
BECKHOFF New Automation Technology

Dokumentation | DE

EJ3255

EtherCAT-Steckmodul, 5-Kanal-Analog-Eingang, Potentiometer, 300 Ω ...50 $k\Omega$, 16 Bit

Inhaltsverzeichnis

1	Vorw	ort	5
	1.1	Hinweise zur Dokumentation	5
	1.2	Sicherheitshinweise	6
	1.3	Bestimmungsgemäße Verwendung	7
	1.4	Signal Distribution Board	7
	1.5	Ausgabestände der Dokumentation	7
	1.6	Wegweiser durch die Dokumentation	8
	1.7	Kennzeichnung von EtherCAT-Steckmodulen	9
		1.7.1 Beckhoff Identification Code (BIC)	. 11
		1.7.2 Elektronischer Zugriff auf den BIC (eBIC)	. 13
		1.7.3 Zertifikate	. 15
2	Svste	emübersicht	. 16
3	•	55 - Produktbeschreibung	
3	3.1	Einführung	
	3.1	Technische Daten	
	3.3	Kontaktbelegung	
	3.4	LEDs	
4		llation von EJ-Modulen	
	4.1	Spannungsversorgung der EtherCAT-Steckmodule	
	4.2	Hinweis Lastspannungsversorgung	
	4.3	EJxxxx - Abmessungen	
	4.4	Einbaulagen und Mindestabstände	
		4.4.1 Mindestabstände zur Sicherung der Montagefähigkeit	
		4.4.2 Einbaulagen	
	4.5	Kodierungen	
		4.5.1 Farbkodierung	
		4.5.2 Mechanische Kodierung	. 29
	4.6	Montage auf dem Signal Distribution Board	. 30
	4.7	Erweiterungsmöglichkeiten	
		4.7.1 Belegung ungenutzter Slots durch Platzhaltermodule	
		4.7.2 Verknüpfung mit EtherCAT-Klemmen und EtherCAT-Box-Modulen über eine Ethernet/ EtherCAT-Verbindung	
	4.8	IPC Integration	. 33
	4.9	Demontage vom Signal Distribution Board	. 35
	4.10	Entsorgung	. 36
5	Ethe	CAT-Grundlagen	. 37
6	Inbet	riebnahme	. 38
	6.1	Hinweis auf Dokumentation EL3255	
	6.2	EJ3255 - Objektbeschreibung und Parametrierung	
		6.2.1 Restore Objekt	
		6.2.2 Konfigurationsdaten	
		6.2.3 Profilspezifische Objekte (0x6000-0xFFFF)	
		6.2.4 Eingangsdaten	

Version: 1.6.0

	7.1	Support	und Service	50
7	Anha	ng		50
		6.2.7	Standardobjekte (0x1000-0x1FFF)	42
		6.2.6	Informations- und Diagnostikdaten	41
		6.2.5	Konfigurationsdaten Herstellerspezifisch	41

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, ATRO®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar® und XTS® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH.

Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Fremdmarken

In dieser Dokumentation können Marken Dritter verwendet werden. Die zugehörigen Markenvermerke finden Sie unter: https://www.beckhoff.com/trademarks

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.3 Bestimmungsgemäße Verwendung

⚠ WARNUNG

Vorsicht Verletzungsgefahr!

Eine Verwendung der EJ-Komponenten, die über die im Folgenden beschriebene bestimmungsgemäße Verwendung hinausgeht, ist nicht zulässig!

1.4 Signal Distribution Board

HINWEIS

Signal Distribution Board

Stellen Sie sicher, dass die EtherCAT-Steckmodule nur auf einem Signal Distribution Board eingesetzt werden, welches entsprechend des <u>Design Guide</u> entwickelt und gefertigt wurde.

1.5 Ausgabestände der Dokumentation

Version	Kommentar
1.6.0	Update Kapitel Einführung
	Update Technische Daten
	Update Struktur
1.5	Update Technische Daten
	Update Kapitel Installation von EJ-Modulen
	Update Struktur
1.4	Update Kapitel Kennzeichnung von EtherCAT-Steckmodulen
	Update Technische Daten
	Kapitel Entsorgung hinzugefügt
	Update Struktur
1.3	Update Kapitel Technische Daten
1.2	Neue Titelseite
	Update Kapitel EJ3255 - Kontaktbelegung
	Update Revisionsstand
	Update Struktur
1.1	Kapitel Grundlagen der Kommunikation, TwinCAT Quickstart, TwinCAT Entwicklungsumgebung und Allgemeine Inbetriebnahmehinweise des EtherCAT Slaves ersetzt durch Verweise im Kapitel Wegweiser durch die Dokumentation
	Kapitel EJ3255 - Objektbeschreibung und Parametrierung hinzugefügt
	Update Kapitel EJ3255 - Kontaktbelegung
1.0	1. Veröffentlichung EJ3255

1.6 Wegweiser durch die Dokumentation

HINWEIS

Weitere Bestandteile der Dokumentation

Diese Dokumentation beschreibt gerätespezifische Inhalte. Sie ist Bestandteil des modular aufgebauten Dokumentationskonzepts für Beckhoff I/O-Komponenten. Für den Einsatz und sicheren Betrieb des in dieser Dokumentation beschriebenen Gerätes / der in dieser Dokumentation beschriebenen Geräte werden zusätzliche, produktübergreifende Beschreibungen benötigt, die der folgenden Tabelle zu entnehmen sind.

Titel	Beschreibung
EtherCAT System-Dokumentation (PDF)	Systemübersicht
	EtherCAT-Grundlagen
	Kabel-Redundanz
	Hot Connect
	Konfiguration von EtherCAT-Geräten
Design Guide EJ8xxx – Signal Distribution Board für	Hinweise zum Design eines EJ-Distribution Boards für Standard EtherCAT-Steckmodule
Standard EtherCAT-Steckmodule (PDF)	Anforderungen an das Signal Distribution Board
	Montagerichtlinie für die Leiterplatte
	Modul Platzierung
	Routing-Richtlinie
Dokumentation der zugehörigen	Hinweise zum Funktionsprinzip und
ELxxxx EtherCAT-Klemme	Beschreibungen zur Konfiguration und Parametrierung
(s. <u>Hinweis auf Dokumentation ELxxxx</u>) [• 38]	sind übertragbar auf die jeweiligen EtherCAT-Steckmodule.
I/O-Analog-Handbuch (PDF)	Hinweise zu I/O-Komponenten mit analogen Ein- und Ausgängen
Infrastruktur für EtherCAT/Ethernet (PDF)	Technische Empfehlungen und Hinweise zur Auslegung, Ausfertigung und Prüfung
Software-Deklarationen I/O (PDF)	Open-Source-Software-Deklarationen für Beckhoff-I/O-Komponenten

Die Dokumentationen können auf der Beckhoff-Homepage (<u>www.beckhoff.com</u>) eingesehen und heruntergeladen werden über:

- den Bereich "Dokumentation und Downloads" der jeweiligen Produktseite,
- · den Downloadfinder,
- · das Beckhoff Information System.

Sollten Sie Vorschläge oder Anregungen zu unserer Dokumentation haben, schicken Sie uns bitte unter Angabe von Dokumentationstitel und Versionsnummer eine E-Mail an: dokumentation@beckhoff.com

1.7 Kennzeichnung von EtherCAT-Steckmodulen

Bezeichnung

Beckhoff EtherCAT-Steckmodule verfügen über eine 14-stellige **technische Bezeichnung**, die sich wie folgt zusammensetzt (z. B. EJ1008-0000-0017):

· Bestellbezeichnung:

- · Familienschlüssel: EJ
- Produktbezeichnung: Die erste Stelle der Produktbezeichnung dient der Zuordnung zu einer Produktgruppe (z. B. EJ2xxx = Digital - Ausgangsmodul)
- Versionsnummer: Die vierstellige Versionsnummer kennzeichnet verschiedene Produktvarianten

· Revisionsnummer:

Sie wird bei Änderungen am Produkt hochgezählt.

Die Bestellbezeichnung und Revisionsnummer werden auf der Seite der EtherCAT-Steckmodule aufgebracht, siehe folgende Abbildung (A und B).

Abb. 1: Bestellbezeichnung (A), Revisionsnummer (B) und Seriennummer (C) am Beispiel EJ1008

Produktgruppe	Beispiel				
	Produktbezeichnung	Version	Revision		
EtherCAT-Koppler EJ110x	EJ1101	-0022 (Koppler mit externen Steckern, Netzteil und optionalen ID- Switchen)	-0016		
Digital-Eingangs-Module	EJ1008	-0000	-0017		
EJ1xxx	8-kanalig	(Grundtyp)			
Digital-Ausgangs-Module	EJ2521	-0224	-0016		
EJ2xxx	1-kanalig	(2 x 24 V Ausgänge)			
Analog-Eingangs-Module	EJ3318	-0000	-0017		
EJ3xxx	8-kanaliges Thermoelement	(Grundtyp)			
Analog-Ausgangs-Module	EJ1434	-0000	-0019		
EJ4xxx	4-kanalig	(Grundtyp)			
Sonderfunktions-Module	EJ6224	-0090	-0016		
EJ5xxx, EJ6xxx	IO-Link-Master	(mit TwinSAFE SC)			
Motor-Module	EJ7211	-9414	-0029		
EJ7xxx	Servomotorendstufe	(mit OCT, STO und TwinSAFE SC)			

Hinweise

- die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EJ1008-0000-0017 verwendet.
- Davon ist EJ1008-0000 die **Bestellbezeichnung**, umgangssprachlich bei "-0000" dann oft nur EJ1008 genannt.
- Die Revision -0017 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT-Kommunikation wieder und wird von Beckhoff verwaltet.
 Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum <u>Download</u> auf der Beckhoff Webseite bereitsteht.

