BECKHOFF New Automation Technology

Dokumentation | DE

EL7062

2-Kanal-Schrittmotor-Interface mit Inkremental-Encoder

Inhaltsverzeichnis

1 Vorwort			5		
	1.1	Hinweis	e zur Dokumentation	5	
	1.2	Sicherhe	eitshinweise	6	
2	Syst	emübers	icht	7	
3	Prod	duktbeschreibung			
	3.1	EL7062		8	
		3.1.1	Einführung	8	
		3.1.2	Technische Daten	9	
		3.1.3	Anschlussbelegung	12	
		3.1.4	Anzeigen, Diagnose	16	
		3.1.5	Abmessungen	18	
4	Mont	tage und	Verdrahtung	19	
	4.1	Hinweis	e zum ESD-Schutz	19	
	4.2	Montage	e von IP20-Klemmen	20	
		4.2.1	Einbaulage	20	
		4.2.2	Tragschienenmontage	21	
		4.2.3	Positionierung von passiven Klemmen	23	
	4.3	Schirmk	onzept	24	
	4.4	Anschlu	sstechnik / Verdrahtung	26	
		4.4.1	EMV-Maßnahmen	26	
		4.4.2	Verdrahtung	27	
5	Tech	nische Ir	nformationen	28	
	5.1	Funktion	nsbezogene Technologie	28	
		5.1.1	Schrittmotor	28	
6	Kurz	anleitund	g zur Inbetriebnahme	31	
•	6.1		setzungen		
	6.2		ung in ein TwinCAT-Projekt		
	6.3		ration mit dem Drive Manager 2		
		6.3.1	Anlegen eines Drive Manager 2 Projekts		
		6.3.2	Auswahl von Motor und Feedback		
		6.3.3	Einstellen der Last-Parameter		
	6.4	Testlauf			
		6.4.1	Vorbereitung	38	
		6.4.2	Achsfreigabe		
		6.4.3	Handbetrieb	40	
	6.5	Reglero	ptimierung	42	
		6.5.1	Optimierung des Stromreglers	42	
		6.5.2	Optimierung des Drehzahlreglers	43	
		6.5.3	Optimierung des Positionsreglers	45	
7	Inbet	triebnahn	ne		
-	7.1		nerstellen des Auslieferungszustandes		
	7.2		l der Regler-Betriebsart		
		7.2.1	CSP: Positionsregelung		
			5 5	. •	

Version: 1.0

		7.2.2	CSV: Geschwindigkeitsregelung	51
		7.2.3	CST: Drehmomentregelung	51
		7.2.4	CSTCA: Drehmomentregelung mit Kommutierungswinkel	51
	7.3	Scanne	n der Hardware	52
		7.3.1	Scan Motor	52
		7.3.2	Fehlerdiagnose	53
		7.3.3	Scannen der Hardware mit TwinCAT 2	53
	7.4	Inbetrie	bnahme mit Drive Motion Control	54
		7.4.1	Voraussetzungen	54
		7.4.2	Funktionsumfang	54
		7.4.3	Inbetriebnahme in TwinCAT 3	55
		7.4.4	Inbetriebnahme mit einer 32-Bit-Steuerung eines Drittanbieters	60
		7.4.5	State-Machine	62
		7.4.6	Unterschiede zu Tc2_Mc2	63
		7.4.7	Starttypen	63
		7.4.8	Fehlermeldungen	63
	7.5	Diagnos	se	64
		7.5.1	Diagnose - Grundlagen zu Diag Messages	64
		7.5.2	Hinweise zu Diag Messages in Verbindung mit Motorklemmen	73
8	Erwe	eiterte Ge	eräteinformationen	74
	8.1	CoE-Pa	arameter	74
		8.1.1	Objekte zur Parametrierung	74
		8.1.2	Diagnose-Objekte	91
		8.1.3	Standardobjekte	93
		8.1.4	Profilspezifische Objekte	126
9	Anha	ang		138
	9.1	•	pestände der Dokumentation	
	9.2	-	jung	
	0.0			4.40

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

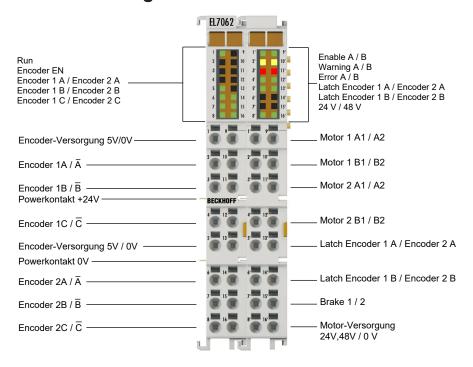
Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

2 Systemübersicht

Kompakte Antriebstechnik

Im Kleinspannungsbereich bis 48 V bietet Beckhoff in der I/O-Ebene ein breites Spektrum kompakter, modularer und skalierbarerer Antriebslösungen für den Anschluss aller gängigen Antriebstechnologien wie Servo-, Schritt-, BLDC- und DC-Motoren. Das Leistungsspektrum erstreckt sich von 50 mA zur Ansteuerung externer Leistungsverstärker bis hin zu 16 A für den direkten Betrieb eines Servomotors. Die direkte Integration in die Beckhoff Automatisierungssoftware TwinCAT ermöglicht eine komfortable und schnelle Inbetriebnahme. Dabei bietet TwinCAT 3 mit umfangreichen und leistungsstarken Tools wie dem Motion Designer, dem Drive Manager 2 oder dem Scope eine optimale Entwicklungsumgebung zur schnellen und effizienten Umsetzung der Anforderungen an die Antriebstechnik.


Hinzu kommt eine umfangreiche Zubehör-Auswahl, die neben vorkonfektionierten Leitungen und Getrieben ebenso Brems-Chopper-Klemmen, Bremswiderstände und ein externes Lüftermodul zur Leistungssteigerung umfasst.

3 Produktbeschreibung

3.1 EL7062

3.1.1 Einführung

Die EtherCAT-Klemme EL7062 ist eine zweikanalige Schrittmotor-Endstufe. Sie können an jeden Kanal einen Schrittmotor mit einer Betriebsspannung zwischen 8 V und 48 V anschließen.

Die Klemme liefert einen Gesamtstrom von bis zu 6 A, verteilt auf beide Kanäle. Ein einzelner Kanal kann mit bis zu 5 A belastet werden, solange der Gesamtstrom von 6 A nicht überschritten wird. Durch Einsatz des Lüftermoduls ZB8610 sind bis zu 10 A Gesamtstrom und 6 A für einen Kanal möglich.

Weitere Merkmale:

- Zwei digitale Eingänge pro Kanal, verwendbar als Latch-Eingänge oder für Endlagenschalter.
- Ein Encoder-Interface pro Kanal für Inkremental-Encoder mit 5 V Betriebsspannung.
- · Hohes Microstepping für ruhigen und präzisen Motorlauf.

3.1.2 Technische Daten

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

3.1.2.1 Allgemeine technische Daten

E-Bus		
Potenzialtrennung	500 V (E-Bus / IO)	
Distributed Clocks	ja	
Stromaufnahme aus dem E-Bus	175 mA	

Versorgungsspannungen		
Versorgungsspannung Elektronik	U _P = 24 V _{DC} über die Powerkontakte	
Stromaufnahme aus den Powerkontakten	25 mA	
	+ Brems-Ausgangsstrom	
	+ Encoder-Versorgung 1)	

¹⁾ Die Stromaufnahme für die Encoder-Versorgung beträgt nur ca. ein Viertel der Stromaufnahme des Encoders, weil die Encoder-Versorgung von 24 V auf 5 V geregelt wird.

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	0 +55 °C	
Umgebungstemperatur bei Lagerung	-25 +85 °C	
Relative Feuchte	95 % ohne Betauung	
Schwingungs- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27	
EMV-Festigkeit / -Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP20	

Zulassungen / Kennzeichnungen		
Zulassungen / Kennzeichnungen	CE	

3.1.2.2 Funktionsspezifische technische Daten

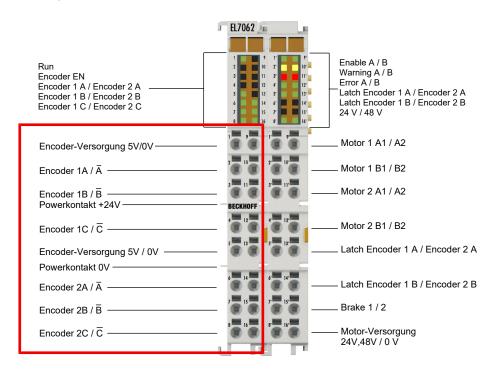
Übersicht	
Anzahl Kanäle	2
Eingänge pro Kanal	2 x Digitaler Latch-Eingang
	1 x Encoder-Eingang
Ausgänge pro Kanal	1 x Schrittmotor
	1 x Bremse

Motor	
Motor-Art	Schrittmotor, unipolar oder bipolar
Motor-Versorgung	8 48 V _{DC} (muss über Klemmstellen zugeführt werden)
Ausgangsstrom	Ohne Lüfter:
	 max. 6 A Gesamtstrom, verteilt auf beide Kanäle.
	max. 5 A pro Kanal.
	Mit Lüftermodul ZB8610:
	 max. 10 A Gesamtstrom, verteilt auf beide Kanäle.
	max. 6 A pro Kanal.
Schrittfrequenz	max.16.000 Vollschritte/s
Stromreglerfrequenz	32 kHz
Microstepping	16384 Zwischenschritte pro Vollschritt

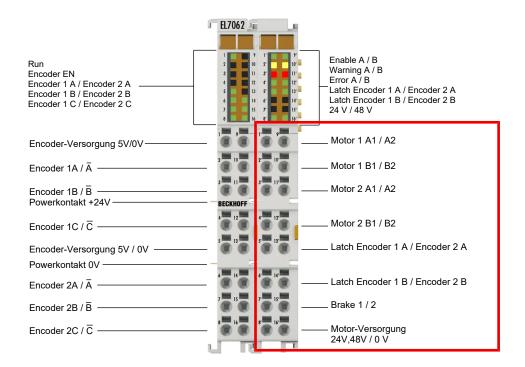
Encoder		
Encoder-Art	Inkremental-Encoder	
Eingangssignal	5 V differenziell oder single-ended/Open Collector	
Signale	A, B, Nullimpuls, Latch	
Eingangsfrequenz bei 4-fach-Auswertung	Abhängig von der Art des Eingangssignals, siehe Kapitel	
	<u>Auswahl von Motor und Feedback [▶ 35]</u> .	
Encoder-Versorgung	5 V _{DC} , max. 300 mA in Summe über beide Kanäle	

Digital-Eingänge		
Eingangs-Nennspannung	24 V _{DC} (-15%/+20%)	
Eingangsfilter	10 μs	
Signalspannung "0"	-3 +2 V	
Signalspannung "1"	+3,7 +28 V	
Eingangsstrom	typisch 5 mA	

Bremse		
Ausgangsspannung	24 V _{DC} aus den Powerkontakten	
Ausgangsstrom	0,5 A	


3.1.2.3 Gehäusedaten

Gehäusedaten	
Bauform	kompaktes HD (High Density)-Gehäuse mit Signal-LEDs
Gewicht	ca. 100 g
Einbaulage	Standard-Einbaulage [▶ 20]
Material	Polycarbonat
Abmessungen (B x H x T)	24 mm x 100 mm x 68 mm
Montage	Auf 35-mm-Tragschiene entsprechend EN 60715. Mit Verriegelung.


3.1.3 Anschlussbelegung

Informationen zur Verdrahtung finden Sie in den Kapiteln <u>Anschlusstechnik / Verdrahtung [▶ 26]</u> und Schirmkonzept.

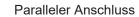
Klemmstelle	Name	Kommentar			
1	Encoder-Versorgung 5 V	5 V Ausgangsspannung zur Versorgung des Encoders an Kanal 1.			
2	Encoder 1 A	Encoder-Signaleingang "A" für Kanal 1			
3	Encoder 1 B	Encoder-Signaleingang "B" für Kanal 1			
4	Encoder 1 C	Encoder-Signaleingang "C" für Kanal 1, konfigurierbar als Nullimpuls-Eingang (Werkseinstellung) oder als Latch-Eingang.			
5	Encoder-Versorgung 5 V	5 V Ausgangsspannung zur Versorgung des Encoders an Kanal 2.			
6	Encoder 2 A	Encoder-Signaleingang "A" für Kanal 2			
7	Encoder 2 B	Encoder-Signaleingang "B" für Kanal 2			
8	Encoder 2 C	Encoder-Signaleingang "C" für Kanal 2, konfigurierbar als Nullimpuls-Eingang (Werkseinstellung) oder als Latch-Eingang.			
9	Encoder-Versorgung 0 V	Masseanschluss für die Encoder-Versorgung an Klemmstelle 1.			
10	Encoder 1 Ā	Invertiertes Eingangssignal zu "A" an Klemmstelle 2.			
11	Encoder 1 B	Invertiertes Eingangssignal zu "B" an Klemmstelle 3.			
12	Encoder 1 C	Invertiertes Eingangssignal zu "C" an Klemmstelle 4.			
13	Encoder-Versorgung 0 V	Masseanschluss für die Encoder-Versorgung an Klemmstelle 5.			
14	Encoder 2 Ā	Invertiertes Eingangssignal zu "A" an Klemmstelle 6.			
15	Encoder 2 B	Invertiertes Eingangssignal zu "B" an Klemmstelle 7.			
16	Encoder 2 C	Invertiertes Eingangssignal zu "C" an Klemmstelle 8.			

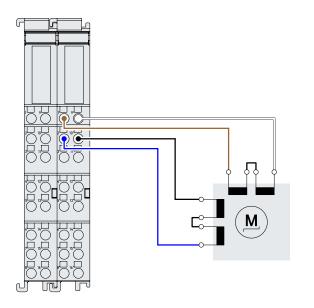
HINWEIS

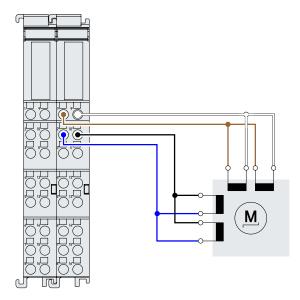
Steuer- und Lastspannungsversorgung

Die Steuer- und Lastspannungsversorgungen sind jeweils beide als SELV- oder beide als PELV- Stromkreis auszuführen. In dem Fall des PELV-Stromkreises ist für die Steuerspannung ein allpoliger Leitungsschutz notwendig.

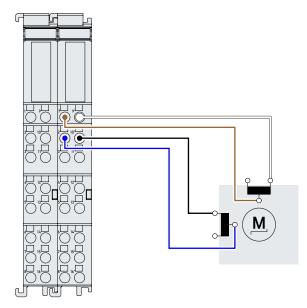
Klemmstelle	Name	Kommentar		
1'	Motor 1 A1	Anschlüsse für die Motorwicklungen.		
2'	Motor 1 B1			
3'	Motor 2 A1			
4'	Motor 2 B1			
5'	Latch Encoder 1 A	Latch-Eingang A für Kanal 1.		
6'	Latch Encoder 1 B	Latch-Eingang B für Kanal 1.		
7'	Brake 1	Digital-Ausgang zur Ansteuerung einer Bremse an Kanal 1.		
8'	Motor-Versorgung 24 V, 48 V	Eingang für die Motor-Versorgung.		
9'	Motor 1 A2	Anschlüsse für die Motorwicklungen.		
10'	Motor 1 B2			
11'	Motor 2 A2			
12'	Motor 2 B2			
13'	Latch Encoder 2 A	Latch-Eingang A für Kanal 2.		
14'	Latch Encoder 2 B	Latch-Eingang B für Kanal 2.		
15'	Brake 2	Digital-Ausgang zur Ansteuerung einer Bremse an Kanal 2.		
16'	0 V	Massepotenzial für alle Klemmstellen 1' bis 16'.		

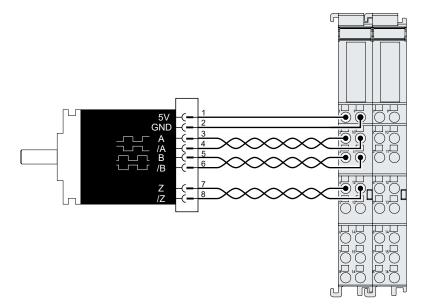


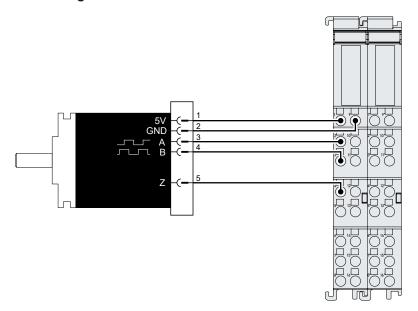

3.1.3.1 Anschlussbeispiele


Alle Anschlussbeispiele sind für Kanal 1 dargestellt und können auf Kanal 2 übertragen werden.

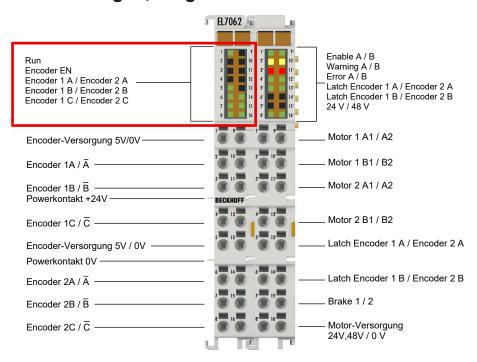
Bipolarer Schrittmotor



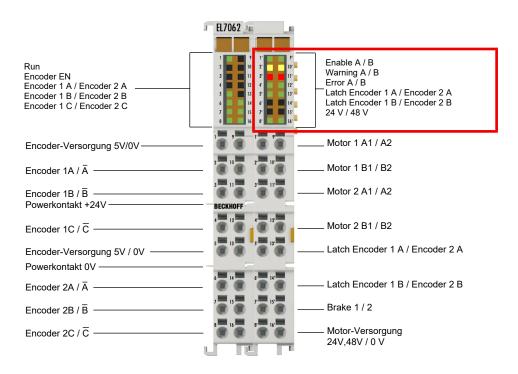

Unipolarer Schrittmotor, bipolare Ansteuerung


Eine Hälfte jeder Wicklung wird angesteuert.

Encoder differenziell

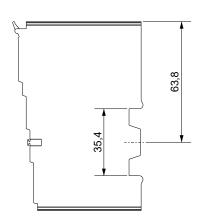


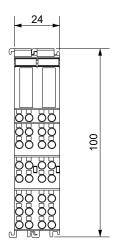
Encoder single-ended

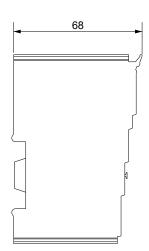


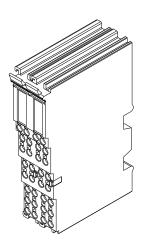
3.1.4 Anzeigen, Diagnose

Anzeige Nr.	Name	Kommentar	Kommentar		
1	Run	Status der Klemme im EtherCAT-Netzwerk.			
		aus	Status "Init"		
		blinkt	Status "Pre-Operational"		
		Einzelblitz	Status "Safe-Operational"		
		leuchtet	Status "Operational"		
2					
3					
4					
5	Encoder EN	Status der Encoder-Versorgung.			
		Zeigt an, dass	die Encoder-Versorgung vorhanden ist.		
6	Encoder 1 A	Signalanzeige Encoder-Signal A, Kanal 1			
7	Encoder 1 B	Signalanzeige	Signalanzeige Encoder-Signal B, Kanal 1		
8	Encoder 1 C	Signalanzeige	Signalanzeige Encoder-Signal C, Kanal 1		
9					
10					
11					
12					
13					
14	Encoder 2 A	Signalanzeige	Signalanzeige Encoder-Signal A, Kanal 2		
15	Encoder 2 B	Signalanzeige	Signalanzeige Encoder-Signal B, Kanal 2		
16	Encoder 2 C	Signalanzeige	Signalanzeige Encoder-Signal C, Kanal 2		






Anzeige Nr.	Name	Kommentar		
1'	Enable A	Zeigt an, dass die Endstufe Kanal 1 freigegeben ist.		
2'	Warning A	Zeigt an, dass der Kanal eine Warnung ausgegeben hat.		
3'	Error A	Zeigt an, dass der Kanal im Fehler-Zustand ist.		
4'	Latch Encoder 1 A	Signalanzeige Latch-Eingang A für Kanal 1.		
5'	Latch Encoder 1 B	Signalanzeige Latch-Eingang B für Kanal 1.		
6'				
7'				
8'	24 V	Spannungsanzeige für die "Versorgungsspannung Elektronik" (Powerkontakte)		
9'	Enable B	Zeigt an, dass die Endstufe Kanal 2 freigegeben ist.		
10'	Warning B	Zeigt an, dass der Kanal eine Warnung ausgegeben hat.		
11'	Error B	Zeigt an, dass der Kanal im Fehler-Zustand ist.		
12'	Latch Encoder 2 A	Signalanzeige Latch-Eingang A für Kanal 2.		
13'	Latch Encoder 2 B	Signalanzeige Latch-Eingang B für Kanal 2.		
14'				
15'				
16'	48 V	Spannungsanzeige für die Motor-Versorgung.		



3.1.5 Abmessungen

Alle Maße sind in Millimeter angegeben. Die Zeichnung ist nicht maßstabsgetreu.

4 Montage und Verdrahtung

4.1 Hinweise zum ESD-Schutz

HINWEIS

Zerstörung der Geräte durch elektrostatische Aufladung möglich!

Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

- Beim Umgang mit den Bauteilen ist auf elektrostatische Entladung zu achten; außerdem ist das direkte Berühren der Federkontakte (siehe Abbildung) zu vermeiden.
- Der Kontakt mit hoch isolierenden Stoffen (Kunstfasern, Kunststofffolien etc.) sollte beim gleichzeitigen Umgang mit Komponenten vermieden werden.
- Beim Umgang mit den Komponenten ist auf eine sachgemäße Erdung der Umgebung (Arbeitsplatz, Verpackung und Personen) zu achten.
- Jede Busstation muss auf der rechten Seite mit der Endkappe <u>EL9011</u> oder <u>EL9012</u> abgeschlossen werden, um die Schutzart und den ESD-Schutz zu gewährleisten.

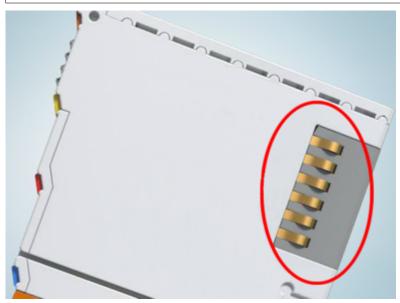
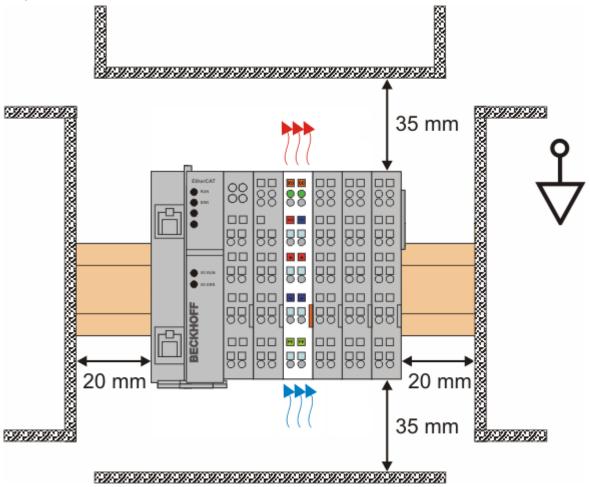


Abb. 1: Federkontakte der Beckhoff I/O-Komponenten

4.2 Montage von IP20-Klemmen

4.2.1 Einbaulage


Standard-Einbaulage

Montieren Sie die EL7062 in Standard-Einbaulage. Standard-Einbaulage bedeutet:

- · Die Tragschiene ist waagerecht montiert.
- Die Anschlussflächen der Klemme weisen nach vorne.

Die Klemmen werden dabei von unten nach oben durchlüftet, was eine optimale Kühlung der Elektronik durch Konvektionslüftung ermöglicht. Die Bezugsrichtung "unten" ist hier die Erdbeschleunigung.

Empfohlene Abstände

4.2.2 Tragschienenmontage

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Das Busklemmen-System ist für die Montage in einem Schaltschrank oder Klemmkasten vorgesehen.

Montage

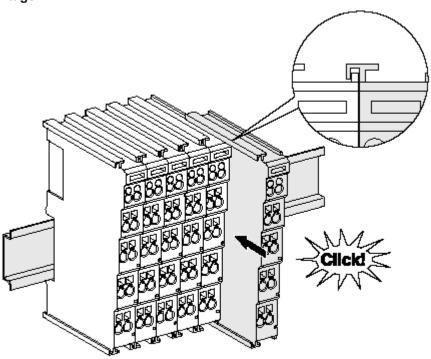


Abb. 2: Montage auf Tragschiene

Die Buskoppler und Busklemmen werden durch leichten Druck auf handelsübliche 35 mm-Tragschienen (Hutschienen nach EN 60715) aufgerastet:

- 1. Stecken Sie zuerst den Feldbuskoppler auf die Tragschiene.
- 2. Auf der rechten Seite des Feldbuskopplers werden nun die Busklemmen angereiht. Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet. Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben, ohne dass Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

Demontage

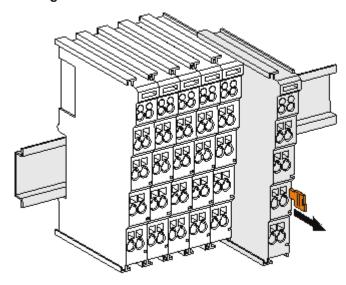


Abb. 3: Demontage von Tragschiene

Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:

- 1. Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
- 2. Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen Sie sie aus dem Busklemmenblock heraus.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des K-Bus/E-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmenstellen am Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (KL91xx, KL92xx bzw. EL91xx, EL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

4.2.3 Positionierung von passiven Klemmen

•

Hinweis zur Positionierung von passiven Klemmen im Busklemmenblock

EtherCAT-Klemmen (ELxxxx / ESxxxx), die nicht aktiv am Datenaustausch innerhalb des Busklemmenblocks teilnehmen, werden als passive Klemmen bezeichnet. Diese Klemmen sind an der nicht vorhandenen Stromaufnahme aus dem E-Bus zu erkennen. Um einen optimalen Datenaustausch zu gewährleisten, dürfen nicht mehr als zwei passive Klemmen direkt aneinander gereiht werden!

Beispiele für die Positionierung von passiven Klemmen (hell eingefärbt)

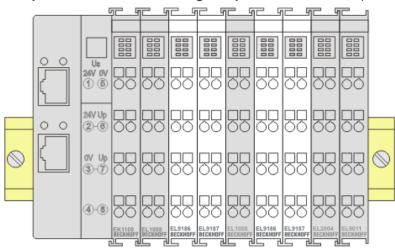


Abb. 4: Korrekte Positionierung

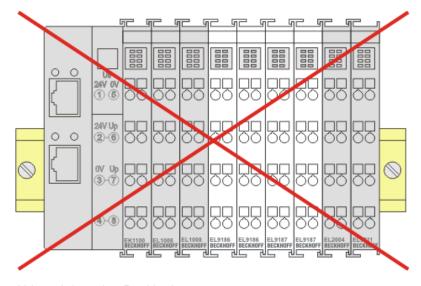
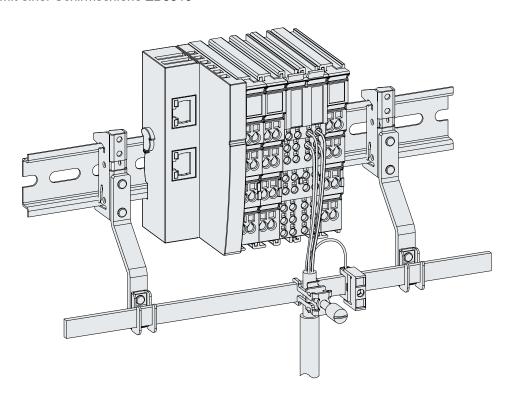
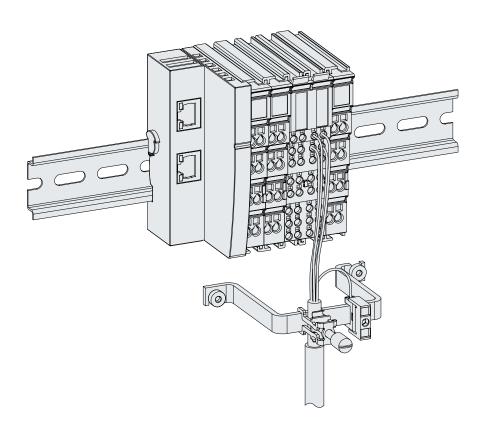


Abb. 5: Inkorrekte Positionierung



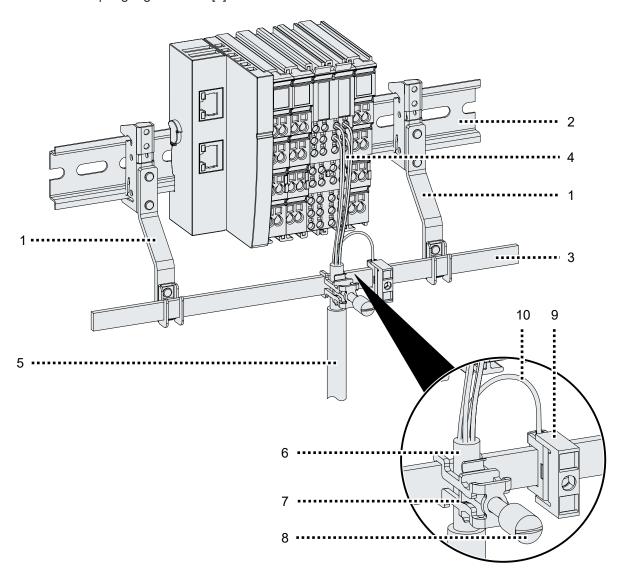
4.3 Schirmkonzept


Verwenden Sie geschirmte Leitungen für den Anschluss von Motor und Feedback. Legen Sie die Leitungsschirme möglichst nahe an der Klemme auf, um elektromagnetische Störungen zu minimieren.

Es gibt zwei Möglichkeiten, einen Leitungsschirm direkt an der Klemme aufzulegen:

• Mit einer Schirmschiene ZB8510

• Mit einem Schirmschienenbügel ZB8511



Montage-Beispiel

Beispiel für eine Motorleitung mit PE-Ader an einer Schirmschiene ZB8510.

Zusätzlich benötigtes Material:

- 1 x ZB8500 | Klemmbügel [7]
- 1 x ZB8510 | Schirmschiene [3]
- 2 x ZB8520 | Tragschienenhalter [1]
- 1 x ZB8530 | Zugbügelklemme [9]

Vorgehensweise:

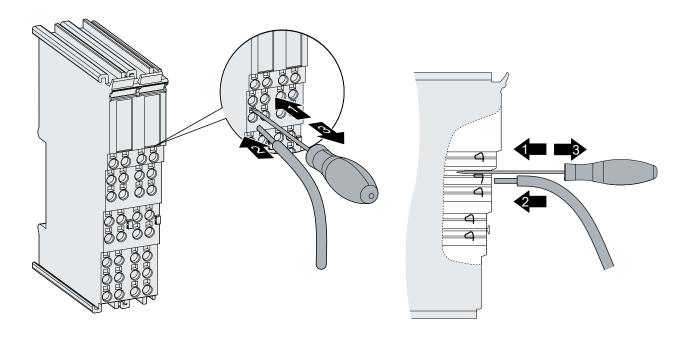
- 1. Sicherstellen, dass die Hutschiene [2] großflächig mit der metallischen Rückwand des Schaltschranks verbunden ist.
- 2. Die Tragschienenhalter [1] an der Hutschiene befestigen und die Schirmschiene [3] daran montieren.
- 3. Die Leitung [5] so abmanteln, dass der Leitungsschirm auf Höhe der Schirmschiene über eine Länge von ca. 20 mm freiliegt.
- 4. Die Adern [4] der Leitung an der Klemme verdrahten.
- 5. Den freiliegenden Leitungsschirm [6] mit dem Klemmbügel [7] an der Schirmschiene befestigen.
- 6. Die Rändelschraube [8] bis zum Anschlag anziehen.
- 7. Die Zugbügelklemme [9] an der Schirmschiene befestigen.
- 8. Die PE-Ader [10] der Leitung an die Zugbügelklemme anklemmen.

4.4 Anschlusstechnik / Verdrahtung

4.4.1 EMV-Maßnahmen

Befolgen Sie diese Empfehlungen, um elektromagnetische Störungen bestmöglich zu vermeiden.

- Geschirmte Leitungen verwenden und Kabelschirme erden. Siehe Kapitel Schirmkonzept.
- Einzeladern so kurz wie möglich halten.
- Die Adern von differenziellen Feedback-Signalen verdrillen.



4.4.2 Verdrahtung

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Vorgehensweise zum Anschluss eines Drahts an eine Klemmstelle:

- Klemmstelle öffnen, indem Sie einen Schraubendreher gerade bis zum Anschlag in die viereckige Öffnung über der Klemmstelle drücken.
 Den Schraubendreher dabei nicht drehen oder hin und her bewegen, nicht hebeln.
- 2. Den Draht in die runde Klemmenöffnung einführen.
- 3. Schraubendreher entfernen.
 - ⇒ Die Klemmstelle schließt sich automatisch und hält den Draht sicher und dauerhaft fest.

Massive Leiter können Sie in Direktstecktechnik anschließen. Das heißt, Sie können den Leiter nach dem Abisolieren einfach in die Klemmstelle stecken.

