BECKHOFF New Automation Technology

文件资料 | ZH

EL41xx

模拟量输出端子模块(16位)

2025-08-20 | 版本: 5.0.0

目录

1	前言.	•••••		. 7
	1.1	模拟量输	ì出端子模块产品概述	7
	1.2	文档说明]	8
	1.3	文档指南	Ī	9
	1.4	安全说明]	10
	1.5	文档发行	状态	11
	1.6	EtherCA	T 设备的版本标识	12
		1.6.1	关于标识的一般说明	12
		1.6.2	EL 端子模块的版本标识	13
		1.6.3	倍福识别码(BIC)	14
		1.6.4	BIC 电子读取(eBIC)	16
2	产品护	苗述		18
	2.1			
		2.1.1	EL4102 - 简介	
		2.1.2	EL4102 - 技术数据	
		2.1.3	EL4102 - 连接、显示和诊断	
	2.2			
		2.2.1	EL4104 - 简介	
		2.2.2	EL4104 - 技术数据	
		2.2.3	EL4104 - 连接、显示和诊断	
	2.3	EL4112、	EL4112-0010	
		2.3.1	EL4112、EL4112-0010 - 简介	
		2.3.2	EL4112、EL4112-0010 - 技术数据	25
		2.3.3	EL4112、EL4112-0010 - 连接、显示和诊断	
	2.4	EL4114、	EL4114-0020	
		2.4.1	EL4114、EL4114-0020 - 简介	
		2.4.2	EL4114、EL4114-0020 - 技术数据	
		2.4.3	EL4114、EL4114-0020 - 连接、显示和诊断	
	2.5	EL4122.		
		2.5.1	EL4122 - 简介	30
		2.5.2	EL4122 - 技术数据	31
		2.5.3	EL4122 - 连接、显示和诊断	32
	2.6	EL4124.		33
		2.6.1	EL4124 - 简介	33
		2.6.2	EL4124 - 技术数据	
		2.6.3	EL4124 - 连接、显示和诊断	
	2.7	EL4132.		36
		2.7.1	EL4132 - 简介	36
		2.7.2	EL4132 - 技术数据	
		2.7.3	EL4132 - 连接、显示和诊断	
	2.8		EL4134-0020、EL4134-0030	
		2.8.1	EL4134、EL4134-0020、EL4134-0030 - 简介	

		2.8.2	EL4134 - 技术数据	40				
		2.8.3	EL4134-0020、EL4134-0030 - 技术数据	41				
		2.8.4	EL4134、EL4134-0020、EL4134-0030 - 连接、显示和诊断	42				
	2.9	启动		43				
3	基本证	x通讯44						
	3.1	EtherCA	T 基础知识	44				
	3.2	EtherCA	T 布线 - 线缆连接	44				
	3.3	设置看门]狗的一般注意事项	46				
	3.4	EtherCA	T 状态机	47				
	3.5	CoE 接口	1	49				
	3.6	分布时钟	(Distributed Clock)	55				
4	安装和	扣接线		. 56				
	4.1	静电防护	的说明	56				
	4.2	防爆		57				
		4.2.1	ATEX - 特殊条件 (标准温度范围)	57				
		4.2.2	ATEX - 特殊条件 (扩展温度范围)	58				
		4.2.3	IECEx - 特殊条件	59				
		4.2.4	ATEX 和 IECEx 的持续性文件	60				
	4.3	关于倍福	ā校准证书的说明	61				
	4.4	UL 声明.		63				
	4.5	安装在导	科上	64				
	4.6							
	4.7	安装位置	<u>-</u>	68				
	4.8		快的安装位置					
	4.9		〔- 电源					
	4.10	接线		72				
		4.10.1	接线系统					
		4.10.2	接线					
		4.10.3	屏蔽					
	4.11	处理		76				
5	调试.	•••••		. 77				
	5.1	TwinCA	T 快速入门	77				
		5.1.1	TwinCAT 2	80				
		5.1.2	TwinCAT 3	90				
	5.2	TwinCA	Γ 开发环境	103				
		5.2.1	TwinCAT real-time 实时驱动程序的安装	104				
		5.2.2	关于 ESI 设备描述文件的说明	110				
		5.2.3	TwinCAT ESI Updater					
		5.2.4	Online 和 Offline 之间的区别	115				
		5.2.5	创建 OFFLINE 配置	115				
		5.2.6	创建ONLINE配置	121				
		5.2.7	EtherCAT 设备的配置					
		5.2.8	导入/导出 EtherCAT 设备为 SCI 和 XTI 文件	138				

	5.3	EtherCAT 从站的一般调试说明					
	5.4	4 EL41x2					
		5.4.1	EL41x2 的功能集	151			
		5.4.2	基础知识 – 扩展功能	154			
		5.4.3	对象描述和参数设置 - 扩展功能	162			
	5.5	EL41x4		176			
		5.5.1	基础知识	176			
		5.5.2	对象描述和参数设置	184			
	5.6	EL4x1x、	EL4x2x 电流输出	192			
6	附录			195			
	6.1	EtherCA ⁻	Γ AL 状态代码	195			
	6.2	功能(ES	SI EL41x2-nnnn-0000 至 EL41x2-nnnn-0016)	196			
		6.2.1	基础知识 – 常规功能	196			
		6.2.2	对象描述和参数设置 – 常规功能	200			
		6.2.3	快速模式	211			
	6.3	固件兼容	性	213			
	6.4	固件更新	EL/ES/EM/ELM/EPxxxx	216			
		6.4.1	设备描述 ESI 文件/XML	217			
		6.4.2	Firmware(固件)说明	220			
		6.4.3	更新从站处理器的固件 *.efw	220			
		6.4.4	FPGA 固件 *.rbf	222			
		6.4.5	同时更新多个 EtherCAT 设备	226			
	6.5	恢复出厂	状态	227			
	6.6	技术支持	和服务	229			

1 前言

1.1 模拟量输出端子模块产品概述

EL4102[▶18] (0 V至+10 V, 2 通道)

EL4112 [▶ 24] (0 mA 至 20 mA, 2 通道)

<u>EL4112-0010</u>[▶ 24] (-10 mA 至 +10 mA, 2 通道)

<u>EL4122</u>[▶<u>30</u>](4 mA 至 20 mA,2 通道)

EL4132 [▶ 36] (-10 V至+10 V, 2 通道)

EL4104[▶21] (0 V至+10 V, 4 通道)

EL4114 [▶ 27] (0 mA 至 20 mA, 4 通道)

<u>EL4114-0020</u> [▶ <u>27</u>](0 mA 至 20 mA,4 通道,带<u>工厂校准证书</u> [▶ <u>61</u>])

EL4124 [▶33] (4 mA至 20 mA, 4 通道)

EL4134[▶39](-10 V至+10 V, 4 通道)

<u>EL4134-0020</u>[▶39](-10 V 至 +10 V, 4 通道, 带工厂校准证书[▶61])

EL4134-0030 [▶39] (-10 V 至 +10 V, 4 通道, 带<u>外部校准证书 [▶61]</u>)

1.2 文档说明

目标受众

本说明仅适用于熟悉国家标准且经过培训的控制和自动化工程专家。 在安装和调试组件时,必须遵循文档和以下说明及解释。 操作人员应具备相关资质,并始终使用最新的生效文档。

相关负责人员必须确保所述产品的应用或使用符合所有安全要求,包括所有相关法律、法规、准则和标准。

免责声明

本文档经过精心准备。然而,所述产品正在不断开发中。

我们保留随时修改和更改本文档的权利,恕不另行通知。

不得依据本文档中的数据、图表和说明对已供货产品的修改提出赔偿。

商标

Beckhoff[°], ATRO[°], EtherCAT[°], EtherCAT G[°], EtherCAT G10[°], EtherCAT P[°], MX-System[°], Safety over EtherCAT[°], TC/BSD[°], TwinCAT[°], TwinCAT/BSD[°], TwinSAFE[°], XFC[°], XPlanar[°]和 XTS[°] 是倍福自动 化有限公司的注册商标并得到授权。

本出版物中使用的其他名称可能是商标,第三方出于自身目的使用它们可能侵犯商标所有者的权利。

EtherCAT[®] 是注册商标和专利技术,由德国倍福自动化有限公司授权使用。

版权所有

© 德国倍福自动化有限公司。 未经明确授权,禁止复制、分发和使用本文件以及将其内容传达给他人。 违者将被追究赔偿责任。在专利授权、工具型号或设计方面保留所有权利。

第三方品牌

本文档可能使用了第三方商标。有关商标信息,可以访问:https://www.beckhoff.com/trademarks

1.3 文档指南

文件的其它组成部分

本文档介绍特定设备的内容。它是倍福 I/O 组件模块化文档体系的一部分。为了使用和安全操作本文档中描述的设备/装置,还需要阅读其它跨产品说明,请参见下表。

标题	描述
EtherCAT 系统文档(PDF)	• 系统概览
	• EtherCAT 基础知识
	・ 电缆冗余
	• 热连接
	・ EtherCAT 设备配置
I/O 模拟量手册(PDF)	关于模拟量输入和输出的 I/O 组件说明
端子模块系统的防爆保护(<u>PDF</u>)	根据 ATEX 和 IECEx 标准,在防爆区使用倍福端子模块系统的注意事项
EtherCAT/Ethernet 基础设施(PDF)	关于设计、实施和测试的技术建议和注意事项
I/O 软件声明(PDF)	
	倍福 I/O 组件的开源软件声明

可以在倍福公司网站(www.beckhoff.com)上通过以下版块查看或下载相关文档:

- 在相应产品页面的"文档和下载"区域,
- 下载中心
- Beckhoff Information System。

如果您对我们的文档有任何建议或意见,请发送电子邮件至<u>documentation@beckhoff.com</u>,并注明文档标题和版本号。

1.4 安全说明

安全规范

请注意以下安全说明和解释!

可在以下页面或安装、接线、调试等区域找到产品相关的安全说明。

责任免除

所有组件在供货时都配有适合应用的特定硬件和软件配置。禁止未按文档所述修改硬件或软件配置,德国倍福 自动化有限公司不对此承担责任。

人员资格

本说明仅供熟悉适用国家标准的控制、自动化和驱动工程专家使用。

警示性词语

文档中使用的警示信号词分类如下。为避免人身伤害和财产损失,请阅读并遵守安全和警告注意事项。

人身伤害警告

	▲ 危险	
存在死亡或重伤的高度风险。		
	<u>♪ 警告</u>	
存在死亡或重伤的中度风险。		
	☆ 谨慎	

存在可能导致中度或轻度伤害的低度风险。

财产或环境损害警告

可能会损坏环境、设备或数据。	

操作产品的信息

这些信息包括:

有关产品的操作、帮助或进一步信息的建议。

1.5 文档发行状态

版本	注释
5.0.0	・ 更新 "技术数据" 章节
	• 更新修订状态
	- 结构更新
4.9	• 更新"基本功能原理"章节
	• 结构更新
4.8	更新"技术数据"章节
	・ 更新"连接、显示和诊断"章节
	• 更新修订状态
	• 结构更新
4.7	・ 更新"技术数据"章节
	・ 更新 "连接、显示和诊断"章节
	・ 更新"模拟量规格"章节
	• 更新"基本功能原理"章节
	・ 更新"对象描述和参数设置"章节
	• 更新修订状态
	• 结构更新
4.6	・ 修订 EL4134-0020、EL4134-0030
	・ 更新 "简介" 章节
	• 更新"技术数据"章节
	• 更新修订状态
	• 结构更新
4.5	・ 更新 "EL4x1x、EL4x2x 电流输出"章节
	• 更新修订状态
	• 结构更新
4.4	・ 更新"调试"章节
	・ 更新修订状态
	• 结构更新
4.3	• 更新技术数据
	• 更新修订状态
	• 结构更新
4.2	• 更新技术数据
	• 更新修订状态
	• 结构更新
4.1	・ 更新"文档说明"章节
	• 更新技术数据
	• "TwinCAT 2.1x"章节更新为"TwinCAT 开发环境"和"TwinCAT 快速入门"
	• 更新修订状态
4.0	・ 迁移
	• 结构更新
	・ 更新修订状态
0.1 - 3.6	*存档*

1.6 EtherCAT 设备的版本标识

1.6.1 关于标识的一般说明

名称

- 一个倍福 EtherCAT 设备有一个 14 位字符编号,由以下部分组成
 - 系列号
 - · 型号
 - 版本号
 - 修订版本号

示例	系列号	型号	版本	修订版本 号
EL3314-0000-0016	EL 端子模块 (12 mm,不可插拔式前连接件)	3314 (4 通道热电偶端子模块)	0000 (基本型号)	0016
ES3602-0010-0017	ES 端子模块 (12 mm,可插拔式前连接件)	3602 (2 通道电压测量模块)	0010 (高精度版本)	0017
CU2008-0000-0000	CU 设备	2008 (8 端口高速以太网交换机)	0000 (基本型号)	0000

注意

- 上述要素构成了技术编号。下面使用 EL3314-0000-0016来举例说明。
- EL3314-0000 是订货号,在"-0000"的情况下,通常简写为 EL3314。"-0016"是 EtherCAT 版本号。
- ・订货号由

系列号(EL、EP、CU、ES、KL、CX等)

- 型号 (3314)
- 版本号(-0000)组成
- · 修订版本号 -0016 显示技术改进的版本,例如 EtherCAT 通讯方面的功能扩展,并由倍福公司管理。原则上除非文档中另有规定,较高修订版的设备可以替换装有较低修订版的设备。每个版本通常都有一个XML文件形式的描述(ESI,EtherCAT Slave Information),可从倍福公司网站下载。

从 2014 年 01 月起,修订版本号显示在 IP20 端子模块的外壳上,见图 "EL2872,修订版本号 0022~和序列号 01200815"。

• 型号、版本号和修订版本号在读取时当作十进制数字,但它们在存储时按十六进制数字。

1.6.2 EL 端子模块的版本标识

倍福 IO 设备的序列号/数字代码通常是一个印在设备或标签上的 8 位数字。序列号表示交付状态下的配置,因此指的是整个生产批次,不区分批次中的各个模块。

序列号的结构: KK YY FF HH

KK-生产周数(CW,日历周)

YY - 生产年份 FF - 固件版本号 HH - 硬件版本号 示例: 序列号 12 06 3A 02:

12 - 生产周次为 12 周

06 - 生产年份为 2006 年

3A - 固件版本为 3A

02 - 硬件版本为 02

附图 1: EL2872,修订版本号 0022 和序列号 01200815

1.6.3 倍福识别码(BIC)

倍福唯一识别码 Beckhoff Identification Code (BIC)越来越多地应用于识别倍福产品。BIC 表示为二维码(DMC,编码格式 ECC200),内容基于 ANSI 标准 MH10.8.2-2016。

附图 2: BIC 为二维码(DMC,编码格式 ECC200)

BIC 将在所有产品组中逐步引入。

根据不同的产品,可以在以下地方找到:

- · 在包装单元上
- 直接在产品上(如果空间足够)
- 在包装单元和产品上

BIC 可供机器读取,其中包含的信息客户可以用于产品管理。

每条信息都可以使用数据唯一标识符(ANSI MH10.8.2-2016)进行识别。数据标识符后面紧接着是一个字符串。两者加起来的最大长度如下表所示。如果信息较短,则会以空格填充。

可能出现的信息如下,位置1到4总是存在,其他信息则根据生产的需要而定:

位置	信息类型	说明	数据 标识符	包括数据标识符的数字位数	示例
1	倍福订单号	倍福订单号	1P	8	1P 072222
2	倍福可追溯性编号 (BTN)	独特的序列号,见以下说明	SBTN	12	SBTNk4p562d7
3	产品型号	倍福产品型号,例如EL1008	1K	32	1K EL1809
4	数量	包装单位的数量,例如1、10等	Q	6	Q 1
5	批次号	可选: 生产年份和第几周	2P	14	2P 401503180016
6	ID/序列号	可选:当前的序列号系统,例如 安全产品的序列号系统	51S	12	51S 678294
7	型号扩展代码	可选:基于标准产品的型号扩展 代码	30P	12	30P F971, 2*K183

倍福还使用更多类型的信息和数据标识符,用于内部流程。

BIC 结构

下面是包含位置 1-4及6 的复合信息示例。数据标识符以黑体字突出显示:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

对应的DMC如下:

附图 3: 示例 DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

BIC 的一个重要组成部分是倍福的可追溯性编号(BTN,位置 2)。BTN 是由八个字符组成的唯一序列号,从长远来看,它将取代倍福的所有其他序列号系统(例如,IO 组件上的批号、安全产品之前的系列序列号等)。BTN 也将被逐步引入,所以可能会出现 BTN 还没有在 BIC 中编码的情况。

注意

这些资料经过精心准备, 但是所述流程还在不断优化, 我们保留随时修改流程和文档的权利,恕不另行通知。不能依据本资料中的信息、插图和描述的修改提出任何要求。

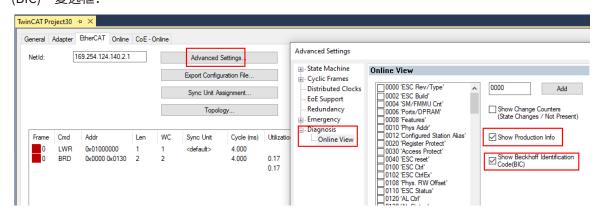
1.6.4 BIC 电子读取(eBIC)

电子 BIC (eBIC)

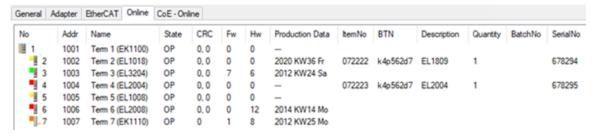
倍福识别码 (BIC) 贴在倍福产品外壳上明显可见的位置。如果可能,其应该也可以通过电子设备读出。 对产品进行电子化处理的接口对于电子读出至关重要。

K-bus 设备 (IP20、IP67)

目前,没有计划对这些设备的信息进行电子存储和读取。


EtherCAT 设备 (IP20、IP67)

倍福的所有 EtherCAT 设备都有一个 ESI-EEPROM,其中包含 EtherCAT 标识和修订版本号。EtherCAT 从站信息,一般也被称为 EtherCAT 主站的 ESI/XML 配置文件,储存在其中。具体关系请参见 EtherCAT 系统手册中的相应章节(链接)。


倍福还将 eBIC 存储在 ESI-EEPROM 中。eBIC 于 2020 年引入倍福 IO 生产(端子模块、盒式模块);截至 2023 年,实施工作已基本完成。

用户可以通过电子方式访问 eBIC(如果存在),具体如下:

- ・ 对于所有 EtherCAT 设备,EtherCAT 主站 (TwinCAT) 可以从 ESI-EEPROM 读出 eBIC
 - 。 TwinCAT 3.1 build 4024.11 及以上版本, 在线视图中可以显示 eBIC。
 - 。 为此, 在 EtherCAT → Advanced Settings → Diagnostics 中勾选"Show Beckhoff Identification Code (BIC)"复选框:

。 然后显示 BTN 及其内容:

- 。注意:从图中可以看出,从 2012 年开始,生产数据包括软件版本、硬件版本和生产日期,也可以用 "Show Production Info"来显示。
- 。 从 PLC 访问: TwinCAT 3.1. build 4024.24 及以上版本起,通过Tc2_EtherCAT 库的 v3.3.19.0 及以 上版本提供功能块 *FB_EcReadBIC*和 *FB_EcReadBTN* 用于读取数据到 PLC。
- 带有 CoE 目录的 EtherCAT 设备还可以通过对象 0x10E2:01 显示自己的 eBIC,PLC 也可以轻松访问这些 eBIC:

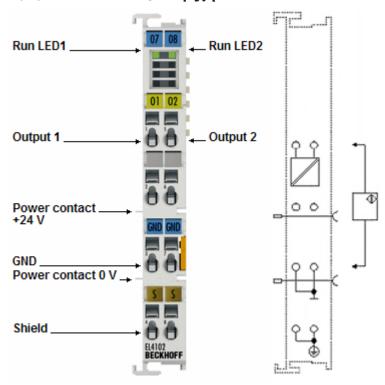
。 设备必须处于 PREOP/SAFEOP/OP 状态下才能访问:

Ind	lex	Name	Rags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
*	1011:0	Restore default parameters	RO	>1<		
	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- 。 对象 0x10E2 将在批量产品的必要固件修订过程中优先引入。
- 。此 TwinCAT 3.1. build 4024.24 及以上版本,通过 Tc2_EtherCAT 库的 v3.3.19.0 及以上版本提供功能块 FB_EcCoEReadBIC和 FB_EcCoEReadBTN用于读取数据到 PLC
- ・ 为了在 PLC 中处理 BIC/BTN 数据,截至 TwinCAT 3.1 build 4024.24 版本,*Tc2_Utilities* 中提供了以下 辅助功能
 - 。 F_SplitBIC: 该函数使用已知的标识符将倍福识别代码 (BIC) sBICValue 分割成不同的部分,并将识别出的子字符串作为返回值存储在 ST_SplitBIC 结构中
 - 。 BIC_TO_BTN: 该函数从 BIC 中提取 BTN 并将其作为返回值返回
- · 注意:如果进行进一步电子处理,BTN 应作为一个string (8) 来处理;标识符 "SBTN"不是 BTN 的一部分。
- 技术背景

在设备生产过程中,新的 BIC 信息被作为一个附加的类别写入 ESI-EEPROM 中。ESI 内容的结构主要由 ETG 规范决定,因此,供应商附加的特定内容是按照 ETG.2010 规定的类别存储的。ID 03 的信息表明,所有 EtherCAT 主站在 ESI 更新时,不得覆盖这些数据,也不得在 ESI 更新后恢复这些数据。该数据的结构依照 BIC 的内容,参见此处。因此,EEPROM 需要大约 50...200 字节的内存。

- 特殊情况
 - 。 如果一个设备中安装了多个分层排列的 ESC,则只有最上层的 ESC 携带 eBIC 信息。
 - 。 如果一个设备中安装了多个非分层排列的 ESC,所有 ESC 都携带 eBIC 信息。
 - 。 如果设备由几个具有自己身份的子设备组成,但只有最上层设备可以通过 EtherCAT 访问,则最上层设备的 eBIC 位于 CoE 对象目录 0x10E2:01,子设备的 eBIC 位于 0x10E2:nn。


PROFIBUS、PROFINET、和 DeviceNet 设备

目前,没有计划对这些设备的信息进行电子存储和读取。

2 产品描述

2.1 EL4102

2.1.1 EL4102 - 简介

附图 4: EL4102

2 通道模拟量输出端子模块, 0 V 至 +10 V

EL4102 模拟量输出端子模块可生成 0 V 至 +10 V 范围内的信号。

该端子模块能够为现场设备提供分辨率为 16 位的电压,而且它们之间互相电气隔离。端子模块的输出通道具有一个公共的接地电位。运行 LED 指示总线耦合器的数据交换状态。

快速链接

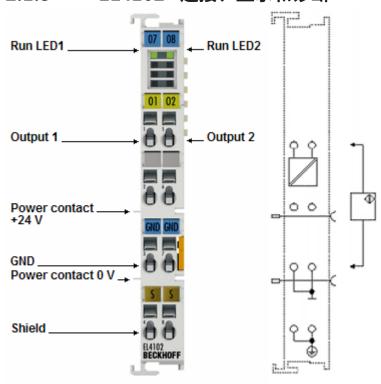
- · <u>技术数据 [▶ 19]</u>
- · <u>连接、显示和诊断 [▶ 20]</u>
- · <u>安装和接线 [▶56]</u>
- · <u>调试 [▶ 77]</u>

2.1.2 EL4102 - 技术数据

技术数据		EL4102		
输出数量		2		
输出电压		0 V+10 V(短路保护)		
测量误差		< ± 0.1% (0 °C +55 °C,相对于满量程值) < ± 0.2%(当使用宽温范围时)		
分辨率		16 位(包括符号)		
采样类型		同步		
参考地		单端		
负载		> 5 kΩ		
分布式时钟(DC)		是,EL4102-0000-1017 及以上		
最大采样率(输出速	DC 已禁用 **)	正常运行:10 kSps(相当于 EtherCAT 最小循环时间 100 μs)		
率)		快速模式: 15 kSps(相当于 EtherCAT 最小循环时间 66.6 μs)		
		快速模式 1 通道:20 kSps(相当于 EtherCAT 最小循环时间 50 μs)		
	DC 已启用	正常运行:5 kSps(相当于 EtherCAT 最小循环时间 200 μs)		
		快速模式:不支持		
输出电源		通过 E-bus 供电		
电子元件的电源		通过 E-bus 供电		
E-bus 电流消耗		典型值 170 mA(210 mA ^{***)})		
电气隔离		500 V(E-bus/现场电压)		
过程映像中的位宽		输出: 2 x 16 位数据		
配置		无须地址或配置设置		
重量		约 55 g		
运行期间允许的环境温	B 度范围	-25 °C +60 °C (宽温范围)		
存储期间允许的环境温	l度范围	-40 °C +85 °C		
允许的相对空气湿度		95 %,无冷凝		
外形尺寸(WxHxD)		约 15 mm x 100 mm x 70 mm(对齐宽度:12 mm)		
安装[▶64]		35 mm 安装轨道,符合 EN 60715 标准		
抗振性 / 耐冲击性		符合 EN 60068-2-6 / EN 60068-2-27 标准, 另见增强抗振模块的 <u>安装说明 [▶ 67]</u>		
抗电磁干扰/抗电磁辐射性能		符合 EN 61000-6-2/EN 61000-6-4 标准		
防护等级		IP20		
安装位置		可变		
标识/认证*)		CE、EAC、UKCA、CCC ATEX [▶ 58]、IECEX [▶ 59]、cULus [▶ 63]		

^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。

其他标志


标准	标志	
ATEX	II 3 G Ex ec IIC T4 Gc	
IECEx	Ex ec IIC T4 Gc	

^{**)}SyncManager 同步,EtherCAT 帧触发。 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

^{***)} 适用于 HW 18/FW 09、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合

2.1.3 EL4102 - 连接、显示和诊断

附图 5: LED 和 EL4102 连接

LED

LED	颜色	含义	含义	
RUN	绿色	该LED 显示端子模块正处于的工作状态:		
		熄灭	<u>EtherCAT 状态机 [▶ 47]</u> 的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> <u>更新 [▶ 216]</u> 的功能	
闪烁 EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置		EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置		
		单次闪烁	EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager</u> [▶ 128] 通道和分布时钟。 输出保持在安全状态	
1		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信	

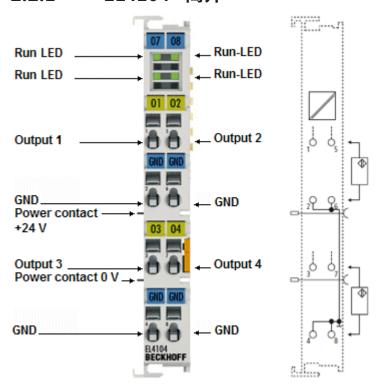
如果存在多个 RUN LED,则它们的功能都相同。

连接

端子模块接点		注释	内部连接说明	最大电流承载能力*)
名称	编号			
输出1	1	输出1	-	由输出功率决定
-	2	无功能	-	-
GND	3	输出1的信号地	7	40 mA
屏蔽	4	Shield (FE)	8,安装导轨	100 mA **)
输出 2	5	输出 2	-	由输出功率决定
-	6	无功能	-	-
GND	7	输出 2 的信号地	3	40 mA
屏蔽	8	Shield (FE)	4,安装导轨	100 mA **)

*) 常数和峰值

^{**)} 禁止屏蔽线带电!


端子模块上的"无功能"接点

由于生产原因,端子模块可能配有"无功能"接点,但不得连接导线。

2.2 EL4104

2.2.1 EL4104 - 简介

附图 6: EL4104

4 通道模拟量输出端子模块, 0 V 至 +10 V

EL4104模拟量输出端子模块可生成0至10V范围内的信号。

该端子模块的分辨率为 16 位,以电气隔离的形式将电压传输给处理设备。EtherCAT 端子模块的输出通道具有一个公共的接地电位。运行 LED 指示总线耦合器的数据交换状态。

快速链接

- 技术数据[▶22]
- · 连接、显示和诊断 [▶ 23]
- · 安装和接线 [▶ 56]
- 调试 [▶ 77]

2.2.2 EL4104 - 技术数据

技术数据	EL4104		
输出数量	4		
输出电压	0 V10 V(短路保护)		
精度	< ± 0.1% (0 °C +55 °C,相对于满量程值)< ± 0.2% (当使用宽温范围时)		
分辨率	16 位(包括符号)		
采样类型	同步		
参考地	单端		
负载	> 5 kΩ		
分布式时钟(DC)	是		
最大采样率(输出速 DC 已禁用 **)	4 kSps(相当于 EtherCAT 最小循环时间 250 μs)		
率) DC 已启用	2.5 kSps(相当于 EtherCAT 最小循环时间 400 μs)		
电子元件的电源	通过 E-bus 供电		
输出电源	通过 E-bus 供电		
E-bus 电流消耗	典型值 190 mA		
电气隔离	500 V(E-bus/现场电压)		
过程映像中的位宽	输出: 4 x 16 位数据		
配置	无须地址或配置设置		
重量	约 65 g		
运行期间允许的环境温度范围	-25 °C +60 °C (宽温范围)		
存储期间允许的环境温度范围	-40 °C +85 °C		
允许的相对空气湿度	95%,无冷凝		
外形尺寸(WxHxD)	约 15 mm x 100 mm x 70 mm(对齐宽度:12 mm)		
安装 [▶ 64]	35 mm 安装轨道,符合 EN 60715 标准		
抗振性/耐冲击性	符合 EN 60068-2-6/EN 60068-2-27 标准		
	另见增强抗振模块的安装说明 [▶ 67]		
抗电磁干扰/抗电磁辐射性能	符合 EN 61000-6-2/EN 61000-6-4 标准		
防护等级	IP20		
安装位置	可变		
标识/认证*)	CE、EAC、UKCA、CCC ATEX [▶ 58]、IECEX [▶ 59]、cULus [▶ 63]		


^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。

其他标志

标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

^{**)}SyncManager 同步,EtherCAT 帧触发。 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

2.2.3 EL4104 - 连接、显示和诊断

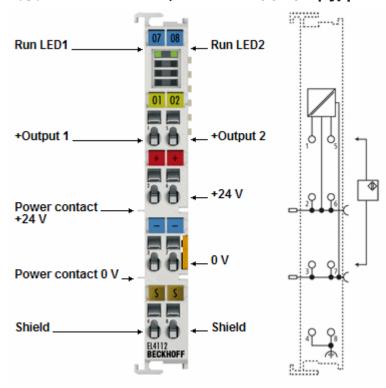
附图 7: LED 和 EL4104 连接

LED

LED	颜色	含义	
RUN	绿色	该LED 显示端子模块正处于的工作状态:	
		熄灭	EtherCAT 状态机 [▶ 47]的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> 更新 [▶ 216]的功能
闪烁 EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标		EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置	
			EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager</u> [▶ <u>128</u>] 通道和分布时钟。 输出保持在安全状态
		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信

如果存在多个 RUN LED,则它们的功能都相同。

连接


端子模块接点		注释	内部连接说明	最大电流承载能力*)
名称	编号			
输出1	1	输出1	4, 6, 8	由输出功率决定
GND	2	输出1的信号地	-	40 mA
输出3	3	输出 3	2, 6, 8	由输出功率决定
GND	4	输出3的信号地	-	40 mA
输出 2	5	输出 2	2, 4, 8	由输出功率决定
GND	6	输出2的信号地	-	40 mA
输出4	7	输出 4	2, 4, 6	由输出功率决定
GND	8	输出 4 的信号地	-	40 mA

*) 常数和峰值

2.3 EL4112、EL4112-0010

2.3.1 EL4112、EL4112-0010 - 简介

附图 8: EL4112-00xx

2 通道模拟量输出端子模块, 0 mA 至 20 mA, -10 mA 至 +10 mA

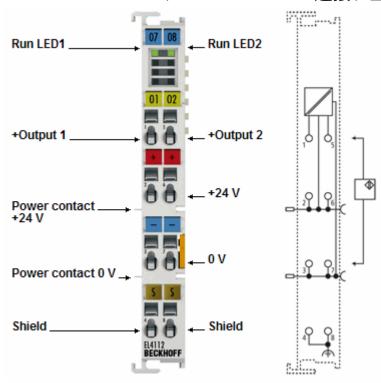
EL4112 模拟量输出端子模块可生成 0 mA 至 20 mA 范围内的信号。 EL4112-0010 模拟量输出端子模块可生成 -10 mA 至 +10 mA 范围内的信号。 端子模块以电气隔离的方式为现场设备供电,分辨率为 16 位。端子模块的输出通道具有一个公共的接地电位。运行 LED 指示总线耦合器的数据交换状态。

快速链接

- 技术数据 [▶ 25]
- 连接、显示和诊断 [▶ 26]
- 安装和接线 [▶ 56]
- ・ 调试 [▶ 77]

2.3.2 EL4112、EL4112-0010 - 技术数据

技术数据		EL4112	EL4112-0010	
输出数量		2		
每通道输出电流		0 20 mA (短路保护)	-10 +10 mA(短路保护)	
精度		± 0.1% 满量程值	± 0.3% 满量程值(负载 < 200 Ω 时,最大允许 500 Ω)	
分辨率		16 位(包括符号)		
采样类型		同步		
参考地		单端		
负载 [▶192]		< 500 Ω		
分布式时钟(DC)	1	是,EL4112-0000-1017 及以上	是,EL4112-0010-1017 及以上	
最大采样率(输	DC 已禁用 **)	正常运行:10 kSps(相当于 EtherCAT 最小循环	F时间 100 μs)	
出速率)		快速模式:15 kSps(相当于 EtherCAT 最小循环	际时间 66.6 μs)	
		快速模式 1 通道:20 kSps(相当于 EtherCAT 最	小循环时间 50 μs)	
	DC 已启用	正常运行: 5 kSps(相当于 EtherCAT 最小循环	时间 200 μs)	
		快速模式:不支持		
输出电源		通过电源触点		
电源触点电流消耗	 €	典型值 15 mA + 负载		
电子元件的电源		通过 E-bus 供电		
E-bus 电流消耗		典型值 110 mA(160 mA ^{***)})	典型值 110 mA(150 mA ^{****)})	
电气隔离		500 V(E-bus/现场电压)		
过程映像中的位置	Ī	输出: 2 x 16 位数据		
配置		无须地址或配置设置		
重量		约 60 g	约 65 g	
运行期间允许的环	下境温度范围 	0 °C +55 °C		
存储期间允许的环	下境温度范围 	-25 °C +85 °C		
允许的相对空气湿	虚度	95 %,无冷凝		
外形尺寸(WxH	x D)	约 15 mm x 100 mm x 70 mm (对齐宽度: 12 mm)		
安装 [▶ 64]		35 mm 安装轨道,符合 EN 60715 标准		
抗振性 / 耐冲击性		符合 EN 60068-2-6 / EN 60068-2-27 标准 另见增强抗振模块的安装说明 [▶ 67]		
抗电磁干扰/抗电磁辐射性能		符合 EN 61000-6-2/EN 61000-6-4 标准		
防护等级		IP20		
安装位置		可变		
标识 / 认证 ^{*)}		CE、EAC、UKCA、CCC ATEX[▶57]、IECEX[▶59]、cULus[▶63]		


- *) 真正适用的认证/标志见侧面的型号牌(产品标志)。
- **)SyncManager 同步,EtherCAT 帧触发。 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。
- ***) 适用于 HW 12/FW 09、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合
- ***) 适用于 HW 09/FW 09、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合

其他标志

标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

2.3.3 EL4112、EL4112-0010 - 连接、显示和诊断

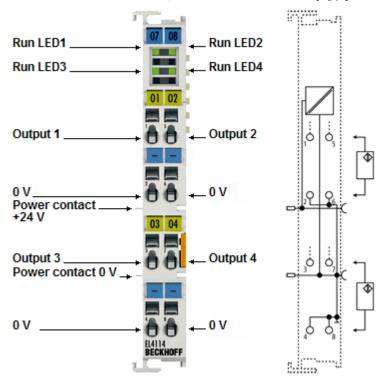
附图 9: LED 和 EL4112-00xx 连接

LED

LED	颜色	含义			
RUN	绿色	该LED 显示站	该LED 显示端子模块正处于的工作状态:		
熄灭 <u>EtherCAT 状态机 [▶ 47]</u> 的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 更新 [▶ 216]的功能		<u>EtherCAT 状态机</u> [▶ <u>47]</u> 的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> <u>更新</u> [▶ <u>216]</u> 的功能			
		闪烁 EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置			
		单次闪烁	EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager</u> [▶ <u>128</u>] 通道和分布时钟。 输出保持在安全状态		
常亮 EtherCAT 状态机的状态: OP		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信		

如果存在多个 RUN LED,则它们的功能都相同。

连接


端子模块接点		注释	内部连接说明	最大电流承载能力*)
名称	编号			
输出1	1	输出1	-	由输出功率决定
+24 V	2	+24 V	6,正电源触点	4 A
0 V	3	0 V,输出 1 的信号地	7,负电源触点	4 A
屏蔽	4	Shield (FE)	8,安装导轨	100 mA **)
输出 2	5	输出 2	-	由输出功率决定
+24 V	6	+24 V	2,正电源触点	4 A
0 V	7	0 V,输出 2 的信号地	3,负电源触点	4 A
屏蔽	8	Shield (FE)	4,安装导轨	100 mA **)

^{*)} 常数和峰值

^{**)} 禁止屏蔽线带电!

2.4 EL4114、EL4114-0020

2.4.1 EL4114、EL4114-0020 - 简介

附图 10: EL4114-xxxx

4 通道模拟量输出端子模块, 0 mA 至 20 mA

EL4114 模拟量输出端子模块可生成 0 至 20 mA 范围内的信号。 该端子模块的分辨率为16 位,模块输出和通信接口之间电气隔离。EtherCAT 端子模块的输出通道有一个 $24\,V_{DC}$ 的公共接地电位。输出端由 $24\,V$ 电源供电。运行 LED 指示总线耦合器的数据交换状态。 EL4114-0020 提供校准型号,附有工厂校准证书 [\blacktriangleright 61]。

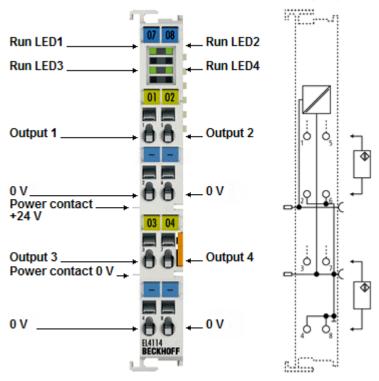
快速链接

- · <u>技术数据</u>[▶ <u>28</u>]
- · 连接、显示和诊断 [▶ 29]
- · 安装和接线 [▶ 56]
- 调试[▶77]

2.4.2 EL4114、EL4114-0020 - 技术数据

技术数据		EL4114	EL4114-0020	
输出数量		4		
每通道输出电流		0 mA 至 20 mA(短路保护)		
精度		土 0.1% 满量程值		
分辨率		16 位(包括符号)		
采样类型		同步		
参考地		单端		
负载		< 350 Ω(短路保护)		
分布式时钟(DC)		是		
最大采样率(输出速	DC 已禁用 **)	4 kSps(相当于 EtherCAT 最小循环时间 25	i0 μs)	
率)	DC 已启用	2.5 kSps(相当于 EtherCAT 最小循环时间。	400 μs)	
输出电源		通过电源触点		
电源触点电流消耗		典型值 15 mA + 负载		
电子元件的电源		通过 E-bus 供电		
E-bus 电流消耗		典型值 110 mA(265 mA ^{····})		
电气隔离		500 V(E-bus/现场电压)		
过程映像中的位宽		输出: 4 x 16 位数据		
配置		无须地址或配置设置		
重量		约 65 g		
运行期间允许的环境流	温度范围	0 °C +55 °C		
存储期间允许的环境流	温度范围	-25 °C +85 °C		
允许的相对空气湿度		95 %,无冷凝		
外形尺寸(WxHxD))	约 15 mm x 100 mm x 70 mm (对齐宽度: 12 mm)		
安装		35 mm 安装轨道,符合 EN 60715 标准		
抗振性/耐冲击性		符合 EN 60068-2-6/EN 60068-2-27 标准		
		另见增强抗振模块的安装说明		
抗电磁干扰/抗电磁辐射性能		符合 EN 61000-6-2/EN 61000-6-4 标准		
防护等级		IP20		
安装位置		可变	可变	
原厂标准校准证书[▶	61]	-	是	
标识/认证*)		CE、EAC、UKCA、CCC ATEX[\(\big) 57\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\		

^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。


其他标志

标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

^{**)}SyncManager 同步,EtherCAT 帧触发 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

^{***)} 适用于 HW 08/FW 03、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合

2.4.3 EL4114、EL4114-0020 - 连接、显示和诊断

附图 11: LED 和 EL4114-00xx 连接

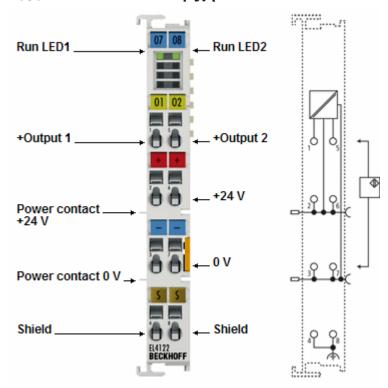
LED

LED	颜色	含义		
RUN 绿色		该LED 显示站	岩子模块正处于的工作状态:	
		熄灭	<u>EtherCAT 状态机</u> [▶ <u>47]</u> 的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> <u>更新</u> [▶ <u>216]</u> 的功能	
		闪烁	EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置	
		单次闪烁	EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager [▶ 128]</u> 通道和分布时钟。 输出保持在安全状态	
		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信	

如果存在多个 RUN LED,则它们的功能都相同。

连接

端子模块接点		描述	内部短接至	最大电流承载能力*)
名称	编号			
输出1	1	输出1	-	根据输出功率确定
0 V	2	0 V,输出 1 的信号地	4、6、8; 负电源触点	500 mA
输出3	3	输出 3	-	根据输出功率确定
0 V	4	0 V,输出 3 的信号地	2、6、8; 负电源触点	500 mA
输出 2	5	输出 2	-	根据输出功率确定
0 V	6	0 V,输出 2 的信号地	2、4、8; 负电源触点	500 mA
输出 4	7	输出 4	-	根据输出功率确定
0 V	8	0 V,输出 4 的信号地	2、4、6; 负电源触点	500 mA


*) 常数和峰值

2.5 EL4122

产品描述

2.5.1 EL4122 - 简介

附图 12: EL4122

2 通道模拟量输出端子模块, 4 mA 至 20 mA

EL4122 模拟量输出端子模块可生成 4 mA 至 20 mA 范围内的信号。

端子模块以电气隔离的方式为现场设备供电,分辨率为 16 位。端子模块的输出通道具有一个公共的接地电位。运行 LED 指示总线耦合器的数据交换状态。

快速链接

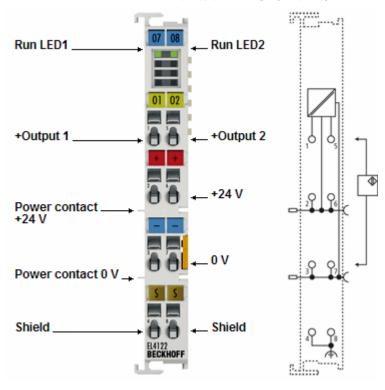
- 技术数据[▶31]
- · 连接、显示和诊断 [▶ 32]
- · 安装和接线 [▶ 56]
- · <u>调试 [▶ 77]</u>

2.5.2 EL4122 - 技术数据

技术数据		EL4122	
输出数量		2	
每通道输出电流 4		4 20 mA (短路保护)	
精度		± 0.1% 满量程值	
分辨率		16 位(包括符号)	
采样类型		同步	
参考地		单端	
负载 [▶ 192]		< 500 Ω	
分布式时钟(DC))	是,EL4122-0000-1017 及以上	
最大采样率(输	DC 已禁用 **)	正常运行:10 kSps(相当于 EtherCAT 最小循环时间 100 μs)	
出速率)		快速模式:15 kSps(相当于 EtherCAT 最小循环时间 66.6 μs)	
		快速模式 1 通道:20 kSps(相当于 EtherCAT 最小循环时间 50 μs)	
	DC 已启用	正常运行:5 kSps(相当于 EtherCAT 最小循环时间 200 μs)	
		快速模式: 不支持	
输出电源		通过电源触点	
电源触点电流消耗	€	典型值 15 mA + 负载	
电子元件的电源		通过 E-bus 供电	
E-bus 电流消耗		典型值 110 mA(160 mA ^{····})	
电气隔离		500 V(E-bus/现场电压)	
过程映像中的位置	₹	输出: 2 x 16 位数据	
配置		无须地址或配置设置	
重量		约 60 g	
运行期间允许的环	不境温度范围	0 °C +55 °C	
存储期间允许的环	不境温度范围	-25 °C +85 °C	
允许的相对空气温	湿度	95 %,无冷凝	
外形尺寸(WxH	x D)	约 15 mm x 100 mm x 70 mm (对齐宽度: 12 mm)	
安装 [▶64]		35 mm 安装轨道,符合 EN 60715 标准	
抗振性 / 耐冲击性		符合 EN 60068-2-6 / EN 60068-2-27 标准 另见 <u>增强抗振模块的安装说明 [▶ 67]</u>	
抗电磁干扰/抗电	磁辐射性能	符合 EN 61000-6-2/EN 61000-6-4 标准	
防护等级		IP20	
安装位置		可变	
13.001		CE、EAC、UKCA、CCC ATEX [▶ 57]、 IECEx [▶ 59]、 cULus [▶ 63]	

^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。

其他标志


标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

^{**)}SyncManager 同步,EtherCAT 帧触发 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

^{***)}适用于 <u>HW 12/FW 09、修订版 -1021 [▶ 213]</u> 之前的 HW/FW/修订版组合

2.5.3 EL4122 - 连接、显示和诊断

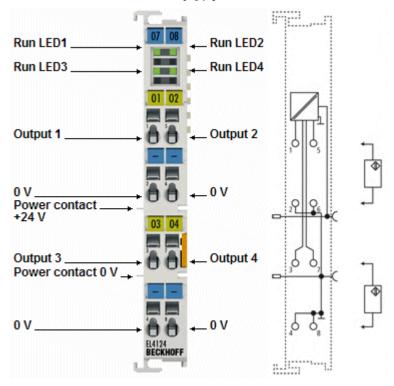
附图 13: LED 和 EL4122 连接

LED

LED	颜色	含义		
更新 [▶ 216]的功		该LED 显示站	端子模块正处于的工作状态:	
		熄灭	<u>EtherCAT 状态机</u> [▶ <u>47]</u> 的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> <u>更新</u> [▶ <u>216]</u> 的功能	
		闪烁	EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置	
		单次闪烁	EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager</u> [▶ <u>128</u>] 通道和分布时钟。 输出保持在安全状态	
		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信	

如果存在多个 RUN LED,则它们的功能都相同。

连接


端子模块接点		注释	内部连接说明	最大电流承载能力*)
名称	编号			
输出1	1	输出1	-	由输出功率决定
+24 V	2	+24 V	6,正电源触点	4 A
0 V	3	0 V,输出 1 的信号地	7,负电源触点	4 A
屏蔽	4	Shield (FE)	8,安装导轨	100 mA **)
输出 2	5	输出 2	-	由输出功率决定
+24 V	6	+24 V	2,正电源触点	4 A
0 V	7	0 V,输出 2 的信号地	3,负电源触点	4 A
屏蔽	8	Shield (FE)	4,安装导轨	100 mA **)

^{*)} 常数和峰值

^{**)} 禁止屏蔽线带电!

