TwinCAT System Manager

EtherCAT 133Version: 5.6

Fig. 180: EtherCAT terminal in the TwinCAT tree (left: TwinCAT 2; right: TwinCAT 3)

Setup in the TwinCAT System Manager

EtherCAT134 Version: 5.6

3.6.6 ONLINE configuration creation

Detecting/scanning of the EtherCAT device

The online device search can be used if the TwinCAT system is in CONFIG mode. This can be indicated by
a symbol right below in the information bar:

• on TwinCAT 2 by a blue display “Config Mode” within the System Manager window: .

• on TwinCAT 3 within the user interface of the development environment by a symbol .

TwinCAT can be set into this mode:

• TwinCAT 2: by selection of in the Menubar or by “Actions” → “Set/Reset TwinCAT to Config
Mode…”

• TwinCAT 3: by selection of in the Menubar or by “TwinCAT” → “Restart TwinCAT (Config Mode)”

Online scanning in Config mode
The online search is not available in RUN mode (production operation). Note the differentiation be-
tween TwinCAT programming system and TwinCAT target system.

The TwinCAT 2 icon () or TwinCAT 3 icon () within the Windows-Taskbar always shows the
TwinCAT mode of the local IPC. Compared to that, the System Manager window of TwinCAT 2 or the user
interface of TwinCAT 3 indicates the state of the target system.

Fig. 181: Differentiation local/target system (left: TwinCAT 2; right: TwinCAT 3)

Right-clicking on “I/O Devices” in the configuration tree opens the search dialog.

Fig. 182: Scan Devices (left: TwinCAT 2; right: TwinCAT 3)

This scan mode attempts to find not only EtherCAT devices (or Ethernet ports that are usable as such), but
also NOVRAM, fieldbus cards, SMB etc. However, not all devices can be found automatically.

Fig. 183: Note for automatic device scan (left: TwinCAT 2; right: TwinCAT 3)

Setup in the TwinCAT System Manager

EtherCAT 135Version: 5.6

Ethernet ports with installed TwinCAT real-time driver are shown as “RT Ethernet” devices. An EtherCAT
frame is sent to these ports for testing purposes. If the scan agent detects from the response that an
EtherCAT slave is connected, the port is immediately shown as an “EtherCAT Device” .

Fig. 184: Detected Ethernet devices

Via respective checkboxes devices can be selected (as illustrated in Fig. “Detected Ethernet devices” e.g.
Device 3 and Device 4 were chosen). After confirmation with “OK” a device scan is suggested for all selected
devices, see Fig.: “Scan query after automatic creation of an EtherCAT device”.

Selecting the Ethernet port
Ethernet ports can only be selected for EtherCAT devices for which the TwinCAT real-time driver is
installed. This has to be done separately for each port. Please refer to the respective installation
page [} 118].

Detecting/Scanning the EtherCAT devices

Online scan functionality
During a scan the master queries the identity information of the EtherCAT slaves from the slave
EEPROM. The name and revision are used for determining the type. The respective devices are lo-
cated in the stored ESI data and integrated in the configuration tree in the default state defined
there.

Fig. 185: Example default state

NOTE
Slave scanning in practice in series machine production
The scanning function should be used with care. It is a practical and fast tool for creating an initial configu-
ration as a basis for commissioning. In series machine production or reproduction of the plant, however, the
function should no longer be used for the creation of the configuration, but if necessary for comparison
[} 139] with the defined initial configuration.Background: since Beckhoff occasionally increases the revision
version of the delivered products for product maintenance reasons, a configuration can be created by such
a scan which (with an identical machine construction) is identical according to the device list; however, the
respective device revision may differ from the initial configuration.

Example:

Company A builds the prototype of a machine B, which is to be produced in series later on. To do this the
prototype is built, a scan of the IO devices is performed in TwinCAT and the initial configuration “B.tsm” is
created. The EL2521-0025 EtherCAT terminal with the revision 1018 is located somewhere. It is thus built
into the TwinCAT configuration in this way:

Setup in the TwinCAT System Manager

EtherCAT136 Version: 5.6

Fig. 186: Installing EthetCAT terminal with revision -1018

Likewise, during the prototype test phase, the functions and properties of this terminal are tested by the
programmers/commissioning engineers and used if necessary, i.e. addressed from the PLC “B.pro” or the
NC. (the same applies correspondingly to the TwinCAT 3 solution files).

The prototype development is now completed and series production of machine B starts, for which Beckhoff
continues to supply the EL2521-0025-0018. If the commissioning engineers of the series machine production
department always carry out a scan, a B configuration with the identical contents results again for each
machine. Likewise, A might create spare parts stores worldwide for the coming series-produced machines
with EL2521-0025-1018 terminals.

After some time Beckhoff extends the EL2521-0025 by a new feature C. Therefore the FW is changed,
outwardly recognizable by a higher FW version and a new revision -1019. Nevertheless the new device
naturally supports functions and interfaces of the predecessor version(s); an adaptation of “B.tsm” or even
“B.pro” is therefore unnecessary. The series-produced machines can continue to be built with “B.tsm” and
“B.pro”; it makes sense to perform a comparative scan [} 139] against the initial configuration “B.tsm” in order
to check the built machine.

However, if the series machine production department now doesn’t use “B.tsm”, but instead carries out a
scan to create the productive configuration, the revision -1019 is automatically detected and built into the
configuration:

Fig. 187: Detection of EtherCAT terminal with revision -1019

This is usually not noticed by the commissioning engineers. TwinCAT cannot signal anything either, since
virtually a new configuration is created. According to the compatibility rule, however, this means that no
EL2521-0025-1018 should be built into this machine as a spare part (even if this nevertheless works in the
vast majority of cases).

In addition, it could be the case that, due to the development accompanying production in company A, the
new feature C of the EL2521-0025-1019 (for example, an improved analog filter or an additional process
data for the diagnosis) is discovered and used without in-house consultation. The previous stock of spare
part devices are then no longer to be used for the new configuration “B2.tsm” created in this way. Þ if series
machine production is established, the scan should only be performed for informative purposes for
comparison with a defined initial configuration. Changes are to be made with care!

If an EtherCAT device was created in the configuration (manually or through a scan), the I/O field can be
scanned for devices/slaves.

Fig. 188: Scan query after automatic creation of an EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

Setup in the TwinCAT System Manager

EtherCAT 137Version: 5.6

Fig. 189: Manual triggering of a device scan on a specified EtherCAT device (left: TwinCAT 2; right:
TwinCAT 3)

In the System Manager (TwinCAT 2) or the User Interface (TwinCAT 3) the scan process can be monitored
via the progress bar at the bottom in the status bar.

Fig. 190: Scan progressexemplary by TwinCAT 2

The configuration is established and can then be switched to online state (OPERATIONAL).

Fig. 191: Config/FreeRun query (left: TwinCAT 2; right: TwinCAT 3)

In Config/FreeRun mode the System Manager display alternates between blue and red, and the EtherCAT
device continues to operate with the idling cycle time of 4 ms (default setting), even without active task (NC,
PLC).

Fig. 192: Displaying of “Free Run” and “Config Mode” toggling right below in the status bar

Fig. 193: TwinCAT can also be switched to this state by using a button (left: TwinCAT 2; right: TwinCAT 3)

The EtherCAT system should then be in a functional cyclic state, as shown in Fig. Online display example.

Setup in the TwinCAT System Manager

EtherCAT138 Version: 5.6

Fig. 194: Online display example

Please note:

• all slaves should be in OP state
• the EtherCAT master should be in “Actual State” OP
• “frames/sec” should match the cycle time taking into account the sent number of frames
• no excessive “LostFrames” or CRC errors should occur

The configuration is now complete. It can be modified as described under manual procedure [} 129].

Troubleshooting

Various effects may occur during scanning.

• An unknown device is detected, i.e. an EtherCAT slave for which no ESI XML description is available.
In this case the System Manager offers to read any ESI that may be stored in the device. This case is
described in the chapter “Notes regarding ESI device description”.

• Device are not detected properly
Possible reasons include:

◦ faulty data links, resulting in data loss during the scan
◦ slave has invalid device description

The connections and devices should be checked in a targeted manner, e.g. via the emergency
scan.
Then re-run the scan.

Fig. 195: Faulty identification

In the System Manager such devices may be set up as EK0000 or unknown devices. Operation is not
possible or meaningful.

Setup in the TwinCAT System Manager

EtherCAT 139Version: 5.6

Scan over existing Configuration

NOTE
Change of the configuration after comparison
With this scan (TwinCAT 2.11 or 3.1) only the device properties vendor (manufacturer), device name and
revision are compared at present! A “ChangeTo” or “Copy” should only be carried out with care, taking into
consideration the Beckhoff IO compatibility rule (see above). The device configuration is then replaced by
the revision found; this can affect the supported process data and functions.

If a scan is initiated for an existing configuration, the actual I/O environment may match the configuration
exactly or it may differ. This enables the configuration to be compared.

Fig. 196: Identical configuration (left: TwinCAT 2; right: TwinCAT 3)

If differences are detected, they are shown in the correction dialog, so that the user can modify the
configuration as required.

Fig. 197: Correction dialog

It is advisable to tick the “Extended Information” check box to reveal differences in the revision.

Setup in the TwinCAT System Manager

EtherCAT140 Version: 5.6

Color Explanation
green This EtherCAT slave matches the entry on the other side. Both type and revision match.
blue This EtherCAT slave is present on the other side, but in a different revision. This other revision can

have other default values for the process data as well as other/additional functions.
If the found revision is higher than the configured revision, the slave may be used provided
compatibility issues are taken into account.
If the found revision is lower than the configured revision, it is likely that the slave cannot be used.
The found device may not support all functions that the master expects based on the higher
revision number.

light
blue

This EtherCAT slave is ignored (“Ignore” button)

red • This EtherCAT slave is not present on the other side.
• It is present, but in a different revision, which also differs in its properties from the one specified.

The compatibility principle then also applies here: if the found revision is higher than the
configured revision, use is possible provided compatibility issues are taken into account, since
the successor devices should support the functions of the predecessor devices.
If the found revision is lower than the configured revision, it is likely that the slave cannot be
used. The found device may not support all functions that the master expects based on the
higher revision number.

Device selection based on revision, compatibility
The ESI description also defines the process image, the communication type between master and
slave/device and the device functions, if applicable. The physical device (firmware, if available) has
to support the communication queries/settings of the master. This is backward compatible, i.e.
newer devices (higher revision) should be supported if the EtherCAT master addresses them as an
older revision. The following compatibility rule of thumb is to be assumed for Beckhoff EtherCAT
Terminals/ Boxes/ EJ-modules:
device revision in the system >= device revision in the configuration
This also enables subsequent replacement of devices without changing the configuration (different
specifications are possible for drives).

Example

If an EL2521-0025-1018 is specified in the configuration, an EL2521-0025-1018 or higher (-1019, -1020) can
be used in practice.

Fig. 198: Name/revision of the terminal

If current ESI descriptions are available in the TwinCAT system, the last revision offered in the selection
dialog matches the Beckhoff state of production. It is recommended to use the last device revision when
creating a new configuration, if current Beckhoff devices are used in the real application. Older revisions
should only be used if older devices from stock are to be used in the application.

In this case the process image of the device is shown in the configuration tree and can be parameterized as
follows: linking with the task, CoE/DC settings, plug-in definition, startup settings, ...

Setup in the TwinCAT System Manager

EtherCAT 141Version: 5.6

Fig. 199: Correction dialog with modifications

Once all modifications have been saved or accepted, click “OK” to transfer them to the real *.tsm
configuration.

Change to Compatible Type

TwinCAT offers a function Change to Compatible Type… for the exchange of a device whilst retaining the
links in the task.

Fig. 200: Dialog “Change to Compatible Type…” (left: TwinCAT 2; right: TwinCAT 3)

The following elements in the ESI of an EtherCAT device are compared by TwinCAT and assumed to be the
same in order to decide whether a device is indicated as "compatible":

- Physics (e.g. RJ45, Ebus...)

- FMMU (additional ones are allowed)

- SyncManager (SM, additional ones are allowed)

- EoE (attributes MAC, IP)

- CoE (attributes SdoInfo, PdoAssign, PdoConfig, PdoUpload, CompleteAccess)

- FoE

- PDO (process data: Sequence, SyncUnit SU, SyncManager SM, EntryCount, Ent-ry.Datatype)

This function is preferably to be used on AX5000 devices.

Change to Alternative Type

The TwinCAT System Manager offers a function for the exchange of a device: Change to Alternative Type

Setup in the TwinCAT System Manager

EtherCAT142 Version: 5.6

Fig. 201: TwinCAT 2 Dialog Change to Alternative Type

If called, the System Manager searches in the procured device ESI (in this example: EL1202-0000) for
details of compatible devices contained there. The configuration is changed and the ESI-EEPROM is
overwritten at the same time – therefore this process is possible only in the online state (ConfigMode).

3.6.7 Standard behavior of the EtherCAT master

3.6.7.1 General

For simple and fast commissioning TwinCAT supports the user with suitable default settings and
automatisms. In most cases these settings are adequate for stable system operation.
The settings, their effects and setting options are described below to facilitate customer specified handling or
special behavior. The following topics will be discussed:

• process data information
• EtherCAT master settings
• slave settings
• Sync Task
• distributed clock settings
• EoE

Check the following elements for regular and proper operation of the EtherCAT system:

Setup in the TwinCAT System Manager

EtherCAT 143Version: 5.6

Element Control options - online/commis-
sioning engineer

Control options – application

TwinCAT on target system in RUN
state (or CONFIG/FREERUN)

TwinCAT icon on target system
(not programming system!) is green or
blue
System Manager info is green or blue/
flashes red (FreeRun)

Application checks TwinCAT
state via ADS

EtherCAT master in OP state see Fig. Online diagnostics for
EtherCAT device, A

EcMasterState query via ADS
(PLC: block from
TcEtherCAT.lib)
ADS NetId of the EcMaster
known from the device info data
(see Fig. Online diagnostics for
EtherCAT device)

All EtherCAT slaves in OP state see Fig. Online diagnostics for
EtherCAT device, B

EcSlavesState query via ADS
(PLC: block from
TcEtherCAT.lib)

Cyclic telegrams are sent based
on cycle time

see Fig. Online diagnostics for
EtherCAT device, C

Query via ADS

Acyclic telegrams are sent
occasionally

see Fig. Online diagnostics for
EtherCAT device, D

Query via ADS

none or few LostFrames/CRC in
the slaves

see Fig. Online diagnostics for
EtherCAT device, D

Query via ADS

EtherCAT DevState = 0 see Fig. Online diagnostics for
EtherCAT device, E

Link to monitoring task

All slaves WorkingCounter = 0
throughout

see Fig. Online diagnostics for
EtherCAT device, F

Link to monitoring task
or Frm0WcState collect
information from EcMaster
inputs

No conspicuous outputs in the
logger window

 -
(if diagnostics are OK, causes
for logger outputs are
determined by other means)

No cycle time exceedings PLC: integration of
TcUtilities.lib, thus access to
SystemInfo and
SystemTaskInfoArr[] if logged
in

No E-bus current violation see Fig. Online diagnostics for
EtherCAT device, G

 -

Various watchdogs adhered to
(terminal standard 100 ms, FSoE
with confirmation 100 ms)

determined through monitoring
of states

Setup in the TwinCAT System Manager

EtherCAT144 Version: 5.6

Fig. 202: online diagnostics for EtherCAT device

The standard automatisms in the System Manager establish this state as soon as the configuration is
activated and TwinCAT is switched to RUN/CONFIG mode.

3.6.7.2 Default settings and information

Process data information

Fig. 203: Process data

The EtherCAT master features info data which provide up-to-date cycle diagnostics (yellow variables) and
general information outside the real-time context (green variables). The main parameters are described
below:

• DevState: target = 0; all slaves are then in OP state, with no link errors etc.

Setup in the TwinCAT System Manager

EtherCAT 145Version: 5.6

• Frm0WcState: should also be 0. Such a variable (Frm0WcState, Frm1WcState, ...) is created for each
cyclic Ethernet frame
As a minimum, an application should check and monitor these two master inputs during each cycle.

• AmsNetId: the application (PLC, external task) requires this AMS address for addressing the
EtherCAT master or the subordinate slaves via ADS.

Further options are available via Advanced Settings:

Master settings

Fig. 204: Master settings

Setup in the TwinCAT System Manager

EtherCAT146 Version: 5.6

Element Detail Explanation Effects
StartUp
State

As soon as TwinCAT is “started” (RUN or Config/
FreeRun), the master assumes the state selected here.
The transition to OP only takes place once the Sync
Task has started.
If several tasks run on a system, the Sync Task which
includes the distributed control has the highest priority.
DC-capable slaves cannot be switched to OP if their lo-
cal clock is not adjusted properly, or they may come
out of OP state again if the control does not succeed
(“Sync lost”).

It is recommended to set and monitor the EcMas-
ter state from the application (PLC, as available),
(FB_EcGet/SetMasterState from TcEther-
CAT.lib).
This enables the master to assume OP even af-
ter serious communication errors.

Run-Time
behavior

Log Topology
Changes

Activated by default
Online outputs in the logger window are activated

Deactivation not sensible

Log CRC
counters

Activated by default. In OnlineView the CRC errors of
the slaves are read from the field and accumulated.

If the CRC register counters in the slaves are to
be displayed in the online view, this option is to
be deactivated – i.e. it clears the local x0300ff
registers once they have been read in order to
prevent overflow at xFF.

Log error
counters

no function

ReInit after
communica-
tion error

After a communication error during which the master
has left the OP state (connection disconnected and lost
frames for more than 10 cycles, stations switched off)
TwinCAT tries to switch the master back to OP state.

If the EcMaster state is controlled from the appli-
cation it is essential to disable this option, since
otherwise both mechanisms may hinder each
other.
Both access the master via ADS.

Show input
toggle infor-
mation

If activated, an additional toggle variable is displayed
for input terminals, which can be linked. It changes its
state 0/1 whenever a new datagram is received.

Info data The display of these (green) non-real-time information
data in the System Manager tree can be deactivated
here.

DeviceId: useful for access from the application
AdsNetId: required for access from the applica-
tion
CfgSlaveCount: number of changes in the config-
uration so far
Dc time offsets: the offsets between external, in-
ternal and TwinCAT clock (which are constant at
runtime) are displayed. Required for external
EtherCAT synchronization.

E-bus power
warning

By default the System Manager issues a warning of the
maximum load of an EtherCAT coupler (e.g. EK1100)
is about to be exceeded.

Setup in the TwinCAT System Manager

EtherCAT 147Version: 5.6

Slave settings

Fig. 205: Slave settings

Setup in the TwinCAT System Manager

EtherCAT148 Version: 5.6

Element Detail Explanation Effects
StartUp
checking

During EtherCAT startup the properties of all slaves activated
here are checked. However corresponding slave settings have
priority!

By default the VendorID and ProductCode
(e.g. El2521-0010) are checked. This is
recommended, because it enables de-
vices of the same type but with higher re-
vision number to be used as replacement
devices.

State ma-
chine

Auto restore
states

If the slave has left the OP for inherent reasons (loss of power,
synchronization error), the EtherCAT master tries to put the
slave back to OP state or to the last regularly reached state, if
the checkbox is activated.

It is recommended to set and monitor the
slave state from the application (PLC, if
available, FB_EcGet/SetMasterState from
TcEtherCAT.lib).
This enables the application to control the
slave in accordance with the application-
specific requirements.
Example (servo axis): the EtherCAT mas-
ter would switch the axis back to OP state
as soon as possible, without deeper
knowledge of the safety or functional con-
text. On the contrary, the application can
decide whether and when the axis should
be switched back to OP state after the se-
rious “Failure State” error.
Besides, a DeadLock can occur: If the
master resets the slave to OP but only
reaches SAFEOP before another fault oc-
curs, the master will then only try to put
the slave to SAFEOP. OP state can no
longer be reached.
It is therefore advisable to control the
master and slave state through the appli-
cation.

ReInit after
Comm.Error

If the communication to a slave was interrupted, the master will
restart the slave via the INIT state once the connection has been
restored, even if the slave had only returned to the SAFEOP
state. Thus ensures proper startup and an explicit state of the
slave.

If a slave is restarted from INIT --> OP,
the outputs are usually disconnected.

Log commu-
nication
changes

Activated by default. State changes are displayed if the option
“Show Change Counter” is activated in online view.

Deactivation not sensible

Info data The display of these (green) non-real-time information data in
the System Manager tree can be (de)activated here.

Showing the ADS address in each slave
is useful for linking with a slave-specific
FUNCTIONBLOCK that will monitor a
slave, for example.

Enhanced
link detec-
tion

This function is not intended for the general use. Using this function on EtherCAT devices
that do not support it can lead to substan-
tial and irreversible faults in the EtherCAT
communication.
In devices that support this function it is
already activated through the ESI installed
during production.

Setup in the TwinCAT System Manager

EtherCAT 149Version: 5.6

Sync Task

Fig. 206: Sync Task

Element Explanation
Max Sync Task TwinCAT 2.10/2.11 supports up to 4 SyncTasks. A SyncTask is a task (PLC, NC)

that triggers an I/O update, i.e. with its own EtherCAT frames it communicates with
the I/O field using cyclic communication and a fixed cycle time. Fig. Sync Task
shows the configuration for 3 active tasks in with cycle times of 2, 3 and 4 ms. Make
sure the task prioritization order is correct.
If the configuration comprises more than 4 tasks, the tasks with the larger cycle
times are set to the slowest task.
Hint: This can be useful in cases where a very slow PLC task (> 100 ms) is to be
used but the I/O communication has to be faster due to the slave watchdog. In this
case the number of “Max Sync Task” should be reduced until only tasks <100 ms
remain.

MTU The “Max Transfer Unit” (MTU) is the maximum byte length of an Ethernet frame
with EtherCAT datagrams.

Frame repeat count The TwinCAT EtherCAT master supports multiple sending of EtherCAT frames for
the purpose of enhanced interference immunity.
ATTENTION: the used and affected EtherCAT slaves must support this functionality.
The slave manufacturer specifies this in the ESI description.

Setup in the TwinCAT System Manager

EtherCAT150 Version: 5.6

Distributed Clocks

Fig. 207: Distributed Clocks

These settings are discussed in a separate section [} 154].

EoE support (Ethernet over EtherCAT)

Fig. 208: Ethernet over EtherCAT support

Setup in the TwinCAT System Manager

EtherCAT 151Version: 5.6

Element Detail Explanation Effects
Virtual
Ethernet
switch

The forwarding of standard TCP/IP traffic
via the virtual switch within the TwinCAT
EtherCAT system, is automatically set
depending on the slaves used. EL6601
devices (SwitchPort terminals) e.g. result
in activation of the VirtualEthernetSwitch
and adding of ports.
(see Fig. "Activating the
VirtualEthernetSwitch")
For further information please refer to the
respective terminal documentations
(EL6601, EL6614).

Explicit activation and specification of ports is
required for communication with an intelligent
drive via EoE for the purpose of
parameterization or firmware updates. In this
case a port must be created for each
connected device.
The number of “Max.Frames” represents the
internal queue and can be increased in the
event of throughput problems. However, in
this case the EtherCAT cycle time and the
mailbox-sizes should be checked first.
See also EL6601 documentation.

Fig. 209: Activating the VirtualEthernetSwitch

Element Detail Explanation Effects
Windows
Network

IP
Routin
g

See diagram above.

EtherCAT
mailbox
gateway

This setting is required for special
slaves.

Setup in the TwinCAT System Manager

EtherCAT152 Version: 5.6

Cable redundancy

Fig. 210: EtherCAT cable redundancy

The options for media redundancy are described in a separate Cable Redundancy section [} 29]. A TwinCAT
Supplement license is required.

If an Ethernet port is entered here (installation real-time-driver see here), the configuration cannot assume
RUN state without a license.

Setup in the TwinCAT System Manager

EtherCAT 153Version: 5.6

Sync Unit assignment

Fig. 211: Sync Unit assignment

The Sync Unit assignment only applies to the cyclic data of the EtherCAT system.

By default the System Manager implements a very efficient assignment of cyclic I/O data and sent
datagrams. This means as many as possible/all cyclic data are packed in a single/a few datagrams, resulting
in low bus load thanks to low telegram overhead. With only a few, in the best case a single datagram as
many as possible, in the best case all slaves can be addressed.

The working counter is a diagnostic tool in the EtherCAT system. Each slave that is tasked to process a
datagram (writing or reading of data) increases the WorkingCounter (WC). The master sends the datagrams
with WC=0 and expects them back with WC>0. By checking the WC the master can immediately detect
whether all controlled slaves have processed the datagram correctly. If this is not the case, the master
cannot trust the returned data and discards all input data from this datagram. In addition, it commences
acyclic diagnostic measures to determine the fault location.

If working counter errors are expected in a system, e.g. because the flexible “HotConnect” topology concept
is used, this dialog can be used to allocate coupler modules or individual slaves/terminals to special
datagrams, the so-called. SyncUnits. In extreme cases each slaves is allocated a separate datagram,
resulting in very inefficient bus utilization since many datagrams and Ethernet frames have to be sent with
associated overhead. Note: an Ethernet frame may contain up to 16 EtherCAT datagrams.

Setup in the TwinCAT System Manager

EtherCAT154 Version: 5.6

3.7 Notes on distributed clocks

3.7.1 EtherCAT Distributed Clocks - default settings

General

The distributed clock technology in the EtherCAT system enables synchronized operation of local clocks in
all EtherCAT devices (master and slaves). If an EtherCAT slave supports distributed clocks (DC), its ESC
(EtherCAT slave controller) contains a hardware-based clock (usually 64 bit, in rarer cases 32 bit) with a
resolution of 1 bit = 1 ns. These local clocks can be used for synchronous outputs or data acquisition (e.g. of
analog value inputs). An EtherCAT slave may support DC, but does not have to. Mixed operation in the
EtherCAT system is possible, so long as the EtherCAT master supports DC.

One device is the reference clock, all other DC-capable devices are continuously synchronized with an
accuracy of generally less than 100 ns. The synchronization process and the method of communication of
EtherCAT dictate that the first DC-capable slave in the system represents the reference clock ("M" in Fig.
Topology of the EtherCAT system with DC-capable devices). Via a special telegram the subsequent slaves
cyclically receive information about the state of the reference clock and readjust themselves based on this
time.

Data from the readjustment process provide important diagnostic information about the state of the
distributed clock system.

Fig. 212: topology of the EtherCAT system with DC-capable devices

The TwinCAT EtherCAT master deals with the basic topology-dependent calculations, the adjustment during
EtherCAT startup and the continuous synchronization. The corresponding settings are specified in the
System Manager configurator dialogs.

Additional notes and more detailed information about the distributed clocks system can be found in the
respective sections [} 234].

Distributed clocks in operation
The distributed clock system is synchronized when EtherCAT starts up during the transition from
PREOP to OP. The slaves are set to OP state. In DC-capable slaves proper synchronization in OP
state is usually important. Otherwise the slaves automatically return to PREOP state. TwinCAT 2.11
can synchronize such devices and switch them to OP.

Default settings for the EtherCAT master

Effectiveness of modifications
The distributed clock system is analyzed and calculated when EtherCAT starts up. Changes in the
settings of this system therefore always require activation of the modified configuration and an
EtherCAT restart.

Setup in the TwinCAT System Manager

EtherCAT 155Version: 5.6

By default the distributed clocks system (DC) is calculated such that the usual I/O configurations can run in a
stable manner. Nevertheless, it may be advisable to adjust the settings during machine commissioning using
the diagnostic tools provided.

Fig. 213: distributed clock master settings

By default is “Automatic DC mode selection” is active. “DC in use” should only be selected for explicit
modifications of the automatic configuration.

Setup in the TwinCAT System Manager

EtherCAT156 Version: 5.6

Element Detail Explanation Effects
DC mode Automatic

DC mode
selection

Default setting, automatic selection of the
ReferenceClock

DC in use The ReferenceClock (see next paragraph)
and the synchronization direction (see section
“Coupling of EtherCAT [} 161]”) can be
selected manually.
If only one EtherCAT device is available in
the configuration and DC slaves are used,
“Independent DC Time” should be selected
(exception: external synchronization [} 279]).

Take care when changing these
settings! The stability of the whole
system may be impaired.

Settings Continuo
us
Runtime
Measurin
g

Cyclic measurement of the intervals between
the devices during runtime.
This process also takes places for EtherCAT.

For new applications under TwinCAT
2.11 it is advisable to deactivate this
function

Sync
Window
monitorin
g

If activated, EtherCAT DevState shows in bit
12 whether all DC devices are maintaining
their local clocks within the specified window
(see Fig. DevState with SyncWindow
monitoring display). A cyclic BRD command
on x092C (system time difference) is used for
this.
The information is only usable if the first
EtherCAT device also contains the
ReferenceClock clock.

Show DC
system
time (64-
bit)

If activated, the current DC time is displayed
in the inputs of the EtherCAT master as a
copy from the master clock. Since the read
out process is subject to the fieldbus
transport, preference should be given to the
PLC blocks in order to obtain the current DC
system time.
(see Fig. "DcSysTime" display in the
TwinCAT tree")

Fig. 214: "DcSysTime" display in the TwinCAT tree

Element Detail Explanation Effects
SYNC
shift time

The automatically calculated shift times for
inputs and outputs are shown (grey fields). In
additional the local slave shift events slave
can be offset through manual entries.
Further information can be found in the
general distributed clock section [} 234].

The results from the DC diagnostics
should be reported here, if applicable.
In the event of synchronization
problems, for the outputs +10–20 % of
the cycle time, for inputs -10–20 % of
the cycle time can be entered here as
reference value (unit: µs).
Values >100 % of the cycle time are
not meaningful.

Setup in the TwinCAT System Manager

EtherCAT 157Version: 5.6

Fig. 215: DevState with SyncWindow display monitoring

Reference Clock selection

Manual selection of the reference clock for this EtherCAT system is only required in exceptional
circumstances and should be done with caution. TwinCAT generally selects the correct DC-supporting slave,
i.e. the first one.

Fig. 216: Manual selection of the reference clock

If a different slave is selected manually

• this one must either support DC explicitly (DC tab is shown in the slave):

Fig. 217: Distributed Clocks tab (DC)

• or must be manually marked with

Fig. 218: checkbox for manual selection

in the advanced slave settings.