Zulässige Leiterquerschnitte

Leitungsquerschnitt (massiv)	0,08 1,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,25 1,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 0,75 mm ²
Leitungsquerschnitt (ultraschallverdichtete Litze)	nur 1,5 mm²
Abisolierlänge	8 9 mm

5 Technische Informationen

5.1 Funktionsbezogene Technologie

5.1.1 Schrittmotor

Der Schrittmotor ist ein Elektromotor, vergleichbar dem Synchronmotor. Der Rotor ist als Permanentmagnet ausgeführt, während der Stator aus einem Spulenpaket besteht. Im Unterschied zum Synchronmotor verfügt der Schrittmotor über eine große Zahl von Polpaaren. Bei einfachster Ansteuerung schaltet man den Schrittmotor von Pol zu Pol, bzw. von Schritt zu Schritt.

Schrittmotoren sind schon seit vielen Jahren im Einsatz. Sie zeichnen sich durch Robustheit aus, lassen sich leicht ansteuern und liefern ein hohes Drehmoment. Die Möglichkeit, die Schritte mit zu zählen, erspart in vielen Anwendungsfällen ein kostenintensives Rückführungssystem. Auch nach der zunehmenden Verbreitung der Synchron-Servomotoren ist der Schrittmotor keineswegs "in die Jahre gekommen", sondern gilt als ausgereift und wird nach wie vor weiter entwickelt, um Kosten und Baugröße zu reduzieren und um Drehmoment und Zuverlässigkeit zu steigern.

5.1.1.1 Parameter von Schrittmotoren

Drehmoment

Bezeichnet das maximale Drehmoment des Motors bei unterschiedlichen Drehzahlen. Meist wird eine Kennlinie zur Darstellung verwendet. Das Drehmoment eines Schrittmotors ist im unteren Drehzahlbereich vergleichsweise hoch und ermöglicht in vielen Anwendungsfällen einen direkten Einsatz ohne weiteres Getriebe. Ein Schrittmotor liefert, im Vergleich zu anderen Motoren, ohne großen Aufwand ein Haltemoment, das in der Größenordnung des Drehmoments liegt.

Drehzahl

Die maximale Drehzahl eines Schrittmotors ist gering und wird meist als maximale Schrittfrequenz angegeben.

Nennspannung, Versorgungsspannung und Wicklungswiderstand

Im stationären Zustand fließt der Nennstrom bei Nennspannung, in Abhängigkeit vom Wicklungswiderstand. Diese Spannung sollte nicht mit der Versorgungsspannung der Leistungsendstufe verwechselt werden. Unterschreitet die Versorgungsspannung die Nennspannung, kann die Leistungsendstufe den Strom nicht mehr in voller Höhe einprägen und ein Drehmomentverlust ist die Folge. Erstrebenswert sind ein kleiner Wicklungswiderstand und eine hohe Versorgungsspannung, um die Erwärmung gering zu halten und ein möglichst hohes Drehmoment bei hohen Drehzahlen zu erreichen.

Phasenzahl

Üblich sind 2- bis 5-Phasen-Motoren. Die EL7062 unterstützt 2-Phasen-Motoren.

Resonanzen

In bestimmten Drehzahlbereichen zeigen Schrittmotoren einen mehr oder weniger rauen, unrunden Lauf. Dieses Phänomen ist besonders ausgeprägt, wenn der Motor ohne angekoppelte Last läuft; unter Umständen kann er dabei sogar stehen bleiben. Die Ursache ist in Resonanzen zu sehen. Grob kann man unterscheiden zwischen

- Resonanzen im unteren Frequenzbereich bis ca. 250 Hz und
- Resonanzen im mittleren bis oberen Frequenzbereich.

Die Resonanzen im mittleren bis oberen Frequenzbereich resultieren im Wesentlichen aus den elektrischen Kenngrößen wie Induktivität der Motorwicklung und Zuleitungskapazitäten. Sie sind über eine hohe Taktung der Regelung relativ einfach in den Griff zu bekommen.

Die Resonanzen im unteren Bereich resultieren im Wesentlichen aus den mechanischen Kenngrößen des Motors. Sie bewirken im Allgemeinen außer dem rauen Lauf, teilweise einen recht erheblichen Drehmomentverlust, bis hin zum Schrittverlust des Motors und sind also in der Anwendung besonders störend.

Der Schrittmotor stellt im Grunde ein schwingungsfähiges System dar, vergleichbar mit einem Masse-Federsystem, bestehend aus dem sich bewegenden Rotor mit Trägheitsmoment und einem magnetischen Feld, das eine Rückstellkraft auf den Rotor erzeugt. Beim Auslenken und Loslassen des Rotors wird eine gedämpfte Schwingung erzeugt. Entspricht die Ansteuerfrequenz der Resonanzfrequenz, wird die Schwingung verstärkt, so dass der Rotor im ungünstigsten Fall den Schritten nicht mehr folgt und zwischen zwei Rastungen hin und her schwingt.

Die EL7062 verhindert diesen Effekt durch ein SinCos-förmiges Bestromungsprofil bei nahezu allen Standardmotoren. Der Rotor wird nicht von Schritt zu Schritt geschaltet, springt also nicht mehr in die nächste Rastung, sondern es werden Zwischenschritte ("Microsteps") durchlaufen, d. h. der Rotor wird behutsam von einem Schritt zum nächsten geführt. Der sonst übliche Drehmomenteinbruch bei bestimmten Drehzahlen bleibt aus und es kann anwendungsoptimiert gefahren werden. Dadurch kann der Motor gerade im drehmomentstarken, unteren Drehzahlbereich voll genutzt werden.

Schrittwinkel

Der Schrittwinkel gibt den bei einem Schritt zurückgelegten Winkel an. Typische Werte sind 3,6°, 1,8° und 0,9°. Das entspricht 100, 200 und 400 Schritten pro Motorumdrehung. Dieser Wert ist, zusammen mit der nachgeschalteten Übersetzung, ein Maß für die Positioniergenauigkeit. Aus technischen Gründen lässt sich der Schrittwinkel nicht beliebig reduzieren. Die Positioniergenauigkeit kann nur mechanisch durch die Übersetzung gesteigert werden. Eine elegante Lösung zur Erhöhung der Positioniergenauigkeit ist das Microstepping. Der geringere, "künstliche" Schrittwinkel hat einen weiteren positiven Effekt: Bei gleicher Genauigkeit kann der Antrieb mit einer höheren Geschwindigkeit gefahren werden. Die maximale Drehzahl bleibt erhalten, obwohl der Antrieb an der Grenze der mechanischen Auflösung positioniert.

5.1.1.2 Auswahl eines Schrittmotors

- Bestimmung der erforderlichen Positioniergenauigkeit und dadurch bedingt der Schrittauflösung. Zunächst muss geklärt werden, wie die Auflösung erreicht werden kann. Mechanische Untersetzungen, wie Spindel, Getriebe oder Zahnstangen führen zu einer Erhöhung. Zu berücksichtigen ist auch das Microstepping.
- 2. Bestimmung der Massen m und der Trägheitsmomente (J) aller zu bewegenden Teile.
- 3. Berechnung der Beschleunigung, die sich durch die zeitlichen Anforderungen der bewegten Massen ergibt.
- 4. Berechnung der auftretenden Kräfte aus Massen, Trägheitsmomenten und den jeweiligen Beschleunigungen.
- 5. Umrechnung der Kräfte und Geschwindigkeiten auf die Motorachse, unter besonderer Berücksichtigung der Wirkungsgrade, Reibungsmomente und der mechanischen Größen, wie der Übersetzung. Praktischerweise berechnet man den Antrieb vom letzten Glied (das ist in der Regel die Last) aus rückwärts. Jedes weitere Element überträgt Kraft und Geschwindigkeit und führt durch Reibung zu weiteren Kräften oder Drehmomenten. An der Motorwelle ergibt sich während der Positionierung die Summe aller Kräfte und Drehmomente. Das Ergebnis ist ein Geschwindigkeits-/ Drehmomentverlauf, den der Motor zu erbringen hat.
- 6. Aus der Drehmomentkennlinie ist der Motor zu ermitteln, der die Mindestanforderungen erfüllt. Das Trägheitsmoment des ermittelten Motors ist zum gesamten Antrieb zu addieren. Eine erneute Überprüfung wird notwendig. Das Drehmoment sollte, um eine ausreichende Praxissicherheit zu gewährleisten, 20% bis 30% überdimensioniert sein. Gegenteilig kann die Optimierung verlaufen, wenn der größte Teil der Beschleunigung für das Rotorträgheitsmoment aufgebracht werden muss. In diesem Fall sollte der Motor möglichst klein ausgelegt werden.
- 7. Test des Motors unter realen Anwendungsbedingungen: Die Gehäusetemperaturen sind im Dauerbetrieb zu überwachen. Werden die Berechnungen nicht von den Testergebnissen bestätigt, müssen die angenommenen Ausgangsgrößen und die Randbedingungen auf ihre Richtigkeit überprüft werden. Wichtig ist auch die Überprüfung von Randeffekten, wie Resonanzerscheinungen, Spiel in der Mechanik, Einstellungen der maximalen Lauffrequenz und der Rampensteilheit.
- 8. Der Antrieb kann zur Erhöhung der Leistung durch unterschiedliche Maßnahmen optimiert werden: Auswahl leichterer Materialien, Hohlkörper, statt volles Material, und Reduzierung der mechanischen Massen. Großen Einfluss auf das Verhalten des Antriebs übt auch die Ansteuerung aus. Die Klemme ermöglicht den Betrieb mit unterschiedlichen Versorgungsspannungen. Die Drehmomentkennlinie kann durch höhere Spannung verlängert werden. Dabei liefert ein Stromanhebungsfaktor im entscheidenden Augenblick das erhöhte Drehmoment, während eine allgemeine Absenkung des Stroms die Temperatur des Motors deutlich reduziert. In Sonderfällen kann auch eine speziell angepasste Motorwicklung sinnvoll sein.

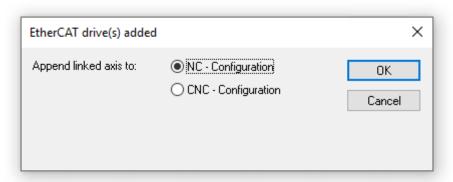
6 Kurzanleitung zur Inbetriebnahme

Diese Kurzanleitung beschreibt die grundlegende Inbetriebnahme des ersten Kanals einer EL7062 in TwinCAT 3 mit dem Drive Manager 2.

Die Kurzanleitung erhebt keinen Anspruch auf Vollständigkeit.

Jedes Kapitel baut auf dem jeweils vorherigen Kapitel auf. Gehen Sie Schritt für Schritt in der vorgegebenen Reihenfolge vor.

6.1 Voraussetzungen


Stellen Sie sicher, dass die folgende Software installiert ist:

- TwinCAT ab Version 3.1, Build 4024.7 oder höher. Download
- TE5950 | TwinCAT 3 Drive Manager 2 ab Setup 1.1.88, DM2 1.1.70.0. <u>Download</u>

6.2 Einbindung in ein TwinCAT-Projekt

- 1. Die EL7062 in die I/O-Konfiguration eines TwinCAT-Projekts einbinden. Wahlweise durch Scannen oder manuell
 - ⇒ Im Verlauf der Einbindung erscheint ein Dialogfenster:

- 2. "NC Configuration" auswählen und auf "OK" klicken
- ⇒ Die EL7062 ist in die I/O-Konfiguration und in die NC-Konfiguration Ihres TwinCAT-Projekts eingebunden

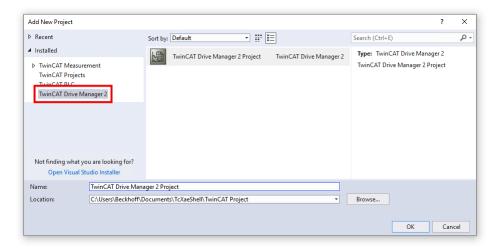
HINWEIS

Der interne Speicher kann falsch eingestellte Parameter enthalten

Defekt möglich.

• Setzen Sie die Klemme vor der Inbetriebnahme auf die Werkseinstellungen zurück. Siehe Kapitel Wiederherstellen des Auslieferungszustandes [• 46].

6.3 Konfiguration mit dem Drive Manager 2


Der Drive Manager 2 ist ein Werkzeug für die Inbetriebnahme von Antriebs-Achsen in TwinCAT 3. Weitere Informationen finden Sie hier:

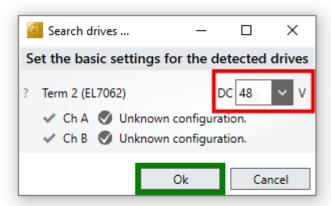
- Produktseite des Drive Manager 2
- TwinCAT 3 Drive Manager 2 Kurzinbetriebnahme.

6.3.1 Anlegen eines Drive Manager 2 Projekts

Gehen Sie wie folgt vor, um das Projekt anzulegen:

- 1. In TwinCAT den Menüpunkt File > Add > New Project wählen
 - ⇒ Ein Dialogfenster öffnet sich.
- 2. Im Dialogfenster auf der linken Seite "Installed" > "TwinCAT Drive Manager 2" auswählen und auf OK klicken

⇒ Falls das TwinCAT-Projekt mehrere EtherCAT-Master enthält, erscheint das folgende Dialogfenster:



Den EtherCAT-Master auswählen, an dem die EL7062 angeschlossen ist

⇒ Ein Dialogfenster öffnet sich.

3. Im Dialogfenster die Höhe der Motor-Versorgung einstellen und auf "OK" klicken.

- ⇒ Das Projekt wurde angelegt.
- ⇒ Die EL7062 wurde in das Projekt eingebunden.

6.3.2 Auswahl von Motor und Feedback

- 1. Im Solution Explorer den Baum unter dem "Drive Manager 2 Project" ausklappen.
- 2. Auf "Ch A" doppelklicken.

 - ⇒ Der Drive Manager 2 öffnet sich.
- 3. Motor und Feedback auswählen, indem Sie in die Buttons "Select" in den entsprechenden Zeilen "Motor" und "Feedback 1" anklicken.

Feedback

Beachten Sie bei der Auswahl des Feedbacks die folgenden Rahmenbedingungen; speziell die maximal zulässige Eingangsfrequenz:


Signaltyp	Max. Eingangs- frequenz ¹⁾	Strom- senke 2,5 mA	Signalpegel Low	Signalpegel High	Kommentar
RS422 differential	4 Mio Inc/s	nein	U_{diff} < -0,45 V	$U_{diff} > +0,45 \text{ V}$	-
TTL single ended	250 klnc/s	ja	< 0,8 V	> 3,0 V	-
TTL single ended – input filters disabled	1 Mio Inc/s	ja	< 0,8 V	> 3,0 V	Höhere Signalfrequenz möglich. Störempfindlicher.
Open collector	125 klnc/s	nein	< 0,8 V	> 2,0 V	Encoder schaltet gegen Ground

¹⁾ Bei 4-fach Auswertung.

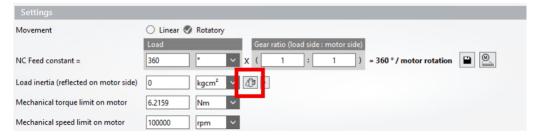
6.3.3 Einstellen der Last-Parameter

1. Im Drive Manager 2 unter der Registerkarte "Basic Settings" den Menüpunkt "Load" öffnen.

⇒ Hier können Sie die folgenden Parameter einstellen:

NC Feed constant

Die NC Feed constant definiert den zurückgelegten Weg der Last pro Umdrehung der Motorwelle. Mit der NC Feed constant können Sie zum Beispiel das Übersetzungsverhältnis eines Getriebes abbilden.


Beispielrechnung für eine rotatorische NC-Achse mit Getriebe-Übersetzungsverhältnis i = 10 (Untersetzung):

$$NC \ feed \ constant = \frac{360^{\circ}}{i} = 36^{\circ}$$

Load inertia (reflected on motor side)

Falls Sie das Trägheitsmoment der Last kennen, gehen Sie wie folgt vor:

Das Trägheitsmoment eingeben.
 Tipp: falls Sie ein Getriebe einsetzen, nutzen Sie den Trägheitsmoment-Rechner:

- 2. Die Eingabe mit [Enter] bestätigen.
 - ⇒ Ein Button erscheint: "Recalculate VCtrl Kp and reset Tn".
- 3. Den Button "Recalculate VCtrl Kp and reset Tn" anklicken.
- ⇒ Der Drive Manager 2 berechnet passende Reglerparameter für den Drehzahlregler.

Mechanical torque limit on motor

Dieser Wert ist der obere Grenzwert für das Drehmoment der Motorwelle. Stellen Sie den Wert entsprechend den Anforderungen der Anwendung ein.

Beachten Sie: Falls Sie ein Getriebe einsetzen, ist das Drehmoment am Abtrieb des Getriebes gegebenenfalls höher als an der Motorwelle.

Mechanical speed limit on motor

Dieser Wert ist der obere Grenzwert für die Drehzahl der Motorwelle. Stellen Sie den Wert entsprechend den Anforderungen der Anwendung ein.

Beachten Sie: Falls Sie ein Getriebe einsetzen, ist die Drehzahl am Abtrieb des Getriebes gegebenenfalls höher als an der Motorwelle.

Parameter in die NC übertragen

Nach dem Einstellen der Parameter müssen die Parameter noch in die TwinCAT NC übertragen werden.

In dieser "Kurzanleitung zur Inbetriebnahme" geschieht das im nächsten Schritt "Testlauf" durch das Aktivieren der TwinCAT-Konfiguration.

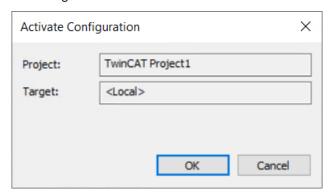
6.4 Testlauf

MARNUNG

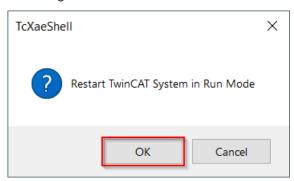
Gefahr durch Bewegungen des Motors

Der Motor bewegt sich während des Testlaufs.

Schwere Verletzungen und Sachschaden sind möglich.

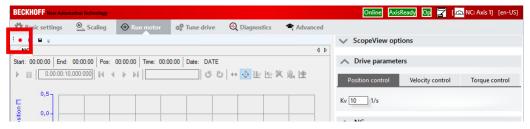

- Stellen Sie sicher, dass alle Parameter richtig eingestellt sind.
- Stellen Sie sicher, dass sich der Antrieb beliebig bewegen kann, ohne dass er dadurch Personen oder die Anlage gefährdet.

6.4.1 Vorbereitung


1. Die TwinCAT-Konfiguration aktivieren

⇒ Ein Dialogfenster erscheint.

- 2. Mit OK bestätigen
 - ⇒ Ein Dialogfenster erscheint.

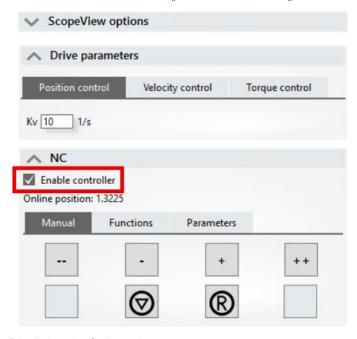

- 3. Mit OK bestätigen
- 4. Im Solution Explorer auf "Ch A" doppelklicken
 - TwinCAT Drive Manager 2 Project1
 Term 2 (EL7062) @Device 1 (EtherCAT)

 Ch A

 Ch B
- 5. Das Menü "Run motor" auswählen
 - ⇒ Ein Warnhinweis erscheint.
- 6. Den Warnhinweis lesen und befolgen

- 7. Den Warnhinweis mit "OK" quittieren Falls "OK" nicht angeklickt werden kann, zeigt der Drive Manager 2 in blauer Schrift den Grund dafür an.
 - ⇒ Das Fenster "Run Motor" erscheint.
- 8. Den Button "Start record" anklicken

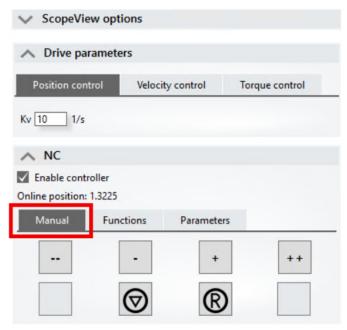
⇒ Das Scope View zeichnet die Position, die Drehzahl und den Schleppfehler auf.


6.4.2 Achsfreigabe

Die Achse führt Fahraufträge nur aus, wenn sie freigegeben ist. Geben Sie die Achse wie folgt frei:

1. Prüfen, ob die Symbole "Online", "AxisReady" und "Op" in der Titelleiste des Drive Manager 2 stehen und ob sie grün hinterlegt sind

- ⇒ Falls ja: Der Drive Manager 2 ist bereit.
- 2. Auf der rechten Seite unter "NC" die Checkbox "Enable controller" aktivieren


- ⇒ Die Achse ist freigegeben.
- ⇒ Am Gehäuse der Klemme leuchtet die LED 2' "Enable A" grün.

6.4.3 Handbetrieb

Sie können den Motor im Handbetrieb beliebig verfahren.

Die Steuerelemente für den Handbetrieb befinden sich rechts im Fenster unter "NC" > "Manual".

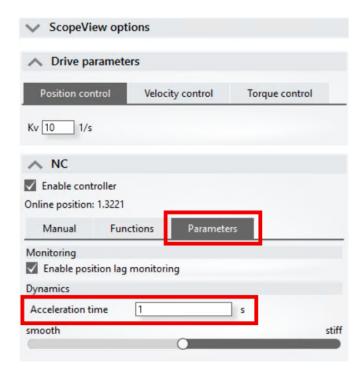
Die folgenden Buttons stehen zur Verfügung:

Button	Erläuterung			
-	Verfahren in negativer Richtung mit 5 % der Maximalgeschwindigkeit.			
	Verfahren in negativer Richtung mit 30 % der Maximalgeschwindigkeit.			
+	Verfahren in positiver Richtung mit 5 % der Maximalgeschwindigkeit.			
++	Verfahren in positiver Richtung mit 30 % der Maximalgeschwindigkeit.			
∇	Stoppen der NC-Achse			
R	Zurücksetzen eines Fehlers aus der Motion-NC			

Der Motor fährt nur, solange ein Button gedrückt ist. Sobald Sie die Maustaste loslassen, stoppt der Motor.

Verhalten im Fehlerfall

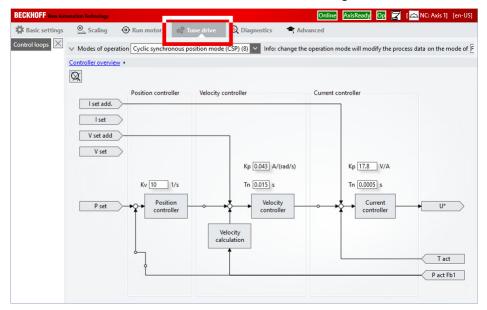
Falls ein Fehler auftritt, erscheint das folgende Symbol in der Benutzeroberfläche:


- Den Mauszeiger über das Symbol bewegen, um weitere Informationen über den Fehler zu erhalten.
- Auf den Button "R" klicken, um alle Fehler zu quittieren.
 Falls der Fehler sich nicht quittieren lässt, prüfen Sie die Meldungen in der Registerkarte "Diagnostics".

6.4.3.1 Dynamik

Die Beschleunigungszeit ist in der Werkseinstellung recht hoch eingestellt. Der Motor beschleunigt nur langsam.

Sie können die Beschleunigungszeit unter "Parameters" einstellen:



Bei niedrigerer Beschleunigungszeit steigt die Wahrscheinlichkeit, dass ein Schleppfehler auftritt. Erhöhen Sie bei Bedarf den zulässigen Schleppfehler. Siehe Kapitel Schleppfehlerüberwachung.

6.5 Regleroptimierung

Sie können die Reglerstruktur im Drive Manager 2 anzeigen lassen, indem Sie das Menü "Tune Drive" auswählen. Klicken Sie auf einzelne Elemente in der Reglerstruktur, um deren interne Struktur anzuzeigen.

In der Werkseinstellung ist die Betriebsart CSP eingestellt. In dieser Betriebsart sind drei Regler aktiv:

- Stromregler
- Drehzahlregler
- · Positionsregler

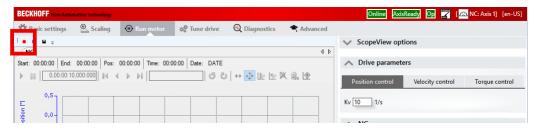
Die folgenden Kapitel beschreiben die Optimierung der einzelnen Regler in der Betriebsart CSP.

Weitere Informationen zu den Betriebsarten finden Sie im Kapitel Regler-Betriebsart.

6.5.1 Optimierung des Stromreglers

Der Stromregler muss in der Regel nicht optimiert werden.

6.5.2 Optimierung des Drehzahlreglers


Der Drehzahlregler ist ein PI-Regler.

Die folgenden Parameter werden in diesem Kapitel optimiert:

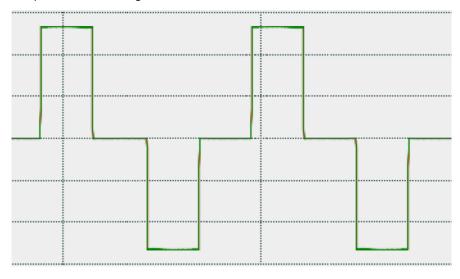
- · Der Integral-Anteil Tn
- · Der Proportional-Anteil Kp.

Vorbereitung

- 1. Das Menü "Run motor" öffnen
- 2. Den Button "Start record" anklicken

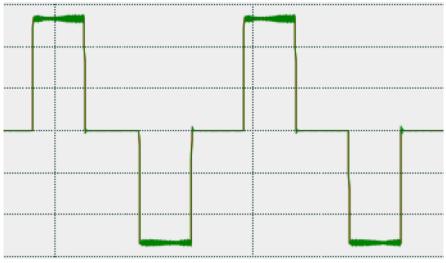
- ⇒ Das Scope View zeichnet die Position, die Drehzahl und den Schleppfehler auf.
- 3. Unter "NC": "Functions" auswählen
- 4. Im Feld "Start mode" den Eintrag "Reversing sequence" auswählen
- 5. In die folgenden Feldern realistische Werte eintragen:

Target position 1


Target velocity

Target position 2

- 6. Den Button "Start" anklicken
 - ⇒ Der Motor führt die eingestellte Bewegung periodisch aus.
- 7. Bei Bedarf die Beschleunigungszeit reduzieren Siehe Kapitel <u>Dynamik</u> [▶ 40].
- 8. Unter "Drive Parameters" die Registerkarte "Velocity control" auswählen
- ⇒ Hier können Sie die Reglerparameter des Drehzahlreglers einstellen.


Optimierung des Integral-Anteils Tn

- Den Wert Tn schrittweise reduzieren Jede Eingabe mit [Strg] + [Enter] bestätigen Währenddessen das Scope View beobachten
 - ⇒ Ab einem bestimmten Wert von Tn fängt der Motor an zu schwingen. Beispiel ohne Schwingen:

Beispiel mit Schwingen:

Ab hier den Wert Tn nicht weiter reduzieren.

- 2. Tn wieder erhöhen, bis der Motor nicht mehr schwingt
- 3. Tn noch ein bisschen erhöhen Abhängig von der Applikation.
- ⇒ Der Integral-Anteil Tn ist optimiert.

Optimierung des Proportional-Anteils Kp

Die Optimierung von Kp erfolgt analog zu der Optimierung von Tn. Allerdings müssen Sie Kp nicht reduzieren, sondern erhöhen.

- Den Wert Kp schrittweise erhöhen Jede Eingabe mit [Strg] + [Enter] bestätigen Währenddessen das Scope View beobachten
 - ⇒ Ab einem bestimmten Wert von Tn fängt der Motor an zu schwingen. Siehe oben.
- 2. Kp wieder reduzieren, bis der Motor nicht mehr schwingt
- 3. Kp noch ein bisschen reduzieren. Abhängig von der Applikation

6.5.3 Optimierung des Positionsreglers

Der Positionsregler ist ein P-Regler.

Optimierung des Proportional-Anteils Kv

Die Optimierung des Proportional-Anteils ist analog zu der Optimierung des Proportional-Anteils des Drehzahlreglers.

- 1. Unter "Drive Parameters" die Registerkarte "Position" auswählen
- 2. Den Wert Kv schrittweise erhöhen Währenddessen das Scope View beobachten
 - ⇒ Ab einem bestimmten Wert von Kv fängt der Motor an zu schwingen
- 3. Kv wieder reduzieren, bis der Motor nicht mehr schwingt
- 4. Kv noch ein bisschen mehr reduzieren Abhängig von der Applikation.
- ⇒ Der Positionsregler ist optimiert.

Geschwindigkeitsvorsteuerung

Die Geschwindigkeitsvorsteuerung verbessert das Regelverhalten vor allem beim Beschleunigen und beim Bremsen.

Sie führt einen Teil des Positions-Sollwerts am Positionsregler vorbei und direkt zum Drehzahlregler.

- 1. Das Menü "Tune Drive" auswählen
- 2. In der Reglerstruktur den "Position Controller" anklicken
- 3. Im Feld "Feed forward velocity" den Parameter K einstellen

7 Inbetriebnahme

7.1 Wiederherstellen des Auslieferungszustandes

Um bei EtherCAT-Geräten ("Slaves") den Auslieferungszustand (Werkseinstellungen) der CoE-Objekte wiederherzustellen, kann per EtherCAT-Master (z. B. TwinCAT) das CoE-Objekt *Restore default parameters*, Subindex 001 verwendet werden (s. Abb. *Auswahl des PDO, Restore default parameters*)

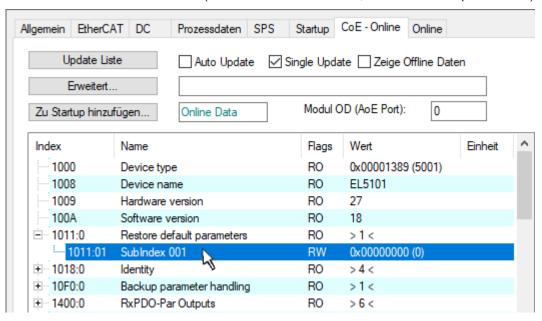


Abb. 6: Auswahl des PDO Restore default parameters

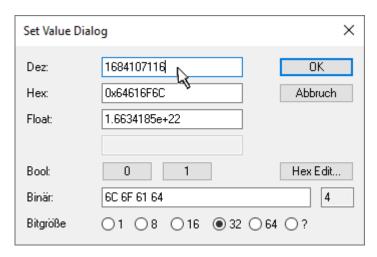


Abb. 7: Eingabe des Restore-Wertes im Set Value Dialog

Durch Doppelklick auf *SubIndex 001* gelangen Sie in den Set Value -Dialog. Tragen Sie im Feld *Dec* den Reset-Wert **1684107116** oder alternativ im Feld *Hex* den Wert **0x64616F6C** ein (ASCII: "load") und bestätigen Sie mit OK (Abb. *Eingabe des Restore-Wertes im Set Value Dialog*).

- Alle veränderbaren CoE-Einträge werden auf die Default-Werte zurückgesetzt.
- Die Werte können nur erfolgreich zurückgesetzt werden, wenn der Reset auf das Online-CoE, d. h. auf dem Slave direkt angewendet wird. Im Offline-CoE können keine Werte verändert werden.
- TwinCAT muss dazu im Zustand RUN oder CONFIG/Freerun befinden, d. h. EtherCAT Datenaustausch findet statt. Auf fehlerfreie EtherCAT-Übertragung ist zu achten.
- Es findet keine gesonderte Bestätigung durch den Reset statt. Zur Kontrolle kann zuvor ein veränderbares Objekt umgestellt werden.

• Dieser Reset-Vorgang kann auch als erster Eintrag in die StartUp-Liste des Slaves mit aufgenommen werden, z. B. im Statusübergang PREOP->SAFEOP oder, wie in Abb. *CoE-Reset als StartUp-Eintrag*, bei SAFEOP->OP

Alle Backup-Objekte werden so in den Auslieferungszustand zurückgesetzt.

Alternativer Restore-Wert

Bei einigen Klemmen älterer Bauart (FW Erstellung ca. vor 2007) lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen: Dezimalwert: 1819238756, Hexadezimalwert: 0x6C6F6164.

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung!

7.2 Auswahl der Regler-Betriebsart

Mit der Auswahl der Betriebsart bestimmen Sie die Regelgröße und die Reglerstruktur.

In der Werkseinstellung ist die Betriebsart CSP eingestellt.

Wählen Sie die Betriebsart entsprechend der gewünschten Regelgröße:

Regelgröße	Betriebsart
Position	"Cyclic synchronous position mode" <u>CSP [▶ 49]</u> 1)
Geschwindigkeit	"Cyclic synchronous velocity mode" <u>CSV [▶ 51]</u>
Drehmoment	"Cyclic synchronous torque mode" <u>CST [▶ 51]</u>
Drehmoment und Kommutierungswinkel	"Cyclic synchronous torque mode with commutation angle" CSTCA [▶51]

¹⁾ Sie können die Position auch mit der Betriebsart CSV regeln. Siehe Kapitel <u>CSV [▶ 51]</u>. Die Regelung mit CSP ist aber performanter.

Zykluszeit

Für CSP, CSV, CST und CSTCA muss die Zykluszeit n * 62,5 μ s betragen (mit n = 2 bis 160), also 125 μ s bis 10 ms.

Einstellung der Betriebsart

Dieser Abschnitt beschreibt die Einstellung der Betriebsart im TwinCAT 3 Drive Manager 2.

- 1. Im Solution Explorer den Baum unter dem "Drive Manager 2 Project" ausklappen.
- 2. Auf Ch A doppelklicken.
 - ⇒ Der Drive Manager 2 öffnet sich.
- 3. Das Menü "Tune drive" auswählen.
- 4. Die Betriebsart im Drop-Down-Menü "Modes of operation" einstellen.
- ⇒ Änderungen werden in der Reglerstruktur angezeigt. Z.B. wird der Positionsregler abgekoppelt, wenn man von CSP zu CSV wechselt.

7.2.1 CSP: Positionsregelung

CSP ist die Abkürzung für "Cyclic synchronous position".