2.6 EL4124

2.6.1 EL4124 - 简介

附图 14: EL4124

4 通道模拟量输出端子模块, 4 mA 至 20 mA

EL4124 模拟量输出端子模块可生成 4 至 20 mA 范围内的信号。该端子模块的分辨率为16 位,模块输出和通信接口之间电气隔离。EtherCAT 端子模块的输出通道有一个 $24~V_{DC}$ 的公共接地电位。输出端由 24~V 电源供电。运行 LED 指示总线耦合器的数据交换状态。

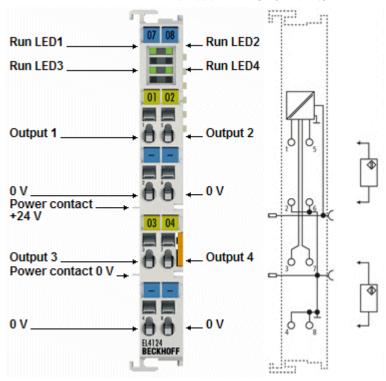
快速链接

- 技术数据 [▶ 34]
- · 连接、显示和诊断 [▶ 35]
- · 安装和接线 [▶ 56]
- 调试[▶77]

2.6.2 EL4124 - 技术数据

技术数据	EL4124		
输出数量	4		
每通道输出电流	4 mA 至 20 mA(短路保护)		
精度	± 0.1% 满量程值		
分辨率	16 位(包括符号)		
采样类型	同步		
参考地	单端		
负载[▶192]	< 350 Ω(短路保护)		
分布式时钟(DC)	是		
最大采样率(输出速 DC 已禁用 **)	4 kSps(相当于 EtherCAT 最小循环时间 250 μs)		
率) DC 已启用	2.5 kSps(相当于 EtherCAT 最小循环时间 400 μs)		
输出电源	通过电源触点		
电源触点电流消耗	典型值 15 mA + 负载		
电子元件的电源	通过 E-bus 供电		
E-bus 电流消耗	典型值 110 mA(190 mA ^{***)})		
电气隔离	500 V(E-bus/现场电压)		
过程映像中的位宽	输出: 4 x 16 位数据		
配置	无须地址或配置设置		
重量	约 65 g		
运行期间允许的环境温度范围	0 °C +55 °C		
存储期间允许的环境温度范围	-25 °C +85 °C		
允许的相对空气湿度	95 %,无冷凝		
外形尺寸 (WxHxD)	约 15 mm x 100 mm x 70 mm(对齐宽度:12 mm)		
安装 [▶64]	35 mm 安装轨道,符合 EN 60715 标准		
抗振性 / 耐冲击性	符合 EN 60068-2-6/EN 60068-2-27 标准		
	另见增强抗振模块的安装说明 [▶ 67]		
抗电磁干扰/抗电磁辐射性能	符合 EN 61000-6-2/EN 61000-6-4 标准		
防护等级	IP20		
安装位置	可变		
标识/认证"	CE、EAC、UKCA、CCC ATEX [▶ 57]、 IECEX [▶ 59]、 cULus [▶ 63]		

^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。


其他标志

标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

^{**)}SyncManager 同步,EtherCAT 帧触发 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

^{***)}适用于 HW 08/FW 03、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合

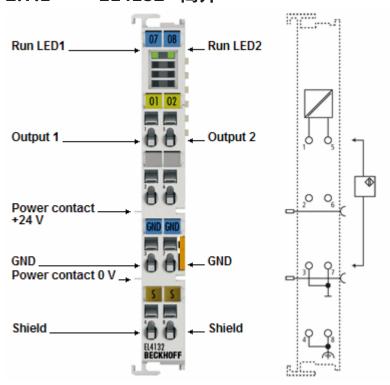
2.6.3 EL4124 - 连接、显示和诊断

附图 15: LED 和 EL4124 连接

LED

LED	颜色	含义		
RUN		号子模块正处于的工作状态:		
		熄灭	EtherCAT 状态机 [▶ 47]的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> 更新 [▶ 216]的功能	
		EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置		
			EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager</u> [▶ <u>128</u>] 通道和分布时钟。 输出保持在安全状态	
		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信	

如果存在多个 RUN LED,则它们的功能都相同。


连接

端子模块接点		描述	内部短接至	最大电流承载能力*)
名称	编号			
输出1	1	输出1	-	根据输出功率确定
0 V	2	0 V,输出 1 的信号地	4、6、8; 负电源触点	500 mA
输出 3	3	输出 3	-	根据输出功率确定
0 V	4	0 V,输出 3 的信号地	2、6、8; 负电源触点	500 mA
输出 2	5	输出 2	-	根据输出功率确定
0 V	6	0 V,输出 2 的信号地	2、4、8; 负电源触点	500 mA
输出 4	7	输出 4	-	根据输出功率确定
0 V	8	0 V,输出 4 的信号地	2、4、6; 负电源触点	500 mA

*) 常数和峰值

2.7 EL4132

2.7.1 EL4132 - 简介

附图 16: EL4132

2 通道模拟量输出端子模块,-10 V 至 +10 V

EL4132 模拟量输出端子模块可生成 -10 V 至 +10 V 范围内的信号。 该端子模块能够为现场设备提供分辨率为 16 位的电压,而且它们之间互相电气隔离。端子模块的输出通道具 有一个公共的接地电位。运行 LED 指示总线耦合器的数据交换状态。

快速链接

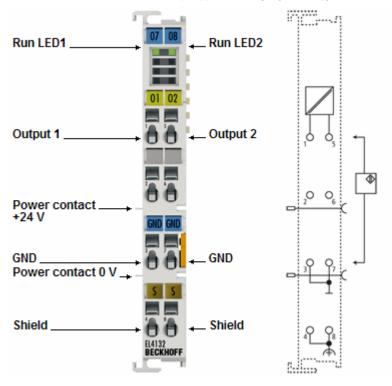
- · 技术数据 [▶ 37]
- 连接、显示和诊断 [▶ 38]
- · 安装和接线 [▶ 56]
- 调试 [▶ 77]

2.7.2 EL4132 - 技术数据

技术数据		EL4132		
输出数量		2		
输出电压		-10 V+10 V(短路保护)		
		< ± 0.1% (0°C+55°C,相对于满量程值)		
		16 位(包括符号)		
		同步		
参考地		单端		
负载		+		
分布式时钟(DC)		是,EL4132-0000-1017 及以上		
最大采样率(输出速	DC 已禁用 **)	正常运行: 10 kSps(相当于 EtherCAT 最小循环时间 100 μs)		
率)	,	快速模式: 15 kSps(相当于 EtherCAT 最小循环时间 66.6 μs)		
		快速模式 1 通道: 20 kSps(相当于 EtherCAT 最小循环时间 50 μs)		
	DC 已启用	正常运行: 5 kSps(相当于 EtherCAT 最小循环时间 200 µs)		
		快速模式:不支持		
输出电源		通过 E-bus 供电		
电子元件的电源		通过 E-bus 供电		
E-bus 电流消耗		典型值 170 mA(210 mA ^{***)})		
电气隔离		500 V(E-bus/现场电压)		
过程映像中的位宽		输出: 2 x 16 位数据		
配置		无须地址或配置设置		
重量		约 55 g		
运行期间允许的环境温	追度范围	-25 °C +60 °C (宽温范围)		
存储期间允许的环境温		-40 °C +85 °C		
允许的相对空气湿度		95 %,无冷凝		
外形尺寸(WxHxD)		约 15 mm x 100 mm x 70 mm(对齐宽度:12 mm)		
安装[▶64]		35 mm 安装轨道,符合 EN 60715 标准		
抗振性 / 耐冲击性		符合 EN 60068-2-6 / EN 60068-2-27 标准, 另见增强抗振模块的安装说明 [▶ 67]		
抗电磁干扰/抗电磁辐射性能		符合 EN 61000-6-2/EN 61000-6-4 标准		
防护等级		IP20		
安装位置		可变		
标识/认证')		CE、EAC、UKCA、CCC ATEX[* 58]、IECEX[* 59]、cULus[* 63]		

^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。

其他标志


标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

^{**)}SyncManager 同步,EtherCAT 帧触发。 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

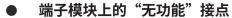
^{***)} 适用于 HW 18/FW 09、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合

2.7.3 EL4132 - 连接、显示和诊断

附图 17: LED 和 EL4132 连接

LED

LED	颜色	含义		
RUN	绿色	该LED 显示端子模块正处于的工作状态:		
		熄灭	EtherCAT 状态机 [▶ 47]的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> 更新 [▶ 216]的功能	
		闪烁 EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置		
			EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager</u> [▶ <u>128</u>] 通道和分布时钟。 输出保持在安全状态	
		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信	

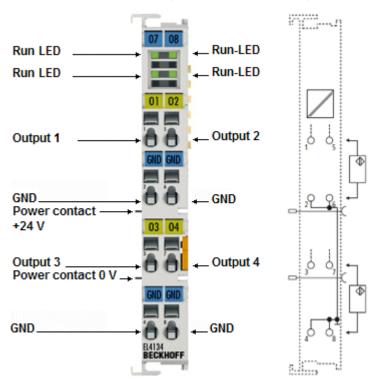

如果存在多个 RUN LED,则它们的功能都相同。

连接

端子模块接点		注释	内部连接说明	最大电流承载能力*)
名称	编号			
输出1	1	输出1	-	由输出功率决定
-	2	无功能	-	-
GND	3	输出1的信号地	7	40 mA
屏蔽	4	Shield (FE)	8,安装导轨	100 mA **)
输出 2	5	输出 2	-	由输出功率决定
-	6	无功能	-	-
GND	7	输出 2 的信号地	3	40 mA
屏蔽	8	Shield (FE)	4,安装导轨	100 mA **)

*) 常数和峰值

^{**)} 禁止屏蔽线带电!



由于生产原因,端子模块可能配有"无功能"接点,但不得连接导线。

38 版本: 5.0.0 EL41xx

2.8 EL4134、EL4134-0020、EL4134-0030

2.8.1 EL4134、EL4134-0020、EL4134-0030 - 简介

附图 18: EL4134-00xx

4通道模拟量输出端子模块,-10 V至+10 V

EL4134 模拟量输出端子模块可生成 -10 V 至 +10 V 范围内的信号。

该端子模块的分辨率为 16 位,以电气隔离的形式将电压传输给处理设备。EtherCAT 端子模块的输出通道具有一个公共的接地电位。运行 LED 指示总线耦合器的数据交换状态。

EL4134-0020 提供校准型号,附有<u>工厂校准证书 [▶61]</u>,EL4134-0030 附有<u>"DAkkS"或 ISO 17025 证书</u> [▶<u>61]</u>,由与倍福合作的授权服务供应商提供。

快速链接

- 技术数据 [▶40]
- · 连接、显示和诊断 [▶ 42]
- · 安装和接线 [▶ 56]
- 调试 [▶ 77]

2.8.2 EL4134 - 技术数据

技术数据	EL4134
输出数量	4
输出电压	-10 V+10 V(短路保护)
精度	< ± 0.1% (0 °C +55 °C,相对于满量程值)
分辨率	16 位(包括符号)
采样类型	同步
参考地	单端
负载	> 5 kΩ
分布式时钟(DC)	是
最大采样率(输出速 DC 已禁用 **)	4 kSps(相当于 EtherCAT 最小循环时间 250 μs)
率) DC 已启用	2.5 kSps(相当于 EtherCAT 最小循环时间 400 μs)
电子元件的电源	通过 E-bus 供电
输出电源	通过 E-bus 供电
E-bus 电流消耗	典型值 190 mA(265 mA ^{***)})
电气隔离	500 V(E-bus/现场电压)
过程映像中的位宽	输出: 4 x 16 位数据
配置	无须地址或配置设置
重量	约 65 g
运行期间允许的环境温度范围	-25 °C +60 °C (宽温范围)
存储期间允许的环境温度范围	-40 °C +85 °C
允许的相对空气湿度	95 %,无冷凝
外形尺寸(W×H×D)	约 15 mm x 100 mm x 70 mm(对齐宽度:12 mm)
安装 [▶64]	35 mm 安装轨道,符合 EN 60715 标准
抗振性/耐冲击性	符合 EN 60068-2-6/EN 60068-2-27 标准
	另见增强抗振模块的安装说明 [▶ 67]
抗电磁干扰/抗电磁辐射性能	符合 EN 61000-6-2/EN 61000-6-4 标准
防护等级	IP20
安装位置	可变
标识/认证')	CE、EAC、UKCA、CCC ATEX[▶58]、IECEX[▶59]、cULus[▶63]

^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。

其他标志

标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

40 版本: 5.0.0 EL41xx

^{**)}SyncManager 同步,EtherCAT 帧触发。 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

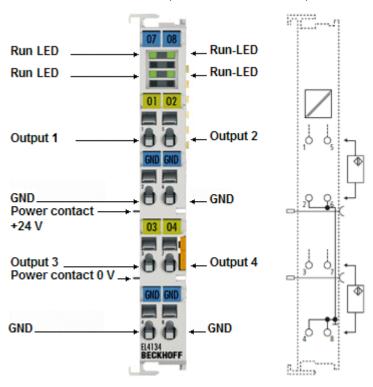
^{***)} 适用于 HW 10/FW 03、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合

2.8.3 EL4134-0020、EL4134-0030 - 技术数据

技术数据		EL4134-0020 EL4134-0030		
连接技术		二线制,单端		
输出数量		4		
输出电压		-10 V+10 V(短路保护)		
精度		< ±0.1 %(相对于满刻度值)		
分辨率		16 位(包括符号)		
采样类型		同步		
参考地		单端		
负载		> 5 kΩ		
分布式时钟(DC)		是		
最大采样率(输出速	DC 已禁用 **)	4 kSps(相当于 EtherCAT 最小循环时间 250 μ	us)	
率)	DC 已启用	2.5 kSps(相当于 EtherCAT 最小循环时间 400	0 μs)	
电子元件的电源		通过 E-bus 供电		
输出电源		通过 E-bus 供电		
E-bus 电流消耗		典型值 190 mA(265 mA ^{***)})		
电气隔离		500 V(E-bus/现场电压)		
过程映像中的位宽		输出: 4 x 16 位数据		
配置		无须地址或配置设置		
重量		约 65 g		
运行期间允许的环境	温度范围	0 °C +55 °C		
存储期间允许的环境	温度范围	-25 °C +85 °C		
允许的相对空气湿度		95 %,无冷凝		
外形尺寸(WxHxD)	约 15 mm x 100 mm x 70 mm (对齐宽度: 12 mm)		
安装 [▶64]		35 mm 安装轨道,符合 EN 60715 标准		
抗振性/耐冲击性		符合 EN 60068-2-6/EN 60068-2-27 标准		
		另见增强抗振模块的安装说明 [▶ 67]		
抗电磁干扰/抗电磁辐射性能		符合 EN 61000-6-2/EN 61000-6-4 标准		
防护等级		IP20		
安装位置		可变		
校准证书		原厂标准校准证书 [▶ 61] DAkkS 或 ISO-17025 证书 [▶ 61]		
标识/认证*)		CE、EAC、UKCA、CCC ATEX[\(\bar{b}\) 57], IECEX[\(\bar{b}\) 59], cULus[\(\bar{b}\) 63]		

^{*)} 真正适用的认证/标志见侧面的型号牌(产品标志)。

其他标志


标准	标志
ATEX	II 3 G Ex ec IIC T4 Gc
IECEx	Ex ec IIC T4 Gc

^{**)}SyncManager 同步,EtherCAT 帧触发。 EL41xx 不支持超采样,因此输出速率等于 EtherCAT 循环时间。

^{***)} 适用于 HW 10/FW 03、修订版 -1021 [▶ 213] 之前的 HW/FW/修订版组合

2.8.4 EL4134、EL4134-0020、EL4134-0030 - 连接、显示和诊断

附图 19: LED 和 EL4134-00xx 连接

LED

LED	颜色	含义		
RUN	绿色	该LED 显示站	岩子模块正处于的工作状态:	
		熄灭	EtherCAT 状态机 [▶ 47]的状态: INIT = 端子模块的初始化或 BOOTSTRAP = 用于端子模块 <u>固件</u> 更新 [▶ 216]的功能	
闪烁 EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置		EtherCAT 状态机的状态: PREOP = 邮箱通信功能和不同标准设置		
			EtherCAT 状态机的状态: SAFEOP = 验证 <u>Sync Manager</u> [▶ <u>128</u>] 通道和分布时钟。 输出保持在安全状态	
		常亮	EtherCAT 状态机的状态: OP = 正常运行状态;可以进行邮箱和过程数据通信	

如果存在多个 RUN LED,则它们的功能都相同。

连接

端子模块接点		注释	内部连接说明	最大电流承载能力*)
名称	编号			
输出1	1	输出1	-	由输出功率决定
GND	2	输出1的信号地	4, 6, 8	40 mA
输出3	3	输出 3	-	由输出功率决定
GND	4	输出2的信号地	2, 6, 8	40 mA
输出2	5	输出 2	-	由输出功率决定
GND	6	输出3的信号地	2, 4, 8	40 mA
输出 4	7	输出 4	-	由输出功率决定
GND	8	输出 4 的信号地	2, 4, 6	40 mA

*) 常数和峰值

2.9 启动

调试准备:

- ・ 按照<u>安装和布线 [▶ 56]</u>章节所述,安装 EL41xx
- ・ 按照<u>调试 [▶77]</u>部分所述在 TwinCAT 中配置 EL41xx。

3 基本通讯

3.1 EtherCAT 基础知识

关于 EtherCAT 现场总线的基础知识,请参考 EtherCAT 系统文档。

3.2 EtherCAT 布线 - 线缆连接

两个 EtherCAT 设备之间的电缆长度不得超过 100 米。这源于快速以太网(FastEthernet) 技术,首要的原因是电缆长度增加导致信号衰减。如果使用规范的电缆,则允许的最大连接长度为 5 + 90 + 5 米。另请参见<u>关于</u>EtherCAT/Ethernet 基础设施的设计建议。

电缆和连接器

在连接 EtherCAT 设备时,只能使用符合 EN50173 或 ISO/IEC11801 标准的 5 类(CAT5)及以上以太网连接件(电缆 + 接头)。EtherCAT 使用 4 条线路进行信号传输。

例如,EtherCAT 使用 RJ45 插拔连接器。引脚分配与以太网标准(ISO/IEC 8802-3)兼容。

引脚	导线颜色	信号	描述
1	黄色	TD+	发送数据 +
2	橙色	TD -	发送数据 -
3	白色	RD +	接收数据+
6	蓝色	RD -	接收数据 -

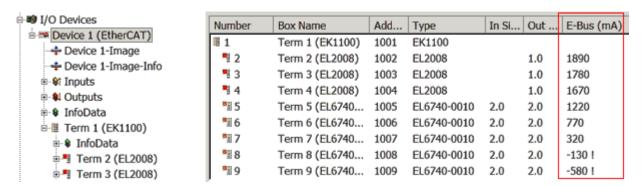
由于采用了自动电缆检测(交叉直连自适应)技术,在倍福的 EtherCAT 设备之间可以使用直连(1:1)或交叉的电缆。

● 推荐的电缆

建议使用适当的倍福组件,例如

- 电缆组件 ZK1090-9191-xxxx
- 相应的 RJ45 连接器、现场组件 ZS1090-0005
- EtherCAT 电缆、现场组件 ZB9010、ZB9020

用于连接 EtherCAT 设备的合适电缆可参见倍福公司网站!


E-bus 供电

总线耦合器可以用 5 V 的 E-bus 系统电压为添加在它上面的 EL 端子模块供电;一个耦合器通常可以提供达到 2 A的 E-Bus 电流(详见各自的设备文件)。

关于每个 EL 端子模块需要消耗多少 E-bus 电流的信息,可参见倍福公司网站和产品目录。如果连接的端子模块需要的电流超过了耦合器可以提供的电流,则必须在整组端子模块的适当位置插入E-Bus电源模块(例如 EL9410)。

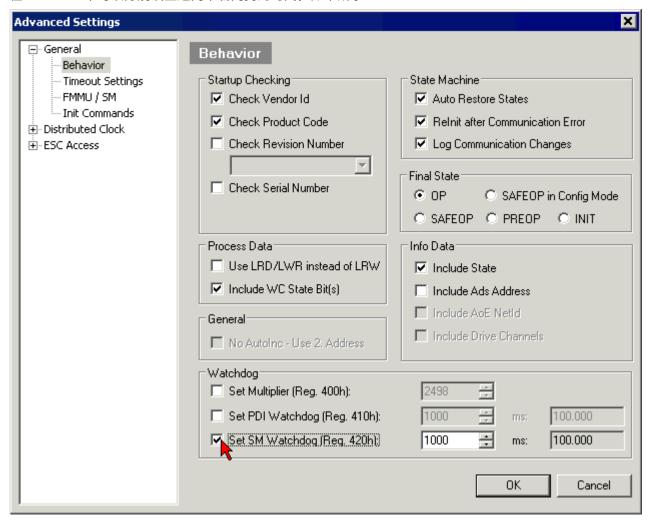
在 TwinCAT System Manager 中可以显示预计的理论上最大的 E-Bus 消耗电流。如果预计E-Bus供电不足,剩余电流总额就会是负数,并以感叹号(!)标记;在这种位置前面需要插入一个E-Bus电源模块。

附图 20: System Manager中的电流计算

注意

可能发生故障!

一个 I/O 站里面所有 EtherCAT 端子模块的 E-Bus 电源必须使用相同的接地电位!


3.3 设置看门狗的一般注意事项

EtherCAT 端子模块配备了一个安全装置(看门狗),如果发生过程数据通讯中断的情况,就会根据设置在预定时间后将输出(如果存在)切换到预设状态,例如切换到 FALSE(关闭)或某个输出值。

EtherCAT 从站控制器(ESC)有两个看门狗:

SM 看门狗 (默认: 100 ms)PDI 看门狗 (默认: 100 ms)

在 TwinCAT 中可以分别设置这两个看门狗的时间,如下所示:

附图 21: EtherCAT 选项卡 -> Advanced Settings -> Behavior-> Watchdog

注意:

- Multiplier Register (乘数寄存器) 400h(十六进制,即 x0400)可用于两个看门狗。
- · 每个看门狗都有自己的计时设置 410h 或 420h,与 Multiplier 相乘得到一个时间。
- 重要的是:只有勾选了前面的复选框,在 EtherCAT 启动时,乘数/计时设置才会加载到从站。
- · 如果没有勾选,则不会下载任何信息,ESC 中的设置保持不变。
- ・ 下载的数值可以在 ESC 寄存器 x0400/0410/0420 中看到: ESC Access -> Memory

SM 看门狗(SyncManager 看门狗)

SyncManager 看门狗在每次与端子模块成功进行 EtherCAT 过程数据通信时被重置。例如,如果由于线路中断,与端子模块的 EtherCAT 过程数据通信时间超过设定并激活的 SM 看门狗时间,则看门狗被触发。端子模块的状态(通常是 OP)不受影响。看门狗只有在 EtherCAT 过程数据访问成功后才会再次重置。

因此,从 EtherCAT 方面来看,SyncManager 看门狗可以用来监测是否与 ESC 进行正确和及时的过程数据通信。

看门狗允许的最长时间取决于设备。例如,对于"简单的"EtherCAT 从站(无固件),在 ESC 中执行看门狗 通常长达 170 秒。对于"复杂的"EtherCAT 从站(带固件),SM 看门狗功能通常通过寄存器 400/420 进行 参数设置。因为是通过 μ C 执行,时间可以大大缩短。此外,看门狗的执行时间可能会有一定程度的波动。由于 TwinCAT 对话框允许的最大输入值为 65535,建议对所需的看门狗时间进行测试。

PDI 看门狗(过程数据看门狗)

如果与 EtherCAT 从站控制器(ESC)的 PDI 通讯丢失的时间超过了设定和激活的 PDI 看门狗时间,则该看门狗被触发。

PDI(过程数据接口)是 ESC 的内部接口,例如与 EtherCAT 从站中本地处理器的接口。通过 PDI 看门狗,可以监测这种通信是否有故障。

因此,从应用方面来看,PDI 看门狗可以用来监测是否与 ESC 进行正确和及时的过程数据通信。

计算方式

Watchdog time = [1/25 MHz * (Watchdog multiplier + 2)] * PDI (或 SM) watchdog

例如:默认 Multiplier = 2498, SM watchdog = 1000 -> 100 ms

看门狗乘数 Multiplier + 2 的值对应于一个基数为 40ns 的看门狗刻度。

△ 谨慎

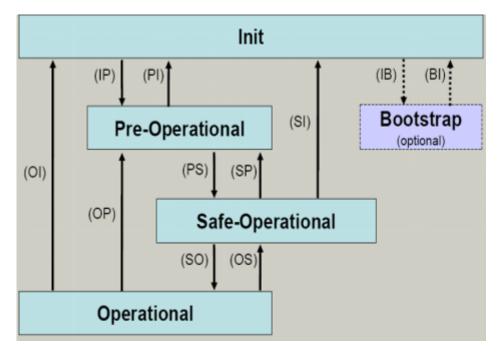
可能出现未定义的状态!

通过 SM 看门狗 = 0 来关闭 SM 看门狗的功能只在 -0016 及以上版本的端子模块中实现。在以前的版本中,不能使用这种操作方式。

△ 谨慎

可能出现设备损坏和未定义的状态!

如果 SM 看门狗被激活,并且输入了 0 值,看门狗就完全关闭。这样就会停用看门狗!如果通信中断,就不会将模块的输出设定在安全状态。


3.4 EtherCAT 状态机

EtherCAT从站的状态是通过EtherCAT状态机(ESM)控制的。根据具体的状态,EtherCAT 从站可以访问或执行不同的功能。EtherCAT 主站必须在从站的不同状态下向其发送特定的命令,特别是在从站的启动期间。

以下状态之间有所区别:

- · Init (初始化)
- Pre-Operational (预备运行)
- Safe-Operational (安全运行)
- Operational (运行)
- · Boot (引导)

每个 EtherCAT 从站启动后的正常状态是 Operational(运行)状态。

附图 22: EtherCAT 状态机的状态

Init

开机后,EtherCAT 从站处于 *Init* 状态。邮箱或过程数据通信无法进行。EtherCAT 主站初始化同步管理器(Sync Manager)通道 0 和 1,用于邮箱通信。

预备运行(Pre-Op)

从 Init 切换到 Pre-Op 的过程中,EtherCAT 从站检查邮箱是否已正确初始化。

在 *Pre-Op* 状态下,可以进行邮箱通信,但不能进行过程数据通信。EtherCAT 主站对过程数据的同步管理器(Sync Manager)通道(来自Sync Manager 通道 2)以及FMMU 通道进行初始化。如果从站支持可配置的映射,主站也会对 PDO 映射或同步管理器 PDO 分配进行初始化。在这个状态下,还会传输过程数据的传输设置以及不同于默认值的模块特定参数。

安全运行(Safe-Op)

从 *Pre-Op* 切换到 *Safe-Op* 的过程中,EtherCAT 从站检查用于过程数据通信的同步管理器(Sync Manager) 是否正确,必要时还会检查分布时钟(Distributed Clock)的设置是否正确。在确认状态变化之前, EtherCAT 从站将当前的输入数据复制到 EtherCAT 从站控制器(ECSC)的相关 DP-RAM 区域。

在 Safe-Op 状态下,可以进行邮箱和过程数据通信,但从站输出保持在安全状态,而输入数据被周期性刷新。

■ SAFEOP 状态下的输出

默认的看门狗(Watchdog)监视装置,将模块的输出设置为 SAFEOP 和 OP 中指定的安全状态(例如关闭状态)。如果通过停用模块中的看门狗监测来防止这种情况的发生,那么输出也可以在 SAFEOP 状态下被切换或设置。

运行(Op)

在 EtherCAT 主站将 EtherCAT 从站从 Safe-Op 切换到 Op 之前,必须传输有效的输出数据。

在 Op 状态下, 从站将主站的输出数据复制到它的输出, 过程数据和邮箱通信都可以进行。

引导(Boot)

在 Boot 状态下,可以更新从站固件。Boot 状态只能通过 Init 状态达到。

在 *Boot* 状态下,可以通过 *file access over EtherCAT*(FoE)协议进行邮箱通信,但不能进行其他邮箱通信或者过程数据通信。

3.5 CoE 接口

一般说明

CoE 接口(CAN application protocol over EtherCAT)用于 EtherCAT 设备的参数管理。EtherCAT 从站或 EtherCAT 主站管理固定(只读)或可变(读写)参数,这些参数用于运行、诊断或调试。

CoE 参数的组织形式为分层表格式。原则上用户可以通过现场总线进行读取访问。EtherCAT 主站(TwinCAT System Manager)可以通过 EtherCAT 以 Read 或 Write 模式访问从站本地的 CoE 列表,具体取决于CoE参数的属性。

CoE 参数类型可能各不相同,包括字符串(文本)、整数、布尔值或较长字节的字段。它们可以用来描述模块的各种特性。这些参数包括制造商 ID、序列号、过程数据设置、设备名称、模拟量测量的校准值或密码。

可以通过两层十六进制的索引号来指定参数的序号: (主)索引 Index,及随后的子索引 SubIndex。其数值范围是

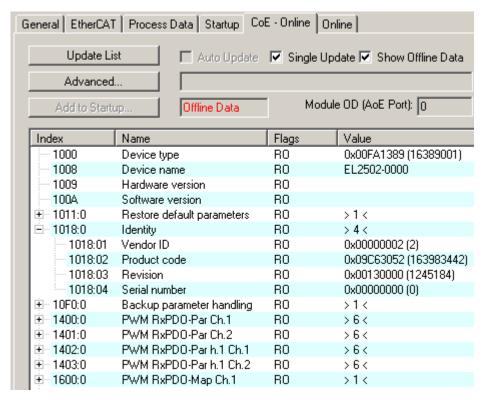
- 索引 Index: 0x0000 ...0xFFFF (0...65535_{dec})
- 子索引 SubIndex: 0x00...0xFF (0...255_{dec})

以这种方式定位的参数通常写成 0x8010:07,前面的"0x"用于标识十六进制数字范围,在 Index 和 SubIndex 之间用冒号分隔。

对于 EtherCAT 现场总线用户来说,相关的索引范围是:

- 0x1000: 这是存储设备固定身份信息的地方,包括名称、制造商、序列号等,还有关于当前的和可用的过程数据配置的信息。
- · 0x8000: 这是储存所有通道的运行和功能参数的地方,例如滤波设置或输出频率。

其他重要的范围是:


- 0x4000: 有些 EtherCAT 设备在此存储通道参数。过去,这是在引入 0x8000 区域之前的第一个参数 区。以前用 0x4000配置参数的EtherCAT设备改用 0x8000 后,出于兼容性的考虑,这两个CoE索引范围都支持,并在内部进行映射。
- 0x6000: input PDO("input",是指从 EtherCAT 主站的角度看是输入)
- ・ 0x7000: output PDO("output",是指从 EtherCAT 主站的角度看是输出)

● 适用性

不是每个 EtherCAT 设备都有 CoE 列表。没有专用处理器的简单 I/O 模块通常没有可变参数,因此没有 CoE 列表。

如果一个设备有 CoE 列表,它就会在 TwinCAT System Manager 中显示为一个单独的选项卡,并列出各参数:

附图 23: "CoE Online"选项卡

上图显示了设备"EL2502"中可用的 CoE 对象,范围从 0x1000 到 0x1600。0x1018 的子索引进行了展开显示。

注意

CoE 对象字典(CAN over EtherCAT)的修改,通过程序访问。

当使用/操作 CoE 参数时,请注意 EtherCAT 系统文档中 "CoE 接口"章节中的一般 CoE 注意事项:

- ・如果需要更换组件,请保留Startup List。
- 在线字典和离线字典之间的区别
- · 当前最新的 XML 描述文件(从倍福公司网站下载),
- · "CoE-Reload"用于重置所做的更改。
- ・系统运行期间通过 PLC程序访问(参见 <u>TwinCAT 3 | PLC Library: "Tc2_EtherCAT"</u> 和<u>Example program</u> R/W CoE)

数据管理和 "NoCoeStorage"功能

有的参数,特别是从站的设置参数,是可配置的和可写入的。这可以在 Write 或 Read 模式下进行

- 通过System Manager 直接修改(图 "CoE Online"选项卡) 这个方法在系统/从站调试时非常有用。点击修改参数的索引(Index)行,在"SetValue"对话框中输 入一个值。
- 通过控制系统(PLC)的ADS通讯,例如通过TcEtherCAT.lib 库中的功能块进行修改。
 这个方法推荐用于系统运行时修改CoE,或者暂时无法打开System Manager亦或是没有操作人员的情况下使用。

● 数据管理

如果从站的 CoE 参数被在线修改,倍福设备会将任何修改以掉电保持的方式存储在 EEPROM 中,也就是说,重新启动后,修改后的 CoE 参数仍然可用。

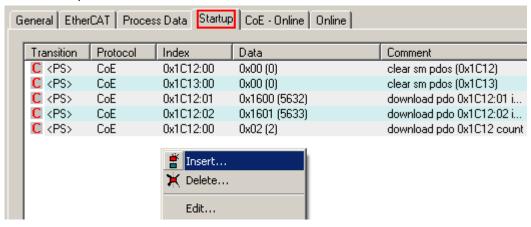
但其它制造商的设备则可能情况有所不相同。

EEPROM 在写入操作方面的使用寿命是有限的。通常写入 100,000 次以后,就不能保证新的(修改的)数据能被可靠地保存或仍然可读。这不会影响正常调试。然而,如果在机器运行时 CoE 参数通过 ADS 不断被修改,就很有可能达到极限使用寿命限。通过 NoCoeStorage 功能可以禁止保存修改后 CoE 值,但是否支持该功能取决于固件版本。

关于这个功能是否适用于相应的设备,请参考本文件中的技术数据。

- ・如果支持该功能:通过在 CoE 0xF008 中一次性输入代码 0x12345678 来激活该功能,只要代码不被改变,该功能就一直有效。开启设备后,保存 CoE 值的功能就处于非活动状态。改变后的 CoE 值不会保存到 EEPROM 中,因此修改次数不受限制。
- ·不支持该功能:考虑到使用寿命限值,不允许连续改变 CoE 值。

Startup List



如果更换了端子模块,端子模块的本地 CoE 列表中的修改会丢失。如果一个端子模块被更换成新的倍福端子模块,新模块具有默认设置。因此,建议将 EtherCAT 从站所有的 CoE 修改项放到它的 Startup List,因为 EtherCAT总线启动时会自动处理这个列表中的各项。通过这种方式,一个 EtherCAT 从站更换后可以自动按照用户的定义进行参数设置。

如果使用的 EtherCAT 从站不能在本地永久存储 CoE 值,则必须使用Startup List。

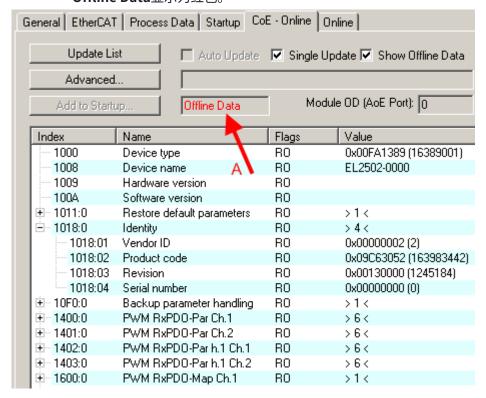
手动修改 CoE 参数的推荐方法

- 在System Manager中进行必要的更改 数据存储在 EtherCAT 从站本地,
- · 如果要永久保存该值,请在 Startup List 中输入。 Startup 中的条目顺序通常无关紧要。

附图 24: TwinCAT System Manager 中的 Startup List

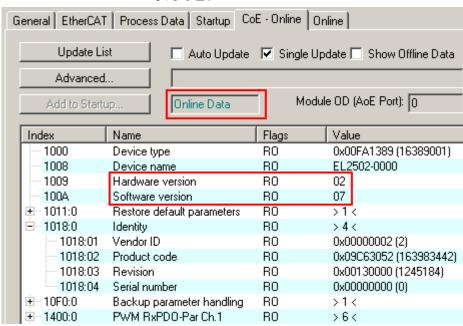
Startup List 会事先包含那些 System Manager 基于 ESI 的定义配置的 CoE 参数值。也可以另外创建应用特定的条目。

online/offline列表


在使用 TwinCAT System Manager 时,必须区分 EtherCAT 设备是否"可用",即已经上电并连接到 EtherCAT从而处于**在线(Online)**状态,或者是在从站未连接的情况下创建了一个**离线(Offline)**配置。

在这两种情况下,都会显示一个 CoE 列表,如图 "CoE Online 选项卡"所示。连接状态显示为offline/online。

- 如果从站处于离线状态
 - 。显示 ESI 文件中的离线列表。此时修改CoE参数是没有意义的,也无法进行。



- 。 配置的状态显示在"Identity"下。
- 。 不显示固件或硬件版本,因为只有实际在线的设备才有这些特征参数。
- Offline Data显示为红色。

附图 25: 离线列表

- 如果从站是在线状态
 - 。 读取实际的当前从站列表。这可能需要几秒钟,具体取决于数据大小和周期时间。
 - 。 显示的是实际身份信息
 - 。 根据电子信息显示设备的固件和硬件版本
 - 。 Online Data显示为绿色。

附图 26: 在线列表

基于通道的顺序

通常包含几个相同功能通道的EtherCAT 设备都具有CoE 列表。例如,一个 4 通道模拟量 0...10 V 输入端子模块也有4条逻辑通道,因此有4套相同的通道参数。为了避免在文件中列出每个通道,往往用占位符"n"来表示各个通道的编号。

在 CoE 系统中, $16 \uparrow$ Index(每个 Index 有 $255 \uparrow$ SubIndex)通常足以表示所有通道参数。因此,基于通道的顺序是以 $16_{dec}/10_{hex}$ 的间隔排列的。以参数范围 $0x8000 \dag$ 为例:

• 通道 0: 参数范围 0x8000:00 ... 0x800F:255

• 通道 1: 参数范围 0x8010:00 ... 0x801F:255

・ 通道 2: 参数范围 0x8020:00 ... 0x802F:255

• ...

这种情况一般写成 0x80n0。

关于 CoE 接口的详细信息,可参见倍福公司网站 EtherCAT 系统文档。

备份对象和校验和 0x10F0:01

为了保留信息,在其它对象之外,还在CoE参数/对象目录中定义了以下对象类型,但不必每个设备中都同时出现这些类型:

- 供应商对象
 - 。 在设备中永久存储(故障安全)。
 - 。 技术上属性为 ReadWrite(RW)。
 - 。 只有在知道相应供应商密码的情况下才能修改/删除。
 - 。 用于特定供应商的调整或身份数据。
- 备份对象
 - 。 这些对象在设备中永久存储,即使在更改后也是如此。
 - 。 技术上属性为 ReadWrite (RW)。
 - 。 它们可通过 EtherCAT 主站的 CoE 访问权限随时修改/删除
 - 特别是,通过选择 "Restore Default Parameters"(参见 "Restore Default Parameters "一章),可将它们重置为初始状态,该状态永久存储在固件中。由于重置为以前的值类似于恢复备份,因此这些对象被称为 "备份对象"。
 - 。 它们用于常规功能参数,决定设备行为。
- 具有写保护选项的备份对象。
 - 。 备份对象也是如此。
 - 。 此外,用户还可以使用 xF009 中的密码激活写保护,以防止意外更改。详情可查阅包含这些对象的设备的设备文档。
- 易失对象
 - 。 这些对象不会持久地存储在设备中。
 - 。它们用于显示内部信息(过程数据、状态、温度……),可作为只读参数 ReadOnly(RO)或功能参数(ReadWrite)使用。但是,如果后者要使用非默认值,则必须通过 EtherCAT 主站在每次上电时写入。

设备用 32 位对象 0x10F0:01 CheckSum(SubIndex 01) 中的 16 位来显示所谓备份对象当前状态的 CRC 校验和:

. □··· 10F0:0	Backup parameter handling	RO	>1<
10F0:01	Checksum	RO	0x00003C62 (15458)

附图 27: CoE index 10F0

如果备份对象被改变了,固件会相应计算新的校验和。这可用于检测备份对象的变化。

注意:校验和的初始值可能因固件版本而异,因为功能扩展可能向 CRC 的校验区间中增加其他对象。

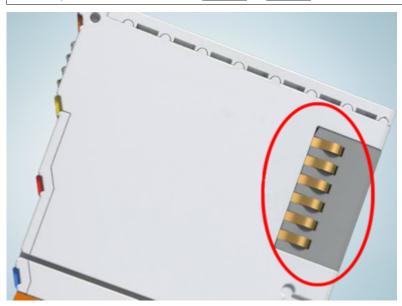
3.6 分布时钟(Distributed Clock)

分布时钟表示 EtherCAT 从站控制器(ESC)中的一个本地时钟,具有以下特点:

- 单位 1 ns
- · 零点 1.1.2000 00:00
- 大小 64 位(足够未来 584 年使用;但是,一些 EtherCAT 从站只提供 32 位支持,即变量在大约 4.2 秒后溢出)
- EtherCAT 主站自动将本地时钟与 EtherCAT 总线中的主站时钟同步,精度<100 ns。

详细信息请参见 EtherCAT 系统描述。

4 安装和接线


4.1 静电防护的说明

注意

静电放电可能会破坏设备!

这些设备含有因处理不当而导致静电放电风险的部件。

- 请确保已进行静电放电,避免直接接触设备的触点。
- 避免与高度绝缘的材料(合成纤维、塑料薄膜等)接触。
- ・在处理该设备时,周围环境(工作场所、包装和人员)应恰当接地。
- •每个 I/O 站必须在最末端使用 EL9011 或 EL9012 端子盖板,以确保达到保护等级和 ESD 静电保护。

附图 28: 倍福 I/O 组件的弹簧触点

4.2 防爆

4.2.1 ATEX - 特殊条件 (标准温度范围)

▲ 警告

请注意倍福标准温度范围的现场总线组件在潜在爆炸区域的特定使用条件!

- 经认证的组件应安装在符合EN 60079-7标准的合适外壳中,该外壳需确保防护等级至少达到IP54! 使用过程中的环境条件应当符合这个标准!
- •如果在额定运行期间,电缆、线路或管道的进线点的温度高于70°C,或电线分支点的温度高于80°C,那么必须选择耐受温度数据满足实际测量温度值的线缆!
- 在潜在爆炸性区域使用标准温度范围的 Beckhoff 现场总线组件,请遵守相关标准允许的环境温度范围 0 至 55°C!
- •必须采取措施,防止因瞬时干扰导致电压超过额定工作电压的 40% 以上!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以从总线端子模块系统中拔出或拆除单个模块!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以连接或断开经认证部件的接线!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以更换 KL92xx/EL92xx 馈电端子模块的保险 丝!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才能调整地址拔码和 ID 开关!

标准

符合下列标准规定,以满足基本健康和安全要求:

- EN IEC 60079-0:2018
- EN 60079-7:2015+A1:2018

标识

经防爆区域法规认证的倍福标准温度范围的现场总线元件带有以下标识:

II 3 G Ex ec IIC T4 Gc KEMA 10 ATEX0075 X DEKRA 22UKEX6024X Ta: 0 ... 55 °C

4.2.2 ATEX - 特殊条件 (扩展温度范围)

▲ 警告

请注意倍福扩展温度范围(ET)现场总线组件在潜在爆炸区域的特定使用条件!

- 经认证的组件应安装在符合EN 60079-7标准的合适外壳中,该外壳需确保防护等级至少达到IP54! 使用过程中的环境条件应当符合这个标准!
- •如果在额定运行期间,电缆、线路或管道的进线点的温度高于 70℃,或电线分支点的温度高于 80℃,那么必须选择耐受温度数据满足实际测量温度值的线缆!
- 在潜在的爆炸性区域使用扩展温度范围 (ET) 的 Beckhoff 现场总线组件时,请遵守相关标准允许的环境温度范围 -25 至 60℃!
- •必须采取措施,防止因瞬时干扰导致电压超过额定工作电压的40%以上!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以从总线端子模块系统中拔出或拆除单个模块!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以连接或断开经认证部件的接线!
- · 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以更换 KL92xx/EL92xx 馈电端子模块的保险 丝!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才能调整地址拔码和 ID 开关!

标准

符合下列标准规定,以满足基本健康和安全要求:

- EN IEC 60079-0:2018
- EN 60079-7:2015+A1:2018

标识

经防爆区域法规认证的倍福扩展温度范围(ET)现场总线元件带有以下标识:

II 3 G Ex ec IIC T4 Gc KEMA 10 ATEX0075 X DEKRA 22UKEX6024X Ta: -25 ... 60 °C

4.2.3 IECEx - 特殊条件

▲ 警告

在潜在爆炸性区域使用 Beckhoff 现场总线组件,请遵守相关标准的特别规定!

- 关于气体:考虑到设备使用的环境条件,设备应安装在合适的外壳中,保证按照 EN 60079-7 标准至少达到 IP54 的防护等级!
- ・本设备只能在 IEC 60664-1 规定的污染等级不超过 2 级的区域(Zone 2)内使用!
- · 应作出规定, 防止因瞬时干扰造成超过额定电压 119V!
- •如果在额定运行期间,电缆、线路或管道的进线点的温度高于 70℃,或电线分支点的温度高于 80℃,那么必须选择耐受温度数据满足实际测量温度值的线缆!
- · 在潜在的爆炸性区域内使用 Beckhoff 现场总线组件时,请遵守相关标准允许的环境温度范围!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以从总线端子模块系统中拔出或拆除单个模块!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才可以连接或断开经认证部件的接线!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才能调整地址拔码和 ID 开关!
- 只有在关闭电源电压或确保非爆炸性环境的情况下,才能打开经认证的设备的前盖!

标准

符合下列标准规定,以满足基本健康和安全要求:

- IEC 60079-0:2017 (7.0 版)
- ・ IEC 60079-7: 2017 (5.1 版)

标识

经过 IECEx 认证可在有爆炸危险区域使用的 Beckhoff 现场总线组件带有以下标识:

IECEX DEK 16.0078 X

Ex ec IIC T4 Gc

4.2.4 ATEX 和 IECEx 的持续性文件

注意

符合 ATEX 和 IECEx 的关于防爆的持续性文件

请注意持续性文件

防爆 端子模块系统的防护

根据 ATEX 和 IECEx 标准,在危险区域使用倍福端子模块系统的注意事项

可以在倍福公司主页 www.beckhoff.com 的产品下载区下载!

4.3 关于倍福校准证书的说明

基本上,每个倍福模拟量设备(输入或输出)都将进行校正,即在生产过程中进行校准。然而,这一过程并没有单独记录。这种作为校准证书的文件只提供给明确附有证书的设备。

校准证书显示调整后与所用标准(参考设备)的剩余偏差。校准证书(PDF 文件)将通过一个唯一的编号分配给设备。因此,它不象认证那样是一个关于设备类别的声明,而总是只适用于唯一的、命名的设备。可从Beckhoff 网站下载。

校准证书记录了证书签发时的测量精度,并包含了环境条件和所用参考仪器的信息。它不包含关于未来测量精度的特性或变化的声明。校准证书用于审查前一段时间的使用情况。如果在数年内多次重复校准过程(不重新调整设备),就可以得出有关老化行为的结论,即所谓的校准历史。

校准证书的性能水平

不同"质量"的校准证书很常见:

- Beckhoff 工厂标准校准证书 这些 IP20 端子模块通常可以通过产品后缀 -0020 进行识别。 设备专用证书由 Beckhoff 以 PDF 格式颁发。可在 Beckhoff 网站上<u>下载</u>。端子模块可从 Beckhoff 购 买,并通过 Beckhoff 服务重新校准。
- · ISO17025 校准证书 这些 IP20 端子通常可通过后缀 -0030 进行识别。 设备专用证书由服务提供商代表 Beckhoff 签发,作为 Beckhoff 生产的一部分,并由 Beckhoff 以 PDF 格式交付。对于初始标定(新交付的端子模块),可在 Beckhoff 网站上<u>下载</u>。端子模块可从 Beckhoff 购买,重新校准必须由服务提供商直接进行(详见证书)。
- DAkkS 校准证书(德语: "Deutsche Akkreditierungsstelle GmbH") 此类 IP20 端子模块通常可以通过产品后缀 -0030 来识别。 设备专用证书由服务提供商代表 Beckhoff 签发,作为 Beckhoff 生产的一部分,并由 Beckhoff 以 PDF 格式交付。对于初始标定(新交付的端子模块),可在 Beckhoff 网站上<u>下载</u>。端子模块可从 Beckhoff 购买,重新校准必须由服务提供商直接进行(详见证书)。

唯一设备编号

根据设备,以下编号用于身份识别:

• 制造年份 2020 年以前的 EL/ELM 端子模块: 在侧面贴有 ID 编号。

附图 29: ID 编号

・ 从制造年份 2021 年开始,BTN 编号(倍福可追溯性编号)将逐渐取代 ID 编号,也被贴在了侧面。

倍福生产的模拟量输入/输出设备种类繁多,例如IP20 端子或 IP67 端子盒。其中有一部分还提供工厂/ISO/DAkkS 校准证书。有关具体细节和适用性,请参见设备的技术数据或联系倍福销售部门。

● 语言说明

在美式英语中,"calibration(标定)"或"alignment(校准)"被理解为是指补偿/调整,因此是对设备的修改。"Verification(验证)"则是指对剩余误差的观察确定和记录,在德语使用中被称为"*Kalibrierung*"。

4.4 UL 声明

△ 谨慎

应用

倍福 EtherCAT 模块只适用于与具备 UL 认证的倍福 EtherCAT 系统一起使用。

△ 谨慎

检查

关于 cULus 检查,仅对倍福 I/O 系统的火灾和电击风险进行了调查(符合 UL508 和 CSA C22.2 No.142 标准)。

△ 谨慎

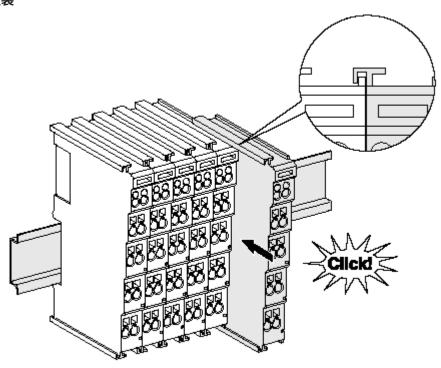
带有以太网连接器的设备

不可用于连接通信电路(telecommunication circuits)。

基本原则

符合 UL508 的 UL 认证。有这种认证的设备带有此标志:

4.5 安装在导轨上


▲ 警告

有触电和损坏设备的危险!

