BECKHOFF New Automation Technology

Dokumentation | DE

EP7402

2-Kanal-Motor-Controller-Box für Rollenbahnsysteme

Inhaltsverzeichnis

1	Vorw	orwort			
	1.1	Hinweis	se zur Dokumentation	5	
	1.2	Sicherh	neitshinweise	6	
	1.3	Ausgabestände der Dokumentation			
2	Prod	uktübers	sicht	8	
	2.1	EP7402	2-0057	9	
		2.1.1	Einführung	9	
		2.1.2	Technische Daten EP7402-0057	10	
	2.2	EP7402	2-0067	12	
		2.2.1	Einführung	12	
		2.2.2	Technische Daten EP7402-0067	13	
	2.3	EP7402	2-0167	15	
		2.3.1	Einführung	15	
		2.3.2	Technische Daten EP7402-0167	16	
	2.4	Prozess	sabbild	18	
		2.4.1	Prozessabbild "PLC control"	18	
		2.4.2	Prozessabbild "Local control"	23	
3	Ausv	vahl eine	es Motors	26	
			d Anschlüsse		
•	4.1	•	je		
		4.1.1	Abmessungen		
		4.1.2	Befestigung		
		4.1.3	Funktionserdung (FE)		
	4.2	Anschlü	üsse		
		4.2.1	EP7402-0057 Übersicht	29	
		4.2.2	EP7402-0067 Übersicht		
		4.2.3	EP7402-0167 Übersicht	31	
		4.2.4	FE-Anschluss (nur EP7402-0167)		
		4.2.5	Versorgungsspannungen und EtherCAT		
		4.2.6	Motor-Anschlüsse von EP7402-0057		
		4.2.7	Motor-Anschlüsse von EP7402-0067 und EP7402-0167	41	
		4.2.8	Digitale Eingänge/Ausgänge		
	4.3	UL-Anfo	orderungen		
	4.4		gung		
5	Inbet	riebnahı	me	47	
	5.1		start		
		5.1.1	Schritt 1: Hardware Setup	47	
		5.1.2	Schritt 2: TwinCAT-Konfiguration	49	
		5.1.3	Schritt 3: Parametrierung		
		5.1.4	Schritt 4: Testlauf	56	
		5.1.5	Schritt 5: Abschluss	58	
	5.2	"Mechai	nical to electrical ratio" experimentell ermitteln	59	
		5.2.1	Firmware 04 und höher	59	

Version: 1.9

3

		5.2.2	Firmware 03 und niedriger	59
	5.3	Feinabs	stimmung der Parameter (Tuning)	60
		5.3.1	Ausrichtungs-Phase und Hochlauf-Phase	60
		5.3.2	Geschwindigkeitsregler	61
	5.4	Autoacl	knowledge: Fehler automatisch quittieren	62
		5.4.1	Autoacknowledge konfigurieren	62
		5.4.2	Status auslesen	62
	5.5	ZPA: Ze	ero Pressure Accumulation	63
		5.5.1	Voraussetzungen	63
		5.5.2	Grundlagen	63
		5.5.3	Verkabelung	67
		5.5.4	ZPA-Kommunikation über EtherCAT	69
		5.5.5	Inbetriebnahme	71
		5.5.6	State-Machine	73
		5.5.7	Digitale Eingänge und Ausgänge im ZPA-Betrieb	75
	5.6	Wieder	herstellen des Auslieferungszustands	77
6	Trou	bleshoo	oting	78
	6.1	Diagno	se-Bits	79
	6.2	•	quittieren	
7	Διιβε	rhetrieh	onahme	82
		Application Hints		
Ö			Diagnose	
	8.1		· ·	
9			ter	
	9.1		chnis	
	9.2	Objekt-	Beschreibungen	
		9.2.1	Objekte zur Parametrierung	
		9.2.2	Informations-Objekte	
		9.2.3	Standard-Objekte	93
10	Anha	ng		94
	10.1	Beispie	el für Motor-Parameter	94
	10.2	Allgemeine Betriebsbedingungen		
	10.3	Zubehö	òr	96
	10.4	Version	nsidentifikation von EtherCAT-Geräten	97
		10.4.1	Allgemeine Hinweise zur Kennzeichnung	97
		10.4.2	Versionsidentifikation von IP67-Modulen	98
		10.4.3	Beckhoff Identification Code (BIC)	99
		10.4.4	Elektronischer Zugriff auf den BIC (eBIC)	101
	40.5	Cupper	t und Service	103

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Fremdmarken

In dieser Dokumentation können Marken Dritter verwendet werden. Die zugehörigen Markenvermerke finden Sie unter: https://www.beckhoff.com/trademarks

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.3 Ausgabestände der Dokumentation

Version	Kommentar	
1.9	EP7402-0067 hinzugefügt	
	Inbetriebnahme aktualisiert	
1.8	Inbetriebnahme aktualisiert	
1.7	Neue Funktionen von Firmware 05 hinzugefügt.	
	Autoacknowledge	
	 ZPA-Kommunikation über EtherCAT 	
	UL-Zulassung hinzugefügt	
1.6	Neue Funktionen von Firmware 04 hinzugefügt.	
1.5	EP7402-0167 hinzugefügt	
1.4	Neue Funktionen von Firmware 03 hinzugefügt, u.a. ZPA	
1.3	Struktur-Update	
1.2	Technische Daten aktualisiert	
	Kapitel "Fehlerbehebung" aktualisiert	
1.1	Hardware-Änderung am Versorgungsspannungs-Ausgang X60	
	Zubehör ergänzt	
1.0	Erste Veröffentlichung	

Firm- und Hardware-Stände

Diese Dokumentation bezieht sich auf den zum Zeitpunkt ihrer Erstellung gültigen Firm- und Hardware-Stand.

Die Eigenschaften der Module werden stetig weiterentwickelt und verbessert. Module älteren Fertigungsstandes können nicht die gleichen Eigenschaften haben, wie Module neuen Standes. Bestehende Eigenschaften bleiben jedoch erhalten und werden nicht geändert, so dass ältere Module immer durch neue ersetzt werden können.

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der EtherCAT Box aufgedruckten Batch-Nummer (D-Nummer) entnehmen.

Syntax der Batch-Nummer (D-Nummer)

D: WW YY FF HH	Beispiel mit D-Nr. 29 10 02 01:
WW - Produktionswoche (Kalenderwoche)	29 - Produktionswoche 29
YY - Produktionsjahr	10 - Produktionsjahr 2010
FF - Firmware-Stand	02 - Firmware-Stand 02
HH - Hardware-Stand	01 - Hardware-Stand 01

Weitere Informationen zu diesem Thema: <u>Versionsidentifikation von EtherCAT-Geräten [> 97]</u>.

