BECKHOFF New Automation Technology

Dokumentation | DE

EL72x1-001x

Servomotor-Klemmen mit OCT (One Cable Technology)

Inhaltsverzeichnis

1	Type	enübersicht Servo-Motorklemmen	7
2	Vorw	wort	8
	2.1	Hinweise zur Dokumentation	8
	2.2	Wegweiser durch die Dokumentation	9
	2.3	Sicherheitshinweise	10
	2.4	Ausgabestände der Dokumentation	11
	2.5	Versionsidentifikation von EtherCAT-Geräten	12
		2.5.1 Allgemeine Hinweise zur Kennzeichnung	12
		2.5.2 Versionsidentifikation von EL-Klemmen	13
		2.5.3 Beckhoff Identification Code (BIC)	13
		2.5.4 Elektronischer Zugriff auf den BIC (eBIC)	15
3	Prod	duktübersicht	18
	3.1	Einführung	18
	3.2	Technische Daten	20
	3.3	Technologie	21
	3.4	Start	23
4	Grun	ndlagen der Kommunikation	24
	4.1	EtherCAT-Grundlagen	
	4.2	EtherCAT-Verkabelung - Drahtgebunden	
	4.3	Allgemeine Hinweise zur Watchdog-Einstellung	
	4.4	EtherCAT State Machine	
	4.5	CoE-Interface	
	4.6	Distributed Clock	
5	Insta	allation	35
	5.1	Hinweise zum ESD-Schutz	
	5.2	Tragschienenmontage	
	5.3	Montagevorschriften für erhöhte mechanische Belastbarkeit	
	5.4	Anschluss	40
		5.4.1 Anschlusstechnik	40
		5.4.2 Verdrahtung	
		5.4.3 Schirmung	
	5.5	Hinweis zur Spannungsversorgung	44
	5.6	Hinweis Lastspannungsversorgung	44
	5.7	Positionierung von passiven Klemmen	
	5.8	Einbaulagen bei Betrieb mit und ohne Lüfter	46
	5.9	Schirmkonzept	50
	5.10	Hinweise zur Strommessung über Hall-Sensor	53
	5.11	LEDs und Anschlussbelegung	
		5.11.1 EL7201-001x	54
		5.11.2 EL7211-001x	56
	5.12	UL Hinweise - Compact Motion	58
	5.13	Entsorgung	59
6	Inbet	etriebnahme	60

Version: 3.0.0

	6.1	TwinCA	T Entwicklungsumgebung	60
		6.1.1	Installation der TwinCAT Realtime-Treiber	60
		6.1.2	Hinweise zur ESI-Gerätebeschreibung	66
		6.1.3	TwinCAT ESI Updater	70
		6.1.4	Unterscheidung Online / Offline	70
		6.1.5	OFFLINE Konfigurationserstellung	71
		6.1.6	ONLINE Konfigurationserstellung	76
		6.1.7	EtherCAT-Teilnehmerkonfiguration	84
	6.2	Start up	und Parameter-Konfiguration	94
		6.2.1	Einbindung in die NC-Konfiguration	94
		6.2.2	Einstellungen mit dem Drive Manager	97
		6.2.3	Einstellungen im CoE-Register	103
		6.2.4	Anwendungsbeispiel	106
		6.2.5	Inbetriebnahme ohne die NC, Status-Wort/Control-Wort	111
		6.2.6	Einstellungen der automatischen Konfiguration	114
		6.2.7	Endschalter konfigurieren	116
		6.2.8	Homing	117
		6.2.9	Touch Probe	120
		6.2.10	Einstellungen in der NC	124
	6.3	Betriebs	sarten	131
		6.3.1	Übersicht	131
		6.3.2	CSV	131
		6.3.3	CST	135
		6.3.4	CSTCA	138
		6.3.5	CSP	141
	6.4	Profile N	MDP742 oder DS402	145
	6.5	Prozess	sdaten MDP742	146
	6.6	Prozess	sdaten DS402	152
7	EL72	x1-0010	(MDP742) - Objektbeschreibung und Parametrierung	156
	7.1	Restore	-Objekt	156
	7.2	Konfigui	rationsdaten	157
	7.3	Konfigui	rationsdaten (herstellerspezifisch)	165
	7.4	Komma	ndo-Objekt	165
	7.5	Eingang	gsdaten	165
	7.6	Ausgan	gsdaten	169
	7.7	Informat	tions-/Diagnostikdaten	172
	7.8	Standar	dobjekte	175
8	EL72	x1-0011	(DS402) - Objektbeschreibung und Parametrierung	191
	8.1	Konfigui	rationsdaten	192
	8.2	Konfigui	rationsdaten (herstellerspezifisch)	198
	8.3	Komma	ndo-Objekt	198
	8.4	Eingang	gsdaten/Ausgangsdaten	198
	8.5	Informat	tions-/Diagnostikdaten	203
	8.6	Standar	dobjekte	207
9	Fehle	erbehebu	ung	214

	9.1	Diagnos	e - Grundlagen zu Diag Messages	. 214
	9.2	Hinweise	e zu Diag Messages in Verbindung mit Motorklemmen	. 223
10	Anha	ıng		. 224
	10.1	EtherCA	T AL Status Codes	. 224
	10.2	Firmwar	e-Kompatibilität	. 225
	10.3	Firmwar	e Update EL/ES/ELM/EM/EP/EPP/ERPxxxx	. 227
		10.3.1	Gerätebeschreibung ESI-File/XML	. 228
		10.3.2	Erläuterungen zur Firmware	. 231
		10.3.3	Update Controller-Firmware *.efw	. 232
		10.3.4	FPGA-Firmware *.rbf	. 234
		10.3.5	Gleichzeitiges Update mehrerer EtherCAT-Geräte	. 238
	10.4	Wiederh	erstellen des Auslieferungszustandes	. 239
	10.5	Support	und Service	241

Version: 3.0.0

1 Typenübersicht Servo-Motorklemmen

<u>EL7211-0010 [\blacktriangleright 18]</u>, Servo-Motorklemme (MDP742-Profil), OCT, 48 V_{DC}, 4,5 A_{eff} <u>EL7211-0011 [\blacktriangleright 18]</u>, Servo-Motorklemme (DS402-Profil), OCT, 48 V_{DC}, 4,5 A_{eff}

2 Vorwort

2.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

2.2 Wegweiser durch die Dokumentation

HINWEIS

Weitere Bestandteile der Dokumentation

Diese Dokumentation beschreibt gerätespezifische Inhalte. Sie ist Bestandteil des modular aufgebauten Dokumentationskonzepts für Beckhoff I/O-Komponenten. Für den Einsatz und sicheren Betrieb des in dieser Dokumentation beschriebenen Gerätes / der in dieser Dokumentation beschriebenen Geräte werden zusätzliche, produktübergreifende Beschreibungen benötigt, die der folgenden Tabelle zu entnehmen sind.

Titel	Beschreibung
EtherCAT System-Dokumentation (PDF)	Systemübersicht
	EtherCAT-Grundlagen
	Kabel-Redundanz
	Hot Connect
	Konfiguration von EtherCAT-Geräten
I/O-Analog-Handbuch (PDF)	Hinweise zu I/O-Komponenten mit analogen Ein- und Ausgängen
Infrastruktur für EtherCAT/Ethernet (PDF)	Technische Empfehlungen und Hinweise zur Auslegung, Ausfertigung und Prüfung
Software-Deklarationen I/O (PDF)	Open-Source-Software-Deklarationen für Beckhoff-I/O-Komponenten

Die Dokumentationen können auf der Beckhoff-Homepage (<u>www.beckhoff.com</u>) eingesehen und heruntergeladen werden über:

- den Bereich "Dokumentation und Downloads" der jeweiligen Produktseite,
- · den Downloadfinder,
- · das Beckhoff Information System.

Sollten Sie Vorschläge oder Anregungen zu unserer Dokumentation haben, schicken Sie uns bitte unter Angabe von Dokumentationstitel und Versionsnummer eine E-Mail an: dokumentation@beckhoff.com

2.3 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

2.4 Ausgabestände der Dokumentation

Version	Kommentar
3.0.0	Kapitel "LEDs und Anschlussbelegung" aktualisiert
	Struktur-Update
	Update Revisionsstand
2.9	Aktualisierung Kapitel "Inbetriebnahme"
	Struktur-Update
2.8	Aktualisierung Kapitel "Versionsidentifikation von EtherCAT-Geräten"
	Kapitel "Technische Daten" aktualisiert
	Aktualisierung Kapitel "Installation"
	Aktualisierung Kapitel "Objekt Beschreibung"
	Update Revisionsstand
	Struktur-Update
2.7	Kapitel "Einführung" aktualisiert
	Kapitel "Technische Daten" aktualisiert
	Kapitel "Technologie" aktualisiert
	Kapitel "LEDs und Anschlussbelegung" aktualisiert
	Struktur-Update
	Update Revisionsstand
2.6	Aktualisierung Kapitel "Objekt Beschreibung"
	Struktur-Update
2.5	Hinweis zur Absicherung der Versorgungsspannung ergänzt
	Update Revisionsstand
	Struktur-Update
2.4	Aktualisierung Kapitel "Technische Daten"
	Aktualisierung Kapitel "UL Hinweise"
	Ergänzung Kapitel "Hinweise zum ESD-Schutz"
	Struktur-Update
	Update Revisionsstand
2.3	Aktualisierung Kapitel "Technische Daten"
	Strukturupdate
2.2	Aktualisierung Kapitel "Einführung"
	Aktualisierung Kapitel "Technische Daten"
	Aktualisierung Kapitel "Objekt Beschreibung"
	Struktur-Update
	Update Revisionsstand
2.1	Aktualisierung Kapitel "Technische Daten"
	Aktualisierung Kapitel "Installation"
	Aktualisierung Kapitel "Schirm Konzept"
	Aktualisierung Kapitel "Betriebsart CSP"
	Aktualisierung Kapitel "Objekt Beschreibung"
	Hinweis zu "Diag messages" ergänzt
	Struktur-Update
	Update Revisionsstand
0.1 - 2.0	*archiviert*

2.5 Versionsidentifikation von EtherCAT-Geräten

2.5.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016		3314	0000	0016
	12 mm, nicht steckbare Anschlussebene	4-kanalige Thermoelementklemme	Grundtyp	
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	12 mm, steckbare Anschlussebene	2-kanalige Spannungsmessung	hochpräzise Version	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		8 Port FastEthernet Switch	Grundtyp	

Hinweise

- Die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)

anders - z. B. in der Dokumentation - angegeben.

- Typ (3314)
- Version (-0000)
- Die **Revision** -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.

 Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht
 - Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit Januar 2014 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL2872 mit Revision 0022 und Seriennummer 01200815".
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

2.5.2 Versionsidentifikation von EL-Klemmen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder mit einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module innerhalb einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr FF - Firmware-Stand

HH - Hardware-Stand

Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12

06 - Produktionsjahr 2006

3A - Firmware-Stand 3A

02 - Hardware-Stand 02

Abb. 1: EL2872 mit Revision 0022 und Seriennummer 01200815

2.5.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 2: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- · direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 3: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumenation können keine Ansprüche auf Änderung geltend gemacht werden.

2.5.4 Elektronischer Zugriff auf den BIC (eBIC)

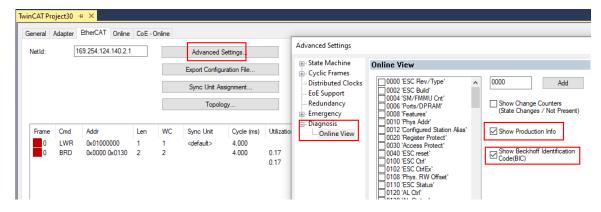
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff-Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt angesprochen werden kann.

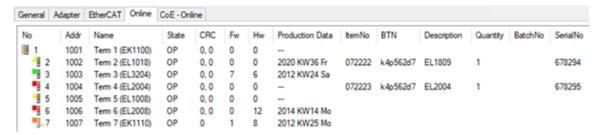
K-Bus Geräte (IP20, IP67)

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, das die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).

In das ESI-EEPROM wird durch Beckhoff auch die eBIC geschrieben. Die Einführung des eBIC in die Beckhoff-IO-Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.


Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT-Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen:
 - Ab TwinCAT 3.1 Build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter
 EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

· Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab
 v3.3.19.0 die Funktionen FB EcReadBIC und FB EcReadBTN zum Einlesen in die PLC bereit.
- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:
 - Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein

Ind	lex	Name	Flags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
*	1011:0	Restore default parameters	RO	>1<		
•	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 Build 4024.24 in der Tc2 Utilities zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den BIC sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST_SplittedBIC als Rückgabewert
 - BIC_TO_BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Zum technischen Hintergrund:
 Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT-Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen.
 Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.
- · Sonderfälle
 - Bei einer hierarchischen Anordnung mehrerer ESC (EtherCAT Slave Controller) in einem Gerät trägt lediglich der oberste ESC die eBIC-Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC-Information gleich.

 Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC dieses ESC, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

PROFIBUS-, PROFINET-, DeviceNet-Geräte usw.

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

3 Produktübersicht

3.1 Einführung

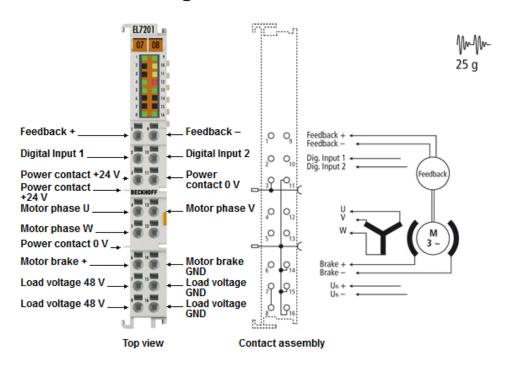


Abb. 4: EL7201-0010

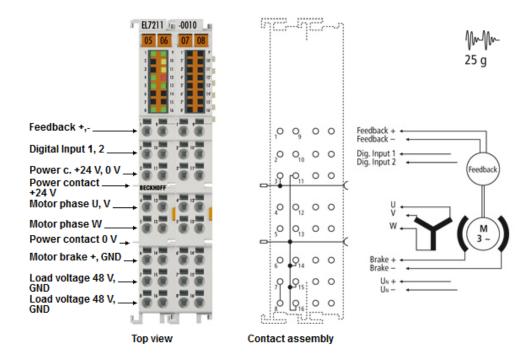


Abb. 5: EL7211-0010

Servo-Motorklemmen mit OCT

Die Servomotor-EtherCAT-Klemmen EL7201-0010 (MDP742-Profil, OCT, 48 V_{DC} , 2,8 A_{rms}) / EL7201-0011 (DS402-Profil, OCT, 48 V_{DC} , 2,8 A_{rms}) und EL7211-0010 (MDP742-Profil, OCT, 48 V_{DC} , 4,5 A_{rms}) / EL7211-0011 (DS402-Profil, OCT, 48 V_{DC} , 4,5 A_{rms}), mit integriertem Absolutwert-Interface, bieten hohe Servo-Performance in sehr kompakter Bauform. Die EL72x1-001x wurde für die Motortypen der Reihe AM81xx von Beckhoff Automation konzipiert.

Die schnelle Regelungstechnik, auf Basis einer feldorientierten Strom- und PI-Drehzahlregelung, unterstützt schnelle und hochdynamische Positionieraufgaben. Zahlreiche Überwachungen, wie der Über- und Unterspannung, des Überstroms, der Klemmentemperatur oder der Motorauslastung, über die Berechnung eines I²T-Modells, bieten ein Höchstmaß an Betriebssicherheit.

EtherCAT, als leistungsfähige Systemkommunikation, und CAN-over-EtherCAT (CoE), als Applikationsschicht, ermöglichen die ideale Anbindung an die PC-basierte Steuerungstechnik. Neueste Leistungshalbleiter garantieren minimale Verlustleistung und ermöglichen beim Bremsbetrieb eine Rückspeisung in den Zwischenkreis.

Die LEDs zeigen Status-, Warn und Fehlermeldungen sowie eventuell aktive Limitierungen an.

Mit der One Cable Technology (OCT) wird die Geberleitung eingespart, indem die Signale des Gebers digital über das vorhandene Motorkabel übertragen werden. Das Einlesen der elektronischen Typenschilder der passenden Motoren der Serie AM81xx ermöglicht eine Plug-and-Play-Lösung und bietet höchsten Komfort bei der Inbetriebnahme.

Die EL72x1-xx1x verfügt über zwei digitale Eingänge, die für die Funktion Touch Probe genutzt werden können. Der Status der Eingänge kann über die Select Info Data (Profil MDP 742 [▶ 159] und DS 402 [▶ 192]) zurückgelesen werden.

Empfohlene TwinCAT-Version

Um die volle Performance der EL72x1-001x in Anspruch nehmen zu können wird empfohlen, die Klemme mit mindestens TwinCAT 2.11 R3 zu betreiben!

Obligatorische Hardware

Die EL72x1-001x muss mit einem echtzeitfähigen Rechner und Distributed Clocks betrieben werden!

Freigegebene Motoren

Ein einwandfreier Betrieb kann nur mit den von Beckhoff freigegebenen Motoren gewährleistet werden.

Schnellverweise

Hinweise zum Anschluss

- · Kapitel "Montage und Verdrahtung",
 - LEDs und Anschlussbelegung [▶ 54]
 - <u>Schirmkonzept</u> [▶ <u>50]</u>
 - <u>Hinweise zur Strommessung über Hallsensor</u> [▶ <u>53</u>]

Hinweise zur Konfiguration

- · Kapitel "Inbetriebnahme",
 - Konfiguration der wichtigsten Parameter [> 94]
- · Kapitel "Konfiguration mit dem TwinCAT System Manager",
 - <u>Objektbeschreibung und Parametrierung [▶ 156]</u>

Anwendungsbeispiel

- Kapitel "Inbetriebnahme",
 - Anwendungsbeispiel [▶ 106]

3.2 Technische Daten

Technische Daten	EL7201-001x	EL7211-001x				
Anzahl Ausgänge	3 Motorphasen, 2 Motorhaltebremse	9				
Anzahl Eingänge	2 (4) Zwischenkreisspannung, 2 absolutes Feedback, 2 digitale Eingänge					
Zwischenkreisversorgungsspannung	8 48 V _{DC}					
Versorgungsspannung	24 V _{DC} über die Powerkontakte / über den E-Bus					
Ausgangsstrom	2,8 A _{eff} (ohne <u>Lüftermodul ZB8610</u>) 4,5 A _{eff} (mit <u>Lüftermodul ZB8610</u>)					
Spitzenstrom	5,7 A _{eff} für 1 Sekunde (ohne Lüftermodul ZB8610) 9 A _{eff} für 1 Sekunde (mit Lüftermodul ZB8610)					
Nennleistung	170 W (ohne <u>Lüftermodul ZB8610)</u> 276 W (mit <u>Lüftermodul ZB8610</u>)	276 W				
Ausgangsspannung Motorhaltebremse	24 V (+ 6 %, - 10 %)					
Max. Ausgangsstrom Motorhaltebremse	max. 0,5 A					
Lastart	Permanenterregte Synchronmotorer (Baureihe AM81xx)	n, induktiv				
PWM Schaltfrequenz	16 kHz					
Stromreglerfrequenz	doppelte PWM Schaltfrequenz					
Geschwindigkeitsreglerfrequenz	16 kHz					
Diagnose-LED	Status, Warnung, Fehler und Limits					
Verlustleistung	typ. 1,6 W					
Stromaufnahme aus dem E-Bus	typ. 120 mA					
Stromaufnahme aus den 24 V	typ. 55 mA + Haltebremse					
Unterstützt Funktion NoCoeStorage	Ja					
Verpolungsschutz	24 V Spannungsversorgung: ja, durch Body-Diode der Überspannungsschutzeinrichtung 50 V Spannungsversorgung: ja, durch Body-Diode der Überspannungsschutzeinrichtung					
Absicherung (vom Anwender durchzuführen)	24 V Spannungsversorgung: 10 A 50 V Spannungsversorgung: 10 A					
Potenzialtrennung	500 V (E-Bus/Signalspannung)					
Mögliche EtherCAT-Zykluszeiten	Vielfaches von 125 μs					
Konfiguration	keine Adresseinstellung erforderlich Konfiguration über TwinCAT System					
Gewicht	ca. 60 g ca. 95 g					
zulässiger Umgebungstemperaturbereich im Betrieb	0°C + 55°C					
zulässiger Umgebungstemperaturbereich bei Lagerung	-25°C + 85°C					
zulässige relative Luftfeuchtigkeit	95%, keine Betauung					
Abmessungen (B x H x T)	ca. 15 mm x 100 mm x 70 mm (Breite angereiht: 12 mm)	ca. 27 mm x 100 mm x 70 mm (Breite angereiht: 24 mm)				
Montage [▶ 36]	auf 35 mm Tragschiene nach EN 60	715				
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27, siehe auch Montagevorschriften [> 39] für Klemmen mit erhöhter mechanischer Belastbarkeit					
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4 gemäß IEC/EN 61800-3					
EMV Kategorie	Kategorie C3 - Standard Kategorie C2, C1 - Zusatzfilter erforderlich					
Schutzart	IP20					
Einbaulage	ohne <u>Lüftermodul ZB8610</u> : Standard-Einbaulage mit <u>Lüftermodul ZB8610</u> : Standard-Einbaulage, weitere Einbaulagen (Beispiel 1 und 2) siehe <u>Hinweis [▶ 46]</u>					
Zulassungen / Kennzeichnungen*	CE, EAC, UKCA, <u>cULus [▶ 58]</u>					

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

20 Version: 3.0.0 EL72x1-001x

3.3 Technologie

Die Servomotorklemme EL72x1-xxxx integriert einen vollwertigen Servoverstärker für Servomotoren bis 276 W in kleinster Bauform.

Servomotor

Der Servomotor ist ein elektrischer Motor. Zusammen mit einem Servoverstärker bildet der Servomotor einen Servoantrieb. Der Servomotor wird in einem geschlossenen Regelkreis positions-, moment- oder geschwindigkeitsgeregelt betrieben.

Die Servoklemme EL72x1-xxxx unterstützt die Ansteuerung von permanenterregten Synchronmotoren. Diese bestehen aus drei um 120° verschobenen Spulen und einen permanenterregten Rotor.

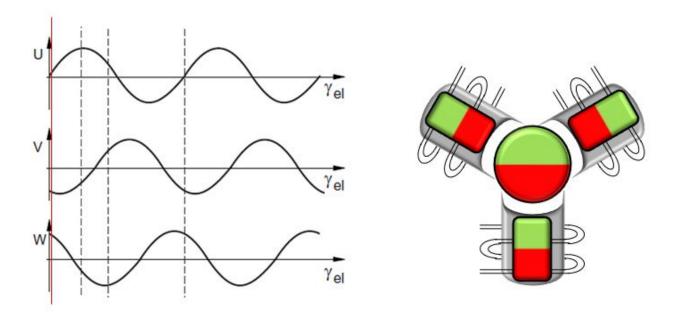


Abb. 6: Drei um 120° verschobenen Spulen eines Synchronmotors

Besonders in hochdynamischen und präzise-positionierenden Anwendungen zeigen Servomotoren ihre Vorzüge:

- sehr hohe Positioniergenauigkeit bei Applikationen mit höchstem Präzisionsanspruch durch integrierte Positionsrückführung
- · hoher Wirkungsgrad und hohes Beschleunigungsvermögen
- Servomotoren sind überlastbar und verfügen daher über eine weitaus höhere Dynamik als beispielsweise ein Schrittmotor
- · belastungsunabhängiges hohes Drehmoment bis in die oberen Drehzahlbereiche
- · reduzierter Einsatz von Wartung auf ein Minimum

Die EtherCAT-Servomotorklemme bietet dem Anwender die Möglichkeit kompakte und kostengünstige Anlagen zu konstruieren, ohne auf die Vorteile eines Servomotors verzichten zu müssen.

Die Beckhoff Servoklemme

Die EL72x1-xxxx ist ein vollwertiger Servoverstärker für den direkten Anschluss von Servomotoren im unteren Leistungsbereich. Weitere Module oder Verkabelung, um eine Verbindung zum Steuerungssystem herzustellen entfallen dadurch komplett. Das führt zu einer sehr kompakten Steuerungslösung. Durch die E-Bus-Anbindung der EL72x1-xxxx stehen dem Anwender die Eigenschaften von EtherCAT in vollen Zügen zur Verfügung. Dazu zählen insbesondere die kurze Zykluszeit, der niedrige Jitter, die Gleichzeitigkeit und die einfache Diagnose, die EtherCAT zu bieten hat. Mit Hilfe dieser Performance von EtherCAT kommt die Dynamik, die ein Servomotor erreichen kann, optimal zur Geltung.

Eine Nennspannung von max. $48~V_{DC}$ und ein Nennstrom von max. 4,5~A ermöglichen es dem Anwender einen Servomotor mit einer Leistung von bis zu 276~W anzutreiben. Als Last können permanenterregte Synchronmotoren mit einem Nennstrom bis 4,5~A betrieben werden. Zahlreiche Überwachungen, z. B. der Über- und Unterspannung, des Überstroms, der Klemmentemperatur oder der Motorauslastung, bieten ein Höchstmaß an Betriebssicherheit. Moderne Leistungshalbleiter garantieren minimale Verlustleistung und ermöglichen, im Bremsbetrieb, eine Rückspeisung in den Zwischenkreis.

Mit der Integration eines vollwertigen Servoverstärkers in eine nur 12 mm breite EtherCAT-Klemme EL7201 setzt Beckhoff in Sachen Baugröße neue Maßstäbe. Diese geringe Baugröße ist dank neuster Halbleitertechnik und dem daraus resultierendem sehr hohem Leistungsfaktor möglich. Doch trotz der geringen Baugröße muss auf nichts verzichtet werden.

Die integrierte, schnelle Regelungstechnik, mit einer feldorientierten Strom- und PI-Drehzahlregelung unterstützt hochdynamische Positionieraufgaben. Neben dem direkten Anschluss von Motor und Resolver ist auch der Anschluss einer Motorhaltebremse möglich.

Die EL72x1-xx1x verfügt über 2 digitale Eingänge, die für die Funktion Touch Probe genutzt werden können. Der Status der Eingänge kann über die Select Info Data (Profil MDP 742 und DS 402) zurückgelesen werden.

Anbindung an die Steuerung

Ein weiterer großer Vorteil der EL72x1-xxxx ist die einfache Anbindung an die Steuerungslösung. Die vollständige Integration in das Steuerungssystem erleichtert die Inbetriebnahme und Parametrierung. Wie jede andere Beckhoff-Klemme wird die EL72x1-xxxx einfach in den Klemmenverbund eingeschoben. Anschließend kann der Klemmenverbund komplett vom TwinCAT System Manager eingescannt oder vom Applikateur manuell angefügt werden. Im System Manager kann die EL72x1-xxxx mit der TwinCAT NC verknüpft und parametriert werden.

Skalierbare Motion-Lösung

Die Servoklemme ergänzt die Produktpalette der Kompakt-Antriebstechnik für die Beckhoff I/O-Systeme, die für Schrittmotoren, AC- und DC-Motoren verfügbar sind. Mit der EL72x1-xxxx wird das Angebot an Servoverstärkern noch feiner skalierbar: Vom Kleinst-Servoverstärker bis 170 W, in der EtherCAT-Klemme, bis zum AX5000-Servoverstärker mit 118 kW, bietet Beckhoff ein breites Programm, inklusive der Servomotoren.

Die Baureihe AM81xx wurde speziell für die Servomotorklemme EL72x1-xxxx entwickelt.

Die One Cable Technology (OCT)

Bei den Servomotoren der Serie AM8100-xF2 x erfolgt die Übertragung der Feedback-Signale direkt über die Leitung zur Spannungsversorgung, sodass Power und Feedbacksystem in einem Motoranschlusskabel zusammengefasst sind. Durch die One Cable Technology werden die Informationen störsicher und zuverlässig über eine digitale Schnittstelle übertragen. Da sowohl motor- als auch reglerseitig Kabel und Steckverbinder entfallen, werden die Komponenten- und Inbetriebnahmekosten reduziert.

Thermisches Motormodell I²T

Das thermische I 2 T Motormodell bildet das thermische Verhalten der Motorwicklung unter Berücksichtigung des absoluten Wärmewiderstands R_{th} und der Wärmekapazität C_{th} des Motors und der Statorwicklung ab.

Im Modell wird angenommen, dass der Motor bei Dauerbetrieb mit Nennstrom I_{nenn} seine maximale Dauerbetriebstemperatur T_{nenn} erreicht. Diese Temperatur entspricht einer Auslastung des Motors von 100%. Bei Betrieb mit Nennstrom erreicht das Motormodell nach einer Zeit von τ_{th} = R_{th} · C_{th} eine Auslastung von 63% und erreicht langsam seine Dauerbetriebstemperatur.

Wird der Motor mit einem Strom größer dem Nennstrom betrieben, erreicht das Modell eine Auslastung von 100% schneller.

Überschreitet die Auslastung des I²T Modells den Wert von 100%, wird der angeforderte Sollstrom auf den Nennstrom limitiert, um die Motorwicklung thermisch zu schützen. Die Auslastung fällt auf maximal 100% zurück. Bei Unterschreiten des Nennstroms fällt die Auslastung auf unter 100% und die Limitierung des Sollstroms wird aufgehoben.

Bei einem vorher auf Umgebungstemperatur abgekühlten Motor kann die Zeit zum Erreichen von 100% Auslastung bei Bestromung mit einem Sollstrom größer als Nennstrom grob mit τ_{th} · I_{nenn}^2/I_{ist}^2 abgeschätzt werden.

Die exakte Berechnung des Durchtritts von 100% Auslastung erfordert die Kenntnis der aktuellen Auslastung.

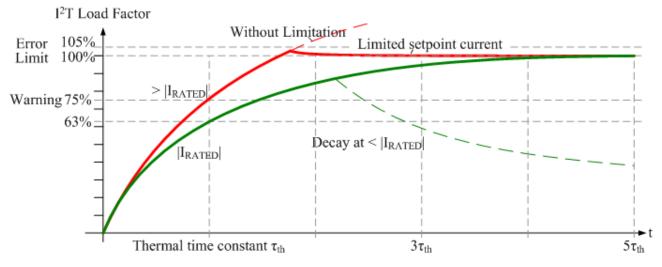


Abb. 7: Limitierung auf den Nennstroms des Motors

3.4 Start

Zur Inbetriebsetzung:

- montieren Sie den EL72x1-001x wie im Kapitel Installation [▶ 35] beschrieben.
- konfigurieren Sie den EL72x1-001x in TwinCAT wie im Kapitel Inbetriebnahme [60] beschrieben.

4 Grundlagen der Kommunikation

4.1 EtherCAT-Grundlagen

Grundlagen zum Feldbus EtherCAT entnehmen Sie bitte der EtherCAT System-Dokumentation.

4.2 EtherCAT-Verkabelung - Drahtgebunden

Die zulässige Leitungslänge zwischen zwei EtherCAT-Geräten darf maximal 100 Meter betragen. Dies resultiert aus der FastEthernet-Technologie, die vor allem aus Gründen der Signaldämpfung über die Leitungslänge eine maximale Linklänge von 5 m + 90 m + 5 m erlaubt, wenn Leitungen mit entsprechenden Eigenschaften verwendet werden. Siehe dazu auch die <u>Auslegungsempfehlungen zur Infrastruktur für</u> EtherCAT/Ethernet.

Kabel und Steckverbinder

Verwenden Sie zur Verbindung von EtherCAT-Geräten nur Ethernet-Verbindungen (Kabel + Stecker), die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen. EtherCAT nutzt vier Adern des Kabels für die Signalübertragung.

EtherCAT verwendet beispielsweise RJ45-Steckverbinder. Die Kontaktbelegung ist zum Ethernet-Standard (ISO/IEC 8802-3) kompatibel.

Pin	Aderfarbe	Signal	Beschreibung
1	gelb	TD+	Transmission Data +
2	orange	TD-	Transmission Data -
3	weiß	RD+	Receiver Data +
6	blau	RD-	Receiver Data -

Aufgrund der automatischen Kabelerkennung (Auto-Crossing) können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte als auch gekreuzte Leitungen (Cross-Over) verwendet werden.

Empfohlene Kabel

Es wird empfohlen, die entsprechenden Beckhoff-Komponenten zu verwenden, z. B.

- Kabelsätze ZK1090-9191-xxxx bzw.
- feldkonfektionierbare RJ45 Stecker ZS1090-0005 oder
- feldkonfektionierbare Ethernet Leitung ZB9010, ZB9020.

Geeignete Kabel zur Verbindung von EtherCAT-Geräten finden Sie auf der Beckhoff Website!

E-Bus-Versorgung

Ein Buskoppler kann die an ihm angefügten EL-Klemmen mit der E-Bus-Systemspannung von 5 V versorgen, in der Regel ist ein Koppler dabei bis zu 2 A belastbar (siehe Dokumentation des jeweiligen Gerätes).

Zu jeder EL-Klemme ist die Information, wie viel Strom sie aus der E-Bus-Versorgung benötigt, online und im Katalog verfügbar. Benötigen die angefügten Klemmen mehr Strom als der Koppler liefern kann, sind an entsprechender Position im Klemmenstrang Einspeiseklemmen (z. B. <u>EL9410</u>) zu setzen.

Im TwinCAT System Manager wird der berechnete, theoretische maximale E-Bus-Strom angezeigt. Eine Unterschreitung wird durch einen negativen Summenbetrag und Ausrufezeichen markiert, vor einer solchen Stelle ist eine Einspeiseklemme zu setzen.

24 Version: 3.0.0 EL72x1-001x

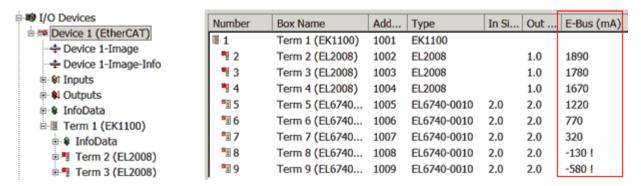


Abb. 8: System Manager Stromberechnung

HINWEIS

Fehlfunktion möglich!

Die E-Bus-Versorgung aller EtherCAT-Klemmen eines Klemmenblocks muss aus demselben Massepotential erfolgen!

4.3 Allgemeine Hinweise zur Watchdog-Einstellung

Die EtherCAT-Klemmen sind mit einer Sicherungseinrichtung (Watchdog) ausgestattet, die z. B. bei unterbrochenem Prozessdatenverkehr nach einer voreinstellbaren Zeit die Ausgänge (sofern vorhanden) in einen gegebenenfalls vorgebbaren Zustand schaltet, in Abhängigkeit von Gerät und Einstellung z. B. auf FALSE (aus) oder einen Ausgabewert.

Der EtherCAT Slave Controller verfügt dazu über zwei Watchdogs:

- Sync Manager (SM)-Watchdog (default: 100 ms)
- Process-Data (PDI)-Watchdog (default: 100 ms)

Deren Zeiten werden in TwinCAT wie folgt einzeln parametriert:

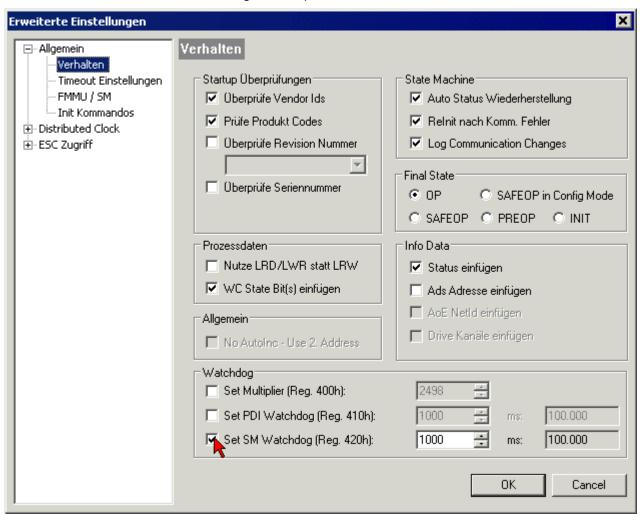


Abb. 9: Karteireiter EtherCAT -> Erweiterte Einstellungen -> Verhalten -> Watchdog

Anmerkungen:

- Das Multiplier-Register 400h (hexadezimal, also 0x0400), ist für beide Watchdogs gültig.
- Jeder Watchdog hat seine eigene Timer-Einstellung 410h bzw. 420h, die zusammen mit dem Multiplier eine resultierende Zeit ergibt.
- Wichtig: die Multiplier-/Timer-Einstellung wird nur dann beim EtherCAT-Start in den Slave geladen, wenn die Checkbox davor aktiviert ist.
 Ist diese nicht aktiviert, wird nichts herunter geladen und die im ESC befindliche Einstellung bleibt unverändert.
- Die heruntergeladenen Werte k\u00f6nnen in den ESC-Registern 400h, 410h und 420h eingesehen werden: ESC Zugriff -> Speicher (ESC Access -> Memory).

SM-Watchdog (SyncManager-Watchdog)

Der SyncManager-Watchdog wird bei jeder erfolgreichen EtherCAT-Prozessdatenkommunikation mit der Klemme zurückgesetzt. Findet z. B. durch eine Leitungsunterbrechung länger als die eingestellte und aktivierte SM-Watchdog-Zeit keine EtherCAT-Prozessdatenkommunikation mit der Klemme statt, löst der Watchdog aus. Der Status der Klemme (in der Regel OP) bleibt davon unberührt. Der Watchdog wird erst wieder durch einen erfolgreichen EtherCAT-Prozessdatenzugriff zurückgesetzt.

Der SyncManager-Watchdog ist also eine Überwachung auf korrekte und rechtzeitige Prozessdatenkommunikation zwischen Master und ESC, die allein auf EtherCAT-Ebene abläuft.

Die maximal mögliche Watchdog-Zeit ist geräteabhängig. Beispielsweise beträgt sie bei "einfachen" EtherCAT-Slaves (ohne Firmware) mit Watchdog-Ausführung im ESC in der Regel bis zu 170 Sekunden. Bei komplexen EtherCAT-Slaves (mit Firmware) wird die SM-Watchdog-Funktion in der Regel zwar über Register 400h/420h parametriert, aber vom Microcontroller (μC) ausgeführt und kann deutlich darunter liegen. Außerdem kann die Ausführung dann einer gewissen Zeitunsicherheit unterliegen. Da der TwinCAT-Dialog ggf. Eingaben bis 65535 zulässt, wird ein Test der gewünschten Watchdog-Zeit empfohlen.

PDI-Watchdog (Process Data Watchdog)

Findet länger als die eingestellte und aktivierte PDI-Watchdog-Zeit keine PDI (Process Data Interface)-Kommunikation mit dem ESC statt, löst dieser Watchdog aus.

PDI ist die interne Schnittstelle des ESC z. B. zu lokalen Prozessoren im EtherCAT-Slave. Mit dem PDI-Watchdog kann diese Kommunikation auf Ausfall überwacht werden.

Der PDI-Watchdog ist also eine Überwachung auf korrekte und rechtzeitige Prozessdatenkommunikation mit dem ESC, nun aber von der Applikationsseite aus betrachtet.

Berechnung

Watchdog-Zeit = [1/25 MHz * (Watchdog-Multiplier + 2)] * SM/PDI Watchdog

Beispiel: Default-Einstellung Multiplier'= 2498, SM-Watchdog = 1000 => 100 ms

Der Wert in "Watchdog-Multiplier + 2" in der oberen Formel entspricht der Anzahl 40ns-Basisticks, die einen Watchdog-Tick darstellen.

⚠ VORSICHT

Ungewolltes Verhalten des Systems möglich!

Die Abschaltung des SM-Watchdog durch SM-Watchdog = 0 funktioniert erst in Klemmen ab Revision -0016. In vorherigen Versionen wird vom Einsatz dieser Betriebsart abgeraten.

⚠ VORSICHT

Beschädigung von Geräten und ungewolltes Verhalten des Systems möglich!

Bei aktiviertem SM-Watchdog und eingetragenem Wert 0 schaltet der Watchdog vollständig ab! Dies ist die Deaktivierung des Watchdogs! Gesetzte Ausgänge werden dann bei einer Kommunikationsunterbrechung NICHT in den sicheren Zustand gesetzt!

4.4 EtherCAT State Machine

Über die EtherCAT State Machine (ESM) wird der Zustand des EtherCAT-Slaves gesteuert. Je nach Zustand sind unterschiedliche Funktionen im EtherCAT-Slave zugänglich bzw. ausführbar. Insbesondere während des Hochlaufs des Slaves müssen in jedem State spezifische Kommandos vom EtherCAT-Master zum Gerät gesendet werden.

Es werden folgende Zustände unterschieden:

- Init
- · Pre-Operational
- · Safe-Operational
- · Operational

Bootstrap

Regulärer Zustand eines jeden EtherCAT-Slaves nach dem Hochlauf ist der Status Operational (OP).

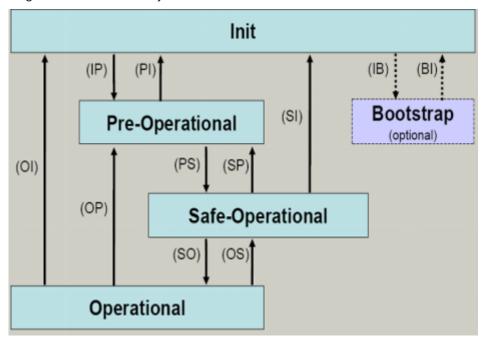


Abb. 10: Zustände der EtherCAT State Machine

Init

Nach dem Einschalten befindet sich der EtherCAT-Slave im Zustand *Init*. Dort ist weder Mailbox- noch Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle 0 und 1 für die Mailbox-Kommunikation.

Pre-Operational (Pre-Op)

Beim Übergang von Init nach Pre-Op prüft der EtherCAT-Slave, ob die Mailbox korrekt initialisiert wurde.

Im Zustand *Pre-Op* ist Mailbox-Kommunikation aber keine Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle für Prozessdaten (ab Sync-Manager-Kanal 2), die Kanäle der Fieldbus Memory Management Unit (FMMU) und, falls der Slave ein konfigurierbares Mapping unterstützt, das Mapping der Prozessdatenobjekte (PDOs) oder das Sync-Manager-PDO-Assignement. Weiterhin werden in diesem Zustand die Einstellungen für die Prozessdatenübertragung sowie ggf. noch klemmenspezifische Parameter übertragen, die von den Default-Einstellungen abweichen.

Safe-Operational (Safe-Op)

Beim Übergang von *Pre-Op* nach *Safe-Op* prüft der EtherCAT-Slave, ob die Sync-Manager-Kanäle für die Prozessdatenkommunikation sowie ggf. die Einstellungen für die Distributed Clocks korrekt sind. Bevor er den Zustandswechsel quittiert, kopiert der EtherCAT-Slave aktuelle Inputdaten in die entsprechenden Dual Port (DP)-RAM-Bereiche des ESC.

Im Zustand *Safe-Op* ist Mailbox- und Prozessdatenkommunikation möglich, allerdings hält der Slave seine Ausgänge im sicheren Zustand und gibt sie noch nicht aus. Die Inputdaten werden aber bereits zyklisch aktualisiert.

Ausgänge im SAFEOP

Die standardmäßig aktivierte Überwachung mittels Watchdog bringt die Ausgänge im ESC-Modul in Abhängigkeit von den Einstellungen im SAFEOP und OP in einen sicheren Zustand - je nach Gerät und Einstellung - z. B. auf AUS. Wird dies durch Deaktivieren der Überwachung unterbunden, können auch im Geräte-Zustand SAFEOP Ausgänge geschaltet werden bzw. gesetzt bleiben.

Operational (Op)

Bevor der EtherCAT-Master den EtherCAT-Slave von *Safe-Op* nach *Op* schaltet, muss er bereits gültige Outputdaten übertragen.

Im Zustand *Op* kopiert der Slave die Ausgangsdaten des Masters auf seine Ausgänge. Es ist Prozessdatenund Mailboxkommunikation möglich.

Boot

Im Zustand *Boot* kann ein Update der Slave-Firmware vorgenommen werden. Der Zustand *Boot* ist nur über den Zustand *Init* zu erreichen.

Im Zustand *Boot* ist Mailbox-Kommunikation über das Protokoll File-Access over EtherCAT (FoE) möglich, aber keine andere Mailbox- und Prozessdatenkommunikation.

4.5 CoE-Interface

Allgemeine Beschreibung

Das CoE-Interface (CAN application protocol over EtherCAT Interface) ist die Parameterverwaltung für EtherCAT-Geräte. EtherCAT-Slaves oder auch der EtherCAT-Master verwalten darin feste (ReadOnly) oder veränderliche Parameter, die sie zum Betrieb, Diagnose oder Inbetriebnahme benötigen.

CoE-Parameter sind in einer Tabellen-Hierarchie angeordnet und prinzipiell dem Anwender über den Feldbus zugänglich. Der EtherCAT-Master (TwinCAT System Manager) kann über EtherCAT auf die lokalen CoE-Verzeichnisse der Slaves zugreifen und je nach Eigenschaften lesend oder schreibend einwirken.

Es sind verschiedene Typen für CoE-Datentypen möglich wie String (Text), Integer-Zahlen, Bool'sche Werte oder größere Byte-Felder. Damit lassen sich ganz verschiedene Eigenschaften beschreiben. Beispiele für solche Parameter sind Herstellerkennung, Seriennummer, Prozessdateneinstellungen, Gerätename, Abgleichwerte für analoge Messungen oder Passwörter.

Die Ordnung erfolgt in zwei Ebenen über hexadezimale Nummerierung: Zuerst wird der (Haupt)Index genannt, dann der Subindex.

Die Wertebereiche sind:

- Index: 0x0000...0xFFFF (0...65535_{dez})
- Subindex: 0x00...0xFF (0...255_{dez})

Üblicherweise wird ein so lokalisierter Parameter geschrieben als 0x8010:07 mit voranstehendem "0x" als Kennzeichen des hexadezimalen Zahlenraumes und Doppelpunkt zwischen Index und Subindex.

Die für den EtherCAT-Feldbusanwender wichtigen Bereiche sind

- 0x1000: Hier sind feste Identitätsinformationen zum Gerät hinterlegt wie Name, Hersteller, Seriennummer etc. Außerdem liegen hier Angaben über die aktuellen und verfügbaren Prozessdatenkonstellationen.
- 0x8000: Hier sind die für den Betrieb erforderlichen funktionsrelevanten Parameter für alle Kanäle zugänglich wie Filtereinstellung oder Ausgabefrequenz.

Weitere wichtige Bereiche sind:

- 0x4000: Hier befinden sich bei manchen EtherCAT-Geräten die Kanalparameter. Historisch war dies der erste Parameterbereich, bevor der 0x8000 Bereich eingeführt wurde. EtherCAT-Geräte, die früher mit Parametern in 0x4000 ausgerüstet wurden und auf 0x8000 umgestellt wurden, unterstützen aus Kompatibilitätsgründen beide Bereiche und spiegeln intern.
- 0x6000: Hier liegen die Eingangs-PDO ("Eingänge" aus Sicht des EtherCAT-Masters)
- 0x7000: Hier liegen die Ausgangs-PDO ("Ausgänge" aus Sicht des EtherCAT-Masters)

Verfügbarkeit

Nicht jedes EtherCAT-Gerät muss über ein CoE-Verzeichnis verfügen. Einfache I/O-Module ohne eigenen Prozessor verfügen in der Regel über keine veränderlichen Parameter und haben deshalb auch kein CoE-Verzeichnis.

Wenn ein Gerät über ein CoE-Verzeichnis verfügt, stellt sich dies im TwinCAT System Manager als ein eigener Karteireiter mit der Auflistung der Elemente dar:

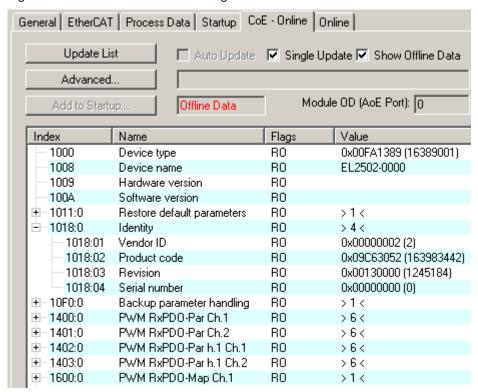


Abb. 11: Karteireiter "CoE-Online"

In der Abbildung "Karteireiter "CoE-Online" sind die im Gerät "EL2502" verfügbaren CoE-Objekte von 0x1000 bis 0x1600 zu sehen, die Subindizes von 0x1018 sind aufgeklappt.

HINWEIS

Veränderungen im CoE-Verzeichnis (CAN over EtherCAT-Verzeichnis), Programmzugriff

Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise im Kapitel "CoE-Interface" der EtherCAT-System-Dokumentation:

- · Startup-Liste führen für den Austauschfall,
- Unterscheidung zwischen Online/Offline Dictionary,
- Vorhandensein aktueller XML-Beschreibung (Download von der Beckhoff Website),
- "CoE-Reload" zum Zurücksetzen der Veränderungen
- Programmzugriff im Betrieb über die PLC (s. <u>TwinCAT3 | PLC-Bibliothek: Tc2_EtherCAT</u> und Beispielprogramm R/W CoE)

Datenerhaltung und Funktion "NoCoeStorage"

Einige, insbesondere die vorgesehenen Einstellungsparameter des Slaves, sind veränderlich und beschreibbar,

über den System Manager (siehe Abb. "Karteireiter "CoE-Online") durch Anklicken.
 Dies bietet sich bei der Inbetriebnahme der Anlage bzw. Slaves an. Klicken Sie auf die entsprechende Zeile des zu parametrierenden Indizes und geben Sie einen entsprechenden Wert im "SetValue"-Dialog ein.

• aus der Steuerung bzw. PLC über ADS z. B. durch die Bausteine aus der TcEtherCAT.lib Bibliothek. Dies wird für Änderungen während der Anlagenlaufzeit empfohlen oder wenn kein System Manager bzw. Bedienpersonal zur Verfügung steht.

Datenerhaltung

Werden online auf dem Slave CoE-Parameter geändert, wird dies in Beckhoff-Geräten üblicherweise ausfallsicher im Gerät (EEPROM) gespeichert. D. h. nach einem Neustart (Re Power) sind die veränderten CoE-Parameter immer noch erhalten. Andere Hersteller können dies anders handhaben.

Ein EEPROM unterliegt in Bezug auf Schreibvorgänge einer begrenzten Lebensdauer. Ab typischerweise 100.000 Schreibvorgängen kann eventuell nicht mehr sichergestellt werden, dass neue (veränderte) Daten sicher gespeichert werden oder noch auslesbar sind. Dies ist für die normale Inbetriebnahme ohne Belang. Werden allerdings zur Maschinenlaufzeit fortlaufend CoE-Parameter über ADS verändert, kann die Lebensdauergrenze des EEPROMs durchaus erreicht werden.

Es ist von der FW-Version abhängig, ob die Funktion NoCoeStorage unterstützt wird, die das Abspeichern veränderter CoE-Werte unterdrückt.

Ob das auf das jeweilige Gerät zutrifft, ist den technischen Daten der entsprechenden Dokumentation zu entnehmen.

- Wird diese unterstützt: Die Funktion ist per einmaligem Eintrag des Codeworts 0x12345678 im CoE-Index 0xF008 zu aktivieren. Die Funktion ist solange aktiv, wie das Codewort unverändert bleibt. Nach dem Einschalten des Gerätes ist sie nicht aktiv.
 Veränderte CoE-Werte werden dann nicht im EEPROM abgespeichert, sie können somit beliebig oft verändert werden.
- Wird diese nicht unterstützt: Eine fortlaufende Änderung von CoE-Werten ist angesichts der o.a.
 Lebensdauergrenze nicht zulässig.

Startup-Liste

Veränderungen im lokalen CoE-Verzeichnis der Klemme gehen im Austauschfall mit der alten Klemme verloren. Wird im Austauschfall eine neue Klemme mit Beckhoff Werkseinstellungen eingesetzt, bringt diese die Standardeinstellungen mit. Es ist deshalb empfehlenswert, alle Veränderungen im CoE-Verzeichnis eines EtherCAT-Slaves in der Startup-Liste des Slaves zu verankern, die bei jedem Start des EtherCAT-Feldbus abgearbeitet wird. So wird auch im Austauschfall ein neuer EtherCAT-Slave automatisch mit den Vorgaben des Anwenders parametriert.

Wenn EtherCAT-Slaves verwendet werden, die lokal CoE-Werte nicht dauerhaft speichern können, ist zwingend die Startup-Liste zu verwenden.

Empfohlenes Vorgehen bei manueller Veränderung von CoE-Parametern

- Gewünschte Änderung im System Manager vornehmen (Werte werden lokal im EtherCAT-Slave gespeichert).
- Wenn der Wert dauerhaft Anwendung finden soll, einen entsprechenden Eintrag in der Startup-Liste vornehmen. Die Reihenfolge der Startup-Einträge ist dabei i.d.R. nicht relevant.

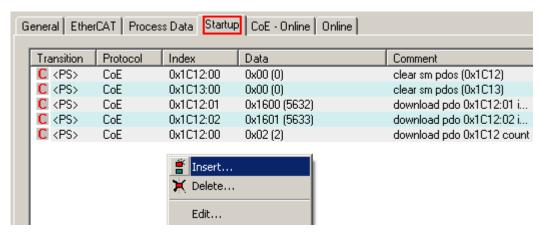


Abb. 12: Startup-Liste im TwinCAT System Manager

In der Startup-Liste können bereits Werte enthalten sein, die vom System Manager nach den Angaben der ESI dort angelegt werden. Zusätzliche anwendungsspezifische Einträge können ebenfalls angelegt werden.

Online- / Offline Verzeichnis

Im Rahmen der Arbeit mit dem TwinCAT System Manager ist zu differenzieren, ob das EtherCAT-Gerät gegenwärtig "verfügbar" ist, also angeschaltet und über EtherCAT verbunden – somit **online** – oder ob eine Konfiguration **offline** erstellt wird, ohne dass Slaves angeschlossen sind.

In beiden Fällen ist ein CoE-Verzeichnis nach Abb. "Karteireiter "CoE-Online" zu sehen, die Konnektivität wird allerdings als offline oder online angezeigt.

- · Wenn der Slave offline ist,
 - wird das Offline-Verzeichnis aus der ESI-Datei angezeigt; Änderungen sind hier nicht sinnvoll bzw.
 möglich.
 - · wird in der Identität der konfigurierte Stand angezeigt.
 - wird kein Firmware- oder Hardware-Stand angezeigt, da dies Eigenschaften des realen Gerätes sind.
 - ist ein rotes Offline Data zu sehen.

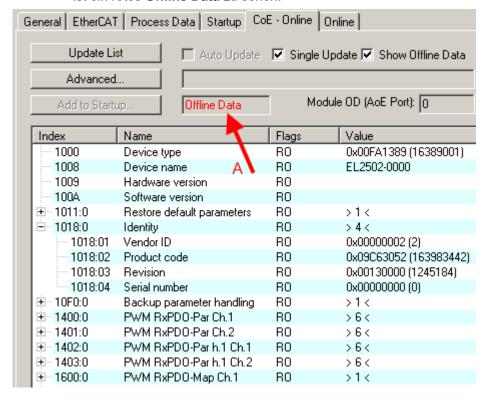


Abb. 13: Offline-Verzeichnis

- · Wenn der Slave online ist.
 - wird das reale, aktuelle Verzeichnis des Slaves ausgelesen; dies kann je nach Größe und Zykluszeit einige Sekunden dauern.
 - · wird die tatsächliche Identität angezeigt.
 - wird der Firmware- und Hardware-Stand des Gerätes im CoE angezeigt.
 - ist ein grünes Online Data zu sehen.

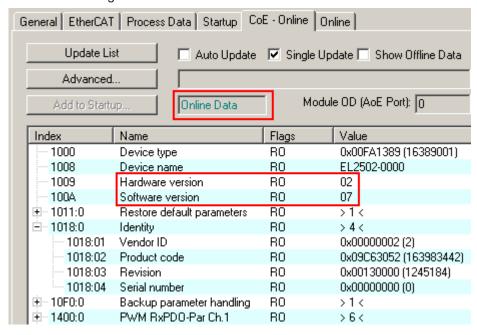


Abb. 14: Online-Verzeichnis

Kanalweise Ordnung

Das CoE-Verzeichnis ist in EtherCAT-Geräten angesiedelt, die meist mehrere funktional gleichwertige Kanäle umfassen; z. B. hat eine vierkanalige Analogeingangsklemme auch vier logische Kanäle und damit vier gleiche Sätze an Parameterdaten für die Kanäle. Um in den Dokumentationen nicht jeden Kanal auflisten zu müssen, wird gerne der Platzhalter "n" für die einzelnen Kanalnummern verwendet.

Im CoE-System sind für die Menge aller Parameter eines Kanals eigentlich immer 16 Indizes mit jeweils 255 Subindizes ausreichend. Deshalb ist die kanalweise Ordnung in 16_{dez} bzw. 10_{hex} -Schritten eingerichtet. Am Beispiel des Parameterbereichs 0x8000 sieht man dies deutlich:

- Kanal 0: Parameterbereich 0x8000:00 ... 0x800F:255
- Kanal 1: Parameterbereich 0x8010:00 ... 0x801F:255
- Kanal 2: Parameterbereich 0x8020:00 ... 0x802F:255
- ...

Allgemein wird dies geschrieben als 0x80n0.

Ausführliche Hinweise zum CoE-Interface finden Sie in der <u>EtherCAT-Systemdokumentation</u> auf der Beckhoff Website.

4.6 Distributed Clock

Die Distributed Clock stellt eine lokale Uhr im EtherCAT Slave Controller (ESC) dar mit den Eigenschaften:

- Einheit 1 ns
- Nullpunkt 1.1.2000 00:00
- Umfang *64 Bit* (ausreichend für die nächsten 584 Jahre); manche EtherCAT-Slaves unterstützen jedoch nur einen Umfang von 32 Bit, d. h. nach ca. 4,2 Sekunden läuft die Variable über
- Diese lokale Uhr wird vom EtherCAT Master automatisch mit der Master Clock im EtherCAT Bus mit einer Genauigkeit < 100 ns synchronisiert.

Detaillierte Informationen entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.

5 Installation

5.1 Hinweise zum ESD-Schutz

HINWEIS

Zerstörung der Geräte durch elektrostatische Aufladung möglich!

Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

- Beim Umgang mit den Bauteilen ist auf elektrostatische Entladung zu achten; außerdem ist das direkte Berühren der Federkontakte (siehe Abbildung) zu vermeiden.
- Der Kontakt mit hoch isolierenden Stoffen (Kunstfasern, Kunststofffolien etc.) sollte beim gleichzeitigen Umgang mit Komponenten vermieden werden.
- Beim Umgang mit den Komponenten ist auf eine sachgemäße Erdung der Umgebung (Arbeitsplatz, Verpackung und Personen) zu achten.
- Jede Busstation muss auf der rechten Seite mit der Endkappe <u>EL9011</u> oder <u>EL9012</u> abgeschlossen werden, um die Schutzart und den ESD-Schutz zu gewährleisten.

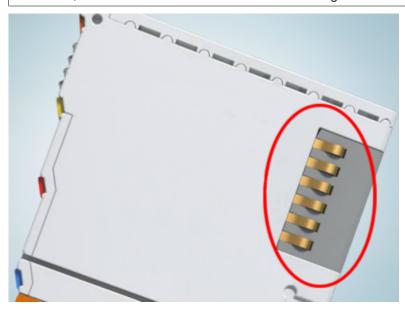


Abb. 15: Federkontakte der Beckhoff I/O-Komponenten

5.2 Tragschienenmontage

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Das Busklemmen-System ist für die Montage in einem Schaltschrank oder Klemmkasten vorgesehen.

Montage

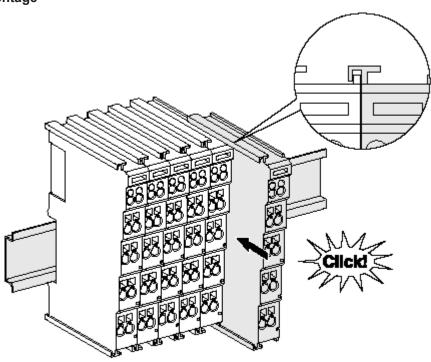


Abb. 16: Montage auf Tragschiene

Die Buskoppler und Busklemmen werden durch leichten Druck auf handelsübliche 35 mm-Tragschienen (Hutschienen nach EN 60715) aufgerastet:

- 1. Stecken Sie zuerst den Feldbuskoppler auf die Tragschiene.
- 2. Auf der rechten Seite des Feldbuskopplers werden nun die Busklemmen angereiht. Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet. Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben, ohne dass Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

Demontage

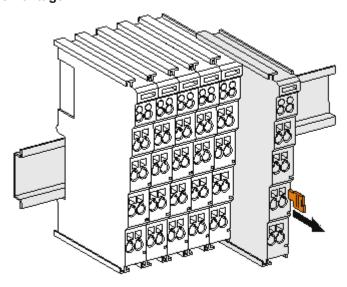


Abb. 17: Demontage von Tragschiene

Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:

- 1. Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
- 2. Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen Sie sie aus dem Busklemmenblock heraus.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des K-Bus/E-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmenstellen am Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (KL91xx, KL92xx bzw. EL91xx, EL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

PE-Powerkontakt

Der Powerkontakt mit der Bezeichnung PE kann als Schutzerde eingesetzt werden. Der Kontakt ist aus Sicherheitsgründen beim Zusammenstecken voreilend und kann Kurzschlussströme bis 125 A ableiten.

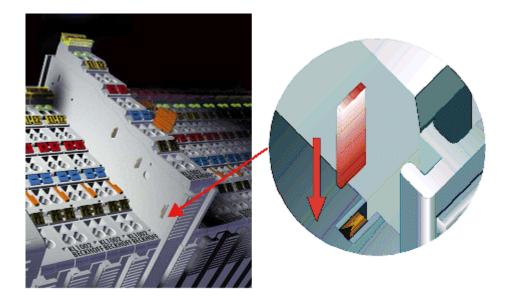


Abb. 18: Linksseitiger Powerkontakt

HINWEIS

Beschädigung des Gerätes möglich

Beachten Sie, dass aus EMV-Gründen die PE-Kontakte kapazitiv mit der Tragschiene verbunden sind. Das kann bei der Isolationsprüfung zu falschen Ergebnissen und auch zur Beschädigung der Klemme führen (z. B. Durchschlag zur PE-Leitung bei der Isolationsprüfung eines Verbrauchers mit 230 V Nennspannung). Klemmen Sie zur Isolationsprüfung die PE-Zuleitung am Buskoppler bzw. der Einspeiseklemme ab! Um weitere Einspeisestellen für die Prüfung zu entkoppeln, können Sie diese Einspeiseklemmen entriegeln und mindestens 10 mm aus dem Verbund der übrigen Klemmen herausziehen.

MARNUNG

Verletzungsgefahr durch Stromschlag!

Der PE-Powerkontakt darf nicht für andere Potentiale verwendet werden!

5.3 Montagevorschriften für erhöhte mechanische Belastbarkeit

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Zusätzliche Prüfungen

Die Klemmen sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung	
Vibration	10 Frequenzdurchläufe, in 3-Achsen	
	6 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude	
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude	
Schocken	1000 Schocks je Richtung, in 3-Achsen	
	25 g, 6 ms	

Zusätzliche Montagevorschriften und Hinweise

Für die Klemmen mit erhöhter mechanischer Belastbarkeit gelten folgende zusätzliche Montagevorschriften und Hinweise:

- Die erhöhte mechanische Belastbarkeit gilt für alle zulässigen Einbaulagen.
- Es ist eine Tragschiene nach EN 60715 TH35-15 zu verwenden.
- Der Klemmenstrang ist auf beiden Seiten der Tragschiene durch eine mechanische Befestigung, z.B. mittels einer Erdungsklemme oder verstärkten Endklammer, zu fixieren.
- Die maximale Gesamtausdehnung des Klemmenstrangs (ohne Koppler) beträgt: 64 Klemmen mit 12 mm, oder 32 Klemmen mit 24 mm Einbaubreite.
- Bei der Abkantung und Befestigung der Tragschiene ist darauf zu achten, dass keine Verformung und Verdrehung dieser Tragschiene auftritt; weiterhin ist kein Quetschen und Verbiegen der Tragschiene zulässig.
- Die Befestigungspunkte der Tragschiene sind in einem Abstand vom 5 cm zu setzen.
- Zur Befestigung der Tragschiene sind Senkkopfschrauben zu verwenden.
- Die freie Leiterlänge zwischen Zugentlastung und Leiteranschluss ist möglichst kurz zu halten; der Abstand zum Kabelkanal ist mit ca.10 cm zu einhalten.