在开始安装、拆卸或连接总线端子模块之前,请将总线端子模块系统带入一个安全的、断电的状态!

总线端子模块系统设计用于安装在控制柜或接线盒中。

组装

附图 30: 安装在安装轨道上

总线耦合器和总线端子模块通过施加轻微压力安装到市售 35 毫米安装导轨(符合 EN 60715 标准的 DIN 导轨)上:

- 1. 首先将现场总线耦合器安装在安装导轨上。
- 2. 总线端子模块安装在现场总线耦合器的右侧。连接模块的舌片和凹槽,将接线端子推到安装导轨上,直到锁扣卡入安装导轨。

如果先将接线端子夹在安装导轨上,然后在没有舌片和凹槽的情况下将其推到一起,连接将无法正常工作!正确组装后,外壳之间不应看到明显的间隙。

● 安装导轨的固定

端子模块和耦合器的锁紧部件延伸至安装导轨。在安装时,模块的锁紧部件不能顶住安装导轨的固定 螺栓。为了在端子模块和耦合器下面安装高度为 7.5 毫米的安装导轨,应使用扁平的安装连接 (如沉 头螺钉或盲铆钉)。

注意

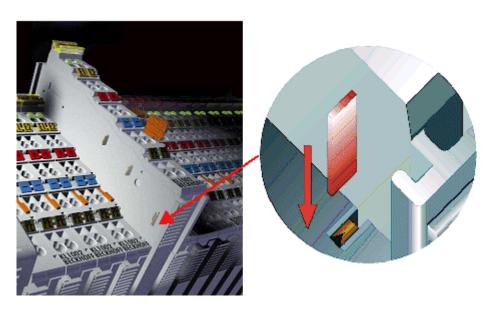
将安装轨道接地!

确保安装轨道充分接地。

一个总线端子 I/O 站内的连接

总线耦合器和总线端子模块之间的电气连接通过连接部件自动实现:

- 通过 K-Bus/E-Bus 的六个弹簧触点实现数据的传输和总线端子模块供电。
- 电源触点给现场电子设备供电,因此形成了总线端子 I/O 站内的一个电源母线。电源触点通过总线耦合器上的端子供电(最高 24V),或者对于更高的电压则通过电源馈电端子模块供电。


● 电源触点

在设计总线端子 I/O 站时,必须考虑到各个总线端子模块的引脚分配,因为有些类型(如模拟量总线端子模块或数字量 4 通道总线端子模块)没有或没有完整的通过电源触点的回路。 电源馈电端子模块(KL91xx、KL92xx 或 EL91xx、EL92xx)中断了前面电源触点形成的母线,而提供了一个新的电源母线的起点。

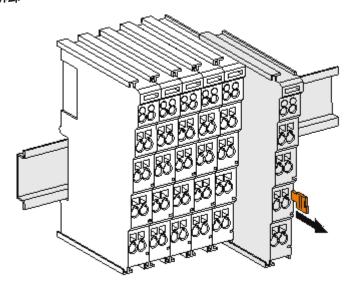
电源触点 🚽

标有 ↓ 的电源触点(接地连接,符合 IEC 60417-5017)可用作功能接地。出于安全考虑,插接时该触点先接合,可接地高达 125 A 的短路电流。

附图 31: 左侧的电源触点

▲ 警告

有触电的危险!


标有 🚽 的电源触点不得用于其他电位!

注意

设备可能的损坏

请注意,出于电磁兼容性的考虑,接地触点与安装导轨是电容耦合的。这可能会导致绝缘测试期间出现错误结果或损坏端子(例如,在对标称电压为 230 V 的用电设备进行绝缘测试期间,接地线会出现干扰性放电)。进行绝缘测试时,应断开总线耦合器或馈电端子上的接地供电线路!为了使关联的馈电点解耦以进行测试,可以松开这些馈电端子模块,并从端子组中拉出至少 10 mm。

拆卸

附图 32: 端子模块的拆卸

每个端子模块都由安装轨道上的锁扣固定,拆卸时必须松开锁扣:

- 1. 用橙色的接线柱拉动端子模块,使其离开安装轨道约1厘米。在这样做的时候,该端子模块的安装导轨锁扣会自动松开,您可以轻松地将该端子模块从总线端子排中拉出来,而不需要过度用力。
- 2. 用拇指和食指同时抓住松开的端子模块的上、下凹槽外壳表面,将端子模块从总线端子排中拉出。

4.6 增强抗振模块的安装说明

▲ 警告

有触电和损坏设备的危险!

在开始安装、拆卸或连接总线端子模块之前,应将总线端子模块系统置于安全、断电的状态!

额外检查

这些端子模块经过了以下额外测试:

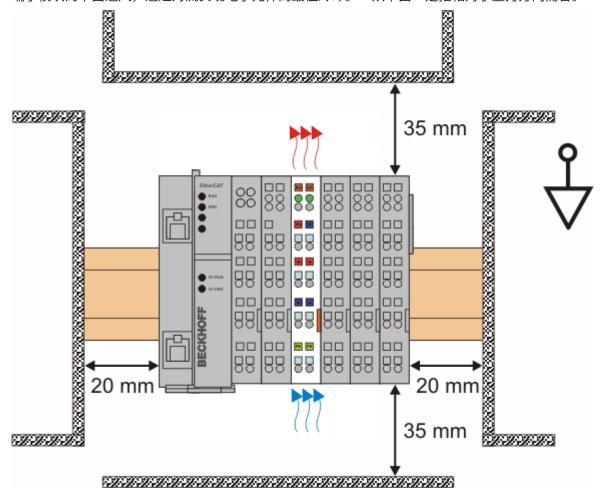
验证	说明
	在 3 个坐标轴方向上各 10 次
	6 Hz < f < 60 Hz,位移 0.35 mm,恒定振幅
	60.1 Hz < f < 500 Hz,加速度 5 g,恒定振幅
冲击	在 3 个坐标轴的每个方向上各 1000 次冲击
	25 g, 6 ms

附加安装说明

对于增强抗振模块,适用以下附加的安装说明:

- 增强抗振能力适用于所有允许的安装位置
- ・ 使用符合 EN 60715 TH35-15 标准的安装导轨
- 用机械固定装置将一组端子模块从安装导轨的两端固定住,例如接地端子或加固的端部堵头
- · 一个端子模块 I/O 站的最大模块数量(不含耦合器)是: 64 个端子模块(12 mm)或 32 个端子(24 mm)
- 在安装导轨的加工和安装的过程中,应避免变形、扭曲、受挤压和弯曲
- 安装导轨的固定点必须以5厘米的间隔设置
- · 使用沉头螺钉固定安装导轨
- 电缆的固定环和连接导线之间的自由长度应保持尽可能短。与线槽应保持约10厘米的距离。

4.7 安装位置

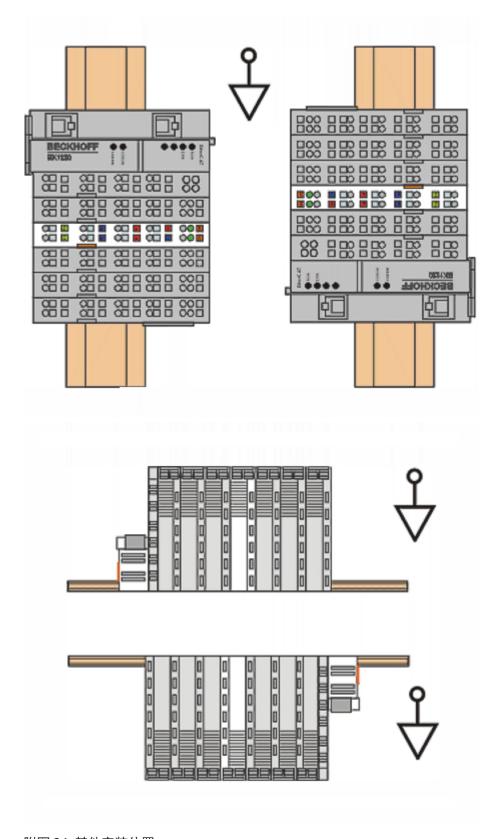

注意

关于安装位置和工作温度范围的限制

请参考端子模块的技术数据,以确定是否规定了关于安装位置和/或工作温度范围的任何限制。在安装高功率 耗散的端子模块时,确保在端子模块上方和下方的其他部件之间保持足够的间距,以保证充分的通风!

最佳安装位置(标准)

最佳的安装位置是安装导轨水平安装,EL/KL 端子模块接线的一面朝前(见图*标准安装位置的推荐距离*)。从端子模块的下面通风,通过对流实现电子元件的最佳冷却。"从下面"是指相对于重力方向而言。


附图 33: 标准安装位置的建议距离

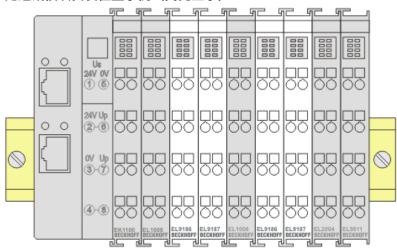
建议遵守图 标准安装位置的建议距离中所示的距离。

其他安装位置

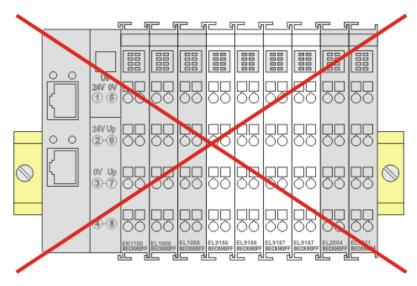
所有其他安装位置的特点是安装导轨的空间布局不同,参见图 其他安装位置。

上面规定的与其它部件的最小距离也适用于这些安装位置。

附图 34: 其他安装位置


4.8 无通讯模块的安装位置

● 关于总线端子 I/O 站中无通讯模块安装位置的提示


那些在总线端子 I/O 站中不参与数据传输的EtherCAT 端子模块(ELxxxx / ESxxxx),即所谓的无通讯模块。无通讯模块不消耗 E-Bus 的电流。

为了确保最佳的数据传输,不能直接把超过两个的无通讯模块连续并列装在一起!

无通讯模块安装位置示例(高亮显示)

附图 35: 正确的安装位置

附图 36: 错误的安装位置

4.9 注意事项 - 电源

▲ 警告

从 SELV/PELV 电源单元供电!

必须使用符合 IEC 61010-2-201 的 SELV/PELV 电路(安全超低电压 Safety Extra Low Voltage,保护超低电压 Protective Extra Low Voltage)为本设备供电。

注意事项:

- ・SELV/PELV 电路可能会引起 IEC 60204-1 等标准的进一步要求,例如关于电缆间距和绝缘。
- SELV(安全超低电压)电源提供安全的电气隔离和电压限制,而不需要连接到保护导体, PELV(保护性超低电压)电源也需要安全连接到保护导体。

4.10 接线

4.10.1 接线系统

▲ 警告

有触电和损坏设备的危险!

在开始安装、拆卸或连接总线端子模块之前,请将总线端子模块系统带入一个安全的、断电的状态!

概述

总线端子模块系统提供不同的连接方式,以便根据各个具体的应用场合进行最佳选择:

- ELxxxx 和 KLxxxx 系列,带标准接线端子模块的外壳中集成了各种电子元件和接线装置。
- ESxxxx 和 KSxxxx 系列,具有可插拔的接线座,并能在模块更换时避免拆除和重新接线。
- High Density Terminals 高密度端子模块(HD 端子模块),在一个外壳中集成了各种电子元件和接线 装置,具有较高的封装密度。

标准接线(ELxxxx/KLxxxx)

附图 37: 标准接线

ELxxxx 和 KLxxxx 系列端子模块经过多年的使用和测试。 特征是集成了免螺钉弹簧动力技术,可以快速和简单地接线。

可插拔接线(ESxxxx/KSxxxx)

附图 38: 可插拔接线

ESxxxx 和 KSxxxx 系列端子模块的特征是具有一个可插拔的接线座。

组装和接线过程与 ELxxxx 和 KLxxxx 系列相同。

可插拔的接线座使得维护时可以把全部接线作为一个插拔连接器从外壳顶部拆卸下来。

通过拉动解锁片,可以将模块下半部从 I/O 站中拆出来。

装入新的组件并插入带接线的连接器。这样一来,可大大减少安装时间,避免接线错误。

常见端子模块的尺寸只有一点点变动。新的接线座在深度方向增加了约3 mm。而端子模块的最大高度仍保持不变。

电缆的固定环可简化很多应用中的装配工作,防止在拆除接线座时发生连接线缠结在一起的现象。

截面积为 0.08 mm² 至 2.5 mm² 之间的导线仍采用弹簧连接技术。

ESxxxx 和 KSxxxx 系列整体保留了 ELxxxx 和 KLxxxx 系列产品的命名。

高密度端子模块(HD 端子模块)

附图 39: 高密度端子模块

该系列端子模块有 16/32 个接线点,特点是设计特别紧凑,因为其封装密度是标准 12 毫米模块的两倍。大线径导线和带管型端子的导线可以直接插入弹簧式接线点,不需要工具。

高密度端子模块的接线

1

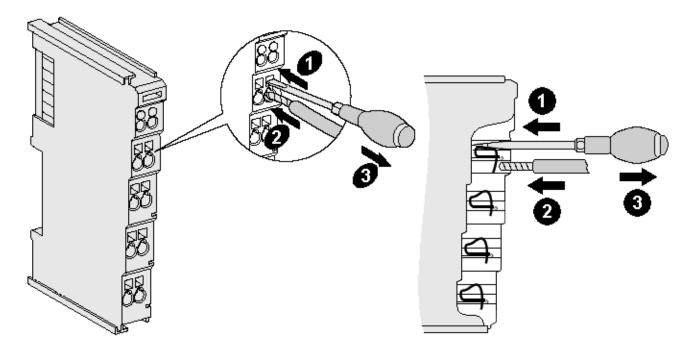
ELx8xx 和 KLx8xx 系列高密度端子模块不支持可插拔式接线。

超声"粘合" (超声焊接) 导线

● 超声"粘合"导线

1

标准模块和高密度端子模块也可以使用超声"粘合"(超声焊接)导体来接线。此时请注意以下有关导线尺寸宽度 [▶ 75]的表格!


4.10.2 接线

▲ 警告

有触电和损坏设备的危险!

在开始安装、拆卸或连接总线端子模块之前,请将总线端子模块系统带入一个安全的、断电的状态!

用于标准接线的端子模块 ELxxxx/KLxxxx 和用于可插拔接线的端子模块 ESxxxx/KSxxxx

附图 40: 在一个接线点上连接线缆

总线模块上最多提供 8 个接线点,用于连接单芯线缆或细绞线。接线点采用弹簧动力技术。按以下方式连接导线:

- 1. 将螺丝刀插入接线点上方的方形开口,一直插到底,使接线点张开。螺丝刀不要转动或上下移动(不要 撬动)。
- 2. 然后将导线插入端子模块的圆形开口,不需要用力。
- 3. 拔出螺丝刀,接线点会自动闭合,永久地牢牢固定住接线。

端子模块适合的导线规格见下表。

端子模块外壳	ELxxxx, KLxxxx	ESxxxx, KSxxxx
导线规格(单芯线)	0.08 2.5 mm ²	0.08 2.5 mm ²
导线规格(细导线)	0.08 2.5 mm ²	0.08 2.5 mm ²
导线规格(带管型端子的导线)	0.14 1.5 mm ²	0.14 1.5 mm ²
剥线长度	8 9 mm	9 10 mm

高密度端子模块(HD Terminals [▶ 73]) 有 16/32 个接线点

如果是单芯导线,则 HD 端子模块的接线采用直接插入的方式,不需要工具,即剥线后只需将其插入接线点。 需要松开导线时,也像标准模块一样,用螺丝刀插入接线点上方的方形开口,直插到底,即可拔出电缆。端子 模块适合的导线规格见下表。

端子模块外壳	高密度外壳
导线规格(单芯线)	0.08 1.5 mm ²
导线规格(细导线)	0.25 1.5 mm ²
导线规格(带管型端子的导线)	0.14 0.75 mm ²
导线规格(超声"粘合"导线)	仅 1.5 mm²(见 <u>注意事项 [▶ 73]</u>)
剥线长度	8 9 mm

4.10.3 屏蔽

屏蔽

编码器、模拟量传感器和执行器的接线应当始终使用屏蔽双绞线。

4.11 处理

标有带叉轮式垃圾桶的产品不得与普通垃圾一起丢弃。该设备被认为是废弃的电气和电子设备。必须遵守国家对废弃电气和电子设备的处理规定。

5 调试

5.1 TwinCAT 快速入门

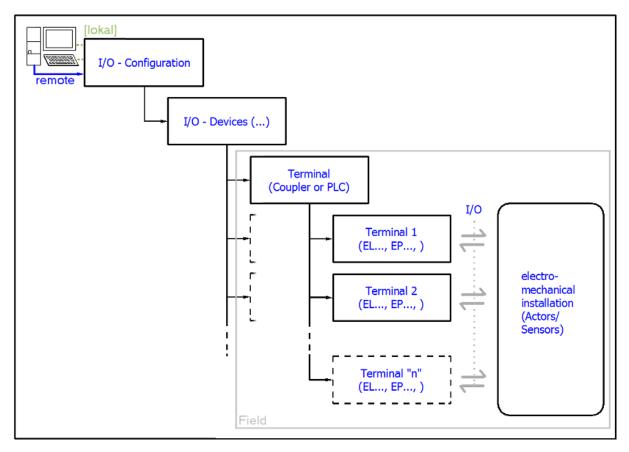
TwinCAT 是实时(real-time)控制器的开发环境,包括多 PLC 系统、NC 轴控系统的编程和操作。通过 TwinCAT 可以进行整个系统的映射,并能够访问控制器的编程环境(包括编译)。也可以直接读取或写入单 个数字量/模拟量的输入或输出,例如为了验证其功能。

更多信息请参考 http://infosys.beckhoff.com:

· EtherCAT 系统手册:

Fieldbus Components \rightarrow EtherCAT Terminals \rightarrow EtherCAT System Documentation \rightarrow Setup in the TwinCAT System Manager

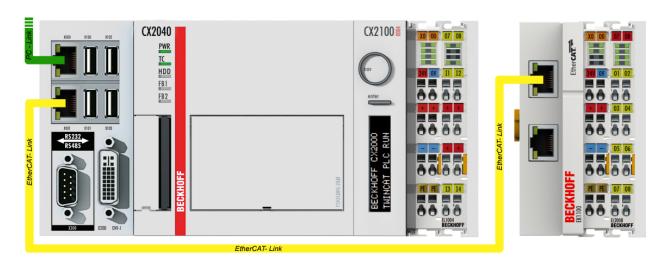
- TwinCAT 2 → TwinCAT System Manager → I/O Configuration
- · 特别是 TwinCAT 驱动程序的安装:


Fieldbus components→ Fieldbus Cards and Switches → FC900x – PCI Cards for Ethernet → Installation

Devices 下包含了实际配置的相关端子模块。所有配置数据的输入可以直接通过编辑功能(离线)或通过"扫描(Scan)"功能(在线):

- · "offline":通过添加和放置单个组件来自定义配置, 可以从一个目录中选择并配置。
 - 。 关于离线模式的步骤,请参见 http://infosys.beckhoff.com: **TwinCAT 2** → TwinCAT System Manager → IO Configuration → Add an I/O device
- · "online": 读取现有的硬件配置
 - 。 另请参见 http://infosys.beckhoff.com: **Fieldbus components** → Fieldbus Cards and Switches → FC900x PCI Cards for Ethernet → Installation → Searching for devices

从用户的配置电脑到控制器及下属组件的层次关系如下:


附图 41: 用户侧(调试)和实际安装组件之间的关系

在 TwinCAT 2 和 TwinCAT 3 中,用户插入某些组件(I/O device, terminal, box...)的方式相同。下列描述仅涉及在线操作过程。

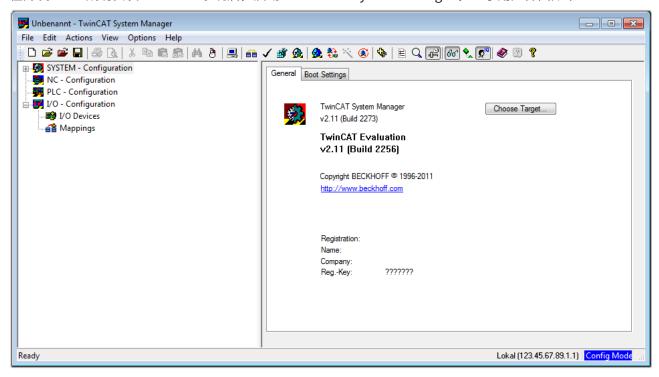
配置示例(实际配置)

基于下面的配置示例,后面的小节描述了 TwinCAT 2 和 TwinCAT 3 的操作过程:

- ・ CX2040 控制系统(PLC)包括 CX2100-0004 电源单元
- 连接到 CX2040 的右边(E-bus):
 EL1004(4 通道数字量输入端子模块 24 V_{pc})
- ・ 通过 X001端口 (RJ-45) 连接: **EK1100** EtherCAT 耦合器
- 连接到 EK1100 EtherCAT 耦合器的右边(E-bus): **EL2008**(8 通道数字量输出端子模块 24 V_{Dc}; 0.5 A)
- · (X000 可选连接外部 PC,提供用户接口)

附图 42: 系统配置,含嵌入式控制器、输入(EL1004)和输出(EL2008)

请注意,一个配置可能有多个任意组合;例如,EL1004 端子模块可以接在耦合器之后,或者 EL2008 端子模块可以附加到 CX2040 的右侧而无须 EK1100 耦合器。

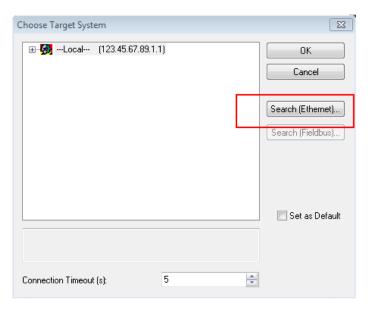


5.1.1 TwinCAT 2

启动

TwinCAT 2 有两个用户界面: TwinCAT System Manager 用于硬件配置; TwinCAT PLC Control 用于控制程序的开发和编译。项目开发通常从 TwinCAT System Manager 开始。

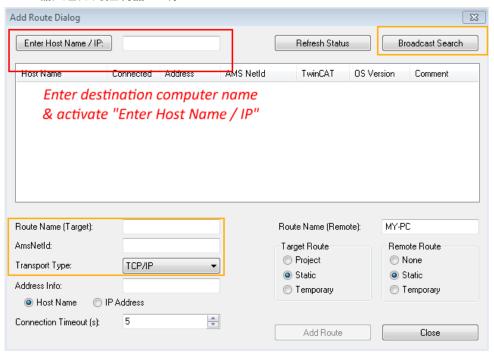
在开发 PC 上成功安装 TwinCAT 系统后,启动 TwinCAT 2 System Manager ,显示用户界面如下:


附图 43: TwinCAT 2 的初始用户界面

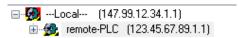
一般来说,TwinCAT 可以工作在本地或远程模式。如果目标 PLC 上安装了 TwinCAT 系统(含用户界面的标准开发环境),TwinCAT 就可以工作在本地模式。这种情况下,下一个步骤是"<u>Insert Device(插入设备)</u>[<u>\ 82</u>]"。

如果要从 TwinCAT 开发环境连接到另一个安装在远程 PLC 上的 TwinCAT Runtime 运行环境,就得先识别到 Target System(目标系统)。在菜单中的 "Actions(行动)" → "Choose Target System..." 项下,通过符号

" 🗐 "或"F8"键,打开以下窗口:



附图 44: 选择目标系统


使用"Search (Ethernet)..." 进入目标系统。弹出下一个对话框,在此可以选择:

- 在 "Ether Host Name/IP: (输入主机名称/IP)" 处输入已知的计算机名称(如红框所示)
- 执行 "Broadcast Search (广播搜索)" (如果不知道确切的计算机名称)
- · 输入已知的控制器 IP 或 AmsNetID

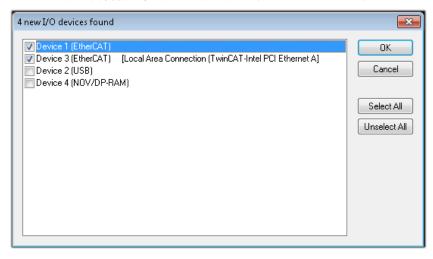
附图 45: 指定通过 TwinCAT System Manager 访问的 PLC: 选择目标系统

进入目标系统后,就可以选择以下方式(可能需要输入正确密码):

按 "OK" 确认,就可以通过 TwinCAT System Manager 访问目标系统。

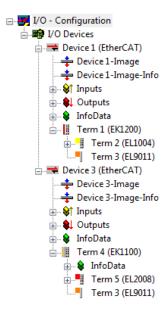
添加设备

在 TwinCAT 2 System Manager 用户界面左侧的配置树中,选择"I/O Devices",然后右键单击,打开右键

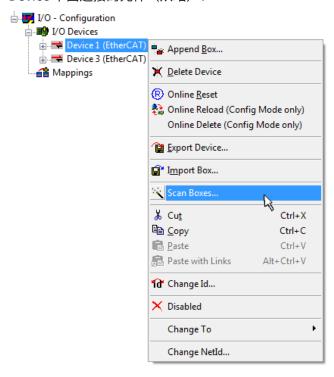

菜单,选择"Scan Devices...",或者通过 在菜单栏中启动该操作。首先,可能需要点击 如菜单

"Actions" → "Set/Reset TwinCAT Config Mode..." TwinCAT System Manager (Shift + F4)将 TwinCAT System Manager 设置为 "Config Mode(配置模式)"。

附图 46: 选择 "Scan Devices..."


确认接下来的警告信息,并在对话框中选择"EtherCAT"设备:

附图 47: 自动检测 I/O 设备: 选择要集成的设备


确认"Find new boxes"信息,以确定连接到设备的端子模块。"Free Run"自由运行功能允许在"Config Mode"配置模式下操作输入和输出值,这个功能也需要确认才能启用。

根据本节开头描述的示例配置 [▶78],结果如下:

附图 48: TwinCAT 2 System Manager 中的配置映射

上述整个过程包括两个步骤,可以独立进行(首先确定设备,然后确定每个设备连接的元件,如端子盒、端子模块等)。此外,也可以从"Device..."的右键菜单中选择"Scan Box"(搜索功能),读取目标设备Device下面连接的元件(从站):

附图 49: 读取连接到 Device 的各个端子模块

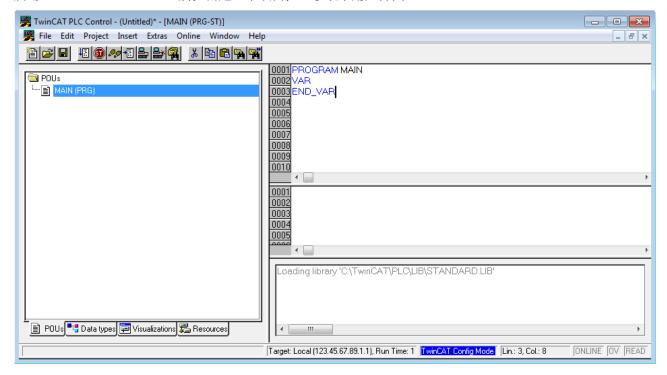
这可功能可以用于快速发现实际配置的变动。

PLC 的编程和集成

TwinCAT PLC Control 开发环境可以用不同的语言创建控制程序: TwinCAT PLC Control 支持 IEC 61131-3 中描述的所有 5 种语言:包括两种基于文本的语言和三种图形化的语言:

・基于文本的语言

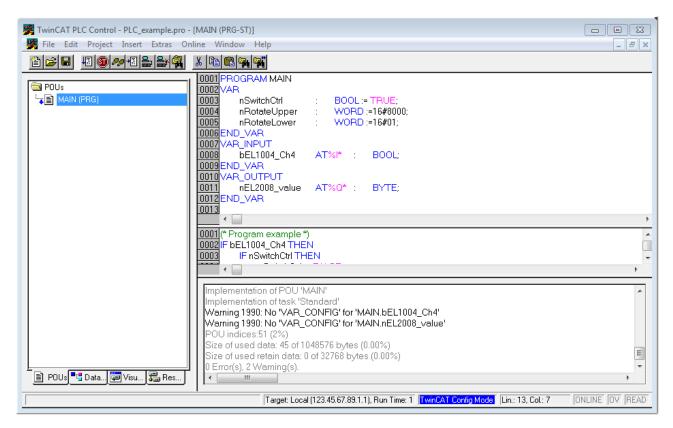
- 指令表(IL)
- 。 结构化文本 (ST)



・图形化语言

- 。 功能块图(FBD)
- 。 梯形图(LD)
- 。 连续功能块图(CFC)
- 。 顺序流程功能图(SFC)

下面的内容只用到结构化文本(ST)。


启动 TwinCAT PLC Control 后,新建一个项目,显示以下用户界面:

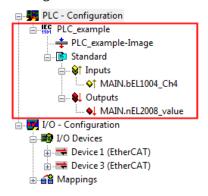
附图 50: 刚启动的 TwinCAT PLC Control

在示例项目中创建变量和程序,并保存为名称 "PLC_example.pro":



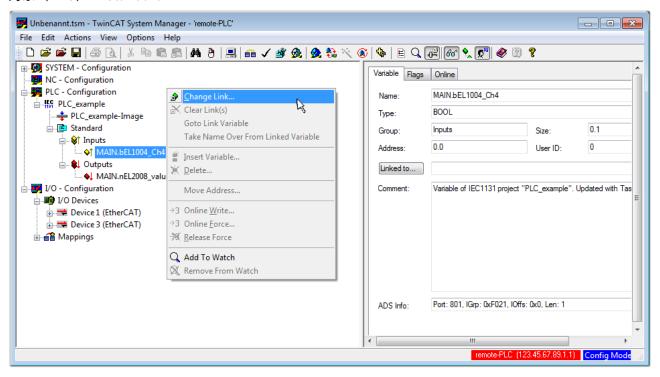
附图 51: 示例程序编译后,包含未分配地址的变量

编译过程后的警告 Warning 1990 (missing "VAR_CONFIG"),表示定义的外部变量(含标志符 "AT%I"或 "AT%Q*")还没有分配地址。编译成功后,TwinCAT PLC Control 会在项目路径下创建一个 "*.tpy"文件,该文件包含了指定的 IO变量,但 System Manager 还没有为其分配地址,因此出现了警告。只要在 System Manager 中引入该 .tpy 文件并保存,再次编译时警告就不会再出现了。


首先,在**System Manager** 中导入 TwinCAT PLC Control 项目。从 PLC configuration 的右键菜单(右击)选择 "Append PLC Project...":

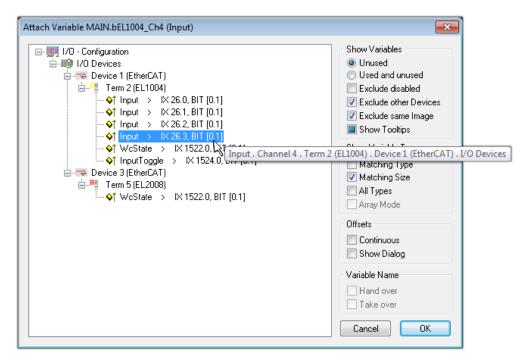
附图 52: 添加 TwinCAT PLC Control 项目

在弹出的浏览窗口中选择 PLC 配置文件 "PLC_example.tpy"。这样 System Manager 的 System configuration 中就集成进了这个PLC项目,其中包含两个用"AT"标识的变量:

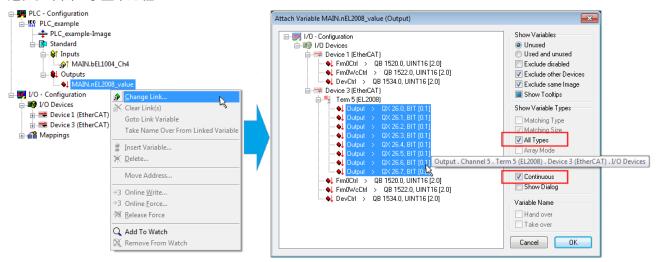


附图 53: 在System Manager 的 PLC Configuration 下导入 PLC 项目

现在可以将两个变量"bEL1004_Ch4"和"nEL2008_value"分配给 I/O configuration 下的某些过程对象了。

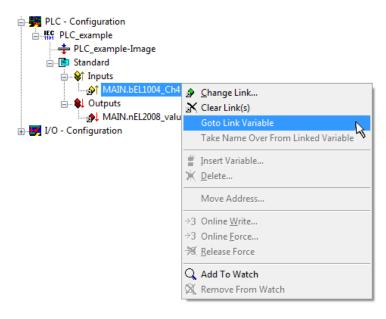

变量分配

通过集成的"PLC_example"项目中某个变量的右键菜单"Change Link..."打开一个窗口,选择合适的过程对象(PDO)"Standard":


附图 54: 在 PLC 变量和过程对象之间建立链接

在弹出的窗口中,可以为 PLC configuration 中的 BOOL 类型变量 "bEL1004_Ch4" 选择过程对象:

附图 55: 选择 BOOL 类型的 PDO


根据默认设置,只有部分PDO 对象可供选择。本例中,选择 EL1004 端子模块的通道 4 的 input 用于链接。否则,如果要为一个输出的字节变量分配一组八个独立的输出位,那么在创建链接时,必须勾选 "All types"复选框。下图显示整个过程:

附图 56: 同时选择几个 PDO: 勾选 "Continuous" 和 "All types"

请注意,"Continuous"复选框也要勾选。这种设计旨在将变量"nEL2008_value"的字节中包含的位按顺序分配给 EL2008 端子模块的所有八个选定的输出位。这样就可以在PLC程序中用一个字节对应端子模块的所有8个输出,字节的第0到7位分别对应模块的第1到8通道。在变量的黄色或红色对象处有一个特殊符号(②),表示变量已链接。也可以通过从变量的右键菜单中选择"Goto Link Variable(转到链接变量)"来检查链接。此时,链接的对方(在这种情况下是 PDO)被自动选中:

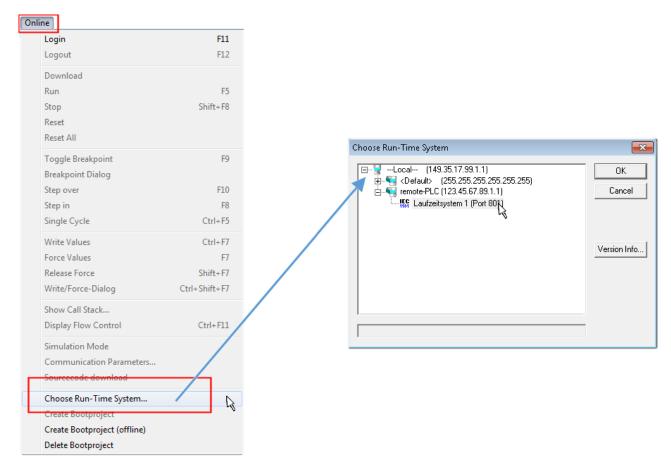
附图 57: "Goto Link Variable"的应用,以"MAIN.bEL1004 Ch4"为例

为 PDO 分配变量的过程通过菜单选项 "Actions" \rightarrow "Create assignment"或者通过 来完成。在配置文件中可以直观地查看变量的分配结果:

建立链接的过程也可以反向进行,即从 PDO 链接到变量。但在本例中,不可能为 EL2008 选择所有输出位,因为这个端子模块只提供单个数字量输出。如果一个端子模块有一个 byte, word, int 之类的 PDO,就有可能为其分配一套标准位宽的变量。在这里,"Goto Link Variable"也可以反向执行,以选择相应的 PLC 实例。

激活配置

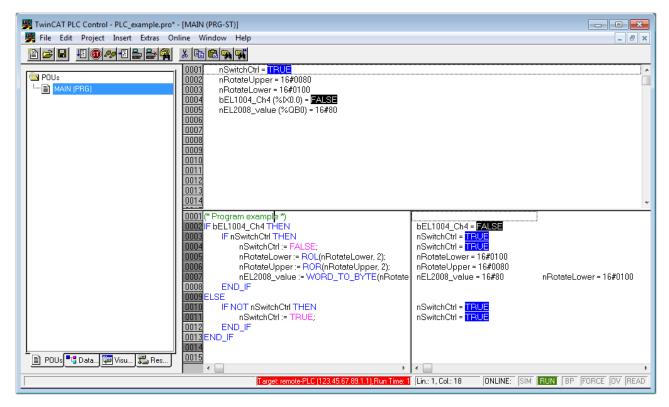
PDO 到 PLC 变量的分配过程建立了从控制器到端子模块的输入和输出的连接。下面激活该配置。首先,可以


通过 (或通过 "Actions" → "Check Configuration")来检查配置。如果没有错误,可以通过 (或通过 "Actions" → "Activate Configuration")激活配置,将 System Manager 的设置传输至 TwinCAT runtime 系统。确认此时弹出的信息 "Old configurations will be overwritten! (以前的配置将被覆盖)" 点击 "OK"按钮,确认 "Restart TwinCAT system in Run mode(重启 TwinCAT 系统至运行模式)"。

几秒钟后,TwinCAT real-time(实时核)的状态 RTime 0% 显示在TwinCAT System Manager 的右下方。 这样就可以按以下方法启动 PLC 系统了。

启动控制器

从远程系统操作控制器,必须先在PLC Control 中通过菜单"Online" → "Choose Runtime System...",以便连接到 IPC/EPC:



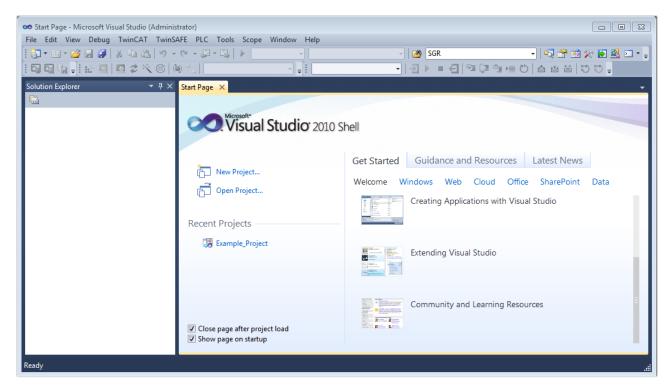
附图 58: 选择目标系统(远程)

在此例中,选择了 "Runtime system 1 (port 801)"并确认。通过菜单选项 "Online" → "Login", F11 键

或通过点击符号 ,将 PLC 与 TwinCAT real-time 实时系统链接起来。然后就可以加载控制程序并运行。系统弹出信息 "No program on the controller! Should the new program be loaded?",应点击 "Yes"确认。TwinCAT runtime 运行环境已经做好程序启动的准备:

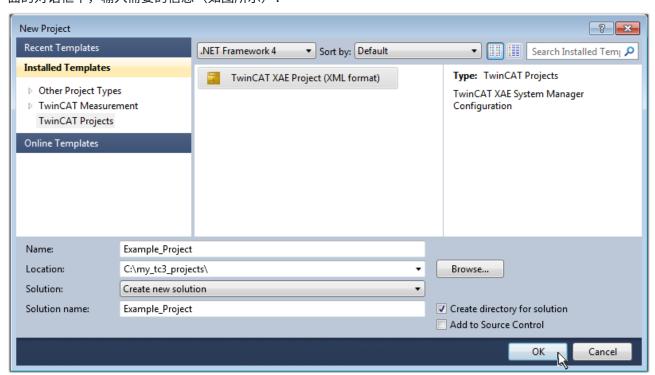
附图 59: PLC Control 登录,做好程序启动准备

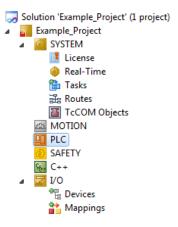
然后就可以通过"Online"→ "Run", F5 键或 启动 PLC。


5.1.2 TwinCAT 3

启动

TwinCAT 3 集成于 Microsoft Visual Studio,所有功能都包含在一个开发环境中:启动后,项目文件浏览器显示在通用窗口区域的左侧(参见 TwinCAT 2 的"TwinCAT System Manager"),用于与电气组件进行通信。

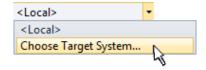

用于开发的 PC 上成功安装 TwinCAT 系统后,TwinCAT 3(shell)在启动后显示以下用户界面:


附图 60: TwinCAT 3 的初始用户界面

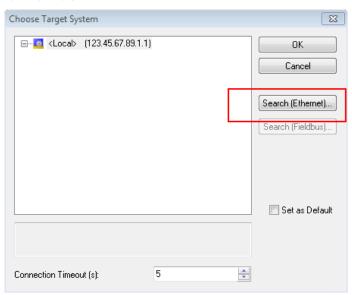
首先通过 New TwinCAT Project... (或 "File" \rightarrow "New" \rightarrow "Project...")创建一个新项目。在下面的对话框中,输入需要的信息(如图所示):

附图 61: 新建 TwinCAT 3 项目

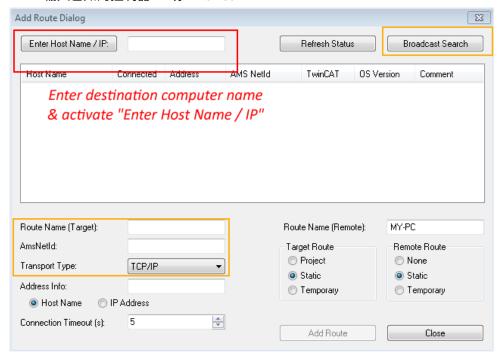
然后,在项目文件浏览器中就会显示新建的项目:


附图 62: 项目文件浏览器中的 TwinCAT 3 新建项目

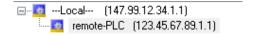
一般来说,TwinCAT 可以工作在本地或远程模式。如果 TwinCAT 系统(包括标准的用户开发界面)安装在相应的 PLC 上(本地),TwinCAT 就可以在本地模式下使用,这种情况下,可以执行下一个步骤"<u>Insert</u> Device [▶ 93]"。


如果要从 TwinCAT 开发环境连接到另一个安装在远程 PLC 上的 TwinCAT Runtime 运行环境,就得先识别到 Target System(目标系统)。通过菜单栏中的符号:

展开下拉菜单:

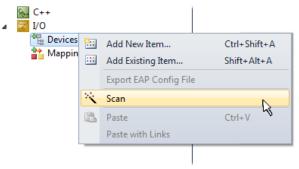

并打开以下窗口:

附图 63: 选择对话框: Choose the target system


使用 "Search (Ethernet)..." 进入目标系统。弹出下一个对话框,在此可以选择:

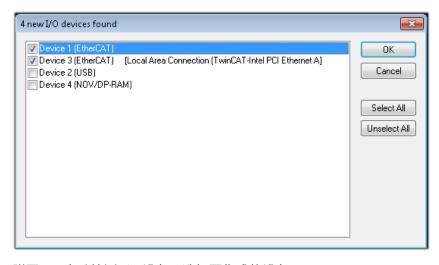
- 在 "Ether Host Name/IP: (输入主机名称/IP)" 处输入已知的计算机名称(如红框所示)
- 执行 "Broadcast Search (广播搜索)" (如果不知道确切的计算机名称)
- · 输入已知的控制器 IP 或 AmsNetID

附图 64: 指定通过 TwinCAT System Manager 访问的 PLC: 选择目标系统


进入目标系统后,按以下方式进行选择(可能需要输入正确密码):

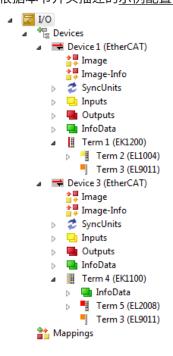
点击 "OK" 按钮确认,就可以通过 Visual Studio shell 访问目标系统。

添加设备


在 Visual Studio shell 用户界面左侧的项目文件浏览器中,选择"I/O"节点下的"Device",然后右键单击打开右键菜单,选择"Scan"或通过菜单栏中的 开始操作。首先,TwinCAT System Manager 可能需要通过 或通过菜单"TwinCAT" → "Restart TwinCAT(Config Mode)"设置成"Config Mode"。

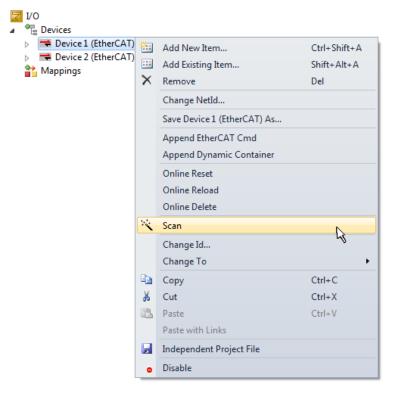
附图 65: 选择 "Scan(扫描)"

确认接下来的警告信息,并在对话框中选择"EtherCAT"设备:



附图 66: 自动检测 I/O 设备: 选择要集成的设备

确认"Find new boxes"信息,以确定连接到设备的端子模块。"Free Run"自由运行功能允许在"Config Mode"配置模式下操作输入和输出值,这个功能也需要确认才能启用。


根据本节开头描述的示例配置[▶78],结果如下:

附图 67: 在集成于 VS shell 的TwinCAT 3 环境中配置映射

上述整个过程包括两个步骤,可以独立进行(首先确定设备,然后确定每个设备连接的元件,如端子盒、端子模块等)。此外,也可以从"Device..."的右键菜单中选择"Scan Box"(搜索功能),读取目标设备Device下面连接的元件(从站):

附图 68: 读取连接到 Device 的各个端子模块

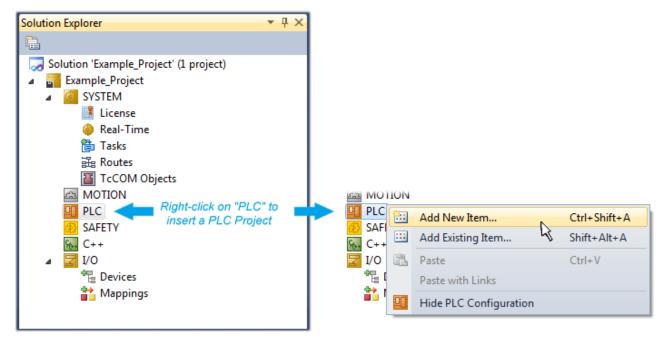
这可功能可以用于快速发现实际配置的变动。

对 PLC 进行编程

TwinCAT PLC Control 开发环境可以用不同的语言创建控制程序: TwinCAT PLC Control 支持 IEC 61131-3 中描述的所有 5 种语言:包括两种基于文本的语言和三种图形化的语言:

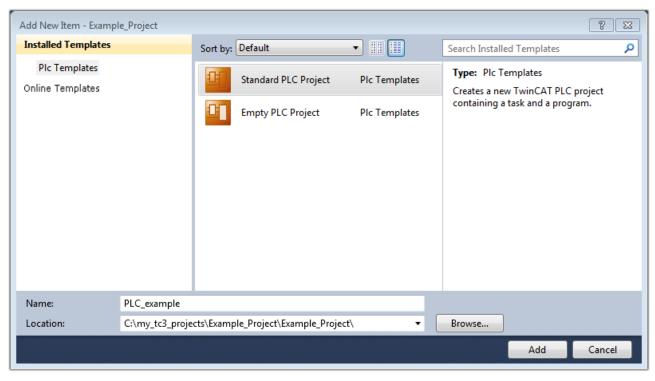
・基于文本的语言

- 。 指令表 (IL)
- 。 结构化文本 (ST)

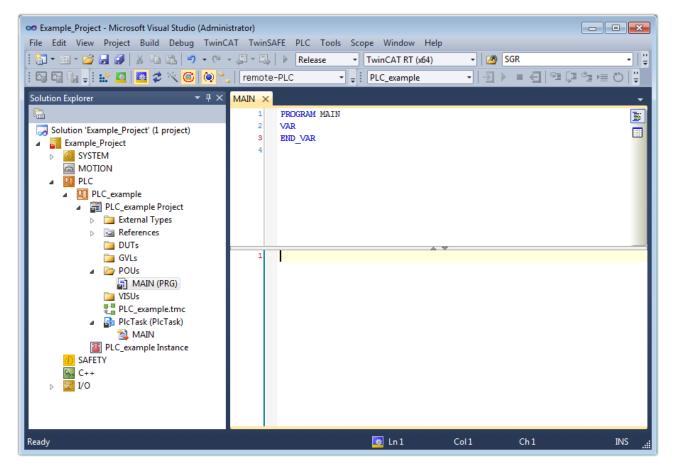

・图形化语言

- 。 功能块图(FBD)
- 。 梯形图(LD)
- 。 连续功能块图 (CFC)
- 。 顺序流程功能图(SFC)