2 Produktübersicht

Die folgende Tabelle zeigt die in dieser Dokumentation beschriebenen Produkte und ihre wichtigsten Unterscheidungsmerkmale.

Modul	Motor Nennspannung	Motor- Anschlüsse	Weitere Funktionen
EP7402-0057 [▶ 9]	18 24 V _{DC}	M8-Buchsen,	EtherCAT-Abzweig
		B-kodiert	Versorgungsspannungs-Ausgang
			Motor-Bremsausgänge
EP7402-0067 [> 12]	18 48 V _{DC}	M8-Buchsen,	EtherCAT-Abzweig
		A-kodiert	Versorgungsspannungs-Ausgang
EP7402-0167 [▶ 15]	18 48 V _{DC}	M8-Buchsen, A-kodiert	Zusätzlicher FE-Anschluss

2.1 EP7402-0057

2.1.1 Einführung

2-Kanal-Motor-Controller-Box für Rollenbahnsysteme

Die EtherCAT Box EP7402-0057 bietet zwei Ausgänge mit integriertem MDR-Controller zum direkten Anschluss von 24-V-DC-Rollenmotoren oder anderen BLDC-Motoren mit max. 3,5 A. Acht zusätzliche digitale Ein-/Ausgänge erlauben den Anschluss von z. B. Lichtschranken und die Kommunikation zwischen den Modulen im SPS-losen Betrieb.

Die EP7402-0057 übernimmt die komplette Steuerung des Rollenmotors unabhängig vom Hersteller des Förderers oder des Motors. Maximaler Nennstrom, Hochfahr- oder Bremsrampen sowie diverse weitere Parameter können konfiguriert werden und ermöglichen eine weite Anpassung an unterschiedliche Applikationen. Die Ansteuerung der Motoren erfolgt sensorlos.

Die nur 174 mm x 60 mm x 36,5 mm große EtherCAT Box in Schutzart IP67 lässt sich problemlos in Standard-Seitenprofilen am Förderbandrahmen montieren. Sie erfordert keine zusätzliche Schutzabdeckung. Spannungsversorgung und EtherCAT-Kommunikation erfolgen über einen B23-ENP-Stecker mit einer Stromtragfähigkeit von 28 A/45 °C. Im reinen Förderbetrieb lässt sich die EP7402-0057 auch ohne SPS betreiben und stellt Funktionen wie ZPA (Zero Pressure Accumulation), Einzel- oder Blockabzug zur Verfügung. An den zusätzlichen EtherCAT-Abzweig lassen sich weitere EtherCAT-Teilnehmer wie digitale und analoge I/Os, Barcode Reader oder Safety Devices anschließen.

Die EP7402-0057 stellt keine Übertemperatur-Erkennung des Motors zur Verfügung.

HINWEIS

Brems-Chopper erforderlich

Es können Überspannungs-Spitzen auf der Versorgungsspannung U_{P} auftreten, die das Gerät zerstören können.

Die Überspannungs-Spitzen entstehen bei Bremsvorgängen des Motors oder durch manuelles Verschieben von Gegenständen auf dem Rollenförderer.

• Setzen Sie einen Brems-Chopper ein, um Überspannungen abzuleiten. Z.B. EP9576-1032 oder EL9576.

Quick Links

Technische Daten [▶ 10]
Prozessabbild [▶ 18]
Abmessungen [▶ 27]
Anschlüsse [▶ 29]
Schnellstart [▶ 47]

2.1.2 Technische Daten EP7402-0057

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT	
Anschluss	Eingang und Weiterleitung: B23 ENP Hybrid-Steckverbinder
	EtherCAT-Abzweig: M8-Buchse, 4-polig, A-kodiert
Potenzialtrennung	500 V

Versorgungsspannungen		
Anschluss	B23 ENP Hybrid-Steckverbinder	
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)	
U _S Summenstrom: I _{S,sum}	max. 28 A bei 45 °C 1)	
Stromaufnahme aus U _s	150 mA	
	+ Ausgangsströme der digitalen Ausgänge	
	+ Sensorversorgung	
	+ Ausgangsstrom aus dem Ausgang X60	
U _P Nennspannung	18 24 V _{DC}	
U _P Summenstrom: I _{P,sum}	max. 28 A bei 45 °C 1)	
Stromaufnahme aus U _P	Ausgangsströme für die Motoren	
	+ Ausgangsstrom für die Motorbremse	
Unterspannungs-Erkennung	18 V _{DC}	
Überspannungs-Erkennung	30 V _{DC}	

¹⁾ Dieser Wert entspricht der Stromtragfähigkeit der Steckverbinder.

Motorkanäle		
Anzahl	2	
Motor-Art	3-phasige BLDC-Rollenmotoren	
Anschluss	2 x M8-Buchse, 5-polig, B-kodiert	
Leitungslänge	max. 30 m	
Motorinduktivität	min. 200 μH	
Drehgeber	Kein Drehgeber benötigt	
Motorspannung	18 24 V_{DC} aus der Peripheriespannung U_P	
Dauerstrom pro Kanal	max. 3,5 A _{eff}	
Spitzenstrom pro Kanal	 Firmware 03 und höher: max. 12,0 A_{eff} für ca. 1 s 	
	 Firmware 02 und niedriger: max. 5,0 A_{eff} für ca. 1 s 	
Drehfeldfrequenz	 Firmware 03 und höher: max. 599 Hz = 215640 °/s = 35940 rpm ²⁾ 	
	 Firmware 02 und niedriger: max. 72000 °/s = 12000 rpm ²⁾ 	
PWM-Taktfrequenz	16 kHz	
Stromreglerfrequenz	32 kHz	

²⁾ Verwechseln Sie die Drehfeldfrequenz nicht mit der Motor-Drehzahl oder der Rollen-Drehzahl.