Die Revision wird auf der Seite der EtherCAT-Steckmodule aufgebracht, siehe folgende Abbildung.

• Produktbezeichnung, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

Seriennummer

Die 8-stellige Seriennummer ist auf dem EtherCAT-Steckmodul auf der Seite aufgedruckt (s. folgende Abb. C). Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Abb. 2: Bestellbezeichnung (A), Revisionsnummer (B) und Seriennummer (C) am Beispiel EJ1008

Seriennummer	Beispiel Seriennummer: 08 15 08 16
KK - Produktionswoche (Kalenderwoche)	08 - Produktionswoche 08
YY - Produktionsjahr	15 - Produktionsjahr 2015
FF - Firmware-Stand	08 - Firmware-Stand 08
HH - Hardware-Stand	16 - Hardware-Stand 16

1.7.1 Beckhoff Identification Code (BIC)

Der **B**eckhoff Identification **C**ode (BIC) wird vermehrt auf Beckhoff Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 3: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- · direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie durch Leerzeichen ersetzt. Die Daten unter den Positionen 1-4 sind immer vorhanden.

Folgende Informationen sind enthalten:

Pos-Nr.	Art der Information	Erklärung	Daten - identifika- tor	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff Artikelnummer	Beckhoff Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	S	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P4015031800 16
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S 678294104
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	12	30PF971 , 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BICs

Beispiel einer zusammengesetzten Information aus den Positionen 1 - 4 und dem o. a. Beispielwert in Positio 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 4: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Bezeichnungen der Chargen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

1.7.2 Elektronischer Zugriff auf den BIC (eBIC)

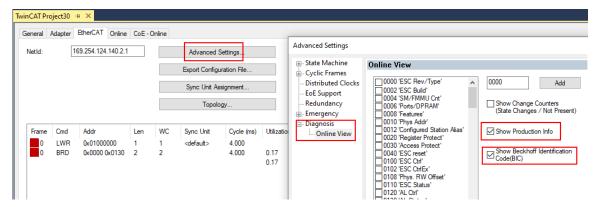
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff-Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

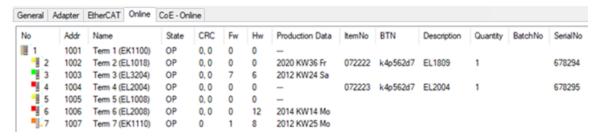
Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt angesprochen werden kann.

K-Bus Geräte (IP20, IP67)

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, das die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).


In das ESI-EEPROM wird durch Beckhoff auch die eBIC geschrieben. Die Einführung des eBIC in die Beckhoff-IO-Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT-Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen:
 - Ab TwinCAT 3.1 Build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC bereit.

- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:
 - Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein

Inc	dex	Name	Flags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
•	1011:0	Restore default parameters	RO	>1<		
	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 Build 4024.24 in der *Tc2 Utilities* zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den BIC sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST_SplittedBIC als Rückgabewert
 - BIC TO BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Zum technischen Hintergrund:
 Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT-Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen.
 Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.
- Sonderfälle
 - Bei einer hierarchischen Anordnung mehrerer ESC (EtherCAT Slave Controller) in einem Gerät trägt lediglich der oberste ESC die eBIC-Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC-Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC dieses ESC, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

PROFIBUS-, PROFINET-, DeviceNet-Geräte usw.

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

1.7.3 Zertifikate

- Die EtherCAT-Steckmodule erfüllen die Anforderungen der EMV- und Niederspannungsrichtlinie. Das CE-Zeichen ist auf der Seite der Module aufgedruckt.
- Der Aufdruck cRUus kennzeichnet Geräte, welche die Anforderungen für Produktsicherheit nach US-Amerikanischen bzw. kanadischen Vorschriften erfüllen.
- Das Warnsymbol gilt als Aufforderung die zugehörige Dokumentation zu lesen. Die Dokumentationen zu den EtherCAT-Steckmodulen werden auf der Beckhoff <u>Homepage</u> zum Download zur Verfügung gestellt.

Abb. 5: Kennzeichen für CE und UL am Beispiel EJ1008

2 Systemübersicht

Die EtherCAT-Steckmodule EJxxxx basieren elektronisch auf dem EtherCAT-I/O-System. Das EJ-System besteht aus dem Signal Distribution Board und EtherCAT-Steckmodulen. Auch die Anbindung eines IPCs im EJ-System ist möglich.

Die Anwendung des EJ-Systems eignet sich für die Produktion von Großserien, Applikationen mit geringem Platzbedarf und Applikationen, die ein geringes Gesamtgewicht fordern.

Eine Erweiterung der Maschinenkomplexität kann folgende Maßnahmen erreicht werden:

- · die Auslegung von Reserve-Slots,
- · den Einsatz von Platzhaltermodulen,
- die Verknüpfung von EtherCAT-Klemmen und EtherCAT-Boxen über eine EtherCAT-Verbindung.

Die folgende Abbildung zeigt beispielhaft ein EJ-System. Die abgebildeten Komponenten dienen ausschließlich der funktionell-schematischen Darstellung.

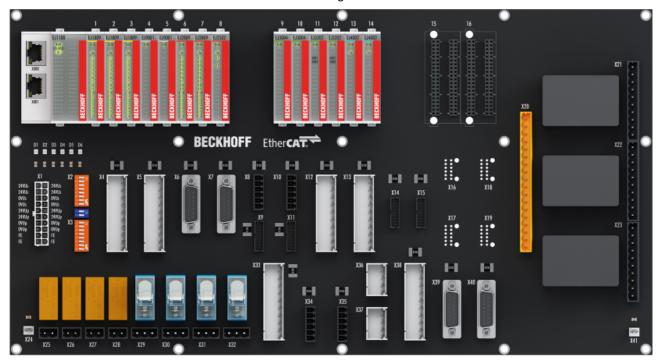


Abb. 6: EJ-System Beispiel

Signal Distribution Board

Das Signal Distribution Board verteilt die Signale und die Spannungsversorgung auf einzelne applikationsspezifische Steckverbinder, um die Steuerung mit weiteren Maschinenmodulen zu verbinden. Durch das Anstecken von vorkonfektionierten Kabelbäumen entfällt die aufwändige Einzeladerverdrahtung. Die Stückkosten und das Risiko der Fehlverdrahtung werden durch kodierte Bauteile reduziert. Die Entwicklung des Signal Distribution Boards kann als Engineering-Dienstleistung durch Beckhoff erfolgen. Es besteht ebenfalls die Möglichkeit, dass der Kunde auf Basis des Design Guides das Signal Distribution Board selbst entwickelt.

EtherCAT-Steckmodule

Analog zum EtherCAT-Klemmensystem besteht ein Modulstrang aus einem Buskoppler und I/O-Modulen. Nahezu alle EtherCAT-Klemmen lassen sich auch in der EJ-Bauform als EtherCAT-Steckmodul realisieren. Die EJ-Module werden direkt auf das Signal Distribution Board aufgesteckt. Die Kommunikation, Signalverteilung und Versorgung erfolgt über die Kontakt-Pins auf der Rückseite des Moduls und die Leiterbahnen des Signal Distribution Boards. Die Kodierstifte auf der Rückseite dienen als mechanischer Fehlsteckschutz. Zur besseren Unterscheidung der Module ist das Gehäuse mit einer Farbkodierung versehen.

3 EJ3255 - Produktbeschreibung

3.1 Einführung

Abb. 7: EJ3255

EtherCAT-Steckmodul, 5-Kanal-Analog-Eingang, Potentiometer, 300 $\Omega...50$ k Ω , 16 Bit

Das EtherCAT-Steckmodul EJ3255 ermöglicht den direkten Anschluss von Potentiometern. Eine stabilisierte Spannungsversorgung im Modul für die angeschlossenen Potentiometer und die ratiometrische Messung der Eingangsspannung bieten die Voraussetzungen für präzises Messen. Aufgrund ihrer hohen Abtastrate ermöglicht das 5-kanalige EtherCAT-Steckmodul, zusammen mit Potentiometer-Positionsgebern, eine zeitlich hochauflösende und kostengünstige Positionserfassung.

Die Diagnose des EtherCAT-Steckmoduls EJ3255 erkennt kanalweise Drahtbruch, Verlust der Versorgungsspannung und Kurzschluss.