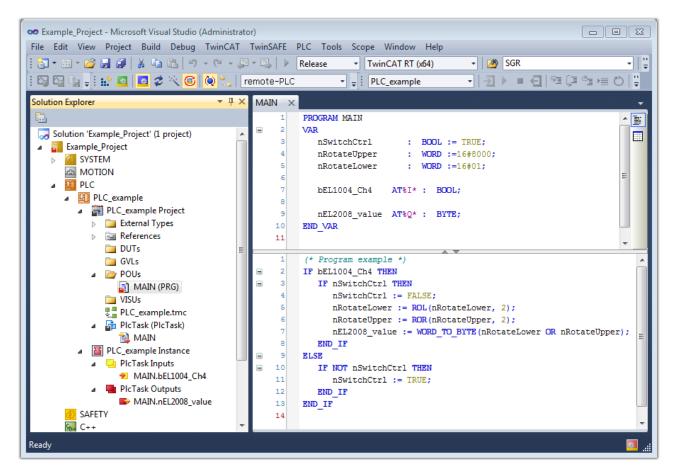
下面的内容只用到结构化文本(ST)。

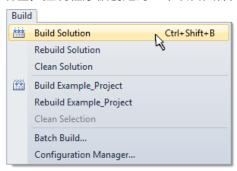

为了创建一个编程环境,通过项目文件浏览器中"PLC"的右键菜单,选择"Add New Item...",将一个PLC 子项目添加到示例项目中:

附图 69: 在节点 "PLC"下添加编程环境

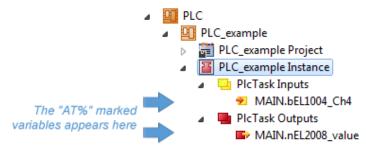

在弹出的对话框中选择"Standard PLC project",并输入"PLC_example"作为项目名称(示例),然后选择一个相应的目录:

附图 70: 为 PLC 编程环境指定名称和目录


选择"Standard PLC project"已经存在的"Main"程序,可以通过双击"POUs"中的"PLC_example_project"打开。以下是一个初始项目的用户界面:

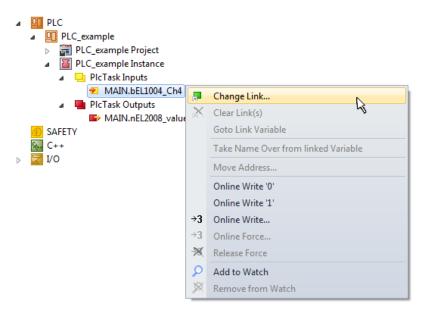

附图 71: 标准 PLC 项目的初始程序 "Main"

现在,已经为下一阶段的工作创建了示例变量和示例程序。

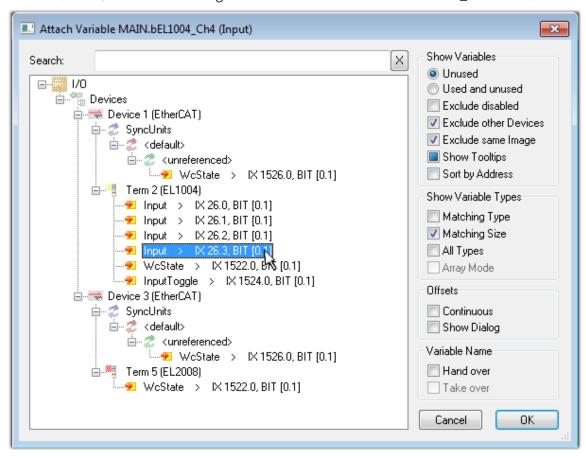

附图 72: 示例程序编译后,包含未分配地址的变量

现在,控制程序被创建为一个项目文件夹,接下来是编译过程:

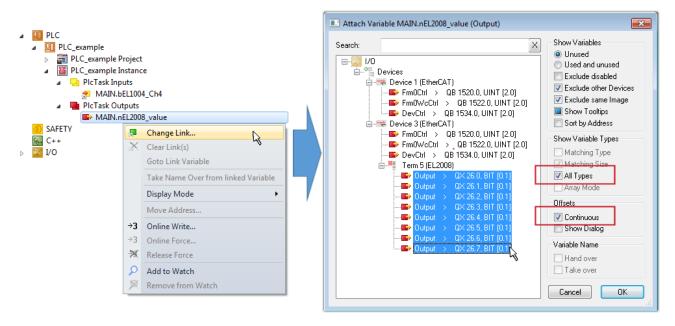
附图 73: 开始编译程序


下列变量在 ST/PLC 程序中以 "AT%" 标识,所以在项目文件浏览器的 "Instance"中可为其分配硬件:

变量分配

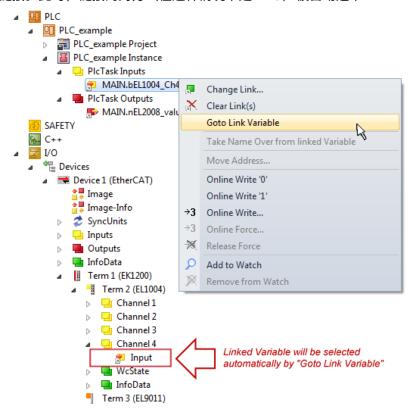

通过 PLC instance 中一个变量的右键菜单,使用"Change Link..."打开一个窗口,选择合适的过程对象(PDO)进行链接:

附图 74: 在 PLC 变量和过程对象之间建立链接


在弹出的窗口中,可以为 PLC configuration 中的 BOOL 类型变量 "bEL1004_Ch4" 选择过程对象:

附图 75: 选择 BOOL 类型的 PDO

根据默认设置,只有部分PDO 对象可供选择。本例中,选择 EL1004 端子模块的通道 4 的 input 用于链接。否则,如果要为一个输出的字节变量分配一组八个独立的输出位,那么在创建链接时,必须勾选 "All types"复选框。下图显示整个过程:



附图 76: 同时选择几个 PDO: 勾选 "Continuous"和 "All types"

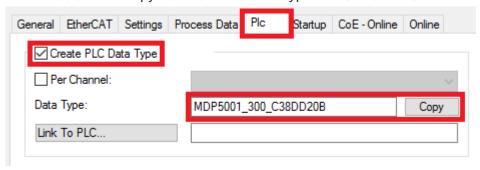
调试

请注意,"Continuous"复选框也要勾选。这种设计旨在将变量"nEL2008_value"的字节中包含的位按顺序分配给 EL2008 端子模块的所有八个选定的输出位。这样就可以在PLC程序中用一个字节对应端子模块的所有8个输出,字节的第0到7位分别对应模块的第1到8通道。在变量的黄色或红色对象处有一个特殊符号(②),表示变量已链接。也可以通过从变量的右键菜单中选择"Goto Link Variable(转到链接变量)"来检查链接。此时,链接的对方(在这种情况下是 PDO)被自动选中:

附图 77: "Goto Link Variable"的应用,以"MAIN.bEL1004 Ch4"为例

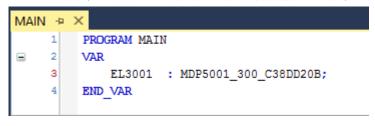
建立链接的过程也可以反向进行,即从 PDO 链接到变量。但在本例中,不可能为 EL2008 选择所有输出位,因为这个端子模块只提供单个数字量输出。如果一个端子模块有一个 byte, word, int 之类的 PDO,就有可能为其分配一套标准位宽的变量。在这里,"Goto Link Variable"也可以反向执行,以选择相应的 PLC 实例。

● 关于变量分配类型的说明



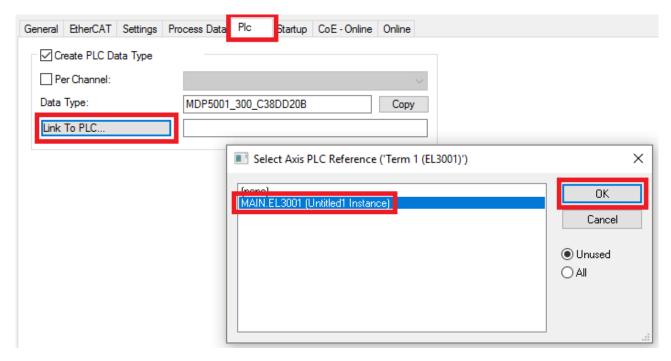
以下类型的变量分配方式只适用于 TwinCAT V3.1.4024.4 及以上版本,并且只能用于带微处理器的端子模块。

在 TwinCAT 中,可以根据一个端子模块的过程数据来创建一个结构体。然后在 PLC 中创建该结构体的一个实例,从而直接从 PLC 中访问过程数据,而无需自行声明变量。


下面以 EL3001 单通道模拟量输入端子模块 -10...+10 V 为例,说明其操作步骤:

- 1. 首先,必须在 TwinCAT 的"Process data"选项卡中选择所需的过程数据。
- 2. 之后,必须通过复选框在"PLC"选项卡中生成PLC数据类型。
- 3. 然后可以用 "Copy"按钮来复制 "Data Type" 文本框中的数据类型。

附图 78: 创建一个 PLC 数据类型


4. 接下来,必须在 PLC 中创建一个数据结构体的实例,类型为上一步复制的数据类型。

附图 79: 结构体的实例

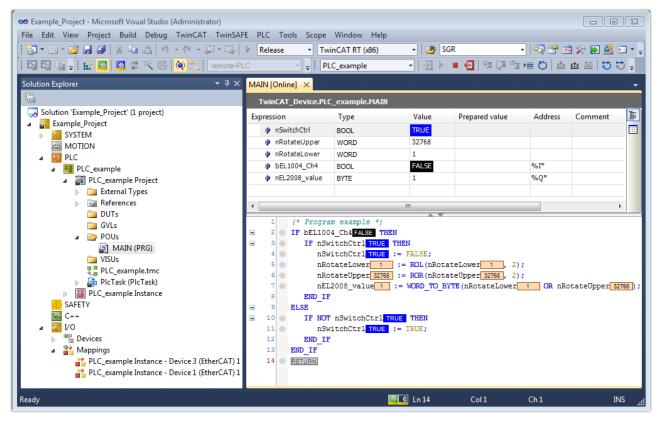
- 5. 然后,还必须创建项目文件夹。这可以通过组合键 "CTRL + Shift + B"或通过 TwinCAT 的 "Build"菜单来完成。
- 6. 然后,必须将端子模块的 "PLC" 选项卡中的结构体链接到刚才创建的PLC 结构体实例。

附图 80: 结构体的链接

7. 这样就可以在 PLC 的程序代码中通过结构体读取或写入过程数据。

```
MAIN* →
          PROGRAM MAIN
     2
         VAR
     3
              EL3001 : MDP5001 300 C38DD20B;
     4
     5
              nVoltage: INT;
     6
          END VAR
         nVoltage := EL3001.MDP5001 300 Input.
     2
                                                   MDP5001_300_AI_Standard_Status
     3
                                                   MDP5001 300 AI Standard Value
```

附图 81: 从过程数据的结构体中读取一个变量


激活配置

PDO 到 PLC 变量的分配过程建立了从控制器到端子模块的输入和输出的连接。现在可以用 或通过菜单 "TwinCAT"下的选项激活配置,以便将开发环境中的配置传送到 TwinCAT runtime 运行系统中。确认此时 弹出的信息 "Old configurations will be overwritten! (以前的配置将被覆盖)"点击 "OK"按钮,确认 "Restart TwinCAT system in Run mode(重启 TwinCAT 系统至运行模式)"。在项目文件浏览器中可以看到对应的变量分配结果:

几秒钟后,运行模式的相应状态会以不停旋转的符号 🚨 显示在 VS shell 开发环境的右下方。这样就可以按以下方法启动 PLC 系统了。

启动控制器

▶ 、 "F5"键或通过菜单 "PLC"中的"Start"即可启动。程序启动后,编程环境会在线显示 PLC runtime 中各个变量的实时值:

附图 82: TwinCAT 3 开发环境(VS shell):Login 后,程序已运行

用于停止 和 退出(Logout) 句 的两个操控按键会产生对应的动作("Shift + F5"也可用于停止,或者可以通过菜单"PLC"选择这两个动作)。

5.2 TwinCAT 开发环境

自动化软件 TwinCAT(The Windows Control and Automation Technology)分为两种:

- TwinCAT 2: System Manager(用于配置)和 PLC Control(用于编程)
- TwinCAT 3: TwinCAT 2 的增强版(在同一个开发环境进行编程和配置)

详细信息:

- TwinCAT 2:
 - 。 以面向变量的方式将 I/O 设备与任务连接起来
 - 。 以面向变量的方式将任务与任务连接起来
 - 。 支持 Bit 级别的数据单位
 - 。 支持同步或异步映射关系
 - 。 支持连贯的数据区和过程映像交互
 - 。 Datalink on NT 程序符合开放式微软标准(OLE、OCX、ActiveX、DCOM+ 等)

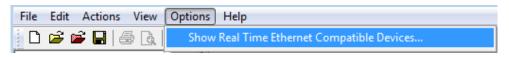
- 。 在 Windows NT/2000/XP/Vista、Windows 7、NT/XP Embedded、CE 中集成 IEC 61131-3 软 PLC、软 NC 和 软 CNC。
- 。 可连接所有常见的现场总线
- 。 更多...

其他特点:

- TwinCAT 3 (eXtended Automation):
 - 。 集成 Visual Studio®
 - 。 可以选择多种编程语言
 - 。 支持 IEC 61131-3 的面向对象扩展功能
 - 。 支持使用 C/C++ 语言编写实时应用程序
 - 。 可以连接 MATLAB®/Simulink®
 - 。 使用开放式接口,具有良好的扩展性
 - 。 灵活的 run-time (运行时) 环境
 - 。 支持多核 CPU 和 64 位操作系统
 - 。 提供 TwinCAT Automation Interface(自动化编程接口),可以自动生成代码和创建项目
 - 。 更多...

在下面的章节中,将介绍在 PC 系统上通过 TwinCAT 开发环境进行控制系统的调试,以及特定控制组件的基本功能。

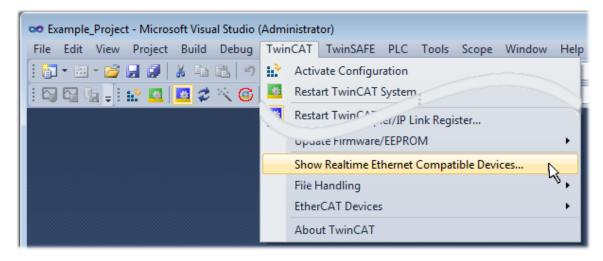
关于 TwinCAT 2 和 TwinCAT 3 的更多信息,请参见http://infosys.beckhoff.com。


5.2.1 TwinCAT real-time 实时驱动程序的安装

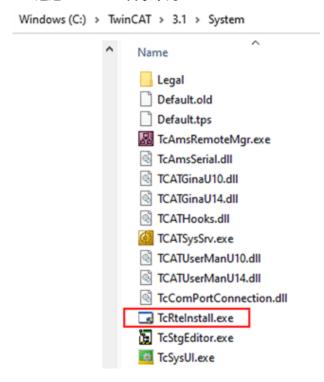
为了使 IPC 控制器的标准以太网端口具备实时功能,必须在 Windows 下为该端口安装倍福 real-time 实时驱动程序。

可以通过几种方式进行:

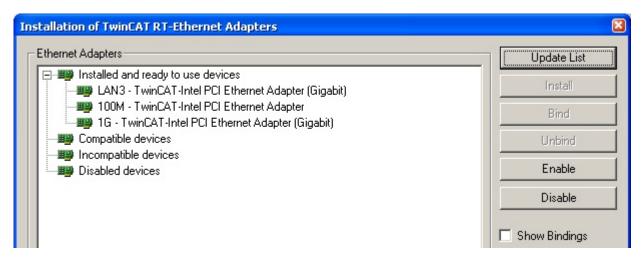
A: 通过 TwinCAT 适配器对话框


在System Manager中,通过"Options → Show Real Time Ethernet Compatible Devices",调出本地以太网接口的TwinCAT概览。

附图 83: System Manager "选项" (TwinCAT 2)


在 TwinCAT 3 环境中,这个功能需要通过菜单 "TwinCAT"来调用:

附图 84: 在 VS Shell 下调用(TwinCAT 3)


B: 通过 TwinCAT 目录下的 TcRteInstall.exe

附图 85: TwinCAT 目录下的 TcRteInstall

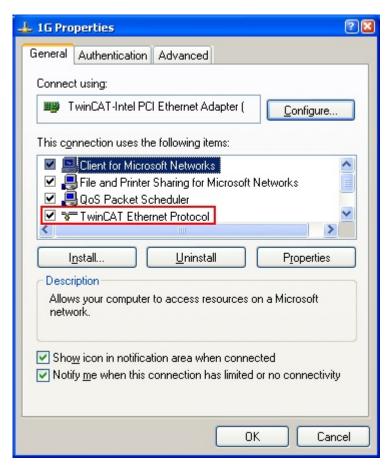
两种情况下均出现以下对话框:

附图 86: 网络接口概览

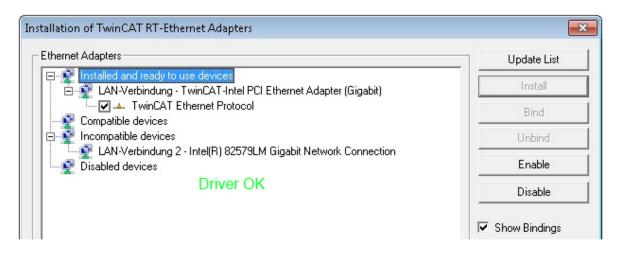
在 "Compatible devices(兼容设备)"下列出的接口可以通过"Install"按钮指定一个驱动程序。驱动程序只应安装在兼容的设备上。

关于未签名驱动程序的 Windows 警告可以忽略。

或者,首先可以插入一个 EtherCAT 设备,如<u>离线配置创建 [▶ 115]</u>章节所述,以便通过其 EtherCAT 属性("Adapter"选项卡上的"Compatible Devices..."按钮)查看兼容的以太网端口:

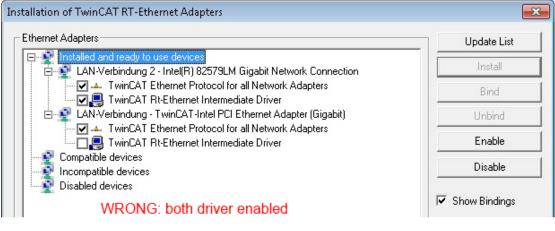

附图 87: EtherCAT 设备属性(TwinCAT 2):点击"Adapter"选项卡的"Compatible Devices..."

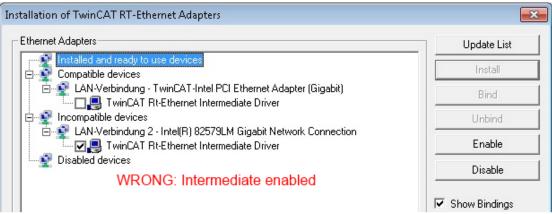
TwinCAT 3: EtherCAT设备的属性可以通过双击 "I/O" 下解决方案资源管理器中的"设备(EtherCAT)"打开:

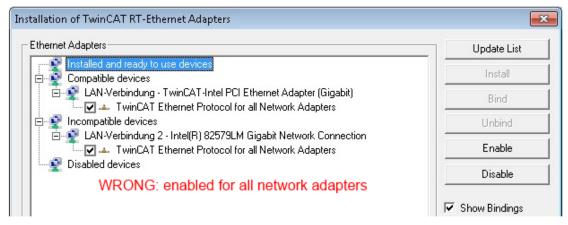

安装后,Windows 的网络接口概览中显示驱动程序已激活(Windows 开始→系统属性→网络)

附图 88: Windows 的网络接口属性

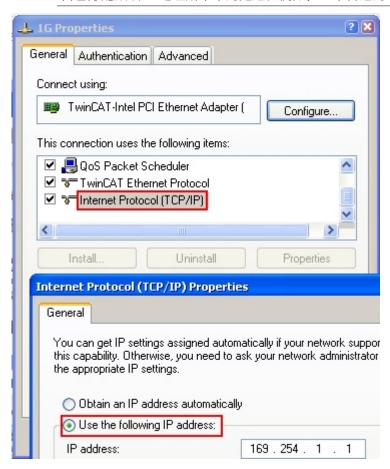
驱动程序的正确设置如下:




附图 89: 以太网端口驱动程序的正确设置示例


必须避免下面几种可能的设置:

EL41xx


附图 90: 以太网端口驱动程序的错误设置

所用端口的 IP 地址

● IP 地址/DHCP

1

在大多数情况下,被配置为 EtherCAT 设备的以太网端口不会传输一般的 IP 数据包。因此,在使用 EL6601 或类似设备时,最好是通过"Internet Protocol TCP/IP"驱动设置为该端口指定一个固定的 IP 地址并禁用 DHCP。这样就避免了在没有 DHCP 服务器的情况下,以太网端口的 DHCP 客户端为 自己分配默认 IP 地址所带来的延迟。例如,一个合适的地址空间是 192.168.x.x。

附图 91: 以太网端口的 TCP/IP 设置

5.2.2 关于 ESI 设备描述文件的说明

最新 ESI 设备描述文件的安装说明

TwinCAT EtherCAT 主站/System Manager需要所使用设备的设备描述文件,以便在在线或离线模式下生成配置。设备描述包含在 XML 格式的 ESI 文件(EtherCAT Slave Information)中。这些文件可以向各个从站的制造商索取。一个 *.xml 文件可能包含几个设备描述。

倍福 EtherCAT 设备的 ESI 文件可从倍福公司网站获取。

ESI 文件应存放在 TwinCAT 安装目录下。

默认设置:

- TwinCAT 2: C:\TwinCAT\IO\EtherCAT
- TwinCAT 3: C:\TwinCAT\3.1\Config\lo\EtherCAT

如果 ESI 文件在上次 System Manager 窗口打开后发生了变化,当打开一个新的 System Manager 窗口时,则会重新装载(一次)这些文件。

TwinCAT 的安装包括倍福 ESI 文件集,而该文件集是创建 TwinCAT build 版本时的最新 ESI 版本。

对于 TwinCAT 2.11/TwinCAT 3 及以上版本,如果编程 PC 连接到互联网,就可以通过以下方式从 System Manager 中更新 ESI 目录:

- TwinCAT 2: Option → "Update EtherCAT Device Descriptions"
- TwinCAT 3: TwinCAT → EtherCAT Devices → "Update Device Descriptions (via ETG Website)..."

也可以通过TwinCAT ESI Updater [▶ 113] 更新 ESI 目录。

*.xml 文件与 *.xsd 文件关联,后者描述了 ESI XML 文件的结构。因此,如需更新 ESI 设备描述,这两种文件类型都应更新。

设备的识别

EtherCAT 设备/从站由四个属性来区分,它们决定了完整的设备标识符。例如,设备标识符 EL2521-0025-1018 由以下部分组成:

- 系列号 "EL"
- ・ 型号 "2521"
- ・ 子版本号"0025"
- 修订版本"1018"

Name

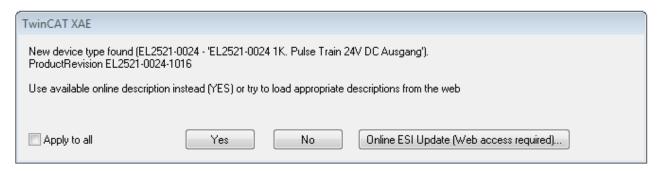
(EL2521-0025-1018)

Revision

附图 92: 标识符结构

名称 + 类型组成的订货号(此处:EL2521-0025)描述了设备功能。修订版本表示技术上的升级,并由倍福公司进行管理。原则上,一个较高版本的设备可以替换一个较低版本的设备,除非在文件中另有规定。每个修订版都有自己的 ESI 描述。参见详细说明 [▶ 12]。

在线描述


如果 EtherCAT 配置通过扫描实际设备而在线创建的(参见在线设置部分),并且没有找到可用的从站 ESI 描述(由名称和修订版本号指定),System Manager 会询问是否应使用存储在设备中的描述。在任何情况下,System Manager 需要这些信息来正确设置与从站的周期性和非周期性通信。

TwinCAT System Manager			
New device type found (EL2521-0024 - 'EL2521-0024 1K. Pulse Train 24V DC Ausgang'). ProductRevision EL2521-0024-1016			
Use available online description instead			
Apply to all	Yes	No	

附图 93: 在线描述信息窗口(TwinCAT 2)

在 TwinCAT 3 中,会出现一个类似的窗口,它也提供网络更新:

附图 94: 在线描述信息窗口(TwinCAT 3)

尽可能不要选择 Yes, 而是向从站设备制造商索取所需 ESI。安装完 XML/XSD 文件后,应重新配置。

注意

扫描设备时,修改"推荐"配置

- ✓ 如果扫描发现了 TwinCAT 未知的设备,必须对以下两种情况区别处理。这里以 EL2521-0000 的修订版 1019 为例
- a) 根本没有 EL2521-0000 设备的 ESI,无论是 1019 版本还是更早版本。所以必须向制造商(这种情况下是倍福)申请 ESI。
- b) 存在 EL2521-0000 设备的ESI,但版本比实际扫描到的更旧,例例如1018 或 1017。 此时应首先进行内部检查,以确定库存的备件是否可以配置为高版本。一个新的/更高的修订版通常也会 带来新的功能。如果不使用这些功能,可以毫无犹豫地在配置中使用以前的修订版 1018 继续工作。这也 是倍福兼容性规则所声明的。

请特别参阅"<u>关于使用倍福 EtherCAT IO 组件的一般注意事项</u>"一章。关于手动配置请参考"<u>离线配置创建</u> [▶ 115]"一章。

如果使用在线描述,System Manager 会从 EtherCAT 从站的 EEPROM 中读取一份设备描述。在复杂的从站中,EEPROM 的大小可能不足以容纳完整的 ESI,此时配置中的 ESI 就会*不完整*。因此,建议这种情况下优先使用离线 ESI 文件。

System Manager在其 ESI 目录下为在线扫描找到的设备创建一个新的描述文件 "OnlineDescription0000…xml",其中包含所有在线读取的 ESI 描述。

OnlineDescriptionCache000000002.xml

附图 95: System Manager 创建的文件 OnlineDescription.xml

也可以稍后再向该配置中手动添加一个从站。在线创建的从站在选择列表中以前辍 ">"表示(参见图*以 EL2521 的在线记录 ESI 为例进行说明)*。

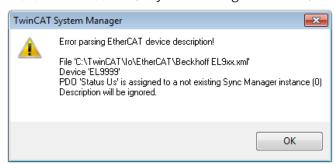
附图 96: 以EL2521为例说明用在线 ESI 文件创建的从站

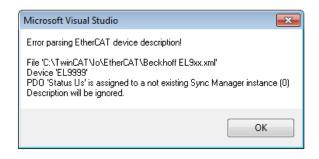
如果使用了这样的在线 ESI 文件,而后来又拿到了制造商的 ESI 文件,应按以下方式删除 OnlineDescription.xml 文件:

- ・ 关闭所有System Manager窗口
- · 在Config Mode下重启 TwinCAT
- 删除 "OnlineDescription0000...xml"
- 重新启动 TwinCAT System Manager(System Manager)

在此过程后,该文件不再显示。如有必要,请按 <F5> 更新

● TwinCAT 3.x 的在线描述




除了上述"OnlineDescription0000...xml"文件外,TwinCAT 3.x 还创建了一个 EtherCAT 缓存,其中包含新发现的设备,例如在 Windows 7 下:

C:\User\[USERNAME]\AppData\Roaming\Beckhoff\TwinCAT3\Components\Base\EtherCATCache.xml(请注意操作系统的语言设置!) 该文件也必须删除。

ESI 文件出错

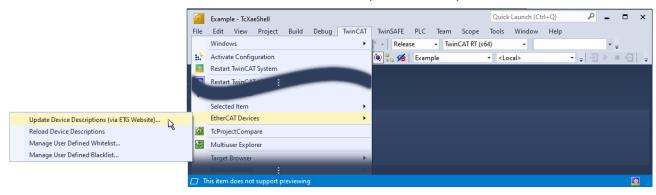
如果某个 ESI 文件出错,System Manager 无法读取,则 System Manager 会弹出一个信息窗口。

附图 97: 错误 ESI 文件的信息窗口(左: TwinCAT 2; 右: TwinCAT 3)

可能的原因包括:

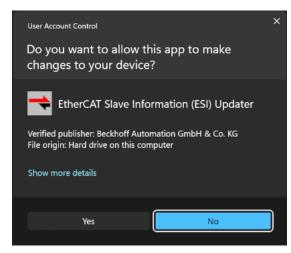
- · *.xml 的结构与相关的 *.xsd 文件不一致 → 检查原理图
- 内容不能被翻译成设备描述 → 联系从站的制造商

5.2.3 TwinCAT ESI Updater

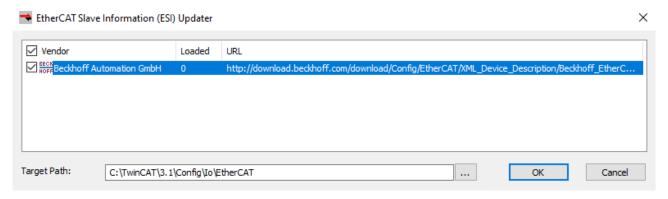

ESI Updater 可以非常方便地可将 EtherCAT 制造商通过互联网提供的 ESI 数据自动下载到 TwinCAT 目录中(ESI = EtherCAT Slave Information)。TwinCAT 访问存储在 ETG 的中央 ESI ULR 目录;并且可以在Updater 对话框中查看这些条目,但是无法在此进行更改。

5.2.3.1 TwinCAT 3

步骤 1) 更新 ESI 数据集


调用方式:

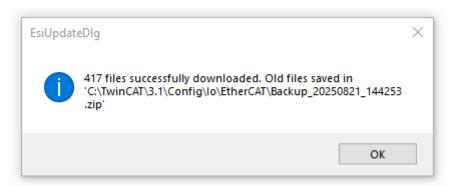
"TwinCAT" → "EtherCAT 设备" → "更新设备描述文件 (通过 ETG 网站)…".



附图 98: 使用 ESI Updater(TwinCAT 3)

调用后会出现 Windows 用户账户控制提示,必须用 [是] 加以确认:

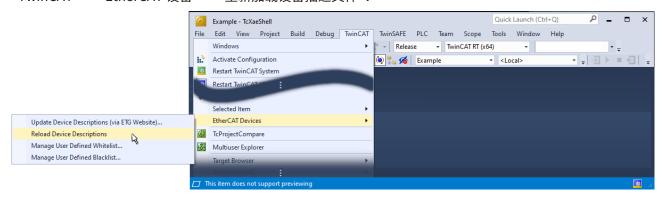
随后会出现 "更新器 "窗口,显示配置数据源:



附图 99: (ESI) 更新器

选择所需的行,然后单击 [OK] 开始下载或更新过程。这可能需要几分钟时间。

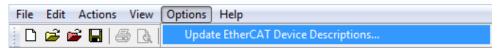
下载过程完成后会出现


,显示下载文件的数量和存储位置或备份压缩文件夹。单击 [OK] 关闭窗口。

注意:手动添加的 ESI 文件不会移动到备份压缩文件夹中,仍可在 TwinCAT 中访问。仅自动管理 Beckhoff 提供的 ESI 文件。

现在可以使用 [X](右上角)或 [取消] 关闭仍打开的 (ESI) 更新程序窗口。

步骤 2) 更新 ESI 缓存


现在必须将 ESI 文件加载到应用程序缓存中,才能使用它们。具体方法是重启 TwinCAT 或调用 "TwinCAT" \rightarrow "EtherCAT 设备" \rightarrow "重新加载设备描述文件":

缓存重建的状态可在 TwinCAT 的下部状态栏中查看。

5.2.3.2 TwinCAT 2

对于 TwinCAT 2.11 及以上版本,如果存在在线外网连接,System Manager可以自动搜索当前的倍福 ESI 文件:

附图 100: 使用 ESI Updater (>= TwinCAT 2.11)

调用方法:

"选项" → "更新 EtherCAT 设备描述文件"

5.2.4 Online 和 Offline 之间的区别

Online 和 Offline(在线和离线)之间的区别是针对实际存在物理 I/O(驱动器、端子模块、EJ-模块等)而言的。如果需要提前在编程电脑上进行系统配置,例如在笔记本电脑上,则只能在"Offline configuration(离线配置)"模式下进行。此时所有组件都必须在配置中手动输入,例如根据电气设计图纸。

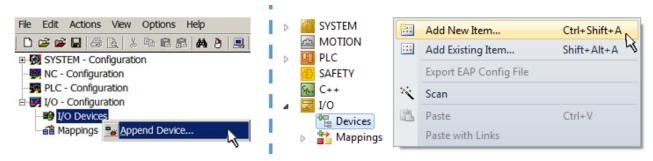
如果目标控制器已经连接到 EtherCAT 系统,所有设备都已通电,且网络基础设施已准备就绪,就可以简单地通过目标控制器的"scanning(扫描)"来生成TwinCAT 配置。这就叫做在线配置。

在任何情况下,每次启动过程中,EtherCAT 主站都会检查所发现的从站是否与当前配置相符。这个检查的规则可以在从站的扩展设置界面中进行选择。请参考最新 ESI 设备描述文件的安装说明 [▶110]。

配置前的准备工作:

- 实际 EtherCAT 硬件(设备、耦合器、驱动器)必须存在并安装完成
- ・ 所有设备/模块必须通过 EtherCAT 电缆连接或者在 I/O 站中以设计的顺序组装连接
- 所有设备/模块接上电源,做好通信准备
- ・ 目标系统上的 TwinCAT 必须处于 Config Mode(配置模式)。

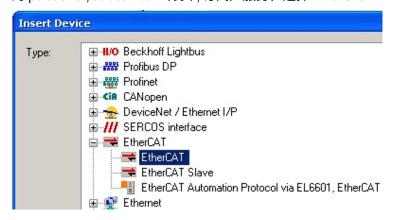
在线扫描过程包括:


- <u>检测 EtherCAT 设备 [▶ 121]</u>(IPC 的以太网端口)
- 检测连接的 EtherCAT 从站 [▶122]。这一步骤可独立于前一步骤单独进行。
- 故障排除 [▶ 125]

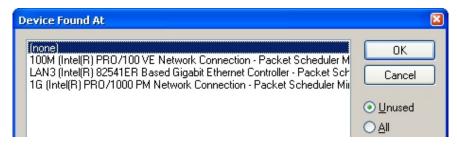
也可以通过现有配置扫描 [▶ 125]以进行比较。

5.2.5 创建 OFFLINE 配置

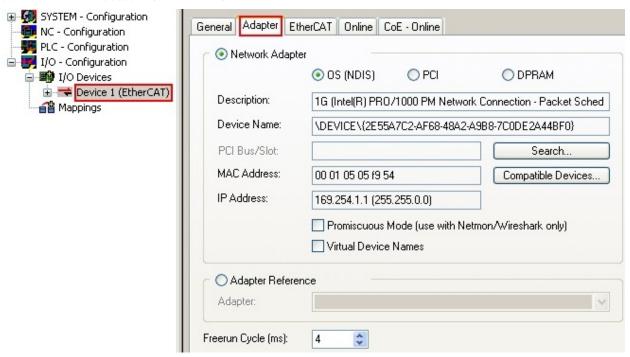
创建 EtherCAT 设备


在一个空白的 System Manager 窗口中创建一个 EtherCAT 设备。

附图 101: 添加 EtherCAT 设备(左: TwinCAT 2; 右: TwinCAT 3)



对于带有 EtherCAT 从站的 EtherCAT I/O 应用,选择类型 "EtherCAT"。对于目前通过 EL6601/EL6614 实现的 publisher/subscriber(发布/订阅)服务,选择"EtherCAT Automation Protocol via EL6601"。


附图 102: 选择 EtherCAT 连接(TwinCAT 2.11,TwinCAT 3)

然后在TwinCAT runtime 运行系统中为这个虚拟设备分配一个实际的以太网端口。

附图 103: 选择以太网端口

可以在创建 EtherCAT 设备时自动弹出的窗体中进行选择,也可以将来在属性对话框中进行设置/修改;参见图 "EtherCAT 设备属性(TwinCAT 2)"。

附图 104: EtherCAT 设备属性(TwinCAT 2)

TwinCAT 3: EtherCAT设备的属性可以通过双击 "I/O" 下解决方案资源管理器中的"设备(EtherCAT)" 打开:

● 选择以太网端口

1

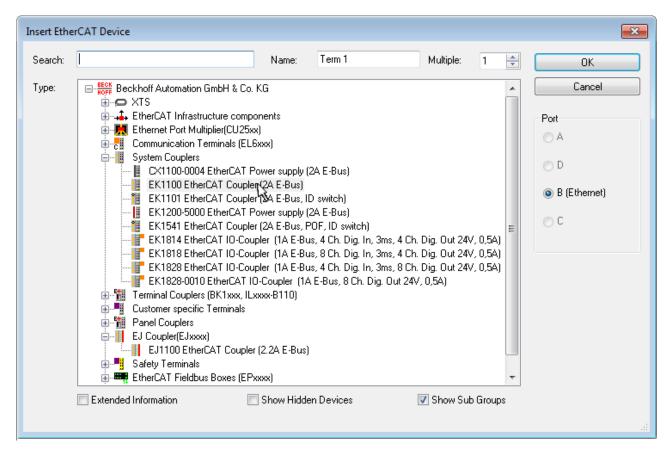
在安装了TwinCAT实时驱动程序的EtherCAT设备上才能选择以太网端口。这必须为每个端口单独进行。请参考各自的<u>安装页面 [▶ 104]</u>。

配置 EtherCAT 从站

选中配置树中的一个设备并右键单击,可以进一步添加其它设备。

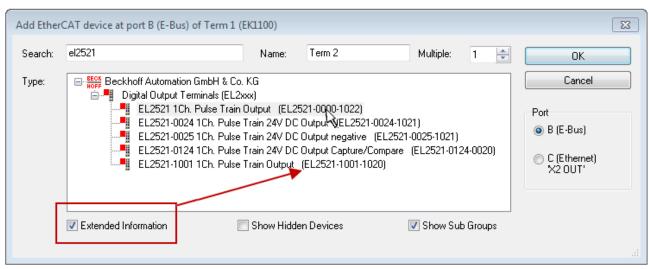
附图 105: 添加 EtherCAT 设备(左: TwinCAT 2; 右: TwinCAT 3)

弹出选择新设备的对话框 对话框中只显示已有 ESI 文件的设备。

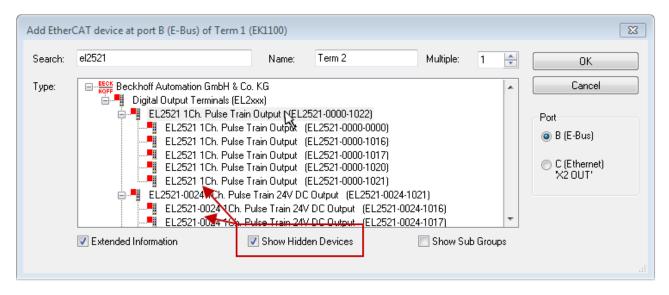

只显示可以添加到上一步选中项之后的设备,以供选择。也会显示端口可用的物理层(图"新增 EtherCAT 设备的选择对话框")。如果是基于电缆的带PHY传输的 Fast-Ethernet(快速以太网)物理层,那么也只能选择基于电缆的设备,如图"新增 EtherCAT 设备的选择对话框"所示。如果上一个设备有多个空闲的端口(例如EK1122 或 EK1100),可以在右边选择需要的端口(A)。

物理层概述

- "Ethernet": 基于电缆的 100BASE-TX: 耦合器、盒模块、带 RJ45/M8/M12 连接器的设备
- "E-Bus": LVDS "端子模块总线", EtherCAT 插拔式模块(EJ), EtherCAT 端子模块(EL/ES), 各种模块化模块


Search 搜索框用于查找指定的设备(自 TwinCAT 2.11 或 TwinCAT 3 起)。

附图 106: 新增 EtherCAT 设备的选择对话框

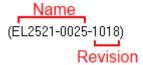

默认情况下,只要根据名称/设备类型进行选择。如果要选择设备的特定版本,可以勾选"Extended Information",把版本信息也显示出来。

附图 107: 显示设备版本

很多时候,由于历史原因或增加功能,例如进行了技术升级,一个设备可能存在多个版本。为简化起见(见图"新增 EtherCAT 设备的选择对话框"),在倍福设备的选择对话框中只显示最近(即最高)的修订版本,从而也是最新出厂的设备版本。如需以 ESI 描述显示系统可用的所有设备版本,请勾选"Show Hidden Devices(显示隐藏设备)"复选框,见图"显示以前的版本"。

附图 108: 显示以前的版本

● 修订版本的设备选择 - 兼容性

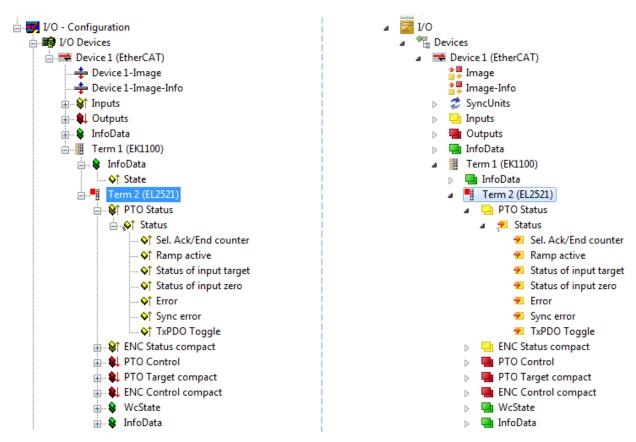

ESI描述还定义了过程图像、主站和从站/设备之间的通信类型以及设备功能(如果适用)。物理设备(固件,如果适用)必须支持主站的通信查询/设置。这是向后兼容的,也就是说,如果EtherCAT主站将其视为较早版本,那么应支持较新设备(较高版本)。对于Beckhoff的EtherCAT端子/端子盒/EJ模块,应符合以下兼容性规则。

系统中的设备版本 >= 配置中的设备版本

这也使得后续更换设备时无需改变配置(驱动器可能存在不同规格)。

示例

如果在配置中指定了EL2521-0025-**1018**,则在实践中可以使用EL2521-0025-**1018**或更高版本(-**1019**,-**1020**)。



附图 109: 终端的名称/修订版本

如果TwinCAT系统中存在当前ESI描述,则选择对话框中提供的最新修订版本与Beckhoff的生产状态相符。如果在实际应用中使用了当前Beckhoff设备,建议在创建新配置时使用最近的设备版本。在应用中使用库存的较早设备时,方才应使用较早的修订版本。

在这种情况下,设备的过程图像显示在配置树中,并可以进行如下参数化:与任务的链接、CoE/DC设置、插件定义、启动设置···

附图 110: TwinCAT 树中的 EtherCAT 端子模块(左: TwinCAT 2; 右: TwinCAT 3)

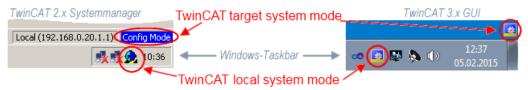
5.2.6 创建ONLINE配置

检测/扫描 EtherCAT 设备

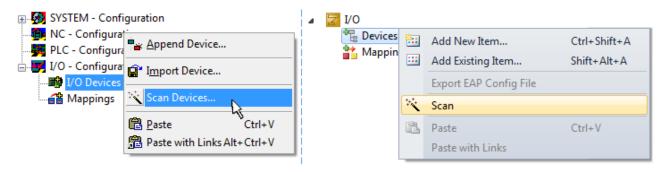
如果 TwinCAT 系统处于CONFIG模式,则可以使用在线设备搜索。这可以通过下方信息栏中的符号表示:

- 在 TwinCAT 2 上,通过 TwinCAT System Manager 窗口中蓝色显示的 Config Mode 来表示"Config Mode"。
- ・ 在 TwinCAT 3 上,通过开发环境用户界面中的符号 📮 表示。

以下方法可以将TwinCAT 设置成配置模式:

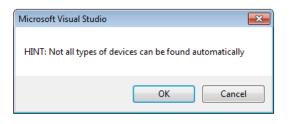

- TwinCAT 2: 通过选择菜单栏中的 🤦 或通过 "Actions" → "Set/Reset TwinCAT to Config Mode..."
- TwinCAT 3: 通过选择菜单栏中的 🧧 或通过 "TwinCAT" → "Restart TwinCAT (Config Mode)"

● 配置模式下的在线扫描


在 RUN 模式(生产运行)下,在线搜索不可用。注意 TwinCAT 编程系统和 TwinCAT 目标系统之间的区别。

Windows 任务栏中的 TwinCAT 2 图标(❷)或 TwinCAT 3 图标(❷)始终显示本地 IPC 的 TwinCAT 模式。与此相对,TwinCAT 2 的 System Manager 窗口或 TwinCAT 3 的用户界面会显示目标系统的状态。

附图 111: 本地/目标系统差异(左: TwinCAT 2; 右: TwinCAT 3)


右键单击配置树中的"I/O Devices"可以打开搜索对话框。

附图 112: Scan Devices(扫描设备)(左: TwinCAT 2; 右: TwinCAT 3)

这种扫描模式不仅试图找到 EtherCAT 设备(或可作为 EtherCAT 设备使用的以太网端口),而且还试图找到 NOVRAM、现场总线卡、SMB 等。然而,并非所有设备都能自动找到。



附图 113: 自动设备扫描的注意事项(左: TwinCAT 2; 右: TwinCAT 3)

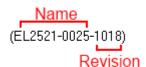
安装了 TwinCAT real-time 实时驱动程序的以太网端口被显示为"RT Ethernet"设备。为测试目的,一个EtherCAT 帧被发送到这些端口。如果扫描过程从响应中检测到已连接一个 EtherCAT 从站,该端口将立即显示为"EtherCAT Device"。

附图 114: 检测到的以太网设备

通过各自的复选框可以选择设备(如图"检测到的以太网设备"所示,例如图中设备 3 和设备 4 被选中)。在通过"OK"按钮进行确认后,建议对所有选定的设备进行设备扫描,见图"自动创建 EtherCAT 设备后的扫描"。

● 选择以太网端口

1

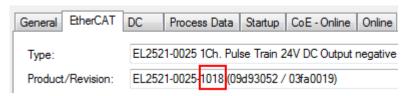

在安装了TwinCAT实时驱动程序的EtherCAT设备上才能选择以太网端口。这必须为每个端口单独进行。请参考各自的安装页面 [▶ 104]。

检测/扫描 EtherCAT 设备

● 在线扫描功能

在扫描过程中,主站在从站的 EEPROM 中查询 EtherCAT 从站的身份信息。名称和修订版本号用于确定类型。从存储的 ESI 数据中找到各个设备,并以其 ESI 文件定义的默认设置集成到当前配置。

附图 115: 默认设置示例

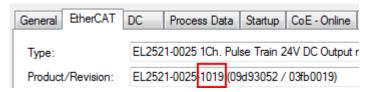

注意

在量产机型上使用从站扫描功能

扫描功能应谨慎使用。它是一个实用和快速的工具,用于创建一个初始配置,作为调试的基础。然而,扫描功能不应用于设备量产或重复生产时创建配置,而是仅在必要时用于和已定义的初始配置进行<u>比较 [125]</u>。背景:由于倍福出于产品维护的原因,已交付产品还会继续更新修订版本。通过在线扫描可以临时创建配置,根据设备清单,在线扫描的配置与初始配置是完全相同的(在机器结构相同的情况下);但是,个别设备的修订版本可能与初始配置不同。

示例:

A 公司制造了一台机器 B 的原型机,该机器以后将被批量生产。为此,制造了原型机。在 TwinCAT 中对 IO 设备进行了扫描,并创建了初始配置"B.TSM"。修订版本为 1018 的 EL2521-0025 EtherCAT 端子模块装在某处。于是,它就这样创建到了 TwinCAT 配置文件中:


附图 116: 安装修订版本-1018的EthetCAT 端子模块,

同样,在原型机测试阶段,该端子模块的功能和属性由程序员/调试工程师进行测试完成以后就可以随时投入使用,比如通过 PLC "B.pro"或 NC 寻址访问。(这也同样适用于TwinCAT 3 解决方案)。

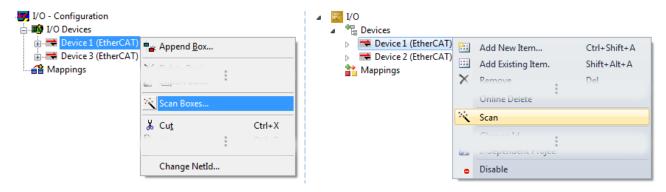
原型开发完成以后,机器 B 开始批量生产,倍福继续为该机器提供 EL2521-0025-0018。如果机器批量生产部门的调试工程师总是进行扫描,那么每台机器都会再次产生一个内容相同的 B 配置。同样,A 公司可能会在全球范围内为即将批量生产的带有 EL2521-0025-1018 端子模块的机器创建备件仓库。

一段时间后,倍福对 EL2521-0025 进行了升级,新增了功能 C。因此更改了固件,在外观上标注了更高的固件版本和**新的修订版本-1019**。尽管如此,新设备自动支持前一版本的功能和界面;因此,没有必要对"B.TSM"甚至"B.pro"进行调整。量产机器可以继续用"B.tsm"和"B.pro"来生产;为了检查生产的机器,需要对照初始配置"B.tsm"进行<u>比较扫描[</u><u>125</u>]。

然而,如果现在机器批量生产部门不使用"B.tsm",而是进行扫描来创建生产用的配置,那么修订版本-**1019**将被自动检测并创建到配置中:


附图 117: 检测修订版本 1019 的 EtherCAT 端子模块

调试工程师通常不会注意到这一点。TwinCAT 也不会发出任何信号,因为实际上是从头创建了一个新的配置。然而,根据兼容性规则,这意味着不应该将 EL2521-0025-**1018** 的备件安装到这台机器上(即使这在绝大多数情况下还是可以使用的)。

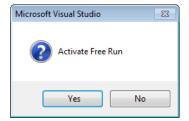

此外,还可能的发生的情况是,由于 A 公司的开发及生产,EL2521-0025-1019 的新功能 C(例如,改进的模拟量滤波器或用于诊断的额外过程数据)被发现并使用了,而无需经过内部审核。以前的备件库存就不能再用于以这种方式创建的新配置"B2.TSM"。如果机器已经开始批量生产,扫描就应该只是为了提供信息,以便和定义的初始配置进行比较。更改配置务必小心!