Digitale Ein-/Ausgänge		
Anzahl	8	
Anschlüsse	4 x M8-Buchse	
Leitungslänge	max. 30 m	
Sensorversorgung U _{S1}	24 V _{DC} aus der Steuerspannung U _s	
	max. 0,5 A, kurzschlussfest	
Eingangs-Spezifikation		
Charakteristik	Typ 3 gemäß EN 61131-2, kompatibel mit Typ 1	
Eingangsfilter	10 µs	
Ausgangs-Spezifikation		
Nennspannung	24 V _{DC} (-15 % / +20 %) aus der Steuerspannung U _s	
Ausgangsstrom	max. 0.5 A pro Ausgang, einzeln kurzschlussfest	

Gehäusedaten		
Gewicht	750 g	
Einbaulage	beliebig	

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	-25 +60 °C -25 +55 °C gemäß cURus	
Umgebungstemperatur bei Lagerung	-40 +85 °C	
Verschmutzungsgrad	2, für den Einsatz unter UL-Bedingungen	
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27 Zusätzliche Prüfungen	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	

Zulassungen / Kennzeichnungen	
Zulassungen / Kennzeichnungen *)	CE, <u>cURus</u> [▶ 45]

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

2.2 EP7402-0067

2.2.1 Einführung

2-Kanal-Motor-Controller-Box für Rollenbahnsysteme

Die EtherCAT Box EP7402-0067 bietet zwei Ausgänge mit integriertem MDR-Controller zum direkten Anschluss von 48-V-DC-Rollenmotoren oder anderen BLDC-Motoren mit max. 3,5 A. Acht zusätzliche digitale Ein-/Ausgänge erlauben den Anschluss von z. B. Lichtschranken und die Kommunikation zwischen den Modulen im SPS-losen Betrieb.

Die EP7402-0067 übernimmt die komplette Steuerung des Rollenmotors unabhängig vom Hersteller des Förderers oder des Motors. Maximaler Nennstrom, Hochfahr- oder Bremsrampen sowie diverse weitere Parameter können konfiguriert werden und ermöglichen eine weite Anpassung an unterschiedliche Applikationen. Die Ansteuerung der Motoren erfolgt sensorlos.

Die nur 174 mm x 60 mm x 36,5 mm große EtherCAT Box in Schutzart IP67 lässt sich problemlos in Standard-Seitenprofilen am Förderbandrahmen montieren. Sie erfordert keine zusätzliche Schutzabdeckung. Spannungsversorgung und EtherCAT-Kommunikation erfolgen über einen B23-ENP-Stecker mit einer Stromtragfähigkeit von 28 A/45 °C. Im reinen Förderbetrieb lässt sich die EP7402-0067 auch ohne SPS betreiben und stellt Funktionen wie ZPA (Zero Pressure Accumulation), Einzel- oder Blockabzug zur Verfügung. An den zusätzlichen EtherCAT-Abzweig lassen sich weitere EtherCAT-Teilnehmer wie digitale und analoge I/Os, Barcode Reader oder Safety Devices anschließen.

Die EP7402-0067 stellt keine Übertemperatur-Erkennung des Motors zur Verfügung.

HINWEIS

Brems-Chopper erforderlich

Es können Überspannungs-Spitzen auf der Versorgungsspannung U_{P} auftreten, die das Gerät zerstören können.

Die Überspannungs-Spitzen entstehen bei Bremsvorgängen des Motors oder durch manuelles Verschieben von Gegenständen auf dem Rollenförderer.

• Setzen Sie einen Brems-Chopper ein, um Überspannungen abzuleiten. Z.B. EP9576-1032 oder EL9576.

Quick Links

Technische Daten [▶ 13]
Prozessabbild [▶ 18]
Abmessungen [▶ 27]
Anschlüsse [▶ 30]
Schnellstart [▶ 47]

2.2.2 Technische Daten EP7402-0067

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT	
Anschluss	Eingang und Weiterleitung: B23 ENP Hybrid-Steckverbinder
	EtherCAT-Abzweig: M8-Buchse, 4-polig, A-kodiert
Potenzialtrennung	500 V

Versorgungsspannungen	
Anschluss	B23 ENP Hybrid-Steckverbinder
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)
U _S Summenstrom: I _{S,sum}	max. 28 A bei 45 °C 1)
Stromaufnahme aus U _S	150 mA
	+ Ausgangsströme der digitalen Ausgänge
	+ Sensorversorgung
	+ Ausgangsstrom aus dem Ausgang X60
U _P Nennspannung	18 48 V _{DC}
U _P Summenstrom: I _{P,sum}	max. 28 A bei 45 °C ¹)
Stromaufnahme aus U _P	= Ausgangsströme für die Motoren
Unterspannungs-Erkennung	18 V _{DC}
Überspannungs-Erkennung	60 V _{DC}

¹⁾ Dieser Wert entspricht der Stromtragfähigkeit der Steckverbinder.

Motorkanäle	
Anzahl	2
Motor-Art	3-phasige BLDC-Rollenmotoren
Anschluss	2 x M8-Buchse, 4-polig, A-kodiert
Leitungslänge	max. 30 m
Motorinduktivität	min. 200 μH
Drehgeber	Kein Drehgeber benötigt
Motorspannung	18 48 V _{DC} aus der Versorgungsspannung U _P
Dauerstrom pro Kanal	3,5 A _{eff}
Spitzenstrom pro Kanal	12,0 A _{eff} für ca. 1 s
Drehfeldfrequenz	599 Hz ²⁾
PWM-Taktfrequenz	16 kHz
Stromreglerfrequenz	32 kHz

²⁾ Verwechseln Sie die Drehfeldfrequenz nicht mit der Motor-Drehzahl oder der Rollen-Drehzahl.

Digitale Ein-/Ausgänge		
Anzahl	8	
Anschlüsse	4 x M8-Buchse	
Leitungslänge	max. 30 m	
Sensorversorgung U _{S1}	24 V _{DC} aus der Steuerspannung U _s	
	max. 0,5 A, kurzschlussfest	
Eingangs-Spezifikation		
Charakteristik	Typ 3 gemäß EN 61131-2, kompatibel mit Typ 1	
Eingangsfilter	10 µs	
Ausgangs-Spezifikation		
Nennspannung	24 V _{DC} (-15 % / +20 %) aus der Steuerspannung U _s	
Ausgangsstrom	max. 0.5 A pro Ausgang, einzeln kurzschlussfest	

Gehäusedaten	
Gewicht	750 g
Einbaulage	beliebig

Umgebungsbedingungen	
Umgebungstemperatur im Betrieb	-25 +60 °C -25 +55 °C gemäß cURus
Umgebungstemperatur bei Lagerung	-40 +85 °C
Verschmutzungsgrad	2, für den Einsatz unter UL-Bedingungen
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27 Zusätzliche Prüfungen
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)

Zulassungen / Kennzeichnungen	
Zulassungen / Kennzeichnungen *)	CE, <u>cURus</u> [▶ 45]

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

2.3 EP7402-0167

2.3.1 Einführung

2-Kanal-Motor-Controller-Box für Rollenbahnsysteme

Die EtherCAT Box EP7402-0167 bietet zwei Ausgänge mit integriertem MDR-Controller zum direkten Anschluss von 48-V_{DC}-Rollenmotoren oder anderen BLDC-Motoren mit max. 3,5 A. Acht zusätzliche digitale Ein-/Ausgänge erlauben den Anschluss von z. B. Lichtschranken und die Kommunikation zwischen den Modulen im SPS-losen Betrieb.