Die fünf Kanäle werden simultan (gleichzeitig) gemessen.

3.2 Technische Daten

Technische Daten	EJ3255
Anzahl der Eingänge	5
Spannungsversorgung	Über Up-Kontakte
Technik	ratiometrische Potentiometerauswertung mit eigener Versorgung, 3-Leiter-Anschluss
Distributed Clocks	Ja
Speisespannung Potentiometer	typ. 10 V ±10 %
Innenwiderstand	>> 100 kΩ zum Schleiferanschluss
Grenzfrequenz Eingangsfilter	typ3 dB bei 3 kHz und Potentiometer 50 kΩ
Sensorarten	Potentiometer 300 Ω 50 k Ω
Ausgangsstrom	max. 0,3 A Gesamtspeisestrom für die Potentiometer
Drahtbrucherkennung	ja
Wandlungszeit	typ. 300 700 μs, einstellungsabhängig
	Voreinstellung: ca. 500 μs (5 Kanäle, Filter deaktiviert)
Auflösung	16 Bit (inkl. Vorzeichen)
Messfehler	< ±0,5 % (bezogen auf den Messbereichsendwert)
Potenzialtrennung	500 V (E-Bus/Feldspannung)
Stromaufnahme Lastspannung (Up-Kontakte)	abhängig von den Potentiometern, max. 125 mA
Stromaufnahme aus dem E-Bus	typ. 80 mA
Besondere Eigenschaften	Drahtbrucherkennung, Versorgungsüberwachung, aktivierbare Filter, gleichzeitige Messung der Kanäle
zulässiger Umgebungstemperaturbereich im Betrieb	-25°C +60°C
zulässiger Umgebungstemperaturbereich bei Lagerung	-40°C +85°C
zulässige relative Luftfeuchtigkeit	95 %, keine Betauung
Betriebshöhe	max. 2.000 m
Abmessungen (B x H x T)	ca. 12 mm x 66 mm x 55 mm
Gewicht	ca. 30 g
Montage	auf Signal Distribution Board
Verschmutzungsgrad	2
Einbaulage	<u>Standard</u> [▶ <u>26</u>]
Position der Kodierstifte [▶ 29]	1 und 6
Farbkodierung	grün
Vibrations-/Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27 (mit entsprechendem Signal Distribution Board)
EMV-Festigkeit/Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4 (mit entsprechendem Signal Distribution Board)
Schutzart	EJ-Modul: IP20 EJ-System: abhängig von Signal Distribution Board
Zulassungen/Kennzeichnungen*	CE, EAC, UKCA

*) Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

•

CE-Zulassung

Die CE-Kennzeichnung bezieht sich auf das genannte EtherCAT-Steckmodul. Bei Einbau des EtherCAT-Steckmoduls zur Herstellung eines verwendungsfertigen Endprodukts (Leiterkarte in Verbindung mit einem Gehäuse) ist die Richtlinienkonformität und die CE-Zertifizierung des Gesamtsystems durch den Hersteller des Endprodukts zu prüfen. Für den Betrieb der EtherCAT-Steckmodule ist der Einbau in ein Gehäuse vorgeschrieben.

3.3 Kontaktbelegung

EJ3255				
Pi	n#	Signal		
1	2	U _{EBUS}	U _{EBUS}	F-Bus Kontakte
3	4	GND	GND	L-Dus Nomanie
5	6	RX0+	TX1+	
7	8	RX0-	TX1-	Die Spannungsversorgung U _{EBUS} wird
9	10	GND	GND	vom Koppler zur Verfügung gestellt und
11	12	TX0+	RX1+	aus der Versorgungsspannung U _S des
13	14	TX0-	RX1-	EtherCAT-Kopplers versorgt.
15	16	GND	GND	
17	18	0V CH1	10V CH1	Signale und Versorgung
19	20	Input 1	Input 2	des Potentiometers
21	22	0V CH2	10V CH2	
23	24	0V CH3	10V CH3	
25	26	Input 3	Input4	
27	28	0V CH4	10V CH4	
29	30	0V CH5	10V CH5	
31	32	Input 5	NC	
33	34	0V Up	0V Up	U _P -Kontakte
35	36	0V Up	24V Up	Die Dericheriesensone II von est die
37	38	24V Up	24V Up	Die Peripheriespannung U _P versorgt die Elektronik auf der Feldseite.
39	40	SGND	SGND	Elektronik auf der Feldseite.

Signal	Beschreibung
U _{EBUS}	Spannungsversorgung E-Bus 3,3 V
GND	E-Bus Signalmasse Nicht mit 0V Up verbinden!
RXn+	Positives E-Bus Receive Signal
RXn-	Negatives E-Bus Receive Signal
TXn+	Positives E-Bus Transmit Signal
TXn-	Negatives E-Bus Transmit Signal
0V CH1 0V CH5	Potentiometer1 5 Speisung A
Input1 Input5	Potentiometer1 5 Abgriff
10V CH1 10V CH5	Potentiometer1 5 Speisung B
NC	Nicht belegen
0V Up	GND Signal Feldseite
24V Up	Spannungsversorgung Feldseite 24 V
SGND	Schirm Masse

Abb. 8: EJ3255 - Kontaktbelegung

Der Leiterkarten Footprint steht auf der Beckhoff <u>Homepage</u> zum Download bereit.

HINWEIS

Schädigung von Geräten möglich!

- Die mit "NC" benannten Pins dürfen nicht kontaktiert werden.
- Vor der Montage und Inbetriebnahme lesen Sie auch die Kapitel <u>Installation von EJ-Modulen [▶ 21]</u> und <u>Inbetriebnahme [▶ 38]!</u>

3.4 LEDs

LED Nr.	EJ3255
Α	RUN
В	
С	Up
1	ERR 1
2	ERR 2
3	ERR 3
4	ERR 4
5	ERR 5
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

Abb. 9: EJ3255 - LEDs

LED	Farbe	Anzeige	Zustand	Beschreibung	
RUN	grün	aus	Init	Zustand der EtherCAT State Machine: INIT = Initialisierung des Steckmoduls	
		blinkend	Pre-Operational	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox- Kommunikation und abweichende Standard-Einstellungen gesetzt	
		Einzelblitz	Safe-Operational	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des <u>Sync-Managers</u> und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand	
		an	Operational	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich	
		flimmernd	Bootstrap	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für <u>Firmware-Updates</u> des Steckmoduls	
Up	grün	Aus	-	Keine Spannungsversorgung 24 V _{DC} angeschlossen	
		an	-	Spannungsversorgung 24 V _{DC} angeschlossen	
ERR1	rot	aus	-	Kein Fehler	
ERR2 ERR3 ERR4 ERR5		an	-	Am entsprechenden Kanal liegt ein Fehler vor:	
				Drahtbruch auf Schleifer oder Versorgung	
				Potentiometer außerhalb des spezifizierten Bereichs (300 500kΩ)	
				Kurzschluss	
				• Überlast	
				Wenn Kanäle nicht benutzt werden, können Sie über die PDO-Auswahl deaktiviert werden. Die entsprechende LED erlischt dann.	

4 Installation von EJ-Modulen

4.1 Spannungsversorgung der EtherCAT-Steckmodule

⚠ WARNUNG

Spannungsversorgung aus SELV- / PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV- / PELV-Stromkreise (Sicherheitskleinspannung, "safety extra-low voltage" / Schutzkleinspannung, "protective extra-low voltage") nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

Beim Design des Signal Distribution Boards ist die Spannungsversorgung für die maximal mögliche Strombelastung des Modulstrangs auszulegen. Die Information, wie viel Strom aus der E-Bus-Versorgung benötigt wird, finden Sie für jedes Modul in der jeweiligen Dokumentation im Kapitel "Technische Daten", online und im Katalog. Im TwinCAT System Manager wird der Strombedarf des Modulstrangs angezeigt.

E-Bus-Spannungsversorgung mit EJ1100 oder EJ1101-0022 und EJ940x

Der Buskoppler EJ1100 versorgt die angefügten EJ-Module mit der E-Bus-Systemspannung von 3,3 V. Dabei ist der Koppler bis zu 2,2 A belastbar. Wird mehr Strom benötigt, ist die Kombination aus dem Koppler EJ1101-0022 und den Netzteilen EJ9400 (2,5 A) oder EJ9404 (12 A) zu verwenden. Die Netzteile EJ940x können als zusätzliche Einspeisemodule im Modulstrang eingesetzt werden.