Setup in the TwinCAT System Manager

EtherCAT158 Version: 5.6

Potential reference clock
If a slave without the required hardware support is marked as “potential Reference Clock”, the
EtherCAT system has no reference clock after startup. The slaves will not switch to OP state and
report PREOP_ERR. From version 2.11R2 build 2032, TwinCAT checks during each startup
whether the selected reference clock also supports this function. The following logger message ap-
pears: "slave xx is reference clock device, but does not support dc!" (see Fig. "Event logger mes-
sage: no support by reference clock")
In logger window TwinCAT 2.11R2 (from build 2028) will issue a message “DC not synchronized”, if
a slave cannot be switched from PREOP to OP state because it is not synchronized. (see Fig.
"Event logger message: no synchronization")

Fig. 219: Event logger message: no support by reference clock

Fig. 220: Event logger message: no synchronization

Default settings for EtherCAT slaves

The distributed clocks settings can be found in the advanced settings of the EtherCAT slave.

If the slave is intended by the manufacturer for DC operation, it includes such an operation mode; see Fig.
Default slave setting – slave with and without DC capability below. Selection of this operation mode activates
the integration of the slave into the synchronization mechanism on the master side.

Setup in the TwinCAT System Manager

EtherCAT 159Version: 5.6

Fig. 221: Default slave setting – slave with and without DC capability

Setup in the TwinCAT System Manager

EtherCAT160 Version: 5.6

Distributed clock activation
If the settings “Enable” and “Use as potential Reference Clock” are activated for devices that do not
support this functionality, the system may malfunction.
The function must be enabled by the device manufacturer.

Slave shift time settings
As in the master settings for all slaves, the SYNC times can be offset separately in the individual
DC slaves.
Not the general instructions [} 249].

Checking for DC support

EtherCAT slaves with DC function are

• loaded with the DC configuration during the transition from SAFEOP to PREOP.
• synchronized during the transition from SAFEOP to OP.

If problems occur in the individual phases as a result of incorrect configuration, the target states are not
reached and the logger window of the System Manager shows associated information (e.g. “DC invalid sync
cfg”)

Fig. 222: logger window showing information relating to invalid DC configuration of the slave

To check whether and to what extent a device supports distributed clocks, the local clock registers can be
displayed online. In the online display call up the Properties dialog by right-clicking in the free space.

Fig. 223: display of additional register values from the slaves

In this case select the 4 registers 0x0910 to 0x0916. The local DC clock runs in these 2-byte registers. Like
certain other slave registers, the System Manager can read these cyclically online.

Fig. 224: DC register selection

The register values are displayed and automatically updated by the System Manager.

Setup in the TwinCAT System Manager

EtherCAT 161Version: 5.6

Fig. 225: display of DC register values

The following can be seen in Fig. Display of DC register values

• slaves with 64-bit DC support (highlighted in green here)
• slaves without DC support (highlighted in red here)
• slaves with 32-bit DC support (highlighted in yellow here)

32 bits cover approx. 4.2 seconds. This is adequate for synchronization of the DC system. Information
for working with 32/64 bit times in the PLC can be found in the corresponding section [} 258].

Up-to-dateness of the online display
The System Manager reads and displays the values without claim of real-time and consistency.
They have informative character and can provide an initial overview. The reading process takes up
capacity in the acyclic EtherCAT communication, potentially at the expense of other applications
Not all slave ESC register values can be read by the System Manager/EtherCAT master.

3.7.2 EtherCAT Distributed Clocks - coupling of EtherCAT
systems

An EtherCAT system with distributed clock functionality has the following properties:

• the controller/IPC uses one Ethernet port
Note: for cable redundancy two Ethernet ports are used. However, the combination of distributed
clocks (DC) and cable redundancy is only possible with device CU2508, see associated device
documentation.

• up to 65,535 slaves are cyclically/acyclically supplied with process data at this port by a real-time
EtherCAT master.

• the first DC-capable EtherCAT slave in the system represents the reference clock (Fig. Distributed
clocks system topology: "M"), to which all subsequent slaves are synchronized (Fig. Distributed clocks
system topology: "S")

• in order to keep the real-time synchronous with the DC environment, the internal TwinCAT real-time
clock is also synchronized with this field ReferenceClock.

A TwinCAT controller can therefore contain only one reference clock, which synchronizes the TwinCAT real-
time. All other EtherCAT systems must adjust themselves and their local ReferenceClocks accordingly. All
EtherCAT systems nevertheless retain their local ReferenceClocks in first DC EtherCAT slave. This should
be taken into account in the following settings.

Setup in the TwinCAT System Manager

EtherCAT162 Version: 5.6

Fig. 226: distributed clocks system topology

The synchronization direction can be set in the advanced settings of the EtherCAT master.

Fig. 227: synchronization direction

If more than one EtherCAT system is used in a TwinCAT control system, i.e. if the I/O configuration contains
more than one “EtherCAT device” and some or all of these use distributed clocks functions, proceed as
follows:

• in the DC settings set one system to “Independent mode”.
In this system a ReferenceClock sits in a slave and synchronizes all other slaves in this system. The
TwinCAT real-time of this clock is also synchronized based on frequency.

• all other DC systems should be set to "Slave Mode".
These systems also contain the local ReferenceClocks for synchronizing the subsequent devices.
However, during the EtherCAT startup and subsequently this ReferenceClock is itself synchronized
based on the TwinCAT time and is referred to as "tracking reference clock".

Setup in the TwinCAT System Manager

EtherCAT 163Version: 5.6

Fig. 228: DC-coupling of EtherCAT systems

Notes

- This kind of DC-coupling is only possible from TwinCAT 2.11
- Only EtherCAT slaves without inherent intelligence/firmware should be used as "tracking reference
clock". Such slaves are characterized by the lack of CoE/SoE or process data.
Simple digital input/output terminals (EL1202-0100, EL2202-0100) or couplers (EK1100) are suit-
able.
WARNING! Only devices that support this functionality should be selected as ReferenceClock. See
notes in section “DC standard settings [} 154]”.

Failure to follow these instructions may have the following effects: DC devices in subordinate sys-
tems do not assume OP state and remain in PREOP state. Devices come out of synchronization
and OP state due to "SyncLost".

Setup in the TwinCAT System Manager

EtherCAT164 Version: 5.6

Tracking accuracy

As can be seen in Fig. DC-coupling of EtherCAT systems, a chain of synchronizations must be executed via
the TwinCAT controller through to the "tracking reference clock". The control accuracy of the EtherCAT
systems among each other that can be achieved in this way is reduced. The user needs to check whether
this approach meets the long-term requirements of the application in terms of control accuracy and stability.

The CU2508 port multiplier is designed for maximum synchronization precision. It supports up to 8
connected EtherCAT systems (or 4 with simultaneous cable redundancy). It also enables the combination of
distributed clock function and cable redundancy. The configuration of the CU2508 is transparent, i.e. the
configuration may still contain independent EtherCAT devices.

For further information please refer to the CU2508 documentation.

Fig. 229: EtherCAT topology with CU2508 and 2 EtherCAT systems

https://www.beckhoff.com/cu2508

EtherCAT diagnostics

EtherCAT 165Version: 5.6

4 EtherCAT diagnostics

4.1 General Notes - EtherCAT Slave Application
This summary briefly deals with a number of aspects of EtherCAT Slave operation under TwinCAT. More
detailed information on this may be found in the corresponding sections of, for instance, the EtherCAT
System Documentation.

Diagnosis in real time: WorkingCounter, EtherCAT State and Status

Generally speaking an EtherCAT Slave provides a variety of diagnostic information that can be used by the
controlling task.

This diagnostic information relates to differing levels of communication. It therefore has a variety of sources,
and is also updated at various times.

Any application that relies on I/O data from a fieldbus being correct and up to date must make diagnostic
access to the corresponding underlying layers. EtherCAT and the TwinCAT System Manager offer
comprehensive diagnostic elements of this kind. Those diagnostic elements that are helpful to the controlling
task for diagnosis that is accurate for the current cycle when in operation (not during commissioning) are
discussed below.

Fig. 230: Selection of the diagnostic information of an EtherCAT Slave

In general, an EtherCAT Slave offers

• communication diagnosis typical for a slave (diagnosis of successful participation in the exchange of
process data, and correct operating mode)
This diagnosis is the same for all slaves.

as well as
• function diagnosis typical for a channel (device-dependent)

See the corresponding device documentation

The colors in Fig. Selection of the diagnostic information of an EtherCAT Slave also correspond to the
variable colors in the System Manager, see Fig. Basic EtherCAT Slave Diagnosis in the PLC.

https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html
https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html

EtherCAT diagnostics

EtherCAT166 Version: 5.6

Colour Meaning
yellow Input variables from the Slave to the EtherCAT Master, updated in every cycle
red Output variables from the Slave to the EtherCAT Master, updated in every cycle
green Information variables for the EtherCAT Master that are updated acyclically. This means that

it is possible that in any particular cycle they do not represent the latest possible status. It is
therefore useful to read such variables through ADS.

Fig. Basic EtherCAT Slave Diagnosis in the PLC shows an example of an implementation of basic EtherCAT
Slave Diagnosis. A Beckhoff EL3102 (2-channel analogue input terminal) is used here, as it offers both the
communication diagnosis typical of a slave and the functional diagnosis that is specific to a channel.
Structures are created as input variables in the PLC, each corresponding to the process image.

Fig. 231: Basic EtherCAT Slave Diagnosis in the PLC

The following aspects are covered here:

EtherCAT diagnostics

EtherCAT 167Version: 5.6

Code Function Implementation Application/evaluation
A The EtherCAT Master's diagnostic infor-

mation
updated acyclically (yellow) or provided
acyclically (green).

At least the DevState is to be evaluated for
the most recent cycle in the PLC.
The EtherCAT Master's diagnostic informa-
tion offers many more possibilities than are
treated in the EtherCAT System Documenta-
tion. A few keywords:

• CoE in the Master for communication
with/through the Slaves

• Functions from TcEtherCAT.lib

• Perform an OnlineScan
B In the example chosen (EL3102) the

EL3102 comprises two analogue input
channels that transmit a single function
status for the most recent cycle.

Status
• the bit significations may be

found in the device
documentation

• other devices may supply
more information, or none
that is typical of a slave

In order for the higher-level PLC task (or cor-
responding control applications) to be able to
rely on correct data, the function status must
be evaluated there. Such information is
therefore provided with the process data for
the most recent cycle.

C For every EtherCAT Slave that has cyclic
process data, the Master displays, using
what is known as a WorkingCounter,
whether the slave is participating success-
fully and without error in the cyclic ex-
change of process data. This important, el-
ementary information is therefore provided
for the most recent cycle in the System
Manager

1. at the EtherCAT Slave, and, with
identical contents

2. as a collective variable at the
EtherCAT Master (see Point A)

for linking.

WcState (Working Counter)
0: valid real-time communication in
the last cycle
1: invalid real-time communication
This may possibly have effects on
the process data of other Slaves
that are located in the same Syn-
cUnit

In order for the higher-level PLC task (or cor-
responding control applications) to be able to
rely on correct data, the communication sta-
tus of the EtherCAT Slave must be evaluated
there. Such information is therefore provided
with the process data for the most recent cy-
cle.

D Diagnostic information of the EtherCAT
Master which, while it is represented at the
slave for linking, is actually determined by
the Master for the Slave concerned and
represented there. This information cannot
be characterized as real-time, because it

• is only rarely/never changed,
except when the system starts up

• is itself determined acyclically (e.g.
EtherCAT Status)

State
current Status (INIT..OP) of the
Slave. The Slave must be in OP
(=8) when operating normally.
AdsAddr

The ADS address is useful for
communicating from the PLC/task
via ADS with the EtherCAT Slave,
e.g. for reading/writing to the CoE.
The AMS-NetID of a slave corre-
sponds to the AMS-NetID of the
EtherCAT Master; communication
with the individual Slave is possible
via the port (= EtherCAT address).

Information variables for the EtherCAT Mas-
ter that are updated acyclically. This means
that it is possible that in any particular cycle
they do not represent the latest possible sta-
tus. It is therefore possible to read such vari-
ables through ADS.

NOTE
Diagnostic information
It is strongly recommended that the diagnostic information made available is evaluated so that the applica-
tion can react accordingly.

CoE Parameter Directory

The CoE parameter directory (CanOpen-over-EtherCAT) is used to manage the set values for the slave
concerned. Changes may, in some circumstances, have to be made here when commissioning a relatively
complex EtherCAT Slave. It can be accessed through the TwinCAT System Manager, see Fig. EL3102, CoE
directory:

EtherCAT diagnostics

EtherCAT168 Version: 5.6

Fig. 232: EL3102, CoE directory

EtherCAT System Documentation
The comprehensive description in the EtherCAT System Documentation (EtherCAT Basics --> CoE
Interface) must be observed!

A few brief extracts:

• Whether changes in the online directory are saved locally in the slave depends on the device. EL
terminals (except the EL66xx) are able to save in this way.

• The user must manage the changes to the StartUp list.

Commissioning aid in the TwinCAT System Manager

Commissioning interfaces are being introduced as part of an ongoing process for EL/EP EtherCAT devices.
These are available in TwinCAT System Managers from TwinCAT 2.11R2 and above. They are integrated
into the System Manager through appropriately extended ESI configuration files.

https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html

EtherCAT diagnostics

EtherCAT 169Version: 5.6

Fig. 233: Example of commissioning aid for a EL3204

This commissioning process simultaneously manages

• CoE Parameter Directory
• DC/FreeRun mode
• the available process data records (PDO)

Although the “Process Data”, “DC”, “Startup” and “CoE-Online” that used to be necessary for this are still
displayed, it is recommended that, if the commissioning aid is used, the automatically generated settings are
not changed by it.

The commissioning tool does not cover every possible application of an EL/EP device. If the available setting
options are not adequate, the user can make the DC, PDO and CoE settings manually, as in the past.

EtherCAT State: automatic default behaviour of the TwinCAT System Manager and manual operation

After the operating power is switched on, an EtherCAT Slave must go through the following statuses

• INIT
• PREOP
• SAFEOP
• OP

to ensure sound operation. The EtherCAT Master directs these statuses in accordance with the initialization
routines that are defined for commissioning the device by the ES/XML and user settings (Distributed Clocks
(DC), PDO, CoE). See also the section on "Principles of Communication, EtherCAT State Machine [} 19]" in
this connection. Depending how much configuration has to be done, and on the overall communication,
booting can take up to a few seconds.

The EtherCAT Master itself must go through these routines when starting, until it has reached at least the
OP target state.

The target state wanted by the user, and which is brought about automatically at start-up by TwinCAT, can
be set in the System Manager. As soon as TwinCAT reaches the status RUN, the TwinCAT EtherCAT
Master will approach the target states.

EtherCAT diagnostics

EtherCAT170 Version: 5.6

Standard setting

The advanced settings of the EtherCAT Master are set as standard:

• EtherCAT Master: OP
• Slaves: OP

This setting applies equally to all Slaves.

Fig. 234: Default behaviour of the System Manager

In addition, the target state of any particular Slave can be set in the “Advanced Settings” dialogue; the
standard setting is again OP.

Fig. 235: Default target state in the Slave

Manual Control

There are particular reasons why it may be appropriate to control the states from the application/task/PLC.
For instance:

EtherCAT diagnostics

EtherCAT 171Version: 5.6

• for diagnostic reasons
• to induce a controlled restart of axes
• because a change in the times involved in starting is desirable

In that case it is appropriate in the PLC application to use the PLC function blocks from the TcEtherCAT.lib,
which is available as standard, and to work through the states in a controlled manner using, for instance,
FB_EcSetMasterState.

It is then useful to put the settings in the EtherCAT Master to INIT for master and slave.

Fig. 236: PLC function blocks

Note regarding E-Bus current

EL/ES terminals are placed on the DIN rail at a coupler on the terminal strand. A Bus Coupler can supply the
EL terminals added to it with the E-bus system voltage of 5 V; a coupler is thereby loadable up to 2 A as a
rule. Information on how much current each EL terminal requires from the E-bus supply is available online
and in the catalogue. If the added terminals require more current than the coupler can supply, then power
feed terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand.

The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager as a
column value. A shortfall is marked by a negative total amount and an exclamation mark; a power feed
terminal is to be placed before such a position.

EtherCAT diagnostics

EtherCAT172 Version: 5.6

Fig. 237: Illegally exceeding the E-Bus current

From TwinCAT 2.11 and above, a warning message “E-Bus Power of Terminal...” is output in the logger
window when such a configuration is activated:

Fig. 238: Warning message for exceeding E-Bus current

NOTE
Caution! Malfunction possible!
The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block!

EtherCAT diagnostics

EtherCAT 173Version: 5.6

4.2 EtherCAT AL Status Codes

4.2.1 Error Code 0x0000

Meaning

No error

Description

No error

Current State (or state change)

Any

Resulting state

Current state

Solution

n/a

4.2.2 Error Code 0x0001

Meaning

Unspecified error

Description

No error code is defined for occurred error

Current State (or state change)

Any

Resulting state

Any + E

Solution

Read user manual or contact device manufacturer

4.2.3 Error Code 0x0002

Meaning

No Memory

Description

Less hardware memory, slave needs more memory.

EtherCAT diagnostics

EtherCAT174 Version: 5.6

Example: For slave configuration, application configuration files are downloaded (possibly via FoE or large
CoE objects). The size of those files exceeds the local memory

Current State (or state change)

Any

Resulting state

Any + E

Solution

Download smaller files or objects.

Check user manual.

4.2.4 Error Code 0x0004

Meaning

Invalid Revision

Description

Output/Input mapping is not valid for this hardware or software revision (0x1018:03)

Current State (or state change)

P→S

Resulting state

P+E

Solution

Change mapping or use different hardware

4.2.5 Error Code 0x0011

Meaning

Invalid requested state change

Description

The EtherCAT State Machine (ESM) defines which state changes are allowed. All other state changes are
not allowed

Example: If the master requests the slave to go from OP (AL Control = 0x08) directly to BOOT (AL Control =
0x03).

Current State (or state change)

P→S, I→O, P→O, O→B, S→B, P→B

EtherCAT diagnostics

EtherCAT 175Version: 5.6

Resulting state

Current State + E

Solution

Go step-by-step from the original state to the desired state.

4.2.6 Error Code 0x0012

Meaning

Unknown requested state change

Description

The ESM defines the following states. They are coded with fixed values (only lower (=right) nibble):

BOOT: AL Control = 0x03

INIT: AL Control = 0x01

PREOP: AL Control = 0x02

SAFEOP: AL Control = 0x04

OP: AL Control = 0x08

The fifth bit of the AL Control (left nibble is 1) is the “Error Acknowledge Bit”. If the slave is in AL STATUS =
0x14, i.e. ERROR SAFEOP the master acknowledges this by setting the Acknowledge bit.

Example: If any other value for AL Control than those specified are sent.

Current State (or state change)

Any

Resulting state

Current State + E

Solution

Do only request the defined states

4.2.7 Error Code 0x0013

Meaning

Boot state not supported

Description

Device does not support BOOT state, but the master requests the slave to go to BOOT (AL Control = 0x03

Current State (or state change)

I→B

EtherCAT diagnostics

EtherCAT176 Version: 5.6

Resulting state

I + E

Solution

n/a

4.2.8 Error Code 0x0014

Meaning

No valid firmware

Description

This error code may be returned after a firmware download, if the downloaded file cannot be used by the
application controller

Current State (or state change)

I→P

Resulting state

I + E

Solution

Download a firmware that can be supported by the hardware and bootloader. Check Product Code and
Revision Number (CoE object 0x1018). If this cannot be read from the firmware any more you may see this
in the network configuration (CoE object dictionary) or probably in the ESI file (element Profile:
ObjectDictionary:Objects:Object).

4.2.9 Error Code 0x0015

Meaning

Invalid mailbox configuration

Description

Mailbox communication (= acyclic parameter exchange) is done via two memory areas on the EtherCAT
Slave Controller (ESC) – the “Output Mailbox” (master -> slave) and the “Input Mailbox” (slave-> master).
Those memory areas are protected by SyncManagers to prevent from simultaneous access from master and
salve controller at the same time. SyncManagers are hardware entities on the ESC. They are configured via
certain registers in the ESC register area (starting at 0x0800). The configuration includes start address,
length, and direction (output or input). If those settings differ from those expected by the host controller of the
slave this error is returned

Current State (or state change)

I→B

Resulting state

n/a

EtherCAT diagnostics

EtherCAT 177Version: 5.6

Solution

Replace previous network description of old slave with the one of the new slave

4.2.10 Error Code 0x0016

Meaning

Invalid mailbox configuration

Description

Example: The slave hardware was replaced while the network configuration remained unchanged. The new
hardware expects different mailbox SyncManager settings

Current State (or state change)

I→S

Resulting state

I + E

Solution

Replace previous network description of old slave with the one of the new slave

4.2.11 Error Code 0x0017

Meaning

Invalid Sync Manager configuration

Description

Process data communication (cyclic communication) is done via extra memory areas on the ESC, separated
for outputs and inputs. The process data length and the process data SyncManager length have to be the
same. If this is not the case or the start address or direction does not match this error is returned.

Example: The process data configuration was changed of the slaves which also changed the length of the
data. The change was not activated in the configuration so that the configuration tool would have
recalculated the SyncManager settings.

Current State (or state change)

P→S, S→O

Resulting state

Current State + E

Solution

Issue a re-calculation of the EtherCAT configuration

EtherCAT diagnostics

EtherCAT178 Version: 5.6

4.2.12 Error Code 0x0018

Meaning

No valid inputs available

Description

The slave application cannot provide valid input values

Example: A certain hardware which needs to be connected to the slave was disconnected

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.2.13 Error Code 0x0019

Meaning

No valid outputs available

Description

The slave application cannot recieve valid output values.

Example: The slave has a RxPdoToggle output or an “Output Valid” information in its process data. The
RxPdoToggle does not toggle or the OutputValid is not true. Therefore the slave has no process data which
the application can use. If supported, check the RxPDO Toggle Failed Counter in object 0x1C3x.0E). Also,
the Synchronization may have problems (see object 0x10F1:SI2 Sync Error Counter Limit) so that process
data are received too late by the slave so that the local slave cycle misses the toggle event. Another reason
can be that the PLC stopped working

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

The RxPdoToggle may need to be handled by the PLC program

The outputs valid may have to be set by the PLC program

PLC may have stopped, restart PLC

EtherCAT diagnostics

EtherCAT 179Version: 5.6

4.2.14 Error Code 0x001A

Meaning

Synchronization error

Description

If too many RxPDO Toggle error occur, i.e. the RxPDO Toggle Failed Counter increases the internal limit the
slave returns to SAFEPERROR with 0x001A. Multiple synchronization errors. Device is not synchronized any
more (used if the causes mirrored by the AL Status Codes 0x2C, 0x2D, 0x32, 0x33, 0x34 cannot be
distinguished).

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.2.15 Error Code 0x001B

Meaning

Sync manager watchdog

Description

The slave did not receive process data within the specified watchdog time. Usually, the WD time is 100ms.
The WD is re-started every time it receives new process data, usually when the Output SyncManager
(SyncManager2) is written. For devices which have only inputs usually no WD is used. Increasing the WD is
not a solution.

Reason: PLC stopped

Current State (or state change)

O, S

Resulting state

S + E

Solution

n/a

4.2.16 Error Code 0x001C

Meaning

Invalid Sync Manager Types

EtherCAT diagnostics

EtherCAT180 Version: 5.6

Description

n/a

Current State (or state change)

O, S, O, P→S

Resulting state

S + E

Solution

n/a

4.2.17 Error Code 0x001D

Meaning

Invalid Output Configuration

Description

SM configuration for output process data is invalid

Current State (or state change)

O, S, O, P→S

Resulting state

S + E

Solution

n/a

4.2.18 Error Code 0x001E

Meaning

Invalid Input Configuration

Description

SM configuration for input process data is invalid

Current State (or state change)

O, S, O, P→S

Resulting state

S + E

EtherCAT diagnostics

EtherCAT 181Version: 5.6

Solution

n/a

4.2.19 Error Code 0x001F

Meaning

Invalid Watchdog Configuration

Description

The Watchdog is configured in the ESC register 0x0400 and 0x0420. EtherCAT defines default watchdog
settings (100ms) or they are defined in the ESI file. If the slave does not accept a change of the expected
settings it returns this AL Status Code Example: A slave may not accept that the WD is deactivated.

Current State (or state change)

O, S, O, P→S

Resulting state

P + E

Solution

Use default WD settings

4.2.20 Error Code 0x0020

Meaning

Slave needs cold start

Description

Slave device require a power off - power on reset

Current State (or state change)

Any

Resulting state

Current State + E

Solution

n/a

4.2.21 Error Code 0x0021

Meaning

Slave needs INIT

EtherCAT diagnostics

EtherCAT182 Version: 5.6

Description

Slave application requests INIT state

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.2.22 Error Code 0x0022

Meaning

Slave needs PREOP

Description

Slave application requests PREOP state

Current State (or state change)

S, O

Resulting state

S + E, O + E

Solution

n/a

4.2.23 Error Code 0x0023

Meaning

Slave needs SAFEOP

Description

Slave application requests SAFEOP state

Current State (or state change)

O

Resulting state

O + E

EtherCAT diagnostics

EtherCAT 183Version: 5.6

Solution

n/a

4.2.24 Error Code 0x0024

Meaning

Invalid Input Mapping

Description

The process data are described by the configuration (PdoConfig) and PDO assignment (PdoAssign).

PdoConfig: list of actual variables (usually indexes 0x6nnn for inputs and 0x7nnn for outputs). Variables are
also called PDO entries. There can be one or several variables with in one list (i.e. within one PDO). The
Input PDOs have the index 0x1Amm. The Output PDOs have the index 0x16mm.

PdoAssign: The list of PDOs (object index 0x16nn, 0x1Amm) which are actually part of the process data and
hence, are transferred cyclically, are listed in the PDO Assign Objects 0x1C12 (output PDOs) and 0x1C13
(input PDOs). All this can be seen in the SystemManager on the TAB “Process Data”. If the mapping which
was set by the user on the Process Data tab and which was expected by the slave do not match this Status
Code is returned.

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.2.25 Error Code 0x0025

Meaning

Invalid Output Mapping

Description

The process data are described by the configuration (PdoConfig) and PDO assignment (PdoAssign).

PdoConfig: list of actual variables (usually indexes 0x6nnn for inputs and 0x7nnn for outputs). Variables are
also called PDO entries. There can be one or several variables with in one list (i.e. within one PDO). The
Input PDOs have the index 0x1Amm. The Output PDOs have the index 0x16mm. Example: Slave does only
support one or certain PDO combinations but a different setting was made by the user. For a bus coupler the
connected terminals differ from the configured terminals in the SystemManager

Current State (or state change)

P→S

Resulting state

P + E

EtherCAT diagnostics

EtherCAT184 Version: 5.6

Solution

n/a

4.2.26 Error Code 0x0026

Meaning

Inconsistent Settings

Description

General settings mismatch

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.2.27 Error Code 0x0027

Meaning

Freerun not supported

Description

n/a

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.2.28 Error Code 0x0028

Meaning

Synchronization not supported

Description

n/a

EtherCAT diagnostics

EtherCAT 185Version: 5.6

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.2.29 Error Code 0x0029

Meaning

Freerun needs 3 Buffer Mode

Description

FreeRun mode, SM has to run in 3-buffer mode

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.2.30 Error Code 0x002A

Meaning

Background Watchdog

Description

n/a

Current State (or state change)

S, O

Resulting state

P + E

Solution

n/a

EtherCAT diagnostics

EtherCAT186 Version: 5.6

4.2.31 Error Code 0x002B

Meaning

No Valid Inputs and Outputs

Description

n/a

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.2.32 Error Code 0x002C

Meaning

Fatal Sync Error

Description

The hardware interrupt signal (so called Sync signal) generated by the ESC is not generated any more. The
master sets and activated the cycle time of the Sync signal during state transition from PREOP to SAFEOP.
If a slave was disconnected and reconnected (also due to lost frames or CRC errors) the generation of the
SyncSignal may be lost.

Current State (or state change)

O

Resulting state

S + E

Solution

Set master to INIT and back to OP so that the DCs are initialized again

4.2.33 Error Code 0x002D

Meaning

ana

EtherCAT diagnostics

EtherCAT 187Version: 5.6

Description

SyncSignal not received: In SAFEOP the slave waits for the first Sync0/Sync1 events before switching to
OP, if these events were not received during the SAFEOP to OP-Timeout time the slave refuses the state
transition to OP

Current State (or state change)

n/a

Resulting state

n/a

Solution

n/a

4.2.34 Error Code 0x0030

Meaning

Invalid DC SYNC Configuration

Description

Distributed Clock Configuration is invalid due to application requirements

Current State (or state change)

O, S→O, P→S

Resulting state

P + E, S + E

Solution

n/a

4.2.35 Error Code 0x0031

Meaning

Invalid DC Latch Configuration

Description

DC Latch configuration is invalid due to application requirements

Current State (or state change)

O, S→O, P→S

Resulting state

P + E, S + E

EtherCAT diagnostics

EtherCAT188 Version: 5.6

Solution

n/a

4.2.36 Error Code 0x0032

Meaning

PLL Error

Description

Master not synchronized, at least one DC event recieved

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.2.37 Error Code 0x0033

Meaning

DC Sync IO Error

Description

Multiple Synchronization Errors: At least one SycnSignal was received before. However, the PLL between
slave and master is not synchronized any more. This may occur if the master application jitters too much

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

Use specific industrial pc, standard office PCs may have power saving options, graphic accelerateds and
other system services which disturb the real-time of the master.

CPU power may be too small for the PLC/NC program.

Increase EtherCAT and PLC/NC cycle time.

Use SyncUnits for the slaves using DCs.

