BECKHOFF New Automation Technology

Dokumentation | DE

EP9576-1032

Brems-Chopper-Box

Inhaltsverzeichnis

1	Vorw	-		
	1.1	Hinweis	e zur Dokumentation	5
	1.2	Sicherhe	eitshinweise	6
	1.3	Ausgab	estände der Dokumentation	7
2	Ethe	rCAT Bo	x - Einführung	8
3	Prod	uktübers	sicht	10
•	3.1		Jng	
	3.2		haltbild	
	3.3		che Daten	
	3.4		nfang	
	3.5		sabbild	
	3.6		logie	
4	Mont	age und	Anschlüsse	16
-r	4.1	•	e	
		4.1.1	Abmessungen	
		4.1.2	Befestigung	
		4.1.3	Funktionserdung (FE)	
	4.2	Anschlü	isse	
		4.2.1	Versorgungsspannungen	
		4.2.2	EtherCAT	
5	Inhet	riebnahr	me und Konfiguration	22
•	5.1		en in ein TwinCAT-Projekt	
	5.2		rter-Verzeichnis öffnen (CoE)	
	5.3		r	
	5.4	Messwe	erte	24
		5.4.1	Temperaturen	24
		5.4.2	Strom und Spannung	26
	5.5	Schutzfu	unktionen	27
		5.5.1	Übertemperatur-Schutz	27
		5.5.2	Überstrom-Schutz	27
	5.6	Wiederh	nerstellen des Auslieferungszustandes	28
	5.7	Außerbe	etriebnahme	29
6	CoE-	Paramet	er	30
	6.1	Objekt-\	Verzeichnis	30
	6.2	Objektb	eschreibung	31
		6.2.1	Objekte zur Parametrierung	31
		6.2.2	Objekte zur Information und Diagnose	32
		6.2.3	Standard-Objekte	33
		6.2.4	PDO Mapping and PDO Assignment	35
		6.2.5	Sync Manager Objekte	37
7	Anha	ng		39
	7.1	1 Allgemeine Betriebsbedingungen		
	7.2	Zubehöı	r	40

Version: 1.0

7.3	Versions	identifikation von EtherCAT-Geräten	. 41
	7.3.1	Beckhoff Identification Code (BIC)	45
7.4	Support	und Service	. 47

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentlichte Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH. Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Erklärung der Hinweise

In der vorliegenden Dokumentation werden die folgenden Hinweise verwendet. Diese Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

GEFAHR

Akute Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!

⚠ WARNUNG

Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen!

⚠ VORSICHT

Schädigung von Personen!

Wenn dieser Sicherheitshinweis nicht beachtet wird, können Personen geschädigt werden!

HINWEIS

Schädigung von Umwelt/Geräten oder Datenverlust

Wenn dieser Hinweis nicht beachtet wird, können Umweltschäden, Gerätebeschädigungen oder Datenverlust entstehen.

Tipp oder Fingerzeig

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
1.0	Erste Veröffentlichung

Firm- und Hardware-Stände

Diese Dokumentation bezieht sich auf den zum Zeitpunkt ihrer Erstellung gültigen Firm- und Hardware-Stand.

Die Eigenschaften der Module werden stetig weiterentwickelt und verbessert. Module älteren Fertigungsstandes können nicht die gleichen Eigenschaften haben, wie Module neuen Standes. Bestehende Eigenschaften bleiben jedoch erhalten und werden nicht geändert, so dass ältere Module immer durch neue ersetzt werden können.

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der EtherCAT Box aufgedruckten Batch-Nummer (D-Nummer) entnehmen.

Syntax der Batch-Nummer (D-Nummer)

D: WW YY FF HH

Beispiel mit D-Nr. 29 10 02 01:

WW - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr

FF - Firmware-Stand

HH - Hardware-Stand

Deispiel mit D-Nr. 29 10 02 01:

29 - Produktionswoche 29

10 - Produktionsjahr 2010

02 - Firmware-Stand 02

HH - Hardware-Stand 01

Weitere Informationen zu diesem Thema: <u>Versionsidentifikation von EtherCAT-Geräten [▶ 41]</u>.

2 EtherCAT Box - Einführung

Das EtherCAT-System wird durch die EtherCAT-Box-Module in Schutzart IP67 erweitert. Durch das integrierte EtherCAT-Interface sind die Module ohne eine zusätzliche Kopplerbox direkt an ein EtherCAT-Netzwerk anschließbar. Die hohe EtherCAT-Performance bleibt also bis in jedes Modul erhalten.

Die außerordentlich geringen Abmessungen von nur 126 x 30 x 26,5 mm (H x B x T) sind identisch zu denen der Feldbus Box Erweiterungsmodule. Sie eignen sich somit besonders für Anwendungsfälle mit beengten Platzverhältnissen. Die geringe Masse der EtherCAT-Module begünstigt u. a. auch Applikationen, bei denen die I/O-Schnittstelle bewegt wird (z. B. an einem Roboterarm). Der EtherCAT-Anschluss erfolgt über geschirmte M8-Stecker.

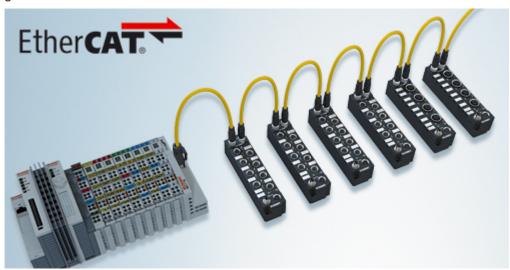


Abb. 1: EtherCAT-Box-Module in einem EtherCAT-Netzwerk

Die robuste Bauweise der EtherCAT-Box-Module erlaubt den Einsatz direkt an der Maschine. Schaltschrank und Klemmenkasten werden hier nicht mehr benötigt. Die Module sind voll vergossen und daher ideal vorbereitet für nasse, schmutzige oder staubige Umgebungsbedingungen.

Durch vorkonfektionierte Kabel vereinfacht sich die EtherCAT- und Signalverdrahtung erheblich. Verdrahtungsfehler werden weitestgehend vermieden und somit die Inbetriebnahmezeiten optimiert. Neben den vorkonfektionierten EtherCAT-, Power- und Sensorleitungen stehen auch feldkonfektionierbare Stecker und Kabel für maximale Flexibilität zur Verfügung. Der Anschluss der Sensorik und Aktorik erfolgt je nach Einsatzfall über M8- oder M12-Steckverbinder.

Die EtherCAT-Module decken das typische Anforderungsspektrum der I/O-Signale in Schutzart IP67 ab:

- digitale Eingänge mit unterschiedlichen Filtern (3,0 ms oder 10 μs)
- · digitale Ausgänge mit 0,5 oder 2 A Ausgangsstrom
- · analoge Ein- und Ausgänge mit 16 Bit Auflösung
- · Thermoelement- und RTD-Eingänge
- · Schrittmotormodule

Auch XFC (eXtreme Fast Control Technology)-Module wie z. B. Eingänge mit Time-Stamp sind verfügbar.