Sie können die Zielposition über die Variable "Target position" vorgeben. Die Zielposition muss zwischen den Werten der Parameter 8000:1B "Min position range limit" und 8000:1C "Max position range limit" liegen.

Mit den Einstellungen für die Betriebsart CSP rechnet die Klemme intern die Regelkreise für Strom, Geschwindigkeit und Position. Die NC berechnet die Sollwertvorgabe der Position und gibt diese an die Klemme weiter.

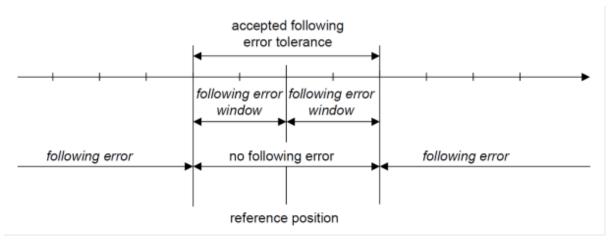
7.2.1.1 Schleppfehlerüberwachung

In der Betriebsart CSP ist eine Schleppfehlerüberwachung verfügbar.

Voraussetzungen

Die Schleppfehlerüberwachung funktioniert nur, wenn ein Encoder angeschlossen ist. Der Parameter 0x8n10:64 "Commutation type" muss auf einen Wert ungleich "Stepper with internal counter" eingestellt sein.

Aktivieren

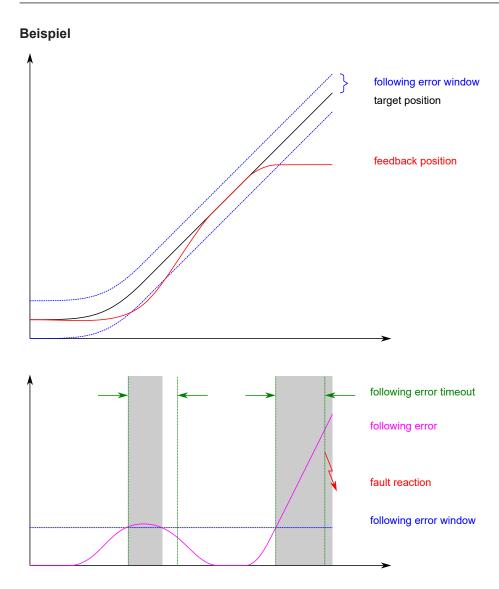

In der Werkseinstellung ist die Schleppfehlerüberwachung deaktiviert.

Wenn die oben genannten Voraussetzungen erfüllt sind, können Sie die Schleppfehlerüberwachung aktivieren, indem Sie den Parameter 0x8n10:50 "Following error window" auf einen Wert ungleich dem Default-Wert 0xFFFF FFFF setzen.

Konfigurieren

Sie können die Schleppfehlerüberwachung mit den folgenden Parametern konfigurieren:

• 0x8n10:50 "Following error window" ist der Betrag des maximal zulässigen Schleppfehlers, also der Abweichung von Istposition und Sollposition. Falls der Schleppfehler diesen Wert überschreitet, startet der "Following error time out".



 0x8n10:51 "Following error time out" ist die maximal zulässige Zeitspanne in Millisekunden, die der Schleppfehler außerhalb des "Following error window" liegen darf.
 Wenn diese Zeitspanne überschritten wird, stoppt die Klemme den Motor und gibt einen Fehler aus.

Überwachen

Die Variable "Following error actual value" im Prozessdatenobjekt "DRV Following error actual value Channel n" enthält den aktuellen Schleppfehler.

In diesem Beispiel überschreitet der Schleppfehler zweimal das "Following error window":

- Beim ersten Mal unterschreitet er es vor dem Ablaufen des "Following error time out" wieder.
- Beim zweiten Mal wird auch der "Following error time out" überschritten, z.B. durch einen blockierten Rotor. Die Klemme stoppt den Motor und gibt eine Fehlermeldung aus.

7.2.2 CSV: Geschwindigkeitsregelung

CSV ist die Abkürzung für "Cyclic synchronous velocity".

Über die Variable "Target velocity" kann eine definierte Geschwindigkeit eingestellt werden.

Positionsregelung mit der TwinCAT NC

Sie können mit der Betriebsart CSV auch die Position regeln, indem sie die TwinCAT NC als Positionsregler einsetzen.

Im Kontext von Positionieraufgaben ist die Betriebsart CSP allerdings performanter, da zwischen den Reglern keine Bustotzeiten auftreten (durch die Kommunikation zwischen Klemme und NC) und alle Regler in der Architektur an der gleichen Stelle gerechnet werden.

7.2.3 CST: Drehmomentregelung

CST ist die Abkürzung für "Cyclic synchronous torque".

Über die Variable "Target torque" kann ein definiertes Drehmoment eingestellt werden. Sie können die TwinCAT NC nicht zur Vorgabe des Drehmoments verwenden.

7.2.4 CSTCA: Drehmomentregelung mit Kommutierungswinkel

CSTCA ist die Abkürzung für "Cyclic synchronous torque with commutation angle".

Diese Betriebsart ist eine Strom-Regelung ähnlich CST. Zusätzlich hat der Anwender die Möglichkeit, den Kommutierungswinkel anzugeben.

Sie können die TwinCAT NC nicht zur Vorgabe von Drehzahl und Kommutierungswinkel verwenden. Über die Variable "Commutation angle" kann ein Winkel eingestellt werden, der mit einem definierten Sollstrom der Variablen "Target torque" gehalten werden soll. Durch Vorgabe eines voreilenden Winkels kann in dieser Betriebsart eine Bewegung erreicht werden.

7.3 Scannen der Hardware

Die EL7062 kann einen angeschlossenen Motor selbstständig scannen. Dabei werden bestimmte Parameter des Motors ermittelt und in den entsprechenden Einträgen im CoE gespeichert.

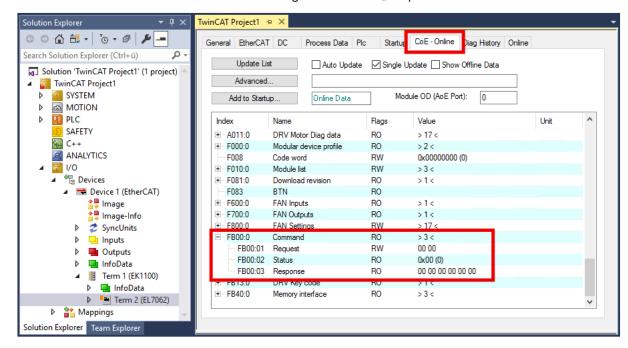
Abweichende Vorgehensweise mit TwinCAT 2

• Siehe Kapitel Scannen der Hardware mit TwinCAT 2 [> 53].

7.3.1 Scan Motor

Die folgenden Parameter werden bei dem Vorgang "Scan Motor" ermittelt:

- Die Wicklungsinduktivität des Motors: Parameter 8011:19 "Winding inductance".
- Der Wicklungswiderstand zwischen zwei Phasen des Motors: Parameter 8011:30 "Winding resistance".
- Initialwerte für den Stromregler, den Geschwindigkeitsregler und den Positionsregler.


Scan ausführen

⚠ VORSICHT

Die Motorwelle bewegt sich während des Scan-Vorgangs

Verletzungen und Sachschaden sind möglich.

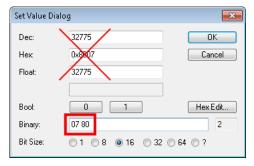
- Sicherheitsabstand zum Motor und der bewegten Mechanik einhalten.
- Sicherstellen, dass sich die Motorwelle frei bewegen kann.
- 1. Sicherstellen, dass alle anderen Motor-Parameter richtig eingestellt sind, insbesondere 8n11:12 "Rated current" und 8n11:34 "Configured motor current".
- 2. Für Kanal 1: Das Kommando 0x8007 in das Register FB00:01 "Request" schreiben. Für Kanal 2: Das Kommando 0x8017 in das Register FB00:01 "Request" schreiben.

- ⇒ Der Scan wird ausgeführt.
- \Rightarrow Der Wert des Registers FB00:02 "Status" zeigt den Fortschritt des Scans an. Die Werte $100_{\rm dez}$... $199_{\rm dez}$ entsprechen 0...99 %.
- 3. Warten, bis das Register FB00:02 "Status" einen der folgenden Werte hat: 0, 1, 2, 3.
 - ⇒ Wert 0: Der Scan wurde erfolgreich abgeschlossen.
 - ⇒ Wert 3: Fehler. Siehe Kapitel Fehlerdiagnose [▶ 53].

7.3.2 Fehlerdiagnose

Nach dem Abschluss eines Scan-Vorgangs steht im Register FB00:02 "Status" ein Exit Code. Falls der Exit Code 3 ist, ist ein Fehler aufgetreten. Werten Sie das Register FB00:03 "Response" mithilfe der folgenden Tabelle aus:

Response	Bedeutung	Kommentar
xx 00 01 00 00 00	Invalidstartupstate	Die Achse ist freigegeben.
		Ein Scan-Vorgang ist nur möglich, wenn die Achse nicht freigegeben ist.
xx 00 02 00 00 00	Timeout	Timeout während des Scan-Vorgangs.
xx 00 03 00 00 00	Driveerror	Es ist ein Fehler aufgetreten. Prüfen Sie die Diag History.
xx 00 04 00 00 00	Invalid EtherCAT state	Die Klemme ist nicht im EtherCAT-Status OP.


Ein Fehler muss nicht quittiert werden. Falls ein Scan mit einer Fehlermeldung abgebrochen wurde, können Sie einfach einen neuen Scan starten.

7.3.3 Scannen der Hardware mit TwinCAT 2

In TwinCAT 2 ist eine dezimale oder hexadezimale Eingabe der Kommandos nicht möglich.

Um das Kommando "Scan Motor" auszuführen, tragen Sie einen der folgenden Werte in das Feld "Binary" ein:

- Wert "07 80" für Kanal 1
- Wert "17 80" für Kanal 2

7.4 Inbetriebnahme mit Drive Motion Control

Mit Drive Motion Control können Sie eine Fahrwegsteuerung ohne die TwinCAT NC realisieren.

Die TwinCAT NC erfordert einen EtherCAT-Master, der Distributed Clocks unterstützt. Ein möglicher Anwendungsfall für Drive Motion Control ist also der Betrieb einer EL7062 an einer Steuerung, die Distributed Clocks nicht unterstützt.

Die Dokumentation der SPS-Bibliothek für Drive Motion Control finden Sie auf der Website von Beckhoff: Tc3 DriveMotionControl.

7.4.1 Voraussetzungen

· TwinCAT 3.1, Build 4024.7 oder höher

7.4.2 Funktionsumfang

7.4.2.1 Unterstützte Funktionen

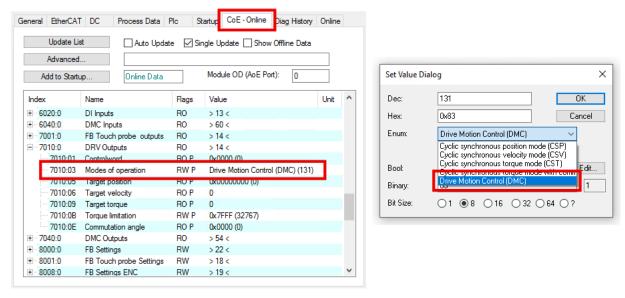
Administrative Funktionen

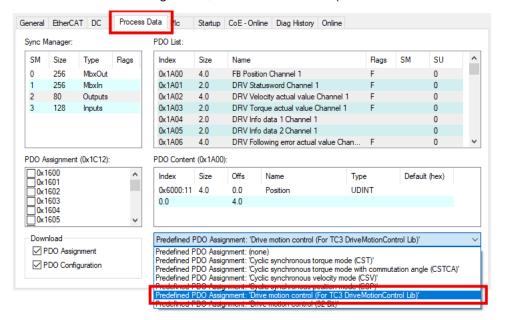
- Achsfunktionen
 - MC_Power
 - MC_Reset
 - MC_SetPosition
- · Touch probe
 - MC_AbortTrigger
 - MC_TouchProbe

Motion-Funktionen

- Homing
 - MC_Home (Hier kann nicht der bCalibrationCam-Eingang der Tc2_Mc2 Bibliothek verwendet werden, sondern muss einer der digitalen Eingänge der EL7062 verwendet werden)
- · Manuelle Bewegung
 - MC_Jog
- Punkt zu Punkt Bewegung
 - MC_Halt
 - · MC MoveAbsolute
 - MC MoveModulo
 - MC_MoveRelative
 - MC_MoveVelocity
 - MC_Stop

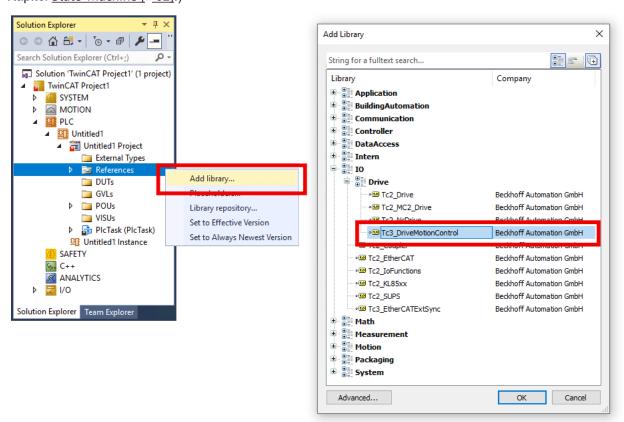
7.4.2.2 Nicht unterstützte Funktionen


Alle nachträglich angestoßenen Funktionen mit dem Ziel, die Zielposition oder -geschwindigkeit während eines aktiven Fahrauftrags zu ändern, sind nicht unterstützt (Buffer-Modus).

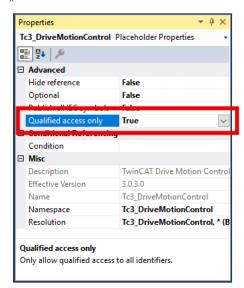

7.4.3 Inbetriebnahme in TwinCAT 3

Mit den folgenden Schritten konfigurieren Sie eine EL7062 in TwinCAT 3 für den Betrieb mit Drive Motion Control

1. Im CoE-Parameter 0x7010:03 "Modes of operation" die Betriebsart "Drive Motion Control (DMC)" einstellen.


2. Das Predefined PDO Assignment "Drive motion control (For TC3 DriveMotionControl Lib)" aktivieren.

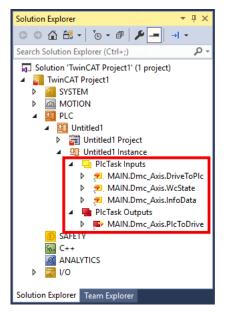
- ⇒ Die Prozessdaten für die Verwendung von Drive Motion Control sind aktiviert.
- 3. Ein SPS-Projekt anlegen, falls noch keins angelegt wurde.



4. Die Bibliothek "Tc3_DriveMotionControl" zu dem SPS-Projekt hinzufügen. (Falls Sie Drive Motion Control ohne die Bibliothek "Tc3_DriveMotionControl" verwenden wollen, siehe Kapitel State-Machine [▶ 62].)

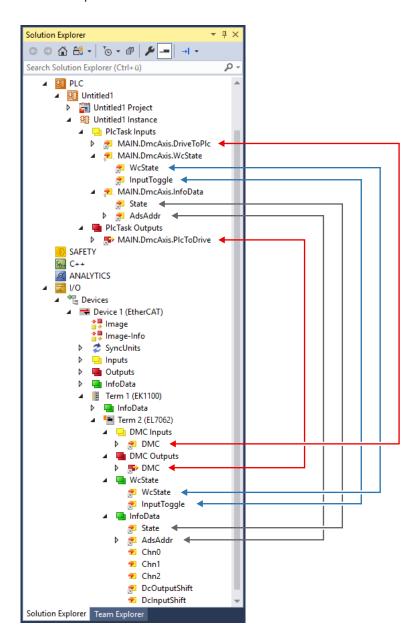
5. Falls im aktuellen Projekt die Bibliotheken "Tc3_DriveMotionControl" und "Tc2_Mc2" gleichzeitig verwendet werden:

Im Fenster "Properties" von einer der beiden Bibliotheken die Eigenschaft "Qualified access only" auf "True" setzen.


- ⇒ Die Bibliothek mit "Qualified access only" kann im SPS-Code nur noch über den entsprechenden Namespace angesprochen werden, z.B.: Tc3_DriveMotionControl.MC_Stop()

 Dadurch werden Namenskonflikte vermieden, z.B. beim Aufrufen des Funktionsbausteins MC_Stop, der in beiden Bibliotheken den gleichen Namen hat.
- 6. In der SPS eine Variable vom Typ "AXIS_REF" deklarieren. Beispiel:

```
VAR
DmcAxis: AXIS_REF;
END_VAR
```



- 7. In der Menüleiste "Build" > "Build Solution" anklicken.
 - ⇒ Das Projekt wird kompiliert.
 - ⇒ Das Prozessabbild der SPS-Task wird erzeugt.

8. Im Solution Explorer die SPS-Variablen mit den Prozessdaten der EL7062 verknüpfen.

9. Im SPS-Code den Funktionsbaustein ReadStatus () zyklisch aufrufen, idealerweise zu Beginn jedes SPS-Zyklus.

7.4.3.1 Parameter

CoE-Parameter

Die CoE-Parameter zur Konfiguration von Drive Motion Control befinden sich in den folgenden CoE-Objekten:

- 0x8n60 "DMC Settings Ch. n"
- 0x8n61 "DMC Features Ch. n"

Skalierungsfaktor und maximale Geschwindigkeit

Positionswerte sind bei Drive Motion Control als 64 Bit-Variablen definiert.

Die niederwertigen 32 Bit lösen die Singleturn-Inkremente auf. Die eventuell geringere Auflösung des Feedbacks wird auf die vollen 32 Bit hochgerechnet.

Die höherwertigen 32 Bit stellen die Multiturn-Umdrehungen dar.

Die Vorschubkonstante "Feed constant" beinhaltet etwaige Übersetzungen (Getriebe, Riemen, etc.) und stellt den abtriebsseitigen Weg pro Motorumdrehung dar.

Daher ergibt sich für den Skalierungsfaktor folgende beispielhafte Formel ohne Übersetzung:

$$Encoder\ Scaling\ Factor = \frac{Feed\ constant}{32\ Bit} = \frac{360^{\circ}}{32\ Bit} \approx 8,3819031715393066e - 8$$

Die maximal erreichbare Geschwindigkeit des Motors hängt von der Zwischenkreisspannung ab. Sollten kleinere Spannungen als im Datenblatt angegeben verwendet werden, muss unter Umständen die Nenndrehzahl auf die Spannung angepasst werden. Um die maximale Geschwindigkeit des Motors im CoE-Verzeichnis zu spezifizieren, wird zusätzlich der Parameter 0x8n11:2E "Rated speed" herangezogen. Hier wird die Nenndrehzahl des Motors in 1/min angegeben. Um die Geschwindigkeit der Skalierung anzupassen, wird dieser Wert mit der Vorschubkonstante multipliziert und auf die Einheit Sekunde normiert. Damit ergibt sich folgende Formel zur beispielhaften Berechnung der maximalen Geschwindigkeit:

$$MaxVelocity = \frac{Rated\ speed\ \cdot Feed\ constant}{60\frac{s}{min}} = \frac{1000\frac{U}{min} \cdot 360^{\circ}}{60\frac{s}{min}} = 6000\frac{s}{s}$$

Das folgende Beispiel zeigt die Umsetzung in einem SPS-Programm:

```
PROGRAM MAIN

VAR

DmcAxis: AXIS_REF

END_VAR

// Update the axis structure

DmcAxis.ReadStatus();

// Scaling factor without gear ratio, feed constant 360°

DmcAxis.Parameter.EncoderScalingFactor := 0.000000083819031715393066;

// Velocity scaling with 1000 rpm, feed constant 360°

DmcAxis.Parameter.MaxVelocity := 6000;
```


7.4.4 Inbetriebnahme mit einer 32-Bit-Steuerung eines Drittanbieters

Die Bibliothek "Tc3_DriveMotionControl" kann nicht verwendet werden.

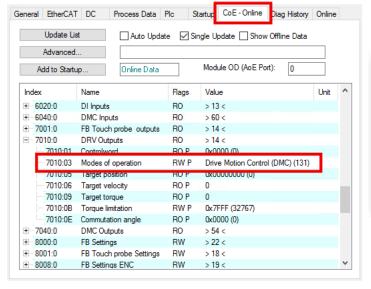
Sie können Fahraufträge nur ausführen, indem Sie die State-Machine manuell durchlaufen. Siehe Kapitel <u>State-Machine</u> [<u>▶ 62</u>].

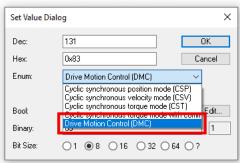
Da die Klemme per default 64-Bit Prozessdaten bereitstellt, dies aber von einigen Steuerungen nicht verarbeitet werden kann, gibt es alternativ auch die Möglichkeit, das Prozessabbild mit 32 Bit zu mappen. Dies lässt sich über das Predefined PDO Assignment "Drive motion control (32 Bit)" einstellen. (Um die Inputs und Outputs manuell zu mappen, nutzen Sie die Indizes 0x16E1 und 0x1AE1.)

Alle positionsbezogenen Prozessdaten sind bei diesem Predefined PDO Assignment 32 Bit groß anstatt 64 Bit. Die 32 Bit teilen sich in 20 Bit Singleturn und 12 Bit Multiturn Umdrehungen auf, unabhängig von der Auflösung des Feedback.

Die Klemme rechnet intern trotzdem weiterhin mit 64 Bit Daten. Deshalb muss z.B. 0x8n60:08 "Calibration Position" weiterhin in 32 Bit Singleturn und 32 Bit Multiturn angegeben werden, anstatt in 20 Bit Singleturn und 12 Bit Multiturn.

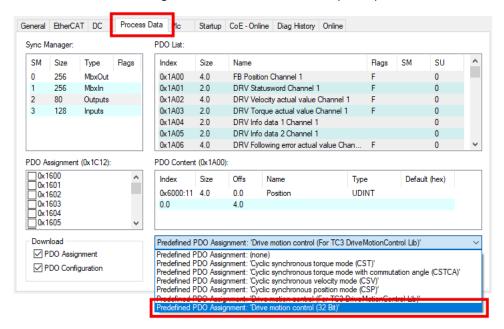
Alle nicht positionsbezogenen Prozessdaten bleiben in der Größe unverändert. Die Adressoffsets der einzelnen Prozessdaten sind identisch und an den entsprechenden Stellen sind Füll-Bytes eingefügt.


Die geschwindigkeitsbezogenen Prozessdaten sind in 10.000stel des Parameters 0x8n11:1B "Motor speed limitation" skaliert.


Die Prozessdaten für die Beschleunigung und Verzögerung geben in ms an, wie schnell der Motor auf die in 0x8n11:2E "Rated Speed" angegebene Geschwindigkeit beschleunigen bzw. von der Geschwindigkeit in den Stillstand verzögern soll. Bei einem Wert von 2000 für die Beschleunigung würde der Motor zum Erreichen der Geschwindigkeit 2 s benötigen.

Version: 1.0

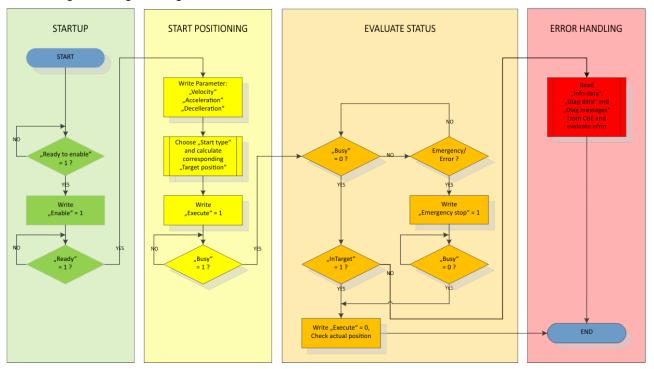
Konfiguration


 Im CoE-Parameter 0x7010:03 "Modes of operation" die Betriebsart "Drive Motion Control (DMC)" einstellen.

2. Das Predefined PDO Assignment "Drive motion control (32 Bit)" aktivieren.

⇒ Die Prozessdaten für die Verwendung von Drive Motion Control sind aktiviert.

CoE-Parameter


Die CoE-Parameter zur Konfiguration von Drive Motion Control befinden sich in den folgenden CoE-Objekten:

- 0x8n60 "DMC Settings Ch. n"
- 0x8n61 "DMC Features Ch. n"

7.4.5 State-Machine

Es ist auch möglich, ohne die Funktionsbausteine der Bibliothek "Tc3_DriveMotionControl" Fahraufträge zu starten. Zugrunde liegt die folgende Statusmaschine:

Die Variablen zur Steuerung und Auswertung befinden sich in den Prozessdatenobjekten "DMC Inputs" und "DMC Outputs":

7.4.6 Unterschiede zu Tc2_Mc2

Tc2 Mc2 ist die SPS-Bibliothek, die für den Betrieb einer EL7062 mit der TwinCAT NC verwendet wird.

Die Funktionsbausteine der Bibliothek Tc3_DriveMotionControl haben eine ähnliche Struktur wie die von Tc2_Mc2. Tc3_DriveMotionControl weicht aber in den folgenden Punkten von Tc2_Mc2 ab:

- Es ist zwingend erforderlich, Werte für die Beschleunigungen vorzugeben, weil es keine Default-Werte gibt.
- "After-Triggering-Functions" werden nicht unterstützt. Deshalb gibt es keinen "BufferMode".
- MC_Home hat keinen Eingang "bCalibrationCam". Die Einstellungen für Referenzfahrten (Homing) befinden sich im CoE-Objekt 0x8n61 "DMC Features Ch. n".

7.4.7 Starttypen

Starttyp	Code	Beschreibung	
ABSOLUTE	0x0001	Absolute positioning to a specified target position	
RELATIVE	0x0002	Relative positioning to a calculated target position; a specified position difference is added to the current position	
ENDLESS_PLUS	0x0003	Endless travel in the positive direction of rotation (direct specification of a speed)	
ENDLESS_MINUS	0x0004	Endless travel in the negative direction of rotation (direct specification of a speed)	
MODULO_SHORT	0x0105	Modulo positioning along the shortest path to the modulo position (positive or negative), calculated by the "Modulo factor"	
MODULO_PLUS	0x0205	Modulo positioning in the positive direction of rotation to the calculated modulo position	
MODULO_MINUS	0x0305	Modulo positioning in the negative direction of rotation to the calculated modulo position	
CALI_PLC_CAM	0x6000	Start a calibration with cam (digital inputs)	
CALI_ON_BLOCK	0x6200	Start a calibration "on Block"	
CALI_SET_POS	0x6E00	Set as calibrated, do not change the position	
CALI_CLEAR_POS	0x6F00	Clear calibration bit	

7.4.8 Fehlermeldungen

Error Code	Message
0x4420	Cogging compensation not supported
0x8450	Invalid Start Type 0x%x, "%x" replaced by the unsupported start type from the PDO
0x8451	Invalid limit switch level
0x8452	Drive error during positioning
0x8453	Latch unit will be used by multiple modules
0x8454	Drive not in control
0x8455	Invalid value for "Target acceleration"
0x8456	Invalid value for "Target deceleration"
0x8457	Invalid value for "Target velocity"
0x8458	Invalid value for "Target position"
0x8459	Emergency stop active
0x845A	Target position exceeds Modulofactor
0x845B	Drive must be disabled
0x845C	No feedback found
0x845D	Modulo factor invalid
0x845E	Invalid target position window

7.5 Diagnose

7.5.1 Diagnose - Grundlagen zu Diag Messages

Mit *DiagMessages* wird ein System der Nachrichtenübermittlung vom EtherCAT Slave an den EtherCAT Master/TwinCAT bezeichnet. Die Nachrichten werden vom Gerät im eigenen CoE unter 0x10F3 abgelegt und können von der Applikation oder dem System Manager ausgelesen werden. Für jedes im Gerät hinterlegtes Ereignis (Warnung, Fehler, Statusänderung) wird eine über einen Code referenzierte Fehlermeldung ausgegeben.

Definition

Das System *DiagMessages* ist in der ETG (<u>EtherCAT Technology Group</u>) in der Richtlinie ETG.1020, Kap. 13 "Diagnosis Handling" definiert. Es wird benutzt, damit vordefinierte oder flexible Diagnosemitteilungen vom EtherCAT-Slave an den Master übermittelt werden können. Das Verfahren kann also nach ETG herstellerübergreifend implementiert werden. Die Unterstützung ist optional. Die Firmware kann bis zu 250 DiagMessages im eigenen CoE ablegen.

Jede DiagMessage besteht aus

- · Diag Code (4 Byte)
- Flags (2 Byte; Info, Warnung oder Fehler)
- Text-ID (2 Byte; Referenz zum erklärenden Text aus der ESI/XML)
- Zeitstempel (8 Byte, lokale Slave-Zeit oder 64-Bit Distributed-Clock-Zeit, wenn vorhanden)
- dynamische Parameter, die von der Firmware mitgegeben werden

In der zum EtherCAT-Gerät gehörigen ESI/XML-Datei werden die DiagMessages in Textform erklärt: Anhand der in der DiagMessage enthaltenen Text-ID kann die entsprechende Klartextmeldung in den Sprachen gefunden werden, die in der ESI/XML enthalten sind. Üblicherweise sind dies bei Beckhoff-Produkten deutsch und englisch.

Der Anwender erhält durch den Eintrag NewMessagesAvailable Information, dass neue Meldungen vorliegen.

DiagMessages können im Gerät bestätigt werden: die letzte/neueste unbestätigte Meldung kann vom Anwender bestätigt werden.

Im CoE finden sich sowohl die Steuereinträge wie die History selbst im CoE-Objekt 0x10F3:

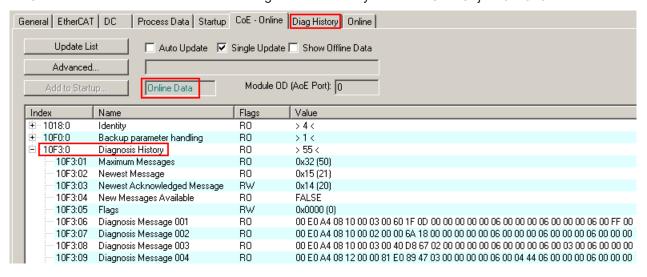


Abb. 8: DiagMessages im CoE

Unter 0x10F3:02 ist der Subindex der neuesten *DiagMessage* auslesbar.

Unterstützung zur Inbetriebnahme

Das System der DiagMesssages ist vor allem während der Anlageninbetriebnahme einzusetzen. Zur Online-Diagnose während des späteren Dauerbetriebs sind die Diagnosewerte z. B. im StatusWord des Gerätes (wenn verfügbar) hilfreich.

Implementierung TwinCAT System Manager

Ab TwinCAT 2.11 werden DiagMessages, wenn vorhanden, beim Gerät in einer eigenen Oberfläche angezeigt. Auch die Bedienung (Abholung, Bestätigung) erfolgt darüber.

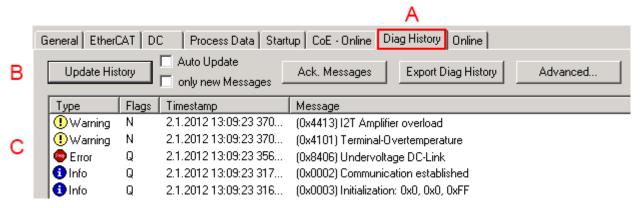


Abb. 9: Implementierung DiagMessage-System im TwinCAT System Manager

Im Reiter Diag History (A) sind die Betätigungsfelder (B) wie auch die ausgelesene History (C) zu sehen. Die Bestandteile der Message:

- Info/Warning/Error
- Acknowledge-Flag (N = unbestätigt, Q = bestätigt)
- · Zeitstempel
- Text-ID
- · Klartext-Meldung nach ESI/XML Angabe

Die Bedeutung der Buttons ist selbsterklärend.

DiagMessages im ADS Logger/Eventlogger

Ab TwinCAT 3.1 build 4022 werden von einer Klemme abgesetzte DiagMessages auch im TwinCAT ADS Logger gezeigt. Da nun IO-übergreifend DiagMessages an einem Ort dargestellt werden, vereinfacht dies die Inbetriebnahme. Außerdem kann die Logger-Ausgabe in eine Datei gespeichert werden – somit stehen die DiagMessages auch langfristig für Analysen zur Verfügung.

DiagMessages liegen eigentlich nur lokal im CoE 0x10F3 in der Klemme vor und können bei Bedarf manuell z. B. über die oben genannte DiagHistory ausgelesen werden.

Bei Neuentwicklungen sind die EtherCAT-Klemmen standardmäßig so eingestellt, dass sie das Vorliegen einer DiagMessage über EtherCAT als Emergency melden; der Eventlogger kann die DiagMessage dann abholen. Die Funktion wird in der Klemme über 0x10F3:05 aktiviert, deshalb haben solche Klemmen folgenden Eintrag standardmäßig in der StartUp-Liste:

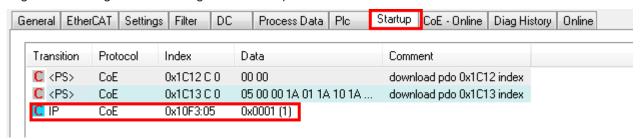


Abb. 10: StartUp-Liste

Soll die Funktion ab Gerätestart deaktiviert werden weil z. B. viele Meldungen kommen oder der EventLogger nicht genutzt wird, kann der StartUp-Eintrag gelöscht oder auf 0 gesetzt werden. Der Wert kann dann bei Bedarf später aus der PLC per CoE-Zugriff wieder auf 1 gesetzt werden.

Nachrichten in die PLC einlesen

- In Vorbereitung -

Interpretation

Zeitstempel

Der Zeitstempel wird aus der lokalen Uhr der Klemme zum Zeitpunkt des Ereignisses gewonnen. Die Zeit ist üblicherweise die Distributed-Clocks-Zeit (DC) aus Register x910.