EtherCAT diagnostics

EtherCAT 189Version: 5.6

4.2.38 Error Code 0x0034

Meaning

DC Sync Timeout Error

Description

Multiple Synchronization Errors, too much SM events missed

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.2.39 Error Code 0x0035

Meaning

DC Invalid Sync Cycle Time

Description

n/a

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.2.40 Error Code 0x0036

Meaning

DC Sync0 Cycle Time

Description

DC Sync0 cycle time does not fit to the application requirements

Current State (or state change)

P→S

EtherCAT diagnostics

EtherCAT190 Version: 5.6

Resulting state

P + E

Solution

n/a

4.2.41 Error Code 0x0037

Meaning

DC Sync1 Cycle Time

Description

DC Sync1 cycle time does not fit to the application requirements

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.2.42 Error Code 0x0041

Meaning

MBX_AOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.2.43 Error Code 0x0042

Meaning

MBX_EOE

EtherCAT diagnostics

EtherCAT 191Version: 5.6

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.2.44 Error Code 0x0043

Meaning

MBX_COE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.2.45 Error Code 0x0044

Meaning

MBX_FOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

EtherCAT diagnostics

EtherCAT192 Version: 5.6

Solution

n/a

4.2.46 Error Code 0x0045

Meaning

MBX_SOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.2.47 Error Code 0x004F

Meaning

MBX_VOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.2.48 Error Code 0x0050

Meaning

EEPROM No Access

Description

EEPROM not assigned to PDI

EtherCAT diagnostics

EtherCAT 193Version: 5.6

Current State (or state change)

Any

Resulting state

Any + E

Solution

n/a

4.2.49 Error Code 0x0051

Meaning

EEPROM Error

Description

EEPROM access error

Current State (or state change)

Any

Resulting state

Any + E

Solution

n/a

4.2.50 Error Code 0x0060

Meaning

Slave Requested Locally

Description

n/a

Current State (or state change)

Any

Resulting state

I

Solution

n/a

EtherCAT diagnostics

EtherCAT194 Version: 5.6

4.2.51 Error Code 0x0061

Meaning

Device Identification Value updated

Description

n/a

Current State (or state change)

P

Resulting state

P + E

Solution

n/a

4.2.52 Error Code 0x00F0

Meaning

Application Controller available

Description

n/a

Current State (or state change)

n/a

Resulting state

n/a

Solution

n/a

EtherCAT diagnostics

EtherCAT 195Version: 5.6

4.3 EtherCAT AL Status Codes

4.3.1 Error Code 0x0000

Meaning

No error

Description

No error

Current State (or state change)

Any

Resulting state

Current state

Solution

n/a

4.3.2 Error Code 0x0001

Meaning

Unspecified error

Description

No error code is defined for occurred error

Current State (or state change)

Any

Resulting state

Any + E

Solution

Read user manual or contact device manufacturer

4.3.3 Error Code 0x0002

Meaning

No Memory

Description

Less hardware memory, slave needs more memory.

EtherCAT diagnostics

EtherCAT196 Version: 5.6

Example: For slave configuration, application configuration files are downloaded (possibly via FoE or large
CoE objects). The size of those files exceeds the local memory

Current State (or state change)

Any

Resulting state

Any + E

Solution

Download smaller files or objects.

Check user manual.

4.3.4 Error Code 0x0004

Meaning

Invalid Revision

Description

Output/Input mapping is not valid for this hardware or software revision (0x1018:03)

Current State (or state change)

P→S

Resulting state

P+E

Solution

Change mapping or use different hardware

4.3.5 Error Code 0x0011

Meaning

Invalid requested state change

Description

The EtherCAT State Machine (ESM) defines which state changes are allowed. All other state changes are
not allowed

Example: If the master requests the slave to go from OP (AL Control = 0x08) directly to BOOT (AL Control =
0x03).

Current State (or state change)

P→S, I→O, P→O, O→B, S→B, P→B

EtherCAT diagnostics

EtherCAT 197Version: 5.6

Resulting state

Current State + E

Solution

Go step-by-step from the original state to the desired state.

4.3.6 Error Code 0x0012

Meaning

Unknown requested state change

Description

The ESM defines the following states. They are coded with fixed values (only lower (=right) nibble):

BOOT: AL Control = 0x03

INIT: AL Control = 0x01

PREOP: AL Control = 0x02

SAFEOP: AL Control = 0x04

OP: AL Control = 0x08

The fifth bit of the AL Control (left nibble is 1) is the “Error Acknowledge Bit”. If the slave is in AL STATUS =
0x14, i.e. ERROR SAFEOP the master acknowledges this by setting the Acknowledge bit.

Example: If any other value for AL Control than those specified are sent.

Current State (or state change)

Any

Resulting state

Current State + E

Solution

Do only request the defined states

4.3.7 Error Code 0x0013

Meaning

Boot state not supported

Description

Device does not support BOOT state, but the master requests the slave to go to BOOT (AL Control = 0x03

Current State (or state change)

I→B

EtherCAT diagnostics

EtherCAT198 Version: 5.6

Resulting state

I + E

Solution

n/a

4.3.8 Error Code 0x0014

Meaning

No valid firmware

Description

This error code may be returned after a firmware download, if the downloaded file cannot be used by the
application controller

Current State (or state change)

I→P

Resulting state

I + E

Solution

Download a firmware that can be supported by the hardware and bootloader. Check Product Code and
Revision Number (CoE object 0x1018). If this cannot be read from the firmware any more you may see this
in the network configuration (CoE object dictionary) or probably in the ESI file (element Profile:
ObjectDictionary:Objects:Object).

4.3.9 Error Code 0x0015

Meaning

Invalid mailbox configuration

Description

Mailbox communication (= acyclic parameter exchange) is done via two memory areas on the EtherCAT
Slave Controller (ESC) – the “Output Mailbox” (master -> slave) and the “Input Mailbox” (slave-> master).
Those memory areas are protected by SyncManagers to prevent from simultaneous access from master and
salve controller at the same time. SyncManagers are hardware entities on the ESC. They are configured via
certain registers in the ESC register area (starting at 0x0800). The configuration includes start address,
length, and direction (output or input). If those settings differ from those expected by the host controller of the
slave this error is returned

Current State (or state change)

I→B

Resulting state

n/a

EtherCAT diagnostics

EtherCAT 199Version: 5.6

Solution

Replace previous network description of old slave with the one of the new slave

4.3.10 Error Code 0x0016

Meaning

Invalid mailbox configuration

Description

Example: The slave hardware was replaced while the network configuration remained unchanged. The new
hardware expects different mailbox SyncManager settings

Current State (or state change)

I→S

Resulting state

I + E

Solution

Replace previous network description of old slave with the one of the new slave

4.3.11 Error Code 0x0017

Meaning

Invalid Sync Manager configuration

Description

Process data communication (cyclic communication) is done via extra memory areas on the ESC, separated
for outputs and inputs. The process data length and the process data SyncManager length have to be the
same. If this is not the case or the start address or direction does not match this error is returned.

Example: The process data configuration was changed of the slaves which also changed the length of the
data. The change was not activated in the configuration so that the configuration tool would have
recalculated the SyncManager settings.

Current State (or state change)

P→S, S→O

Resulting state

Current State + E

Solution

Issue a re-calculation of the EtherCAT configuration

EtherCAT diagnostics

EtherCAT200 Version: 5.6

4.3.12 Error Code 0x0018

Meaning

No valid inputs available

Description

The slave application cannot provide valid input values

Example: A certain hardware which needs to be connected to the slave was disconnected

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.3.13 Error Code 0x0019

Meaning

No valid outputs available

Description

The slave application cannot recieve valid output values.

Example: The slave has a RxPdoToggle output or an “Output Valid” information in its process data. The
RxPdoToggle does not toggle or the OutputValid is not true. Therefore the slave has no process data which
the application can use. If supported, check the RxPDO Toggle Failed Counter in object 0x1C3x.0E). Also,
the Synchronization may have problems (see object 0x10F1:SI2 Sync Error Counter Limit) so that process
data are received too late by the slave so that the local slave cycle misses the toggle event. Another reason
can be that the PLC stopped working

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

The RxPdoToggle may need to be handled by the PLC program

The outputs valid may have to be set by the PLC program

PLC may have stopped, restart PLC

EtherCAT diagnostics

EtherCAT 201Version: 5.6

4.3.14 Error Code 0x001A

Meaning

Synchronization error

Description

If too many RxPDO Toggle error occur, i.e. the RxPDO Toggle Failed Counter increases the internal limit the
slave returns to SAFEPERROR with 0x001A. Multiple synchronization errors. Device is not synchronized any
more (used if the causes mirrored by the AL Status Codes 0x2C, 0x2D, 0x32, 0x33, 0x34 cannot be
distinguished).

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.3.15 Error Code 0x001B

Meaning

Sync manager watchdog

Description

The slave did not receive process data within the specified watchdog time. Usually, the WD time is 100ms.
The WD is re-started every time it receives new process data, usually when the Output SyncManager
(SyncManager2) is written. For devices which have only inputs usually no WD is used. Increasing the WD is
not a solution.

Reason: PLC stopped

Current State (or state change)

O, S

Resulting state

S + E

Solution

n/a

4.3.16 Error Code 0x001C

Meaning

Invalid Sync Manager Types

EtherCAT diagnostics

EtherCAT202 Version: 5.6

Description

n/a

Current State (or state change)

O, S, O, P→S

Resulting state

S + E

Solution

n/a

4.3.17 Error Code 0x001D

Meaning

Invalid Output Configuration

Description

SM configuration for output process data is invalid

Current State (or state change)

O, S, O, P→S

Resulting state

S + E

Solution

n/a

4.3.18 Error Code 0x001E

Meaning

Invalid Input Configuration

Description

SM configuration for input process data is invalid

Current State (or state change)

O, S, O, P→S

Resulting state

S + E

EtherCAT diagnostics

EtherCAT 203Version: 5.6

Solution

n/a

4.3.19 Error Code 0x001F

Meaning

Invalid Watchdog Configuration

Description

The Watchdog is configured in the ESC register 0x0400 and 0x0420. EtherCAT defines default watchdog
settings (100ms) or they are defined in the ESI file. If the slave does not accept a change of the expected
settings it returns this AL Status Code Example: A slave may not accept that the WD is deactivated.

Current State (or state change)

O, S, O, P→S

Resulting state

P + E

Solution

Use default WD settings

4.3.20 Error Code 0x0020

Meaning

Slave needs cold start

Description

Slave device require a power off - power on reset

Current State (or state change)

Any

Resulting state

Current State + E

Solution

n/a

4.3.21 Error Code 0x0021

Meaning

Slave needs INIT

EtherCAT diagnostics

EtherCAT204 Version: 5.6

Description

Slave application requests INIT state

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.3.22 Error Code 0x0022

Meaning

Slave needs PREOP

Description

Slave application requests PREOP state

Current State (or state change)

S, O

Resulting state

S + E, O + E

Solution

n/a

4.3.23 Error Code 0x0023

Meaning

Slave needs SAFEOP

Description

Slave application requests SAFEOP state

Current State (or state change)

O

Resulting state

O + E

EtherCAT diagnostics

EtherCAT 205Version: 5.6

Solution

n/a

4.3.24 Error Code 0x0024

Meaning

Invalid Input Mapping

Description

The process data are described by the configuration (PdoConfig) and PDO assignment (PdoAssign).

PdoConfig: list of actual variables (usually indexes 0x6nnn for inputs and 0x7nnn for outputs). Variables are
also called PDO entries. There can be one or several variables with in one list (i.e. within one PDO). The
Input PDOs have the index 0x1Amm. The Output PDOs have the index 0x16mm.

PdoAssign: The list of PDOs (object index 0x16nn, 0x1Amm) which are actually part of the process data and
hence, are transferred cyclically, are listed in the PDO Assign Objects 0x1C12 (output PDOs) and 0x1C13
(input PDOs). All this can be seen in the SystemManager on the TAB “Process Data”. If the mapping which
was set by the user on the Process Data tab and which was expected by the slave do not match this Status
Code is returned.

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.3.25 Error Code 0x0025

Meaning

Invalid Output Mapping

Description

The process data are described by the configuration (PdoConfig) and PDO assignment (PdoAssign).

PdoConfig: list of actual variables (usually indexes 0x6nnn for inputs and 0x7nnn for outputs). Variables are
also called PDO entries. There can be one or several variables with in one list (i.e. within one PDO). The
Input PDOs have the index 0x1Amm. The Output PDOs have the index 0x16mm. Example: Slave does only
support one or certain PDO combinations but a different setting was made by the user. For a bus coupler the
connected terminals differ from the configured terminals in the SystemManager

Current State (or state change)

P→S

Resulting state

P + E

EtherCAT diagnostics

EtherCAT206 Version: 5.6

Solution

n/a

4.3.26 Error Code 0x0026

Meaning

Inconsistent Settings

Description

General settings mismatch

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.3.27 Error Code 0x0027

Meaning

Freerun not supported

Description

n/a

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.3.28 Error Code 0x0028

Meaning

Synchronization not supported

Description

n/a

EtherCAT diagnostics

EtherCAT 207Version: 5.6

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.3.29 Error Code 0x0029

Meaning

Freerun needs 3 Buffer Mode

Description

FreeRun mode, SM has to run in 3-buffer mode

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.3.30 Error Code 0x002A

Meaning

Background Watchdog

Description

n/a

Current State (or state change)

S, O

Resulting state

P + E

Solution

n/a

EtherCAT diagnostics

EtherCAT208 Version: 5.6

4.3.31 Error Code 0x002B

Meaning

No Valid Inputs and Outputs

Description

n/a

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.3.32 Error Code 0x002C

Meaning

Fatal Sync Error

Description

The hardware interrupt signal (so called Sync signal) generated by the ESC is not generated any more. The
master sets and activated the cycle time of the Sync signal during state transition from PREOP to SAFEOP.
If a slave was disconnected and reconnected (also due to lost frames or CRC errors) the generation of the
SyncSignal may be lost.

Current State (or state change)

O

Resulting state

S + E

Solution

Set master to INIT and back to OP so that the DCs are initialized again

4.3.33 Error Code 0x002D

Meaning

ana

EtherCAT diagnostics

EtherCAT 209Version: 5.6

Description

SyncSignal not received: In SAFEOP the slave waits for the first Sync0/Sync1 events before switching to
OP, if these events were not received during the SAFEOP to OP-Timeout time the slave refuses the state
transition to OP

Current State (or state change)

n/a

Resulting state

n/a

Solution

n/a

4.3.34 Error Code 0x0030

Meaning

Invalid DC SYNC Configuration

Description

Distributed Clock Configuration is invalid due to application requirements

Current State (or state change)

O, S→O, P→S

Resulting state

P + E, S + E

Solution

n/a

4.3.35 Error Code 0x0031

Meaning

Invalid DC Latch Configuration

Description

DC Latch configuration is invalid due to application requirements

Current State (or state change)

O, S→O, P→S

Resulting state

P + E, S + E

EtherCAT diagnostics

EtherCAT210 Version: 5.6

Solution

n/a

4.3.36 Error Code 0x0032

Meaning

PLL Error

Description

Master not synchronized, at least one DC event recieved

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.3.37 Error Code 0x0033

Meaning

DC Sync IO Error

Description

Multiple Synchronization Errors: At least one SycnSignal was received before. However, the PLL between
slave and master is not synchronized any more. This may occur if the master application jitters too much

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

Use specific industrial pc, standard office PCs may have power saving options, graphic accelerateds and
other system services which disturb the real-time of the master.

CPU power may be too small for the PLC/NC program.

Increase EtherCAT and PLC/NC cycle time.

Use SyncUnits for the slaves using DCs.

EtherCAT diagnostics

EtherCAT 211Version: 5.6

4.3.38 Error Code 0x0034

Meaning

DC Sync Timeout Error

Description

Multiple Synchronization Errors, too much SM events missed

Current State (or state change)

O, S→O

Resulting state

S + E

Solution

n/a

4.3.39 Error Code 0x0035

Meaning

DC Invalid Sync Cycle Time

Description

n/a

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.3.40 Error Code 0x0036

Meaning

DC Sync0 Cycle Time

Description

DC Sync0 cycle time does not fit to the application requirements

Current State (or state change)

P→S

EtherCAT diagnostics

EtherCAT212 Version: 5.6

Resulting state

P + E

Solution

n/a

4.3.41 Error Code 0x0037

Meaning

DC Sync1 Cycle Time

Description

DC Sync1 cycle time does not fit to the application requirements

Current State (or state change)

P→S

Resulting state

P + E

Solution

n/a

4.3.42 Error Code 0x0041

Meaning

MBX_AOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.3.43 Error Code 0x0042

Meaning

MBX_EOE

EtherCAT diagnostics

EtherCAT 213Version: 5.6

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.3.44 Error Code 0x0043

Meaning

MBX_COE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.3.45 Error Code 0x0044

Meaning

MBX_FOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

EtherCAT diagnostics

EtherCAT214 Version: 5.6

Solution

n/a

4.3.46 Error Code 0x0045

Meaning

MBX_SOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.3.47 Error Code 0x004F

Meaning

MBX_VOE

Description

n/a

Current State (or state change)

B, P, S, O

Resulting state

Current State + E

Solution

n/a

4.3.48 Error Code 0x0050

Meaning

EEPROM No Access

Description

EEPROM not assigned to PDI

EtherCAT diagnostics

EtherCAT 215Version: 5.6

Current State (or state change)

Any

Resulting state

Any + E

Solution

n/a

4.3.49 Error Code 0x0051

Meaning

EEPROM Error

Description

EEPROM access error

Current State (or state change)

Any

Resulting state

Any + E

Solution

n/a

4.3.50 Error Code 0x0060

Meaning

Slave Requested Locally

Description

n/a

Current State (or state change)

Any

Resulting state

I

Solution

n/a

EtherCAT diagnostics

EtherCAT216 Version: 5.6

4.3.51 Error Code 0x0061

Meaning

Device Identification Value updated

Description

n/a

Current State (or state change)

P

Resulting state

P + E

Solution

n/a

4.3.52 Error Code 0x00F0

Meaning

Application Controller available

Description

n/a

Current State (or state change)

n/a

Resulting state

n/a

Solution

n/a

EtherCAT operation - control

EtherCAT 217Version: 5.6

5 EtherCAT operation - control

5.1 Operation
In preparation.

EtherCAT operation - timing

EtherCAT218 Version: 5.6

6 EtherCAT operation - timing

6.1 Concept mapping
EtherCAT slaves are directly linked in the System Manager with the process image of a task. This leads to
so-called synchronous mapping, i.e. write/read access to the process image takes place alternately through
I/O update/fieldbus and task.

Fig. 239: System Manager icons for synchronous/asynchronous mapping

With asynchronous mapping the two processes “Task” and “Fieldbus Update” access the process image in
their respective cycle time.

Link effect

If I/Os are linked directly with a task, the corresponding EtherCAT fieldbus update takes place synchronous
with this task cycle time. No more than “max. Sync Task” I/O cycles are executed. (EtherCAT master -->
advanced settings --> cyclic task).

If devices are not linked with a task, they are controlled via asynchronous mapping based on the slowest
available task. This is also the case with automatically set up cross communication, for example in safety
devices.

Watchdog
Check the mapping settings to ensure that timings set up in this way do not exceed the watchdog
times.
Watchdog examples:
• I/O watchdog: default 100 ms
• FSoE watchdog: 100 ms (confirmed communication, cycle times <= 25 ms recommended with

default setting)

EtherCAT operation - timing

EtherCAT 219Version: 5.6

Fig. 240: Automatically set-up asynchronous mapping

6.2 Mapping Types and Graphical Display

6.2.1 Mappings
There is a list of all process image links underneath the tree entry Assignments.

Fig. 241: TC tree: assignments, list of links

On the right-hand side the corresponding dialogue for the selected assignments will appear as shown below.

Fig. 242: "Mapping" tab

EtherCAT operation - timing

EtherCAT220 Version: 5.6

Map ID

Identification number for internal management of the various Assignments (mappings).

Map Name

Names both linked process images.

Map Type

Synchronous: A process image is master, second slave. The master actuates the outputs for writing (e.g. to
fieldbus card C1220, ..) and checks that the other side has completed its I/O cycle in order to read the
current inputs. The other side has no independent cycle time in this case (Engl. timekeeper).

Asynchronous: Is set, e.g. in the event of links from two tasks, or with devices operating on their own cycle
times (e.g. COM port) and independently regulates and thereby the refreshes inputs and outputs. The
exchange of information between two process images thereby takes place in the case of asynchronous
mapping on the basis of the three-buffer principle.

For some device types (e.g. the multitasking Profibus card FC310x) a mix of synchronous and asynchronous
assignment (mappings) is used. In relation to the device the higher priority task behaves in a synchronous
manner while the lower priority task is asynchronous.

Watchdog

In the case of asynchronous mapping (see Assignment Type) a task could fail to conclude correctly (endless
loop), the other task is, however, processed as normal and therefore continues to read old values from the
buffers. A maximum lifecycle value is specified to prevent this occurring. Once the value is reached, all buffer
values are reset to ‘0’.

Timing

Activates the timing of a synchronous assignment (see Assignment Type).

Process Image A

Enter the task name assigned to process image A.

Process image B

Enter the task name assigned to process image B.

Show A -> B and/or B -> A

Exchanges the displays of both process images in the displayed view.

Process images A, B

EtherCAT operation - timing

EtherCAT 221Version: 5.6

The colors green and pink represent process images A and B. The colors yellow and blue are in/outputs of
the process image. If you hover with the mouse over the inputs or outputs, a so-called "tooltip" appears with
the name of the variable.

Fig. 243: Variable name

6.2.2 Context Menu
A right mouse click displays the context menu via which you can set the zoom resolution of the assignment
graphics. The higher the pixel value per byte, the easier it is to assess the links for individual variables.

Fig. 244: Zoom factor setting

6.2.3 Tab "A -> B" or "B -> A"

Fig. 245: Tab "B -> A"

Number

Current Copy Action Number.

Offset A

Gives the offset within process image A, from which the copy action is actuated.

Offset B

Gives the offset within process image B, from which the copy action is actuated.

Size

Length of the values to be copied from each offset (e.g. one bit would be copied at value 0.1).

EtherCAT operation - timing

EtherCAT222 Version: 5.6

6.2.4 Online tab
With an active configuration and the system started, you will find here a graphic illustration of the time (in
nanoseconds) that is currently required for copying process image A to B or B to A. This dialog has existed
since TwinCAT 2.8 with synchronous and asynchronous assignments (cf. "Assignment types" above).

Asynchronous assignments:

Fig. 246: Online display "asynchronous assignments"

The time shown alongside

A: A->B refers to the copying of all the data of this assignment of process image A into the buffer for B.

A: B->A refers to the copying of all the data of this assignment of process image A out of the buffer for B.

B: A->B refers to the copying of all the data of this assignment of process image B out of the buffer for A.

B: B->A refers to the copying of all the data of this assignment of process image B into the buffer for A.

Synchronous assignments:

Fig. 247: Online display "synchronous assignments"

The time shown alongside

A->B refers to the copying of all the data of this assignment of process image A to B.

B->A refers to the copying of all the data of this assignment of process image A from B.

GetIoState refers to the duration of the testing function GetIoState(), whose complexity varies depending on
the fieldbus card employed.

StartIo refers to the duration of the function StartIo(), which starts the bus and whose complexity varies
depending on the fieldbus card employed

EtherCAT operation - timing

EtherCAT 223Version: 5.6

Note:

All times are measured as the difference in the time between the beginning and end of the respective action
and can therefore strongly fluctuate in case of interruptions.

Details of the continuously running graphic display of the current online value can be found under: History
display settings.

Busy counter

In a synchronous assignment of process images the master process image checks whether the slave has
completed its I/O cycle and offers new inputs for transmission. If this is not the case the Busy counter is
incremented by the master and displayed in the field shown above. In case of asynchronous assignments
the field remains empty.

Reset

Resets the Busy counter to ‘0’.

http://infosys.beckhoff.com/content/1031/tcsystemmanager/basics/TcSysMgr_OnlViewHistSet.htm
http://infosys.beckhoff.com/content/1031/tcsystemmanager/basics/TcSysMgr_OnlViewHistSet.htm

Distributed Clocks

EtherCAT224 Version: 5.6

7 Distributed Clocks

7.1 TwinCAT & time

7.1.1 TwinCAT time sources
The Beckhoff TwinCAT automation suite can analyze several independent time sources. See also the
sample program [} 232].

Information regarding the architecture:

Distributed Clocks

EtherCAT 225Version: 5.6

Name BIOS mother-
board

CPU time Windows/NT time TwinCAT/TC
time

Distributed clocks/DC
time

Description RTC (RealTime-
Clock), battery-
operated on the
motherboard

CPU counter from
the controller
hardware, not reg-
ulated
Initialized by RTC

Local system time of the Win-
dows operating system (NT)
Initialized by RTC

Running TwinCAT
clock
Initialized by Win-
dows

The system returns the
start time of the current
task cycle.
Initialized by TwinCAT.

Data 64 bit
resolution: 100
nsPC Base

from 1.1.1601 00:00
resolution: 1 ms
Scope: structure with year,
month, day, hour etc.

from 1.1.1601
00:00
resolution: 100 ns
Scope: 64 bit

from 1.1.2000 00:00
resolution: 1 ns
Scope: 64 bit

Reference Local Local time taking
into account the

set time zone, i.e.
usually UTC

Local time taking into
account the set time

zone, i.e. usually UTC

PLC format T_ULARGE_IN-
TEGER

TIMESTRUCT T_FILETIME T_DcTime

Call GetCpuCounter NT_GetTime() GetSystemTime() F_GetActualDcTime()
(ab TwinCAT 2.11)

F_GetCurDcTickTime()
(= GetSystemTime)

F_GetCurDcTaskTime()
(from TwinCAT 2.11)

Update With each call,
possibly several
times within a
PLC cycle

with each base
tick (System Man-
ager | BaseTime)

ActualDcTime
with each call, possibly
several times within a
PLC cycle

TickTime
with each base tick
(System Manager |
BaseTime)

TaskTime
At the start of the Sync
task cycle

Sample applica-
tion

can be used by
the PLC block
Nt_SetTime-
ToRtcTime for
correcting the NT
time

relative time mea-
surements

Logging, time stamping at oper-
ating system level

High-precision,
relative time-
based tasks within
one or across
several task cy-
cles

- High-precision, relative
time-based tasks within
the EtherCAT system
- Definitive reference to
the global time through
external synchronization
possible

Manipulation op-
tions

- It can be changed to the cur-
rent RTC time by the PLC func-
tion block Nt_SetTimeToRtc-
Time; this also triggers a cor-
rection of the RTC time

ATTENTION
Use of this function in conjunc-
tion with EtherCAT distributed
clocks systems is not recom-
mended.

- Synchronization at network
level (SNTP, NTP)

Synchronization with
external reference time
from TwinCAT 2.11

Table 1: time architecture, required libraries: TcEtherCAT.lib, TcUtilities.lib, TcSystem.lib

Application scenario 1: Local control system without forced synchronization via the network

The local Windows clock is free-running and can be coupled to the RTC via Nt_SetTimeToRtcTime. This
option is not recommended when using distributed clocks components!

We recommend using the TC or DC clock if absolute time references are required.

Ideally, the DC time should be coupled to an external reference time via suitable EtherCAT components.

Distributed Clocks

EtherCAT226 Version: 5.6

Application scenario 2: Local control system with forced synchronization via the network

The local Windows clock is cyclically synchronized with the world time through a network clock/server/
Internet time server.

Coupling of the Windows clock to the RTC through Nt_SetTimeToRtcTime is not recommended.

We recommend using the TC or DC clock. The reference to the absolute time can be established via the
application through offset calculation at the NT time.

Ideally, the DC time should be coupled to an external reference time via suitable EtherCAT components.

Application scenario 3: Local control system with external reference time via EtherCAT

A frequency- and phase-synchronized analog time is available through coupling of the DC time to an
external time source (GPS, radio clock, PTP/IEEE1588, EtherCAT). The NT and TC time are not required in
the application.

Common time synchronization
The usual time synchronization at operating system level works in discrete intervals ranging from
several seconds to days. In the synchronization case this leads to an erratic/unsteady change of the
subordinate time! The usual network synchronizations (SNTP, NTP and similar) or even Nt_Set-
TimeToRtcTime are affected by this. The application must be able to anticipate these sudden
changes in the "absolute" time.
Beckhoff only integrates continuous synchronization techniques in EtherCAT.

7.1.2 Internal and external EtherCAT synchronization

7.1.2.1 General

In a machine control with distributed components (I/O, drives, several masters) it may be useful for the
components to operate with a close time link to each other. The components must therefore have a local
“time”, to which the component (e.g. an I/O terminal) has access at all times.

Associated requirements may include:

1. Several outputs in a control system have to be set simultaneously, irrespective of when the respective
station receives the output data.

2. Drives/axes in a control system must read their axis positions synchronized, irrespective of the topol-
ogy or cycle time.

Both requirements necessitate a synchronization mechanism between the local times of the components of a
control system.

1. If inputs affect the control system, the (absolute) time must be recorded. This can be helpful for subse-
quent analysis, if such an analysis is required for determining the sequence of events in functional
chains.
This means that time running in the components must be coupled to a globally valid time, e.g. Green-
wich world time or a network clock.

2. tasks on different controllers should run synchronous and without phase shift.

The terms “close temporal reference” or “simultaneous” can be interpreted depending on requirements: for a
“simultaneity” in the 10 ms range a serial communication structure may be adequate, while in other ranges
100 ns or less are required.

Distributed Clocks

EtherCAT 227Version: 5.6

Fig. 248: Simple I/O topology

Fig. Simple I/O topology shows a simple EtherCAT topology consisting of a master, several I/Os and an axis.
A local time is to be applied in different components. The tasks:

• synchronization of local clocks
• coupling to a higher-level reference time
• task synchronization

are discussed below.

7.1.2.2 Requirement 1 + 2: synchronization

In an EtherCAT system the distributed clocks concept (DC) is used for synchronization of local clocks in the
EtherCAT components.

Synchronization of local EtherCAT devices

General:

• 1 ns time resolution corresponds to 1 digit, scope of 64 bits corresponds to approx. 584 years
• The EtherCAT master must keep the distributed clocks synchronous within the system accuracy

(EtherCAT: <100 ns) using synchronization datagrams.
• Not all EtherCAT devices have to support this feature. If a slave does not support this concept, the

master will not include it in the synchronization. If the EtherCAT master does not support this feature,
DC is also ineffective in all slaves.

• such a clock also runs in the EtherCAT master, in this case software-based.
• in the system one of the existing clocks is selected as reference clock and used for synchronizing all

other clocks. This reference clock is usually one of the EtherCAT slave clocks, not the EtherCAT
master clock. The clock of the first EtherCAT slave in the topology that supports distributed clocks is
usually automatically selected as reference clock.