Abb. 2: EtherCAT Box mit M8-Anschlüssen für Sensor/Aktoren

Abb. 3: EtherCAT Box mit M12-Anschlüssen für Sensor/Aktoren

Basis-Dokumentation zu EtherCAT

Eine detaillierte Beschreibung des EtherCAT-Systems finden Sie in der System Basis-Dokumentation zu EtherCAT, die auf unserer Homepage (www.beckhoff.de) unter Downloads zur Verfügung steht.

3 Produktübersicht

3.1 Einführung

Die EtherCAT Box EP9576-1032 enthält Hochleistungskondensatoren zur Stabilisierung von Versorgungsspannungen. In Verbindung mit antriebstechnischen Anwendungen, werden Rückströme gespeichert und damit Überspannungen verhindert. Übersteigt die rückgespeiste Energie das Puffervermögen, wird diese abgeleitet.

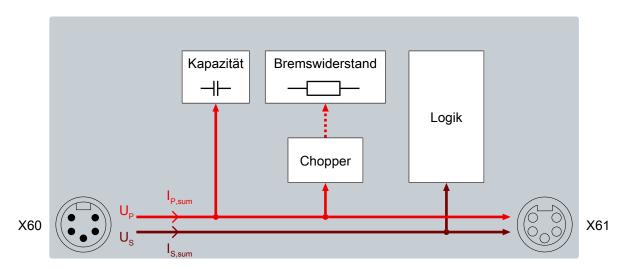
Der Bremswiderstand wandelt überschüssige Energie, die beim Bremsen von Motoren entsteht, in Wärme um. Die EP9576-1032 kann in Verbindung mit den Schrittmotormodulen EP70xx, den Servomotormodulen EP7211, der DC-Motor-Endstufe EP7342 oder anderen kompakten Antriebslösungen eingesetzt werden.

Die EP9576-1032 verfügt über interne Diagnosefunktionen. Warnungen oder Fehlermeldungen z. B. bei Erreichen/Überschreiten der erlaubten Grenztemperaturwerte werden über EtherCAT gemeldet.

Quick Links

Technische Daten [▶ 11]

Prozessabbild [▶ 13]


Anschlüsse [▶ 18]

Inbetriebnahme [▶ 22]

3.2 Blockschaltbild

Das Blockschaltbild zeigt die Verteilung der Spannungen U_s und U_P innerhalb von EP9576-1032.

3.3 Technische Daten

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT		
Anschluss	2 x M8-Buchse, 4polig, grün	
Potenzialtrennung	500 V	

Versorgungsspannungen			
Anschluss	Eingang: 7/8" - Stecker, 5-polig		
	Weiterleitung: 7/8" - Buchse, 5-polig		
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)		
U _S Summenstrom I _{S,sum}	max. 16 A bei 40 °C		
Stromaufnahme aus U _s	120 mA		
U _P Nennspannung	beliebig, bis 72 V		
U _P Summenstrom I _{P,sum}	max. 16 A bei 40 °C		
Stromaufnahme aus U _P Chopper-Strom bei Überspannung.			

U _P Spannungs-Stabilisierung		
Kapazität (intern)	155 μF	
Bremswiderstand (intern)	11 Ω, 60 W	
Chopper-Einschaltschwelle	Beliebig einstellbar	
Bremswiderstand Überstrom-Abschaltung	15,5 A	
Rippelstrom	max. 10 A	

Gehäusedaten			
Abmessungen B x H x T	60 mm x 150 mm x 26,5 mm (ohne Steckverbinder, ohne Kühlkörper)		
Material	PA6 (Polyamid)		
Einbaulage	beliebig		

Umgebungsbedingungen			
Umgebungstemperatur im Betrieb	-25+60 °C		
Umgebungstemperatur bei Lagerung	-40+85 °C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		

Zulassungen	
Zulassungen	CE, cURus in Vorbereitung

3.4 Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

- 1x EP9576-1032
- 2x Schutzkappe für EtherCAT-Buchse, M8, grün (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Ausgang, 7/8", schwarz (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz

Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u.U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.5 Prozessabbild

TwinCAT zeigt das Prozessabbild in einer Baumstruktur an.

Box 1 (EP9576-1032)

🔺 🔑 BCT Inputs

Terminal Overtemperature

I2T error

I2T warning

Overvoltage

Undervoltage

Chopper on

Overcurrent Protection

Input cycle counter

DC link voltage

Resistor Current

Duty Cycle

🕨 📮 WcState

🕨 📮 InfoData

Terminal Overtemperature

Wenn TRUE: Die <u>interne Temperatur [▶ 25]</u> ist höher als der Grenzwert:

· Werkseinstellung: 80 °C

Parameter 8000:14

I2T error

Wenn TRUE: Die <u>Temperatur des Bremswiderstands</u>
[• 24] ist höher als der Grenzwert:

• Werkseinstellung: 120 °C

Parameter 8000:19

Der Chopper ist deaktiviert, sofern der <u>Übertemperatur</u>-Schutz [**>** 27] nicht deaktiviert wurde.

I2T warning

Wenn TRUE: Die <u>Temperatur des Bremswiderstands</u>
[▶ 24] ist höher als der Grenzwert:

• Werkseinstellung: 100 °C

Parameter 8000:18

Overvoltage

Wenn TRUE: Die Spannung U_P ist höher als der Überspannungs-Grenzwert:

• Werkseinstellung: 50 V

• Parameter 8000:11

Der Chopper ist aktiv, sofern keine <u>Schutzfunktion</u> [<u>▶ 27</u>] dies verhindert.

Undervoltage

Wenn TRUE: Die Spannung U_P ist niedriger als der Unterspannungs-Grenzwert:

· Werkseinstellung: 22 V

Parameter 8000:12

Chopper on

Wenn TRUE: Der <u>Chopper [• 23]</u> ist aktiv. Der Bremswiderstand wandelt aktuell elektrische Energie in Wärmeenergie um.

Overcurrent Protection

Wenn TRUE: Der Chopper wurde durch den <u>Überstrom-Schutz</u> [<u>> 27</u>] deaktiviert.