Bitte beachten: die DC-Zeit wird in der Referenzuhr gleich der lokalen IPC/TwinCAT-Zeit gesetzt, wenn EtherCAT gestartet wird. Ab diesem Moment kann die DC-Zeit gegenüber der IPC-Zeit divergieren, da die IPC-Zeit nicht nachgeregelt wird. Es können sich so nach mehreren Wochen Betrieb ohne EtherCAT Neustart größere Zeitdifferenzen entwickeln. Als Abhilfe kann die sog. Externe Synchronisierung der DC-Zeit genutzt werden, oder es wird fallweise eine manuelle Korrekturrechnung vorgenommen: die aktuelle DC-Zeit kann über den EtherCAT Master oder durch Einsicht in das Register x901 eines DC-Slaves ermittelt werden.

Aufbau der Text-ID

Der Aufbau der MessageID unterliegt keiner Standardisierung und kann herstellerspezifisch definiert werden. Bei Beckhoff EtherCAT-Geräten (EL, EP) lautet er nach **xyzz** üblichwerweise:

x	у	zz
0: Systeminfo	0: System	Fehlernummer
1: Info	1: General	
2: reserved	2: Communication	
4: Warning	3: Encoder	
8: Error	4: Drive	
	5: Inputs	
	6: I/O allgemein	
	7: reserved	

Beispiel: Meldung 0x4413 --> Drive Warning Nummer 0x13

Übersicht Text-IDs

Spezifische Text-IDs sind in der Gerätedokumentation aufgeführt.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x0001	Information	System	No error	Kein Fehler
0x0002	Information	System	Communication established	Verbindung aufgebaut
0x0003	Information	System	Initialisation: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1000	Information	System	Information: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1012	Information	System	EtherCAT state change Init - PreOp	
0x1021	Information	System	EtherCAT state change PreOp - Init	
0x1024	Information	System	EtherCAT state change PreOp - Safe-Op	
0x1042	Information	System	EtherCAT state change SafeOp - PreOp	
0x1048	Information	System	EtherCAT state change SafeOp - Op	
0x1084	Information	System	EtherCAT state change Op - SafeOp	
0x1100	Information	Allgemein	Detection of operation mode completed: 0x%X, %d	Erkennung der Betriebsart beendet
0x1135	Information	Allgemein	Cycle time o.k.: %d	Zykluszeit o.k.
0x1157	Information	Allgemein	Data manually saved (ldx: 0x%X, Subldx: 0x%X)	Daten manuell gespeichert
0x1158	Information	Allgemein	Data automatically saved (ldx: 0x%X, Subldx: 0x%X)	Daten automatisch gespeichert
0x1159	Information	Allgemein	Data deleted (ldx: 0x%X, Subldx: 0x%X)	Daten gelöscht
0x117F	Information	Allgemein	Information: 0x%X, 0x%X, 0x%X	Information
0x1201	Information	Kommunikation	Communication re-established	Kommunikation zur Feldseite wiederhergestellt Die Meldung tritt auf, wenn z. B. im Betrieb die Spannung der Powerkontakte entfernt und wieder angelegt wurde.
0x1300	Information	Encoder	Position set: %d, %d	Position gesetzt - StartInputhandler
0x1303	Information	Encoder	Encoder Supply ok	Encoder Netzteil OK
0x1304	Information	Encoder	Encoder initialization successfully, channel: %X	Encoder Initialisierung erfolgreich abgeschlossen
0x1305	Information	Encoder	Sent command encoder reset, channel: %X	Sende Kommando Encoder Reset
0x1400	Information	Drive	Drive is calibrated: %d, %d	Antrieb ist kalibriert
0x1401	Information	Drive	Actual drive state: 0x%X, %d	Aktueller Status des Antriebs
0x1705	Information		CPU usage returns in normal range (< 85%)	Prozessorauslastung ist wieder im normalen Bereich
0x1706	Information		Channel is not in saturation anymore	Kanal ist nicht mehr in Sättigung
0x1707	Information		Channel is not in overload anymore	Kanal ist nicht mehr überlastet
0x170A	Information		No channel range error anymore	Es liegt kein Messbereichsfehler mehr vor
0x170C	Information		Calibration data saved	Abgleichdaten wurden gespeichert
0x170D	Information		Calibration data will be applied and saved after sending the command "0x5AFE"	Abgleichdaten werden erst nach dem Senden des Kommandos "0x5AFE" übernommen und gespeichert

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x2000	Information	System	%s: %s	
0x2001	Information	System	%s: Network link lost	Netzwerk Verbindung verloren
0x2002	Information	System	%s: Network link detected	Netzwerk Verbindung gefunden
0x2003	Information	System	%s: no valid IP Configuration - Dhcp client started	Ungültige IP Konfiguration
0x2004	Information	System	%s: valid IP Configuration (IP: %d.%d.%d.%d) assigned by Dhcp server %d.%d.%d.%d	Gültige, vom DHCP-Server zugewiesene IP- Konfiguration
0x2005	Information	System	%s: Dhcp client timed out	Zeitüberschreitung DHCP-Client
0x2006	Information	System	%s: Duplicate IP Address detected (%d.%d.%d)	Doppelte IP-Adresse gefunden
0x2007	Information	System	%s: UDP handler initialized	UDP-Handler initialisiert
0x2008	Information	System	%s: TCP handler initialized	TCP-Handler initialisiert
0x2009	Information	System	%s: No more free TCP sockets available	Keine freien TCP Sockets verfügbar

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4000	Warnung		Warning: 0x%X, 0x%X, 0x%X	allgemeine Warnung, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x4001	Warnung	System	Warning: 0x%X, 0x%X, 0x%X	
0x4002	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d API:%dms) from %d. %d.%d.%d successful	
0x4003	Warnung	System	%s: %s Connection Close (IN:%d OUT:%d) from %d.%d.%d.%d successful	
0x4004	Warnung	System	%s: %s Connection (IN:%d OUT: %d) with %d.%d.%d.%d timed out	
0x4005	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Error: %u)	
0x4006	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Input Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4007	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Output Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4008	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (RPI:%dms not supported -> API:%dms)	
0x4101	Warnung	Allgemein	Terminal-Overtemperature	Übertemperatur. Die Innentemperatur der Klemme überschreitet die parametrierte Warnschwelle.
0x4102	Warnung	Allgemein	Discrepancy in the PDO- Configuration	Die ausgewählten PDOs passen nicht zur eingestellten Betriebsart.
				Beispiel: Antrieb arbeitet im Velocity-Mode. Das Velocity-PDO ist jedoch nicht in die PDOs gemapped.
0x417F	Warnung	Allgemein	Warnung: 0x%X, 0x%X, 0x%X	
0x428D	Warnung	Allgemein	Challenge is not Random	
0x4300	Warnung	Encoder	Subincrements deactivated: %d, %d	Subinkremente deaktiviert (trotz aktivierter Konfiguration)
0x4301	Warnung	Encoder	Encoder-Warning	Allgemeiner Encoderfehler
0x4302	Warnung	Encoder	Maximum frequency of the input signal is nearly reached (channel %d)	Maximale Frequenz des Eingangssignals ist bald erreicht
0x4303	Warnung	Encoder	Limit counter value was reduced because of the PDO configuration (channel %d)	Limit-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4304	Warnung	Encoder	Reset counter value was reduced because of the PDO configuration (channel %d)	Reset-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4400	Warnung	Drive	Drive is not calibrated: %d, %d	Antrieb ist nicht kalibriert
0x4401	Warnung	Drive	Starttype not supported: 0x%X, %d	Starttyp wird nicht unterstützt
0x4402	Warnung	Drive	Command rejected: %d, %d	Kommando abgewiesen
0x4405	Warnung	Drive	Invalid modulo subtype: %d, %d	Modulo-Subtyp ungültig
0x4410	Warnung	Drive	Target overrun: %d, %d	Zielposition wird überfahren
0x4411	Warnung	Drive	DC-Link undervoltage (Warning)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4412	Warnung	Drive	DC-Link overvoltage (Warning)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4413	Warnung	Drive	I2T-Model Amplifier overload (Warning)	Der Verstärker wir außerhalb der Spezifikation betrieben
				Das I2T-Modell des Verstärkers ist falsch parametriert
0x4414	Warnung	Drive	I2T-Model Motor overload (Warning)	Der Motor wird außerhalb der parametrierten Nennwerte betrieben.
				Das I2T-Modell des Motors ist falsch parametriert.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4415	Warnung	Drive	Speed limitation active	Die maximale Drehzahl wird durch die parametrierten Objekte (z. B. velocity limitation, motor speed limitation) begrenzt. Die Warnung wird ausgegeben, wenn die Sollgeschwindigkeit größer ist, als eines der parametrierten Begrenzungen.
0x4416	Warnung	Drive	Step lost detected at position: 0x%X%X	Schrittverlust erkannt
0x4417	Warnung	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Warnschwelle.
0x4418	Warnung	Drive	Limit: Current	Limit: Strom wird limitiert
0x4419	Warnung	Drive	Limit: Amplifier I2T-model exceeds 100%	Die Schwellwerte für den maximalen Strom wurden überschritten.
0x441A	Warnung	Drive	Limit: Motor I2T-model exceeds 100%	Limit: Motor I2T-Modell übersteigt 100%
0x441B	Warnung	Drive	Limit: Velocity limitation	Die Schwellwerte für die maximale Drehzahl wurden überschritten.
0x441C	Warnung	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x4600	Warnung	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich
0x4610	Warnung	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich
0x4705	Warnung		Processor usage at %d %	Prozessorauslastung bei %d %
0x470A	Warnung		EtherCAT Frame missed (change Settings or DC Operation Mode or Sync0 Shift Time)	EtherCAT Frame verpasst (Einstellungen, DC Operation Mode oder Sync0 Shift Time ändern)

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8000	Fehler	System	%s: %s	
0x8001	Fehler	System	Error: 0x%X, 0x%X, 0x%X	allgemeiner Fehler, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x8002	Fehler	System	Communication aborded	Kommunikation abgebrochen
0x8003	Fehler	System	Configuration error: 0x%X, 0x%X,	allgemeine, Parameter je nach Ereignis.
			0x%X	Interpretation siehe Gerätedokumentation.
0x8004	Fehler	System	%s: Unsuccessful FwdOpen- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8005	Fehler	System	%s: FwdClose-Request sent to %d.%d.%d.%d (%s)	
0x8006	Fehler	System	%s: Unsuccessful FwdClose- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8007	Fehler	System	%s: Connection with %d.%d.%d. %d (%s) closed	
0x8100	Fehler	Allgemein	Status word set: 0x%X, %d	Fehlerbit im Statuswort gesetzt
0x8101	Fehler	Allgemein	Operation mode incompatible to PDO interface: 0x%X, %d	Betriebsart inkompatibel zum PDO-Interface
0x8102	Fehler	Allgemein	Invalid combination of Inputs and Outputs PDOs	Ungültige Kombination von In- und Output PDOs
0x8103	Fehler	Allgemein	No variable linkage	Keine Variablen verknüpft
0x8104	Fehler	Allgemein	Terminal-Overtemperature	Die Innentemperatur der Klemme überschreitet die parametrierte Fehlerschwelle. Das Aktivieren der Klemme wird unterbunden.
0x8105	Fehler	Allgemein	PD-Watchdog	Die Kommunikation zwischen Feldbus und Endstufe wird durch einen Watchdog abgesichert. Sollte die Feldbuskommunikation abbrechen, wird die Achse automatisch gestoppt.
				 Die EtherCAT-Verbindung wurde im Betrieb unterbrochen Der Master wurde im Betrieb in den Config-Mode
				geschaltet geschaltet
0x8135	Fehler	Allgemein	Cycletime has to be a multiple of 125 µs	Die IO- oder NC-Zykluszeit ist nicht ganzzahlig durch 125µs teilbar.
0x8136	Fehler	Allgemein	Configuration error: invalid sampling rate	Konfigurationsfehler: Ungültige Samplingrate
0x8137	Fehler	Allgemein	Elektronisches Typenschild: CRC-Fehler	Inhalt des Speicher des externen Typenschildes nicht gültig.
0x8140	Fehler	Allgemein	Sync Error	Echtzeitverletztung
0x8141	Fehler	Allgemein	Sync%X Interrupt lost	Sync%X Interrupt fehlt
0x8142	Fehler	Allgemein	Sync Interrupt asynchronous	Sync Interrupt asynchron
0x8143	Fehler	Allgemein	Jitter too big	Jitter Grenzwertüberschreitung
0x817F	Fehler	Allgemein	Error: 0x%X, 0x%X, 0x%X	
0x8200	Fehler	Kommunikation	Write access error: %d, %d	Fehler beim Schreiben
0x8201	Fehler	Kommunikation	No communication to field-side (Auxiliary voltage missing)	Es ist keine Spannung an den Powerkontakten angelegt
0.000:	F 1:			Ein Firmware Update ist fehlgeschlagen
0x8281	Fehler	Kommunikation	Ownership failed: %X	
0x8282	Fehler	Kommunikation	To many Keys founded	
0x8283	Fehler	Kommunikation	Key Creation failed: %X	
0x8284	Fehler	Kommunikation	Key loading failed	
0x8285	Fehler	Kommunikation	Reading Public Key failed: %X	
0x8286 0x8287	Fehler Fehler	Kommunikation Kommunikation	Reading Public EK failed: %X	
0x8287	Fehler	Kommunikation	Reading PCR Value failed: %X Reading Certificate EK failed: %X	
0x8289	Fehler	Kommunikation	Challenge could not be hashed: %X	
0x828A	Fehler	Kommunikation	Tickstamp Process failed	
0x828B	Fehler	Kommunikation	PCR Process failed: %X	
0x828C	Fehler	Kommunikation	Quote Process failed: %X	
0x82FF	Fehler	Kommunikation	Bootmode not activated	Bootmode nicht aktiviert
0x8300	Fehler	Encoder	Set position error: 0x%X, %d	Fehler beim Setzen der Position
UXO3UU	renier	Encoder	Set position error: 0x%X, %d	renier beitit betzen der Position

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8301	Fehler	Encoder	Encoder increments not configured: 0x%X, %d	Enkoderinkremente nicht konfiguriert
0x8302	Fehler	Encoder	Encoder-Error	Die Amplitude des Resolvers ist zu klein.
0x8303	Fehler	Encoder	Encoder power missing (channel %d)	Encoderspannung nicht vorhanden (Kanal %d)
0x8304	Fehler	Encoder	Encoder communication error, channel: %X	Encoder Kommunikationsfehler
0x8305	Fehler	Encoder	EnDat2.2 is not supported, channel: %X	EnDat2.2 wird nicht unterstützt
0x8306	Fehler	Encoder	Delay time, tolerance limit exceeded, 0x%X, channel: %X	Laufzeitmessung, Toleranz überschritten
0x8307	Fehler	Encoder	Delay time, maximum value exceeded, 0x%X, channel: %X	Laufzeitmessung, Maximalwert überschritten
0x8308	Fehler	Encoder	Unsupported ordering designation, 0x%X, channel: %X (only 02 and 22 is supported)	Falsche EnDat Bestellbezeichnung
0x8309	Fehler	Encoder	Encoder CRC error, channel: %X	Encoder CRC Fehler
0x830A	Fehler	Encoder	Temperature %X could not be read, channel: %X	Temperatur kann nicht gelesen werden
0x830C	Fehler	Encoder	channel. %X	CRC Fehler festgestellt. Überprüfen Sie den Übertragungsweg und das CRC Polynom
0x830D	Fehler	Encoder	Encoder Watchdog Error, channel. %X	Der Sensor hat nicht innerhalb einer vordefinierten Zeitspanne geantwortet
0x8310	Fehler	Encoder	Initialisation error	Initialisierungsfehler
0x8311	Fehler	Encoder	Maximum frequency of the input signal is exceeded (channel %d)	Maximale Frequenz des Eingangssignals ist überschritten (Kanal %d)
0x8312	Fehler	Encoder	Encoder plausibility error (channel %d)	Encoder Plausibilitätsfehler (Kanal %d)
0x8313	Fehler	Encoder	Configuration error (channel %d)	Konfigurationsfehler (Kanal %d)
0x8314	Fehler	Encoder	Synchronisation error	Synchronisierungsfehler
0x8315	Fehler	Encoder	Error status input (channel %d)	Fehler Status-Eingang (Kanal %d)
0x8400	Fehler	Drive	Incorrect drive configuration: 0x%X, %d	Antrieb fehlerhaft konfiguriert
0x8401	Fehler	Drive	Limiting of calibration velocity: %d, %d	Begrenzung der Kalibrier-Geschwindigkeit
0x8402	Fehler	Drive	Emergency stop activated: 0x%X, %d	Emergency-Stop aktiviert
0x8403	Fehler	Drive	ADC Error	Fehler bei Strommessung im ADC
0x8404	Fehler	Drive	Overcurrent	Überstrom Phase U, V, oder W
0x8405	Fehler	Drive	Invalid modulo position: %d	Modulo-Position ungültig
0x8406	Fehler	Drive	DC-Link undervoltage (Error)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8407	Fehler	Drive	DC-Link overvoltage (Error)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8408	Fehler	Drive	I2T-Model Amplifier overload (Error)	Der Verstärker wir außerhalb der Spezifikation betrieben
				Das I2T-Modell des Verstärkers ist falsch parametriert
0x8409	Fehler	Drive	I2T-Model motor overload (Error)	Der Motor wird außerhalb der parametrierten Nennwerte betrieben.
				Das I2T-Modell des Motors ist falsch parametriert.
0x840A	Fehler	Drive	Overall current threshold exceeded	Summenstrom überschritten
0x8415	Fehler	Drive	Invalid modulo factor: %d	Modulo-Faktor ungültig
0x8416	Fehler	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Fehlerschwelle. Der Motor bleibt sofort stehen. Das Aktivieren der Endstufe wird unterbunden.
0x8417	Fehler	Drive	Maximum rotating field velocity exceeded	Drehfeldgeschwindigkeit übersteigt den von Dual Use (EU 1382/2014) vorgeschriebenen Wert.
0x841C	Fehler	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x8550	Fehler	Inputs	Zero crossing phase %X missing	Nulldurchgang Phase %X fehlt
0x8551	Fehler	Inputs	Phase sequence Error	Drehrichtung Falsch

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar	
0x8552	Fehler	Inputs	Overcurrent phase %X	Überstrom Phase %X	
0x8553	Fehler	Inputs	Overcurrent neutral wire	Überstrom Neutralleiter	
0x8581	Fehler	Inputs	Wire broken Ch %D	Leitungsbruch Ch %d	
0x8600	Fehler	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich	
0x8601	Fehler	Allgemein IO	Supply voltage to low	Versorgungsspannung zu klein	
0x8602	Fehler	Allgemein IO	Supply voltage to high	Versorgungsspannung zu groß	
0x8603	Fehler	Allgemein IO	Over current of supply voltage	Überstrom der Versorgungsspannung	
0x8610	Fehler	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich	
0x8611	Fehler	Allgemein IO	Output voltage to low	Ausgangsspannung zu klein	
0x8612	Fehler	Allgemein IO	Output voltage to high	Ausgangsspannung zu groß	
0x8613	Fehler	Allgemein IO	Over current of output voltage	Überstrom der Ausgangsspannung	
0x8700	Fehler		Channel/Interface not calibrated	Kanal/Interface nicht abgeglichen	
0x8701	Fehler		Operating time was manipulated	Betriebslaufzeit wurde manipuliert	
0x8702	Fehler		Oversampling setting is not possible	Oversampling Einstellung nicht möglich	
0x8703	Fehler		No slave controller found	Kein Slave Controller gefunden	
0x8704	Fehler		Slave controller is not in Bootstrap	Slave Controller ist nicht im Bootstrap	
0x8705	Fehler		Processor usage to high (>= 100%)	Prozessorauslastung zu hoch (>= 100%)	
0x8706	Fehler		Channel in saturation	Kanal in Sättigung	
0x8707	Fehler		Channel overload	Kanalüberlastung	
0x8708	Fehler		Overloadtime was manipulated	Überlastzeit wurde manipuliert	
0x8709	Fehler		Saturationtime was manipulated	Sättigungszeit wurde manipuliert	
0x870A	Fehler		Channel range error	Messbereichsfehler des Kanals	
0x870B	Fehler		no ADC clock	Kein ADC Takt vorhanden	
0xFFFF	Information		Debug: 0x%X, 0x%X, 0x%X	Debug: 0x%X, 0x%X, 0x%X	

7.5.2 Hinweise zu Diag Messages in Verbindung mit Motorklemmen

"Ack. Message" Button

Der "Ack. Message" Button wirkt sich nicht auf die Drive State-Machine der Motorklemmen aus, eine Betätigung führt zu keinem Achs-Reset.

Die Drive State-Machine der Motorklemmen hat keinen Einfluss auf die Fehlerliste, auch mit einem Achsreset können keine Fehler aus der Liste entfernt werden, Fehler können jedoch durch die Betätigung des "Ack. Message" Buttons gelöscht werden.

8 Erweiterte Geräteinformationen

8.1 CoE-Parameter

8.1.1 Objekte zur Parametrierung

Index 8000 FB Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:0	FB Settings Ch.1		UINT8	RO	0x1C (28 _{dez})
8000:11	Device type		UINT32	RW	0x0000005 (5 _{dez})
8000:12	Singleturn bits	Anzahl der Singleturn-Bits in der Positionsdarstellung (Prozessdaten, CoE). Die Summe der Singleturn-Bits und Multiturn-Bits muss 32 sein. Hinweis: Dieser Parameter beeinflusst nur die Darstellung und ist unabhängig von der physikalischen Auflösung des Positionssensors.	UINT8	RW	0x14 (20 _{dez})
8000:13	Multiturn bits	Anzahl der Multiturn-Bits in der Positionsdarstellung (Prozessdaten, CoE). Die Summe der Singleturn-Bits und Multiturn-Bits muss 32 sein.	UINT8	RW	0x0C (12 _{dez})
		Hinweis: Dieser Parameter beeinflusst nur die Darstellung und ist unabhängig von der physikalischen Auflösung des Positionssensors.			
8000:14	Observer bandwidth	Bandbreite des Drehzahlbeobachters [Hz]	UINT16	RW	0x00C8 (200 _{dez})
8000:15	Observer feed-forward	Lastverhältnis [%] zwischen interner Rotorträgheit des Motors und der Gesamtträgheit des angetriebenen Systems.	UINT8	RW	0x64 (100 _{dez})
		Lastverhältnis = internes Trägheitsmoment / (internes Trägheitsmoment + Massenträgheitsmoment der Last).			
		Beispiele:			
		• 100 % = Lastfrei			
		• 50 % = Die Massenträgheitsmomente von Antrieb und Abtrieb sind gleich			
8000:17	Position offset	Der Position offset wird von der Rohposition des Gebers subtrahiert.	UINT32	RW	0x0000000 (0 _{dez})
		Er kann nur bei stillgesetzter Achse geschrieben werden.			
8000:18	Secondary position offset	Der Secondary Position Offset wird von der "Secondary Position" subtrahiert.	UINT32	RW	0x0000000 (0 _{dez})
		Er kann nur bei stillgesetzter Achse geschrieben werden.			
8000:19	Gear ratio motor shaft revolutions	Diese Parameter dienen der Skalierung aller Positionen und Geschwindigkeiten von der	UINT32	RW	0x00000001 (1 _{dez})
8000:1A	Gear ratio driving shaft	Motorseite auf die Lastseite eines Getriebes.	UINT32	RW	0x00000001
	revolutions	"Gear ratio motor shaft revolutions" beschreibt die notwendige Anzahl von Motorumdrehungen, um die in "Gear ratio driving shaft revolutions" konfigurierte Anzahl von Lastumdrehungen zu erreichen.			(1 _{dez})
		Beispiel: Für ein untersetzendes Getriebe, bei dem 5 Motorumdrehungen 2 Lastumdrehungen ergeben, stellen Sie die Parameter wie folgt ein:			
		Motor shaft revolutions = 5			
		 Driving shaft revolutions = 2 			

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:1B	Min position range limit	Niedrigster Wert für die Positionsdarstellung von Sollwerten und Istwerten. Bei Unterschreitung erfolgt ein Unterlauf auf den Wert "Max position range limit". "Min position range limit" muss immer niedriger als	UINT32	RW	0x0000000 (0 _{dez})
		"Max position range limit" sein.			
8000:1C	Max position range limit	Höchster Wert für die Positionsdarstellung von Sollwerten und Istwerten. Bei Überschreitung erfolgt ein Überlauf auf den Wert "Min position range limit".	UINT32	RW	0xFFFFFFF (4294967295 _d _{ez})
		"Max position range limit" muss immer höher als "Min position range limit" sein.			

Index 8001 FB Touch probe Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8001:0	FB Touch probe Settings Ch.1		UINT8	RO	0x16 (22 _{dez})
8001:11	Touch probe 1 source	Auswahl des Eingangssignals für Touch probe 1. Erlaubte Werte:	INT16	RW	0x0001 (1 _{dez})
		1: Touch probe input 1			
		5: Hardware zero impulse			
8001:12	Touch probe 2 source	Auswahl des Eingangssignals für Touch probe 2. Erlaubte Werte:	INT16	RW	0x0002 (2 _{dez})
		• 2: Touch probe input 2			
		5: Hardware zero impulse			
8001:15	Touch probe 1 position source	Auswahl der von Touch probe 1 festgehaltenen Position. Erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: FB Position			
		1: FB Secondary Position			
8001:16	Touch probe 2 position source	Auswahl der von Touch probe 2 festgehaltenen Position. Erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: FB Position			
		1: FB Secondary Position			

Index 8008 FB Settings ENC Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8008:0	FB Settings ENC Ch.1		UINT8	RO	0x13 (19 _{dez})
8008:01	Invert feedback direction	Ändert die Zählrichtung des Encoders. Dieser Parameter kann verwendet werden, um die Encoder-Drehrichtung an die Motor-Drehrichtung anzupassen.	BOOLEAN	RW	0x00 (0 _{dez})
8008:12	Encoder type	erlaubte Werte: • 0: disabled • 1: RS422 differential • 2: TTL single ended • 6: TTL single ended - input filters disabled • 7: open collector	UINT16	RW	0x0000 (0 _{dez})
8008:13	Encoder Increments per Revolution	Auflösung des Encoders nach 4-fach-Auswertung.	UINT32	RW	0x00001000 (4096 _{dez})

Index 8010 DRV Amplifier Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8010:0	DRV Amplifier Settings Ch.1		UINT8	RO	0x73 (115 _{dez}))
8010:01	Enable TxPDOToggle	TxPDO Toggle im Statuswort einblenden (Bit 10).	BOOLEAN	RW	0x00 (0 _{dez})
8010:02	Enable input cycle counter	1: aktiviert Der Input cycle counter ist ein zwei-Bit-Zähler, der mit jedem Prozessdatenzyklus bis zum Maximalwert von 3 inkrementiert wird und danach wieder bei 0 beginnt.	BOOLEAN	RW	0x00 (0 _{dez})
8010:04	Repeat find commutation	Das Low-Bit wird in Bit 10 und das Hi-Bit in Bit 14 vom Statuswort dargestellt. Wiederholen der Kommutierungswinkelbestimmung.	BOOLEAN	RW	0x01 (1 _{dez})
0010.04	repeat find commutation	(Für alle FOC-Betriebsarten wirksam).	DOOLLAIN	IXVV	OXOT (Tdez)
8010:12	Current loop integral time	Integralanteil Stromregler [0,1 ms].	UINT16	RW	0x0032 (50 _{dez})
8010:13	Current loop proportional gain	Proportionalanteil Stromregler [0,1 V/A]	UINT16	RW	0x0032 (50 _{dez})
8010:14	Velocity loop integral time	Integralanteil Geschwindigkeitsregler [0,1 ms].	UINT32	RW	0x0000001E (30 _{dez})
8010:15	Velocity loop proportional gain	Proportionalanteil Geschwindigkeitsregler [mA/(rad/s)].	UINT32	RW	0x00000096 (150 _{dez})
8010:17	Position loop proportional gain	Proportionalanteil Positionsregler [1/s]	UINT32	RW	0x0000000A (10 _{dez})
8010:31	Velocity limitation	Begrenzung der Drehzahlsollwertvorgabe [1/min]. (Nur wirksam in den Regler-Betriebsarten CSV und CSP) Bei Verwendung eines Getriebefaktors bezieht sich dieser Parameter auf die Lastseite.	UINT32	RW	0x000186A0 (100000 _{dez})
8010:32	Short-Circuit Brake duration max	Max. Dauer der Anker-Kurzschluss-Bremse. [ms]	UINT16	RW	0x0000 (0 _{dez})
8010:33	Stand still window	Toleranzfenster der Stillstandsüberwachung [1/min]	UINT16	RW	0x0001 (1 _{dez})
8010:39	Select info data 1	erlaubte Werte: • 2: DC link voltage (mV) • 4: PCB temperature (0.1 °C) • 10: Digital inputs	UINT8	RW	0x02 (2 _{dez})
8010:3A	Select info data 2	erlaubte Werte: • 2: DC link voltage (mV) • 4: PCB temperature (0.1 °C) • 10: Digital inputs	UINT8	RW	0x04 (4 _{dez})
8010:49	Halt ramp deceleration	Verzögerung der Drehzahl-Halterampe [0,1 rad / s²]	UINT32	RW	0x0000F570 (62832 _{dez})
8010:50	Following error window	Schleppabstandsüberwachung: Schleppfehlerfenster. Der Wert 0xFFFFFFFF (4294967295 _{dez}) deaktiviert die Schleppfehlerüberwachung.	UINT32	RW	0xFFFFFFF (4294967295 _d
8010:51	Following error time out	Schleppabstandsüberwachung: Timeout [ms].	UINT16	RW	0x0000 (0 _{dez})
8010:52	Fault reaction option code	erlaubte Werte: • 0: Disable drive function, motor is free to rotate • 1: Slow down on slow down ramp • 65534 _{dez} : Short circuit brake	UINT16	RW	0x0001 (1 _{dez})
8010:54	Feature bits		UINT32	RW	0x00000000 (0 _{dez})
8010:57	Position loop velocity feed forward gain	Skalierungsfaktor für die Geschwindigkeitsvorsteuerung aus dem Lageinterpolator.	UINT8	RW	0x64 (100 _{dez})
8010:58	Select info data 3	erlaubte Werte: • 2: DC link voltage (mV) • 4: PCB temperature (0.1 °C) • 10: Digital inputs	UINT8	RW	0x0A (10 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8010:59	Error suppression mask		UINT32	RW	0x0000000 (0 _{dez})
8010:62	Position loop deadband	Totzonenfenster des Positionsreglers.	UINT32	RW	0x00000000
	window	Einheit: entspricht der Prozessdatenskalierung der Sollposition und Istpositionen.			(0 _{dez})
8010:63	Find commutation time	Für die Feldorientierte Regelung (FOC) mit Inkremental-Encoder ist eine Kommutierungsfindung notwendig, während derer der Motor mit Nennstrom beaufschlagt wird. Die "Find commutation time" beschreibt die dafür verwendete Zeit.	UINT16	RW	0x000A (10 _{dez})
8010:64	Commutation type	erlaubte Werte:	UINT8	RW	0x10 (16 _{dez})
		16: Stepper with internal counter			
		17: Stepper with encoder			
		18: Stepper FOC with encoder			
8010:65	Invert direction of rotation	Umkehr der Drehrichtung.	BOOLEAN	RW	0x00 (0 _{dez})
		Dieser Parameter invertiert alle Sollwerte und Istwerte und dient dazu, dass der Motor in der für die Applikation richtigen Richtung dreht.			
		Hinweis: Dieser Parameter ist nicht dazu geeignet, die Drehrichtungen von Encoder und Motor aneinander anzupassen. Verwenden Sie zu diesem Zweck 8008:01 "Invert feedback direction".			
8010:6D	Torque feed forward gain	Interne Drehmomentvorsteuerung: Skalierungsfaktor	UINT32	RW	0x00000064 (100 _{dez})
8010:6E	Torque feed forward filter time	Interne Drehmomentvorsteuerung: Filterzeit. [0,1 ms]	UINT32	RW	0x0000000A (10 _{dez})
8010:6F	Torque offset	Drehmoment-Offset.	INT16	RW	0x0000 (0 _{dez})
		Der Wert ist in Tausendstel des Nennstroms angegeben.			
8010:70	Torque limitation option code	Auswahl des Verhaltens in der Regler-Betriebsart CST ("Cyclic Synchronous Torque"). Erlaubte Werte:	INT8	RW	0x00 (0 _{dez})
		0: VeloLimitHasNoEffect			
		1: TorqueMightBeReducedToZero			
		2: TorqueMightBeReducedToRampPosNeg			
		3: TorqueMightBeReducedToRampPosMaxTorque Neg			
		4: TorqueMightBeReducedToMaxTorquePosNeg			
8010:72	Stand still torque limitation	Nur gültig für die Kommutierungsarten "Stepper with internal counter" und "Stepper with encoder" (einstellbar über Parameter 8010:64).	UINT16	RW	0x7FFF (32767 _{dez})
		Konfiguriert eine Stromreduktion im Stillstand, d.h. wenn die Soll-Geschwindigkeit innerhalb des "Stand still window" (Parameter 8010:33) liegt.			
		Der Wert ist in Tausendstel des Nennstroms angegeben.			
8010:73	Acceleration limitation	Begrenzt die maximale Beschleunigung bzw. Verzögerung. [0,1 rad/s²]	UINT32	RW	0x0000F570 (62832 _{dez})

Index 8011 DRV Motor Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8011:0	DRV Motor Settings Ch.1		UINT8	RO	0x34 (52 _{dez})
8011:12	Rated current	Der Nennstrom des Motors (Datenblattwert). Wird für die Skalierung von "Torque actual value" und "Target torque" verwendet.	UINT32	RW	0x00000BB8 (3000 _{dez})
8011:16	Torque constant	Kraftkonstante des Motors.	UINT32	RW	0x0000012C (300 _{dez})
8011:18	Rotor moment of inertia	Trägheitsmoment des Motors.	UINT32	RW	0x000001EF (495 _{dez})
8011:19	Winding inductance	Wicklungs-Induktivität.	UINT16	RW	0x0186 (390 _{dez})
8011:1B	Motor speed limitation	Drehzahl-Limit des Motors. Bei Verwendung eines Getriebefaktors bezieht sich dieses Limit weiterhin auf die Motorseite.	UINT32	RW	0x000186A0 (100000 _{dez})
8011:2E	Rated speed	Nenndrehzahl des Motors.	UINT32	RW	0x000003E8 (1000 _{dez})
8011:30	Winding resistance	Wicklungswiderstand des Motors.	UINT32	RW	0x00000578 (1400 _{dez})
8011:31	Voltage constant	Spannungskonstante des Motors.	UINT32	RW	0x00004E20 (20000 _{dez})
8011:33	Motor fullsteps per revolution	Anzahl der Motor-Vollschritte pro Umdrehung.	UINT32	RW	0x000000C8 (200 _{dez})
8011:34	Configured motor current	Eingestellter Motorstrom. Wenn dieser kleiner ist als der "Rated current" wird der Motorstrom auf den kleineren der beiden Werte begrenzt.	UINT32	RW	0x00000BB8 (3000 _{dez})
		Dieser Wert dient der Lastverteilung zwischen den beiden Kanälen der Klemme.			