Je nach Applikation stehen folgende Kombinationen zur E-Bus-Versorgung zur Verfügung:

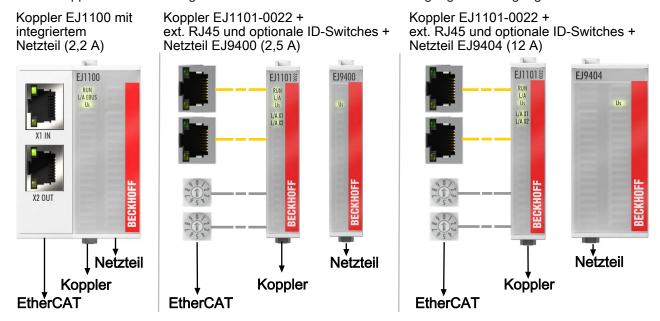


Abb. 10: E-Bus-Spannungsversorgung mit EJ1100 oder EJ1101-0022 + EJ940x

Bei dem Koppler EJ1101-0022 sind die RJ45 Verbinder und die optionalen ID-Switches extern ausgeführt und können auf dem Signal Distribution Board beliebig platziert werden. Somit wird die einfache Durchführung durch ein Gehäuse ermöglicht.

Die Netzteil-Steckmodule EJ940x stellen eine optionale Reset-Funktion zur Verfügung (s. Kapitel Kontaktbelegung der Dokumentationen zu EJ9400 und EJ9404)

E-Bus-Spannungsversorgung mit CXxxxx und EK1110-004x

Der Embedded PC versorgt die angereihten EtherCAT-Klemmen und den EtherCAT-EJ-Koppler

- mit einer Versorgungsspannung Us von 24 V_{DC} (-15 %/+20%). Aus dieser Spannung werden der E-Bus und die Busklemmenelektronik versorgt.
 Die CXxxxx versorgen den E-Bus mit max. 2.000 mA E-Bus-Strom. Wird durch die angefügten Klemmen mehr Strom benötigt, sind Einspeiseklemmen bzw. Netzteil-Steckmodule zur E-Bus-Versorgung zu setzen.
- mit einer Peripheriespannung Up von 24 V_{DC} zur Versorgung der Feldelektronik.

Die EtherCAT-EJ-Koppler EK1110-004x leiten über den rückwärtigen Stecker

- · die E-Bus Signale,
- die E-Bus Spannung U_{EBUS} (3,3 V) und
- die Peripheriespannung U_P (24 V_{DC})

an das Signal Distribution Board weiter.

Abb. 11: Leiterkarte mit Embedded PC, EK1110-0043 und EJxxxx, Rückansicht EK1110-0043

4.2 Hinweis Lastspannungsversorgung

⚠ WARNUNG

Lastspannungsversorgung

Einige Geräte ermöglichen den Anschluss einer zusätzlichen Lastspannung von z. B. 48 V DC für den Betrieb eines Motors.

Um Ausgleichströme auf dem Schutzleiter während des Betriebs zu vermeiden, sieht die EN 60204-1:2018 die Möglichkeit vor, dass der negative Pol der Lastspannung nicht zwingend mit dem Schutzleitersystem verbunden werden muss (SELV).

Die Lastspannungsversorgung sollte aus diesem Grunde als SELV-Versorgung ausgeführt werden.

4.3 EJxxxx - Abmessungen

Die EJ-Module sind aufgrund ihrer Bauform kompakt und leicht. Ihr Volumen ist ca. 50 % kleiner als das Volumen der EL-Klemmen. Je nach Breite und Höhe wird zwischen vier verschiedenen Modultypen unterschieden:

Modultyp	Abmessungen (B x H x T)	Bsp. In folgender Abb. (Benennung der Zeichnung im Downloadfinder)
Koppler	44 mm x 66 mm x 55 mm	EJ1100 (ej_44_2xrj45_coupler)
1-fach Modul	12 mm x 66 mm x 55 mm	EJ1809 (ej_12_16pin_code13)
2-fach Modul	24 mm x 66 mm x 55 mm	EJ7342 (ej_24_2x16pin_code18)
1-fach Modul (lang)	12 mm x 152 mm x 55 mm	EJ1957 (ej_12_2x16pin_extended_code4747)

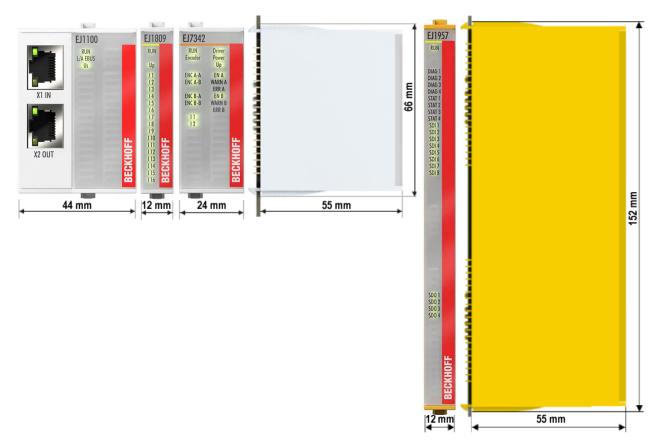


Abb. 12: EJxxxx - Abmessungen

Zeichnungen für die EtherCAT-Steckmodule finden Sie auf der Beckhoff <u>Homepage</u>. Die Benennung der Zeichnungen setzt sich wie in untenstehender Zeichnung beschrieben zusammen.

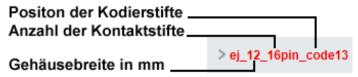


Abb. 13: Benennung der Zeichnungen

4.4 Einbaulagen und Mindestabstände

4.4.1 Mindestabstände zur Sicherung der Montagefähigkeit

Zur sicheren Verrastung und einfachen Montage/Demontage der Module berücksichtigen Sie beim Design des Signal Distribution Boards die in folgender Abb. angegebenen Maße.



Abb. 14: Montageabstände EJ-Modul - PCB

Einhalten des Griffbereichs

Zur Montage/Demontage wird ein Griffbereich von mindestens 92 mm benötigt, um mit den Fingern die Montagelaschen erreichen zu können. Die Einhaltung der empfohlenen Mindestabstände zur Belüftung (s. Kapitel Einbaulage [*) 26]) gewährleistet einen ausreichend großen Griffbereich.

Das Signal Distribution Board muss eine Stärke von 1,6 mm und einen Abstand von mindestens 4 mm zur Montagefläche haben, um die Verrastung der Module auf dem Board sicherzustellen.

4.4.2 Einbaulagen

HINWEIS

Einschränkung von Einbaulage und Betriebstemperaturbereich

Entnehmen Sie den <u>technischen Daten [* 18]</u> der verbauten Komponenten, ob es Einschränkungen bei Einbaulage und/oder Betriebstemperaturbereich unterliegt. Sorgen Sie bei der Montage von Modulen mit erhöhter thermischer Verlustleistung dafür, dass im Betrieb oberhalb und unterhalb der Module ausreichend Abstand zu anderen Komponenten eingehalten wird, so dass die Module ausreichend belüftet werden!

Die Verwendung der Standard Einbaulage wird empfohlen. Wird eine andere Einbaulage verwendet, prüfen Sie, ob zusätzliche Maßnahmen zur Belüftung erforderlich sind!

Stellen Sie sicher, dass die spezifizierten Umgebungsbedingungen (siehe technische Daten) eingehalten werden!

Optimale Einbaulage (Standard)

Für die optimale Einbaulage wird das Signal Distribution Board waagerecht montiert und die Fronten der EJ-Module weisen nach vorne (siehe Abb. *Empfohlene Abstände bei Standard Einbaulage*). Die Module werden dabei von unten nach oben durchlüftet, was eine optimale Kühlung der Elektronik durch Konvektionslüftung ermöglicht. Bezugsrichtung "unten" ist hier die Erdbeschleunigung.

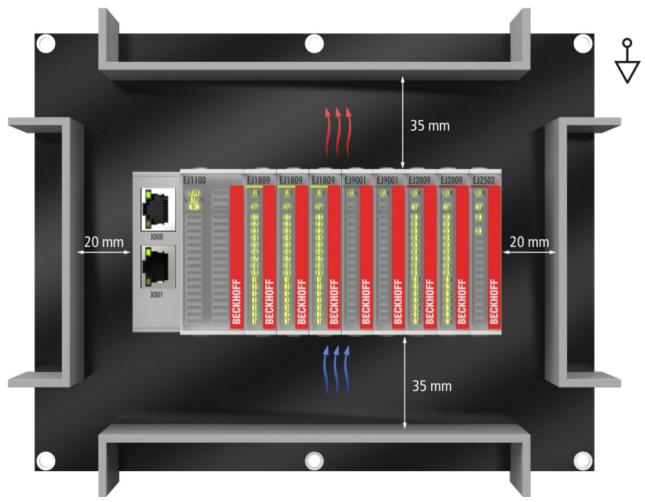
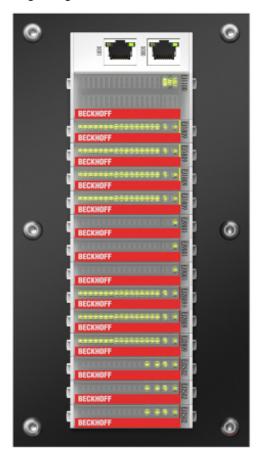


Abb. 15: Empfohlene Abstände bei Standard Einbaulage


Die Einhaltung der Abstände nach Abb. *Empfohlene Abstände bei Standard Einbaulage* wird empfohlen. Die empfohlenen Mindestabstände sind nicht als Sperrbereiche für andere Bauteile zu sehen. Die Einhaltung der in den Technischen Daten beschriebenen Umgebungsbedingungen ist durch den Kunden zu prüfen und gegebenenfalls durch zusätzliche Maßnahmen zur Kühlung sicherzustellen.