Input cycle counter

DC link voltage

Der Messwert [▶ 26] der Spannung U_P. Einheit: mV

Resistor Current

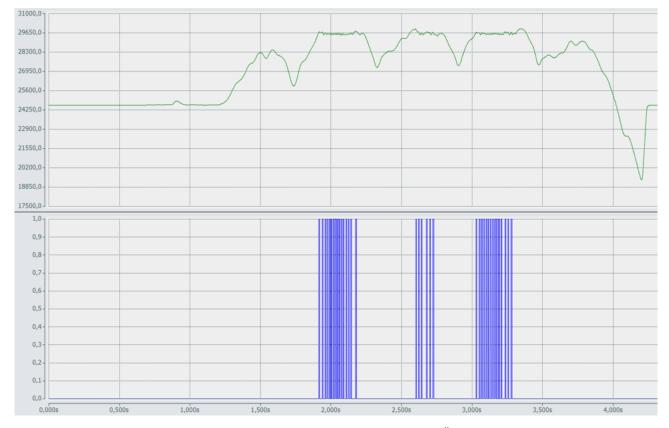
Der <u>Messwert</u> [▶ 26] des Stroms durch den Bremswiderstand. Einheit: mA.

Duty Cycle

Das aktuelle Puls-Pausen-Verhältnis des <u>Choppers</u> [<u>\bullet</u> 23]. Einheit: %.

Optionale Prozessdatenobjekte

Sie können dem Prozessabbild ein weiteres Prozessdatenobjekt hinzufügen [▶ 24]:


I2T load factor

Die aktuelle Temperatur des Bremswiderstands. Einheit: °C.

3.6 Technologie

Die folgende Abbildung zeigt einen beispielhaften Spannungsverlauf, der die Funktionsweise von EP9576-1032 verdeutlicht. Das obere Diagramm zeigt die Spannung U_P im mV.

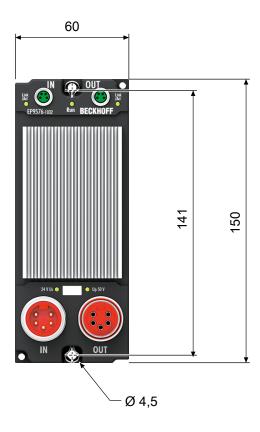
In diesem Beispiel wird eine Motor-Endstufe mit $U_P = 24 \text{ V}$ versorgt. Der Überspannungs-Grenzwert ist auf 28 V eingestellt.

Wenn der Motor bremst oder wenn die Motorwelle durch ein externes Drehmoment bewegt wird, entsteht elektrische Energie. Die Spannung U_P steigt an.

Wenn U_P den Überspannungs-Grenzwert überschreitet, wird der Brems-Chopper eingeschaltet. Der Brems-Chopper regelt den Strom durch den Bremswiderstand. Im Bremswiderstand wird die überschüssige Energie abgeleitet und in Wärme umgewandelt. Die Spannung U_P sinkt wieder.

4 Montage und Anschlüsse

4.1 Montage


⚠ VORSICHT

Heiße Oberflächen.

Verbrennungsgefahr.

- Berühren Sie das Gerät nicht während des Betriebs.
- Lassen Sie das Gerät nach dem Betrieb ausreichend abkühlen, bevor sie es berühren.

4.1.1 Abmessungen

Alle Maße sind in Millimeter angegeben.

Gehäuseeigenschaften

Gehäusematerial	PA6 (Polyamid)	
Vergussmasse	Polyurethan	
Montage	zwei Befestigungslöcher Ø 4,5 mm für M4	
Metallteile	Messing, vernickelt	
Kontakte	CuZn, vergoldet	
Stromweiterleitung	max. 16 A bei 40°C (gemäß IEC 60512-3)	
Einbaulage	beliebig	
Schutzart	im verschraubten Zustand IP65, IP66, IP67 (gemäß EN 60529)	
Abmessungen (H x B x T)	ca. 150 x 60 x 26,5 mm (ohne Steckverbinder)	

4.1.2 Befestigung

HINWEIS

Verschmutzung bei der Montage

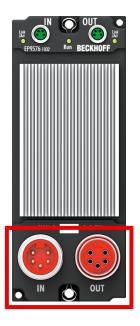
Verschmutzte Steckverbinder können zu Fehlfunktion führen. Die Schutzart IP67 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind.

• Schützen Sie die Steckverbinder bei der Montage vor Verschmutzung.

Montieren Sie das Modul mit zwei M4-Schrauben an den zentriert angeordneten Befestigungslöchern.

4.1.3 Funktionserdung (FE)

Die <u>Befestigungslöcher</u> [▶ 17] dienen gleichzeitig als Anschlüsse für die Funktionserdung (FE).


Stellen Sie sicher, dass die Box über beide Befestigungsschrauben niederimpedant geerdet ist. Das erreichen Sie z.B., indem Sie die Box an einem geerdeten Maschinenbett montieren.

4.2 Anschlüsse

4.2.1 Versorgungsspannungen

4.2.1.1 Steckverbinder

HINWEIS

Keine Funktionalität ohne U_s.

Überspannungen auf U_P werden nicht abgeleitet, falls U_S fehlt. Defekt möglich.

- Schließen Sie nicht nur $U_{\scriptscriptstyle P}$ an, sondern auch $U_{\scriptscriptstyle S}.$

HINWEIS

Der zulässige Summenstrom darf nicht überschritten werden.

Defekt möglich.

- Stellen Sie sicher, dass pro Pin höchstens 16 A bei 40 °C fließen. Siehe "Summenstrom" in den <u>Technischen Daten [\bullet 11].</u>
- Kalkulieren Sie den weitergeleiteten Versorgungsstrom bei der Berechnung mit ein.

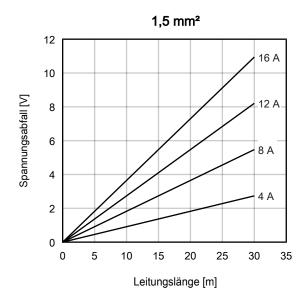
Eingang X60	Weiterleitung X61	Pin	Symbol	Beschreibung
7/8"-Stecker	7/8"-Buchse			
		1	GND _P	GND für U _P
1 5	51	2	GNDs	GND für U _s
		3 FE Funktionserdung	Funktionserdung	
2 4	4 2 2	4	Us	Versorgungsspannung 24 V _{DC}
3	3	5	U _P	Versorgungsspannung 072 V _{DC}

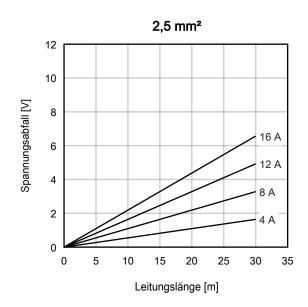
Erden Sie die Ader "FE" am anderen Ende des Kabels.

Der Pin "FE" ist direkt mit den <u>Anschlüssen für die Funktionserde</u> [▶ 17] verbunden.

4.2.1.2 Status-LEDs

Der Status der Versorgungsspannungen wird durch zwei LEDs signalisiert. Eine Status-LED leuchtet grün, wenn die jeweilige Versorgungsspannung am Versorgungsspannung-Eingang anliegt.