5.4 Anschluss

5.4.1 Anschlusstechnik

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Übersicht

Mit verschiedenen Anschlussoptionen bietet das Busklemmensystem eine optimale Anpassung an die Anwendung:

- Die Klemmen der Serien ELxxxx und KLxxxx mit Standardverdrahtung enthalten Elektronik und Anschlussebene in einem Gehäuse.
- Die Klemmen der Serien ESxxxx und KSxxxx haben eine steckbare Anschlussebene und ermöglichen somit beim Austausch die stehende Verdrahtung.
- Die High-Density-Klemmen (HD-Klemmen) enthalten Elektronik und Anschlussebene in einem Gehäuse und haben eine erhöhte Packungsdichte.

Standardverdrahtung (ELxxxx / KLxxxx)

Abb. 19: Standardverdrahtung

Die Klemmen der Serien ELxxxx und KLxxxx integrieren die schraublose Federkrafttechnik zur schnellen und einfachen Verdrahtung.

Steckbare Verdrahtung (ESxxxx / KSxxxx)

Abb. 20: Steckbare Verdrahtung

Die Klemmen der Serien ESxxxx und KSxxxx enthalten eine steckbare Anschlussebene.

Montage und Verdrahtung werden wie bei den Serien ELxxxx und KLxxxx durchgeführt.

Im Servicefall erlaubt die steckbare Anschlussebene, die gesamte Verdrahtung als einen Stecker von der Gehäuseoberseite abzuziehen.

Das Unterteil kann über das Betätigen der Entriegelungslasche aus dem Klemmenblock herausgezogen werden.

Die auszutauschende Komponente wird hineingeschoben und der Stecker mit der stehenden Verdrahtung wieder aufgesteckt. Dadurch verringert sich die Montagezeit und ein Verwechseln der Anschlussdrähte ist ausgeschlossen.

Die gewohnten Maße der Klemme ändern sich durch den Stecker nur geringfügig. Der Stecker trägt ungefähr 3 mm auf; dabei bleibt die maximale Höhe der Klemme unverändert.

Eine Lasche für die Zugentlastung des Kabels stellt in vielen Anwendungen eine deutliche Vereinfachung der Montage dar und verhindert ein Verheddern der einzelnen Anschlussdrähte bei gezogenem Stecker.

Leiterquerschnitte von 0,08 mm² bis 2,5 mm² können weiter in der bewährten Federkrafttechnik verwendet werden.

Übersicht und Systematik in den Produktbezeichnungen der Serien ESxxxx und KSxxxx werden wie von den Serien ELxxxx und KLxxxx bekannt weitergeführt.

High-Density-Klemmen (HD-Klemmen)

Abb. 21: High-Density-Klemmen

Die Klemmen dieser Baureihe mit 16 Klemmstellen zeichnen sich durch eine besonders kompakte Bauform aus, da die Packungsdichte auf 12 mm doppelt so hoch ist wie die der Standard-Busklemmen. Massive und mit einer Aderendhülse versehene Leiter können ohne Werkzeug direkt in die Federklemmstelle gesteckt werden.

Verdrahtung HD-Klemmen

Die High-Density-Klemmen der Serien ELx8xx und KLx8xx unterstützen keine steckbare Verdrahtung.

Ultraschallverdichtete Litzen

Ultraschallverdichtete Litzen

An die Standard- und High-Density-Klemmen können auch ultraschallverdichtete (ultraschallverschweißte) Litzen angeschlossen werden. Beachten Sie die Tabellen zum Leitungsquerschnitt [• 43]!

5.4.2 Verdrahtung

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Klemmen für Standardverdrahtung ELxxxx/KLxxxx und für steckbare Verdrahtung ESxxxx/KSxxxx

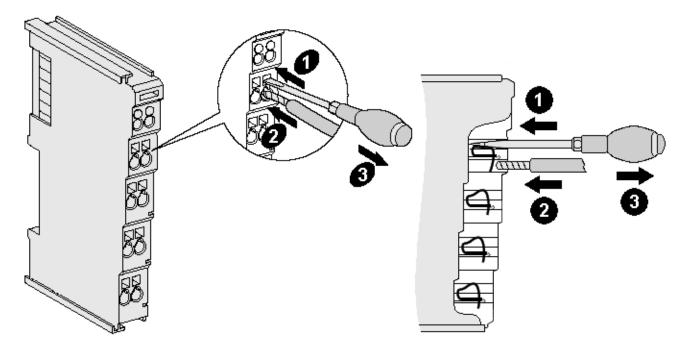


Abb. 22: Anschluss einer Leitung an eine Klemmstelle

Bis zu acht Klemmstellen ermöglichen den Anschluss von massiven oder feindrähtigen Leitungen an die Busklemme. Die Klemmstellen sind in Federkrafttechnik ausgeführt. Schließen Sie die Leitungen folgendermaßen an (vgl. Abb. "Anschluss einer Leitung an eine Klemmstelle":

- 1. Öffnen Sie eine Klemmstelle, indem Sie einen Schraubendreher gerade bis zum Anschlag in die viereckige Öffnung über der Klemmstelle drücken. Den Schraubendreher dabei nicht drehen oder hin und her bewegen (nicht hebeln).
- 2. Der Draht kann nun ohne Widerstand in die runde Klemmenöffnung eingeführt werden.
- 3. Durch Entfernen des Schraubendrehes schließt sich die Klemmstelle automatisch und hält den Draht sicher und dauerhaft fest.

Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle:

Klemmengehäuse	ELxxxx, KLxxxx	ESxxxx, KSxxxx
Leitungsquerschnitt (massiv)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 1,5 mm ²	0,14 1,5 mm ²
Abisolierlänge	8 9 mm	9 10 mm

High-Density-Klemmen (HD-Klemmen [▶41]) mit 16 Klemmstellen

Bei den HD-Klemmen erfolgt der Leiteranschluss bei massiven Leitern werkzeuglos in Direktstecktechnik, das heißt, der Leiter wird nach dem Abisolieren einfach in die Klemmstelle gesteckt. Das Lösen der Leitung erfolgt, wie bei den Standardklemmen, über die Kontakt-Entriegelung mit Hilfe eines Schraubendrehers. Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle:

Klemmengehäuse	HD-Gehäuse
Leitungsquerschnitt (massiv)	0,08 1,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,25 1,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 0,75 mm ²
Leitungsquerschnitt (ultraschallverdichtete Litze)	nur 1,5 mm² (siehe <u>Hinweis</u> [<u>▶ 41]</u>)
Abisolierlänge	8 9 mm

5.4.3 Schirmung

Schirmung

Feedbacksignal, Sensoren und Aktoren sollten immer mit geschirmten, paarig verdrillten Leitungen angeschlossen werden.

5.5 Hinweis zur Spannungsversorgung

MARNUNG

Spannungsversorgung aus SELV- / PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV- / PELV-Stromkreise (Sicherheitskleinspannung, "safety extra-low voltage" / Schutzkleinspannung, "protective extra-low voltage") nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

5.6 Hinweis Lastspannungsversorgung

⚠ WARNUNG

Lastspannungsversorgung

Einige Geräte ermöglichen den Anschluss einer zusätzlichen Lastspannung von z. B. 48 V DC für den Betrieb eines Motors.

Um Ausgleichströme auf dem Schutzleiter während des Betriebs zu vermeiden, sieht die EN 60204-1:2018 die Möglichkeit vor, dass der negative Pol der Lastspannung nicht zwingend mit dem Schutzleitersystem verbunden werden muss (SELV).

Die Lastspannungsversorgung sollte aus diesem Grunde als SELV-Versorgung ausgeführt werden.

5.7 Positionierung von passiven Klemmen

Hinweis zur Positionierung von passiven Klemmen im Busklemmenblock

EtherCAT-Klemmen (ELxxxx / ESxxxx), die nicht aktiv am Datenaustausch innerhalb des Busklemmenblocks teilnehmen, werden als passive Klemmen bezeichnet. Zu erkennen sind diese Klemmen an der nicht vorhandenen Stromaufnahme aus dem E-Bus. Um einen optimalen Datenaustausch zu gewährleisten, dürfen nicht mehr als zwei passive Klemmen direkt aneinander gereiht werden!

Beispiele für die Positionierung von passiven Klemmen (hell eingefärbt)

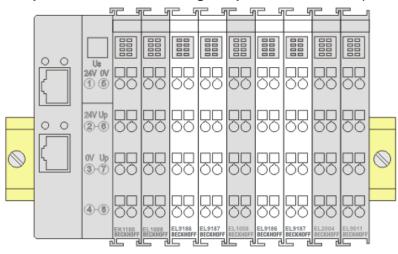


Abb. 23: Korrekte Positionierung

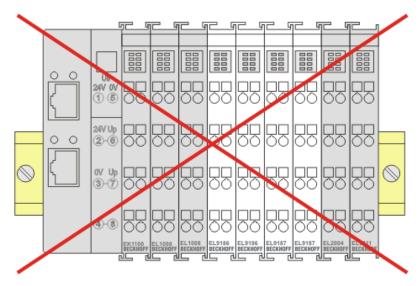


Abb. 24: Inkorrekte Positionierung

5.8 Einbaulagen bei Betrieb mit und ohne Lüfter

HINWEIS

Einschränkung von Einbaulage und Betriebstemperaturbereich

Sorgen Sie bei der Montage der Klemmen dafür, dass im Betrieb oberhalb und unterhalb der Klemmen ausreichend Abstand zu anderen Komponenten eingehalten wird, so dass die Klemmen ausreichend belüftet werden!

Vorgeschriebene Einbaulage bei Betrieb ohne Lüfter

Für die vorgeschriebene Einbaulage wird die Tragschiene waagerecht montiert und die Anschlussflächen der EL/KL-Klemmen weisen nach vorne (siehe Abb. "Empfohlene Abstände Einbaulage bei Betrieb ohne Lüfter").

Die Klemmen werden dabei von unten nach oben durchlüftet, was eine optimale Kühlung der Elektronik durch Konvektionslüftung ermöglicht.

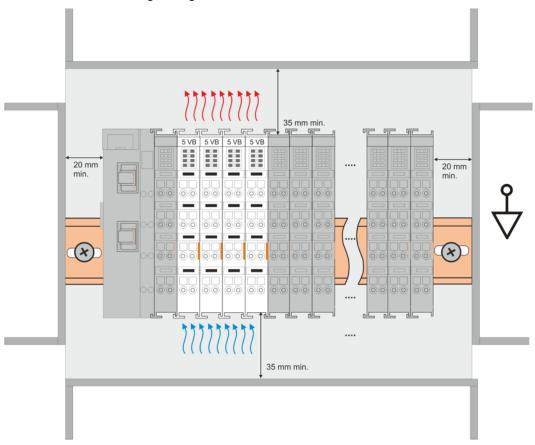


Abb. 25: Empfohlene Abstände Einbaulage bei Betrieb ohne Lüfter

Die Einhaltung der Abstände nach der obigen Abbildung wird dringend empfohlen! Weitere Hinweise zum Betrieb ohne Lüfter sind ggf. den Technischen Daten der Klemme zu entnehmen.

Standard-Einbaulage bei Betrieb mit Lüfter

Für die Standard-Einbaulage beim Betrieb mit Lüfter wird die Tragschiene waagerecht montiert und die Anschlussflächen der EL/KL-Klemmen weisen nach vorne (siehe Abb. "Empfohlene Abstände bei Betrieb mit Lüfter"). Die Klemmen werden dabei unterstützend vom z. B. Lüftermodul ZB8610 von unten nach oben durchlüftet.

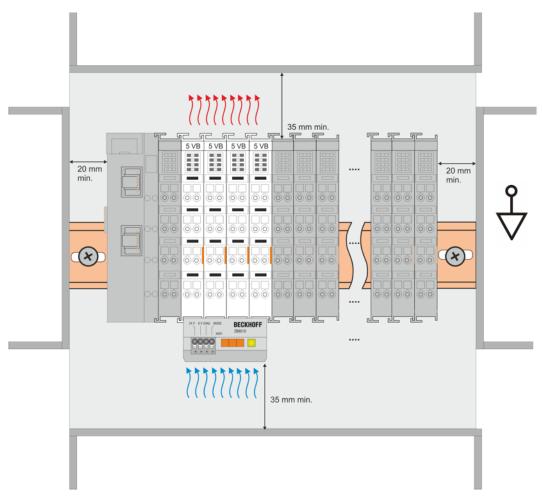


Abb. 26: Empfohlene Abstände bei Betrieb mit Lüfter

Weitere Einbaulagen

Durch die verstärkende Wirkung auf die Kühlung der Klemmen durch den Lüfter sind ggf. weitere Einbaulagen zulässig (siehe Abb. "Weitere Einbaulagen, Beispiel 1 und 2"); entnehmen Sie entsprechende Hinweise bitte den Technischen Daten der Klemme.

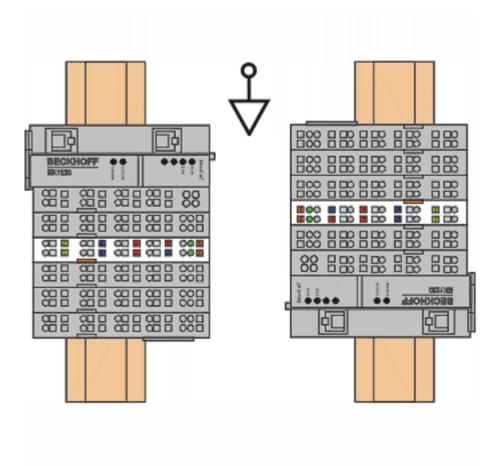


Abb. 27: Weitere Einbaulagen, Beispiel 1

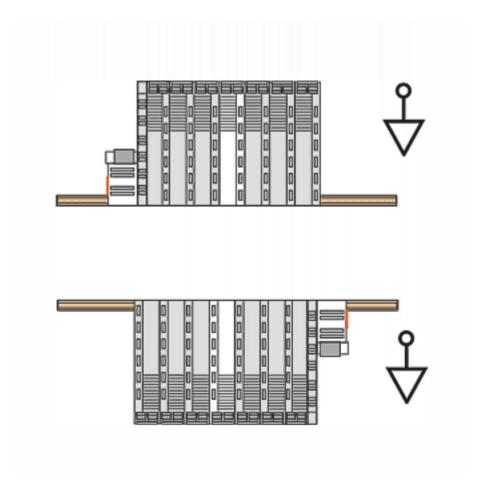


Abb. 28: Weitere Einbaulagen, Beispiel 2

5.9 Schirmkonzept

Die vorkonfektionierten Leitungen von Beckhoff Automation bieten zusammen mit der Schirmschiene einen optimalen Schutz gegen elektro-magnetische Störungen.

Es wird empfohlen, den Schirm möglichst nah an der Klemme aufzulegen, um Störungen auf ein Minimum zu reduzieren.

Anschluss der Motorleitung an die Schirmschiene

Befestigen Sie die Schirmschienenträger 1 auf der Hutschiene 2. Die Tragschiene 2 muss großflächig mit der metallischen Rückwand des Schaltschranks verbunden sein. Montieren Sie die Schirmschiene 3 wie in Abb. "Schirmschiene" abgebildet.

Alternativ kann ein Schirmschienen-Bügel 3a direkt mit der metallischen Rückwand des Schaltschranks verschraubt werden (Abb. "Schirmschienen-Bügel")

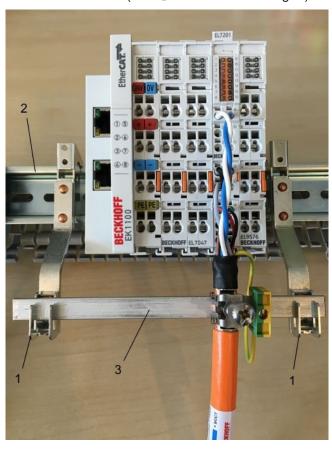


Abb. 29: Schirmschiene

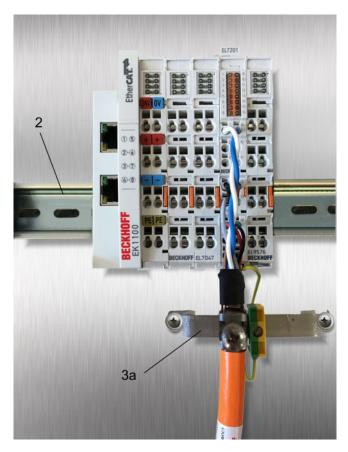


Abb. 30: Schirmschienen-Bügel

Verdrahten Sie die Adern 4 der Motorleitung 5 und befestigen Sie dann das kupferummantelte Ende 6 der Motorleitung 5 mit der Schirmschelle 7 an die Schirmschiene 3 bzw. Schirmschienen-Bügel 3a. Ziehen Sie die Schraube 8 bis zum Anschlag an.

Befestigen Sie die PE-Schelle 9 an die Schirmschiene 3 bzw. Schirmschienen-Bügel 3a. Klemmen Sie die PE-Ader 10 der Motorleitung 5 unter die PE-Schelle 9.

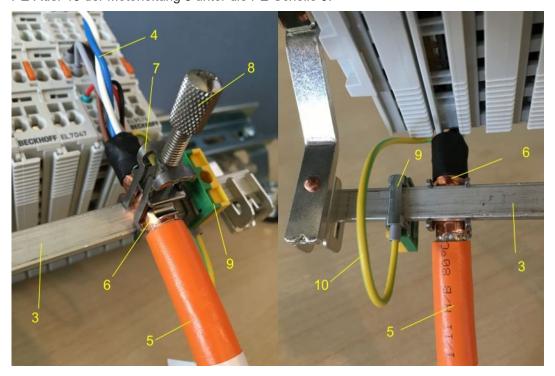


Abb. 31: Schirmanbindung

Anschluss der Feedbackleitung an den Motor

Verdrillen der Feedbackleitungen

Die Feedbackleitungen sollten verdrillt werden, um Störeinflüsse zu minimieren.

Beim Anschrauben des Feedbacksteckers an den Motor wird der Schirmanschluss der Feedbackleitung

über die metallische Steckerbefestigung hergestellt. Auf der Klemmenseite kann der Schirm ebenfalls aufgelegt werden. Verdrahten Sie die Adern der Feedbackleitung und befestigen Sie das kupferummantelte Ende der Feedbackleitung mit der Schirmschelle 7 an der Schirmschiene 3 bzw. Schirmschienen-Bügel 3a. Motor- und Feedbackleitung können zusammen mit der Schraube 8 der Schirmschelle 7 aufgelegt werden.

5.10 Hinweise zur Strommessung über Hall-Sensor

Das in dieser Dokumentation angesprochene Gerät verfügt über einen oder mehrere integrierte Hall-Sensoren zur Strommessung.

Dabei wird das magnetische Feld, das durch einen Stromfluss durch einen Leiter erzeugt wird, von dem Hall-Sensor quantitativ erfasst.

Um die Messung nicht zu beeinträchtigen wird empfohlen, äußere Magnetfelder vom Gerät abzuschirmen oder hinreichend weit entfernt zu halten.

Abb. 32: Hinweis

Hintergrund

Ein stromdurchflossener Leiter erzeugt in seinem Umfeld ein magnetisches Feld nach

$$B = \mu_0 * I / (2\pi * d)$$

mit

B [Tesla] magnetisches Feld

 $\mu 0 = 4*\pi*10^{-7}$ [H/m] (Annahme: keine magnetische Abschirmung)

I [A] Strom

d [m] Abstand zum Leiter

Beeinträchtigung durch äußere Magnetfelder

Die magnetische Feldstärke sollte allseitig um das Gerät herum eine zulässige Größe nicht übersteigen.

Praktisch bedeutet dies für den empfohlenen Mindestabstand eines benachbarten Stromleiters zur Geräteoberfläche:

- Strom 10 A: 12 mm
- Strom 20 A: 25 mm
- Strom 40 A: 50 mm

Wenn es in der Gerätedokumentation nicht anders spezifiziert ist, ist das Aneinanderreihen von Modulen (z. B. Reihenklemmen im 12 mm Rastermaß) gleichen Typs (z. B. EL2212-0000) darüber hinaus zulässig.

5.11 LEDs und Anschlussbelegung

5.11.1 EL7201-001x

LEDs

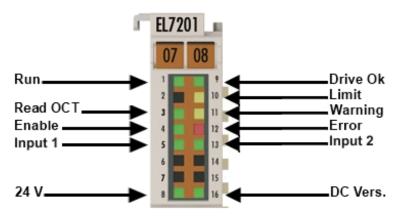


Abb. 33: EL7201-001x - LEDs

LED	Farbe	Bedeutung		
RUN	grün	Diese LED gibt den Betriebszustand der Klemme wieder:		
		aus	Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme	
		schnell blinkend	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für <u>Firmware-Updates</u> [• 227] der Klemme	
		blinkend	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox-Kommunikation und abweichende Standard-Einstellungen gesetzt	
		Einzelblitz	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync- Managers und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand	
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich	
Drive OK	grün	an	Treiberstufe betriebsbereit	
Limit	orange	an	Die LED ist mit dem Bit 11 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (Internal limit active) Limit erreicht (z. B. Torque- oder Drehzahllimit)	
Read OCT	grün	blinkt	Das elektronische Typenschild wird gelesen	
		aus	Das Lesen des elektronischen Typenschilds wurde beendet	
Warning	orange	blinkt	Fehler beim Lesen des Typenschildes	
		an	Die LED ist mit dem Bit 7 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (Warning) Der Schwellwert "Warning" ist überschritten. I²T-Modell Temperatur (80°C) überschritten Spannung	
Enable	grün	an	Die LED ist mit dem Bit 1 und 2 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (wenn "Switched on" oder "Operation enabled") Treiberstufe freigegeben	
Input 1 Input 2	grün	an	Signal liegt an Digitaleingängen (z.B. Endlage-, Referenz-, oder Latch-Sensoren/Schalter)	
Error	rot	an	Die LED ist mit dem Bit 3 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (Fault) Der Schwellwert für "Error" ist überschritten. Überstrom Spannung nicht vorhanden Resolver nicht angeschlossen max. Temperatur (100°C) überschritten	
+24 V über Powerkontakte	grün	an	24 V Spannungsversorgung für die Klemme liegen an.	
DC Versorgung Zwischenkreis	grün	an	Spannung für den DC Versorgungs-Zwischenkreis liegt an.	

HINWEIS

Absicherung der Versorgungsspannung

Die elektrische Absicherung der Lastspannung ist zwingend so zu wählen, dass der maximal fließende Strom auf das 3-fache des Nennstroms (max. 1 Sekunde) begrenzt wird!

Anschlussbelegung

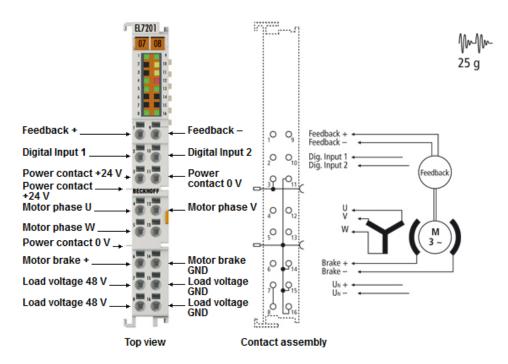


Abb. 34: EL7201-001x - Anschlussbelegung

Klemmstelle	Name	Kommentar
1	OCT +	Positiver Eingang des absoluten Feedbacks
2	Input 1	Digitaler Eingang 1
3	+24 V	Power Kontakt +24 V
4	U	Motorphase U
5	W	Motorphase W
6	Brake +	Motorbremse +
7	48 V	Versorgung des DC Zwischenkreises + (8 48 V)
8		
9	OCT -	Negativer Eingang des absoluten Feedbacks
10	Input 2	Digitaler Eingang 2
11	0 V	Power Kontakt 0 V
12	V	Motorphase V
13	n.c.	not connected
14	Brake GND	Motorbremse 0 V
15	0 V	Versorgung des DC Zwischenkreises 0 V
16		

5.11.2 EL7211-001x

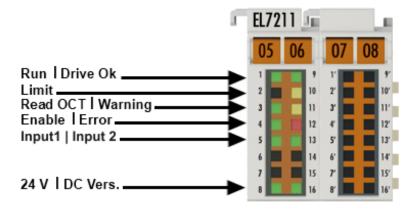


Abb. 35: EL7211-001x - LEDs

LEDs

LED	Farbe	Bedeutung		
RUN	grün	Diese LED gibt den Betriebszustand der Klemme wieder:		
		aus	Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme	
		schnell blinkend	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für <u>Firmware-Updates</u> [• 227] der Klemme	
		blinkend	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox-Kommunikation und abweichende Standard-Einstellungen gesetzt	
		Einzelblitz	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync- Managers und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand	
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich	
Drive OK	grün	an	Treiberstufe betriebsbereit	
Limit	orange	an	Die LED ist mit dem Bit 11 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (Internal limit active) Limit erreicht (z. B. Torque- oder Drehzahllimit)	
Read OCT	grün	blinkt	Das elektronische Typenschild wird gelesen	
		aus	Das Lesen des elektronischen Typenschilds wurde beendet	
Warning	orange	blinkt	Fehler beim Lesen des Typenschildes	
		an	Die LED ist mit dem Bit 7 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (Warning) Der Schwellwert "Warning" ist überschritten. l²T-Modell Temperatur (80°C) überschritten Spannung	
Enable	grün	an	Die LED ist mit dem Bit 1 und 2 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (wenn "Switched on" oder "Operation enabled") Treiberstufe freigegeben	
Input 1 Input 2	grün	an	Signal liegt an Digitaleingängen (z.B. Endlage-, Referenz-, oder Latch-Sensoren/Schalter)	
Error	rot	an	Die LED ist mit dem Bit 3 des Statuswortes (MDP742 [▶ 167] / DS402 [▶ 199]) verknüpft (Fault) Der Schwellwert für "Error" ist überschritten. Überstrom Spannung nicht vorhanden Resolver nicht angeschlossen max. Temperatur (100°C) überschritten	
+24 V über Powerkontakte	grün	an	24 V Spannungsversorgung für die Klemme liegen an.	
DC Versorgung Zwischenkreis	grün	an	Spannung für den DC Versorgungs-Zwischenkreis liegt an.	

HINWEIS

Absicherung der Versorgungsspannung

Die elektrische Absicherung der Lastspannung ist zwingend so zu wählen, dass der maximal fließende Strom auf das 3-fache des Nennstroms (max. 1 Sekunde) begrenzt wird!

Anschlussbelegung

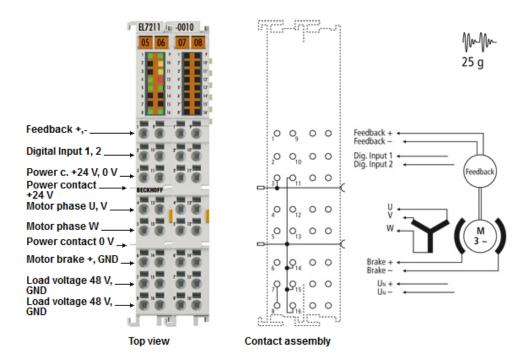


Abb. 36: EL7211-001x - Anschlussbelegung

Klemmstelle	Name	Kommentar
1	OCT +	Positiver Eingang des absoluten Feedbacks
2	Input 1	Digitaler Eingang 1
3	+24 V	Power Kontakt +24 V
4	U	Motorphase U
5	W	Motorphase W
6	Brake +	Motorbremse +
7	48 V	Versorgung des DC Zwischenkreises + (8 48 V)
8		
9	OCT -	Negativer Eingang des absoluten Feedbacks
10	Input 2	Digitaler Eingang 2
11	0 V	Power Kontakt 0 V
12	V	Motorphase V
13	n.c.	not connected
14	Brake GND	Motorbremse 0 V
15	0 V	Versorgung des DC Zwischenkreises 0 V
16		
1' - 16'		n.c.

5.12 UL Hinweise - Compact Motion

⚠ VORSICHT

Application

The modules are intended for use with Beckhoff's UL Listed EtherCAT System only.

⚠ VORSICHT

Examination

For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire and electrical shock (in accordance with UL508 and CSA C22.2 No. 142).

△ VORSICHT

For devices with Ethernet connectors

Not for connection to telecommunication circuits.

⚠ VORSICHT

Notes on motion devices

- Motor overtemperature
 Motor overtemperature sensing is not provided by the drive.
- Application for compact motion devices
 The modules are intended for use only within Beckhoff's Programmable Controller system Listed in File E172151.
- Galvanic isolation from the supply

 The modules are intended for operation within circuits not connected directly to the supply mains (galvanically isolated from the supply, i.e. on transformer secondary).
- Requirement for environmental conditions
 For use in Pollution Degree 2 Environment only.

Grundlagen

UL-Zertifikation nach UL508. Solcherart zertifizierte Geräte sind gekennzeichnet durch das Zeichen:

Installation

5.13 Entsorgung

Die mit einer durchgestrichenen Abfalltonne gekennzeichneten Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

6 Inbetriebnahme

6.1 TwinCAT Entwicklungsumgebung

Die Software zur Automatisierung TwinCAT (The Windows Control and Automation Technology) wird unterschieden in:

- TwinCAT 2: System Manager (Konfiguration) & PLC Control (Programmierung)
- TwinCAT 3: Weiterentwicklung von TwinCAT 2 (Programmierung und Konfiguration erfolgt über eine gemeinsame Entwicklungsumgebung)

Details:

- TwinCAT 2:
 - Verbindet E/A-Geräte und Tasks variablenorientiert
 - Verbindet Tasks zu Tasks variablenorientiert
 - Unterstützt Einheiten auf Bit-Ebene
 - Unterstützt synchrone oder asynchrone Beziehungen
 - · Austausch konsistenter Datenbereiche und Prozessabbilder
 - Datenanbindung an NT-Programme mittels offener Microsoft Standards (OLE, OCX, ActiveX, DCOM+, etc.).
 - Einbettung von IEC 61131-3-Software-SPS, Software- NC und Software-CNC in Windows NT/ 2000/XP/Vista, Windows 7, NT/XP Embedded, CE
 - Anbindung an alle gängigen Feldbusse
 - · Weiteres...

Zusätzlich bietet:

- TwinCAT 3 (eXtended Automation):
 - Visual-Studio®-Integration
 - Wahl der Programmiersprache
 - Unterstützung der objektorientierten Erweiterung der IEC 61131-3
 - Verwendung von C/C++ als Programmiersprache für Echtzeitanwendungen
 - Anbindung an MATLAB®/Simulink®
 - Offene Schnittstellen für Erweiterbarkeit
 - Flexible Laufzeitumgebung
 - Aktive Unterstützung von Multi-Core- und 64-Bit-Betriebssystemen
 - Automatische Codegenerierung und Projekterstellung mit dem TwinCAT Automation Interface
 - · Weiteres...

In den folgenden Kapiteln wird dem Anwender die Inbetriebnahme der TwinCAT Entwicklungsumgebung auf einem PC System der Steuerung sowie die wichtigsten Funktionen einzelner Steuerungselemente erläutert.

Bitte sehen Sie weitere Informationen zu TwinCAT 2 und TwinCAT 3 unter http://infosys.beckhoff.de/.

6.1.1 Installation der TwinCAT Realtime-Treiber

Um einen Standard Ethernet Port einer IPC-Steuerung mit den nötigen Echtzeitfähigkeiten auszurüsten, ist der Beckhoff Echtzeit-Treiber auf diesem Port unter Windows zu installieren.

Dies kann auf mehreren Wegen vorgenommen werden.

A: Über den TwinCAT Adapter-Dialog

Im System Manager ist über Options → Show realtime Kompatible Geräte die TwinCAT-Übersicht über die lokalen Netzwerkschnittstellen aufzurufen.

Abb. 37: Aufruf im System Manager (TwinCAT 2)

Unter TwinCAT 3 ist dies über das Menü unter "TwinCAT" erreichbar:

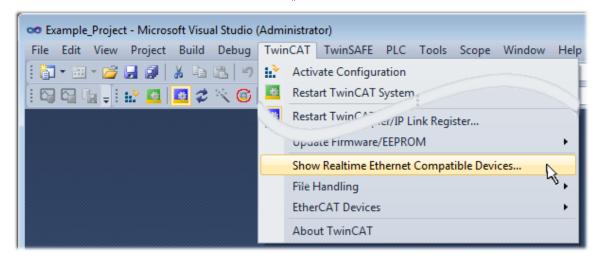


Abb. 38: Aufruf in VS Shell (TwinCAT 3)

B: Über TcRteInstall.exe im TwinCAT-Verzeichnis

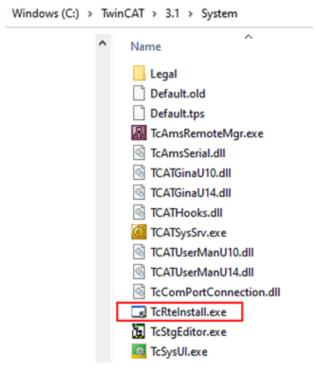


Abb. 39: TcRteInstall.exe im TwinCAT-Verzeichnis

In beiden Fällen erscheint der folgende Dialog:

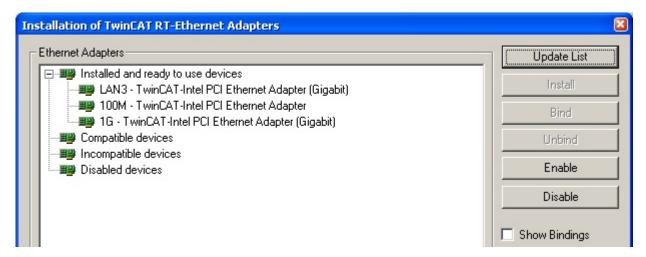


Abb. 40: Übersicht Netzwerkschnittstellen

Hier können nun Schnittstellen, die unter "Kompatible Geräte" aufgeführt sind, über den "Install" Button mit dem Treiber belegt werden. Eine Installation des Treibers auf inkompatiblen Devices sollte nicht vorgenommen werden.

Ein Windows-Warnhinweis bezüglich des unsignierten Treibers kann ignoriert werden.

Alternativ kann auch wie im Kapitel Offline Konfigurationserstellung, Abschnitt "Anlegen des Geräts EtherCAT" [▶ 71] beschrieben, zunächst ein EtherCAT-Gerät eingetragen werden, um dann über dessen Eigenschaften (Karteireiter "Adapter", Button "Kompatible Geräte…") die kompatiblen Ethernet Ports einzusehen:

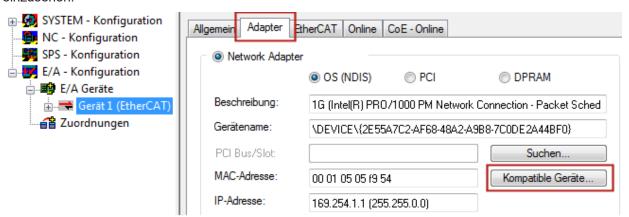


Abb. 41: Eigenschaft von EtherCAT-Gerät (TwinCAT 2): Klick auf "Kompatible Geräte..." von "Adapter"

TwinCAT 3: Die Eigenschaften des EtherCAT-Gerätes können mit Doppelklick auf "Gerät .. (EtherCAT)" im Projektmappen-Explorer unter "E/A" geöffnet werden:

Nach der Installation erscheint der Treiber aktiviert in der Windows-Übersicht der einzelnen Netzwerkschnittstelle (Windows Start → Systemsteuerung → Netzwerk)

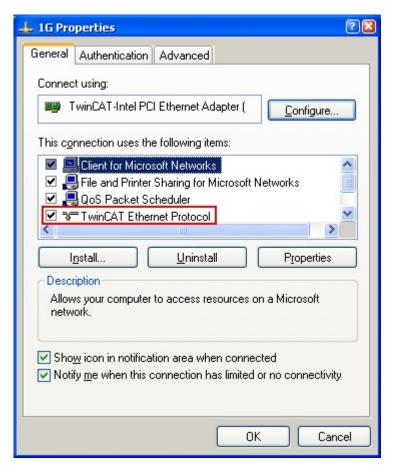


Abb. 42: Windows-Eigenschaften der Netzwerkschnittstelle

Eine korrekte Einstellung des Treibers könnte wie folgt aussehen:

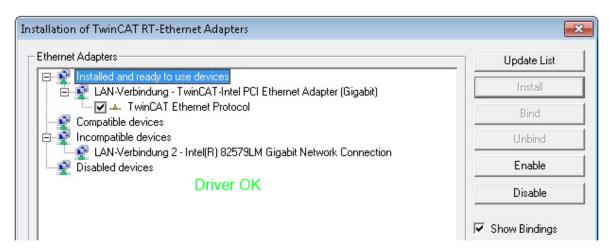
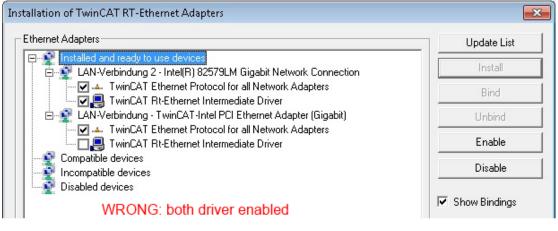
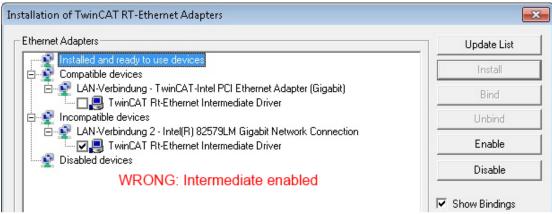




Abb. 43: Beispielhafte korrekte Treiber-Einstellung des Ethernet Ports

Andere mögliche Einstellungen sind zu vermeiden:

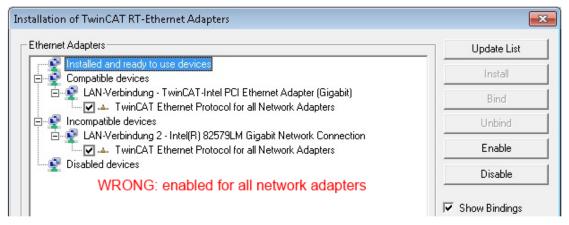


Abb. 44: Fehlerhafte Treiber-Einstellungen des Ethernet Ports

IP-Adresse des verwendeten Ports

IP-Adresse/DHCP

1

In den meisten Fällen wird ein Ethernet-Port, der als EtherCAT-Gerät konfiguriert wird, keine allgemeinen IP-Pakete transportieren. Deshalb und für den Fall, dass eine EL6601 oder entsprechende Geräte eingesetzt werden, ist es sinnvoll, über die Treiber-Einstellung "Internet Protocol TCP/IP" eine feste IP-Adresse für diesen Port zu vergeben und DHCP zu deaktivieren. Dadurch entfällt die Wartezeit, bis sich der DHCP-Client des Ethernet Ports eine Default-IP-Adresse zuteilt, weil er keine Zuteilung eines DHCP-Servers erhält. Als Adressraum empfiehlt sich z. B. 192.168.x.x.

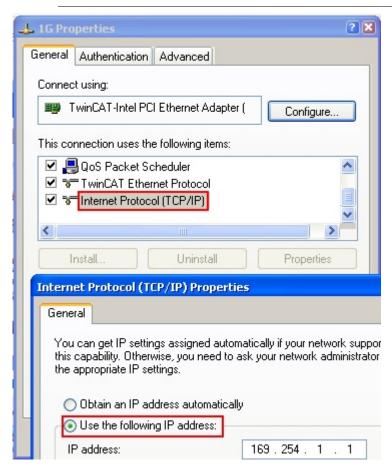


Abb. 45: TCP/IP-Einstellung des Ethernet Ports

6.1.2 Hinweise zur ESI-Gerätebeschreibung

Installation der neuesten ESI-Device-Description

Der TwinCAT EtherCAT-Master/System Manager benötigt zur Konfigurationserstellung im Online- und Offline-Modus die Gerätebeschreibungsdateien der zu verwendeten Geräte. Diese Gerätebeschreibungen sind die so genannten ESI (EtherCAT-Slave Information) in Form von XML-Dateien. Diese Dateien können vom jeweiligen Hersteller angefordert werden bzw. werden zum Download bereitgestellt. Eine *.xml-Datei kann dabei mehrere Gerätebeschreibungen enthalten.

Auf der Beckhoff Website werden die ESI für Beckhoff EtherCAT-Geräte bereitgehalten.

Die ESI-Dateien sind im Installationsverzeichnis von TwinCAT abzulegen.

Standardeinstellungen:

- TwinCAT 2: C:\TwinCAT\IO\EtherCAT
- TwinCAT 3: C:\TwinCAT\3.1\Config\lo\EtherCAT

Beim Öffnen eines neuen System Manager-Fensters werden die Dateien einmalig eingelesen, wenn sie sich seit dem letzten System Manager-Fenster geändert haben.

TwinCAT bringt bei der Installation den Satz an Beckhoff-ESI-Dateien mit, der zum Erstellungszeitpunkt des TwinCAT Builds aktuell war.

Ab TwinCAT 2.11 / TwinCAT 3 kann aus dem System Manager heraus das ESI-Verzeichnis aktualisiert werden, wenn der Programmier-PC mit dem Internet verbunden ist; unter

TwinCAT 2: Options → "Update EtherCAT Device Descriptions"

TwinCAT 3: TwinCAT → EtherCAT Devices → "Update Device Descriptions (via ETG Website)..."

Hierfür steht der TwinCAT ESI Updater [▶ 70] zur Verfügung.

ESI

Zu den *.xml-Dateien gehören die so genannten *.xsd-Dateien, die den Aufbau der ESI-XML-Dateien beschreiben. Bei einem Update der ESI-Gerätebeschreibungen sind deshalb beide Dateiarten ggf. zu aktualisieren.

Geräteunterscheidung

EtherCAT-Geräte/Slaves werden durch vier Eigenschaften unterschieden, aus denen die vollständige Gerätebezeichnung zusammengesetzt wird. Beispielsweise setzt sich die Gerätebezeichnung "EL2521-0025-1018" zusammen aus:

- Familienschlüssel "EL"
- Name "2521"
- Typ "0025"
- · und Revision "1018"

Abb. 46: Gerätebezeichnung: Struktur

Die Bestellbezeichnung aus Typ + Version (hier: EL2521-0025) beschreibt die Funktion des Gerätes. Die Revision gibt den technischen Fortschritt wieder und wird von Beckhoff verwaltet. Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn z. B. in der Dokumentation nicht anders angegeben. Jeder Revision zugehörig ist eine eigene ESI-Beschreibung. Siehe weitere Hinweise [12].

Online Description

Wird die EtherCAT Konfiguration online durch Scannen real vorhandener Teilnehmer erstellt (s. Kapitel Online Erstellung) und es liegt zu einem vorgefundenen Slave (ausgezeichnet durch Name und Revision) keine ESI-Beschreibung vor, fragt der System Manager, ob er die im Gerät vorliegende Beschreibung verwenden soll. Der System Manager benötigt in jedem Fall diese Information, um die zyklische und azyklische Kommunikation mit dem Slave richtig einstellen zu können.

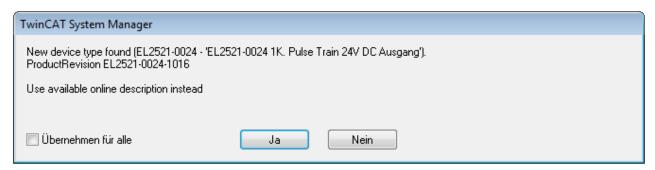


Abb. 47: Hinweisfenster OnlineDescription (TwinCAT 2)

In TwinCAT 3 erscheint ein ähnliches Fenster, das auch das Web-Update anbietet:

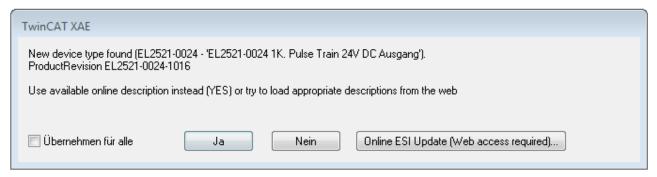


Abb. 48: Hinweisfenster OnlineDescription (TwinCAT 3)

Wenn möglich, ist das Yes abzulehnen und vom Geräte-Hersteller die benötigte ESI anzufordern. Nach Installation der XML/XSD-Datei ist der Konfigurationsvorgang erneut vorzunehmen.

HINWEIS

Veränderung der "üblichen" Konfiguration durch Scan

- ✓ für den Fall eines durch Scan entdeckten aber TwinCAT noch unbekannten Geräts sind zwei Fälle zu unterscheiden. Hier am Beispiel der EL2521-0000 in der Revision 1019:
- a) für das Gerät EL2521-0000 liegt überhaupt keine ESI vor, weder für die Revision 1019 noch für eine ältere Revision. Dann ist vom Hersteller (hier: Beckhoff) die ESI anzufordern.
- b) für das Gerät EL2521-0000 liegt eine ESI nur in älterer Revision vor, z. B. 1018 oder 1017. Dann sollte erst betriebsintern überprüft werden, ob die Ersatzteilhaltung überhaupt die Integration der erhöhten Revision in die Konfiguration zulässt. Üblicherweise bringt eine neue/größere Revision auch neue Features mit. Wenn diese nicht genutzt werden sollen, kann ohne Bedenken mit der bisherigen Revision 1018 in der Konfiguration weitergearbeitet werden. Dies drückt auch die Beckhoff Kompatibilitätsregel aus.

Siehe dazu insbesondere das Kapitel "<u>Allgemeine Hinweise zur Verwendung von Beckhoff EtherCAT IO-Komponenten</u>" und zur manuellen Konfigurationserstellung das Kapitel "<u>Offline Konfigurationserstellung</u> [• 71]".

Wird dennoch die Online Description verwendet, liest der System Manager aus dem im EtherCAT-Slave befindlichen EEPROM eine Kopie der Gerätebeschreibung aus. Bei komplexen Slaves kann die EEPROM-Größe u. U. nicht ausreichend für die gesamte ESI sein, weshalb im Konfigurator dann eine *unvollständige* ESI vorliegt. Deshalb wird für diesen Fall die Verwendung einer offline ESI-Datei vorrangig empfohlen.

Der System Manager legt bei "online" erfassten Gerätebeschreibungen in seinem ESI-Verzeichnis eine neue Datei "OnlineDescription0000...xml" an, die alle online ausgelesenen ESI-Beschreibungen enthält.

OnlineDescriptionCache000000002.xml

Abb. 49: Vom System Manager angelegt OnlineDescription.xml

Soll daraufhin ein Slave manuell in die Konfiguration eingefügt werden, sind "online" erstellte Slaves durch ein vorangestelltes ">" Symbol in der Auswahlliste gekennzeichnet (siehe Abbildung *Kennzeichnung einer online erfassten ESI am Beispiel EL2521*).

Abb. 50: Kennzeichnung einer online erfassten ESI am Beispiel EL2521

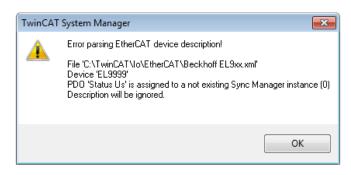
Wurde mit solchen ESI-Daten gearbeitet und liegen später die herstellereigenen Dateien vor, ist die OnlineDescription....xml wie folgt zu löschen:

- alle System Managerfenster schließen
- TwinCAT in Konfig-Mode neu starten
- "OnlineDescription0000...xml" löschen
- TwinCAT System Manager wieder öffnen

Danach darf diese Datei nicht mehr zu sehen sein, Ordner ggf. mit <F5> aktualisieren.

OnlineDescription unter TwinCAT 3.x

Zusätzlich zu der oben genannten Datei "OnlineDescription0000...xml" legt TwinCAT 3.x auch einen so genannten EtherCAT-Cache mit neuentdeckten Geräten an, z. B. unter Windows 7 unter


C:\User\[USERNAME]\[AppData\]Roaming\Beckhoff\TwinCAT3\Components\Base\EtherCATCache.xmI (Spracheinstellungen des Betriebssystems beachten!)

Diese Datei ist im gleichen Zuge wie die andere Datei zu löschen.

Fehlerhafte ESI-Datei

Liegt eine fehlerhafte ESI-Datei vor die vom System Manager nicht eingelesen werden kann, meldet dies der System Manager durch ein Hinweisfenster.

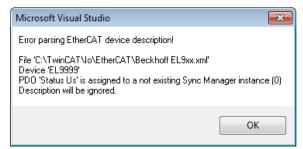


Abb. 51: Hinweisfenster fehlerhafte ESI-Datei (links: TwinCAT 2; rechts: TwinCAT 3)

Ursachen dafür können sein

- Aufbau der *.xml entspricht nicht der zugehörigen *.xsd-Datei → pr
 üfen Sie die Ihnen vorliegenden Schemata
- Inhalt kann nicht in eine Gerätebeschreibung übersetzt werden → Es ist der Hersteller der Datei zu kontaktieren

6.1.3 TwinCAT ESI Updater

Ab TwinCAT 2.11 kann der System Manager bei Online-Zugang selbst nach aktuellen Beckhoff ESI-Dateien suchen:

Abb. 52: Anwendung des ESI Updater (>=TwinCAT 2.11)

Der Aufruf erfolgt unter:

"Options" → "Update EtherCAT Device Descriptions".

Auswahl bei TwinCAT 3:

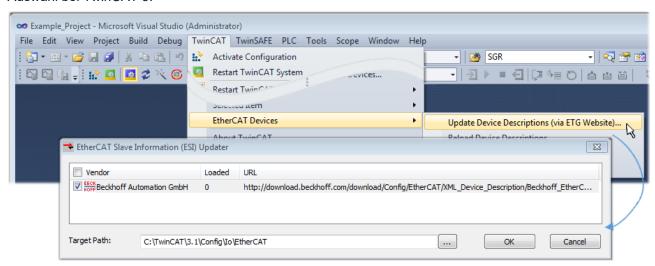


Abb. 53: Anwendung des ESI Updater (TwinCAT 3)

Der ESI Updater ist eine bequeme Möglichkeit, die von den EtherCAT Herstellern bereitgestellten ESIs automatisch über das Internet in das TwinCAT-Verzeichnis zu beziehen (ESI = EtherCAT slave information). Dazu greift TwinCAT auf die bei der ETG hinterlegte zentrale ESI-ULR-Verzeichnisliste zu; die Einträge sind dann unveränderbar im Updater-Dialog zu sehen.

Der Aufruf erfolgt unter:

"TwinCAT" → "ÉtherCAT Devices" → "Update Device Description (via ETG Website)…".

6.1.4 Unterscheidung Online / Offline

Die Unterscheidung Online / Offline bezieht sich auf das Vorhandensein der tatsächlichen I/O-Umgebung (Antriebe, Klemmen, EJ-Module). Wenn die Konfiguration im Vorfeld der Anlagenerstellung z. B. auf einem Laptop als Programmiersystem erstellt werden soll, ist nur die "Offline-Konfiguration" möglich. Dann müssen alle Komponenten händisch in der Konfiguration z. B. nach Elektro-Planung eingetragen werden.

Ist die vorgesehene Steuerung bereits an das EtherCAT-System angeschlossen, alle Komponenten mit Spannung versorgt und die Infrastruktur betriebsbereit, kann die TwinCAT Konfiguration auch vereinfacht durch das so genannte "Scannen" vom Runtime-System aus erzeugt werden. Dies ist der so genannte Online-Vorgang.

In jedem Fall prüft der EtherCAT-Master bei jedem realen Hochlauf, ob die vorgefundenen Slaves der Konfiguration entsprechen. Dieser Test kann in den erweiterten Slave-Einstellungen parametriert werden. Siehe hierzu den Hinweis "Installation der neuesten ESI-XML-Device-Description" [66].

Zur Konfigurationserstellung

- muss die reale EtherCAT-Hardware (Geräte, Koppler, Antriebe) vorliegen und installiert sein.
- müssen die Geräte/Module über EtherCAT-Kabel bzw. im Klemmenstrang so verbunden sein wie sie später eingesetzt werden sollen.

- müssen die Geräte/Module mit Energie versorgt werden und kommunikationsbereit sein.
- · muss TwinCAT auf dem Zielsystem im CONFIG-Modus sein.

Der Online-Scan-Vorgang setzt sich zusammen aus:

- Erkennen des EtherCAT-Gerätes [> 76] (Ethernet-Port am IPC)
- <u>Erkennen der angeschlossenen EtherCAT-Teilnehmer [\rightarrow 77]</u>. Dieser Schritt kann auch unabhängig vom vorangehenden durchgeführt werden.
- <u>Problembehandlung</u> [▶ 80]

Auch kann der Scan bei bestehender Konfiguration [> 81] zum Vergleich durchgeführt werden.

6.1.5 OFFLINE Konfigurationserstellung

Anlegen des Geräts EtherCAT

In einem leeren System Manager Fenster muss zuerst ein EtherCAT-Gerät angelegt werden.

Abb. 54: Anfügen eines EtherCAT Device: links TwinCAT 2; rechts TwinCAT 3

Für eine EtherCAT I/O Anwendung mit EtherCAT-Slaves ist der "EtherCAT" Typ auszuwählen. "EtherCAT Automation Protocol via EL6601" ist für den bisherigen Publisher/Subscriber-Dienst in Kombination mit einer EL6601/EL6614 Klemme auszuwählen.

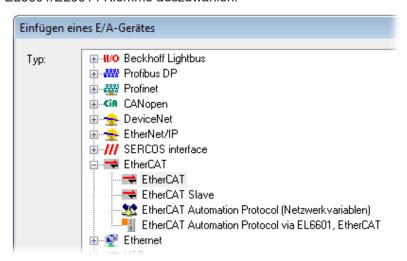


Abb. 55: Auswahl EtherCAT Anschluss (TwinCAT 2.11, TwinCAT 3)

Diesem virtuellen Gerät ist dann ein realer Ethernet Port auf dem Laufzeitsystem zuzuordnen.

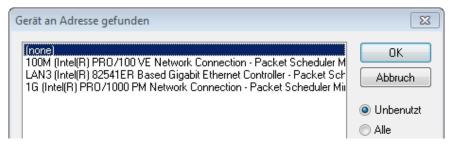


Abb. 56: Auswahl Ethernet Port

Diese Abfrage kann beim Anlegen des EtherCAT-Gerätes automatisch erscheinen, oder die Zuordnung kann später im Eigenschaftendialog gesetzt/geändert werden; siehe Abb. "Eigenschaften EtherCAT-Gerät (TwinCAT 2)".

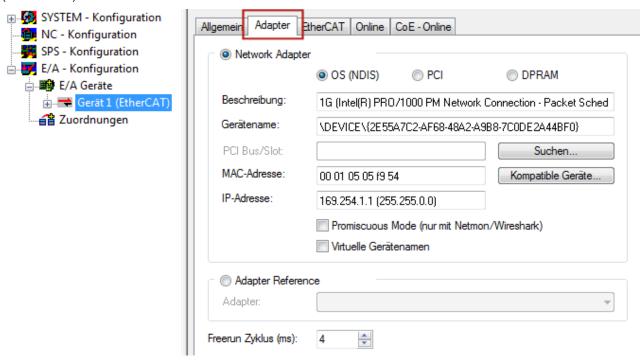
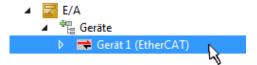



Abb. 57: Eigenschaften EtherCAT-Gerät (TwinCAT 2)

TwinCAT 3: Die Eigenschaften des EtherCAT-Gerätes können mit Doppelklick auf "Gerät .. (EtherCAT)" im Projektmappen-Explorer unter "E/A" geöffnet werden:

•

Auswahl des Ethernet-Ports

Es können nur Ethernet-Ports für ein EtherCAT-Gerät ausgewählt werden, für die der TwinCAT-Realtime-Treiber installiert ist. Dies muss für jeden Port getrennt vorgenommen werden. Siehe dazu die entsprechende Installationsseite [> 60].

Definieren von EtherCAT-Slaves

Durch Rechtsklick auf ein Gerät im Konfigurationsbaum können weitere Geräte angefügt werden.

Abb. 58: Anfügen von EtherCAT-Geräten (links: TwinCAT 2; rechts: TwinCAT 3)

Es öffnet sich der Dialog zur Auswahl des neuen Gerätes. Es werden nur Geräte angezeigt für die ESI-Dateien hinterlegt sind.

Die Auswahl bietet auch nur Geräte an, die an dem vorher angeklickten Gerät anzufügen sind - dazu wird die an diesem Port mögliche Übertragungsphysik angezeigt (Abb. "Auswahldialog neues EtherCAT-Gerät", A). Es kann sich um kabelgebundene Fast-Ethernet-Ethernet-Physik mit PHY-Übertragung handeln, dann ist wie in Abb. "Auswahldialog neues EtherCAT-Gerät" nur ebenfalls kabelgebundenes Geräte auswählbar. Verfügt das vorangehende Gerät über mehrere freie Ports (z. B. EK1122 oder EK1100), kann auf der rechten Seite (A) der gewünschte Port angewählt werden.

Übersicht Übertragungsphysik

- "Ethernet": Kabelgebunden 100BASE-TX: Koppler, Box-Module, Geräte mit RJ45/M8/M12-Anschluss
- "E-Bus": LVDS "Klemmenbus", EtherCAT-Steckmodule (EJ), EtherCAT-Klemmen (EL/ES), diverse anreihbare Module

Das Suchfeld erleichtert das Auffinden eines bestimmten Gerätes (ab TwinCAT 2.11 bzw. TwinCAT 3).

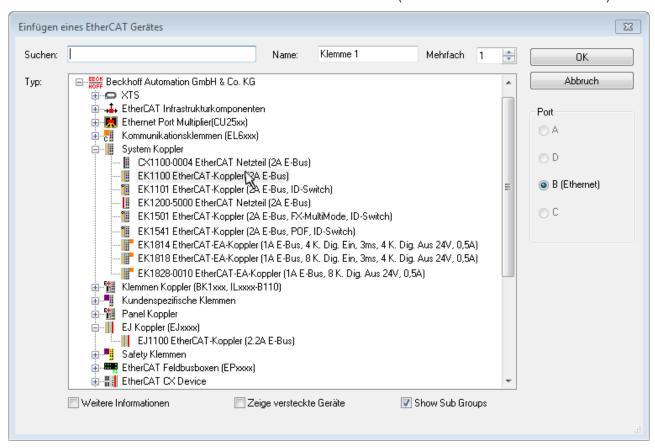


Abb. 59: Auswahldialog neues EtherCAT-Gerät

Standardmäßig wird nur der Name/Typ des Gerätes als Auswahlkriterium verwendet. Für eine gezielte Auswahl einer bestimmen Revision des Gerätes kann die Revision als "Extended Information" eingeblendet werden.

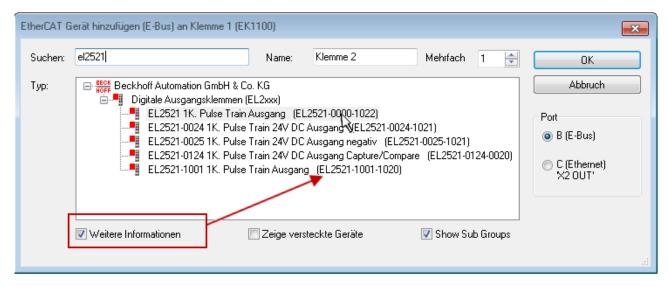


Abb. 60: Anzeige Geräte-Revision

Oft sind aus historischen oder funktionalen Gründen mehrere Revisionen eines Gerätes erzeugt worden, z. B. durch technologische Weiterentwicklung. Zur vereinfachten Anzeige (s. Abb. "Auswahldialog neues EtherCAT-Gerät") wird bei Beckhoff Geräten nur die letzte (=höchste) Revision und damit der letzte Produktionsstand im Auswahldialog angezeigt. Sollen alle im System als ESI-Beschreibungen vorliegenden Revisionen eines Gerätes angezeigt werden, ist die Checkbox "Show Hidden Devices" zu markieren, s. Abb. "Anzeige vorhergehender Revisionen".

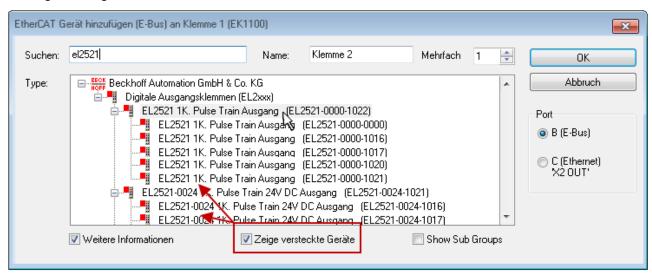


Abb. 61: Anzeige vorhergehender Revisionen

Geräte-Auswahl nach Revision, Kompatibilität

Mit der ESI-Beschreibung wird auch das Prozessabbild, die Art der Kommunikation zwischen Master und Slave/Gerät und ggf. Geräte-Funktionen definiert. Damit muss das reale Gerät (Firmware wenn vorhanden) die Kommunikationsanfragen/-einstellungen des Masters unterstützen. Dies ist abwärtskompatibel der Fall, d. h. neuere Geräte (höhere Revision) sollen es auch unterstützen, wenn der EtherCAT-Master sie als eine ältere Revision anspricht. Als Beckhoff-Kompatibilitätsregel für EtherCAT-Klemmen/ Boxen/ EJ-Module ist anzunehmen:

Geräte-Revision in der Anlage >= Geräte-Revision in der Konfiguration

Dies erlaubt auch den späteren Austausch von Geräten ohne Veränderung der Konfiguration (abweichende Vorgaben bei Antrieben möglich).

Beispiel

In der Konfiguration wird eine EL2521-0025-**1018** vorgesehen, dann kann real eine EL2521-0025-**1018** oder höher (-**1019**, -**1020**) eingesetzt werden.

```
Name
(EL2521-0025-1018)
Revisior
```

Abb. 62: Name/Revision Klemme

Wenn im TwinCAT-System aktuelle ESI-Beschreibungen vorliegen, entspricht der im Auswahldialog als letzte Revision angebotene Stand dem Produktionsstand von Beckhoff. Es wird empfohlen, bei Erstellung einer neuen Konfiguration jeweils diesen letzten Revisionsstand eines Gerätes zu verwenden, wenn aktuell produzierte Beckhoff-Geräte in der realen Applikation verwendet werden. Nur wenn ältere Geräte aus Lagerbeständen in der Applikation verbaut werden sollen, ist es sinnvoll eine ältere Revision einzubinden.

Das Gerät stellt sich dann mit seinem Prozessabbild im Konfigurationsbaum dar und kann nur parametriert werden: Verlinkung mit der Task, CoE/DC-Einstellungen, PlugIn-Definition, StartUp-Einstellungen, ...