Weitere Einbaulagen

Alle anderen Einbaulagen zeichnen sich durch davon abweichende räumliche Lage des Signal Distribution Boards aus, s. Abb. *Weitere Einbaulagen*.

Auch in diesen Einbaulagen empfiehlt sich die Anwendung der oben angegebenen Mindestabstände zur Umgebung.

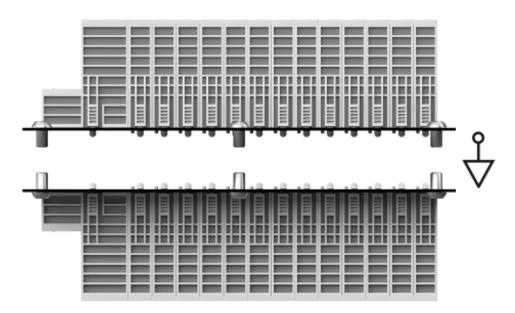


Abb. 16: Weitere Einbaulagen

4.5 Kodierungen

4.5.1 Farbkodierung

Abb. 17: EJ-Module Farbcode am Beispiel EJ1809

Zur besseren Übersicht im Schaltschrank verfügen die EJ-Module über eine Farbkodierung (s. Abb. oben). Der Farbcode gibt die Signalart an. Die folgende Tabelle gibt einen Überblick über die Signalart mit der zugehörigen Farbkodierung.

Signalart	Module	Farbe
Koppler	EJ11xx	Ohne Farbkodierung
Digital Eingang	EJ1xxx	Gelb
Digital Ausgang	EJ2xxx	Rot
Analog Eingang	EJ3xxx	Grün
Analog Ausgang	EJ4xxx	Blau
Winkel-/Wegmessung	EJ5xxx	grau
Kommunikation	EJ6xxx	grau
Motion	EJ7xxx	orange
System	EJ9xxx	grau

4.5.2 Mechanische Kodierung

Die Module verfügen über zwei signalspezifische Kodierstifte an der Unterseite (s. folgende Abb. B1 und B2). Die Kodierstifte bieten, in Verbindung mit den Kodierlöchern im Signal Distribution Board (folgende Abb. A1 und A2), die Option, einen mechanischen Fehlsteckschutz zu realisieren. Während der Montage und im Servicefall wird so das Fehlerrisiko deutlich reduziert. Koppler und Platzhaltermodule haben keine Kodierstifte.

Abb. 18: Mechanische Positionskodierung mit Kodierstiften (B1 u. B2) und Kodierlöchern (A1 u. A2)

Die folgende Abbildung zeigt die Position der Kodierung mit den Positionsnummern auf der linken Seite. Module mit gleicher Signalart haben die gleiche Kodierung. So haben z. B. alle Digitalen Eingangsmodule die Kodierstifte an den Positionen eins und drei. Es besteht kein Steckschutz zwischen Modulen der gleichen Signalart. Deshalb ist bei der Montage der Einsatz des korrekten Moduls anhand der Gerätebezeichnung zu prüfen.

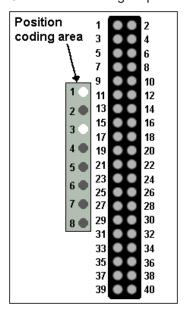


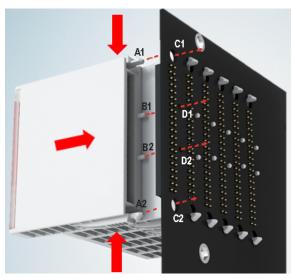
Abb. 19: Pin-Kodierung am Beispiel digitaler Eingangsmodule

4.6 Montage auf dem Signal Distribution Board

EJ-Module werden auf dem Signal Distribution Board montiert. Die elektrischen Verbindungen zwischen Koppler und EJ-Modulen werden über die Pin-Kontakte und das Signal Distribution Board realisiert.

Die EJ-Komponenten müssen in einem Schaltschrank oder Gehäuse installiert werden, welches vor Brandgefahren, Umwelteinflüssen und mechanischen Einflüssen schützen muss.

⚠ WARNUNG


Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Modul-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Module beginnen!

HINWEIS

Beschädigung von Komponenten durch Elektrostatische Entladung möglich!

Beachten Sie die Vorschriften zum ESD-Schutz!

A1 / A2: Rastnasen oben / unten

B1 / B2: Kodierstifte

C1 / C2: Halterungslöcher

D1 / D2: Kodierlöcher

Montage EJ-Module

Zur Montage des Moduls auf dem Signal Distribution Board gehen Sie wie folgt vor:

- 1. Stellen Sie sicher, dass das Signal Distribution Board vor der Montage der Module fest mit der Montagefläche verbunden ist. Die Montage auf dem unbefestigten Signal Distribution Board kann zu Beschädigungen des Boards führen.
- 2. Prüfen Sie ggf., ob die Position der Kodierstifte (B) und der entsprechenden Löcher im Signal Distribution Board (D) übereinstimmen.
- 3. Vergleichen Sie die Gerätebezeichnung auf dem Modul mit den Angaben im Installationsplan.
- 4. Drücken Sie die obere und die untere Montagelasche gleichzeitig und stecken das Modul unter leichter Aufwärts- und Abwärtsbewegung auf das Board bis das Modul sicher verrastet ist. Nur wenn das Modul fest eingerastet ist, kann der benötigte Kontaktdruck aufgebaut und die maximale Stromtragfähigkeit gewährleistet werden.
- 5. Belegen Sie Lücken im Modulstrang mit Platzhaltermodulen (EJ9001).

HINWEIS

Sichere Verrastung der Module auf dem Board beachten

- Achten Sie bei der Montage auf sichere Verrastung der Module mit dem Board! Die Folgen mangelnden Kontaktdrucks sind:
- ⇒ Qualitätsverluste des übertragenen Signals,
- ⇒ erhöhte Verlustleistung der Kontakte,
- ⇒ Beeinträchtigung der Lebensdauer.

4.7 Erweiterungsmöglichkeiten

Für Änderungen und Erweiterungen des EJ-Systems stehen drei Möglichkeiten zur Verfügung.

- · Austausch der Platzhaltermodule gegen die für den jeweiligen Slot vorgesehenen Funktionsmodule
- Belegung von Reserveslots am Ende des Modulstrangs mit den für die jeweiligen Slots vorgegebenen Funktionsmodulen
- Verknüpfung mit EtherCAT-Klemmen und EtherCAT-Box-Modulen über eine Ethernet/ EtherCAT-Verbindung

4.7.1 Belegung ungenutzter Slots durch Platzhaltermodule

Die Platzhaltermodule EJ9001 schließen temporäre Lücken im Modulstrang (s. folgende Abb. A1). Lücken im Modulstrang führen zu einer Unterbrechung der EtherCAT-Kommunikation und müssen durch Platzhaltermodule geschlossen werden.

Im Gegensatz zu den passiven Klemmen der EL-Serie nehmen die Platzhaltermodule aktiv am Datenaustausch teil. Es können daher mehrere Platzhaltermodule hintereinander gesteckt werden, ohne den Datenaustausch zu beeinträchtigen.

Ungenutzte Slots am Ende des Modulstrangs können als Reserveslots freigelassen werden (s. folgende Abb. B1).

Durch die Belegung ungenutzter Slots (s. folgende Abb. A2 - Austausch Platzhaltermodul und B2 - Belegung Reserveslots) entsprechend der Vorgaben für das Signal Distribution Board wird die Maschinenkomplexität erweitert (Extended-Version).

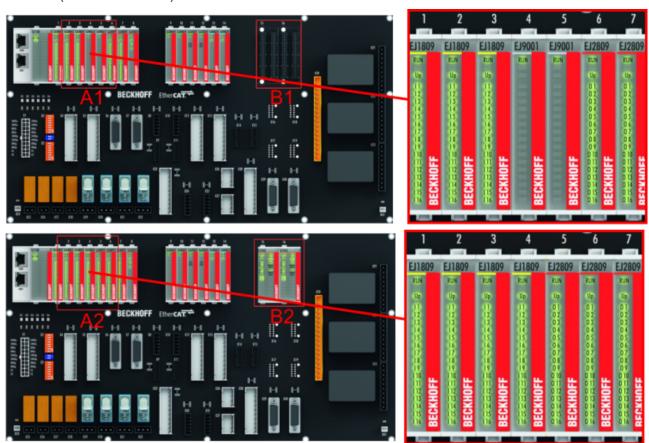


Abb. 20: Beispiel Austausch Platzhaltermodule u. Belegung Reserveslots

E-Bus - Versorgung

Nach dem Austausch der Platzhaltermodule gegen andere Module verändert sich die Stromaufnahme aus dem E-Bus. Stellen Sie sicher, dass eine ausreichende Versorgung weiterhin gewährleistet wird.