如果在配置中创建了 EtherCAT 设备(手动或通过扫描),则可以在 I/O 区域扫描设备/从站。

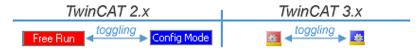
附图 118: 自动创建 EtherCAT 设备后的扫描(左: TwinCAT 2;右: TwinCAT 3)

附图 119: 手动扫描特定 EtherCAT 主站上的设备(左: TwinCAT 2; 右: TwinCAT 3)

在System Manager(TwinCAT 2)或用户界面(TwinCAT 3)中,可以通过状态栏底部的进度条监控扫描过程。

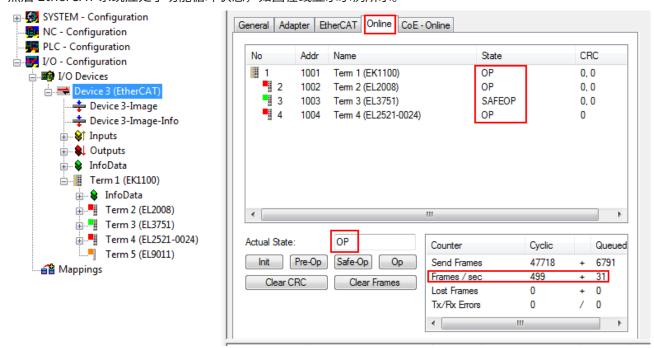


附图 120: TwinCAT 2 的扫描进度示例


配置已建立,然后可以切换到在线状态(OPERATIONAL)。

附图 121: Config/FreeRun 查询(左: TwinCAT 2; 右: TwinCAT 3)

在 Config/FreeRun 模式下,System Manager 在蓝色和红色之间交替显示,而 EtherCAT 设备继续以 4ms 的 空转周期时间(默认设置)运行,即使没有活动任务(NC,PLC)也不例外。



附图 122: 显示在状态栏下方的 "Free Run"和 "Config Mode"来回切换

附图 123: TwinCAT 也可以通过一个按钮切换到这种状态(左: TwinCAT 2; 右: TwinCAT 3)

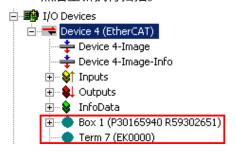
然后 EtherCAT 系统应处于功能循环状态,如图在线显示示例所示。

附图 124: 在线显示示例

请注意:

- 所有从站应处于 OP 状态
- EtherCAT 主站的 "Actual State" 应处于 OP 状态

- "frames/sec"应与周期时间相匹配,同时将 Sent Frames 纳入考量。
- · 不应出现过多的 "Lost Frames" 或 CRC 错误


至此,配置工作就完成了。该配置可以按照手动流程 [▶115]中的描述进行修改。

故障排除

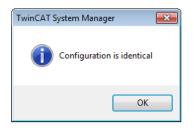
在扫描过程中可能会出现各种状况:

- 检测到一个unknown device (未知设备),即没有 ESI XML 描述的 EtherCAT 从站。
 此时,System Manager 可以读取该设备中存储的任何 ESI。这种情况在"关于 ESI 设备描述的说明"一章中进行了描述。
- · Device are not detected properly(设备未被正确检测到) 可能的原因包括:
 - 。 数据链路出现故障,导致扫描过程中数据丢失
 - 。 从站的设备描述无效

应有针对性地检查接线和设备,例如通过 emergency scan(紧急扫描)进行检查。 然后重新执行扫描。

附图 125: 识别错误

在System Manager中,这种情况下的设备可能被识别为 EK0000 或 unknown devices(未知设备)。无法操作或操作无效。

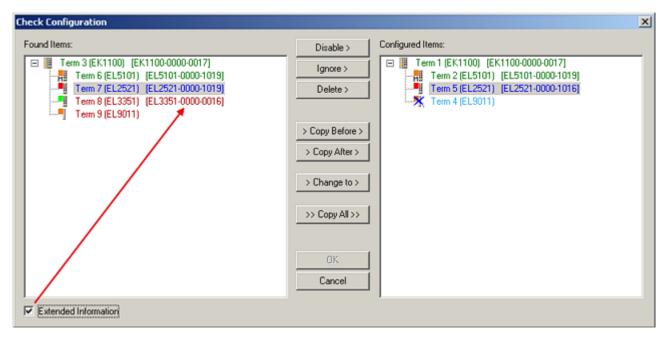

扫描现有配置

注意

比较后修改配置

通过这种扫描(TwinCAT 2.11 或 3.1),目前只对设备属性中的供应商(制造商)、设备名称和修订版本进行比较!务必谨慎执行"ChangeTo(更改为)"和"Copy(复制)"操作,认真考虑倍福 IO 兼容性规则(见前文)。然后,原来配置的设备版本被扫描发现的修订版本所取代;这可能会影响设备支持的过程数据和功能。

如果对现有配置进行扫描,实际的 I/O 环境可能与配置完全一致,也可能有所不同。这样就可以比较两个配置了。



附图 126: 相同配置(左: TwinCAT 2;右: TwinCAT 3)

如果检测到有改动,差异会显示在更正对话框中,从而让用户就可以根据需要修改配置。

附图 127: 更正对话框

建议勾选 "Extended Information"复选框,以显示修订版本的差异。

颜色	说明		
绿色	此 EtherCAT 从站与另一侧的条目相匹配。类型和修订版本均匹配。		
蓝色	此 EtherCAT 从站在另一侧也存在,但其版本不同。其他修订版本可能具有过程数据和其他/附加功能的其他默认数值。 如果找到的修订版本高于配置的修订版本,只要考虑到兼容性问题,就可以使用该从站。		
	如果找到的修订版低于配置的修订版,很可能无法使用从站。找到的设备可能并不支持主站基于较高修订版本所期望的所有功能。		
淡蓝色 此 EtherCAT 从站被忽略("忽略"按钮)			
红色 ・ 此 EtherCAT 从站在另一侧不存在。			
	• 存在但版本不同,且属性也与指定版本不同。 兼容性原则也适用于此处:如果找到的版本高于配置的版本,只要考虑到兼容性问题,就可以使用,因为后继设备应该支持前代设备的功能。 如果找到的修订版低于配置的修订版,很可能无法使用从站。找到的设备可能并不支持主站基于较高修订版本所期望的所有功能。		

● 修订版本的设备选择 - 兼容性

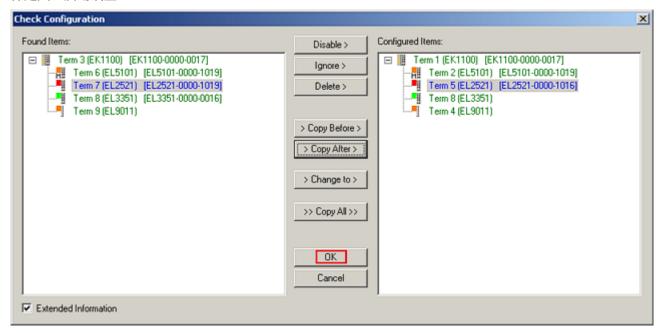
1


ESI描述还定义了过程图像、主站和从站/设备之间的通信类型以及设备功能(如果适用)。物理设备(固件,如果适用)必须支持主站的通信查询/设置。这是向后兼容的,也就是说,如果EtherCAT主站将其视为较早版本,那么应支持较新设备(较高版本)。对于Beckhoff的EtherCAT端子/端子盒/EJ模块,应符合以下兼容性规则。

系统中的设备版本 >= 配置中的设备版本

这也使得后续更换设备时无需改变配置(驱动器可能存在不同规格)。

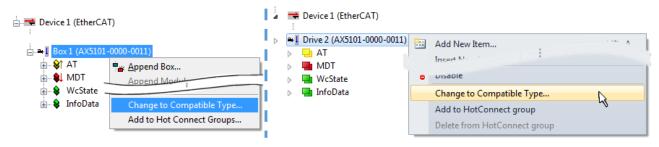
示例


如果在配置中指定了EL2521-0025-**1018**,则在实践中可以使用EL2521-0025-**1018**或更高版本(-**1019**,-**1020**)。

附图 128: 终端的名称/修订版本

如果TwinCAT系统中存在当前ESI描述,则选择对话框中提供的最新修订版本与Beckhoff的生产状态相符。如果在实际应用中使用了当前Beckhoff设备,建议在创建新配置时使用最近的设备版本。在应用中使用库存的较早设备时,方才应使用较早的修订版本。

在这种情况下,设备的过程图像显示在配置树中,并可以进行如下参数化:与任务的链接、CoE/DC设置、插件定义、启动设置···



附图 129: 更正对话框,有修改项

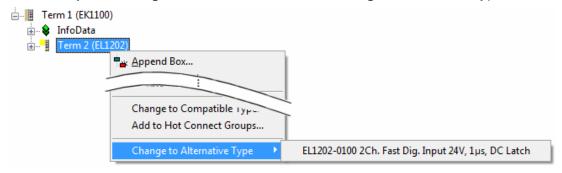
一旦所有的修改被保存或接受,点击"确定"将它们传输到实际的*.tsm 配置。

更改为兼容类型(Change to Compatible Type)

TwinCAT 提供一个功能*Change to Compatible Type...*用于切换到另一个设备版本,同时保留任务中的链接。

附图 130: 对话框 "Change to Compatible Type..." (左: TwinCAT 2;右: TwinCAT 3)

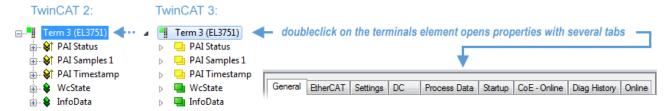
TwinCAT 对 EtherCAT 设备的 ESI 中下列元素进行了比较,并假定它们是相同的,以决定一个设备是否被表示为"兼容":


- 物理层 (例如RJ45、Ebus...)
- FMMU(允许实际数量比配置的多)
- SyncManager(SM,允许实际数量比配置的多)
- EoE(属性 MAC,IP)
- CoE(属性 SdoInfo, PdoAssign, PdoConfig、PdoUpload, CompleteAccess)
- FoE
- PDO(过程数据: Sequence, SyncUnit SU, SyncManager SM, EntryCount, Ent-ry.Datype)

这个功能最好是在 AX5000 设备上使用。

更改为替代类型(Change to Alternative Type)

TwinCAT System Manager 提供用于切换设备的功能: Change to Alternative Type



附图 131: TwinCAT 2 对话框 Change to Alternative Type

如果调用 Change to Alternative Type,System Manager 会在本地的设备 ESI(在此例中:EL1202-0000)中搜索其中包含的兼容设备的详细信息。配置被更改,且 ESI-EEPROM 也同时被覆盖,因此这个过程只有在在线状态(ConfigMode)下才能执行。

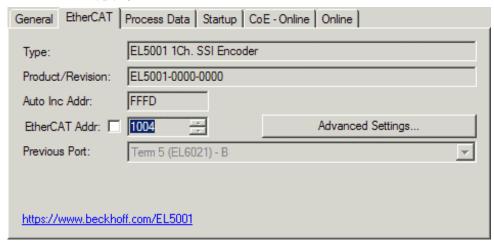
5.2.7 EtherCAT 设备的配置

在 TwinCAT 2 System Manager 的左侧窗口或 TwinCAT 3 开发环境的 Solution Explorer (解决方案浏览器)中,分别点击树结构中希望配置的端子模块(在示例中:EL3751 Term 3)。

附图 132: 树形结构的分支,端子模块 EL3751

在 TwinCAT System Manager(TwinCAT 2)或开发环境(TwinCAT 3)的右侧窗口中,有各种用于配置端 子模块的选项卡,而具体提供哪些选项卡则取决于从站设备的复杂程度。因此,如上面的例子所示,端子模块 EL3751 提供许多设置选项,也提供相应数量的选项卡。相反,对于端子模块 EL1004,就只提供 "General"、"EtherCAT"、"Process Data"和"Online"选项卡。有的端子模块(例如 EL6695)通过一个带有自己名称的选项卡提供特殊功能,本例中的选项卡名称就是"EL6695"。此外,还有一些端子模块提供一个特定的"Settings"选项卡,其中包括诸多设置选项(例如 EL3751)。

"General(常规)"选项卡


附图 133: "General(常规)"选项卡

NameEtherCAT 设备的名称IdEtherCAT 设备的编号TypeEtherCAT 设备类型

Comment注释 (例如关于系统的注释)。Disabled可以在此停用 EtherCAT 设备。

Create symbols 选中此复选框,才能通过 ADS 访问该 EtherCAT 从站。

"EtherCAT"选项卡

附图 134: "EtherCAT" 选项卡

Type EtherCAT 设备类型

Product/Revision EtherCAT 设备的产品编号和修订版本号

Auto Inc Addr. EtherCAT 设备的自动增量寻址功能。自动增量寻址用于通过物理位置对通信环中的每个 EtherCAT 设备

进行寻址。在启动阶段,当 EtherCAT 主站为 EtherCAT 设备分配地址时,将使用自动增量寻址。进行自动增量寻址时,通信链路上的第一个 EtherCAT 从站的地址为 $0000_{
m hex}$ 。每增加一个从站,地址就减 1

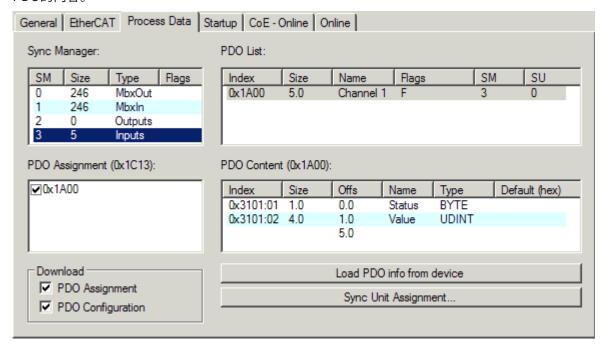
(FFFF_{hex}, FFFE_{hex}...)_o

EtherCAT Addr. 一个 EtherCAT 从站的固定地址。该地址由 EtherCAT 主站在启动阶段分配。勾选输入字段左边的复选

框,以修改默认值。

Previous Port 该设备连接的 EtherCAT 设备的名称和端口。如果可以在不改变通信环中 EtherCAT 设备顺序的情况下将

该设备与另一个设备进行连接,则该组合字段被激活,可以选择该设备所连接的 EtherCAT 设备。


Advanced Settings 点击该按钮打开高级设置对话框。

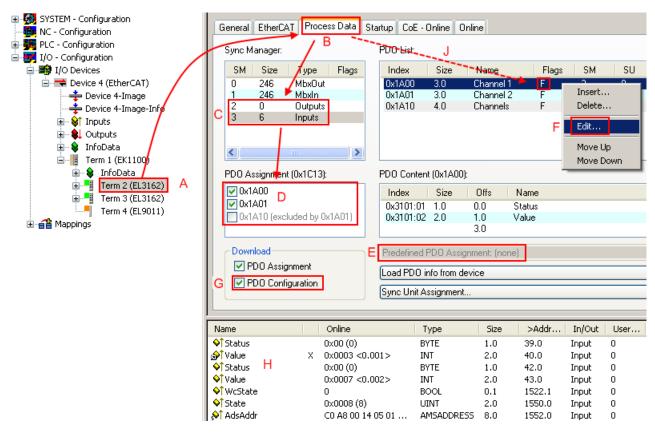
标签底部的链接指向该 EtherCAT 设备对应的产品主页。

"Process Data (过程数据)"选项卡

用于过程数据配置。EtherCAT从站的输入和输出数据表示为CANopen过程数据对象(**P**rocess**D**ata**O**bjects,PDO)。如果EtherCAT从站支持该功能,用户可以通过 PDO 分配选择一个PDO,并通过该对话框修改各个PDO的内容。

附图 135: "Process Data (过程数据)"选项卡

EtherCAT从站在每个周期内传输的过程数据(PDO)是应用程序期望周期性更新的用户数据,或者是被发送到从站的用户数据。为此,EtherCAT 主站 (Beckhoff TwinCAT) 在启动阶段对每个EtherCAT从站进行了参数设置,以定义其希望传输到该从站或从该从站传输的过程数据 (位/字节大小、数据源位置、传输类型)。如果配置错误,将会使从站启动失败。

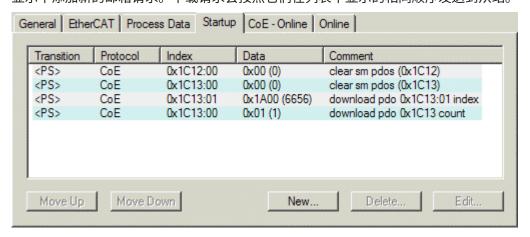

对于Beckhoff EtherCAT EL、ES、EM、EJ和EP从站,一般情况下适用以下规定:

- 设备支持的输入/输出过程数据由制造商在 ESI/XML 描述中定义。TwinCAT EtherCAT 主站使用 ESI 描述来正确配置从站。
- · 过程数据可以在System Manager (系统管理器)中修改。参见设备文件。 修改示例包括:屏蔽一个通道、显示额外的循环信息、16位显示代替8位数据大小等等。
- 在所谓的"智能"EtherCAT 设备中,过程数据信息也被存储在 CoE 目录中。CoE 目录中任何导致不同 PDO 设置的更改都会使从站启动失败。不建议修改模块出厂配置的过程数据,因为设备固件 (如有) 与这 些 PDO 组合是配套的。

如果设备文件允许修改过程数据,请按以下步骤操作(见图配置过程数据)。

- A: 选择需要配置的设备
- ・ B: 在 "Process Data"标签中选择Sync Manager 同步管理器下的输入或输出 (C)
- · D: 可以选择或取消选择 PDO
- H:新的过程数据在System Manager (系统管理器)中作为可链接的变量可见 一旦配置被激活且TwinCAT被重新启动(或EtherCAT主站被重新启动),新的过程数据就会激活。
- E:如果从站支持,可以通过选择一个所谓的 PDO 记录("predefined PDO settings") 来同时修改输入和输出的 PDO 。

附图 136: 配置过程数据


● 手动修改过程数据

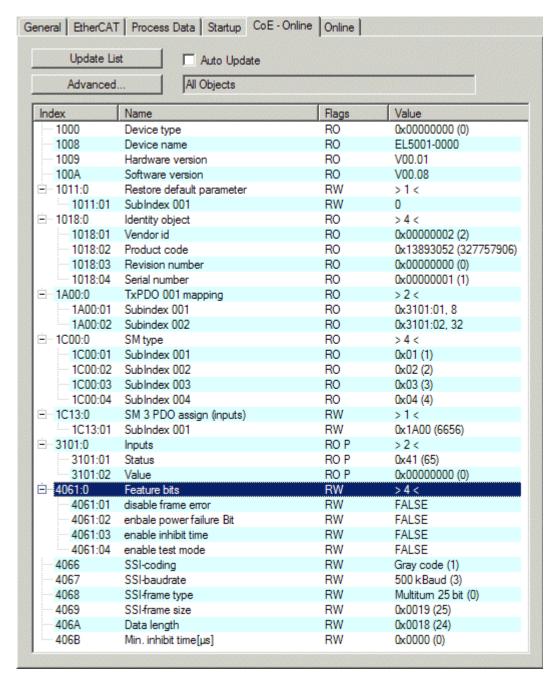
根据ESI的描述,一个 PDO 可以在PDO概述中以标志 "F"标为"固定"(图*配置过程数据*,J)。即使 TwinCAT 提供相关对话框("Edit"),也不能改变此类 PDO 的配置。特别是,CoE内容不能作为循环过程数据显示。这通常也适用于设备支持下载 PDO 配置的情况,"G"。在配置不正确的情况下,EtherCAT从站通常会拒绝启动,并改变为OP状态。System Manager (系统管理器)显示"invalid SM cfg"记录器信息:这个错误信息("invalid SM IN cfg"或"invalid SM OUT cfg")也提示了启动失败的原因。

此外,还可在本节末尾查看详细说明[▶136]。

"Startup (启动)"选项卡

如果EtherCAT从站配有邮箱并支持*CANopen over EtherCAT*(CoE)或*Servo drive over EtherCAT*协议,则显示*Startup (启动)*选项卡。这个选项卡显示了在启动期间哪些下载请求被发送到邮箱。另外,也可以在列表显示中添加新的邮箱请求。下载请求会按照它们在列表中显示的相同顺序发送到从站。

附图 137: "Startup (启动)"选项卡

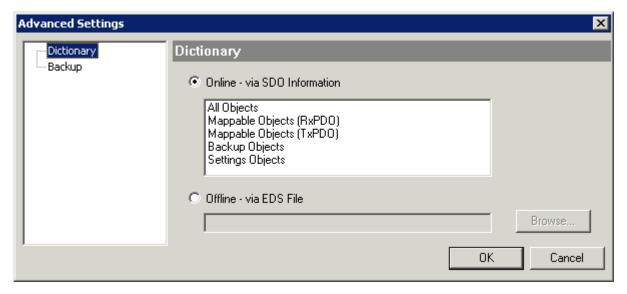

列	Description
Transition	发送请求的过渡期。这可以是
	・ 从Pre-OP到Safe-OP(PS)的过渡,或
	・ 从Safe-OP到运行(SO)的过渡。
	如果过渡用"<>"括起来(如 <ps>),则这种邮箱请求是固定的,用户不能修改或删除。</ps>
Protocol 邮箱协议类型	
Index 对象的索引	
Data	该对象要下载的数据。
Comment	将被发送到邮箱的请求的描述

Move Up 该按钮可将所选请求在列表中向上移动一个位置。
Move Down 该按钮可将所选请求在列表中向下移动一个位置。
New 该按钮可添加一个新的邮箱下载请求,将在启动时发送。
Delete 该按钮可以删除选定的条目。
Edit 该按钮可编辑当前的邮箱请求内容。

"CoE - Online"选项卡

如果EtherCAT从站支持*CANopen over EtherCAT*(CoE)协议,则会显示额外的*CoE - Online*选项卡。该对话框列出了从站对象列表的内容(SDO上传),并使用户能够从这个列表中修改对象的内容。关于各个EtherCAT设备对象的详细信息,可参见设备特定的对象描述。

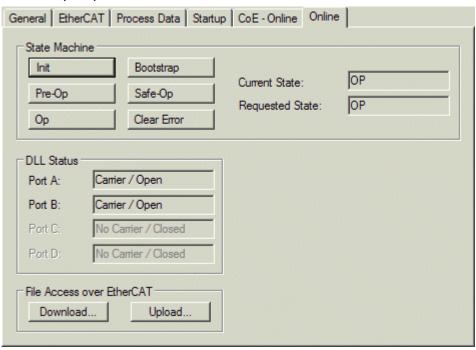
附图 138: "CoE - Online"选项卡


对象列表显示

列	Description		
Index	对象的索引和子索引		
Name 对象的名称			
Flags	RW	该对象可以被读取,且数据可被写入对象(读/写)。	
	RO	该对象可以被读取,但不能向该对象写入数据(只读)。	
	Р	附加P将对象标识为过程数据对象。	
Value	alue 对象数值		

Update List Update List 按钮可更新显示列表中的所有对象。 Auto Update 如果选择了这个复选框,对象的内容会自动更新。

Advanced 按钮可打开 Advanced Settings 对话框。在这里,你可以指定哪些对象会显示在列表中。


附图 139: "Advanced settings (高级设置)" 对话框

Online - via SDO Information 如果选择了这个选项按钮,就会通过SDO信息从从站上传包含在从站对象列表中的对象列表。

下面的列表可以用来指定哪些对象类型要被上传。

Offline - via EDS File 如果选择了这个选项按钮,将从用户提供的EDS文件中读取对象列表中包含的对象列表。

"Online (在线)"选项卡

附图 140: "Online (在线)"选项卡

State Machine 状态机

Init点击该按钮将 EtherCAT 设备设置为 Init状态。Pre-Op点击该按钮将 EtherCAT 设备设置为 Pre-OP状态。Op点击该按钮将 EtherCAT 设备设置为 OP状态。Bootstrap点击该按钮将 EtherCAT 设备设置为 Bootstrap状态。Safe-Op点击该按钮将 EtherCAT 设备设置为 Safe-OP状态。

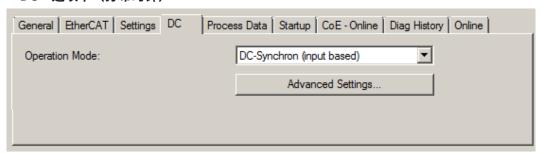
Clear Error 点击该按钮删除故障显示。如果 EtherCAT 从站在状态改变期间出现故障,将会设置错误标志。

示例:EtherCAT 从站处于 PREOP 状态 (预运行)。主站现在请求 SAFEOP 状态 (安全运行)。如果从站在 状态改变期间出现故障,将设置错误标志。目前状态显示为 ERR PREOP。在按下 *Clear Error* 按钮后,错

误标志将被清除,且当前状态再次显示为 PREOP。

Current State指示 EtherCAT 设备的当前状态。Requested State指示 EtherCAT 设备请求的状态。

DLL Status


指示 EtherCAT 从站各个端口的 DLL 状态 (数据链路层状态)。 DLL 状态分为以下四种:

Status	Description
No Carrier / Open	端口没有通讯信号,但端口处于打开状态。
No Carrier / Closed	端口没有通讯信号,且端口处于关闭状态。
Carrier / Open	端口有通讯信号,且端口处于打开状态。
Carrier / Closed	端口有通讯信号,但端口处于关闭状态。

通过 EtherCAT 进行文件访问

Download 通过这个按钮,文件可以被写入EtherCAT设备中。
Upload 通过这个按钮,可以从EtherCAT设备中读取一个文件。

"DC"选项卡(分布时钟)

附图 141: "DC"选项卡(分布时钟)

Operation Mode 选项(可选):

FreeRunSM-Synchron

· DC-Synchron (Input based)

· DC-Synchron

Advanced Settings...
用于重新调整TwinCAT时钟的高级设置,这是EtherCAT从站实时特性的决定性因素

关于分布时钟的详细信息,请参见http://infosys.beckhoff.com:

Fieldbus Components → EtherCAT Terminals → EtherCAT System documentation → EtherCAT basics → Distributed Clocks

5.2.7.1 Process Data (过程数据) 选项卡的详细描述

Sync Manager (同步管理器)

列出了Sync Manager 同步管理器(SM)的配置。 如果EtherCAT设备有一个邮箱,SM0用于邮箱输出(MbxOut),SM1用于邮箱输入(MbxIn)。 SM2用于输出过程数据(输出),SM3(输入)用于输入过程数据。

如果选择了一个输入,相应的 PDO 分配会显示在下面的 PDO 分配列表中。

PDO 分配

所选Sync Manager 同步管理器的 PDO 分配。所有为该Sync Manager 同步管理器类型定义的 PDO 都在这里 列出:

- 如果在Sync Manager 同步管理器列表中选择了输出Sync Manager 同步管理器(输出),则显示所有的 RxPDO_o
- 如果在Sync Manager 同步管理器列表中选择了输入Sync Manager 同步管理器(输入),则显示所有的 TxPDO_o

所选条目是参与过程数据传输的 PDO。在System Manager (系统管理器)的树状图中,这些 PDO 被显示为 EtherCAT 设备的变量。变量名称与 PDO 的 Name 参数相同,如 PDO 列表中所示。如果 PDO 分配列表中的 -个条目被停用(未被选中且呈灰色),这表明该输入被排除在PDO分配之外。为了能够选择一个灰色的 PDO,必须先取消选择当前选定的PDO。

激活 PDO 分配

- ✓ 如果改变 PDO 分配以激活新的PDO分配,
- a) EtherCAT从站必须运行一次PS状态转换周期(从Pre-OP到Safe-OP)(见Online(在线) 选项卡 [<u>134</u>]),
- b) 且System Manager (系统管理器) 必须重新加载EtherCAT从站

(📬 TwinCAT 2按钮或 🗲 TwinCAT 3按钮)

PDO list (PDO 列表)

该 EtherCAT 设备支持的所有 PDO 列表。所选 PDO 的内容显示在 PDO Content 列表中。PDO 配置可通过双 击条目进行修改。

列	Description	Description		
Index	PDO 索引。	PDO索引。		
Size	PDO 大小 (PDO 大小 (单位:字节)。		
Name	PDO名称。 如果这个 P	PDO名称。 如果这个 PDO 被分配给一个Sync Manager 同步管理器,它将作为从站的一个变量出现,并以这个参数作为名称。		
Flags	F	固定内容:该 PDO 内容固定,System Manager (系统管理器)无法更改。		
	М	必须填写的 PDO 内容。该 PDO 为必填项,因此必须分配给一个Sync Manager 同步管理器!因此,该 PDO 不能从 <i>PDO Assignment</i> 列表中删除。		
SM	被分配 PDC	被分配 PDO 的 Sync Manager 同步管理器。如果该条目为空,则该 PDO 不参与过程数据通信。		
SU	被分配 PDC	被分配 PDO 的同步单元。		

PDO Content (PDO 内容)

显示当前选中的 PDO 内容。如果 PDO 的标志F(固定内容)没有被设置,表示其内容可以被修改。

Download (下载)

对于具备 Mailbox 邮箱功能的智能设备,PDO Configuration (配置)和PDO Assignment (分配)都可以下载 到设备上。这是一个可选的功能,并非所有 EtherCAT 从站都支持。

PDO 分配

如果选择这个复选框,在 PDO 分配列表中配置的 PDO 分配会在启动时下载到设备。发送给设备的请求命令可以在<u>Startup</u> [▶<u>131</u>]选项卡中查看。

PDO 配置

如果选择了该复选框,各 PDO 的配置(如 PDO 列表和 PDO 内容显示中所示)将被下载到EtherCAT从站。

5.2.8 导入/导出 EtherCAT 设备为 SCI 和 XTI 文件

SCI和 XTI导出/导入 - 处理用户定义/修改的 EtherCAT 从站

5.2.8.1 基本原则

EtherCAT 从站一般通过以下要素进行参数化:

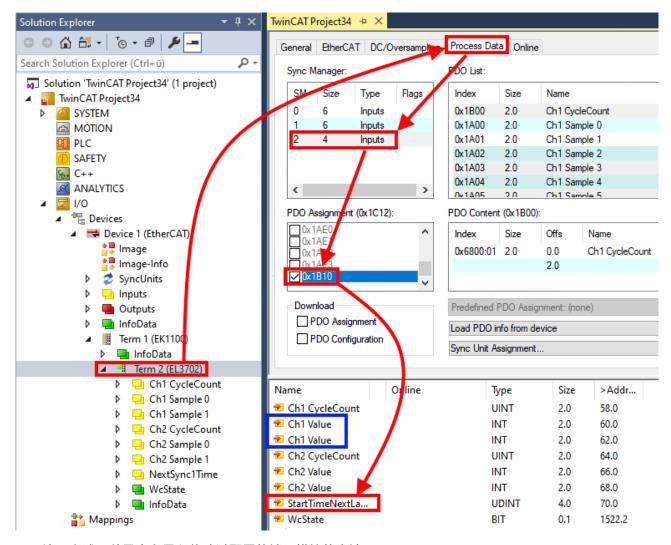
- · 周期性过程数据(PDO)
- 同步特性(分布时钟DC、FreeRun、SM-Synchron)
- · CoE参数(非周期性对象字典)

注意: 根据从站的类型,这三个要素可能不会全部出现。

为了更好地理解导出/导入功能,暂时只考虑 IO 配置的常规流程:

- 用户/编程人员在 TwinCAT 系统环境中进行 IO 配置。这涉及到所有输入/输出设备,例如连接到所用现场总线的驱动器。
 - 注意:在以下章节中,仅说明 TwinCAT 系统环境中的 EtherCAT 配置。
- 用户手动将设备添加到配置中,或通过在线系统执行扫描。
- · 然后配置 IO 系统。
- 插入一个从站时,系统配置中出现从站供应商提供的默认配置,包括默认 PDO、默认同步方法和 ESI(XML 设备描述文件)中定义的 CoE StartUp 参数。
- · 如果有必要,可以根据相应的设备文档修改从站的配置元素,例如 PDO 配置或同步方法。

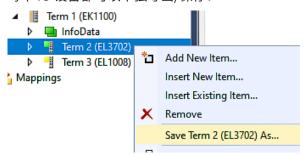
有时需要在其他项目中重复使用参数完全相同的从站,而不必在从站默认配置的基础上进行重复修改。为了实现这个功能,需要执行如下步骤:

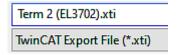

- · 从项目中导出从站配置,
- 以文件形式存储和传输,
- · 导入到另一个 EtherCAT 项目中。

TwinCAT 为此提供了两种方法:

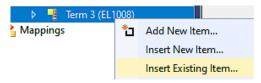
- 用于 TwinCAT 环境中: Export/Import asxti 文件 或
- 外部使用,即用于非 TwinCAT 的EtherCAT 主站: Export/Import as sci 文件。

举例说明:一个标准的 EL3702 端子模块被设置为 2 倍超采样(蓝色),并添加了选项 PDO "StartTimeNextLatch"(红色):




下面演示上述两种导出和导入修改过配置的端子模块的方法。

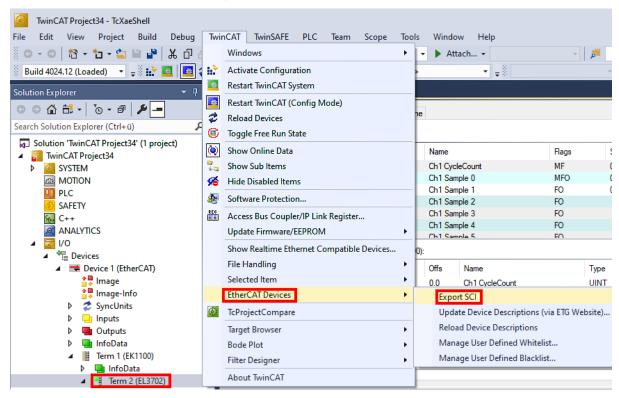
5.2.8.2 导出/导入 xti 文件的步骤(用于 TwinCAT 环境)


每个 IO 设备都可以单独导出/保存:

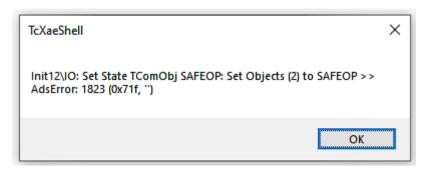
xti 文件可以存储:

并通过"Insert Existing item(插入现有项目)"在另一个 TwinCAT 系统中再次导入:

5.2.8.3 导出/导入 sci 文件的步骤 (用于 TwinCAT 和第三方EtherCAT 主站)

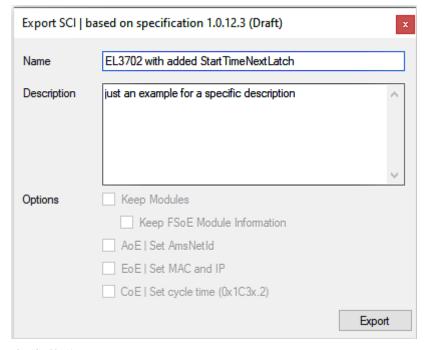

关于适用性的说明(2021/01)

TwinCAT 3.1 build 4024.14 及以上版本才支持 SCI 方法。

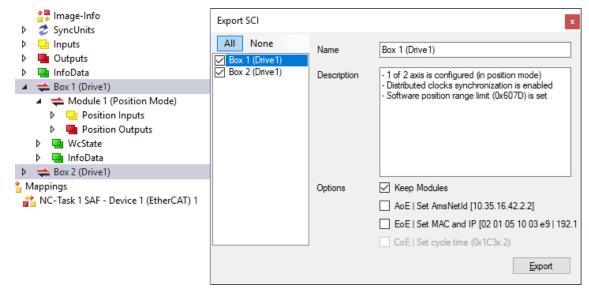

SCI 文件 (Slave Configuration Information) 基于 ESI 文件(EtherCAT Slave Information)的设置选项,描述了 EtherCAT 从站(端子模块、端子盒、驱动器…)具体完整的配置。也就是说,它包括 PDO、CoE和同步特性。

Export:

通过菜单选择单个设备(也可进行多选):
 TwinCAT → EtherCAT Devices → Export SCI.



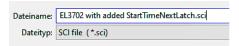
 如果 TwinCAT 处于离线状态(即没有连接到一个实际运行的控制器),可能会出现一个警告信息,因为 在执行该功能后,系统会尝试重新加载 EtherCAT网络。但是,这并不会影响到结果,可以通过点击 OK 来确认:


• 还可以提供描述信息:

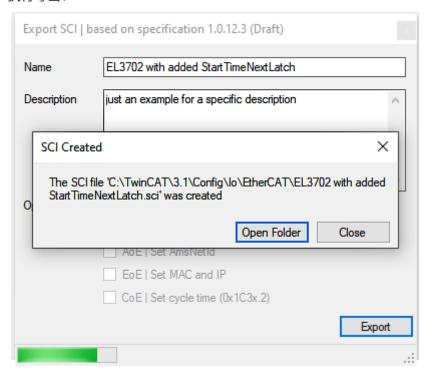
• 对话框的说明:

		1
		SCI 的名称,由用户指定。
		实际应用的从站配置描述,由用户指定。
Options	Keep modules (保留模块)	如果一个从站支持 modules/slots(模块/插槽),用户可以决定是否导出这些模块/插槽,或者在导出时将模块和设备数据合并。
	AoE Set AmsNetId	配置的 AmsNetId 被导出。通常情况下,这取决于网络,不能总是事先确定。
	EoE Set MAC and IP	配置的虚拟 MAC 和 IP 地址存储在 SCI 中。通常情况下,这些都取决于网络,不能总是事先确定。
	CoE Set cycle time(0x1C3x.2)	配置的周期时间被导出。通常情况下,这取决于网络,不能总是事先确定。
ESI		参考原始 ESI 文件。
Export		保存 SCI 文件。

• 系统提供下述列表视图用于多重选择(Export multiple SCI files 导出多个 SCI 文件):

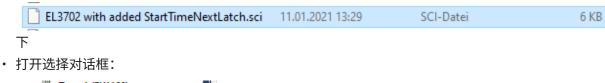

· 选择要导出的从站:

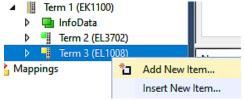
。 All: 所有从站都被选中进行导出。



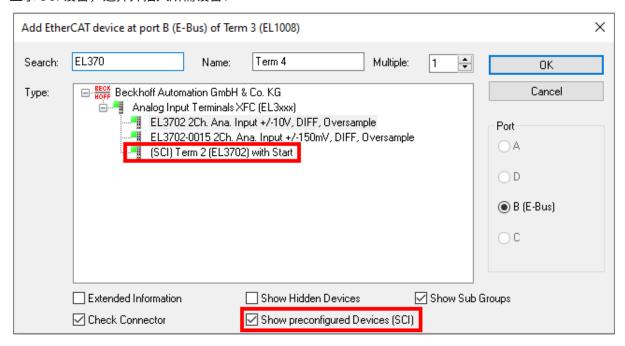
EL41xx

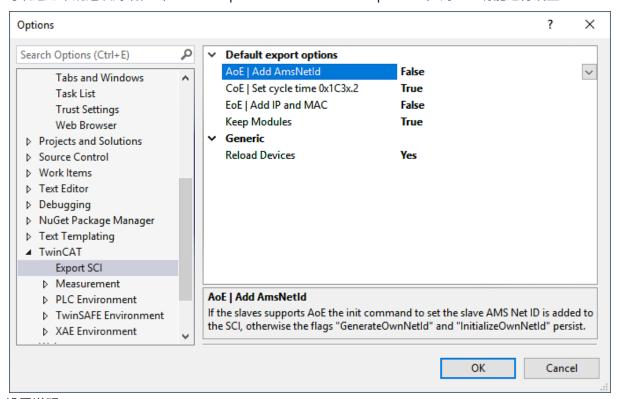
- 。 None: 所有从站都被取消选择。
- · sci 文件可以保存在本地:




• 执行导出:

Import


- · 一个 sci 描述可以像任何普通的倍福设备描述一样,手动插入到 TwinCAT 配置中。
- sci 文件必须位于 TwinCAT ESI 路径中,通常在: C:\TwinCAT\3.1\Config\Io\EtherCAT



· 显示 SCI 设备,选择并插入所需设备:

补充说明

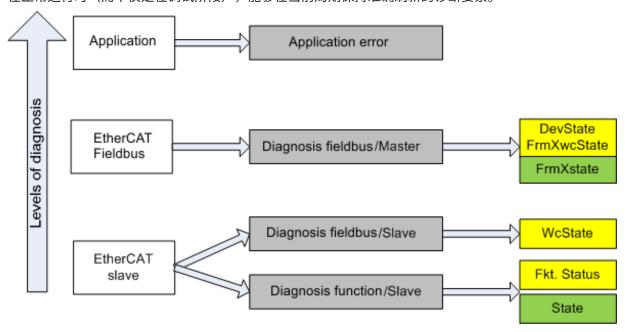
・ 可以通过常规选项对话框(Tools → Options → TwinCAT → Export SCI)对 SCI 功能进行设置:

设置说明:

	AoE 设置 AmsNetId	默认设置:是否导出配置的 AmsNetId。
options(默认	CoE Set cycle time(0x1C3x.2)	默认设置:是否导出配置的周期时间。
的导出选项)	EoE Set MAC and IP	默认设置:是否导出配置的 MAC 和 IP 地址。
	Keep modules (保留模块)	默认设置: 模块是否持续存在。
	Reload Devices(重新载入设备)	设置是否在 SCI 导出前执行重新载入设备命令。
选项)		强烈建议这样做,以确保从站配置的一致性。

如果需要,SCI 错误信息会显示在 TwinCAT 日志的输出窗口:

5.3 EtherCAT 从站的一般调试说明


该摘要简单介绍了 TwinCAT 下的 EtherCAT 从站运行的若干方面。关于详细信息,可查看相应章节,例如 EtherCAT 系统文档。

实时诊断: WorkingCounter、EtherCAT State 和 Status

一般来说,EtherCAT 从站提供可供控制任务使用的各种诊断信息。

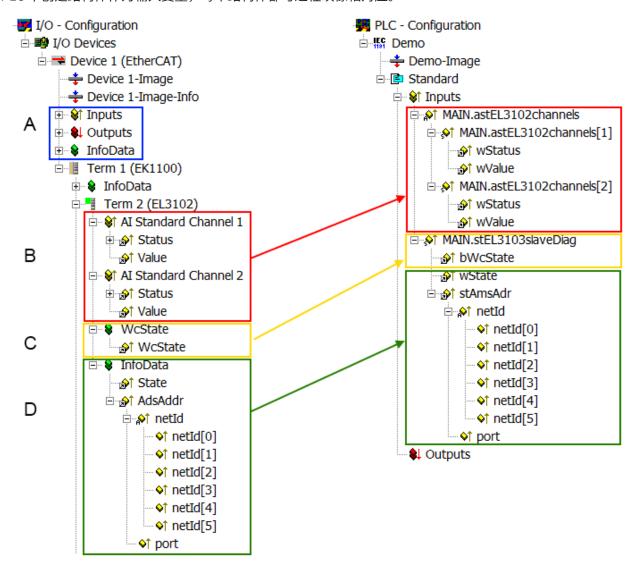
这种诊断信息与不同的通信层级有关。因此,它有不同的来源,也会在不同的时间进行更新。

任何应用,如果严格要求现场总线的 I/O 数据保持正确和最新,就必须对相应的底层进行诊断性访问。 EtherCAT 和 TwinCAT System Manager 全面提供这种诊断要素。下面讨论那些有助于控制任务进行诊断,且 在正常运行时(而不仅是在调试阶段),能够在当前周期保持准确刷新的诊断要素。

附图 142: 选择 EtherCAT 从站的诊断信息

一般来说,EtherCAT 从站提供

 典型的从站通信诊断(成功参与过程数据交换以及正确运行模式的诊断) 这种诊断对所有从站都一样。


以及

• 典型的通道功能诊断(与设备有关) 参见相应的设备文件

图*选择 EtherCAT 从站的诊断信息*中的颜色也与System Manager(系统管理器)中的变量颜色相对应,参见 图 *PLC 中的基本 EtherCAT 从站诊断*。

颜色	含义		
黄色	从站到 EtherCAT 主站的输入变量,在每个周期内更新		
红色	EtherCAT 主站到从站的输出变量,在每个周期内更新		
· · —	EtherCAT 主站的信息变量,非周期性更新。这意味着,在任意的特定周期,它们有可能并不代表最新的状态。因此,通过 ADS 读取此类变量非常有用。		

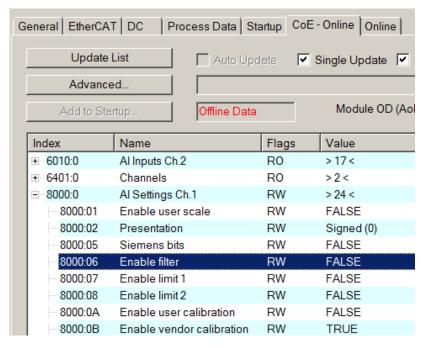
图 PLC 中的基本 EtherCAT 从站诊断显示了实现基本 EtherCAT 从站诊断的示例。这里使用的是倍福 EL3102(2 通道模拟量输入端子模块),因为它既能提供典型的从站通信诊断,又能提供通道特有的功能诊断。在 PLC 中创建结构体作为输入变量,每个结构体都与过程映像相对应。

附图 143: PLC 中的 EtherCAT 从站基本诊断

这里包括以下几个方面:

代码	功能	实施	应用/评估
А	EtherCAT 主站的诊断信息 周期性更新(黄色)或非周期性提供(绿		至少要对 PLC 中最近一个周期的 DevState 进行评估。
	色)。		相对于 EtherCAT 系统文档中所涉及诊断,这 里的EtherCAT 主站诊断信息提供了更多的可 能性。几个关键词:
			• 主站中的 CoE 用于与/通过从站进行通信
			• TcEtherCAT.lib 功能
			・ 执行在线扫描
В	在选择的示例中(EL3102),EL3102包括	Status	为了确保上级 PLC 任务(或相应的控制应
	两个模拟量输入通道,传输最近周期的单一功能状态。	• 位符号可参见设备手册	用)能够获取正确的数据,必须评估从站功能 的状态。因此,此类信息与最近一个周期的过
	33,0 3 ()	• 其他设备可能提供更多的信息, 或者没有典型的从站信息	程数据一起提供。
С	对于每个拥有周期性过程数据的 EtherCAT 从站,主站通过 WorkingCounter 显示该 从站是否成功、无错误地参与了过程数据 的周期性交换。于是在 System Manager 中提供了 EtherCAT 从站在最近周期的这一重要的基本信息,并且与 EtherCAT 主站的综合诊断变量(见 A 点)具有相同的内容,以进行链接。 1. 2.	WcState(工作计数器) 0:在最近一个周期中有效的实时通信 1:无效的实时通信 这可能会对位于同一 SyncUnit(同步单元)中其他从站的过程数据产生影响。	为了使上级 PLC 任务(或相应的控制应用)能够依赖正确的数据,必须评估 EtherCAT 从站的通信状态。因此,此类信息与最近一个周期的过程数据一起提供。
		C	
D	EtherCAT 主站的诊断信息在从站中表示,以便于链接,但实际上是由主站为相关的 从站确定和进行表示。这种信息不能称为 实时信息,因为它	State 从站的当前状态(INIT…OP)。正 常运行时,从站必须处于 OP(=8) 状态。	EtherCAT 主站的信息变量,非周期性更新。 这意味着,在任意的特定周期,它们有可能并 不代表最新的状态。因此,可以通过 ADS 读 取此类变量。
	・ 除了系统启动时,很少/从不 改变。	AdsAddr	
	・ 本身是非周期性确定的(例如EtherCAT 状态)	ADS 地址用于从 PLC/任务通过 ADS 与 EtherCAT 从站进行通信,例如 对 CoE 进行读/写。从站的 AMS- NetID 与 EtherCAT 主站的 AMS- NetID 相对应;通过 <i>端口</i> (= EtherCAT 地址),可以与各个从站 进行通信。	

注意


诊断信息

强烈建议对所提供的诊断信息进行评估,以便应用能够适当的反应。

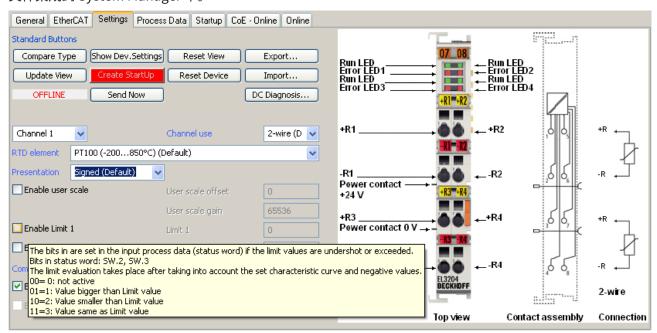
CoE 参数目录

CoE 参数目录(CanOpen-over-EtherCAT)用于管理相关从站的设定值。在某些情况下,当调试一个相对复杂的 EtherCAT 从站时,可能需要在这里进行修改。它可以通过 TwinCAT System Manager 访问,参见图 *EL3102,CoE 字典*:

附图 144: EL3102, CoE 字典

● EtherCAT 系统文档

1


必须遵守 EtherCAT 系统文档 (EtherCAT 基础知识-->CoE 接口)中的全面描述!