Die EP7402-0167 übernimmt die komplette Steuerung des Rollenmotors unabhängig vom Hersteller des Förderers oder des Motors. Der Anschluss erfolgt direkt an die drei Phasen des Motors. Maximaler Nennstrom, Hochfahr- oder Bremsrampen sowie diverse weitere Parameter können konfiguriert werden und ermöglichen eine weite Anpassung an unterschiedliche Applikationen. Die Ansteuerung der Motoren erfolgt sensorlos.

Die nur 174 mm x 60 mm x 36,5 mm große EtherCAT Box in Schutzart IP67 lässt sich problemlos in Standard-Seitenprofilen am Förderbandrahmen montieren. Sie benötigt keine zusätzliche Schutzabdeckung. Spannungsversorgung und EtherCAT-Kommunikation erfolgen über einen B23-ENP-Stecker mit einer Stromtragfähigkeit von 28 A / 45 °C. Im reinen Förderbetrieb lässt sich die EP7402-0167 auch ohne SPS betreiben und stellt Funktionen wie ZPA (Zero Pressure Accumulation), Einzel- oder Blockabzug zur Verfügung.

Die EP7402-0167 stellt keine Übertemperatur-Erkennung des Motors zur Verfügung.

HINWEIS

Brems-Chopper erforderlich

Es können Überspannungs-Spitzen auf der Versorgungsspannung U_{P} auftreten, die das Gerät zerstören können.

Die Überspannungs-Spitzen entstehen bei Bremsvorgängen des Motors oder durch manuelles Verschieben von Gegenständen auf dem Rollenförderer.

• Setzen Sie einen Brems-Chopper ein, um Überspannungen abzuleiten. Z.B. EP9576-1032 oder EL9576.

Quick Links

Technische Daten [▶ 16]
Prozessabbild [▶ 18]
Abmessungen [▶ 27]
Anschlüsse [▶ 31]
Schnellstart [▶ 47]

2.3.2 Technische Daten EP7402-0167

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT	
Anschluss	B23 ENP Hybrid-Steckverbinder
Potenzialtrennung	500 V

Versorgungsspannungen	
Anschluss	B23 ENP Hybrid-Steckverbinder
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)
U _S Summenstrom: I _{S,sum}	max. 28 A bei 45 °C 1)
Stromaufnahme aus U _s	150 mA
	+ Ausgangsströme der digitalen Ausgänge
	+ Sensorversorgung
U _P Nennspannungs-Bereich	18 48 V _{DC}
U _P Summenstrom: I _{P,sum}	max. 28 A bei 45 °C 1)
Stromaufnahme aus U _P	= Ausgangsströme für die Motoren
U _P Unterspannungs-Erkennung	18 V
U _P Überspannungs-Erkennung	60 V

¹⁾ Dieser Wert entspricht der Stromtragfähigkeit der Steckverbinder.

Motorkanäle	
Anzahl	2
Motor-Art	3-phasige BLDC-Rollenmotoren
Anschluss	2 x M8-Buchse, 4-polig, A-kodiert
Leitungslänge	max. 30 m
Motorinduktivität	min. 200 μH
Drehgeber	Kein Drehgeber benötigt
Motorspannung	18 48 V _{DC} aus der Versorgungsspannung U _P
Dauerstrom pro Kanal	3,5 A _{eff}
Spitzenstrom pro Kanal	12,0 A _{eff} für ca. 1 s
Drehfeldfrequenz	599 Hz ²⁾
PWM-Taktfrequenz	16 kHz
Stromreglerfrequenz	32 kHz

²⁾ Verwechseln Sie die Drehfeldfrequenz nicht mit der Motor-Drehzahl oder der Rollen-Drehzahl.

Digitale Ein-/Ausgänge		
Anzahl	8	
Anschlüsse	4 x M8-Buchse	
Leitungslänge	max. 30 m	
Sensorversorgung U _{S1}	24 V _{DC} aus der Steuerspannung U _S	
	max. 0,5 A, kurzschlussfest	
Eingangs-Spezifikation		
Charakteristik	Typ 3 gemäß EN 61131-2, kompatibel mit Typ 1	
Eingangsfilter	10 μs	
Ausgangs-Spezifikation		
Nennspannung	24 V_{DC} (-15 % / +20 %) aus der Steuerspannung U_{S}	
Ausgangsstrom	max. 0.5 A pro Ausgang, einzeln kurzschlussfest	

Gehäusedaten		
Gewicht	750 g	
Einbaulage	beliebig	

Umgebungsbedingungen				
Umgebungstemperatur im Betrieb	-25 +60 °C -25 +55 °C gemäß cURus			
Umgebungstemperatur bei Lagerung	-40 +85 °C			
Verschmutzungsgrad	2, für den Einsatz unter UL-Bedingungen			
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27 Zusätzliche Prüfungen			
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4			
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)			

Zulassungen / Kennzeichnungen		
Zulassungen / Kennzeichnungen *)	CE, <u>cURus</u> [▶ 45]	

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

2.4 Prozessabbild

Der Umfang des Prozessabbilds ist einstellbar.

Die EP7402 hat zwei vordefinierte Varianten des Prozessabbilds, die sogenannten "Predefined PDO Assignments".

In der Werkseinstellung ist "PLC control" eingestellt.

Predefined PDO Assignment	Verwendung
"PLC control" [▶ 18]	Betrieb mit einer Steuerung als zentraler Intelligenz
"Local control" [> 23]	ZPA-Betrieb

2.4.1 Prozessabbild "PLC control"

- Box 1 (EP7402)
 - DI Inputs
 - STM Status Channel 1
 - STM Synchron info data Channel 1
 - STM Status Channel 2
 - STM Synchron info data Channel 2
 - Device STM Inputs Device
 - DO Outputs
 - STM Control Channel 1
 - STM Target Velocity Channel 1
 - STM Control Channel 2
 - STM Target Velocity Channel 2
 - WcState
 - ▶ InfoData

Der Buchstabe *n* dient im Folgenden als Platzhalter für die Kanal-Nummer.