4.2.1.3 Leitungsverluste

Beachten Sie bei der Planung einer Anlage den Spannungsabfall an der Versorgungs-Zuleitung. Vermeiden Sie, dass der Spannungsabfall so hoch wird, dass die Versorgungsspannungen an der Box die minimale Nennspannung unterschreiten.

Berücksichtigen Sie auch Spannungsschwankungen des Netzteils.

Spannungsabfall an der Versorgungs-Zuleitung

4.2.2 EtherCAT

4.2.2.1 Steckverbinder

HINWEIS

Verwechselungs-Gefahr: Versorgungsspannungen und EtherCAT

Defekt durch Fehlstecken möglich.

Beachten Sie die farbliche Codierung der Steckverbinder:

schwarz: Versorgungsspannungen

grün: EtherCAT

Für den ankommenden und weiterführenden EtherCAT-Anschluss haben EtherCAT-Box-Module zwei grüne M8-Buchsen.

Abb. 4: EtherCAT Steckverbinder

Kontaktbelegung

Abb. 5: M8-Buchse

EtherCAT	M8- Steckverbinder	Aderfarben		
Signal	Kontakt	ZB9010, ZB9020, ZB9030, ZB9032, ZK1090-6292, ZK1090-3xxx-xxxx	ZB9031 und alte Versionen von ZB9030, ZB9032, ZK1090-3xxx- xxxx	TIA-568B
Tx +	1	gelb ¹⁾	orange/weiß	weiß/orange
Tx -	4	orange ¹⁾	orange	orange
Rx +	2	weiß ¹⁾	blau/weiß	weiß/grün
Rx -	3	blau ¹⁾	blau	grün
Shield	Gehäuse	Schirm	Schirm	Schirm

¹⁾ Aderfarben nach EN 61918

Anpassung der Aderfarben für die Leitungen ZB9030, ZB9032 und ZK1090-3xxxxxxxxx

Zur Vereinheitlichung wurden die Aderfarben der Leitungen ZB9030, ZB9032 und ZK1090-3xxx-xxxx auf die Aderfarben der EN61918 umgestellt: gelb, orange, weiß, blau. Es sind also verschiedene Farbkodierungen im Umlauf. Die elektrischen Eigenschaften der Leitungen sind bei der Umstellung der Aderfarben erhalten geblieben.

4.2.2.2 Status-LEDs

Abb. 6: EtherCAT Status-LEDs

L/A (Link/Act)

Neben jeder EtherCAT-Buchse befindet sich eine grüne LED, die mit "L/A" beschriftet ist. Die LED signalisiert den Kommunikationsstatus der jeweiligen Buchse:

LED	Bedeutung
aus	keine Verbindung zum angeschlossenen EtherCAT-Gerät
leuchtet	LINK: Verbindung zum angeschlossenen EtherCAT-Gerät
blinkt ACT: Kommunikation mit dem angeschlossenen EtherCAT-Ge	

Run

Jeder EtherCAT-Slave hat eine grüne LED, die mit "Run" beschriftet ist. Die LED signalisiert den Status des Slaves im EtherCAT-Netzwerk:

LED	Bedeutung
aus	Slave ist im Status "Init"
blinkt gleichmäßig	Slave ist im Status "Pre-Operational"
blinkt vereinzelt	Slave ist im Status "Safe-Operational"
leuchtet	Slave ist im Status "Operational"

Beschreibung der Stati von EtherCAT-Slaves

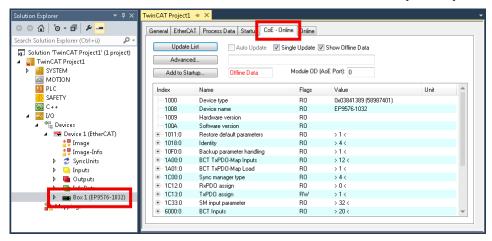
4.2.2.3 Leitungen

Verwenden Sie zur Verbindung von EtherCAT-Geräten geschirmte Ethernet-Kabel, die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen.

EtherCAT nutzt vier Adern für die Signalübertragung.

Aufgrund der automatischen Leitungserkennung "Auto MDI-X" können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte, als auch gekreuzte Kabel (Cross-Over) verwenden.

Detaillierte Empfehlungen zur Verkabelung von EtherCAT-Geräten



5 Inbetriebnahme und Konfiguration

5.1 Einbinden in ein TwinCAT-Projekt

Die Vorgehensweise zum Einbinden in ein TwinCAT-Projekt ist in dieser Schnellstartanleitung beschrieben.

5.2 Parameter-Verzeichnis öffnen (CoE)

- 1. Im Solution Explorer: Doppelklicken Sie auf EP9576-1032.
- 2. Klicken Sie auf den Karteireiter "CoE Online".
- ⇒ Sie sehen das CoE-Verzeichnis von EP9576-1032. Hier können Sie die Werte von Parametern überprüfen und ändern.

Parameter auf die Werkseinstellungen zurücksetzen

Wenn Sie nicht wissen, ob bereits Parameter von der vorliegenden EP9576-1032 geändert wurden, können Sie vor der Parametrierung alle <u>Parameter auf die Werkseinstellungen zurücksetzen [▶ 28]</u>.

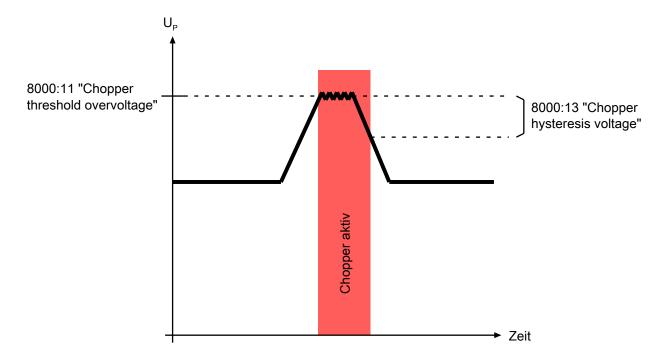
5.3 Chopper

HINWEIS

Der Chopper wird bei <u>Übertemperatur [▶ 27]</u> deaktiviert

Überspannungen werden bei Übertemperatur nicht mehr abgeleitet. Defekt durch Überspannung möglich.

- Überwachen Sie das Bit 12T warning [13], um einen Temperatur-Anstieg rechtzeitig zu erkennen.
- Deaktivieren Sie gegebenenfalls den Antrieb, wenn das Bit <a>12T error [▶ 13] TRUE ist.


Der Chopper wird automatisch aktiviert, wenn die Spannung U_P den Grenzwert "Chopper threshold overvoltage" überschreitet. Der Chopper regelt den Strom durch den Bremswiderstand so, dass die Spannung U_P nicht weiter ansteigt.

Der Chopper wird automatisch deaktiviert, wenn die Spannung U_P wieder um die "Chopper hysteresis voltage" abgesunken ist.