简要摘录:

- 在线目录中的更改是否保存在从站本地,这取决于从站设备。EL 端子模块(EL66xx 除外)能够以这种 方式保存修改的参数。
- · 用户必须管理对 "StartUp" 列表的更改。

TwinCAT System Manager 中的调试助手

TwinCAT 中引入了调试界面,这是 EL/EP 等 EtherCAT 设备持续开发过程的一个新增功能。从 TwinCAT 2.11R2 及以上版本开始,都在 TwinCAT System Manager 中提供了调试助手。它们通过适当扩展的 ESI 配置文件集成到 System Manager 中。

附图 145: EL3204 调试助手示例

这个调试过程同时还管理:

- · CoE 参数目录
- DC/FreeRun 模式
- · 可用的过程数据(PDO)

尽管"Process Data"、"DC"、"Startup"和"CoE-Online"等过去必须的设置选项卡仍然需要显示,但如果使用调试助手,建议不要用它们来改变自动生成的设置。

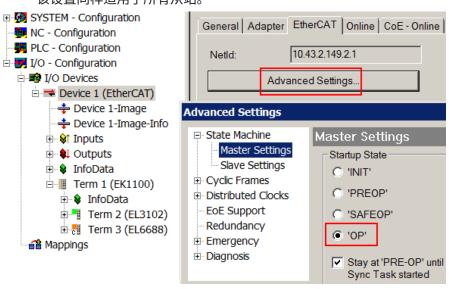
调试工具并未涵盖 EL/EP 设备所有可能的应用。如果可用的设置选项不够齐全,用户可以像过去一样手动进行 DC、PDO 和 CoE 设置。

EtherCAT 状态: TwinCAT System Manager 的自动默认行为和手动操作

工作电源接通后, EtherCAT 从站必须经历以下状态

- INIT
- PREOP
- SAFEOP
- OP

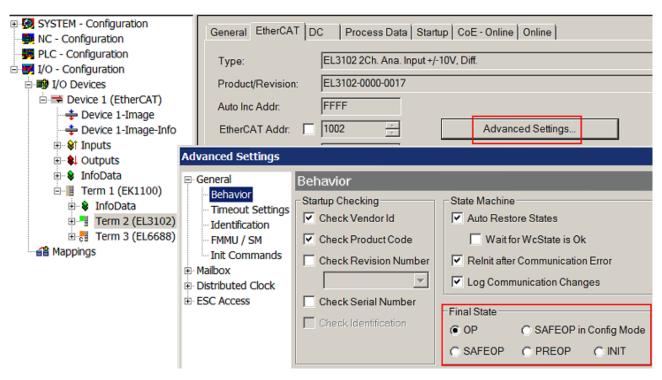
以确保稳定运行。EtherCAT 主站根据从站的初始化流程来主导每个从站的状态,该流程是在 ESI/XML 和用户设置(分布时钟(DC)、PDO、CoE)中专为调试设备而定义的。另请参见链接"通信原理,EtherCAT 状态机[▶47]"。根据需要完成配置的数量以及整体通信情况,启动过程可能需要几秒钟。


EtherCAT 主站本身在启动时必须经过这些例行的步骤,直到目标状态 OP。

用户所需的目标状态可在系统管理器中进行设置,TwinCAT 启动时会自动引导状态切换。一旦 TwinCAT 进入RUN状态,TwinCAT 主站就会逐步达到目标状态。

标准设置

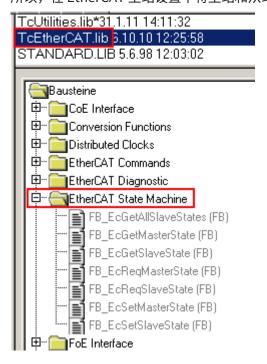
EtherCAT 主站的 advanced settings (高级设置)的标准设置如下:


- EtherCAT 主站: OP
- 从站: OP 该设置同样适用于所有从站。

附图 146: System Manager 的默认行为

此外,任何特定从站的目标状态均可在"Advanced Settings"对话框中设置;标准设置仍然是 OP。

附图 147: 从站的默认目标状态

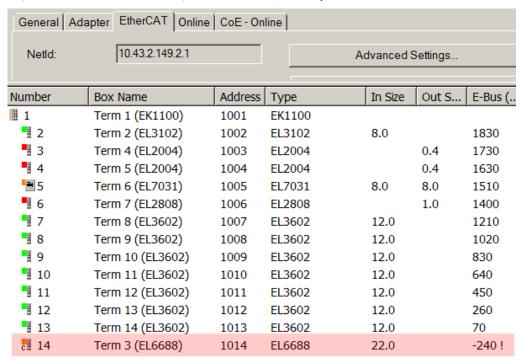

手动控制

在某些特殊原因下,可能需要从应用/任务/PLC 中控制EtherCAT状态。例如:

- 出于诊断的原因
- · 为了触发一个可控的 EtherCAT 重启过程
- · 因为需要改变 EtherCAT 主站的启动时间

此时适合在 PLC 程序中调用来自 *TcEtherCAT.lib* 的 PLC 功能块(包含在TwinCAT 标配功能中)并使用 *FB_EcSetMasterState* 等以可控的方式推进各种状态的切换。

所以,在 EtherCAT 主站设置中将主站和从站不(的目标状态)都设置到 INIT 状态是很有用的。


附图 148: PLC 功能块

关于 E-Bus 电流的说明

EL/ES 端子模块置于 DIN 导轨上,紧跟在耦合器后面。总线耦合器可以向后续的EL 端子模块供给 5V 的 E-bus 系统电压;耦合器原则上可以负担最多 2 A 的 E-Bus 电流。关于每个 EL 端子模块需要消耗多少 E-bus 电流的信息,可参见倍福公司网站和产品目录。如果后续的端子模块需要的电流超过了耦合器可以提供的电流,则必须在 I/O 站的适当位置插入E-Bus电源端子模块(例如 EL9410)。

预先计算的最大 E-Bus 理论电流在 TwinCAT System Manager 中显示为一列数值。如果预计E-Bus供电不足,剩余电流总额就会是负数,并以感叹号(!)标记;在这种位置前面需要插入一个E-Bus电源模块。

附图 149: E-Bus 电流非法超出电源限值

从 TwinCAT 2.11 及以上版本开始,在该配置激活时,警告信息 "E-Bus Power of Terminal..." 将出现在日志窗口:

Message

E-Bus Power of Terminal 'Term 3 (EL6688)' may to low (-240 mA) - please check!

附图 150: 超过 E-Bus 电流的警告信息

注意

注意! 可能发生故障!

一个 I/O 站里面所有 EtherCAT 端子模块的 E-Bus 电源必须使用相同的接地电位!

5.4 EL41x2

5.4.1 EL41x2 的功能集

EL41x2 的进一步开发提供了多个功能集,根据硬件情况可在 TwinCAT System Manager 中对这些功能集进行参数设置。后期版本向下兼容,可替换旧版本。如需了解"EL41x2-nnnn-0016"以下的所有 ESI 的"常规功能"说明,请参见附录 [\triangleright 196]

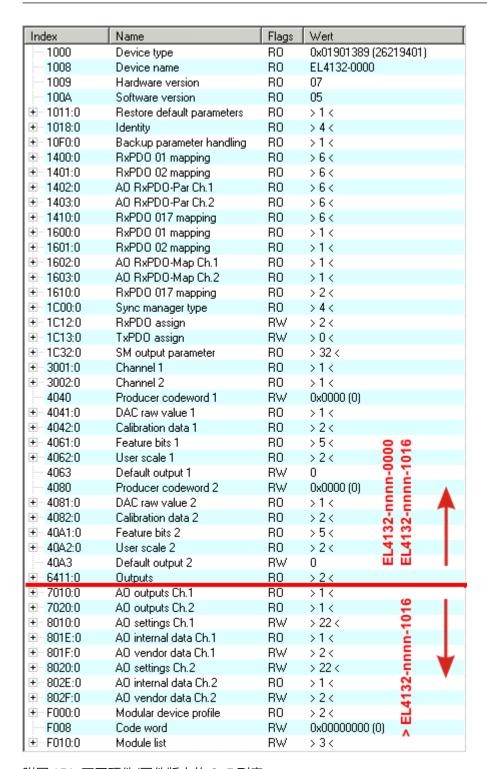
<u>FW/HW [▶ 11]</u> 功能	ESI	功能描述
FW/HW 以下:	EL41x2-nnnn-0000 及以	基本功能(<u>常规功能 [▶ 196]</u>):
EL4102: 05/06 EL4112: 05/04 EL4112-0010: 05/01 EL4122: 05/04 EL4132: 05/07	上	- 模拟输出信号,16 位,短路保护 - 用户标度 - 偏移/增益设置 - 默认/用户输出值 - 看门狗
FW/HW及以上: EL4102: 05/06 EL4112: 05/04 EL4112-0010: 05/01 EL4122: 05/04 EL4132: 05/07	EL41x2-nnnn-1016 及以 上	基本功能和附加功能(<u>扩展功能范围</u> [▶ <u>154]</u>): - 用户校准 - 支持分布式时钟(EL41x2-nnnn-1017 及以上) - 看门狗斜坡,用于启动至默认/用户输出值

表1各个硬件版本的功能

系统中新集成的 EL41x2 的功能取决于硬件/固件版本。

具体设置将在以下两个章节中详细说明。

● 过程数据监视



・WcState: 如果 ≠ 0,则该 EtherCAT 设备不参与过程数据通信
・State: 如果 ≠ 8,则 EtherCAT 设备不处于 OP(运行)状态
・TxPDO State, SyncError: 如果 ≠ 0,则没有有效的过程数据

· TxPDO Toggle:如果该位切换,则表示有新的过程数据集可用

兼容性

EL41x2 CoE 列表的范围因固件版本不同而有所差异。后期硬件版本包含所有早期的 CoE 条目(见图)。

附图 151: 不同硬件/固件版本的 CoE 列表

以下部分将介绍具有常规功能和高级功能的对象的行为。

布尔对象,索引 <u>0x4061 [▶ 171]</u> 或 <u>0x40A1 [▶ 173]</u>(特征位)和索引 <u>0x8010 [▶ 163]</u> 或 <u>0x8020 [▶ 164]</u> (AO 设置)

一些用于参数设置的布尔对象在高级功能中存在冗余(特征位 <u>0x4061</u> [▶ <u>171</u>] 或 <u>0x40A1</u> [▶ <u>173</u>] 和 "AO 设置" <u>0x8010</u> [▶ <u>163</u>] 或 <u>0x8020</u> [▶ <u>162]</u>),并通过 OR 函数进行关联。

152 版本: 5.0.0 EL41xx

布尔对象示例:

在高级功能中,通道 1 的用户标度功能已激活(索引 0x8010:01 [\triangleright 163] = TRUE)。该状态不会自动传输到关联的兼容性对象 0x4061:03 [\triangleright 171]。如果对象 0x4061:03 [\triangleright 171] 中的状态 = FALSE,则"启用用户标度" = TRUE 适用于 OR 函数之后的功能。

常规功能和高级功能的对象对比见表 2:

	> EL41x2-nnnn-1016 AO 设置(索引 0x8010:nn 和 0x8020:nn)		
0x40x1:01(禁用看门狗定时器,以设置输出)	不可用		
0x40x1:02(启用用户默认输出)	不可用		
0x40x1:03(启用用户标度)	0x80x1:01(启用用户标度)		
0x40x1:04(启用绝对值,MSB 为符号)	0x80x1:02(展示)***		
0x40x1:05(启用绝对值)	0x80x1:02(展示)***		

表 2: 具有常规功能和扩展功能的布尔对象对比

呈现对象(表示法)

在常规功能下,对象 <u>0x4061:04</u> [▶ <u>171]</u> 和 <u>0x4061:05</u> [▶ <u>171]</u> 用于切换输出值的表示法。首先被激活的位将被优先处理。设置另一个标志位无效。

呈现对象示例:

对象 <u>0x4061:04 [▶ 171]</u> 和 <u>0x4061:05 [▶ 171]</u> 中的两个标志位均未设置。对象 <u>0x4061:05 [▶ 171]</u> ("启用绝对值")中的位被为 TRUE,输出值显示为绝对值。如果对象 <u>0x4061:04 [▶ 171]</u> 切换为 TRUE("启用绝对值,MSB 为符号"),则表示方法仍为先前选择的模式。

***扩展功能: 呈现对象 <u>0x8010:02</u> [▶ 163] 或 <u>0x8020:02</u> [▶ 164] (枚举对象)

在高级功能下,建议仅使用对象 0x8010:02 或 0x8020:02 切换表示方法。

枚举值:

- 0: 有符号表示
- 1: 无符号表示
- 2: 启用带MSB 符号的绝对值
- 3: 绝对值

校准对象(索引 <u>0x4062 [▶ 171]</u> 或 <u>0x40A2 [▶ 173]</u> (用户标度)和索引 <u>0x8010 [▶ 163]</u> 或 <u>0x8020 [▶ 164]</u> (AO 设置)

校准对象镜像到兼容性对象,常规功能适用。

校准对象示例:

对象 <u>0x8010:11 [▶ 163]</u>(偏移):例如,如果在此处输入值"0x3FFF(16383_{dec})",则该值将传输至兼容性对象 0x4062:01 [▶ 171]。

常规功能和扩展功能的对象对比见表 3:

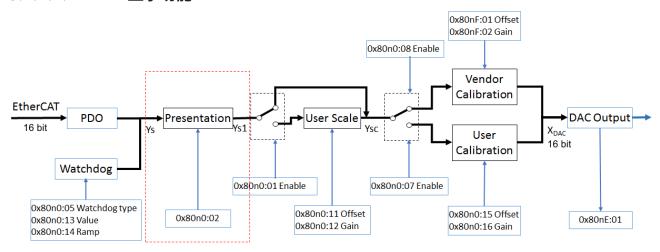
	> EL41x2-nnnn-1016 AO 设置(索引 0x8010:nn 和 0x8020:nn)
0x40x2:01(偏移)	0x80x0:11(偏移)
0x40x2:02(增益)	0x80x0:12(偏移)
不可用	0x80x0:15(用户校准偏移)
不可用	0x80x0:15(用户校准增益)

表 3: 具有常规功能和扩展功能的校准对象对比

5.4.2 基础知识 - 扩展功能

5.4.2.1 计算输出值

● ポ


术语"校准"

1

"校准"一词与倍福历史颇有渊源,在本章节中用于校准数据,但它与校准证书的偏差声明毫无关系。事实上,这描述的是设备在运行期间为保持输出精度而使用的供应商校准或客户校准/调整数据。

端子模块持续接收来自 EtherCAT 过程数据的设定值,根据设置进行转换,并将其传送至内部 DAC(数模转换器),形成电气输出信号。参见框图。

5.4.2.1.1 显示功能

附图 152: 默认设置下,确定输出值的框图(显示功能)

根据索引 0x80x0:02 的显示功能块将 PDO 值转换为内部 SINT16 格式(有符号整数,16 位),以便根据设置进行进一步计算和 DAC 输出。根据所选的表示法,适用于以下情况:

有符号显示 (默认设置)

- 应显示最高位(第 15 位)为符号的 SINT16, 负数以二进制显示。
- Ys1 = Ys
- 満量程值(FSV) = 32767
- 这专指端子模块

输出信号	值		
EL4102	十进制	十六进制	
0 V	0	0x0000	
5 V	16383	0x3FFF	
10 V	32767	0x7FFF	

输出信号	值	
EL4112	十进制	十六进制
0 mA	0	0x0000
10 mA	16383	0x3FFF
20 mA	32767	0x7FFF

输出信号	值	值		
EL4112-0010	十进制	十六进制		
-10 mA	-32768	0x8000		
-5 mA	-16383	0xC001		
0 mA	0	0x0000		
5 mA	16383	0x3FFF		
10 mA	32767	0x7FFF		

输出信号	值	
EL4122	十进制	十六进制
4 mA	0	0x0000
12 mA	16383	0x3FFF
20 mA	32767	0x7FFF

输出信号	值	值	
EL4132	十进制	十六进制	
-10 V	-32768	0x8000	
-5 V	-16383	0xC001	
0 V	0	0x0000	
5 V	16383	0x3FFF	
10 V	32767	0x7FFF	

无符号显示

- 应显示不带符号的 UINT16, FSV= 65535,
- 生成 SINT16 供进一步处理: Ys1 = Ys / 2
- 不可能再出现负输出值。

绝对值,MSB为符号

- 应显示最高位(第 15 位)为符号的 SINT16, 负数显示为绝对值(非二进制)
- Ys1 = Ys
- FSV = 32767

绝对值

- 应显示带符号的 SINT16, 负数以二进制显示
- 如果是负数,而形成的值只有正值,因此只处理 最高可达 2^{15} = 32767 的正值。

显示示例

• 带符号的整数:

输出值以二进制显示。

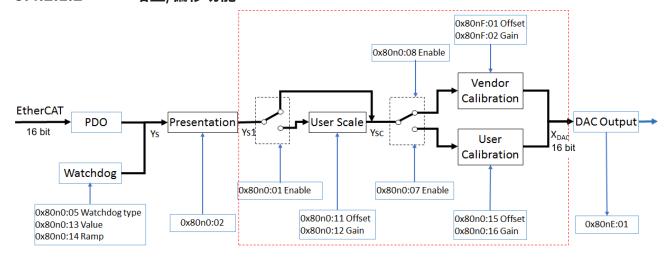
16位最大显示范围 = -32768 .. +32767

。 示例:

 $\begin{array}{l} 1000\ 0000\ 0000\ 0000_{bin} = 0x8000_{hex} = -32768_{dec} \\ 1111\ 1111\ 1111\ 1110_{bin} = 0xFFFE_{hex} = -2_{dec} \\ 1111\ 1111\ 1111\ 1111_{bin} = 0xFFFF_{hex} = -1_{dec} \\ 0000\ 0000\ 0000\ 0000\ 0001_{bin} = 0x0001_{hex} = +1_{dec} \\ 0000\ 0000\ 0000\ 0010_{bin} = 0x0002_{hex} = +2_{dec} \\ 0111\ 1111\ 1111\ 1111_{bin} = 0x7FFF_{hex} = +32767_{dec} \end{array}$

• 无符号整数:

输出值以16位分辨率显示。


- 以 MSB 为符号的绝对值: 输出值以符号量显示。 16 位的最大显示范围 = -32767... +32767
 - 。 示例:

```
\begin{array}{l} 1111\ 1111\ 1111\ 1111\ 1111\ _{bin} = 0 \\ \text{xFFFF}_{hex} = -32767_{dec} \\ 1000\ 0000\ 0000\ 0010_{bin} = 0 \\ \text{x8002}_{hex} = -2_{dec} \\ 1000\ 0000\ 0000\ 0001_{bin} = 0 \\ \text{x8001}_{hex} = -1_{dec} \\ 0000\ 0000\ 0000\ 0001_{bin} = 0 \\ \text{x00001}_{hex} = +1_{dec} \\ 0000\ 0000\ 0000\ 0010_{bin} = 0 \\ \text{x7FFF}_{hex} = +32767_{dec} \\ \end{array}
```

绝对值

负输出值显示为正值(绝对值)

5.4.2.1.2 增益/偏移功能

附图 153: 默认设置下,确定输出值的框图(增益/偏移功能)

增益/偏移功能

供应商将端子模块与供应商校准数据进行比较,以达到规定的输出精度。供应商校准数据受密码保护,无法更 改。

如果需要在系统端对输出值进行操作,

- · 应首先使用带有增益/偏移的用户标度,
- 或者用户可以在端子模块中存储一些校准数据。这样,随后用户标度也能为此发挥作用。

另请参见框图。

在以下条件下:

 $\begin{array}{lll} {\sf Gain_{scale}} & = 0{\sf x}80{\sf n}0{\sf :}12 & {\sf UserScale \ Gain} \\ {\sf Offset}_{\sf scale} & = 0{\sf x}80{\sf n}0{\sf :}11 & {\sf UserScale \ Offset} \\ {\sf Gain}_{\sf user} & = 0{\sf x}80{\sf n}0{\sf :}16 & {\sf UserCalibration \ Gain} \\ {\sf Offset}_{\sf user} & = 0{\sf x}80{\sf n}0{\sf :}15 & {\sf UserCalibration \ Offset} \\ \end{array}$

(应添加双极 EL403x 端子模块 0x800 = 2048_{dec})

Gain_{vendor} = 0x80nF:02 VendorCalibration Gain
Offset_{vendor} = 0x80nF:01 VendorCalibration Offset

 X_{DAC} = 0x80nE:01 DAC Raw Value

Ys EtherCAT PDO setpoint

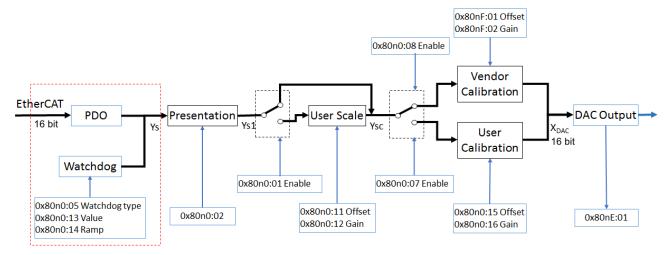
标度的影响:

用户标度功能已启用: Ysc = Ys1 * $Gain_{scale}$ * 2^{-16} + Offset $_{scale}$

用户标度功能已禁用: Ysc=Ys1

以及对校准值的影响:

供应商标准功能已启用: $X_{DAC} = Ysc * Gain_{vendor} *2^{-16} + Offset_{vendor}$ 用户校准功能已启用: $X_{DAC} = Ysc * Gain_{user} *2^{-20} + Offset_{user}$

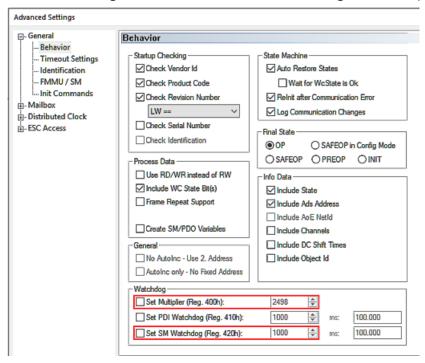

未启用校准: X_{DAC} = Ysc

•

不能同时启用供应商校准和用户校准功能

只能启用供应商校准(0x80n0:08 "Enable vendor calibration")或 用户校准(0x80n0:01 "Enable user calibration")。

5.4.2.1.3 看门狗功能


附图 154: 默认设置下,确定输出值的框图(看门狗功能)

Watchdog function,索引 <u>0x80n0:05</u> [▶ <u>163</u>]

EL40xx/EL41xx 端子模块配有安全设备(看门狗),可将输出切换到规定的状态,例如在过程数据传输中断的情况下。

看门狗时间通过 TwinCAT 常规对话框设置

Advanced Settings -> General -> Behavior -> Watchdog -> Set Multiplier and SM Watchdog:

附图 155: 看门狗设置

看门狗时间最长可达 65 s。较大的数值以 65 为模数来计算,例如 70 s 将缩短为 5 s。

有关看门狗设置的常规信息

请遵守有关看门狗设置[▶46]的常规说明。

程序如下:

注意

- 只要端子模块定期正确提供 EtherCAT 过程数据,它就能输出这些数据。看门狗对此不采取任何行动,只会表示"正在输出数据"。
- 一旦数据停止到达,输出值就会保持最后一个值。现在,看门狗已开始停止运行。如果数据再次及时到 达,看门狗会恢复为起始值。
- 如果过期,即设定时间已过,但没有新数据到达,则输出替代值。
- 一旦有新数据到来,就会再次输出,看门狗就会重新监视。

索引 0x80n0:05 [▶ 163] 中的替代值可进行以下设置:

- * " Default watchdog value ": 模拟量输出值设置为用户特定值。这必须事先存储在" Default output "(索引 0x80n0:13 [▶ 163]) 中,然后在运行看门狗的情况下输出。
 这是" Default output "= 0 时的默认设置。在运行看门狗的情况下,以这种方式操作的端子模块输出为 0。
- " Watchdog ramp ": 在预定时间内,以线性斜坡的方式从最后一个有效输出值开始逐渐接近用户定义值"Default output "。该时间通过 "Default output ramp"(索引 <u>0x80n0:14</u> [▶<u>163</u>])输入,单位为位/ms。
- "Last output value"
 使用此设置时,将保留最后有效输出值。

5.4.2.2 同步管理器(SM)

PDO Assignment(PDO 分配)

SM2,PDO 分配	SM2,PDO 分配 0x1C12						
索引	被排除 PDO 的 Index	大小 (byte.bit)	名称	PDO 内容			
0x1600(默认)	0x1602 0x1603 0x1610	2.0	通道 1	索引 <u>0x3001:01 [▶ 208]</u> - 输出通道 1			
0x1601(默认)	0x1602 0x1603 0x1610	2.0	通道 2	索引 <u>0x3002:01</u> [▶ <u>208</u>] - 输出通道 2			
0x1602	0x1600 0x1601 0x1610	2.0	AO Rx-PDO-Map 通道 1	索引 <u>0x7010:01</u> [▶ <u>174</u>] - 模拟量输出通道 1			
0x1603	0x1600 0x1601 0x1610	2.0	AO Rx-PDO-Map 通道 2	索引 0x7020:01 [▶ 174] - 模拟量输出通道 2			
0x1610	0x1600 0x1601 0x1602 0x1603	4.0	RxPDO 017 映射	索引 <u>0x6411:01 [▶ 174]</u> - 输出通道 1 索引 <u>0x6411:02 [▶ 174]</u> - 输出通道 2			

表 1: SyncManager 的 PDO 分配

5.4.2.3 制造商代码

制造商代码

供应商保留对端子模块进行基本校准的权利。因此,制造商代码目前被保留。

5.4.3 对象描述和参数设置 - 扩展功能

● EtherCAT XML 设备描述

该显示与 EtherCAT XML 设备描述中的 CoE 对象相匹配。建议从倍福网站的下载区(http://www.beckhoff.de/german/default.htm?download/elconfg.htm)下载最新 XML 文件,并按照安装说明进行安装。

● 参数设置

端子模块通过 CoE - Online 选项卡(双击相应的对象)或通过 Process Data 选项卡(分配 PDO)进行参数化。

5.4.3.1 简介

CoE 概述包含针对不同应用的对象:

- · 调试过程中配置所需的对象 [▶ 163]
- · 用于正常运行的对象 [▶165],例如通过 ADS 访问
- 用于指示内部设置的对象 [▶ 166] (很可能是固定的)

EL41x2 还包含根据硬件版本 [▶ 151]显示的兼容性对象

下面将首先介绍正常运行所需的参数设置和对象。在表格的下部可以找到在正常应用情况下不需要的所有其他 对象。

162 版本: 5.0.0 EL41xx

5.4.3.2 参数设置的对象

索引 1011:恢复默认参数

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1011:0	恢复默认参数 [▶ 227]	恢复默认参数	UINT8	RO	0x01 (1 _{dec})
1011:01	子索引 001	如果此对象在设置值对话框中被设置为 " 0x64616F6C" ,所有备份对象都被重置为它们的出 厂状态。	UINT32	RW	0x0000000 (0 _{dec})

通道1

索引 8010 AO 设置通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
8010:0	AO settings Ch.1	最大子索引	UINT8	RO	0x16 (22 _{dec})
8010:01	Enable user scale	用户标度功能已启用。	BOOLEAN	RW	0x00 (0 _{dec})
8010:02	Presentation	0: 有符号表示 1: 无符号表示 16 位的最大表示量程: 0+65535 _{dec} 2: 以MSB 为符号的绝对值 以带符号位的绝对值表示法输出测量值。 16 位的最大表示量程=-32768 _{dec} +32767 _{dec} 3: 绝对值 负数也输出为正数	ВІТЗ	RW	0x00 (0 _{dec})
8010:05	Watchdog [▶ 158]	0: 默认看门狗值 默认值(0x8pp0:13)处于活动状态。 1: 看门狗斜坡 用于移动至默认值的斜坡(0x8pp0:14)处于活动状态。 2: 最后的输出值 如果看门狗超时,则输出最后的过程数据。	BIT2	RW	0x00 (0 _{dec})
8010:07	Enable user calibration	启用用户校准	BOOLEAN	RW	0x00 (0 _{dec})
8010:08	Enable vendor calibration	启用供应商校准	BOOLEAN	RW	0x01 (1 _{dec})
8010:11	Offset(偏移)	用户标度偏移	INT16	RW	0x0000 (0 _{dec})
8010:12	Gain	用户标度增益。 增益采用定点表示法,系数为 2 ⁻¹⁶ 。 值 1 相当于 65535(0x00010000)。	INT32	RW	0x00010000 (65536 _{dec})
8010:13	默认输出	默认输出值	INT16	RW	0x0000 (0 _{dec})
8010:14	默认输出斜坡	减小至默认值的斜坡 单位:位/ms。	UINT16	RW	0xFFFF (65535 _{dec})
8010:15	User calibration offset	用户校准偏移	INT16	RW	0x0000 (0 _{dec})
8010:16	User calibration gain	用户校准增益	UINT16	RW	0xFFFF (65535 _{dec})

通道 2

索引 8020 AO 设置通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
8020:0	AO settings Ch.2	最大子索引	UINT8	RO	0x16 (22 _{dec})
8020:01	Enable user scale	用户标度启用。	BOOLEAN	RW	0x00 (0 _{dec})
8020:02	Presentation	0: #符号显示 输出值以二进制格式显示。 16 位的最大显示范围 = -32768 _{dec} +32767 _{dec} 1: 无符号表示 16 位的最大表示量程: 0+65535 _{dec} 2: 以MSB为符号的绝对值 测量值以带符号幅度格式输出。 16 位的最大表示量程 = -32767 _{dec} +32767 _{dec} 3: 绝对值 负数也输出为正数	BIT3	RW	0x00 (0 _{dec})
8020:05	Watchdog	0: 默认看门狗值 默认值(0x8pp0:13)处于活动状态。 1: 看门狗斜坡 用于移动至默认值的斜坡(0x8pp0:14)处于活动状态。 2: 最后的输出值 如果看门狗超时,则发布最后的过程数据。	BIT2	RW	0x00 (0 _{dec})
8020:07	Enable user calibration	启用用户校准	BOOLEAN	RW	0x00 (0 _{dec})
8020:08	Enable vendor calibration	启用供应商校准	BOOLEAN	RW	0x01 (1 _{dec})
8020:11	Offset(偏移)	用户标度偏移	INT16	RW	0x0000 (0 _{dec})
8020:12	Gain	用户标度增益。 增益以定点格式表示,系数为 2 ⁻¹⁶ 。 值 1 对应 65535(0x00010000)。	INT32	RW	0x00010000 (65536 _{dec})
8020:13	默认输出	默认输出值	INT16	RW	0x0000 (0 _{dec})
8020:14	默认输出斜坡	逐渐减小至默认值的斜坡 单位: 位/ms。	UINT16	RW	0xFFFF (65535 _{dec})
8020:15	User calibration offset	用户校准偏移	INT16	RW	0x0000 (0 _{dec})
8020:16	User calibration gain	用户校准增益	UINT16	RW	0xFFFF (65535 _{dec})

还请参阅有关此

집 看门狗功能 [▶ 158]

5.4.3.3 正常运行的对象

具有常规功能的 EL41x2 端子模块没有此类对象。

5.4.3.4 内部设置的对象(完整概览)

5.4.3.4.1 标准对象 (0x1000-0x1FFF)

索引 1000 设备类型

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1000:0		EtherCAT 从站的设备类型:Lo-Word 包含使用的 CoE设备描述规约(5001)。根据模块化设备配置文件,Hi-Word 包含模块配置文件。	UINT32	RO	0x01901389 (26219401 _{dec})

索引 1008 设备名称

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1008:0	设备名称	EtherCAT 从站的设备名称	STRING	RO	EL4132-0000

索引 1009 硬件版本

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1009:0	硬件版本	EtherCAT 从站的硬件版本	STRING	RO	07

索引 100A 软件版本

索引(十六 进制)	名称	含义	数据类型	标志	默认值
100A:0	软件版本	EtherCAT 从站的固件版本	STRING	RO	05

索引 1018 标识

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1018:0	标识	识别从站的信息	UINT8	RO	0x04 (4 _{dec})
1018:01	供应商 ID	EtherCAT 从站的供应商 ID	UINT32	RO	0x00000002 (2 _{dec})
1018:02	产品代码	EtherCAT 从站的产品代码	UINT32	RO	0x10243052 (270807122 _{dec})
1018:03	修订版本	EtherCAT 从站的修订版本号;低位字(位 0-15)表示 特殊端子模块编号,高位字(位 16-31)表示设备描述	UINT32	RO	0x03F80000 (66584576 _{dec})
1018:04	序列号	EtherCAT 从站的序列号;低位字的低字节(位 0-7)包含生产年份,低位字的高字节(位 8-15)包含生产周数,高位字(位 16-31)为 0	UINT32	RO	0x0000000 (0 _{dec})

Index 10F0 Backup parameter handling

索引(十六 进制)	名称	含义	数据类型	标志	默认值
10F0:0	Backup parameter handling	装载默认配置和保存备份条目的信息	UINT8	RO	0x01 (1 _{dec})
10F0:01	Checksum	对 EtherCAT 从站的所有备份条目进行校验和	UINT32		0x0000000 (0 _{dec})

索引 1400 RxPDO 01 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1400:0	RxPDO 01 映射	PDO 参数 RxPDO 1	UINT8	RO	0x06 (6 _{dec})
1400:06	Exclude RxPDOs	指定不得与 RxPDO 1 一起传输的 RxPDO (RxPDO 映射对象的索引)	OCTET- STRING[8]	RO	02 16 03 16 10 16 00 00

166 版本: 5.0.0 EL41xx

索引 1401 RxPDO 02 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1401:0	RxPDO 02 映射	PDO 参数 RxPDO 2	UINT8	RO	0x06 (6 _{dec})
1401:06	Exclude RxPDOs	指定不得与 RxPDO 2 一起传输的 RxPDO (RxPDO 映射 对象的索引)	OCTET- STRING[8]	RO	02 16 03 16 10 16 00 00

索引 1402 AO RxPDO-Par 通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1402:0	AO RxPDO-Par Ch.1	PDO 参数 RxPDO 3	UINT8	RO	0x06 (6 _{dec})
1402:06	Exclude RxPDOs	指定不得与 RxPDO 3 一起传输的 RxPDO (RxPDO 映射 对象的索引)	OCTET- STRING[8]	RO	00 16 01 16 10 16 00 00

索引 1403 AO RxPDO-Par 通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1403:0	AO RxPDO-Par Ch.2	PDO 参数 RxPDO 4	UINT8	RO	0x06 (6 _{dec})
1403:06	Exclude RxPDOs	指定不得与 RxPDO 4 一起传输的 RxPDO (RxPDO 映射对象的索引)	OCTET- STRING[8]	RO	00 16 01 16 10 16 00 00

索引 1410 RxPDO 017 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1410:0	RxPDO 017 映射	PDO 参数 RxPDO 17	UINT8	RO	0x06 (6 _{dec})
1410:06	Exclude RxPDOs	指定不得与 RxPDO 17 一起传输的 RxPDO (RxPDO 映射 对象的索引)	OCTET- STRING[8]	RO	00 16 01 16 02 16 03 16

索引 1600 RxPDO 01 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1600:0	RxPDO 01 映射	PDO 映射 RxPDO 1	UINT8	RO	0x01 (1 _{dec})
1600:01		1. PDO 映射条目(对象 0x3001(Channel 1),条目 0x01(Output))	UINT32	RO	0x3001:01, 16

索引 1601 RxPDO 02 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1601:0	RxPDO 02 映射	PDO 映射 RxPDO 2	UINT8	RO	0x01 (1 _{dec})
1601:01		1. PDO 映射条目(对象 0x3002(Channel 2),条目 0x01(Output))	UINT32	RO	0x3002:01, 16

索引 1602 AO RxPDO-Map 通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1602:0	AO RxPDO-Map Ch.1	PDO 映射 RxPDO 3	UINT8	RO	0x01 (1 _{dec})
1602:01		1. PDO 映射条目(对象 0x7010(AO outputs Ch.1), 条目 0x01(Analog output))	UINT32	RO	0x7010:01, 16

索引 1603 AO RxPDO-Map 通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1603:0	AO RxPDO-Map Ch.2	PDO 映射 RxPDO 4	UINT8	RO	0x01 (1 _{dec})
1603:01	子索引 001	1. PDO 映射条目(对象 0x7020(AO outputs Ch.2), 条目 0x01(Analog output))	UINT32	RO	0x7020:01, 16

索引 1610 RxPDO 017 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1610:0	RxPDO 017 映射	PDO 映射 RxPDO 17	UINT8	RO	0x02 (2 _{dec})
1610:01	子索引 001	1. PDO 映射条目(对象 0x6411,条目 0x01)	UINT32	RO	0x6411:01, 16
1610:02	子索引 002	2. PDO 映射条目(对象 0x6411,条目 0x02)	UINT32	RO	0x6411:02, 16

索引 1C00 同步管理器类型

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C00:0	同步管理器类型	使用同步管理器	UINT8	RO	0x04 (4 _{dec})
1C00:01	子索引 001	同步管理器类型通道 1:邮箱写入	UINT8	RO	0x01 (1 _{dec})
1C00:02	子索引 002	同步管理器类型通道 2:邮箱读取	UINT8	RO	0x02 (2 _{dec})
1C00:03	子索引 003	Sync-Manager 类型通道 3:过程数据写入(输出)	UINT8	RO	0x03 (3 _{dec})
1C00:04	子索引 004	Sync-Manager 类型通道 4:过程数据读取(输入)	UINT8	RO	0x04 (4 _{dec})

索引 1C12 RxPDO 分配

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C12:0	RxPDO 分配	PDO 分配输出	UINT8	RW	0x02 (2 _{dec})
1C12:01	子索引 001	第1个分配的 RxPDO(包含相关 RxPDO 映射对象的 Index)	UINT16	RW	0x1600 (5632 _{dec})
1C12:02	子索引 002	第2个分配的 RxPDO(包含相关 RxPDO 映射对象的索引)	UINT16	RW	0x1601 (5633 _{dec})

索引 1C13 TxPDO 分配

索引(十六 进制)	名称	含义 	数据类型	标志	默认值
1C13:0	TxPDO 分配	PDO 分配输入	UINT8	RW	0x00 (0 _{dec})

Index 1C32 SM output parameter

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C32:0	SM output parameter	输出的同步参数	UINT8	RO	0x20 (32 _{dec})
1C32:01	同步模式	当前的同步模式:	UINT16	RW	0x0001
		• 0: Free Run			(1 _{dec})
		・ 1: 与 SM 2 事件同步			
		・ 2: DC 模式 - 与 SYNC0 事件同步			
		・ 3: DC 模式 - 与 SYNC1 事件同步			
1C32:02	周期	循环时间(单位:ns):	UINT32	RW	0x00000000
		• Free Run:本地定时器的周期			(0 _{dec})
		・ 与 SM 2 事件同步: 主站周期			
		・ DC 模式: SYNC0/SYNC1 周期时间			
1C32:03	偏移时间	从 SYNC0 事件到输出的时间(单位:ns,仅 DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:04	支持同步模式	支持的同步模式:	UINT16	RO	0xC007
		・ 位 0 = 1:支持 Free Run			(49159 _{dec})
		・ 位 1 = 1: 支持与 SM 2 事件同步			
		・ 位 2-3 = 01: 支持 DC 模式			
		・ 位 4-5 = 10: SYNC1 事件下的输出偏移(仅 DC 模式)			
		・ 位 14 = 1: 动态周期(在写入 <u>0x1C32:08 [▶ 169]</u> 时 开始测量)			
1C32:05	最小周期	最小周期(单位:ns)	UINT32	RO	0x0000000 (0 _{dec})
1C32:06	计算并复制时间	SYNC0 和 SYNC1 事件之间的最小时间(单位:ns,仅DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:08	命令	• 0: 本地循环时间的测量停止	UINT16	RW	0x0000 (0 _{dec})
		• 1: 本地循环时间的测量开始			
		条目 0x1C32:03 [▶ 169]、0x1C32:05 [▶ 169]、 0x1C32:06 [▶ 169]、0x1C32:09 [▶ 169] 更新为最大测量值。 对于后续测量,测量值被重置			
1C32:09	延迟时间	从 SYNC1 事件到输出的时间(单位:ns,仅 DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:0B	缺失 SM 事件计数器	OPERATIONAL 期间缺失的 SM 事件数量(仅 DC 模式)	UINT16	RO	0x0000 (0 _{dec})
1C32:0C	周期超限计数器	OPERATIONAL 期间周期超时的次数(周期没有及时完成或下一个周期开始得太早)	UINT16	RO	0x0000 (0 _{dec})
1C32:0D	偏移过短计数器	SYNC0 和 SYNC1 事件之间的间隔次数太小(仅 DC 模式)	UINT16	RO	0x0000 (0 _{dec})
1C32:20	同步错误	在上一周期同步出错(输出太晚;仅 DC 模式)	BOOLEAN	RO	0x00 (0 _{dec})

索引 3001 通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
3001:0	通道 1	该对象的长度	UINT8	RO	0x01 (1 _{dec})
3001:01	输出	输出过程数据通道 1	INT16	RO	0x0000 (0 _{dec})

索引 3002 通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
3002:0	通道 2	该对象的长度	UINT8	RO	0x01 (1 _{dec})
3002:01	输出	输出过程数据通道 2	INT16	RO	0x0000 (0 _{dec})

索引 4040 制造商代码 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4040:0	制造商代码1	预留	UINT16	RW	0x0000 (0 _{dec})

索引 4041 DAC 原始值 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4041:0	DAC 原始值 1	该对象的长度	UINT8	RO	0x01 (1 _{dec})
4041:01		这是电路的 DAC 原始值。通过计算校准得到的增益和偏移,将其转换为输出值。	UINT16	RO	0x0000 (0 _{dec})

索引 4042 校准数据 1

代码字

供应商保留对端子模块进行基本校准的权利。因此,制造商代码目前被保留。

索引(十六 进制)	名称	含义		数据类型	标志	默认值
4042:0	校准数据1	该对象的长度		UINT8	RO	0x02 (2 _{dec})
4042:01	Offset(偏移)		偏移微调通道1	INT16	RW	0x0000 (0 _{dec})
4042:02		以确定输出值。只有设置了制造商 代码(对象 <u>0x4040 [▶ 170]</u>),才 能更改这些值。	增益微调通道 1	UINT16	RW	0xF0CC (61644 _{dec})

索引 4061 特征位 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4061:0	Feature bits 1	该对象的长度	UINT8	RO	0x05 (5 _{dec})
4061:01	Disable Watchdog timer to set output [▶ 196]	TRUE 看门狗定时器已停用。在通信故障的情况下,模拟输出 值不会被设置为制造商或用户的默认值。 FALSE 看门狗处于活动状态。在通信故障的情况下,模拟输出 值将被设置为制造商或用户的默认值。	BOOLEAN	RW	0x00 (0 _{dec})
4061:02	Enable user default output [> 196]	TRUE 如果看门狗定时器触发,将输出 <u>用户特定的输出值</u> [▶ 196](对象 0x4063 [▶ 171])。 FALSE 如果看门狗定时器触发,将输出制造商的值: EL4102、EL 4112-0010、EL4132: 0 V,EL4112: 0 mA,EL4122: 4 mA	BOOLEAN	RW	0x00 (0 _{dec})
4061:03	启用用户标度 [▶ 196]	TRUE 用户标度(对象 0x4062 [▶ 171])处于活动状态;然后 按照 <u>计算示例 [▶ 196]</u> 中的说明计算输出值。 FALSE 用户标度已停用。	BOOLEAN	RW	0x00 (0 _{dec})
4061:04	Enable absolute value with MSB as sign [▶ 197]	TRUE 输出值以带符号幅度格式输出(在 EL4132、 EL4112-0010 上): 0x7FFF = +10 V 或 +10 mA 0xFFFF = -10 V 或 -10 mA FALSE 输出值以二进制格式的有符号整数输出(EL4132、 EL4112-0010): 0x7FFF = +10 V 或 +10 mA 0x8000 = -10 V 或 -10 mA	BOOLEAN	RW	0x00 (0 _{dec})
4061:05	Enable absolute value [* 197]	TRUE 在负值范围内,输出值为绝对值(EL4132、 EL4112-0010): 0x7FFF = 10 V 或 10 mA 0x8000 = 10 V 或 10 mA FALSE 输出值按照对象 <u>0x4061:04</u> [▶ <u>171</u>] 中的定义输出。	BOOLEAN	RW	0x00 (0 _{dec})

索引 4062 用户标度 1

索引(十六 进制)	名称	含义		数据类型	标志	默认值
4062:0	用户标度1	该对象的长度		UINT8	RO	0x02 (2 _{dec})
4062:01	Offset(偏移) [▶ 196]	这些对象包含用户标	偏移微调,用户标度通道1	INT16	RW	0x0000 (0 _{dec})
4062:02	Gain [▶ 196]	度。 通过 <u>0x4061:03 [▶ 171]</u> 激活标度。 然后按照 <u>计算示例</u> [▶ <u>196]</u> 中的说明计算输 出值。	增益微调,用户标度通道 1 增益以定点格式表示,系数为 2 ⁻¹⁶ 。 因此,增益系数取值为 1 时, 对应的是 65536 _{dec} (0x00010000)。	INT32	RW	0x00007FF (_{32767dec})

索引 4063 默认输出 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4063:0		定义 <u>用户指定输出值 [▶ 196]</u> ,用于周期性通信的看门狗 定时器触发时显示到输出端。	INT16	RW	0x0000 (0 _{dec})

索引 4080 制造商代码 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4080:0	制造商代码 2	预留	UINT16	RW	0x0000 (0 _{dec})

索引 4081 DAC 原始值 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4081:0	DAC 原始值 2	该对象的长度	UINT8	RO	0x01 (1 _{dec})
4081:01		这是电路的 DAC 原始值。通过计算校准得到的增益和偏移,将其转换为输出值。	UINT16	RO	0x0000 (0 _{dec})

索引 4082 校准数据 2

1

供应商保留对端子模块进行基本校准的权利。因此,制造商代码目前被保留。

索引(十六 进制)	名称	含义		数据类型	标志	默认值
4082:0	校准数据2	该对象的长度		UINT8	RO	0x02 (2 _{dec})
4082:01	Offset(偏移)	这些对象可用于调整组件的偏	偏移微调通道 2	INT16	RW	0x0000 (0 _{dec})
4082:02	Gain	差,以确定输出值。只有设置了制造商代码(对象 <u>0x4080</u> [<u>) 172]),才能更改这些值。</u>	增益微调通道 2	UINT16	RW	0xF0CC (61644 _{dec})

索引 40A1 特征位 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
40A1:0	Feature bits 2		UINT8	RO	0x05 (5 _{dec})
40A1:01	Disable Watchdog timer to set output [▶ 196]	TRUE 看门狗定时器已停用。在通信故障的情况下,模拟输出 值不会被设置为制造商或用户的默认值。	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE 看门狗处于活动状态。在通信故障的情况下,模拟输出 值将被设置为制造商或用户的默认值。			
40A1:02	Enable user default output [▶ 196]	TRUE 如果看门狗定时器触发,将输出用户特定的输出值 [▶196](对象 0x40A3 [▶173])。	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE 如果看门狗定时器触发,将输出制造商的值: EL4102、EL 4112-0010、EL4132: 0 V,EL4112: 0 mA,EL4122: 4 mA			
40A1:03	启用用户标度 [▶196]	TRUE 用户标度(对象 <u>0x40A2 [▶ 173]</u>)处于活动状态;然后 按照 <u>计算示例 [▶ 196]</u> 中的说明计算输出值。	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE 用户标度已停用。			
40A1:04	Enable absolute value with MSB as sign [▶ 197]	TRUE 输出值以带符号幅度格式输出(在 EL4132、 EL4112-0010 上): 0x7FFF = +10 V 或 +10 mA 0xFFFF = -10 V 或 -10 mA	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE 输出值以二进制格式的有符号整数输出(EL4132、 EL4112-0010): 0x7FFF = +10 V 或 +10 mAA 0x8001 = -10 V 或 -10 mA			
40A1:05	Enable absolute value [▶ 197]	TRUE 在负值范围内,输出值为绝对值(EL4132、 EL4112-0010): 0x7FFF = 10 V 或 10 mA 0x8001 = 10 V 或 10 mA	BOOLEAN	RW	0x00 (0 _{dec})
		FALSE 输出值按照对象 <u>0x40A1:04 [▶ 173]</u> 中的定义输出。			