Index 8012 DRV Brake Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8012:0	DRV Brake Settings Ch.1		UINT8	RO	0x14 (20 _{dez})
8012:01	Enable manual override	True: Der Zustand der Bremse wird manuell über das CoE erzwungen.	BOOLEAN	RW	0x00 (0 _{dez})
		False: Die Bremse wird automatisch durch den Antriebsregler gesteuert.			
8012:02	Manual brake state	Erlaubte Werte:	BIT1	RW	0x00 (0 _{dez})
		0: Release			
		• 1: Apply			
8012:05	Brake option	Erlaubte Werte:	BIT4	RW	0x00 (0 _{dez})
		0: Enable output to release brake (für Bremsen, die im bestromten Zustand gelöst sind)			
		1: Disable output to release brake (für Bremsen, die im unbestromten Zustand gelöst sind)			
8012:09	External override	Ermöglicht das Lösen der Bremse über ein externes Hardwaresignal.	UINT8	RW	0x00 (0 _{dez})
		Über das externe Signal kann die Bremse nur gelöst werden, nicht angezogen.			
		Es kann ausgewählt werden, welcher Hardwareeingang (Touch probe 1 / Touch probe 2) dazu verwendet wird. Weiterhin kann eingeschränkt werden, ob diese Konfiguration immer aktiv ist, oder nur in den EtherCAT-Zuständen INIT/PREOP/SAFEOP, d.h. wenn der Antrieb nicht vollständig in Betrieb ist (z.B. bei Wartungsarbeiten)			
		Erlaubte Werte:			
		0: Disabled			
		2: Digital Input 1			
		3: Digital Input 1 (only INIT/PREOP/SAFEOP)			
		4: Digital Input 2			
		5: Digital Input 2 (only INIT/PREOP/SAFEOP)			
8012:11	Release delay	Zeit, die die Haltebremse zum Lösen benötigt, nachdem der Strom angelegt wurde.	UINT16	RW	0x0000 (0 _{dez})
8012:12	Application delay	Zeit, die die Haltebremse zum Anziehen benötigt, nachdem der Strom abgeschaltet wurde.	UINT16	RW	0x0000 (0 _{dez})
8012:13	Emergency application timeout	Zeit, die der Verstärker darauf wartet, dass die Geschwindigkeit nach einer Stoppanforderung die Stillstandsgrenze erreicht.	UINT16	RW	0x0000 (0 _{dez})
		Falls die Wartezeit überschritten wird, wird die Haltebremse ausgelöst; unabhängig von der Geschwindigkeit.			
		Bemerkung: Dieser Parameter muss mindestens auf die längste Zeit eingestellt werden, die die Achse benötigt, um zum Stillstand zu kommen, nachdem sie drehmomentfrei geschaltet wurde.			
		Für vertikale Achsen sollte dieser Parameter auf einen niedrigen Wert eingestellt werden, um zu verhindern, dass die Achse oder Last weit fällt.			
		Einheit: ms			
8012:14	Brake moment of inertia	Massenträgheitsmoment der Bremse.	UINT16	RW	0x0000 (0 _{dez})
		Einheit: g cm²			

Index 8013 DRV Filter Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8013:0	DRV Filter Settings Ch.1		UINT8	RO	0x19 (25 _{dez})
8013:10	Low pass frequency 1		REAL32	RW	0x0000000 (0 _{dez})
8013:11	Low pass damping 1		REAL32	RW	0x0000000 (0 _{dez})
8013:12	High pass frequency 1		REAL32	RW	0x0000000 (0 _{dez})
8013:13	High pass damping 1		REAL32	RW	0x0000000 (0 _{dez})
8013:14	Filter type 1	erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: No_Filter			
		1: Low_pass_filter_1_order			
		2: Phase_correction_filter_1_order			
		3: Low_pass_filter_2_order			
		4: Phase_correction_filter_2_order			
		5: Notch_filter			
8013:15	Low pass frequency 2		REAL32	RW	0x0000000 (0 _{dez})
8013:16	Low pass damping 2		REAL32	RW	0x0000000 (0 _{dez})
8013:17	High pass frequency 2		REAL32	RW	0x00000000 (0 _{dez})
8013:18	High pass damping 2		REAL32	RW	0x0000000 (0 _{dez})
8013:19	Filter type 2	erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: No_Filter			
		1: Low_pass_filter_1_order			
		2: Phase_correction_filter_1_order			
		3: Low_pass_filter_2_order			
		4: Phase_correction_filter_2_order			
		5: Notch_filter			

Index 801F DRV Vendor data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
801F:0	DRV Vendor data Ch.1		UINT8	RO	0x1C (28 _{dez})
801F:12	Amplifier rated current	Maximaler Strom pro Kanal (ohne Lüfter).	UINT32	RW	0x00001388 (5000 _{dez})
801F:14	Amplifier overcurrent threshold	Schaltschwelle für die Überstromabschaltung.	UINT32	RW	0x00002710 (10000 _{dez})
801F:15	Max rotary field frequency		UINT16	RW	0x0257 (599 _{dez})
801F:17	Amplifier rated current with fan	Maximaler Strom pro Kanal (mit Lüfter)	UINT32	RW	0x00001770 (6000 _{dez})
801F:18	Vendor feature bits		UINT32	RW	0x00000000 (0 _{dez})
801F:1A	Amplifier Rated Sum Current	Maximaler Summenstrom für alle Kanäle (ohne Lüfter)	UINT32	RW	0x00001770 (6000 _{dez})
801F:1C	Amplifier Rated Sum Current with Fan	Maximaler Summenstrom für alle Kanäle (mit Lüfter)	UINT32	RW	0x00002710 (10000 _{dez})

Index 8060 DMC Settings Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8060:0	DMC Settings Ch.1		UINT8	RO	0x17 (23 _{dez})
8060:07	Emergency deceleration	Verzögerung für die Nothalterampe. (In ms von der Motornenndrehzahl bis zum Stillstand)	UINT16	RW	0x0064 (100 _{dez})
		Einheit: 1 ms			
8060:08	Calibration position	Bei erfolgreicher Referenzfahrt wird die "Actual position" auf diesen Wert gesetzt.	INT64	RW	
8060:09	Calibration velocity (towards plc cam)	Geschwindigkeit bei Auffahren auf den Nocken in 10000stel der Motornenndrehzahl.	INT16	RW	0x0064 (100 _{dez})
8060:0A	Calibration Velocity (off plc cam)	Geschwindigkeit bei Abfahren vom Nocken in 10000stel der Motornenndrehzahl.	INT16	RW	0x000A (10 _{dez})
8060:0E	Modulo factor	Feedback-Inkremente für eine mechanische Umdrehung.	INT64	RW	
8060:12	Block calibration torque limit	Drehmomentlimitierung zum Auffahren auf den Endanschlag. In Promille vom Motornennstrom.	UINT16	RW	0x0064 (100 _{dez})
8060:13	Block calibration stop distance	Nach Erreichen der Kalibrierposition fährt die Achse um diese Distanz aus der Endlage heraus.	INT64	RW	
8060:14	Block calibration lag threshold	Bei Überschreitung dieses Schleppabstandes befindet sich die Achse in der Endlage.	INT64	RW	
8060:15	Target position window	Zielpositionsfenster:	INT64	RW	
		Das In-Target Bit wird gesetzt, wenn sich die Achse mindesten für die unter 8060:16 eingestellte Zeit innerhalb dieses Fensters befindet.			
8060:16	Target position monitor time	siehe 8060:15	UINT16	RW	0x0014 (20 _{dez})
		Einheit: ms			
8060:17	Target position timeout	Wenn der Sollwertgenerator seine Endposition erreicht hat und die Achse nach Ablauf dieser Zeit nicht im Zielfenster steht, wird der Auftrag beendet und das In-Target Bit nicht gesetzt.	UINT16	RW	0x1770 (6000 _{dez})
		Einheit: ms			

Index 8061 DMC Features Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8061:0	DMC Features Ch.1		UINT8	RO	0x1B (27 _{dez})
8061:13	Invert calibration cam search direction	Fahrtrichtung zur Suche des Endschalters invertieren.	BOOLEAN	RW	0x00 (0 _{dez})
		Default: FALSE = Suchen mit positiver Drehrichtung.			
8061:14	Invert sync impulse search direction	Drehrichtung zum Verlassen des Endschalters invertieren.	BOOLEAN	RW	0x01 (1 _{dez})
		Default: TRUE = Verlassen in negativer Drehrichtung.			
8061:19	Calibration cam source	Quelle für den Referenzschalter.	UINT8	RW	0x00 (0 _{dez})
		• 0: Input 1			
		• 1: Input 2			
8061:1A	Calibration cam active level	Zustand des Referenzschalters im betätigten Zustand.	UINT8	RW	0x00 (0 _{dez})
		• 0: Hi			
		• 1: Low			
8061:1B	Latch source	Quelle für die Latch-Einheit.	UINT8	RW	0x00 (0 _{dez})
		• 0: Input 1			
		• 1: Input 2			

Index 8100 FB Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8100:0	FB Settings Ch.2		UINT8	RO	0x1C (28 _{dez})
8100:11	Device type		UINT32	RW	0x0000005 (5 _{dez})
8100:12	Singleturn bits	Anzahl der Singleturn-Bits in der Positionsdarstellung (Prozessdaten, CoE). Die Summe der Singleturn-Bits und Multiturn-Bits muss 32 sein.	UINT8	RW	0x14 (20 _{dez})
		Hinweis: Dieser Parameter beeinflusst nur die Darstellung und ist unabhängig von der physikalischen Auflösung des Positionssensors.			
8100:13	Multiturn bits	Anzahl der Multiturn-Bits in der Positionsdarstellung (Prozessdaten, CoE). Die Summe der Singleturn-Bits und Multiturn-Bits muss 32 sein.	UINT8	RW	0x0C (12 _{dez})
		Hinweis: Dieser Parameter beeinflusst nur die Darstellung und ist unabhängig von der physikalischen Auflösung des Positionssensors.			
8100:14	Observer bandwidth	Bandbreite des Drehzahlbeobachters [Hz]	UINT16	RW	0x00C8 (200 _{dez})
8100:15	Observer feed-forward	Lastverhältnis [%] zwischen interner Rotorträgheit des Motors und der Gesamtträgheit des angetriebenen Systems.	UINT8 RW	RW	0x64 (100 _{dez})
		Lastverhältnis = internes Trägheitsmoment / (internes Trägheitsmoment + Massenträgheitsmoment der Last).			
		Beispiele:			
		• 100 % = Lastfrei			
		• 50 % = Die Massenträgheitsmomente von Antrieb und Abtrieb sind gleich			
8100:17	Position offset	Der Position offset wird von der Rohposition des Gebers subtrahiert.	UINT32	RW	0x0000000 (0 _{dez})
		Er kann nur bei stillgesetzter Achse geschrieben werden.			
8100:18	Secondary position offset	Der Secondary Position Offset wird von der "Secondary Position" subtrahiert.	UINT32	RW	0x0000000 (0 _{dez})
		Er kann nur bei stillgesetzter Achse geschrieben werden.			
8100:19	Gear ratio motor shaft revolutions	Diese Parameter dienen der Skalierung aller Positionen und Geschwindigkeiten von der	UINT32	RW	0x00000001 (1 _{dez})
8100:1A	Gear ratio driving shaft	Motorseite auf die Lastseite eines Getriebes.	UINT32	RW	0x00000001
	revolutions	"Gear ratio motor shaft revolutions" beschreibt die notwendige Anzahl von Motorumdrehungen, um die in "Gear ratio driving shaft revolutions" konfigurierte Anzahl von Lastumdrehungen zu erreichen.			(1 _{dez})
		Beispiel: Für ein untersetzendes Getriebe, bei dem 5 Motorumdrehungen 2 Lastumdrehungen ergeben, stellen Sie die Parameter wie folgt ein:	5 Motorumdrehungen 2 Lastumdrehungen ergeben,		
		 Motor shaft revolutions = 5 			
		Driving shaft revolutions = 2			
8100:1B	Min position range limit	Niedrigster Wert für die Positionsdarstellung von Sollwerten und Istwerten. Bei Unterschreitung erfolgt ein Unterlauf auf den Wert "Max position range limit".	UINT32	RW	0x0000000 (0 _{dez})
		"Min position range limit" muss immer niedriger als "Max position range limit" sein.			
8100:1C	Max position range limit	Höchster Wert für die Positionsdarstellung von Sollwerten und Istwerten. Bei Überschreitung erfolgt ein Überlauf auf den Wert "Min position range limit".	UINT32	RW	0xFFFFFFF (4294967295 _d _{ez})
		"Max position range limit" muss immer höher als "Min position range limit" sein.			

Index 8101 FB Touch probe Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8101:0	FB Touch probe Settings Ch.2		UINT8	RO	0x16 (22 _{dez})
8101:11	Touch probe 1 source	Auswahl des Eingangssignals für Touch probe 1. Erlaubte Werte:	INT16	RW	0x0001 (1 _{dez})
		1: Touch probe input 1			
		5: Hardware zero impulse			
8101:12	Touch probe 2 source	Auswahl des Eingangssignals für Touch probe 2. Erlaubte Werte:	INT16	RW	0x0002 (2 _{dez})
		• 2: Touch probe input 2			
		5: Hardware zero impulse			
8101:15	Touch probe 1 position source	Auswahl der von Touch probe 1 festgehaltenen Position. Erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: FB Position			
		1: FB Secondary Position			
8101:16	Touch probe 2 position source	Auswahl der von Touch probe 2 festgehaltenen Position. Erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: FB Position			
		1: FB Secondary Position			

Index 8108 FB Settings ENC Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8108:0	FB Settings ENC Ch.2		UINT8	RO	0x13 (19 _{dez})
8108:01	Invert feedback direction	Ändert die Zählrichtung des Encoders. Dieser Parameter kann verwendet werden, um die Encoder-Drehrichtung an die Motor-Drehrichtung anzupassen.	BOOLEAN	RW	0x00 (0 _{dez})
8108:12	Encoder type	erlaubte Werte: • 0: disabled • 1: RS422 differential • 2: TTL single ended • 6: TTL single ended - input filters disabled • 7: open collector	UINT16	RW	0x0000 (0 _{dez})
8108:13	Encoder Increments per Revolution	Auflösung des Encoders nach 4-fach-Auswertung.	UINT32	RW	0x00001000 (4096 _{dez})

Index 8110 DRV Amplifier Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8110:0	DRV Amplifier Settings Ch.2		UINT8	RO	0x73 (115 _{dez}))
8110:01	Enable TxPDOToggle	TxPDO Toggle im Statuswort einblenden (Bit 10).	BOOLEAN	RW	0x00 (0 _{dez})
8110:02	Enable input cycle counter	1: aktiviert Der Input cycle counter ist ein zwei-Bit-Zähler, der mit jedem Prozessdatenzyklus bis zum Maximalwert von 3 inkrementiert wird und danach wieder bei 0 beginnt.	BOOLEAN	RW	0x00 (0 _{dez})
0440.04		Das Low-Bit wird in Bit 10 und das Hi-Bit in Bit 14 vom Statuswort dargestellt.	D001 E4N	DW	0.04(4.)
8110:04	Repeat find commutation	Wiederholen der Kommutierungswinkelbestimmung. (Für alle FOC-Betriebsarten wirksam).	BOOLEAN	RW	0x01 (1 _{dez})
8110:12	Current loop integral time	Integralanteil Stromregler [0,1 ms].	UINT16	RW	0x0032 (50 _{dez})
8110:13	Current loop proportional gain	Proportionalanteil Stromregler [0,1 V/A]	UINT16	RW	0x0032 (50 _{dez})
8110:14	Velocity loop integral time	Integralanteil Geschwindigkeitsregler [0,1 ms].	UINT32	RW	0x000001E (30 _{dez})
8110:15	Velocity loop proportional gain	Proportionalanteil Geschwindigkeitsregler [mA/(rad/s)].	UINT32	RW	0x00000096 (150 _{dez})
8110:17	Position loop proportional gain	Proportionalanteil Positionsregler [1/s]	UINT32	RW	0x0000000A (10 _{dez})
8110:31	Velocity limitation	Begrenzung der Drehzahlsollwertvorgabe [1/min]. (Nur wirksam in den Regler-Betriebsarten CSV und CSP) Bei Verwendung eines Getriebefaktors bezieht sich dieser Parameter auf die Lastseite.	UINT32	RW	0x000186A0 (100000 _{dez})
8110:32	Short-Circuit Brake duration max	Max. Dauer der Anker-Kurzschluss-Bremse. [ms]	UINT16	RW	0x0000 (0 _{dez})
8110:33	Stand still window	Toleranzfenster der Stillstandsüberwachung [1/min]	UINT16	RW	0x0001 (1 _{dez})
8110:39	Select info data 1	erlaubte Werte: • 2: DC link voltage (mV) • 4: PCB temperature (0.1 °C) • 10: Digital inputs	UINT8	RW	0x02 (2 _{dez})
8110:3A	Select info data 2	erlaubte Werte: • 2: DC link voltage (mV) • 4: PCB temperature (0.1 °C) • 10: Digital inputs	UINT8	RW	0x04 (4 _{dez})
8110:49	Halt ramp deceleration	Verzögerung der Drehzahl-Halterampe [0,1 rad / s²]	UINT32	RW	0x0000F570 (62832 _{dez})
8110:50	Following error window	Schleppabstandsüberwachung: Schleppfehlerfenster. Der Wert 0xFFFFFFF (4294967295 _{dez}) deaktiviert die Schleppfehlerüberwachung.	UINT32	RW	0xFFFFFFF (4294967295 _d
8110:51	Following error time out	Schleppabstandsüberwachung: Timeout [ms].	UINT16	RW	0x0000 (0 _{dez})
8110:52	Fault reaction option code	erlaubte Werte: 0: Disable drive function, motor is free to rotate 1: Slow down on slow down ramp 65534 _{dez} : Short circuit brake	UINT16	RW	0x0001 (1 _{dez})
8110:54	Feature bits		UINT32	RW	0x00000000 (0 _{dez})
8110:57	Position loop velocity feed forward gain	Skalierungsfaktor für die Geschwindigkeitsvorsteuerung aus dem Lageinterpolator.	UINT8	RW	0x64 (100 _{dez})
8110:58	Select info data 3	erlaubte Werte: • 2: DC link voltage (mV) • 4: PCB temperature (0.1 °C) • 10: Digital inputs	UINT8	RW	0x0A (10 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8110:59	Error suppression mask		UINT32	RW	0x00000000 (0 _{dez})
8110:62	Position loop deadband	Totzonenfenster des Positionsreglers.	UINT32	RW	0x00000000
	window	Einheit: entspricht der Prozessdatenskalierung der Sollposition und Istpositionen.			(0 _{dez})
8110:63	Find commutation time	Für die Feldorientierte Regelung (FOC) mit Inkremental-Encoder ist eine Kommutierungsfindung notwendig, während derer der Motor mit Nennstrom beaufschlagt wird. Die "Find commutation time" beschreibt die dafür verwendete Zeit.	UINT16	RW	0x000A (10 _{dez})
8110:64	Commutation type	erlaubte Werte:	UINT8	RW	0x10 (16 _{dez})
		16: Stepper with internal counter			
		17: Stepper with encoder			
		18: Stepper FOC with encoder			
8110:65	Invert direction of rotation	Umkehr der Drehrichtung.	BOOLEAN	RW	0x00 (0 _{dez})
		Dieser Parameter invertiert alle Sollwerte und Istwerte und dient dazu, dass der Motor in der für die Applikation richtigen Richtung dreht.			
		Hinweis: Dieser Parameter ist nicht dazu geeignet, die Drehrichtungen von Encoder und Motor aneinander anzupassen. Verwenden Sie zu diesem Zweck 8008:01 "Invert feedback direction".			
8110:6D	Torque feed forward gain	Interne Drehmomentvorsteuerung: Skalierungsfaktor	UINT32	RW	0x00000064 (100 _{dez})
8110:6E	Torque feed forward filter time	Interne Drehmomentvorsteuerung: Filterzeit. [0,1 ms]	UINT32	RW	0x0000000A (10 _{dez})
8110:6F	Torque offset	Drehmoment-Offset.	INT16	RW	0x0000 (0 _{dez})
		Der Wert ist in Tausendstel des Nennstroms angegeben.			
8110:70	Torque limitation option code	Auswahl des Verhaltens in der Regler-Betriebsart CST ("Cyclic Synchronous Torque"). Erlaubte Werte:	INT8	RW	0x00 (0 _{dez})
		0: VeloLimitHasNoEffect			
		1: TorqueMightBeReducedToZero			
		2: TorqueMightBeReducedToRampPosNeg			
		3: TorqueMightBeReducedToRampPosMaxTorque Neg			
		4: TorqueMightBeReducedToMaxTorquePosNeg			
8110:72	Stand still torque limitation	Nur gültig für die Kommutierungsarten "Stepper with internal counter" und "Stepper with encoder" (einstellbar über Parameter 8110:64).	UINT16	RW	0x7FFF (32767 _{dez})
		Konfiguriert eine Stromreduktion im Stillstand, d.h. wenn die Soll-Geschwindigkeit innerhalb des "Stand still window" (Parameter 8110:33) liegt.			
		Der Wert ist in Tausendstel des Nennstroms angegeben.			
8110:73	Acceleration limitation	Begrenzt die maximale Beschleunigung bzw. Verzögerung. [0,1 rad/s²]	UINT32	RW	0x0000F570 (62832 _{dez})

Index 8111 DRV Motor Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8111:0	DRV Motor Settings Ch.2		UINT8	RO	0x34 (52 _{dez})
8111:12	Rated current	Der Nennstrom des Motors (Datenblattwert). Wird für die Skalierung von "Torque actual value" und "Target torque" verwendet.	UINT32	RW	0x00000BB8 (3000 _{dez})
8111:16	Torque constant	Kraftkonstante des Motors.	UINT32	RW	0x0000012C (300 _{dez})
8111:18	Rotor moment of inertia	Trägheitsmoment des Motors.	UINT32	RW	0x000001EF (495 _{dez})
8111:19	Winding inductance	Wicklungs-Induktivität.	UINT16	RW	0x0186 (390 _{dez})
8111:1B	Motor speed limitation	Drehzahl-Limit des Motors. Bei Verwendung eines Getriebefaktors bezieht sich dieses Limit weiterhin auf die Motorseite.	UINT32	RW	0x000186A0 (100000 _{dez})
8111:2E	Rated speed	Nenndrehzahl des Motors.	UINT32	RW	0x000003E8 (1000 _{dez})
8111:30	Winding resistance	Wicklungswiderstand des Motors.	UINT32	RW	0x00000578 (1400 _{dez})
8111:31	Voltage constant	Spannungskonstante des Motors.	UINT32	RW	0x00004E20 (20000 _{dez})
8111:33	Motor fullsteps per revolution	Anzahl der Motor-Vollschritte pro Umdrehung.	UINT32	RW	0x000000C8 (200 _{dez})
8111:34	Configured motor current	Eingestellter Motorstrom. Wenn dieser kleiner ist als der "Rated current" wird der Motorstrom auf den kleineren der beiden Werte begrenzt.	UINT32	RW	0x00000BB8 (3000 _{dez})
		Dieser Wert dient der Lastverteilung zwischen den beiden Kanälen der Klemme.			

Index 8112 DRV Brake Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8112:0	DRV Brake Settings Ch.2		UINT8	RO	0x14 (20 _{dez})
8112:01	Enable manual override	True: Der Zustand der Bremse wird manuell über das CoE erzwungen.	BOOLEAN	RW	0x00 (0 _{dez})
		False: Die Bremse wird automatisch durch den Antriebsregler gesteuert.			
8112:02	Manual brake state	Erlaubte Werte:	BIT1	RW	0x00 (0 _{dez})
		0: Release			
		• 1: Apply			
8112:05	Brake option	Erlaubte Werte:	BIT4	RW	0x00 (0 _{dez})
		0: Enable output to release brake (für Bremsen, die im bestromten Zustand gelöst sind)			
		1: Disable output to release brake (für Bremsen, die im unbestromten Zustand gelöst sind)			
8112:09	External override	Ermöglicht das Lösen der Bremse über ein externes Hardwaresignal.	UINT8	RW	0x00 (0 _{dez})
		Über das externe Signal kann die Bremse nur gelöst werden, nicht angezogen.			
		Es kann ausgewählt werden, welcher Hardwareeingang (Touch probe 1 / Touch probe 2) dazu verwendet wird. Weiterhin kann eingeschränkt werden, ob diese Konfiguration immer aktiv ist, oder nur in den EtherCAT-Zuständen INIT/PREOP/SAFEOP, d.h. wenn der Antrieb nicht vollständig in Betrieb ist (z.B. bei Wartungsarbeiten)			
		Erlaubte Werte:			
		0: Disabled			
		2: Digital Input 1			
		3: Digital Input 1 (only INIT/PREOP/SAFEOP)			
		4: Digital Input 2			
		5: Digital Input 2 (only INIT/PREOP/SAFEOP)			
8112:11	Release delay	Zeit, die die Haltebremse zum Lösen benötigt, nachdem der Strom angelegt wurde.	UINT16	RW	0x0000 (0 _{dez})
8112:12	Application delay	Zeit, die die Haltebremse zum Anziehen benötigt, nachdem der Strom abgeschaltet wurde.	UINT16	RW	0x0000 (0 _{dez})
8112:13	Emergency application timeout	Zeit, die der Verstärker darauf wartet, dass die Geschwindigkeit nach einer Stoppanforderung die Stillstandsgrenze erreicht.	UINT16	RW	0x0000 (0 _{dez})
		Falls die Wartezeit überschritten wird, wird die Haltebremse ausgelöst; unabhängig von der Geschwindigkeit.			
		Bemerkung: Dieser Parameter muss mindestens auf die längste Zeit eingestellt werden, die die Achse benötigt, um zum Stillstand zu kommen, nachdem sie drehmomentfrei geschaltet wurde.			
		Für vertikale Achsen sollte dieser Parameter auf einen niedrigen Wert eingestellt werden, um zu verhindern, dass die Achse oder Last weit fällt.			
		Einheit: ms			
8112:14	Brake moment of inertia	Massenträgheitsmoment der Bremse.	UINT16	RW	0x0000 (0 _{dez})
		Einheit: g cm²			

Index 8113 DRV Filter Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8113:0	DRV Filter Settings Ch.2		UINT8	RO	0x19 (25 _{dez})
8113:10	Low pass frequency 1		REAL32	RW	0x0000000 (0 _{dez})
8113:11	Low pass damping 1		REAL32	RW	0x00000000 (0 _{dez})
8113:12	High pass frequency 1		REAL32	RW	0x00000000 (0 _{dez})
8113:13	High pass damping 1		REAL32	RW	0x0000000 (0 _{dez})
8113:14	Filter type 1	erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: No_Filter			
		1: Low_pass_filter_1_order			
		2: Phase_correction_filter_1_order			
		3: Low_pass_filter_2_order			
		4: Phase_correction_filter_2_order			
		5: Notch_filter			
8113:15	Low pass frequency 2		REAL32	RW	0x00000000 (0 _{dez})
8113:16	Low pass damping 2		REAL32	RW	0x0000000 (0 _{dez})
8113:17	High pass frequency 2		REAL32	RW	0x00000000 (0 _{dez})
8113:18	High pass damping 2		REAL32	RW	0x00000000 (0 _{dez})
8113:19	Filter type 2	erlaubte Werte:	INT16	RW	0x0000 (0 _{dez})
		0: No_Filter			
		1: Low_pass_filter_1_order			
		2: Phase_correction_filter_1_order			
		3: Low_pass_filter_2_order			
		4: Phase_correction_filter_2_order			
		5: Notch_filter			

Index 811F DRV Vendor data Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
811F:0	DRV Vendor data Ch.2		UINT8	RO	0x1C (28 _{dez})
811F:12	Amplifier rated current	Maximaler Strom pro Kanal (ohne Lüfter).	UINT32	RW	0x00001388 (5000 _{dez})
811F:14	Amplifier overcurrent threshold	Schaltschwelle für die Überstromabschaltung.	UINT32	RW	0x00002710 (10000 _{dez})
811F:15	Max rotary field frequency		UINT16	RW	0x0257 (599 _{dez})
811F:17	Amplifier rated current with fan	Maximaler Strom pro Kanal (mit Lüfter)	UINT32	RW	0x00001770 (6000 _{dez})
811F:18	Vendor feature bits		UINT32	RW	0x00000000 (0 _{dez})
811F:1A	Amplifier Rated Sum Current	Maximaler Summenstrom für alle Kanäle (ohne Lüfter)	UINT32	RW	0x00001770 (6000 _{dez})
811F:1C	Amplifier Rated Sum Current with Fan	Maximaler Summenstrom für alle Kanäle (mit Lüfter)	UINT32	RW	0x00002710 (10000 _{dez})

Index 8160 DMC Settings Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8160:0	DMC Settings Ch.2		UINT8	RO	0x17 (23 _{dez})
8160:07	Emergency deceleration	Verzögerung für die Nothalterampe. (In ms von der Motornenndrehzahl bis zum Stillstand)	UINT16	RW	0x0064 (100 _{dez})
		Einheit: 1 ms			
8160:08	Calibration position	Bei erfolgreicher Referenzfahrt wird die "Actual position" auf diesen Wert gesetzt.	INT64	RW	
8160:09	Calibration velocity (towards plc cam)	Geschwindigkeit bei Auffahren auf den Nocken in 10000stel der Motornenndrehzahl.	INT16	RW	0x0064 (100 _{dez})
8160:0A	Calibration Velocity (off plc cam)	Geschwindigkeit bei Abfahren vom Nocken in 10000stel der Motornenndrehzahl.	INT16	RW	0x000A (10 _{dez})
8160:0E	Modulo factor	Feedback-Inkremente für eine mechanische Umdrehung.	INT64	RW	
8160:12	Block calibration torque limit	Drehmomentlimitierung zum Auffahren auf den Endanschlag. In Promille vom Motornennstrom.	UINT16	RW	0x0064 (100 _{dez})
8160:13	Block calibration stop distance	Nach Erreichen der Kalibrierposition fährt die Achse um diese Distanz aus der Endlage heraus.	INT64	RW	
8160:14	Block calibration lag threshold	Bei Überschreitung dieses Schleppabstandes befindet sich die Achse in der Endlage.	INT64	RW	
8160:15	Target position window	Zielpositionsfenster:	INT64	RW	
		Das In-Target Bit wird gesetzt, wenn sich die Achse mindesten für die unter 8160:16 eingestellte Zeit innerhalb dieses Fensters befindet.			
8160:16	Target position monitor time	siehe 8160:15	UINT16	RW	0x0014 (20 _{dez})
		Einheit: ms			
8160:17	Target position timeout	Wenn der Sollwertgenerator seine Endposition erreicht hat und die Achse nach Ablauf dieser Zeit nicht im Zielfenster steht, wird der Auftrag beendet und das In-Target Bit nicht gesetzt.	UINT16	RW	0x1770 (6000 _{dez})
		Einheit: ms			

Index 8161 DMC Features Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8161:0	DMC Features Ch.2		UINT8	RO	0x1B (27 _{dez})
8161:13	Invert calibration cam search direction	Fahrtrichtung zur Suche des Endschalters invertieren.	BOOLEAN	RW	0x00 (0 _{dez})
		Default: FALSE = Suchen mit positiver Drehrichtung.			
8161:14	Invert sync impulse search direction Drehrichtung zum Verlassen des Endschalters invertieren.	BOOLEAN	RW	0x01 (1 _{dez})	
		Default: TRUE = Verlassen in negativer Drehrichtung.			
8161:19	Calibration cam source	Quelle für den Referenzschalter.	UINT8	RW	0x00 (0 _{dez})
		• 0: Input 1			
		• 1: Input 2			
8161:1A	Calibration cam active level	Zustand des Referenzschalters im betätigten Zustand.	UINT8	RW	0x00 (0 _{dez})
		• 0: Hi			
		• 1: Low			
8161:1B	Latch source	Quelle für die Latch-Einheit.	UINT8	RW	0x00 (0 _{dez})
		• 0: Input 1			
		• 1: Input 2			