• a distinction is made between
◦ the EtherCAT master (the software that “manages” the EtherCAT slaves with Ethernet frames) and

the EtherCAT slaves managed by it.
◦ the reference clock, which is usually located in the first DC slave, and the slave clocks whose time

is based on it, including the clock in the EtherCAT master.

Master:

• During the system start phase the EtherCAT master must set the local time of the reference clock and
the other slave clocks to the current time and subsequently minimize deviations between the clocks
through cyclic synchronization datagrams.

• in the event of topology changes the EtherCAT master must re-synchronize the clocks accordingly
• not all EtherCAT masters support this procedure
• the EtherCAT master in the Beckhoff TwinCAT automation suite fully supports distributed clocks.

Slave:

Distributed Clocks

EtherCAT228 Version: 5.6

• Due to the high precision required this local clock is implemented in hardware (ASIC, FPGA).
• Distributed clocks are managed in the EtherCAT slave controller (ESC) in registers 0x0900 - 0x09FF.

Specifically, the local synchronized time runs in the 8 byte from 0x0910.

Fig. 249: mapping of DC to the topology

In Fig. Mapping of DC to the topology the 3rd EtherCAT slave was selected as DC reference clock as a
sample. The local time of this slave is now used to adjust all other distributed clocks, i.e. all other EtherCAT
slaves and the clock of the EtherCAT master. This is achieved through synchronization datagrams, which
the EtherCAT master sends cyclically.

TwinCAT clock readjustment
The TwinCAT clock that determines the real-time must track the DC ReferenceClock to ensure that
the PLC/NC tasks in the real-time context of the controller run synchronous with the distributed
clocks. If more than one EtherCAT system is used on a control system, only one of these systems
can provide the ReferenceClock for TwinCAT. The other EtherCAT systems have then to follow the
TwinCAT clock.
See notes in section “Coupling of EtherCAT systems [} 161]”

This procedure ensures that all devices supporting DC always have local access to a time that is identical
(within the DC synchronization precision) in all devices.

The system now operates based on the time base of the selected DC reference clock and its local clock
generator/quartz with TDC. Due to production tolerances this time base is rarely the same as the official
sidereal time/coordinated world time UTC TUTC or another reference time. This means that 1 msUTC is never
exactly 1 msDC, TDC≠ TUTC. Over longer periods also drift processes may also change the ratio. As long as DC
is used for relative processes within the EtherCAT system, the deviation from the UTC is irrelevant.
However, if the DC time is to be used for data logging with a global time base, for sample, the DC time base
must be synchronized with the UTC time base. This is described in section Requirement 3.

7.1.2.3 Requirement 3: higher-level global time, absolute time

If the time base TDC is to be adjusted based on a higher-level time base, the time base and the associated
procedure must be selected. Generally common synchronization protocols are used for the synchronization.
Samples for time sources and synchronization procedures are listed below.

• Sources: UTC world time, network time, adjacent control system, radio clocks (in Central Europe:
DCF77)

• Procedures: GPS, radio clocks, NTP (NetworkTimeProtocol), SNTP (Simple NTP), PTP (IEEE1588),
distributed clocks DC

The following synchronization precisions can be achieved (depending on the hardware)

• NTP/SNTP: ms range
• PTP: < 1 µs
• DC: < 100 ns

The following two control aims must be achieved:

Distributed Clocks

EtherCAT 229Version: 5.6

• The frequency of the subordinate time base must be adjusted to the higher-level time base.
• Any offset between two absolute times does not have necessarily to be controlled to 0. It is sufficient

for it to be announced and kept constant. The maximum offset adjustment is ±½ cycle time.

External EtherCAT synchronization
External synchronization sources (e.g. EL6688, EL6692) can only be used from TwinCAT 2.11
used. In older versions of TwinCAT such EtherCAT slaves have no meaningful function.

If a higher-level master clock is integrated in an EtherCAT system, a special EtherCAT device is generally
used for the physical connection. The device monitors both time bases and is therefore able to determine the
time difference.

Please refer to www.beckhoff.de for suitable products currently available for this purpose.

Fig. 250: EtherCAT topology with external reference clock

The different time bases can be arranged hierarchically, so that at the start of the respective system the
current absolute time is taken from the subordinate system. If necessary top-down synchronization is used, if
external time bases or DC components are present in the system.

Readjustment of local time vs. higher-level absolute time

For the purpose of synchronization the local DC time is not adjusted based on the higher-level absolute time,
but only to a constant offset. This offset is made available to the user as a process data. The offset is
corrected by ±½ cycle time to ensure both tasks run in phase.

• When TwinCAT starts the EtherCAT master, the local DC system in the slaves is started and
synchronized immediately.

• However, an external reference slave such as EL6688 (IEEE1588 PTP) takes a few seconds before it
can supply a reference time that is synchronized with the higher-level clock.

• As soon as the external reference time is available, the offset to the local time is calculated and
corrected by ±½ cycle time to ensure that both tasks run in phase, and the EtherCAT master Info Data
are made available to the user for reconciliation with the local time values.

• From this time the offset is kept constant, depending on the selected control direction.

http://www.beckhoff.de

Distributed Clocks

EtherCAT230 Version: 5.6

7.1.2.4 TwinCAT system behavior

External reference clock outage

If the external reference clock signal fails, both time bases will naturally drift apart again. Once the signal is
available again, the system will once again be controlled based on the previous offset values.

TwinCAT can start without external clock signal. In this case the offset is calculated and maintained as
described above, as soon as a stable external reference clock signal is received.

7.1.2.5 Settings in TwinCAT 2.11

External synchronization via EtherCAT is supported from TwinCAT 2.11. The synchronization direction can
be set in the associated dialog.

Distributed clock timing settings

Fig. 251: TwinCAT 2.11 distributed clock settings - Sample for EL6688 in PTP slave mode as time reference
for the local EtherCAT system

Fig. Synchronization direction shows the synchronization direction for the respective synchronization type,
i.e. the source on which the synchronization time is based.

• Independent DC Time (A):
One of the EL terminals (generally the first terminal supporting distributed clocks (DC)) is the reference
clock to which all other DC terminals are adjusted. Selection of the reference clock in the dialog above.

• DC Time controlled by TwinCAT (B):
The DC reference clock is adjusted to the local TwinCAT time. This setting is used in cases where
several EtherCAT systems with distributed clocks function are operated in the same control system.
This tracking mode is less accurate.
If high accuracy is required the external CU2508 EtherCAT distributor must be used.
Note: In the subordinate EtherCAT system a device without firmware intelligence (e.g. an EK1100
coupler) must be set as ReferenceClock.
Please refer to section “Coupling of EtherCAT systems [} 161]”.

• DC Time controlled by External Sync Device (C):
If the EtherCAT system is to be adjusted to a higher-level clock, the external sync device can be
selected here.
Please refer to section "External synchronization" [} 279].

Distributed Clocks

EtherCAT 231Version: 5.6

Fig. 252: synchronization direction

Process data settings

TwinCAT 2.11 can display the current offsets in [ns] in the EtherCAT master info data.

• These offsets are calculated once after EtherCAT has started.
• The synchronization control keeps these offsets constant.
• If local DC time values in the synchronized EtherCAT system are to be related to the absolute

reference from the higher-level EtherCAT system (e.g. from EL1252 timestamp terminals), the user
must adjust this offset with each local timestamp.

Sample: tEL1252 timestamp channel 1, absolute time = tEL1252 timestamp channel 1, local DC time + tExtToDcOffset + tTcToDcOffset

Fig. 253: display current offsets

Distributed Clocks

EtherCAT232 Version: 5.6

Fig. 254: Current offsets

7.1.3 Sample programs
Using the sample programs
This document contains sample applications of our products for certain areas of application. The
application notes provided here are based on typical features of our products and only serve as ex-
amples. The notes contained in this document explicitly do not refer to specific applications. The
customer is therefore responsible for assessing and deciding whether the product is suitable for a
particular application. We accept no responsibility for the completeness and correctness of the
source code contained in this document. We reserve the right to modify the content of this docu-
ment at any time and accept no responsibility for errors and missing information.

Sample 1: Display and evaluations of the different times in TwinCAT

The sample program determines several independent local times in a TwinCAT system under Windows XPe,
calculates current deviations and converts them into different representations. The function
Nt_SetTimeToRtcTime can be activated for testing purposes.

Notes:

• Cycle time used: 1 ms
• Determined times:

◦ Local Windows NT time (shown in the taskbar)
◦ Local TwinCAT time
◦ Distributed Clocks time

• The example uses EtherCAT distributed clocks terminals for determining the distributed clocks time
(DC).

• The individual conversion, particularly the cyclic string representations, require significant computing
time. A CX1000 platform or above is recommended for testing the sample program.

Please follow the general instructions for EtherCAT synchronization.

Starting the sample program

The application samples have been tested with a test configuration and are described accordingly.
Certain deviations when setting up actual applications are possible.

The following hardware and software were used for the test configuration:

• TwinCAT master PC with Windows XP Professional SP 3, TwinCAT version 2.10 (Build 1330) and
INTEL PRO/100 VE Ethernet adapter

• Beckhoff EK1100 EtherCAT coupler, EL2202-0100, EL2252 and EL9011 terminals

Distributed Clocks

EtherCAT 233Version: 5.6

7.1.3.1 Sample program TwinCAT 2

 https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469153803.zip

Preparations for starting the program
• After clicking the Download button, save the zip file locally on your hard disk, and unzip the *.tsm

(configuration) and the *.pro (PLC program) files into a temporary working folder.
• The *.pro file can be opened by double click or by the TwinCAT PLC Control application with menu

selection “File/ Open”. The *.tsm file is provided for the TwinCAT System Manager (to review or
overtake configurations).

• This example requires a PLC control with a terminal EL2202-0100. You can use either an embedded
PC that has the terminal placed on the right or an IPC with an EtherCAT link of an e.g. RJ-45
connector to the EK1100 coupler with the terminal (e.g. C6915 + EK1100 + EL2202-0100).

• Within this example it’s not necessary to connect the terminals outputs (as there will be the DC
operation mode used only). However the Sync Master needs a link to a variable. The external
“bDummyOut” variable is designated for that, so it has to be linked with one of the both channels of the
terminal.

Please continue with further descriptions in sectionTwinCAT Quickstart, TwinCAT 2 [} 65].

7.1.3.2 Sample program TwinCAT 3

 https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/3722257291.zip

Preparation to start the sample program (tpzip file/ TwinCAT 3)
• After clicking the Download button, save the zip file locally on your hard disk, and unzip the *.tpzip -

archive file into a temporary working folder.
• Create a new TwinCAT project as described in section:

TwinCAT Quickstart, TwinCAT 3, Startup [} 75]

• Open the context menu of "PLC" within the "Solutionexplorer" and select "Add Existing Item..."

• Select the beforehand unpacked .tpzip file (sample program).
• This example requires a PLC control with a terminal EL2202-0100. You can use either an embedded

PC that has the terminal placed on the right or an IPC with an EtherCAT link of an e.g. RJ-45
connector to the EK1100 coupler with the terminal (e.g. C6915 + EK1100 + EL2202-0100).

• Within this example it’s not necessary to connect the terminals outputs (as there will be the DC
operation mode used only). However the Sync Master needs a link to a variable. The external
“bDummyOut” variable is designated for that, so it has to be linked with one of the both channels of the
terminal.

Also see more hints in section:
Commissioning, TwinCAT Quickstart, TwinCAT 3, Startup [} 75].

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469153803.zip
https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/3722257291.zip

Distributed Clocks

EtherCAT234 Version: 5.6

7.2 Basic principles

7.2.1 EtherCAT Distributed Clocks
An introduction into distributed clock technology as a feature of the EtherCAT protocol is provided below.
This section provides an overview of the main aspects from a user perspective, which should be sufficient for
standard EtherCAT applications. The subsequent section provides further details and more detailed
descriptions for interested users. This information is not essential for standard operation of an EtherCAT
slave.

Contents of this documentation
This introduction is limited to a description of the functions that are relevant for the user. Further and
more detailed information about EtherCAT in general and distributed clocks in particular can be
found under http://www.ethercat.org/.
The main terminology is shown in italics below.

The following page comprises the sections

• The principle of distributed clocks [} 234]

• Optional additional ESC functions [} 237]
• Application of distributed clocks and synchronicity with the control system in the PC

The principle of distributed clocks

In EtherCAT terminology the term "distributed clocks" refers to a logical network of distributed clocks. By
using distributed clocks the EtherCAT real-time Ethernet protocol is able to synchronize the time in all local
bus devices within a very narrow tolerance range. If an EtherCAT slave supports distributed clock
functionality it contains its own clock that initially operates locally after switch-on, based on an independent
clock generator within the EtherCAT slave (quartz, oscillator, ...). In the EtherCAT strand there is a selected
EtherCAT slave that represents the reference clock (M, see Fig. Distributed Clocks in the EtherCAT System),
to which the slave clocks (S) of the other devices and the controller synchronize. The reference clock
therefore represents the system time. Adjustment and synchronization are handled automatically and
consecutively by the EtherCAT master provided it supports distributed clock functionality, such as the
Beckhoff TwinCAT EtherCAT master. To this end the EtherCAT master sends a special EtherCAT datagram
at short intervals (with sufficient frequency to ensure that the slave clocks remain synchronized within the
specified limits), in which the EtherCAT slave with the reference clock enters its current time. This
information is then read from the same datagram by all other EtherCAT slaves featuring a slave clock. Due
to the ring structure of EtherCAT this is possible if the reference clock is topologically located before all other
slave clocks. The EtherCAT master therefore selects the first distributed clock-capable EtherCAT slave as
reference clock.

An EtherCAT configuration therefore features an EtherCAT master that operates and manages the bus with
the connected EtherCAT slaves. One of these EtherCAT slaves contains the reference clock, all other
EtherCAT devices (i.e. including the EtherCAT master) represent slave clocks.

The EtherCAT slave controller (ESC) handles the EtherCAT communication and in particular the distributed
clock functionality in an EtherCAT slave. This is an electronic component (chip) such as an ASIC or
reprogrammable FPGA or similar. Each EtherCAT slave has such an ESC to ensure that cyclical and
acyclical process data can be exchanged between master and slave via the EtherCAT fieldbus. This ESC
can handle simple functions such as digital inputs and outputs directly, or it can be connected to a further
processor in the EtherCAT slave via serial/parallel interfaces for handling more complex tasks such as drive
control. In particular the ESC manages the local distributed clock functionality with the associated tasks, if
the EtherCAT slave is required to support this feature.

The schematic of an EtherCAT slave is illustrated in Fig. Example for ESC functionality and embedding in a
typical EtherCAT slave. In addition the embedding of the ESC in the latter with a selection of its basic
functions.

http://www.ethercat.org/

Distributed Clocks

EtherCAT 235Version: 5.6

Fig. 255: Example for ESC functionality and embedding in a typical EtherCAT slave

From the RJ45 socket the electrical signals are transferred to the PHY (physical interface) via the
transformer. It extracts the user data from the coded Ethernet signal and transfers them to the ESC for
processing. The EtherCAT telegram is then relayed with minimum delay (due to dynamic processing) to the
next EtherCAT slave via the PHY and the socket. The ESC automatically parameterizes itself with
configuration data from an EEPROM when the slave starts up. If a further CPU exists in the slave, the slave
can communicate with it via interfaces.

The distributed clocks unit of the ESC in the full configuration offers the following features (dependent on the
device implementation):

• Clock synchronization between the EtherCAT slaves and the master
• Synchronous generation of output signals (Sync signals)
• Synchronous reading of input signals
• Precise time stamping of input signals (latch signals)
• Generation of synchronous interrupts

In Fig. Distributed Clocks in the EtherCAT-System, the reference clock (M) is the first slave in the EtherCAT
strand with EtherCAT functionality after the EtherCAT master IPC. Since each slave causes a small delay –
both in the device (S) and in the transmission link – in both directions, the run times (∆t) between the
reference clock and the respective slave clock must be taken into account for synchronization of the slave
clocks. It is therefore not appropriate to simply copy the local time of the reference clock to all downstream
slave clocks. For each slave a separate offset value should be calculated as a function of several
parameters.

For measuring the offset times the EtherCAT master sends a broadcast read datagram to a special address
in all ESCs during the startup phase that causes each slave to record the time when the telegram is received
(based on its local clock) in both directions. The master then reads the stored times as a basis for the

Distributed Clocks

EtherCAT236 Version: 5.6

calculation. These measuring cycles take place several times for all EtherCAT slaves. This enables the
EtherCAT master to create a very precise map of the topology in relation to the frame delays between the
EtherCAT slaves.

The actions described above ensure synchronous operation of all distributed clocks in an EtherCAT network,
e.g. in a production plant, and enable relative times to be specified with high precision within the application.
The absolute reference to global reality is provided via the master clock, which is usually based on a global
world time format (DCF77, GPS, Internet time server, ...) or another time that is designated as valid across
the system (network server, PC clock, BIOS clock, IEEE1588, ...). A Beckhoff TwinCAT EtherCAT master
starts up using the local PC clock as master clock in order to initialize the reference clock. During system
startup and subsequent operation the reference clock (M) can be readjusted based on a master clock, either
via direct contact between master clock and control system (e.g. network server) or through feeding into a
special EtherCAT slave (e.g. Beckhoff EL6692, EtherCAT bridge terminal).
This higher-level master clock does not violate the primate of the reference clock, since short-term
synchronization in the sub-millisecond range, which is critical for real-time control, is solely determined by the
reference clock, while synchronization of the complete EtherCAT application, including the control PC with
the master clock, is based on longer intervals.

The following effects must be taken into account by the distributed clock control in the EtherCAT master:

• Offset compensation of each slave relative to the reference clock. After system startup the local clocks
may start with different start values.

• Offset compensation of the reference clock relative to the master clock. To be taken into account
during system start-up.

• Propagation delay measurement/Measurement of the offset times - depending on the number of
devices, cable lengths, dynamic changes in the configuration, etc.

• Drift compensation/Drift correction - Each slave clock usually has its own source (quartz, PLL, ...),
which means that offset times do not remain constant over a prolonged period (minutes, days). Drift
correction deals with this irregularity.

Fig. 256: Distributed clocks in the EtherCAT system

If an EtherCAT slave is no longer supplied with synchronization datagrams, because of an interruption of the
bus, it can still fulfil all tasks via its local clock. Distributed clock control is jerk-free, both during normal
operation and when EtherCAT traffic is reinstated.

Distributed Clocks

EtherCAT 237Version: 5.6

Summary of technical data

The distributed clock function in the EtherCAT slave controller (ESC) has the following characteristics:

• Unit 1 ns
• Universal zero point 1.1.2000 00:00
• Scope up to 64 bit (sufficient for 584 years). However, some EtherCAT slaves only support a 32 bit

scope, i.e. the register overflows locally after approx. 4.2 seconds and starts again at 0.
• The EtherCAT master automatically synchronizes each local clock with the reference clock in the

EtherCAT system with a precision of < 100 ns, irrespective of the distance between individual
EtherCAT slaves

• When the EtherCAT system starts up the EtherCAT master usually takes the current time from a
master clock, e.g. the hardware-based BIOS clock of its own PC, thus establishing the time reference
to the current world time. This time is loaded into the selected reference clock when EtherCAT starts
up, which then usually automatically maintains the time based on its local clock generator. Continuous
synchronization of the reference clock with the master clock is possible, if required.

• The effective step size of the local clock is generally 10 ns. The remaining digit ("ones") is used for
controlling the distributed clocks.

Up to now the distributed clocks function in the ESC was considered without interaction with the
environment. Based on this local/global time additional functions can now be realized in the EtherCAT slave.

Optional additional ESC functions

The distributed clock time, which is synchronized with high precision, is used by the ESC for responding to
specifiable times or signals from outside the ESC via a capture/compare unit. The ESC characteristics are
defined by the configuration of the EtherCAT slave during startup and can usually not be changed by the
user.

Action based on specified time: Compare - Sync0/1

The distributed clock unit in the ESC usually features 2 interrupts that can be triggered time-controlled.
These interrupts are referred to as SYNC0 and SYNC1. In this case the compare unit in the ESC would be
active: If the local distributed clock time matches a user-defined standard time the ESC triggers an interrupt
and the associated processes. The standard time can be set once, which leads to a one-off action in the
ESC. This option is used in Beckhoff timestamp terminals, for example.
The ESC may also automatically load new default values, which in this case leads to a cyclical sequence of
ESC actions. This option is used for Beckhoff oversampling terminals, for example. The configuration data
loaded on ESC start-up from a slave EEPROM is parameterizable, for example, can be used to determine
which action an ESC will carry out if a SYNC0/SYNC1 signal is encountered. For example, it can write output
data, read input data, or initiate communication with a connected microcontroller.

Reaction to an external signal: Capture - Latch 0/1

If an ESC is configured accordingly it can store the current local time if an external event occurs, i.e. it can
place it into a buffer without delay using a capture unit. Examples for such external events are: arrival of the
EtherCAT frame, end of the EtherCAT frame, edge on a dedicated pin of the ESC, communication with a
connected microcontroller, and a wide range of other options.

Connection to an external logic - SPI/µC parallel/IO/IRQ

An ESC is to be used not only as a stand-alone unit, but also has interfaces for communicating with other
electronic units. These could be, for example, a controller that controls a power drive or the evaluation
electronics of a rotary encoder; see Fig. Example for ESC functionality and embedding in a typical EtherCAT
slave. Communication via these interfaces can also take place under distributed clocks control. The position
query to a rotary encoder electronics, for example, is thus chronologically equidistant in the ns range.

Distributed Clocks

EtherCAT238 Version: 5.6

Fig. 257: Interfaces of the distributed clock unit

Fig. Interfaces of the Distributed Clocks Unit shows a schematic of the distributed clocks unit with its
interfaces and the interaction with the EtherCAT bus.

Application of distributed clocks and synchronicity with the control system in the PC

A distributed clock network ensures that all EtherCAT slaves supporting this feature are operated
synchronously with a tolerance of < 100 ns. An application with input channels will be used as an example to
illustrate this principle, followed by an application involving output channels.

The following example involving three Beckhoff EL1202-0010 devices illustrates synchronous generation of
SYNC signals [} 237] for simultaneous reading of the inputs. Other ESC functions (latch signals [} 237],
connection of external logic) are described in detail in the respective slave documentation.

Distributed Clocks

EtherCAT 239Version: 5.6

Distributed clocks with input channels

Fig. 258: Sample application with distributed clocks, cycle time 100 µs

In Fig. Sample application with distributed clocks, cycle time 100 µs, the Master PC, with its PLC on an
EtherCAT master, drives an EtherCAT configuration with 3 EL1202-0100 digital two-channel input terminals
with distributed clocks support (distributed clocks support is achieved through conversion of the EL1202 to
the EL1202-0100 in the System Manager; see the corresponding documentation). It is irrelevant which
EtherCAT slaves are used and what the distances are between the slaves. The controlling PLC and
therefore the EtherCAT fieldbus are operated with a cycle time of 1 ms, i.e. inputs of the EL1202-0100 input
terminals are queried at 1 ms intervals. In the EL1202-0100 the local distributed clock is used for sampling
the two input channels: With each SYNC interrupt the ESC directly reads the current input value (0 or 1).
When the EtherCAT frame passes the terminals shortly afterwards, each EL1202-0100 stores its two bits at
the prescribed position in the frame. The distributed clock ensures that input sampling is highly consistent
based on the same interval with a tolerance of < 100 ns. In addition, by default all EL1202-0100 in the whole
EtherCAT network read their inputs at the same global time, irrespective of their configuration. In a timing
diagram the situation looks as follows:

Distributed Clocks

EtherCAT240 Version: 5.6

Fig. 259: EL1202-0100 read timing diagram

In Fig. EL1202-0100 read timing diagram, the sequence of 4 complete I/O cycles is illustrated taking an
EL1202-0100 as an example (cf. Fig. Sample application with distributed clocks, cycle time 100 µs). Key to
the processes within such a cycle:

• A, B: Fig. EL1202-0100 read timing diagram is subdivided in grey into a master and a slave side – the
transport layer of the Ethernet frame moves in between them.

• C: The time axis in x direction enables temporal correlation of the actions described in this section.
• D: The PC's real-time clock starts a new processing cycle with a cycle time of 1 ms, for example. In the

example the calculation takes 400 µs. The specified program code calculates the output process image
based on the current input process image.

• E: After the calculation new output data are available for the fieldbus. The EtherCAT frame (or
EtherCAT frames) is sent with the process data. Depending on the data quantity the length of an
Ethernet frame may be between 7 and 128 µs. It can therefore take some time until it has been
transferred to the fieldbus, has passed through all slaves, and was received back by the network card.

• F: The EtherCAT frame now passes through all EtherCAT slaves upstream of the current
EL1202-0100.

• G: Depending on the number of EtherCAT slaves the frame passes the EL1202-0100 after a certain
delay (several µs) in order to retrieve the input data (more precisely: it is dynamically processed by the
ESC). These data must now be available for collection.

• H: The frame then passes through all further slaves until the complete frame is received back again at
the network port of the PC.

• J: When the next PLC calculation cycle is started by the real-time clock, current input data from the
fieldbus are therefore available.

The processes taking place in the EL1202-0100 used as an example are described in more detail below:

• K: So that the input data transferred to the frame at (G) is available in the ESC in time to enter the
frame, the inputs must be read before the expected frame passage by means of an appropriate lead
time (green). Otherwise old data would be included in the frame where applicable. Reading of the
physical inputs is triggered by the distributed clocks unit in the ESC through the SYNC signal.
This time can be regarded as a safety margin: The shorter this safety margin, the more current the
input data. If the chosen time is too short, the input data may no longer be available because the
EtherCAT frame may reach the terminal too early, in which case no new process data are coupled into
the frame! This lead time is therefore calculated automatically by the EtherCAT master as standard.

Distributed Clocks

EtherCAT 241Version: 5.6

• L: From the perspective of the master with its own real-time clock the SYNC pulse locally for the
terminals therefore occurs with a global shift time after the real-time tick. This global shift time is taken
into account once when EtherCAT starts up, after which the real-time tick in the PC and the SYNC
pulses in the EtherCAT slaves operate with a constant cycle time (in this case 1 ms).

• The Beckhoff TwinCAT EtherCAT master automatically calculates the global shift time based on
boundary conditions such as configuration, max. program execution time, cycle time etc., to ensure
that operation of all EtherCAT slaves is as safe as possible and as current as possible.

• The user can modify the automatically calculated global shift time by applying a manual shift time both
at the global level for all EtherCAT slaves and at the local slave level for each individual EtherCAT
slave.

Correction of the PC real-time

Two time periods work alongside each other in Fig. EL1202-0100 read timing diagram: the PC with its real-
time-tick and the distributed clock system with its distributed clocks in the EtherCAT slaves and the
EtherCAT master (which is nevertheless located in the PC), as indicated by the grey dividing lines A//B.
The reason for the introduction of a second time base for the EtherCAT slaves with derived SYNC interrupts
is the jitter with which the EtherCAT frames pass through the individual EtherCAT slaves. Due to the
passage through the slaves, the potentially variable PLC runtime and the quality of the real-time tick the time
when a frame is sent by the PC and when it actually passes a slave may vary in the µs range. If local slave
events were started solely based on the passage of the communication frame, the actions in the slave would
be variable. For high-precision applications this is not tolerable. Through the introduction of clocks that are
controlled at local slave level each EtherCAT slave has a high-precision local time base with a tolerance of <
100 ns relative to all other clocks, thereby improving the quality of all time-based actions by several orders of
magnitude.

However, due to the two different time bases the "field time" (distributed clocks/system time) would deviate
from the "PC-time" (operating system/BIOS clock) after a short time, with the deviation increasing
continuously.

The TwinCAT EtherCAT master therefore intervenes in the PC clock and cyclically adjusts it based on the
EtherCAT reference clock in order to ensure that the real-time tick of the control system and the SYNC
interrupts locally for the terminals are synchronous with the set/calculated global shift time (Fig.
EL1202-0100 read timing diagram, blue).

Synchronization with external master clock
In order to ensure long-term synchronicity of an automation system controlled in this way with an
external reference clock (e.g. world time or local network time), suitable EtherCAT slaves must be
used that relay the master clock time to the EtherCAT master, or the master clock must be con-
nected directly to the control system. The EtherCAT master then undertakes the required steps for
maintaining a low control deviation between master and reference clock.

Calculation of global shift time

A blue "global shift time" is specified in Fig. EL1202-0100 read timing diagram. Its value specifies when – in
relation to the overall system behavior of the ESC – a SYNC0/1 action, for example, starts in the slave. The
global shift time is composed of various elements, some of which can be changed by the user; see Fig. Time
specification of the SYNC pulse for the local slave with regard to the real-time tick of the master PC.

Distributed Clocks

EtherCAT242 Version: 5.6

Fig. 260: Time specification of the SYNC pulse for the local slave with regard to the real-time tick of the
master PC

The elements of the global shift time according to Fig. Time specification of the SYNC pulse for the local
slave with regard to the real-time tick of the master PC are:

• Application
The maximum expected calculation time for the program code (cannot be modified).

• Frame
The length of the Ethernet frame (7..128 µs, perhaps several frames) (cannot be modified).

• D
Total delay caused by the frames passing through the EtherCAT slaves, including jitter calculation.

• U
User shift master: shift time predefined with default values by the EtherCAT master depending on the
component (can be modified by the user).
Input and output modules have different values

• S0
User shift time in the slave - usually 0, although in some EtherCAT slaves values <>0 are predefined,
can be modified by the user (see respective slave documentation)

Since the elements listed above can be summed to form the global shift time, it can be useful to enter
negative values in the respective dialog – for instance in order to use a negative SlaveSync0 shift time to
trigger the reading of input signals earlier than is foreseen as standard by the EtherCAT master (see Fig.
Time specification of the SYNC pulse for the local slave with regard to the real-time tick of the master PC).

NOTE
Attention! No plausibility check takes place!
The mentioned notes and information should be used advisedly. The EtherCAT master automatically allo-
cates settings that support reliable and timely process data acquisition.
User intervention at this point may lead to undesired behavior.
If these settings are changed in the Beckhoff TwinCAT System Manager, no plausibility checks are carried
out on the software side.
Correct function of the EtherCAT slaves with all conceivable setting options cannot be guaranteed!
Unless specified otherwise in the associated slave documentation, we strongly advise against changing the
automatic settings.