索引 40A2 用户标度 2

索引(十六 进制)	名称	含义		数据类型	标志	默认值
40A2:0	用户标度2	该对象的长度		UINT8	RO	0x02 (2 _{dec})
40A2:01	<u>Offset(偏移) [▶ 196]</u>	这些对象包含用户标度。	偏移微调,用户标度通道2	INT16	RW	0x0000 (0 _{dec})
40A2:02	Gain [▶ 196]	通过 <u>0x40A1:03</u> [▶ <u>173</u>] 激 活标度。 然后按照 <u>计算示例</u> [▶ <u>196</u>] 中的说明计算输出值。	增益微调,用户标度通道 2 增益以定点格式表示,系数 为 2 ⁻¹⁶ 。 因此,增益系数取值为 1 时,对应的是 65536 _{dec} (0x00010000)。		RW	0x0000000 (0 _{dec})

索引 40A3 默认输出 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
40A3:0		定义 <u>用户指定输出值 [▶ 196]</u> ,用于周期性通信的看门狗 定时器触发时显示到输出端。	INT16	RW	0x0000 (0 _{dec})

5.4.3.4.2 配置文件特定对象(0x6000-0xFFFF)

对于所有支持5001设备描述规约的EtherCAT从站,描述文件定义的对象具有相同的含义。

索引 6411 输出

索引(十六 进制)	名称	含义	数据类型	标志	默认值
6411:0	输出	该对象的长度	UINT8	RO	0x02 (2 _{dec})
6411:01	子索引 001	输出过程数据通道 1	INT16	RO	0x0000 (0 _{dec})
6411:02	子索引 002	输出过程数据通道 2	INT16	RO	0x0000 (0 _{dec})

索引 7010 AO 输出通道 1

	索引(十六 进制)	名称	含义	数据类型	标志	默认值
	7010:0	AO outputs Ch.1	最大子索引	UINT8	RO	0x01 (1 _{dec})
ſ	7010:01	模拟量输出	模拟量输出数据	INT16	RO	0x0000 (0 _{dec})

索引 7020 AO 输出通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
7020:0	AO outputs Ch.2	最大子索引	UINT8	RO	0x01 (1 _{dec})
7020:01	模拟量输出	模拟量输出数据	INT16	RO	0x0000 (0 _{dec})

索引 801E AO 内部数据通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
801E:0	AO internal data Ch.1	最大子索引	UINT8	RO	0x01 (1 _{dec})
801E:01	DAC 原始值	DAC 原始值	UINT16	RO	0x0000 (0 _{dec})

索引 801F AO 供应商数据通道 1

● 代码

供应商保留对端子模块进行基本校准的权利。因此,代码目前被保留。

索引(十六 进制)	名称	含义	数据类型	标志	默认值
801F:0	AO vendor data Ch.1	最大子索引	UINT8	RO	0x02 (2 _{dec})
801F:01	校准偏移	供应商校准偏移	INT16	RW	0x0000 (0 _{dec})
801F:02	校准增益	供应商校准增益	UINT16	RW	0x1EFA
					(7930 _{dec})

索引 802E AO 内部数据通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
802E:0	AO internal data Ch.1	最大子索引	UINT8	RO	0x01 (1 _{dec})
802E:01	DAC 原始值	DAC 原始值	UINT16	RO	0x0000 (0 _{dec})

索引 802F AO 供应商数据通道 2

代码

供应商保留对端子模块进行基本校准的权利。因此,代码目前被保留。

索引(十六 进制)	名称	含义	数据类型	标志	默认值
802F:0	AO vendor data Ch.2	最大子索引	UINT8	RO	0x02 (2 _{dec})
802F:01	校准偏移	供应商校准偏移	INT16	RW	0x0000 (0 _{dec})
802F:02	校准增益	供应商校准增益	UINT16	RW	0x1EFA (7930 _{dec})

索引 F000 模块化设备配置文件

索引(十六 进制)	名称	含义	数据类型	标志	默认值
F000:0	模块化设备配置文件	模块化设备配置文件的常规信息	UINT8	RO	0x02 (2 _{dec})
F000:01	模块索引距离	各通道对象的索引间隔	UINT16	RO	0x0010 (16 _{dec})
F000:02	最大模块数量	通道数量	UINT16	RO	0x0008 (8 _{dec})

索引 F008 代码字

索引(十六 进制)	名称	含义	数据类型	标志	默认值
F008:0	代码字	码字(目前保留)	UINT32	RW	0x00000000 (0 _{dos})

索引 F010 模块列表

索引(十六 进制)	名称	含义	数据类型	标志	默认值
F010:0	模块列表	最大子索引	UINT32	RW	0x03 (3 _{dec})
F010:01	子索引 001	(目前保留)	UINT32	RW	0x0000000 (0 _{dec})
F010:02	子索引 002	(目前保留)	UINT32	RW	0x00000190 (400 _{dec})
F010:03	子索引 003	(目前保留)	UINT32	RW	0x0000190 (400 _{dec})

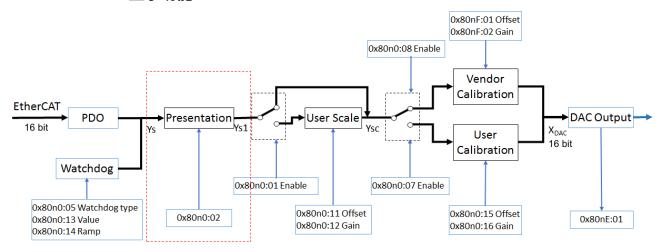
EL41xx

5.5 EL41x4

5.5.1 基础知识

就其功能而言,EL41x4 端子模块与 EL41x2 的"高级功能"相对应。

5.5.1.1 计算输出值


● 术语"校准"

"校准"一词与倍福历史颇有渊源,在本章节中用于校准数据,但它与校准证书的偏差声明毫无关系。事实上,这描述的是设备在运行期间为保持输出精度而使用的供应商校准或客户校准/调整数据。

端子模块持续接收来自 EtherCAT 过程数据的设定值,根据设置进行转换,并将其传送至内部 DAC(数模转换器),形成电气输出信号。参见框图。

5.5.1.1.1 显示功能

附图 156: 默认设置下,确定输出值的框图(显示功能)

根据索引 0x80x0:02 的显示功能块将 PDO 值转换为内部 SINT16 格式(有符号整数,16 位),以便根据设置进行进一步计算和 DAC 输出。根据所选的表示法,适用于以下情况:

有符号显示 (默认设置)

- 应显示最高位(第 15 位)为符号的 SINT16, 负数以二进制显示。
- Ys1 = Ys
- · 满量程值(FSV) = 32767
- 这专指端子模块

输出信号	值	
EL4104	十进制	十六进制
0 V	0	0x0000
5 V	16383	0x3FFF
10 V	32767	0x7FFF

输出信号	值	
EL4114	十进制	十六进制
0 mA	0	0x0000
10 mA	16383	0x3FFF
20 mA	32767	0x7FFF

输出信号	值	
EL4124	十进制	十六进制
4 mA	0	0x0000
12 mA	16383	0x3FFF
20 mA	32767	0x7FFF

输出信号	值	
EL4134	十进制	十六进制
-10 V	-32768	0x8000
-5 V	-16383	0xC001
0 V	0	0x0000
5 V	16383	0x3FFF
10 V	32767	0x7FFF

无符号显示

- 应显示不带符号的 UINT16, FSV= 65535,
- 生成 SINT16 供进一步处理: Ys1 = Ys / 2
- 不可能再出现负输出值。

绝对值,MSB为符号

- 应显示最高位(第 15 位)为符号的 SINT16, 负数显示为绝对值(非二进制)
- Ys1 = Ys
- FSV = 32767

绝对值

- 应显示带符号的 SINT16, 负数以二进制显示
- 如果是负数,而形成的值只有正值,因此只处理 最高可达 $2^{15} = 32767$ 的正值。

显示示例

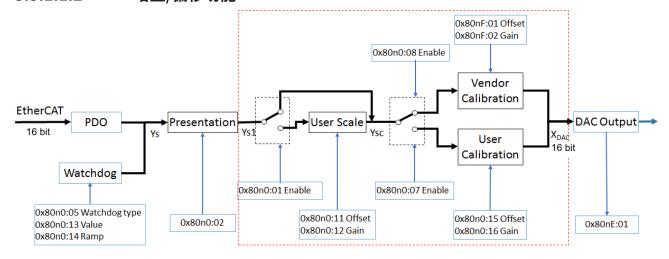
- *带符号的整数*: 输出值以二进制显示。 16位最大显示范围 = -32768 .. +32767
 - 。 示例:

```
\begin{array}{l} 1000\ 0000\ 0000\ 0000_{bin} = 0x8000_{hex} = -32768_{dec} \\ 1111\ 1111\ 1111\ 1110_{bin} = 0xFFFE_{hex} = -2_{dec} \\ 1111\ 1111\ 1111\ 1111_{bin} = 0xFFFF_{hex} = -1_{dec} \\ 0000\ 0000\ 0000\ 0000\ 0001_{bin} = 0x0001_{hex} = +1_{dec} \\ 0000\ 0000\ 0000\ 0010_{bin} = 0x0002_{hex} = +2_{dec} \\ 0111\ 1111\ 1111\ 1111_{hin} = 0x7FFF_{hex} = +32767_{dec} \end{array}
```

• 无符号整数:

输出值以16位分辨率显示。

• 以 MSB 为符号的绝对值: 输出值以符号量显示。 16 位的最大显示范围 = -32767... +32767



。 示例:

绝对值

负输出值显示为正值(绝对值)

5.5.1.1.2 增益/偏移功能

附图 157: 默认设置下,确定输出值的框图(增益/偏移功能)

增益/偏移功能

供应商将端子模块与供应商校准数据进行比较,以达到规定的输出精度。供应商校准数据受密码保护,无法更 改。

如果需要在系统端对输出值进行操作,

- · 应首先使用带有增益/偏移的用户标度,
- 或者用户可以在端子模块中存储一些校准数据。这样,随后用户标度也能为此发挥作用。

另请参见框图。

在以下条件下:

 $\begin{array}{lll} {\sf Gain_{scale}} & = 0{\sf x}80{\sf n}0{\sf :}12 & {\sf UserScale \ Gain} \\ {\sf Offset}_{\sf scale} & = 0{\sf x}80{\sf n}0{\sf :}11 & {\sf UserScale \ Offset} \\ {\sf Gain}_{\sf user} & = 0{\sf x}80{\sf n}0{\sf :}16 & {\sf UserCalibration \ Gain} \\ {\sf Offset}_{\sf user} & = 0{\sf x}80{\sf n}0{\sf :}15 & {\sf UserCalibration \ Offset} \\ \end{array}$

(应添加双极 EL403x 端子模块 0x800 = 2048_{dec})

Gain_{vendor} = 0x80nF:02 VendorCalibration Gain
Offset_{vendor} = 0x80nF:01 VendorCalibration Offset

 X_{DAC} = 0x80nE:01 DAC Raw Value

Ys EtherCAT PDO setpoint

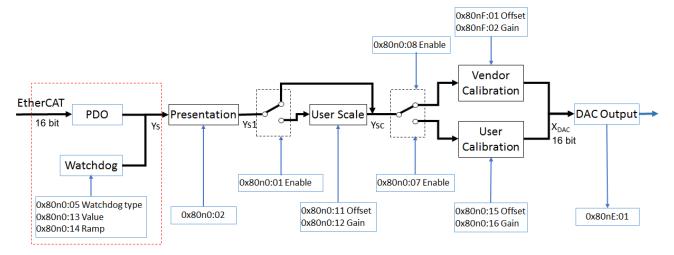
标度的影响:

用户标度功能已启用: Ysc = Ys1 * $Gain_{scale}$ * 2^{-16} + Offset $_{scale}$

用户标度功能已禁用: Ysc=Ys1

以及对校准值的影响:

供应商标准功能已启用: $X_{DAC} = Ysc * Gain_{vendor} *2^{-16} + Offset_{vendor}$ 用户校准功能已启用: $X_{DAC} = Ysc * Gain_{user} *2^{-20} + Offset_{user}$

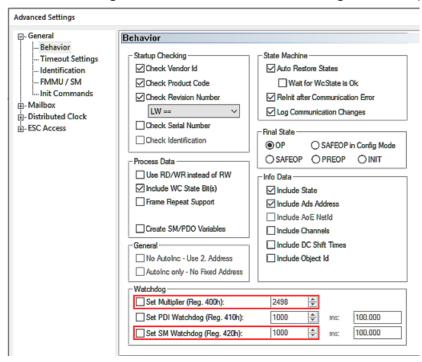

未启用校准: X_{DAC} = Ysc

•

不能同时启用供应商校准和用户校准功能

只能启用供应商校准(0x80n0:08 "Enable vendor calibration")或 用户校准(0x80n0:01 "Enable user calibration")。

5.5.1.1.3 看门狗功能


附图 158: 默认设置下,确定输出值的框图(看门狗功能)

Watchdog function,索引 0x80n0:05 [▶ 185]

EL40xx/EL41xx 端子模块配有安全设备(看门狗),可将输出切换到规定的状态,例如在过程数据传输中断的情况下。

看门狗时间通过 TwinCAT 常规对话框设置

Advanced Settings -> General -> Behavior -> Watchdog -> Set Multiplier and SM Watchdog:

附图 159: 看门狗设置

看门狗时间最长可达 65 s。较大的数值以 65 为模数来计算,例如 70 s 将缩短为 5 s。

有关看门狗设置的常规信息

请遵守有关看门狗设置[▶46]的常规说明。

程序如下:

注意

- 只要端子模块定期正确提供 EtherCAT 过程数据,它就能输出这些数据。看门狗对此不采取任何行动,只会表示"正在输出数据"。
- 一旦数据停止到达,输出值就会保持最后一个值。现在,看门狗已开始停止运行。如果数据再次及时到 达,看门狗会恢复为起始值。
- 如果过期,即设定时间已过,但没有新数据到达,则输出替代值。
- 一旦有新数据到来,就会再次输出,看门狗就会重新监视。

索引 0x80n0:05 [▶ 185] 中的替代值可进行以下设置:

- " Default watchdog value ":
 模拟量输出值设置为用户特定值。这必须事先存储在" Default output "(索引 0x80n0:13 [▶ 185])
 中,然后在运行看门狗的情况下输出。
 这是" Default output "= 0 时的默认设置。在运行看门狗的情况下,以这种方式操作的端子模块输出为 0。
- " Watchdog ramp ": 在预定时间内,以线性斜坡的方式从最后一个有效输出值开始逐渐接近用户定义值"Default output "。该时间通过 "Default output ramp"(索引 <u>0x80n0:14</u> [▶<u>185]</u>)输入,单位为位/ms。
- "Last output value" 使用此设置时,将保留最后有效输出值。

5.5.1.2 同步管理器 (SM)

PDO Assignment (PDO 分配)

SM2,	SM2,PDO 分配 0x1C12								
索引		被排除 PDO 的 Index	大小 (byte.bit)	名称	PDO 内容				
1600	(默认)	-	2.0	AO 输出通道 1	索引 <u>0x7000:01</u> [▶ <u>190]</u> - 模拟量输出				
1601	(默认)	-	2.0	AO 输出通道 2	索引 <u>0x7010:01 [▶ 190]</u> - 模拟量输出				
1602	(默认)	-	2.0	AO 输出通道 3	索引 <u>0x7020:01 [▶ 190]</u> - 模拟量输出				
1603	(默认)	-	2.0	AO 输出通道 4	索引 <u>0x7030:01</u> [▶ <u>190]</u> - 模拟量输出				

表 1: SyncManager 的 PDO 分配

分布式时钟

无论有无分布式时钟功能, EL41x4均可运行; 转换方式见图。

附图 160: 将 EL41x4 转换为 DC 模式

在 DC 模式下,考虑到 DC 设置(DC 选项卡 --> 高级设置)和电气转换时间,EL41x4 与其他输出单元同步输出其输出值。

关于 FW01 的说明:在 DC 模式下,EtherCAT 循环时间 < 400 μ s 时无法运行;EL41x4 仍处于 SAFEOP 状态。

5.5.1.3 制造商代码

制造商代码

供应商保留对端子模块进行基本校准的权利。因此,制造商代码目前被保留。

5.5.2 对象描述和参数设置

● EtherCAT XML 设备描述

EtherCAT XML 设备抽入

该显示与 EtherCAT XML 设备描述中的 CoE 对象相匹配。建议从<u>倍福网站</u>的下载区下载最新 XML 文件,并按照安装说明进行安装。

● 参数设置

端子模块通过 <u>CoE - Online 选项卡 [▶ 128]</u>(双击相应的对象)或通过 <u>Process Data 选项卡 [▶ 128]</u>

(分配 PDO)进行参数化。

5.5.2.1 简介

CoE 概述包含针对不同应用的对象:

- · 调试过程中配置所需的对象 [▶185]
- 用于正常运行的对象 [▶ 186],例如通过 ADS 访问
- · <u>用于指示内部设置的对象</u> [▶ 187] (很可能是固定的)

下面将首先介绍正常运行所需的参数设置和对象。在表格的下部可以找到在正常应用情况下不需要的所有其他对象。

5.5.2.2 参数设置的对象

索引 1011:恢复默认参数

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1011:0	恢复默认参数 [▶ 227]	恢复默认参数	UINT8	RO	0x01 (1 _{dec})
1011:01	子索引 001	如果此对象在设置值对话框中被设置为 " 0x64616F6C" ,所有备份对象都被重置为它们的出 厂状态。	UINT32	RW	0x00000000 (0 _{dec})

索引 80n0 AO 设置(针对 $0 \le n \le 3$),通道 1-4

索引(十六 进制)	名称	含义	数据类型	标志	默认值
80n0:0	AO 设置	最大子索引	UINT8	RO	0x16 (22 _{dec})
80n0:01	Enable user scale	用户标度功能已启用。	BOOLEAN	RW	0x00 (0 _{dec})
80n0:02	Presentation	0: 有符号表示 1: 无符号表示 16 位的最大表示量程: 0+65535 _{dec} 2: 以 MSB 为符号的绝对值 以带符号位的绝对值表示法输出测量值。 16 位的最大表示量程 = -32768 _{dec} +32767 _{dec} 3: 绝对值 负数也输出为正数	ВІТЗ	RW	0x00 (0 _{dec})
80n0:05	Watchdog [▶ 180]	0: 默认看门狗值 默认值(0x8pp0:13)处于活动状态。 1: 看门狗斜坡 用于移动至默认值的斜坡(0x8pp0:14)处于活动状态。 2: 最后的输出值 如果看门狗超时,则输出最后的过程数据。	BIT2	RW	0x00 (0 _{dec})
80n0:07	Enable user calibration	启用用户校准	BOOLEAN	RW	0x00 (0 _{dec})
80n0:08	Enable vendor calibration	启用供应商校准	BOOLEAN	RW	0x01 (1 _{dec})
80n0:11	Offset(偏移)	用户标度偏移	INT16	RW	0x0000 (0 _{dec})
80n0:12	Gain	用户标度增益。 增益采用定点表示法,系数为 2 ⁻¹⁶ 。 值 1 相当于 65535(0x00010000)。	INT32	RW	0x00010000 (65536 _{dec})
80n0:13	默认输出	默认输出值	INT16	RW	0x0000 (0 _{dec})
80n0:14	默认输出斜坡	减小至默认值的斜坡 单位:位/ms。	UINT16	RW	0xFFFF (65535 _{dec})
80n0:15	User calibration offset	用户校准偏移	INT16	RW	0x0000 (0 _{dec})
80n0:16	User calibration gain	用户校准增益	UINT16	RW	0xFFFF (65535 _{dec})

5.5.2.3 正常运行的对象

具有常规功能的 EL41x4 端子模块没有此类对象。

5.5.2.4 内部设置的对象(完整概览)

5.5.2.4.1 标准对象(0x1000-0x1FFFF)

这些标准对象对所有 EtherCAT 从站具有相同的含义。

索引 1000 设备类型

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1000:0		EtherCAT 从站的设备类型:Lo-Word 包含使用的 CoE设备描述规约(5001)。根据模块化设备配置文件,Hi-Word 包含模块配置文件。	UINT32	RO	0x01901389 (26219401 _{dec})

索引 1008 设备名称

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1008:0	设备名称	EtherCAT 从站的设备名称	STRING		EL4104-0000 EL4114-0000 EL4124-0000 EL4134-0000

索引 1009 硬件版本

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1009:0	硬件版本	EtherCAT 从站的硬件版本	STRING	RO	01

索引 100A 软件版本

索引(十六 进制)	名称	含义	数据类型	标志	默认值
100A:0	软件版本	EtherCAT 从站的固件版本	STRING	RO	01

索引 1018 标识

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1018:0	标识	识别从站的信息	UINT8	RO	0x04 (4 _{dec})
1018:01	供应商 ID	EtherCAT 从站的供应商 ID	UINT32	RO	0x00000002 (2 _{dec})
1018:02	产品代码	EtherCAT 从站的产品代码	UINT32	RO	EL4104: 0x10083052 (268972114 _{de} ¿) EL4114: 0x101C3052 (270282834 _{de}
					EL4124: 0x101C3052 (270282834 _{de} c) EL4134: 0x101C3052 (270282834 _{de}
1010.03	/#>TIF		LUNTOO	D0	c)
1018:03	修订版本	EtherCAT 从站的修订版本号;低位字(位 0-15)表示特殊端子模块编号,高位字(位 16-31)表示设备描述	UINT32	RO	0x00100000 (1048576 _{dec})
1018:04	序列号	EtherCAT 从站的序列号;低位字的低字节(位 0-7)包含生产年份,低位字的高字节(位 8-15)包含生产周数,高位字(位 16-31)为 0	UINT32	RO	0x00000000 (0 _{dec})

Index 10F0 Backup parameter handling

索引(十六 进制)	名称	含义	数据类型	标志	默认值
10F0:0	Backup parameter handling	装载默认配置和保存备份条目的信息	UINT8	RO	0x01 (1 _{dec})
10F0:01	Checksum	对 EtherCAT 从站的所有备份条目进行校验和	UINT32	RO	0x00000000 (0 _{dec})

索引 1600 AO RxPDO-Map 输出通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1600:0	AO RxPDO-Map OutputsCh.1	PDO 映射 RxPDO 1	UINT8	RO	0x01 (1 _{dec})
1600:01		1. PDO 映射条目(对象 0x7000(AO outputs Ch.1), 条目 0x01(Analog output))	UINT32	RO	0x7000:01, 16

索引 1601 AO RxPDO-Map 输出通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
	AO RxPDO-Map OutputsCh.2	PDO 映射 RxPDO 2	UINT8	RO	0x01 (1 _{dec})
1601:01		1. PDO 映射条目(对象 0x7010(AO outputs Ch.2), 条目 0x01(Analog output))	UINT32	RO	0x7010:01, 16

索引 1602 AO RxPDO-Map 输出通道 3

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1602:0	AO RxPDO-Map OutputsCh.3	PDO 映射 RxPDO 3	UINT8	RO	0x01 (1 _{dec})
1602:01		1. PDO 映射条目(对象 0x7020(AO outputs Ch.3), 条目 0x01(Analog output))	UINT32	RO	0x7020:01, 16

188 版本: 5.0.0 EL41xx

索引 1603 AO RxPDO-Map 输出通道 4

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1603:0	AO RxPDO-Map OutputsCh.4	PDO 映射 RxPDO 4	UINT8	RO	0x01 (1 _{dec})
1603:01		1. PDO 映射条目(对象 0x7030(AO outputs Ch.4), 条目 0x01(Analog output))	UINT32	RO	0x7030:01, 16

索引 1C00 同步管理器类型

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C00:0	同步管理器类型	使用同步管理器	UINT8	RO	0x04 (4 _{dec})
1C00:01	子索引 001	同步管理器类型通道 1:邮箱写入	UINT8	RO	0x01 (1 _{dec})
1C00:02	子索引 002	同步管理器类型通道 2:邮箱读取	UINT8	RO	0x02 (2 _{dec})
1C00:03	子索引 003	Sync-Manager 类型通道 3:过程数据写入(输出)	UINT8	RO	0x03 (3 _{dec})
1C00:04	子索引 004	Sync-Manager 类型通道 4:过程数据读取(输入)	UINT8	RO	0x04 (4 _{dec})

索引 1C12 RxPDO 分配

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C12:0	RxPDO 分配	PDO 分配输出	UINT8	RO	0x04 (4 _{dec})
1C12:01	子索引 001	第1个分配的 RxPDO(包含相关 RxPDO 映射对象的 Index)	UINT16	RO	0x1600 (5632 _{dec})
1C12:02	子索引 002	第2个分配的 RxPDO(包含相关 RxPDO 映射对象的索引)	UINT16	RO	0x1601 (5633 _{dec})
1C12:03	子索引 003	第3个分配的 RxPDO(包含相关 RxPDO 映射对象的索引)	UINT16	RO	0x1602 (5634 _{dec})
1C12:04	子索引 004	第 4 个分配的 RxPDO(包含相关 RxPDO 映射对象的索引)	UINT16	RO	0x1603 (5635 _{dec})

索引 1C13 TxPDO 分配

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C13:0	TxPDO 分配	PDO 分配输入	UINT8	RO	0x00 (0 _{dec})

Index 1C32 SM output parameter

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C32:0	SM output parameter	输出的同步参数	UINT8	RO	0x20 (32 _{dec})
1C32:01	同步模式	当前的同步模式:	UINT16	RW	0x0001
		0: Free Run			(1 _{dec})
		・ 1: 与 SM 2 事件同步			
		・ 2: DC 模式 - 与 SYNC0 事件同步			
		・ 3: DC 模式 - 与 SYNC1 事件同步			
1C32:02	周期	循环时间(单位: ns):	UINT32	RW	0x00000000
		• Free Run:本地定时器的周期			(0 _{dec})
		・ 与 SM 2 事件同步: 主站周期			
		・ DC 模式: SYNC0/SYNC1 周期时间			
1C32:03	偏移时间	从 SYNC0 事件到输出的时间(单位:ns,仅 DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:04	支持同步模式	支持的同步模式:	UINT16	RO	0xC007
		・ 位 0 = 1: 支持 Free Run			(49159 _{dec})
		・ 位 1 = 1: 支持与 SM 2 事件同步			
		• 位 2-3 = 01:支持 DC 模式			
		・ 位 4-5 = 10: SYNC1 事件下的输出偏移(仅 DC 模式)			
		・ 位 14 = 1: 动态周期(在写入 <u>0x1C32:08</u> [▶ <u>190</u>] 时 开始测量)			
1C32:05	最小周期	最小周期(单位:ns)	UINT32	RO	0x0000000 (0 _{dec})
1C32:06	计算并复制时间	SYNC0 和 SYNC1 事件之间的最小时间(单位:ns,仅DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:08	命令	• 0: 本地循环时间的测量停止	UINT16	RW	0x0000 (0 _{dec})
		• 1: 本地循环时间的测量开始			
		条目 0x1C32:03 [▶ 190]、0x1C32:05 [▶ 190]、 0x1C32:06 [▶ 190]、0x1C32:09 [▶ 190] 更新为最大测量值。 对于后续的测量,测量值被重置			
1C32:09	延迟时间	从 SYNC1 事件到输出的时间(单位:ns,仅 DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:0B	缺失 SM 事件计数器	OPERATIONAL 期间缺失的 SM 事件数量(仅 DC 模式)	UINT16	RO	0x0000 (0 _{dec})
1C32:0C	周期超限计数器	OPERATIONAL 期间周期超时的次数(周期没有及时完成或下一个周期开始得太早)	UINT16	RO	0x0000 (0 _{dec})
1C32:0D	偏移过短计数器	SYNC0 和 SYNC1 事件之间的间隔次数太小(仅 DC 模式)	UINT16	RO	0x0000 (0 _{dec})
1C32:20	同步错误	在上一周期同步出错(输出太晚;仅 DC 模式)	BOOLEAN	RO	0x00 (0 _{dec})

5.5.2.4.2 配置文件特定对象(0x6000-0xFFFF)

对于所有支持5001设备描述规约的EtherCAT从站,描述文件定义的对象具有相同的含义。

索引 70n0 AO 输出(针对 0 ≤ n ≤ 3),通道 1-4

索引(十六 进制)	名称	含义	数据类型	标志	默认值
70n0:0	AO outputs Ch.1	最大子索引	UINT8	RO	0x01 (1 _{dec})
70n0:01	模拟量输出	模拟量输出数据	INT16	RO	0x0000 (0 _{dec})

190 版本: 5.0.0 EL41xx

索引 80nE AO 内部数据(针对 0 ≤ n ≤ 3),通道 1 - 4

索引(十六 进制)	名称	含义	数据类型	标志	默认值
80nE:0	AO internal data	最大子索引	UINT8	RO	0x01 (1 _{dec})
80nE:01	DAC 原始值	DAC 原始值	UINT16	RO	0x0000 (0 _{dec})

索引 80nF AO 供应商数据(针对 0 ≤ n ≤ 3),通道 1-4

•

代码

1

供应商保留对端子模块进行基本校准的权利。因此,代码目前被保留。

索引(十六 进制)	名称	含义	数据类型	标志	默认值
80nF:0	AO 供应商数据	最大子索引	UINT8	RO	0x02 (2 _{dec})
80nF:01	校准偏移	供应商校准偏移	INT16	RW	0x0000 (0 _{dec})
80nF:02	校准增益	供应商校准增益	UINT16	RW	0xFFFF (65535 _{dec})

索引 F000 模块化设备配置文件

索引(十六 进制)	名称	含义	数据类型	标志	默认值
F000:0	模块化设备配置文件	模块化设备配置文件的常规信息	UINT8	RO	0x02 (2 _{dec})
F000:01	模块索引距离	各通道对象的索引间隔	UINT16	RO	0x0010 (16 _{dec})
F000:02	最大模块数量	通道数量	UINT16	RO	0x0004
					(4 _{dec})

索引 F008 代码字

● 代码

供应商保留对端子模块进行基本校准的权利。因此,代码目前被保留。

索引(十六 进制)	名称	含义	数据类型	标志	默认值
F008:0	代码字	预留	UINT32	RW	0x0000000 (0 _{dec})

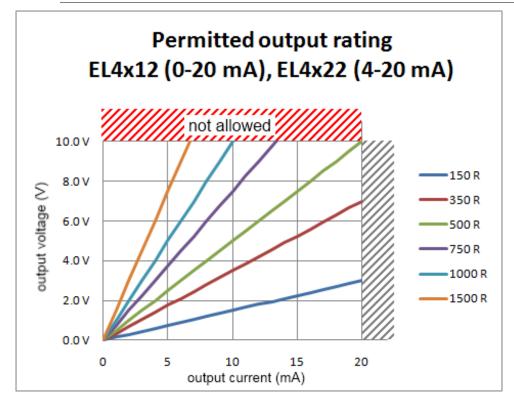
索引 F010 模块列表

索引(十六 进制)	名称	含义	数据类型	标志	默认值
F010:0	模块列表	最大子索引	UINT8	RW	0x04 (4 _{dec})
F010:01	子索引 001	模拟量输出配置文件(400)	UINT32	RW	0x00000190 (400 _{dec})
F010:02	子索引 002	模拟量输出配置文件(400	UINT32	RW	0x00000190 (400 _{dec})
F010:03	子索引 003	模拟量输出配置文件(400	UINT32	RW	0x00000190 (400 _{dec})
F010:04	子索引 004	模拟量输出配置文件(400	UINT32	RW	0x00000190 (400 _{dec})

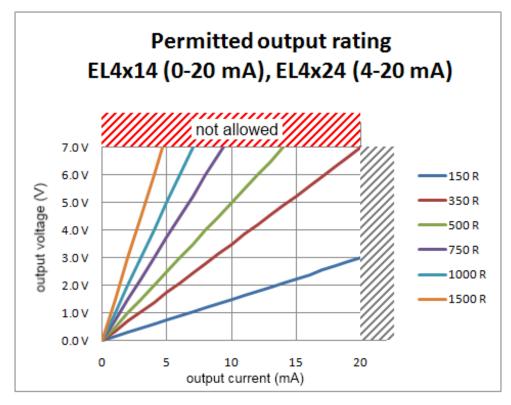
5.6 EL4x1x、EL4x2x 电流输出

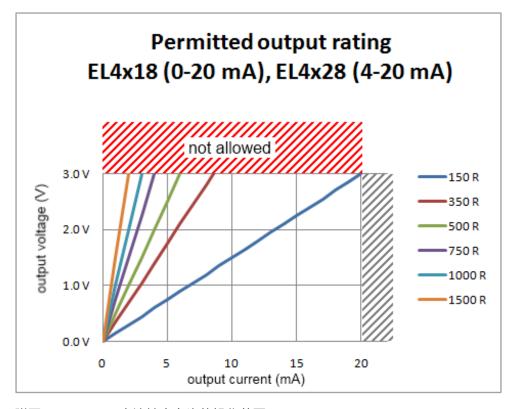
EL4xxx 电流输出端的负载能力受规定的操作限值影响。该信息在技术数据中的"最大负载"下提供。对于每个通道,这是端子模块仍能提供最大输出电流的最大负载电阻。相关参数是每个端子模块的可用通道数(而不是正在使用的通道数)。

通道数量	最大负载	特性	最大负载时的最大输出电压	典型最大开路电压(无负载)
2	< 500 Ω	短路保护	10 V	约 14 V
4	< 350 Ω	短路保护	7 V	约 10 V
8	< 150 Ω	-	3 V	约6V


通道可以在更高的负载电阻下运行,但此时它将无法达到全输出电流,并可能出现过载。

•


高负载运行


根据下图,不建议在相应通道数的运行范围之外超限运行。如果过程值规格导致运行超出此范围,输出端可能会损坏。

附图 161: EL4xx2 电流输出允许的操作范围

附图 162: EL4xx4 电流输出允许的操作范围

附图 163: EL4xx8 电流输出允许的操作范围

并联

如果负载的电流要求高于 20 mA,EL4xxx 设备的电流输出端可与负载并联。所有 GND 必须连接在一起。可以使用一个端子模块的通道,也可以使用多个端子模块的通道。

在设计布局时,必须注意欧姆定律仍然适用:U = R*I。例如,如果一个 $10\,V$ 的通道可以通过 $500\,\Omega$ 的负载驱动 $20\,m$ A 电流(参见前一章的规格说明),那么如果使用两个并联的通道(每个通道的电压为 $10\,V$)输出 $2\,*$ $20\,m$ A 电流,则负载可能只有 $250\,\Omega$,因为并联后通道的输出电压不会增加。

6 附录

6.1 EtherCAT AL 状态代码

详细信息请参见 EtherCAT系统描述。

功能(ESI EL41x2-nnnn-0000 至 EL41x2-nnnn-0016) 6.2

6.2.1 基础知识 - 常规功能

6.2.1.1 操作模式和设置

看门狗激活/停用(索引 0x4061:01 [▶ 201],通道 1;索引 0x40A1:01 [▶ 202],通道 2)

该位禁用看门狗定时器。在通信故障的情况下,模拟输出值不会被重置为制造商或用户的默认值。 如果未设置该位,则输出制造商或用户默认值(默认)。

在制造商特定的输出值或用户特定的输出值之间切换(索引 0x4061:02 [▶ 201],通道 1;索引 0x40A1:02 [▶ 202],通道 2)

例如,在与控制器通信故障的情况下,模拟输出值可被设置为用户特定值(索引 0x4063 [▶ 202])。对象 0x4061:02 [▶ 201] (通道 1) 或对象 0x40A1:02 [▶ 202] (通道 2) 激活该选项(值: TRUE); 由对象 0x4063 [▶ 202] (通道 1) 或对象 0x40A3 [▶ 203] (通道 2) 确定输出值。如果停用此功能(通道 1 的对象 0x4061:02 [▶ 201] 或通道 2 的对象 0x40A1:02 [▶ 202] 的值为 FALSE),则输出制造商的默认值(EL4102、EL4132: 0 V, EL4112: 0 mA, EL4122: 4 mA) 。

如果停用看门狗定时器(通道 1 的对象 0x4061:01 [▶ 201]或通道 2 的对象 0x40A1:01 [▶ 202] 的值为 TRUE),则不会输出标准值。

激活用户标度(索引 0x4061:03 [▶ 201],通道 1;索引 0x40A1:03 [▶ 202],通道 2)

用户标度已激活(位已设置):

示例:输出值的计算和校准

端子模块将其 D/A 转换器的原始值放入 DAC 原始值对象 0x4041:01 [▶ 209] 或 0x4081:01 [▶ 209] (RAM)。 根据制造商的校准值调整输出值。然后可以选择用户标度:

 $Y_H = (X_{DAC} - B_K) \times A_K$

制造商校准后的输出值(当功能对象 0x4061:03 [▶ 201] 或 0x40A1:03 [▶ 202] 未激活时,相

当于 Yall

 $Y_A = Y_H \times A_W \times 2^{16} + B_W$

用户标度后的输出值

示例: 如为 EL4132,则将输出范围限制为-5 V 至 +5 V, 计算用户标度的增益系数 [▶ 165]

 $Y_A = Y_H \times A_W \times 2^{-16} + B_W$

上限值为 +5 V 时的增益系数的计算

 \leftrightarrow $(Y_{\Delta} - B_{W}) / (Y_{H} \times 2^{-16}) = A_{W}$

(通过缩短符号,相当于下限值为 -5 V)

(16383 - 0) / 32767 x 2⁻¹⁶

 $Y_A = 16383_{dec}$ 相当于所需上限值为 +5 V $Y_{H} = 32767_{dec}$ 相当于上限值为 +10 V

 $= A_{yy} = 32767$

 $B_w = 0_{dec}$ 相当于用户标度的偏移

A_w= 32767_{dec}

相当于 +7 V 的用户标度的偏移值

示例: 如为 EL4132,则将输出范围转换为-3 V 至+10 V,计算用户标度的偏移值 [▶ 163]

 $Y_A = Y_H \times A_W \times 2^{-16} + B_W$ 将下限值转换为-3V时的偏移值的计算

 \leftrightarrow $Y_A - Y_H \times A_W \times 2^{-16} = B_W$ (-9831) - (-32769 x 65536 x 2⁻¹⁶) $Y_A = (-9831_{dec})$ 相当于所需下限值为 -3 V $Y_{H} = (-32769_{dec})$ 相当于下限值为-10 V

 $= B_{yy} = 22938$

 $A_{\rm W} = 65536_{\rm dec}$ 相当干用户标度的增益系数(系数1) $B_{w} = 22938_{dec}$ 相当于+7 V的用户标度的偏移值

偏移值

通过偏移对输出值进行调整,线性转换为下限值(-10 V/-10 mA)或上限值(+ 10 V/+10 mA)。

表 1: 图例

名称	名称	对象索引(十六进制)
X_{DAC}	D/A 转换器的输出值	-
Y_A	控制器过程数据	-
B _K	制造商校准偏移量(在对象 <u>制造商代码 [▶198] 4040 [▶209]</u> 或 <u>0x4080 [▶209]</u> 设置后才可更改)	4042:01 [> 209], 4082:01 [> 209]
A _K	制造商校准增益量(在对象 <u>制造商代码 [▶198] 4040 [▶209]</u> 或 <u>0x4080 [▶209]</u> 设置后才可更改)	4042:02 [▶ 209], 4082:02 [▶ 209]
B _w	用户标度偏移量(可通过功能对象 <u>0x4061 [▶ 201]</u> 或 <u>0x40A1 [▶ 202]</u> 的索引 <u>0x4061:01</u> [▶ <u>201</u>] 或 <u>0x40A1:01 [▶ 202]</u> 激活)	4062:01 [▶ 202]、40A2:01 [▶ 203]
A _w	用户标度增益量(可通过功能对象 <u>0x4061 [▶ 201]</u> 或 <u>0x40A1 [▶ 202]</u> 的索引 <u>0x4061:01</u> [▶ <u>201]</u> 或 <u>0x40A1:01 [▶ 202]</u> 激活)	4062:02 [▶ 202]、 40A2:02 [▶ 203]

表示法,索引 <u>0x4061:04 [▶ 201]</u>、<u>0x4061:05 [▶ 201]</u>(通道 1);索引 <u>0x40A1:04 [▶ 202]</u>、<u>0x40A1:05 [▶ 202]</u>(通道 2)

测量值的交付状态以二进制格式(有符号整数)输出。

索引 <u>0x4061:04</u> [▶ <u>201</u>]、<u>0x4061:05</u> [▶ <u>201</u>](通道 1)和索引 <u>0x40A1:04</u> [▶ <u>202</u>]、<u>0x40A1:05</u> [▶ <u>202</u>](通道 2)可更改输出值的表示方法(有符号整数、带符号幅度格式或绝对值)

输出信号	直		
EL4102	十进制	十六进制	
0 V	0	0x0000	
5 V	16383	0x3FFF	
10 V	32767	0x7FFF	

输出信号	值	
EL4112	十进制	十六进制
0 mA	0	0x0000
10 mA	16383	0x3FFF
20 mA	32767	0x7FFF

输出信号	值	
EL4112-0010	十进制	十六进制
-10 mA	-32768	0x8000
-5 mA	-16383	0xC001
0 mA	0	0x0000
5 mA	16383	0x3FFF
10 mA	32767	0x7FFF

输出信号	值	值		
EL4122	十进制	十六进制		
4 mA	0	0x0000		
12 mA	16383	0x3FFF		
20 mA	32767	0x7FFF		

输出信号	直		
EL4132	十进制	十六进制	
-10 V	-32768	0x8000	
-5 V	-16383	0xC001	
0 V	0	0x0000	
5 V	16383	0x3FFF	
10 V	32767	0x7FFF	

制造商代码

代码字

供应商保留对端子模块进行基本校准的权利。因此,制造商代码目前被保留。

6.2.1.2 同步管理器 (SM)

PDO Assignment(PDO 分配)

SM2, PDO 分配 0x1C12							
	被排除 PDO 的 Index	大小(byte.bit)	名称	PDO 内容			
制)							
1600(默认)	-	2.0	通道 1	索引 <u>0x3001:01 [▶ 208]</u> - 输出通道 1			
1601 (默认)	-	2.0	通道 2	索引 0x3002:01 [▶ 208] - 输出通道 2			

SyncManager 的 PDO 分配

6.2.2 对象描述和参数设置 - 常规功能

● EtherCAT XML 设备描述

该显示与 EtherCAT XML 设备描述中的 CoE 对象相匹配。建议从<u>倍福网站</u>的下载区(http:// www.beckhoff.de/german/default.htm?download/elconfg.htm)下载最新 XML 文件,并按照安 装说明进行安装。

● 参数设置

端子模块通过 <u>CoE - Online 选项卡 [▶ 128]</u>(双击相应的对象)或通过 <u>Process Data 选项卡 [▶ 128]</u> (分配 PDO)进行参数化。

6.2.2.1 简介

CoE 概述包含针对不同应用的对象:

- · 调试过程中配置所需的对象 [▶ 163]
- · 用于正常运行的对象 [▶ 204],例如通过 ADS 访问
- 用于指示内部设置的对象 [▶ 166] (很可能是固定的)

下面将首先介绍正常运行所需的参数设置和对象。在表格的下部可以找到在正常应用情况下不需要的所有其他对象。

200 版本: 5.0.0 EL41xx

6.2.2.2 参数设置的对象

索引 1011:恢复默认参数

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1011:0	恢复默认参数 [▶ 227]	恢复默认参数	UINT8	RO	0x01 (1 _{dec})
1011:01	子索引 001	如果此对象在设置值对话框中被设置为 " 0x64616F6C" ,所有备份对象都被重置为它们的出 厂状态。	UINT32		0x0000000 (0 _{dec})

通道1

索引 4061 特征位 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4061:0	Feature bits 1	该对象的长度	UINT8	RO	0x05 (5 _{dec})
4061:01	Disable Watchdog timer to set output [▶ 196]	TRUE 看门狗定时器已停用。在通信故障的情况下,模拟输出 值不会被设置为制造商或用户的默认值。 FALSE 看门狗处于活动状态。在通信故障的情况下,模拟输出 值将被设置为制造商或用户的默认值。	BOOLEAN	RW	0x00 (0 _{dec})
4061:02	Enable user default output [▶ 196]	TRUE 如果看门狗定时器触发,将输出用户特定的输出值 [▶ 196](对象 0x4063 [▶ 202])。 FALSE 如果看门狗定时器触发,将输出制造商的值: EL4102、EL 4112-0010、EL4132: 0 V,EL4112: 0 mA,EL4122: 4 mA	BOOLEAN	RW	0x00 (0 _{dec})
4061:03	启用用户标度 [▶ 196]	TRUE 用户标度(对象 0x4062 [▶ 202])处于活动状态;然后 按照 <u>计算示例 [▶ 196]</u> 中的说明计算输出值。 FALSE 用户标度已停用。	BOOLEAN	RW	0x00 (0 _{dec})
4061:04	Enable absolute value with MSB as sign [▶ 197]	TRUE 输出值以带符号幅度格式输出(在 EL4132、 EL4112-0010 上): 0x7FFF = +10 V 或 +10 mA 0xFFFF = -10 V 或 -10 mA FALSE 输出值以二进制格式的有符号整数输出(EL4132、 EL4112-0010): 0x7FFF = +10 V 或 +10 mA 0x8000 = -10 V 或 -10 mA	BOOLEAN	RW	0x00 (0 _{dec})
4061:05	Enable absolute value [▶ 197]	TRUE 在负值范围内,输出值为绝对值(EL4132、 EL4112-0010): 0x7FFF = 10 V 或 10 mA 0x8000 = 10 V 或 10 mA FALSE 输出值按照对象 <u>0x4061:04 [▶ 201]</u> 中的定义输出。	BOOLEAN	RW	0x00 (0 _{dec})

索引 4062 用户标度 1

索引(十六 进制)	名称	含义		数据类型	标志	默认值
4062:0	用户标度1	该对象的长度		UINT8	RO	0x02 (2 _{dec})
4062:01	<u>Offset(偏移) [▶ 196]</u>	这些对象包含用户标	偏移微调,用户标度通道1	INT16	RW	0x0000 (0 _{dec})
4062:02	<u>Gain [▶ 196]</u>	然后按照 <u>计算示例</u>	增益微调,用户标度通道 1 增益以定点格式表示,系数为 2 ⁻¹⁶ 。 因此,增益系数取值为 1 时, 对应的是 65536 _{dec} (0x00010000)。	INT32	RW	0x00007FF (_{32767dec})

索引 4063 默认输出 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4063:0		定义 <u>用户指定输出值 [▶ 196]</u> ,用于周期性通信的看门狗 定时器触发时显示到输出端。	INT16	RW	0x0000 (0 _{dec})

通道 2

索引 40A1 特征位 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
40A1:0	Feature bits 2		UINT8	RO	0x05 (5 _{dec})
40A1:01	Disable Watchdog timer to set output [▶ 196]	TRUE 看门狗定时器已停用。在通信故障的情况下,模拟输出 值不会被设置为制造商或用户的默认值。 FALSE 看门狗处于活动状态。在通信故障的情况下,模拟输出	BOOLEAN	RW	0x00 (0 _{dec})
		值将被设置为制造商或用户的默认值。			
40A1:02	Enable user default output [▶ 196]	TRUE 如果看门狗定时器触发,将输出 <u>用户特定的输出值</u> [▶ 196](对象 0x40A3 [▶ 203])。 FALSE 如果看门狗定时器触发,将输出制造商的值: EL4102、EL 4112-0010、EL4132:0 V,EL4112: 0 mA,EL4122:4 mA	BOOLEAN	RW	0x00 (0 _{dec})
40A1:03	启用用户标度 [▶ 196]	TRUE 用户标度(对象 0x40A2 [▶ 203])处于活动状态;然后 按照计算示例 [▶ 196]中的说明计算输出值。 FALSE 用户标度已停用。	BOOLEAN	RW	0x00 (0 _{dec})
40A1:04	Enable absolute value with MSB as sign [▶ 197]	TRUE 输出值以带符号幅度格式输出(在 EL4132、 EL4112-0010 上): 0X7FFF = +10 V 或 +10 mA 0XFFFF = -10 V 或 -10 mA FALSE 输出值以二进制格式的有符号整数输出(EL4132、 EL4112-0010): 0X7FFF = +10 V 或 +10 mA 0X8001 = -10 V 或 -10 mA	BOOLEAN	RW	0x00 (0 _{dec})
40A1:05	Enable absolute value [▶ 197]	TRUE 在负值范围内,输出值为绝对值(EL4132、 EL4112-0010): 0x7FFF = 10 V 或 10 mA 0x8001 = 10 V 或 10 mA FALSE 输出值按照对象 0x40A1:04 [▶ 202] 中的定义输出。	BOOLEAN	RW	0x00 (0 _{dec})