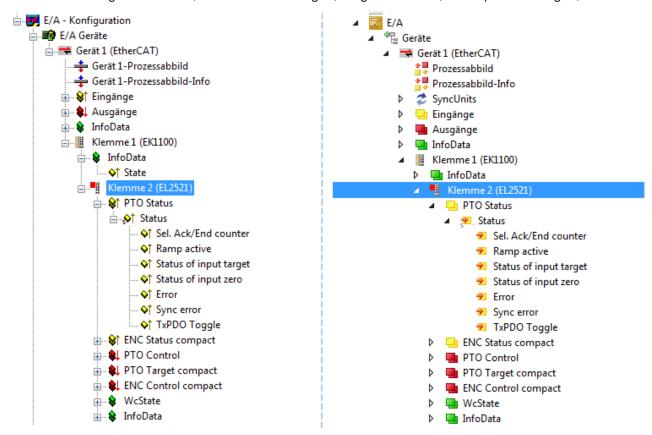


Abb. 63: EtherCAT Klemme im TwinCAT-Baum (links: TwinCAT 2; rechts: TwinCAT 3)

6.1.6 ONLINE Konfigurationserstellung

Erkennen / Scan des Geräts EtherCAT

Befindet sich das TwinCAT-System im CONFIG-Modus, kann online nach Geräten gesucht werden. Erkennbar ist dies durch ein Symbol unten rechts in der Informationsleiste:

- bei TwinCAT 2 durch eine blaue Anzeige "Config Mode" im System Manager-Fenster: Config Mode .
- bei der Benutzeroberfläche der TwinCAT 3 Entwicklungsumgebung durch ein Symbol 🛂 .

TwinCAT lässt sich in diesem Modus versetzen:

- TwinCAT 2: durch Auswahl von aus der Menüleiste oder über "Aktionen" → "Starten/Restarten von TwinCAT in Konfig-Modus"
- TwinCAT 3: durch Auswahl von aus der Menüleiste oder über "TWINCAT" → "Restart TwinCAT (Config Mode)"

Online Scannen im Config Mode

1

Die Online-Suche im RUN-Modus (produktiver Betrieb) ist nicht möglich. Es ist die Unterscheidung zwischen TwinCAT-Programmiersystem und TwinCAT-Zielsystem zu beachten.

Das TwinCAT 2-lcon () bzw. TwinCAT 3-lcon () in der Windows Taskleiste stellt immer den TwinCAT-Modus des lokalen IPC dar. Im System Manager-Fenster von TwinCAT 2 bzw. in der Benutzeroberfläche von TwinCAT 3 wird dagegen der TwinCAT-Zustand des Zielsystems angezeigt.

Abb. 64: Unterscheidung Lokalsystem/ Zielsystem (links: TwinCAT 2; rechts: TwinCAT 3)

Im Konfigurationsbaum bringt uns ein Rechtsklick auf den General-Punkt "I/O Devices" zum Such-Dialog.

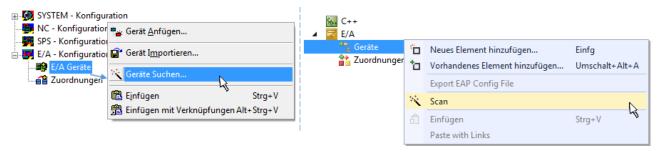


Abb. 65: Scan Devices (links: TwinCAT 2; rechts: TwinCAT 3)

Dieser Scan-Modus versucht nicht nur EtherCAT-Geräte (bzw. die als solche nutzbaren Ethernet-Ports) zu finden, sondern auch NOVRAM, Feldbuskarten, SMB etc. Nicht alle Geräte können jedoch automatisch gefunden werden.

Abb. 66: Hinweis automatischer GeräteScan (links: TwinCAT 2; rechts: TwinCAT 3)

76 Version: 3.0.0 EL72x1-001x

Ethernet Ports mit installierten TwinCAT Realtime-Treiber werden als "RT-Ethernet" Geräte angezeigt. Testweise wird an diesen Ports ein EtherCAT-Frame verschickt. Erkennt der Scan-Agent an der Antwort, dass ein EtherCAT-Slave angeschlossen ist, wird der Port allerdings gleich als "EtherCAT Device" angezeigt.

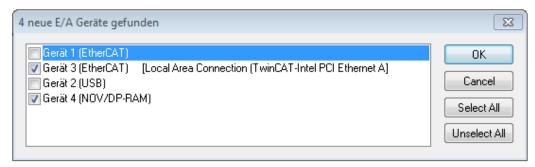


Abb. 67: Erkannte Ethernet-Geräte

Über entsprechende Kontrollkästchen können Geräte ausgewählt werden (wie in der Abb. "Erkannte Ethernet-Geräte" gezeigt ist z. B. Gerät 3 und Gerät 4 ausgewählt). Für alle angewählten Geräte wird nach Bestätigung "OK" im nachfolgenden ein Teilnehmer-Scan vorgeschlagen, s. Abb. "Scan-Abfrage nach dem automatischen Anlegen eines EtherCAT-Gerätes".

Auswahl des Ethernet-Ports

Es können nur Ethernet-Ports für ein EtherCAT-Gerät ausgewählt werden, für die der TwinCAT-Realtime-Treiber installiert ist. Dies muss für jeden Port getrennt vorgenommen werden. Siehe dazu die entsprechende Installationsseite [• 60].

Erkennen/Scan der EtherCAT Teilnehmer

Funktionsweise Online Scan

Beim Scan fragt der Master die Identity Informationen der EtherCAT-Slaves aus dem Slave-EEPROM ab. Es werden Name und Revision zur Typbestimmung herangezogen. Die entsprechenden Geräte werden dann in den hinterlegten ESI-Daten gesucht und in dem dort definierten Default-Zustand in den Konfigurationsbaum eingebaut.

Abb. 68: Beispiel Default-Zustand

HINWEIS

Slave-Scan in der Praxis im Serienmaschinenbau

Die Scan-Funktion sollte mit Bedacht angewendet werden. Sie ist ein praktisches und schnelles Werkzeug, um für eine Inbetriebnahme eine Erst-Konfiguration als Arbeitsgrundlage zu erzeugen. Im Serienmaschinebau bzw. bei Reproduktion der Anlage sollte die Funktion aber nicht mehr zur Konfigurationserstellung verwendet werden sondern ggf. zum <u>Vergleich [** 81]</u> mit der festgelegten Erst-Konfiguration.

Hintergrund: da Beckhoff aus Gründen der Produktpflege gelegentlich den Revisionsstand der ausgelieferten Produkte erhöht, kann durch einen solchen Scan eine Konfiguration erzeugt werden, die (bei identischem Maschinenaufbau) zwar von der Geräteliste her identisch ist, die jeweilige Geräterevision unterscheiden sich aber ggf. von der Erstkonfiguration.

Beispiel

Firma A baut den Prototyp einer späteren Serienmaschine B. Dazu wird der Prototyp aufgebaut, in TwinCAT ein Scan über die IO-Geräte durchgeführt und somit die Erstkonfiguration "B.tsm" erstellt. An einer beliebigen Stelle sitzt dabei die EtherCAT-Klemme EL2521-0025 in der Revision 1018. Diese wird also so in die TwinCAT-Konfiguration eingebaut:

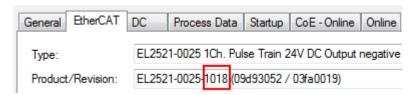


Abb. 69: Einbau EtherCAT-Klemme mit Revision -1018

Ebenso werden in der Prototypentestphase Funktionen und Eigenschaften dieser Klemme durch die Programmierer/Inbetriebnehmer getestet und ggf. genutzt d. h. aus der PLC "B.pro" oder der NC angesprochen. (sinngemäß gilt das gleiche für die TwinCAT 3-Solution-Dateien).

Nun wird die Prototypenentwicklung abgeschlossen und der Serienbau der Maschine B gestartet, Beckhoff liefert dazu weiterhin die EL2521-0025-0018. Falls die Inbetriebnehmer der Abteilung Serienmaschinenbau immer einen Scan durchführen, entsteht dabei bei jeder Maschine wieder ein eine inhaltsgleiche B-Konfiguration. Ebenso werden eventuell von A weltweit Ersatzteillager für die kommenden Serienmaschinen mit Klemmen EL2521-0025-1018 angelegt.

Nach einiger Zeit erweitert Beckhoff die EL2521-0025 um ein neues Feature C. Deshalb wird die FW geändert, nach außen hin kenntlich durch einen höheren FW-Stand **und eine neue Revision** -1019. Trotzdem unterstützt das neue Gerät natürlich Funktionen und Schnittstellen der Vorgängerversion(en), eine Anpassung von "B.tsm" oder gar "B.pro" ist somit nicht nötig. Die Serienmaschinen können weiterhin mit "B.tsm" und "B.pro" gebaut werden, zur Kontrolle der aufgebauten Maschine ist ein <u>vergleichernder Scan</u> [<u>National B. 19</u>] gegen die Erstkonfiguration "B.tsm" sinnvoll.

Wird nun allerdings in der Abteilung Seriennmaschinenbau nicht "B.tsm" verwendet, sondern wieder ein Scan zur Erstellung der produktiven Konfiguration durchgeführt, wird automatisch die Revision **-1019** erkannt und in die Konfiguration eingebaut:

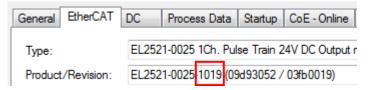


Abb. 70: Erkennen EtherCAT-Klemme mit Revision -1019

Dies wird in der Regel von den Inbetriebnehmern nicht bemerkt. TwinCAT kann ebenfalls nichts melden, da ja quasi eine neue Konfiguration erstellt wird. Es führt nach der Kompatibilitätsregel allerdings dazu, dass in diese Maschine später keine EL2521-0025-**1018** als Ersatzteil eingebaut werden sollen (auch wenn dies in den allermeisten Fällen dennoch funktioniert).

Dazu kommt, dass durch produktionsbegleitende Entwicklung in Firma A das neue Feature C der EL2521-0025-1019 (zum Beispiel ein verbesserter Analogfilter oder ein zusätzliches Prozessdatum zur Diagnose) gerne entdeckt und ohne betriebsinterne Rücksprache genutzt wird. Für die so entstandene neue Konfiguration "B2.tsm" ist der bisherige Bestand an Ersatzteilgeräten nicht mehr zu verwenden.

Bei etabliertem Serienmaschinenbau sollte der Scan nur noch zu informativen Vergleichszwecken gegen eine definierte Erstkonfiguration durchgeführt werden. Änderungen sind mit Bedacht durchzuführen!

Wurde ein EtherCAT-Device in der Konfiguration angelegt (manuell oder durch Scan), kann das I/O-Feld nach Teilnehmern/Slaves gescannt werden.

Abb. 71: Scan-Abfrage nach automatischem Anlegen eines EtherCAT-Gerätes (links: TC2; rechts TC3)

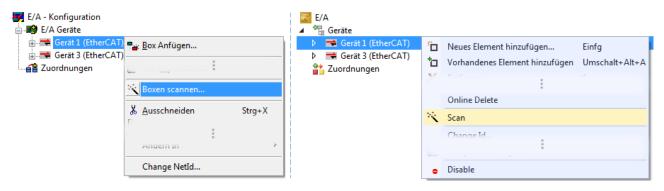


Abb. 72: Manuelles Scannen nach Teilnehmern auf festgelegtem EtherCAT Device (links: TC2; rechts TC3)

Im System Manager (TwinCAT 2) bzw. der Benutzeroberfläche (TwinCAT 3) kann der Scan-Ablauf am Ladebalken unten in der Statusleiste verfolgt werden.

Abb. 73: Scanfortschritt am Beispiel von TwinCAT 2

Die Konfiguration wird aufgebaut und kann danach gleich in den Online-Zustand (OPERATIONAL) versetzt werden.

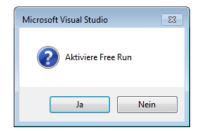


Abb. 74: Abfrage Config/FreeRun (links: TC2; rechts TC3)

Im Config/FreeRun-Mode wechselt die System Manager Anzeige blau/rot und das EtherCAT-Gerät wird auch ohne aktive Task (NC, PLC) mit der Freilauf-Zykluszeit von 4 ms (Standardeinstellung) betrieben.

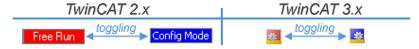


Abb. 75: Anzeige des Wechsels zwischen "Free Run" und "Config Mode" unten rechts in der Statusleiste

Abb. 76: TwinCAT kann auch über einen Button in diesen Zustand versetzt werden (links: TC2; rechts TC3)

Das EtherCAT-System sollte sich danach in einem funktionsfähigen zyklischen Betrieb nach Abb. Beispielhafte Online-Anzeige befinden.

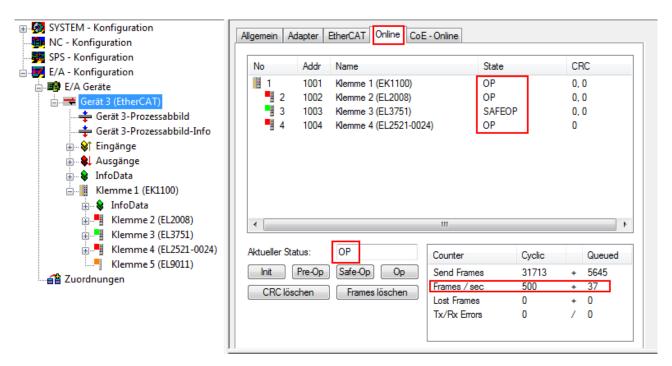


Abb. 77: Beispielhafte Online-Anzeige

Zu beachten sind

- · alle Slaves sollen im OP-State sein
- · der EtherCAT-Master soll im "Actual State" OP sein
- "Frames/sec" soll der Zykluszeit unter Berücksichtigung der versendeten Frameanzahl sein
- es sollen weder übermäßig "LostFrames"- noch CRC-Fehler auftreten

Die Konfiguration ist nun fertig gestellt. Sie kann auch wie im <u>manuellen Vorgang [▶ 71]</u> beschrieben verändert werden.

Problembehandlung

Beim Scannen können verschiedene Effekte auftreten.

- es wird ein **unbekanntes Gerät** entdeckt, d. h. ein EtherCAT-Slave für den keine ESI-XML-Beschreibung vorliegt.
 - In diesem Fall bietet der System Manager an, die im Gerät eventuell vorliegende ESI auszulesen. Lesen Sie dazu das Kapitel "Hinweise zu ESI/XML".
- · Teilnehmer werden nicht richtig erkannt

Ursachen können sein

- fehlerhafte Datenverbindungen, es treten Datenverluste w\u00e4hrend des Scans auf
- Slave hat ungültige Gerätebeschreibung

Es sind die Verbindungen und Teilnehmer gezielt zu überprüfen, z. B. durch den Emergency Scan. Der Scan ist dann erneut vorzunehmen.

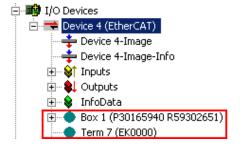
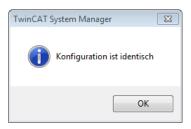


Abb. 78: Fehlerhafte Erkennung

Im System Manager werden solche Geräte evtl. als EK0000 oder unbekannte Geräte angelegt. Ein Betrieb ist nicht möglich bzw. sinnvoll.


Scan über bestehender Konfiguration

HINWEIS

Veränderung der Konfiguration nach Vergleich

Bei diesem Scan werden z. Z. (TwinCAT 2.11 bzw. 3.1) nur die Geräteeigenschaften Vendor (Hersteller), Gerätename und Revision verglichen! Ein "ChangeTo" oder "Copy" sollte nur im Hinblick auf die Beckhoff IO-Kompatibilitätsregel (s. o.) nur mit Bedacht vorgenommen werden. Das Gerät wird dann in der Konfiguration gegen die vorgefundene Revision ausgetauscht, dies kann Einfluss auf unterstützte Prozessdaten und Funktionen haben.

Wird der Scan bei bestehender Konfiguration angestoßen, kann die reale I/O-Umgebung genau der Konfiguration entsprechen oder differieren. So kann die Konfiguration verglichen werden.

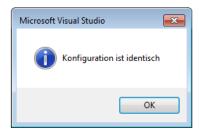


Abb. 79: Identische Konfiguration (links: TwinCAT 2; rechts TwinCAT 3)

Sind Unterschiede feststellbar, werden diese im Korrekturdialog angezeigt, die Konfiguration kann umgehend angepasst werden.

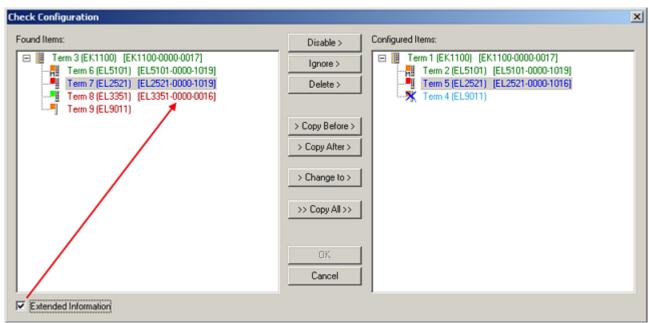


Abb. 80: Korrekturdialog

Die Anzeige der "Extended Information" wird empfohlen, weil dadurch Unterschiede in der Revision sichtbar werden.

Farbe	Erläuterung		
grün	Dieser EtherCAT-Slave findet seine Entsprechung auf der Gegenseite. Typ und Revision stimmen überein.		
blau	Dieser EtherCAT-Slave ist auf der Gegenseite vorhanden, aber in einer anderen Revision. Diese andere Revision kann andere Default-Einstellungen der Prozessdaten und andere/zusätzliche Funktionen haben. Ist die gefundene Revision > als die konfigurierte Revision, ist der Einsatz unter Berücksichtigung der Kompatibilität möglich.		
	Ist die gefundene Revision < als die konfigurierte Revision, ist der Einsatz vermutlich nicht möglich. Eventuell unterstützt das vorgefundene Gerät nicht alle Funktionen, die der Master von ihm aufgrund der höheren Revision erwartet.		
hellblau	Dieser EtherCAT-Slave wird ignoriert (Button "Ignore")		
rot	Dieser EtherCAT-Slave ist auf der Gegenseite nicht vorhanden		
	 Er ist vorhanden, aber in einer anderen Revision, die sich auch in den Eigenschaften von der angegebenen unterscheidet. Auch hier gilt dann das Kompatibilitätsprinzip: Ist die gefundene Revision > als die konfigurierte Revision, ist der Einsatz unter Berücksichtigung der Kompatibilität möglich, da Nachfolger- Geräte die Funktionen der Vorgänger-Geräte unterstützen sollen. 		
	Ist die gefundene Revision < als die konfigurierte Revision, ist der Einsatz vermutlich nicht möglich. Eventuell unterstützt das vorgefundene Gerät nicht alle Funktionen, die der Master von ihm aufgrund der höheren Revision erwartet.		

Geräte-Auswahl nach Revision, Kompatibilität

Mit der ESI-Beschreibung wird auch das Prozessabbild, die Art der Kommunikation zwischen Master und Slave/Gerät und ggf. Geräte-Funktionen definiert. Damit muss das reale Gerät (Firmware wenn vorhanden) die Kommunikationsanfragen/-einstellungen des Masters unterstützen. Dies ist abwärtskompatibel der Fall, d. h. neuere Geräte (höhere Revision) sollen es auch unterstützen, wenn der EtherCAT-Master sie als eine ältere Revision anspricht. Als Beckhoff-Kompatibilitätsregel für EtherCAT-Klemmen/ Boxen/ EJ-Module ist anzunehmen:

Geräte-Revision in der Anlage >= Geräte-Revision in der Konfiguration

Dies erlaubt auch den späteren Austausch von Geräten ohne Veränderung der Konfiguration (abweichende Vorgaben bei Antrieben möglich).

Beispiel

In der Konfiguration wird eine EL2521-0025-**1018** vorgesehen, dann kann real eine EL2521-0025-**1018** oder höher (-**1019**, -**1020**) eingesetzt werden.

Abb. 81: Name/Revision Klemme

Wenn im TwinCAT-System aktuelle ESI-Beschreibungen vorliegen, entspricht der im Auswahldialog als letzte Revision angebotene Stand dem Produktionsstand von Beckhoff. Es wird empfohlen, bei Erstellung einer neuen Konfiguration jeweils diesen letzten Revisionsstand eines Gerätes zu verwenden, wenn aktuell produzierte Beckhoff-Geräte in der realen Applikation verwendet werden. Nur wenn ältere Geräte aus Lagerbeständen in der Applikation verbaut werden sollen, ist es sinnvoll eine ältere Revision einzubinden.

82 Version: 3.0.0 EL72x1-001x

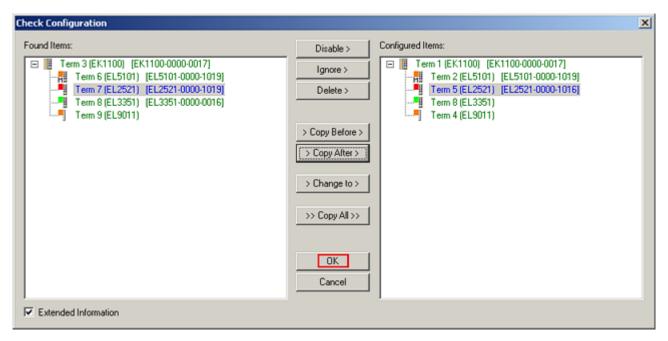


Abb. 82: Korrekturdialog mit Änderungen

Sind alle Änderungen übernommen oder akzeptiert, können sie durch "OK" in die reale *.tsm-Konfiguration übernommen werden.

Change to Compatible Type

TwinCAT bietet mit "Change to Compatible Type…" eine Funktion zum Austauschen eines Gerätes unter Beibehaltung der Links in die Task.

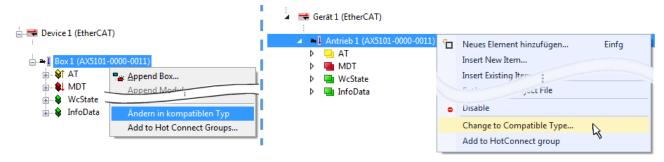


Abb. 83: Dialog "Change to Compatible Type..." (links: TwinCAT 2; rechts TwinCAT 3)

Folgende Elemente in der ESI eines EtherCAT-Teilenhmers werden von TwinCAT verglichen und als gleich vorausgesetzt, um zu entscheiden, ob ein Gerät als "kompatibel" angezeigt wird:

- Physics (z.B. RJ45, Ebus...)
- FMMU (zusätzliche sind erlaubt)
- · SyncManager (SM, zusätzliche sind erlaubt)
- EoE (Attribute MAC, IP)
- CoE (Attribute SdoInfo, PdoAssign, PdoConfig, PdoUpload, CompleteAccess)
- FoE
- PDO (Prozessdaten: Reihenfolge, SyncUnit SU, SyncManager SM, EntryCount, Entry.Datatype)

Bei Geräten der AX5000-Familie wird diese Funktion intensiv verwendet.

Change to Alternative Type

Der TwinCAT System Manager bietet eine Funktion zum Austauschen eines Gerätes: Change to Alternative Type

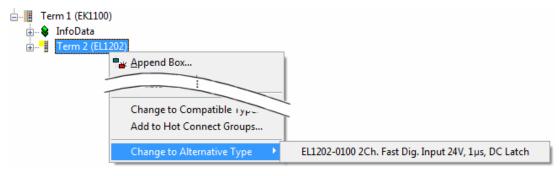


Abb. 84: TwinCAT 2 Dialog Change to Alternative Type

Wenn aufgerufen, sucht der System Manager in der bezogenen Geräte-ESI (hier im Beispiel: EL1202-0000) nach dort enthaltenen Angaben zu kompatiblen Geräten. Die Konfiguration wird geändert und gleichzeitig das ESI-EEPROM überschrieben - deshalb ist dieser Vorgang nur im Online-Zustand (ConfigMode) möglich.

6.1.7 EtherCAT-Teilnehmerkonfiguration

Klicken Sie im linken Fenster des TwinCAT 2 System Managers bzw. bei der TwinCAT 3 Entwicklungsumgebung im Projektmappen-Explorer auf das Element der Klemme im Baum, die Sie konfigurieren möchten (im Beispiel: Klemme 3: EL3751).

Abb. 85: "Baumzweig" Element als Klemme EL3751

Im rechten Fenster des System Managers (TwinCAT 2) bzw. der Entwicklungsumgebung (TwinCAT 3) stehen Ihnen nun verschiedene Karteireiter zur Konfiguration der Klemme zur Verfügung. Dabei bestimmt das Maß der Komplexität eines Teilnehmers welche Karteireiter zur Verfügung stehen. So bietet, wie im obigen Beispiel zu sehen, die Klemme EL3751 viele Einstellmöglichkeiten und stellt eine entsprechende Anzahl von Karteireitern zur Verfügung. Im Gegensatz dazu stehen z. B. bei der Klemme EL1004 lediglich die Karteireiter "Allgemein", "EtherCAT", "Prozessdaten" und "Online" zur Auswahl. Einige Klemmen, wie etwa die EL6695 bieten spezielle Funktionen über einen Karteireiter mit der eigenen Klemmenbezeichnung an, also "EL6695" in diesem Fall. Ebenfalls wird ein spezieller Karteireiter "Settings" von Klemmen mit umfangreichen Einstellmöglichkeiten angeboten (z. B. EL3751).

Karteireiter "Allgemein"

Abb. 86: Karteireiter "Allgemein"

Name des EtherCAT-Geräts

Id Laufende Nr. des EtherCAT-Geräts

Typ Typ des EtherCAT-Geräts

Kommentar Hier können Sie einen Kommentar (z. B. zum Anlagenteil) hinzufügen.

Disabled Hier können Sie das EtherCAT-Gerät deaktivieren.

Symbole erzeugen Nur wenn dieses Kontrollkästchen aktiviert ist, können Sie per ADS auf diesen

EtherCAT-Slave zugreifen.

Karteireiter "EtherCAT"

Abb. 87: Karteireiter "EtherCAT"

Typ des EtherCAT-Geräts

Product/Revision Produkt- und Revisions-Nummer des EtherCAT-Geräts

Auto Inc Adr. Auto-Inkrement-Adresse des EtherCAT-Geräts. Die Auto-Inkrement-Adresse

kann benutzt werden, um jedes EtherCAT-Gerät anhand seiner physikalischen

Position im Kommunikationsring zu adressieren. Die Auto-Inkrement-

Adressierung wird während der Start-Up-Phase benutzt, wenn der EtherCAT-Master die Adressen an die EtherCAT-Geräte vergibt. Bei der Auto-Inkrement-Adressierung hat der erste EtherCAT-Slave im Ring die Adresse $0000_{\rm hex}$ und für jeden weiteren Folgenden wird die Adresse um 1 verringert (FFF $_{\rm hex}$, FFFE $_{\rm hex}$)

usw.).

EtherCAT Adr. Feste Adresse eines EtherCAT-Slaves. Diese Adresse wird vom EtherCAT-

Master während der Startup-Phase vergeben. Um den Default-Wert zu ändern, müssen Sie zuvor das Kontrollkästchen links von dem Eingabefeld markieren.

Vorgänger Port Name und Port des EtherCAT-Geräts, an den dieses Gerät angeschlossen ist.

Falls es möglich ist, dieses Gerät mit einem anderen zu verbinden, ohne die Reihenfolge der EtherCAT-Geräte im Kommunikationsring zu ändern, dann ist

dieses Kombinationsfeld aktiviert und Sie können das EtherCAT-Gerät

auswählen, mit dem dieses Gerät verbunden werden soll.

Weitere Einstellungen Diese Schaltfläche öffnet die Dialoge für die erweiterten Einstellungen.

Der Link am unteren Rand des Karteireiters führt Sie im Internet auf die Produktseite dieses EtherCAT-Geräts.

Karteireiter "Prozessdaten"

Zeigt die (Allgemeine Slave PDO-) Konfiguration der Prozessdaten an. Die Eingangs- und Ausgangsdaten des EtherCAT-Slaves werden als CANopen Prozess-Daten-Objekte (**P**rocess **D**ata **O**bjects, PDO) dargestellt. Falls der EtherCAT-Slave es unterstützt, ermöglicht dieser Dialog dem Anwender ein PDO über PDO-Zuordnung auszuwählen und den Inhalt des individuellen PDOs zu variieren.

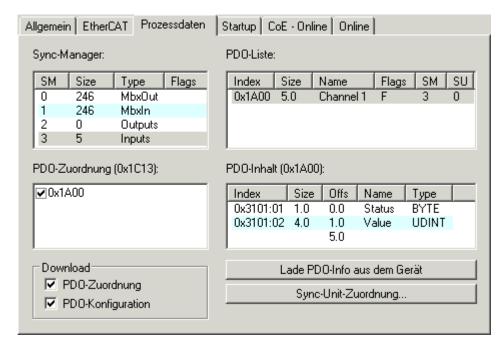


Abb. 88: Karteireiter "Prozessdaten"

Die von einem EtherCAT-Slave zyklisch übertragenen Prozessdaten (PDOs) sind die Nutzdaten, die in der Applikation zyklusaktuell erwartet werden oder die an den Slave gesendet werden. Dazu parametriert der EtherCAT-Master (Beckhoff TwinCAT) jeden EtherCAT-Slave während der Hochlaufphase, um festzulegen, welche Prozessdaten (Größe in Bit/Bytes, Quellort, Übertragungsart) er von oder zu diesem Slave übermitteln möchte. Eine falsche Konfiguration kann einen erfolgreichen Start des Slaves verhindern.

Für Beckhoff EtherCAT-Slaves EL, ES, EM, EJ und EP gilt im Allgemeinen:

- Die vom Gerät unterstützten Prozessdaten Input/Output sind in der ESI/XML-Beschreibung herstellerseitig definiert. Der TwinCAT EtherCAT-Master verwendet die ESI-Beschreibung zur richtigen Konfiguration des Slaves.
- Wenn vorgesehen, können die Prozessdaten im System Manager verändert werden. Siehe dazu die Gerätedokumentation.
 - Solche Veränderungen können sein: Ausblenden eines Kanals, Anzeige von zusätzlichen zyklischen Informationen, Anzeige in 16 Bit statt in 8 Bit Datenumfang usw.
- Die Prozessdateninformationen liegen bei so genannten "intelligenten" EtherCAT-Geräten ebenfalls im CoE-Verzeichnis vor. Beliebige Veränderungen in diesem CoE-Verzeichnis, die zu abweichenden PDO-Einstellungen führen, verhindern jedoch das erfolgreiche Hochlaufen des Slaves. Es wird davon abgeraten, andere als die vorgesehene Prozessdaten zu konfigurieren, denn die Geräte-Firmware (wenn vorhanden) ist auf diese PDO-Kombinationen abgestimmt.

Ist laut Gerätedokumentation eine Veränderung der Prozessdaten zulässig, kann dies wie folgt vorgenommen werden, s. Abb. *Konfigurieren der Prozessdaten*.

- · A: Wählen Sie das zu konfigurierende Gerät
- B: Wählen Sie im Reiter "Process Data" den Input- oder Output-Syncmanager (C)
- D: die PDOs können an- bzw. abgewählt werden
- H: die neuen Prozessdaten sind als link-f\u00e4hige Variablen im System Manager sichtbar Nach einem Aktivieren der Konfiguration und TwinCAT-Neustart (bzw. Neustart des EtherCAT-Masters) sind die neuen Prozessdaten aktiv.
- E: wenn ein Slave dies unterstützt, können auch Input- und Output-PDO gleichzeitig durch Anwahl eines so genannten PDO-Satzes ("Predefined PDO-settings") verändert werden.

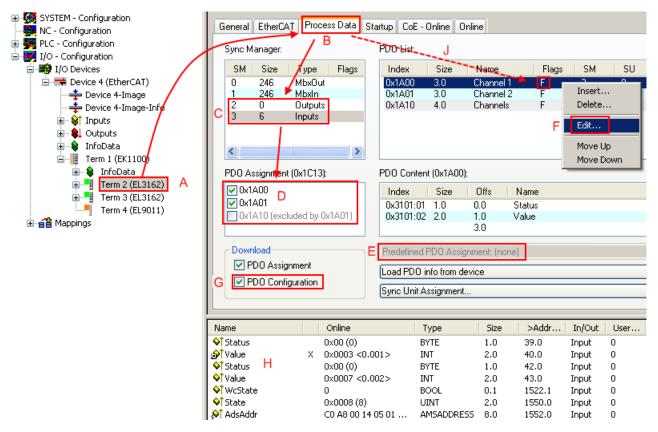
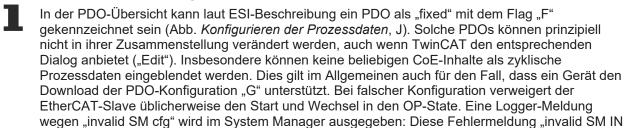



Abb. 89: Konfigurieren der Prozessdaten

Manuelle Veränderung der Prozessdaten

cfq^a oder "invalid SM OUT cfq^a bietet gleich einen Hinweis auf die Ursache des fehlgeschlagenen

Eine <u>detaillierte Beschreibung</u> [▶ 92] befindet sich am Ende dieses Kapitels.

Karteireiter "Startup"

Starts.

Der Karteireiter *Startup* wird angezeigt, wenn der EtherCAT-Slave eine Mailbox hat und das Protokoll *CANopen over EtherCAT* (CoE) oder das Protokoll *Servo drive over EtherCAT* unterstützt. Mit Hilfe dieses Karteireiters können Sie betrachten, welche Download-Requests während des Startups zur Mailbox gesendet werden. Es ist auch möglich neue Mailbox-Requests zur Listenanzeige hinzuzufügen. Die Download-Requests werden in derselben Reihenfolge zum Slave gesendet, wie sie in der Liste angezeigt werden.

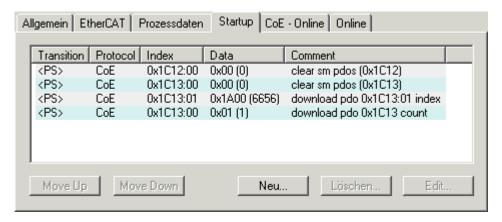


Abb. 90: Karteireiter "Startup"

Spalte	Beschreibung
Transition	Übergang, in den der Request gesendet wird. Dies kann entweder
	der Übergang von Pre-Operational to Safe-Operational (PS) oder
	der Übergang von Safe-Operational to Operational (SO) sein.
	Wenn der Übergang in "<>" eingeschlossen ist (z. B. <ps>), dann ist der Mailbox Request fest und kann vom Anwender nicht geändert oder gelöscht werden.</ps>
Protokoll	Art des Mailbox-Protokolls
Index	Index des Objekts
Data	Datum, das zu diesem Objekt heruntergeladen werden soll.
Kommentar	Beschreibung des zu der Mailbox zu sendenden Requests

Move Up	Diese Schaltfläche bewegt den markierten Request in der Liste um eine Position nach oben.
Move Down	Diese Schaltfläche bewegt den markierten Request in der Liste um eine Position nach unten.
New	Diese Schaltfläche fügt einen neuen Mailbox-Download-Request, der währen des Startups gesendet werden soll hinzu.
Delete	Diese Schaltfläche löscht den markierten Eintrag.
Edit	Diese Schaltfläche editiert einen existierenden Request.

Karteireiter "CoE - Online"

Wenn der EtherCAT-Slave das Protokoll *CANopen over EtherCAT* (CoE) unterstützt, wird der zusätzliche Karteireiter *CoE - Online* angezeigt. Dieser Dialog listet den Inhalt des Objektverzeichnisses des Slaves auf (SDO-Upload) und erlaubt dem Anwender den Inhalt eines Objekts dieses Verzeichnisses zu ändern. Details zu den Objekten der einzelnen EtherCAT-Geräte finden Sie in den gerätespezifischen Objektbeschreibungen.

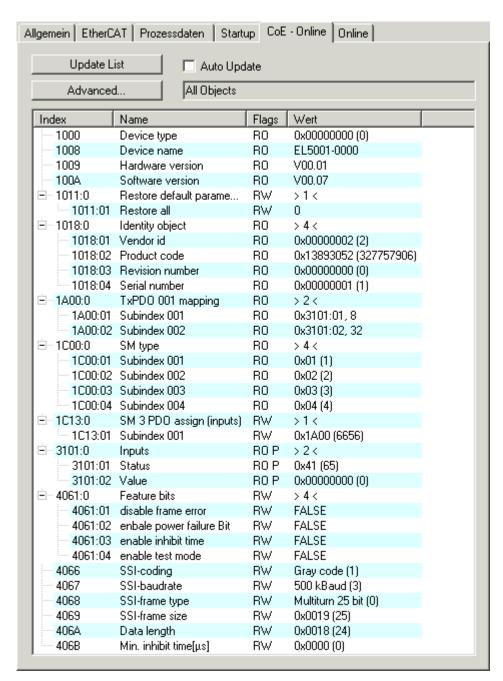


Abb. 91: Karteireiter "CoE - Online"

Darstellung der Objekt-Liste

Spalte	Beschrei	Beschreibung		
Index	Index und	Index und Subindex des Objekts		
Name	Name de	Name des Objekts		
Flags	RW	Das Objekt kann ausgelesen und Daten können in das Objekt geschrieben werden (Read/Write)		
	RO	Das Objekt kann ausgelesen werden, es ist aber nicht möglich Daten in das Objekt zu schreiben (Read only)		
	Р	Ein zusätzliches P kennzeichnet das Objekt als Prozessdatenobjekt.		
Wert	Wert des Objekts			

Update List Auto Update Die Schaltfläche *Update List* aktualisiert alle Objekte in der Listenanzeige Wenn dieses Kontrollkästchen angewählt ist, wird der Inhalt der Objekte

automatisch aktualisiert.

Advanced

Die Schaltfläche *Advanced* öffnet den Dialog *Advanced Settings*. Hier können Sie festlegen, welche Objekte in der Liste angezeigt werden.

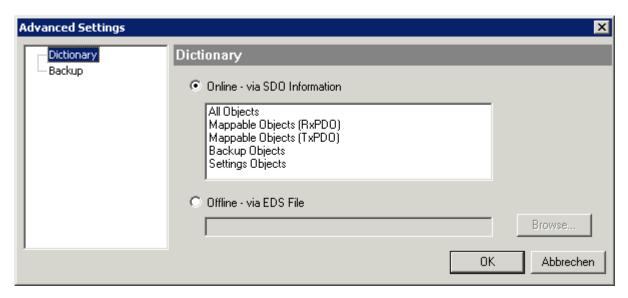


Abb. 92: Dialog "Advanced settings"

Online - über SDO-Information Wenn dieses Optionsfeld angewählt ist, wird die Liste der im Objektverzeichnis des Slaves enthaltenen Objekte über SDO-Information

aus dem Slave hochgeladen. In der untenstehenden Liste können Sie festlegen welche Objekt-Typen hochgeladen werden sollen.

Offline - über EDS-Datei

Wenn dieses Optionsfeld angewählt ist, wird die Liste der im

Objektverzeichnis enthaltenen Objekte aus einer EDS-Datei gelesen, die der

Anwender bereitstellt.

Karteireiter "Online"

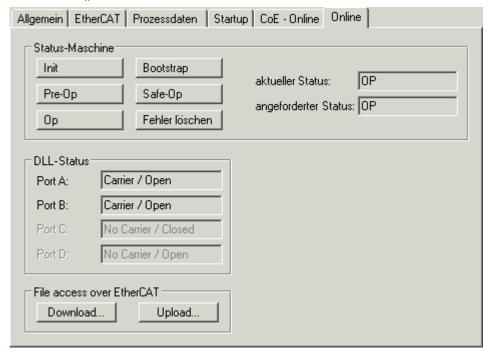


Abb. 93: Karteireiter "Online"

Status Maschine

Init Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Init* zu setzen.Pre-Op Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Pre-Operational*

zu setzen.

Op Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Operational* zu

setzen.

Bootstrap Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Bootstrap* zu

setzen.

Safe-Op Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status Safe-Operational

zu setzen.

Fehler löschen Diese Schaltfläche versucht die Fehleranzeige zu löschen. Wenn ein EtherCAT-

Slave beim Statuswechsel versagt, setzt er eine Fehler-Flag.

Beispiel: ein EtherCAT-Slave ist im Zustand PREOP (Pre-Operational). Nun fordert der Master den Zustand SAFEOP (Safe-Operational) an. Wenn der Slave nun beim Zustandswechsel versagt, setzt er das Fehler-Flag. Der aktuelle Zustand wird nun als ERR PREOP angezeigt. Nach Drücken der Schaltfläche *Fehler löschen* ist das Fehler-Flag gelöscht und der aktuelle Zustand wird wieder als PREOP angezeigt.

Aktueller Status Zeigt den aktuellen Status des EtherCAT-Geräts an.

Angeforderter Status Zeigt den für das EtherCAT-Gerät angeforderten Status an.

DLL-Status

Zeigt den DLL-Status (Data-Link-Layer-Status) der einzelnen Ports des EtherCAT-Slaves an. Der DLL-Status kann vier verschiedene Zustände annehmen:

Status	Beschreibung
No Carrier / Open	Kein Carrier-Signal am Port vorhanden, der Port ist aber offen.
No Carrier / Closed	Kein Carrier-Signal am Port vorhanden und der Port ist geschlossen.
Carrier / Open	Carrier-Signal ist am Port vorhanden und der Port ist offen.
Carrier / Closed	Carrier-Signal ist am Port vorhanden, der Port ist aber geschlossen.

File Access over EtherCAT

Download Mit dieser Schaltfläche können Sie eine Datei zum EtherCAT-Gerät schreiben. **Upload** Mit dieser Schaltfläche können Sie eine Datei vom EtherCAT-Gerät lesen.

Karteireiter "DC" (Distributed Clocks)

Abb. 94: Karteireiter "DC" (Distributed Clocks)

Betriebsart Auswahlmöglichkeiten (optional):

FreeRun

SM-Synchron

DC-Synchron (Input based)

DC-Synchron

Erweiterte Einstellungen... Erweiterte Einstellungen für die Nachregelung der echtzeitbestimmenden

TwinCAT-Uhr

Detaillierte Informationen zu Distributed Clocks sind unter http://infosys.beckhoff.de angegeben:

 $\textbf{Feldbuskomponenten} \rightarrow \textbf{EtherCAT-Klemmen} \rightarrow \textbf{EtherCAT System Dokumentation} \rightarrow \textbf{Distributed Clocks}$

6.1.7.1 Download-Revision

Download-Revision in der Start-up Liste

Einzelne Klemmen / Module generieren automatisch den Eintrag aus Objekt 0xF081:01 in die Startup-Liste (vgl. Abb. "Download-Revision in der Startup Liste").

Das Objekt 0xF081:01 (Download revision) beschreibt die Revision der Klemme / des Moduls, z. B. 0x00**18**000A für EL7201-0010-00**24**, und ist für die Erfüllung der Kompatibilität notwendig. Es ist unbedingt darauf zu achten, dass dieser Eintrag nicht aus der Startup Liste gelöscht wird!

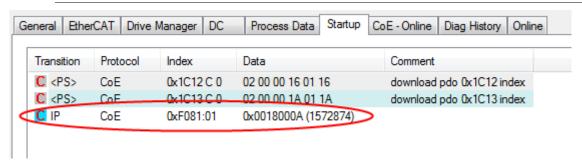


Abb. 95: Download-Revision in der Startup Liste

6.1.7.2 Detaillierte Beschreibung des Karteireiters "Prozessdaten"

Sync-Manager

Listet die Konfiguration der Sync-Manager (SM) auf.

Wenn das EtherCAT-Gerät eine Mailbox hat, wird der SM0 für den Mailbox-Output (MbxOut) und der SM1 für den Mailbox-Intput (MbxIn) benutzt.

Der SM2 wird für die Ausgangsprozessdaten (Outputs) und der SM3 (Inputs) für die Eingangsprozessdaten benutzt.

Wenn ein Eintrag ausgewählt ist, wird die korrespondierende PDO-Zuordnung in der darunter stehenden Liste *PDO-Zuordnung* angezeigt.

PDO-Zuordnung

PDO-Zuordnung des ausgewählten Sync-Managers. Hier werden alle für diesen Sync-Manager-Typ definierten PDOs aufgelistet:

- Wenn in der Sync-Manager-Liste der Ausgangs-Sync-Manager (Outputs) ausgewählt ist, werden alle RxPDOs angezeigt.
- Wenn in der Sync-Manager-Liste der Eingangs-Sync-Manager (Inputs) ausgewählt ist, werden alle TxPDOs angezeigt.

Die markierten Einträge sind die PDOs, die an der Prozessdatenübertragung teilnehmen. Diese PDOs werden in der Baumdarstellung des System-Managers als Variablen des EtherCAT-Geräts angezeigt. Der Name der Variable ist identisch mit dem Parameter *Name* des PDO, wie er in der PDO-Liste angezeigt wird. Falls ein Eintrag in der PDO-Zuordnungsliste deaktiviert ist (nicht markiert und ausgegraut), zeigt dies an, dass dieser Eintrag von der PDO-Zuordnung ausgenommen ist. Um ein ausgegrautes PDO auswählen zu können, müssen Sie zuerst das aktuell angewählte PDO abwählen.

Aktivierung der PDO-Zuordnung

- ✓ Wenn Sie die PDO-Zuordnung geändert haben, muss zur Aktivierung der neuen PDO-Zuordnung
- a) der EtherCAT-Slave einmal den Statusübergang PS (von Pre-Operational zu Safe-Operational) durchlaufen (siehe <u>Karteireiter Online</u> [▶ 90])
- b) der System-Manager die EtherCAT-Slaves neu laden

(Schaltfläche bei TwinCAT 2 bzw. bei TwinCAT 3)

PDO-Liste

Liste aller von diesem EtherCAT-Gerät unterstützten PDOs. Der Inhalt des ausgewählten PDOs wird der Liste *PDO-Content* angezeigt. Durch Doppelklick auf einen Eintrag können Sie die Konfiguration des PDO ändern.

Spalte	Bes	Beschreibung		
Index	Inde	Index des PDO.		
Size	Grö	Größe des PDO in Byte.		
Name	Name des PDO. Wenn dieses PDO einem Sync-Manager zugeordnet ist, erscheint es als Variable des Slaves mit diesem Parameter als Namen.			
Flags	F	Fester Inhalt: Der Inhalt dieses PDO ist fest und kann nicht vom System-Manager geändert werden.		
	M	Obligatorisches PDO (Mandatory). Dieses PDO ist zwingend Erforderlich und muss deshalb einem Sync-Manager Zugeordnet werden! Als Konsequenz können Sie dieses PDO nicht aus der Liste <i>PDO-Zuordnungen</i> streichen		
SM		Sync-Manager, dem dieses PDO zugeordnet ist. Falls dieser Eintrag leer ist, nimmt dieses PDO nicht am Prozessdatenverkehr teil.		
SU	Sync-Unit, der dieses PDO zugeordnet ist.			

PDO-Inhalt

Zeigt den Inhalt des PDOs an. Falls das Flag F (fester Inhalt) des PDOs nicht gesetzt ist, können Sie den Inhalt ändern.

Download

Falls das Gerät intelligent ist und über eine Mailbox verfügt, können die Konfiguration des PDOs und die PDO-Zuordnungen zum Gerät herunter geladen werden. Dies ist ein optionales Feature, das nicht von allen EtherCAT-Slaves unterstützt wird.

PDO-Zuordnung

Falls dieses Kontrollkästchen angewählt ist, wird die PDO-Zuordnung die in der PDO-Zuordnungsliste konfiguriert ist beim Startup zum Gerät herunter geladen. Die notwendigen, zum Gerät zu sendenden Kommandos können in auf dem Karteireiter <u>Startup</u> [▶ 87] betrachtet werden.

PDO-Konfiguration

Falls dieses Kontrollkästchen angewählt ist, wird die Konfiguration des jeweiligen PDOs (wie sie in der PDO-Liste und der Anzeige PDO-Inhalt angezeigt wird) zum EtherCAT-Slave herunter geladen.

6.2 Start up und Parameter-Konfiguration

6.2.1 Einbindung in die NC-Konfiguration

(Master: TwinCAT 2.11 R3)

Installation der neuesten XML-Device-Description

Stellen Sie sicher, dass Sie die entsprechende aktuellste XML-Device-Description in TwinCAT installiert haben. Diese kann im Download-Bereich auf der <u>Beckhoff Website</u> heruntergeladen und entsprechend der Installationsanweisungen installiert werden.

Die Einbindung an die NC kann wie folgt durchgeführt werden:

• Die Klemme muss bereits unter E/A-Geräte manuell eingefügt oder vom System eingescannt worden sein (siehe Kapitel <u>"Konfigurationserstellung in TwinCAT"</u> [▶ 60]).

Achse automatisch hinzufügen

 Nach dem erfolgreichen Einscannen der Klemmen erkennt TwinCAT automatisch die neuen Achsen. Es wird die Frage gestellt, ob die erkannten Achsen automatisch hinzugefügt werden sollen (siehe Abb. Achse erkannt). Wenn dieses bestätigt wird, werden alle Achsen automatisch mit der NC verknüpft.

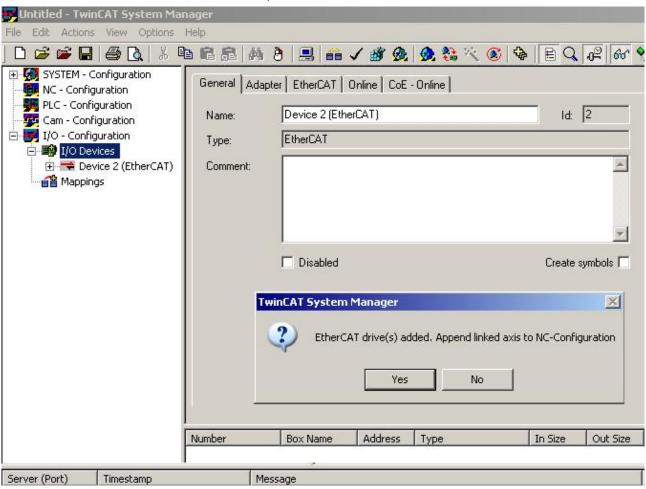


Abb. 96: Achse erkannt

• Damit der Motor in Betrieb genommen werden kann, müssen noch einige Parameter eingestellt werden. Die Werte entnehmen Sie dem Kapitel "Konfiguration der wichtigsten Parameter [▶ 103]". Stellen Sie bitte diese Parameter ein, bevor Sie mit der Inbetriebnahme des Motors fortfahren.

Achse manuell hinzufügen

- Fügen Sie zuerst einen neuen Task an. Dazu klicken Sie mit der rechten Maustaste auf NC-Konfiguration und wählen Sie "Task Anfügen..." aus (siehe Abb. Neuen Task einfügen).
- · Benennen Sie gegebenenfalls den Task um und bestätigen Sie mit OK.

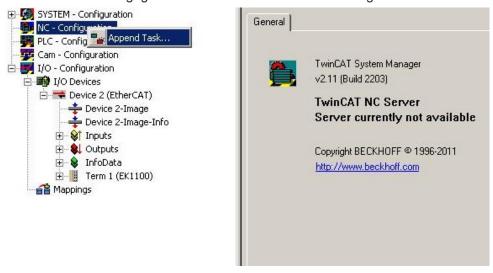


Abb. 97: Neuen Task einfügen

• Wählen Sie mit der rechten Maustaste *Achsen* aus und fügen anschließend eine neue Achse an (siehe Abb. *Auswahl einer neuen Achse*).

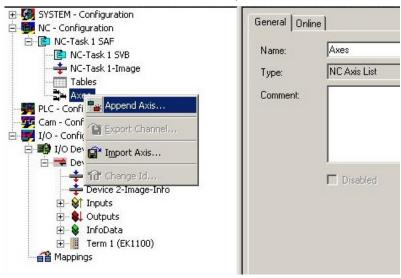


Abb. 98: Auswahl einer neuen Achse

• Wählen Sie unter Typ eine Kontinuierliche Achse aus und bestätigen Sie mit OK (siehe Abb. *Achsentyp auswählen und bestätigen*).

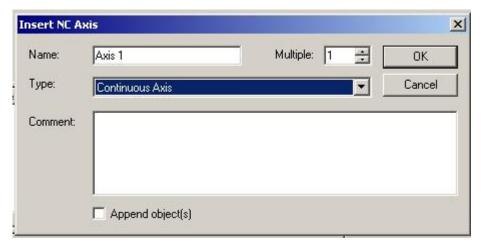


Abb. 99: Achsentyp auswählen und bestätigen

• Markieren Sie Ihre Achse mit der linken Maustaste. Unter der Registerkarte *Einstellungen* wählen Sie "Verknüpft mit..." aus (siehe Abb. *Verknüpfung der Achse mit der Klemme*).

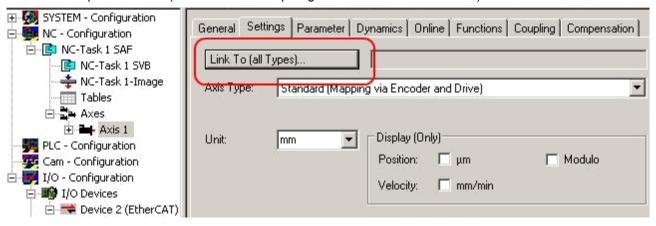


Abb. 100: Verknüpfung der Achse mit der Klemme

Wählen Sie die passende Klemme aus (CANopen DS402, EtherCAT CoE) und bestätigen Sie mit "OK

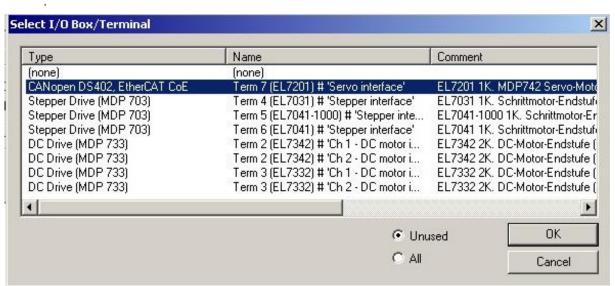


Abb. 101: Auswahl der richtigen Klemme

• Alle wichtigen Verknüpfungen zwischen der NC-Konfiguration und der Klemme werden dadurch automatisch durchgeführt (siehe Abb. *Automatische Verknüpfung aller wichtiger Variablen*)

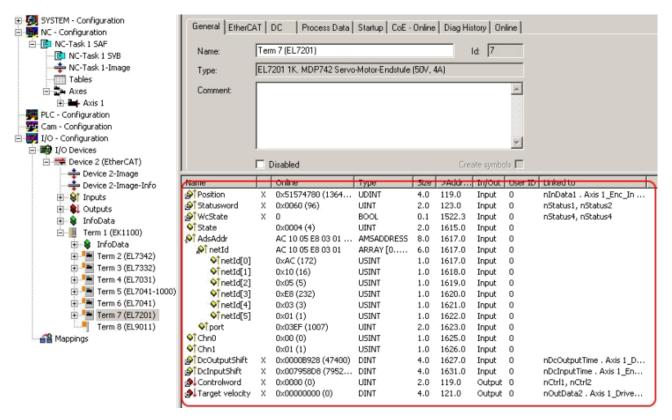


Abb. 102: Automatische Verknüpfung aller wichtigen Variablen

 Damit der Motor in Betrieb genommen werden kann, müssen noch einige Parameter eingestellt werden. Die Werte entnehmen Sie dem Kapiteln "<u>Einstellungen im CoE [▶ 103]</u>" und "<u>Einstellungen in</u> der NC [▶ 124]".

Stellen Sie bitte diese Parameter ein, bevor Sie mit der Inbetriebnahme des Motors fortfahren.

6.2.2 Einstellungen mit dem Drive Manager

(Master TwinCAT 2.11 R3)

Die hier angegebenen Daten sind beispielhaft für einen Servomotor AM8131-0F20-0000 der Firma Beckhoff Automation aufgeführt. Bei anderen Motoren und je nach Applikation können die Werte variieren.

Einsatz des Drive Managers ab Revisionsstand -0019

Der Drive Manager wird erst ab der Revision -0019 [▶ 225] der EL72x1-xxxx unterstützt. Sollten Sie eine ältere Version verwenden, müssen Sie die Einstellungen manuell durchführen. Sehen Sie dazu die Kapitel "Einstellungen im CoE [▶ 103]" und "Einstellungen in der NC"

Inhaltsverzeichnis

- Start-up mit dem Drive Manager [▶ 98]
- Anpassung weiterer Parameter mit dem Drive Manager [102]
 - Integralanteil Geschwindigkeitsregler Tn [▶ 102]
 - Proportionalanteil Geschwindigkeitsregler Kp [▶ 102]

Sie finden den TwinCAT Drive Manager zum Download auf der Beckhoff Webseite.

Der TwinCAT Drive Manager für die Parametrierung einer EL72x1-xxxx Servoklemme ist in den System Manager integriert, so dass kein separates Konfigurationstool erforderlich ist. Nachdem eine Servoklemme erkannt oder eingetragen wurde, steht der TwinCAT Drive Manager im Karteireiter "Configuration" (Konfiguration) zur Verfügung.

Die nachfolgenden Punkte sollen als Start-up dienen, um die Servoklemme in relativ kurzer Zeit in Betrieb nehmen zu können. Detaillierte Informationen zum Drive Manager entnehmen Sie bitte der zugehörigen Dokumentation "AX5000 Einführung in den TCDrivemanager"

Start-up mit dem Drive Manager

- Die Klemme muss bereits unter E/A-Geräte manuell eingefügt oder vom System eingescannt worden sein (siehe Kapitel "Konfigurationserstellung in TwinCAT [▶ 71]")
- Die Klemme muss bereits in der NC eingebunden sein (siehe Kapitel "<u>Einbindung in die NC-Konfiguration [▶ 94]"</u>)
- Wählen Sie den Karteireiter Configuration der EL72x1-xxxx.
- Unter Power Management können Sie die angeschlossene Spannung auswählen.

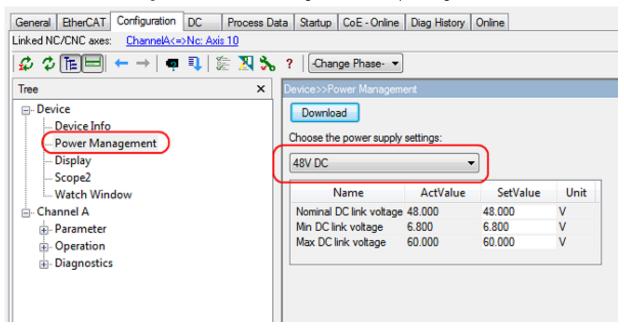


Abb. 103: Auswahl der angeschlossenen Spannung

• Sie können anschließend unter *Motor and Feedback* den angeschlossenen Motor scannen oder auswählen. Sollten Sie sich für das automatische Scannen entscheiden, klicken Sie auf *Scan motor and feedback*. Anschließend wird automatisch das elektronische Typenschild der AM81xx-x2xx Motoren ausgelesen. Dazu ist es erforderlich, dass das automatische Scannen des Motors in der Klemme aktiviert ist (Index 0x8008 [* 158], MDP oder Index 0x2018 [* 197], DS402)

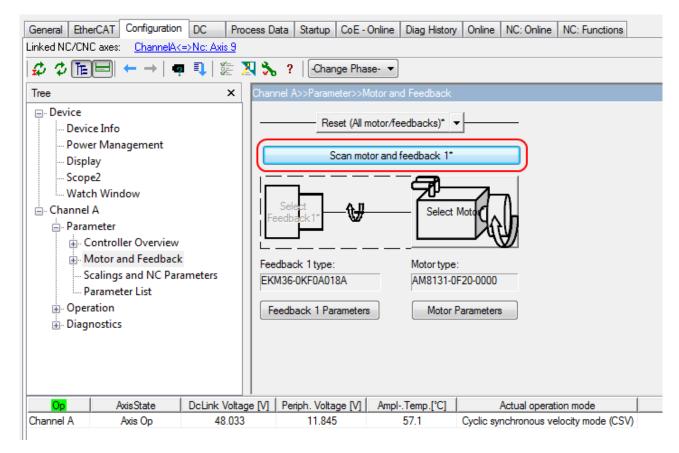


Abb. 104: Automatisch Scannen des angeschlossenen Motors

• Sollten Sie sich für die manuelle Eingabe des angeschlossenen Motors entscheiden, klicken Sie bitte auf Select Motor.

Abb. 105: Auswahl des angeschlossenen Motors

• Im Auswahlfenster können Sie den passenden Motor auswählen und mit Ok bestätigen.

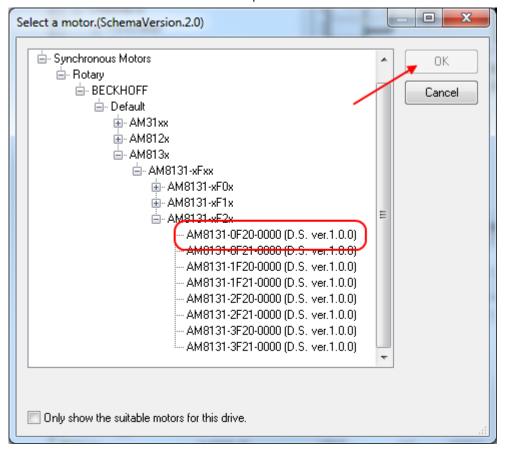


Abb. 106: Liste der verfügbaren Motoren

• Das nächste Dialogfenster sollte mit Ok bestätigt werden. Damit werden automatisch nötige Parameter in der NC eingetragen und der Skalierungsfaktor berechnet. Wird dies nicht bestätigt, müssen Sie diese Einstellungen manuell eintragen. Sehen Sie dazu Kapitel "Einstellungen in der NC [▶ 124]".

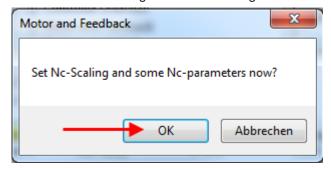


Abb. 107: Bestätigung der automatischen Einstellung der NC-Parameter

• Unter Scalings and NC Parameters können Sie die Skalierung bestimmen. Hier ist beispielhaft definiert, dass eine Motorumdrehung 360° entspricht. Alle nötigen Parameter werden automatisch angepasst. Die Einstellung wird erst übernommen, wenn Sie die Konfiguration aktivieren.

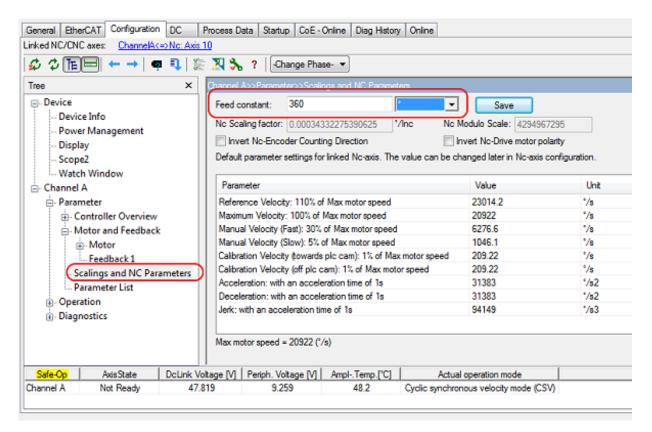


Abb. 108: Anpassung der Skalierung

Damit sind alle wichtigen Parameter für die Inbetriebnahme des Motors eingestellt. Sie können den Motor nun beispielsweise mit der NC in Betrieb nehmen. Eine kurze Beschreibung hierzu finden Sie im Kapitel "Inbetriebnahme des Motors mit der NC [▶ 128]". Oder Sie sprechen die NC aus der PLC heraus an. Auch dazu ist in der Dokumentation ein kleines Beispielprogramm [▶ 106] hinzugefügt worden. Sie haben weiterhin die Möglichkeit einige Parameter manuell in Ihrer Applikation anzupassen.

Anpassung weiterer Parameter mit dem Drive Manager

Die hier angegebenen Werte sind beispielhaft und haben in den meisten Fällen zu sehr guten Ergebnissen geführt. Je nach Applikation können andere Werte zu besseren Ergebnissen führen.

Sie können diese Werte im laufenden Betrieb ändern. Sobald Sie auf *Download* klicken, werden die Werte übernommen.

Integralanteil Geschwindigkeitsregler Tn

 Verringern Sie den Wert, bis der Motor anfängt leicht zu schwingen. Erhöhen Sie diesen Wert anschließend um 10 %.