4.7.2 Verknüpfung mit EtherCAT-Klemmen und EtherCAT-Box-Modulen über eine Ethernet/EtherCAT-Verbindung

Abb. 21: Beispiel Erweiterung über eine Ethernet/EtherCAT-Verbindung

4.8 IPC Integration

Anbindung von CX- und EL-Klemmen über die EtherCAT-EJ-Koppler EK1110-004x

Die EtherCAT-EJ-Koppler EK1110-0043 und EK1110-0044 verbinden die kompakten Hutschienen-PCs der Serie CX und angereihte EtherCAT-Klemmen (ELxxxx) mit den EJ-Modulen auf dem Signal Distribution Board.

Die Spannungsversorgung der EK1110-004x erfolgt aus dem Netzteil des Embedded-PCs. Die E-Bus-Signale und die Versorgungsspannung der Feldseite U_P werden über einen Steckverbinder auf der Rückseite des EtherCAT-EJ-Kopplers direkt auf die Leiterkarte weitergleitet.

Durch die direkte Ankopplung des Embedded-PCs und der EL-Klemmen mit den EJ-Modulen auf der Leiterkarte können eine EtherCAT-Verlängerung (EK1110) und ein EtherCAT-Koppler (EJ1100) entfallen.

Der Embedded-PC ist mit EtherCAT-Klemmen erweiterbar, die z. B. noch nicht im EJ-System zur Verfügung stehen.

Abb. 22: Beispiel Leiterkarte mit Embedded PC, EK1110-0043 und EJxxxx, Rückansicht EK1110-0043

Anbindung von C6015 / C6017 über die EtherCAT-Koppler EJ110x-00xx

Aufgrund der ultrakompakten Bauweise und der flexiblen Montagemöglichkeiten eignen sich die IPCs C6015 und C6017 ideal für die Anbindung an ein EJ-System.

In Kombination mit dem Montage-Set ZS5000-0003 ergibt sich die Möglichkeit den IPC C6015 und C6017 kompakt auf dem Signal Distribution Board zu platzieren.

Über das entsprechende EtherCAT-Kabel (s. folgende Abb. [A]) wird das EJ-System bestmöglich mit dem IPC verbunden.

Die Versorgung des IPCs kann mit beigefügtem Power-Stecker (s. folgende Abb. [B]) direkt über das Signal Distribution Board erfolgen.

HINWEIS

Platzierung auf dem Signal Distribution Board

Die Abmessungen und Abstände für die Platzierung sowie weitere Details sind dem Design-Guide und den Dokumentationen zu den einzelnen Komponenten zu entnehmen.

Die folgende Abbildung zeigt beispielhaft die Anbindung des IPC C6015 an ein EJ-System. Die abgebildeten Komponenten dienen ausschließlich der funktionell-schematischen Darstellung.

Abb. 23: Beispiel für die Anbindung des IPC C6015 an ein EJ-System

4.9 Demontage vom Signal Distribution Board

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Modul-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Module beginnen!

Jedes Modul wird durch die Verrastung auf dem Distribution Board gesichert, die zur Demontage gelöst werden muss.

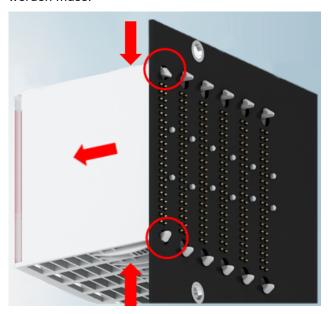


Abb. 24: Demontage EJ - Module

Zur Demontage vom Signal Distribution Board gehen Sie wie folgt vor:

- Stellen Sie sicher, dass das Signal-Distribution-Board vor der Demontage der Module fest mit der Montagefläche verbunden ist. Die Demontage vom unbefestigten Signal Distribution Board kann zu Beschädigungen des Boards führen.
- 2. Drücken Sie die obere und die untere Montagelasche gleichzeitig und ziehen das Modul unter leichter Aufwärts- und Abwärtsbewegung vom Board ab.

4.10 Entsorgung

Die mit einer durchgestrichenen Abfalltonne gekennzeichneten Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

5 EtherCAT-Grundlagen

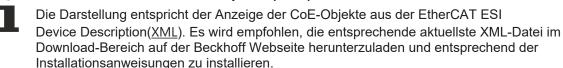
Grundlagen zum Feldbus EtherCAT entnehmen Sie bitte der EtherCAT System-Dokumentation.

6 Inbetriebnahme

6.1 Hinweis auf Dokumentation EL3255

Eine ausführliche Dokumentation zur Inbetriebnahme des EJ3255 Moduls ist in Vorbereitung.

HINWEIS


Schädigung von Geräten oder Datenverlust

Die Beschreibungen und Hinweise zur Inbetriebnahme der EtherCAT-Klemme EL3255 ist übertragbar auf das EtherCAT-Steckmodul EJ3255.

Lesen Sie vor der Inbetriebnahme die ausführliche Beschreibung der Prozessdaten, Betriebsmodi und Parametrierung der <u>EL3255</u> Dokumentation.

6.2 EJ3255 - Objektbeschreibung und Parametrierung

EtherCAT ESI Device Description (XML)

HINWEIS

Parametrierung über das CoE-Verzeichnis (CAN over EtherCAT)

Die Parametrierung des EtherCAT Geräts wird über den CoE - Online Reiter (mit Doppelklick auf das entsprechende Objekt) bzw. über den Prozessdatenreiter (Zuordnung der PDOs) vorgenommen. Eine ausführliche Beschreibung finden Sie in der EtherCAT System-Dokumentation im Kapitel "EtherCAT Teilnehmerkonfiguration".

Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise im Kapitel "CoE-Interface" der EtherCAT System-Dokumentation:

- StartUp-Liste führen für den Austauschfall
- Unterscheidung zwischen Online/Offline Dictionary,
- Vorhandensein aktueller XML-Beschreibung
- "CoE-Reload" zum Zurücksetzen der Veränderungen

Relevante Objekte

Die Objektbeschreibung bezieht sich auf EtherCAT-Geräte mit unterschiedlicher Anzahl an Kanälen. Beachten Sie die Indizes bezüglich der für das jeweilige Gerät relevanten Objekte (kanalabhängig).

Einführung

In der CoE-Übersicht sind Objekte mit unterschiedlichem Einsatzzweck enthalten:

- Objekte die zu Parametrierung [▶ 40] und profilspezifische Objekte [▶ 41], die bei der Inbetriebnahme nötig sind
- Objekte die interne Settings [42] anzeigen und ggf. nicht veränderlich sind

Im Folgenden werden zuerst die im normalen Betrieb benötigten Objekte vorgestellt, dann die für eine vollständige Übersicht noch fehlenden Objekte.

6.2.1 Restore Objekt

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Herstellen der Default-Einstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup-Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	RW	0x00000000 (0 _{dez})

6.2.2 Konfigurationsdaten

Index 80n0 Al Settings für 0 ≤ n ≤ 4 (Ch. 1 - 5, abhängig von der Anzahl der Kanäle)

•

Einstellung der Filtereigenschaften über Index 0x8000:15 [▶ 40]

Die Filterfrequenzen werden für alle Kanäle des Moduls zentral über den Index 0x8000:15 (Kanal 1) eingestellt. Alle anderen entsprechenden Indizes 0x80n0:15 haben keine Parametrierungsfunktion! Bei der aktuellsten Firmware wird eine EtherCAT-konforme Fehlermeldung zurückgegeben, wenn die Filter-Eigenschaften der weiteren Kanäle (Index 0x80n0:06, 0x80n0:15) gesetzt werden.