Distributed Clocks

EtherCAT 243Version: 5.6

Distributed clocks with output channels

The logic used for the output channels is essentially the same as that for the input channels. The only
difference is that the local slave SYNC clock usually takes place after a data-carrying EtherCAT frame has
passed, instead before the frame, as is the case with the input channels. Therefore the calculation of the
global shift time specified above (Fig. EL1202-0100 read timing diagram, blue) takes place separately for
input and output slaves. The global shift time determined in the standard way for the group of output
modules is thus larger than that calculated for the group of the input modules. However, both lie within the
useful range of 0 – 100% of the EtherCAT cycle time.

In the following sections, access to the distributed clocks settings from the TwinCAT System Manager will
now be explained.

7.2.2 Distributed Clocks settings in the Beckhoff TwinCAT System
Manager (2.10)

Different configuration dialogs are used for the EtherCAT master and the slaves with distributed clock
support.

NOTE
Attention! No plausibility check takes place!
The mentioned notes and information should be used advisedly.
The EtherCAT master automatically allocates settings that support reliable and timely process data acquisi-
tion.
User intervention at this point may lead to undesired behavior.
If these settings are changed in the Beckhoff TwinCAT System Manager, no plausibility checks are carried
out on the software side.
Correct function of the EtherCAT slaves with all conceivable setting options cannot be guaranteed!
Unless specified otherwise in the associated slave documentation, we strongly advise against changing the
automatic settings.

Validity of the following settings
The setting options described below refer to Beckhoff TwinCAT 2.10 Build 1320. More recent edi-
tions can have a different user interface design; however, usage remains analogously the same.

Master settings

Each EtherCAT device in the System Manager offers access (via Advanced Settings) to the Distributed
Clocks settings, if EtherCAT slaves are present in the configuration:

Fig. 261: EtherCAT master – advanced settings

Distributed Clocks

EtherCAT244 Version: 5.6

Fig. 262: EtherCAT- Master - Distributed Clocks

• Sync Slave
If activated, this EtherCAT device/EtherCAT strand is a Sync Slave to another EtherCAT strand in the
same PC, the Sync Master – this contains the reference clock and regulates the real time on the PC.
There is no reference clock in the Sync Slave EtherCAT strand.

• Sync Master
Default setting – this EtherCAT device (here: device 1) regulates the PC real time; the reference clock
is located in this EtherCAT strand and is in this example the EtherCAT slave "Terminal 3", an EL1502.

• Shift time (µs)
This is the automatic shift time calculated automatically by the System Manager for all EtherCAT
slaves. In this case all local Distributed Clocks in the EtherCAT slaves trigger their SYNC 13.2 µs after
the real-time tick. This applies to slaves declared as input or output module.
The user can intervene with an additional value and shift the SYNC pulses in positive or negative
direction.

• Input shift time (µs)
This shift time only applies to slaves that are declared as input module (see XML device description).
Manual modification is possible.

• Show DC system time (64-bit)
If activated, the new 64-bit input variable DcSysTime appears in the process image of the EtherCAT
master; see Fig. DcSysTime input variable (can be activated). It is a copy of the time in the EtherCAT
reference clock.

Precision of the variable DcSysTime
The time from the reference clock is read without the need for uniform sampling. It is intended as
rough guidance for the user to indicate the current time range of the EtherCAT system. It is scanned
cyclically, although the value may jitter by up to +/- 1 cycle time due to "soft" sampling.
The time values of suitable EtherCAT slaves are to be used for high-precision relative time-based
actions – e.g. the timestamp of an EL1252.

Distributed Clocks

EtherCAT 245Version: 5.6

Fig. 263: DcSysTime input variable (can be activated)

NOTE
Attention! No plausibility check takes place!
The mentioned notes and information should be used advisedly.
The EtherCAT master automatically allocates settings that support reliable and timely process data acquisi-
tion.
User intervention at this point may lead to undesired behavior.
If these settings are changed in the Beckhoff TwinCAT System Manager, no plausibility checks are carried
out on the software side.
Correct function of the EtherCAT slaves with all conceivable setting options cannot be guaranteed!
Unless specified otherwise in the associated slave documentation, we strongly advise against changing the
automatic settings.

Slave settings

Validity of the following settings
DC functionality is explained using the EL1202-0100 terminal as an example. Each EtherCAT slave
with distributed clock support uses this feature on an individual basis as described in the associated
documentation.

NOTE
Attention! No plausibility check takes place!
The mentioned notes and information should be used advisedly.
The EtherCAT master automatically allocates settings that support reliable and timely process data acquisi-
tion.
User intervention at this point may lead to undesired behavior.
If these settings are changed in the Beckhoff TwinCAT System Manager, no plausibility checks are carried
out on the software side. Correct function of the EtherCAT slaves with all conceivable setting options can-
not be guaranteed!
Unless specified otherwise in the associated slave documentation, we strongly advise against changing the
automatic settings.

“DC” tab

If an EtherCAT slave supports distributed clock functionality, a "DC" tab appears for the parameterization. If
an EtherCAT slave offers several operation modes, the required mode can be selected here. The
EL1202-0100 can only be used in one mode, which is why no selection is possible here.

Click "Advanced Settings" to enter the advanced extended distributed clock dialog:

Distributed Clocks

EtherCAT246 Version: 5.6

Fig. 264: DC tab

The basic side of any EtherCAT slave with distributed clocks can be seen in Fig. Distributed clocks dialog in
the EtherCAT slave (TwinCAT 2.10, build 1320):

Fig. 265: Distributed clocks dialog in the EtherCAT slave

• Operation mode
Same functionality as in the higher-level dialog.

• Cyclic mode/enable
Activates distributed clocks.

Distributed Clocks

EtherCAT 247Version: 5.6

Use of an EtherCAT slave as reference clock
If an EtherCAT slave supports distributed clocks on the manufacturer side, this does not necessarily
have to be activated. In order to be able to use an EtherCAT slave as a reference clock, the slave’s
local clock must be switched on via the ‘Enable’ checkbox, even if distributed clocks are not re-
quired for the actual function of this slave.

• Sync unit cycle (µs)
Basic cycle of the EtherCAT slave - corresponds to the current EtherCAT cycle time of the EtherCAT
slave. In this example a task with a cycle time of 4 ms (4000 µs) scans the EL1202-0100. If several
tasks with different cycle times are operated on the same EtherCAT strand, the cycle time of the task
that is currently exchanging process data with the slave is shown here. If several tasks are active on
the same slave, the fastest task cycle time is shown here.

The following two sections describe the interrupt signals generated by the distributed clock unit in the ESC.

• Enable SYNC0
Activates the SYNC0 signal.

• SYNC0 cycle time
A multiple or a fraction of the basic cycle described above can be set. The result appears in the window
below (here: 4000 µs for factor 1). At these intervals the SYNC0 signal is generated by the ESC, if
SYNC0 or distributed clock are activated.

• User-defined
Alternative any value can be specified.

• Shift Time
As described in the general introduction to distributed clocks, the SYNC pulse of an EtherCAT slave
can be shifted forward or back by a constant time (S0 user shift time [} 241]). The EL1202-0100 is
associated with the input modules, which is why the

• Based on input reference
from the global Distributed Clocks setting of the EtherCAT master is applied to this slave. Both

• User defined and
• Multiple of the SYNC0 cycle time are 0 by default. In the example the time components of this

EL1202-0100 add up to a
• Total SYNC0 shift time of -13.7 µs.

A somewhat reduced dialog is available for setting the SYNC1 signal:

• Enable SYNC1
Activates the SYNC1 signal.

• SYNC1 cycle time
The SYNC1 cycle time can either be derived from a multiple/a fraction of the basic cycle or the SYNC0
cycle time.

• Shift time (µs)
A constant shift time between the SYNC0 and the SYNC1 signal can be entered here (in µs).

Relationship between SYNC0 and SYNC1
In contrast to the SYNC0 signal the SYNC1 signal is not a fully independent interrupt, as indicated
by the reduced and different property dialogs. Further information can be found at www.ether-
cat.org, e.g. under ESC specifications.

Distributed Clocks

EtherCAT248 Version: 5.6

NOTE
Attention! No plausibility check takes place!
The mentioned notes and information should be used advisedly.
The EtherCAT master automatically allocates settings that support reliable and timely process data acquisi-
tion.
User intervention at this point may lead to undesired behavior.
If these settings are changed in the Beckhoff TwinCAT System Manager, no plausibility checks are carried
out on the software side.
Correct function of the EtherCAT slaves with all conceivable setting options cannot be guaranteed!
Unless specified otherwise in the associated slave documentation, we strongly advise against changing the
automatic settings.

Time-related cooperation with other terminals

The final section of this introduction uses a further example to illustrate the application of distributed clocks in
an EtherCAT system.
The task is to sample an analog input value in the range +/- 10 V at precise intervals of 50 µs and to transmit
it to the controller; see Fig. Sample application for a manual shift time on SYNC0.

Fig. 266: Sample application for a manual shift time on SYNC0

In this example a fast analog input module (e.g. Beckhoff EL3702) is used in conjunction with an EtherCAT
cycle time of 50 µs. A different analog input module with an analog/digital conversion time of 60 µs is used.
An EtherCAT cycle time of 50 µs is therefore not appropriate.

The following solution is available: Two such input modules are operated side by side (referred to as "Term
x" and "Term x+1" here) and subjected to the same input signal. If the cycle time is 100 µs (A1 to B1) each
input module has enough time (100 µs > 60 µs) for converting the analog input value. Conversion of the
SYNC0 signal in the input modules is triggered at an interval of 100 µs at time A2, B2 etc. as standard. The

Distributed Clocks

EtherCAT 249Version: 5.6

situation at "Term x" is as follows: At time A2 the SYNC signal triggers conversion of the input values (the
analog/digital converter is started). The lead time (A2 to A4) is dimensioned such that adequate time is
available for converting the data and making them available in the slave, until at time A4 the slave "Term x"
couples its input data into the passing Ethernet frame. At time A6 the frame has arrived back at master. The
next data processing cycle commences at time B1.

In order to achieve the required time resolution of 50 µs, the user manually enters a constant user shift time
of 50 µs for the SYNC0 signal in the second input module, as shown in the above dialogs. "Term x+1"
always converts its input signals 50 µs after "Term x" at time A7, B7, etc. "Term x+1" then couples the data
determined at time A7 into the Ethernet frame at time B5, shortly after B4, since in this example "Term x+1"
is located after "Term x".
Fig. Sample application for a manual shift time on SYNC0 provides no information about the position of the
data in the Ethernet frame – only the time axis is shown to the right!

Both input modules therefore cyclically convert the input value every 100 µs with a tolerance of < 100 ns, but
with a constants offset of 50 µs. The user now has to interpret the process data generated in this way in the
right time order within the PLC program. The associated terminals can support this process through a
timestamp for process data, as described in the respective documentation.

7.2.3 Distributed Clocks settings in the Beckhoff TwinCAT System
Manager (2.11)

NOTE
Attention! No plausibility check takes place!
The mentioned notes and information should be used advisedly.
The EtherCAT master automatically allocates settings that support reliable and timely process data acquisi-
tion.
User intervention at this point may lead to undesired behavior.
If these settings are changed in the Beckhoff TwinCAT System Manager, no plausibility checks are carried
out on the software side. Correct function of the EtherCAT slaves with all conceivable setting options can-
not be guaranteed!
Unless specified otherwise in the associated slave documentation, we strongly advise against changing the
automatic settings.

Validity of the following settings
The setting options described below refer to Beckhoff TwinCAT 2.11 Build 1540. More recent edi-
tions can have a different user interface design; however, usage remains analogously the same.

With the launch of TwinCAT 2.11, new features are available in the System Manager and the PLC that make
the commissioning of the Distributed Clocks slaves (DC slaves) simpler and clearer. These are

• System Manager
◦ individual display of the shift time for each slave
◦ external synchronization is possible

• PLC
◦ new function F_GetCurDcTaskTime
◦ new function F_GetActualDcTime

Statements made in this document in the context of TwinCAT 2.10 remain valid.

System Manager - display of the time of action

In the System Manager, from TwinCAT 2.11 on, an optional display allows the online offsetting when outputs
are set from the point of view of the controller, or the time from when read inputs originate. The following
information applies exclusively to Distributed Clocks slaves.

For basic understanding, a complete EtherCAT update cycle is explained here by way of an example – in the
example a digital input will be read and output to a digital output. These are in both cases DC-based slaves,
therefore an EL1202-0100 (input, yellow) and an EL2202-0100 (output, red) are used.

Distributed Clocks

EtherCAT250 Version: 5.6

Fig. 267: Topology and principle of operation used in the example

Introductory remarks:

• EtherCAT is configured correctly and executes a fieldbus cycle at EtherCAT ‘IoUpdate’ with a cycle
time in this example of 100 µs after each PLC ‘calc’ cycle.
SeperateInputUpdate or "IO on task start" is not used in this example.

• In the EtherCAT cycle, the input data is collected from the slaves whilst at the same time the output
data is written to the slaves.

• The slave clocks are synchronized to the EtherCAT master by the DC system.
• An external synchronization of TwinCAT to a higher-level reference clock does not take place in this

example.

New in TwinCAT 2.11 is the possibility to determine the time of CurTaskTime in the PLC online at runtime by
calling the function F_GetCurDcTaskTime. The time at which the EtherCAT frame arrives at the first DC-
capable device (Fig. Topology and principle of operation used in the example, B) is the central time to which
the entire system is regulated. It corresponds to the CurTaskTime of the preceding cycle, which means: If
the function F_GetCurDcTaskTime is called in PLC cycle A, it reports time B. This value remains constant
even after repeated determination within this task cycle. From the point of view of the running PLC program
this is the "now" time. From this "now" perspective the controller sees

• its input data: these were obtained x time ago in the field.
• its output data: these will become effective y time later in the field

The x or y times respectively are constant in each cycle if the EtherCAT system with Beckhoff TwinCAT
EtherCAT Master is running stably.

However, this approach is only permissible because the DC system determines exactly when input data is
read and output data is output; therefore, it cannot be used for slaves without DC functionality (such as
EL200x or EL100x).

The x and y times are now available as pre-calculated values in the System Manager in TwinCAT 2.11 for
linking to the controller:

• DcInputShift: so ‘old’ is the input data from the point of view of the ‘now’ time
• DcOutputShift: so much later will the output data become effective in the field.

Note

Based on the internal real-time, TwinCAT triggers the task/NC/PLC/... The aim of the control is to always let
the (first) EtherCAT frame arrive at the first DC-capable EtherCAT slave at the cycle interval (e.g. 1 ms). This
is made more difficult or impossible, if the PLC/task has a very irregular/fluctuating execution time, resulting
in synchronization problems at the fieldbus. Appropriate buffer can be provided through the TwinCAT setting
"percent of cycle time".

Distributed Clocks

EtherCAT 251Version: 5.6

Fig. 268: TwinCAT EtherCAT master setting, section DistributedClocks

Die TwinCAT Echtzeitregelung versucht durch entsprechendes Triggern/Starten der PLC/NC/sonstige Task,
trotz der evtl. schwanken Ausführungszeit

Sample

Let us consider the EL1202-0100 in the above example at a cycle time of 100 µs (100,000 ns) in the
configuration.

Fig. 269: Process data

Since it is configured like this, the terminal informs about the following in the online state:

• DcOutputShift = 90.000 [ns]
• DcInputShift = 110.000 [ns]

Comments
• Both time values consist of 32 bits [1 digit = 1 ns] and are therefore sufficient for approx. 4.2 seconds
• Both are to be considered ‘logically’:

◦ positive values for outputs point to the future
◦ positive values for inputs point to the past

• Each slave displays both values; which value needs to be taken into account must be judged by the
presence of input and/or output variables.

The EL1202-0100 is an input terminal and thus in the ‘InputBased’ DC group - it works in a standard fashion,
i.e. in sync with all of the DC input modules, the yellow symbols in Fig Topology and principle of operation
used in the example. In addition, it has only input variables. Thus, especially useful is the consideration of
the DcInputShift value:
From the point of view of the ‘now’ time of the controller, the input value Input= 1 i.e. 110,000 ns is ‘old’.

Note: The EL1202-0100 also provides the exact latch time as the NextLatchTime process parameter, a
feature that not all DC slaves support.

Distributed Clocks

EtherCAT252 Version: 5.6

Sequence by way of an example

Fig. 270: EtherCAT Update (schematic)

In this example, the digital input B is to be read and immediately output again on a digital output J. We follow
the sequence (blue):

• A: the DC unit in the EL1202-0100 initiates the ‘latching’ of the inputs with SyncIn - this point in time is
fixed and is defined by the shift times in the master/slave.
this ‘latching’ must take place in such a timely manner that the data are securely available before the
collecting frame despite any fluctuations.

• B: the inputs are read and a device depending delay occurs - the data is ready to be picked up at time
C.
Note: the delay in the EL 1202 is approx. 0 µs.

• D: The data are collected by the EtherCAT telegram and stored in the input process image of the
controller.
The EtherCAT frame successively passes through the slaves, at successive points in time. The FIRST
DC-capable slave, the so-called reference clock, plays a special role: the time at which the (first)
EtherCAT frame arrives at this slave is the central point in time CurTaskTime

◦ The real-time control is aligned to this time: since the central, fixed reference time runs in this
slave, the real-time is adjusted based on early/late arrival of the frame.

◦ It is the time that is also used in the PLC as a reference point for all shift times DcInputShift/
DcOutputShift.
Sample: In the PLC cycle "Calc X", the function F_GetCurDcTaskTime returns the time P
(although from the perspective of Calc X it is slightly in the future). On this basis, DcInputShift and
DcOutputShift can then be taken into account accordingly.

• After the calculation E, the output data is output with the next IO cycle or EtherCAT update to the field:
F, G.

• With a sufficient safety margin to the fieldbus cycle, the data is output, triggered by the SyncOut of the
DC unit in the EL2202-0100.

• H, J: Depending on the device, a device delay is still to be taken into account until the data is output.
Note: the delay in the EL2202 is < 1 µs.

The tasks B and J, which are critical for the user, can always be set by the specifications DcInputShift (M)
and DcOutputShift (N) in relation to the now-time (P).

Note: The function SeparateInputUpdate currently (2015-06, TwinCAT 3.1 b4018) has no automatic effect on
the calculation of DcInputShift/DcOutoutShift. The (input) shift times of the corresponding terminals should
be adjusted manually, as applicable.

Checking the effectiveness of DC from the point of view of the controller

The above-mentioned values DcInputShift and DcOutputShift are theoretical values which are valid if the
EtherCAT system is running stably. The default settings in the System Manager are defined such that these
values are reliably adhered to in virtually all cases.

Distributed Clocks

EtherCAT 253Version: 5.6

Typical reasons why they are occasionally or systematically not complied with in the application are:

• poor quality real-time e.g. when using third-party hardware
• cycle timeout due to program errors
• incorrect task prioritization
• LostFrames or otherwise incorrect Ethernet frames, for example, due to faulty wiring
• the SYNC pulses at the slave come at the wrong time due to manual DC setting

Nevertheless, it can be useful in the field to check the actual number of read/write operations that have taken
place, for example, during commissioning or the manual optimization of DC slaves. As a check, the following
are recommended:

• for input slaves
◦ CycleCounter:

Some slaves (see documentation) such as the EL37xx or the EL12xx offer a continuous
CycleCounter that is incremented in each slave cycle. This can be monitored in the controller.

◦ InputToggle:
Some slaves offer this input variable, which toggles in every successful slave cycle.

◦ WorkingCounter, status:
Monitoring this status information is obligatory

• for output slaves
◦ WorkingCounter, status:

Monitoring this status information is obligatory
◦ local error counters:

Some slaves (see documentation) expect on their part an incremented CycleCounter from the
controller and increment an error counter locally if the controller does not follow this. This error
counter in the slave can be read back by the controller. The EL2262 or EL47xx have this
mechanism.

System Manager – Shift Time settings

With respect to the shift time, very similar dialogues can be found in the advanced dialogue of EtherCAT
masters and slaves, for which reason they are discussed here together.

Fig. 271: Local slave shift time

The term ‘shift time’ in the settings dialogs differs in meaning from the above-mentioned DcInput/OutputShift;
compare with Figs. EtherCAT Update (schematic) und Local slave shift time!

• In the TwinCAT settings dialogues, the shift time is specified from the time of the IoUpdate and,
logically, originates from the range [-cycle time … 0 … +cycle time]
The internal SYNC pulse in the slave is triggered this much earlier in the case of inputs (Fig. Local
slave shift time, yellow, "A") or this much later in the case of outputs (Fig. Local slave shift time, red,
"B") in relation to the time of the IoUpdate.
However, this does not take into account that some time may be needed to transport the data from/to
the slaves! This is only done by

Distributed Clocks

EtherCAT254 Version: 5.6

• DcInput/OutputShift according to Fig. EtherCAT Update (schematic), which also takes into account
SeperateInputUpdate or "IO on task start".

The following applies for setting: effective shift time = master shift time + slave shift time

In the EtherCAT master:

Fig. 272: EtherCAT master setting

Among other things, on the basis of the cycle time, TwinCAT has shifted the group of output modules from
the point of view of CurTaskTime by 37.6 µs into the future here; the input modules, conversely, will read
their inputs 10 µs before the CurTaskTime. These two times correspond to A/B from Fig. Local slave shift
time. If necessary, they can be modified by means of additional entries.

Distributed Clocks

EtherCAT 255Version: 5.6

In the EtherCAT slave:

Fig. 273: EtherCAT slave setting

The shift time is displayed from the (default) point of view of the output modules in the slave dialogue - the
EL1202-0100 shown here is an input module; it will therefore be automatically specified to
BasedOnInputReference and its SYNC signal will thus be (-37.6 - 10 µs) ahead of the output modules.

Fig. 274: Shift calculation in the slave dialogue

When a slave is to be ‘shifted’ manually, consistent values can be entered in the UserDefined field.

• Values in the range 10 – 30 % of the cycle time are consistent.
• Changes in the DC entries will become effective only after the activation of the configuration and a

restart of the EtherCAT system.

Displaying the shift time

The display of the individual slave shift times is possible via the advanced settings of the slave.

Distributed Clocks

EtherCAT256 Version: 5.6

Fig. 275: Displaying the DC shift times

Advanced Settings
• Continuous Runtime Measuring

Fig. 276: Continuous setting

If activated, TwinCAT cyclically measures the runtimes between the EtherCAT devices. It is recommended to
retain this setting. Deactivation can create space for cyclic data in the case of a very short cycle time,
because the NOP datagram is then dispensed with.

Fig. 277: Runtime Measuring

• SyncWindowMonitoring

If activated, EtherCAT DevState shows in bit 12 whether all DC devices are maintaining their local
clocks within the specified window.

Distributed Clocks

EtherCAT 257Version: 5.6

Fig. 278: DevState input

A cyclic BRD command on 0x092C (system time difference) is used for this.
The information is only usable if the first EtherCAT device also contains the master clock.

• Show DC System Time

If activated, the current DC time is displayed in the inputs of the EtherCAT master as a copy from the
master clock. Since the read out process is subject to the fieldbus transport, preference should be
given to the PLC blocks in order to obtain the current DC system time.

Fig. 279: DcSysTime inputs

Distributed Clocks diagnosis

The TwinCAT System Manager offers the possibility in an online state to make a preliminary statement about
the quality of the current real-time.

Sequence:

• If a task is called, it calculates the time of the next call with the current time and its own cycle time.
• If it is then called on in the next cycle, it compares this expected value with the actual time.
• The deviation is illustrated as shown below.

Distributed Clocks

EtherCAT258 Version: 5.6

Fig. 280: Online DC diagnosis

Criterion Good Bad
Asymmetry An asymmetry of positive and negative

deviations is required. This represents the
drift ratio between the master clock and
the TwinCAT clock.

If the ratio is 0:100 or 100:0, the DC system is
inoperative.

Distribution of
the deviation

The deviation values should be
predominantly at low levels, see Fig.
Online DC diagnosis - adjustment required

If exclusively values in the class "> = 500 µs"
occur, the DC system is inoperative.

A system according to Fig. Online DC diagnosis - adjustment required, for example, is not suitable for fast
EtherCAT applications with a cycle time of, say, 100 µs and may require adjustments.

Fig. 281: Online DC diagnosis - adjustment required

7.2.4 Distributed Clocks & TwinCAT PLC
Validity of the following settings
The following information is based on TwinCAT 2.11 build 1539. More recent editions can have a
different user interface design; however, usage remains analogously the same. Subfunctions may
already have been included in the predecessor versions, but it should be noted that the same Twin-
CAT version (e.g. 2.11) must be present on both the target system and the programming system in
order for the latest functions to be supported.

From the point of view of the PLC, TwinCAT 2.11 is a continuous development of TwinCAT 2.10. The PLC
libraries have been expanded to include more features. The following libraries are of particular interest for
use with Distributed Clocks functions:

Distributed Clocks

EtherCAT 259Version: 5.6

• TcUtilities.lib
◦ Functions for the treatment of 64-bit values: UINT64 and INT64
◦ Functions for reading different time sources

• TcEtherCAT.lib
◦ Functions for the manipulation of EtherCAT devices
◦ Functions for reading the DC times

These libraries are included in every TwinCAT installation.

Fig. 282: PLC Libraries

Working with DC times in the controller

From the perspective of the controller the distributed clock time has the following characteristics:

• Unit 1 ns
• Universal zero point 1.1.2000 00:00, i.e. for variable evaluations an offset of 2000 years has to be

added

Distributed Clocks

EtherCAT260 Version: 5.6

• Scope up to 64 bit (sufficient for 584 years). However, some EtherCAT slaves only support a 32 bit
scope, i.e. the register overflows locally after approx. 4.2 seconds and starts again at 0.

The following 3 data types are recommended for handling DC times

• T_DCTIME from TcEtherCAT.lib
This is based on T_ULARGE_INTEGER and is therefore unsigned. It can be used for linking with
suitable hardware variables

• T_ULARGE_INTEGER from TcUtilities.lib
Unsigned 64-bit data type

• T_LARGE_INTEGER from TcUtilities.lib
Signed 64-bit data type, negative numbers are represented in two's complement notation (underflow
below 0 --> 0xFFFF FFFF FFFF FFFF etc.)
TcUtilities.lib (section INT64) provides numerous relevant functions. Of particular significance are the
cast functions LARGE_TO_ULARGE and vice versa.
This type should be used when working with time differences that may be negative.
If TwinCAT is used for external synchronization, negative times will inevitably occur in the offset values.

64- vs. 32-bit representation
Some EtherCAT slaves can only handle 32 bit values for representing the DC time or handle it as a
process data. In order to prevent problems caused by overflow (every 4.2 seconds), we strongly
recommend using 64-bit times in the controller.
• 32-bit times supplied to the PLC must be complemented with the current High part
• In this case only the Low part (lower 32 bit) should be transferred to the hardware

This sample project

 (https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469155979.zip) contains a
function block that cyclically adds the high part to a 32-bit DC time to make 64 bits.

Reading the DC time

As described [} 224], there are several time sources on a TwinCAT PC; of these, the Distributed Clock time
is crucial for the EtherCAT system. Usually, the first DC-capable slave is the EtherCAT master clock; the
controller, with its software form of the DC clock, is synchronized to this master clock. Hence, the current DC
time is available in the controller.

In the PLC there are 4 possibilities to access the current DC time, the "now" time, during task runtime.

• Readout of the DcSysTime input variable in the input data of the EtherCAT device (see System
Manager description, not recommended)

• TcEtherCAT.lib F_GetActualDcTime
• TcEtherCAT.lib: F_GetCurDcTickTime
• TcEtherCAT.lib: F_GetCurDcTaskTime

Compatibility
The functions F_GetActualDcTime and F_GetCurDcTaskTime can only be used with TwinCAT ver-
sion 2.11 or higher (on programming and target system).

Sample:

A PLC task is configured in the System Manager with a cycle time of 500 µs and 100 µs base time.

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469155979.zip

Distributed Clocks

EtherCAT 261Version: 5.6

Fig. 283: Sample configuration with 500 µs cycle time

Fig. 284: Sample configuration with 500 µs cycle time

The evaluation of the above-mentioned procurement methods is enabled by Fig. Methods of reading the DC
time:

Fig. 285: Methods of reading the DC time

At runtime of the PLC program the three F_Get... functions are now called at any desired point. Then, with
TwinCAT 2.11 or higher, they return:

• F_GetActualDcTime: the actual current DC time. In the case of a repeated call within a task,
F_GetActualDcTime thus also returns different values.

• F_GetCurDcTickTime: Moment of the last base time. A repeated call only returns different values if
there lies at least 1 base time in between.
If base time = cycle time, or is called at the beginning of a task, then this function returns the same
result as

• F_GetCurDcTaskTime: ‘now’ time of this task, to which the slave shift times reference.
It is recommended to use this function as the basis of DC operations.

The contents of DcSysTime come from the field side master clock - this copying procedure is subject to
fluctuations over time and therefore does not advance precisely with cycle time. This also applies to other
local DcSystem times transferred as process data from the hardware.

Distributed Clocks

EtherCAT262 Version: 5.6

7.2.5 Synchronization modes of an EtherCAT slave
Information for advanced user
The following information is not necessary for standard applications! Extended basic knowledge of
CoE (CAN over EtherCAT) and a deeper understanding of the EtherCAT protocol are required in or-
der to utilize the following information.

NOTE
Attention! Modification of parameters can have undesired effects!
Imprudent manipulation of the parameters described below can impair the functionality of the EtherCAT
slave.

An EtherCAT slave is an electronic device that carries out cyclical sequences of calculations and/or data
copying tasks at a certain interval (cycle). The EtherCAT slave working cycle (e.g. in the range of a few µs
up to several ms) can be derived from different sources. Several EtherCAT slaves and/or the EtherCAT
master can be operated synchronously, e.g. via the Distributed Clocks [} 234] procedure. Associated
examples were already mentioned in the introduction page for distributed clocks.

Synchronization or tuning does not refer to physical coupling of a processor cycle for electronic equipment in
the MHz or GHz range. Instead it refers to starting of tasks at a higher logical level based on the parameters
described below. Examples for such tasks are: Setting outputs, reading inputs, copying memory, initiate
calculations, etc.

The following synchronization modes are described in this document:

• Free Run [} 264] - the EtherCAT slave is not synchronized with EtherCAT. The slave operates
autonomously based on its own cycle and is not synchronized with the EtherCAT cycle.