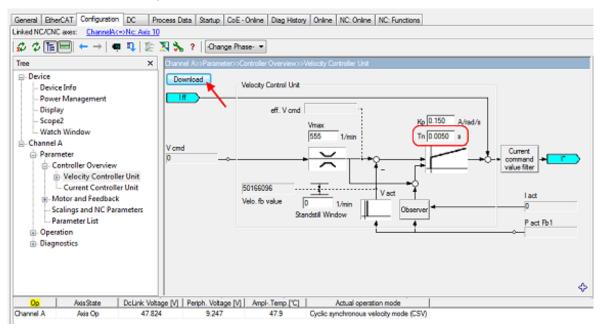


Abb. 109: Anpassung Tn

Proportionalanteil Geschwindigkeitsregler Kp

 Erhöhen Sie den Wert, bis der Motor anfängt leicht zu schwingen. Verringern Sie diesen Wert anschließend auf 80 %.

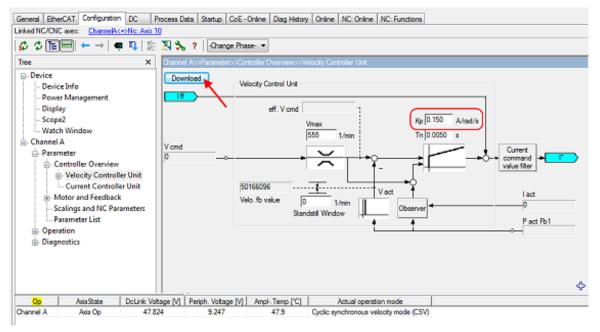


Abb. 110: Anpassung Kp

6.2.3 Einstellungen im CoE-Register

(Master TwinCAT 2.11 R3)

Die hier angegebenen Daten sind beispielhaft für einen Servomotor AM8131-0F20-0001 der Firma Beckhoff Automation aufgeführt. Bei anderen Motoren und je nach Applikation können die Werte variieren.

Inhaltsverzeichnis

- Einfügen der Motor XML-Datei [▶ 103]
 - Anpassung von Strom und Spannung [▶ 105]
- <u>Einstellung weiterer Parameter [▶ 105]</u>
 - Single turn bits / Multi turn bits [▶ 105]
 - Torque limitation [▶ 105]
 - Integralanteil Geschwindigkeitsregler Tn [▶ 105]
 - Proportionalanteil Geschwindigkeitsregler Kp [▶ 105]

Einfügen der Motor XML-Datei

Download der EL72x1-xxxx Motor XML-Dateien

Die Motor XML-Dateien können im Download-Bereich auf der Beckhoff Website herunter geladen werden.

Zur Erleichterung der Inbetriebnahme der Servoklemme EL72x1-xxxx wurden für die Servomotoren die von der EL72x1-xxxx unterstützt werden, Motor XML-Dateien erstellt. Diese XML-Dateien können im System Manager eingelesen werden.

Anschließend sind alle nötigen CoE-Parameter bzw. DS402-Parameter passend eingestellt.

Zum Einlesen der Motor XML-Datei wählen Sie die EL72x1-xxxx aus und betätigen die Registerkarte Startup. Klicken Sie mit der rechten Maustaste in das leere Feld und wählen Sie Import from XML... (siehe Abb. Importieren der Motor XML-Datei).

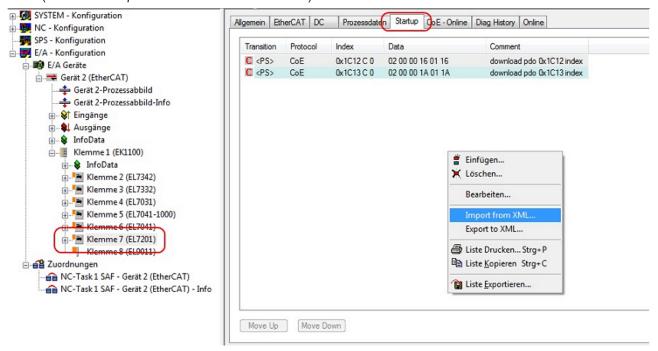


Abb. 111: Importieren der Motor XML-Datei

 Wählen Sie die passende Motor XML-Datei zum angeschlossenen Motor (siehe Abb. Auswahl der richtigen Motor XML-Datei)

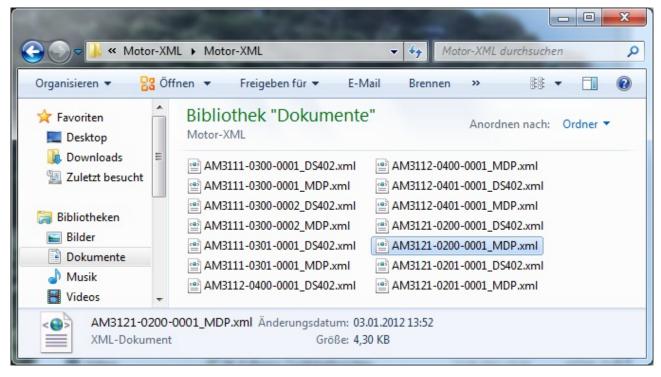


Abb. 112: Auswahl der richtigen Motor XML-Datei

 Anschließend sind alle nötigen Parameter eingestellt, um den Motor in Betrieb zu nehmen (siehe Abb. CoE Parameter der Motor XML-Datei).

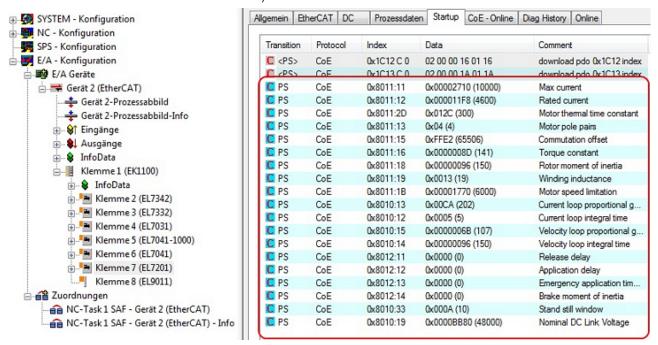


Abb. 113: CoE Parameter der Motor XML-Datei

Startup-Liste

Sollten applikationsabhängige Feineinstellungen nötig sein, sollten diese ebenfalls im Startup geändert werden. Andernfalls werden die geänderten Einstellungen beim nächsten Hochlauf der Klemme überschrieben.

Anpassung von Strom und Spannung

HINWEIS

Überhitzung des Motors möglich!

Um den angeschlossenen Motor nicht zu überhitzenist es wichtig, die Spannung die von der Servoklemme ausgegeben wird der tatsächlich angeschlossenen Spannung anzupassen.

Dazu muss der Index 0x8010:19 [• 159] (0x2002:19 [• 192], DS402-Profil) "Nominal DC Link Voltage" der angeschlossenen Spannung passend eingestellt werden

Einstellung weiterer Parameter

Singleturn Bits (MDP742: Index <u>0x8000:12</u> [▶ <u>157</u>] / DS402: Index <u>0x2010:12</u> [▶ <u>197]</u>) / Multiturn Bits (MDP742: Index <u>0x8000:13</u> [▶ <u>157</u>] / DS402: Index <u>0x2010:13</u> [▶ <u>197]</u>)

Hier kann der Anwender festlegen, wie viele Singleturn Bits und Multiturn Bits von der Klemme angezeigt werden sollen. Insgesamt stehen 32 Bits zur Verfügung. Diese 32 Bits können beliebig aufgeteilt werden. Standardmäßig sind 20 Singleturn Bits und 12 Multiturn Bits eingestellt.

Singleturn Bits: Anzahl der Bits, mit denen eine Rotordrehung aufgelöst wird.

Multiturn Bits: Nach einer Rotordrehung werden die Multiturn Bits um eins hochgezählt.

Überhitzung des Motors möglich!

Wird die Anzahl der Singleturn Bits geändert, muss der Skalierungsfaktor in der NC angepasst werden!

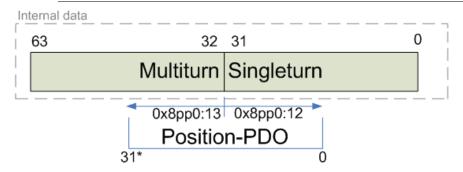


Abb. 114: Multiturn / Singleturn bits

Torque limitation (MDP742: Index <u>0x7010:08 [▶ 170]</u> / DS402: Index <u>0x6072:0 [▶ 200]</u>)

Limitiert den Strom / das Drehmoment auf diesen Wert. Der Wert wird in 1000stel vom "rated current" angegeben.

Integralanteil Geschwindigkeitsregler Tn (MDP742: Index <u>0x8010:14 [159]</u> / DS402: Index <u>0x2002:14 [192]</u>)

Die hier angegebenen Werte sind beispielhaft und haben in den meisten Fällen zu sehr guten Ergebnissen geführt. Es kann aber je nach Applikation vorkommen, dass andere Werte zu besseren Ergebnissen führen.

 Verringern Sie den Wert, bis der Motor anfängt leicht zu schwingen. Erhöhen Sie diesen Wert anschließend um 10%.

Proportionalanteil Geschwindigkeitsregler Kp (MDP742: Index <u>0x8010:15 [▶ 159]</u> / DS402: Index <u>0x2002:15 [▶ 192]</u>)

Die hier angegebenen Werte sind beispielhaft und haben in den meisten Fällen zu sehr guten Ergebnissen geführt. Es kann aber ie nach Applikation vorkommen, dass andere Werte zu besseren Ergebnissen führen.

 Erhöhen Sie den Wert, bis der Motor anfängt leicht zu schwingen. Verringern Sie diesen Wert anschließend auf 80%.

6.2.4 Anwendungsbeispiel

Installation der neuesten XML-Device-Description

Stellen Sie sicher, dass Sie die entsprechende aktuellste XML-Device-Description in TwinCAT installiert haben. Diese kann im Download-Bereich auf der Beckhoff Website heruntergeladen und entsprechend der Installationsanweisungen installiert werden.

Motoransteuerung mit Visualisierung

Download (https://infosys.beckhoff.com/content/1031/el72x1-001x/Resources/1859339787.zip):

Verwendeter Master: TwinCAT 2.11 (bei älteren Versionen muss der Regelkreis manuell programmiert werden, der in diesem Fall bereits in der NC implementiert ist).

Mit diesem Anwendungsbeispiel lässt sich ein Motor mit Hilfe der Visualisierung in eine beliebige Position fahren oder im Endlosmodus betreiben. Dabei kann die Geschwindigkeit, die Anfahrbeschleunigung und die Bremsbeschleunigung festgelegt werden.

Das Beispielprogramm besteht aus zwei Dateien (PLC-Datei und System Manager Datei).

Öffnen Sie zunächst die PLC-Datei und kompilieren Sie die Datei, damit Sie für den System Manager die *.tpy Datei zur Verfügung haben.

Beachten Sie, dass Sie im PLC-Programm gegebenenfalls die Zielplattform anpassen müssen (default: PC oder CX 8x86). Sollten Sie das ändern müssen, können Sie unter der Registerkarte Ressourcen -> Steuerungskonfiguration die richtige Zielplattform auswählen.

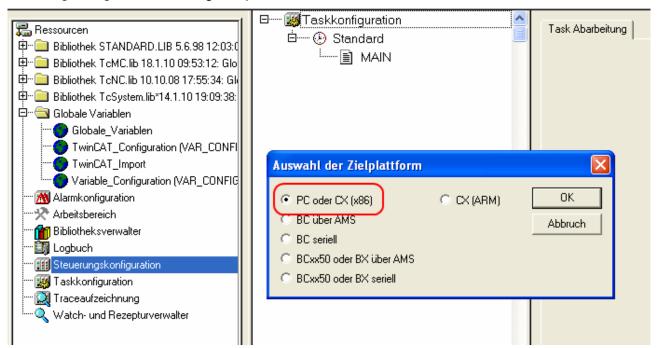


Abb. 115: Auswahl der Zielplattform

Bei der System Manager Datei muss folgendes beachtet werden:

- Starten Sie den System Manager im Konfig-Modus.
- Stellen Sie sicher, dass die E/A-Konfiguration mit Ihrer tatsächlichen Konfiguration übereinstimmt. Im Beispielprogramm ist nur eine EL7041 integriert. Wenn Sie weitere Klemmen angeschlossen haben, müssen Sie diese zusätzlich einfügen oder Ihre Konfiguration neu einscannen.
- Sie müssen die MAC-Adresse anpassen. Klicken Sie dazu auf Ihr EtherCAT-Gerät, anschließend wählen Sie die Registerkarte Adapter und klicken hinter der MAC-Adresse auf Suchen (siehe Abb. Auswahl der MAC-Adresse). Dort wählen Sie den richtigen Adapter aus.

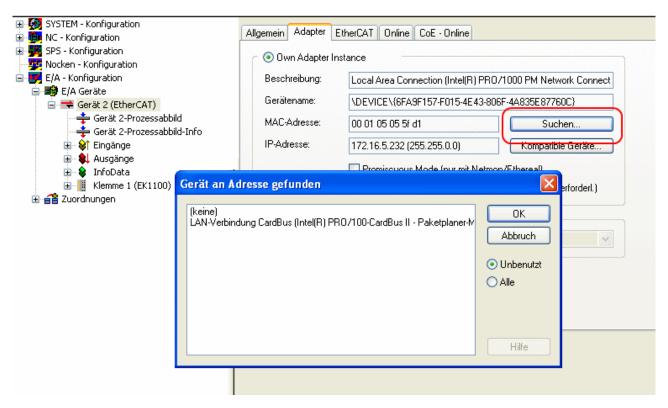


Abb. 116: Auswahl der MAC-Adresse

• Bei der SPS-Konfiguration muss der Pfad des SPS-Programms angepasst werden. Klicken Sie dazu auf das angefügte SPS-Programm und wählen Sie die Registerkarte *IEC1131* aus (siehe Abb. *Ändern des SPS-Pfades*). Dort müssen Sie *Ändern* anwählen und den richtigen Pfad bestimmen.

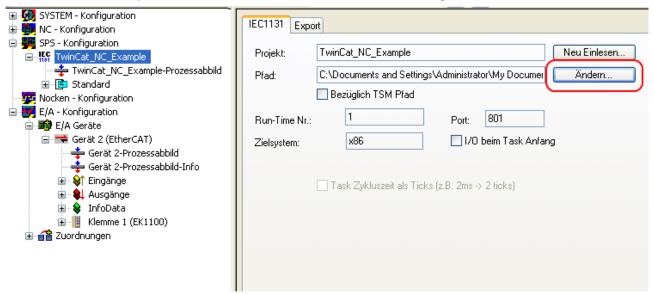


Abb. 117: Ändern des SPS-Pfades

 Unter NC-Konfiguration ist bereits eine EL7041 mit der NC verknüpft. Sollten Sie diese neu verknüpfen müssen oder zusätzliche hinzufügen wollen, dann gehen Sie bitte wie im Kapitel "<u>Einbindung in die</u> <u>NC-Konfiguration [* 94]</u>" vor.

Das PLC-Programm setzt sich wie folgt zusammen. Die Bibliotheken *TcMC.lib* und *TcNC.lib* müssen eingebunden werden (siehe Abb. *Erforderliche Bibliotheken*).

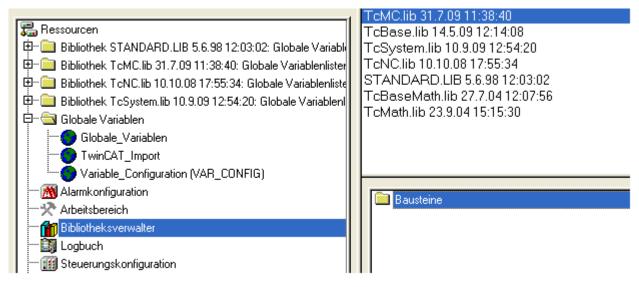


Abb. 118: Erforderliche Bibliotheken

Anschließend werden einige globale Variablen deklariert (siehe Abb. *Globale Variablen*). Die Datentypen *PLCTONC_AXLESTRUCT* und *NCTOPLC_AXLESTRUCT* sorgen für die Kommunikation zwischen der PLC und der NC.

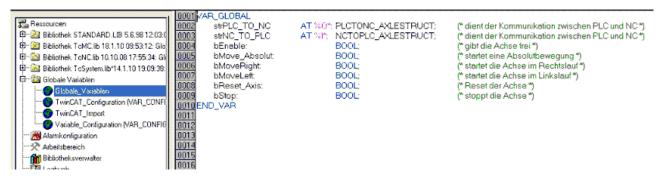


Abb. 119: Globale Variablen

Nachdem die globalen Variablen deklariert worden sind, können Sie mit der Programmierung starten. Dazu deklarieren Sie vorerst die lokalen Variablen (siehe Abb. *Lokale Variablen*).

MC_Direction ist ein Aufzählungstyp, der dem Baustein *MC_MoveVelocity* die Bewegungsrichtung vorgibt, der wiederum eine Endlosfahrt des Motors durchführt.

Mit dem Funktionsbaustein *MC_Reset* wird ein Reset der Achse durchgeführt. *MC_MoveAbsolute* ist ein Funktionsbaustein mit dem eine absolute Positionierung durchgeführt wird. Mit dem Funktionsbaustein *MC_ReadActualPosition* kann die aktuelle Position der Achse gelesen werden.

MC Power gibt die Achse frei und MC Stop wird für das Stoppen der Achse benötigt.

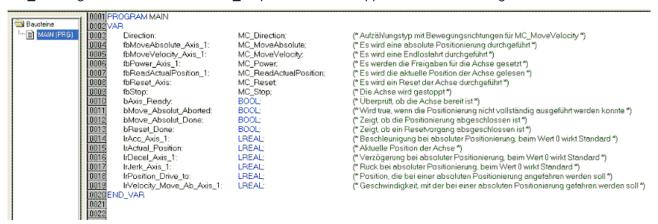


Abb. 120: Lokale Variablen

Der Programmcode lautet wie folgt (siehe Abb. Programmcode):


```
0001 (* Freigabesignale werden gesetzt *)
0002 fbPower_Axis_1(
🔁 Bausteine
Enable
                                  Enable_Positive :=
                                                           bEnable
                                  Enable_Negative :=
                        0005
                                             := 100.000,
:= strNC_TO_PLC,
ut := strPLC_TO_NC,
                                  Override
                                  AxisRefln
                                   AxisRefOut
                                                      => .
                                   Status
                                                      =>, ErrorID
                        0012 (* Überprüft, ob die Achse bereit ist *)
0013 (bAxis_Ready := AxisIsReady(strNC_TO_PLC.nStateDWord );
                        0014
0015 (* Reset der Achse *)
                        0016 fbReset_Axis(
                                  Execute := bReset_Axis,
Axis := strNC_TO_PLC,
Done => bReset_Done,
                        0018
0019
                                  Error
                                          => , ErrorlD => );
                              (* Führt eine Absolutbewegung durch *)
                        0023fbMoveAbsolute_Axis_1(
                                                         bMove_Absolut
                                  Execute
                                  Position
                                                           IrPosition Drive to
                                                           IrVelocity_Move_Ab_Axis_1,
                                  Velocity
                                  Acceleration
                                                           IrAcc_Axis_1,
                                                           IrDecel_Axis_1,
                                  Deceleration
                        0028
                                                     := IrJerk_Axis_1,
:= strNC_TO_PLC,
                                  Jerk
                        0030
                                  Axis
                                                      => bMove_Absolut_Done
                                  CommandAborted => bMove_Absolut_Aborted ,
                        0032
0033
                                                                ErrorID
                        0034
0035 IF fbMoveAbsolute_Axis_1.Done THEN
                        0036
                                  bMove_Absolut := F
                        0037 END_IF
                        0039 (* Führt eine Endlosbewegung durch *)
0040 IF bMoveRight THEN
                        0041 Direction := MC_Positive_Direction;
0042 ELSIF bMoveLeft THEN
                                 Direction := MC_Negative_Direction;
                        0044END_IF
                        0046 fbMoveVelocity_Axis_1(
                                  Execute
                                                          bMoveRight OR bMoveLeft,
                        0048
                                  Velocity
                                                           1000.
                                   Acceleration
                                                           IrAcc_Axis_1,
                                  Deceleration
                                                     := IrDecel_Axis_1,
                        0051
                                   Jerk
                                  Direction
                                                     := Direction,
:= strNC_TO_PLC,
                        0052
0053
                                  Axis
                                  InVelocity
                                  CommandAborted =>
                        0059
                              IF bMove_Absolut OR bMoveLeft OR bMoveRight THEN
                                  bStop := FALSE;
                                  bStop := TRUE;
                        0062 END_IF
                        0064 (* Stoppt die Achse *)
                        0065 fbStop(
                                                := bStop,
                                  Execute
                                  Deceleration := 500.
                        0067
                                            := ,
:= strNC_TO_PLC,
                        0069
                                  Axis
                        0070
                                                => ,
=> , Errorld
                                  Error
                                                                         => );
                        0072
                        0073 (* Auslesen der aktuellen i
0074 fbReadActualPosition_1 (
                              * Auslesen der aktuellen Position *)
                                  Enable :=
Axis :=
                                                strNC TO PLC.
                        0078
                                  Axis
Done
                                            => ,
                                  Frror
                                  ErrorID =>
                                  Position => IrActual_Position);
```

Abb. 121: Programmcode

Mit Hilfe der folgenden Visualisierung (siehe Abb. *Visualisierung*) kann der Motor anschließend betrieben werden

Bitte betätigen Sie den Taster *Enable*, um die Freigaben für die Achse zu setzen. Sie können jetzt im "Free run mode" den Taster *Left* oder *Right* betätigen und der Motor dreht sich mit einer im *fbMoveVelocity_Axis_1* definierten Geschwindigkeit, in die ausgewählte Richtung, oder Sie können im "Absolute mode" *Geschwindigkeit*, *Beschleunigung*, *Bremsbeschleunigung* und die anzufahrende *Position* angeben und mit *Start Job* die Fahrt starten. Wenn Sie bei der *Beschleunigung* und der *Bremsbeschleunigung* nichts angeben, wird der Default-Wert der NC benutzt.

Abb. 122: Visualisierung

Informationen zu Funktionsbausteinen und Datentypen

Weitere Informationen zu den verwendeten Funktionsbausteinen und Datentypen erhalten Sie im aktuellen <u>Beckhoff Information System</u>.

6.2.5 Inbetriebnahme ohne die NC, Status-Wort/Control-Wort

(Master: TwinCAT 2.11 R3)

Die Betriebsarten CST, CSTCA, CSV und CSP lassen sich grundsätzlich auch ohne die TwinCAT NC betreiben.

Endstufe freigeben über Control-Wort

Für jede Betriebsart ist es notwendig, die Endstufe freizugeben. Dazu müssen über die PLC im Control-Wort (MDP742 [▶ 170] / DS402 [▶ 199]) die folgenden Werte in der angegeben Reihenfolge eingeben werden (siehe Abb. DS402 State Machine).

Im Statusl-Wort (MDP742 [▶ 167] / DS402 [▶ 199]) werden die entsprechenden Statusmeldungen ausgegeben.

 0_{hex}

80_{hex} (Fault reset)

6_{hex} (Shutdown)

7_{hex} (Switch on)

F_{hex} (Enable operation)

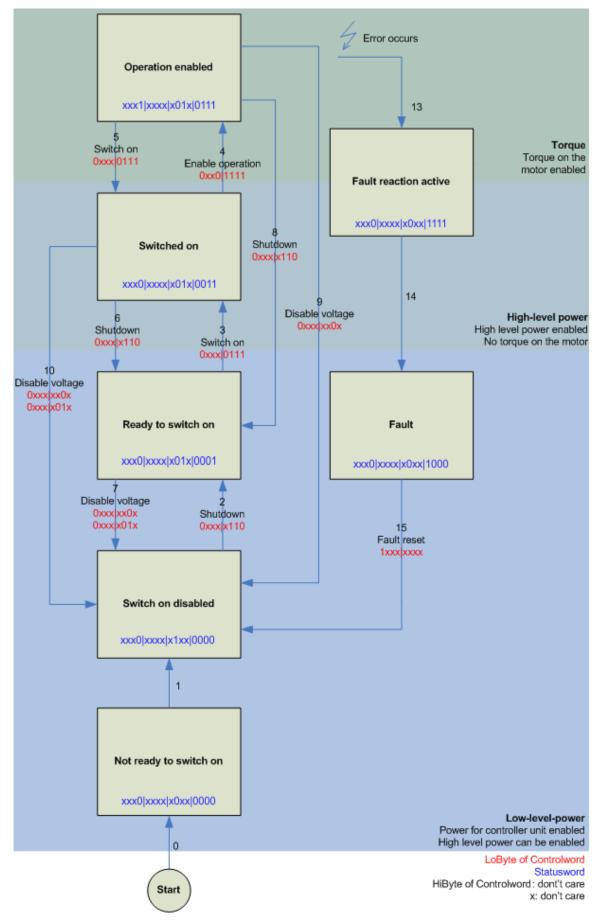


Abb. 123: DS402 State Machine

CST - cyclic synchronous torque

Im Index 0x7010:03 [▶ 170] Modes of operation (MDP) / Index 0x6060:0 [▶ 199] Modes of operation (DS402) muss Cyclic synchronous torque mode gewählt werden. In den jeweiligen Prozessdaten sollte ebenfalls das Predefined PDO Assignment: 'Cyclic synchronous torque mode (CST)' gewählt werden (s. CoE-Prozessdaten [▶ 146] oder DS402-Prozessdaten [▶ 152]). Anschließend muss die Konfiguration neu geladen werden, um die Auswahl zu übernehmen.

In Index <u>0x6010:03</u> [▶ <u>167</u>] *Modes of operation display* (MDP) / Index <u>0x6061:0</u> [▶ <u>199</u>] *Modes of operation display* (DS402) kann überprüft werden, in welchem Modus sich die Servoklemme tatsächlich befindet.

Über die PLC kann in der Variable *Target torque* ein definiertes Moment eingestellt werden, auf dem die Servoklemme regeln soll. Das Moment wird in 1000stel des Nennstroms angegeben. Sollte dort beispielsweise 1000_{dez} angegeben werden, entspricht das dem eingestellten Index <u>0x8011:12</u> [▶ <u>162</u>] *Rated current* (MDP) / Index <u>0x6075:0</u> [▶ <u>200</u>] *Motor rated current* (DS402). Der Wert 1_{dez} entspricht einem 1000stel des Nennstroms.

CSTCA - cyclic synchronous torque with commutation angle

In Index 0x7010:03 [▶ 170] Modes of operation (MDP) / Index 0x6060:0 [▶ 199] Modes of operation (DS402) muss Cyclic synchronous torque mode with commutation angle gewählt werden. In den jeweiligen Prozessdaten sollte ebenfalls das Predefined PDO Assignment: 'Cyclic synchronous torque mode with commutation angle mode (CSTCA)' gewählt werden (s. CoE-Prozessdaten [▶ 146] oder DS402-Prozessdaten [▶ 152]). Anschließend muss die Konfiguration neu geladen werden, um die Auswahl zu übernehmen. In Index 0x6010:03 [▶ 167] Modes of operation display (MDP) /Index 0x6061:0 [▶ 199] Modes of operation display (DS402) kann überprüft werden, in welchem Modus sich die Servoklemme tatsächlich befindet.

Über die PLC kann in der Variable *Target torque* ein definiertes Moment eingestellt werden, auf dem die Servoklemme regelt und in der Variable *Commutation angle* kann der Winkel angegeben werden, der mit dem eingestellten Moment gehalten werden soll. Das Moment wird in 1000stel des Nennstroms angegeben. Sollte dort beispielsweise 1000_{dez} angegeben werden, entspricht das dem eingestellten Index <u>0x8011:12</u> [▶ <u>162</u>] *Rated current* (MDP) / Index <u>0x6075:0</u> [▶ <u>200</u>] *Motor rated current* (DS402). Der Wert 1_{dez} entspricht einem 1000stel des Nennstroms.

Der Wert für den Winkel muss umgerechnet werden, 65536_{dez} entsprechen 360°.

CSV - cyclic synchronous velocity

In Index 0x7010:03 [▶ 170] Modes of operation (MDP) / Index 0x6060:0 [▶ 199] Modes of operation (DS402) muss Cyclic synchronous velocity gewählt werden. In den jeweiligen Prozessdaten sollte ebenfalls das Predefined PDO Assignment: 'Cyclic synchronous velocity mode (CSV)' gewählt werden (s. CoE-Prozessdaten [▶ 146] oder DS402-Prozessdaten [▶ 152]). Anschließend muss die Konfiguration neu geladen werden, um die Auswahl zu übernehmen.

In Index <u>0x6010:03</u> [▶ <u>167</u>] *Modes of operation display* (MDP) / Index <u>0x6061:0</u> [▶ <u>199</u>] *Modes of operation display* (DS402) kann überprüft werden, in welchem Modus sich die Servoklemme tatsächlich befindet.

Über die PLC kann in der Variable *Target velocity* 0x7010:06 [▶ 170] (MDP) / 0x60FF:0 [▶ 203] (DS402) eine definierte Drehzahl eingestellt werden, auf dem die Servoklemme regeln soll. Der konstante Wert *Velocity encoder resolution* im CoE Objekt 0x9010:14 [▶ 174] (MDP) / 0x6090:0 [▶ 201] (DS402) entspricht 1 Umdrehung pro Sekunde. Wird dieser Wert in *Target velocity* eingetragen, dreht der Motor 1 Umdrehung / s, ein entsprechendes Vielfaches vom Wert *Velocity encoder resolution* bei *Target velocity* eingetragen, erhöht die Geschwindigkeit.

CSP - cyclic synchronous position

In Index <u>0x7010:03</u> [▶ <u>170</u>] *Modes of operation* (MDP) / Index <u>0x6060:0</u> [▶ <u>199</u>] *Modes of operation* (DS402) muss *Cyclic synchronous position* gewählt werden.

In den jeweiligen Prozessdaten sollte ebenfalls das *Predefined PDO Assignment: 'Cyclic synchronous position mode (CSP)'* gewählt werden (s. <u>CoE-Prozessdaten [** 146]</u> oder <u>DS402-Prozessdaten [** 152]</u>). Anschließend muss die Konfiguration neu geladen werden, um die Auswahl zu übernehemen. In Index <u>0x6010:03 [** 167]</u> *Modes of operation display* (MDP) / Index <u>0x6061:0 [** 199]</u> *Modes of operation display* (DS402) kann überprüft werden, in welchem Modus sich die Servoklemme tatsächlich befindet.

Über die PLC kann in der Variable *Target position* 0x7010:05 [▶ 170] (MDP) / 0x607A:0 [▶ 201] (DS402) eine definierte Position eingestellt werden, auf die der Motor fahren soll. Bei der Berechnung der Position wird der berechnete Skalierungsfaktor [▶ 127] zugrunde gelegt. Der in der Variable *Target position* eingetragene Wert muss mit dem berechneten Skalierungsfaktor multipliziert werden.

6.2.6 Einstellungen der automatischen Konfiguration

(Master TwinCAT 2.11 R3)

Die EL72x1-xx1x bietet dem Anwender die Möglichkeit, den angeschlossenen Motor der Baureihe AM81xx automatisch zu konfigurieren. Dabei wird das im Motor integrierte elektronische Typenschild ausgelesen und die notwendigen Parameter der Klemme entsprechend angepasst.

Die automatische Konfiguration ist im Auslieferungszustand ausgeschaltet. Der Anwender hat die Möglichkeit, die automatische Konfiguration entsprechend des unten ersichtlichen Flussdiagramms (siehe Abb. *Flussdiagramm der automatischen Konfiguration*) anzupassen.

Überschreibung der Parameter bei Automatischer Konfiguration

Die vom Anwender manuell geänderten Parameter der Parameterliste der automatischen Konfiguration werden beim nächsten Starten automatisch überschrieben, wenn die automatische Konfiguration eingeschaltet ist.

- Die automatische Konfiguration kann in Index 0x8008:01 [▶ 158] (0x2018:01 [▶ 197], DS402 Profil)
 Enable autoconfig eingeschaltet werden.
- In Index 0x8008:02 [▶ 158] (0x2018:02 [▶ 197], DS402 Profil) Reconfig identical motor kann der Anwender entscheiden, ob im Austauschfall eines identischen Motors, die Klemme den Motor automatisch neu konfigurieren soll (Einstellung = TRUE) oder der Motor mit den gespeicherten Einstellungen betrieben werden soll (Einstellung = FALSE). Die Deaktivierung dieser Funktion kann beispielsweise von Vorteil sein, wenn der Anwender den Motor speziell auf seine Anwendung eingestellt hat und diese Einstellungen nach einem Austausch des Motors nicht verlieren möchte.
- Im Index 0x8008:03 [▶ 158] (0x2018:03 [▶ 197], DS402 Profil) Reconfig non-identical motor kann der Anwender entscheiden, ob im Austauschfall eines nicht-identischen Motors, die Klemme den Motor automatisch neu konfigurieren soll (Einstellung = TRUE) oder der Motor mit den gespeicherten Einstellungen betrieben werden soll (Einstellung = FALSE).

114 Version: 3.0.0 EL72x1-001x

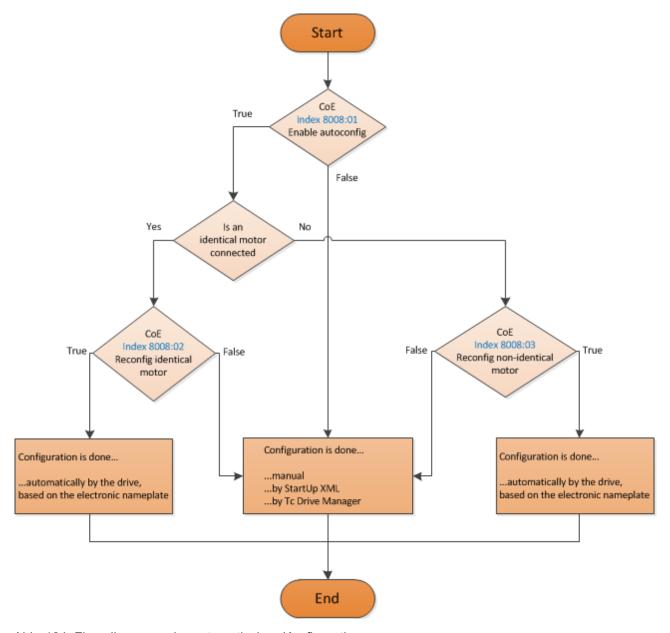


Abb. 124: Flussdiagramm der automatischen Konfiguration

Parameterliste der automatischen Konfiguration

Folgende Parameter sind von der automatischen Konfiguration betroffen.

Index (hex)		Bezeichnung	Bedeutung					
MDP 407 Profil	DS402 Profil							
8010:12 [159]	2002:12 [▶ 192] Current loop integral time		wird nach dem symmetrischen Optimum berechnet					
8010:13 [> 159]	2002:13 [▶ 192]	Current loop proportional gain	wird nach dem symmetrischen Optimum berechnet					
<u>8011:11 [▶ 162]</u>	2003:11 [> 195]	Max. current	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
<u>8011:12 [▶ 162]</u>	2003:12 [> 195]	Rated current	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
<u>8011:13 [▶ 162]</u>	2003:13 [> 195]	Motor pole pairs	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
<u>8011:15 [▶ 162]</u>	2003:15 [> 195]	Commutation offset	wird immer auf -90° gesetzt					
<u>8011:16 [▶ 162]</u>	2003:16 [> 195]	Torque constant	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
<u>8011:18 [▶ 162]</u>	2003:18 [> 195]	Rotor moment of inertia	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
<u>8011:19 [▶ 162]</u>	2003:19 [> 195]	Winding inductance	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
8011:1B [▶ 162]	2003:1B [▶ 195]	Motor speed limitation	Berechnung der max. Geschwindigkeit des angeschlossenen Motors					
8011:2B [▶ 162]	2003:2B [▶ 195]	Motor temperature warn level	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
8011:2C [▶ 162]	2003:2C [▶ 195]	Motor temperature error level	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
8011:2D [> 162]	2003:2D [▶ 195]	Motor thermal time constant	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
8012:11 [• 163]	2004:11 [> 196]	Release delay	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
<u>8012:12 [▶_163]</u>	<u>2004:12 [▶ 196]</u>	Application delay	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					
8012:14 [• 163]	2004:14 [▶ 196]	Brake moment of inertia	wird aus dem elektronischen Typenschild des angeschlossenen Motors direkt übernommen					

6.2.7 Endschalter konfigurieren

Software-Endlagenüberwachung

Mittels der TwinCAT NC kann für die EL72x1-xxxx eine Software-Endlagenüberwachung eingestellt werden. Diese Überwachung dient der Sicherheit der Anlage. Die eingestellte Position wird von der Achse nicht überschritten (max. Endlage) bzw. unterschritten (min. Endlage). In der Registerkarte Parameter der entsprechenden Achse kann die jeweilige Endlagenüberwachung eingeschaltet werden.

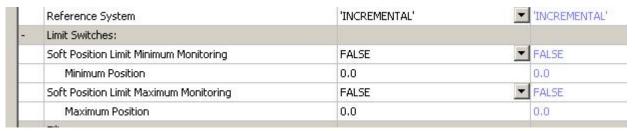


Abb. 125: Pulldown-Menü zum Einschalten der Endlagenüberwachung

Endschalter

Die Möglichkeit einen Endschalter direkt an die Klemme zu verdrahten der direkt ausgewertet wird, besteht nicht. Alternativ kann der Endschalter über eine digitale Eingangsklemme eingelesen oder die Software-Endlagenüberwachung genutzt werden.

116 Version: 3.0.0 EL72x1-001x

6.2.8 Homing

(Master TwinCAT 2.11 R3)

Die hier angegebenen Daten sind beispielhaft für einen Servomotor AM8131-0F20-0000 der Firma Beckhoff Automation aufgeführt. Bei anderen Motoren und je nach Applikation können die Werte variieren.

Inhaltsverzeichnis • Referenzierung [▶ 117]

- ∘ Funktionsbaustein "MC Home" [▶ 118]
- ∘ Referenz Modi [▶ 119]

Referenzierung

Die Referenzierung funktioniert nicht über den Online-Inbetriebnahme-Reiter der Achse (siehe Abb. *Online-Homing in der NC*).

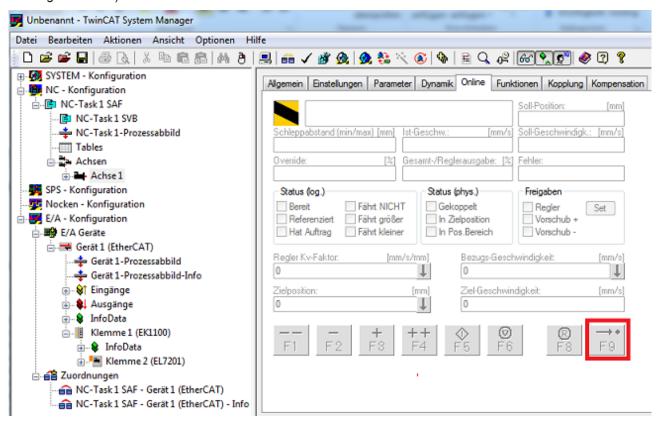


Abb. 126: Online-Homing in der NC

Funktionsbaustein "MC Home"

- Die Referenzierung muss aus der SPS heraus durchgeführt werden. Dazu wird hier der Funktionsbaustein MC_Home aus der Bibliothek "Tc2_MC2" genutzt.
- Folgende minimale Beschaltung ist in dem MC Home notwendig.
 - der HomingMode, mit dem Sie auswählen können, welchen Modus Sie für die Referenzierung nutzen möchten.
 - · der Execute, mit dem Sie die Referenzfahrt starten können.
 - der bCalibrationCam, der mit Ihrer Referenznocke verknüpft werden muss, um die Referenzfahrt zu stoppen.

```
0046 (*Homing*)
0047
0048 fbMC_Home(
0049
         Execute:=bStartHoming, (*Start der Referenzfahrt*)
0050
         Position:=,
0051
         HomingMode:= MC_DefaultHoming, (* Führt standart Referenzfahrt aus*)
0052
         BufferMode:=,
0053
         Options:=,
0054
         bCalibrationCam:=bReferenceStop, (*Rferenznocke*)
0055
0056
         Done=>.
0057
         Busy=>,
0058
         Active=>,
0059
         CommandAborted=>,
0060
         Error=>.
0061
         ErrorID=> );
```

Abb. 127: Beschaltung des MC Home Bausteins

• In der folgenden Abb. Auszug der Funktionsbeschreibung des MC_Home sehen Sie einen Auszug aus der Funktionsbeschreibung des MC_Home. Die gesamten Informationen entnehmen Sie bitte direkt aus der zugehörigen Funktionsbeschreibung.

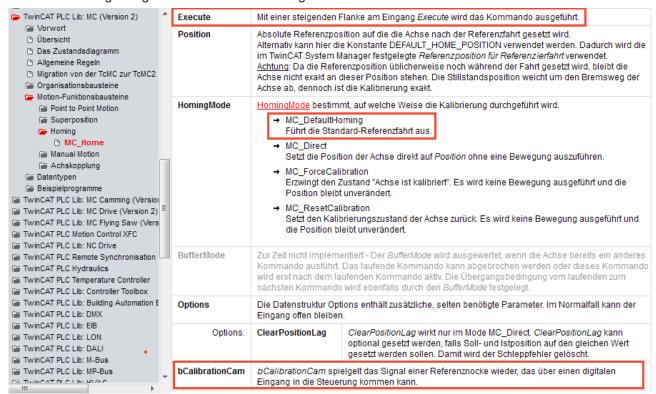


Abb. 128: Auszug der Funktionsbeschreibung des MC_Home

Referenz Modi

- Die EL72x1-xxxx kann mit den folgenden Referenz Modi der NC betrieben werden (siehe Abb. *Auswahl der Referenz Modi in der NC*).
- **Default:** Ist eine allgemeine Einstellung und für die meisten Anwendungen geeignet. Fährt der Motor an den Referenznocken, wird eine Richtungsumkehr ausgelöst. Mit dem abfallenden Signal des Nocken bleibt der Motor stehen und die Referenzposition ist gesetzt.
- · Software Sync: Die C-Spur wird virtuell nachgebildet.

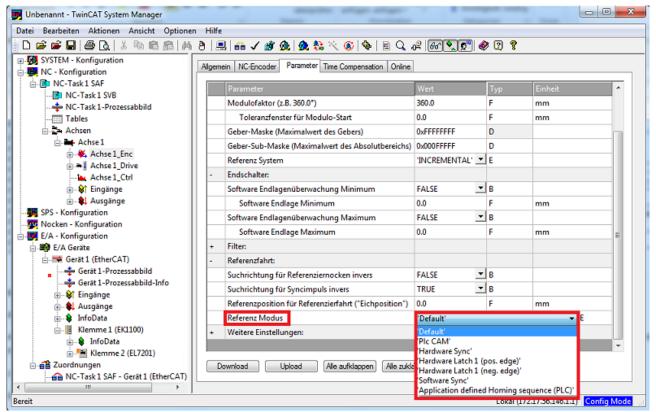


Abb. 129: Auswahl der Referenz Modi in der NC

Weiterhin lässt sich in der NC die Geschwindigkeit einstellen die bei der Referenzfahrt genutzt werden soll (Abb. *Einstellung der Referenzgeschwindigkeit*).

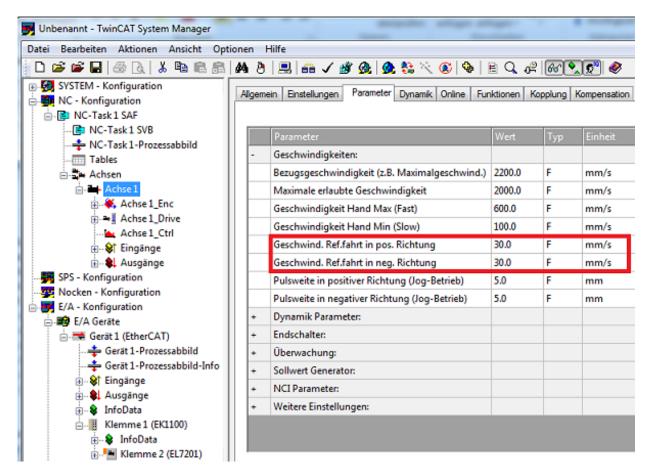


Abb. 130: Einstellung der Referenzgeschwindigkeit

6.2.9 Touch Probe

(Master TwinCAT 2.11 R3)

Die hier angegebenen Daten sind beispielhaft für einen Servomotor AM8131-0F20-0000 der Firma Beckhoff Automation aufgeführt. Bei anderen Motoren und je nach Applikation können die Werte variieren.

Funktionsbeschreibung

Die in der EL72x1-xxxx implementierte Funktion *Touch Probe* bietet dem Anwender die Möglichkeit, zu einem definierten Zeitpunkt, die aktuelle Position des angeschlossenen Motors zu speichern.

Im Reiter <u>Prozessdaten</u> [▶ 146] können die dazu nötigen Ein- und Ausgänge hinzugeführt werden (siehe Abb. *Touch Probe inputs* und Abb. *Touch Probe outputs*).

Die EL72x1-xxxx verfügt über 2 digitale Eingänge, die für die Funktion Touch Probe genutzt werden können. Die Abkürzung TP1 steht für Touch Probe 1 und ist mit dem Eingang 1 (Anschlusspin 3), die Abkürzung TP2 steht für Touch Probe 2 und ist mit dem Eingang 2 (Anschlusspin 11) der Klemme verknüpft. Zur Funktionsbeschreibung wird hier beispielhaft TP1 verwendet.

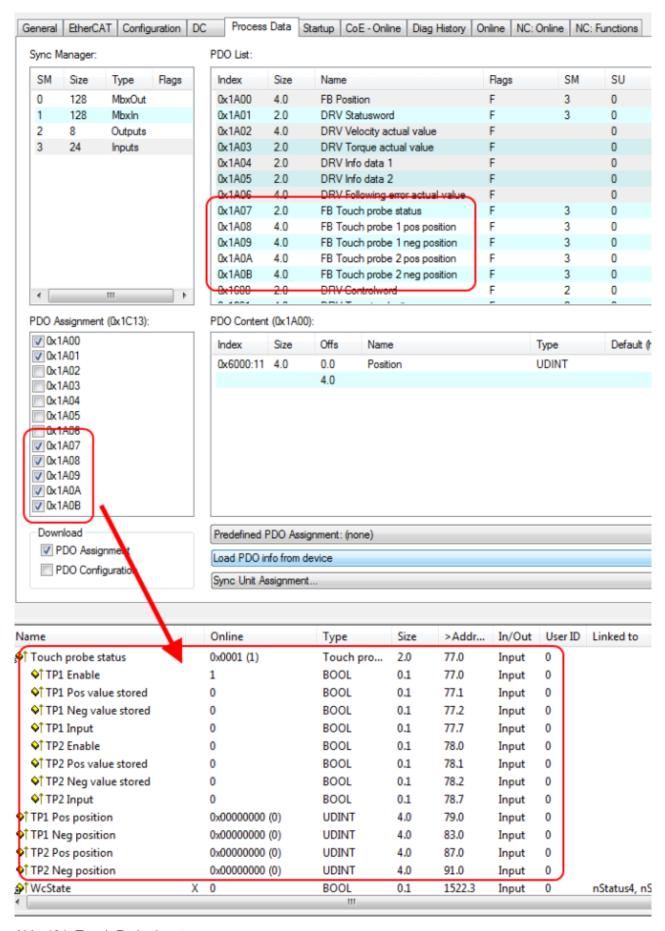


Abb. 131: Touch Probe inputs

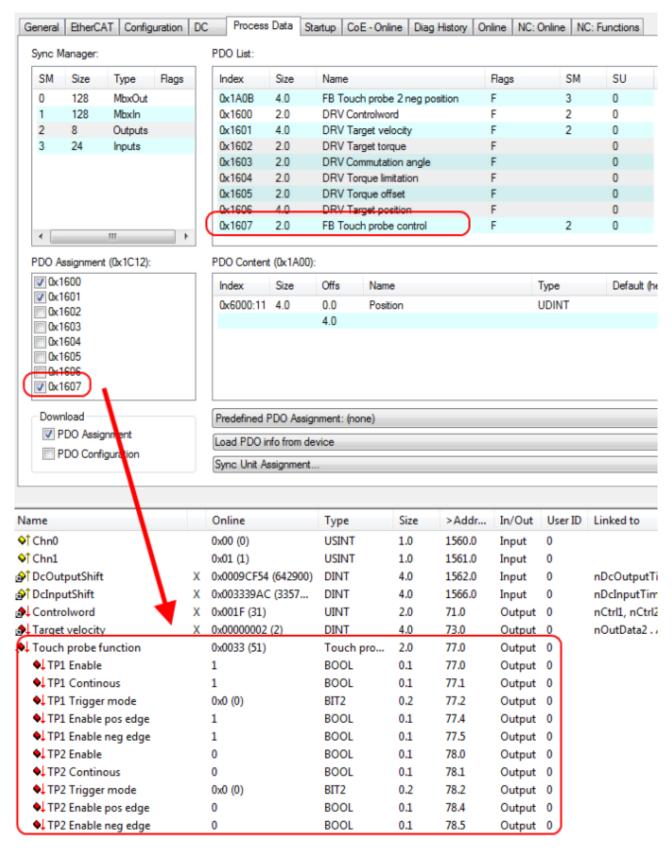


Abb. 132: Touch Probe outputs

Step-by-step

- Um die Touch Probe Funktion generell zu aktivieren, muss TP1 Enable auf TRUE gesetzt werden.
- Anschließend muss entschieden werden, ob bei einer positiven Flanke auf dem Eingang 1 die Position gespeichert werden soll (*TP1 Enable pos edge* = TRUE), bei einer negativen Flanke (*TP1 Enable neg edge* = TRUE) oder in beiden Fällen (beide auf TRUE setzen).
- Mit TP1 Continous wird entschieden, ob nur beim ersten Event die Position gespeichert werden soll (TP1 Continous = FALSE) oder ob das bei jedem Event geschehen soll (TP1 Continous = TRUE). Sind beispielsweise TP1 Continous und TP1 Enablepos edge gesetzt, wird bei jeder steigenden Flanke am Eingang 1 der Klemme die Position gespeichert.
 Ist TP1 Enable neg edge gesetzt und TP1 Continous nicht, wird nur bei der ersten negativen Flanke am Eingang 1 der Klemme die Position gespeichert. Möchte man diesen Vorgang wiederholen, muss zunächst der TP1 Enable wieder deaktiviert und anschließend wieder aktiviert werden. Dann wird erneut bei der ersten negativen Flanke die Position gespeichert.
- Der TP1 Trigger mode hat bei der EL72x1-xxxx keine Funktion.
- Die gespeicherte Position der positiven Flanke kann in den Inputs der Prozessdaten unter *TP1 Pos position*, die der negativen Flanke kann unter *TP1 Neg position* ausgelesen werden.
- Die Variablen unter Touch probe status dienen der Diagnose.
- Die Touch Probe Eingänge müssen mit einem 1-Leiter +24 V Signal angesprochen werden.

6.2.10 Einstellungen in der NC

(Master TwinCAT 2.11 R3)

Die hier angegebenen Daten sind beispielhaft für einen Servomotor AM8122-0F20-0000, der Firma Beckhoff Automation aufgeführt. Bei anderen Motoren und je nach Applikation können die Werte variieren.

Inhaltsverzeichnis

- Definition der Einheit [▶ 124]
- Auswahl der max. Geschwindigkeit [▶ 125]
- Totzeitkompensation [▶ 125]
- Einstellungen der Geber-Maske [126]
- Skalierungsfaktor [▶ 127]
 - Berechnung des Skalierungsfaktors [▶ 127]
 - Ausgabe Skalierung [▶ 127]
- Schleppüberwachung Position [▶ 128]
- Inbetriebnahme des Motors mit der NC [▶ 128]

Für die Inbetriebnahme mit der NC sind einige wichtige Parameter notwendig. Diese sollten vor der Inbetriebnahme wie folgt eingestellt werden. Grundlegend für die Einstellung der folgenden Parameter ist die eingestellte Einheit, in der die NC arbeiten soll. Bei den folgenden Parametern wurde zu Grunde gelegt, dass eine Umdrehung 360° entspricht.

Definition der Einheit

Die Einheit kann in der Registerkarte Einstellungen der Achse definiert werden.

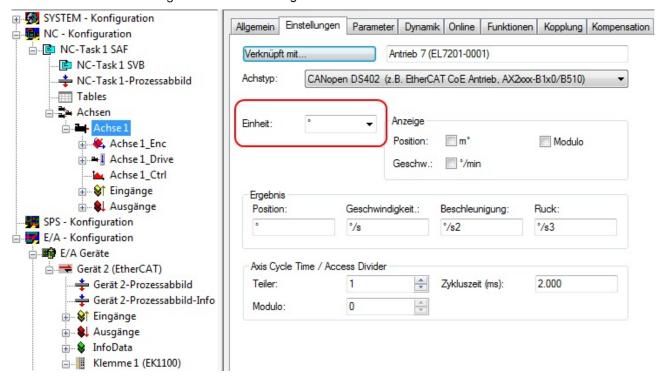


Abb. 133: Definition der Einheit

Auswahl der max. Geschwindigkeit

Die *maximale erlaubte Geschwindigkeit* errechnet sich anhand der maximalen Motorgeschwindigkeit (Typenschild) und der zu verfahrenden Distanz. Hier bezogen auf 360° pro Sekunde.

$$v_{Bez} = \frac{v_{maxMotor} \times 360^{\circ}}{60 \text{ s}} = \frac{2000 \text{ }^{1}/_{min} \times 360^{\circ}}{60 \text{ s}} = 12000 \text{ }^{\circ}/_{s}$$
$$v_{max} = \frac{v_{maxMotor} \times 360^{\circ}}{60 \text{ s}} = \frac{2000 \text{ }^{1}/_{min} \times 360^{\circ}}{60 \text{ s}} = 12000 \text{ }^{\circ}/_{s}$$

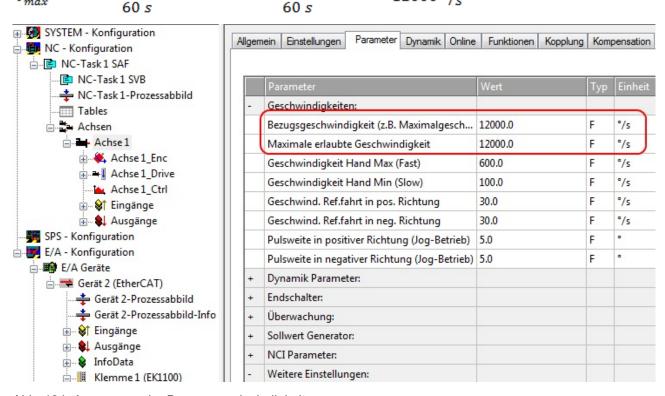


Abb. 134: Anpassung der Bezugsgeschwindigkeit

Die *Bezugsgeschwindigkeit* ist der *maximalen erlaubten Geschwindigkeit* gleichgestellt. Darunter können bei Belieben noch die max. und min. Geschwindigkeit für den Handbetrieb der NC eingestellt werden.

Totzeitkompensation

Die Totzeitkompensation der Achse kann in der Registerkarte *Time Compensation* der Encoder-Einstellungen *Achse1_ENC* eingestellt werden. Sie sollte theoretisch 3 Zyklen der NC-Zykluszeit betragen, besser haben sich jedoch 4 Zyklen der NC-Zykluszeit erwiesen. Dazu sollten die Parameter *Time Compensation Mode Encoder* auf ,ON (with velocity)' und *Encoder Delay in Cycles* auf 4 eingestellt sein.

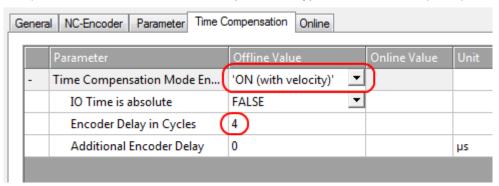


Abb. 135: Parameter Totzeitkompensation

Einstellung der Geber-Maske

In der Registerkarte *Parameter* der Encoder-Einstellungen *Achse1_ENC* können die maximalen Werte für die Geber-Maske eingestellt werden. Die EL72x1-xxxx stellt für den Geber maximal 32 Bit zur Verfügung. Mit dem Parameter Geber-Maske (Maximalwert des Gebers) kann die Anzahl der Bits eingestellt werden, die maximal zur Verfügung stehen sollen. Im Default steht hier 0xFFFF FFFF, das entspricht 32 Bit (20 Singleturn Bits und 12 Multiturn Bits). Berechnen lässt sich das mit der folgenden Formel.

$$GM_{max} = 2^{SingleturnBits+Multiturn\,Bits} - 1 = 2^{20+12} - 1 = 4\,294\,967\,295 => 0x\,FFFF\,FFFF$$

Der Parameter Geber-Sub-Maske (Maximalwert des Absolutbereichs) gibt an, wie viele Bits vom Maximalwert des Gebers Singleturn Bits sein sollen. Im Default sind es 20 (und damit 12 Multiturn Bits). Das kann mit folgender Formel berechnet werden.

$$GM_{ST} = 2^{Singleturn\,Bits} - 1 = 2^{20} - 1 = 1\,048\,575 => 0x\,000F\,FFFF$$

Ein weiteres Rechenbeispiel mit 13 Singleturn Bits und 8 Multiturn Bits.

$$GM_{max} = 2^{Singleturn\,Bits+Multiturn\,Bits} - 1 = 2^{13+8} - 1 = 2\,097\,151 => 0x\,001F\,FFFF$$

$$GM_{ST} = 2^{Singleturn\,Bits} - 1 = 2^{13} - 1 = 8\,191 = 0x\,0000\,1FFF$$

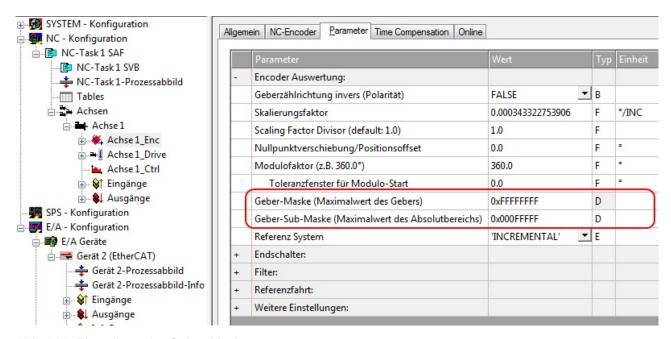


Abb. 136: Einstellung der Geber-Maske

Skalierungsfaktor

Den Skalierungsfaktor können Sie ändern, wenn Sie in der NC *Achse 1_Enc* und die Registerkarte *Parameter* auswählen (siehe Abb. *Skalierungsfaktor einstellen*). Der Wert lässt sich mit den unten angegebenen Formeln berechnen. Bei der Berechnung wird zur Grunde gelegt, dass eine Umdrehung 360° entspricht.

In die Berechnung des Skalierungsfaktors fließt die Anzahl der Singleturn Bits mit ein. Wie bereits beschrieben, rechnet die EL72x1-xxxx im Default mit 20 Singleturn Bits. Mit diesem Wert wird im Folgenden auch der Skalierungsfaktor berechnet. Sollte sich der Wert der Singleturn Bits ändern, muss der Skalierungsfaktor angepasst werden.

Berechnung des Skalierungsfaktors

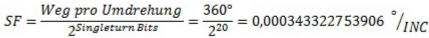


Abb. 137: Skalierungsfaktor einstellen

Ausgabe Skalierung

Bitte tragen Sie in der Registerkarte *Parameter* der Drive-Einstellungen, beim Parameter *Ausgabeskalierung* (Geschw.) den Wert 32 ein.

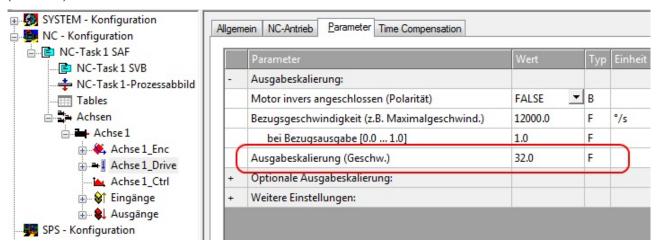


Abb. 138: Ausgabeskalierung

Schleppüberwachung Position

Die Schleppabstandsüberwachung kontrolliert, ob der aktuelle Schleppabstand einer Achse einen Grenzwert überschreitet. Als Schleppabstand wird die Differenz zwischen ausgegebenem Sollwert (Stellgröße) und dem rückgemeldeten Istwert bezeichnet. Sind die Parameter der Klemme noch unzureichend eingestellt, kann es dazu führen, dass beim Verfahren der Achse die Schleppabstandsüberwachung einen Fehler ausgibt. Bei der Inbetriebnahme kann es deswegen eventuell von Vorteil sein, wenn man die Grenzen der Schleppüberwachung Position etwas erhöht.

HINWEIS

Beschädigung von Geräten, Maschinen und Peripherieteilen möglich!

Bei der Parametrierung der Schleppüberwachung können durch Einstellen zu hoher Grenzwerte Geräte, Maschinen und Peripherieteile beschädigt werden!

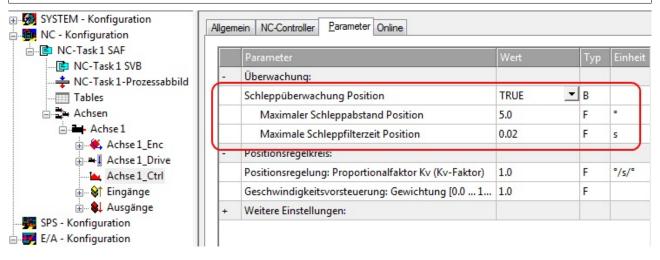


Abb. 139: Schleppüberwachung

Inbetriebnahme des Motors mit der NC

- Sind die Parameter eingestellt, dann ist der Motor prinzipiell betriebsbereit. Einzelne weitere Parameter müssen der jeweiligen Applikation angepasst werden.
- Um die Achse in Betrieb zu nehmen, aktivieren Sie die Konfiguration (Ctrl+Shift+F4), markieren die Achse, wählen die Registerkarte *Online* aus und geben unter Set die Achse frei.
- Setzen Sie alle Häkchen und stellen Sie Override auf 100% (siehe Abb. Achse freigeben).
 Anschließend kann die Achse bewegt werden.

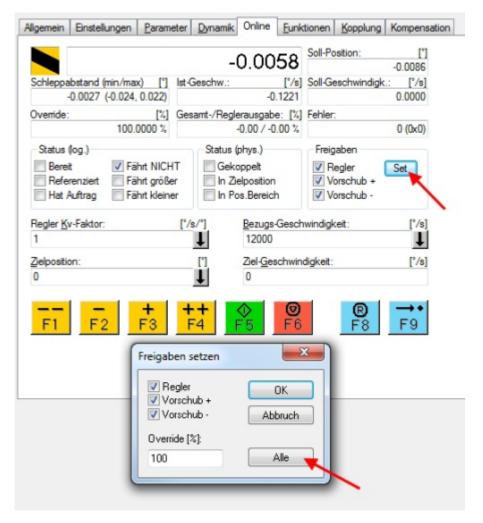


Abb. 140: Achse freigeben

Sie können nun die Achse mit Hilfe der Funktionstasten F1, F2 (Rückwärts) und F3, F4 (Vorwärts) bewegen. Sie können hier den Kv Faktor verstellen und sich somit an einen passenden Faktor herantasten. Stellen Sie zunächst 0 ein, um die richtige Bezugsgeschwindigkeit einzustellen. Wie die Bezugsgeschwindigkeit berechnet wird, entnehmen Sie bitte dem Kapitel "Auswahl der max. Geschwindigkeit [* 125]". Die Berechnung gibt einen relativ genauen Wert an, Sie müssen diesen Wert gegebenenfalls noch etwas korrigieren. Verfahren Sie dazu den Motor mit einem Kv Faktor von 0 und achten Sie darauf, dass die Ist-Geschwindigkeit mit der Soll-Geschwindigkeit übereinstimmt.