Screenshots, die Prozessdatenobjekte von Kanal 1 zeigen, sind beispielhaft für beide Kanäle. Die Prozessdatenobjekte von Kanal 1 und Kanal 2 haben die gleiche Inhalts-Struktur.

DI Inputs

Input 1

Input 2

Input 3

Input 4

Control input 1

Control input 2

Control input 3

Control input 4

Die Eingangsvariablen bilden den Logikpegel der digitalen Ein-/Ausgänge in den Prozessdaten ab.

Stellen Sie sicher, dass die entsprechende Ausgangsvariable im <u>Prozessdatenobjekt "DO Outputs"</u> [* 20] auf 0 gesetzt ist, wenn Sie einen digitalen Ein-/Ausgang als Eingang nutzen wollen.

Die unterschiedlichen Bezeichnungen "Input x" und "Control input x" sind nur im ZPA-Betrieb relevant. Im Betrieb ohne ZPA sind alle digitalen Eingänge gleichwertig.

Zuordnung von Anschlüssen und Prozessdaten [▶ 22]

STM Status Channel n

STM Status Channel 1

Status

Ready to enable

Ready

Warning

Error

Moving positive

Moving negative

TxPDO Toggle

Die Eingangsvariablen "Status" enthalten die Status-Bits der Motorkanäle.

Ready to enable

- TRUE: alle Voraussetzungen für das Aktivieren des Motors sind erfüllt.
- FALSE: Der Motorkanal kann nicht aktiviert werden (Ausgangsvariable "enable"), weil eine Fehlermeldung vorliegt.

Ready

· TRUE: Der Motor wird bestromt.

Warning

 TRUE: Der Motorkanal ist in einem grenzwertigen Zustand.

Error

 TRUE: Der Motorkanal wurde aufgrund einer Fehlermeldung gesperrt. Zur Ermittlung der Fehlerursache siehe Kapitel <u>Diagnose-Bits</u> [<u>79</u>].

Moving positive

 TRUE: Die Motor-Geschwindigkeit ist größer als null.

Moving negative

TRUE: Die Motor-Geschwindigkeit ist kleiner als
null

TxPDO Toggle

Dieses Bit wird bei jeder Aktualisierung der Status-Bits invertiert.

STM Synchron info data Channel n

STM Synchron info data Channel 1

Info data 1

Info data 2

Info data 3

Die Eingangsvariablen "Info data x" enthalten Messwerte. Sie können im CoE-Verzeichnis einstellen, welche Messwerte durch diese Eingangsvariablen abgebildet werden:

- Wählen Sie die Messwerte für Kanal 1 über das CoE-Objekt 8022 [▶ 87].
- Wählen Sie die Messwerte für Kanal 2 über das CoE-Objekt 8032 [▶87].

STM Inputs Device

STM Inputs Device

Device Diag

- Device undervoltage
- Device overvoltage
- Overtemperature warning
- Overtemperature error
- General hardware error
- Channel 1 openload
- Channel 1 short circuit
- Channel 1 motor overload I2T warning
- Channel 1 motor overload I2T error
- Channel 1 amplifier overload I2T warning
- Channel 1 amplifier overload I2T error
- Channel 1 in limit
- Channel 1 commutation error
- Channel 2 openload
- Channel 2 short circuit
- Channel 2 motor overload I2T warning
- Channel 2 motor overload I2T error
- Channel 2 amplifier overload I2T warning
- Channel 2 amplifier overload I2T error
- Channel 2 in limit
- Channel 2 commutation error

"STM Inputs Device" enthält Diagnose-Bits, die Sie nutzen können, um die Ursache einer Warnung oder eines Fehlers einzugrenzen. Siehe Kapitel <u>Diagnose-Bits</u> [• 79].

DO Outputs

DO Outputs

Output 1

Output 2

Output 3

Output 4

Control output 1

Control output 2

Control output 3

Control output 4

Ausgangsvariablen für die digitalen Ein-/Ausgänge.

Die unterschiedlichen Bezeichnungen "Output x" und "Control output x" sind nur im ZPA-Betrieb relevant. Im Betrieb ohne ZPA sind alle acht digitalen Ausgänge gleichwertig.

STM Control Channel n

STM Control Channel 1

▲ Control

Enable

Reset

Invert direction

Brake output

Enable

Dieses Bit aktiviert den Motorkanal. Das Bit ist wirkungslos, wenn die Variable Ready to enable [▶ 19] auf FALSE steht.

Reset

Geben Sie eine steigende Signalflanke auf dieses Bit, um einen Fehler zu quittieren.

Invert direction

Wenn dieses Bit gesetzt ist, wird der <u>Geschwindigkeits-Sollwert "velocity" [▶ 21]</u> mit "-1" multipliziert, um die Richtung zu ändern.

Brake output (nur EP7402-0057)

Ausgangsvariable zum Schalten des Motor-Bremsausgangs.

STM Target Velocity Channel n

STM Target Velocity Channel 1

Velocity

Accelleration

Decceleration

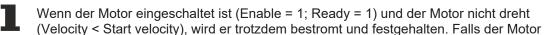
Velocity

Sollgeschwindigkeit.
Dieser Wert ist der Sollwert für den
Geschwindigkeits-Regler.
Allerdings wird jeder Wert, der kleiner ist als
Parameter 80n0:09 <u>start velocity</u> [▶ <u>86</u>], als null
interpretiert.

Einheit: °/s

Acceleration

Dieser Wert bestimmt die maximale Beschleunigung. Wenn dieser Wert null ist, wird die Beschleunigung nicht begrenzt.


Einheit: °/s²

Deceleration

Dieser Wert bestimmt die maximale negative Geschwindigkeits-Änderung. Wenn dieser Wert null ist, wird eine negative Geschwindigkeits-Änderung nicht begrenzt.

Einheit: °/s2

Strom sparen im Stillstand

Berücksichtigen Sie, dass die Ausrichtungsphase bei jedem Wiedereinschalten (Enable = 1) erneut durchlaufen wird.

vorübergehend nicht benötigt wird, setzen Sie Enable auf 0, um Strom zu sparen.