• Synchronous with SM event [} 266] - the EtherCAT slave is synchronized with the SyncManager 2
(SM2) event (if the cyclical outputs are transferred) or the SM3 event (if only the cyclical inputs are
transferred). The SM2/SM3 event is triggered by the SyncManager when a passing frame is
processed.

• Synchronous with SYNC event (distributed clocks) [} 269] - the EtherCAT slave is synchronized with the
SYNC0 or SYNC1 event of the distributed clock system. This type of application was already described
in detail above.

All parameter described below are listed as objects in the CoE list of the EtherCAT slave. They can be read
online by the slave or determined offline via XML file describing the slave.

Presence of CoE objects
Even if an EtherCAT slave supports the procedures described below, it does not necessarily mean
that the described parameters are accessible for the user or the master via a CoE list. Only Ether-
CAT slaves with adequate "intelligence" are able to manage a CoE list.
Several Beckhoff EtherCAT terminals do not have a CoE list, which means that the parameters de-
scribed below cannot be displayed or manipulated in these EtherCAT slaves. The functions may
nevertheless be available, if they are managed via internal registers.

Determining the synchronization mode

The different synchronization modes can be determined through different combinations of sub-indices
0x1C32 and 0x1C33.

"--" within the table indicates that the respective sub-index is either not used, may be "0", or does not exist.

Distributed Clocks

EtherCAT 263Version: 5.6

Sync Mode Synchro-
nization
Type
0x1C32:0
1

Synchro-
nization
Type
0x1C33:01

Output
Shift
Time
0x1C32:0
3

Input Shift
Time
0x1C33:03

Calc and
Copy Time
0x1C32:06

Calc and
Copy
Time
0x1C33:0
6

Delay
Time
(0x1C32:0
9)

Delay Time
(0x1C33:09)

Fixed
SYNC0
Cycle
Time

1 Free Run Mode
1 Free Run 0x00 0x00 -- -- -- -- -- -- --

2 SM Event Mode
2 SM2 * 0x01 0x22 -- -- -- -- -- -- --
2 SM3 * -- 0x01 -- -- -- -- -- -- --
3 SM2, Shift Input

Latch *
0x01 0x22 -- !=0 ** -- !=0 -- -- --

3 SM3, Shift Input
Latch *

-- 0x01 -- !=0 ** -- !=0 -- -- --

3 DC Mode
4 DC 0x02 0x02 -- -- !=0 !=0 !=0 -- --
5 DC, Shift Out-

puts Valid and
Input Latch with
Shift

0x02 0x02 !=0 ** !=0 ** !=0 !=0 !=0 !=0 --

5 DC, Shift of Out-
puts Valid with
SYNC1

0x03 0x02 !=0 *** !=0 ** !=0 !=0 !=0 !=0 --

5 DC, Shift of In-
put Latch with
SYNC1

0x02 0x03 !=0 ** !=0 *** !=0 !=0 !=0 !=0 --

4 Subordinated Application Controller Cycles
4 DC, Shift Out-

puts Valid/ Input
Latch

0x03 0x02 or
0x03

!=0 ** !=0 ** !=0 !=0 !=0 !=0 !=0

Table 1: Determining the synchronization mode

* If outputs are available, the slave is generally synchronized with the SM2 event. If no outputs are available,
the slave is synchronized with the SM3 event.

** Can be modified, if the terminal is able to operate with variable shift times

*** Shift time can be overwritten (SYNC1 cycle time + delay time)

Terminology

Copy and Prepare Outputs

With a trigger event (local timer event, SM2/3 event, or SYNC0/1 event) output data are read from the
SyncManager output data area and are then available for mathematical calculations, for example.
Subsequently the physical output signal is generated and made available for the process with an "Outputs
Valid" ID.

"Copy and Prepare Outputs" describes the total time required for copying of process data from the
SyncManager into the local memories and any additional mathematical calculations and hardware delays
(depending on the implementation, including software processing time). The individual times are not
determined in more detail. They match the values described in SyncManager object 0x1C32:

Described time SyncManager object 0x1C32
Copying of process data from the SyncManager and mathematical
calculations

Calc and Copy Time
(0x1C32:06)

Hardware delay time Delay Time (0x1C32:09)

"Get and Copy Inputs"

"Get and Copy Inputs" calculates the total time for hardware delays during reading of the input signal,
mathematical calculations, and copying the input process data into the input data area of SyncManger 3. The
individual times are not determined in more detail. They match the values described in SyncManager object
0x1C33:

Distributed Clocks

EtherCAT264 Version: 5.6

Described time SyncManager object 0x1C32
Mathematical calculations and copying of process data from the local
memory to the SyncManager

Calc and Copy Time
(0x1C33:06)

Hardware delay to "Input Latch" Delay Time (0x1C33:09)

The input values are available in the input data area of SyncManger 3 after the min. cycle time (0x1C32:05).

Outputs Valid
With the "Outputs Valid" time the outputs are available for the process (e.g. as electrical signal).

Start Driving Outputs
At the "Start Driving Outputs" time the µC has set its outputs. The hardware "Delay Time" (0x1C32:09) is the
delay between "Start Driving Outputs" and "Outputs Valid".

Start Latch
The "Start Latch" time indicates the start of the "Input Latch" process. Between the "Start latch" time and the
"Input Latch" time a delay occurs due to the hardware, dependencies relating to the slave implementation,
and software processing time, and mapped in the "Delay Time" 0x1C33:09.

Input Latch
At the "Input Latch" time acquisition of input data is complete. At this stage any mathematical calculations
have not yet been carried out, and the data have not yet been copied into the data area of the SyncManager.

User Shift Time
The "User Shift Time" describes the jitter of the master.

SYNC1 Cycle Time
The "SYNC1 Cycle Time" can be used for shifting the "Start Input Latch" or "Start Driving Outputs". The
"SYNC1 Cycle Time" is represented in register 0x0984:0x0987. It describes the shift between the SYNC0
and SYNC1 signal (SYNC0 is always the reference signal)

Shift Time
The "Shift Time" describes the time between the sync events (SM2 event, SM3 event, SYNC0, SYNC1) and
the "Outputs Valid" or "Input Latch" times. Writeable value, if the slave supports shifting of "Outputs Valid" or
"Input Latch".

Operation mode 1 - Free Run

In "Free Run" mode the local cycle is triggered through a local timer interrupt of the application controller.
The cycle time can be modified by the master (optional) in order to change the timer interrupt. In "Free Run"
mode the local cycle operates independent of the communication cycle and/or the master cycle.

Optional features

The slave can have a variable "Cycle Time" (0x1C32:02 can be changed). In this case the "Minimum Cycle
Time" (0x1C32:05) is also variable.

Distributed Clocks

EtherCAT 265Version: 5.6

Fig. 286: Local cycle "Free Run" synchronization

Tables "0x1C32 Free Run" and "0x1C33 Free Run" explain the application of these objects in "Free Run"
mode.

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x00: Free Run
2 Cycle Time r or rw optional Local cycle time from application

controller
3 Shift Time -- --
4 Synchronization Types

supported
r required Bit 0: Free Run supported

5 Minimum Cycle Time r conditional required if 0x1C32:02 variable
6 Calc and Copy Time -- --
7 -- -- --
8 Get Cycle Time -- --
9 Delay Time -- --
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small -- --
12 SM-Event missed -- --
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed -- --
31:15 -- -- --
32 Sync Error -- --

Table 2: 0x1C32 Free Run

Distributed Clocks

EtherCAT266 Version: 5.6

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x00: Free Run
2 Cycle Time r or rw optional same value as 0x1C32:02
3 Shift Time -- --
4 Synchronization Types

supported
r required same value as 0x1C32:04

5 Minimum Cycle Time r conditional same value as 0x1C32:05
6 Calc and Copy Time -- --
7 -- -- --
8 Get Cycle Time -- --
9 Delay Time -- --
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small -- --
12 SM-Event missed -- --
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed -- --
31:15 -- -- --
32 Sync Error -- --

Table 3: 0x1C33 Free Run

Operation mode 2 - Synchronous with SM event

The local cycle is started when the SM2 event [with cyclical outputs] or the SM3 event [without cyclical
outputs] is received.
If the outputs are available, the slave is generally synchronized with the SM2 event. If no outputs are
available, the slave is synchronized with the SM3 event, e.g. for cyclical inputs.

In this mode the following options are available:

• Synchronous with SM2/3 event [} 266]

• Synchronous with SM2/3 event, shifting of the "Input Latch" time [} 268]

Synchronous with SM2/3 event

The local cycle is started when the SM2/3 event is received.

Fig. 287: Local cycle, synchronization with SM2/3 event

Distributed Clocks

EtherCAT 267Version: 5.6

Tables "0x1C32 synchronous with SM 2/3 event" and "0x1C33 synchronous with SM 2/3 event" explain the
application of these objects in mode "Synchronous with SM 2/3 event".

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x01: Synchronous - synchronized

with SM 2 event
2 Cycle Time r or rw optional Communication cycle time
3 Shift Time -- --
4 Synchronization Types

supported
r required Bit 1: Synchronous SM supported

5 Minimum Cycle Time r required
6 Calc and Copy Time -- --
7 -- -- --
8 Get Cycle Time rw conditional****
9 Delay Time -- --
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required
12 SM-Event Missed r optional
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed r optional
31:15 -- -- --
32 Sync Error r conditional Supported if "SM Event Missed"

Counter is used

**** used in synchronous mode or in DC mode with variable cycle time
Table 4: 0x1C32 synchronous with SM 2/3 event

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x01: Synchronous - synchronized

with SM 3 event (for transfer of
inputs in SAFE-OP and OP status)
0x22: Synchronous - synchronized
with SM 2 event (for transfer of
outputs in SAFE-OP and OP
status)

2 Cycle Time r or rw optional same value as 0x1C32:02
3 Shift Time -- --
4 Synchronization Types

supported
r required same value as 0x1C32:04

5 Minimum Cycle Time r required same value as 0x1C32:05
6 Calc and Copy Time -- --
7 -- -- --
8 Get Cycle Time rw conditional**** same value as 0x1C32:08
9 Delay Time -- --
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required same value as 0x1C32:0B
12 SM-Event missed r optional same value as 0x1C32:0C
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed r optional same value as 0x1C32:0E
31:15 -- -- --
32 Sync Error r conditional same value as 0x1C32:20

**** used in synchronous mode or in DC mode with variable cycle time
Table 5: 0x1C33 synchronous with SM 2/3 event

Distributed Clocks

EtherCAT268 Version: 5.6

Synchronous with SM2/3 event, shifting of the "Input Latch" time

The input data should be logged as close as possible to the next SM2/3 event, in order to make the most
current input data available to the control system (master). This can be achieved by shifting the "Input Latch"
time closer to the SM2/3 event through modification of the "Shift Time" (0x1C33:03).

Fig. 288: Local cycle, synchronization with SM2/3 event, shifting of "Input Latch"

Tables "0x1C32 synchronous with SM 2/3 event, shifting of Input Latch" and "0x1C33 synchronous with SM
2/3 event, shifting of Input Latch" explain the application of these objects in mode "Synchronous with SM 2/3
event, if shifting of "Input Latch".

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x01: Synchronous - synchronized

with SM 2/3 event
2 Cycle Time r or rw optional Communication cycle time
3 Shift Time -- --
4 Synchronization Types

supported
r required Bit 1: Synchronous SM supported

5 Minimum Cycle Time r required
6 Calc and Copy Time -- --
7 -- -- --
8 Get Cycle Time rw conditional****
9 Delay Time -- --
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required
12 SM-Event missed r optional
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed r optional
31:15 -- -- --
32 Sync Error r conditional Supported if SM Event Missed

Counter is used

**** used in synchronous mode or in DC mode with variable cycle time
Table 6: 0x1C32 Synchronous with SM 2/3 event, shifting of the "Input Latch" time"

Distributed Clocks

EtherCAT 269Version: 5.6

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x01: Synchronous - synchronized

with SM 3 event (only if inputs are
available)
0x22: Synchronous with SM2
event (if outputs are available)

2 Cycle Time r or rw optional same value as 0x1C32:02
3 Shift Time rw required
4 Synchronization Types

supported
r required same value as 0x1C32:04

5 Minimum Cycle Time r required same value as 0x1C32:05
6 Calc and Copy Time r required
7 -- -- --
8 Get Cycle Time rw conditional**** same value as 0x1C32:08
9 Delay Time -- --
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required same value as 0x1C32:0B
12 SM-Event missed r optional same value as 0x1C32:0C
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed r optional same value as 0x1C32:0E
31:15 -- -- --
32 Sync Error r conditional same value as 0x1C32:20

**** used in synchronous mode or in DC mode with variable cycle time
Table 7: 0x1C33 Synchronous with SM 2/3 event, shifting of the "Input Latch" time"

Operation mode 3 - DC mode (distributed clock mode)

Practical aspects of the synchronization of several EtherCAT slaves with each other and with the EtherCAT
master were already described above. This section provides information about the internal parameter for the
following operation modes:

• DC mode (synchronous with SYNC0 event) [} 269]

• DC mode, shifting of on "Outputs Valid" and/or "Input Latch" [} 271]

• Distributed clocks - application with subordinate controller cycle [} 274]

DC mode (synchronous with SYNC0 event)

The local cycle is started when the SYNC0 event is received. The process data frame must be fully
processed in the slave before the next SYNC0 event is received.

Distributed Clocks

EtherCAT270 Version: 5.6

Fig. 289: Local cycle, synchronization with SYNC0 event

Tables "0x1C32 DC mode" and "0x1C33 DC mode" explain the application of these objects in DC mode.

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x02: DC SYNC0 - synchronized

with SYNC0 event
2 Cycle Time r optional SYNC0 cycle time (register

0x09A3:0x09A0)
Time between two SYNC0 events
The SYNC0 cycle time is entered
in this index

3 Shift Time -- --
4 Synchronization Types

supported
r required Bit 3:2: DC supported:

01 = DC
5 Minimum Cycle Time r required
6 Calc and Copy Time r required
7 -- -- --
8 Get Cycle Time rw conditional****
9 Delay Time r required
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required
12 SM-Event missed r optional
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed r optional
31:15 -- -- --
32 Sync Error r conditional Supported if SM Event Missed

Counter is used

**** used in synchronous mode or in DC mode with variable cycle time
Table 8: 0x1C32 DC mode

Distributed Clocks

EtherCAT 271Version: 5.6

Subindex Description Flag Use Description/default value
1 Synchronization Type r required 0x02: DC SYNC0 - synchronized

with SYNC0 event
2 Cycle Time r optional same value as 0x1C32:02
3 Shift Time -- --
4 Synchronization Types

supported
r required same value as 0x1C32:04

5 Minimum Cycle Time r required same value as 0x1C32:05
6 Calc and Copy Time r required
7 -- -- --
8 Get Cycle Time rw conditional**** same value as 0x1C32:08
9 Delay Time -- --
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required same value as 0x1C32:0B
12 SM-Event missed r optional same value as 0x1C32:0C
13 Shift Time Too Short -- --
14 RxPDO Toggle Failed r optional same value as 0x1C32:0E
31:15 -- -- --
32 Sync Error r conditional same value as 0x1C32:20

**** used in synchronous mode or in DC mode with variable cycle time
Table 9: 0x1C33 DC mode

DC mode, shifting of on "Outputs Valid" and/or "Input Latch"

The "Outputs Valid" time can be delayed through the "Shift Time" (0x1C32:03 = 0x02) or the SYNC1 event
(0x1C32:01 = 0x03). The "Shift Time" describes the time between the SYNC0 event and the "Outputs Valid"
time, while the SYNC1 cycle time describes the time until the "Start Driving Outputs" time.

The "Input Latch" time can either be delayed through the "Shift Time" (0x1C33:03 = 0x02) or the SYNC1
event (0x1C33:01 = 0x03). In this case the "Shift Time" describes the time between the SYNC0 event and
the "Input Latch" time, while the SYNC1 cycle time describes the time until the "Start Latch" time.

The SYNC1 signal can either be used for shifting the "Outputs Valid" or "Input Latch" time.

Distributed Clocks

EtherCAT272 Version: 5.6

Fig. 290: Local cycle, synchronization with SYNC0 event, shifting of inputs/outputs

Tables "0x1C32 DC mode, shifting of inputs/outputs" and "0x1C33 DC mode, shifting of inputs/outputs"
explain the application of these objects in DC mode with shifting of inputs/outputs.

Distributed Clocks

EtherCAT 273Version: 5.6

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required If "Shift Time" is used for delaying

the "Outputs Valid" time:
0x02: DC SYNC0 - synchronized
with SYNC0 event
If "SYNC1" signal is used for
delaying the "Outputs Valid" time:
0x03: DC SYNC1 - synchronized
with SYNC1 event

2 Cycle Time r required SYNC0 cycle time (register
0x09A3:0x09A0)
Time between two SYNC0 events
The SYNC0 cycle time is entered
in this index

3 Shift Time r or rw required The input is writeable if the "Shift
Time" is used for shifting the
"Outputs Valid" time

If SYNC1 is used for shifting the
"Outputs Valid" time, the SYNC1
cycle time + delay time
(0x1C32:09) can be copied by the
slave application into this entry.

4 Synchronization Types
supported

r required Bit 3:2: DC supported:
01 = normal DC

Bit 5:4: shift settings
00 = no output time shift

If "Shift Time" is used for shifting
the "Outputs Valid" time:
01 = output time shift with local
timer (Shift Time)
If "SYNC1" signal is used for
shifting the "Outputs Valid" time:
10 = output time shift with SYNC1

5 Minimum Cycle Time r required
6 Calc and Copy Time r required
7 -- -- --
8 Get Cycle Time rw conditional****
9 Delay Time r required
10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required
12 SM-Event missed r optional
13 Shift Time Too Short r optional
14 RxPDO Toggle Failed r optional
31:15 -- -- --
32 Sync Error r conditional Supported, if "SM Event Missed"

or "Shift Time Too Short" counter
is used

**** used in synchronous mode or in DC mode with variable cycle time
Table 10: 0x1C32 DC mode, shifting of inputs/outputs

Distributed Clocks

EtherCAT274 Version: 5.6

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required If "Shift Time" is used for delaying

the "Input Latch" time:
0x02: DC SYNC0 - synchronized
with SYNC0 event
If "SYNC1" signal is used for
delaying the "Input Latch" time:
0x03: DC SYNC1 - synchronized
with SYNC1 event

2 Cycle Time r required same value as 0x1C32:02
3 Shift Time r or rw required The input is writeable if the "Shift

Time" is used for shifting the "Input
Latch" time

If SYNC1 is used for shifting the
"Input Latch" time, the SYNC1
cycle time + delay time
(0x1C33:09) can be copied by the
slave application into this entry.

4 Synchronization Types
supported

r required Bit 3:2: DC supported:
01 = DC

Bit 5:4: shift settings
00 = no input time shift

If "Shift Time" is used for shifting
the "Input Latch" time:
01 = input time shift with local
timer (Shift Time)
If "SYNC1" signal is used for
shifting the "Outputs Valid" time:
10 = input time shift with SYNC1

5 Minimum Cycle Time r required same value as 0x1C32:05
6 Calc and Copy Time r required
7 -- -- --
8 Get Cycle Time rw conditional**** same value as 0x1C32:08
9 Delay Time r conditional This is used if the "SYNC1" signal

is used for shifting the "Input
Latch" time

10 SYNC0 Cycle Time -- --
11 Cycle Time Too Small r required same value as 0x1C32:0B
12 SM-Event missed r optional same value as 0x1C32:0C
13 Shift Time Too Short r optional same value as 0x1C32:0D
14 RxPDO Toggle Failed r optional same value as 0x1C32:0E
31:15 -- -- --
32 Sync Error r conditional same value as 0x1C32:20

**** used in synchronous mode or in DC mode with variable cycle time
Table 11: 0x1C33 DC mode, shifting of inputs/outputs

Distributed clocks - application with subordinate controller cycle

For slaves with fast local cycle times (e.g. control loops) the cycle time of the application controller may be
significantly faster than the communication cycle time and/or the SYNC0 cycle time. This is the case with
Beckhoff XFC oversampling terminals, for example.

Distributed Clocks

EtherCAT 275Version: 5.6

In this case two synchronization features are used:

1. Shifting of the "Outputs Valid" time
2. Shifting of the "Input Latch" time

DC, subordinate µC cycle, shifting of "Outputs Valid" and/or "Input Latch"

The "SYNC0" signal is used as a trigger for the local µC cycle. The "Outputs Valid" and "Input Latch" time is
triggered by the SYNC1 event and can only be shifted by the "Output Shift Time" or "Input Shift Time".

Fig. 291: DC, subordinate µC cycles, inputs/outputs delayed

Tables "01x32C32 DC mode, subordinate µC cycles, shifting of inputs/outputs" and "01x33C32 DC mode,
subordinate µC cycles, shifting of inputs/outputs" explain the application of these objects in DC mode for
subordinate µC cycles and shifting of the "Outputs Valid"/"Input Latch" time.

Distributed Clocks

EtherCAT276 Version: 5.6

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x03: DC SYNC1 - synchronized

with SYNC1 event
2 Cycle Time r or rw required SYNC1 cycle time (register

0x09A7:0x09A4)
Time between two SYNC1 events
SYNC1 cycle time can be copied
by the slave application to this
entry.

3 Shift Time rw optional
4 Synchronization Types

supported
r required Bit 3:2: DC supported:

10 = subordinate application

Bit 5:4: shift settings
00 = no output time shift
01 = output time shift with local
timer (Shift Time)

5 Minimum Cycle Time r required
6 Calc and Copy Time r required
7 -- -- --
8 Get Cycle Time rw conditional****
9 Delay Time r required
10 SYNC0 Cycle Time r required
11 Cycle Time Too Small r required
12 SM-Event missed r optional
13 Shift Time Too Short r optional
14 RxPDO Toggle Failed r optional
31:15 -- -- --
32 Sync Error r conditional Supported, if "SM Event Missed"

or "Shift Time Too Short" counter
is used

**** used in synchronous mode or in DC mode with variable cycle time
Table 12: 0x1C32 DC mode, subordinate µC cycles, shifting of inputs/outputs

Distributed Clocks

EtherCAT 277Version: 5.6

Subindex Description Flag Use Description/default value
1 Synchronization Type r or rw required 0x01: DC SYNC1 - synchronized

with SYNC1 event
2 Cycle Time r required same value as 0x1C32:02
3 Shift Time r optional
4 Synchronization Types

supported
r required Bit 3:2: DC supported:

10 = subordinate application

Bit 5:4: shift settings
00 = no input time shift
01 = input time shift with local
timer (Shift Time)

5 Minimum Cycle Time r required same value as 0x1C32:05
6 Calc and Copy Time r required
7 -- -- --
8 Get Cycle Time rw conditional**** same value as 0x1C32:08
9 Delay Time r required
10 SYNC0 Cycle Time r required same value as 0x1C32:0A
11 Cycle Time Too Small r required same value as 0x1C32:0B
12 SM-Event missed r optional same value as 0x1C32:0C
13 Shift Time Too Short r optional same value as 0x1C32:0D
14 RxPDO Toggle Failed r optional same value as 0x1C32:0E
31:15 -- -- --
32 Sync Error r conditional same value as 0x1C32:20

**** used in synchronous mode or in DC mode with variable cycle time
Table 13: 0x1C33 DC mode, subordinate µC cycles, shifting of inputs/outputs

7.2.6 EKxxxx - Optional Distributed Clocks support

Basic principles Distributed Clocks (DC)

The EtherCAT Distributed Clocks system comprises local clocks that are integrated in the EtherCAT slaves
and are synchronized by the EtherCAT master via special datagrams. Not all EtherCAT slaves support the
Distributed Clocks procedure. It is only supported by slaves whose function requires it. In the TwinCAT
System Manager a slave indicates its DC capability by showing "DC" in the settings dialog.

Fig. 292: DC tab for indicating the Distributed Clocks function

Once of these local clocks is the reference clock, based on which all other clocks are synchronized. See also
explanatory notes in the Basic EtherCAT documentation. The reference clock must be the first DC-capable
EtherCAT slave. By default TwinCAT therefore selects the first DC-capable device as reference clock. This is
shown (and can be modified by the user) under advanced properties of the EtherCAT master. The standard
setting should not be changed, except in cases where external synchronization is recommended in the
relevant documentation, for example.

https://download.beckhoff.com/download/Document/io/ethercat-terminals/ethercatsystem_en.pdf

Distributed Clocks

EtherCAT278 Version: 5.6

Fig. 293: Advanced Distributed Clocks settings in the EtherCAT master

Fig. Advanced distributed clocks settings in the EtherCAT master illustrates how TwinCAT selects the
EL1252 as reference clock by default, since the preceding components do not support DC.

Settings EtherCAT device

System and infrastructure devices such as EK1100 or EK1122 couplers and junction etc. do not require
Distributed Clocks to function properly. Nevertheless, it may be topologically expedient to designate the first
coupler in an EtherCAT system as reference clock, for example. For this reason, from a certain level the
infrastructure components are able to operate as reference clocks, based on special configuration settings.

The components support activation of Distributed Clocks, based on the following table:

Device XML revision in the configuration Serial number of the component
BK1150 from BK1150-0000-0016 from firmware 01: xxxx01yy
CU1128 from CU1128-0000-0000 from firmware 00: xxxx00yy
EK1100 from EK1100-0000-0017 from firmware 06: xxxx06yy
EK1101 from EK1101-0000-0017 from firmware 01: xxxx01yy
EK1501 from EK1501-0000-0017 from firmware 01: xxxx01yy
EK1501-0010 from EK1501-0010-0017 from firmware 02: xxxx02yy
EK1122 from EK1122-0000-0017 from firmware 01: xxxx02yy
EK1521 from EK1521-0000-0018 from firmware 03: xxxx03yy
EK1541 from EK1541-0000-0016 from firmware 01: xxxx01yy
EK1561 from EK1561-0000-0016 from firmware 01: xxxx01yy
EK1521-0010 from EK1521-0010-0018 from firmware 03: xxxx03yy
EK1814 from EK1814-0000-0016 from firmware 00: xxxx00yy

Table 1: DC support from rev/firmware version

To ensure that TwinCAT uses such a component as DC reference clock, a manual intervention during the
configuration setup is required, as shown here using the EK1100 as an example.
The checkboxes “Cyclic Mode Enable” and “Use as potential Reference Clock” must be set.

Distributed Clocks

EtherCAT 279Version: 5.6

Fig. 294: TwinCAT setting for using this component as reference clock

Activation of Distributed Clocks support
The (synchronization) procedure described here is only successful for the components described
above. The checkboxes can be set for other components, too, although the hardware does not sup-
port this function, unless specified in the respective documentation.
In particularly, please note that after commissioning the component may not be replaced with a pre-
vious version without DC support.

7.3 External synchronization

7.3.1 Basic principles
Using the sample programs
This document contains sample applications of our products for certain areas of application. The
application notices provided here are based on typical features of our products and only serve as
samples. The notices contained in this document explicitly do not refer to specific applications. The
customer is therefore responsible for assessing and deciding whether the product is suitable for a
particular application. We accept no responsibility for the completeness and correctness of the
source code contained in this document. We reserve the right to modify the content of this docu-
ment at any time and accept no responsibility for errors and missing information.

Distributed Clocks

EtherCAT280 Version: 5.6

TwinCAT clock hierarchy

Fig. 295: TwinCAT 2.11 clock hierarchy (subject to change)

The CE operating system uses a different system time. Using the DC clock is therefore recommended.

Basic principles

If EtherCAT components are used for external synchronization of TwinCAT, a time is provided for the local
controller that matches the higher-level time. As the fieldbus, EtherCAT makes the necessary operating
resources available, in particular EtherCAT’s own synchronization mechanism, distributed clocks. In other
words,

• in the TwinCAT controller the EtherCAT slaves and the EtherCAT master are synchronized locally in
TwinCAT (see also preceding pages).

• The controller is then adjusted based on the higher-level clock total as a slave clock with DC clock.

The procedure is as follows:

• The frequencies of the two time bases are synchronized
• The offset between the two time bases is determined and announced

Fig. 296: Frequency synchronicity

Note the following:

• After TwinCAT has started, the slave clock controller adjusts the frequency of its distributed clock time
based on the higher-level time:

◦ at the start of EtherCAT, the initial offset between the two times is determined.
◦ the subsequent adjustment keeps this offset constant and makes it known.
◦ the readjustment takes place continuously.

• In the case of failure of the synchronization (interruption of the connection, restart of one of the
systems), the behavior is as follows:

◦ once slave clock control resumes, a new offset is calculated and announced.
◦ the application must therefore continuously observe this offset.

• A new offset is also calculated, if the control limit of ± 1 cycle time is exceeded.
• This does not affect the BIOS clock (motherboard) or the operating system clock (Windows).

Distributed Clocks

EtherCAT 281Version: 5.6

• The TwinCAT clock also remains unchanged.
• The local DC time must still be used for tasks related to the respective station hardware (EtherCAT

slaves, terminals).
• If the TwinCAT time is used in the application, the TcToDc offset between the TwinCAT clock and the

DC clock must be taken into account.

Fig. 297: Synchronization of 2 TwinCAT IPCs with the aid of EtherCAT components

Using the synchronized time
In the adjusted station the "other" time from the master PC is known through:
Synchronized DC time = local DC time + offset
This synchronized time can now be used for data logging. The local DC time must still be used for
tasks related to the respective station hardware (EtherCAT slaves, terminals).

Cascading of synchronized TwinCAT systems

We advise against cascading of several time-synchronized TwinCAT systems. However, please note that
simple cascading already occurs if a TwinCAT system is controlled by an external clock based on GPS and
transfers its local time to a subordinate EtherCAT system via an EL6692 bridge terminal.

In the subordinate systems the respective DcToExt offset relative to the higher-level systems must be taken
into account.

Synchronized DC time = local DC time + DcToExtOffset local + Σ DcToExtOffset higher-level

The respective higher-level DcToExtOffsets can be transported through network variables, ADS, via the
EL6692 bridge terminal or any other channels. The subordinate system must take these offsets into account.

Distributed Clocks

EtherCAT282 Version: 5.6

Fig. 298: Cascade consisting of controlled TwinCAT systems

7.3.2 Sample: EL6692 bridge terminal
Using the sample programs
This document contains sample applications of our products for certain areas of application. The
application notices provided here are based on typical features of our products and only serve as
samples. The notices contained in this document explicitly do not refer to specific applications. The
customer is therefore responsible for assessing and deciding whether the product is suitable for a
particular application. We accept no responsibility for the completeness and correctness of the
source code contained in this document. We reserve the right to modify the content of this docu-
ment at any time and accept no responsibility for errors and missing information.