Parameter

Index (hex)	Name	Beschreibung	Daten- typ	Flags	Default
8000:11		Wenn die Spannung U _P diesen Wert überschreitet, wird der Chopper eingeschaltet.	UINT32	RW	50000 _{dez}
		Einheit: mV.			
8000:13	Chopper hysteresis voltage	Hysterese-Spannung für das Abschalten des Choppers.	UINT32	RW	1000 _{dez}
		Einheit: mV.			

Die folgende Abbildung zeigt den Einfluss der Parameter an einem beispielhaften Verlauf der Spannung Up:

5.4 Messwerte

5.4.1 Temperaturen

5.4.1.1 Temperatur des Bremswiderstands

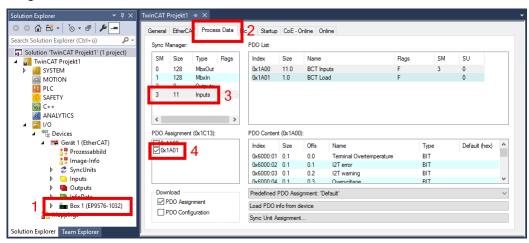
Die Temperatur des Bremswiderstands wird nicht direkt gemessen. Sie wird intern aus dem zeitlichen Verlauf des <u>Strom-Messwerts</u> [• 26] berechnet.

Temperatur-Berechnung konfigurieren

Für die Berechnung der Temperatur des Bremswiderstands muss die Umgebungstemperatur bekannt sein. Tragen Sie die Umgebungstemperatur in den folgenden CoE-Parameter ein:

8000:15 "Ambient temperature offset"

Werkseinstellung: 50 °C


Übertemperatur-Schutz

Wenn die Temperatur des Bremswiderstands zu hoch ist, deaktiviert der <u>Übertemperatur-Schutz</u> [▶ 27] den <u>Chopper</u> [▶ 23].

Prozessdaten aktivieren

Sie können sich die Temperatur des Bremswiderstands in den Prozessdaten anzeigen lassen. Aktivieren Sie dazu Sie das Prozessdatenobjekt 0x1A01.

Vorgehensweise in TwinCAT 3:

- 1. Im Solution Explorer: Doppelklicken Sie auf EP9576-1032.
- 2. Klicken Sie auf den Karteireiter "Process data".
- 3. Im Feld "Sync Manager": Klicken Sie auf "Inputs"
- 4. Im Feld "PDO Assignment (0x1C13)": Setzen Sie einen Haken bei "0x1A01"
- ⇒ Das Prozessdatenobjekt BCT Load [▶ 14] wird zu den Prozessdaten hinzugefügt.

5.4.1.2 Interne Temperatur

Die aktuelle interne Temperatur steht im CoE-Parameter A000:11 "Temperature".

Die interne Temperatur ist rein informativ. Sie wird durch keine <u>Schutz-Funktion</u> [▶ <u>27]</u> überwacht.

5.4.2 Strom und Spannung

In den <u>Prozessdaten</u> [▶ 13] befinden sich die Messwerte von zwei elektrischen Größen:

- Die Spannung U_P: "DC link voltage"
- Der Strom durch den Bremswiderstand: "Resistor current"

5.4.2.1 Messwert-Filter

Die Messwerte "DC Link voltage" und "Resistor current" können mit einem digitalen Filter gefiltert werden. In der Werkseinstellung ist das Messwert-Filter bereits aktiviert.

Parameter

Index (hex)	Name		Daten- typ	Flags	Default
8000:02	Enable filter	Messwert-Filter [▶ 26] aktivieren.	BOOL	RW	TRUE
8000:1A	Filter Settings	Messwert-Filter Typ:	UINT16	RW	0
		0: FIR 50Hz 1: FIR 60Hz 2: IIR1 3: IIR2 4: IIR3 5: IIR4 6: IIR5 7: IIR6 8: IIR7 9: IIR8			

5.5 Schutzfunktionen

5.5.1 Übertemperatur-Schutz

Wenn die <u>Temperatur des Bremswiderstands</u> [**>** <u>24</u>] den Grenzwert "I2T error level" überschreitet, wird der <u>Chopper</u> [**>** <u>23</u>] deaktiviert. Das Bit "I2T error" in den <u>Prozessdaten</u> [**>** <u>13</u>] wird auf TRUE gesetzt.

Der Chopper wird wieder aktiviert, wenn die Temperatur des Bremswiderstands den Grenzwert "I2T warn level" unterschreitet. (Hysterese)

Parameter

Index (hex)	Name	3	Daten- typ	Flags	Default
8000:18	I2T warn level	Wenn die interne Temperatur diesen Wert überschreitet, wird das Bit "I2T warning " auf TRUE gesetzt.	UINT16	RW	100 _{dez}
		Einheit: °C.			
8000:19	I2T error level	Wenn die interne Temperatur diesen Wert überschreitet, wird der Chopper deaktiviert. Das Bit "I2T error" wird auf TRUE gesetzt,	UINT16	RW	120 _{dez}
		Einheit: °C.			

Übertemperatur-Warnung

Das Bit "I2T warning" in den <u>Prozessdaten [▶ 13]</u> dient als Frühwarnsystem.

Wenn die Temperatur des Bremswiderstands den Grenzwert "I2T warn level" überschreitet, wird das Bit auf TRUE gesetzt. Der Chopper wird aber noch nicht deaktiviert. Sie können also noch auf die Warnung reagieren.

Deaktivieren

Sie können den Übertemperatur-Schutz deaktivieren, indem Sie den Parameter 8000:01 "Disable chopper on overtemperature" auf FALSE setzen.

5.5.2 Überstrom-Schutz

Der Überstrom-Schutz deaktiviert den <u>Chopper [▶ 23]</u>, wenn der Strom durch den Bremswiderstand 15,5 A überschreitet. Das Bit "Overcurrent Protection" in den <u>Prozessdaten [▶ 13]</u> wird auf TRUE gesetzt.

Der Chopper bleibt deaktiviert, bis Sie eine positive Flanke auf den Parameter 8000:03 "Overcurrent Protection Reset" geben: Setzen Sie den Parameter von FALSE auf TRUE.

5.6 Wiederherstellen des Auslieferungszustandes

Um den Auslieferungszustand der Backup-Objekte bei den ELxxxx-Klemmen / EPxxxx- und EPPxxxx-Boxen wiederherzustellen, kann im TwinCAT System Manger (Config-Modus) das CoE-Objekt *Restore default parameters, Subindex 001* angewählt werden).