2.4.1.1 Zuordnung von Anschlüssen und Prozessdaten

Steckverbinder		Prozessdaten			
Pin Funktion Eingang		Eingang	Ausgang		
2	Digitaler Ein-/ Ausgang	□ DI Inputs • Input 2	DO Outputs Output 2		
4		□ DI Inputs Input 1	DO Outputs Output 1		
2	Digitaler Ein-/ Ausgang	□ DI Inputs✓ Control input 2	DO Outputs Control output 2		
4		□ DI Inputs✓ Control input 1	DO Outputs Control output 1		
2	Digitaler Ein-/ Ausgang	□ DI Inputs Input 4	DO Outputs Output 4		
4		☐ DI Inputs ☐ Input 3	DO Outputs Output 3		
2	Digitaler Ein-/ Ausgang	□ DI Inputs✓ Control input 4	DO Outputs Control output 4		
4		□ DI Inputs✓ Control input 3	DO Outputs Control output 3		
	Motor	STM Status Channel 1	STM Control Channel 1		
		STM Synchron info data Channel 1	STM Target Velocity Channel 1		
	Motor	STM Status Channel 2	STM Control Channel 2 STM Target Velocity Channel 2		
	Pin 2 4 2 4 2 2	Pin Funktion 2 Digitaler Ein-/ Ausgang 4 Digitaler Ein-/ Ausgang	Pin Funktion Eingang 2 Digitaler Ein-/ Ausgang Plnput 2 4 DI Inputs Plnput 1 2 Digitaler Ein-/ Ausgang Control input 2 4 DI Inputs Plnputs Plnputs Plnputs Plnputs Plnputs Plnputs Plnputs Plnputs Plnputs Plnput 4 DI Inputs Plnput 4 DI Inputs Plnput 3 DI Inputs Plnputs Plnputs Plnput 3 DI Inputs Plnputs Plnput		

2.4.2 Prozessabbild "Local control"

In der Werkseinstellung ist "Local control" deaktiviert. Es wird bei der Inbetriebnahme des ZPA-Betriebs aktiviert. Siehe Kapitel <u>Inbetriebnahme</u> [• 71].

Wenn das Predefined PDO Assignment "Local control" aktiviert ist, enthält das Prozessabbild Variablen zur Überwachung und Steuerung des ZPA-Betriebs.

- Box 1 (EP7402)
 - STM Inputs Device
 - ZNCTRL Inputs Channel 1
 - ZNCTRL Inputs Channel 2
 - ZNCTRL Outputs Channel 1
 - ZNCTRL Outputs Channel 2
 - WcState
 - 🕨 🖳 InfoData

Der Buchstabe *n* dient im Folgenden als Platzhalter für die Kanal-Nummer.

Screenshots, die Prozessdatenobjekte von Kanal 1 zeigen, sind beispielhaft für beide Kanäle. Die Prozessdatenobjekte von Kanal 1 und Kanal 2 haben die gleiche Inhalts-Struktur.

STM Inputs Device

STM Inputs Device

Device Diag

- Device undervoltage
- Device overvoltage
- Overtemperature warning
- Overtemperature error
- General hardware error
- Channel 1 openload
- Channel 1 short circuit
- Channel 1 motor overload I2T warning
- Channel 1 motor overload I2T error
- Channel 1 amplifier overload I2T warning
- Channel 1 amplifier overload I2T error
- Channel 1 in limit
- Channel 1 commutation error
- Channel 2 openload
- Channel 2 short circuit
- Channel 2 motor overload I2T warning
- Channel 2 motor overload I2T error
- Channel 2 amplifier overload I2T warning
- Channel 2 amplifier overload I2T error
- Channel 2 in limit
- Channel 2 commutation error

"STM Inputs Device" enthält Diagnose-Bits, die Sie nutzen können, um die Ursache einer Warnung oder eines Fehlers einzugrenzen. Siehe Kapitel <u>Diagnose-Bits</u> [• 79].

ZNCTRL Inputs Channel n

ZNCTRL Inputs Channel 1

🔺 🎅 Status

- Moving
- Zone sensor input
- Upstream control input value
- Upstream control output value
- Downstream control input value
- Downstream control output value
- Reset Input Value
- Zone state

Moving

EP7402 treibt den Motor aktuell an. Die Zone fördert.

Zone sensor input

Der aktuelle Zustand des Zonen-Sensors.

Upstream control input value

Der aktuelle Zustand des Steuersignals, das der Controller aus der upstream gelegenen Zone empfängt.

Mit dem Wert 1 kündigt die vorhergende Zone ein Paket an.

Siehe Kapitel ZPA-Betrieb mit EP7402 [▶ 66].

Upstream control output value

Der aktuelle Signalpegel des Steuersignals, das der Controller an die upstream gelegene Zone sendet.

Der Wert 1 bedeutet, dass die Zone frei ist.

Siehe Kapitel ZPA-Betrieb mit EP7402 [▶ 66].

Downstream control input value

Der aktuelle Signalpegel des Steuersignals, das der Controller aus der downstream gelegenen Zone empfängt.

Der Wert 1 bedeutet, dass die nachfolgende Zone frei ist.

Siehe Kapitel ZPA-Betrieb mit EP7402 [▶ 66].

Downstream control output value

Der aktuelle Signalpegel des Steuersignals, das der Controller an die downstream gelegene Zone sendet.

Mit dem Wert 1 kündigt der Controller ein Paket an.

Siehe Kapitel ZPA-Betrieb mit EP7402 [▶ 66].

Reset input value

Der aktuelle Zustand des externen Reset-Eingangs.

Zone state

Der aktuelle Zustand der ZPA-State-Machine. Siehe Kapitel <u>State-Machine</u> [<u>\rightarrow</u> 73].

ZNCTRL Outputs Channel n

ZNCTRL Outputs Channel 1

📭 Control

Reset

Disable

Upstream PLC input value

Downstream PLC input value

Reset

Geben Sie eine steigende Signalflanke auf dieses Bit, um einen Fehler zu quittieren.

Disable

Den ZPA-Betrieb für diese Zone deaktivieren.

Upstream PLC input value

(verfügbar ab Firmware 05)

Variable für die ZPA-Kommunikation über EtherCAT. Siehe Kapitel <u>ZPA-Kommunikation über EtherCAT</u> [**b** 69].

Downstream PLC input value

(verfügbar ab Firmware 05)

Variable für die ZPA-Kommunikation über EtherCAT. Siehe Kapitel <u>ZPA-Kommunikation über EtherCAT</u> [**b** 69].

2.4.2.1 Prozessdaten für digitale Ein-/Ausgänge (optional)

HINWEIS

Störung des ZPA-Betriebs

Wenn Sie die digitalen Ausgänge über die Prozessdaten schalten, wird unter Umständen die ZPA-Kommunikation gestört.