Index F800 DRV Amplifier Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F800:0	DRV Amplifier Settings		UINT8	RO	0x18 (24 _{dez})
F800:10	Nominal DC link voltage	Nennspannung DC-Zwischenkreis.	UINT32	RW	0x0000BB80 (48000 _{dez})
F800:11	Min DC link voltage	Niedrigste Spannung DC-Zwischenkreis. Bei Unterschreitung wird ein Antriebsfehler ausgelöst bzw. eine inaktive Achse kann nicht eingeschaltet werden.	UINT32	RW	0x00001A90 (6800 _{dez})
F800:12	Max DC link voltage	Höchste Spannung DC-Zwischenkreis. Bei Überschreitung wird ein Antriebsfehler ausgelöst bzw. eine inaktive Achse kann nicht eingeschaltet werden.	UINT32	RW	0x0000EA60 (60000 _{dez})
F800:15	Amplifier Temperature warn level	Warnschwelle Verstärkertemperatur.	UINT16	RW	0x0320 (800 _{dez})
F800:16	Amplifier Temperature error level	Fehlerschwelle Verstärkertemperatur.	UINT16	RW	0x03E8 (1000 _{dez})
F800:17	Feature bits		UINT32	RW	0x0000000 (0 _{dez})
F800:18	Fan Configuration	Durch einen externen Lüfter kann der für die Klemme zulässige Motorstrom erhöht werden. Erlaubte Werte:	UINT8	RW	0x00 (0 _{dez})
		0: no fan 1: fan installed			

8.1.2 Diagnose-Objekte

Index 9010 DRV Info data Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9010:0	DRV Info data Ch.1		UINT8	RO	0x28 (40 _{dez}))
9010:13	Supported drive modes		UINT32	RO	0x0000000 (0 _{dez}))
9010:14	Velocity encoder resolution		UINT32	RO	0x0000000 (0 _{dez}))
9010:15	Position encoder resolution increments		UINT32	RO	0x0000000 (0 _{dez}))
9010:16	Position encoder resolution revolutions		UINT32	RO	0x00000000 (0 _{dez}))
9010:17	Cogging compensation supported		BOOLEAN	RO	0x00 (0 _{dez}))
9010:27	Output stage safety state	erlaubte Werte:	UINT8	RO	0x00 (0 _{dez}))
		0: safe_state			
		1: ready_state			
9010:28	Actual motor brake state	erlaubte Werte:	UINT8	RO	0x00 (0 _{dez}))
		0: Motor brake applied			
		1: Motor brake released			

Index 9110 DRV Info data Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
9110:0	DRV Info data Ch.2		UINT8	RO	0x28 (40 _{dez}))
9110:13	Supported drive modes		UINT32	RO	0x0000000 (0 _{dez}))
9110:14	Velocity encoder resolution		UINT32	RO	0x0000000 (0 _{dez}))
9110:15	Position encoder resolution increments		UINT32	RO	0x0000000 (0 _{dez}))
9110:16	Position encoder resolution revolutions		UINT32	RO	0x0000000 (0 _{dez}))
9110:17	Cogging compensation supported		BOOLEAN	RO	0x00 (0 _{dez}))
9110:27	Output stage safety state	erlaubte Werte:	UINT8	RO	0x00 (0 _{dez}))
		0: safe_state			
		1: ready_state			
9110:28	Actual motor brake state	erlaubte Werte:	UINT8	RO	0x00 (0 _{dez}))
		0: Motor brake applied			
		1: Motor brake released			

Index F900 DRV Info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F900:0	DRV Info data		UINT8	RO	0x13 (19 _{dez}))
F900:11	Amplifier temperature		INT16	RO	0x0000 (0 _{dez}))
F900:12	DC link voltage		UINT32		0x0000000 (0 _{dez}))
F900:13	Supply voltage Up		UINT32	RO	0x0000000 (0 _{dez}))

Index F913 DRV Device Info data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F913:0	DRV Device Info data		UINT8	RO	0x04 (4 _{dez}))
F913:01	HW config		STRING	RO	
F913:02	FB config		STRING	RO	
F913:03	FW info		STRING	RO	
F913:04	DMC version		STRING	RO	

8.1.3 Standardobjekte

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0		Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi- Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	RO	0x00001389 (5001 _{dez}))

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EL7062-0000

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	01

Index 100B Bootloader version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100B:0	Bootloader version		STRING	RO	N/A

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez}))
1011:01		Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt. setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	RW	0x00000000 (0 _{dez}))

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez}))
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x0000002 (2 _{dez}))
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x1B963052 (462827602 _{dez}))
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low- Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x0000000 (0 _{dez}))
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x00000000 (0 _{dez}))

Index 10E2 Manufacturer-specific Identification Code

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10E2:0	Manufacturer-specific Identification Code		UINT8	RO	0x01 (1 _{dez}))
10E2:01	SubIndex 001		STRING	RO	

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F0:01		Checksumme über alle Backup-Entries des EtherCAT-Slaves	UINT32	_	0x0000000 (0 _{dez}))

Index 10F3 Diagnosis History

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F3:0	Diagnosis History		UINT8	RO	0x37 (55 _{dez}))
10F3:01	Maximum Messages		UINT8	RO	0x00 (0 _{dez}))
10F3:02	Newest Message		UINT8	RO	0x00 (0 _{dez}))
10F3:03	Newest Acknowledged Message		UINT8	RW	0x00 (0 _{dez}))
10F3:04	New Messages Available		BOOLEAN	RO	0x00 (0 _{dez}))
10F3:05	Flags		UINT16	RW	0x0000 (0 _{dez}))
10F3:06	Diagnosis Message 001		OCTET- STRING[32]	RO	{0}
10F3:07	Diagnosis Message 002		OCTET- STRING[32]	RO	{0}
10F3:08	Diagnosis Message 003		OCTET- STRING[32]	RO	{0}
10F3:35	Diagnosis Message 048		OCTET- STRING[32]	RO	{0}
10F3:36	Diagnosis Message 049		OCTET- STRING[32]	RO	{0}
10F3:37	Diagnosis Message 050		OCTET- STRING[32]	RO	{0}

Index 10F8 Timestamp Object

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F8:0	Timestamp Object		UINT64	RO	

Index 1460 DMC RxPDO-Par Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1460:0	DMC RxPDO-Par Outputs Ch.1	PDO Parameter RxPDO 97	UINT8	RO	0x06 (6 _{dez}))
1460:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 97 übertragen werden dürfen	OCTET- STRING[2]	RO	61 16

Index 1461 DMC RxPDO-Par Outputs 32 Bit Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1461:0	DMC RxPDO-Par Outputs 32 Bit Ch.1	PDO Parameter RxPDO 98	UINT8	RO	0x06 (6 _{dez}))
1461:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 98 übertragen werden dürfen	OCTET- STRING[2]	RO	60 16

Index 14E0 DMC RxPDO-Par Outputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
14E0:0	DMC RxPDO-Par Outputs Ch.2	PDO Parameter RxPDO 225	UINT8	RO	0x06 (6 _{dez}))
14E0:06	Exclude RxPDOs		OCTET- STRING[2]	RO	E1 16

Index 14E1 DMC RxPDO-Par Outputs 32 Bit Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DMC RxPDO-Par Outputs 32 Bit Ch.2	PDO Parameter RxPDO 226	UINT8	RO	0x06 (6 _{dez}))
14E1:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 226 übertragen werden dürfen	OCTET- STRING[2]	RO	E0 16

Index 1600 DRV RxPDO-Map Controlword Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	DRV RxPDO-Map Controlword Ch.1	PDO Mapping RxPDO 1	UINT8	RO	0x01 (1 _{dez}))
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x01 (Controlword))	UINT32	RO	0x7010:01, 16

Index 1601 DRV RxPDO-Map Target velocity Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	DRV RxPDO-Map Target velocity Ch.1	PDO Mapping RxPDO 2	UINT8	RO	0x01 (1 _{dez}))
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x06 (Target velocity))	UINT32	RO	0x7010:06, 32

Index 1602 DRV RxPDO-Map Target torque Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	DRV RxPDO-Map Target torque Ch.1	PDO Mapping RxPDO 3	UINT8	RO	0x01 (1 _{dez}))
1602:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x09 (Target torque))	UINT32	RO	0x7010:09, 16

Index 1603 DRV RxPDO-Map Commutation angle Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1603:0	DRV RxPDO-Map Commutation angle Ch.1	PDO Mapping RxPDO 4	UINT8	RO	0x01 (1 _{dez}))
1603:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x0E (Commutation angle))	UINT32	RO	0x7010:0E, 16

Index 1604 DRV RxPDO-Map Torque limitation Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1604:0	DRV RxPDO-Map Torque limitation Ch.1	PDO Mapping RxPDO 5	UINT8	RO	0x01 (1 _{dez}))
1604:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x0B (Torque limitation))	UINT32	RO	0x7010:0B, 16

Index 1605 DRV RxPDO-Map Torque offset Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1605:0	DRV RxPDO-Map Torque offset Ch.1	PDO Mapping RxPDO 6	UINT8	RO	0x01 (1 _{dez}))
1605:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x0A (Torque offset))	UINT32	RO	0x7010:0A, 16

Index 1606 DRV RxPDO-Map Target position Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1606:0	DRV RxPDO-Map Target position Ch.1	PDO Mapping RxPDO 7	UINT8	RO	0x01 (1 _{dez}))
1606:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x05 (Target position))	UINT32	RO	0x7010:05, 32

Index 1607 FB RxPDO-Map Touch probe control Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1607:0	FB RxPDO-Map Touch probe control Ch.1	PDO Mapping RxPDO 8	UINT8	RO	0x0C (12 _{dez}))
1607:01	SubIndex 001	1. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x01 (TP1 Enable))	UINT32	RO	0x7001:01, 1
1607:02	SubIndex 002	2. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x02 (TP1 Continous))	UINT32	RO	0x7001:02, 1
1607:03	SubIndex 003	3. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x03 (TP1 Trigger mode))	UINT32	RO	0x7001:03, 2
1607:04	SubIndex 004	4. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x05 (TP1 Enable pos edge))	UINT32	RO	0x7001:05, 1
1607:05	SubIndex 005	5. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x06 (TP1 Enable neg edge))	UINT32	RO	0x7001:06, 1
1607:06	SubIndex 006	6. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1607:07	SubIndex 007	7. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x09 (TP2 Enable))	UINT32	RO	0x7001:09, 1
1607:08	SubIndex 008	8. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x0A (TP2 Continous))	UINT32	RO	0x7001:0A, 1
1607:09	SubIndex 009	9. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x0B (TP2 Trigger mode))	UINT32	RO	0x7001:0B, 2
1607:0A	SubIndex 010	10. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x0D (TP2 Enable pos edge))	UINT32	RO	0x7001:0D, 1
1607:0B	SubIndex 011	11. PDO Mapping entry (object 0x7001 (FB Touch probe outputs Ch.1), entry 0x0E (TP2 Enable neg edge))	UINT32	RO	0x7001:0E, 1
1607:0C	SubIndex 012	12. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2

Index 1608 DRV RxPDO-Map Modes of operation Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1608:0	DRV RxPDO-Map Modes of operation Ch.1	PDO Mapping RxPDO 9	UINT8	RO	0x01 (1 _{dez}))
1608:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x03 (Modes of operation))	UINT32	RO	0x7010:03, 8

Index 1609 DRV RxPDO-Map Velocity offset Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1609:0	DRV RxPDO-Map Velocity offset Ch.1	PDO Mapping RxPDO 10	UINT8	RO	0x01 (1 _{dez}))
1609:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x0F (Velocity offset))	UINT32	RO	0x7010:0F, 32

Index 160A DRV RxPDO-Map Positive torque limit value Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
160A:0	DRV RxPDO-Map Positive torque limit value Ch.1	PDO Mapping RxPDO 11	UINT8	RO	0x01 (1 _{dez}))
160A:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x10 (Positive torque limit value))	UINT32	RO	0x7010:10, 16

Index 160B DRV RxPDO-Map Negative torque limit value Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
160B:0	DRV RxPDO-Map Negative torque limit value Ch.1	PDO Mapping RxPDO 12	UINT8	RO	0x01 (1 _{dez}))
160B:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x11 (Negative torque limit value))	UINT32	RO	0x7010:11, 16

Index 160C DRV RxPDO-Map Low velocity limit value Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
160C:0	DRV RxPDO-Map Low velocity limit value Ch.1	PDO Mapping RxPDO 13	UINT8	RO	0x01 (1 _{dez}))
160C:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x12 (Low velocity limit value))	UINT32	RO	0x7010:12, 32

Index 160D DRV RxPDO-Map High velocity limit value Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
160D:0	DRV RxPDO-Map High velocity limit value Ch.1	PDO Mapping RxPDO 14	UINT8	RO	0x01 (1 _{dez}))
160D:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (DRV Outputs Ch.1), entry 0x13 (High velocity limit value))	UINT32	RO	0x7010:13, 32

Index 1660 DMC RxPDO-Map Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1660:0	DMC RxPDO-Map Outputs Ch.1	PDO Mapping RxPDO 97	UINT8	RO	0x12 (18 _{dez}))
1660:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1660:02	SubIndex 002	2. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x02 (DMC FeedbackControl Enable latch extern on positive edge))	UINT32	RO	0x7060:02, 1
1660:03	SubIndex 003	3. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x03 (DMCFeedbackControlSet counter))	UINT32	RO	0x7060:03, 1
1660:04	SubIndex 004	4. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x04 (DMCFeedbackControlEnable latch extern on negative edge))	UINT32	RO	0x7060:04, 1
1660:05	SubIndex 005	5. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
1660:06	SubIndex 006	6. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x11 (DMCDriveControlEnable))	UINT32	RO	0x7060:11, 1
1660:07	SubIndex 007	7. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x12 (DMCDriveControlReset))	UINT32	RO	0x7060:12, 1
1660:08	SubIndex 008	8. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1660:09	SubIndex 009	9. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x21 (DMC_PositioningControl_Execute))	UINT32	RO	0x7060:21, 1
1660:0A	SubIndex 010	10. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x22 (DMC_PositioningControl_Emergency stop))	UINT32	RO	0x7060:22, 1
1660:0B	SubIndex 011	11. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1660:0C	SubIndex 012	12. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x31 (DMC_Set counter value))	UINT32	RO	0x7060:31, 64
1660:0D	SubIndex 013	13. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x32 (DMCTarget position))	UINT32	RO	0x7060:32, 64
1660:0E	SubIndex 014	14. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x33 (DMCTarget velocity))	UINT32	RO	0x7060:33, 16
1660:0F	SubIndex 015	15. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x34 (DMCStart type))	UINT32	RO	0x7060:34, 16
1660:10	SubIndex 016	16. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x35 (DMCTarget acceleration))	UINT32	RO	0x7060:35, 16
1660:11	SubIndex 017	17. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x36 (DMCTarget deceleration))	UINT32	RO	0x7060:36, 16
1660:12	SubIndex 018	18. PDO Mapping entry (80 bits align)	UINT32	RO	0x0000:00, 80

Index 1661 DMC RxPDO-Map Outputs 32 Bit Ch.1

1661:01 1661:02 1661:03 1661:04 1661:05 1661:06	DMC RxPDO-Map Outputs 32 Bit Ch.1 SubIndex 001 SubIndex 002 SubIndex 003 SubIndex 004 SubIndex 005 SubIndex 006 SubIndex 007	PDO Mapping RxPDO 98 1. PDO Mapping entry (1 bits align) 2. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x02 (DMC _FeedbackControl_Enable latch extern on positive edge)) 3. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x03 (DMC _FeedbackControl_Set counter)) 4. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x04 (DMC _FeedbackControl_Enable latch extern on negative edge)) 5. PDO Mapping entry (12 bits align) 6. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x11 (DMCDriveControl_Enable))	UINT32 UINT32 UINT32 UINT32 UINT32 UINT32 UINT32	RO RO RO RO	0x14 (20 _{dez})) 0x0000:00, 1 0x7060:02, 1 0x7060:03, 1
1661:02 1661:03 1661:04 1661:05 1661:06	SubIndex 002 SubIndex 003 SubIndex 004 SubIndex 005 SubIndex 006	2. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x02 (DMC_FeedbackControl_Enable latch extern on positive edge)) 3. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x03 (DMC_FeedbackControl_Set counter)) 4. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x04 (DMC_FeedbackControl_Enable latch extern on negative edge)) 5. PDO Mapping entry (12 bits align) 6. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1) align)	UINT32 UINT32 UINT32 UINT32	RO RO	0x7060:02, 1 0x7060:03, 1 0x7060:04, 1
1661:03 1661:04 1661:05 1661:06	SubIndex 003 SubIndex 004 SubIndex 005 SubIndex 006	Ch.1), entry 0x02 (DMCFeedbackControlEnable latch extern on positive edge)) 3. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x03 (DMCFeedbackControlSet counter)) 4. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x04 (DMCFeedbackControlEnable latch extern on negative edge)) 5. PDO Mapping entry (12 bits align) 6. PDO Mapping entry (object 0x7060 (DMC Outputs	UINT32 UINT32 UINT32	RO	0x7060:03, 1 0x7060:04, 1
1661:04 1661:05 1661:06	SubIndex 004 SubIndex 005 SubIndex 006	Ch.1), entry 0x03 (DMCFeedbackControlSet counter)) 4. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x04 (DMCFeedbackControlEnable latch extern on negative edge)) 5. PDO Mapping entry (12 bits align) 6. PDO Mapping entry (object 0x7060 (DMC Outputs	UINT32 UINT32	RO	0x7060:04, 1
1661:05 1661:06	SubIndex 005 SubIndex 006	Ch.1), entry 0x04 (DMCFeedbackControlEnable latch extern on negative edge)) 5. PDO Mapping entry (12 bits align) 6. PDO Mapping entry (object 0x7060 (DMC Outputs	UINT32		,
1661:06	SubIndex 006	6. PDO Mapping entry (object 0x7060 (DMC Outputs		RO	0,0000.00 40
			LIMITOO		0x0000:00, 12
4004.07	SubIndex 007	[Sill 1), Sill y Ox 11 (DividDiriveColliloiLilable))	OINTOL	RO	0x7060:11, 1
1661:07		7. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x12 (DMCDriveControlReset))	UINT32	RO	0x7060:12, 1
1661:08	SubIndex 008	8. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1661:09	SubIndex 009	9. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x21 (DMCPositioningControlExecute))	UINT32	RO	0x7060:21, 1
1661:0A	SubIndex 010	10. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x22 (DMC_PositioningControl_Emergency stop))	UINT32	RO	0x7060:22, 1
1661:0B	SubIndex 011	11. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
1661:0C	SubIndex 012	12. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x31 (DMC_Set counter value))	UINT32	RO	0x7060:31, 32
1661:0D	SubIndex 013	13. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1661:0E	SubIndex 014	14. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x32 (DMCTarget position))	UINT32	RO	0x7060:32, 32
1661:0F	SubIndex 015	15. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1661:10	SubIndex 016	16. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x33 (DMCTarget velocity))	UINT32	RO	0x7060:33, 16
1661:11	SubIndex 017	17. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x34 (DMCStart type))	UINT32	RO	0x7060:34, 16
1661:12	SubIndex 018	18. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x35 (DMCTarget acceleration))	UINT32	RO	0x7060:35, 16
1661:13	SubIndex 019	19. PDO Mapping entry (object 0x7060 (DMC Outputs Ch.1), entry 0x36 (DMCTarget deceleration))	UINT32	RO	0x7060:36, 16
1661:14	SubIndex 020	20. PDO Mapping entry (80 bits align)	UINT32	RO	0x0000:00, 80

Index 1680 DRV RxPDO-Map Controlword Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1680:0	DRV RxPDO-Map Controlword Ch.2	PDO Mapping RxPDO 129	UINT8	RO	0x01 (1 _{dez}))
1680:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x01 (Controlword))	UINT32	RO	0x7110:01, 16

Index 1681 DRV RxPDO-Map Target velocity Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1681:0	DRV RxPDO-Map Target velocity Ch.2	PDO Mapping RxPDO 130	UINT8	RO	0x01 (1 _{dez}))
1681:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x06 (Target velocity))	UINT32	RO	0x7110:06, 32

Index 1682 DRV RxPDO-Map Target torque Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DRV RxPDO-Map Target torque Ch.2	PDO Mapping RxPDO 131	UINT8	RO	0x01 (1 _{dez}))
1682:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x09 (Target torque))	UINT32	RO	0x7110:09, 16

Index 1683 DRV RxPDO-Map Commutation angle Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1683:0	DRV RxPDO-Map Commutation angle Ch.2	PDO Mapping RxPDO 132	UINT8	RO	0x01 (1 _{dez}))
1683:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x0E (Commutation angle))	UINT32	RO	0x7110:0E, 16

Index 1684 DRV RxPDO-Map Torque limitation Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	DRV RxPDO-Map Torque limitation Ch.2	PDO Mapping RxPDO 133	UINT8	RO	0x01 (1 _{dez}))
1684:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x0B (Torque limitation))	UINT32	RO	0x7110:0B, 16

Index 1685 DRV RxPDO-Map Torque offset Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1685:0	DRV RxPDO-Map Torque offset Ch.2	PDO Mapping RxPDO 134	UINT8	RO	0x01 (1 _{dez}))
1685:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x0A (Torque offset))	UINT32	RO	0x7110:0A, 16

Index 1686 DRV RxPDO-Map Target position Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1686:0	DRV RxPDO-Map Target position Ch.2	PDO Mapping RxPDO 135	UINT8	RO	0x01 (1 _{dez}))
1686:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x05 (Target position))	UINT32	RO	0x7110:05, 32

Index 1687 FB RxPDO-Map Touch probe control Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1687:0	FB RxPDO-Map Touch probe control Ch.2	PDO Mapping RxPDO 136	UINT8	RO	0x0C (12 _{dez}))
1687:01	SubIndex 001	1. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x01 (TP1 Enable))	UINT32	RO	0x7101:01, 1
1687:02	SubIndex 002	2. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x02 (TP1 Continous))	UINT32	RO	0x7101:02, 1
1687:03	SubIndex 003	3. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x03 (TP1 Trigger mode))	UINT32	RO	0x7101:03, 2
1687:04	SubIndex 004	4. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x05 (TP1 Enable pos edge))	UINT32	RO	0x7101:05, 1
1687:05	SubIndex 005	5. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x06 (TP1 Enable neg edge))	UINT32	RO	0x7101:06, 1
1687:06	SubIndex 006	6. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1687:07	SubIndex 007	7. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x09 (TP2 Enable))	UINT32	RO	0x7101:09, 1
1687:08	SubIndex 008	8. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x0A (TP2 Continous))	UINT32	RO	0x7101:0A, 1
1687:09	SubIndex 009	9. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x0B (TP2 Trigger mode))	UINT32	RO	0x7101:0B, 2
1687:0A	SubIndex 010	10. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x0D (TP2 Enable pos edge))	UINT32	RO	0x7101:0D, 1
1687:0B	SubIndex 011	11. PDO Mapping entry (object 0x7101 (FB Touch probe outputs Ch.2), entry 0x0E (TP2 Enable neg edge))	UINT32	RO	0x7101:0E, 1
1687:0C	SubIndex 012	12. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2

Index 1688 DRV RxPDO-Map Modes of operation Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1688:0	DRV RxPDO-Map Modes of operation Ch.2	PDO Mapping RxPDO 137	UINT8	RO	0x01 (1 _{dez}))
1688:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x03 (Modes of operation))	UINT32	RO	0x7110:03, 8

Index 1689 DRV RxPDO-Map Velocity offset Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1689:0	DRV RxPDO-Map Velocity offset Ch.2	PDO Mapping RxPDO 138	UINT8	RO	0x01 (1 _{dez}))
1689:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x0F (Velocity offset))	UINT32	RO	0x7110:0F, 32

Index 168A DRV RxPDO-Map Positive torque limit value Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	DRV RxPDO-Map Positive torque limit value Ch.2	PDO Mapping RxPDO 139	UINT8	RO	0x01 (1 _{dez}))
168A:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x10 (Positive torque limit value))	UINT32	RO	0x7110:10, 16

Index 168B DRV RxPDO-Map Negative torque limit value Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	DRV RxPDO-Map Negative torque limit value Ch.2	PDO Mapping RxPDO 140	UINT8	RO	0x01 (1 _{dez}))
168B:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x11 (Negative torque limit value))	UINT32	RO	0x7110:11, 16

Index 168C DRV RxPDO-Map Low velocity limit value Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
168C:0	DRV RxPDO-Map Low velocity limit value Ch.2	PDO Mapping RxPDO 141	UINT8	RO	0x01 (1 _{dez}))
168C:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x12 (Low velocity limit value))	UINT32	RO	0x7110:12, 32

Index 168D DRV RxPDO-Map High velocity limit value Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
168D:0	DRV RxPDO-Map High velocity limit value Ch.2	PDO Mapping RxPDO 142	UINT8	RO	0x01 (1 _{dez}))
168D:01	SubIndex 001	1. PDO Mapping entry (object 0x7110 (DRV Outputs Ch.2), entry 0x13 (High velocity limit value))	UINT32	RO	0x7110:13, 32

Index 16E0 DMC RxPDO-Map Outputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
16E0:0	DMC RxPDO-Map Outputs Ch.2	PDO Mapping RxPDO 225	UINT8	RO	0x12 (18 _{dez}))
16E0:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
16E0:02	SubIndex 002	2. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x02 (DMCFeedbackControlEnable latch extern on positive edge))	UINT32	RO	0x7160:02, 1
16E0:03	SubIndex 003	3. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x03 (DMCFeedbackControlSet counter))	UINT32	RO	0x7160:03, 1
16E0:04	SubIndex 004	4. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x04 (DMCFeedbackControlEnable latch extern on negative edge))	UINT32	RO	0x7160:04, 1
16E0:05	SubIndex 005	5. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
16E0:06	SubIndex 006	6. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x11 (DMCDriveControlEnable))	UINT32	RO	0x7160:11, 1
16E0:07	SubIndex 007	7. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x12 (DMCDriveControlReset))	UINT32	RO	0x7160:12, 1
16E0:08	SubIndex 008	8. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
16E0:09	SubIndex 009	9. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x21 (DMCPositioningControlExecute))	UINT32	RO	0x7160:21, 1
16E0:0A	SubIndex 010	10. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x22 (DMCPositioningControlEmergency stop))	UINT32	RO	0x7160:22, 1
16E0:0B	SubIndex 011	11. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
16E0:0C	SubIndex 012	12. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x31 (DMC_Set counter value))	UINT32	RO	0x7160:31, 64
16E0:0D	SubIndex 013	13. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x32 (DMCTarget position))	UINT32	RO	0x7160:32, 64
16E0:0E	SubIndex 014	14. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x33 (DMCTarget velocity))	UINT32	RO	0x7160:33, 16
16E0:0F	SubIndex 015	15. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x34 (DMC_Start type))	UINT32	RO	0x7160:34, 16
16E0:10	SubIndex 016	16. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x35 (DMCTarget acceleration))	UINT32	RO	0x7160:35, 16
16E0:11	SubIndex 017	17. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x36 (DMCTarget deceleration))	UINT32	RO	0x7160:36, 16
16E0:12	SubIndex 018	18. PDO Mapping entry (80 bits align)	UINT32	RO	0x0000:00, 80

Index 16E1 DMC RxPDO-Map Outputs 32 Bit Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
16E1:0	DMC RxPDO-Map Outputs 32 Bit Ch.2	PDO Mapping RxPDO 226	UINT8	RO	0x14 (20 _{dez}))
16E1:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
16E1:02	SubIndex 002	2. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x02 (DMCFeedbackControlEnable latch extern on positive edge))	UINT32	RO	0x7160:02, 1
16E1:03	SubIndex 003	3. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x03 (DMCFeedbackControlSet counter))	UINT32	RO	0x7160:03, 1
16E1:04	SubIndex 004	4. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x04 (DMCFeedbackControlEnable latch extern on negative edge))	UINT32	RO	0x7160:04, 1
16E1:05	SubIndex 005	5. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
16E1:06	SubIndex 006	6. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x11 (DMCDriveControlEnable))	UINT32	RO	0x7160:11, 1
16E1:07	SubIndex 007	7. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x12 (DMCDriveControlReset))	UINT32	RO	0x7160:12, 1
16E1:08	SubIndex 008	8. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
16E1:09	SubIndex 009	9. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x21 (DMCPositioningControlExecute))	UINT32	RO	0x7160:21, 1
16E1:0A	SubIndex 010	10. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x22 (DMC_PositioningControl_Emergency stop))	UINT32	RO	0x7160:22, 1
16E1:0B	SubIndex 011	11. PDO Mapping entry (14 bits align)	UINT32	RO	0x0000:00, 14
16E1:0C	SubIndex 012	12. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x31 (DMC_Set counter value))	UINT32	RO	0x7160:31, 32
16E1:0D	SubIndex 013	13. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
16E1:0E	SubIndex 014	14. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x32 (DMCTarget position))	UINT32	RO	0x7160:32, 32
16E1:0F	SubIndex 015	15. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
16E1:10	SubIndex 016	16. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x33 (DMCTarget velocity))	UINT32	RO	0x7160:33, 16
16E1:11	SubIndex 017	17. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x34 (DMCStart type))	UINT32	RO	0x7160:34, 16
16E1:12	SubIndex 018	18. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x35 (DMCTarget acceleration))	UINT32	RO	0x7160:35, 16
16E1:13	SubIndex 019	19. PDO Mapping entry (object 0x7160 (DMC Outputs Ch.2), entry 0x36 (DMCTarget deceleration))	UINT32	RO	0x7160:36, 16
16E1:14	SubIndex 020	20. PDO Mapping entry (80 bits align)	UINT32	RO	0x0000:00, 80

Index 1860 DMC TxPDO-Par Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1860:0	DMC TxPDO-Par Inputs Ch.1	PDO Parameter TxPDO 97	UINT8	RO	0x06 (6 _{dez}))
1860:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 97 übertragen werden dürfen	OCTET- STRING[2]	RO	61 1A

Index 1861 DMC TxPDO-Par Inputs 32 Bit Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1861:0	DMC TxPDO-Par Inputs 32 Bit Ch.1	PDO Parameter TxPDO 98	UINT8	RO	0x06 (6 _{dez}))
1861:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 98 übertragen werden dürfen	OCTET- STRING[2]	RO	60 1A

Index 18E0 DMC TxPDO-Par Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
18E0:0	DMC TxPDO-Par Inputs Ch.2	PDO Parameter TxPDO 225	UINT8	RO	0x06 (6 _{dez}))
18E0:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 225 übertragen werden dürfen	OCTET- STRING[2]	RO	E1 1A

Index 18E1 DMC TxPDO-Par Inputs 32 Bit Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
18E1:0	DMC TxPDO-Par Inputs 32 Bit Ch.2	PDO Parameter TxPDO 226	UINT8	RO	0x06 (6 _{dez}))
18E1:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 226 übertragen werden dürfen	OCTET- STRING[2]	RO	E0 1A

Index 1A00 FB TxPDO-Map Position Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	FB TxPDO-Map Position Ch.1	PDO Mapping TxPDO 1	UINT8	RO	0x01 (1 _{dez}))
1A00:01		1. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x11 (Position))	UINT32	RO	0x6000:11, 32

Index 1A01 DRV TxPDO-Map Statusword Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	DRV TxPDO-Map Statusword Ch.1	PDO Mapping TxPDO 2	UINT8	RO	0x01 (1 _{dez}))
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x01 (Statusword))	UINT32	RO	0x6010:01, 16

Index 1A02 DRV TxPDO-Map Velocity actual value Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	DRV TxPDO-Map Velocity actual value Ch.1	PDO Mapping TxPDO 3	UINT8	RO	0x01 (1 _{dez}))
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x07 (Velocity actual value))	UINT32	RO	0x6010:07, 32

Index 1A03 DRV TxPDO-Map Torque actual value Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DRV TxPDO-Map Torque actual value Ch.1	PDO Mapping TxPDO 4	UINT8	RO	0x01 (1 _{dez}))
1A03:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x08 (Torque actual value))	UINT32	RO	0x6010:08, 16

Index 1A04 DRV TxPDO-Map Info data 1 Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	DRV TxPDO-Map Info data 1 Ch.1	PDO Mapping TxPDO 5	UINT8	RW	0x01 (1 _{dez}))
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x12 (Info data 1))	UINT32	RW	0x6010:12, 16
1A04:02	SubIndex 002	2. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:03	SubIndex 003	3. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:04	SubIndex 004	4. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:05	SubIndex 005	5. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:06	SubIndex 006	6. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:07	SubIndex 007	7. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:08	SubIndex 008	8. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:09	SubIndex 009	9. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:0A	SubIndex 010	10. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:0B	SubIndex 011	11. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:0C	SubIndex 012	12. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:0D	SubIndex 013	13. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:0E	SubIndex 014	14. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:0F	SubIndex 015	15. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A04:10	SubIndex 016	16. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0

Index 1A05 DRV TxPDO-Map Info data 2 Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	DRV TxPDO-Map Info data 2 Ch.1	PDO Mapping TxPDO 6	UINT8	RW	0x01 (1 _{dez}))
1A05:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x13 (Info data 2))	UINT32	RW	0x6010:13, 16
1A05:02	SubIndex 002	2. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:03	SubIndex 003	3. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:04	SubIndex 004	4. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:05	SubIndex 005	5. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:06	SubIndex 006	6. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:07	SubIndex 007	7. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:08	SubIndex 008	8. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:09	SubIndex 009	9. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:0A	SubIndex 010	10. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:0B	SubIndex 011	11. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:0C	SubIndex 012	12. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:0D	SubIndex 013	13. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:0E	SubIndex 014	14. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:0F	SubIndex 015	15. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A05:10	SubIndex 016	16. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0

Index 1A06 DRV TxPDO-Map Following error actual value Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DRV TxPDO-Map Following error actual value Ch.1	PDO Mapping TxPDO 7	UINT8	RO	0x01 (1 _{dez}))
1A06:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x06 (Following error actual value))	UINT32	RO	0x6010:06, 32

Index 1A07 FB TxPDO-Map Touch probe status Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A07:0	FB TxPDO-Map Touch probe status Ch.1	PDO Mapping TxPDO 8	UINT8	RO	0x0A (10 _{dez}))
1A07:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x01 (TP1 Enable))	UINT32	RO	0x6001:01, 1
1A07:02	SubIndex 002	2. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x02 (TP1 Pos value stored))	UINT32	RO	0x6001:02, 1
1A07:03	SubIndex 003	3. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x03 (TP1 Neg value stored))	UINT32	RO	0x6001:03, 1
1A07:04	SubIndex 004	4. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A07:05	SubIndex 005	5. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x08 (TP1 Input))	UINT32	RO	0x6001:08, 1
1A07:06	SubIndex 006	6. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x09 (TP2 Enable))	UINT32	RO	0x6001:09, 1
1A07:07	SubIndex 007	7. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x0A (TP2 Pos value stored))	UINT32	RO	0x6001:0A, 1
1A07:08	SubIndex 008	8. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x0B (TP2 Neg value stored))	UINT32	RO	0x6001:0B, 1
1A07:09	SubIndex 009	9. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A07:0A	SubIndex 010	10. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x10 (TP2 Input))	UINT32	RO	0x6001:10, 1