索引 40A2 用户标度 2

索引(十六 进制)	名称	含义		数据类型	标志	默认值
40A2:0	用户标度2	该对象的长度		UINT8	RO	0x02 (2 _{dec})
40A2:01	Offset(偏移) [▶ 196]		偏移微调,用户标度通道2	INT16	RW	0x0000 (0 _{dec})
40A2:02	Gain [▶ 196]	通过 0x40A1:03 [▶ 202] 激活标度。 然后按照 <u>计算示例</u> [▶ 196]中的说明计算输出 值。	增益微调,用户标度通道 2 增益以定点格式表示,系数 为 2 ^{·16} 。 因此,增益系数取值为 1 时,对应的是 65536 _{dec} (0x00010000)。	INT32	RW	0x0000000 (0 _{dec})

索引 40A3 默认输出 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
40A3:0		定义 <u>用户指定输出值 [▶ 196]</u> ,用于周期性通信的看门狗 定时器触发时显示到输出端。	INT16	RW	0x0000 (0 _{dec})

6.2.2.3 正常运行的对象

具有常规功能的 EL41x2 端子模块没有此类对象。

6.2.2.4 内部设置的对象(完整概览)

6.2.2.4.1 标准对象 (0x1000-0x1FFF)

索引 1000 设备类型

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1000:0		EtherCAT 从站的设备类型:Lo-Word 包含使用的 CoE设备描述规约(5001)。根据模块化设备配置文件,Hi-Word 包含模块配置文件。	UINT32		0x01901389 (26219401 _{dec})

索引 1008 设备名称

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1008:0	设备名称	EtherCAT 从站的设备名称	STRING	RO	EL41x2-0000

索引 1009 硬件版本

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1009:0	硬件版本	EtherCAT 从站的硬件版本	STRING	RO	07

索引 100A 软件版本

索引(十六 进制)	名称	含义	数据类型	标志	默认值
100A:0	软件版本	EtherCAT 从站的固件版本	STRING	RO	05

索引 1018 标识

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1018:0	标识	识别从站的信息	UINT8	RO	0x04 (4 _{dec})
1018:01	供应商 ID	EtherCAT 从站的供应商 ID	UINT32	RO	0x00000002 (2 _{dec})
1018:02	产品代码	EtherCAT 从站的产品代码	UINT32	RO	0x10243052 (270807122 _{dec})
1018:03	修订版本	EtherCAT 从站的修订版本号;低位字(位 0-15)表示 特殊端子模块编号,高位字(位 16-31)表示设备描述	UINT32	RO	0x03F80000 (66584576 _{dec})
1018:04	序列号	EtherCAT 从站的序列号;低位字的低字节(位 0-7)包含生产年份,低位字的高字节(位 8-15)包含生产周数,高位字(位 16-31)为 0	UINT32	RO	0x0000000 (0 _{dec})

Index 10F0 Backup parameter handling

索引(十六 进制)	名称	含义	数据类型	标志	默认值
10F0:0	Backup parameter handling	装载默认配置和保存备份条目的信息	UINT8	RO	0x01 (1 _{dec})
10F0:01	Checksum	对 EtherCAT 从站的所有备份条目进行校验和	UINT32		0x0000000 (0 _{dec})

索引 1400 RxPDO 01 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1400:0	RxPDO 01 映射	PDO 参数 RxPDO 1	UINT8	RO	0x06 (6 _{dec})
1400:06	Exclude RxPDOs	指定不得与 RxPDO 1 一起传输的 RxPDO (RxPDO 映射对象的索引)	OCTET- STRING[8]	RO	02 16 03 16 10 16 00 00

索引 1401 RxPDO 02 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1401:0	RxPDO 02 映射	PDO 参数 RxPDO 2	UINT8	RO	0x06 (6 _{dec})
1401:06	Exclude RxPDOs	指定不得与 RxPDO 2 一起传输的 RxPDO (RxPDO 映射对象的索引)	OCTET- STRING[8]	RO	02 16 03 16 10 16 00 00

索引 1402 AO RxPDO-Par 通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1402:0	AO RxPDO-Par Ch.1	PDO 参数 RxPDO 3	UINT8	RO	0x06 (6 _{dec})
1402:06	Exclude RxPDOs	指定不得与 RxPDO 3 一起传输的 RxPDO (RxPDO 映射对象的索引)	OCTET- STRING[8]	RO	00 16 01 16 10 16 00 00

索引 1403 AO RxPDO-Par 通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1403:0	AO RxPDO-Par Ch.2	PDO 参数 RxPDO 4	UINT8	RO	0x06 (6 _{dec})
1403:06	Exclude RxPDOs	指定不得与 RxPDO 4 一起传输的 RxPDO (RxPDO 映射对象的索引)	OCTET- STRING[8]	RO	00 16 01 16 10 16 00 00

索引 1410 RxPDO 017 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1410:0	RxPDO 017 映射	PDO 参数 RxPDO 17	UINT8	RO	0x06 (6 _{dec})
1410:06	Exclude RxPDOs	指定不得与 RxPDO 17 一起传输的 RxPDO (RxPDO 映射 对象的索引)	OCTET- STRING[8]	RO	00 16 01 16 02 16 03 16

索引 1600 RxPDO 01 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1600:0	RxPDO 01 映射	PDO 映射 RxPDO 1	UINT8	RO	0x01 (1 _{dec})
1600:01		1. PDO 映射条目(对象 0x3001(Channel 1),条目 0x01(Output))	UINT32	RO	0x3001:01, 16

索引 1601 RxPDO 02 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1601:0	RxPDO 02 映射	PDO 映射 RxPDO 2	UINT8	RO	0x01 (1 _{dec})
1601:01	子索引 001	1. PDO 映射条目(对象 0x3002(Channel 2),条目 0x01(Output))	UINT32	RO	0x3002:01, 16

索引 1602 AO RxPDO-Map 通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1602:0	AO RxPDO-Map Ch.1	PDO 映射 RxPDO 3	UINT8	RO	0x01 (1 _{dec})
1602:01		1. PDO 映射条目(对象 0x7010(AO outputs Ch.1), 条目 0x01(Analog output))	UINT32	RO	0x7010:01, 16

索引 1603 AO RxPDO-Map 通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1603:0	AO RxPDO-Map Ch.2	PDO 映射 RxPDO 4	UINT8	RO	0x01 (1 _{dec})
1603:01	子索引 001	1. PDO 映射条目(对象 0x7020(AO outputs Ch.2), 条目 0x01(Analog output))	UINT32	RO	0x7020:01, 16

206 版本: 5.0.0 EL41xx

索引 1610 RxPDO 017 映射

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1610:0	RxPDO 017 映射	PDO 映射 RxPDO 17	UINT8	RO	0x02 (2 _{dec})
1610:01	子索引 001	1. PDO 映射条目(对象 0x6001,条目 0x01)	UINT32	RO	0x6001:01, 16
1610:02	子索引 002	2. PDO 映射条目(对象 0x6001,条目 0x02)	UINT32	RO	0x6001:02, 16

索引 1C00 同步管理器类型

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C00:0	同步管理器类型	使用同步管理器	UINT8	RO	0x04 (4 _{dec})
1C00:01	子索引 001	同步管理器类型通道 1:邮箱写入	UINT8	RO	0x01 (1 _{dec})
1C00:02	子索引 002	同步管理器类型通道 2:邮箱读取	UINT8	RO	0x02 (2 _{dec})
1C00:03	子索引 003	Sync-Manager 类型通道 3:过程数据写入(输出)	UINT8	RO	0x03 (3 _{dec})
1C00:04	子索引 004	Sync-Manager 类型通道 4: 过程数据读取(输入)	UINT8	RO	0x04 (4 _{dec})

索引 1C12 RxPDO 分配

索引(十六 进制)	名称	含义	数据类型	标志	默认值
1C12:0	RxPDO 分配	PDO 分配输出	UINT8	RW	0x02 (2 _{dec})
1C12:01	子索引 001	第1个分配的 RxPDO(包含相关 RxPDO 映射对象的 Index)	UINT16	RW	0x1600 (5632 _{dec})
1C12:02	子索引 002	第2个分配的 RxPDO(包含相关 RxPDO 映射对象的索引)	UINT16	RW	0x1601 (5633 _{dec})

索引 1C13 TxPDO 分配

索引(十六 进制)	名称	含义 	数据类型	标志	默认值
1C13:0	TxPDO 分配	PDO 分配输入	UINT8	RW	0x00 (0 _{dec})

Index 1C32 SM output parameter

索引(十六 : 进制)	名称	含义	数据类型	标志	默认值
1C32:0	SM output parameter	输出的同步参数	UINT8	RO	0x20 (32 _{dec})
1C32:01	同步模式	当前的同步模式:	UINT16	RW	0x0001
		0: Free Run			(1 _{dec})
		・ 1: 与 SM 2 事件同步			
		• 2: DC 模式 - 与 SYNC0 事件同步			
		・ 3: DC 模式 - 与 SYNC1 事件同步			
1C32:02	周期	循环时间(单位:ns):	UINT32	RW	0x00000000
		• Free Run:本地定时器的周期			(0 _{dec})
		・ 与 SM 2 事件同步: 主站周期			
		・ DC 模式: SYNC0/SYNC1 周期时间			
1C32:03	偏移时间	从 SYNC0 事件到输出的时间(单位:ns,仅 DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:04	支持同步模式	支持的同步模式:	UINT16	RO	0xC007
		・ 位 0 = 1:支持 Free Run			(49159 _{dec})
		・ 位1=1: 支持与 SM 2 事件同步			
		・ 位 2-3 = 01: 支持 DC 模式			
		・ 位 4-5 = 10: SYNC1 事件下的输出偏移(仅 DC 模式)			
		・ 位 14 = 1: 动态周期(在写入 <u>0x1C32:08</u> [▶ <u>208</u>] 时 开始测量)			
1C32:05	最小周期	最小周期(单位:ns)	UINT32	RO	0x0000000 (0 _{dec})
1C32:06	计算并复制时间	SYNC0 和 SYNC1 事件之间的最小时间(单位:ns,仅DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:08	命令	• 0: 本地循环时间的测量停止	UINT16	RW	0x0000 (0 _{dec})
		• 1: 本地循环时间的测量开始			
		条目 0x1C32:03 [▶ 208]、0x1C32:05 [▶ 208]、 0x1C32:06 [▶ 208]、0x1C32:09 [▶ 208] 更新为最大测量值。 对于后续测量,测量值被重置			
1C32:09	延迟时间	从 SYNC1 事件到输出的时间(单位:ns,仅 DC 模式)	UINT32	RO	0x0000000 (0 _{dec})
1C32:0B	缺失 SM 事件计数器	OPERATIONAL 期间缺失的 SM 事件数量(仅 DC 模式)	UINT16	RO	0x0000 (0 _{dec})
1C32:0C	周期超限计数器	OPERATIONAL 期间周期超时的次数(周期没有及时完成或下一个周期开始得太早)	UINT16	RO	0x0000 (0 _{dec})
1C32:0D	偏移过短计数器	SYNC0 和 SYNC1 事件之间的间隔次数太小(仅 DC 模式)	UINT16	RO	0x0000 (0 _{dec})
1C32:20	同步错误	在上一周期同步出错(输出太晚;仅 DC 模式)	BOOLEAN	RO	0x00 (0 _{dec})

索引 3001 通道 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
3001:0	通道1	该对象的长度	UINT8	RO	0x01 (1 _{dec})
3001:01	输出	输出过程数据通道 1	INT16	RO	0x0000 (0 _{dec})

索引 3002 通道 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
3002:0	通道 2	该对象的长度	UINT8	RO	0x01 (1 _{dec})
3002:01	输出	输出过程数据通道 2	INT16	RO	0x0000 (0 _{dec})

索引 4040 制造商代码 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4040:0	制造商代码1	预留	UINT16	RW	0x0000 (0 _{dec})

索引 4041 DAC 原始值 1

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4041:0	DAC 原始值 1	该对象的长度	UINT8	RO	0x01 (1 _{dec})
4041:01	子索引1	这是电路的 DAC 原始值。通过计算校准得到的增益和偏移,将其转换为输出值。	UINT16	RO	0x0000 (0 _{dec})

索引 4042 校准数据 1

● 标定

供应商保留对端子模块进行基本校准的权利。因此,供应商校准目前被保留。

索引(十六 进制)	名称	含义		数据类型	标志	默认值
4042:0	校准数据1	该对象的长度		UINT8	RO	0x02 (2 _{dec})
4042:01	Offset(偏移)		偏移微调通道1	INT16	RW	0x0000 (0 _{dec})
4042:02	Gain	以确定输出值。只有设置了制造商 代码(对象 0x4040 [▶ 209]),才 能更改这些值。	增益微调通道 1	UINT16	RW	0xF0CC (61644 _{dec})

索引 4080 制造商代码 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4080:0	制造商代码 2	预留	UINT16	RW	0x0000 (0 _{dec})

索引 4081 DAC 原始值 2

索引(十六 进制)	名称	含义	数据类型	标志	默认值
4081:0	DAC 原始值 2	该对象的长度	UINT8	RO	0x01 (1 _{dec})
4081:01		这是电路的 DAC 原始值。通过计算校准得到的增益和偏移,将其转换为输出值。	UINT16	RO	0x0000 (0 _{dec})

索引 4082 校准数据 2

Ĭ

标定

供应商保留对端子模块进行基本校准的权利。因此,供应商校准目前被保留。

索引(十六 进制)	名称	含义		数据类型	标志	默认值
4082:0	校准数据 2	该对象的长度		UINT8	RO	0x02 (2 _{dec})
4082:01	Offset(偏移)		偏移微调通道2	INT16	RW	0x0000 (0 _{dec})
4082:02	Gain	确定输出值。只有设置了制造商代码 (对象 <u>0x4080</u> [▶ <u>209]</u>) ,才能更改 这些值。	增益微调通道 2	UINT16	RW	0xF0CC (61644 _{dec})

6.2.2.4.2 配置文件特定对象(0x6000-0xFFFF)

对于所有支持 5001 设备描述规约的 EtherCAT 从站,描述文件定义的对象具有相同的含义。

索引 6411 输出

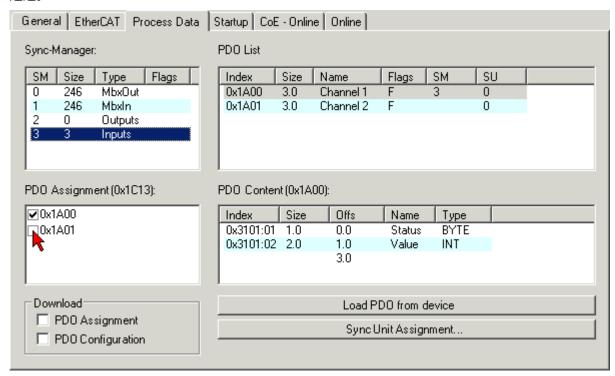
索引(十六 进制)	名称	含义	数据类型	标志	默认值
6411:0	输出	该对象的长度	UINT8	RO	0x02 (2 _{dec})
6411:01	子索引 001	输出过程数据通道 1	INT16	RO	0x0000 (0 _{dec})
6411:02	子索引 002	输出过程数据通道 2	INT16	RO	0x0000 (0 _{dec})

6.2.3 快速模式

倍福 EtherCAT 端子模块的快速模式开发历史悠久,EL 端子模块(主要是 EL31xx 和 EL41xx 系列(模拟量输入/输出端子模块))使用这种操作模式可以大幅缩短转换时间。因此,可以更快/更频繁地转换模拟量输入值,或通过控制器相应地进行输出。但这要以牺牲其他功能为代价,因此需要慎重考虑。

如果 EL 端子模块支持这种模式,相关文件中会有说明。

有两组端子模块支持快速模式:

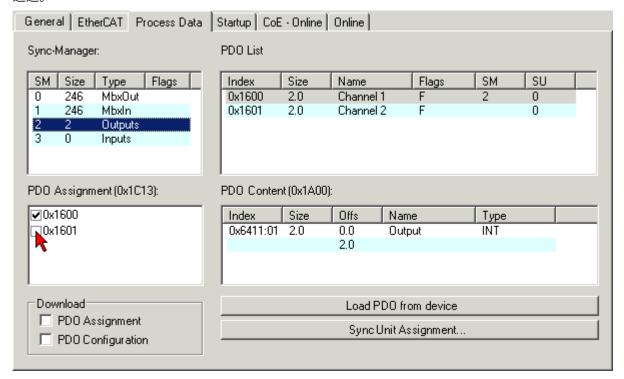

- EL31x2 和 EL41x2 原型,2009 年以前推出: 您可以通过**关闭第二通道**,将双通道模拟量输入和输出端子模块切换到*快速模式*。使用单通道端子模块 (*快速模式*)时,其转换时间比使用双通道时少约三分之一。有关单通道和双通道操作转换时间的具体 数字,请参见各端子模块的技术数据。
- 2009 年生产的 EL31xx 和 EL41xx**可在这些端子模块中 停用 CoE 访问**(如果根据文档可以这样做)。因此,所有当前通道都可以转换得更快。 在 EL31x2 端子模块中,快速模式自动启用,但进行 CoE 访问时禁用。

下面是每个组的示例。

通过停用通道实现快速模式

示例1

可以在 EL3101 *Process data* 选项卡的 *PDO assignment* 下通过复选框(见红色箭头)打开和关闭第二个输入通道。



附图 164: 打开和关闭输入通道

示例 2

可以在 EL4101 *Process data* 选项卡的 *PDO assignment* 下通过复选框(见红色箭头)打开和关闭第二个输出通道。

附图 165: 打开和关闭输出通道

通过停用 CoE 实现快速模式

如要禁用输入端子模块的 CoE 支持,必须将以下内容

输入端子模块 System Manager 的 StartUp List 中。稍后,这将在 SAFEOP 和 OP 中停用 CoE。

快速模式由 "Sync mode"对象中的 "0x80nn"条目激活, "nn"指定同步模式。

● 为输入端子模块停用滤波

如果启用了快速模式,则必须禁用滤波模式(0x80n0:06)!

● 为输出端子模块停用 CoE

对于输出端子模块,必须执行对象 0x1C32:01 的上部条目。

更笼统地说,通过FastMode会关闭该端子模块的邮箱通讯。

可以通过在 CoE 0x1C32:01 或 0x1C33:01 之后的 PREOP 阶段写入原始值或 x00 来重新激活 CoE 访问。请参见同步模式概述中的相关条目。

6.3 固件兼容性

倍福 EtherCAT 设备在交付时都装有最新的固件版本。固件和硬件必须相互兼容;但不是每种组合都能确保兼容性。下面的概述显示了可以运行固件的硬件版本。

注意

- 建议为相应的硬件使用可用的最新固件
- 对于已交付的产品,倍福没有任何义务为客户提供免费固件更新。

注意

设备损坏风险!

请注意单独页面 [▶216]上的固件更新说明。

如果在固件更新时设备处于 BOOTSTRAP 模式,则在下载新固件时不会检查新固件的适用性。

这可能导致设备损坏!因此,请务必确保固件适用于硬件版本!

EL4102	EL4102				
硬件(HW)	固件	修订版本号	发布日期		
06 - 09	06	EL4102-0000-1018	2009/03		
09 - 22	07		2010/03		
	08		2010/11		
		EL4102-0000-1019	2012/10		
		EL4102-0000-1020	2017/03		
	09		2019/03		
18 – 23*	09*	EL4102-0000-1021	2023/10		

EL4104	EL4104				
硬件(HW)	固件	修订版本号	发布日期		
00 - 13*	01	EL4104-0000-1016	2009/08		
	02	EL4104-0000-1017	2010/01		
		EL4104-0000-1018	2012/07		
		EL4104-0000-1019	2016/09		
		EL4104-0000-1020	2017/03		
	03*		2019/03		

EL4112	EL4112				
硬件(HW)	固件	修订版本号	发布日期		
04	04	EL4112-0000-1016	2008/11		
		EL4112-0000-1017	2009/02		
04 - 06	05	EL4112-0000-1018	2009/03		
06 - 16	07		2010/03		
	08		2010/11		
		EL4112-0000-1019	2012/10		
		EL4112-0000-1020	2017/03		
	09		2019/03		
12 - 16*	09*	EL4112-0000-1021	2023/10		

EL4112-0010	EL4112-0010				
硬件 (HW)	固件	修订版本号	发布日期		
01 - 03	02	EL4112-0010-1016	2008/11		
		EL4112-0010-1017	2009/02		
	06	EL4112-0010-1018	2009/03		
03 - 13	07		2010/03		
	08		2010/11		
		EL4112-0010-1019	2012/10		
		EL4112-0010-1020	2017/03		
	09		2019/03		
09 – 13*	09*	EL4112-0010-1021	2023/10		

EL4114	EL4114				
硬件 (HW)	固件	修订版本号	发布日期		
00 - 10	01	EL4114-0000-1016	2009/06		
	02	EL4114-0000-1017	2010/01		
		EL4114-0000-1018	2012/08		
		EL4114-0000-1019	2016/09		
		EL4114-0000-1020	2017/03		
	03		2019/03		
08 – 10*	03*	EL4114-0000-1021	2023/10		

EL4114-0020			
硬件 (HW)	固件	修订版本号	发布日期
06 - 10	02	EL4114-0020-1018	2013/12
		EL4114-0020-1019	2016/09
	03	EL4114-0020-1020	2019/03
08 – 10*	03*	EL4114-0020-1021	2023/10

EL4122			
硬件 (HW)	固件	修订版本号	发布日期
04	04	EL4122-0000-1016	2008/04
		EL4122-0000-1017	2009/02
04 - 06	05	EL4122-0000-1018	2009/03
06 - 15*	07		2010/03
	08		2010/11
		EL4122-0000-1019	2012/10
		EL4122-0000-1020	2017/03
	09		2019/03
12 - 17*	09*	EL4122-0000-1021	2023/10

EL4124			
硬件 (HW)	固件	修订版本号	发布日期
00 - 10	01	EL4124-0000-1016	2009/08
	02	EL4124-0000-1017	2010/01
		EL4124-0000-1018	2012/08
		EL4124-0000-1020	2017/03
	03		2019/03
08 – 10*	03*	EL4124-0000-1021	2023/10

EL4132			
硬件(HW)	固件	修订版本号	发布日期
07	06	EL4132-0000-1016	2008/10
		EL4132-0000-1017	2009/02
08 - 09	07	EL4132-0000-1018	2009/03
10 - 20	08		2010/11
		EL4132-0000-1019	2012/10
		EL4132-0000-1020	2017/03
	09		2018/05
18 – 23*	09*	EL4132-0000-1021	2023/10

EL4134			
硬件(HW)	固件	修订版本号	发布日期
00 - 13	01	EL4134-0000-1016	2009/06
	02	EL4134-0000-1017	2010/01
		EL4134-0000-1018	2012/07
		EL4134-0000-1019	2016/09
		EL4134-0000-1020	2017/03
	03		2019/03
09 - 13*	03*	EL4134-0000-1021	2023/10

EL4134-0020			
硬件 (HW)	固件	修订版本号	发布日期
07 – 13	02	EL4134-0020-1018	2013/12
		EL4134-0020-1019	2014/12
	03	EL4134-0020-1020	2019/03
09 - 13*	03*	EL4134-0020-1021	2023/10

EL4134-0030			
硬件 (HW)	固件	修订版本号	发布日期
01 - 13	03	EL4134-0030-1020	2020/06
10 - 13*	03*	EL4134-0030-1021	2023/10

^{*)}这是在编写本文件的时兼容的固件/硬件版本。请在倍福网页上查看是否有更多最新<u>文档</u>。

6.4 固件更新 EL/ES/EM/ELM/EPxxxx

本节介绍了倍福 EL/ES、ELM、EM、EK 和 EP 系列 EtherCAT 从站设备的更新情况。只有在与倍福支持部门协商后才能进行固件更新。

注意

仅使用 TwinCAT 3 软件!

必须在安装了 TwinCAT 3 之后才能进行倍福 IO 设备的固件更新。建议尽可能使用最新的固件,可在倍福公司网站上免费下载 https://www.beckhoff.com/en-us/。

为了更新固件,TwinCAT 可以在 FreeRun 模式下运行,不需要付费许可。

待更新的设备通常可以保留在安装位置,但 TwinCAT 必须在 FreeRun 模式下运行。请确保 EtherCAT 通讯良好(没有丢失帧等)。

不应使用其他 EtherCAT 主站软件,例如 EtherCAT Configurator,因为它们可能不支持复杂的更新固件、EEPROM 和其他设备组件。

储存地点

- 一个 EtherCAT 从站最多可以在三个位置上存储运行数据:
 - 每个 EtherCAT 从站都有一个设备描述文件,包括标识(名称、产品代码)、时序定义、通信设置等。 该设备描述文件(ESI: EtherCAT Slave Information)可以从 Beckhoff 网站下载区的<u>zip 文件</u>中下载, 并在 EtherCAT 主站中用于离线组态,例如在 TwinCAT 中。 最重要的是,每个 EtherCAT 从站都将其可供电子读取的设备描述文件(ESI)存放在其本地存储芯片,

即 **ESI EEPROM** 中。从站上电以后,该描述文件将加载到从站本地,并告知其通信配置;另一方面, EtherCAT 主站可以通过这种方式识别从站,并相应地设置 EtherCAT 通信。

注意

用项目定义的 ESI-EEPROM 写入

ESI 文件是设备制造商根据 ETG 标准为相应产品开发和发布的。

- ESI 文件的含义: 禁止从使用侧(比如用户)进行修改。
- ESI EEPROM 的含义:即使技术上允许写入,EEPROM 中的 ESI 部分和可能存在的空闲存储区域也不得在正常更新过程之外进行更改。特别是对于周期性的内存写入(运行时间计数器等),必须使用专门的存储器产品,例如EL6080 或 IPC 自己的 NOVRAM(掉电保持存储器选件)。
 - 根据功能和性能的不同,EtherCAT 从站有一个或几个本地处理器来处理 I/O 数据。相应的程序就称作 Firmware **固件**,文件格式为 *.efw 。
 - 在一些 EtherCAT 从站中,EtherCAT 通讯也可能集成在这些本地处理器中。此时,本地处理器通常是一个 **FPGA** 芯片,带有 *.rbf 固件。

客户可以通过 EtherCAT 现场总线及其通讯机制来访问 Firmware(固件)。Firmware 的更新或读取是通过非周期性邮箱通信(mailbox)或对 ESC 的寄存器访问实现的。

如果要更新从站的固件,TwinCAT System Manager 提供使用新固件刷新上述三处运行数据的机制。从站通 常不会检查新的固件是否合适,也就是说,如果下载了错误的固件,从站可能就无法再运行。

通过 bundle firmware (捆绑固件) 简化更新

使用所谓的 **bundle firmware(捆绑固件)**进行更新更为方便:此时从站处理器的固件和 ESI 描述组合在一个 *.efw 文件中;固件更新期间,在端子模块中的 Firmware 和 ESI 都会改变。要实现这种功能,要求以下几点:

- 固件为打包格式:可通过文件名识别,其中还包含修订版本号,例如 ELxxxx-xxxx_REV0016_SW01.efw
- 在下载对话框中输入密码=1 时,使用捆绑固件更新。如果密码=0(默认设置),则只进行固件更新,不进行 ESI 更新。
- 只用于支持此功能的设备。打包文件的内容通常不能再修改;这个功能是自 2016 年以来诸多新开发功能的一部分。

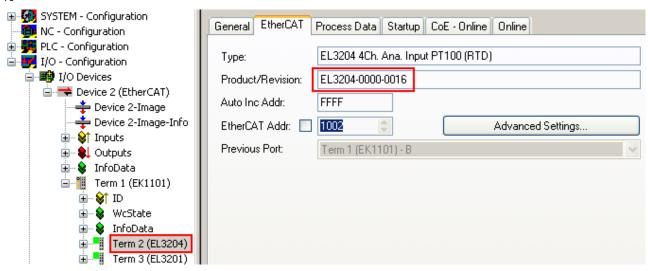
更新之后,应确认是否成功

- ESI/Revision:例如,通过 TwinCAT ConfigMode/FreeRun 中的在线扫描,这是确定固件修订版本的简便方法
- Firmware: 例如,通过查看设备的 CoE Online 数据

注意

设备损坏风险!

- ✓ 下载新设备文件时注意以下几点
- a) EtherCAT 设备的固件下载不能中断
- b) 必须确保通畅的 EtherCAT 通讯。必须避免 CRC 错误或丢帧。
- c) 供电必须稳定。信号电平必须符合规范。
- ⇒ 如果在更新过程中出现故障,EtherCAT 设备可能无法使用,只能返回制造商重新调试。


6.4.1 设备描述 ESI 文件/XML

注意

关于更新 ESI 描述文件/EEPROM 的注意事项

一些从站在 EEPROM 中存储了用于生产的校准和配置数据。在更新过程中,这些信息会被覆盖,无法恢复。

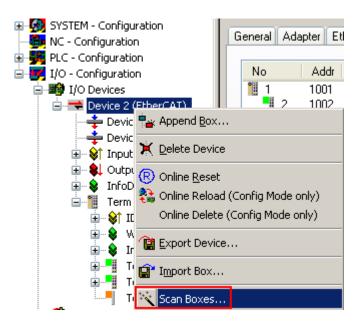
ESI 设备描述存储在从站上,并在启动时加载。每个设备描述都有一个唯一标识符,包括从站名称 (9 个字符/9 位数) 和修订版本号 (4 位数)。在 System Manager 中配置的每个从站都在 EtherCAT 选项卡中显示其标识符:

附图 166: 由名称 EL3204-0000 和修订版本号 0016 组成的设备标识符

配置的标识符必须与作为硬件使用的实际设备描述兼容,即从站在启动时加载的描述(本例中为 EL3204)。 通常情况下,配置的版本必须与端子模块网络中实际存在的版本相同或更低。

有关这方面的进一步信息,请参考 EtherCAT 系统文件。

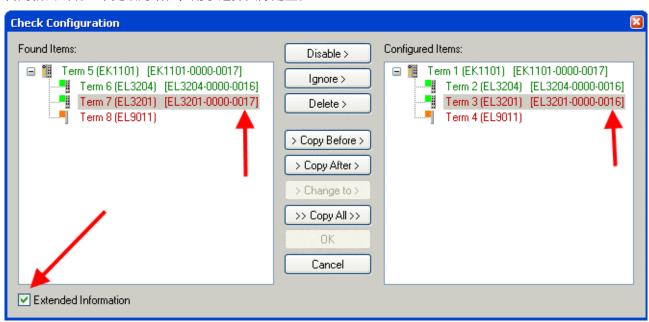
XML/ESI 描述的更新



设备的修订版本与所使用的 Firmware(固件)和 Hardware(硬件)密切相关。不兼容的组合会导 致故障,甚至使设备最终关闭。只有在与倍福支持(售后)部门协商后才能进行相应的更新。

ESI 从站标识符的显示

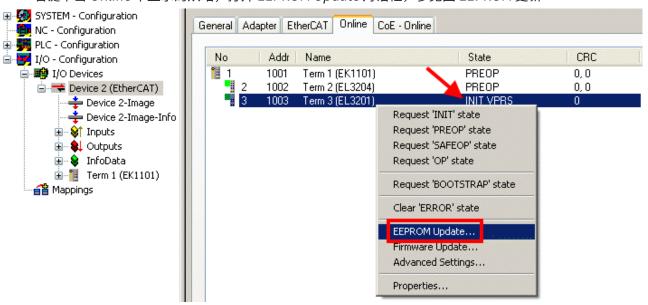
确定所配置的设备描述和实际设备是否相符的最简单方法是在 TwinCAT Config Mode/FreeRun 模式下扫描 EtherCAT 从站:


附图 167: 右键单击 EtherCAT Device 扫描下级从站

如果找到的内容与配置的内容相符,则显示

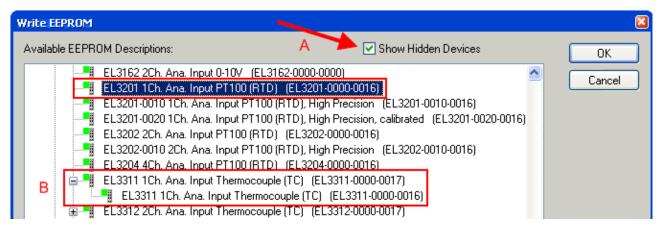
附图 168: 配置是相同的

否则就会出现一个更改对话框,用于选择实际配置。


附图 169: 更改对话框

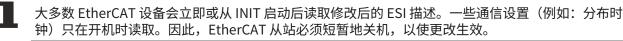
在图*更改对话框*的示例中,发现了一个 EL3201-0000-**0017**,而原配置中是 EL3201-0000-**0016**。此时可以通过 *Copy Before*按钮来调整配置。必须选中 *Extended Information*复选框,以显示修订版本。

更改 ESI 从站标识符


ESI/EEPROM 标识符可以在 TwinCAT 下按如下方式更新:

- · 必须与从站建立正确无误的 EtherCAT 通讯。
- · 从站的状态无关紧要。
- ・ 右键单击 Online 中显示的从站,打开 EEPROM Update 对话框,参见图 EEPROM 更新

附图 170: EEPROM 更新


在以下对话框中选择新的 ESI 描述,参见图*选择新的 ESI*。通过复选框*Show Hidden Devices*还能显示旧的、通常隐藏的从站版本。

附图 171: 选择新的 ESI

System Manager 弹出一个进度条,显示 EEPROM 写入的进度。首先写入数据,然后进行验证。

● 只有在设备重新启动后,以上更改才会生效。

6.4.2 Firmware (固件) 说明

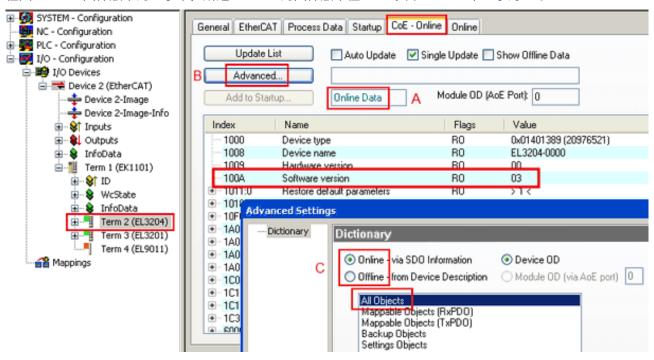
确定固件版本

通过 TwinCAT System Manager 确定版本

如果主站可以在线访问从站,TwinCAT System Manager 会显示从站处理器的固件版本。点击需要检查其处理器固件的 E-Bus 端子模块(在此例中为端子模块 2(EL3204)),并选择选项卡 *CoE Online*(CAN over EtherCAT)。

● CoE Online 和 Offline CoE(在线 CoE 和离线 CoE)

1


可用的 CoE 目录有两套:

online:如果 EtherCAT 从站支持,从站处理器会提供该功能。该 CoE 目录只有在从站连接并运行时才能显示。

Offline: EtherCAT 从站信息文件 ESI/XML 包含的 CoE 默认内容。只有在 ESI 中包含了 CoE 目录才能显示(例如"倍福 EL5xxx.xml")。

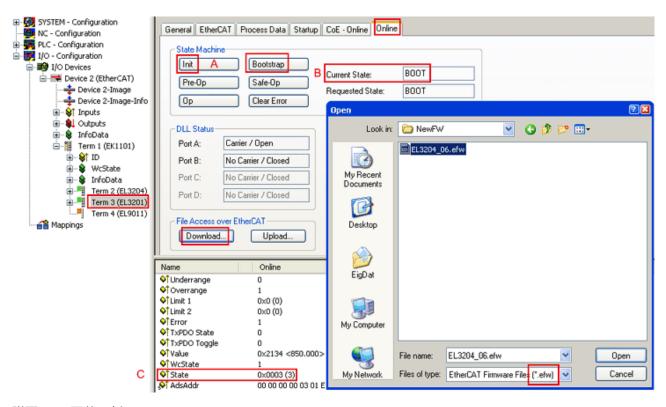
要在两个视图之间切换,必须使用按钮 "Advanced"。

在图 *EL3204 固件版本的显示*中,所选 EL3204 的固件版本在 CoE 条目 0x100A 中显示为 03。

附图 172: EL3204 固件版本的显示

在(A)处,TwinCAT 2.11 表明当前显示的是"Online CoE"目录。如果不是,可以通过 Advanced Settings 中(B)处的 *Online*选项和双击 *All Objects* 来加载 Online 目录。

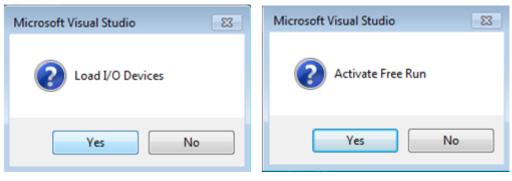
6.4.3 更新从站处理器的固件 *.efw

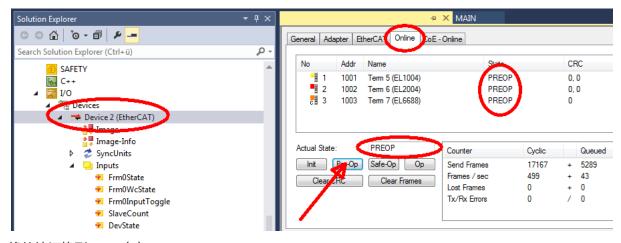


CoE 目录

Online CoE 目录由从站处理器管理,并存储在专用的 EEPROM 中,在固件更新期间一般不会改变。

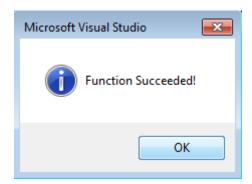
切换到 Online 选项卡,更新从站处理器的固件,参见图 固件更新。




附图 173: 固件更新

除非倍福的支持(售后)部门另有说明,否则请按以下步骤进行。适用于 TwinCAT 2 和 TwinCAT 3 作为 EtherCAT 主站的情况。

• 将 TwinCAT 系统切换到 Config Mode/FreeRun,周期时间 >=1 ms(配置模式下默认为 4 ms)。不建议在实时核运行时(Running 模式)进行固件更新。



· 将 EtherCAT 主站切换到 PreOP

- · 将从站切换到 INIT(A)
- · 将从站切换到 BOOTSTRAP

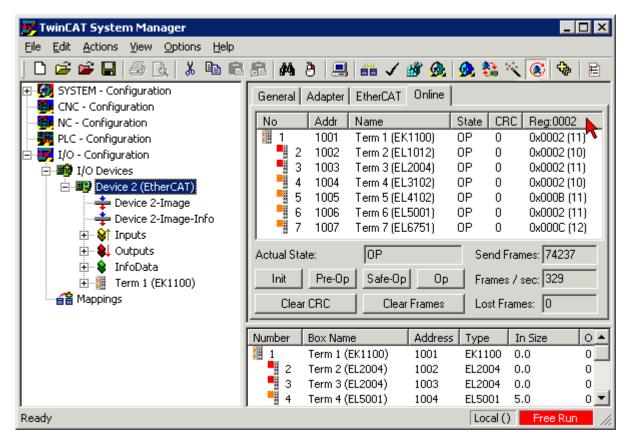
- · 检查当前状态(B、C)
- 下载新的 *efw文件(一直等待,直到下载结束)。通常不需要密码。

- 下载完成后,切换到 INIT,再到 PreOP
- 短时切断从站电源(不要拉低电压!)
- · 在 CoE 0x100A 内检查固件状态(FW版本)是否被正确替换。

6.4.4 FPGA 固件 *.rbf

如果是用 FPGA 芯片处理 EtherCAT 通信,固件更新则通过 *.rbf 文件完成。

- ・ 用于处理 I/O 信号的从站处理器固件
- 用于 EtherCAT 通讯的 FPGA 固件(仅适用于带 FPGA 的端子模块)

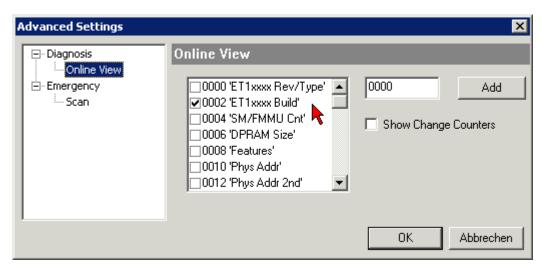

端子模块序列号中包含的固件版本号包含这两个固件成分。如果修改了其中任何一个,固件版本号都会更新。

通过 TwinCAT System Manager 确定版本

TwinCAT System Manager 显示 FPGA 固件版本。点击 EtherCAT 总线的以太网卡(例中的 Device 2),选择 *Online*选项卡。


Reg:0002 栏表示各个 EtherCAT 设备的固件版本,以十六进制和十进制表示。

附图 174: FPGA 固件版本定义


如果没有显示 Reg:0002 列,请右击表头,在右键菜单中选择 Properties。

附图 175: 右键菜单Properties

出现*Advanced Settings*对话框,可以选择要显示的列。在*Diagnosis/***Online View**下,选择 *'0002 ETxxxx Build'* 复选框,以便激活 FPGA 固件版本显示。

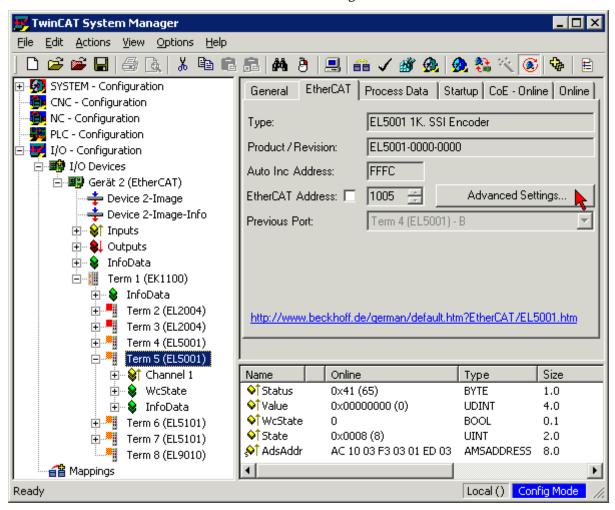
附图 176: 对话框 Advanced Settings

更新

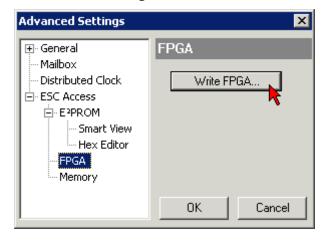
要更新以下 FPGA 固件

- ・ EtherCAT 耦合器的 FPGA 固件: 耦合器必须具有 FPGA 固件版本 11 或更高版本;
- ・ E-Bus 端子模块的 FPGA 固件:端子模块必须有 FPGA 固件版本 10 或更高版本。

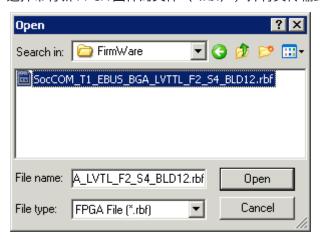
旧的固件版本只能由制造商进行更新!


更新一个 EtherCAT 设备

如果没有给出其他规定(例如来自倍福支持部门),则必须满足以下顺序:


• 将 TwinCAT 系统切换到 Config Mode/FreeRun,周期时间 >=1 ms(配置模式下默认为 4 ms)。不建议在实时核运行时(Running 模式)进行固件更新。

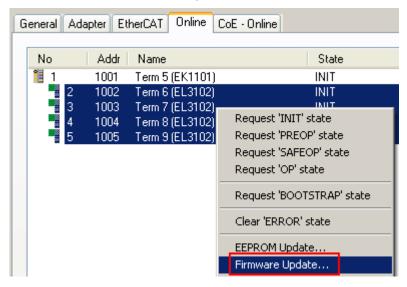
在 TwinCAT System Manager 中,选择需要更新 FPGA 固件的端子模块(例如:端子模块 5: EL5001),并在 *EtherCAT* 选项卡中点击*Advanced Settings*按钮:



• 出现Advanced Settings对话框。在 ESC Access/E²PROM/FPGA 下,点击Write FPGA 按钮:

• 选择带有新 FPGA 固件的文件(*.rbf),并将其传输到 EtherCAT 设备上:

- · 一直等待,直到下载结束
- 短时切断从站电源(不要拉低电压!)。为了激活新的 FPGA 固件,需要重新启动 EtherCAT 设备(断电重启)。
- · 检查新的 FPGA 状态

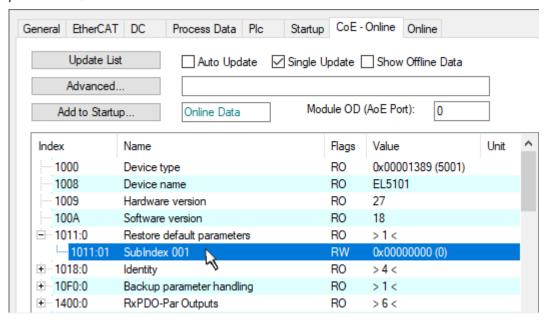

注意

设备损坏风险!

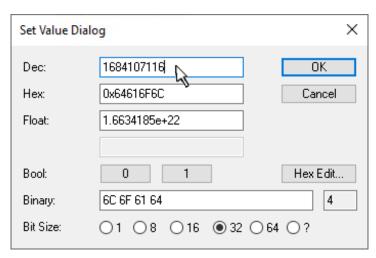
在任何情况下,都不能中断 EtherCAT 设备下载固件的过程! 如果下载固件的过程中发生了断电或者断网, EtherCAT 设备只能返回制造商重新调试!

6.4.5 同时更新多个 EtherCAT 设备

如果几个设备有相同的固件文件/ESI,这些设备的固件和 ESI 描述可以同时更新。



附图 177: 多重选择和固件更新


选择所需的从站,如上所述在 BOOTSTRAP 模式下进行固件更新。

6.5 恢复出厂状态

要恢复 EtherCAT 设备("从站") CoE 对象的交付状态(出厂设置),可通过 EtherCAT 主站(例如 TwinCAT)使用 CoE 对象 Index 1011 *Restore default parameters*(参见图*选择 Restore default parameters*)。

附图 178: 选择 Restore default parameters

附图 179: 在 Set Value dialog 中输入一个恢复值

双击 *SubIndex 001*,进入设置值对话框。将重置值 **1684107116** 输入字段 *Dec* 中,或将数值 **0x64616F6C** 输入字段 *Hex* 中,并按 *OK* 确认(图:*在 Set Value dialog 中输入恢复值*)。

- 从站中所有可写的条目都将重置为默认值。
- 只有直接对从站的 Online CoE 进行重置,才能成功恢复出厂值。在离线 CoE 中不能更改任何值。
- 为此,TwinCAT 必须处于 RUN 或 CONFIG/Freerun 状态,即保持 EtherCAT 数据交换。确保 EtherCAT 传输正确无误。
- · 由于进行了重置,因此不会进行单独确认。如要进行验证,可以事先向某个可写对象写入一个值。
- 该重置过程也可以作为从站 Startup List 的第一个条目,例如在状态转换 PREOP->SAFEOP 中,或者如图 *CoE reset 作为 Startup 条目*所示的 SAFEOP->OP 中。

CoE 中的所有备份对象重置为交付状态。

● 替代的恢复值

在一些较旧的端子模块(FW 创建时间约在 2007 年之前)中,备份对象可以用另一套替代的恢复值进行切换:十进制值:1819238756,十六进制值:0x6C6F6164。

恢复值输入错误不会产生任何影响。

6.6 技术支持和服务

倍福公司及其合作伙伴在世界各地提供全面的技术支持和服务,对与倍福产品和系统解决方案相关的所有问题 提供快速有效的帮助。

倍福分公司和代表处

有关倍福产品本地支持和服务方面的信息,请联系倍福分公司或代表处!

世界各地倍福分公司和代表处的地址可参见以下网页: http://www.beckhoff.com

该网页还提供更多倍福产品组件的文档。

支持

倍福支持部门提供全面的技术援助,不仅帮助使用各种倍福产品,还提供其他广泛的服务:

- 技术支持
- 复杂自动化系统的设计、编程和调试
- 以及倍福系统组件的各种培训课程

热线电话: +49 5246 963 157 电子邮箱: support@beckhoff.com 网址: www.beckhoff.com/support

服务

倍福服务中心提供所有售后服务:

- 现场服务
- 维修服务
- 备件服务
- 热线服务

热线电话: +49 5246 963 460 电子邮箱: service@beckhoff.com 网址: www.beckhoff.com/service

德国总部

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Germany

电话: +49 5246 963 0 电子邮箱: info@beckhoff.com 网址: <u>www.beckhoff.com</u>

Trademark statements Beckhoff[°], ATRO[°], EtherCAT G[°], EtherCAT G10[°], EtherCAT P[°], MX-System[°], Safety over EtherCAT[°], TC/BSD[°], TwinCAT[°], TwinCAT, BSD[°], TwinSAFE[°], XFC[°], XPlanar[°] and XTS[°] are registered and licensed trademarks of Beckhoff Automation GmbH. Third-party trademark statements DeviceNet and EtherNet/IP are trademarks of ODVA, Inc. DSP System Toolbox, Embedded Coder, MATLAB, MATLAB Coder, MATLAB Compiler, MathWorks, Predictive Maintenance Toolbox, Simscape, Simscape™ Multibody™, Simulink, Simulink Coder, Stateflow and ThingSpeak are registered trademarks of The MathWorks, Inc. Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

更多信息: www.beckhoff.com/EL4xxx