Eine andere Möglichkeit besteht darin, unter der Registerkarte *Funktionen*, die Achse anzusteuern. Nachfolgend ein Beispiel dazu.

- Wählen Sie als Starttyp Reversing Sequence.
- Geben Sie eine gewünschte Zielposition2 an, z. B. 12000°.
- Geben Sie eine gewünschte Zielgeschwindigkeit an, z. B. 12000°/s.
- Geben Sie eine gewünschte Zielposition1 an, z. B. 0°.
- Geben Sie den gewünschte Idle Time an, z. B. 2 s.
- · Wählen Sie Start.

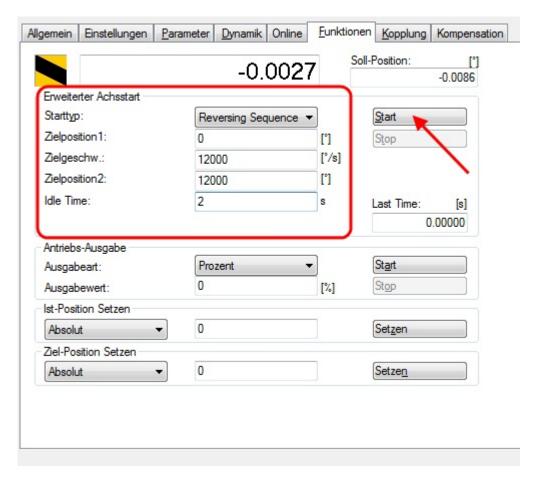


Abb. 141: Reversing Sequence

Nun dreht sich Ihr Motor auf die Position 2, verbleibt dort 2 s und fährt wieder auf die Position 1. Das wird wiederholt, bis Sie das mit "Stop" beenden.

6.3 Betriebsarten

6.3.1 Übersicht

Es werden die Betriebsarten CST, CSTCA, CSV und CSP unterstützt. Die Betriebsart wird im CoE-Verzeichnis im Index 0x7010:03 [▶ 170] Modes of operation (MDP) oder Index 0x6060:0 [▶ 199] Modes of opreration (DS402) eingestellt. In den jeweiligen Prozessdaten hat der Anwender zusätzlich die Möglichkeit das passende *Predefined PDO Assigment* auszuwählen. Damit sind alle nötigen Variablen in den Prozessdaten.

CSV [▶ 131] - cyclic synchronous velocity (Geschwindigkeitsregelung)

In der Betriebsart CSV arbeitet die EL72x1-xxxx im zyklischen Geschwindigkeitsinterface. Über die Variable *Target velocity* kann eine definierte Geschwindigkeit eingestellt werden.

<u>CST [▶ 135]</u> - cyclic synchronous torque (Drehmomentregelung)

In der Betriebsart CST arbeitet die EL72x1-xxxx im zyklischen Drehmomentsinterface. Über die Variable *Target torque* kann ein definiertes Drehmoments eingestellt werden.

<u>CSTCA [▶ 138]</u> - cyclic synchronous torque with commutation angle (Drehmomentregelung mit Kommutierungswinkel)

Diese Betriebsart ist ebenfalls zur Verwendung am zyklischen Drehmomentsinterface. Zusätzlich hat der Anwender die Möglichkeit den Kommutierungswinkel anzugeben. Über die Variable *Commutation angle* kann ein Winkel eingestellt werden, der mit einem definierten Drehmoment der Variablen *Target torque* gehalten werden soll.

CSP [▶ 141] - cyclic synchronous position (Positionsregelung)

In der Betriebsart CSP arbeitet die EL72x1-xxxx im zyklischen Positionsinterface. Über die Variable *Target position* kann eine definierte Position eingestellt werden.

Mehr Informationen zu den drei oben angegebenen Betriebsarten finden Sie im Kapitel "Inbetriebnahme ohne die NC".

6.3.2 CSV

CSV - cyclic synchronous velocity (Geschwindigkeitsregelung)

In der Betriebsart CSV arbeitet die EL72x1-xxxx im zyklischen Geschwindigkeitsinterface. Über die Variable *Target velocity* kann eine definierte Geschwindigkeit eingestellt werden.

Step-by-Step

- Fügen Sie die Klemme, wie im Kapitel <u>Konfigurationserstellung TwinCAT [▶ 71]</u> manuell oder <u>Online scan [▶ 76]</u> beschrieben, zur Konfiguration hinzu.
- Verknüpfen Sie die Klemme, wie im Kapitel <u>Einbindung in die NC-Konfiguration [▶ 94]</u> beschrieben, mit der NC.
- Importieren Sie die Motor XML Datei, wie im Kapitel <u>Einstellungen im CoE [▶ 103]</u> beschrieben, in das Start-up Verzeichnis.
- Stellen Sie die Betriebsart im CoE-Verzeichnis auf Cyclic synchronous velocity mode (CSV), Abb. Auswahl Betriebsart.

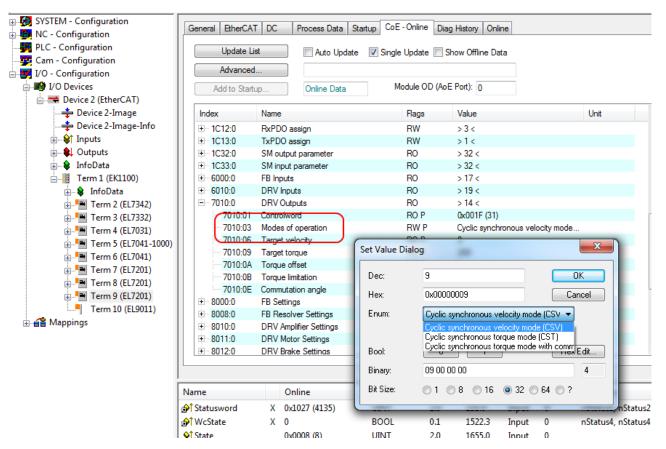


Abb. 142: Auswahl Betriebsart

• Wählen Sie bei den Predefined PDO Assignments ebenfalls Cyclic synchronous velocity mode (CSV), Abb. Predefined PDO Assignment wählen.

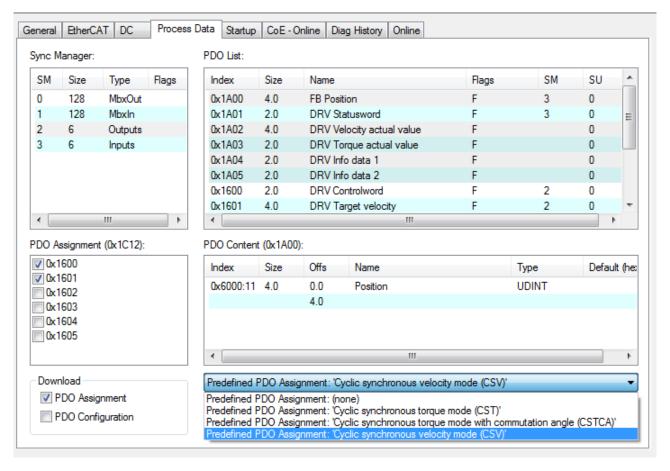


Abb. 143: Predefined PDO Assignment wählen

- Aktivieren Sie die Konfiguration (Ctrl+Shift+F4)
- Durchlaufen Sie die State Machine der Klemme. Dazu gibt es zwei Möglichkeiten:
 - Sie nutzen die TwinCAT NC.
 - Die State Machine wird von der NC automatisch durchlaufen. Sie können in der Registerkarte *Online* der Achse die Achse freigeben.
 - Setzen Sie alle Häkchen und stellen Sie *Override* auf 100% (siehe Abb. *Freigaben setzen*). Anschließend kann die Achse bewegt werden.

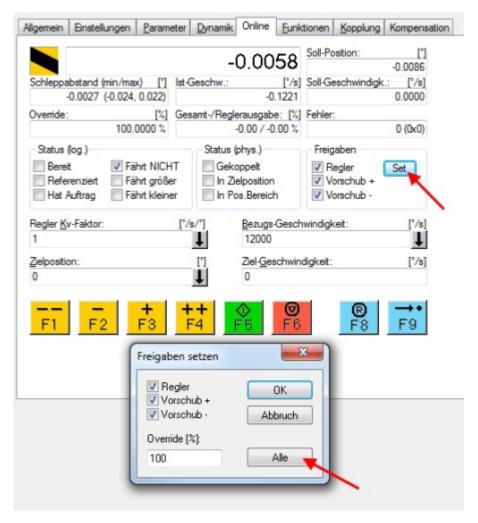


Abb. 144: Freigaben setzen

- Sie nutzen nicht die TwinCAT NC.
 In diesem Fall müssen Sie die State Machine manuell durchfahren. Befolgen Sie dazu die Anweisungen im Kapitel Inbetriebnahme ohne die NC [▶ 111].
- Über die zyklische Variable *Target velocity* (Abb. *Vorgabe Drehmoment*) können Sie eine definierte Geschwindigkeit vorgeben. Der Wert im Index 0x9010:14 (0x6090, DS402) *Velocity encoder resolution* entspricht 1 U/s.

Name		Online	Type	Size	>Addr	In/Out	User ID	Linked to
∌ ↑ Position	X	0x00000000 (0)	UDINT	4.0	132.0	Input	0	nInData1 . Axis 10_Enc_I
∱ ↑Statusword	X	0x0000 (0)	UINT	2.0	136.0	Input	0	nStatus1, nStatus2
∌ ↑WcState	X	1	BOOL	0.1	1522.3	Input	0	nStatus4, nStatus4
♦ ↑ State		0x0042 (66)	UINT	2.0	1655.0	Input	0	
♦ ↑ AdsAddr		AC 11 28 29 03 01	AMSADDR	8.0	1657.0	Input	0	
♦↑ Chn0		0x00 (0)	USINT	1.0	1665.0	Input	0	
♦↑ Chn1		0x01 (1)	USINT	1.0	1666.0	Input	0	
∌ ↑DcOutputShift	X	0x0009E854 (649300)	DINT	4.0	1667.0	Input	0	nDcOutputTime . Axis 1
∌ ↑DcInputShift	X	0x003320AC (3350	DINT	4.0	1671.0	Input	0	nDcInputTime . Axis 10
Controlword	Х	0x0006 (6)	UINT	2.0	132.0	Output	0	nCtrl1, nCtrl2
♦ ↓ Target velocity		0x00000000 (0)	DINT	4.0	134.0	Output	0)

Abb. 145: Vorgabe Drehmoment

6.3.3 CST

CST - cyclic synchronous torque (Drehmomentregelung)

In der Betriebsart CST arbeitet die EL72x1-xxxx im zyklischen Drehmomentinterface. Über die Variable *Target torque* kann ein definiertes Drehmoments eingestellt werden.

Step-by-Step

- Fügen Sie die Klemme, wie im Kapitel Konfigurationserstellung TwinCAT [▶ 71] manuell oder Online scan [▶ 76] beschrieben, zur Konfiguration hinzu.
- Verknüpfen Sie die Klemme, wie im Kapitel <u>Einbindung in die NC-Konfiguration [▶ 94]</u> beschrieben, mit der NC.
- Importieren Sie die Motor XML Datei, wie im Kapitel <u>Einstellungen im CoE [▶ 103]</u> beschrieben, in das Start-up Verzeichnis.
- Stellen Sie die Betriebsart im CoE-Verzeichnis auf Cyclic synchronous torque mode (CST), Abb. Auswahl Betriebsart

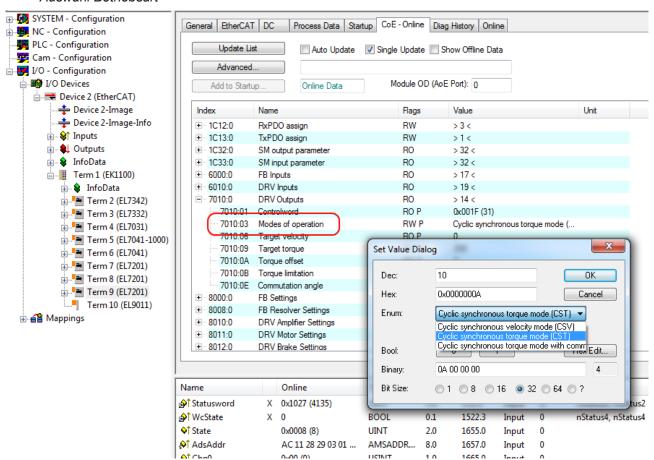


Abb. 146: Auswahl Betriebsart

• Wählen Sie bei den Predefined PDO Assignments ebenfalls Cyclic synchronous torque mode (CST), Abb. Predefined PDO Assignment wählen

EL72x1-001x

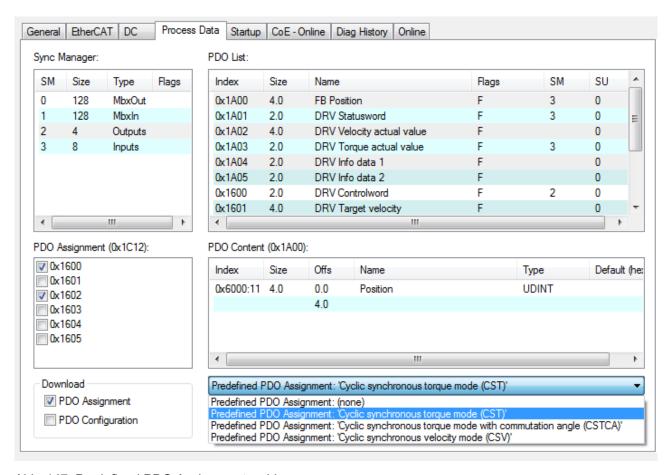


Abb. 147: Predefined PDO Assignment wählen

136

Aktivieren Sie die Konfiguration (Ctrl+Shift+F4)

Anschließend kann die Achse bewegt werden.

- Durchlaufen Sie die State Machine der Klemme. Dazu gibt es zwei Möglichkeiten:
 - Sie nutzen die TwinCAT NC. Die State Machine wird von der NC automatisch durchlaufen. Sie können in der Registerkarte Online der Achse die Achse freigeben. Setzen Sie alle Häkchen und stellen Sie Override auf 100% (siehe Abb. Freigaben setzen).

Version: 3.0.0

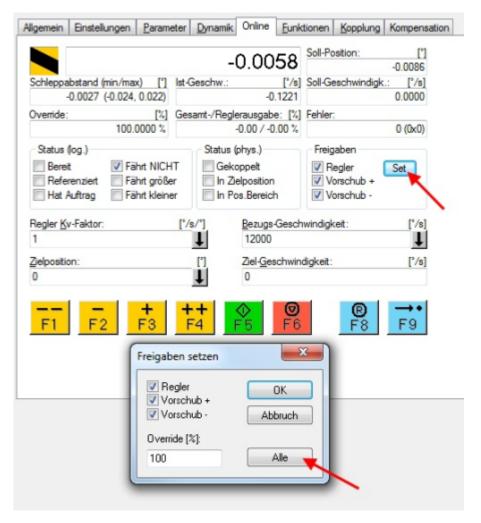


Abb. 148: Freigaben setzen

- Sie nutzen nicht die TwinCAT NC.
 In diesem Fall müssen Sie die State Machine manuell durchfahren. Befolgen Sie dazu die Anweisungen im Kapitel <u>Inbetriebnahme ohne die NC [* 111]</u>.
- Über die zyklische Variable Target torque (Abb. Vorgabe Drehmoment) können Sie ein definiertes Moment vorgeben. Der Wert wird in 1000stel vom rated current angegeben und das Moment wird nach folgender Formel berechnet, wobei der rated current sich auf den Wert im Index 0x8011:12 (rated current) bezieht.

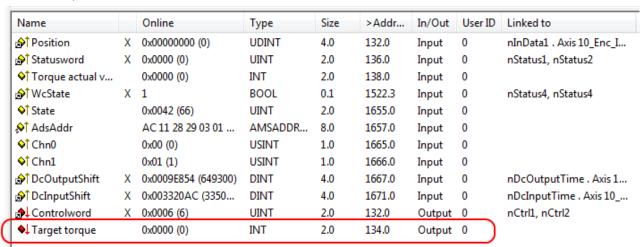


Abb. 149: Vorgabe Drehmoment

6.3.4 CSTCA

CSTCA - cyclic synchronous torque with commutation angle (Drehmomentregelung mit Kommutierungswinkel)

Diese Betriebsart ist ebenfalls zur Verwendung am zyklischen Drehmomentinterface. Zusätzlich hat der Anwender die Möglichkeit den Kommutierungswinkel anzugeben. Über die Variable *Commutation angle* kann ein Winkel eingestellt werden, der mit einem definierten Drehmoment der Variablen *Target torque* gehalten werden soll.

Step-by-Step

- Fügen Sie die Klemme, wie im Kapitel <u>Konfigurationserstellung TwinCAT [▶ 71]</u> manuell oder <u>Online scan [▶ 76]</u> beschrieben, zur Konfiguration hinzu.
- Verknüpfen Sie die Klemme, wie im Kapitel <u>Einbindung in die NC-Konfiguration [▶ 94]</u> beschrieben, mit der NC.
- Importieren Sie die Motor XML Datei, wie im Kapitel <u>Einstellungen im CoE [▶ 103]</u> beschrieben, in das Start-up Verzeichnis.
- Stellen Sie die Betriebsart im CoE-Verzeichnis auf Cyclic synchronous torque mode with commutation angle (CSTCA), Abb. Auswahl Betriebsart

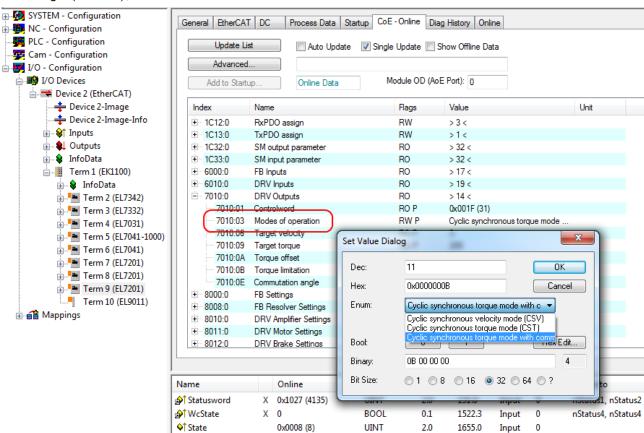


Abb. 150: Auswahl Betriebsart

 Wählen Sie bei den Predefined PDO Assignments ebenfalls Cyclic synchronous torque mode with commutation angle (CSTCA), Abb. Predefined PDO Assignment wählen.

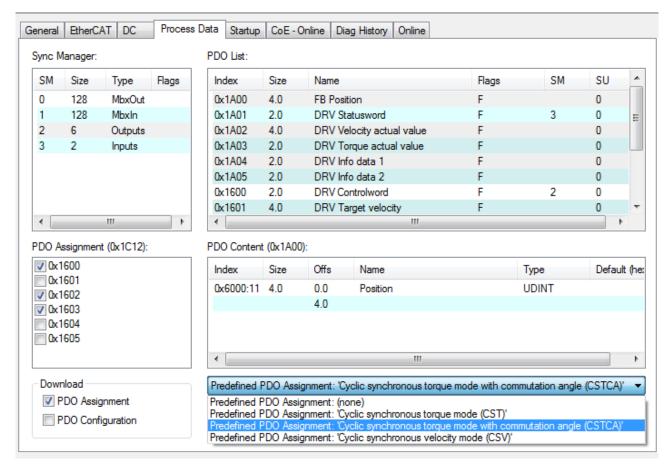


Abb. 151: Predefined PDO Assignment wählen

- Aktivieren Sie die Konfiguration (Ctrl+Shift+F4)
- Durchlaufen Sie die State Machine der Klemme. Dazu gibt es zwei Möglichkeiten:
 - Sie nutzen die TwinCAT NC.
 - Die State Machine wird von der NC automatisch durchlaufen. Sie können in der Registerkarte Online der Achse die Achse freigeben.
 - Setzen Sie alle Häkchen und stellen Sie *Override* auf 100% (siehe Abb. *Freigaben setzen*). Anschließend kann die Achse bewegt werden.

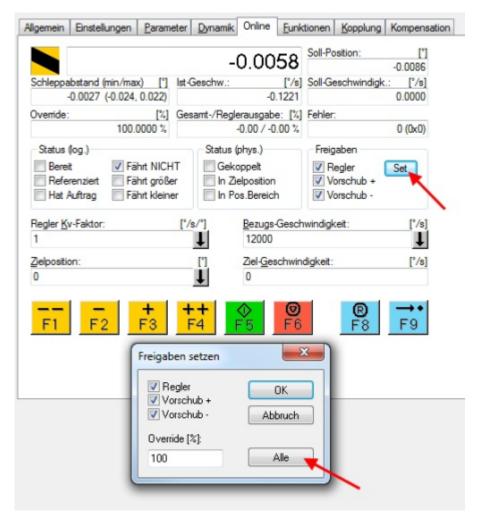


Abb. 152: Freigaben setzen

- Sie nutzen nicht die TwinCAT NC.
 In diesem Fall müssen Sie die State Machine manuell durchfahren. Befolgen Sie dazu die Anweisungen im Kapitel Inbetriebnahme ohne die NC [▶ 111].
- Über die zyklische Variable *Target torque* können Sie ein definiertes Moment vorgeben. Der Wert wird in 1000stel vom *rated current* angegeben und das Moment wird nach folgeneder Formel berechnet, wobei der rated current sich auf den Wert im Index 0x8011:12 *rated current* bezieht.

Über die zyklische Variable *Commutation angle* können Sie einen definierten Winkel vorgeben. Der Wert wird in 360°/2¹⁶ angegeben.

Name		Online	Type	Size	>Addr	In/Out	User ID	Linked to
∌ ↑ Statusword	Χ	0x0000 (0)	UINT	2.0	132.0	Input	0	nStatus1, nStatus2
∌ ↑WcState	Χ	1	BOOL	0.1	1522.3	Input	0	nStatus4, nStatus4
♦ ↑ State		0x0042 (66)	UINT	2.0	1655.0	Input	0	
♦ ↑ AdsAddr		AC 11 28 29 03 01	AMSADDR	8.0	1657.0	Input	0	
♦† Chn0		0x00 (0)	USINT	1.0	1665.0	Input	0	
♦↑ Chn1		0x01 (1)	USINT	1.0	1666.0	Input	0	
∌ ↑DcOutputShift	Х	0x0009E854 (649300)	DINT	4.0	1667.0	Input	0	nDcOutputTime . Axis 1
∌ ↑ DcInputShift	Х	0x003320AC (3350	DINT	4.0	1671.0	Input	0	nDcInputTime . Axis 10
Controlword	У	0x0006 (6)	UINT	2.0	132.0	Output	0	nCtrl1, nCtrl2
↓ Target torque		0x0000 (0)	INT	2.0	134.0	Output	0]
◆↓ Commutation angle		0x0000 (0)	UINT	2.0	136.0	Output	0	

Abb. 153: Vorgabe Drehmoment und Kommutierungswinkel

6.3.5 CSP

CSP - cyclic synchronous position (Positionsregelung)

In der Betriebsart CSP arbeitet die EL72x1-xx1x im zyklischen Positionsinterface. Über die Variable *Target position* kann eine definierte Position eingestellt werden.

Minimale Zykluszeit

Die Zykluszeit im CSP Modus muss 2^n * 125 µs betragen (mit n = 1 bis 8) also 250 µs, 500 µs, 1 ms, 2 ms, 4 ms, 8 ms, 16 ms oder 32 ms.

Step-by-Step

- Fügen Sie die Klemme, wie im Kapitel Konfigurationserstellung TwinCAT [▶ 71] manuell oder Online scan [▶ 76] beschrieben, zur Konfiguration hinzu.
- Verknüpfen Sie die Klemme, wie im Kapitel <u>Einbindung in die NC-Konfiguration [▶ 94]</u> beschrieben, mit der NC.
- Konfigurieren Sie den Motor mit Hilfe der <u>Automatischen Konfiguration [▶ 114]</u> (nur OCT-Typen), anhand des <u>Drive Managers [▶ 97]</u> oder importieren Sie die Motor XML-Datei, wie im Kapitel Einstellungen im CoE [▶ 103] beschrieben, in das Start-up Verzeichnis.
- Stellen Sie die Betriebsart im CoE-Verzeichnis auf Cyclic synchronous position mode (CSP), Abb. Auswahl Betriebsart.

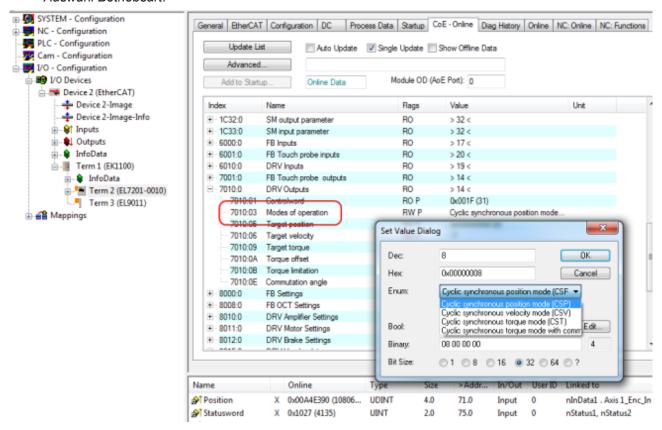


Abb. 154: Auswahl Betriebsart

 Wählen Sie bei den Predefined PDO Assignments ebenfalls Cyclic synchronous position mode (CSP), Abb. Predefined PDO Assignment wählen.

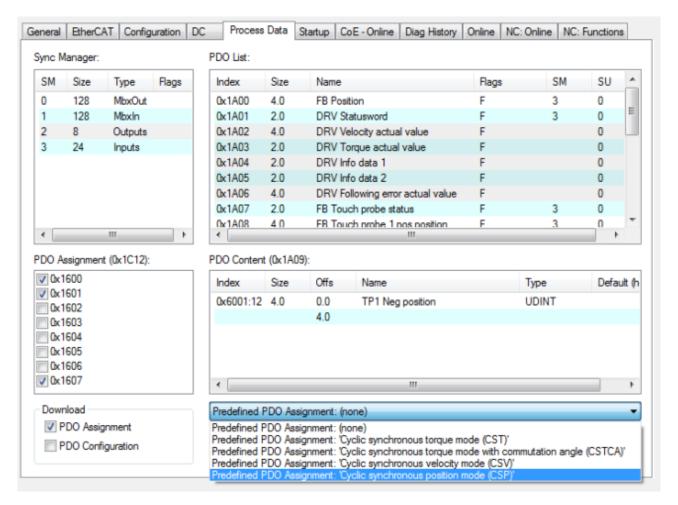


Abb. 155: Predefined PDO Assignment wählen

- Aktivieren Sie die Konfiguration (Ctrl+Shift+F4)
- Durchlaufen Sie die State Machine der Klemme. Dazu gibt es zwei Möglichkeiten:
 - Sie nutzen die TwinCAT NC.
 - Die State Machine wird von der NC automatisch durchlaufen. Sie können in der Registerkarte "Online" der Achse die Achse freigeben.
 - Setzen Sie alle Häkchen und stellen Sie Override auf 100% (siehe Abb. *Freigaben setzen*). Anschließend kann die Achse bewegt werden.

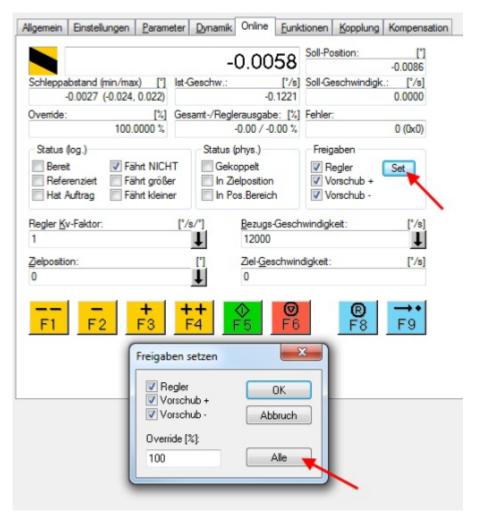


Abb. 156: Freigaben setzen

- Sie nutzen nicht die TwinCAT NC.
 In diesem Fall müssen Sie die State Machine manuell durchfahren. Befolgen Sie dazu die Anweisungen im Kapitel Inbetriebnahme ohne die NC [▶ 111].
- Über die zyklische Variable *Target position* (Abb. *Vorgabe Position*) können Sie eine definierte Position vorgeben. Der Wert muss mit dem berechneten Skalierungsfaktor multipliziert werden, um die korrekte Position zu erhalten.

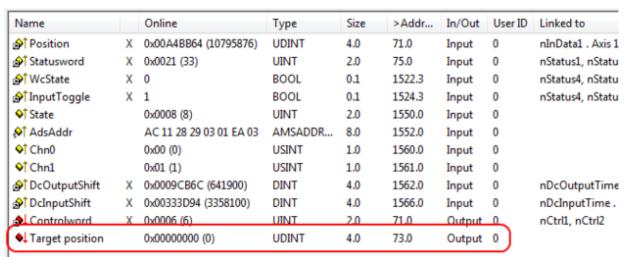


Abb. 157: Vorgabe Position

Schleppfehlerüberwachung

Weiterhin besteht im *CSP* Mode die Möglichkeit, eine Schleppfehlerüberwachung einzuschalten. Im Auslieferungszustand ist die Schleppfehlerüberwachung ausgeschaltet. Bei allen anderen Modes kommt dies nicht zum Einsatz und wird ignoriert.

 Mit dem Following error window (Index 0x8010:50 MDP742 / Index 0x6065 DS402) lässt sich das Fenster der Schleppfehlerüberwachung einstellen. Der hier eingestellte Wert - mit dem Skalierungsfaktor multipliziert - gibt an, um welche Position die Ist-Position von der Sollposition, positiv und negativ, abweichen darf. Die gesamte akzeptierte Toleranz ist somit doppelt so groß, wie die im Following error window eingetragene Position (siehe Abb. Schleppfehlerfenster).

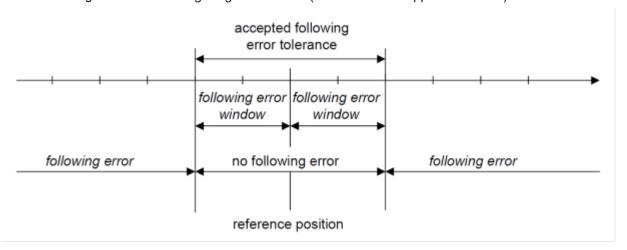


Abb. 158: Schleppfehlerfenster

- Mit dem Following error time out (Index 0x8010:51 MDP742 / Index 0x6066 DS402) lässt sich die Zeit (in ms) einstellen, die für eine Schleppfehlerüberschreitung erlaubt ist. Sobald die Sollposition für die im Following error time out eingetragene Zeit um mehr als die im Following error window eingetragene Position überschritten wird, gibt die Klemme einen Fehler aus und bleibt unverzüglich stehen.
- Der aktuelle Schleppfehler kann im Following error actual value (Index 0x6010:09 MDP742 / Index 0x60F4 DS402) ausgelesen werden.

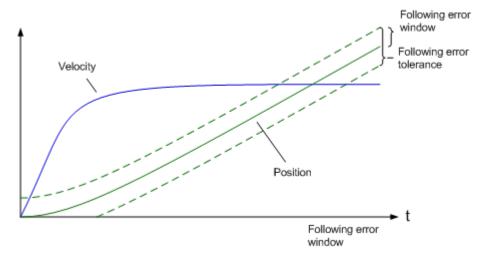


Abb. 159: Schleppfehler über die Zeit

Der Wert 0xFFFFF (-1) im *Following error window* bedeutet, dass die Schleppfehlerüberwachung ausgeschaltet ist und entspricht dem Auslieferungszustand. Der *Following error time out* ist im Auslieferungszustand 0x0000 (0).

144 Version: 3.0.0 EL72x1-001x

6.4 Profile MDP742 oder DS402

Die EL72x1-x01x unterstützt die Antriebsprofile MDP742 und DS402. Die Profile definieren die Darstellung der Parameter der EtherCAT-Klemme und den Index unter dem die jeweiligen Parameter im Objektverzeichnis angeordnet sind.

Beide Profile beinhalten die gleichen Parameter, sie unterscheiden sich nur in den festgeschriebenen Bezeichnungen und dem Index der Parameter. Das MDP742 Profil (Modular Device Profile) hat die für Beckhoff EtherCAT-Klemmen übliche Aufteilung der CoE-Objekte. Das DS402 Antriebsprofil ist in der IEC61800-7-200 spezifiziert (CiA402) und nutzt eine andere Aufteilung der Objektverzeichnisstruktur.

Die Drive State Machine der EL72x1-x01x basiert in beiden Profilen auf der CiA402 <u>State Machine [▶ 111]</u>, somit ist das funktionale Verhalten identisch.

Ab Werk wird die Klemme mit dem Profil MDP742 ausgeliefert.

Profil wechseln

In Falle des Profilwechsels muss ein <u>EEPROM Update</u> [▶ <u>227]</u> durchgeführt werden und die zugehörige <u>ESI</u> Beschreibung [▶ 227] kann auf die Klemme geladen werden.

Es ist zu beachten, dass die CoE-Objektbeschreibung und die Prozessdaten für beide Profile unterschiedlich sind. Es müssen jeweils die zu dem eingestellten Profil passenden Motor XML Files hinzugezogen werden.

Klemmenbezeichnung MDP742 und DS402 Profil

Es ist zu beachten, dass durch den oben beschriebenen Profilwechselprozess die Servo Motor Klemme in TwinCAT eine andere Typenbezeichnung erhält.

Im TwinCAT System Manager stellt sich die Klemme dann als eines der folgenden Geräte dar:

- Servo Motor Klemme mit MDP742-Profil: EL72x1-0010 bzw. EL72x1-9014
- Servo Motor Klemme mit DS402-Profil: EL72x1-0011 bzw. EL72x1-9015

6.5 Prozessdaten MDP742

Inhaltsverzeichnis

- Sync Manger [▶ 146]
- PDO-Zuordnung [▶ 147]
- Predefined PDO Assignment [▶ 151]

Sync Manager (SM)

Sync Manager (SM) Der Umfang der angebotenen Prozessdaten kann über den Reiter "Prozessdaten" verändert werden (siehe folgende Abb.).

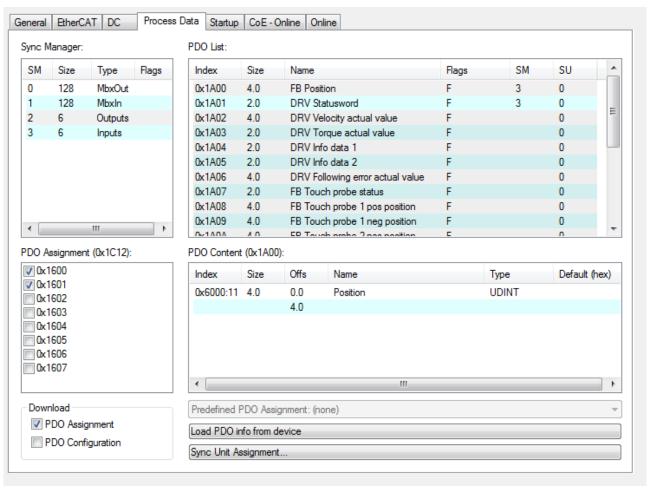


Abb. 160: Karteireiter Prozessdaten SM2, EL72x1-0010 (default)

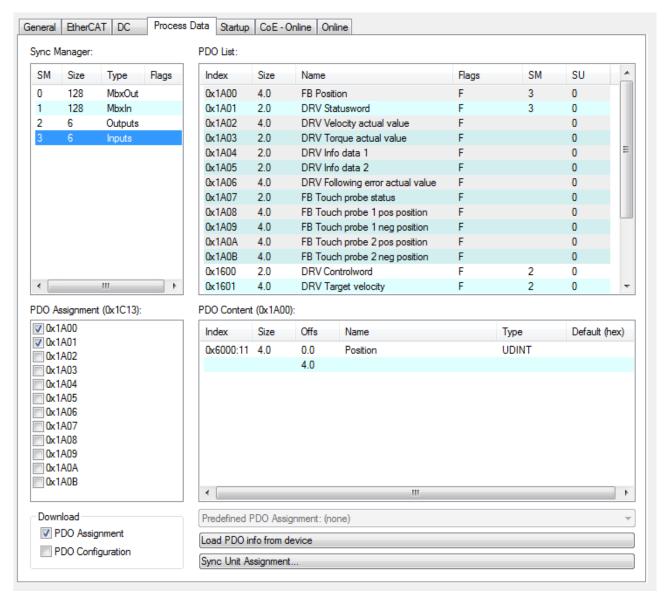


Abb. 161: Karteireiter Prozessdaten SM3, EL72x1-0010 (default)

PDO-Zuordnung

- Zur Konfiguration der Prozessdaten markieren Sie im oberen linken Feld "Sync Manager" (siehe Abb. *Karteireiter Prozessdaten SM3, EL72x1-0010*) den gewünschten Sync Manager (editierbar sind hier SM2 und SM3).
- Im Feld darunter "PDO Zuordnung" können dann die diesem Sync Manager zugeordneten Prozessdaten an- oder abschaltet werden.
- Ein Neustart des EtherCAT-Systems oder Neuladen der Konfiguration im Config-Modus (F4) bewirkt einen Neustart der EtherCAT-Kommunikation und die Prozessdaten werden von der Klemme übertragen.

SM2, PDO-Zuordnung 0x1C12

Index	Größe (Byte.Bit)	Name	PDO Inhalt Index - Name, Größe (Byte.Bit)
0x1600 (default)	2.0	DRV Controlword	0x7010:01 [▶ 170] - Controlword (2.0)
0x1601 (default)	4.0	DRV Target velocity	0x7010:06 [▶ 170] - Target velocity (4.0)
0x1602	2.0	DRV Target torque	<u>0x7010:09</u> [▶ <u>170]</u> - Target torque (2.0)
0x1603	2.0	DRV Commutation angle	<u>0x7010:0E</u> [▶ <u>170]</u> - Commutation angle (2.0)
0x1604	2.0	DRV Torque limitation	<u>0x7010:0B [▶ 170]</u> - Torque limitation (2.0)
0x1605	2.0	DRV Torque offset	0x7010:0A [▶ 170] - Torque offset (2.0)
0x1606	4.0	DRV Target position	<u>0x7010:05 [▶ 170]</u> - Target position (4.0)
0x1607	2.0	FB Touch probe control	0x7001:01 [▶ 169] - Touch probe function_TP1 Enable (0.1) 0x7001:02 [▶ 169] - Touch probe function_TP1 Continous (0.1) 0x7001:03 [▶ 169] - Touch probe function_TP1 Trigger mode (0.2) 0x7001:05 [▶ 169] - Touch probe function_TP1 Enable pos. edge (0.1) 0x7001:06 [▶ 169] - Touch probe function_TP1 Enable neg. edge (0.1) 0x7001:09 [▶ 169] - Touch probe function_TP2 Enable (0.1) 0x7001:0A [▶ 169] - Touch probe function_TP2 Continous (0.1) 0x7001:0B [▶ 169] - Touch probe function_TP2 Trigger mode (0.2) 0x7001:0D [▶ 169] - Touch probe function_TP2 Enable pos. edge (0.1)
0x1608	1.0	DRV Modes of operation	<u>0x7001:0E</u> [▶ 169] - Touch probe function_TP2 Enable neg. edge (0.1) <u>0x7010:03</u> [▶ 170] - Modes of operation (1.0)
0x1630*	40.0	DMC Outputs	0x7030:02 [▶ 171] - DMC_FeedbackControl_Enable latch extern on positive edge (0.1) 0x7030:03 [▶ 171] - DMC_FeedbackControl_Set counter (0.1) 0x7030:04 [▶ 171] - DMC_FeedbackControl_Enable latch extern on negative edge (0.1) 0x7030:11 [▶ 171] - DMC_DriveControl_Enable (0.1) 0x7030:12 [▶ 171] - DMC_DriveControl_Reset (0.1)
			0x7030:21 [▶ 171] - DMC_PositioningControl_Execute (0.1) 0x7030:22 [▶ 171] - DMC_PositioningControl_Emergency stop (0.1) 0x7030:31 [▶ 171] - DMC_Set counter value (8.0) 0x7030:32 [▶ 171] - DMC_Target position (8.0) 0x7030:3 [▶ 171] - DMC_Target velocity (2.0) 0x7030:34 [▶ 171] - DMC_Start typev (2.0) 0x7030:35 [▶ 171] - DMC_Target acceleration (2.0) 0x7030:3 [▶ 171] - DMC_Target deceleration (2.0)
0x1630*	40.0	DMC Outputs 32 Bit	0x7030:02 [▶ 171] - DMC_FeedbackControl_Enable latch extern on positive edge (0.1) 0x7030:03 [▶ 171] - DMC_FeedbackControl_Set counter (0.1) 0x7030:04 [▶ 171] - DMC_FeedbackControl_Enable latch extern on negative edge (0.1) 0x7030:11 [▶ 171] - DMC_DriveControl_Enable (0.1) 0x7030:12 [▶ 171] - DMC_DriveControl_Reset (0.1) 0x7030:21 [▶ 171] - DMC_PositioningControl_Execute (0.1) 0x7030:22 [▶ 171] - DMC_PositioningControl_Emergency stop (0.1) 0x7030:31 [▶ 171] - DMC_Set counter value (4.0) 0x7030:32 [▶ 171] - DMC_Target position (4.0) 0x7030:34 [▶ 171] - DMC_Start type (2.0) 0x7030:35 [▶ 171] - DMC_Target acceleration (2.0) 0x7030:3 [▶ 171] - DMC_Target deceleration (2.0)

^{*)} ab Firmware 19

SM3, PDO-Zuordnung 0x1C13

Index	Größe (Byte.Bit)	Name	PDO Inhalt Index - Name, Größe (Byte.Bit)
0x1A00 (default)	4.0	FB Position	<u>0x6000:11 [</u> ▶ <u>165]</u> - Position (4.0)
0x1A01 (default)	2.0	DRV Statusword	0x6010:01 [▶ 167] - Statusword (2.0)
0x1A02	4.0	DRV Velocity actual value	0x6010:07 [▶ 167] - Velocity actual value (4.0)
0x1A03	2.0	DRV Torque actual value	0x6010:08 [▶ 167] - Torque actual value (2.0)
0x1A04	2.0	DRV Info data 1	0x6010:12 [▶ 167] - Info data 1 (2.0)
0x1A05	2.0	DRV Info data 2	0x6010:13 [▶ 167] - Info data 2 (2.0)
0x1A06	4.0	DRV Following error actual value	0x6010:09 [▶ 167] - Following error actual value (4.0)
0x1A07	2.0	FB Touch probe status	0x6001:01 [▶ 166] - Touch probe status_ TP1 Enable (0.1) 0x6001:02 [▶ 166] - Touch probe status_ TP1 Pos. value stored (0.1) 0x6001:03 [▶ 166] - Touch probe status_ TP1 Neg. value stored (0.1) 0x6001:08 [▶ 166] - Touch probe status_ TP1 Input (0.1) 0x6001:09 [▶ 166] - Touch probe status_ TP2 Enable (0.1)
			0x6001:09 ▶ 166] - Touch probe status_ TP2 Enable (0.1) 0x6001:0A ▶ 166] - Touch probe status_ TP2 Pos. value stored (0.1) 0x6001:0B ▶ 166] - Touch probe status_ TP2 Neg. value stored (0.1) 0x6001:10 ▶ 166] - Touch probe status_ TP2 Input (0.1)
0x1A08	4.0	FB Touch probe 1 pos. position	0x6001:11 [▶ 166] - TP1 Pos position (4.0)
0x1A09	4.0	FB Touch probe 1 neg. position	0x6001:12 [▶ 166] - TP1 Neg position (4.0)
0x1A0A	4.0	FB Touch probe 2 pos. position	<u>0x6001:13 [▶ 166]</u> - TP2 Pos position (4.0)
0x1A0B	4.0	FB Touch probe 2 neg. position	0x6001:14 [▶ 166] - TP2 Neg position (4.0)
0x1A0C	2.0	FB Status	<u>0x6000:0E</u> [▶ <u>165]</u> - Status_TxPDO State (0.1) <u>0x6000:0F</u> [▶ <u>165]</u> - Status_Input Cycle Counter (0.2)
0x1A0E	1.0	DRV Modes of operation display	0x6010:03 [▶ 167] - Modes of operation display (1.0)
0x1A30*	64.0	DMC Inputs	0x6030:02 [▶ 168] - DMC_FeedbackStatus_Latch extern valid (0.1) 0x6030:03 [▶ 168] - DMC_FeedbackStatus_Set counter done (0.1) 0x6030:0D [▶ 168] - DMC_FeedbackStatus_Status of extern Latch (0.1)
			0x6030:11 [▶ 168] - DMC_DriveStatus_Ready to enable (0.1) 0x6030:12 [▶ 168] - DMC_DriveStatus_Ready (0.1) 0x6030:13 [▶ 168] - DMC_DriveStatus_Warning (0.1) 0x6030:14 [▶ 168] - DMC_DriveStatus_Error (0.1) 0x6030:15 [▶ 168] - DMC_DriveStatus_Movin positive (0.1) 0x6030:16 [▶ 168] - DMC_DriveStatus_Moving negative (0.1) 0x6030:1C [▶ 168] - DMC_DriveStatus_Digital input 1 (0.1) 0x6030:1D [▶ 168] - DMC_DriveStatus_Digital input 2 (0.1)
			0x6030:21 ▶ 168 - DMC_PositioningStatus_Busy (0.1) 0x6030:22 ▶ 168 - DMC_PositioningStatus_In-Target (0.1) 0x6030:23 ▶ 168 - DMC_PositioningStatus_Warning (0.1) 0x6030:24 ▶ 168 - DMC_PositioningStatus_Error (0.1) 0x6030:25 ▶ 168 - DMC_PositioningStatus_Calibrated (0.1) 0x6030:26 ▶ 168 - DMC_PositioningStatus_Accelerate (0.1) 0x6030:27 ▶ 168 - DMC_PositioningStatus_Decelerate (0.1) 0x6030:28 ▶ 168 - DMC_PositioningStatus_Ready to execute (0.1) 0x6030:31 ▶ 168 - DMC_PositioningStatus_Ready to execute (0.1) 0x6030:32 ▶ 168 - DMC_Set position (8.0) 0x6030:33 ▶ 168 - DMC_Set velocity (2.0) 0x6030:34 ▶ 168 - DMC_Actual drive time (4.0) 0x6030:35 ▶ 168 - DMC_Actual position lag (8.0) 0x6030:37 ▶ 168 - DMC_Actual position (8.0) 0x6030:38 ▶ 168 - DMC_Error id (4.0) 0x6030:38 ▶ 168 - DMC_Input cycle counter (1.0) 0x6030:38 ▶ 168 - DMC_Latch value (8.0) 0x6030:36 ▶ 168 - DMC_Cyclic info data 1 (2.0) 0x6030:36 ▶ 168 - DMC_Cyclic info data 2 (2.0)

Index	Größe (Byte.Bit)	Name	PDO Inhalt Index - Name, Größe (Byte.Bit)
0x1A31*	64.0	DMC Inputs 32 Bit	0x6030:02 [▶ 168] - DMC_FeedbackStatus_Latch extern valid (0.1) 0x6030:03 [▶ 168] - DMC_FeedbackStatus_Set counter done (0.1) 0x6030:0D [▶ 168] - DMC_FeedbackStatus_Status of extern Latch (0.1)
			0x6030:11 [▶ 168] - DMC_DriveStatus_Ready to enable (0.1) 0x6030:12 [▶ 168] - DMC_DriveStatus_Ready (0.1) 0x6030:13 [▶ 168] - DMC_DriveStatus_Warning (0.1) 0x6030:14 [▶ 168] - DMC_DriveStatus_Error (0.1) 0x6030:15 [▶ 168] - DMC_DriveStatus_Movin positive (0.1) 0x6030:16 [▶ 168] - DMC_DriveStatus_Moving negative (0.1) 0x6030:1C [▶ 168] - DMC_DriveStatus_Digital input 1 (0.1) 0x6030:1D [▶ 168] - DMC_DriveStatus_Digital input 2 (0.1)
			0x6030:21 [▶ 168] - DMC_PositioningStatus_Busy (0.1) 0x6030:22 [▶ 168] - DMC_PositioningStatus_In-Target (0.1) 0x6030:23 [▶ 168] - DMC_PositioningStatus_Warning (0.1) 0x6030:24 [▶ 168] - DMC_PositioningStatus_Error (0.1) 0x6030:25 [▶ 168] - DMC_PositioningStatus_Calibrated (0.1) 0x6030:26 [▶ 168] - DMC_PositioningStatus_Accelerate (0.1) 0x6030:27 [▶ 168] - DMC_PositioningStatus_Decelerate (0.1) 0x6030:28 [▶ 168] - DMC_PositioningStatus_Ready to execute (0.1)
			0x6030:31 [▶ 168] - DMC_Set position (4.0) 0x6030:32 [▶ 168] - DMC_Set velocity (2.0) 0x6030:33 [▶ 168] - DMC_Actual drive time (4.0) 0x6030:34 [▶ 168] - DMC_Actual position lag (4.0) 0x6030:35 [▶ 168] - DMC_Actual velocity (2.0) 0x6030:36 [▶ 168] - DMC_Actual position (4.0) 0x6030:37 [▶ 168] - DMC_Error id (4.0) 0x6030:38 [▶ 168] - DMC_Input cycle counter (1.0) 0x6030:3A [▶ 168] - DMC_Latch value (4.0) 0x6030:3B [▶ 168] - DMC_Cyclic info data 1 (2.0) 0x6030:3C [▶ 168] - DMC Cyclic info data 2 (2.0)

^{*)} ab Firmware 19

Predefined PDO Assignment

Eine vereinfachte Auswahl der Prozessdaten ermöglicht das "Predefined PDO Assignment". Am unteren Teil des Prozessdatenreiters wählen Sie die gewünschte Funktion aus. Es werden dadurch alle benötigten PDOs automatisch aktiviert, bzw. die nicht benötigten deaktiviert.

Sechs PDO-Zuordnungen stehen zur Auswahl:

Name	SM2, PDO-Zuordnung	SM3, PDO-Zuordnung
Cyclic synchronous velocity mode	0x1600 [▶ 176] (DRV Controlword)	<u>0x1A00 [▶ 181]</u> (FB Position)
(CSV)	<u>0x1601 [▶ 177]</u> (DRV Target velocity)	0x1A01 [▶ 181] (DRV Statusword)
Cyclic synchronous torque mode	<u>0x1600 [▶ 176]</u> (DRV Controlword)	<u>0x1A00 [▶ 181]</u> (FB Position)
(CST)	<u>0x1602</u> [▶ <u>177]</u> (DRV Target torque)	0x1A01 [▶ 181] (DRV Statusword)
		0x1A03 [▶ 181] (DRV Torque actual value)
Cyclic synchronous torque mode with commutation angle	0x1600 [▶ 176] (DRV Controlword)	0x1A01 [▶ 181] (DRV Statusword)
(CSTCA)	<u>0x1602</u> [▶ <u>177]</u> (DRV Target torque)	
	0x1603 [▶ 177] (DRV Commutation angle)	
Cyclic synchronous position mode	<u>0x1600 [▶ 176]</u> (DRV Controlword)	<u>0x1A00 [▶ 181]</u> (FB Position)
(CSP)	0x1606 [▶ 177] (DRV Target position)	0x1A01 [▶ 181] (DRV Statusword)
		0x1A06 [▶ 182] (DRV Following error actual value)
Drive motion control (For TC3 DriveMotionControl Lib)*	0x1630 [▶_179] (DMC Outputs)	0x1A30 [▶ 183] (DMC Inputs)
Drive motion control (32 Bit)*	0x1631 [▶ 180] (DMC Outputs 32 Bit)	0x1A31 [▶ 185] (DMC Inputs 32 Bit)

*) ab Firmware 19

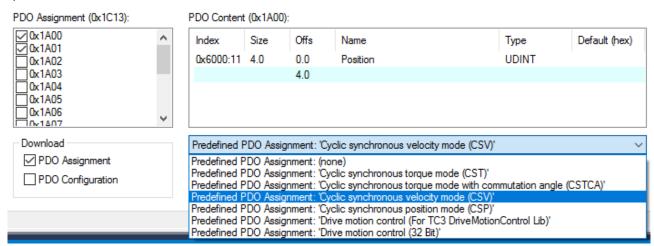


Abb. 162: Karteireiter Prozessdaten Predefined PDO Assignment, EL72x1-0010

6.6 Prozessdaten DS402

Inhaltsverzeichnis

- Sync Manger [▶ 152]
- PDO-Zuordnung [▶ 153]
- Predefined PDO Assignment [▶ 155]

Sync Manager (SM)

Sync Manager (SM) Der Umfang der angebotenen Prozessdaten kann über den Reiter "Prozessdaten" verändert werden (siehe Abb. Karteireiter Prozessdaten SM2, EL72x1-0010 (default)).

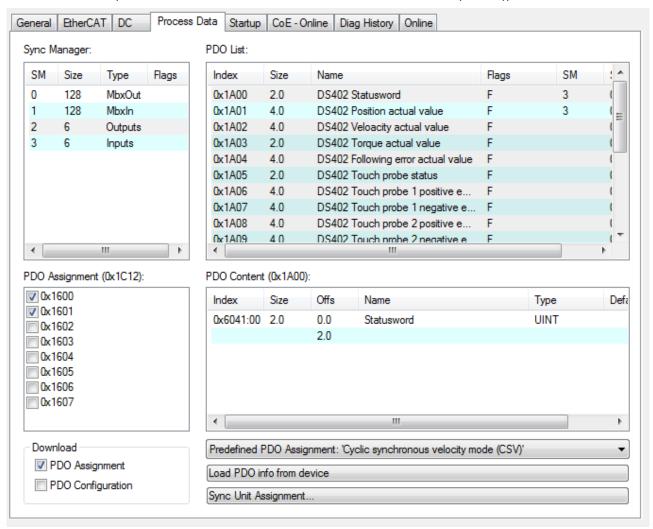


Abb. 163: Karteireiter Prozessdaten SM2, EL72x1-0010 (default)

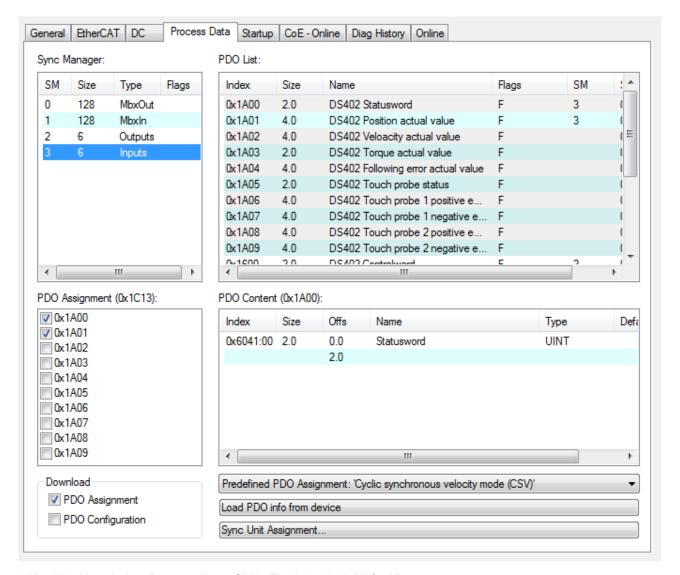


Abb. 164: Karteireiter Prozessdaten SM3, EL72x1-0010 (default)

PDO-Zuordnung

- Zur Konfiguration der Prozessdaten markieren Sie im oberen linken Feld "Sync Manager" (siehe Abb.) den gewünschten Sync Manager (editierbar sind hier SM2 und SM3).
- Im Feld darunter "PDO Zuordnung" können dann die diesem Sync Manager zugeordneten Prozessdaten an- oder abschaltet werden.
- Ein Neustart des EtherCAT-Systems oder Neuladen der Konfiguration im Config-Modus (F4) bewirkt einen Neustart der EtherCAT-Kommunikation und die Prozessdaten werden von der Klemme übertragen.

SM2, PDO-Zuordnung 0x1C12

Index	Größe (Byte.Bit)	Name	PDO Inhalt Index - Name, Größe (Byte.Bit)		
0x1600 (default)	2.0	DS402 Controlword	0x6040 [▶ 199] - Controlword (2.0)		
0x1601 (default)	4.0	DS402 Target velocity	0x60FF [▶ 203] -Target velocity (4.0)		
0x1602	2.0	DS402 Target torque	0x6071 [▶ 200] - Target torque (2.0)		
0x1603	2.0	DS402 Commutation angle	0x60EA [▶ 202] - Commutation angle (2.0)		
0x1604	2.0	DS402 Torque limitation	0x6072 [▶ 200] - Max. torque (2.0)		
0x1605	2.0	DS402 Torque offset	0x2001:11 [▶_198] - Torque offset (2.0)		
0x1606	4.0	DS402 Target position	0x607A [▶ 201] - Target position (4.0)		
0x1607	2.0	DS402 FB Touch probe function	0x60B8 [▶ 201] - Touch probe function (2.0)		
			Bit 0 TP1 Enable Bit 1 TP1 Continous Bit 2 TP1 Trigger mode Bit 4 TP1 Enable pos. edge Bit 5 TP1 Enable neg. edge Bit 8 TP2 Enable		
			Bit 8 TP2 Enable Bit 9 TP2 Continous Bit 10 TP2 Trigger mode Bit 12 TP2 Enable pos. edge Bit 13 TP2 Enable neg. edge		
0x1608	1.0	DS402 Modes of operation	0x6060 [▶ 199] - Modes of operation (1.0)		

SM3, PDO-Zuordnung 0x1C13

Index	Größe (Byte.Bit)	Name	PDO Inhalt Index - Name, Gro	öße (Byte.Bit)	
0x1A00 (default)	2.0	DS402 Statusword	<u>0x6041 [▶ 199]</u> - Statusword (2.0)		
0x1A01 (default)	4.0	DS402 Position actual value	<u>0x6064 [▶ 199]</u> - P	osition actual value (4.0)	
0x1A02	4.0	DS402 Velocity actual value	<u>0x606C [▶ 200]</u> - V	elocity actual value (4.0)	
0x1A03	2.0	DS402 Torque actual value	<u>0x6077 [▶ 201]</u> - To	orque actual value (2.0)	
0x1A04	4.0	DS402 Following error actual value	<u>0x60F4 [▶ 203]</u> - Fo	ollowing error actual value (4.0)	
0x1A05	2.0	DS402 Touch probe status	0x60B9 [▶ 202] - Touch probe status (2.0) Bit 0 TP1 Enable Bit 1 TP1 Pos. value stored Bit 2 TP1 Neg. value stored Bit 7 TP1 Input Bit 8 TP2 Enable Bit 9 TP2 Pos. value stored Bit 10 TP2 Neg. value stored Index 6001:10 TP2 Input		
0x1A06	4.0	DS402 Touch probe 1 positive edge	<u>0x60BA [▶ 202]</u> - T	ouch probe 1 positive edge (4.0)	
0x1A07	4.0	DS402 Touch probe 1 negative edge	0x60BB [▶ 202] - T	ouch probe 1 negative edge (4.0)	
0x1A08	4.0	DS402 Touch probe 2 positive edge	0x60BC [▶ 202] - T	ouch probe 2 positive edge (4.0)	
0x1A09	4.0	DS402 Touch probe 2 negative edge	0x60BD [▶ 202] - Touch probe 2 negative edge (4.0)		
0x1A0A	2.0	DS402 TxPDO Data Invalid	0x603E:02 [▶ 198] - TxPDO Data invalid_Position actual value (0.1)		
0x1A0B	2.0	DS402 Info data 1	0x2008:01 [▶ 198] - Info data 1 (2.0)		
0x1A0C	2.0	DS402 Info data 2	0x2008:02 [198]	- Info data 2 (2.0)	
0x1A0E	1.0	DS402 Modes of operation display	0x6061:00 [> 199]	- Modes of operation display (1.0)	

Predefined PDO Assignment

Eine vereinfachte Auswahl der Prozessdaten ermöglicht das "Predefined PDO Assignment". Am unteren Teil des Prozessdatenreiters wählen Sie die gewünschte Funktion aus. Es werden dadurch alle benötigten PDOs automatisch aktiviert, bzw. die nicht benötigten deaktiviert.

Vier PDO-Zuordnungen stehen zur Auswahl:

Name	SM2, PDO-Zuordnung	SM3, PDO-Zuordnung
Cyclic synchronous velocity mode	0x1600 [▶ 207] (DS402 Controlword)	0x1A00 [▶ 208] (DS402 Statusword)
(CSV)	<u>0x1601 [▶ 208]</u> (DS402 Target velocity)	<u>0x1A01 [</u> ▶ <u>209]</u> (DS402 Position actual value)
Cyclic synchronous torque mode	0x1600 [▶ 207] (DS402 Controlword)	0x1A00 [▶ 208] (DS402 Statusword)
(CST)	<u>0x1602</u> [▶ <u>208]</u> (DS402 Target torque)	0x1A01 [▶ 209] (DS402 Position actual value)
		<u>0x1A03 [▶ 209]</u> (DS402 Torque actual value)
Cyclic synchronous torque mode	0x1600 [▶ 207] (DS402 Controlword)	0x1A00 [▶ 208] (DS402 Statusword)
with commutation angle (CSTCA)	<u>0x1602 [▶ 208]</u> (DS402 Target torque)	
	<u>0x1603 [▶ 208]</u> (DS402 Commutation angle)	
Cyclic synchronous position mode	0x1600 [▶ 207] (DS402 Controlword)	0x1A00 [▶ 208] (DS402 Statusword)
(CSP)	<u>0x1606 [▶ 208]</u> (DS402 Target position)	0x1A01 [▶ 209] (DS402 Position actual value)
		0x1A04 [▶ 209] (DS402 Following error actual value)

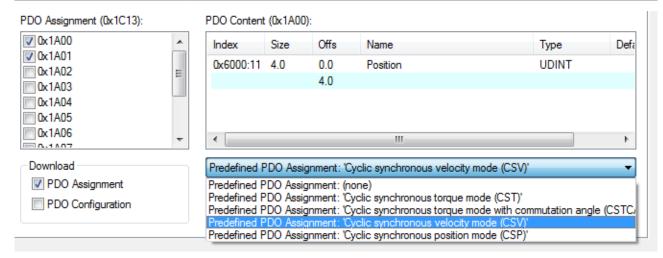


Abb. 165: Karteireiter Prozessdaten Predefined PDO Assignment, EL72x1-0011

7 EL72x1-0010 (MDP742) - Objektbeschreibung und Parametrierung

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description. Es wird empfohlen, die entsprechende aktuellste XML-Datei im Download-Bereich auf der Beckhoff Website herunterzuladen und entsprechend der Installationsanweisungen zu installieren.

Parametrierung über das CoE-Verzeichnis (CAN over EtherCAT)

- Die Parametrierung der Klemme wird über den CoE Online Reiter (mit Doppelklick auf das entsprechende Objekt) bzw. über den Prozessdatenreiter (Zuordnung der PDOs) vorgenommen. Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise [> 29]:
 - StartUp-Liste führen für den Austauschfall
 - Unterscheidung zwischen Online/Offline Dictionary, Vorhandensein aktueller XML-Beschreibung
 - "CoE-Reload" zum Zurücksetzen der Veränderungen

HINWEIS

Beschädigung des Gerätes möglich!

Es wird dringend davon abgeraten, die Einstellungen in den CoE-Objekten zu ändern während die Achse aktiv ist, da die Reglung beeinträchtigt werden könnte.