In this example, two Beckhoff IPCs with TwinCAT 2.11, b1539, will be synchronized with each other. One PC
is the master clock, the second (slave clock) synchronizes its ‘time’ to the first. As the fieldbus, EtherCAT
makes the necessary operating resources available, in particular EtherCAT’s own synchronization
mechanism, distributed clocks.

The procedure is as explained in the previous chapter.

The following must be observed:

• The master PC works autonomously on the basis of its DC time
• Following the start of TwinCAT, the slave PC readjusts its distributed clocks time to the master IPC:

◦ at the start of EtherCAT, the initial offset between the two times is determined.
◦ the subsequent adjustment keeps this offset constant and makes it known.
◦ the readjustment takes place continuously.

• In the case of failure of the synchronization (interruption of the connection, restart of one of the
systems), the behavior is as follows:

Distributed Clocks

EtherCAT 283Version: 5.6

◦ If the adjustment restarts in the slave PC, a new offset is calculated there and made known.
◦ the application must therefore continuously observe this offset.

• The local DC time must still be used for tasks related to the respective station hardware (EtherCAT
slaves, terminals).

• The EtherCAT cycle time must be identical in both systems.
• If different configurations are used in the two systems, i.e. the number, type and/or order of the slaves

is different, the automatically calculated shift times will also differ.
Sample: Both systems use an EL2202-0100, which are both supposed to switch their output at the
same time. A constant difference is measured, since different output shift times were calculated.
In the system with the smaller output shift time the shift time of the other system should be entered.

NOTE
Effect on devices when changing the shift times
Side effects relating to the function of the other slaves when the shift times are changed should be taken
into account!

• In a controlled system the time offset between the systems is subject to certain fluctuations.

 Sample program (https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/
zip/2469158155.zip), TwinCAT 2.11

Pay attention in the program to the use of ‘signed’ and ‘unsigned’ 64-bit variables as required.

Topology

Fig. 299: Topology of the sample program

Station Master: EK1100, EL2202, EL6692

Station Slave: EK1100, EL2202

In this example, the EL6692 is synchronized in the direction PrimarySide --> SecondarySide (RJ45
connection). Synchronization in the other direction is also possible.

EL6692 documentation
Please note the information in the EL6692 documentation regarding the system behavior of this ter-
minal.

Demo program

In this demo program, the slave’s own local DC time from the ReferenceClock in the EtherCAT strand is
offset by the time difference to the external synchronization device. This offset therefore only makes sense
on a platform that is a synchronization slave to one master.

The synchronization route can be
- another EtherCAT system; means: Beckhoff EL6692 bridge terminal (this example)
- an IEEE1588 system; means: Beckhoff EL6688 PTP terminal
- an arbitrary timer with time information (GPS, radio clock); means: TwinCAT ‘External Synchronization’
supplement

The principle:

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469158155.zip
https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469158155.zip

Distributed Clocks

EtherCAT284 Version: 5.6

TwinCAT cyclically receives (e.g. every second) a pair (64-bit, unit 1 ns) made up of an internal (DC) and an
external time stamp. These two time stamps are originally obtained simultaneously. The offset between the
two time bases is calculated from the initial difference and made known in the System Manager | EtherCAT
device | InfoData. Furthermore, the slave TwinCAT readjusts its own local DC time from the course of the
two time stamps with respect to each other.

Calculations:

• current control deviation = DcToExtOffset – (external time stamp – internal time stamp)
This value (‘signed’, 64-bit) is compared to an application-specific limit; the validity of the time is output
if within the limit

• local synchronized time = local DC time + DcToExtOffset
This ‘nuLocalTime’ (‘unsigned’, 64-bit) can now be used for data logging and events with a time
reference to the master PC clock.

Setting up TwinCAT 2.11

In the following procedure the complete system is set up as follows:

• EL6692 primary side (E-bus): Sync Master (i.e. reference clock)
• EL6692 secondary side (RJ45 sockets): Sync Slave (i.e. synchronized side)

The synchronization direction of the time can be set up the other way around; the instructions must then be
followed analogously.

Sync Master side

Fig. 300: Device on the master side

Fig. 301: Set the EL6692 PrimarySide to DC

Distributed Clocks

EtherCAT 285Version: 5.6

Fig. 302: Activate PDO 0x1A02 to display the time stamps

Timestamp PDO
The activation of the timestamp PDO indicates to the TwinCAT software on the respective side that
this side is to be synchronized, i.e. that it is the Sync Slave.
It is not necessary to activate the timestamp PDO on the Sync Master side (i.e. the side that repre-
sents the reference clock).

Fig. 303: Set the synchronization direction on the PrimarySide; in this case SyncSettings: Primary -->
Secondary

Distributed Clocks

EtherCAT286 Version: 5.6

Fig. 304: Activate the display of the DC offsets in the EtherCAT master; can be evaluated on the master side

Fig. 305: Master PC works with its own ReferenceClock as a basis

TwinCAT can now be activated and started on this side. All devices must be in OP, WorkingCounter = 0, no
LostFrames. The EL6692 time stamps on the PrimarySide remain at 0, because the SecondarySide has not
yet been configured.

Sync Slave side

The EL6692, SecondarySide is set to DC and 0x1A02 according to Figs. Set the EL6692 PrimarySide to DC
and Activate PDO 0x1A02 to display the time stamps.

After reloading the configuration (or restarting in ConfigMode, FreeRun), the synchronization direction can be
read out by means of GetConfiguration on the SecondarySide, see the fig. SecondarySide of the EL6692.

Distributed Clocks

EtherCAT 287Version: 5.6

Fig. 306: SecondarySide of the EL6692

Fig. 307: EtherCAT master settings, slave side

After the restart, the DC function of the EL6692 is known to the EtherCAT master; therefore, it now offers this
EL6692 as an ExternalSyncDevice in the DC dialogue.

The linking of the following variables is necessary for the evaluations; see the fig. Slave side.

Distributed Clocks

EtherCAT288 Version: 5.6

Fig. 308: Slave side

NOTE
Demo program
The following screenshots and information refer exclusively to the PLC demo program discussed here and
the sample code it contains, and not to the analysis functions of the system manager.
See also the note [} 282].

On the slave side, the start of the synchronization can be observed with the incorporated visualization.

Fig. 309: Start slave side

Only the local DC time is available on the slave side immediately after the start.

Distributed Clocks

EtherCAT 289Version: 5.6

Fig. 310: Time stamp known

Following receipt of the first time stamps via the EL6692, the offset is known; in this case it is around 3
minutes different to the time of the IPC used. Synchronization has begun; in this sample a window of ± 10 µs
is to be achieved.

Fig. 311: Synchronization successful

Configuration of the terminals

EtherCAT290 Version: 5.6

8 Configuration of the terminals

8.1 General configuration

8.1.1 EtherCAT subscriber configuration
In the left-hand window of the TwinCAT 2 System Manager or the Solution Explorer of the TwinCAT 3
Development Environment respectively, click on the element of the terminal within the tree you wish to
configure (in the example: EL3751 Terminal 3).

Fig. 312: Branch element as terminal EL3751

In the right-hand window of the TwinCAT System Manager (TwinCAT 2) or the Development Environment
(TwinCAT 3), various tabs are now available for configuring the terminal. And yet the dimension of
complexity of a subscriber determines which tabs are provided. Thus as illustrated in the example above the
terminal EL3751 provides many setup options and also a respective number of tabs are available. On the
contrary by the terminal EL1004 for example the tabs “General”, “EtherCAT”, “Process Data” and “Online“
are available only. Several terminals, as for instance the EL6695 provide special functions by a tab with its
own terminal name, so “EL6695” in this case. A specific tab “Settings” by terminals with a wide range of
setup options will be provided also (e.g. EL3751).

“General” tab

Fig. 313: “General” tab

Name Name of the EtherCAT device
Id Number of the EtherCAT device
Type EtherCAT device type
Comment Here you can add a comment (e.g. regarding the system).
Disabled Here you can deactivate the EtherCAT device.
Create symbols Access to this EtherCAT slave via ADS is only available if this control box is

activated.

Configuration of the terminals

EtherCAT 291Version: 5.6

“EtherCAT” tab

Fig. 314: “EtherCAT” tab

Type EtherCAT device type
Product/Revision Product and revision number of the EtherCAT device
Auto Inc Addr. Auto increment address of the EtherCAT device. The auto increment address can

be used for addressing each EtherCAT device in the communication ring through
its physical position. Auto increment addressing is used during the start-up phase
when the EtherCAT master allocates addresses to the EtherCAT devices. With
auto increment addressing the first EtherCAT slave in the ring has the address
0000hex. For each further slave the address is decremented by 1 (FFFFhex, FFFEhex
etc.).

EtherCAT Addr. Fixed address of an EtherCAT slave. This address is allocated by the EtherCAT
master during the start-up phase. Tick the control box to the left of the input field in
order to modify the default value.

Previous Port Name and port of the EtherCAT device to which this device is connected. If it is
possible to connect this device with another one without changing the order of the
EtherCAT devices in the communication ring, then this combination field is
activated and the EtherCAT device to which this device is to be connected can be
selected.

Advanced Settings This button opens the dialogs for advanced settings.

The link at the bottom of the tab points to the product page for this EtherCAT device on the web.

“Process Data” tab

Indicates the configuration of the process data. The input and output data of the EtherCAT slave are
represented as CANopen process data objects (Process Data Objects, PDOs). The user can select a PDO
via PDO assignment and modify the content of the individual PDO via this dialog, if the EtherCAT slave
supports this function.

Configuration of the terminals

EtherCAT292 Version: 5.6

Fig. 315: “Process Data” tab

The process data (PDOs) transferred by an EtherCAT slave during each cycle are user data which the
application expects to be updated cyclically or which are sent to the slave. To this end the EtherCAT master
(Beckhoff TwinCAT) parameterizes each EtherCAT slave during the start-up phase to define which process
data (size in bits/bytes, source location, transmission type) it wants to transfer to or from this slave. Incorrect
configuration can prevent successful start-up of the slave.

For Beckhoff EtherCAT EL, ES, EM, EJ and EP slaves the following applies in general:

• The input/output process data supported by the device are defined by the manufacturer in the ESI/XML
description. The TwinCAT EtherCAT Master uses the ESI description to configure the slave correctly.

• The process data can be modified in the System Manager. See the device documentation.
Examples of modifications include: mask out a channel, displaying additional cyclic information, 16-bit
display instead of 8-bit data size, etc.

• In so-called “intelligent” EtherCAT devices the process data information is also stored in the CoE
directory. Any changes in the CoE directory that lead to different PDO settings prevent successful
startup of the slave. It is not advisable to deviate from the designated process data, because the
device firmware (if available) is adapted to these PDO combinations.

If the device documentation allows modification of process data, proceed as follows (see Figure Configuring
the process data).

• A: select the device to configure
• B: in the “Process Data” tab select Input or Output under SyncManager (C)
• D: the PDOs can be selected or deselected
• H: the new process data are visible as linkable variables in the System Manager

The new process data are active once the configuration has been activated and TwinCAT has been
restarted (or the EtherCAT master has been restarted)

• E: if a slave supports this, Input and Output PDO can be modified simultaneously by selecting a so-
called PDO record (“predefined PDO settings”).

Configuration of the terminals

EtherCAT 293Version: 5.6

Fig. 316: Configuring the process data

Manual modification of the process data
According to the ESI description, a PDO can be identified as “fixed” with the flag “F” in the PDO
overview (Fig. Configuring the process data, J). The configuration of such PDOs cannot be
changed, even if TwinCAT offers the associated dialog (“Edit”). In particular, CoE content cannot be
displayed as cyclic process data. This generally also applies in cases where a device supports
download of the PDO configuration, “G”. In case of incorrect configuration the EtherCAT slave usu-
ally refuses to start and change to OP state. The System Manager displays an “invalid SM cfg” log-
ger message: This error message (“invalid SM IN cfg” or “invalid SM OUT cfg”) also indicates the
reason for the failed start.

A detailed description [} 298] can be found at the end of this section.

“Startup” tab

The Startup tab is displayed if the EtherCAT slave has a mailbox and supports the CANopen over EtherCAT
(CoE) or Servo drive over EtherCAT protocol. This tab indicates which download requests are sent to the
mailbox during startup. It is also possible to add new mailbox requests to the list display. The download
requests are sent to the slave in the same order as they are shown in the list.

Configuration of the terminals

EtherCAT294 Version: 5.6

Fig. 317: “Startup” tab

Column Description
Transition Transition to which the request is sent. This can either be

• the transition from pre-operational to safe-operational (PS), or
• the transition from safe-operational to operational (SO).
If the transition is enclosed in “<>” (e.g. <PS>), the mailbox request is fixed and cannot be
modified or deleted by the user.

Protocol Type of mailbox protocol
Index Index of the object
Data Date on which this object is to be downloaded.
Comment Description of the request to be sent to the mailbox

Move Up This button moves the selected request up by one position in the list.
Move Down This button moves the selected request down by one position in the list.
New This button adds a new mailbox download request to be sent during startup.
Delete This button deletes the selected entry.
Edit This button edits an existing request.

“CoE - Online” tab

The additional CoE - Online tab is displayed if the EtherCAT slave supports the CANopen over EtherCAT
(CoE) protocol. This dialog lists the content of the object list of the slave (SDO upload) and enables the user
to modify the content of an object from this list. Details for the objects of the individual EtherCAT devices can
be found in the device-specific object descriptions.

Configuration of the terminals

EtherCAT 295Version: 5.6

Fig. 318: “CoE - Online” tab

Object list display

Column Description
Index Index and sub-index of the object
Name Name of the object
Flags RW The object can be read, and data can be written to the object (read/write)

RO The object can be read, but no data can be written to the object (read only)
P An additional P identifies the object as a process data object.

Value Value of the object

Update List The Update list button updates all objects in the displayed list
Auto Update If this check box is selected, the content of the objects is updated automatically.
Advanced The Advanced button opens the Advanced Settings dialog. Here you can specify which

objects are displayed in the list.

Configuration of the terminals

EtherCAT296 Version: 5.6

Fig. 319: Dialog “Advanced settings”

Online - via SDO Information If this option button is selected, the list of the objects included in the object
list of the slave is uploaded from the slave via SDO information. The list
below can be used to specify which object types are to be uploaded.

Offline - via EDS File If this option button is selected, the list of the objects included in the object
list is read from an EDS file provided by the user.

“Online” tab

Fig. 320: “Online” tab

Configuration of the terminals

EtherCAT 297Version: 5.6

State Machine

Init This button attempts to set the EtherCAT device to the Init state.
Pre-Op This button attempts to set the EtherCAT device to the pre-operational state.
Op This button attempts to set the EtherCAT device to the operational state.
Bootstrap This button attempts to set the EtherCAT device to the Bootstrap state.
Safe-Op This button attempts to set the EtherCAT device to the safe-operational state.
Clear Error This button attempts to delete the fault display. If an EtherCAT slave fails during

change of state it sets an error flag.
Example: An EtherCAT slave is in PREOP state (pre-operational). The master now
requests the SAFEOP state (safe-operational). If the slave fails during change of
state it sets the error flag. The current state is now displayed as ERR PREOP.
When the Clear Error button is pressed the error flag is cleared, and the current
state is displayed as PREOP again.

Current State Indicates the current state of the EtherCAT device.
Requested State Indicates the state requested for the EtherCAT device.

DLL Status

Indicates the DLL status (data link layer status) of the individual ports of the EtherCAT slave. The DLL status
can have four different states:

Status Description
No Carrier / Open No carrier signal is available at the port, but the port is open.
No Carrier / Closed No carrier signal is available at the port, and the port is closed.
Carrier / Open A carrier signal is available at the port, and the port is open.
Carrier / Closed A carrier signal is available at the port, but the port is closed.

File Access over EtherCAT

Download With this button a file can be written to the EtherCAT device.
Upload With this button a file can be read from the EtherCAT device.

“DC” tab (Distributed Clocks)

Fig. 321: “DC” tab (Distributed Clocks)

Operation Mode Options (optional):
• FreeRun
• SM-Synchron
• DC-Synchron (Input based)
• DC-Synchron

Advanced Settings… Advanced settings for readjustment of the real time determinant TwinCAT-clock

Detailed information to Distributed Clocks is specified on http://infosys.beckhoff.com:

Fieldbus Components → EtherCAT Terminals → EtherCAT System documentation → EtherCAT basics →
Distributed Clocks

http://infosys.beckhoff.com

Configuration of the terminals

EtherCAT298 Version: 5.6

8.1.1.1 Detailed description of Process Data tab

Sync Manager

Lists the configuration of the Sync Manager (SM).
If the EtherCAT device has a mailbox, SM0 is used for the mailbox output (MbxOut) and SM1 for the mailbox
input (MbxIn).
SM2 is used for the output process data (outputs) and SM3 (inputs) for the input process data.

If an input is selected, the corresponding PDO assignment is displayed in the PDO Assignment list below.

PDO Assignment

PDO assignment of the selected Sync Manager. All PDOs defined for this Sync Manager type are listed
here:

• If the output Sync Manager (outputs) is selected in the Sync Manager list, all RxPDOs are displayed.
• If the input Sync Manager (inputs) is selected in the Sync Manager list, all TxPDOs are displayed.

The selected entries are the PDOs involved in the process data transfer. In the tree diagram of the System
Manager these PDOs are displayed as variables of the EtherCAT device. The name of the variable is
identical to the Name parameter of the PDO, as displayed in the PDO list. If an entry in the PDO assignment
list is deactivated (not selected and greyed out), this indicates that the input is excluded from the PDO
assignment. In order to be able to select a greyed out PDO, the currently selected PDO has to be deselected
first.

Activation of PDO assignment
ü If you have changed the PDO assignment, in order to activate the new PDO assignment,
a) the EtherCAT slave has to run through the PS status transition cycle (from pre-operational to

safe-operational) once (see Online tab [} 296]),
b) and the System Manager has to reload the EtherCAT slaves

(button for TwinCAT 2 or button for TwinCAT 3)

PDO list

List of all PDOs supported by this EtherCAT device. The content of the selected PDOs is displayed in the
PDO Content list. The PDO configuration can be modified by double-clicking on an entry.

Column Description
Index PDO index.
Size Size of the PDO in bytes.
Name Name of the PDO.

If this PDO is assigned to a Sync Manager, it appears as a variable of the slave with this
parameter as the name.

Flags F Fixed content: The content of this PDO is fixed and cannot be changed by the
System Manager.

M Mandatory PDO. This PDO is mandatory and must therefore be assigned to a
Sync Manager! Consequently, this PDO cannot be deleted from the PDO
Assignment list

SM Sync Manager to which this PDO is assigned. If this entry is empty, this PDO does not take
part in the process data traffic.

SU Sync unit to which this PDO is assigned.

PDO Content

Indicates the content of the PDO. If flag F (fixed content) of the PDO is not set the content can be modified.

Configuration of the terminals

EtherCAT 299Version: 5.6

Download

If the device is intelligent and has a mailbox, the configuration of the PDO and the PDO assignments can be
downloaded to the device. This is an optional feature that is not supported by all EtherCAT slaves.

PDO Assignment

If this check box is selected, the PDO assignment that is configured in the PDO Assignment list is
downloaded to the device on startup. The required commands to be sent to the device can be viewed in the
Startup [} 293] tab.

PDO Configuration

If this check box is selected, the configuration of the respective PDOs (as shown in the PDO list and the
PDO Content display) is downloaded to the EtherCAT slave.

8.1.2 Fast mode
The Fast Mode in Beckhoff EtherCAT Terminals has developed historically and is an operation mode with
which EL Terminals, primarily the EL3xxx and EL4xxx groups (analog input/output terminals), can be
operated with a considerably faster conversion time. Hence, an analog input value can be converted more
quickly/more often or output via the controller accordingly. This is achieved at the expense of other features,
therefore consideration is required.

If an EL Terminal supports this mode, this is indicated in the relevant documentation.

There are 2 groups of terminals that support the FastMode:

• Prototypes of EL3xx2 and EL4xx2, with product launch before 2009:
You can switch the two-channel analog input and output terminals into Fast Mode by switching off the
second channel. When operating with a single channel (Fast Mode) the terminal's conversion time is
about one third less than it is when operating two channels. You can find the precise figures for the
conversion times in single-channel and two-channel operation in the technical data for the each
particular terminal.

• EL3xxx and EL4xxx from year of manufacture 2009
CoE access can be deactivated in these terminals (if this is possible according to the
documentation). All existing channels can convert faster as a result of this.

Here is an example for each group.

FastMode by means of channel deactivation

Sample 1

You can switch the second input channel on and off on the Process data tab of the EL3101 under PDO
assignment with the aid of the check box (see the red arrow).

Configuration of the terminals

EtherCAT300 Version: 5.6

Fig. 322: “Process data” tab

Sample 2

You can switch the second output channel on and off on the Process data tab of the EL4101 under PDO
assignment with the aid of the check box (see the red arrow).

Fig. 323: “Process data” tab

FastMode by means of CoE deactivation

In order to deactivate the CoE support, an

Configuration of the terminals

EtherCAT 301Version: 5.6

Fig. 324: entry

must be entered next to the terminal in the start-up list in the System Manager. This deactivates the CoE
later in SAFEOP and OP.

More generally, the mailbox traffic of this terminal is turned off by this FastMode.

The CoE access can be reactivated by writing the original value or, for example, 0x00 in the PREOP phase
after CoE 0x1C33:01. See the entries in the Synchronization modes [} 226] overview regarding this.

8.2 Advanced configuration

8.2.1 Behavior

Fig. 325: Advanced Settings: "Behavior" dialog

Startup Checking

Here you can specify which slave information the EtherCAT master should check during startup.

Check Vendor IDs

Here you can specify that the EtherCAT master should compare the vendor ID of each slave with the
configured vendor ID (default: inactive).

Configuration of the terminals

EtherCAT302 Version: 5.6

Check Product Codes

Here you can specify that the EtherCAT master should compare the product code of each slave with the
configured product code (default: inactive).

Check Revision Numbers

Here you can specify that the EtherCAT master should compare the revision number of each slave with the
configured revision number (default: inactive).

Check Serial Numbers

Here you can specify that the EtherCAT master should compare the serial number of each slave with the
configured serial number (default: inactive).

State Machine

Auto Restore States

Here you can specify that the EtherCAT master should try and restore the state of an EtherCAT slave
automatically (default: active). If an EtherCAT slave changes its state from an error state (ERR SAVE-OP,
ERR OP etc.) to a regular state (SAFE-OP, OP etc.), the master tries to change the slave state to the master
state.

Re-Init after Communication Error

Here you can specify that the EtherCAT master should reset the slave to state Init after a communication
error (default: active).

No AutoInc - Use 2nd address

If this checkbox is activated, the EtherCAT master addresses this EtherCAT slave during the start-up phase
not via the position in the EtherCAT ring, but reads a fixed address from the slave (default: inactive).

Process data

Use LRD/LWR instead of LRW

Here you can specify that an LRD command (Logical Read) should be used for reading the inputs and an
LWR command (Logical Write) for setting the outputs (default: active). Otherwise an LRW command (Logical
Read/Write) is used for reading the inputs and setting the outputs.

Include WC State Bit

Here you can specify that an input variable that displays the working counter state of the EtherCAT slave is
added to its process image (default: active).

Info Data

To use these options, Info Data must be activated in the master settings.

Include state

Here you can specify that the input variable State is added to the Info Data entry for each EtherCAT slave
(default: active). This variable contains the current EtherCAT state and the link state of an EtherCAT slave.

Include ADS address

Here you can specify that the input variable AdsAddress should be added to the Info Data entry for each
EtherCAT slave (default: active for all EtherCAT slaves that support mailbox protocols such as CoE
(CANopen over EtherCAT) or SoE (servo over EtherCAT)).

Configuration of the terminals

EtherCAT 303Version: 5.6

Include AoE NetID

If this checkbox is activated, the NetID for ADS over EtherCAT is added (default: inactive).

Include Drive Channels

Here you can specify that the input variable ChnX (X = channel number) is added to the Info Data entry for
each EtherCAT slave (default: inactive).

Watchdog

Here you can configure the watchdog behavior.

Enable

If this checkbox is activated, the watchdogs are switched on.

Multiplier

Multiplier

PDI Watchdog

Watchdog for the process data interface

SM Watchdog

Watchdog for the Sync Manager

8.2.1.1 Displaying channels in InfoData (Include Channels)

It may be helpful if the controller/PLC knows which channel of an IO module (terminal, box) it is using.
Examples:

• A 4-channel EL3104 analog input terminal is used. In the controller, a function block (FB) accepts the
data. The FB expects the information on which channel of the EL3104 it is linked to, e.g. the 3rd or 4th
channel.

• A module has technologically different channels and the control expects the information to which
technology channel it is linked.
Example: In the standard setting, the EL3356 analog bridge terminal operates as a 1-channel load
terminal and outputs the measured weight in kg. Alternatively, it can be reconfigured to 2-channel
voltage measurement (supply voltage and bridge voltage). The terminal thus offers a total of three
channels for use (although not all of them simultaneously).

Solution: In TwinCAT 2.11 and 3, the channels of a module can be displayed in the info data.

Configuration of the terminals

EtherCAT304 Version: 5.6

Fig. 326: Display the channels in InfoData via "Advanced settings" -> "Behavior" "Include Channels

TwinCAT then shows linkable channels:

Fig. 327: Display of linkable channels in TwinCAT

The content of the bytes is fixed and cannot be changed, which is the consecutive channel number.

Configuration of the terminals

EtherCAT 305Version: 5.6

Background:

• TwinCAT is orientated on the profile information in the ESI file → "Profiles". For modules that do not
(yet) have this information in the ESI, the channels cannot be activated.

In the Advanced Settings of the EtherCAT Master the following information is displayed, if the channels are
activated in one of the slaves.

Fig. 328: Display of the activation of "Include Channels" in the EtherCAT Master

Configuration of the terminals

EtherCAT306 Version: 5.6

8.2.2 Timeout Settings

Fig. 329: Advanced Settings: "Timeout Settings" dialog

State-Machine Timeouts (ms)

Here you can specify the times for the timeouts during transition from one state of the state machine to
another.

I -> P

Timeout for the transition from state Init to state Pre-Operational.

P -> S, S -> O

Timeout for the transition

• from state Pre-Operational to state Safe-Operational or
• from state Safe-Operational to state Operational.

Back to P, I

Timeout for return to state Pre-Operational or Init.

O -> S

Timeout for the transition from state Operational to state Safe-Operational.

Mailbox Timeouts (ms)

Here you can specify the timeouts for acyclic commands for the mailbox (mailbox interface).

Returning Request

Timeout for returning a request from the EtherCAT ring.

Response

Timeout for the response from the addressed EtherCAT device to the request.

Configuration of the terminals

EtherCAT 307Version: 5.6

8.2.3 FMMU / SM
This dialog shows the current configuration of the Fieldbus Memory Management Unit (FMMU) and the Sync
Managers (SM) and enables you to modify them.

Fig. 330: Advanced Settings: "FMMU/SM" dialog

Configuration if the FMMUs (list at the top)

L Start

Specified from which logical address the FMMU starts mapping the data. The start bit is set to match the
number following the dot (0xnnnnnnnn.start bit)

Length

Specifies how many bytes are mapped by the logical addressing.

L EndBit

End bit of the logical address. If the logical address for a byte is to be configured, the start bit must be
configured as 0 (L start = 0xnnnnnnnn.0).

P Start

Specifies the physical address to which the logical address points.

Flags

RE: Read Enabled
WE: Write enabled

Configuration of the terminals

EtherCAT308 Version: 5.6

Configuration of the Sync Managers (list at the bottom)

Start

Specifies from which address the Sync Channel is active.

Length

Length of the Sync Channel in bytes. If the Sync Channel is not activated, the length is 0.

Data

Configuration data to be written to the Sync Channel.

Master

(in preparation)

8.2.4 Mailbox
If the EtherCAT slave supports one or several mailbox protocols, the additional tab Mailbox is displayed. This
dialog lists the mailbox protocols supported by the EtherCAT slave and enables their configuration to be
modified.

Fig. 331: Advanced Settings: "Mailbox" dialog

Mailbox Polling
• Cyclical

If this checkbox is selected, the master cyclically reads the mailbox of the EtherCAT slave.
• Cycle time (ms)

If the checkbox Cyclic is selected, this value specifies how often the master reads the mailbox of the
EtherCAT slave.

Configuration of the terminals

EtherCAT 309Version: 5.6

• State Change
If this checkbox is selected, the master checks a state bit of the slave in order to determine whether
unread data are available in the mailbox. In this case the master reads the mailbox. This mode is more
efficient than cyclic mode, because the master can check the state of the mailboxes of several
EtherCAT slaves with a single EtherCAT command (LRD).

Mailbox Configuration
• Special Bootstrap Configuration

Normal: for process data traffic or mailbox protocols
Bootstrap: for firmware download

• Out-Adr.
Physical start address of the output mailbox in the slave controller.

• In-Adr.
Physical start address of the input mailbox in the slave controller.

• Out-Size == In Size
If you select this checkbox, Out Size and In Size are identical.

• Out Size
Size of the output mailbox in bytes.

• In Size
Size of the input mailbox in bytes.

Mailbox protocols
• Ethernet over EtherCAT (EoE)

◦ Ethernet over EtherCAT (EoE)
If this group is enabled, the EtherCAT slave supports the mailbox protocol Ethernet over EtherCAT
(EoE).

◦ Configuration
This button opens a dialog for configuring the mailbox protocol Ethernet over EtherCAT.

• CANopen over EtherCAT (CoE)
◦ CANopen over EtherCAT (CoE)

If this checkbox is activated, the EtherCAT slave supports the mailbox protocol CANopen over
EtherCAT (CoE).

◦ SDO Info Support
If this checkbox is activated, the master can load the object directory of the EtherCAT slave.

• File access over EtherCAT (FoE)
◦ File access over EtherCAT (FoE)

If this checkbox is activated, the EtherCAT slave supports the mailbox protocol File access over
EtherCAT (FoE).

• Servo drive profile over EtherCAT (SoE)
◦ Servo drive profile over EtherCAT

If this group is enabled, the EtherCAT slave supports the mailbox protocol Servo drive over
EtherCAT (SoE).