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
80n0:0	Al Settings	Maximaler Subindex	UINT8	RO	0x1C (28 _{dez})
30n0:01	Enable user scale	Freigabe der Anwenderskalierung	BOOLEAN	RW	0x00 (0 _{dez})
30n0:05	Siemens bits	Die S5 Bits werden in den drei niederwertigen Bits (Value 0x60n0:11 [▶ 41]) eingeblendet	BOOLEAN	RW	0x00 (0 _{dez})
		Bit 0 = 1 ("Overange" oder "Underrange") Bit 1 (not used) Bit 2 (not used)			
30n0:06	Enable filter	Filter aktivieren, dadurch entfällt der SPS- zyklussynchrone Datenaustausch	BOOLEAN	RW	0x00 (0 _{dez})
30n0:07	Enable limit 1	Die Statusbits werden abhängig von Limit 1 gesetzt.	BOOLEAN	RW	0x00 (0 _{dez})
30n0:08	Enable limit 2	Die Statusbits werden abhängig von Limit 2 gesetzt.	BOOLEAN	RW	0x00 (0 _{dez})
80n0:0A	Enable user calibration	Freigabe des Anwender Abgleichs	BOOLEAN	RW	0x00 (0 _{dez})
30n0:0B	Enable vendor calibration	Freigabe des Hersteller Abgleichs	BOOLEAN	RW	0x01 (1 _{dez})
30n0:0E	Swap limit bits	Tauschen der Limit-Bits	BOOLEAN	RW	0x01 (1 _{dez})
30n0:11	User scale offset	Offset der Anwenderskalierung	INT16	RW	0x0000 (0 _{dez})
80n0:12	User scale gain	Dies ist der Gain der Anwenderskalierung. Der Gain besitzt eine Festkommadarstellung mit dem Faktor 2 ⁻¹⁶ . Der Wert 1 entspricht 65535 (0x00010000).	INT32	RW	0x00010000 (65536 _{dez})
80n0:13	Limit 1	Erster Grenzwert zum Setzen der Statusbits (Auflösung 0,1°C)	INT16	RW	0x0000 (0 _{dez})
80n0:14	Limit 2	Zweiter Grenzwert zum Setzen der Statusbits (Auflösung 0,1°C)	INT16	RW	0x0000 (0 _{dez})
Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
80n0:15	Filter settings	Dieses Objekt bestimmt die digitalen Filtereinstellungen, wenn es über "Enable filter" (Index 0x80n0:06) aktiv ist. Die möglichen Einstellungen sind fortlaufend nummeriert. s. Hinweis "Einstellung der Filtereigenschaften über Index 0x8000:15"	UINT16	RW	0x0000 (0 _{dez})
		0: 50 Hz 1: 60 Hz 2: IIR1 (400 Hz) 3: IIR2 (500 Hz) 4: IIR3 (100 Hz) 5: IIR4 (50 Hz) 6: IIR5 (24 Hz) 7: IIR6 (12 Hz) 8: IIR7 (6,2 Hz) 9: IIR8 (3,0 Hz)			
30n0:17	User calibration offset	Anwender Offset Abgleich	INT16	RW	0x0000 (0 _{dez})
30n0:18	User calibration gain	Anwender Gain Abgleich	UINT16	RW	0x4000 (16384 _{dez})
80n0:1C	Linearisation	Linearisierung für Potentiometerwerte \geq 25 k Ω : 0 = aus (bis 10 k Ω), 1 = 25 k Ω , 2 = 50 k Ω ,	INT16	RW	0x0000 (0 _{dez})

Index 8047 Al Device Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8047:0	Al Device Settings	Max. Subindex	UINT8	RO	0x11 (17 _{dez})
8047:11	Wire breakage detection	sensor/load/supply monitoring load/supply monitoring supply monitoring significant supply monitoring significant supply monitoring significant supply monitoring	ENUM16	RW	0x0000 (0 _{dez})

6.2.3 Profilspezifische Objekte (0x6000-0xFFFF)

Die profilspezifischen Objekte haben für alle EtherCAT Slaves, die das Profil 5001 unterstützen, die gleiche Bedeutung.

6.2.4 Eingangsdaten

Index 60n0 Al Inputs für 0 ≤ n ≤ 4 (Ch. 1 - 5, abhängig von der Anzahl der Kanäle)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60n0:0	Al Inputs	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
60n0:01	Underrange	Der Messbereich wird unterschritten.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:02	Overrange	Der Messbereich wird überschritten. ("open circuit" Erkennung wenn "Error" [Index 0x60n0:07]) gesetzt ist.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:03	Limit 1	Grenzwertüberwachung	BIT2	RO	0x00 (0 _{dez})
60n0:05	Limit 2	0: nicht aktiv 1: Wert > Grenzwert 2: Wert < Grenzwert 3: Wert = Grenzwert	BIT2	RO	0x00 (0 _{dez})
60n0:07	Error	Das Fehler-Bit wird gesetzt, wenn das Datum ungültig ist.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:0E	Sync Error	Das Sync Error-Bit wird nur für den Distributed Clocks Mode benötigt. Es zeigt an, ob im abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist.			
60n0:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO (0 = valid, 1 = invalid).	BOOLEAN	RO	0x00 (0 _{dez})
60n0:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:11	Value	Messwert als 32 Bit signed Integer	INT16	RO	0x0000 (0 _{dez})

6.2.5 Konfigurationsdaten Herstellerspezifisch

Index 80nF AI Vendor data für $0 \le n \le 4$ (Ch. 1 - 5)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
80nF:0	Al Vendor data	Maximaler Subindex	UINT8	RO	0x02 (2 _{dez})
80nF:01	Calibration offset	Hersteller Offset Abgleich	INT32	RW	0x00000000 (0 _{dez})
80nF:02	Calibration gain	Hersteller Gain Abgleich	UINT16	RW	0x4000 (16384 _{dez})

6.2.6 Informations- und Diagnostikdaten

Index 80nE RTD Internal data für 0 ≤ n ≤ 4 (Ch. 1 - 5, abhängig von der Anzahl der Kanäle)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
80nE:0	Al Internal data	Maximaler Subindex	UINT8	RO	0x01 (1 _{dez})
80nE:01	ADC raw value 1	ADC Rohwert 1	INT32	RO	0x00000000 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0001 (1 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	z.Zt. reserviert	UINT32	RW	0x00000000 (0 _{dez})

Index F010 Module list [für {n=1} (1 Kanal) bis {n=1,...,n=4} (5 Kanal)]

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RO	0x05 (5 _{dez})
F010:0n	Subindex 00n	Al Profile	INT32	_	0x0000012C (300 _{dez})

6.2.7 Standardobjekte (0x1000-0x1FFF)

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0	Device type	Geräte-Typ des EtherCAT-Slaves: • Das Lo-Word enthält das verwendete CoE Profil (5001).	UINT32	RO	0x012C1389 (19665801 _{dez})
		 Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile. 			

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EJ3255

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	00

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	01

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0CB72852 (213330002 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves:	UINT32	RO	0x0000000 (0 _{dez})
		 Das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer. 			
		 Das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung. 			
1018:04	Serial number	Seriennummer des EtherCAT-Slaves:	UINT32	RO	0x0000000 (0 _{dez})
		Low Word			
		 Das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr. 			
		 Das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche. 			
		Das High-Word (Bit 16-31) ist 0.			

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	1 1	Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT-Slaves	UINT32	RO	0x00000000 (0 _{dez})

Index 1800 AI TxPDO-Par Standard Ch. 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1800:0	Al TxPDO-Par Standard Ch. 1	PDO Parameter TxPDO 1	UINT8	RO	0x06 (6 _{dez})
1800:06	Exclude TxPDOs		OCTET- STRING[2]	RO	01 1A

Index 1801 AI TxPDO-Par Compact Ch. 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1801:0	AI TxPDO-Par Compact Ch.1	PDO Parameter TxPDO 2	UINT8	RO	0x06 (6 _{dez})
1801:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 2 übertragen werden dürfen.	OCTET- STRING[2]	RO	00 1A

Index 1802 AI TxPDO-Par Standard Ch. 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1802:0	AI TxPDO-Par Standard Ch.2	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6 _{dez})
1802:06			OCTET- STRING[2]	RO	03 1A

Index 1803 Al TxPDO-Par Compact Ch. 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1803:0	AI TxPDO-Par Compact Ch.2	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6 _{dez})
1803:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 4 übertragen werden dürfen.	OCTET- STRING[2]	RO	02 1A

Index 1804 AI TxPDO-Par Standard Ch. 3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1804:0	AI TxPDO-Par Standard Ch.3	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6 _{dez})
1804:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 5 übertragen werden dürfen.	OCTET- STRING[2]	RO	05 1A

Index 1805 AI TxPDO-Par Compact Ch. 3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1805:0	Al TxPDO-Par Compact Ch.3	PDO Parameter TxPDO 6	UINT8	RO	0x06 (6 _{dez})
1805:06			OCTET- STRING[2]	RO	04 1A

Index 1806 AI TxPDO-Par Standard Ch. 4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1806:0	AI TxPDO-Par Standard Ch.2	PDO Parameter TxPDO 7	UINT8	RO	0x06 (6 _{dez})
1806:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 7 übertragen werden dürfen.	OCTET- STRING[2]	RO	07 1A

Index 1807 AI TxPDO-Par Compact Ch. 4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1807:0	AI TxPDO-Par Compact Ch.4	PDO Parameter TxPDO 8	UINT8	RO	0x06 (6 _{dez})
1807:06			OCTET- STRING[2]	RO	06 1A

Index 1808 AI TxPDO-Par Standard Ch. 5

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1808:0	AI TxPDO-Par Standard Ch.5	PDO Parameter TxPDO 9	UINT8	RO	0x06 (6 _{dez})
1808:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 9 übertragen werden dürfen.	OCTET- STRING[2]	RO	09 1A

Index 1809 AI TxPDO-Par Compact Ch. 5

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	AI TxPDO-Par Compact Ch.5	PDO Parameter TxPDO 10	UINT8	RO	0x06 (6 _{dez})
1809:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 10 übertragen werden dürfen.	OCTET- STRING[2]	RO	08 1A