7.1 Restore-Objekt

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	RW	0x0000000 (0 _{dez})

7.2 Konfigurationsdaten

Index 8000 FB Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:0	FB Settings	Maximaler Subindex	UINT8	RO	0x17 (23 _{dez})
8000:01	Invert feedback direction	Zählrichtung invertieren	BOOLEAN	RW	0x00 (0 _{dez})
8000:02	Referenced	Kann durch den Benutzer auf TRUE gesetzt werden.	BOOLEAN	RW	0x00 (0 _{dez})
		Wird automatisch auf FALSE gesetzt, sobald ein Motor mit einer abweichenden Seriennummer erkannt wird oder wenn es sich um ein Singleturn Feedback handelt.			
8000:0D	Offset position actual	Erlaubte Werte	UINT8	RW	0x00 (0 _{dez})
	source	0: Offset disabled Es wird kein Positionsoffset angewendet.			
		1: Encoder memory Es wird der Positionsoffset aus dem Speicher des Feedbacks verwendet (0x9008:20 [▶ 172])			
		2: Drive memory (default) Es wird der Positionsoffset aus dem Antriebsverstärker verwendet (0x8000:17)			
8000:11	Device type	3: OCT (nicht änderbar)	UINT32	RW	0x0000003 (3 _{dez})
8000:12	Singleturn bits	Anzahl der <u>Single-Bits</u> [▶ <u>105]</u>	UINT8	RW	0x14 (20 _{dez})
8000:13	Multiturn bits	Anzahl der <u>Multiturn-Bits</u> [▶ 105]	UINT8	RW	0x0C (12 _{dez})
8000:14	Observer bandwidth	Bandbreite des Drehzahlbeobachters [Hz]	UINT16	RW	0x01F4 (500 _{dez})
8000:15	Observer feed-forward	Lastverhältnis [%] 100 % = Lastfrei	UINT8	RW	0x01 (0 _{dez})
		50 % = Massenträgheitsmomente von An- und Abtrieb sind gleich			
8000:17	Positon Offset	Der Positionsoffset wird von der Rohposition des Gebers subtrahiert.	UINT32	RW	0x0000000 (0 _{dez})
		Er kann nur bei stillgesetzter Achse beschrieben werden.			

Index 8001 FB Touch probe settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8001:0	FB Touch probe settings	Maximaler Subindex	UINT8	RO	0x12 (18 _{dez})
8001:11	Touch probe 1 source	Erlaubte Werte:	UINT16	RW	0x0001 (1 _{dez})
		1: Touch probe input 1			
8001:12	Touch probe 2 source	Erlaubte Werte:	UINT16	RW	0x0002 (2 _{dez})
ı		2: Touch probe input 2			

Index 8008 FB OCT Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8008:0	FB OCT Settings	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
8008:01	Enable autoconfig	Nach dem Einlesen des elektronischen Typenschilds wird automatisch konfiguriert (siehe Automatischen Scannen der elektr. Typenschilder [* 114])	BOOLEAN	RW	0x00 (0 _{dez})
8008:02	Reconfig identical motor	Bei Austausch identischer Motoren wird nach dem Einlesen des elektronischen Typenschilds automatisch neu konfiguriert. <i>Enable autoconfig</i> muss eingeschaltet sein. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])	BOOLEAN	RW	0x00 (0 _{dez})
8008:03	Reconfig non-identical motor	Bei Austausch nicht-identischer Motoren wird nach dem Einlesen des elektronischen Typenschilds automatisch neu konfiguriert. <i>Enable autoconfig</i> muss eingeschaltet sein. (siehe Automatischen Scannen der elektr. Typenschilder [• 114])	BOOLEAN	RW	0x00 (0 _{dez})

Index 8010 DRV Amplifier Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8010:0	DRV Amplifier Settings	Maximaler Subindex	UINT8	RO	0x102 (66 _{dez})
8010:01	Enable TxPDOToggle	TxPDO Toggle im Statuswort (Bit 10) einblenden	BOOLEAN	RW	0x00 (0 _{dez})
8010:02	Enable input cycle counter	1: aktiviert	BOOLEAN	RW	0x00 (0 _{dez})
	counter	Zwei-Bit-Zähler, der mit jedem Prozessdatenzyklus bis zum Maximalwert von 3 inkrementiert wird und danach wieder bei 0 beginnt			
		Das Low-Bit wird in Bit 10 und das Hi-Bit in Bit 14 vom Status-Wort dargestellt.			
8010:11	Device type	1: Servo drive (nicht änderbar)	UINT32	RW	0x0000001 (1 _{dez})
8010:12*	Current loop integral time	Integralanteil Stromregler Einheit : 0,1 ms	UINT16	RW	0x000A (10 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> <u>Typenschilder [* 114]</u>)			
8010:13*	Current loop proportional gain	Proportionalanteil Stromregler Einheit: 0,1 V/A	UINT16	RW	0x0064 (100 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
8010:14	Velocity loop integral time	Integralanteil Geschwindigkeitsregler Einheit: 0,1 ms	UINT32	RW	0x00000032 (50 _{dez})
8010:15	Velocity loop proportional gain	Proportionalanteil Geschwindigkeitsregler Einheit: mA / (rad/s)	UINT32	RW	0x00000096 (150 _{dez})
8010:17	Position loop proportional gain	Proportionalanteil Positionsregler Einheit: (rad/s) / rad	UINT32	RW	0x0000000A (10 _{dez})
8010:19	Nominal DC link voltage	Nenn-Zwischenkreisspannung Einheit: mV	UINT32	RW	0x0000BB80 (48000 _{dez})
8010:1A	Min DC link voltage	Minimale Zwischenkreisspannung Einheit: mV	UINT32	RW	0x00001A90 (6800 _{dez})
8010:1B	Max DC link voltage	Maximale Zwischenkreisspannung Einheit: mV	UINT32	RW	0x0000EA60 (60000 _{dez})
8010:29	Amplifier I2T warn level	l²T-Modell Warnschwelle Einheit: %	UINT8	RW	0x50 (80 _{dez})
8010:2A	Amplifier I2T error level	l ² T-Modell Fehlerschwelle Einheit: %	UINT8	RW	0x69 (105 _{dez})
8010:2B	Amplifier Temperature warn level	Übertemperatur Warnschwelle Einheit: 0,1 °C	UINT16	RW	0x0320 (800 _{dez})
8010:2C	Amplifier Temperature error level	Übertemperatur Fehlerschwelle Einheit: 0,1 °C	UINT16	RW	0x03E8 (1000 _{dez})
8010:31	Velocity limitation	Drehzahlbegrenzung Einheit: 1/min	UINT32	RW	0x00040000 (262144 _{dez})
8010:32	Short-Circuit Brake duration max	Max. Dauer der Anker-Kurzschluss-Bremse Einheit: ms	UINT16	RW	0x03E8 (1000 _{dez})
8010:33	Stand still window	Stillstandsfenster Einheit: 1/min	UINT16	RW	0x0000 (0 _{dez})

^{*)} siehe Index 0x9009 FB OCT Nameplate

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8010:39	Select info data 1	Auswahl "Info data 1" Hier kann eine zusätzliche Information in die zyklischen Prozessdaten angezeigt werden. Folgende Informationen stehen zur Auswahl.	UINT8	RW	0x01 (1 _{dez})
		1 _{dez} : Torque current (filtered 1ms) [1000stel vom rated current]			
		2 _{dez} : DC link voltage [mV]			
		4 _{dez} : PCB temperature [0,1 °C]			
		5 _{dez} : Errors:			
		Bit0: ADC Error Bit1: Overcurrent Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier Bit6: I2T Motor Bit7: Encoder Bit8: Watchdog			
		6 _{dez} : Warnings:			
		Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier Bit6: I2T Motor Bit7: Encoder			
		7 _{dez} : I2T Motor [%]	1		
		8 _{dez} : I2T Amplifier [%]	_		
		10 _{dez} : Input Level:			
		Bit0: Digital Input 1 Level Bit1: Digital Input 2 Level Bit8: STO Input Level (STO variant, only)			
8010:3A	Select info data 2	Auswahl "Info data 2" Hier kann eine zusätzliche Information in die zyklischen Prozessdaten angezeigt werden. Folgende Informationen stehen zur Auswahl.	UINT8 RW	RW	0x01 (1 _{dez})
		1 _{dez} : Torque current (filtered 1ms) [1000stel vom rated current]			
		2 _{dez} : DC link voltage [mV]			
		4 _{dez} : PCB temperature [0,1 °C]			
		5 _{dez} : Errors:			
		Bit0: ADC Error			
		Bit1: Overcurrent Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier			
		Bit6: I2T Motor Bit7: Encoder Bit8: Watchdog			
		6 _{dez} : Warnings:			
		Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier Bit6: I2T Motor Bit7: Encoder			
	7 _{dez} : I2T Motor [%]				
	8 _{dez} : I2T Amplifier [%]				
	10 _{dez} : Input Level:				
	Bit0: Digital Input 1 Level Bit1: Digital Input 2 Level Bit8: STO Input Level (STO variant, only)				
8010:41	Low-pass filter frequency	Lastfilterfrequenz Einheit : Hz	UINT16 RW	RW	0x0140 (320 _{dez})
		Es können folgende Werte eingestellt werden: 0 Hz = Aus 160 Hz 320 Hz			

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8010:49	Halt ramp deceleration	Verzögerung der Drehzahl-Halterampe Einheit: 0,1 rad / s²	UINT32	RW	0x0000F570 (62832 _{dez})
8010:50 Following error wind	Following error window	Schleppabstandsüberwachung: Schleppfehlerfenster Einheit : der angegebene Wert muss mit dem entsprechenden <u>Skalierungsfaktor [* 127]</u> multipliziert werden	UINT32	RW	0xFFFFFFF (-1 _{dez})
		0xFFFFFFF (-1 _{dez}) = Schleppabstandsüberwachung aus Jeder andere Wert = Schleppabstandsüberwachung ein			
8010:51	Following error time out	Schleppabstandsüberwachung: Timeout Einheit: ms	UINT16	RW	0x0000 (0 _{dez})
		lst der Schleppfehler größer als das Schleppfehlerfenster, für eine Zeit, die größer ist als der Timeout, führt das zu einer Fehlerreaktion.			
8010:52	Fault reaction option code	Erlaubte Werte 0: Disable drive function, motor is free to rotate 1: Slow down on slow down ramp	UINT16	RW	0x0000 (0 _{dez})
8010:54	Feature bits	Die einstellbaren Motorstromwerte können als Scheitelwert oder Effektivwert interpretiert werden. Das Feature Bit ermöglicht die Umstellung.	UINT32	RW	0x0000000 (0 dez)
		Scheitelwert \rightarrow Bit 0 = 0 (default bei EL7201-001x) Effektivwert \rightarrow Bit 0 = 1 (default bei EL7211-001x)			
		Bei der EL7201-001x kann mit Hilfe des Lüftermoduls <u>ZB8610</u> der Ausgangsstrom erhöht werden.			
		normaler Ausgangsstrom → Bit 1 = 0 (default) erhöhter Ausgangsstrom → Bit 1 = 1			
		Daraus lassen sich folgende Kombinationen einstellen:			
		$0_{\text{dez}} \rightarrow \text{normaler Ausgangsstrom in Scheitelwert interpretiert}$			
		$1_{\text{dez}} \rightarrow \text{normaler Ausgangsstrom in Effektivwert}$ interpretiert			
		$2_{\text{dez}} \rightarrow$ erhöhter Ausgangsstrom in Scheitelwert interpretiert			
		$3_{\text{dez}} \rightarrow \text{erh\"{o}hter}$ Ausgangsstrom in Effektivwert interpretiert			
8010:57	Velocity feed forward gain	Geschwindigkeitsvorsteuerung Einheit: %	UINT8	RW	0x64 (100 _{dez})
8010:65	Invert direction of rotation	Umkehr der Rotationsrichtung	BOOLEAN	RW	0x00 (0 _{dez})
8010:66	Enable cogging torque compensation	Cogging-Kompensation aktivieren	BOOLEAN	RW	0x00 (0 _{dez})

Index 8011 DRV Motor Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8011:0	DRV Motor Settings	Maximaler Subindex	UINT8	RO	0x2D (45 _{dez})
8011:11*	Max current	Spitzenstrom Einheit: mA	UINT32	RW	0x00001770 (6000 _{dez})
		Die einstellbaren Motorstromwerte können als Scheitelwert oder Effektivwert interpretiert werden. Das Feature Bit (0x8010:54 [▶_159]) ermöglicht die Umstellung.			
		Scheitelwert \rightarrow Bit 0 = 0 (default bei EL7201-001x) Effektivwert \rightarrow Bit 0 = 1 (default bei EL7211-001x)			
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
8011:12*	Rated current	Nennstrom Einheit: mA	UINT32	RW	0x000003E8 (1000 _{dez})
		Die einstellbaren Motorstromwerte können als Scheitelwert oder Effektivwert interpretiert werden. Das Feature Bit (0x8010:54 [▶_159]) ermöglicht die Umstellung.			
		Scheitelwert \rightarrow Bit 0 = 0 (default bei EL7201-001x) Effektivwert \rightarrow Bit 0 = 1 (default bei EL7211-001x)			
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe Automatischen Scannen der elektr. Typenschilder [* 114])			
8011:13*	Motor pole pairs	Anzahl der Polpaare	UINT8	RW	0x03 (3 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			(302,
8011:15*	Commutation offset	Kommutierungs-Offset (zwischen elektrischer Nullposition und mechanischer Single-Turn Nullposition) Einheit:°	INT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> <u>Typenschilder [** 114]</u>)			
8011:16*	Torque constant	Drehmoment-Konstante Einheit: mNm / A	UINT32	RW	0x0000000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
8011:18*	Rotor moment of inertia	Massenträgheitsmoment des Motors Einheit: g cm^2	UINT32	RW	0x0000000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
8011:19*	Winding inductance	Induktivität Einheit: 0,1 mH	UINT16	RW	0x000E (14 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
8011:1B*	Motor speed limitation	Drehzahlbegrenzung Einheit: 1/min	UINT32	RW	0x00040000 (262144 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			

^{*)} siehe Index 0x9009 FB OCT Nameplate

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8011:29	I2T warn level	I2T-Modell Warnschwelle Einheit: %	UINT8	RW	0x50 (80 _{dez})
8011:2A	I2T error level	I2T-Modell Fehlerschwelle Einheit: %	UINT8	RW	0x69 (105 _{dez})
8011:2B*	Motor Temperature warn level	Übertemperatur Warnschwelle Einheit : 0,1 °C	UINT16	RW	0x03E8 (1000 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
8011:2C*	Motor Temperature error level	Übertemperatur Fehlerschwelle Einheit : 0,1 °C	UINT16	RW	0x05DC (1500 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [▶ 114])			
8011:2D*	Motor thermal time constant	Thermische Zeitkonstante Einheit: 0,1 s	UINT16	RW	0x0028 (40 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			

^{*)} siehe Index 0x9009 FB OCT Nameplate

Index 8012 DRV Brake Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8012:0	DRV Brake Settings	Maximaler Subindex	UINT8	RO	0x14 (20 _{dez})
8012:01	Enable manual override	Manuelles Lösen der Motorhaltebremse	BOOLEAN	RW	0x00 (0 _{dez})
8012:02	Manual brake state	0: Release Bremse lösen	BOOLEAN	RW	0x00 (0 _{dez})
		1: Apply Bremse anlegen			
8012:11*	Release delay	Zeit, die die Haltebremse zum Öffnen (Lösen) benötigt, nachdem der Strom angelegt wurde	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
8012:12*	Application delay	Zeit, die die Haltebremse zum Schließen (Halten) benötigt, nachdem der Strom abgeschaltet wurde	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [* 114])			
8012:13	Emergency application timeout	Zeit, die der Verstärker abwartet, bis die Drehzahl nach Halt-Anforderung (Solldrehzahl 0 nach Halterampe oder <i>Torque off</i>) das Stillstandfenster erreicht. Bei Überschreiten der eingestellten Wartezeit wird die Haltebremse unabhängig von der Drehzahl ausgelöst.	UINT16	RW	0x0000 (0 _{dez})
		Hinweis: Bei rotatorischen Achsen und der Einstellung Torque off für den Fehlerfall muss dieser Parameter mindestens auf die längste Zeit des "Austrudelns" der Achse angepasst werden.			
		Bei hängenden Achsen und der Einstellung <i>Torque off</i> für den Fehlerfall sollte dieser Parameter auf eine sehr kurze Zeit eingestellt werden, um ein weites Absacken der Achse/Last zu verhindern.			
8012:14*	Brake moment of inertia	Massenträgheitsmoment der Bremse Einheit : g cm^2	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> <u>Typenschilder [* 114]</u>)			

^{*)} siehe Index 0x9009 FB OCT Nameplate

Der folgende Hinweis bezieht sich auf die DMC-Objekte 0x6030, 0x7030, 0x8030 und 0x8031.

Datentyp INT64 für alle Positionen in der Fahrwegsteuerung

In der Fahrwegsteuerung wird für alle Positionen der Datentyp INT64 verwendet.

- Die Singleturn-Position befindet sich in den unteren 32 Bit.
- Die Multiturn-Position befindet sich in den oberen 32 Bit.

Index 8030 DMC Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8030:0	DMC Settings	Maximaler Subindex	UINT8	RO	0x14 (20 _{dez})
8030:07	Emergency deceleration	Verzögerung für die Nothalterampe. (In ms von Motornenndrehzahl bis zum Stillstand)	UINT16	RW	0x64 (100 _{dez})
		Einheit: 1 ms			
8030:08	Calibration positon	Bei erfolgreicher Referenzfahrt wird die "Actual position" auf diesen Wert gesetzt.	INT64	RW	0x00000000 000000 (0 _{dez})
8030:09	Calibration velocity (towards plc cam)	Geschwindigkeit bei Auffahren auf den Nocken in 10000stel der Motornenndrehzahl	INT16	RW	0x0064 (100 _{dez})
8030:0A	Calibration velocity (off plc cam)	Geschwindigkeit bei Abfahren vom Nocken in 10000stel der Motornenndrehzahl	INT16	RW	0x000A (10 _{dez})
8030:0E	Modulo factor	Feedback-Inkremente für eine mechanische Umdrehung	INT64	RW	0x000000010 0000000 (4294967296 _d _{ez})
8030:12	Block calibration torque limit	Drehmomentlimitierung zum Auffahren auf den Endanschlag. In Promille vom Motornennstrom.	UINT16	RW	0x64 (100 _{dez})
8030:13	Block calibration stop distance	Nach Erreichen der Kalibrierposition fährt die Achse um diese Distanz aus der Endlage heraus.	INT64	RW	0x00000010 0000000 (4294967296 _d _{ez})
8030:14	Block calibration lag trheshold	Bei Überschreitung dieses Schleppabstandes befindet sich die Achse in der Endlage	INT64	RW	0x00000010 0000000 (4294967296 _d
8030:15	Target position window	Zielpositionsfenster:	INT64	RW	0x16c16c1
		Das In-Target Bit wird gesetzt, wenn sich die Achse mindesten für die unter 0x8030:16 eingestellte Zeit innerhalb dieses Fensters befindet.			
8030:16	Target position monitor time	s. 0x8030:15 Zeit in Einheit: ms	UINT16	RW	0x0014 (20 _{dez})
8030:17	Target position timeout	Wenn der Sollwertgenerator seine Endposition erreicht hat und die Achse nach Ablauf dieser Zeit nicht im Zielfenster steht, wird der Auftrag beendet und das In-Target Bit nicht gesetzt.	UINT16	RW	0x1770 (6000 _{dez})

Index 8031 DMC Features

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8031:0	DMC Features	Maximaler Subindex	UINT8	RO	0x1B (27 _{dez})
8031:13	Invert calibration cam search direction	Fahrtrichtung zur Suche des Endschalters invertieren (Default: FALSE = Suchen mit positiver Drehrichtung)	BOOLEAN	RW	0x00 (0 _{dez})
8031:14	Invert sync impulse search direction	Drehrichtung zum Verlassen des Endschalters (Default: TRUE = Verlassen in negativer Drehrichtung)	richtung zum Verlassen des Endschalters BOOLEAN		
8031:19	Calibration cam source	Quelle für den Referenzschalter 0: Input 1 1: Input 2	ENUM8	RW	0x00 (0 _{dez})
8031:1A	Calibration cam active level	Zustand des Referenzschalters im betätigten Zustand 0: Hi 1: Low	ENUM8	RW	0x00 (0 _{dez})
8031:B	Latch source	Quelle für die Latch-Einheit 0: Input 1 1: Input 2	ENUM8	RW	0x00 (0 _{dez})

7.3 Konfigurationsdaten (herstellerspezifisch)

Index 801F DRV Vendor data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
801F:0	DRV Vendor data	Maximaler Subindex	UINT8	RO	0x15 (21 _{dez})
801F:11	Amplifier peak current	Spitzenstrom des Verstärkers (Scheitelwert) Einheit : mA	UINT32	RW	0x00001F40 (8000 _{dez})
801F:12	Amplifier rated current	Nennstrom des Verstärkers (Scheitelwert) Einheit : mA	UINT32	RW	0x00000FA0 (4000 _{dez})
801F:13	Amplifier thermal time constant	Thermische Zeitkonstante des Verstärkers Einheit : 0,1 ms	UINT16	RW	0x0023 (35 _{dez})
801F:14	Amplifier overcurrent threshold	Schwellwert für Kurzschlusserkennung Einheit: mA	UINT32	RW	0x00002EE0 (12000 _{dez})
801F:15	Max rotary field frequency	Max. Drehfeldfrequenz Einheit: Hz	UINT32	RW	0x00002EE0 (12000 _{dez})

7.4 Kommando-Objekt

Index FB00 Command

Index (hex)	Name	Bedeutu	ıng		Datentyp	Flags	Default
FB00:0	DCM Command	Max. Su	bindex		UINT8	RO	0x03 (3 _{dez})
FB00:01	Request	0x1100	Get build number	Auslesen der Build-Nummer	OCTET- STRING[2]	RW	{0}
		0x1101	Get build date	Auslesen des Build-Datums			
		0x1102	Get build time	Auslesen der Build-Zeit			
FB00:02	Status	0	Finished, no error, no response	Kommando ohne Fehler und ohne Antwort (Response) beendet	UINT8	RO	0x00 (0 _{dez})
		1	Finished, no error, response	Kommando ohne Fehler und mit Antwort beendet			
		2	Finished, error, no response	Kommando mit Fehler und ohne Antwort beendet	-		
		3	Finished, error, response	Kommando mit Fehler und mit Antwort beendet			
		255	Executing	Kommando wird ausgeführt			
FB00:03	Response	abhängi	yom Request		OCTET- STRING[4]	RO	{0}

7.5 Eingangsdaten

Index 6000 FB Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	FB Inputs	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
6000:0E	TxPDO State	TRUE: Die Positionsdaten sind ungültig. FALSE: Die Positionsdaten sind gültig.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0F	Input Cycle Counter	Wird mit jedem Prozessdaten-Zyklus hochgezählt, schaltet auf 0 nach Erreichen des Maximalwertes von 3.	BIT2	RO	0x00 (0 _{dez})
6000:11	Position	Position	UINT32	RO	0x0000000 (0 _{dez})

Index 6001 FB Touch probe inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6001:0	FB Touch probe inputs	Maximaler Subindex	UINT8	RO	0x14 (20 _{dez})
6001:01	TP1 Enable	Touchprobe 1 eingeschaltet	BOOLEAN	RO	0x00 (0 _{dez})
6001:02	TP1 pos value stored	Positiver Wert von Touchprobe 1 gespeichert	BOOLEAN	RO	0x00 (0 _{dez})
6001:03	TP1 Neg value stored	Negativer Wert von Touchprobe 1 gespeichert	BOOLEAN	RO	0x00 (0 _{dez})
6001:08	TP1 Input	Digitaler Eingang Touch probe 1	BOOLEAN	RO	0x00 (0 _{dez})
		Der Eingang muss mit 1-Leiter + 24 V Signal angesprochen werden			
6001:09	TP2 Enable	Touchprobe 2 eingeschaltet	BOOLEAN	RO	0x00 (0 _{dez})
6001:0A	TP2 pos value stored	Positiver Wert von Touchprobe 2 gespeichert	BOOLEAN	RO	0x00 (0 _{dez})
6001:0B	TP2 neg value stored	Negativer Wert von Touchprobe 2 gespeichert	BOOLEAN	RO	0x00 (0 _{dez})
6001:10	TP2 Input	Digitaler Eingang Touch probe 2	BOOLEAN	RO	0x00 (0 _{dez})
		Der Eingang muss mit 1-Leiter + 24 V Signal angesprochen werden			
6001:11	TP1 pos position	Positiver Wert von Touchprobe 1 Einheit : der angegebene Wert muss mit dem entsprechenden <u>Skalierungsfaktor [* 127]</u> multipliziert werden	UINT32	RO	0x00000000 (0 _{dez})
6001:12	TP1 neg position	Negativer Wert von Touchprobe 1 Einheit : der angegebene Wert muss mit dem entsprechenden <u>Skalierungsfaktor [* 127]</u> multipliziert werden	UINT32	RO	0x00000000 (0 _{dez})
6001:13	TP2 pos position	Positiver Wert von Touchprobe 2 Einheit : der angegebene Wert muss mit dem entsprechenden <u>Skalierungsfaktor</u> [* <u>127</u>] multipliziert werden	UINT32	RO	0x00000000 (0 _{dez})
6001:14	TP2 neg position	Negativer Wert von Touchprobe 2 Einheit : der angegebene Wert muss mit dem entsprechenden <u>Skalierungsfaktor</u> [▶ 127] multipliziert werden	UINT32	RO	0x00000000 (0 _{dez})

Index 6010 DRV Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6010:0	DRV Inputs	Maximaler Subindex	UINT8	RO	0x13 (19 _{dez})
6010:01	Statusword	Statusword Bit 0: Ready to switch on Bit 1: Switched on Bit 2: Operation enabled Bit 3: Fault Bit 4: reserved Bit 5: Quick stop (inverse) Bit 6: Switch on disabled Bit 7: Warning Bit 8 + 9: reserved Bit 10: TxPDOToggle (An-/Abwahl über 0x8010:01) Bit 11: Internal limit active Bit 12: Drive follows the command value Bit 13 - 15: reserved	UINT16	RO	0x0000 (0 _{dez})
6010:03	Modes of operation display	Anzeige des Betriebsmodus. Erlaubte Werte: 9: Cyclic synchronous velocity mode (CSV) 10: Cyclic synchronous torque mode (CST) 11: Cyclic synchronous torque mode with commutation angle (CSTCA)	UINT8	RO	0x00 (0 _{dez})
6010:06	Following error actual value	Schleppfehler Einheit: der angegebene Wert muss mit dem entsprechenden Skalierungsfaktor [** 127] multipliziert werden	INT32	RO	0x0000000 (0 _{dez})
6010:07	Velocity actual value	Anzeige des aktuellen Geschwindigkeitswertes Einheit: siehe Index 0x9010:14 [▶ 174]	INT32	RO	0x0000000 (0 _{dez})
6010:08	Torque actual value	Anzeige des aktuellen Drehmomentwertes Der Wert wird in 1000stel vom <i>rated current</i> (0x8011:12) angegeben.	INT16	RO	0x0000 (0 _{dez})
		Formel für Index $0x8010:54$ [\blacktriangleright 159] = 0 : M = ((Torque actual value / 1000) x (rated current / $\sqrt{2}$)) x torque constant ($0x8011:16$ [\blacktriangleright 162])			
		Formel für <u>Index 0x8010:54 [▶ 159]</u> = 1 : M = ((Torque actual value / 1000) x rated current)) x torque constant (0x8011:16 [▶ 162])			
6010:12	Info data 1	Synchrone Informationen (Auswahl über Subindex 0x8010:39 [▶ 159])	UINT16	RO	0x0000 (0 _{dez})
6010:13	Info data 2	Synchrone Informationen (Auswahl über Subindex 0x8010:3A [▶ 159])	UINT16	RO	0x0000 (0 _{dez})

Der folgende Hinweis bezieht sich auf die DMC-Objekte 0x6030, 0x7030, 0x8030 und 0x8031.

Datentyp INT64 für alle Positionen in der Fahrwegsteuerung

In der Fahrwegsteuerung wird für alle Positionen der Datentyp INT64 verwendet.

- Die Singleturn-Position befindet sich in den unteren 32 Bit.
- Die Multiturn-Position befindet sich in den oberen 32 Bit.

Index 6030 DMC Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6030:0	DMC Inputs	Maximaler Subindex	UINT8	RO	0x3C (60 _{dez})
6030:02	DMC_FeedbackStatus Latch extern valid	Eine Flanke wurde auf dem externen Eingang erkannt und gelatched.	BOOLEAN	RO	0x00 (0 _{dez})
6030:03	DMC_FeedbackStatus	Das Setzen der Feedbackposition war erfolgreich.	BOOLEAN	RO	0x00 (0 _{dez})
	Set counter done	Dieses Bit bleibt anstehen bis "Set counter" wieder abfällt.			
6030:0D	DMC_FeedbackStatus Status of extern Latch	Status des externen Latch-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
6030:11	DMC_DriveStatusRe ady to enable	Die Antriebs-Hardware ist zum Aktivieren bereit.	BOOLEAN	RO	0x00 (0 _{dez})
6030:12	DMC_DriveStatusRe ady	Die Antriebs-Hardware ist aktiviert.	BOOLEAN	RO	0x00 (0 _{dez})
6030:13	DMC_DriveStatusW arning	Es steht eine Warnung im Drive an.	BOOLEAN	RO	0x00 (0 _{dez})
6030:14	DMC_DriveStatusErr	Es steht ein Fehler im Drive an.	BOOLEAN	RO	0x00 (0 _{dez})
	or	Das "Ready to enable"-Bit und das "Ready"-Bit werden auf FALSE gesetzt.			
6030:15	DMC_DriveStatusM oving positive	Die Achse fährt in positive Richtung.	BOOLEAN	RO	0x00 (0 _{dez})
6030:16	DMC_DriveStatusM oving negative	Die Achse fährt in negative Richtung.	BOOLEAN	RO	0x00 (0 _{dez})
6030:1C	DMC_DriveStatusDi gital Input 1	Status des ersten digitalen Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
6030:1D	DMC_DriveStatusDi gital Input 2	Status des zweiten digitalen Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
6030:21	DMC_PositioningStatu sBusy	Der Positionierauftrag läuft.	BOOLEAN	RO	0x00 (0 _{dez})
6030:22	DMC_PositioningStatu sIn-Target	Die Achse befindet sich auf Zielposition.	BOOLEAN	RO	0x00 (0 _{dez})
6030:23	DMC_PositoningStatus Warning	Warnung	BOOLEAN	RO	0x00 (0 _{dez})
6030:24	DMC_PositoningStatus Error	Fehler	BOOLEAN	RO	0x00 (0 _{dez})
6030:25	DMC_PositoningStatus Calibrated	Die Achse ist kalibriert.	BOOLEAN	RO	0x00 (0 _{dez})
6030:26	DMC_PositioningStatu sAccelerate	Die Achse beschleunigt.	BOOLEAN	RO	0x00 (0 _{dez})
6030:27	DMC_PositioningStatusDecelerate	Die Achse verzögert.	BOOLEAN	RO	0x00 (0 _{dez})
6030:28	DMC_PositoningStatus Ready to execute	Die Fahrwegsteuerung ist bereit einen Auftrag entgegen zu nehmen.	BOOLEAN	RO	0x00 (0 _{dez})
		Dieses Bit ist FALSE wenn:			
		Der Antrieb einen Fehler hat			
		Der Antrieb nicht aktiviert ist			
		Solange das "PositioningControlExecute" ansteht.			
6030:31	DMC_Set position	Aktuelle vom Rampengenerator vorgegebene Zielposition in Feedback-Inkrementen	INT64	RO	0x00000000 0000000 (0 _{dez})
6030:32	DMCSet velocity	Aktuelle vom Rampengenerator vorgegebene Geschwindigkeit in 10000stel der Motor- Nenngeschwindigkeit	INT16	RO	0x0000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6030:33	DMCActual drive time	Zeit seit Fahrauftragsbeginn in ms. Stoppt mit Erreichen der Zielposition	UINT32	RO	0x0000000 (0 _{dez})
6030:34	DMCActual position lag	Schleppabstand	INT64	RO	0x00000000 000000 (0 _{dez})
6030:35	DMCActual velocity	Aktuelle Geschwindigkeit in 10000stel der Motor- Nenngeschwindigkeit	INT16	RO	0x0000 (0 _{dez})
6030:36	DMCActual position	Aktuelle Position aus dem Feedback (inkl. möglicher Offsets durch Referenzfahrten,)	INT64	RO	0x00000000 000000 (0 _{dez})
6030:37	DMCError id	Error Id (Identisch zu Diag History)	UINT32	RO	0x0000000 (0 _{dez})
6030:38	DMCInput cycle counter	Wird mit jedem Prozessdatenzyklus inkrementiert	UINT8	RO	0x00 (0 _{dez})
6030:3A	DMCLatch value	Feedback-Position zum Latch-Zeitpunkt	INT64	RO	0x00000000 000000 (0 _{dez})
6030:3B	DMCCyclic info data	Synchrone Infodaten 1	INT16	RO	0x0000 (0 _{dez})
6030:3C	DMC Cyclic info data 2	Synchrone Infodaten 2	INT16	RO	0x0000 (0 _{dez})

7.6 Ausgangsdaten

Index 7001 FB Touch probe outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7001:0	FB Touch probe outputs	Maximaler Subindex	UINT8	RO	0x0E (14 _{dez})
7001:01	TP1 Enable	Touchprobe 1 einschalten	BOOLEAN	RO	0x00 (0 _{dez})
7001:02	TP1 Continous	S wird nur beim ersten Event getriggert. Es wird bei jedem Event getriggert.	BOOLEAN	RO	0x00 (0 _{dez})
7001:03	TP1 Trigger mode	Es wird Input 1 getriggert (nicht änderbar)	BIT2	RO	0x00 (0 _{dez})
7001:05	TP1 Enable pos edge	Bei positiver Flanke triggern	BOOLEAN	RO	0x00 (0 _{dez})
7001:06	TP1 Enable neg edge	Bei negativer Flanke triggern	BOOLEAN	RO	0x00 (0 _{dez})
7001:09	TP2 Enable	Touchprobe 2 einschalten	BOOLEAN	RO	0x00 (0 _{dez})
7001:0A	TP2 Continous	Ses wird nur beim ersten Event getriggert. Es wird bei jedem Event getriggert.	BOOLEAN	RO	0x00 (0 _{dez})
7001:0B	TP2 Trigger mode	Es wird Input 2 getriggert (nicht änderbar).	BIT2	RO	0x00 (0 _{dez})
7001:0D	TP2 Enable pos edge	Bei positiver Flanke triggern	BOOLEAN	RO	0x00 (0 _{dez})
7001:0E	TP2 Enable neg edge	Bei negativer Flanke triggern	BOOLEAN	RO	0x00 (0 _{dez})

Index 7010 DRV Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7010:0	DRV Outputs	Maximaler Subindex	UINT8	RO	0x0E (14 _{dez})
7010:01	Controlword	Controlword Bit 0: Switch on Bit 1: Enable voltage Bit 2: Quick stop (inverse) Bit 3: Enable operation Bit 4 - 6: reserved Bit 7: Fault reset Bit 8 - 15: reserved	UINT16	RO	0x0000 (0 _{dez})
7010:03	Modes of operation	Erlaubte Werte: 0x08: Cyclic synchronous position mode (CSP) 0x09: Cyclic synchronous velocity mode (CSV) 0x0A: Cyclic synchronous torque mode (CST) 0x0B: Cyclic synchronous torque mode with commutation angle (CSTCA)	UINT8	RW	0x00 (0 _{dez})
7010:05	Target position	Konfigurierte Ziel-Position Einheit: der Wert muss mit dem entsprechenden Skalierungsfaktor [* 127] multipliziert werden.	UINT32	RW	0x0000000 (0 _{dez})
7010:06	Target velocity	Konfigurierte Ziel-Geschwindigkeit Die Geschwindigkeitsskalierung kann dem Index 0x9010:14 [* 174] ("Velocity encoder resolution") entnommen werden.	INT32	RO	0x0000000 (0 _{dez})
7010:09 Ta	Target torque	Konfigurierter Eingangswert der Drehmoment- Überwachung Der Wert wird in 1000stel vom <i>rated current</i> (0x8011:12 [▶ 163]) angegeben Formel für Index 0x8010:54 [▶ 159] = 0: M = ((Torque actual value / 1000) x (rated current /	INT16	RO	0x0000 (0 _{dez})
		√2)) x torque constant (<u>0x8011:16 [▶ 162]</u>) Formel für <u>Index 0x8010:54 [▶ 159]</u> = 1 : M = ((Torque actual value / 1000) x rated current)) x torque constant (<u>0x8011:16 [▶ 162]</u>)			
7010:0A	Torque offset	Offset des Drehmoment-Wertes Der Wert wird in 1000stel vom <i>rated current</i> (0x8011:12 [▶ 163]) angegeben	INT16	RO	0x0000 (0 _{dez})
		Formel für <u>Index 0x8010:54</u> [▶ 159] = 0 : M = ((Torque actual value / 1000) x (rated current / √2)) x torque constant (<u>0x8011:16</u> [▶ <u>162]</u>)			
		Formel für <u>Index 0x8010:54</u> [\(\int \) 159] = 1 : M = ((Torque actual value / 1000) x rated current)) x torque constant (\(\frac{0x8011:16}{D}\) [\(\int \) 162])			
7010:0B	Torque limitation	Grenzwert des Drehmomentes für die Drehmoment- Überwachung (Bipolar Limit) Der Wert wird in 1000stel vom <i>rated current</i> (0x8011:12 [• 163]) angegeben.	UINT16	RW	0x7FFF (32767 _{dez})
		Formel für <u>Index 0x8010:54</u> [▶ 159] = 0 : M = ((Torque actual value / 1000) x (rated current / √2)) x torque constant (<u>0x8011:16</u> [▶ <u>162]</u>)			
		Formel für <u>Index 0x8010:54 [▶ 159]</u> = 1 : M = ((Torque actual value / 1000) x rated current)) x torque constant (<u>0x8011:16 [▶ 162]</u>)			
7010:0E	Commutation angle	Kommutierungs-Winkel (für CSTCA Modus) Einheit: 360° / 2 ¹⁶	UINT16	RO	0x0000 (0 _{dez})

Der folgende Hinweis bezieht sich auf die DMC-Objekte 0x6030, 0x7030, 0x8030 und 0x8031.

Datentyp INT64 für alle Positionen in der Fahrwegsteuerung

In der Fahrwegsteuerung wird für alle Positionen der Datentyp INT64 verwendet.

- Die Singleturn-Position befindet sich in den unteren 32 Bit.
- Die Multiturn-Position befindet sich in den oberen 32 Bit.

Index 7030 DMC Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7030:0	DMC Outputs	Maximaler Subindex	UINT8	RO	0x36 (54 _{dez})
7030:02	DMC_FeedbackControl Enable latch extern on positive edge	Latchen auf die positive Flanke des externen Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
7030:03	DMC_FeedbackControl Set counter	Mit einer steigenden Flanke wird "Actual position" auf den Wert von "Set counter value" gesetzt.	BOOLEAN	RO	0x00 (0 _{dez})
7030:04	DMC_FeedbackControlEnable latch extern on negative edge	Latchen auf die negative Flanke des externen Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
7030:11	DMC_DriveControlE nable	Antrieb aktivieren	BOOLEAN	RO	0x00 (0 _{dez})
7030:12	DMC_DriveControlR eset	Reset der Antriebs-Hardware durchführen	BOOLEAN	RO	0x00 (0 _{dez})
7030:21	DMC_PositionControl_	Fahrauftrag mit steigender Flanke starten	BOOLEAN	RO	0x00 (0 _{dez})
	_Execute	Auftrag läuft solange dieses Bit gesetzt ist oder bis der Auftrag abgearbeitet ist.			
		Sollte der Pegel während der Fahrt abfallen, wird die Achse mit der dem Auftrag übergebenen Verzögerung zum Stillstand gebracht.			
7030:22	DMC_PositionControl_ _Emergency stop	Bei steigender Flanke mit Nothalterampe bis zum Stillstand verzögern	BOOLEAN	RO	0x00 (0 _{dez})
7030:31	DMCSet counter value	s. 0x7030:03	INT64	RO	0x00000000 000000 (0 _{dez})
7030:32	DMCTarget position	Positionsvorgabe in Feedback-Inkrementen	INT64	RO	0x00000000 000000 (0 _{dez})
7030:33	DMCTarget velocity	Maximalgeschwindigkeit während des Fahrauftrages in 10000stel der Motornenndrehzahl	INT16	RO	0x0000 (0 _{dez})
7030:34	DMCStart type	Art des Positionierauftrages:	UINT16	RO	0x0000 (0 _{dez})
		0x0001: Absolut			
		0x0002: Relativ			
		0x0003: Endlos +			
		0x0004: Endlos -			
		0x0105: Modulo short			
		0x0205: Modulo +			
		0x0305: Modulo -			
		0x6000: Cali PLC cam			
		0x6200: Cali Block			
		0x6E00: Cali set			
		0x6F00: Cali clear			
7030:35	DMCTarget acceleration	Beschleunigung: Zeit in ms vom Stillstand bis zum Erreichen der Motornenndrehzahl	UINT16	RO	0x0000 (0 _{dez})
7030:36	DMCTarget deceleration	Verzögerung: Zeit in ms für die Verzögerung von Motornenndrehzahl bis zum Stillstand	UINT16	RO	0x0000 (0 _{dez})

7.7 Informations-/Diagnostikdaten

Index 10F3 Diagnosis History

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F3:0	Diagnosis History	Maximaler Subindex	UINT8	RO	0x37 (55 _{dez})
10F3:01	Maximum Messages	Maximale Anzahl der gespeicherten Nachrichten Es können maximal 50 Nachrichten gespeichert werden	UINT8	RO	0x00 (0 _{dez})
10F3:02	Newest Message	Subindex der neusten Nachricht	UINT8	RO	0x00 (0 _{dez})
10F3:03	Newest Acknowledged Message	Subindex der letzten bestätigten Nachricht	UINT8	RW	0x00 (0 _{dez})
10F3:04	New Messages Available	Zeigt an, wenn eine neue Nachricht verfügbar ist	BOOLEAN	RO	0x00 (0 _{dez})
10F3:05	Flags	ungenutzt	UINT16	RW	0x0000 (0 _{dez})
10F3:06	Diagnosis Message 001	Nachricht 1	OCTET- STRING[28]	RO	{0}
10F3:37	Diagnosis Message 050	Nachricht 50	OCTET- STRING[28]	RO	{0}

Index 10F8 Actual Time Stamp

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F8:0	Actual Time Stamp	Zeitstempel	UINT64	RO	

Index 9008 FB OCT Info data

(diese Daten werden immer automatisch aus dem elektronischen Typenschild des Motors eingelesen und dienen rein informativen Zwecken)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9008:0	FB OCT Info data	Maximaler Subindex	UINT8	RO	0x20 (32 _{dez})
9008:11	Encoder Type	Feedbacktyp 2: Dreh-Encoder, unipolare Zählung	UINT16	RO	0x0000 (0 _{dez})
9008:12	Resolution	Auflösung des Feedbacks Einheit: Schritte pro Umdrehung	UINT32	RO	0x0000000 (0 _{dez})
9008:13	Range	Arbeitsbereich des Feedbacks. Beim Verlassen dieses Bereichs gibt es einen Überlauf der Position. Einheit: Umdrehungen	UINT32	RO	0x0000000 (0 _{dez})
9008:14	Type Code Name	Name des Feedbacks	STRING	RO	
9008:15	Serial No	Seriennummer des Feedbacks	STRING	RO	
9008:16	Firmware Revision No	Revision der Firmware	STRING	RO	
9008:17	Firmware Date	Datum der Firmware	STRING	RO	
9008:18	EEPROM Size	EEPROM Größe	UINT16	RO	0x0000 (0 _{dez})
9008:19	Temperature	Temperatur Einheit: 0,1°	INT16	RO	0x0000 (0 _{dez})
9008:1A	LED Current	Strom der Feedback-LED Einheit: 0,1 mA	UINT16	RO	0x0000 (0 _{dez})
9008:1B	Supply voltage	Versorgungsspannung des Feedbacks Einheit: mV	UINT32	RO	0x00000000 (0 _{dez})
9008:1C	Life- time	Betriebsstundenzähler Einheit: Minuten	UINT32	RO	0x0000000 (0 _{dez})
9008:1D	Received Signal Strength Indicator	Empfangssignalstärke an der Klemme Einheit: %	UINT16	RO	0x0000 (0 _{dez})
9008:1E	Slave Received Signal Strength Indicator	Empfangssignalstärke am Geber Einheit: %	UINT16	RO	0x0000 (0 _{dez})
9008:1F	Line delay	Laufzeit des Signals im Kabel Einheit: ns	UINT16	RO	0x0000 (0 _{dez})
9008:20	Encoder position offset	Im Motor-Feedback abgespeicherter Positionsoffset	UINT32	RO	0x0000000 (0 _{dez})

Index 9009 FB OCT Nameplate

Die in diesem Index beschriebenen Parameter werden immer aus dem elektronischen Typenschild des angeschlossenen Motors gelesen. Aus diesen Parametern ergeben sich die in diesem Kapitel mit Sternchen (*) markierten Parameter automatisch, wenn das Automatische Scannen des elektronischen Typenschild eingeschaltet ist (Index 0x8008 [▶ 158]).

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9009:0	FB OCT Nameplate	Maximaler Subindex	UINT8	RO	0x24 (36 _{dez})
9009:01	Motor vendor	Motorhersteller	STRING	RO	
9009:02	Electric motor type	Motortyp	STRING	RO	
9009:03	Serial No	Seriennummer	STRING	RO	
9009:04	Order code	Bestellnummer	STRING	RO	
		(Auf diesen Index wird beim Autoconfig geprüft, ob der Motor identisch zum Vorgänger ist)			
9009:05	Motor construction	Art des Motors	STRING	RO	
9009:06	Pole pairs	Polpaarzahl	UINT32	RO	0x00000000 (0 _{dez})
9009:07	Standstill current (rms)	Effektiver Haltestrom Einheit: mA	UINT32	RO	0x0000000 (0 _{dez})
9009:08	Rated current (rms)	Effektiver Nennstrom Einheit: mA	UINT32	RO	0x0000000 (0 _{dez})
9009:09	Peak current (rms)	Effektiver Spitzenstrom Einheit: mA	UINT32	RO	0x0000000 (0 _{dez})
9009:0A	Nominal voltage (rms)	Effektive Nennspannung Einheit: mV	UINT32	RO	0x00000000 (0 _{dez})
9009:0B	Max voltage (rms)	Maximale Spannung Einheit: mV	UINT32	RO	0x00000000 (0 _{dez})
9009:0C	Max winding du/dt	Maximal zulässige Spannungsanstieg an der Spule Einheit : kV/s	UINT32	RO	0x00000000 (0 _{dez})
9009:0D	Max torque	Maximales Drehmoment Einheit: mNm	UINT16	RO	0x0000 (0 _{dez})
9009:0E	Torque constant	Drehmoment-Konstante Einheit: mNm / A	UINT16	RO	0x0000 (0 _{dez})
9009:0F	EMK (rms)	Gegenspannung Einheit: mV / (1/min)	UINT32	RO	0x0000000 (0 _{dez})
9009:10	Winding resistance Ph-Ph 20°C	Spulenwiderstand Einheit: mOhm	UINT16	RO	0x0000 (0 _{dez})
9009:11	Ld Ph-Ph	Induktivität in Flussrichtung Einheit: 0,1 mH	UINT16	RO	0x0000 (0 _{dez})
9009:12	Lq Ph-Ph	Induktivität in momentbildende Richtung Einheit: 0,1 mH	UINT16	RO	0x0000 (0 _{dez})
9009:13	Max speed	Maximale Geschwindigkeit Einheit: 1/min	UINT32	RO	0x0000000 (0 _{dez})
9009:14	Moment of inertia	Massenträgheitsmoment Einheit: g cm^2	UINT16	RO	0x0000 (0 _{dez})
9009:15	T motor warn limit	Warnungsschwelle Motortemperatur Einheit: 0,1°C	UINT16	RO	0x0000 (0 _{dez})
9009:16	T motor shut down	Fehlerschwelle Motortemperatur Einheit : 0,1°C	UINT16	RO	0x0000 (0 _{dez})
9009:17	Time constant i2t	Zeitkonstante I2T-Modell Einheit : s	UINT16	RO	0x0000 (0 _{dez})
9009:18	Motor thermal constant	Thermische Zeitkonstante des Motors Einheit: s	UINT16	RO	0x0000 (0 _{dez})
9009:1B	Brake type	Typ der Bremse	STRING	RO	
		no Brake			
		holding Brake			
9009:1C	Min brake voltage	Minimale Bremsspannung Einheit: mV	UINT32	RO	0x0000000 (0 _{dez})
9009:1D	Max brake voltage	Maximale Bremsspannung Einheit: mV	UINT32	RO	0x00000000 (0 _{dez})
9009:1E	Min brake monitor current	Minimaler Strom für die Überwachung der Bremse Einheit : mA	UINT32	RO	0x00000000 (0 _{dez})
9009:1F	Brake holding torque	Haltemoment der Bremse Einheit: mNm	UINT32	RO	0x00000000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9009:20	Brake T on	Zeit bis die Bremse anzieht Einheit : ms	UINT16	RO	0x0000 (0 _{dez})
9009:21	Brake T off	Zeit bis die Bremse löst Einheit: ms	UINT16	RO	0x0000 (0 _{dez})
9009:22	Brake reduced holding voltage	Reduzierte Spannung der Bremse Einheit : mV	UINT32	RO	0x0000000 (0 _{dez})
9009:23	Brake time to red. holding volt.	Zeit ab der die Bremse mit reduzierter Spannung hält Einheit : ms	UINT16	RO	0x0000 (0 _{dez})
9009:24	Motor temp sensor connection	Anschluss des Temperatursensors Feedback port (nicht änderbar)	STRING	RO	

Index 9010 DRV Info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9010:0	DRV Info data	Maximaler Subindex	UINT8	RO	0x17 (23 _{dez})
9010:11	Amplifier temperature	Klemmeninnentemperatur Einheit: 0,1 °C	UINT16	RO	0x0000 (0 _{dez})
9010:12	DC link voltage	Zwischenkreisspannung Einheit : mV	UINT32	RO	0x0000000 (0 _{dez})
9010:13	Supported drive modes	Informationen der unterstützten Drive Modi. (DS402: Objekt 0x6502) Es werden nur die Modi CSV, CST, CSTCA und CSP unterstützt	UINT32	RO	0x0000000 (0 _{dez})
		Bit 0: PP Bit 1: VL Bit 2: PV Bit 3: TQ Bit 4: R Bit 5: HM Bit 6: IP Bit 7: CSP Bit 8: CSV Bit 9: CST Bit 10: CSTCA Bit 11 - 15: reserved Bit 16-31: Manufacturer-specific			
9010:14	Velocity encoder resolution	Anzeige der konfigurierten Encoder-Inkremente/s und Motorumdrehungen/s. Die "Velocity Encoder Resolution" wird nach folgender Formel berechnet:	UINT32	RO	0x00041893 (268435 _{dez})
		Velocity Encoder Resolution = (encoder_increments / s) / (motor_revolutions / s)			
9010:15	Position encoder resolution increments	Feedback Inkremente pro Motorumdrehung	UINT32	RO	0x0000000 (0 _{dez})
9010:16	Position encoder	Motorumdrehungen	UINT32	RO	0x00000000
	resolution revolutions	Position encoder resolution = encoder increments (Index 0x9010:15) / motor revolutions (Index 0x9010:16)			(0 _{dez})
9010:17	Cogging compensation supported	Die Abgleichdaten für die Cogging-Kompensation stehen im elektronischen Typenschild des Motors zur Verfügung.	BOOLEAN	RO	0x00 (0 _{dez})

Index 9018 DRV Info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9018:0	DRV Info data	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
9018:11	, ,	Hilfsspannung Einheit : mV	UINT32	RO	0x00000000 (0 _{dez})

Index A010 DRV Amplifier Diag data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
A010:0	DRV Amplifier Diag data	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
A010:11	Amplifier I2T temperature	I2T-Modell-Auslastung Einheit: %	UINT8	RO	0x00 (0 _{dez})

Index A011 DRV Motor Diag data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
A011:0	DRV Motor Diag data	Maximaler Subindex	UINT8	RO	0x13 (19 _{dez})
A011:11	Motor I2T temperature	I2T-Modell-Auslastung Einheit: %	UINT8	RO	0x00 (0 _{dez})
A011:13	Motor temperature	Temperatur-Auslastung Einheit: °	INT16	RO	0x0000 (0 _{dez})

Index B001 FB OCT Memory interface

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
B001:0	FB OCT Memory interface	Maximaler Subindex	UINT8	RO	0x06 (6 _{dez})
B001:01	cmd	$\begin{array}{l} 3_{\text{dez}} \colon \text{Enc Write} \\ 6_{\text{dez}} \colon \text{Enc Read Direct} \\ 7_{\text{dez}} \colon \text{Enc Read Indirect (Default)} \\ 9_{\text{dez}} \colon \text{Enc Reset} \\ 10_{\text{dez}} \colon \text{IP Write} \\ 15_{\text{dez}} \colon \text{IP Read} \\ 16_{\text{dez}} \colon \text{Write encoder position offset} \end{array}$	INT16	RW	0x0007 (7 _{dez})
B001:02	Len		INT16	RW	0x0000 (0 _{dez})
B001:03	Adr		UINT32	RW	0x0000000 (0 _{dez})
B001:04	Offset		UINT32	RW	0x00000000 (0 _{dez})
B001:05	Ctrl/Status	$egin{array}{l} O_{dez} : Init (Default) \ 1_{dez} : Execute \ 2_{dez} : Busy \ 3_{dez} : Done \ 4_{dez} : Error \end{array}$	INT16	RW	0x0000 (0 _{dez})
B001:06	Data		OCTET- STRING[32]	RW	0x00000000 (0 _{dez})

7.8 Standardobjekte

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0		Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	RO	0x00001389 (5001 _{dez})

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EL72x1-x01x

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	01

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x1C213052 (471937106 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low- Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x0000000 (0 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x00000000 (0 _{dez})

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F0:0	-	Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT-Slaves	UINT32	1	0x00000000 (0 _{dez})

Index 1430 DMC RxPDO-Par Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1430:0	DMC RxPDO-Par Outputs	PDO Parameter RxPDO 10	UINT8	RO	0x06 (6 _{dez})
1430:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 10 übertragen werden dürfen	OCTET- STRING[6]	RO	00 16 01 16 02 16 03 16 04 16 05 16 06 16 07 16 08 16 31 16

Index 1431 DMC RxPDO-Par Outputs 32 Bit

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1431:0	DMC RxPDO-Par Outputs 32 Bit	PDO Parameter RxPDO 11	UINT8	RO	0x06 (6 _{dez})
1431:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 11 übertragen werden dürfen	OCTET- STRING[6]	RO	00 16 01 16 02 16 03 16 04 16 05 16 06 16 07 16 08 16 30 16

Index 1600 DRV RxPDO-Map Controlword

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	DRV RxPDO-Map Controlword	PDO Mapping RxPDO 1	UINT8	RO	0x01 (1 _{dez})
1600:01		1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x01 (Controlword))	UINT32	RO	0x7010:01, 16

Index 1601 DRV RxPDO-Map Target velocity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	DRV RxPDO-Map Target velocity	PDO Mapping RxPDO 2	UINT8	RO	0x01 (1 _{dez})
1601:01		1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x06 (Target velocity))	UINT32	RO	0x7010:06, 32

Index 1602 DRV RxPDO-Map Target torque

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1602:0	DRV RxPDO-Map Target torque	PDO Mapping RxPDO 3	UINT8	RO	0x01 (1 _{dez})
1602:01		1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x09 (Target torque))	UINT32	RO	0x7010:09, 16

Index 1603 DRV RxPDO-Map Commutation angle

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1603:0	DRV RxPDO-Map Commutation angle	PDO Mapping RxPDO 4	UINT8	RO	0x01 (1 _{dez})
1603:01		1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x0E (Commutation angle))	UINT32	RO	0x7010:0E, 16

Index 1604 DRV RxPDO-Map Torque limitation

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1604:0	DRV RxPDO-Map Torque limitation	PDO Mapping RxPDO 5	UINT8	RO	0x01 (1 _{dez})
1604:01		1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x0B (Torque limitation))	UINT32	RO	0x7010:0B, 16

Index 1605 DRV RxPDO-Map Torque offset

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1605:0	DRV RxPDO-Map Torque offset	PDO Mapping RxPDO 6	UINT8	RO	0x01 (1 _{dez})
1605:01		1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x0A (Torque offset))	UINT32	RO	0x7010:0A, 16

Index 1606 DRV RxPDO-Map Target position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1606:0	DRV RxPDO-Map Target position	PDO Mapping RxPDO 7	UINT8	RO	0x01 (1 _{dez})
1606:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x05 (Target position))	UINT32	RO	0x7010:05, 32

Index 1607 FB RxPDO-Map Touch probe control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1607:0	FB RxPDO-Map Touch probe control	PDO Mapping RxPDO 8	UINT8	RO	0x0C (12 _{dez})
1607:01	SubIndex 001	1. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x01 (TP1 Enable))	UINT32	RO	0x7001:01, 1
1607:02	SubIndex 002	2. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x02 (TP1 Continous))	UINT32	RO	0x7001:02, 1
1607:03	SubIndex 003	3. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x03 (TP1 Trigger mode))	UINT32	RO	0x7001:03, 2
1607:04	SubIndex 004	4. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x05 (TP1 Enable pos edge))	UINT32	RO	0x7001:05, 1
1607:05	SubIndex 005	5. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x06 (TP1 Enable neg edge))	UINT32	RO	0x7001:06, 1
1607:06	SubIndex 006	6. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1607:07	SubIndex 007	7. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x09 (TP2 Enable))	UINT32	RO	0x7001:09, 1
1607:08	SubIndex 008	8. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x0A (TP2 Continous))	UINT32	RO	0x7001:0A, 1
1607:09	SubIndex 009	9. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x0B (TP2 Trigger mode))	UINT32	RO	0x7001:0B, 2
1607:0A	SubIndex 010	10. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x0D (TP2 Enable pos edge))	UINT32	RO	0x7001:0D, 1
1607:0B	SubIndex 011	11. PDO Mapping entry (object 0x7001 (FB Touch probe outputs), entry 0x0E (TP2 Enable neg edge))	UINT32	RO	0x7001:0E, 1
1607:0C	SubIndex 012	12. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2

Index 1608 DRV RxPDO-Map Modes of operation

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1608:0	DRV RxPDO-Map Modes of operation	PDO Mapping RxPDO 9	UINT8	RO	0x01 (1 _{dez})
1608:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs), entry 0x03 (Modes of operation))	UINT32	RO	0x7010:03, 8

Index 1630 DMC RxPDO-Map Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1630:0	DMC RxPDO-Map Outputs	PDO Mapping RxPDO 10	UINT8	RO	0x12 (18 _{dez})
1630:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1630:02	SubIndex 002	2. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x02 (DMC_FeedbackControlEnable latch extern on positive edge))	UINT32	RO	0x7030:02, 1
1630:03	SubIndex 003	3. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x03 (DMC_FeedbackControlSet counter))	UINT32	RO	0x7030:03, 1
1630:04	SubIndex 004	4. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x04 (DMC_FeedbackControlEnable latch extern on negative edge))	UINT32	RO	0x7030:04, 1
1630:05	SubIndex 005	5. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
1630:06	SubIndex 006	6. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x11 (DMC_DriveControlEnable))	UINT32	RO	0x7030:11, 1
1630:07	SubIndex 007	7. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x12 (DMC_DriveControlReset))	UINT32	RO	0x7030:12, 1
1630:08	SubIndex 008	8. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1630:09	SubIndex 009	9. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x21 (DMC_PositionControlExecute))	UINT32	RO	0x7030:21, 1
1630:0A	SubIndex 010	10. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x22 (DMC_PositionControlEmergency stop))	UINT32	RO	0x7030:22, 1
1630:0B	SubIndex 011	11. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1630:0C	SubIndex 012	12. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x31 (DMC_Set counter value))	UINT32	RO	0x7030:31, 64
1630:0D	SubIndex 013	13. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x32 (DMCTarget position))	UINT32	RO	0x7030:32, 64
1630:0E	SubIndex 014	14. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x33 (DMCTarget velocity))	UINT32	RO	0x7030:33, 16
1630:0F	SubIndex 015	15. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x34 (DMCStart types))	UINT32	RO	0x7030:34, 16
1630:10	SubIndex 016	16. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x35 (DMCTarget acceleration))	UINT32	RO	0x7030:35, 16
1630:11	SubIndex 017	17. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x36 (DMCTarget deceleration))	UINT32	RO	0x7030:36, 16
1630:12	SubIndex 018	18. PDO Mapping entry (80 bits align)	UINT32	RO	0x0000:00, 80

Index 1631 DMC RxPDO-Map Outputs 32 Bit

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1631:0	DMC RxPDO-Map Outputs 32	PDO Mapping RxPDO 11	UINT8	RO	0x14 (20 _{dez})
1631:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1631:02	SubIndex 002	2. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x02 (DMC_FeedbackControlEnable latch extern on positive edge))	UINT32	RO	0x7030:02, 1
1631:03	SubIndex 003	3. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x03 (DMC_FeedbackControlSet counter))	UINT32	RO	0x7030:03, 1
1631:04	SubIndex 004	4. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x04 (DMC_FeedbackControlEnable latch extern on negative edge))	UINT32	RO	0x7030:04, 1
1631:05	SubIndex 005	5. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
1631:06	SubIndex 006	6. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x11 (DMC_DriveControlEnable))	UINT32	RO	0x7030:11, 1
1631:07	SubIndex 007	7. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x12 (DMC_DriveControlReset))	UINT32	RO	0x7030:12, 1
1631:08	SubIndex 008	8. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1631:09	SubIndex 009	9. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x21 (DMC_PositionControlExecute))	UINT32	RO	0x7030:21, 1
1631:0A	SubIndex 010	10. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x22 (DMC_PositionControlEmergency stop))	UINT32	RO	0x7030:22, 1
1631:0B	SubIndex 011	11. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1631:0C	SubIndex 012	12. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x31 (DMC_Set counter value))	UINT32	RO	0x7030:31, 32
1631:0D	SubIndex 013	13. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1631:0E	SubIndex 014	14. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x32 (DMCTarget position))	UINT32	RO	0x7030:32, 16
1631:0F	SubIndex 015	15. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1631:10	SubIndex 016	16. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x33 (DMCTarget velocity))	UINT32	RO	0x7030:33, 16
1631:11	SubIndex 017	17. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x34 (DMC_Start types))	UINT32	RO	0x7030:34, 16
1631:12	SubIndex 018	18. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x35 (DMCTarget acceleration))	UINT32	RO	0x7030:35, 16
1631:13	SubIndex 019	19. PDO Mapping entry (object 0x7030 (DMC outputs), entry 0x36 (DMCTarget deceleration))	UINT32	RO	0x7030:36, 16
1631:14	SubIndex 020	20. PDO Mapping entry (80 bits align)	UINT32	RO	0x0000:00, 80

Index 1830 DMC TxPDO-Par Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1830:0	DMC TxPDO-Par Inputs	PDO Parameter TxPDO 15	UINT8	RO	0x06 (6 _{dez})
1830:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 15 übertragen werden dürfen	OCTET- STRING[32]	RO	00 1A 01 1A 02 1A 03 1A 04 1A 05 1A 06 1A 07 1A 08 1A 09 1A 0A 1A 0B 1A 0C 1A 0E 1A 31 1A

Index 1831 DMC TxPDO-Par Inputs 32 Bit

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1831:0	DMC TxPDO-Par Inputs 32 Bit	PDO Parameter TxPDO 16	UINT8	RO	0x06 (6 _{dez})
1831:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 16 übertragen werden dürfen	OCTET- STRING[32]	RO	00 1A 01 1A 02 1A 03 1A 04 1A 05 1A 06 1A 07 1A 08 1A 09 1A 0A 1A 0B 1A 0C 1A 0E 1A 30 1A