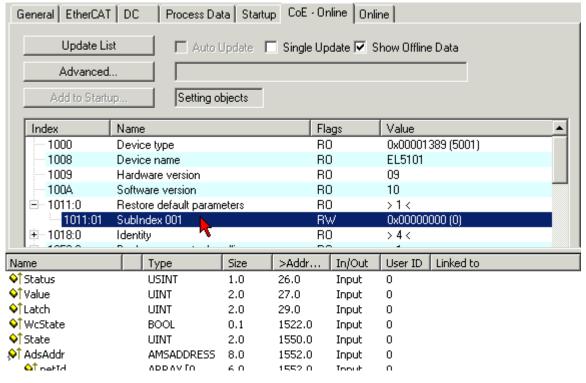


Abb. 7: Auswahl des PDO Restore default parameters

Durch Doppelklick auf *SubIndex 001* gelangen Sie in den Set Value -Dialog. Tragen Sie im Feld *Dec* den Wert **1684107116** oder alternativ im Feld *Hex* den Wert **0x64616F6C** ein und bestätigen Sie mit OK.

Alle Backup-Objekte werden so in den Auslieferungszustand zurückgesetzt.

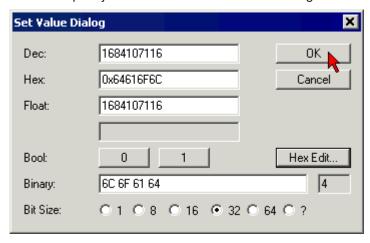


Abb. 8: Eingabe des Restore-Wertes im Set Value Dialog

Alte

Alternativer Restore-Wert

Bei einigen Modulen älterer Bauart lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen:

Dezimalwert: 1819238756

Hexadezimalwert: 0x6C6F6164

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung!

5.7 Außerbetriebnahme

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag!

Setzen Sie das Bus-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Demontage der Geräte beginnen!

Entsorgung

Zur Entsorgung muss das Gerät ausgebaut werden.

Gemäß der WEEE-Richtlinie 2012/19/EU nimmt Beckhoff Altgeräte und Zubehör in Deutschland zur fachgerechten Entsorgung zurück. Die Transportkosten werden vom Absender übernommen.

Senden Sie die Altgeräte mit dem Vermerk "zur Entsorgung" an:

Beckhoff Automation GmbH & Co. KG Abteilung Service Stahlstraße 31 D-33415 Verl

6 CoE-Parameter

6.1 Objekt-Verzeichnis

Index (hex)	Name
1000	Device Type [▶ 33]
1008	Device name [▶ 33]
1009	Hardware version [▶ 33]
100A	Software version [▶ 33]
1011	Restore default parameters [> 33]
1018	Identity [▶ 33]
10F0	Backup parameter handling [▶ 34]
1A00	BCT TxPDO-Map Inputs [▶ 35]
1A01	BCT TxPDO-Map Load [▶ 35]
1C00	Sync manager type [▶ 37]
1C12	RxPDO assign [▶ 35]
1C13	TxPDO assign [▶ 36]
1C33	SM input parameter [▶ 38]
6000	BCT Inputs [▶ 36]
6001	BCT Load Factor [▶ 36]
8000	BCT Settings [▶ 31]
800F	BCT Vendor data [▶ 32]
A000	BCT Diag data [▶ 32]
B000	BCT Command [▶ 34]
F000	Modular Device Profile [▶ 34]
F008	Code word [▶ 34]
F081	Download revision [▶ 34]

6.2 Objektbeschreibung

6.2.1 Objekte zur Parametrierung

Index 8000: BCT Settings

Index (hex)	Name	Beschreibung	Daten- typ	Flags	Default
8000:0	BCT Settings		UINT8	RO	0x1A (26 _{dez})
8000:01	Disable chopper on	Übertemperatur-Schutz [▶ 27] deaktivieren.	BOOL	RW	TRUE
	overtemperature			<u> </u>	
	Enable filter	Messwert-Filter [> 26] aktivieren.	BOOL	RW	TRUE
8000:03	Overcurrent Protection Reset	<u>Überstrom-Schutz</u> [▶ 27] zurücksetzen.	BOOL	RW	FALSE
8000:11	Chopper threshold overvoltage	Wenn die Spannung U _P diesen Wert überschreitet, wird der Chopper eingeschaltet.	UINT32	RW	50000 _{dez}
		Einheit: mV.			
8000:12	Chopper threshold undervoltage	Wenn die Spannung U _P diesen Wert unterschreitet, wird das Bit "Undervoltage" in den Prozessdaten gesetzt.	UINT32	RW	22000 _{dez}
		Einheit: mV.			
8000:13	Chopper hysteresis voltage		UINT32	RW	1000 _{dez}
		Einheit: mV.			
8000:14	Terminal overtemperature threshold	Wenn die interne Temperatur diesen Wert überschreitet, wird das Bit Terminal Overtemperature auf TRUE gesetzt.	UINT8	RW	80 _{dez}
		Einheit: °C.			
8000:15	Ambient temperature offset	Tragen Sie hier die Umgebungstemperatur ein. Dieser Wert geht in die Berechnung der Temperatur des Bremswiderstands [• 24] ein.	UINT8	RW	50 _{dez}
		Einheit: °C.			
8000:18	I2T warn level	Wenn die interne Temperatur diesen Wert überschreitet, wird das Bit "I2T warning " auf TRUE gesetzt.	UINT16	RW	100 _{dez}
		Einheit: °C.			
8000:19	I2T error level	Wenn die interne Temperatur diesen Wert überschreitet, wird der Chopper deaktiviert. Das Bit "I2T error" wird auf TRUE gesetzt,	UINT16	RW	120 _{dez}
		Einheit: °C.			
8000:1A	Filter Settings	Messwert-Filter Typ:	UINT16	RW	0
	· ·	0: FIR 50Hz 1: FIR 60Hz 2: IIR1 3: IIR2 4: IIR3 5: IIR4 6: IIR5 7: IIR6 8: IIR7 9: IIR8			

6.2.2 Objekte zur Information und Diagnose

Index 800F: BCT Vendor data

Index (hex)	Name	Bedeutung	Daten- typ	Flags	Default
800F:0	BCT Vendor data		UINT8	RO	0x16 (22 _{dez})
800F:13	Resistor current offset	Herstellerabgleich: Offset-Wert für die Strommessung [▶ 26].	INT16	RW	-
800F:14	Resistor current gain	Herstellerabgleich: Gain-Wert für die Strommessung [▶ 26].	UINT16	RW	-
800F:15	DC link voltage offset	Herstellerabgleich: Offset-Wert für die Spannungsmessung [> 26].	INT16	RW	-
800F:16	DC link voltage gain	Herstellerabgleich: Offset-Wert für die Spannungsmessung [> 26].	UINT16	RW	-

Index A000: BCT Diag data

Index (hex)	Name	3	Daten- typ	Flags	Default
A000:0	BCT Diag data		UINT8		0x11 (17 _{dez})
A000:11	Temperature	Interne Temperatur [▶ 25]. Einheit: °C.	UINT8	RO	-