◦ Configuration
This button opens a dialog for configuring the mailbox protocol Servo drive over EtherCAT.

ADS-Info

ADS identification of an EtherCAT slave.

• The ADS Net ID is the same as the NetID of an EtherCAT device.
• The ADS port is the same as the fixed address of an EtherCAT device (see EtherCAT Adr).

ADS enables communication with the mailbox of the EtherCAT slave (e.g. SDO Upload Request).

Configuration of the terminals

EtherCAT310 Version: 5.6

8.2.5 Smart View
This dialog shows the settings that are stored in the EEPROM of the EtherCAT Slave Controller (ESC).

Fig. 332: Advanced Settings: "Smart View" dialog

Config Data (evaluated from ESC)

This section shows internal parameters of the EtherCAT Slave Controller (ESC).

• EEPROM Size (Byte): Size of the EEPROM in bytes
• PDI Type: Type of process data interface
• Device Emulation (state machine emulation)

SPI / 8 / 18 µC Interface

This section shows internal parameters of the 16 bit process data interface:

• BUSY Open Drain
• BUSY High Active
• INT Open Drain
• INT High Active

32 Bit Interface

This section shows internal parameters of the 32 bit process data interface:

• WD Open Drain: Watchdog Open Drain
• WD High Active: Watchdog Open High Active

Configuration of the terminals

EtherCAT 311Version: 5.6

• Input Latch

Sync Signal Configuration

This section shows internal parameters for configuring the Sync signal:

• Sync 0 Open Drain
• Sync 0 High Active
• Sync 0 Enabled
• Sync 0 to PDI IRQ
• Sync 1 Open Drain
• Sync 1 High Active
• Sync 1 Enabled
• Sync 1 to PDI IRQ

EEPROM buttons
• Write EEPROM: Button for writing to the EEPROM.
• Read EEPROM: Button for reading the EEPROM.

Device Identity (hex)

This section shows information for the EtherCAT device.

• Vendor ID: Identification number of the device manufacturer.
• Product Code: Product code of the EtherCAT device.
• Revision No.: Revision number of the EtherCAT device.
• Serial No.: Serial number of the EtherCAT device.
• Product Revision: Product revision of the EtherCAT device.

Mailbox

Indicates which mailbox communication variants are supported.

• CoE: CanOpen over EtherCAT
• SoE: Servo-Profile over EtherCAT
• EoE: Ethernet via EtherCAT
• FoE: Servo-Profile over EtherCAT
• AoE: ADS over EtherCAT

Bootstrap Configuration

Configuration for Bootstrap mode (e.g. firmware update)

• Out Start/Length
• In Start/Length

Standard Configuration

Configuration for regular operation (process data transfer or mailbox operation)

• Out Start/Length
• In Start/Length

Configuration of the terminals

EtherCAT312 Version: 5.6

8.2.6 Memory
The Memory dialog enables the user to read data from the memory (DPRAM) of the EtherCAT slave
controller or save them there. The list below shows the memory of the EtherCAT slave controller. The Start
Offset corresponds to the value entered in the Start Offset box. Each entry shows a register (2 bytes). If the
System Manager knows a description for a register, it is displayed next to the Offset. To change a register
value, enter the required value in column Dec, Hex or Char. Once the value has been changed it is shown in
red, and the Write button is activated. You can now click the Write button to transfer the modified values to
the EtherCAT slave.

Fig. 333: Advanced Settings: "Memory" dialog

Start Offset

Start address (hexadecimal) of first register to be displayed in the list.

Length

Length (hexadecimal) of the data to be displayed in bytes. The maximum permitted length is 0400hex
(1024dec).

Working Counter

If the master succeeded in writing to or reading from the slave, the working counter is 1, otherwise the
working counter is 0.

Configuration of the terminals

EtherCAT 313Version: 5.6

Auto Reload

Here you can activate cyclic reading of the memory (default: inactive).

Compact View

Here you can specify that only those parameter are displayed, for which the System Manager has a
description (default: not active).

Reload

Reads the current values from the EtherCAT slave.

Write

Saves modified values (shown in red) in the EtherCAT slave.

8.3 Firmware Update EL/ES/EM/ELM/EPxxxx
This section describes the device update for Beckhoff EtherCAT slaves from the EL/ES, ELM, EM, EK and
EP series. A firmware update should only be carried out after consultation with Beckhoff support.

NOTE
Only use TwinCAT 3 software!
A firmware update of Beckhoff IO devices must only be performed with a TwinCAT 3 installation. It is rec-
ommended to build as up-to-date as possible, available for free download on the Beckhoff website https://
www.beckhoff.com/en-us/.
To update the firmware, TwinCAT can be operated in the so-called FreeRun mode, a paid license is not re-
quired.
The device to be updated can usually remain in the installation location, but TwinCAT has to be operated in
the FreeRun. Please make sure that EtherCAT communication is trouble-free (no LostFrames etc.).
Other EtherCAT master software, such as the EtherCAT Configurator, should not be used, as they may not
support the complexities of updating firmware, EEPROM and other device components.

Storage locations

An EtherCAT slave stores operating data in up to three locations:

• Depending on functionality and performance EtherCAT slaves have one or several local controllers for
processing I/O data. The corresponding program is the so-called firmware in *.efw format.

• In some EtherCAT slaves the EtherCAT communication may also be integrated in these controllers. In
this case the controller is usually a so-called FPGA chip with *.rbf firmware.

• In addition, each EtherCAT slave has a memory chip, a so-called ESI-EEPROM, for storing its own
device description (ESI: EtherCAT Slave Information). On power-up this description is loaded and the
EtherCAT communication is set up accordingly. The device description is available from the download
area of the Beckhoff website at (https://www.beckhoff.com). All ESI files are accessible there as zip
files.

Customers can access the data via the EtherCAT fieldbus and its communication mechanisms. Acyclic
mailbox communication or register access to the ESC is used for updating or reading of these data.

The TwinCAT System Manager offers mechanisms for programming all three parts with new data, if the
slave is set up for this purpose. Generally the slave does not check whether the new data are suitable, i.e. it
may no longer be able to operate if the data are unsuitable.

https://www.beckhoff.com/en-us/
https://www.beckhoff.com/en-us/
https://www.beckhoff.com

Configuration of the terminals

EtherCAT314 Version: 5.6

Simplified update by bundle firmware

The update using so-called bundle firmware is more convenient: in this case the controller firmware and the
ESI description are combined in a *.efw file; during the update both the firmware and the ESI are changed in
the terminal. For this to happen it is necessary

• for the firmware to be in a packed format: recognizable by the file name, which also contains the
revision number, e.g. ELxxxx-xxxx_REV0016_SW01.efw

• for password=1 to be entered in the download dialog. If password=0 (default setting) only the firmware
update is carried out, without an ESI update.

• for the device to support this function. The function usually cannot be retrofitted; it is a component of
many new developments from year of manufacture 2016.

Following the update, its success should be verified

• ESI/Revision: e.g. by means of an online scan in TwinCAT ConfigMode/FreeRun – this is a convenient
way to determine the revision

• Firmware: e.g. by looking in the online CoE of the device

NOTE
Risk of damage to the device!
ü Note the following when downloading new device files
a) Firmware downloads to an EtherCAT device must not be interrupted
b) Flawless EtherCAT communication must be ensured. CRC errors or LostFrames must be avoided.
c) The power supply must adequately dimensioned. The signal level must meet the specification.
ð In the event of malfunctions during the update process the EtherCAT device may become unusable and

require re-commissioning by the manufacturer.

8.3.1 Device description ESI file/XML
NOTE

Attention regarding update of the ESI description/EEPROM
Some slaves have stored calibration and configuration data from the production in the EEPROM. These are
irretrievably overwritten during an update.

The ESI device description is stored locally on the slave and loaded on start-up. Each device description has
a unique identifier consisting of slave name (9 characters/digits) and a revision number (4 digits). Each slave
configured in the System Manager shows its identifier in the EtherCAT tab:

Fig. 334: Device identifier consisting of name EL3204-0000 and revision -0016

Configuration of the terminals

EtherCAT 315Version: 5.6

The configured identifier must be compatible with the actual device description used as hardware, i.e. the
description which the slave has loaded on start-up (in this case EL3204). Normally the configured revision
must be the same or lower than that actually present in the terminal network.

For further information on this, please refer to the EtherCAT system documentation.

Update of XML/ESI description
The device revision is closely linked to the firmware and hardware used. Incompatible combinations
lead to malfunctions or even final shutdown of the device. Corresponding updates should only be
carried out in consultation with Beckhoff support.

Display of ESI slave identifier

The simplest way to ascertain compliance of configured and actual device description is to scan the
EtherCAT boxes in TwinCAT mode Config/FreeRun:

Fig. 335: Scan the subordinate field by right-clicking on the EtherCAT device

If the found field matches the configured field, the display shows

Fig. 336: Configuration is identical

otherwise a change dialog appears for entering the actual data in the configuration.

https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html

Configuration of the terminals

EtherCAT316 Version: 5.6

Fig. 337: Change dialog

In this example in Fig. Change dialog, an EL3201-0000-0017 was found, while an EL3201-0000-0016 was
configured. In this case the configuration can be adapted with the Copy Before button. The Extended
Information checkbox must be set in order to display the revision.

Changing the ESI slave identifier

The ESI/EEPROM identifier can be updated as follows under TwinCAT:

• Trouble-free EtherCAT communication must be established with the slave.
• The state of the slave is irrelevant.
• Right-clicking on the slave in the online display opens the EEPROM Update dialog, Fig. EEPROM

Update

Fig. 338: EEPROM Update

The new ESI description is selected in the following dialog, see Fig. Selecting the new ESI. The checkbox
Show Hidden Devices also displays older, normally hidden versions of a slave.

Configuration of the terminals

EtherCAT 317Version: 5.6

Fig. 339: Selecting the new ESI

A progress bar in the System Manager shows the progress. Data are first written, then verified.

The change only takes effect after a restart.
Most EtherCAT devices read a modified ESI description immediately or after startup from the INIT.
Some communication settings such as distributed clocks are only read during power-on. The Ether-
CAT slave therefore has to be switched off briefly in order for the change to take effect.

8.3.2 Firmware explanation

Determining the firmware version

Determining the version via the System Manager

The TwinCAT System Manager shows the version of the controller firmware if the master can access the
slave online. Click on the E-Bus Terminal whose controller firmware you want to check (in the example
terminal 2 (EL3204)) and select the tab CoE Online (CAN over EtherCAT).

CoE Online and Offline CoE
Two CoE directories are available:
• online: This is offered in the EtherCAT slave by the controller, if the EtherCAT slave supports this.
This CoE directory can only be displayed if a slave is connected and operational.
• offline: The EtherCAT Slave Information ESI/XML may contain the default content of the CoE.
This CoE directory can only be displayed if it is included in the ESI (e.g. “Beckhoff EL5xxx.xml”).
The Advanced button must be used for switching between the two views.

In Fig. Display of EL3204 firmware version the firmware version of the selected EL3204 is shown as 03 in
CoE entry 0x100A.

Configuration of the terminals

EtherCAT318 Version: 5.6

Fig. 340: Display of EL3204 firmware version

In (A) TwinCAT 2.11 shows that the Online CoE directory is currently displayed. If this is not the case, the
Online directory can be loaded via the Online option in Advanced Settings (B) and double-clicking on
AllObjects.

8.3.3 Updating controller firmware *.efw
CoE directory
The Online CoE directory is managed by the controller and stored in a dedicated EEPROM, which
is generally not changed during a firmware update.

Switch to the Online tab to update the controller firmware of a slave, see Fig. Firmware Update.

Configuration of the terminals

EtherCAT 319Version: 5.6

Fig. 341: Firmware Update

Proceed as follows, unless instructed otherwise by Beckhoff support. Valid for TwinCAT 2 and 3 as
EtherCAT master.

• Switch TwinCAT system to ConfigMode/FreeRun with cycle time >= 1 ms (default in ConfigMode is
4 ms). A FW-Update during real time operation is not recommended.

• Switch EtherCAT Master to PreOP

• Switch slave to INIT (A)
• Switch slave to BOOTSTRAP

Configuration of the terminals

EtherCAT320 Version: 5.6

• Check the current status (B, C)
• Download the new *efw file (wait until it ends). A pass word will not be neccessary usually.

• After the download switch to INIT, then PreOP
• Switch off the slave briefly (don't pull under voltage!)
• Check within CoE 0x100A, if the FW status was correctly overtaken.

8.3.4 FPGA firmware *.rbf
If an FPGA chip deals with the EtherCAT communication an update may be accomplished via an *.rbf file.

• Controller firmware for processing I/O signals
• FPGA firmware for EtherCAT communication (only for terminals with FPGA)

The firmware version number included in the terminal serial number contains both firmware components. If
one of these firmware components is modified this version number is updated.

Determining the version via the System Manager

The TwinCAT System Manager indicates the FPGA firmware version. Click on the Ethernet card of your
EtherCAT strand (Device 2 in the example) and select the Online tab.

The Reg:0002 column indicates the firmware version of the individual EtherCAT devices in hexadecimal and
decimal representation.

Configuration of the terminals

EtherCAT 321Version: 5.6

Fig. 342: FPGA firmware version definition

If the column Reg:0002 is not displayed, right-click the table header and select Properties in the context
menu.

Fig. 343: Context menu Properties

The Advanced Settings dialog appears where the columns to be displayed can be selected. Under
Diagnosis/Online View select the '0002 ETxxxx Build' check box in order to activate the FPGA firmware
version display.

Configuration of the terminals

EtherCAT322 Version: 5.6

Fig. 344: Dialog Advanced Settings

Update

For updating the FPGA firmware

• of an EtherCAT coupler the coupler must have FPGA firmware version 11 or higher;
• of an E-Bus Terminal the terminal must have FPGA firmware version 10 or higher.

Older firmware versions can only be updated by the manufacturer!

Updating an EtherCAT device

The following sequence order have to be met if no other specifications are given (e.g. by the Beckhoff
support):

• Switch TwinCAT system to ConfigMode/FreeRun with cycle time >= 1 ms (default in ConfigMode is
4 ms). A FW-Update during real time operation is not recommended.

Configuration of the terminals

EtherCAT 323Version: 5.6

• In the TwinCAT System Manager select the terminal for which the FPGA firmware is to be updated (in
the example: Terminal 5: EL5001) and
click the Advanced Settings button in the EtherCAT tab:

• The Advanced Settings dialog appears. Under ESC Access/E²PROM/FPGA click on Write FPGA
button:

Configuration of the terminals

EtherCAT324 Version: 5.6

• Select the file (*.rbf) with the new FPGA firmware, and transfer it to the EtherCAT device:

• Wait until download ends
• Switch slave current less for a short time (don't pull under voltage!). In order to activate the new FPGA

firmware a restart (switching the power supply off and on again) of the EtherCAT device is required.
• Check the new FPGA status

NOTE
Risk of damage to the device!
A download of firmware to an EtherCAT device must not be interrupted in any case! If you interrupt this
process by switching off power supply or disconnecting the Ethernet link, the EtherCAT device can only be
recommissioned by the manufacturer!

8.3.5 Simultaneous updating of several EtherCAT devices
The firmware and ESI descriptions of several devices can be updated simultaneously, provided the devices
have the same firmware file/ESI.

Fig. 345: Multiple selection and firmware update

Select the required slaves and carry out the firmware update in BOOTSTRAP mode as described above.

FAQ

EtherCAT 325Version: 5.6

9 FAQ

9.1 Windows Memory Dump

Situation

In rare cases it can be useful to know the internal software state of an IPC systems before a failure. To this
end Windows can write an image of the RAM at the time of the restart to the hard disk. This is referred to as
a memory dump.

Solution

The correct writing of the memory dump must be set before the restart commences.

Windows operating system
Memory dumps are only available under Windows NT/XP/XPe/Vista/7/WES, not under WEC/CE.

Swap file
Successful writing of a dump may require activation of the Windows swap file (see below). The op-
erating system sees the swap file on the hard disk as additional RAM and uses it regularly. This re-
sults in increased hard disk access activity. If a CompactFlash (CF) is used as the operating system
disk it may reduce its service life. It is generally advisable to monitor CF cards using suitable MDP
diagnostic functions from the application (e.g. FB_SiliconDrive_Read). The swap file then only has
to be activated temporarily for diagnostic purposes.

Write protection
Active write protection of the hard disk may need to be removed for successful writing.
Examples of write protect filters include:
• EWF (Enhanced Write Filter)
• FBWF (File Based Write Filter)

There are different types of memory dump, depending on the range and size of the monitored memory area.
The corresponding settings are implemented in the Windows system administration.

• Small memory dump (64 kB)
• Kernel
• Complete

Beckhoff may analyze the core image available as a file on the hard disk after a system restart, if the restart
was caused by TwinCAT, for example.

A “complete dump” offers the most comprehensive analysis option, although the size may be several MB. In
the settings please ensure that:

• the hard disk/CF card has enough memory for the dump.
• the set file path is valid.

FAQ

EtherCAT326 Version: 5.6

The following settings apply for a minimum dump:

1. first activate the swap file.
Windows System Properties --> Advanced --> Performance Settings

Fig. 346: System Properties

2. Performance Options --> Virtual Memory --> Change

FAQ

EtherCAT 327Version: 5.6

Fig. 347: virtual memory settings

3. Swap file specification

FAQ

EtherCAT328 Version: 5.6

Fig. 348: swap file settings

“Initial Size” and “Maximum Size” should be at least 50 MB. Confirm with SET. Clicking OK is not sufficient!
Confirm with OK.

1. In the second step writing of the dump is activated in the Windows system settings (Fig. System Prop-
erties).
--> Startup and Recovery
--> Select “Small memory dump” under “Write debugging information”

FAQ

EtherCAT 329Version: 5.6

Fig. 349: dump settings

2. You then need to restart the IPC.

After the restart a dump file with current time stamp can be found at the location specified above, if writing of
the dump was successful.
Depending on the path settings, complete dumps are saved as “Memory.dmp” under C:\Windows\, small
dumps as “Mini.dmp” in subfolder C:Windows\Minidump\, for example.

9.2 MessageBox in the target system

Situation

On the target system (with MS XP/XPe/7/WES) TwinCAT message boxes ("PopUp windows") are displayed
during operation which require confirmation, for example by clicking "OK". If target system is in production
mode without HMI (visualization, monitor, keyboard, mouse) and/or no machine operator is present, the
message box cannot be confirmed. In this case logger outputs are no longer displayed on the programming
device/TwinCAT linked via ADS.

FAQ

EtherCAT330 Version: 5.6

Fig. 350: programming system / target system topology

Solution

Set a RegistryKey on the target system to suppress the TwinCAT information window.

 RegistryKey https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469160331.zip)

It is not advisable to set this key as default, because TwinCAT information windows would no longer be
displayed at all.

https://infosys.beckhoff.com/content/1033/ethercatsystem/Resources/zip/2469160331.zip

Appendix

EtherCAT 331Version: 5.6

10 Appendix

10.1 UL notice
 CAUTION

Application
Beckhoff EtherCAT modules are intended for use with Beckhoff’s UL Listed EtherCAT Sys-
tem only.

 CAUTION
Examination
For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire
and electrical shock (in accordance with UL508 and CSA C22.2 No. 142).

 CAUTION
For devices with Ethernet connectors
Not for connection to telecommunication circuits.

Basic principles

UL certification according to UL508. Devices with this kind of certification are marked by this sign:

Appendix

EtherCAT332 Version: 5.6

10.2 Training

Beckhoff

Beckhoff offers training courses on the following subjects, amongst others:

• TwinCAT training for users
• EtherCAT training for users (TR8020)

The commissioning and diagnostics of EtherCAT devices are dealt with here.
• Training courses for developers on the basis of the Beckhoff development products for EtherCAT

implementation

Contact: http://www.beckhoff.de/training

ETG (www.ethercat.org)

www.ethercat.org

The ETG offers, for example:

• Developer Basics
• Customized trainings

10.3 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

http://www.beckhoff.de/training
http://www.ethercat.org
https://www.beckhoff.com/support
https://www.beckhoff.com

Appendix

EtherCAT 333Version: 5.6

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com
web: https://www.beckhoff.com

https://www.beckhoff.com

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
infosys.beckhoff.com/content/1033/ethercatsystem

mailto:info@beckhoff.de?subject=EtherCAT
https://www.beckhoff.com
https://infosys.beckhoff.com/content/1033/ethercatsystem

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Documentation issue status

	2 EtherCAT basics
	2.1 System overview
	2.1.1 Limits of existing Ethernet communication approaches
	2.1.2 New approach
	2.1.3 System properties
	2.1.4 Application areas
	2.1.5 EtherCAT is open
	2.1.6 Summary and Outlook

	2.2 Basic principles
	2.2.1 EtherCAT State Machine
	2.2.2 CoE interface
	2.2.2.1 CoE interface – parameter management in the EtherCAT system
	2.2.2.2 Example program R/W CoE
	2.2.2.3 CoE reset, restoring the default values

	2.3 System features
	2.3.1 EtherCAT cable redundancy
	2.3.1.1 The principle
	2.3.1.2 Conditions
	2.3.1.3 Setting up - Network settings
	2.3.1.4 Setting up - SyncUnits setup
	2.3.1.5 System behavior

	2.3.2 HotConnect
	2.3.2.1 The principle
	2.3.2.2 Notes re. EtherCAT Fast Hot Connect technology
	2.3.2.3 Addressing
	2.3.2.4 Setup TwinCAT 2.10
	2.3.2.5 Setup TwinCAT 2.11R2
	2.3.2.6 Identification

	2.3.3 EtherCAT data exchange
	2.3.4 Safety over EtherCAT - TwinSAFE

	3 Setup in the TwinCAT System Manager
	3.1 TwinCAT Quick Start
	3.1.1 TwinCAT 2
	3.1.2 TwinCAT 3

	3.2 EtherCAT master in TwinCAT
	3.3 General notes on the use of Beckhoff EtherCAT IO components
	3.3.1 Technical classification
	3.3.2 Change management by Beckhoff
	3.3.3 Procurement/update of the elements
	3.3.4 Application project planning in the TwinCAT System Manager 2.x/3.x - creating the configuration
	3.3.5 Configuration comparison in the project
	3.3.6 Determining the installation version in the application

	3.4 Version identification of EtherCAT devices
	3.4.1 General notes on marking
	3.4.2 Version identification of EK Couplers
	3.4.3 Version identification of EL terminals
	3.4.4 Version identification of ELX terminals
	3.4.5 Version identification of ELM terminals
	3.4.6 Version identification of EJ moduls
	3.4.7 Version identification of EP/EPI/EPP/ER/ERI boxes
	3.4.8 Version identification of CU Switches
	3.4.9 Beckhoff Identification Code (BIC)
	3.4.10 Electronic access to the BIC (eBIC)

	3.5 Online version identification of EtherCAT devices
	3.6 TwinCAT Development Environment
	3.6.1 Installation of the TwinCAT real-time driver
	3.6.2 Notes regarding ESI device description
	3.6.3 TwinCAT ESI Updater
	3.6.4 Distinction between Online and Offline
	3.6.5 OFFLINE configuration creation
	3.6.6 ONLINE configuration creation
	3.6.7 Standard behavior of the EtherCAT master
	3.6.7.1 General
	3.6.7.2 Default settings and information

	3.7 Notes on distributed clocks
	3.7.1 EtherCAT Distributed Clocks - default settings
	3.7.2 EtherCAT Distributed Clocks - coupling of EtherCAT systems

	4 EtherCAT diagnostics
	4.1 General Notes - EtherCAT Slave Application
	4.2 EtherCAT AL Status Codes
	4.2.1 Error Code 0x0000
	4.2.2 Error Code 0x0001
	4.2.3 Error Code 0x0002
	4.2.4 Error Code 0x0004
	4.2.5 Error Code 0x0011
	4.2.6 Error Code 0x0012
	4.2.7 Error Code 0x0013
	4.2.8 Error Code 0x0014
	4.2.9 Error Code 0x0015
	4.2.10 Error Code 0x0016
	4.2.11 Error Code 0x0017
	4.2.12 Error Code 0x0018
	4.2.13 Error Code 0x0019
	4.2.14 Error Code 0x001A
	4.2.15 Error Code 0x001B
	4.2.16 Error Code 0x001C
	4.2.17 Error Code 0x001D
	4.2.18 Error Code 0x001E
	4.2.19 Error Code 0x001F
	4.2.20 Error Code 0x0020
	4.2.21 Error Code 0x0021
	4.2.22 Error Code 0x0022
	4.2.23 Error Code 0x0023
	4.2.24 Error Code 0x0024
	4.2.25 Error Code 0x0025
	4.2.26 Error Code 0x0026
	4.2.27 Error Code 0x0027
	4.2.28 Error Code 0x0028
	4.2.29 Error Code 0x0029
	4.2.30 Error Code 0x002A
	4.2.31 Error Code 0x002B
	4.2.32 Error Code 0x002C
	4.2.33 Error Code 0x002D
	4.2.34 Error Code 0x0030
	4.2.35 Error Code 0x0031
	4.2.36 Error Code 0x0032
	4.2.37 Error Code 0x0033
	4.2.38 Error Code 0x0034
	4.2.39 Error Code 0x0035
	4.2.40 Error Code 0x0036
	4.2.41 Error Code 0x0037
	4.2.42 Error Code 0x0041
	4.2.43 Error Code 0x0042
	4.2.44 Error Code 0x0043
	4.2.45 Error Code 0x0044
	4.2.46 Error Code 0x0045
	4.2.47 Error Code 0x004F
	4.2.48 Error Code 0x0050
	4.2.49 Error Code 0x0051
	4.2.50 Error Code 0x0060
	4.2.51 Error Code 0x0061
	4.2.52 Error Code 0x00F0

	4.3 EtherCAT AL Status Codes
	4.3.1 Error Code 0x0000
	4.3.2 Error Code 0x0001
	4.3.3 Error Code 0x0002
	4.3.4 Error Code 0x0004
	4.3.5 Error Code 0x0011
	4.3.6 Error Code 0x0012
	4.3.7 Error Code 0x0013
	4.3.8 Error Code 0x0014
	4.3.9 Error Code 0x0015
	4.3.10 Error Code 0x0016
	4.3.11 Error Code 0x0017
	4.3.12 Error Code 0x0018
	4.3.13 Error Code 0x0019
	4.3.14 Error Code 0x001A
	4.3.15 Error Code 0x001B
	4.3.16 Error Code 0x001C
	4.3.17 Error Code 0x001D
	4.3.18 Error Code 0x001E
	4.3.19 Error Code 0x001F
	4.3.20 Error Code 0x0020
	4.3.21 Error Code 0x0021
	4.3.22 Error Code 0x0022
	4.3.23 Error Code 0x0023
	4.3.24 Error Code 0x0024
	4.3.25 Error Code 0x0025
	4.3.26 Error Code 0x0026
	4.3.27 Error Code 0x0027
	4.3.28 Error Code 0x0028
	4.3.29 Error Code 0x0029
	4.3.30 Error Code 0x002A
	4.3.31 Error Code 0x002B
	4.3.32 Error Code 0x002C
	4.3.33 Error Code 0x002D
	4.3.34 Error Code 0x0030
	4.3.35 Error Code 0x0031
	4.3.36 Error Code 0x0032
	4.3.37 Error Code 0x0033
	4.3.38 Error Code 0x0034
	4.3.39 Error Code 0x0035
	4.3.40 Error Code 0x0036
	4.3.41 Error Code 0x0037
	4.3.42 Error Code 0x0041
	4.3.43 Error Code 0x0042
	4.3.44 Error Code 0x0043
	4.3.45 Error Code 0x0044
	4.3.46 Error Code 0x0045
	4.3.47 Error Code 0x004F
	4.3.48 Error Code 0x0050
	4.3.49 Error Code 0x0051
	4.3.50 Error Code 0x0060
	4.3.51 Error Code 0x0061
	4.3.52 Error Code 0x00F0

	5 EtherCAT operation - control
	5.1 Operation

	6 EtherCAT operation - timing
	6.1 Concept mapping
	6.2 Mapping Types and Graphical Display
	6.2.1 Mappings
	6.2.2 Context Menu
	6.2.3 Tab "A -> B" or "B -> A"
	6.2.4 Online tab

	7 Distributed Clocks
	7.1 TwinCAT & time
	7.1.1 TwinCAT time sources
	7.1.2 Internal and external EtherCAT synchronization
	7.1.2.1 General
	7.1.2.2 Requirement 1 + 2: synchronization
	7.1.2.3 Requirement 3: higher-level global time, absolute time
	7.1.2.4 TwinCAT system behavior
	7.1.2.5 Settings in TwinCAT 2.11

	7.1.3 Sample programs
	7.1.3.1 Sample program TwinCAT 2
	7.1.3.2 Sample program TwinCAT 3

	7.2 Basic principles
	7.2.1 EtherCAT Distributed Clocks
	7.2.2 Distributed Clocks settings in the Beckhoff TwinCAT System Manager (2.10)
	7.2.3 Distributed Clocks settings in the Beckhoff TwinCAT System Manager (2.11)
	7.2.4 Distributed Clocks & TwinCAT PLC
	7.2.5 Synchronization modes of an EtherCAT slave
	7.2.6 EKxxxx - Optional Distributed Clocks support

	7.3 External synchronization
	7.3.1 Basic principles
	7.3.2 Sample: EL6692 bridge terminal

	8 Configuration of the terminals
	8.1 General configuration
	8.1.1 EtherCAT subscriber configuration
	8.1.1.1 Detailed description of Process Data tab

	8.1.2 Fast mode

	8.2 Advanced configuration
	8.2.1 Behavior
	8.2.1.1 Displaying channels in InfoData (Include Channels)

	8.2.2 Timeout Settings
	8.2.3 FMMU / SM
	8.2.4 Mailbox
	8.2.5 Smart View
	8.2.6 Memory

	8.3 Firmware Update EL/ES/EM/ELM/EPxxxx
	8.3.1 Device description ESI file/XML
	8.3.2 Firmware explanation
	8.3.3 Updating controller firmware *.efw
	8.3.4 FPGA firmware *.rbf
	8.3.5 Simultaneous updating of several EtherCAT devices

	9 FAQ
	9.1 Windows Memory Dump
	9.2 MessageBox in the target system

	10 Appendix
	10.1 UL notice
	10.2 Training
	10.3 Support and Service