Index 1A00 FB TxPDO-Map Position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	FB TxPDO-Map Position	PDO Mapping TxPDO 1	UINT8	RO	0x01 (1 _{dez})
1A00:01		1. PDO Mapping entry (object 0x6000 (FB Inputs), entry 0x11 (Position))	UINT32	RO	0x6000:11, 32

Index 1A01 DRV TxPDO-Map Statusword

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	DRV TxPDO-Map Statusword	PDO Mapping TxPDO 2	UINT8	RO	0x01 (1 _{dez})
1A01:01		1. PDO Mapping entry (object 0x6010 (DRV Inputs), entry 0x01 (Statusword))	UINT32	RO	0x6010:01, 16

Index 1A02 DRV TxPDO-Map Velocity actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	DRV TxPDO-Map Velocity actual value	PDO Mapping TxPDO 3	UINT8	RO	0x01 (1 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs), entry 0x07 (Velocity actual value))	UINT32	RO	0x6010:07, 32

Index 1A03 DRV TxPDO-Map Torque actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	DRV TxPDO-Map Torque actual value	PDO Mapping TxPDO 4	UINT8	RO	0x01 (1 _{dez})
1A03:01		1. PDO Mapping entry (object 0x6010 (DRV Inputs), entry 0x08 (Torque actual value))	UINT32	RO	0x6010:08, 16

Index 1A04 DRV TxPDO-Map Info data 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	DRV TxPDO-Map Info data 1	PDO Mapping TxPDO 5	UINT8	RO	0x01 (1 _{dez})
1A04:01		1. PDO Mapping entry (object 0x6010 (DRV Inputs), entry 0x12 (Info data 1))	UINT32	RO	0x6010:12, 16

Index 1A05 DRV TxPDO-Map Info data 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	DRV TxPDO-Map Info data 2	PDO Mapping TxPDO 6	UINT8	RO	0x01 (1 _{dez})
1A05:01		1. PDO Mapping entry (object 0x6010 (DRV Inputs), entry 0x13 (Info data 2))	UINT32	RO	0x6010:13, 16

Index 1A06 DRV TxPDO-Map Following error actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A06:0	DRV TxPDO-Map Following error actual value	PDO Mapping TxPDO 7	UINT8	RO	0x01 (1 _{dez})
1A06:01	SubIndex 001	PDO Mapping entry (object 0x6010 (DRV Inputs), entry 0x06 (Following error actual value))	UINT32	RO	0x6010:06, 32

Index 1A07 FB TxPDO-Map Touch probe status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A07:0	FB TxPDO-Map Touch probe status	PDO Mapping TxPDO 8	UINT8	RO	0x0A (10 _{dez})
1A07:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x01 (TP1 Enable))	UINT32	RO	0x6001:01, 1
1A07:02	SubIndex 002	2. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x02 (TP1 pos value stored))	UINT32	RO	0x6001:02, 1
1A07:03	SubIndex 003	3. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x03 (TP1 Neg value stored))	UINT32	RO	0x6001:03, 1
1A07:04	SubIndex 004	4. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A07:05	SubIndex 005	5. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x08 (TP1 Input))	UINT32	RO	0x6001:08, 1
1A07:06	SubIndex 006	6. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x09 (TP2 Enable))	UINT32	RO	0x6001:09, 1
1A07:07	SubIndex 007	7. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x0A (TP2 pos value stored))	UINT32	RO	0x6001:0A, 1
1A07:08	SubIndex 008	8. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x0B (TP2 neg value stored))	UINT32	RO	0x6001:0B, 1
1A07:09	SubIndex 009	9. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A07:0A	SubIndex 010	10. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x10 (TP2 Input))	UINT32	RO	0x6001:10, 1

Index 1A08 FB TxPDO-Map Touch probe 1 pos position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A08:0	FB TxPDO-Map Touch probe 1 pos position	PDO Mapping TxPDO 9	UINT8	RO	0x01 (1 _{dez})
1A08:01		1. PDO Mapping entry (object 0x6001 (FP Touch probe inputs), entry 0x11 (TP1 Pos position))	UINT32	RO	0x6001:11, 32

Index 1A09 FB TxPDO-Map Touch probe 1 neg position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	FB TxPDO-Map Touch probe 1 neg position	PDO Mapping TxPDO 10	UINT8	RO	0x01 (1 _{dez})
1A09:01		1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x12 (TP1 Neg position))	UINT32	RO	0x6001:12, 32

Index 1A0A FB TxPDO-Map Touch probe 2 pos position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0A:0	FB TxPDO-Map Touch probe 2 pos position	PDO Mapping TxPDO 11	UINT8	RO	0x01 (1 _{dez})
1A0A:01		PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x13 (TP2 Pos position))	UINT32	RO	0x6001:13, 32

Index 1A0B FB TxPDO-Map Touch probe 2 neg position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	FB TxPDO-Map Touch probe 2 neg position	PDO Mapping TxPDO 12	UINT8	RO	0x01 (1 _{dez})
1A0B:01		PDO Mapping entry (object 0x6001 (FB Touch probe inputs), entry 0x14 (TP2 neg position))	UINT32	RO	0x6001:14, 32

Index 1A0C FB TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0C:0	FB TxPDO-Map Status	PDO Mapping TxPDO 13	UINT8	RO	0x03 (3 _{dez})
1A0C:01	SubIndex 001	1. PDO Mapping entry (13 bits align)	UINT32	RO	0x0000:00, 13
1A0C:02		2. PDO Mapping entry (object 0x6000 (FB Inputs), entry 0x0E (TxPDO State))	UINT32	RO	0x6000:0E, 1
1A0C:03		3. PDO Mapping entry (object 0x6000 (FB Inputs), entry 0x0F (Input Cycle Counter))	UINT32	RO	0x6000:0F, 2

Index 1A0E DRV TxPDO-Map Modes of operation display

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0E:0	DRV TxPDO-Map Modes of operation display	PDO Mapping TxPDO 14	UINT8	RO	0x01 (1 _{dez})
1A0E:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs), entry 0x03 (Modes of operation display))	UINT32	RO	0x6010:03, 8

Index 1A30 DMC TxPDO-Map Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A30:0	DMC RxPDO-Map Inputs	PDO Mapping TxPDO 15	UINT8	RO	0x38 (26 _{dez})
1A30:01	SubIndex 001	1. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A30:02	SubIndex 002	2. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x02 (DMC_FeedbackStatusLatch extern valid))	UINT32	RO	0x6030:02, 1
1A30:03	SubIndex 003	3. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x03 (DMC_FeedbackStatusSet counter done))	UINT32	RO	0x6030:03, 1
1A30:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9
1A30:05	SubIndex 005	5. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x0D (DMC_FeedbackStatusStatus of extern latch))	UINT32	RO	0x6030:0D, 1
1A30:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A30:07	SubIndex 007	7. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x11 (DMC_DriveStatusReady to enable))	UINT32	RO	0x6030:11, 1
1A30:08	SubIndex 008	8. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x12 (DMC_DriveStatusReady))	UINT32	RO	0x6030:12, 1
1A30:09	SubIndex 009	9. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x13 (DMC_DriveStatusWarning))	UINT32	RO	0x6030:13, 1
1A30:0A	SubIndex 010	10. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x14 (DMC_DriveStatusError))	UINT32	RO	0x6030:14, 1
1A30:0B	SubIndex 011	11. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x15 (DMC_DriveStatusMoving positive))	UINT32	RO	0x6030:15, 1
1A30:0C	SubIndex 012	12. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x16 (DMC_DriveStatusMoving negative))	UINT32	RO	0x6030:16, 1
1A30:0D	SubIndex 013	13. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A30:0E	SubIndex 014	14. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x1C (DMC_DriveStatusDigital input 1))	UINT32	RO	0x6030:1C, 1
1A30:0F	SubIndex 015	15. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x1D (DMC_DriveStatusDigital input 2))	UINT32	RO	0x6030:1D, 1
1A30:10	SubIndex 016	16. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A30:11	SubIndex 017	17. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x21 (DMC_PositioningStatusBusy))	UINT32	RO	0x6030:21, 1
1A30:12	SubIndex 018	18. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x22 (DMC_PositioningStatusIn-Target))	UINT32	RO	0x6030:22, 1
1A30:13	SubIndex 019	19. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x23 (DMC_PositioningStatusWarning))	UINT32	RO	0x6030:23, 1
1A30:14	SubIndex 020	20. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x24 (DMC_PositioningStatusError))	UINT32	RO	0x6030:24, 1
1A30:15	SubIndex 021	21. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x25 (DMC_PositioningStatusCalibrated))	UINT32	RO	0x6030:25, 1
1A30:16	SubIndex 022	22. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x26 (DMC_PositioningStatusAccelerate))	UINT32	RO	0x6030:26, 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A30:17	SubIndex 023	23. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x27 (DMC_PositioningStatusDecelerate))	UINT32	RO	0x6030:27, 1
1A30:18	SubIndex 024	24. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x28 (DMC_PositioningStatusReady to execute))	UINT32	RO	0x6030:28, 1
1A30:19	SubIndex 025	25. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A30:1A	SubIndex 026	26. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x31 (DMC_Set position))	UINT32	RO	0x6030:31, 64
1A30:1B	SubIndex 027	27. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x32 (DMC_Set velocity))	UINT32	RO	0x6030:32, 16
1A30:1C	SubIndex 028	28. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x33 (DMC_Actual dirve time))	UINT32	RO	0x6030:33, 32
1A30:1D	SubIndex 029	29. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x34 (DMC_Actual position lag))	UINT32	RO	0x6030:34, 64
1A30:1E	SubIndex 030	30. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x35 (DMC_Actual velocity))	UINT32	RO	0x6030:35, 16
1A30:1F	SubIndex 031	31. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x36 (DMC_Actual position))	UINT32	RO	0x6030:36, 64
1A30:20	SubIndex 032	32. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x37 (DMC_Error id))	UINT32	RO	0x6030:37, 32
1A30:21	SubIndex 033	33. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x38 (DMC_Input cycle counter))	UINT32	RO	0x6030:38, 8
1A30:22	SubIndex 034	34. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A30:23	SubIndex 035	35. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x3A (DMC_Latch value))	UINT32	RO	0x6030:3A, 64
1A30:24	SubIndex 036	36. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x3B (DMC_Cyclic info data 1))	UINT32	RO	0x6030:3B, 16
1A30:25	SubIndex 037	37. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x3C (DMC_Cyclic info data 2))	UINT32	RO	0x6030:3C, 16
1A30:26	SubIndex 038	38. PDO Mapping entry (64 bits align)	UINT32	RO	0x0000:00, 64

Index 1A31 DMC TxPDO-Map Inputs 32 Bit

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A31:0	DMC TxPDO-Map Inputs 32 Bit	PDO Mapping TxPDO 16	UINT8	RO	0x42 (2A _{dez})
1A31:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A31:02	SubIndex 002	PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x02 (DMC_FeedbackStatusLatch extern valid))	UINT32	RO	0x6030:02, 1
1A31:03	SubIndex 003	PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x03 (DMC_FeedbackStatusSet counter done))	UINT32	RO	0x6030:03, 1
1A31:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9
1A31:05	SubIndex 005	5. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x0D (DMC_FeedbackStatusStatus of extern latch))	UINT32	RO	0x6030:0D, 1
1A31:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A31:07	SubIndex 007	7. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x11 (DMC_DriveStatusReady to enable))	UINT32	RO	0x6030:11, 1
1A31:08	SubIndex 008	8. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x12 (DMC_DriveStatusReady))	UINT32	RO	0x6030:12, 1
1A31:09	SubIndex 009	9. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x13 (DMC_DriveStatusWarning))	UINT32	RO	0x6030:13, 1
1A31:0A	SubIndex 010	10. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x14 (DMC_DriveStatusError))	UINT32	RO	0x6030:14, 1
1A31:0B	SubIndex 011	11. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x15 (DMC_DriveStatusMoving positive))	UINT32	RO	0x6030:15, 1
1A31:0C	SubIndex 012	12. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x16 (DMC_DriveStatusMoving negative))	UINT32	RO	0x6030:16, 1
1A31:0D	SubIndex 013	13. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A31:0E	SubIndex 014	14. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x1C (DMC_DriveStatusDigital input 1))	UINT32	RO	0x6030:1C, 1
1A31:0F	SubIndex 015	15. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x1D (DMC_DriveStatusDigital input 2))	UINT32	RO	0x6030:1D, 1
1A31:10	SubIndex 016	16. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A31:11	SubIndex 017	17. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x21 (DMC_PositioningStatusBusy))	UINT32	RO	0x6030:21, 1
1A31:12	SubIndex 018	18. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x22 (DMC_PositioningStatusIn-Target))	UINT32	RO	0x6030:22, 1
1A31:13	SubIndex 019	19. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x23 (DMC_PositioningStatusWarning))	UINT32	RO	0x6030:23, 1
1A31:14	SubIndex 020	20. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x24 (DMC_PositioningStatusError))	UINT32	RO	0x6030:24, 1
1A31:15	SubIndex 021	21. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x25 (DMC_PositioningStatusCalibrated))	UINT32	RO	0x6030:25, 1
1A31:16	SubIndex 022	22. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x26 (DMC_PositioningStatusAccelerate))	UINT32	RO	0x6030:26, 1
1A31:17	SubIndex 023	23. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x27 (DMC_PositioningStatusDecelerate))	UINT32	RO	0x6030:27, 1
1A31:18	SubIndex 024	24. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x28 (DMC_PositioningStatusReady to execute))	UINT32	RO	0x6030:28, 1
1A31:19	SubIndex 025	25. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A31:1A	SubIndex 026	26. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x31 (DMC_Set position))	UINT32	RO	0x6030:31, 32
1A31:1B	SubIndex 027	27. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A31:1C	SubIndex 028	28. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x32 (DMC_Set velocity))	UINT32	RO	0x6030:32, 16
1A31:1D	SubIndex 029	29. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x33 (DMC_Actual dirve time))	UINT32	RO	0x6030:33, 32
1A31:1E	SubIndex 030	30. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x34 (DMC_Actual position lag))	UINT32	RO	0x6030:34, 32
1A31:1F	SubIndex 031	31. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A31:20	SubIndex 032	32. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x35 (DMC_Actual velocity))	UINT32	RO	0x6030:35, 16

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A31:21	SubIndex 033	33. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x36 (DMC_Actual position))	UINT32	RO	0x6030:36, 32
1A31:22	SubIndex 034	34. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A31:23	SubIndex 035	35. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x37 (DMC_Error id))	UINT32	RO	0x6030:37, 32
1A31:24	SubIndex 036	36. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x38 (DMC_Input cycle counter))	UINT32	RO	0x6030:38, 8
1A31:25	SubIndex 037	37. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A31:26	SubIndex 038	38. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x3A (DMC_Latch value))	UINT32	RO	0x6030:3A, 32
1A31:27	SubIndex 039	39. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A31:28	SubIndex 040	40. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x3B (DMC_Cyclic info data 1))	UINT32	RO	0x6030:3B, 16
1A31:29	SubIndex 041	41. PDO Mapping entry (object 0x6030 (DMC inputs), entry 0x3C (DMC_Cyclic info data 2))	UINT32	RO	0x6030:3C, 16
1A31:2A	SubIndex 042	42. PDO Mapping entry (64 bits align)	UINT32	RO	0x0000:00, 64

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x02 (2 _{dez})
1C12:01	Subindex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632 _{dez})
1C12:02	Subindex 002	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1601 (5633 _{dez})
1C12:03	Subindex 003	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:04	Subindex 004	4. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:05	Subindex 005	5. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:06	Subindex 006	6. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:07	Subindex 007	7. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:08	Subindex 008	8. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x03 (3 _{dez})
1C13:01	Subindex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	Subindex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A01 (6657 _{dez})
1C13:03	Subindex 003	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A02 (6658 _{dez})
1C13:04	Subindex 004	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:05	Subindex 005	5. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:06	Subindex 006	6. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:07	Subindex 007	7. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:08	Subindex 008	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:09	Subindex 009	9. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:0A	Subindex 010	10. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:0B	Subindex 011	11. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:0C	Subindex 012	12. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C32 SM output parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0000 (0 _{dez})
		• 3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x0003D090
		Free Run: Zykluszeit des lokalen Timers			(250000 _{dez})
		 Synchron with SM 2 Event: Zykluszeit des Masters 			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C32:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x4808
		Bit 0 = 1: Free Run wird unterstützt			(18440 _{dez})
		 Bit 1 = 1: Synchron with SM 2 Event wird unterstützt 			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC-Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08)			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0001E848 (125000 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C32:08	Command	0: Messung der lokalen Zykluszeit wird gestoppt	UINT16	RW	0x0000 (0 _{dez})
		 1: Messung der lokalen Zykluszeit wird gestartet 			
		Die Entries 0x1C32:03, 0x1C32:05, 0x1C32:06, 0x1C32:09, 0x1C33:03 [▶ 189], 0x1C33:06, 0x1C33:09 [▶ 189] werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0000 (0 _{dez})
		3: DC - Synchron with SYNC1 Event			
1C33:02	Cycle time	wie <u>0x1C32:02</u> [▶ <u>188]</u>	UINT32	RW	0x0003D090 (250000 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x00001C52 (7250 _{dez})
1C33:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x4808
		Bit 0: Free Run wird unterstützt			(18440 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		 Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 188] oder 0x1C33:08) 			
1C33:05	Minimum cycle time	wie <u>0x1C32:05 [▶ 188]</u>	UINT32	RO	0x0001E848 (125000 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:07	Minimum delay time		UINT32	RO	0x00001C52 (7250 _{dez})
1C33:08	Command	wie <u>0x1C32:08 [▶ 188]</u>	UINT16	RW	0x0000 (0 _{dez})
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x00001C52 (7250 _{dez})
1C33:0B	SM event missed counter	wie <u>0x1C32:11 [▶ 188]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	wie <u>0x1C32:12 [▶ 188]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	wie <u>0x1C32:13 [▶ 188]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	wie <u>0x1C32:32 [▶ 188]</u>	BOOLEAN	RO	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0004 (4 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(O _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x04 (4 _{dez})
F010:01	SubIndex 001	Profilnummer Encoder Profile	UINT32	RW	0x00000201 (513 _{dez})
F010:02	SubIndex 002	Profilnummer Servo Drive	UINT32	RW	0x000002E6 (742 _{dez})
F010:03	SubIndex 003		UINT32	RW	0x0000000 (0 _{dez})
F010:04	SubIndex 004	Profilnummer Fahrwegsteuerung	UINT32	RW	0x000002EE (750 _{dez})

Index FB40 Memory interface

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
FB40:0	Memory interface	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
FB40:01	Address	reserviert	UINT32	RW	0x0000000 (0 _{dez})
FB40:02	Length	reserviert	UINT16	RW	0x0000 (0 _{dez})
FB40:03	Data	reserviert	OCTET- STRING[8]	RW	{0}

8 EL72x1-0011 (DS402) - Objektbeschreibung und Parametrierung

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description. Es wird empfohlen, die entsprechende aktuellste XML-Datei im Download-Bereich auf der Beckhoff Website herunterzuladen und entsprechend der Installationsanweisungen zu installieren.

Parametrierung über das CoE-Verzeichnis (CAN over EtherCAT)

- Die Parametrierung der Klemme wird über den CoE Online Reiter (mit Doppelklick auf das entsprechende Objekt) bzw. über den Prozessdatenreiter (Zuordnung der PDOs) vorgenommen. Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise [29]:
 - StartUp-Liste führen für den Austauschfall
 - Unterscheidung zwischen Online/Offline Dictionary, Vorhandensein aktueller XML-Beschreibung
 - "CoE-Reload" zum Zurücksetzen der Veränderungen

HINWEIS

Beschädigung des Gerätes möglich!

Es wird dringend davon abgeraten, die Einstellungen in den CoE-Objekten zu ändern während die Achse aktiv ist, da die Reglung beeinträchtigt werden könnte.

8.1 Konfigurationsdaten

Index 2002 Amplifier Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2002:0	Amplifier Settings	Maximaler Subindex	UINT8	RO	0x66 (102 _{dez})
2002:11	Device type	1: Servo drive (nicht änderbar)	UINT32	RW	0x00000001 (1 _{dez})
2002:12*	Current loop integral time	Integralanteil Stromregler Einheit: 0,1 ms Dieser Wert ist vom Automatischen Scannen betroffen. (siehe Automatischen Scannen der elektr. Typenschilder [• 114])	UINT16	RW	0x000A (10 _{dez})
2002:13*	Current loop proportional gain	Proportionalanteil Stromregler Einheit: 0,1 V/A Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])	UINT16	RW	0x0064 (100 _{dez})
2002:14	Velocity loop integral time	Integralanteil Geschwindigkeitsregler Einheit: 0,1 ms	UINT32	RW	0x00000032 (50 _{dez})
2002:15	Velocity loop proportional gain	Proportionalanteil Geschwindigkeitsregler Einheit: mA / (rad/s)	UINT32	RW	0x00000096 (150 _{dez})
2002:17	Position loop proportional gain	Proportionalanteil Positionsregler Einheit: (rad/s) / rad	UINT32	RW	0x0000000A (10 _{dez})
2002:19	Nominal DC link voltage	Nenn-Zwischenkreisspannung Einheit: mV	UINT32	RW	0x0000BB80 (48000 _{dez})
2002:1A	Min DC link voltage	Minimale Zwischenkreisspannung Einheit: mV	UINT32	RW	0x00001A90 (6800 _{dez})
2002:1B	Max DC link voltage	Maximale Zwischenkreisspannung Einheit: mV	UINT32	RW	0x0000EA60 (60000 _{dez})
2002:29	Amplifier I2T warn level	l²T-Modell Warnschwelle Einheit: %	UINT8	RW	0x50 (80 _{dez})
2002:2A	Amplifier I2T error level	l²T-Modell Fehlerschwelle Einheit: %	UINT8	RW	0x69 (105 _{dez})
2002:2B	Amplifier temperature warn level	Übertemperatur Warnschwelle Einheit : 0,1 °C	UINT16	RW	0x0320 (800 _{dez})
2002:2C	Amplifier temperature error level	Übertemperatur Fehlerschwelle Einheit: 0,1 °C	UINT16	RW	0x03E8 (1000 _{dez})
2002:31	Velocity limitation	Drehzahlbegrenzung Einheit : 1/min	UINT32	RW	0x00040000 (262144 _{dez})
2002:32	Short circuit brake duration max	Max. Dauer der Anker-Kurzschluss-Bremse Einheit: ms	UINT16	RW	0x03E8 (1000 _{dez})
2002:33	Stand still window	Stillstandsfenster Einheit: 1/min	UINT16	RW	0x0000 (0 _{dez})
2002:41	Low-pass filter frequency	Lastfilterfrequenz Einheit: Hz Es können folgende Werte eingestellt werden: 0 Hz = Aus 160 Hz 320 Hz	UINT16	RW	0x0140 (320 _{dez})
2002:49	Halt ramp deceleration	Verzögerung der Drehzahl-Halterampe Einheit: 0,1 rad / s²	UINT32	RW	0x0000F570 (62832 _{dez})

^{*)} siehe Index 0x2059 OCT Nameplate

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2002:54	Feature bits	Die einstellbaren Motorstromwerte können als Scheitelwert oder Effektivwert interpretiert werden. Das Feature Bit ermöglicht die Umstellung.	UINT32	RW	0x00000000 (0 _{dez})
		Scheitelwert \rightarrow Bit 0 = 0 (default bei EL7201-001x) Effektivwert \rightarrow Bit 0 = 1 (default bei EL7211-001x)			
		Bei der EL7201-001x kann mit Hilfe des Lüftermoduls ZB8610 der Ausgangsstrom erhöht werden.			
		normaler Ausgangsstrom \rightarrow Bit 1 = 0 (default) erhöhter Ausgangsstrom \rightarrow Bit 1 = 1			
		Daraus lassen sich folgende Kombinationen einstellen:			
		$0_{\text{dez}} \rightarrow$ normaler Ausgangsstrom in Scheitelwert interpretiert			
		$1_{\text{dez}} \rightarrow$ normaler Ausgangsstrom in Effektivwert interpretiert			
		$2_{\text{dez}} \rightarrow \text{erh\"{o}hter}$ Ausgangsstrom in Scheitelwert interpretiert			
		$3_{\text{dez}} \rightarrow \text{erh\"ohter Ausgangsstrom in Effektivwert}$ interpretiert			
2002:55	Select info data 1	Auswahl "Info data 1" Hier kann eine zusätzliche Information in die zyklischen Prozessdaten angezeigt werden. Folgende Informationen stehen zur Auswahl.	UINT8	RW	0x00 (0 _{dez})
		1 _{dez} : Torque current (filtered 1ms) [1000stel vom rated current]			
		2 _{dez} : DC link voltage [mV]			
		4 _{dez} : PCB temperature [0,1 °C]			
		5 _{dez} : Errors:			
		Bit0: ADC Error Bit1: Overcurrent Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier Bit6: I2T Motor Bit7: Encoder Bit8: Watchdog			
		6 _{dez} : Warnings:			
		Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier Bit6: I2T Motor Bit7: Encoder			
		7 _{dez} : I2T Motor [%]			
		8 _{dez} : I2T Amplifier [%]			
		10 _{dez} : Input Level:			
		Bit0: Digital Input 1 Level Bit1: Digital Input 2 Level Bit8: STO Input Level (STO variant, only)			

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2002:56	Select info data 2	Auswahl "Info data 2" Hier kann eine zusätzliche Information in die zyklischen Prozessdaten angezeigt werden. Folgende Informationen stehen zur Auswahl.	UINT8	RW	0x00 (0 _{dez})
		1 _{dez} . Torque current (filtered 1ms) [1000stel vom rated current]			
		2 _{dez} : DC link voltage [mV]			
		4 _{dez} : PCB temperature [0,1 °C]			
		5 _{dez} : Errors:			
		Bit0: ADC Error Bit1: Overcurrent Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier Bit6: I2T Motor Bit7: Encoder Bit8: Watchdog			
		6 _{dez} : Warnings:			
		Bit2: Undervoltage Bit3: Overvoltage Bit4: Overtemperature Bit5: I2T Amplifier Bit6: I2T Motor Bit7: Encoder			
		7 _{dez} : I2T Motor [%]			
		8 _{dez} : I2T Amplifier [%]			
		10 _{dez} : Input Level:			
		Bit0: Digital Input 1 Level Bit1: Digital Input 2 Level Bit8: STO Input Level (STO variant, only)			
2002:57	Velocity feed forward gain	Geschwindigkeitsvorsteuerung Einheit: %	UINT8	RW	0x64 (100 _{dez})
2002:65	Invert direction of rotation	Umkehr der Rotationsrichtung	BOOLEAN	RW	0x00 (0 _{dez})
2002:65	Enable cogging torque compensation	Cogging-Kompensation aktivieren	BOOLEAN	RW	0x00 (0 _{dez})

Index 2003 Motor Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2003:0	Motor Settings	Maximaler Subindex	UINT8	RO	0x2D (45 _{dez})
2003:11*	Max current	Spitzenstrom Einheit: mA	UINT32	RW	0x00001770 (6000 _{dez})
		Die einstellbaren Motorstromwerte können als Scheitelwert oder Effektivwert interpretiert werden. Der			
		Feature Bit (0x2002:54 [▶ 192]) ermöglicht die Umstellung.			
		Scheitelwert → Bit 0 = 0 (default bei EL7201-001x)			
		Effektivwert → Bit 0 = 1 (default bei EL7211-001x)			
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
2003:13*	Motor pole pairs	Anzahl der Polpaare	UINT8	RW	0x03 (3 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen.			
		(siehe <u>Automatischen Scannen der elektr.</u> <u>Typenschilder [* 114]</u>)			
2003:15*	Commutation offset	Kommutierungs-Offset (zwischen elektrischer Nullposition und mechanischer Single-Turn Nullposition) Einheit: °	INT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
2003:16*	Torque constant	Drehmoment-Konstante	UINT32	RW 0x0000	0x00000000
		Einheit: mNm / A			(0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe Automatischen Scannen der elektr.			
2003:18*	Rotor moment of	Typenschilder [▶ 114]) Massenträgheitsmoment des Motors	UINT32	RW	0x00000000
2003.10	inertia	Einheit: g cm^2	UINTSZ	KVV	(0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> <u>Typenschilder [• 114]</u>)			
2003:19*	Winding inductance	Induktivität Einheit: 0,1 mH	UINT16	RW	0x000E (14 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
2003:29	Motor I2T warn level	I2T-Modell Warnschwelle Einheit: %	UINT8	RW	0x50 (80 _{dez})
2003:2A	Motor I2T error level	I2T-Modell Fehlerschwelle Einheit: %	UINT8	RW	0x69 (105 _{dez})
2003:2B*	Motor Temperature warn level	Übertemperatur Warnschwelle Einheit: 0,1 °C	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [▶ 114])			
2003:2C*	Motor Temperature error level	Übertemperatur Fehlerschwelle Einheit : 0,1 °C	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
2003:2D*	Motor thermal time constant	Thermische Zeitkonstante Einheit: 0,1 s	UINT16	RW	0x0028 (40 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [▶ 114])			

^{*)} siehe Index 0x2059 OCT Nameplate

Index 2004 Brake Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2004:0	Brake Settings	Maximaler Subindex	UINT8	RO	0x14 (20 _{dez})
2004:01	Enable manual override	Manuelles Lösen der Motorhaltebremse	BOOLEAN	RW	0x00 (0 _{dez})
2004:02	Manual brake state	0 : Release Bremse lösen	BOOLEAN	RW	0x00 (0 _{dez})
		1: Apply Bremse anlegen			
2004:11*	Release delay	Zeit, die die Haltebremse zum Öffnen (Lösen) benötigt, nachdem die Spannung angelegt wurde.	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
2004:12*	Application delay	Zeit, die die Haltebremse zum Schließen (Halten) benötigt, nachdem die Spannung abgeschaltet wurde.	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen. (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114])			
2004:13	Emergency application timeout	Zeit, die der Verstärker abwartet, bis die Drehzahl nach Halt-Anforderung (Solldrehzahl 0 nach Halterampe oder <i>Torque off</i>) das Stillstandfenster erreicht. Bei Überschreiten der eingestellten Wartezeit wird die Haltebremse unabhängig von der Drehzahl ausgelöst.	UINT16	RW	0x0000 (0 _{dez})
		Hinweis: Bei rotatorischen Achsen und der Einstellung <i>Torque</i> off für den Fehlerfall muss dieser Parameter mindestens auf die längste Zeit des "Austrudelns" der Achse angepasst werden.			
		Bei hängenden Achsen und der Einstellung <i>Torque off</i> für den Fehlerfall sollte dieser Parameter auf eine sehr kurze Zeit eingestellt werden, um ein weites Absacken der Achse/Last zu verhindern.			
2004:14*	Brake moment of inertia	Massenträgheitsmoment der Bremse Einheit : g cm^2	UINT16	RW	0x0000 (0 _{dez})
		Dieser Wert ist vom Automatischen Scannen betroffen (siehe <u>Automatischen Scannen der elektr.</u> Typenschilder [• 114]).			

^{*)} siehe Index 0x2059 OCT Nameplate

Index 2010 Feedback Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2010:0	Feedback Settings	Maximaler Subindex	UINT8	RO	0x17 (23 _{dez})
2010:01	Invert feedback direction	Zählrichtung invertieren	BOOLEAN	RW	0x00 (0 _{dez})
2010:02	Referenced	Kann durch den Benutzer auf TRUE gesetzt werden.	BOOLEAN	RW	0x00 (0 _{dez})
		Wird automatisch auf FALSE gesetzt, sobald ein Motor mit einer abweichenden Seriennummer erkannt wird oder wenn es sich um ein Singleturn Feedback handelt.			
2010:0D	Offset position actual	Erlaubte Werte	UINT8	RW	0x00 (0 _{dez})
	value source	0: Offset disabled Es wird kein Positionsoffset angewendet.			
		1: Encoder memory Es wird der Positionsoffset aus dem Speicher des Feedbacks verwendet (0x2058:20 [▶ 205])			
		2: Drive momory Es wird der Positionsoffset aus dem Antriebsverstärker verwendet (0x2010:17)			
2010:11	Device type	3: OCT (nicht änderbar)	UINT32	RW	0x00000003 (3 _{dez})
2010:12	Singleturn bits	Anzahl der Singleturn-Bits [▶ 105]	UINT8	RW	0x14 (20 _{dez})
2010:13	Multiturn bits	Anzahl der <u>Multiturn-Bits</u> [▶ 105]	UINT8	RW	0x0C (12 _{dez})
2010:14	Observer bandwidth	Bandbreite des Drehzahlbeobachters [Hz]	UINT16	RW	0x01F4 (500 _{dez})
2010:15	Observer feed-forward	Lastverhältnis [%] 100 % = Lastfrei	UINT8	RW	0x01 (0 _{dez})
		50 % = Massenträgheitsmomente von An- und Abtrieb sind gleich			
2010:17	Position offset	Der Positionsoffset wird von der Rohposition des Gebers subtrahiert.	UINT32	RW	0x0000000 (0 _{dez})
		Er kann nur bei stillgesetzter Achse beschrieben werden.			

Index 2018 OCT Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2018:0	OCT Settings	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
2018:01	Enable auto config	Nach dem Einlesen des elektronischen Typenschilds wird automatisch konfiguriert (siehe Automatischen Scannen der elektr. Typenschilder [• 114]).	BOOLEAN	RW	0x00 (0 _{dez})
2018:02	Reconfig identical motor	Bei Austausch identischer Motoren wird nach dem Einlesen des elekronischen Typenschilds automatisch neu konfiguriert. Enable autoconfig muss eingeschaltet sein (siehe Automatischen Scannen der elektr. Typenschilder [• 114]).	BOOLEAN	RW	0x00 (0 _{dez})
2018:03	Reconfig non-identical motor	Bei Austausch nicht-identischer Motoren wird nach dem Einlesen des elekronischen Typenschilds automatisch neu konfiguriert. Enable autoconfig muss eingeschaltet sein (siehe Automatischen Scannen der elektr. Typenschilder [* 114]).	BOOLEAN	RW	0x00 (0 _{dez})

8.2 Konfigurationsdaten (herstellerspezifisch)

Index 2020 Vendor data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2020:0	Vendor data	Maximaler Subindex	UINT8	RO	0x15 (21 _{dez})
2020:11	Amplifier peak current	Spitzenstrom des Verstärkers (Scheitelwert) Einheit: mA	UINT32	RW	0x00001F40 (8000 _{dez})
2020:12	Amplifier rated current	Nennstrom des Verstärkers (Scheitelwert) Einheit: mA	UINT32	RW	0x00000FA0 (4000 _{dez})
2020:13	Amplifier thermal time constant	Thermische Zeitkonstante des Verstärkers Einheit: 0,1 ms	UINT16	RW	0x0023 (35 _{dez})
2020:14	Amplifier overcurrent threshold	Schwellwert für Kurzschlusserkennung Einheit: mA	UINT32	RW	0x00002EE0 (12000 _{dez})
2020:15	Max rotary field frequency	Max. Drehfeldfrequenz Einheit: Hz	UINT16	RW	0x0257 (599 _{dez})

8.3 Kommando-Objekt

Index FB00 Command

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
FB00:0	Command	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
FB00:01	Request		OCTET- STRING[2]	RW	{0}
FB00:02	Status	reserviert	UINT8	RO	0x00 (0 _{dez})
FB00:03	Response		OCTET- STRING[4]	RO	{0}

8.4 Eingangsdaten/Ausgangsdaten

Index 2001 Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2001:0	Outputs	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
2001:11	Torque offset	Offset des Drehmoment-Wertes Der Wert wird in 1000stel vom <i>rated current</i> angegeben.	INT16	RO	0x0000 (0 _{dez})
		Formel für Index $0x2002:54 \ [\triangleright 192] = 0$: M = ((Torque actual value / 1000) x (rated current / $\sqrt{2}$)) x torque constant ($0x2003:16 \ [\triangleright 195]$)			
		Formel für Index $0x2002:54 \ [\blacktriangleright 192] = 1 :$ M = ((Torque actual value / 1000) x rated current)) x torque constant $(0x2003:16 \ [\blacktriangleright 195])$			

Index 2008 Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2008:0	Inputs	Maximaler Subindex	UINT8	RO	0x02 (2 _{dez})
2008:01		Synchrone Informationen (Auswahl über Subindex 0x2002:55 [▶ 192])	UINT16	RO	0x0000 (0 _{dez})
2008:01	Info data2	Synchrone Informationen (Auswahl über Subindex 0x2002:56 [▶ 192])	UINT16	RO	0x0000 (0 _{dez})

Index 603E TxPDO Data invalid

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
603E:0	TxPDO Data invalid	Max. Subindex	UINT8	RO	0x02 (2 _{dez})
603E:02	Position actual value	0: Die aktuelle Position ist gültig 1: Die aktuelle Position ist ungültig	BOOLEAN	RO P	0

Index 6040 Controlword

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6040:0	Controlword	DS402 Controlword [▶ 111] Bit 0: Switch on Bit 1: Enable voltage Bit 2: reserved Bit 3: Enable operation Bit 4 - 6: reserved Bit 7: Fault reset Bit 8 - 15: reserved	UINT16	RO	0x0000 (0 _{dez})

Index 6041 Statusword

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6041:0	Statusword	DS402 Statusword [▶ 111] Bit 0: Ready to switch on Bit 1: Switched on Bit 2: Operation enabled Bit 3: Fault Bit 4: reserved Bit 5: reserved Bit 6: Switch on disabled Bit 7: Warning Bit 8 + 9: reserved Bit 10: TxPDOToggle (An-/Abwahl über 0x60DA [▶ 202]) Bit 11: Internal limit active Bit 12: Drive follows the command value Bit 13 - 15: reserved	UINT16	RO	0x0000 (0 _{dez})

Index 605E Fault reaction option code

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
605E:0	Fault reaction option	0: Disable drive function, motor is free to rotate	ENUM16BIT	RW	0
	code	1: Slow down by slow down ramp			

Index 6060 Modes of operation

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6060:0	Modes of operation	erlaubte Werte:	UINT8	RW	0x00 (0 _{dez})
		0x08: Cyclic synchronous position mode (CSP) 0x09: Cyclic synchronous velocity mode (CSV) 0x0A: Cyclic synchronous torque mode (CST) 0x0B: Cyclic synchronous torque mode with commutation angle (CSTCA)			

Index 6061 Modes of operation display

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6061:0		erlaubte Werte:	UINT8	RO	0x00 (0 _{dez})
	display	8: Cyclic synchronous position mode (CSP)			
		9: Cyclic synchronous velocity mode (CSV)			
		10: Cyclic synchronous torque mode (CST)			
		11: Cyclic synchronous torque mode with commutation angle (CSTCA)			

Index 6064 Position actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6064:0	Position actual value	Position	UINT32	RO	0x00000000
		Einheit: der angegebene Wert muss mit dem			(0 _{dez})
		entsprechenden <u>Skalierungsfaktor</u> [▶ 127] multipliziert			
		werden			

Index 6065 Following error window

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6065:0	Following error window	Schleppabstandsüberwachung: Schleppfehlerfenster Einheit: der angegebene Wert muss mit dem	UINT32	RO	0xFFFFFFF (-1 _{dez})
		entsprechenden <u>Skalierungsfaktor</u> [• 127] multipliziert werden			
		0xFFFFFFF (-1 _{dez}) = Schleppabstandsüberwachung aus Jeder andere Wert = Schleppabstandsüberwachung ein			

Index 6066 Following error time out

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6066:0	Following error time out	Schleppabstandsüberwachung: Timeout Einheit: ms	UINT16	RO	0x0000 (0 _{dez})
		lst der Schleppfehler größer als das Schleppfehlerfenster, für eine Zeit, die größer ist als der Timeout, führt das zu einer Fehlerreaktion.			

Index 606C Velocity actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
606C:0	Velocity actual value	Anzeige des aktuellen Geschwindigkeitswerts	INT32	RO	0x00000000
	-				(O _{dez})

Index 6071 Target torque

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6071:0	Target torque	This object shall indicate the configured input value for the torque controller. Der Wert wird in 1000stel vom <i>rated current</i> angegeben.	INT16	RO	0x0000 (0 _{dez})
		Formel für Index $0x2002:54 \ [\triangleright 192] = 0$: M = ((Torque actual value / 1000) x (rated current / $\sqrt{2}$)) x torque constant $(0x2003:16 \ [\triangleright 195])$			
		Formel für Index $0x2002:54 \ [\triangleright 192] = 1 :$ M = ((Torque actual value / 1000) x rated current)) x torque constant $(0x2003:16 \ [\triangleright 195])$			

Index 6072 Max torque

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6072:0	Max torque	This object limits the target torque for the torque controller (bipolar limit). Der Wert wird in 1000stel vom <i>rated current</i> angegeben.	UINT16	RW	0x7FFF (32767 _{dez})
		Formel für Index $0x2002:54 \ [\triangleright 192] = 0$: M = ((Torque actual value / 1000) x (rated current / $\sqrt{2}$)) x torque constant ($0x2003:16 \ [\triangleright 195]$)			
		Formel für Index $0x2002:54 \ [\triangleright 192] = 1$: M = ((Torque actual value / 1000) x rated current)) x torque constant $(0x2003:16 \ [\triangleright 195])$			

Index 6075 Motor rated current

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6075:0	Motor rated current	Motor-Nennstrom	UINT32	RW	0x000003E8
		Einheit: mA			(1000 _{dez})

Index 6077 Torque actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6077:0	Torque actual value	This object shall provide the actual value of the torque. Der Wert wird in 1000stel vom <i>rated current</i> angegeben.	INT16	RO	0x0000 (0 _{dez})
		Formel für Index $0x2002:54 \ [\triangleright 192] = 0$: M = ((Torque actual value / 1000) x (rated current / $\sqrt{2}$)) x torque constant ($0x2003:16 \ [\triangleright 195]$)			
		Formel für Index $0x2002:54 \ [\blacktriangleright 192] = 1 :$ M = ((Torque actual value / 1000) x rated current)) x torque constant $(0x2003:16 \ [\blacktriangleright 195])$			

Index 6079 DC link circuit voltage

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6079:0	DC link circuit voltage	Zwischenkreisspannung g	UINT32	RO	0x00000000
		Einheit: mV			(0 _{dez})

Index 607A Target position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
607A:0		This object shall provide the actual position. Einheit : der angegebene Wert muss mit dem entsprechenden Skalierungsfaktor [* 127] multipliziert werden	UINT32		0x0000000 (0 _{dez})

Index 6080 Max motor speed

Index (hex	Name	Bedeutung	Datentyp	Flags	Default
6080:0	Max motor speed	Drehzahlbegrenzung	UINT32	RW	0x00040000
		Einheit: 1 / min			(262144 _{dez})

Index 608F Position encoder resolution

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
608F:0	Position encoder resolution	Dieses Objekt stellt die konfigurierten Encoderinkremente und Anzahl der Motorumdrehungen dar. Die "Position encoder resolution" wird mit folgender Formel berechnet: Position encoder resolution = (Encoderinkremente / Motorumdrehungen)	UINT8	RO	0x02 (2 _{dez})
608F:01	SubIndex 001	Encoderinkremente	UINT32	RO	0x0000000 (0 _{dez})
608F:02	SubIndex 002	Motorumdrehungen	UINT32	RO	0x0000000 (0 _{dez})

Index 6090 Velocity Encoder Resolution

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6090:0	Resolution	Anzeige der konfigurierten Encoder-Inkremente/s und Motorumdrehungen/s. Die "Velocity Encoder Resolution" wird nach folgender Formel berechnet:	UINT32	RO	0x0000000 (0 _{dez})
		Velocity Encoder Resolution = (encoder_increments / s) / (motor_revolutions / s)			

Index 60B2 Torque offset

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60B2:0	Torque offset	Offset des Drehmoment-Wertes	UINT16	RO	0x0000 (0 _{dez})

Index 60B8 Touch probe function

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60B8:0	Touch probe function	Touch probe function byte	UINT16	RO	0x0000 (0 _{dez})

Index 60B9 Touch probe status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60B9:0	Touch probe status	Touch probe status byte	UINT16	RO	0x0000 (0 _{dez})

Index 60BA Touch probe 1 positive edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60BA:0	Touch probe 1 positive	Positiver Positionswert von TP 1	INT32	RO	0x00000000
	edge	Einheit :der angegebene Wert muss mit dem			(0 _{dez})
		entsprechenden <u>Skalierungsfaktor</u> [▶ 127] multipliziert			
		werden			

Index 60BB Touch probe 1 negative edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60BB:0	Touch probe 1	Negativer Positionswert von TP 1	INT32	RO	0x00000000
	negative edge	Einheit :der angegebene Wert muss mit dem			(0 _{dez})
		entsprechenden Skalierungsfaktor [127] multipliziert			
		werden			

Index 60BC Touch probe 2 positive edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60BC:0	Touch probe 2 positive	Positiver Positionswert von TP 2	INT32	RO	0x00000000
	edge	Einheit :der angegebene Wert muss mit dem			(0 _{dez})
		entsprechenden <u>Skalierungsfaktor</u> [▶ 127] multipliziert			
		werden			

Index 60BD Touch probe 2 negative edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60BD:0	negative edge	Einheit :der angegebene Wert muss mit dem	INT32		0x0000000 (0 _{dez})
		entsprechenden <u>Skalierungsfaktor [• 127]</u> multipliziert werden			

Index 60C2 Interpolation time period

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60C2:0	Interpolation time period	Maximaler Subindex x	UINT8	RO	0x02 (2 _{dez})
60C2:01	Interpolation time period value	Anzeige des Interpolations Zeitraums (sub-index 0x01) der Wert wird in 10 ^(interpolation time index) (Sekunden)	UINT8T8	RO	0x00 (0 _{dez})
60C2:02	Interpolation time index	angegeben. Der Interpolation time index (sub-index 0x02) ist dimesionslos	INT8	RO	0x00 (0 _{dez})

Index 60D9 Supported functions

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60D9:0	Supported functions	Angabe der vom Gerät unterstützten Funktionen	UINT3232	RO	0x00000000
					(0 _{dez})

Index 60DA Function settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60DA:0	Function settings	Aktiviert / Deaktiviert unterstützte Funktionen.	UINT32	RW	0x00000000
		Bit 0: Enable TxPDOToggle-Bit in Statusword: Bit 10			(0 _{dez})
		Bit 1: Enable input cycle counter in Statusword: Bit 13			
		Bit 2-31: reserved			

Index 60EA Commutation angle

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60EA:0	Commutation angle	Kommutierungs-Winkel (für CSTCA Modus)	UINT16	RO	0x0000 (0 _{dez})
		Einheit : 5,49 * 10-3 °			,,

Index 60F4 Following error actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60F4:0	3		INT32		0x00000000
	value	Einheit: der angegebene Wert muss mit dem			(O _{dez})
		entsprechenden <u>Skalierungsfaktor</u> [• <u>127</u>] multipliziert			
		werden			

Index 60FF Target velocity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60FF:0	,	Konfigurierte Ziel-Geschwindigkeit Die Geschwindigkeitsskalierung kann dem Objekt 0x6090 ("Velocity encoder resolution") entnommen werden	INT32	_	0x0000000 (0 _{dez})

Index 6403 Motor catalogue number

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6403:0	Motor catalogue	Ist der Order Code aus dem elektronischen	STRING	RO	
	number	Typenschild des Motors, z. B. AM8121-0F20-0000			

Index 6502 Supported drive modes

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6502:0	Supported drive modes	Angabe der unterstützten Betriebsmodi. (DS402 Object 0x6502) Es werden nur die Modi CSV, CST, CSTCA und CSP unterstützt	UINT32	RO	0x0000000 (0 _{dez})
		Bit 0: PP Bit 1: VL Bit 2: PV Bit 3: TQ Bit 4: R Bit 5: HM Bit 6: IP Bit 7: CSP Bit 8: CSV Bit 9: CST Bit 10: CSTCA Bit 11-15: reserved Bit 16-31: Manufacturer-specific			

8.5 Informations-/Diagnostikdaten

Index 10F3 Diagnosis History

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F3:0	Diagnosis History	Maximaler Subindex	UINT8	RO	0x37 (55 _{dez})
10F3:01	Maximum Messages	Maximale Anzahl der gespeicherten Nachrichten Es können maximal 50 Nachrichten gespeichert werden	UINT8	RO	0x00 (0 _{dez})
10F3:02	Newest Message	Subindex der neusten Nachricht	UINT8	RO	0x00 (0 _{dez})
10F3:03	Newest Acknowledged Message	Subindex der letzten bestätigten Nachricht	UINT8	RW	0x00 (0 _{dez})
10F3:04	New Messages Available	Zeigt an, wenn eine neue Nachricht verfügbar ist	BOOLEAN	RO	0x00 (0 _{dez})
10F3:05	Flags	ungenutzt	UINT16	RW	0x0000 (0 _{dez})
10F3:06	Diagnosis Message 001	Nachricht 1	OCTET- STRING[28]	RO	{0}
10F3:37	Diagnosis Message 050	Nachricht 50	OCTET- STRING[28]	RO	{0}

Index 10F8 Actual Time Stamp

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F8:0	Actual Time Stamp	Zeitstempel	UINT64	RO	

Index 2019 OCT Memory interface

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2019:0	OCT Memory interface	Maximaler Subindex	UINT8	RO	0x06 (6 _{dez})
2019:01	cmd	3_{dez} : Enc Write 6_{dez} : Enc Read Direct 7_{dez} : Enc Read Indirect (Default) 9_{dez} : Enc Reset 10_{dez} : IP Write 15_{dez} : IP Read 16_{dez} : Write encoder position offset	INT16	RW	0x0007 (7 _{dez})
2019:02	Len		INT16	RW	0x0000 (0 _{dez})
2019:03	Adr		UINT32	RW	0x00000000 (0 _{dez})
2019:04	Offset		UINT32	RW	0x00000000 (0 _{dez})
2019:05	Ctrl/Status	$0_{ m dez}$: Init (Default) $1_{ m dez}$: Execute $2_{ m dez}$: Busy $3_{ m dez}$: Done $4_{ m dez}$: Error	INT16	RW	0x0000 (0 _{dez})
2019:06	Data		OCTET- STRING[32]	RW	0x0000000 (0 _{dez})

Index 2030 Amplifier Diag data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2030:0	Amplifier Diag data	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
2030:11	Amplifier I2T	I2T-Modell-Auslastung	UINT8	RO	0x00 (0 _{dez})
	temperature	Einheit: %			

Index 2031 Motor Diag data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2031:0	Motor Diag data	Maximaler Subindex	UINT8	RO	0x13 (19 _{dez})
2031:11	Motor I2T temperature	I2T-Modell-Auslastung Einheit: %	UINT8	RO	0x00 (0 _{dez})
2031:13	Motor temperature	Temperatur-Auslastung Einheit: °	UINT16	RO	0x0000 (0 _{dez})

Index 2040 Amplifier Info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2040:0	Amplifier Info data	Maximaler Subindex	UINT8	RO	0x12 (18 _{dez})
2040:11	Amplifier temperature	Klemmeninnentemperatur Einheit: 0,1 °C	UINT16	RO	0x0000 (0 _{dez})
2040:12	DC link voltage	Zwischenkreisspannung Einheit: mV	UINT32	RO	0x0000000 (0 _{dez})

Index 2041 Info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2041:0	Info data	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
2041:11	, ,	Hilfsspannung Einheit: mV	UINT32	RO	0x00000000 (0 _{dez})

Index 2058 OCT Info data

(diese Daten werden immer automatisch aus dem elektronischen Typenschild des Motors eingelesen und dienen rein informativen Zwecken)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2058:0	OCT Info data	Maximaler Subindex	UINT8	RO	0x20 (32 _{dez})
2058:11	Encoder Type	Feedbacktyp 2: Dreh-Encoder, unipolare Zählung	UINT16	RO	0x0000 (0 _{dez})
2058:12	Resolution	Auflösung des Feedbacks Einheit: Schritte pro Umdrehung	UINT32	RO	0x0000000 (0 _{dez})
2058:13	Range	Arbeitsbereich des Feedbacks. Beim Verlassen dieses Bereichs gibt es einen Überlauf der Position. Einheit : Umdrehungen	UINT32	RO	0x0000000 (0 _{dez})
2058:14	Type Code Name	Name des Feedbacks	STRING	RO	
2058:15	Serial No	Seriennummer des Feedbacks	STRING	RO	
2058:16	Firmware Revision No	Revision der Firmware	STRING	RO	
2058:17	Firmware Date	Datum der Firmware	STRING	RO	
2058:18	EEPROM Size	EEPROM Größe	UINT16	RO	0x0000 (0 _{dez})
2058:19	Temperature	Temperatur Einheit: 0,1°	INT16	RO	0x0000 (0 _{dez})
2058:1A	LED Current	Strom der Feedback-LED Einheit: 0,1 mA	UINT16	RO	0x0000 (0 _{dez})
2058:1B	Supply voltage	Versorgungsspannung des Feedbacks Einheit: mV	UINT32	RO	0x0000000 (0 _{dez})
2058:1C	Life- time	Betriebsstundenzähler Einheit: Minuten	UINT32	RO	0x0000000 (0 _{dez})
2058:1D	Received Signal Strength Indicator	Empfangssignalstärke an der Klemme Einheit: %	UINT16	RO	0x0000 (0 _{dez})
2058:1E	Slave Received Signal Strength Indicator	Empfangssignalstärke am Geber Einheit: %	UINT16	RO	0x0000 (0 _{dez})
2058:1F	Line delay	Laufzeit des Signals im Kabel Einheit: ns	UINT16	RO	0x0000 (0 _{dez})
2059:20	Encoder position offset	Im Motor-Feedback abgespeicherter Positionsoffset	UINT16	RO	0x0000 (0 _{dez})

Index 2059 OCT Nameplate

Die in diesem Index beschriebenen Parameter werden immer aus dem elektronischen Typenschild des angeschlossenen Motors gelesen. Aus diesen Parametern ergeben sich die in diesem Kapitel mit Sternchen (*) markierten Parameter automatisch, wenn das Automatische Scannen des elektronischen Typenschild eingeschaltet ist (Index 0x2018 [• 197]).

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2059:0	OCT Nameplate	Maximaler Subindex	UINT8	RO	0x24 (36 _{dez})
2059:01	Motor vendor	Motorhersteller	STRING	RO	
2059:02	Electric motor type	Motortyp	STRING	RO	
2059:03	Serial No	Seriennummer	STRING	RO	
2059:04	Order code	Bestellnummer	STRING	RO	
		(Auf diesen Index wird beim Autoconfig geprüft, ob der Motor identisch zum Vorgänger ist)			
2059:05	Motor construction	Art des Motors	STRING	RO	
2059:06	Pole pairs	Polpaarzahl	UINT32	RO	0x00000000 (0 _{dez})
2059:07	Standstill current (rms)	Effektiver Haltestrom Einheit: mA	UINT32	RO	0x0000000 (0 _{dez})
2059:08	Rated current (rms)	Effektiver Nennstrom Einheit: mA	UINT32	RO	0x0000000 (0 _{dez})
2059:09	Peak current (rms)	Effektiver Spitzenstrom Einheit: mA	UINT32	RO	0x00000000 (0 _{dez})
2059:0A	Nominal voltage (rms)	Effektive Nennspannung Einheit: mV	UINT32	RO	0x00000000 (0 _{dez})
2059:0B	Max voltage (rms)	Maximale Spannung Einheit: mV	UINT32	RO	0x00000000 (0 _{dez})
2059:0C	Max winding du/dt	Maximal zulässige Spannungsanstieg an der Spule Einheit : kV/s	UINT32	RO	0x00000000 (0 _{dez})
2059:0D	Max torque	Maximales Drehmoment Einheit: mNm	UINT16	RO	0x0000 (0 _{dez})
2059:0E	Torque constant	Drehmoment-Konstante Einheit: mNm / A	UINT16	RO	0x0000 (0 _{dez})
2059:0F	EMK (rms)	Gegenspannung Einheit: mV / (1/min)	UINT32	RO	0x0000000 (0 _{dez})
2059:10	Winding resistance Ph-Ph 20°C	Spulenwiderstand Einheit: mOhm	UINT16	RO	0x0000 (0 _{dez})
2059:11	Ld Ph-Ph	Induktivität in Flussrichtung Einheit: 0,1 mH	UINT16	RO	0x0000 (0 _{dez})
2059:12	Lq Ph-Ph	Induktivität in momentbildene Richtung Einheit: 0,1 mH	UINT16	RO	0x0000 (0 _{dez})
2059:13	Max speed	Maximale Geschwindigkeit Einheit: 1/min	UINT32	RO	0x0000000 (0 _{dez})
2059:14	Moment of inertia	Massenträgheitsmoment Einheit: g cm^2	UINT16	RO	0x0000 (0 _{dez})
2059:15	T motor warn limit	Warnungsschwelle Motortemperatur Einheit : 0,1 °C	UINT16	RO	0x0000 (0 _{dez})
2059:16	T motor shut down	Fehlerschwelle Motortemperatur Einheit : 0,1°C	UINT16	RO	0x0000 (0 _{dez})
2059:17	Time constant i2t	Zeitkonstante I2T-Modell Einheit : s	UINT16	RO	0x0000 (0 _{dez})
2059:18	Motor thermal constant	Thermische Zeitkonstante des Motors Einheit: s	UINT16	RO	0x0000 (0 _{dez})
2059:1B	Brake type	Typ der Bremse	STRING	RO	
		no Brake			
		holding Brake			
2059:1C	Min brake voltage	Minimale Bremsspannung Einheit : mV	UINT32	RO	0x0000000 (0 _{dez})
2059:1D	Max brake voltage	Maximale Bremsspannung Einheit: mV	UINT32	RO	0x0000000 (0 _{dez})
2059:1E	Min brake monitor current	Minimaler Strom für die Überwachung der Bremse Einheit : mA	UINT32	RO	0x0000000 (0 _{dez})
2059:1F	Brake holding torque	Haltemoment der Bremse Einheit: mNm	UINT32	RO	0x0000000 (0 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
2059:20	Brake T on	Zeit bis die Bremse anzieht Einheit : ms	UINT16	RO	0x0000 (0 _{dez})
2059:21	Brake T off	Zeit bis die Bremse löst Einheit: ms	UINT16	RO	0x0000 (0 _{dez})
2059:22	Brake reduced holding voltage	Reduzierte Spannung der Bremse Einheit: mV	UINT32	RO	0x0000000 (0 _{dez})
2059:23	Brake time to red. holding volt.	Zeit ab der die Bremse mit reduzierter Spannung hält Einheit : ms	UINT16	RO	0x0000 (0 _{dez})
2059:24	Motor temp sensor connection	Anschluss des Temperatursensors Feedback port (nicht änderbar)	STRING	RO	

8.6 Standardobjekte

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0	Device type	Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	RO	0x0000192 (402 _{dez})

Index 1001 Error register

Ind	ex (hex)	Name	Bedeutung	Datentyp	Flags	Default
100	1:0	Error register		UINT8	RO	0x00 (0 _{dez})

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EL72x1-x01x

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	01

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x1C213052 (471937106 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low- Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x0000000 (0 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x00000000 (0 _{dez})

Index 1600 DS402 RxPDO-Map Controlword

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	DS402 RxPDO-Map Controlword	PDO Mapping RxPDO 1	UINT8	RO	0x01 (1 _{dez})
1600:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x6040:00, 16

Index 1601 DS402 RxPDO-Map Target velocity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	DS402 RxPDO-Map Target velocity	PDO Mapping RxPDO 2	UINT8	RO	0x01 (1 _{dez})
1601:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60FF:00, 32

Index 1602 DS402 RxPDO-Map Target torque

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1602:0	DS402 RxPDO-Map Target torque	PDO Mapping RxPDO 3	UINT8	RO	0x01 (1 _{dez})
1602:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x6071:00, 16

Index 1603 DS402 RxPDO-Map Commutation angle

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DS402 RxPDO-Map Commutation angle	PDO Mapping RxPDO 4	UINT8	RO	0x01 (1 _{dez})
1603:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60EA:00, 16

Index 1604 DS402 RxPDO-Map Torque limitation

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1604:0	DS402 RxPDO-Map Torque limitation	PDO Mapping RxPDO 5	UINT8	RO	0x01 (1 _{dez})
1604:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x6072:00, 16

Index 1605 DS402 RxPDO-Map Torque offset

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1605:0	DS402 RxPDO-Map Torque offset	PDO Mapping RxPDO 6	UINT8	RO	0x01 (1 _{dez})
1605:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x2001:11, 16

Index 1606 DS402 RxPDO-Map Target position

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1606:0	DS402 RxPDO-Map Target position	PDO Mapping RxPDO 7	UINT8	RO	0x01 (1 _{dez})
1606:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x607A:00, 32

Index 1607 DS402 RxPDO-Map Touch probe function

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1607:0	DS402 RxPDO-Map Touch probe function	PDO Mapping RxPDO 8	UINT8	RO	0x01 (1 _{dez})
1607:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60B8:00, 16

Index 1608 DS402 RxPDO-Map Modes of operation

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1608:0	DS402 RxPDO-Map Modes of operation	PDO Mapping RxPDO 9	UINT8	RO	0x01 (1 _{dez})
1608:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x6060:00, 8

Index 1A00 DS402 TxPDO-Map Statusword

	Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
		DS402 TxPDO-Map Statusword	PDO Mapping TxPDO 1	UINT8	RO	0x01 (1 _{dez})
ſ	1A00:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x6041:00, 16

Index 1A01 DS402 TxPDO-Map Position actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	DS402 TxPDO-Map Position actual value	PDO Mapping TxPDO 2	UINT8	RO	0x01 (1 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x6064:00, 32

Index 1A02 DS402 TxPDO-Map Velocity actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	DS402 TxPDO-Map Velocity actual value	PDO Mapping TxPDO 3	UINT8	RO	0x01 (1 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x606C:00, 32

Index 1A03 DS402 TxPDO-Map Torque actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	DS402 TxPDO-Map Torque actual value	PDO Mapping TxPDO 4	UINT8	RO	0x01 (1 _{dez})
1A03:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x6077:00, 16

Index 1A04 DS402 TxPDO-Map Following error actual value

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DS402 TxPDO-Map Following error actual value	PDO Mapping TxPDO 5	UINT8	RO	0x01 (1 _{dez})
1A04:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60F4:00, 32

Index 1A05 DS402 TxPDO-Map Touch probe status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	DS402 TxPDO-Map Touch probe status	PDO Mapping TxPDO 6	UINT8	RO	0x01 (1 _{dez})
1A05:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60B9:00, 16

Index 1A06 DS402 TxPDO-Map Touch probe 1 positive edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A06:0	DS402 TxPDO-Map Touch probe 1 positive edge	PDO Mapping TxPDO 7	UINT8	RO	0x01 (1 _{dez})
1A06:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60BA:00, 32

Index 1A07 DS402 TxPDO-Map Touch probe 1 negative edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DS402 TxPDO-Map Touch probe 1 negative edge	PDO Mapping TxPDO 8	UINT8	RO	0x01 (1 _{dez})
1A07:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60BB:00, 32

Index 1A08 DS402 TxPDO-Map Touch probe 2 positive edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A08:0	DS402 TxPDO-Map Touch probe 2 positive edge	PDO Mapping TxPDO 9	UINT8	RO	0x01 (1 _{dez})
1A08:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60BC:00, 32

Index 1A09 DS402 TxPDO-Map Touch probe 2 negative edge

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DS402 TxPDO-Map Touch probe 2 negative edge	PDO Mapping TxPDO 10	UINT8	RO	0x01 (1 _{dez})
1A09:01	SubIndex 001	1. PDO Mapping entry	UINT32	RO	0x60BD:00, 32

Index 1A0A DS402 TxPDO-Map Data invalid

Index	Name	Bedeutung	Data type	Flags	Default
1A0A:0	DS402 Data invalid	PDO Mapping TxPDO 11	UINT8	RO	0x03 (3 _{dez})
1A0A:01	SubIndex 001	1. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A0A:02	SubIndex 002	1. PDO Mapping entry (object 0x603E (Data invalid), entry 0x02 (Position actual value))	UINT32	RO	0x603E:02, 1
1A0A:03	SubIndex 003	1. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14

Index 1A0B DS402 TxPDO-Map Info data 1

Index	Name	Bedeutung	Data type	Flags	Default
1A0B:0	DS402 TxPDO-Map Info data 1	PDO Mapping TxPDO 12	UINT8	RO	0x01 (1 _{dez})
1A0B:01		1. PDO Mapping entry (object 0x2008 (Inputs), entry 0x01 (Info data 1))	UINT32	RO	0x2008:01, 16

Index 1A0C DS402 TxPDO-Map Info data 2

Index	Name	Bedeutung	Data type	Flags	Default
1A0C:0	DS402 TxPDO-Map Info data 2	PDO Mapping TxPDO 13	UINT8	RO	0x01 (1 _{dez})
1A0C:01		1. PDO Mapping entry (object 0x2008 (Inputs), entry 0x02 (Info data 2))	UINT32	RO	0x2008:02, 16

Index 1A0E DS402 TxPDO-Map Modes of operation display

Index	Name	Bedeutung	Data type	Flags	Default
1A0E:0	DS402 TxPDO-Map Modes of operation display	PDO Mapping TxPDO 14	UINT8	RO	0x01 (1 _{dez})
1A0E:01	SubIndex 001	PDO Mapping entry (object 0x6061 (Modes of operation display)	UINT32	RO	0x6061:00, 8

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x02 (2 _{dez})
1C12:01	Subindex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632 _{dez})
1C12:02	Subindex 002	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1601 (5633 _{dez})
1C12:03	Subindex 003	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:04	Subindex 004	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:05	Subindex 005	5. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:06	Subindex 006	6. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:07	Subindex 007	7. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C12:08	Subindex 008	8. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C13 TxPDO assign

Index	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x02 (2 _{dez})
1C13:01	Subindex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	Subindex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A01 (6657 _{dez})
1C13:03	Subindex 003	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:04	Subindex 004	4. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:05	Subindex 005	5. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:06	Subindex 006	6. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:07	Subindex 007	7. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:08	Subindex 008	8. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:09	Subindex 009	9. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:0A	Subindex 010	10. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C32 SM output parameter

Index (Hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0000 (0 _{dez})
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x0003D090
		Free Run: Zykluszeit des lokalen Timers			(250000 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x4808
		Bit 0 = 1: Free Run wird unterstützt			(18440 _{dez})
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC-Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08)			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0001E848 (125000 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C32:08	Command	0: Messung der lokalen Zykluszeit wird gestoppt	UINT16	RW	$0x0000 (0_{dez})$
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C32:03, 0x1C32:05, 0x1C32:06, 0x1C32:09, 0x1C33:03 [▶ 213], 0x1C33:06, 0x1C33:09 [▶ 213] werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0000 (0 _{dez})
		3: DC - Synchron with SYNC1 Event			
1C33:02	Cycle time	wie <u>0x1C32:02</u> [▶ <u>212]</u>	UINT32	RW	0x0003D090 (250000 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x00001C52 (7250 _{dez})
1C33:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x4808
		Bit 0: Free Run wird unterstützt			(18440 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		 Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 212] oder 0x1C33:08) 			
1C33:05	Minimum cycle time	wie <u>0x1C32:05 [</u> ▶ <u>212]</u>	UINT32	RO	0x0001E848 (125000 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:07	Minimum delay time		UINT32	RO	0x00001C52 (7250 _{dez})
1C33:08	Command	wie <u>0x1C32:08</u> [▶ <u>212]</u>	UINT16	RW	0x0000 (0 _{dez})
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x00001C52 (7250 _{dez})
1C33:0B	SM event missed counter	wie <u>0x1C32:11 [</u> ▶ <u>212]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	wie <u>0x1C32:12</u> [▶ <u>212]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	wie <u>0x1C32:13</u> [▶ <u>212]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	wie <u>0x1C32:32</u> [▶ <u>212]</u>	BOOLEAN	RO	0x00 (0 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	siehe Hinweis!	UINT32	RW	0x00000000
					(0_{dez})

9 Fehlerbehebung

9.1 Diagnose - Grundlagen zu Diag Messages

Mit *DiagMessages* wird ein System der Nachrichtenübermittlung vom EtherCAT Slave an den EtherCAT Master/TwinCAT bezeichnet. Die Nachrichten werden vom Gerät im eigenen CoE unter 0x10F3 abgelegt und können von der Applikation oder dem System Manager ausgelesen werden. Für jedes im Gerät hinterlegtes Ereignis (Warnung, Fehler, Statusänderung) wird eine über einen Code referenzierte Fehlermeldung ausgegeben.