Index 1A08 FB TxPDO-Map Touch probe 1 pos position Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A08:0	FB TxPDO-Map Touch probe 1 pos position Ch.1	PDO Mapping TxPDO 9	UINT8	RO	0x01 (1 _{dez}))
1A08:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x11 (TP1 Pos position))	UINT32	RO	0x6001:11, 32

Index 1A09 FB TxPDO-Map Touch probe 1 neg position Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A09:0	FB TxPDO-Map Touch probe 1 neg position Ch.1	PDO Mapping TxPDO 10	UINT8	RO	0x01 (1 _{dez}))
1A09:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x12 (TP1 Neg position))	UINT32	RO	0x6001:12, 32

Index 1A0A FB TxPDO-Map Touch probe 2 pos position Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0A:0	FB TxPDO-Map Touch probe 2 pos position Ch.1	PDO Mapping TxPDO 11	UINT8	RO	0x01 (1 _{dez}))
1A0A:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x13 (TP2 Pos position))	UINT32	RO	0x6001:13, 32

Index 1A0B FB TxPDO-Map Touch probe 2 neg position Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0B:0	FB TxPDO-Map Touch probe 2 neg position Ch.1	PDO Mapping TxPDO 12	UINT8	RO	0x01 (1 _{dez}))
1A0B:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x14 (TP2 Neg position))	UINT32	RO	0x6001:14, 32

Index 1A0D DRV TxPDO-Map Info data 3 Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0D:0	DRV TxPDO-Map Info data 3 Ch.1	PDO Mapping TxPDO 14	UINT8	RW	0x01 (1 _{dez}))
1A0D:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x14 (Info data 3))	UINT32	RW	0x6010:14, 16
1A0D:02	SubIndex 002	2. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:03	SubIndex 003	3. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:04	SubIndex 004	4. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:05	SubIndex 005	5. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:06	SubIndex 006	6. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:07	SubIndex 007	7. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:08	SubIndex 008	8. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:09	SubIndex 009	9. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:0A	SubIndex 010	10. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:0B	SubIndex 011	11. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:0C	SubIndex 012	12. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:0D	SubIndex 013	13. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:0E	SubIndex 014	14. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:0F	SubIndex 015	15. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A0D:10	SubIndex 016	16. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0

Index 1A0E DRV TxPDO-Map Modes of operation display Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
II.	DRV TxPDO-Map Modes of operation display Ch.1	PDO Mapping TxPDO 15	UINT8	RO	0x01 (1 _{dez}))
1A0E:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x03 (Modes of operation display))	UINT32	RO	0x6010:03, 8

Index 1A0F DRV TxPDO-Map Torque limitation status Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	DRV TxPDO-Map Torque limitation status Ch.1	PDO Mapping TxPDO 16	UINT8	RO	0x01 (1 _{dez}))
1A0F:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (DRV Inputs Ch.1), entry 0x15 (Torque limitation status))	UINT32	RO	0x6010:15, 8

Index 1A10 DI TxPDO-Map Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A10:0	DI TxPDO-Map Inputs Ch.1	PDO Mapping TxPDO 17	UINT8	RO	0x07 (7 _{dez}))
1A10:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (DI Inputs Ch.1), entry 0x01 (Input 1))	UINT32	RO	0x6020:01, 1
1A10:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (DI Inputs Ch.1), entry 0x02 (Input 2))	UINT32	RO	0x6020:02, 1
1A10:03	SubIndex 003	3. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A10:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (DI Inputs Ch.1), entry 0x05 (Encoder A))	UINT32	RO	0x6020:05, 1
1A10:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (DI Inputs Ch.1), entry 0x06 (Encoder B))	UINT32	RO	0x6020:06, 1
1A10:06	SubIndex 006	6. PDO Mapping entry (object 0x6020 (DI Inputs Ch.1), entry 0x07 (Encoder C))	UINT32	RO	0x6020:07, 1
1A10:07	SubIndex 007	7. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9

Index 1A11 FB TxPDO-Map Touch probe 1 pos timestamp Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A11:0	FB TxPDO-Map Touch probe 1 pos timestamp Ch.1	PDO Mapping TxPDO 18	UINT8	RO	0x01 (1 _{dez}))
1A11:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x15 (TP1 Pos timestamp))	UINT32	RO	0x6001:15, 32

Index 1A12 FB TxPDO-Map Touch probe 1 neg timestamp Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A12:0	FB TxPDO-Map Touch probe 1 neg timestamp Ch.1	PDO Mapping TxPDO 19	UINT8	RO	0x01 (1 _{dez}))
1A12:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x16 (TP1 Neg timestamp))	UINT32	RO	0x6001:16, 32

Index 1A13 FB TxPDO-Map Touch probe 2 pos timestamp Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A13:0	FB TxPDO-Map Touch probe 2 pos timestamp Ch.1	PDO Mapping TxPDO 20	UINT8	RO	0x01 (1 _{dez}))
1A13:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x17 (TP2 Pos timestamp))	UINT32	RO	0x6001:17, 32

Index 1A14 FB TxPDO-Map Touch probe 2 neg timestamp Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A14:0	FB TxPDO-Map Touch probe 2 neg timestamp Ch.1	PDO Mapping TxPDO 21	UINT8	RO	0x01 (1 _{dez}))
1A14:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (FB Touch probe inputs Ch.1), entry 0x18 (TP2 Neg timestamp))	UINT32	RO	0x6001:18, 32

Index 1A15 FB TxPDO-Map Secondary Position Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A15:0	FB TxPDO-Map Secondary Position Ch.1	PDO Mapping TxPDO 22	UINT8	RO	0x01 (1 _{dez}))
1A15:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x15 (Secondary position))	UINT32	RO	0x6000:15, 32

Index 1A60 DMC TxPDO-Map Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A60:0	DMC TxPDO-Map Inputs Ch.1	PDO Mapping TxPDO 97	UINT8	RO	0x26 (38 _{dez}))
1A60:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A60:02	SubIndex 002	2. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x02 (DMCFeedbackStatusLatch extern valid))	UINT32	RO	0x6060:02, 1
1A60:03	SubIndex 003	3. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x03 (DMCFeedbackStatusSet counter done))	UINT32	RO	0x6060:03, 1
1A60:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9
1A60:05	SubIndex 005	5. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x0D (DMCFeedbackStatusStatus of extern latch))	UINT32	RO	0x6060:0D, 1
1A60:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A60:07	SubIndex 007	7. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x11 (DMCDriveStatusReady to enable))	UINT32	RO	0x6060:11, 1
1A60:08	SubIndex 008	8. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x12 (DMCDriveStatusReady))	UINT32	RO	0x6060:12, 1
1A60:09	SubIndex 009	9. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x13 (DMCDriveStatusWarning))	UINT32	RO	0x6060:13, 1
1A60:0A	SubIndex 010	10. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x14 (DMCDriveStatusError))	UINT32	RO	0x6060:14, 1
1A60:0B	SubIndex 011	11. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x15 (DMCDriveStatusMoving positive))	UINT32	RO	0x6060:15, 1
1A60:0C	SubIndex 012	12. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x16 (DMCDriveStatusMoving negative))	UINT32	RO	0x6060:16, 1
1A60:0D	SubIndex 013	13. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A60:0E	SubIndex 014	14. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x1C (DMCDriveStatusDigital input 1))	UINT32	RO	0x6060:1C, 1
1A60:0F	SubIndex 015	15. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x1D (DMCDriveStatusDigital input 2))	UINT32	RO	0x6060:1D, 1
1A60:10	SubIndex 016	16. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A60:11	SubIndex 017	17. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x21 (DMCPositioningStatusBusy))	UINT32	RO	0x6060:21, 1
1A60:12	SubIndex 018	18. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x22 (DMCPositioningStatusIn-Target))	UINT32	RO	0x6060:22, 1
1A60:13	SubIndex 019	19. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x23 (DMCPositioningStatusWarning))	UINT32	RO	0x6060:23, 1
1A60:14	SubIndex 020	20. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x24 (DMCPositioningStatusError))	UINT32	RO	0x6060:24, 1
1A60:15	SubIndex 021	21. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x25 (DMCPositioningStatusCalibrated))	UINT32	RO	0x6060:25, 1
1A60:16	SubIndex 022	22. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x26 (DMC_PositioningStatus_Accelerate))	UINT32	RO	0x6060:26, 1
1A60:17	SubIndex 023	23. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x27 (DMCPositioningStatusDecelerate))	UINT32	RO	0x6060:27, 1
1A60:18	SubIndex 024	24. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x28 (DMCPositioningStatusReady to execute))	UINT32	RO	0x6060:28, 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A60:19	SubIndex 025	25. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A60:1A	SubIndex 026	26. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x31 (DMC_Set position))	UINT32	RO	0x6060:31, 64
1A60:1B	SubIndex 027	27. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x32 (DMC_Set velocity))	UINT32	RO	0x6060:32, 16
1A60:1C	SubIndex 028	28. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x33 (DMCActual drive time))	UINT32	RO	0x6060:33, 32
1A60:1D	SubIndex 029	29. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x34 (DMCActual position lag))	UINT32	RO	0x6060:34, 64
1A60:1E	SubIndex 030	30. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x35 (DMC_Actual velocity))	UINT32	RO	0x6060:35, 16
1A60:1F	SubIndex 031	31. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x36 (DMC_Actual position))	UINT32	RO	0x6060:36, 64
1A60:20	SubIndex 032	32. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x37 (DMC_Error id))	UINT32	RO	0x6060:37, 32
1A60:21	SubIndex 033	33. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x38 (DMC_Input cycle counter))	UINT32	RO	0x6060:38, 8
1A60:22	SubIndex 034	34. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x39 (DMC_Channel id))	UINT32	RO	0x6060:39, 8
1A60:23	SubIndex 035	35. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x3A (DMC_Latch value))	UINT32	RO	0x6060:3A, 64
1A60:24	SubIndex 036	36. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x3B (DMCCyclic info data 1))	UINT32	RO	0x6060:3B, 16
1A60:25	SubIndex 037	37. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x3C (DMC_Cyclic info data 2))	UINT32	RO	0x6060:3C, 16
1A60:26	SubIndex 038	38. PDO Mapping entry (64 bits align)	UINT32	RO	0x0000:00, 64

Index 1A61 DMC TxPDO-Map Inputs 32 Bit Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A61:0	DMC TxPDO-Map Inputs 32 Bit Ch.1	PDO Mapping TxPDO 98	UINT8	RO	0x2A (42 _{dez}))
1A61:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1A61:02	SubIndex 002	PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x02 (DMCFeedbackStatusLatch extern valid))	UINT32	RO	0x6060:02, 1
1A61:03	SubIndex 003	3. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x03 (DMCFeedbackStatusSet counter done))	UINT32	RO	0x6060:03, 1
1A61:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9
1A61:05	SubIndex 005	5. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x0D (DMCFeedbackStatusStatus of extern latch))	UINT32	RO	0x6060:0D, 1
1A61:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A61:07	SubIndex 007	7. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x11 (DMCDriveStatusReady to enable))	UINT32	RO	0x6060:11, 1
1A61:08	SubIndex 008	8. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x12 (DMCDriveStatusReady))	UINT32	RO	0x6060:12, 1
1A61:09	SubIndex 009	9. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x13 (DMCDriveStatusWarning))	UINT32	RO	0x6060:13, 1
1A61:0A	SubIndex 010	10. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x14 (DMCDriveStatusError))	UINT32	RO	0x6060:14, 1
1A61:0B	SubIndex 011	11. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x15 (DMCDriveStatusMoving positive))	UINT32	RO	0x6060:15, 1
1A61:0C	SubIndex 012	12. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x16 (DMCDriveStatusMoving negative))	UINT32	RO	0x6060:16, 1
1A61:0D	SubIndex 013	13. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A61:0E	SubIndex 014	14. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x1C (DMCDriveStatusDigital input 1))	UINT32	RO	0x6060:1C, 1
1A61:0F	SubIndex 015	15. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x1D (DMCDriveStatusDigital input 2))	UINT32	RO	0x6060:1D, 1
1A61:10	SubIndex 016	16. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A61:11	SubIndex 017	17. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x21 (DMC_PositioningStatus_Busy))	UINT32	RO	0x6060:21, 1
1A61:12	SubIndex 018	18. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x22 (DMCPositioningStatusIn-Target))	UINT32	RO	0x6060:22, 1
1A61:13	SubIndex 019	19. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x23 (DMCPositioningStatusWarning))	UINT32	RO	0x6060:23, 1
1A61:14	SubIndex 020	20. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x24 (DMC PositioningStatus Error))	UINT32	RO	0x6060:24, 1
1A61:15	SubIndex 021	21. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x25 (DMCPositioningStatusCalibrated))	UINT32	RO	0x6060:25, 1
1A61:16	SubIndex 022	22. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x26 (DMCPositioningStatusAccelerate))	UINT32	RO	0x6060:26, 1
1A61:17	SubIndex 023	23. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x27 (DMCPositioningStatusDecelerate))	UINT32	RO	0x6060:27, 1
1A61:18	SubIndex 024	24. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x28 (DMCPositioningStatusReady to execute))	UINT32	RO	0x6060:28, 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A61:19	SubIndex 025	25. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A61:1A	SubIndex 026	26. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x31 (DMC_Set position))	UINT32	RO	0x6060:31, 32
1A61:1B	SubIndex 027	27. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A61:1C	SubIndex 028	28. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x32 (DMC_Set velocity))	UINT32	RO	0x6060:32, 16
1A61:1D	SubIndex 029	29. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x33 (DMC_Actual drive time))	UINT32	RO	0x6060:33, 32
1A61:1E	SubIndex 030	30. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x34 (DMC_Actual position lag))	UINT32	RO	0x6060:34, 32
1A61:1F	SubIndex 031	31. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A61:20	SubIndex 032	32. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x35 (DMCActual velocity))	UINT32	RO	0x6060:35, 16
1A61:21	SubIndex 033	33. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x36 (DMC_Actual position))	UINT32	RO	0x6060:36, 32
1A61:22	SubIndex 034	34. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A61:23	SubIndex 035	35. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x37 (DMC_Error id))	UINT32	RO	0x6060:37, 32
1A61:24	SubIndex 036	36. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x38 (DMC_Input cycle counter))	UINT32	RO	0x6060:38, 8
1A61:25	SubIndex 037	37. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x39 (DMC_Channel id))	UINT32	RO	0x6060:39, 8
1A61:26	SubIndex 038	38. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x3A (DMC_Latch value))	UINT32	RO	0x6060:3A, 32
1A61:27	SubIndex 039	39. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1A61:28	SubIndex 040	40. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x3B (DMC_Cyclic info data 1))	UINT32	RO	0x6060:3B, 16
1A61:29	SubIndex 041	41. PDO Mapping entry (object 0x6060 (DMC Inputs Ch.1), entry 0x3C (DMC_Cyclic info data 2))	UINT32	RO	0x6060:3C, 16
1A61:2A	SubIndex 042	42. PDO Mapping entry (64 bits align)	UINT32	RO	0x0000:00, 64

Index 1A80 FB TxPDO-Map Position Ch.2

- 1	Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	1A80:0	FB TxPDO-Map Position Ch.2	PDO Mapping TxPDO 129	UINT8	RO	0x01 (1 _{dez}))
	1A80:01		1. PDO Mapping entry (object 0x6100 (FB Inputs Ch.2), entry 0x11 (Position))	UINT32	RO	0x6100:11, 32

Index 1A81 DRV TxPDO-Map Statusword Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A81:0	DRV TxPDO-Map Statusword Ch.2	PDO Mapping TxPDO 130	UINT8	RO	0x01 (1 _{dez}))
1A81:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x01 (Statusword))	UINT32	RO	0x6110:01, 16

Index 1A82 DRV TxPDO-Map Velocity actual value Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	DRV TxPDO-Map Velocity actual value Ch.2	PDO Mapping TxPDO 131	UINT8	RO	0x01 (1 _{dez}))
1A82:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x07 (Velocity actual value))	UINT32	RO	0x6110:07, 32

Index 1A83 DRV TxPDO-Map Torque actual value Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A83:0	DRV TxPDO-Map Torque actual value Ch.2	PDO Mapping TxPDO 132	UINT8	RO	0x01 (1 _{dez}))
1A83:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x08 (Torque actual value))	UINT32	RO	0x6110:08, 16

Index 1A84 DRV TxPDO-Map Info data 1 Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A84:0	DRV TxPDO-Map Info data 1 Ch.2	PDO Mapping TxPDO 133	UINT8	RW	0x01 (1 _{dez}))
1A84:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x12 (Info data 1))	UINT32	RW	0x6110:12, 16
1A84:02	SubIndex 002	2. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:03	SubIndex 003	3. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:04	SubIndex 004	4. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:05	SubIndex 005	5. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:06	SubIndex 006	6. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:07	SubIndex 007	7. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:08	SubIndex 008	8. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:09	SubIndex 009	9. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:0A	SubIndex 010	10. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:0B	SubIndex 011	11. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:0C	SubIndex 012	12. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:0D	SubIndex 013	13. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:0E	SubIndex 014	14. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:0F	SubIndex 015	15. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A84:10	SubIndex 016	16. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0

Index 1A85 DRV TxPDO-Map Info data 2 Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A85:0	DRV TxPDO-Map Info data 2 Ch.2	PDO Mapping TxPDO 134	UINT8	RW	0x01 (1 _{dez}))
1A85:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x13 (Info data 2))	UINT32	RW	0x6110:13, 16
1A85:02	SubIndex 002	2. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:03	SubIndex 003	3. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:04	SubIndex 004	4. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:05	SubIndex 005	5. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:06	SubIndex 006	6. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:07	SubIndex 007	7. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:08	SubIndex 008	8. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:09	SubIndex 009	9. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:0A	SubIndex 010	10. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:0B	SubIndex 011	11. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:0C	SubIndex 012	12. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:0D	SubIndex 013	13. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:0E	SubIndex 014	14. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:0F	SubIndex 015	15. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A85:10	SubIndex 016	16. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0

Index 1A86 DRV TxPDO-Map Following error actual value Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	DRV TxPDO-Map Following error actual value Ch.2	PDO Mapping TxPDO 135	UINT8	RO	0x01 (1 _{dez}))
1A86:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x06 (Following error actual value))	UINT32	RO	0x6110:06, 32

Index 1A87 FB TxPDO-Map Touch probe status Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A87:0	FB TxPDO-Map Touch probe status Ch.2	PDO Mapping TxPDO 136	UINT8	RO	0x0A (10 _{dez}))
1A87:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x01 (TP1 Enable))	UINT32	RO	0x6101:01, 1
1A87:02	SubIndex 002	2. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x02 (TP1 Pos value stored))	UINT32	RO	0x6101:02, 1
1A87:03	SubIndex 003	3. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x03 (TP1 Neg value stored))	UINT32	RO	0x6101:03, 1
1A87:04	SubIndex 004	4. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A87:05	SubIndex 005	5. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x08 (TP1 Input))	UINT32	RO	0x6101:08, 1
1A87:06	SubIndex 006	6. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x09 (TP2 Enable))	UINT32	RO	0x6101:09, 1
1A87:07	SubIndex 007	7. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x0A (TP2 Pos value stored))	UINT32	RO	0x6101:0A, 1
1A87:08	SubIndex 008	8. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x0B (TP2 Neg value stored))	UINT32	RO	0x6101:0B, 1
1A87:09	SubIndex 009	9. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A87:0A	SubIndex 010	10. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x10 (TP2 Input))	UINT32	RO	0x6101:10, 1

Index 1A88 FB TxPDO-Map Touch probe 1 pos position Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A88:0	FB TxPDO-Map Touch probe 1 pos position Ch.2	PDO Mapping TxPDO 137	UINT8	RO	0x01 (1 _{dez}))
1A88:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x11 (TP1 Pos position))	UINT32	RO	0x6101:11, 32

Index 1A89 FB TxPDO-Map Touch probe 1 neg position Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A89:0	FB TxPDO-Map Touch probe 1 neg position Ch.2	PDO Mapping TxPDO 138	UINT8	RO	0x01 (1 _{dez}))
1A89:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x12 (TP1 Neg position))	UINT32	RO	0x6101:12, 32

Index 1A8A FB TxPDO-Map Touch probe 2 pos position Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	FB TxPDO-Map Touch probe 2 pos position Ch.2	PDO Mapping TxPDO 139	UINT8	RO	0x01 (1 _{dez}))
1A8A:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x13 (TP2 Pos position))	UINT32	RO	0x6101:13, 32

Index 1A8B FB TxPDO-Map Touch probe 2 neg position Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A8B:0	FB TxPDO-Map Touch probe 2 neg position Ch.2	PDO Mapping TxPDO 140	UINT8	RO	0x01 (1 _{dez}))
1A8B:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x14 (TP2 Neg position))	UINT32	RO	0x6101:14, 32

Index 1A8D DRV TxPDO-Map Info data 3 Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A8D:0	DRV TxPDO-Map Info data 3 Ch.2	PDO Mapping TxPDO 142	UINT8	RW	0x01 (1 _{dez}))
1A8D:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x14 (Info data 3))	UINT32	RW	0x6110:14, 16
1A8D:02	SubIndex 002	2. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:03	SubIndex 003	3. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:04	SubIndex 004	4. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:05	SubIndex 005	5. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:06	SubIndex 006	6. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:07	SubIndex 007	7. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:08	SubIndex 008	8. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:09	SubIndex 009	9. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:0A	SubIndex 010	10. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:0B	SubIndex 011	11. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:0C	SubIndex 012	12. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:0D	SubIndex 013	13. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:0E	SubIndex 014	14. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:0F	SubIndex 015	15. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0
1A8D:10	SubIndex 016	16. PDO Mapping entry (0 bits align)	UINT32	RW	0x0000:00, 0

Index 1A8E DRV TxPDO-Map Modes of operation display Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
II.	DRV TxPDO-Map Modes of operation display Ch.2	PDO Mapping TxPDO 143	UINT8	RO	0x01 (1 _{dez}))
1A8E:01	SubIndex 001	1. PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x03 (Modes of operation display))	UINT32	RO	0x6110:03, 8

Index 1A8F DRV TxPDO-Map Torque limitation status Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	DRV TxPDO-Map Torque limitation status Ch.2	PDO Mapping TxPDO 144	UINT8	RO	0x01 (1 _{dez}))
1A8F:01		PDO Mapping entry (object 0x6110 (DRV Inputs Ch.2), entry 0x15 (Torque limitation status))	UINT32	RO	0x6110:15, 8

Index 1A90 DI TxPDO-Map Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A90:0	DI TxPDO-Map Inputs Ch.2	PDO Mapping TxPDO 145	UINT8	RO	0x07 (7 _{dez}))
1A90:01	SubIndex 001	1. PDO Mapping entry (object 0x6120 (DI Inputs Ch.2), entry 0x01 (Input 1))	UINT32	RO	0x6120:01, 1
1A90:02	SubIndex 002	2. PDO Mapping entry (object 0x6120 (DI Inputs Ch.2), entry 0x02 (Input 2))	UINT32	RO	0x6120:02, 1
1A90:03	SubIndex 003	3. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A90:04	SubIndex 004	4. PDO Mapping entry (object 0x6120 (DI Inputs Ch.2), entry 0x05 (Encoder A))	UINT32	RO	0x6120:05, 1
1A90:05	SubIndex 005	5. PDO Mapping entry (object 0x6120 (DI Inputs Ch.2), entry 0x06 (Encoder B))	UINT32	RO	0x6120:06, 1
1A90:06	SubIndex 006	6. PDO Mapping entry (object 0x6120 (DI Inputs Ch.2), entry 0x07 (Encoder C))	UINT32	RO	0x6120:07, 1
1A90:07	SubIndex 007	7. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9

Index 1A91 FB TxPDO-Map Touch probe 1 pos timestamp Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A91:0	FB TxPDO-Map Touch probe 1 pos timestamp Ch.2	PDO Mapping TxPDO 146	UINT8	RO	0x01 (1 _{dez}))
1A91:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x15 (TP1 Pos timestamp))	UINT32	RO	0x6101:15, 32

Index 1A92 FB TxPDO-Map Touch probe 1 neg timestamp Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A92:0	FB TxPDO-Map Touch probe 1 neg timestamp Ch.2	PDO Mapping TxPDO 147	UINT8	RO	0x01 (1 _{dez}))
1A92:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x16 (TP1 Neg timestamp))	UINT32	RO	0x6101:16, 32

Index 1A93 FB TxPDO-Map Touch probe 2 pos timestamp Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A93:0	FB TxPDO-Map Touch probe 2 pos timestamp Ch.2	PDO Mapping TxPDO 148	UINT8	RO	0x01 (1 _{dez}))
1A93:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x17 (TP2 Pos timestamp))	UINT32	RO	0x6101:17, 32

Index 1A94 FB TxPDO-Map Touch probe 2 neg timestamp Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A94:0	FB TxPDO-Map Touch probe 2 neg timestamp Ch.2	PDO Mapping TxPDO 149	UINT8	RO	0x01 (1 _{dez}))
1A94:01	SubIndex 001	1. PDO Mapping entry (object 0x6101 (FB Touch probe inputs Ch.2), entry 0x18 (TP2 Neg timestamp))	UINT32	RO	0x6101:18, 32

Index 1A95 FB TxPDO-Map Secondary Position Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A95:0	FB TxPDO-Map Secondary Position Ch.2	PDO Mapping TxPDO 150	UINT8	RO	0x01 (1 _{dez}))
1A95:01	SubIndex 001	1. PDO Mapping entry (object 0x6100 (FB Inputs Ch.2), entry 0x15 (Secondary position))	UINT32	RO	0x6100:15, 32

Index 1AE0 DMC TxPDO-Map Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1AE0:0	DMC TxPDO-Map Inputs Ch.2	PDO Mapping TxPDO 225	UINT8	RO	0x26 (38 _{dez}))
1AE0:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1AE0:02	SubIndex 002	PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x02 (DMCFeedbackStatusLatch extern valid))	UINT32	RO	0x6160:02, 1
1AE0:03	SubIndex 003	PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x03 (DMCFeedbackStatusSet counter done))	UINT32	RO	0x6160:03, 1
1AE0:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9
1AE0:05	SubIndex 005	5. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x0D (DMCFeedbackStatusStatus of extern latch))	UINT32	RO	0x6160:0D, 1
1AE0:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1AE0:07	SubIndex 007	7. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x11 (DMCDriveStatusReady to enable))	UINT32	RO	0x6160:11, 1
1AE0:08	SubIndex 008	8. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x12 (DMCDriveStatusReady))	UINT32	RO	0x6160:12, 1
1AE0:09	SubIndex 009	9. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x13 (DMCDriveStatusWarning))	UINT32	RO	0x6160:13, 1
1AE0:0A	SubIndex 010	10. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x14 (DMCDriveStatusError))	UINT32	RO	0x6160:14, 1
1AE0:0B	SubIndex 011	11. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x15 (DMCDriveStatusMoving positive))	UINT32	RO	0x6160:15, 1
1AE0:0C	SubIndex 012	12. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x16 (DMCDriveStatusMoving negative))	UINT32	RO	0x6160:16, 1
1AE0:0D	SubIndex 013	13. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1AE0:0E	SubIndex 014	14. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x1C (DMCDriveStatusDigital input 1))	UINT32	RO	0x6160:1C, 1
1AE0:0F	SubIndex 015	15. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x1D (DMCDriveStatusDigital input 2))	UINT32	RO	0x6160:1D, 1
1AE0:10	SubIndex 016	16. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1AE0:11	SubIndex 017	17. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x21 (DMC_PositioningStatus_Busy))	UINT32	RO	0x6160:21, 1
1AE0:12	SubIndex 018	18. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x22 (DMCPositioningStatusIn-Target))	UINT32	RO	0x6160:22, 1
1AE0:13	SubIndex 019	19. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x23 (DMCPositioningStatusWarning))	UINT32	RO	0x6160:23, 1
1AE0:14	SubIndex 020	20. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x24 (DMC_PositioningStatus_Error))	UINT32	RO	0x6160:24, 1
1AE0:15	SubIndex 021	21. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x25 (DMCPositioningStatusCalibrated))	UINT32	RO	0x6160:25, 1
1AE0:16	SubIndex 022	22. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x26 (DMCPositioningStatusAccelerate))	UINT32	RO	0x6160:26, 1
1AE0:17	SubIndex 023	23. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x27 (DMC_PositioningStatus_Decelerate))	UINT32	RO	0x6160:27, 1
1AE0:18	SubIndex 024	24. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x28 (DMCPositioningStatusReady to execute))	UINT32	RO	0x6160:28, 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1AE0:19	SubIndex 025	25. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1AE0:1A	SubIndex 026	26. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x31 (DMC_Set position))	UINT32	RO	0x6160:31, 64
1AE0:1B	SubIndex 027	27. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x32 (DMC_Set velocity))	UINT32	RO	0x6160:32, 16
1AE0:1C	SubIndex 028	28. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x33 (DMC_Actual drive time))	UINT32	RO	0x6160:33, 32
1AE0:1D	SubIndex 029	29. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x34 (DMCActual position lag))	UINT32	RO	0x6160:34, 64
1AE0:1E	SubIndex 030	30. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x35 (DMC_Actual velocity))	UINT32	RO	0x6160:35, 16
1AE0:1F	SubIndex 031	31. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x36 (DMC_Actual position))	UINT32	RO	0x6160:36, 64
1AE0:20	SubIndex 032	32. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x37 (DMC_Error id))	UINT32	RO	0x6160:37, 32
1AE0:21	SubIndex 033	33. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x38 (DMC_Input cycle counter))	UINT32	RO	0x6160:38, 8
1AE0:22	SubIndex 034	34. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x39 (DMC_Channel id))	UINT32	RO	0x6160:39, 8
1AE0:23	SubIndex 035	35. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x3A (DMC_Latch value))	UINT32	RO	0x6160:3A, 64
1AE0:24	SubIndex 036	36. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x3B (DMC_Cyclic info data 1))	UINT32	RO	0x6160:3B, 16
1AE0:25	SubIndex 037	37. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x3C (DMC_Cyclic info data 2))	UINT32	RO	0x6160:3C, 16
1AE0:26	SubIndex 038	38. PDO Mapping entry (64 bits align)	UINT32	RO	0x0000:00, 64

Index 1AE1 DMC TxPDO-Map Inputs 32 Bit Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1AE1:0	DMC TxPDO-Map Inputs 32 Bit Ch.2	PDO Mapping TxPDO 226	UINT8	RO	0x2A (42 _{dez}))
1AE1:01	SubIndex 001	1. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1AE1:02	SubIndex 002	2. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x02 (DMCFeedbackStatusLatch extern valid))	UINT32	RO	0x6160:02, 1
1AE1:03	SubIndex 003	3. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x03 (DMCFeedbackStatusSet counter done))	UINT32	RO	0x6160:03, 1
1AE1:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9
1AE1:05	SubIndex 005	5. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x0D (DMCFeedbackStatusStatus of extern latch))	UINT32	RO	0x6160:0D, 1
1AE1:06	SubIndex 006	6. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1AE1:07	SubIndex 007	7. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x11 (DMCDriveStatusReady to enable))	UINT32	RO	0x6160:11, 1
1AE1:08	SubIndex 008	8. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x12 (DMCDriveStatusReady))	UINT32	RO	0x6160:12, 1
1AE1:09	SubIndex 009	9. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x13 (DMCDriveStatusWarning))	UINT32	RO	0x6160:13, 1
1AE1:0A	SubIndex 010	10. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x14 (DMCDriveStatusError))	UINT32	RO	0x6160:14, 1
1AE1:0B	SubIndex 011	11. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x15 (DMCDriveStatusMoving positive))	UINT32	RO	0x6160:15, 1
1AE1:0C	SubIndex 012	12. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x16 (DMCDriveStatusMoving negative))	UINT32	RO	0x6160:16, 1
1AE1:0D	SubIndex 013	13. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1AE1:0E	SubIndex 014	14. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x1C (DMCDriveStatusDigital input 1))	UINT32	RO	0x6160:1C, 1
1AE1:0F	SubIndex 015	15. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x1D (DMCDriveStatusDigital input 2))	UINT32	RO	0x6160:1D, 1
1AE1:10	SubIndex 016	16. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1AE1:11	SubIndex 017	17. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x21 (DMC_PositioningStatus_Busy))	UINT32	RO	0x6160:21, 1
1AE1:12	SubIndex 018	18. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x22 (DMCPositioningStatusIn-Target))	UINT32	RO	0x6160:22, 1
1AE1:13	SubIndex 019	19. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x23 (DMCPositioningStatusWarning))	UINT32	RO	0x6160:23, 1
1AE1:14	SubIndex 020	20. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x24 (DMC PositioningStatus Error))	UINT32	RO	0x6160:24, 1
1AE1:15	SubIndex 021	21. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x25 (DMCPositioningStatusCalibrated))	UINT32	RO	0x6160:25, 1
1AE1:16	SubIndex 022	22. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x26 (DMCPositioningStatusAccelerate))	UINT32	RO	0x6160:26, 1
1AE1:17	SubIndex 023	23. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x27 (DMCPositioningStatusDecelerate))	UINT32	RO	0x6160:27, 1
1AE1:18	SubIndex 024	24. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x28 (DMCPositioningStatusReady to execute))	UINT32	RO	0x6160:28, 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1AE1:19	SubIndex 025	25. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1AE1:1A	SubIndex 026	26. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x31 (DMC_Set position))	UINT32	RO	0x6160:31, 32
1AE1:1B	SubIndex 027	27. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1AE1:1C	SubIndex 028	28. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x32 (DMC_Set velocity))	UINT32	RO	0x6160:32, 16
1AE1:1D	SubIndex 029	29. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x33 (DMCActual drive time))	UINT32	RO	0x6160:33, 32
1AE1:1E	SubIndex 030	30. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x34 (DMCActual position lag))	UINT32	RO	0x6160:34, 32
1AE1:1F	SubIndex 031	31. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1AE1:20	SubIndex 032	32. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x35 (DMC_Actual velocity))	UINT32	RO	0x6160:35, 16
1AE1:21	SubIndex 033	33. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x36 (DMC_Actual position))	UINT32	RO	0x6160:36, 32
1AE1:22	SubIndex 034	34. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1AE1:23	SubIndex 035	35. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x37 (DMCError id))	UINT32	RO	0x6160:37, 32
1AE1:24	SubIndex 036	36. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x38 (DMCInput cycle counter))	UINT32	RO	0x6160:38, 8
1AE1:25	SubIndex 037	37. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x39 (DMC_Channel id))	UINT32	RO	0x6160:39, 8
1AE1:26	SubIndex 038	38. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x3A (DMC_Latch value))	UINT32	RO	0x6160:3A, 32
1AE1:27	SubIndex 039	39. PDO Mapping entry (32 bits align)	UINT32	RO	0x0000:00, 32
1AE1:28	SubIndex 040	40. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x3B (DMC_Cyclic info data 1))	UINT32	RO	0x6160:3B, 16
1AE1:29	SubIndex 041	41. PDO Mapping entry (object 0x6160 (DMC Inputs Ch.2), entry 0x3C (DMC_Cyclic info data 2))	UINT32	RO	0x6160:3C, 16
1AE1:2A	SubIndex 042	42. PDO Mapping entry (64 bits align)	UINT32	RO	0x0000:00, 64