• Beachten Sie die Hinweise im Kapitel Digitale Eingänge und Ausgänge im ZPA-Betrieb [> 75].

Sie können im ZPA-Betrieb optional die Prozessdaten zum Steuern und Einlesen der digitalen Ein-/ Ausgänge an den Buchsen X01, X02, X05 und X06 aktivieren.

Siehe Kapitel <u>Digitale Eingänge und Ausgänge im ZPA-Betrieb</u> [▶ <u>75</u>].

3 Auswahl eines Motors

Überprüfen Sie die folgenden Motorparameter, um herauszufinden, ob ein Motor für den Betrieb mit einer EP7402 geeignet ist. Ein Motor ist nur geeignet, wenn alle Motorparameter im zulässigen Bereich liegen.

Die zulässigen Bereiche für die einzelnen Motorparameter finden Sie in den technischen Daten:

- Technische Daten EP7402-0057 [▶ 10]
- <u>Technische Daten EP7402-0067 [▶ 13]</u>
- Technische Daten EP7402-0167 [▶ 16]

Motor-Art

Der Motor muss ein dreiphasiger BLDC-Motor ohne integrierten Motor-Controller sein.

Wicklungsinduktivität

Die Wicklungsinduktivität des Motors muss größer als die minimal zulässige Wicklungsinduktivität sein.

Elektrische Zeitkonstante

Die Formel zur Berechnung der elektrischen Zeitkonstante des Motors lautet:

$$\tau = \frac{L}{R}$$

τ : elektrische Zeitkonstante

L: Wicklungsinduktivität

R: Wicklungswiderstand

Die elektrische Zeitkonstante muss größer als die PWM-Periodendauer sein:

$$\tau > \frac{1}{f_{PWM}}$$

τ : elektrische Zeitkonstante f_{PWM}: PWM-Taktfrequenz

Nenndrehzahl

Die Nenndrehzahl des Motors muss kleiner oder gleich der maximal erreichbaren Drehzahl sein.

$$n_{max} = \frac{f_{rot}}{2 \times p \times i}$$

n_{max}: Maximal erreichbare Drehzahl

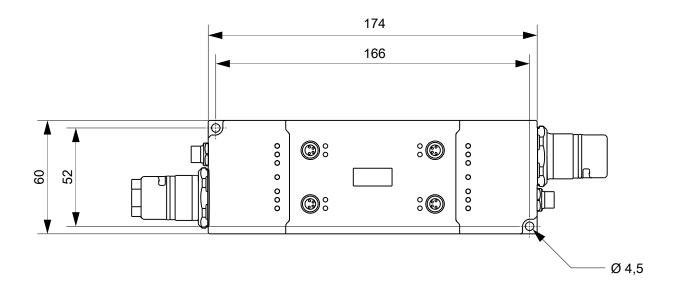
f_{rot}: Drehfeldfrequenz

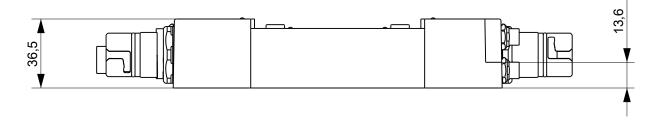
p: Polpaarzahl des Motors

i : Getriebe-Übersetzungsverhältnis. Beispiel: i = 2 für ein Übersetzungs-Verhältnis 2:1.

Nennstrom

Der Nennstrom des Motors muss kleiner oder gleich dem maximalen Dauerstrom sein, den die EP7402 liefern kann.


Version: 1.9



4 Montage und Anschlüsse

4.1 Montage

4.1.1 Abmessungen

Diese Abbildung zeigt stellvertretend die Abmessungen der EP7402-0057. Die Abmessungen gelten genauso für die EP7402-0067 und die EP7402-0167.

Alle Maße sind in Millimeter angegeben. Die Zeichnung ist nicht maßstabsgetreu.

Gehäuseeigenschaften

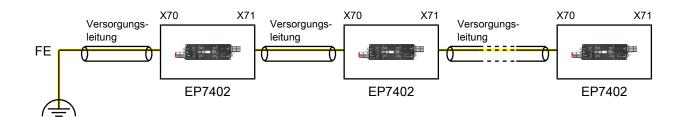
Gehäusematerial	PA66 (Polyamid)
Vergussmasse	Polyurethan
Montage	zwei Befestigungslöcher Ø 4,5 mm für M4
Metallteile	Messing, vernickelt
Kontakte	CuZn, vergoldet
Stromweiterleitung	max. 28 A bei 45°C
Einbaulage	beliebig
Schutzart	im verschraubten Zustand IP65, IP66, IP67 (gemäß EN 60529)
Abmessungen (H x W x D)	ca. 174 x 60 x 36,5 mm (ohne Steckverbinder)

4.1.2 Befestigung

HINWEIS

Verschmutzung bei der Montage

Verschmutzte Steckverbinder können zu Fehlfunktion führen. Die Schutzart IP67 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind.


• Schützen Sie die Steckverbinder bei der Montage vor Verschmutzung.

Montieren Sie das Modul mit zwei M4-Schrauben an den Befestigungslöchern in den Ecken des Moduls. Die Befestigungslöcher haben kein Gewinde.

4.1.3 Funktionserdung (FE)

Erden Sie die FE-Ader der Versorgungsleitung, die an X70 angeschlossen ist.

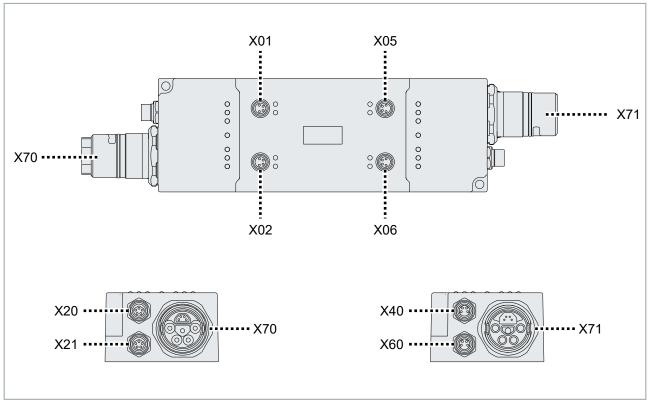
Das FE-Potential wird zu dem FE-Pin von X71 weitergeleitet. Wenn mehrere Geräte in Reihe geschaltet sind, muss also nur die FE-Ader der ersten Versorgungsleitung geerdet werden.