Index 1A00 Al TxPDO-Map Standard Ch. 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	Al TxPDO-Map Standard Ch.1	PDO Mapping TxPDO 1	UINT8	RW	0x0B (11 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x01 (Underrange))	UINT32	RW	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x02 (Overrange))	UINT32	RW	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x03 (Limit 1))	UINT32	RW	0x6000:03, 2
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x05 (Limit 2))	UINT32	RW	0x6000:05, 2
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x07 (Error))	UINT32	RW	0x6000:07, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RW	0x0000:00, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (5 bits align)	UINT32	RW	0x0000:00, 5
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x0E (Sync error))	UINT32	RW	0x6000:0E, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x0F (TxPDO-State))	UINT32	RW	0x6000:0F, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x10 (TxPDO-Toggle))	UINT32	RW	0x6000:10, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x11 (Value))	UINT32	RW	0x6000:11, 16

Index 1A01 AI TxPDO-Map Compact Ch. 1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	AI TxPDO-Map Compact Ch.1	PDO Mapping TxPDO 2	UINT8	RW	0x01 (1 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (Al Inputs Ch.1), entry 0x11 (Value))	UINT32	RW	0x6000:11, 1

Index 1A02 AI TxPDO-Map Standard Ch. 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	Al TxPDO-Map Standard Ch.2	PDO Mapping TxPDO 3	UINT8	RW	0x0B (11 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x01 (Underrange))	UINT32	RW	0x6010:01, 1
1A02:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x02 (Overrange))	UINT32	RW	0x6010:02, 1
1A02:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x03 (Limit 1))	UINT32	RW	0x6010:03, 2
1A02:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x05 (Limit 2))	UINT32	RW	0x6010:05, 2
1A02:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x07 (Error))	UINT32	RW	0x6010:07, 1
1A02:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RW	0x0000:00, 1
1A02:07	SubIndex 007	7. PDO Mapping entry (5 bits align)	UINT32	RW	0x0000:00, 5
1A02:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x0E (Sync error))	UINT32	RW	0x6010:0E, 1
1A02:09	SubIndex 009	9. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x0F (TxPDO-State))	UINT32	RW	0x6010:0F, 1
1A02:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x10 (TxPDO-Toggle))	UINT32	RW	0x6010:10, 1
1A02:0B	SubIndex 011	11. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x11 (Value))	UINT32	RW	0x6010:11, 16

Index 1A03 Al TxPDO-Map Compact Ch. 2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	AI TxPDO-Map Compact Ch.2	PDO Mapping TxPDO 4	UINT8	RW	0x01 (1 _{dez})
1A03:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (Al Inputs Ch.2), entry 0x11 (Value))	UINT32	RW	0x6010:11, 1

Index 1A04 AI TxPDO-Map Standard Ch. 3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	Al TxPDO-Map Standard Ch.3	PDO Mapping TxPDO 5	UINT8	RW	0x0B (11 _{dez})
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x01 (Underrange))	UINT32	RW	0x6020:01, 1
1A04:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x02 (Overrange))	UINT32	RW	0x6020:02, 1
1A04:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x03 (Limit 1))	UINT32	RW	0x6020:03, 2
1A04:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x05 (Limit 2))	UINT32	RW	0x6020:05, 2
1A04:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x07 (Error))	UINT32	RW	0x6020:07, 1
1A04:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RW	0x0000:00, 1
1A04:07	SubIndex 007	7. PDO Mapping entry (5 bits align)	UINT32	RW	0x0000:00, 5
1A04:08	SubIndex 008	8. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x0E (Sync error))	UINT32	RW	0x6020:0E, 1
1A04:09	SubIndex 009	9. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x0F (TxPDO-State))	UINT32	RW	0x6020:0F, 1
1A04:0A	SubIndex 010	10. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x10 (TxPDO-Toggle))	UINT32	RW	0x6020:10, 1
1A04:0B	SubIndex 011	11. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x11 (Value))	UINT32	RW	0x6020:11, 16

Index 1A05 AI TxPDO-Map Compact Ch. 3

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	AI TxPDO-Map Compact Ch.3	PDO Mapping TxPDO 6	UINT8	RW	0x01 (1 _{dez})
1A05:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (Al Inputs Ch.3), entry 0x11 (Value))	UINT32	RW	0x6020:11, 1

Index 1A06 AI TxPDO-Map Standard Ch. 4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A06:0	Al TxPDO-Map Standard Ch.4	PDO Mapping TxPDO 7	UINT8	RW	0x0B (11 _{dez})
1A06:01	SubIndex 001	1. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x01 (Underrange))	UINT32	RW	0x6030:01, 1
1A06:02	SubIndex 002	2. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x02 (Overrange))	UINT32	RW	0x6030:02, 1
1A06:03	SubIndex 003	3. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x03 (Limit 1))	UINT32	RW	0x6030:03, 2
1A06:04	SubIndex 004	4. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x05 (Limit 2))	UINT32	RW	0x6030:05, 2
1A06:05	SubIndex 005	5. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x07 (Error))	UINT32	RW	0x6030:07, 1
1A06:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RW	0x0000:00, 1
1A06:07	SubIndex 007	7. PDO Mapping entry (5 bits align)	UINT32	RW	0x0000:00, 5
1A06:08	SubIndex 008	8. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x0E (Sync error))	UINT32	RW	0x6030:0E, 1
1A06:09	SubIndex 009	9. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x0F (TxPDO-State))	UINT32	RW	0x6030:0F, 1
1A06:0A	SubIndex 010	10. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x10 (TxPDO-Toggle))	UINT32	RW	0x6030:10, 1
1A06:0B	SubIndex 011	11. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x11 (Value))	UINT32	RW	0x6030:11, 16

Index 1A07 AI TxPDO-Map Compact Ch. 4

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	AI TxPDO-Map Compact Ch.4	PDO Mapping TxPDO 8	UINT8	RW	0x01 (1 _{dez})
1A07:01	SubIndex 001	1. PDO Mapping entry (object 0x6030 (Al Inputs Ch.4), entry 0x11 (Value))	UINT32	RW	0x6030:11, 1

Index 1A08 AI TxPDO-Map Standard Ch. 5

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A08:0	AI TxPDO-Map Standard Ch.5	PDO Mapping TxPDO 9	UINT8	RW	0x0B (11 _{dez})
1A08:01	SubIndex 001	1. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x01 (Underrange))	UINT32	RW	0x6040:01, 1
1A08:02	SubIndex 002	2. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x02 (Overrange))	UINT32	RW	0x6040:02, 1
1A08:03	SubIndex 003	3. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x03 (Limit 1))	UINT32	RW	0x6040:03, 2
1A08:04	SubIndex 004	4. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x05 (Limit 2))	UINT32	RW	0x6040:05, 2
1A08:05	SubIndex 005	5. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x07 (Error))	UINT32	RW	0x6040:07, 1
1A08:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RW	0x0000:00, 1
1A08:07	SubIndex 007	7. PDO Mapping entry (5 bits align)	UINT32	RW	0x0000:00, 5
1A08:08	SubIndex 008	8. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x0E (Sync error))	UINT32	RW	0x6040:0E, 1
1A08:09	SubIndex 009	9. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x0F (TxPDO-State))	UINT32	RW	0x6040:0F, 1
1A08:0A	SubIndex 010	10. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x10 (TxPDO-Toggle))	UINT32	RW	0x6040:10, 1
1A08:0B	SubIndex 011	11. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x11 (Value))	UINT32	RW	0x6040:11, 16

Index 1A09 Al TxPDO-Map Compact Ch. 5

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A09:0	AI TxPDO-Map Compact Ch.5	PDO Mapping TxPDO 10	UINT8	RW	0x01 (1 _{dez})
1A09:01	SubIndex 001	1. PDO Mapping entry (object 0x6040 (Al Inputs Ch.5), entry 0x11 (Value))	UINT32	RW	0x6040:11, 1

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x00 (0 _{dez})

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x05 (5 _{dez})
1C13:01	Subindex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	Subindex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A02 (6658 _{dez})
1C13:03	Subindex 003	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A04 (6660 _{dez})
1C13:04	Subindex 004	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A06 (6662 _{dez})
1C13:05	Subindex 005	5. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A08 (6664 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		• 34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x00030D40
		Free Run: Zykluszeit des lokalen Timers			(200000 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RW	0x0002E630 (19000 _{dez})
1C33:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x400B (16359 _{dez})
		Bit 0: Free Run wird unterstützt			
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C33:08)			
1C33:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x00030D40 (200000 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x00002710 (10000 _{dez})
1C33:07	Minimum delay time	Min. Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:08	Command	0: Messung der lokalen Zykluszeit wird gestoppt	UINT16	RW	0x0000 (0 _{dez})
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C33:03, 0x1C33:06, 0x1C33:09 werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt.			
1C33:09	Maximum Delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C33:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC-Mode)	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	Anzahl zu kurzer Abstände zwischen SYNC0 und SYNC1 Event (nur im DC-Mode)	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC-Mode)	BOOLEAN	RO	0x00 (0 _{dez})

7 Anhang

7.1 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- · Reparaturservice
- Ersatzteilservice
- · Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com
Internet: www.beckhoff.com

Mehr Informationen: www.beckhoff.com/EJ3255

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