6.2.3 Standard-Objekte

Index 1000 Device type

Index (hex)	Name	3	Daten- typ	Flags	Default
1000:0	, , ,	Bit 015: Geräteprofil-Nummer Bit 1631: Moduleprofil-Nummer	UINT32	RO	5001 _{dez}
		(Geräteprofil-Nummer 5001: Modular Device Profile MDP)			

Index 1009 Hardware version

Index (hex)	Name	3	Daten- typ	Flags	Default
1009:0	Hardware version	Hardware-Version [▶ 7]	STRING	RO	-

Index 100A Software version

Index (hex)	Name	3	Daten- typ	Flags	Default
100A:0	Software version	Firmware-Version [▶ 7]	STRING	RO	-

Index 1011 Restore default parameters

Zugriffsrechte: Lesen und Schreiben

Index (hex)	Name	Beschreibung	Daten- typ	Flags	Default
1011:0	Restore default parameters	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1dez)
1011:01	Subindex 001	Setzt die CoE-Parameter auf die Werkseinstellungen zurück.	UINT32	RW	0
		Schreiben Sie dazu den Wert 0x64616F6C in diesen Parameter.			

Index 1018 Identity

Index (hex)	Name	Beschreibung	Daten- typ	Flags	Wert
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4dez)
1018:01	Vendor ID	Hersteller-Kennung (2: Beckhoff Automation)	UINT32	RO	2
1018:02	Product code	Produkt-Code	UINT32	RO	2568405 2 _{hex}
1018:03	Revision	Bit 015: Kennzahl der Produkt-Variante Bit 1631: Revision der Gerätebeschreibung (ESI)	UINT32	RO	Bit 015: 1032 _{dez}
1018:04	Serial number	Reserviert	UINT32	RO	0

Index 10F0: Backup parameter handling

Index	Name	3	Daten- typ	Flags	Default
10F0:0		Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8		0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT-Slaves	UINT32	RO	0

Index B000: BCT Command

Index	Name	Daten- typ	Flags	Default
B000:0	BCT Command	UINT8	RO	0x03 (3 _{dez})
B000:01	Request	OCTET- STRING [2]	RW	{0}
B000:02	Status	UINT8	RO	0
B000:03	Response	OCTET- STRING [6]	RO	{0}

Index F000: Modular Device Profile

Index	Name	Bedeutung	Daten- typ	Flags	Default
F000:0	Modular Device Profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0001 (1 _{dez})

Index F008: Code word

Index	Name	Bedeutung	Daten- typ	Flags	Default
F008:0	Code word		UINT32	RW	0

Index F081: Download revision

Index	Name	3	Daten- typ	Flags	Default
F081:0	Download revision		UINT8	RO	0x01 (1 _{dez})
F081:01	Revision number		UINT32	RW	0

34 Version: 1.0 EP9576-1032

6.2.4 PDO Mapping and PDO Assignment

Index 1A00: BCT TxPDO-Map Inputs

Index	Name	Bedeutung	Daten- typ	Flags	Default
1A00:0	BCT TxPDO-Map Inputs	PDO Mapping TxPDO 1	UINT8	RO	0x0C (12 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x01 (Terminal Overtemperature))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x02 (I2T error))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x03 (I2T warning))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x04 (Overvoltage))	UINT32	RO	0x6000:04, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x05 (Undervoltage))	UINT32	RO	0x6000:05, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x06 (Chopper on))	UINT32	RO	0x6000:06, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x07 (Overcurrent Protection))	UINT32	RO	0x6000:07, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x0F (Input cycle counter))	UINT32	RO	0x6000:0F, 2
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x11 (DC link voltage))	UINT32	RO	0x6000:11, 32
1A00:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x13 (Resistor Current))	UINT32	RO	0x6000:13, 32
1A00:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (BCT Inputs), entry 0x14 (Duty Cycle))	UINT32	RO	0x6000:14, 8

Index 1A01: BCT TxPDO-Map Load

Index	Name	3	Daten- typ	Flags	Default
1A01:0	BCT TxPDO-Map Load	PDO Mapping TxPDO 2	UINT8	RO	1
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6001 (BCT Load Factor), entry 0x01 (I2T load factor))	UINT32	RO	0x6001:01, 8

Index 1C12: RxPDO assign

Index	Name	3	Daten- typ	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RO	0

Index 1C13: TxPDO assign

Index	Name	Bedeutung	Daten- typ	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	1
1C13:01	SubIndex 001	1. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16		0x1A00 (6656 _{dez})
1C13:02	SubIndex 002	2. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0

Index 6000: BCT Inputs

Index	Name	Bedeutung	Daten- typ	Flags	Default
6000:0	BCT Inputs		UINT8	RO	0x14 (20 _{dez})
6000:01	Terminal Overtemperature		BOOL	RO	0
6000:02	I2T error		BOOL	RO	0
6000:03	I2T warning		BOOL	RO	0
6000:04	Overvoltage		BOOL	RO	0
6000:05	Undervoltage		BOOL	RO	0
6000:06	Chopper on		BOOL	RO	0
6000:07	Overcurrent Protection		BOOL	RO	0
6000:0F	Input cycle counter		BIT2	RO	0
6000:11	DC link voltage		UINT32	RO	0
6000:13	Resistor Current		INT32	RO	0
6000:14	Duty Cycle		UINT8	RO	0

Index 6001: BCT Load Factor

Index	Name	S .	Daten- typ	Flags	Default
6001:0	BCT Load Factor		UINT8	RO	1
6001:01	I2T load factor		UINT8	RO	0

36 Version: 1.0 EP9576-1032

6.2.5 Sync Manager Objekte

Index 1C00: Sync manager type

Index	Name	Bedeutung	Daten- typ	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C33: SM input parameter

Index	Name	Bedeutung	Daten- typ	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie 1C32:02	UINT32	RW	0x000F4 240 (100000 0 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0
1C33:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	1
	supported	Bit 0: Free Run wird unterstützt			
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 1C32:08 oder 1C33:08)			
1C33:05	Minimum cycle time	wie 1C32:05	UINT32	RO	0x00002 710 (10000 _{de} _z)
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0
1C33:07	Minimum delay time	,	UINT32	RO	0
1C33:08	Get Cycle Time	wie 1C32:08	UINT16	RW	0
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0
1C33:0B	SM event missed counter			RO	0
1C33:0 C	Cycle exceeded counter	wie 1C32:12	UINT16	RO	0
1C33:0 D	Shift too short counter	wie 1C32:13	UINT16	RO	0
1C33:20	Sync error	wie 1C32:32	BOOL	RO	0

7 Anhang

7.1 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Die Bezeichnung erfolgt in nachstehender Weise.