Definition

Das System *DiagMessages* ist in der ETG (<u>EtherCAT Technology Group</u>) in der Richtlinie ETG.1020, Kap. 13 "Diagnosis Handling" definiert. Es wird benutzt, damit vordefinierte oder flexible Diagnosemitteilungen vom EtherCAT-Slave an den Master übermittelt werden können. Das Verfahren kann also nach ETG herstellerübergreifend implementiert werden. Die Unterstützung ist optional. Die Firmware kann bis zu 250 DiagMessages im eigenen CoE ablegen.

Jede DiagMessage besteht aus

- · Diag Code (4 Byte)
- Flags (2 Byte; Info, Warnung oder Fehler)
- Text-ID (2 Byte; Referenz zum erklärenden Text aus der ESI/XML)
- Zeitstempel (8 Byte, lokale Slave-Zeit oder 64-Bit Distributed-Clock-Zeit, wenn vorhanden)
- · dynamische Parameter, die von der Firmware mitgegeben werden

In der zum EtherCAT-Gerät gehörigen ESI/XML-Datei werden die DiagMessages in Textform erklärt: Anhand der in der DiagMessage enthaltenen Text-ID kann die entsprechende Klartextmeldung in den Sprachen gefunden werden, die in der ESI/XML enthalten sind. Üblicherweise sind dies bei Beckhoff-Produkten deutsch und englisch.

Der Anwender erhält durch den Eintrag *NewMessagesAvailable* Information, dass neue Meldungen vorliegen.

DiagMessages können im Gerät bestätigt werden: die letzte/neueste unbestätigte Meldung kann vom Anwender bestätigt werden.

Im CoE finden sich sowohl die Steuereinträge wie die History selbst im CoE-Objekt 0x10F3:

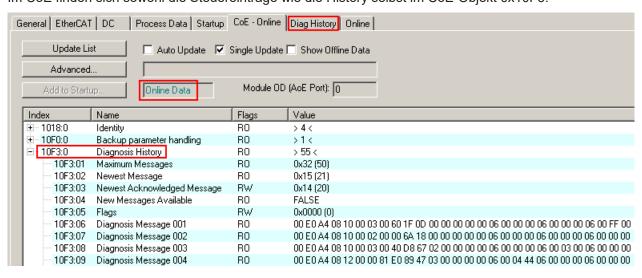


Abb. 166: DiagMessages im CoE

Unter 0x10F3:02 ist der Subindex der neuesten *DiagMessage* auslesbar.

Unterstützung zur Inbetriebnahme

Das System der DiagMesssages ist vor allem während der Anlageninbetriebnahme einzusetzen. Zur Online-Diagnose während des späteren Dauerbetriebs sind die Diagnosewerte z. B. im StatusWord des Gerätes (wenn verfügbar) hilfreich.

Implementierung TwinCAT System Manager

Ab TwinCAT 2.11 werden DiagMessages, wenn vorhanden, beim Gerät in einer eigenen Oberfläche angezeigt. Auch die Bedienung (Abholung, Bestätigung) erfolgt darüber.

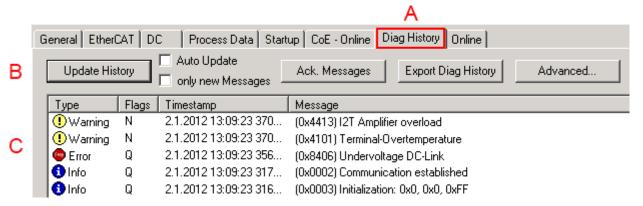


Abb. 167: Implementierung DiagMessage-System im TwinCAT System Manager

Im Reiter Diag History (A) sind die Betätigungsfelder (B) wie auch die ausgelesene History (C) zu sehen. Die Bestandteile der Message:

- Info/Warning/Error
- Acknowledge-Flag (N = unbestätigt, Q = bestätigt)
- · Zeitstempel
- Text-ID
- Klartext-Meldung nach ESI/XML Angabe

Die Bedeutung der Buttons ist selbsterklärend.

DiagMessages im ADS Logger/Eventlogger

Ab TwinCAT 3.1 build 4022 werden von einer Klemme abgesetzte DiagMessages auch im TwinCAT ADS Logger gezeigt. Da nun IO-übergreifend DiagMessages an einem Ort dargestellt werden, vereinfacht dies die Inbetriebnahme. Außerdem kann die Logger-Ausgabe in eine Datei gespeichert werden – somit stehen die DiagMessages auch langfristig für Analysen zur Verfügung.

DiagMessages liegen eigentlich nur lokal im CoE 0x10F3 in der Klemme vor und können bei Bedarf manuell z. B. über die oben genannte DiagHistory ausgelesen werden.

Bei Neuentwicklungen sind die EtherCAT-Klemmen standardmäßig so eingestellt, dass sie das Vorliegen einer DiagMessage über EtherCAT als Emergency melden; der Eventlogger kann die DiagMessage dann abholen. Die Funktion wird in der Klemme über 0x10F3:05 aktiviert, deshalb haben solche Klemmen folgenden Eintrag standardmäßig in der StartUp-Liste:

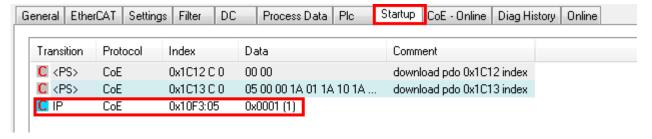


Abb. 168: StartUp-Liste

Soll die Funktion ab Gerätestart deaktiviert werden weil z. B. viele Meldungen kommen oder der EventLogger nicht genutzt wird, kann der StartUp-Eintrag gelöscht oder auf 0 gesetzt werden. Der Wert kann dann bei Bedarf später aus der PLC per CoE-Zugriff wieder auf 1 gesetzt werden.

Nachrichten in die PLC einlesen

- In Vorbereitung -

Interpretation

Zeitstempel

Der Zeitstempel wird aus der lokalen Uhr der Klemme zum Zeitpunkt des Ereignisses gewonnen. Die Zeit ist üblicherweise die Distributed-Clocks-Zeit (DC) aus Register x910.

Bitte beachten: die DC-Zeit wird in der Referenzuhr gleich der lokalen IPC/TwinCAT-Zeit gesetzt, wenn EtherCAT gestartet wird. Ab diesem Moment kann die DC-Zeit gegenüber der IPC-Zeit divergieren, da die IPC-Zeit nicht nachgeregelt wird. Es können sich so nach mehreren Wochen Betrieb ohne EtherCAT Neustart größere Zeitdifferenzen entwickeln. Als Abhilfe kann die sog. Externe Synchronisierung der DC-Zeit genutzt werden, oder es wird fallweise eine manuelle Korrekturrechnung vorgenommen: die aktuelle DC-Zeit kann über den EtherCAT Master oder durch Einsicht in das Register x901 eines DC-Slaves ermittelt werden.

Aufbau der Text-ID

Der Aufbau der MessageID unterliegt keiner Standardisierung und kann herstellerspezifisch definiert werden. Bei Beckhoff EtherCAT-Geräten (EL, EP) lautet er nach **xyzz** üblichwerweise:

х	у	zz
0: Systeminfo	0: System	Fehlernummer
1: Info	1: General	
2: reserved	2: Communication	
4: Warning	3: Encoder	
8: Error	4: Drive	
	5: Inputs	
	6: I/O allgemein	
	7: reserved	

Beispiel: Meldung 0x4413 --> Drive Warning Nummer 0x13

Übersicht Text-IDs

Spezifische Text-IDs sind in der Gerätedokumentation aufgeführt.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x0001	Information	System	No error	Kein Fehler
0x0002	Information	System	Communication established	Verbindung aufgebaut
0x0003	Information	System	Initialisation: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1000	Information	System	Information: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1012	Information	System	EtherCAT state change Init - PreOp	
0x1021	Information	System	EtherCAT state change PreOp - Init	
0x1024	Information	System	EtherCAT state change PreOp - Safe-Op	
0x1042	Information	System	EtherCAT state change SafeOp - PreOp	
0x1048	Information	System	EtherCAT state change SafeOp - Op	
0x1084	Information	System	EtherCAT state change Op - SafeOp	
0x1100	Information	Allgemein	Detection of operation mode completed: 0x%X, %d	Erkennung der Betriebsart beendet
0x1135	Information	Allgemein	Cycle time o.k.: %d	Zykluszeit o.k.
0x1157	Information	Allgemein	Data manually saved (ldx: 0x%X, Subldx: 0x%X)	Daten manuell gespeichert
0x1158	Information	Allgemein	Data automatically saved (ldx: 0x%X, SubIdx: 0x%X)	Daten automatisch gespeichert
0x1159	Information	Allgemein	Data deleted (ldx: 0x%X, Subldx: 0x%X)	Daten gelöscht
0x117F	Information	Allgemein	Information: 0x%X, 0x%X, 0x%X	Information
0x1201	Information	Kommunikation	Communication re-established	Kommunikation zur Feldseite wiederhergestellt Die Meldung tritt auf, wenn z. B. im Betrieb die Spannung der Powerkontakte entfernt und wieder angelegt wurde.
0x1300	Information	Encoder	Position set: %d, %d	Position gesetzt - StartInputhandler
0x1303	Information	Encoder	Encoder Supply ok	Encoder Netzteil OK
0x1304	Information	Encoder	Encoder initialization successfully, channel: %X	Encoder Initialisierung erfolgreich abgeschlossen
0x1305	Information	Encoder	Sent command encoder reset, channel: %X	Sende Kommando Encoder Reset
0x1400	Information	Drive	Drive is calibrated: %d, %d	Antrieb ist kalibriert
0x1401	Information	Drive	Actual drive state: 0x%X, %d	Aktueller Status des Antriebs
0x1705	Information		CPU usage returns in normal range (< 85%)	Prozessorauslastung ist wieder im normalen Bereich
0x1706	Information		Channel is not in saturation anymore	Kanal ist nicht mehr in Sättigung
0x1707	Information		Channel is not in overload anymore	Kanal ist nicht mehr überlastet
0x170A	Information		No channel range error anymore	Es liegt kein Messbereichsfehler mehr vor
0x170C	Information		Calibration data saved	Abgleichdaten wurden gespeichert
0x170D	Information		Calibration data will be applied and saved after sending the command "0x5AFE"	Abgleichdaten werden erst nach dem Senden des Kommandos "0x5AFE" übernommen und gespeichert

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x2000	Information	System	%s: %s	
0x2001	Information	System	%s: Network link lost	Netzwerk Verbindung verloren
0x2002	Information	System	%s: Network link detected	Netzwerk Verbindung gefunden
0x2003	Information	System	%s: no valid IP Configuration - Dhcp client started	Ungültige IP Konfiguration
0x2004	Information	System	%s: valid IP Configuration (IP: %d.%d.%d.%d) assigned by Dhcp server %d.%d.%d.%d	Gültige, vom DHCP-Server zugewiesene IP- Konfiguration
0x2005	Information	System	%s: Dhcp client timed out	Zeitüberschreitung DHCP-Client
0x2006	Information	System	%s: Duplicate IP Address detected (%d.%d.%d.%d)	Doppelte IP-Adresse gefunden
0x2007	Information	System	%s: UDP handler initialized	UDP-Handler initialisiert
0x2008	Information	System	%s: TCP handler initialized	TCP-Handler initialisiert
0x2009	Information	System	%s: No more free TCP sockets available	Keine freien TCP Sockets verfügbar

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4000	Warnung		Warning: 0x%X, 0x%X, 0x%X	allgemeine Warnung, Parameter je nach Ereignis.
0x4001	Warnung	System	Warning: 0x%X, 0x%X, 0x%X	Interpretation siehe Gerätedokumentation.
0x4001 0x4002	Warnung	System System	%s: %s Connection Open (IN:%d	
0,4002	vvainung	Gystern	OUT:%d API:%dms) from %d. %d.%d.%d successful	
0x4003	Warnung	System	%s: %s Connection Close (IN:%d OUT:%d) from %d.%d.%d.%d successful	
0x4004	Warnung	System	%s: %s Connection (IN:%d OUT: %d) with %d.%d.%d.%d timed out	
0x4005	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Error: %u)	
0x4006	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Input Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4007	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Output Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4008	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d.denied (RPI:%dms not supported -> API:%dms)	
0x4101	Warnung	Allgemein	Terminal-Overtemperature	Übertemperatur. Die Innentemperatur der Klemme überschreitet die parametrierte Warnschwelle.
0x4102	Warnung	Allgemein	Discrepancy in the PDO-Configuration	Die ausgewählten PDOs passen nicht zur eingestellten Betriebsart.
				Beispiel: Antrieb arbeitet im Velocity-Mode. Das Velocity-PDO ist jedoch nicht in die PDOs gemapped.
0x417F	Warnung	Allgemein	Warnung: 0x%X, 0x%X, 0x%X	
0x428D	Warnung	Allgemein	Challenge is not Random	
0x4300	Warnung	Encoder	Subincrements deactivated: %d, %d	Subinkremente deaktiviert (trotz aktivierter Konfiguration)
0x4301	Warnung	Encoder	Encoder-Warning	Allgemeiner Encoderfehler
0x4302	Warnung	Encoder	Maximum frequency of the input signal is nearly reached (channel %d)	Maximale Frequenz des Eingangssignals ist bald erreicht
0x4303	Warnung	Encoder	Limit counter value was reduced because of the PDO configuration (channel %d)	Limit-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4304	Warnung	Encoder	Reset counter value was reduced because of the PDO configuration (channel %d)	Reset-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4400	Warnung	Drive	Drive is not calibrated: %d, %d	Antrieb ist nicht kalibriert
0x4401	Warnung	Drive	Starttype not supported: 0x%X, %d	Starttyp wird nicht unterstützt
0x4402	Warnung	Drive	Command rejected: %d, %d	Kommando abgewiesen
0x4405	Warnung	Drive	Invalid modulo subtype: %d, %d	Modulo-Subtyp ungültig
0x4410	Warnung	Drive	Target overrun: %d, %d	Zielposition wird überfahren
0x4411	Warnung	Drive	DC-Link undervoltage (Warning)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4412	Warnung	Drive	DC-Link overvoltage (Warning)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4413	Warnung	Drive	I2T-Model Amplifier overload (Warning)	Der Verstärker wir außerhalb der Spezifikation betrieben Der LOT Machillate Norderingen int felerh
0.4444	10/	Date	IOT Madal Materia	Das I2T-Modell des Verstärkers ist falsch parametriert
0x4414	Warnung	Drive	I2T-Model Motor overload (Warning)	Der Motor wird außerhalb der parametrierten Nennwerte betrieben.
				Das I2T-Modell des Motors ist falsch parametriert.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4415	Warnung	Drive	Speed limitation active	Die maximale Drehzahl wird durch die parametrierten Objekte (z. B. velocity limitation, motor speed limitation) begrenzt. Die Warnung wird ausgegeben, wenn die Sollgeschwindigkeit größer ist, als eines der parametrierten Begrenzungen.
0x4416	Warnung	Drive	Step lost detected at position: 0x%X%X	Schrittverlust erkannt
0x4417	Warnung	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Warnschwelle.
0x4418	Warnung	Drive	Limit: Current	Limit: Strom wird limitiert
0x4419	Warnung	Drive	Limit: Amplifier I2T-model exceeds 100%	Die Schwellwerte für den maximalen Strom wurden überschritten.
0x441A	Warnung	Drive	Limit: Motor I2T-model exceeds 100%	Limit: Motor I2T-Modell übersteigt 100%
0x441B	Warnung	Drive	Limit: Velocity limitation	Die Schwellwerte für die maximale Drehzahl wurden überschritten.
0x441C	Warnung	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x4600	Warnung	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich
0x4610	Warnung	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich
0x4705	Warnung		Processor usage at %d %	Prozessorauslastung bei %d %
0x470A	Warnung		EtherCAT Frame missed (change Settings or DC Operation Mode or Sync0 Shift Time)	EtherCAT Frame verpasst (Einstellungen, DC Operation Mode oder Sync0 Shift Time ändern)

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8000	Fehler	System	%s: %s	
0x8001	Fehler	System	Error: 0x%X, 0x%X, 0x%X	allgemeiner Fehler, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x8002	Fehler	System	Communication aborded	Kommunikation abgebrochen
0x8003	Fehler	System	Configuration error: 0x%X, 0x%X,	allgemeine, Parameter je nach Ereignis.
			0x%X	Interpretation siehe Gerätedokumentation.
0x8004	Fehler	System	%s: Unsuccessful FwdOpen- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8005	Fehler	System	%s: FwdClose-Request sent to %d.%d.%d.%d (%s)	
0x8006	Fehler	System	%s: Unsuccessful FwdClose- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8007	Fehler	System	%s: Connection with %d.%d.%d. %d. %d (%s) closed	
0x8100	Fehler	Allgemein	Status word set: 0x%X, %d	Fehlerbit im Statuswort gesetzt
0x8101	Fehler	Allgemein	Operation mode incompatible to PDO interface: 0x%X, %d	Betriebsart inkompatibel zum PDO-Interface
0x8102	Fehler	Allgemein	Invalid combination of Inputs and Outputs PDOs	Ungültige Kombination von In- und Output PDOs
0x8103	Fehler	Allgemein	No variable linkage	Keine Variablen verknüpft
0x8104	Fehler	Allgemein	Terminal-Overtemperature	Die Innentemperatur der Klemme überschreitet die parametrierte Fehlerschwelle. Das Aktivieren der Klemme wird unterbunden.
0x8105	Fehler	Allgemein	PD-Watchdog	Die Kommunikation zwischen Feldbus und Endstufe wird durch einen Watchdog abgesichert. Sollte die Feldbuskommunikation abbrechen, wird die Achse automatisch gestoppt. • Die EtherCAT-Verbindung wurde im Betrieb
				unterbrochen Der Master wurde im Betrieb in den Config-Mode geschaltet
0x8135	Fehler	Allgemein	Cycletime has to be a multiple of 125 µs	Die IO- oder NC-Zykluszeit ist nicht ganzzahlig durch 125µs teilbar.
0x8136	Fehler	Allgemein	Configuration error: invalid sampling rate	Konfigurationsfehler: Ungültige Samplingrate
0x8137	Fehler	Allgemein	Elektronisches Typenschild: CRC-Fehler	Inhalt des Speicher des externen Typenschildes nicht gültig.
0x8140	Fehler	Allgemein	Sync Error	Echtzeitverletztung
0x8141	Fehler	Allgemein	Sync%X Interrupt lost	Sync%X Interrupt fehlt
0x8142	Fehler	Allgemein	Sync Interrupt asynchronous	Sync Interrupt asynchron
0x8143	Fehler	Allgemein	Jitter too big	Jitter Grenzwertüberschreitung
0x817F	Fehler	Allgemein	Error: 0x%X, 0x%X, 0x%X	
0x8200	Fehler	Kommunikation	Write access error: %d, %d	Fehler beim Schreiben
0x8201	Fehler	Kommunikation	No communication to field-side (Auxiliary voltage missing)	Es ist keine Spannung an den Powerkontakten angelegt Ein Firmware Update ist fehlgeschlagen
0x8281	Fehler	Kommunikation	Ownership failed: %X	
0x8282	Fehler	Kommunikation	To many Keys founded	
0x8283	Fehler	Kommunikation	Key Creation failed: %X	
0x8284	Fehler	Kommunikation	Key loading failed	
0x8285	Fehler	Kommunikation	Reading Public Key failed: %X	
0x8286	Fehler	Kommunikation	Reading Public EK failed: %X	
0x8287	Fehler	Kommunikation	Reading PCR Value failed: %X	
0x8288	Fehler	Kommunikation	Reading Certificate EK failed: %X	
0x8289	Fehler	Kommunikation	Challenge could not be hashed: %X	
0x828A	Fehler	Kommunikation	Tickstamp Process failed	
0x828B	Fehler	Kommunikation	PCR Process failed: %X	
0x828C	Fehler	Kommunikation	Quote Process failed: %X	
0x82FF	Fehler	Kommunikation	Bootmode not activated	Bootmode nicht aktiviert
0x8300	Fehler	Encoder	Set position error: 0x%X, %d	Fehler beim Setzen der Position

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8301	Fehler	Encoder	Encoder increments not configured: 0x%X, %d	Enkoderinkremente nicht konfiguriert
0x8302	Fehler	Encoder	Encoder-Error	Die Amplitude des Resolvers ist zu klein.
0x8303	Fehler	Encoder	Encoder power missing (channel %d)	Encoderspannung nicht vorhanden (Kanal %d)
0x8304	Fehler	Encoder	Encoder communication error, channel: %X	Encoder Kommunikationsfehler
0x8305	Fehler	Encoder	EnDat2.2 is not supported, channel: %X	EnDat2.2 wird nicht unterstützt
0x8306	Fehler	Encoder	Delay time, tolerance limit exceeded, 0x%X, channel: %X	Laufzeitmessung, Toleranz überschritten
0x8307	Fehler	Encoder	Delay time, maximum value exceeded, 0x%X, channel: %X	Laufzeitmessung, Maximalwert überschritten
0x8308	Fehler	Encoder	Unsupported ordering designation, 0x%X, channel: %X (only 02 and 22 is supported)	Falsche EnDat Bestellbezeichnung
0x8309	Fehler	Encoder	Encoder CRC error, channel: %X	Encoder CRC Fehler
0x830A	Fehler	Encoder	Temperature %X could not be read, channel: %X	Temperatur kann nicht gelesen werden
0x830C	Fehler	Encoder	channel. %X	CRC Fehler festgestellt. Überprüfen Sie den Übertragungsweg und das CRC Polynom
0x830D	Fehler	Encoder	Encoder Watchdog Error, channel. %X	Der Sensor hat nicht innerhalb einer vordefinierten Zeitspanne geantwortet
0x8310	Fehler	Encoder	Initialisation error	Initialisierungsfehler
0x8311	Fehler	Encoder	Maximum frequency of the input signal is exceeded (channel %d)	Maximale Frequenz des Eingangssignals ist überschritten (Kanal %d)
0x8312	Fehler	Encoder	Encoder plausibility error (channel %d)	Encoder Plausibilitätsfehler (Kanal %d)
0x8313	Fehler	Encoder	Configuration error (channel %d)	Konfigurationsfehler (Kanal %d)
0x8314	Fehler	Encoder	Synchronisation error	Synchronisierungsfehler
0x8315	Fehler	Encoder	Error status input (channel %d)	Fehler Status-Eingang (Kanal %d)
0x8400	Fehler	Drive	Incorrect drive configuration: 0x%X, %d	Antrieb fehlerhaft konfiguriert
0x8401	Fehler	Drive	Limiting of calibration velocity: %d, %d	Begrenzung der Kalibrier-Geschwindigkeit
0x8402	Fehler	Drive	Emergency stop activated: 0x%X, %d	Emergency-Stop aktiviert
0x8403	Fehler	Drive	ADC Error	Fehler bei Strommessung im ADC
0x8404	Fehler	Drive	Overcurrent	Überstrom Phase U, V, oder W
0x8405	Fehler	Drive	Invalid modulo position: %d	Modulo-Position ungültig
0x8406	Fehler	Drive	DC-Link undervoltage (Error)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8407	Fehler	Drive	DC-Link overvoltage (Error)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8408	Fehler	Drive	I2T-Model Amplifier overload (Error)	Der Verstärker wir außerhalb der Spezifikation betrieben
				Das I2T-Modell des Verstärkers ist falsch parametriert
0x8409	Fehler	Drive	I2T-Model motor overload (Error)	Der Motor wird außerhalb der parametrierten Nennwerte betrieben.
				Das I2T-Modell des Motors ist falsch parametriert.
0x840A	Fehler	Drive	Overall current threshold exceeded	Summenstrom überschritten
0x8415	Fehler	Drive	Invalid modulo factor: %d	Modulo-Faktor ungültig
0x8416	Fehler	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Fehlerschwelle. Der Motor bleibt sofort stehen. Das Aktivieren der Endstufe wird unterbunden.
0x8417	Fehler	Drive	Maximum rotating field velocity exceeded	Drehfeldgeschwindigkeit übersteigt den von Dual Use (EU 1382/2014) vorgeschriebenen Wert.
0x841C	Fehler	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x8550	Fehler	Inputs	Zero crossing phase %X missing	Nulldurchgang Phase %X fehlt
0x8551	Fehler	Inputs	Phase sequence Error	Drehrichtung Falsch

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar	
0x8552	Fehler	Inputs	Overcurrent phase %X	Überstrom Phase %X	
0x8553	Fehler	Inputs	Overcurrent neutral wire	Überstrom Neutralleiter	
0x8581	Fehler	Inputs	Wire broken Ch %D	Leitungsbruch Ch %d	
0x8600	Fehler	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich	
0x8601	Fehler	Allgemein IO	Supply voltage to low	Versorgungsspannung zu klein	
0x8602	Fehler	Allgemein IO	Supply voltage to high	Versorgungsspannung zu groß	
0x8603	Fehler	Allgemein IO	Over current of supply voltage	Überstrom der Versorgungsspannung	
0x8610	Fehler	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich	
0x8611	Fehler	Allgemein IO	Output voltage to low	Ausgangsspannung zu klein	
0x8612	Fehler	Allgemein IO	Output voltage to high	Ausgangsspannung zu groß	
0x8613	Fehler	Allgemein IO	Over current of output voltage	Überstrom der Ausgangsspannung	
0x8700	Fehler		Channel/Interface not calibrated	Kanal/Interface nicht abgeglichen	
0x8701	Fehler		Operating time was manipulated	Betriebslaufzeit wurde manipuliert	
0x8702	Fehler		Oversampling setting is not possible	Oversampling Einstellung nicht möglich	
0x8703	Fehler		No slave controller found	Kein Slave Controller gefunden	
0x8704	Fehler		Slave controller is not in Bootstrap	Slave Controller ist nicht im Bootstrap	
0x8705	Fehler		Processor usage to high (>= 100%)	Prozessorauslastung zu hoch (>= 100%)	
0x8706	Fehler		Channel in saturation	Kanal in Sättigung	
0x8707	Fehler		Channel overload	Kanalüberlastung	
0x8708	Fehler		Overloadtime was manipulated	Überlastzeit wurde manipuliert	
0x8709	Fehler		Saturationtime was manipulated	Sättigungszeit wurde manipuliert	
0x870A	Fehler		Channel range error	Messbereichsfehler des Kanals	
0x870B	Fehler		no ADC clock	Kein ADC Takt vorhanden	
0xFFFF	Information		Debug: 0x%X, 0x%X, 0x%X	Debug: 0x%X, 0x%X, 0x%X	

9.2 Hinweise zu Diag Messages in Verbindung mit Motorklemmen

"Ack. Message" Button

Der "Ack. Message" Button wirkt sich nicht auf die Drive State-Machine der Motorklemmen aus, eine Betätigung führt zu keinem Achs-Reset.

Die Drive State-Machine der Motorklemmen hat keinen Einfluss auf die Fehlerliste, auch mit einem Achsreset können keine Fehler aus der Liste entfernt werden, Fehler können jedoch durch die Betätigung des "Ack. Message" Buttons gelöscht werden.

10 Anhang

10.1 EtherCAT AL Status Codes

Detaillierte Informationen hierzu entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.

10.2 Firmware-Kompatibilität

Beckhoff EtherCAT-Geräte werden mit dem aktuell verfügbaren letzten Firmware-Stand ausgeliefert. Dabei bestehen zwingende Abhängigkeiten zwischen Firmware und Hardware; eine Kompatibilität ist nicht in jeder Kombination gegeben. Die unten angegebene Übersicht zeigt auf welchem Hardware-Stand eine Firmware betrieben werden kann.

Anmerkung

- Es wird empfohlen, die für die jeweilige Hardware letztmögliche Firmware einzusetzen
- Ein Anspruch auf ein kostenfreies Firmware-Update bei ausgelieferten Produkten durch Beckhoff gegenüber dem Kunden besteht nicht.

HINWEIS

Beschädigung des Gerätes möglich!

Beachten Sie die Hinweise zum Firmware Update auf der gesonderten Seite [> 227].

Wird ein Gerät in den BOOTSTRAP-Mode zum Firmware-Update versetzt, prüft es u. U. beim Download nicht, ob die neue Firmware geeignet ist.

Dadurch kann es zur Beschädigung des Gerätes kommen! Vergewissern Sie sich daher immer, ob die Firmware für den Hardware-Stand des Gerätes geeignet ist!

EL7201-0010					
Hardware (HW)	Firmware (FW)	Revision-Nr.	Release-Datum		
00 - 02	01	EL7201-0010-0019	2013/10		
	02		2013/10		
02 - 05	03	EL7201-0010-0020	2014/02		
	04	EL7201-0010-0021	2014/02		
	05	EL7201-0010-0022	2014/04		
	06	EL7201-0010-0023	2014/05		
	07		2014/07		
	08	EL7201-0010-0024	2015/03		
	09		2015/06		
06 - 14	10		2015/06		
	11	EL7201-0010-0025	2015/06		
		EL7201-0010-0026	2016/02		
	12	EL7201-0010-0027	2016/05		
	13	EL7201-0010-0028	2017/09		
	14		2017/11		
	15		2018/02		
	16	EL7201-0010-0029	2018/05		
	17		2018/06		
	18		2018/12		
	19	EL7201-0010-0030	2020/02		
	20	EL7201-0010-0031	2020/05		
	21		2020/09		
	22		2020/11		
	23	EL7201-0010-0032	2021/01		
	24		2021/06		
	25		2022/03		
15 – 16*	26		2022/12		
	27*		2023/06		

EL7211-0010	EL7211-0010					
Hardware (HW)	Firmware (FW)	Revision-Nr.	Release-Datum			
05	06	EL7211-0010-0023	2014/05			
	07		2014/07			
	08	EL7211-0010-0024	2015/03			
	09		2015/06			
06 - 15	10		2015/06			
	11	EL7211-0010-0025	2016/05			
		EL7211-0010-0026	2016/02			
	12	EL7211-0010-0027	2016/11			
	13	EL7211-0010-0028	2017/09			
	14		2017/11			
	15		2018/02			
	16	EL7211-0010-0029	2018/05			
	17		2018/06			
	18		2018/12			
	19	EL7211-0010-0030	2020/02			
	20	EL7211-0010-0031	2020/05			
	21		2020/09			
	22		2020/11			
	23	EL7211-0010-0032	2021/01			
	24		2021/06			
	25		2022/03			
16 – 17*	26		2022/12			
	27*		2023/06			

^{*)} Zum Zeitpunkt der Erstellung dieser Dokumentation ist dies der aktuelle kompatible Firmware/Hardware-Stand. Überprüfen Sie auf der Beckhoff Webseite, ob eine aktuellere <u>Dokumentation</u> vorliegt.

10.3 Firmware Update EL/ES/ELM/EM/EP/EPP/ERPxxxx

Dieses Kapitel beschreibt das Geräte-Update für Beckhoff EtherCAT-Slaves der Serien EL/ES, ELM, EM, EK, EP, EPP und ERP. Ein FW-Update sollte nur nach Rücksprache mit dem Beckhoff Support durchgeführt werden.

HINWEIS

Nur TwinCAT 3 Software verwenden!

Ein Firmware-Update von Beckhoff IO Geräten ist ausschließlich mit einer TwinCAT3-Installation durchzuführen. Es empfiehlt sich ein möglichst aktuelles Build, kostenlos zum Download verfügbar auf der Beckhoff-Website.

Zum Firmware-Update kann TwinCAT im sog. FreeRun-Modus betrieben werden, eine kostenpflichtige Lizenz ist dazu nicht nötig.

Das für das Update vorgesehene Gerät kann in der Regel am Einbauort verbleiben; TwinCAT ist jedoch im FreeRun zu betreiben. Zudem ist auf eine störungsfreie EtherCAT Kommunikation zu achten (keine "LostFrames" etc.).

Andere EtherCAT-Master-Software wie z. B. der EtherCAT-Konfigurator sind nicht zu verwenden, da sie unter Umständen nicht die komplexen Zusammenhänge beim Update von Firmware, EEPROM und ggf. weiteren Gerätebestandteilen unterstützen.

Speicherorte

In einem EtherCAT-Slave werden an bis zu drei Orten Daten für den Betrieb vorgehalten:

Jeder EtherCAT-Slave hat eine Gerätebeschreibung, bestehend aus Identität (Name, Productcode), Timing-Vorgaben, Kommunikationseinstellungen u. a. Diese Gerätebeschreibung (ESI; EtherCAT-Slave Information) kann von der Beckhoff Website im Downloadbereich als Zip-Datei heruntergeladen werden und in EtherCAT-Mastern zur Offline-Konfiguration verwendet werden, z. B. in TwinCAT. Vor allem aber trägt jeder EtherCAT-Slave seine Gerätebeschreibung (ESI) elektronisch auslesbar in einem lokalen Speicherchip, dem einem sog. ESI-EEPROM. Beim Einschalten wird diese Beschreibung einerseits im Slave lokal geladen und teilt ihm seine Kommunikationskonfiguration mit, andererseits kann der EtherCAT-Master den Slave so identifizieren und u. a. die EtherCAT Kommunikation entsprechend einrichten.

HINWEIS

Applikationsspezifisches Beschreiben des ESI-EEPROM

Die ESI wird vom Gerätehersteller nach ETG-Standard entwickelt und für das entsprechende Produkt freigegeben.

- Bedeutung für die ESI-Datei: Eine applikationsseitige Veränderung (also durch den Anwender) ist nicht zulässig.
- Bedeutung für das ESI-EEPROM: Auch wenn technisch eine Beschreibbarkeit gegeben ist, dürfen die ESI-Teile im EEPROM und ggf. noch vorhandene freie Speicherbereiche über den normalen Update-Vorgang hinaus nicht verändert werden. Insbesondere für zyklische Speichervorgänge (Betriebsstundenzähler u. ä.) sind dezidierte Speicherprodukte wie EL6080 oder IPC-eigener NOVRAM zu verwenden.
 - Je nach Funktionsumfang und Performance besitzen EtherCAT-Slaves einen oder mehrere lokale Controller zur Verarbeitung von IO-Daten. Das darauf laufende Programm ist die so genannte **Firmware** im Format *.efw.
 - In bestimmten EtherCAT-Slaves kann auch die EtherCAT Kommunikation in diesen Controller integriert sein. Dann ist der Controller meist ein so genannter **FPGA**-Chip mit der *.rbf-Firmware.

Kundenseitig zugänglich sind diese Daten nur über den Feldbus EtherCAT und seine Kommunikationsmechanismen. Beim Update oder Auslesen dieser Daten ist insbesondere die azyklische Mailbox-Kommunikation oder der Registerzugriff auf den ESC in Benutzung.

Der TwinCAT System Manager bietet Mechanismen, um alle drei Teile mit neuen Daten programmieren zu können, wenn der Slave dafür vorgesehen ist. Es findet üblicherweise keine Kontrolle durch den Slave statt, ob die neuen Daten für ihn geeignet sind, ggf. ist ein Weiterbetrieb nicht mehr möglich.

Vereinfachtes Update per Bundle-Firmware

Bequemer ist der Update per sog. **Bundle-Firmware**: hier sind die Controller-Firmware und die ESI-Beschreibung in einer *.efw-Datei zusammengefasst, beim Update wird in der Klemme sowohl die Firmware, als auch die ESI verändert. Dazu ist erforderlich

- dass die Firmware in dem gepackten Format vorliegt: erkenntlich an dem Dateinamen der auch die Revisionsnummer enthält, z. B. ELxxxx-xxxx REV0016 SW01.efw
- dass im Download-Dialog das Passwort=1 angegeben wird. Bei Passwort=0 (default Einstellung) wird nur das Firmware-Update durchgeführt, ohne ESI-Update.
- dass das Gerät diese Funktion unterstützt. Die Funktion kann in der Regel nicht nachgerüstet werden, sie wird Bestandteil vieler Neuentwicklungen ab Baujahr 2016.

Nach dem Update sollte eine Erfolgskontrolle durchgeführt werden

- ESI/Revision: z. B. durch einen Online-Scan im TwinCAT ConfigMode/FreeRun dadurch wird die Revision bequem ermittelt
- Firmware: z. B. durch einen Blick ins Online-CoE des Gerätes

HINWEIS

Beschädigung des Gerätes möglich!

- ✓ Beim Herunterladen von neuen Gerätedateien ist zu beachten
- a) Das Herunterladen der Firmware auf ein EtherCAT-Gerät darf nicht unterbrochen werden.
- b) Eine einwandfreie EtherCAT-Kommunikation muss sichergestellt sein, CRC-Fehler oder LostFrames dürfen nicht auftreten.
- c) Die Spannungsversorgung muss ausreichend dimensioniert, die Pegel entsprechend der Vorgabe sein.
- ⇒ Bei Störungen während des Updatevorgangs kann das EtherCAT-Gerät ggf. nur vom Hersteller wieder in Betrieb genommen werden!

10.3.1 Gerätebeschreibung ESI-File/XML

HINWEIS

ACHTUNG bei Update der ESI-Beschreibung/EEPROM

Manche Slaves haben Abgleich- und Konfigurationsdaten aus der Produktion im EEPROM abgelegt. Diese werden bei einem Update unwiederbringlich überschrieben.

Die Gerätebeschreibung ESI wird auf dem Slave lokal gespeichert und beim Start geladen. Jede Gerätebeschreibung hat eine eindeutige Kennung aus Slave-Name (9-stellig) und Revision-Nummer (4-stellig). Jeder im System Manager konfigurierte Slave zeigt seine Kennung im EtherCAT-Reiter:

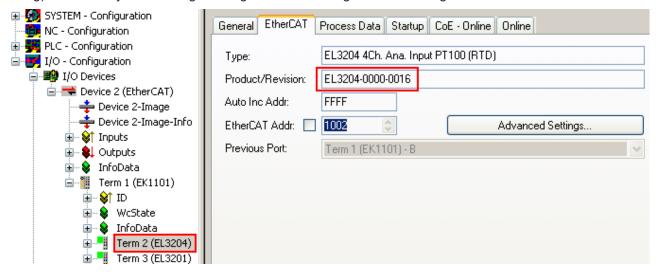


Abb. 169: Gerätekennung aus Name EL3204-0000 und Revision -0016

Die konfigurierte Kennung muss kompatibel sein mit der tatsächlich als Hardware eingesetzten Gerätebeschreibung, d. h. der Beschreibung die der Slave (hier: EL3204) beim Start geladen hat. Üblicherweise muss dazu die konfigurierte Revision gleich oder niedriger der tatsächlich im Klemmenverbund befindlichen sein.

Weitere Hinweise hierzu entnehmen Sie bitte der EtherCAT System-Dokumentation.

Update von XML/ESI-Beschreibung

Die Geräterevision steht in engem Zusammenhang mit der verwendeten Firmware bzw. Hardware. Nicht kompatible Kombinationen führen mindestens zu Fehlfunktionen oder sogar zur endgültigen Außerbetriebsetzung des Gerätes. Ein entsprechendes Update sollte nur in Rücksprache mit dem Beckhoff Support ausgeführt werden.

Anzeige der Slave-Kennung ESI

Der einfachste Weg die Übereinstimmung von konfigurierter und tatsächlicher Gerätebeschreibung festzustellen, ist im TwinCAT-Modus Config/FreeRun das Scannen der EtherCAT-Boxen auszuführen:

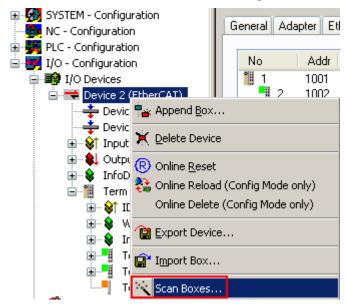


Abb. 170: Rechtsklick auf das EtherCAT-Gerät bewirkt das Scannen des unterlagerten Feldes

Wenn das gefundene Feld mit dem konfigurierten übereinstimmt, erscheint

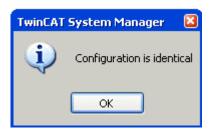


Abb. 171: Konfiguration identisch

ansonsten erscheint ein Änderungsdialog, um die realen Angaben in die Konfiguration zu übernehmen.

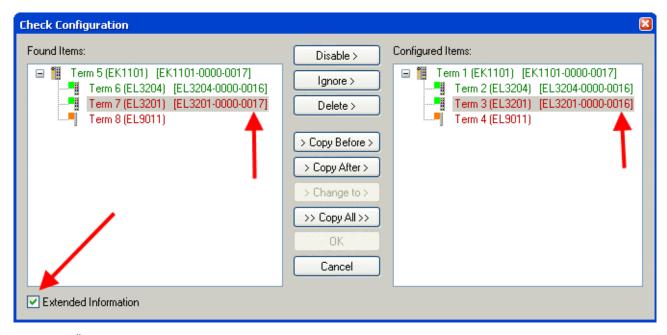


Abb. 172: Änderungsdialog

In diesem Beispiel in Abb. Änderungsdialog. wurde eine EL3201-0000-**0017** vorgefunden, während eine EL3201-0000-**0016** konfiguriert wurde. In diesem Fall bietet es sich an, mit dem *Copy Before*-Button die Konfiguration anzupassen. Die Checkbox *Extended Information* muss gesetzt werden, um die Revision angezeigt zu bekommen.

Änderung der Slave-Kennung ESI

Die ESI/EEPROM-Kennung kann unter TwinCAT wie folgt aktualisiert werden:

- Es muss eine einwandfreie EtherCAT-Kommunikation zum Slave hergestellt werden
- Der State des Slave ist unerheblich
- Rechtsklick auf den Slave in der Online-Anzeige führt zum Dialog EEPROM Update, Abb. EEPROM Update

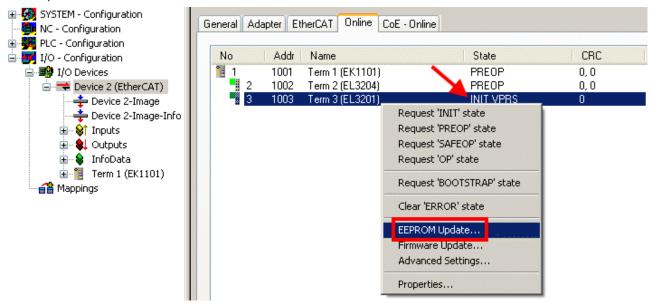


Abb. 173: EEPROM Update

Im folgenden Dialog wird die neue ESI-Beschreibung ausgewählt, s. Abb. *Auswahl des neuen ESI*. Die CheckBox *Show Hidden Devices* zeigt auch ältere, normalerweise ausgeblendete Ausgaben eines Slave.

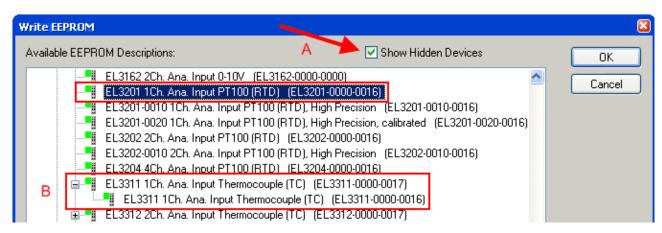
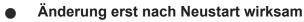
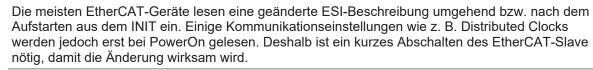




Abb. 174: Auswahl des neuen ESI

Ein Laufbalken im System Manager zeigt den Fortschritt - erst erfolgt das Schreiben, dann das Veryfling.

10.3.2 Erläuterungen zur Firmware

Versionsbestimmung der Firmware

Versionsbestimmung mit dem TwinCAT System Manager

Der TwinCAT System Manager zeigt die Version der Controller-Firmware an, wenn der Slave online für den Master zugänglich ist. Klicken Sie hierzu auf die E-Bus-Klemme deren Controller-Firmware Sie überprüfen möchten (im Beispiel Klemme 2 (EL3204) und wählen Sie den Karteireiter *CoE-Online* (CAN over EtherCAT).

CoE-Online und Offline-CoE

Es existieren zwei CoE-Verzeichnisse:

- online: es wird im EtherCAT-Slave vom Controller angeboten, wenn der EtherCAT-Slave dies unterstützt. Dieses CoE-Verzeichnis kann nur bei angeschlossenem und betriebsbereitem Slave angezeigt werden.
- offline: in der EtherCAT Slave Information ESI/XML kann der Default-Inhalt des CoE enthalten sein. Dieses CoE-Verzeichnis kann nur angezeigt werden, wenn es in der ESI (z. B. "Beckhoff EL5xxx.xml") enthalten ist.

Die Umschaltung zwischen beiden Ansichten kann über den Button *Advanced* vorgenommen werden.

In Abb. *Anzeige FW-Stand EL3204* wird der FW-Stand der markierten EL3204 in CoE-Eintrag 0x100A mit 03 angezeigt.

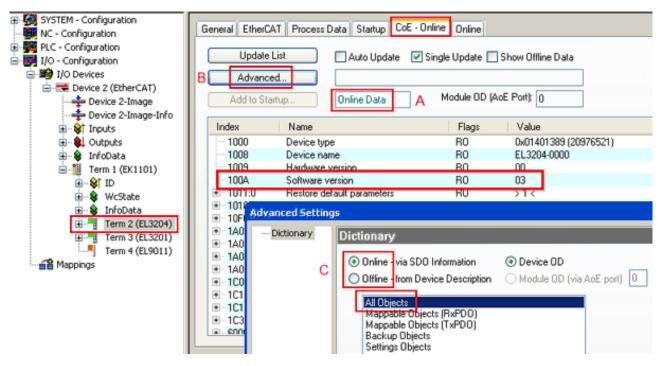


Abb. 175: Anzeige FW-Stand EL3204

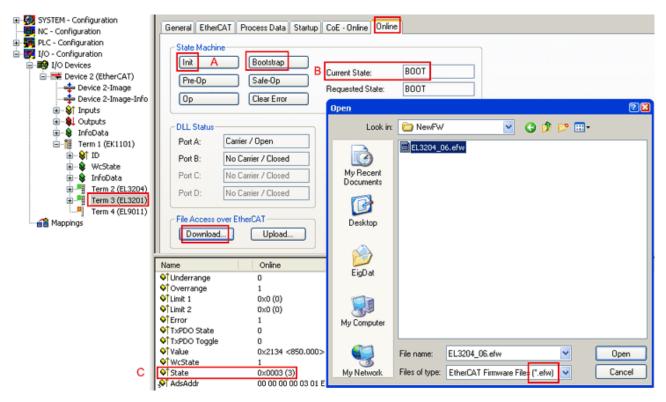
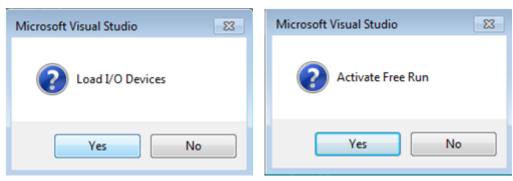
TwinCAT 2.11 zeigt in (A) an, dass aktuell das Online-CoE-Verzeichnis angezeigt wird. Ist dies nicht der Fall, kann durch die erweiterten Einstellungen (B) durch *Online* und Doppelklick auf *All Objects* das Online-Verzeichnis geladen werden.

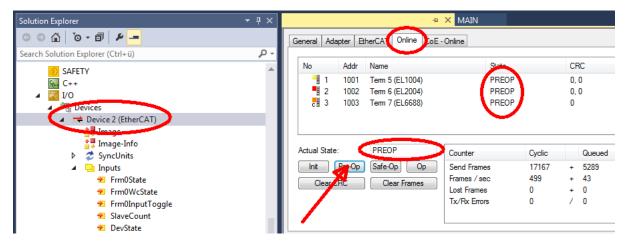
10.3.3 Update Controller-Firmware *.efw

CoE-Verzeichnis

Das Online-CoE-Verzeichnis wird vom Controller verwaltet und in einem eigenen EEPROM gespeichert. Es wird durch ein FW-Update im Allgemeinen nicht verändert.

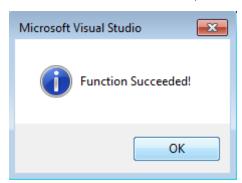
Um die Controller-Firmware eines Slave zu aktualisieren, wechseln Sie zum Karteireiter *Online*, s. Abb. *Firmware Update*.


Abb. 176: Firmware Update

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen. Gültig für TwinCAT 2 und 3 als EtherCAT-Master.

 TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.


EtherCAT-Master in PreOP schalten

- Slave in INIT schalten (A)
- · Slave in BOOTSTRAP schalten

- · Kontrolle des aktuellen Status (B, C)
- · Download der neuen *efw-Datei, abwarten bis beendet. Ein Passwort wird in der Regel nicht benötigt.

- · Nach Beendigung des Download in INIT schalten, dann in PreOP
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!)
- Im CoE 0x100A kontrollieren ob der FW-Stand korrekt übernommen wurde.

10.3.4 FPGA-Firmware *.rbf

Falls ein FPGA-Chip die EtherCAT-Kommunikation übernimmt, kann ggf. mit einer *.rbf-Datei ein Update durchgeführt werden.

- · Controller-Firmware für die Aufbereitung der E/A-Signale
- FPGA-Firmware für die EtherCAT-Kommunikation (nur für Klemmen mit FPGA)

Die in der Seriennummer der Klemme enthaltene Firmware-Versionsnummer beinhaltet beide Firmware-Teile. Wenn auch nur eine dieser Firmware-Komponenten verändert wird, dann wird diese Versionsnummer fortgeschrieben.

Versionsbestimmung mit dem TwinCAT System-Manager

Der TwinCAT System Manager zeigt die Version der FPGA-Firmware an. Klicken Sie hierzu auf die Ethernet-Karte Ihres EtherCAT-Stranges (im Beispiel Gerät 2) und wählen Sie den Karteireiter *Online*.

Die Spalte *Reg:0002* zeigt die Firmware-Version der einzelnen EtherCAT-Geräte in hexadezimaler und dezimaler Darstellung an.

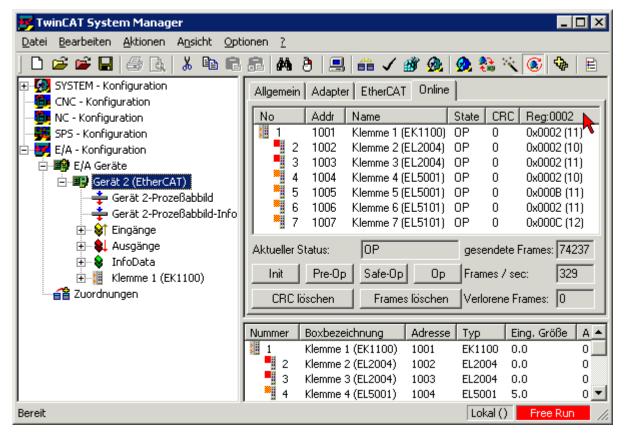


Abb. 177: Versionsbestimmung FPGA-Firmware

Falls die Spalte *Reg:0002* nicht angezeigt wird, klicken sie mit der rechten Maustaste auf den Tabellenkopf und wählen im erscheinenden Kontextmenü, den Menüpunkt *Properties*.

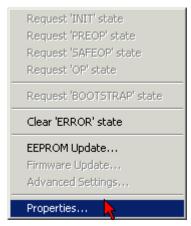


Abb. 178: Kontextmenu Eigenschaften (Properties)

In dem folgenden Dialog *Advanced Settings* können Sie festlegen, welche Spalten angezeigt werden sollen. Markieren Sie dort unter *Diagnose/***Online Anzeige** das Kontrollkästchen vor *'0002 ETxxxx Build'* um die Anzeige der FPGA-Firmware-Version zu aktivieren.

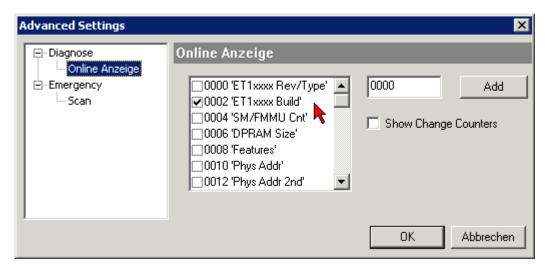


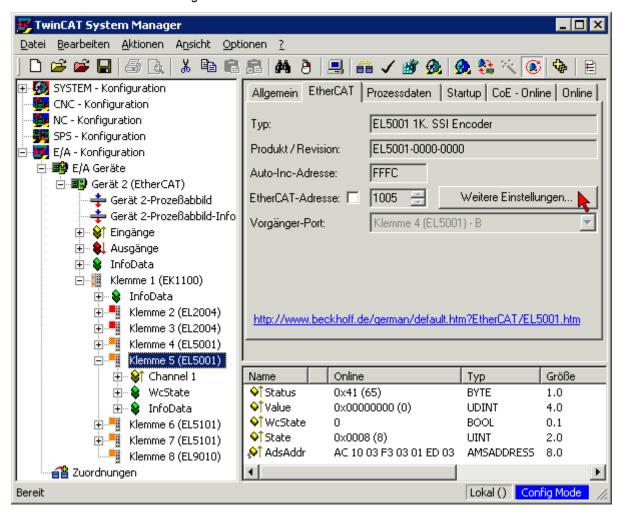
Abb. 179: Dialog Advanced settings

Update

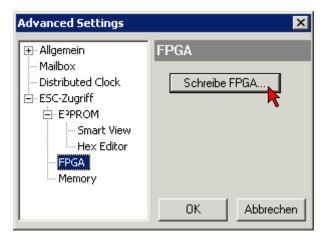
Für das Update der FPGA-Firmware

- eines EtherCAT-Kopplers, muss auf diesem Koppler mindestens die FPGA-Firmware-Version 11 vorhanden sein.
- einer E-Bus-Klemme, muss auf dieser Klemme mindestens die FPGA-Firmware-Version 10 vorhanden sein.

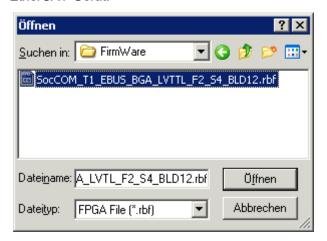
Ältere Firmware-Stände können nur vom Hersteller aktualisiert werden!


Update eines EtherCAT-Geräts

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen:


 TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1 ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.

 Wählen Sie im TwinCAT System Manager die Klemme an, deren FPGA-Firmware Sie aktualisieren möchten (im Beispiel: Klemme 5: EL5001) und klicken Sie auf dem Karteireiter EtherCAT auf die Schaltfläche Weitere Einstellungen:



 Im folgenden Dialog Advanced Settings klicken Sie im Menüpunkt ESC-Zugriff/E²PROM/FPGA auf die Schaltfläche Schreibe FPGA:

 Wählen Sie die Datei (*.rbf) mit der neuen FPGA-Firmware aus und übertragen Sie diese zum EtherCAT-Gerät:

- · Abwarten bis zum Ende des Downloads
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!). Um die neue FPGA-Firmware zu aktivieren ist ein Neustart (Aus- und Wiedereinschalten der Spannungsversorgung) des EtherCAT-Geräts erforderlich
- · Kontrolle des neuen FPGA-Standes

HINWEIS

Beschädigung des Gerätes möglich!

Das Herunterladen der Firmware auf ein EtherCAT-Gerät dürfen Sie auf keinen Fall unterbrechen! Wenn Sie diesen Vorgang abbrechen, dabei die Versorgungsspannung ausschalten oder die Ethernet-Verbindung unterbrechen, kann das EtherCAT-Gerät nur vom Hersteller wieder in Betrieb genommen werden!

10.3.5 Gleichzeitiges Update mehrerer EtherCAT-Geräte

Die Firmware von mehreren Geräten kann gleichzeitig aktualisiert werden, ebenso wie die ESI-Beschreibung. Voraussetzung hierfür ist, dass für diese Geräte die gleiche Firmware-Datei/ESI gilt.

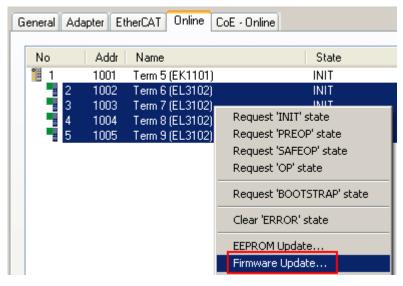


Abb. 180: Mehrfache Selektion und FW-Update

Wählen Sie dazu die betreffenden Slaves aus und führen Sie das Firmware-Update im BOOTSTRAP Modus wie o. a. aus.

10.4 Wiederherstellen des Auslieferungszustandes

Um bei EtherCAT-Geräten ("Slaves") den Auslieferungszustand (Werkseinstellungen) der CoE-Objekte wiederherzustellen, kann per EtherCAT-Master (z. B. TwinCAT) das CoE-Objekt *Restore default parameters*, Subindex 001 verwendet werden (s. Abb. *Auswahl des PDO, Restore default parameters*)

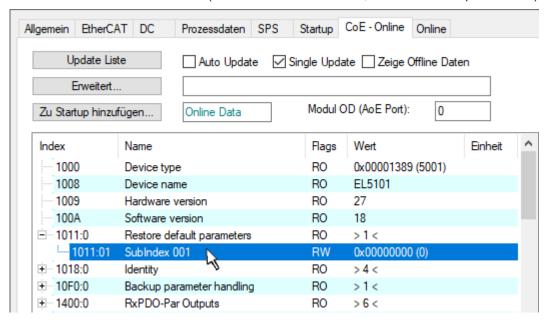


Abb. 181: Auswahl des PDO Restore default parameters

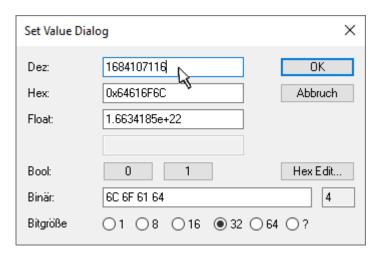


Abb. 182: Eingabe des Restore-Wertes im Set Value Dialog

Durch Doppelklick auf *SubIndex 001* gelangen Sie in den Set Value -Dialog. Tragen Sie im Feld *Dec* den Reset-Wert **1684107116** oder alternativ im Feld *Hex* den Wert **0x64616F6C** ein (ASCII: "load") und bestätigen Sie mit OK (Abb. *Eingabe des Restore-Wertes im Set Value Dialog*).

- Alle veränderbaren CoE-Einträge werden auf die Default-Werte zurückgesetzt.
- Die Werte k\u00f6nnen nur erfolgreich zur\u00fcckgesetzt werden, wenn der Reset auf das Online-CoE, d. h. auf dem Slave direkt angewendet wird. Im Offline-CoE k\u00f6nnen keine Werte ver\u00e4ndert werden.
- TwinCAT muss dazu im Zustand RUN oder CONFIG/Freerun befinden, d. h. EtherCAT Datenaustausch findet statt. Auf fehlerfreie EtherCAT-Übertragung ist zu achten.
- Es findet keine gesonderte Bestätigung durch den Reset statt. Zur Kontrolle kann zuvor ein veränderbares Objekt umgestellt werden.
- Dieser Reset-Vorgang kann auch als erster Eintrag in die StartUp-Liste des Slaves mit aufgenommen werden, z. B. im Statusübergang PREOP->SAFEOP oder, wie in Abb. CoE-Reset als StartUp-Eintrag, bei SAFEOP->OP

Alle Backup-Objekte werden so in den Auslieferungszustand zurückgesetzt.

Alternativer Restore-Wert

Bei einigen Klemmen älterer Bauart (FW Erstellung ca. vor 2007) lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen: Dezimalwert: 1819238756, Hexadezimalwert: 0x6C6F6164.

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung!

10.5 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com

Internet: www.beckhoff.com

Mehr Informationen: www.beckhoff.com/EL7xxx

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