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez}))
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez}))
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez}))
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez}))
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez}))

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x04 (4 _{dez}))
1C12:01	SubIndex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632 _{dez}))
1C12:02	SubIndex 002	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1606 (5638 _{dez}))
1C12:03	SubIndex 003	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1680 (5760 _{dez}))
1C12:04	SubIndex 004	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1686 (5766 _{dez}))
1C12:05	SubIndex 005	5. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:06	SubIndex 006	6. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:07	SubIndex 007	7. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:08	SubIndex 008	8. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:09	SubIndex 009	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:0A	SubIndex 010	10. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:0B	SubIndex 011	11. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:0C	SubIndex 012	12. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:0D	SubIndex 013	13. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:0E	SubIndex 014	14. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:0F	SubIndex 015	15. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:10	SubIndex 016	16. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:11	SubIndex 017	17. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:12	SubIndex 018	18. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:13	SubIndex 019	19. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:14	SubIndex 020	20. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:15	SubIndex 021	21. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:16	SubIndex 022	22. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:17	SubIndex 023	23. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:18	SubIndex 024	24. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:19	SubIndex 025	25. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:1A	SubIndex 026	26. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:1B	SubIndex 027	27. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:1C	SubIndex 028	28. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:1D	SubIndex 029	29. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C12:1E	SubIndex 030	30. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x06 (6 _{dez}))
1C13:01	SubIndex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez}))
1C13:02	SubIndex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A01 (6657 _{dez}))
1C13:03	SubIndex 003	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A06 (6662 _{dez}))
1C13:04	SubIndex 004	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A80 (6784 _{dez}))
1C13:05	SubIndex 005	5. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A81 (6785 _{dez}))
1C13:06	SubIndex 006	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A86 (6790 _{dez}))
1C13:07	SubIndex 007	7. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:08	SubIndex 008	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:09	SubIndex 009	sugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:0A	SubIndex 010	10. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:0B	SubIndex 011	11. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:0C	SubIndex 012	12. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:0D	SubIndex 013	13. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:0E	SubIndex 014	14. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:0F	SubIndex 015	15. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:10	SubIndex 016	16. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:11	SubIndex 017	17. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:12	SubIndex 018	18. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:13	SubIndex 019	19. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:14	SubIndex 020	20. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:15	SubIndex 021	21. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:16	SubIndex 022	22. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:17	SubIndex 023	23. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:18	SubIndex 024	24. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:19	SubIndex 025	25. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:1A	SubIndex 026	26. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:1B	SubIndex 027	27. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:1C	SubIndex 028	28. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:1D	SubIndex 029	29. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:1E	SubIndex 030	30. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:1F	SubIndex 031	31. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:20	SubIndex 032	32. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:21	SubIndex 033	33. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:22	SubIndex 034	34. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:23	SubIndex 035	35. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:24	SubIndex 036	36. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:25	SubIndex 037	37. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:26	SubIndex 038	38. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:27	SubIndex 039	39. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:28	SubIndex 040	40. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:29	SubIndex 041	41. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:2A	SubIndex 042	42. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:2B	SubIndex 043	43. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))
1C13:2C	SubIndex 044	44. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez}))

Index 1C32 SM output parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez}))
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0003 (3 _{dez}))
1C32:02	Cycle time	Zykluszeit (in ns): Free Run: Zykluszeit des lokalen Timers Synchron with SM 2 Event: Zykluszeit des Masters DC-Mode: SYNC0/SYNC1 Cycle Time	UINT32	RW	0x000F4240 (1000000 _{dez}))
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez}))
1C32:04	Sync modes supported	 Unterstützte Synchronisierungsbetriebsarten: Bit 0 = 1: Free Run wird unterstützt Bit 1 = 1: Synchron with SM 2 Event wird unterstützt Bit 2-3 = 01: DC-Mode wird unterstützt Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC-Mode) Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 1C32:08)) 	UINT16	RO	0x0812 (2066 _{dez}))
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0001E848 (125000 _{dez}))
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x00007530 (30000 _{dez}))
1C32:07	Minimum delay time		UINT32	RO	0x00007A12 (31250 _{dez}))
1C32:08	Get Cycle Time	O: Messung der lokalen Zykluszeit wird gestoppt 1: Messung der lokalen Zykluszeit wird gestartet	UINT16	RW	0x0000 (0 _{dez}))
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00007A12 (31250 _{dez}))
1C32:0A	Sync0 Cycle Time		UINT32	RO	0x0000F424 (62500 _{dez}))
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez}))
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez}))
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez}))
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez}))

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez}))
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0003 (3 _{dez}))
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie 1C32:02	UINT32	RW	0x000F4240 (1000000 _{dez}))
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez}))
1C33:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x0012
		Bit 0: Free Run wird unterstützt			(18 _{dez}))
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 1C32:08 oder 1C33:08)			
		•)			
1C33:05	Minimum cycle time	wie 1C32:05	UINT32	RO	0x0001E848 (125000 _{dez}))
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x00007530 (30000 _{dez}))
1C33:07	Minimum delay time		UINT32	RO	0x00007A12 (31250 _{dez}))
1C33:08	Get Cycle Time	wie 1C32:08	UINT16	RW	0x0000 (0 _{dez}))
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x00007A12 (31250 _{dez}))
1C33:0A	Sync0 Cycle Time		UINT32	RO	0x0000F424 (62500 _{dez}))
1C33:0B	SM event missed counter	wie 1C32:11	UINT16	RO	0x0000 (0 _{dez}))
1C33:0C	Cycle exceeded counter	wie 1C32:12	UINT16	RO	0x0000 (0 _{dez}))
1C33:0D	Shift too short counter	wie 1C32:13	UINT16	RO	0x0000 (0 _{dez}))
1C33:20	Sync error	wie 1C32:32	BOOLEAN	RO	$0x00 (0_{dez}))$

8.1.4 Profilspezifische Objekte

Index 6000 FB Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	FB Inputs Ch.1		UINT8	RO	0x15 (21 _{dez}))
6000:0E	TxPDO State		BOOLEAN	RO	0x00 (0 _{dez}))
6000:0F	Input cycle counter		BIT2	RO	0x00 (0 _{dez}))
6000:11	Position		UINT32	RO	0x0000000 (0 _{dez}))
6000:15	Secondary position		UINT32	RO	0x0000000 (0 _{dez}))

Index 6001 FB Touch probe inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6001:0	FB Touch probe inputs Ch.1		UINT8	RO	0x18 (24 _{dez}))
6001:01	TP1 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
6001:02	TP1 Pos value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6001:03	TP1 Neg value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6001:08	TP1 Input		BOOLEAN	RO	0x00 (0 _{dez}))
6001:09	TP2 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
6001:0A	TP2 Pos value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6001:0B	TP2 Neg value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6001:10	TP2 Input		BOOLEAN	RO	0x00 (0 _{dez}))
6001:11	TP1 Pos position		UINT32	RO	0x0000000 (0 _{dez}))
6001:12	TP1 Neg position		UINT32	RO	0x0000000 (0 _{dez}))
6001:13	TP2 Pos position		UINT32	RO	0x00000000 (0 _{dez}))
6001:14	TP2 Neg position		UINT32	RO	0x00000000 (0 _{dez}))
6001:15	TP1 Pos timestamp		UINT32	RO	0x00000000 (0 _{dez}))
6001:16	TP1 Neg timestamp		UINT32	RO	0x00000000 (0 _{dez}))
6001:17	TP2 Pos timestamp		UINT32	RO	0x00000000 (0 _{dez}))
6001:18	TP2 Neg timestamp		UINT32	RO	0x00000000 (0 _{dez}))

Index 6010 DRV Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6010:0	DRV Inputs Ch.1		UINT8	RO	0x15 (21 _{dez}))
6010:01	Statusword	Bit 0 : Ready to switch onBit 1 : Switched onBit 2 : Operation enabledBit 3 : FaultBit 4 : reservedBit 5 : reservedBit 6 : Switch on disabledBit 7 : WarningBit 8 + 9 : reservedBit 10 : TxPDOToggleBit 11 : Internal limit activeBit 12 : Drive follows the command valueBit 13 : Input cycle counterBit 14 - 15 : reserved	UINT16	RO	0x0000 (0 _{dez}))
6010:03	Modes of operation display	erlaubte Werte:	UINT8	RO	0x00 (0 _{dez}))
		8: Cyclic synchronous position mode (CSP)			
		9: Cyclic synchronous velocity mode (CSV)			
		10: Cyclic synchronous torque mode (CST)			
		11: Cyclic synchronous torque mode with commutation angle (CSTCA)			
		131: Drive Motion Control (DMC)			
6010:06	Following error actual value		INT32	RO	0x0000000 (0 _{dez}))
6010:07	Velocity actual value		INT32	RO	0x0000000 (0 _{dez}))
6010:08	Torque actual value		INT16	RO	0x0000 (0 _{dez}))
6010:12	Info data 1		UINT16	RO	0x0000 (0 _{dez}))
6010:13	Info data 2		UINT16	RO	0x0000 (0 _{dez}))
6010:14	Info data 3		UINT16	RO	0x0000 (0 _{dez}))
6010:15	Torque limitation status	Bit 0 : Torque demand value is equal to ramp inputBit 1 : High velocity limit activeBit 2 : Low velocity limit activeBit 3 - 7 : reserved	UINT8	RO	0x00 (0 _{dez}))

Index 6020 DI Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6020:0	DI Inputs Ch.1		UINT8	RO	0x07 (7 _{dez}))
6020:01	Input 1		BOOLEAN	RO	0x00 (0 _{dez}))
6020:02	Input 2		BOOLEAN	RO	0x00 (0 _{dez}))
6020:05	Encoder A		BOOLEAN	RO	0x00 (0 _{dez}))
6020:06	Encoder B		BOOLEAN	RO	0x00 (0 _{dez}))
6020:07	Encoder C		BOOLEAN	RO	0x00 (0 _{dez}))

Index 6060 DMC Inputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6060:0	DMC Inputs Ch.1		UINT8	RO	0x3C (60 _{dez}))
6060:02	DMCFeedbackStatusLat ch extern valid		BOOLEAN	RO	0x00 (0 _{dez}))
6060:03	DMCFeedbackStatusSet counter done		BOOLEAN	RO	0x00 (0 _{dez}))
6060:0D	DMCFeedbackStatusStatus of extern latch		BOOLEAN	RO	0x00 (0 _{dez}))
6060:11	DMCDriveStatusReady to enable		BOOLEAN	RO	0x00 (0 _{dez}))
6060:12	DMCDriveStatusReady		BOOLEAN	RO	0x00 (0 _{dez}))
6060:13	DMCDriveStatusWarnin		BOOLEAN	RO	0x00 (0 _{dez}))
6060:14	DMCDriveStatusError		BOOLEAN	RO	0x00 (0 _{dez}))
6060:15	DMCDriveStatusMoving positive		BOOLEAN	RO	0x00 (0 _{dez}))
6060:16	DMCDriveStatusMoving negative		BOOLEAN	RO	0x00 (0 _{dez}))
6060:1C	DMCDriveStatusDigital input 1		BOOLEAN	RO	0x00 (0 _{dez}))
6060:1D	DMCDriveStatusDigital input 2		BOOLEAN	RO	0x00 (0 _{dez}))
6060:21	DMCPositioningStatusB usy		BOOLEAN	RO	0x00 (0 _{dez}))
6060:22	DMCPositioningStatusIn -Target		BOOLEAN	RO	0x00 (0 _{dez}))
6060:23	DMCPositioningStatusW arning		BOOLEAN	RO	0x00 (0 _{dez}))
6060:24	DMCPositioningStatusEr ror		BOOLEAN	RO	0x00 (0 _{dez}))
6060:25	DMCPositioningStatusC alibrated		BOOLEAN	RO	0x00 (0 _{dez}))
6060:26	DMCPositioningStatusA ccelerate		BOOLEAN	RO	0x00 (0 _{dez}))
6060:27	DMCPositioningStatusD ecelerate		BOOLEAN	RO	0x00 (0 _{dez}))
6060:28	DMCPositioningStatusR eady to execute		BOOLEAN	RO	0x00 (0 _{dez}))
6060:31	DMC_Set position		INT64	RO	
6060:32	DMCSet velocity		INT16	RO	0x0000 (0 _{dez}))
6060:33	DMCActual drive time		UINT32	RO	0x0000000 (0 _{dez}))
6060:34	DMCActual position lag		INT64	RO	
6060:35	DMCActual velocity		INT16	RO	0x0000 (0 _{dez}))
6060:36	DMCActual position		INT64	RO	
6060:37	DMCError id		UINT32	RO	0x0000000 (0 _{dez}))
6060:38	DMC_Input cycle counter		UINT8	RO	0x00 (0 _{dez}))
6060:39	DMCChannel id		UINT8	RO	0x00 (0 _{dez}))
6060:3A	DMCLatch value		INT64	RO	
6060:3B	DMCCyclic info data 1		INT16	RO	0x0000 (0 _{dez}))
6060:3C	DMCCyclic info data 2		INT16	RO	0x0000 (0 _{dez}))

Index 6100 FB Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6100:0	FB Inputs Ch.2		UINT8	RO	0x15 (21 _{dez}))
6100:0E	TxPDO State		BOOLEAN	RO	0x00 (0 _{dez}))
6100:0F	Input cycle counter		BIT2	RO	0x00 (0 _{dez}))
6100:11	Position		UINT32	RO	0x0000000 (0 _{dez}))
6100:15	Secondary position		UINT32	RO	0x0000000 (0 _{dez}))

Index 6101 FB Touch probe inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6101:0	FB Touch probe inputs Ch.2		UINT8	RO	0x18 (24 _{dez}))
6101:01	TP1 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
6101:02	TP1 Pos value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6101:03	TP1 Neg value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6101:08	TP1 Input		BOOLEAN	RO	0x00 (0 _{dez}))
6101:09	TP2 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
6101:0A	TP2 Pos value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6101:0B	TP2 Neg value stored		BOOLEAN	RO	0x00 (0 _{dez}))
6101:10	TP2 Input		BOOLEAN	RO	0x00 (0 _{dez}))
6101:11	TP1 Pos position		UINT32	RO	0x0000000 (0 _{dez}))
6101:12	TP1 Neg position		UINT32	RO	0x0000000 (0 _{dez}))
6101:13	TP2 Pos position		UINT32	RO	0x0000000 (0 _{dez}))
6101:14	TP2 Neg position		UINT32	RO	0x0000000 (0 _{dez}))
6101:15	TP1 Pos timestamp		UINT32	RO	0x0000000 (0 _{dez}))
6101:16	TP1 Neg timestamp		UINT32	RO	0x0000000 (0 _{dez}))
6101:17	TP2 Pos timestamp		UINT32	RO	0x0000000 (0 _{dez}))
6101:18	TP2 Neg timestamp		UINT32	RO	0x0000000 (0 _{dez}))

Index 6110 DRV Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6110:0	DRV Inputs Ch.2		UINT8	RO	0x15 (21 _{dez}))
6110:01	Statusword	Bit 0 : Ready to switch onBit 1 : Switched onBit 2 : Operation enabledBit 3 : FaultBit 4 : reservedBit 5 : reservedBit 6 : Switch on disabledBit 7 : WarningBit 8 + 9 : reservedBit 10 : TxPDOToggleBit 11 : Internal limit activeBit 12 : Drive follows the command valueBit 13 : Input cycle counterBit 14 - 15 : reserved	UINT16	RO	0x0000 (0 _{dez}))
6110:03	Modes of operation display	erlaubte Werte:	UINT8	RO	0x00 (0 _{dez}))
		8: Cyclic synchronous position mode (CSP)			
		9: Cyclic synchronous velocity mode (CSV)			
		10: Cyclic synchronous torque mode (CST)			
		11: Cyclic synchronous torque mode with commutation angle (CSTCA)			
		131: Drive Motion Control (DMC)			
6110:06	Following error actual value		INT32	RO	0x0000000 (0 _{dez}))
6110:07	Velocity actual value		INT32	RO	0x0000000 (0 _{dez}))
6110:08	Torque actual value		INT16	RO	0x0000 (0 _{dez}))
6110:12	Info data 1		UINT16	RO	0x0000 (0 _{dez}))
6110:13	Info data 2		UINT16	RO	0x0000 (0 _{dez}))
6110:14	Info data 3		UINT16	RO	0x0000 (0 _{dez}))
6110:15	Torque limitation status	Bit 0 : Torque demand value is equal to ramp inputBit 1 : High velocity limit activeBit 2 : Low velocity limit activeBit 3 - 7 : reserved	UINT8	RO	0x00 (0 _{dez}))

Index 6120 DI Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6120:0	DI Inputs Ch.2		UINT8	RO	0x07 (7 _{dez}))
6120:01	Input 1		BOOLEAN	RO	0x00 (0 _{dez}))
6120:02	Input 2		BOOLEAN	RO	0x00 (0 _{dez}))
6120:05	Encoder A		BOOLEAN	RO	0x00 (0 _{dez}))
6120:06	Encoder B		BOOLEAN	RO	0x00 (0 _{dez}))
6120:07	Encoder C		BOOLEAN	RO	0x00 (0 _{dez}))

Index 6160 DMC Inputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6160:0	DMC Inputs Ch.2		UINT8	RO	0x3C (60 _{dez}))
6160:02	DMCFeedbackStatusLat ch extern valid		BOOLEAN	RO	0x00 (0 _{dez}))
6160:03	DMCFeedbackStatusSet counter done		BOOLEAN	RO	0x00 (0 _{dez}))
6160:0D	DMCFeedbackStatusStatus of extern latch		BOOLEAN	RO	0x00 (0 _{dez}))
6160:11	DMCDriveStatusReady to enable		BOOLEAN	RO	0x00 (0 _{dez}))
6160:12	DMCDriveStatusReady		BOOLEAN	RO	0x00 (0 _{dez}))
6160:13	DMCDriveStatusWarnin		BOOLEAN	RO	0x00 (0 _{dez}))
6160:14	DMCDriveStatusError		BOOLEAN	RO	0x00 (0 _{dez}))
6160:15	DMCDriveStatusMoving positive		BOOLEAN	RO	0x00 (0 _{dez}))
6160:16	DMCDriveStatusMoving negative		BOOLEAN	RO	0x00 (0 _{dez}))
6160:1C	DMCDriveStatusDigital input 1		BOOLEAN	RO	0x00 (0 _{dez}))
6160:1D	DMCDriveStatusDigital input 2		BOOLEAN	RO	0x00 (0 _{dez}))
6160:21	DMCPositioningStatusB usy		BOOLEAN	RO	0x00 (0 _{dez}))
6160:22	DMCPositioningStatusIn -Target		BOOLEAN	RO	0x00 (0 _{dez}))
6160:23	DMCPositioningStatusW arning		BOOLEAN	RO	0x00 (0 _{dez}))
6160:24	DMCPositioningStatusEr ror		BOOLEAN	RO	0x00 (0 _{dez}))
6160:25	DMCPositioningStatusC alibrated		BOOLEAN	RO	0x00 (0 _{dez}))
6160:26	DMCPositioningStatusA ccelerate		BOOLEAN	RO	0x00 (0 _{dez}))
6160:27	DMCPositioningStatusD ecelerate		BOOLEAN	RO	0x00 (0 _{dez}))
6160:28	DMCPositioningStatusR eady to execute		BOOLEAN	RO	0x00 (0 _{dez}))
6160:31	DMC_Set position		INT64	RO	
6160:32	DMCSet velocity		INT16	RO	0x0000 (0 _{dez}))
6160:33	DMCActual drive time		UINT32	RO	0x0000000 (0 _{dez}))
6160:34	DMCActual position lag		INT64	RO	
6160:35	DMCActual velocity		INT16	RO	0x0000 (0 _{dez}))
6160:36	DMCActual position		INT64	RO	
6160:37	DMCError id		UINT32	RO	0x00000000 (0 _{dez}))
6160:38	DMCInput cycle counter		UINT8	RO	0x00 (0 _{dez}))
6160:39	DMCChannel id		UINT8	RO	0x00 (0 _{dez}))
6160:3A	DMCLatch value		INT64	RO	
6160:3B	DMCCyclic info data 1		INT16	RO	0x0000 (0 _{dez}))
6160:3C	DMCCyclic info data 2		INT16	RO	0x0000 (0 _{dez}))

Index 7001 FB Touch probe outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7001:0	FB Touch probe outputs Ch.1		UINT8	RO	0x0E (14 _{dez}))
7001:01	TP1 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
7001:02	TP1 Continous		BOOLEAN	RO	0x00 (0 _{dez}))
7001:03	TP1 Trigger mode		BIT2	RO	0x00 (0 _{dez}))
7001:05	TP1 Enable pos edge		BOOLEAN	RO	0x00 (0 _{dez}))
7001:06	TP1 Enable neg edge		BOOLEAN	RO	0x00 (0 _{dez}))
7001:09	TP2 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
7001:0A	TP2 Continous		BOOLEAN	RO	0x00 (0 _{dez}))
7001:0B	TP2 Trigger mode		BIT2	RO	0x00 (0 _{dez}))
7001:0D	TP2 Enable pos edge		BOOLEAN	RO	0x00 (0 _{dez}))
7001:0E	TP2 Enable neg edge		BOOLEAN	RO	0x00 (0 _{dez}))

Index 7010 DRV Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7010:0	DRV Outputs Ch.1		UINT8	RO	0x13 (19 _{dez}))
7010:01	Controlword	Bit 0 : Switch onBit 1 : Enable voltageBit 2 : reservedBit 3 : Enable operationBit 4 - 6 : reservedBit 7 : Fault resetBit 8 - 15 : reserved	UINT16	RO	0x0000 (0 _{dez}))
7010:03	Modes of operation	erlaubte Werte:	UINT8	RW	0x08 (8 _{dez}))
		8: Cyclic synchronous position mode (CSP)			
		9: Cyclic synchronous velocity mode (CSV)			
		10: Cyclic synchronous torque mode (CST)			
		11: Cyclic synchronous torque mode with commutation angle (CSTCA)			
		131: Drive Motion Control (DMC)			
7010:05	Target position		UINT32	RO	0x00000000 (0 _{dez}))
7010:06	Target velocity		INT32	RO	0x0000000 (0 _{dez}))
7010:09	Target torque		INT16	RO	0x0000 (0 _{dez}))
7010:0A	Torque offset		INT16	RO	0x0000 (0 _{dez}))
7010:0B	Torque limitation		UINT16	RW	0x7FFF (32767 _{dez}))
7010:0E	Commutation angle		UINT16	RO	0x0000 (0 _{dez}))
7010:0F	Velocity offset		INT32	RO	0x0000000 (0 _{dez}))
7010:10	Positive torque limit value		UINT16	RW	0x7FFF (32767 _{dez}))
7010:11	Negative torque limit value		UINT16	RW	0x7FFF (32767 _{dez}))
7010:12	Low velocity limit value		INT32	RW	0x0000000 (0 _{dez}))
7010:13	High velocity limit value		INT32	RW	0x0000000 (0 _{dez}))

Index 7060 DMC Outputs Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7060:0	DMC Outputs Ch.1		UINT8	RO	0x36 (54 _{dez}))
7060:02	DMCFeedbackControlEn able latch extern on positive edge		BOOLEAN	RO	0x00 (0 _{dez}))
7060:03	DMCFeedbackControlSe t counter		BOOLEAN	RO	0x00 (0 _{dez}))
7060:04	DMCFeedbackControlEn able latch extern on negative edge		BOOLEAN	RO	0x00 (0 _{dez}))
7060:11	DMCDriveControlEnable		BOOLEAN	RO	0x00 (0 _{dez}))
7060:12	DMCDriveControlReset		BOOLEAN	RO	0x00 (0 _{dez}))
7060:21	DMCPositioningControlE xecute		BOOLEAN	RO	0x00 (0 _{dez}))
7060:22	DMCPositioningControlE mergency stop		BOOLEAN	RO	0x00 (0 _{dez}))
7060:31	DMCSet counter value		INT64	RO	
7060:32	DMCTarget position		INT64	RO	
7060:33	DMCTarget velocity		INT16	RO	0x0000 (0 _{dez}))
7060:34	DMCStart type		UINT16	RO	0x0000 (0 _{dez}))
7060:35	DMCTarget acceleration		UINT16	RO	0x0000 (0 _{dez}))
7060:36	DMCTarget deceleration		UINT16	RO	0x0000 (0 _{dez}))

Index 7101 FB Touch probe outputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7101:0	FB Touch probe outputs Ch.2		UINT8	RO	0x0E (14 _{dez}))
7101:01	TP1 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
7101:02	TP1 Continous		BOOLEAN	RO	0x00 (0 _{dez}))
7101:03	TP1 Trigger mode		BIT2	RO	0x00 (0 _{dez}))
7101:05	TP1 Enable pos edge		BOOLEAN	RO	0x00 (0 _{dez}))
7101:06	TP1 Enable neg edge		BOOLEAN	RO	0x00 (0 _{dez}))
7101:09	TP2 Enable		BOOLEAN	RO	0x00 (0 _{dez}))
7101:0A	TP2 Continous		BOOLEAN	RO	0x00 (0 _{dez}))
7101:0B	TP2 Trigger mode		BIT2	RO	0x00 (0 _{dez}))
7101:0D	TP2 Enable pos edge		BOOLEAN	RO	0x00 (0 _{dez}))
7101:0E	TP2 Enable neg edge		BOOLEAN	RO	0x00 (0 _{dez}))

Index 7110 DRV Outputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7110:0	DRV Outputs Ch.2		UINT8	RO	0x13 (19 _{dez}))
7110:01	Controlword	Bit 0 : Switch onBit 1 : Enable voltageBit 2 : reservedBit 3 : Enable operationBit 4 - 6 : reservedBit 7 : Fault resetBit 8 - 15 : reserved	UINT16	RO	0x0000 (0 _{dez}))
7110:03	Modes of operation	erlaubte Werte:	UINT8	RW	0x08 (8 _{dez}))
		8: Cyclic synchronous position mode (CSP)			
		9: Cyclic synchronous velocity mode (CSV)			
		10: Cyclic synchronous torque mode (CST)			
		11: Cyclic synchronous torque mode with commutation angle (CSTCA)			
		131: Drive Motion Control (DMC)			
7110:05	Target position		UINT32	RO	0x0000000 (0 _{dez}))
7110:06	Target velocity		INT32	RO	0x0000000 (0 _{dez}))
7110:09	Target torque		INT16	RO	0x0000 (0 _{dez}))
7110:0A	Torque offset		INT16	RO	0x0000 (0 _{dez}))
7110:0B	Torque limitation		UINT16	RW	0x7FFF (32767 _{dez}))
7110:0E	Commutation angle		UINT16	RO	0x0000 (0 _{dez}))
7110:0F	Velocity offset		INT32	RO	0x0000000 (0 _{dez}))
7110:10	Positive torque limit value		UINT16	RW	0x7FFF (32767 _{dez}))
7110:11	Negative torque limit value		UINT16	RW	0x7FFF (32767 _{dez}))
7110:12	Low velocity limit value		INT32	RW	0x0000000 (0 _{dez}))
7110:13	High velocity limit value		INT32	RW	0x0000000 (0 _{dez}))

Index 7160 DMC Outputs Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7160:0	DMC Outputs Ch.2		UINT8	RO	0x36 (54 _{dez}))
7160:02	DMCFeedbackControlEn able latch extern on positive edge		BOOLEAN	RO	0x00 (0 _{dez}))
7160:03	DMCFeedbackControlSe t counter		BOOLEAN	RO	0x00 (0 _{dez}))
7160:04	DMCFeedbackControlEn able latch extern on negative edge		BOOLEAN	RO	0x00 (0 _{dez}))
7160:11	DMCDriveControlEnable		BOOLEAN	RO	0x00 (0 _{dez}))
7160:12	DMCDriveControlReset		BOOLEAN	RO	0x00 (0 _{dez}))
7160:21	DMCPositioningControlE xecute		BOOLEAN	RO	0x00 (0 _{dez}))
7160:22	DMCPositioningControlE mergency stop		BOOLEAN	RO	0x00 (0 _{dez}))
7160:31	DMCSet counter value		INT64	RO	
7160:32	DMCTarget position		INT64	RO	
7160:33	DMCTarget velocity		INT16	RO	0x0000 (0 _{dez}))
7160:34	DMC_Start type		UINT16	RO	0x0000 (0 _{dez}))
7160:35	DMCTarget acceleration		UINT16	RO	0x0000 (0 _{dez}))
7160:36	DMCTarget deceleration		UINT16	RO	0x0000 (0 _{dez}))

Index F000 Modular Device Profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular Device Profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez}))
F000:01	Index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez}))
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0017 (23 _{dez}))

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word		UINT32	1	0x00000000 (0 _{dez}))

Index F010 Module Profile List

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module Profile List		UINT8	RO	0x17 (23 _{dez}))
F010:01	SubIndex 001		UINT32	RO	0x00000201 (513 _{dez}))
F010:02	SubIndex 002		UINT32	RO	0x000002E6 (742 _{dez}))
F010:03	SubIndex 003		UINT32	RO	0x00000064 (100 _{dez}))
F010:04	SubIndex 004		UINT32	RO	0x0000000 (0 _{dez}))
F010:05	SubIndex 005		UINT32	RO	0x0000000 (0 _{dez}))
F010:06	SubIndex 006		UINT32	RO	0x0000000 (0 _{dez}))
F010:07	SubIndex 007		UINT32	RO	0x000002EE (750 _{dez}))
F010:08	SubIndex 008		UINT32	RO	0x0000000 (0 _{dez}))
F010:09	SubIndex 009		UINT32	RO	0x0000000 (0 _{dez}))
F010:0A	SubIndex 010		UINT32	RO	0x0000000 (0 _{dez}))
F010:0B	SubIndex 011		UINT32	RO	0x0000000 (0 _{dez}))
F010:0C	SubIndex 012		UINT32	RO	0x0000000 (0 _{dez}))
F010:0D	SubIndex 013		UINT32	RO	0x0000000 (0 _{dez}))
F010:0E	SubIndex 014		UINT32	RO	0x0000000 (0 _{dez}))
F010:0F	SubIndex 015		UINT32	RO	0x0000000 (0 _{dez}))
F010:10	SubIndex 016		UINT32	RO	0x0000000 (0 _{dez}))
F010:11	SubIndex 017		UINT32	RO	0x00000201 (513 _{dez}))
F010:12	SubIndex 018		UINT32	RO	0x000002E6 (742 _{dez}))
F010:13	SubIndex 019		UINT32	RO	0x00000064 (100 _{dez}))
F010:14	SubIndex 020		UINT32	RO	0x0000000 (0 _{dez}))
F010:15	SubIndex 021		UINT32	RO	0x0000000 (0 _{dez}))
F010:16	SubIndex 022		UINT32	RO	0x0000000 (0 _{dez}))
F010:17	SubIndex 023		UINT32	RO	0x000002EE (750 _{dez}))

Index F081 Download revision

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F081:0	Download revision		UINT8	RO	0x01 (1 _{dez}))
F081:01	Revision number		UINT32	RW	0x00000000 (0 _{dez}))

Index FB00 Command

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
FB00:0	Command		UINT8	RO	0x03 (3 _{dez}))
FB00:01	Request		OCTET- STRING[2]	RW	{0}
FB00:02	Status		UINT8	RO	0x00 (0 _{dez}))
FB00:03	Response		OCTET- STRING[6]	RO	{0}

Index FB13 DRV Key code

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
FB13:0	DRV Key code		UINT8	RO	0x01 (1 _{dez}))
FB13:01	Code		OCTET- STRING[32]	RW	{0}

Index FB40 Memory interface

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
FB40:0	Memory interface		UINT8	RO	0x03 (3 _{dez}))
FB40:01	Address		UINT32	RW	0x00000000 (0 _{dez}))
FB40:02	Length		UINT16	RW	0x0000 (0 _{dez}))
FB40:03	Data		OCTET- STRING[8]	RW	{0}

9 Anhang

9.1 Ausgabestände der Dokumentation

Version	Kommentar
1.0	Erste Veröffentlichung

138 Version: 1.0 EL7062

9.2 Entsorgung

Die mit einer durchgestrichenen Abfalltonne gekennzeichneten Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

9.3 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com

Internet: www.beckhoff.com

Mehr Informationen: www.beckhoff.com/el7062

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