1. Ziffer: Staub- und Be- rührungsschutz	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø 50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø 12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremd- körper Ø 2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø 1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

2. Ziffer: Wasserschutz*	Bedeutung
0	Nicht geschützt
1	Geschützt gegen Tropfwasser
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben
5	Geschützt gegen Strahlwasser.
6	Geschützt gegen starkes Strahlwasser.
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist

^{*)} In diesen Schutzklassen wird nur der Schutz gegen Wasser definiert.

Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der IP-67-Module und die verwendeten Metallteile. In der nachfolgenden Tabelle finden Sie einige typische Beständigkeiten.

Art	Beständigkeit
Wasserdampf	bei Temperaturen >100°C nicht beständig
Natriumlauge (ph-Wert > 12)	bei Raumtemperatur beständig > 40°C unbeständig
Essigsäure	unbeständig
Argon (technisch rein)	beständig

Legende

- · beständig: Lebensdauer mehrere Monate
- bedingt beständig: Lebensdauer mehrere Wochen
- unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung

7.2 Zubehör

Schutzkappen für Steckverbinder

Bestellangabe	Beschreibung
ZS5000-0010	Schutzkappe für M8-Buchsen, IP67 (50 Stück)

Beschriftungsmaterial

Bestellangabe	Beschreibung
ZS5100-0000	Beschriftungsschilder nicht bedruckt, 4 Streifen à 10 Stück
ZS5000-xxxx	Beschriftungsschilder bedruckt, auf Anfrage

Leitungen

Eine vollständige Übersicht von vorkonfektionierten Leitungen für IO-Komponenten finden sie hier.

Bestellangabe	Beschreibung	Link
ZK1090-3xxx-xxxx	EtherCAT-Leitung M8, grün	<u>Website</u>
ZK1093-3xxx-xxxx	EtherCAT-Leitung M8, gelb	<u>Website</u>
ZK203x-xxxx-xxxx	Powerleitung 7/8 ", 5-polig	<u>Website</u>

Werkzeug

Bestellangabe	Beschreibung
ZB8801-0000	Drehmoment-Schraubwerkzeug für Stecker, 0,41,0 Nm
ZB8801-0001	Wechselklinge für M8 / SW9 für ZB8801-0000

Weiteres Zubehör

Weiteres Zubehör finden Sie in der Preisliste für Feldbuskomponenten von Beckhoff und im Internet auf https://www.beckhoff.de.

7.3 Versionsidentifikation von EtherCAT-Geräten

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14stellige technische Bezeichnung, die sich zusammensetzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016	EL-Klemme	3314	0000	0016
	(12 mm, nicht steckbare	(4 kanalige	(Grundtyp)	
	Anschlussebene)	Thermoelementklemme)		
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	(12 mm, steckbare	(2 kanalige Spannungsmessung)	(Hochpräzise	
	Anschlussebene)		Version)	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		(8 Port FastEthernet Switch)	(Grundtyp)	

Hinweise

- die oben genannten Elemente ergeben die technische Bezeichnung, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die **Revision** -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.
 - Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 - Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit 2014/01 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL5021 EL-Klemme, Standard IP20-IO-Gerät mit Chargennummer und Revisionskennzeichnung (seit 2014/01)".
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

Identifizierungsnummer

Beckhoff EtherCAT Geräte der verschiedenen Linien verfügen über verschiedene Arten von Identifizierungsnummern:

Produktionslos/Chargennummer/Batch-Nummer/Seriennummer/Date Code/D-Nummer

Als Seriennummer bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder auf einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr

FF - Firmware-Stand

HH - Hardware-Stand

Beispiel mit

Ser. Nr.: 12063A02: 12 - Produktionswoche 12 06 - Produktionsjahr 2006 3A - Firmware-Stand 3A 02 - Hardware-Stand 02

Ausnahmen können im **IP67-Bereich** auftreten, dort kann folgende Syntax verwendet werden (siehe jeweilige Gerätedokumentation):

Syntax: D ww yy x y z u

D - Vorsatzbezeichnung

ww - Kalenderwoche

yy - Jahr

- x Firmware-Stand der Busplatine
- y Hardware-Stand der Busplatine
- z Firmware-Stand der E/A-Platine
- u Hardware-Stand der E/A-Platine

Beispiel: D.22081501 Kalenderwoche 22 des Jahres 2008 Firmware-Stand Busplatine: 1 Hardware Stand Busplatine: 5 Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig) Hardware-Stand E/A-Platine: 1

Eindeutige Seriennummer/ID, ID-Nummer

Darüber hinaus verfügt in einigen Serien jedes einzelne Modul über eine eindeutige Seriennummer.

Siehe dazu auch weiterführende Dokumentation im Bereich

- IP67: EtherCAT Box
- · Safety: TwinSafe
- Klemmen mit Werkskalibrierzertifikat und andere Messtechnische Klemmen

Beispiele für Kennzeichnungen

Abb. 9: EL5021 EL-Klemme, Standard IP20-IO-Gerät mit Seriennummer/ Chargennummer und Revisionskennzeichnung (seit 2014/01)

Abb. 10: EK1100 EtherCAT Koppler, Standard IP20-IO-Gerät mit Seriennummer/ Chargennummer

Abb. 11: CU2016 Switch mit Seriennummer/ Chargennummer

Abb. 12: EL3202-0020 mit Seriennummer/ Chargennummer 26131006 und eindeutiger ID-Nummer 204418

Abb. 13: EP1258-00001 IP67 EtherCAT Box mit Chargennummer/ DateCode 22090101 und eindeutiger Seriennummer 158102

Abb. 14: EP1908-0002 IP67 EtherCAT Safety Box mit Chargennummer/ DateCode 071201FF und eindeutiger Seriennummer 00346070

Abb. 15: EL2904 IP20 Safety Klemme mit Chargennummer/ DateCode 50110302 und eindeutiger Seriennummer 00331701

Abb. 16: ELM3604-0002 Klemme mit eindeutiger ID-Nummer (QR Code) 100001051 und Seriennummer/Chargennummer 44160201

7.3.1 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 17: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- · direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt. Die Daten unter den Positionen 1 bis 4 sind immer vorhanden.

Folgende Informationen sind enthalten:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	S	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z.B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S678294104
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und 6. Die Datenidentifikatoren sind zur besseren Darstellung jeweils rot markiert:

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

7.4 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den <u>lokalen Support und Service</u> zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: https://www.beckhoff.de

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49(0)5246 963 157
Fax: +49(0)5246 963 9157
E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- · Hotline-Service

Hotline: +49(0)5246 963 460 Fax: +49(0)5246 963 479 E-Mail: service@beckhoff.com

Beckhoff Firmenzentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

 Telefon:
 +49(0)5246 963 0

 Fax:
 +49(0)5246 963 198

 E-Mail:
 info@beckhoff.com

 Internet:
 https://www.beckhoff.de

Mehr Informationen: www.beckhoff.de/ep9576-1032

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.de www.beckhoff.de