EP7402-0057

Sie können das FE-Potential an den Steckergehäusen von X70 und X71 abgreifen: Verwenden Sie die Muttern von X70 und X71, um ein Blech anzuschrauben. Auf diese Weise kann die EP7402-0057 an das geerdete Maschinenbett angebunden werden.

EP7402-0067

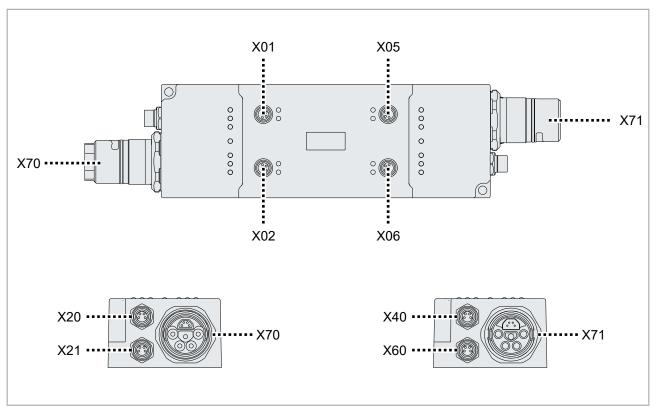
Sie können das FE-Potential an den Steckergehäusen von X70 und X71 abgreifen: Verwenden Sie die Muttern von X70 und X71, um ein Blech anzuschrauben. Auf diese Weise kann die EP7402-0067 an das geerdete Maschinenbett angebunden werden.


EP7402-0167

Die EP7402-0167 hat einen separaten Erdungsanschluss. Siehe Kapitel <u>FE-Anschluss (nur EP7402-0167)</u> [<u>\begin{cases} 32</u>].

4.2 Anschlüsse

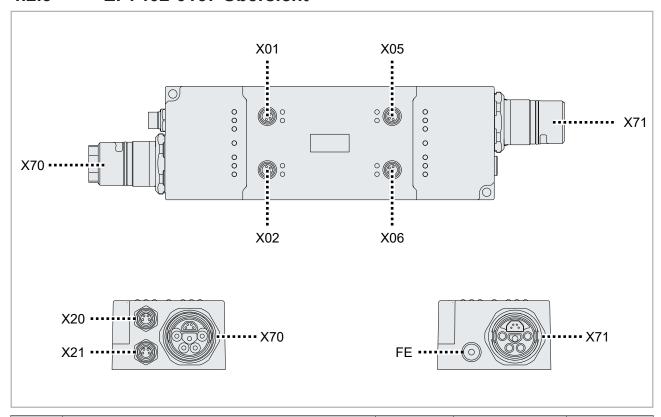
4.2.1 EP7402-0057 Übersicht



Name	Funktion	EtherCAT- Port	Steckverbinder- Typ	Anzugs- Drehmoment
X01	Digitale Eingänge/Ausgänge [▶ 43]	-	M8-Buchse	0,4 Nm
X02			M8-Buchse	0,4 Nm
X05			M8-Buchse	0,4 Nm
X06			M8-Buchse	0,4 Nm
X20	Motorkanal 1 [▶ 39]	-	M8-Buchse, b-codiert	0,4 Nm
X21	Motorkanal 2 [▶ 39]	-	M8-Buchse, b-codiert	0,4 Nm
X40	EtherCAT-Abzweig [▶ 36]	В	M8-Buchse	0,4 Nm
X60	Versorgungsspannungs-Ausgang [▶ 37]	-	M8-Buchse	0,4 Nm
X70	Versorgungsspannungs- und EtherCAT-Eingang [▶ 33]	A	B23 ENP	-
X71	Versorgungsspannungs- und EtherCAT- Weiterleitung [▶ 33]	С	B23 ENP	-

Passende Anschlussleitungen finden Sie im Kapitel <u>Zubehör</u> [▶ 96].

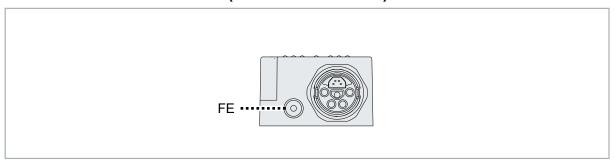
4.2.2 EP7402-0067 Übersicht



Name	Funktion	EtherCAT- Port	Steckverbinder- Typ	Anzugs- Drehmoment
X01	<u>Digitale Eingänge/Ausgänge [▶ 43]</u>	-	M8-Buchse	0,4 Nm
X02			M8-Buchse	0,4 Nm
X05			M8-Buchse	0,4 Nm
X06			M8-Buchse	0,4 Nm
X20	Motorkanal 1 [• 41]	-	M8-Buchse	0,4 Nm
X21	Motorkanal 2 [▶ 41]	-	M8-Buchse	0,4 Nm
X40	EtherCAT-Abzweig [> 36]	В	M8-Buchse	0,4 Nm
X60	Versorgungsspannungs-Ausgang [▶ 37]	-	M8-Buchse	0,4 Nm
X70	Versorgungsspannungs- und EtherCAT-Eingang [▶ 33]	A	B23 ENP	-
X71	Versorgungsspannungs- und EtherCAT- Weiterleitung [▶ 33]	С	B23 ENP	-

Passende Anschlussleitungen finden Sie im Kapitel Zubehör [▶ 96].

4.2.3 EP7402-0167 Übersicht



Name	Funktion	EtherCAT- Port	Steckverbinder- Typ	Anzugs- Drehmoment
FE	Erdungsanschluss [> 32]	-	M3-Buchse	-
X01	Digitale Eingänge/Ausgänge [▶ 43]	-	M8-Buchse	0,4 Nm
X02			M8-Buchse	0,4 Nm
X05			M8-Buchse	0,4 Nm
X06			M8-Buchse	0,4 Nm
X20	Motorkanal 1 [▶ 39]	-	M8-Buchse	0,4 Nm
X21	Motorkanal 2 [▶ 39]	-	M8-Buchse	0,4 Nm
X70	Versorgungsspannungs- und EtherCAT-Eingang [*\sum_33]	А	B23 ENP	-
X71	Versorgungsspannungs- und EtherCAT- Weiterleitung [▶ 33]	С	B23 ENP	-

Passende Anschlussleitungen finden Sie im Kapitel <u>Zubehör</u> [▶ 96].

4.2.4 FE-Anschluss (nur EP7402-0167)

Der FE-Anschluss ist als M3-Buchse ausgeführt. Er ist direkt mit der Ader "FE" der Versorgungsspannungs-Anschlüsse X70 und X71 verbunden.

4.2.5 Versorgungsspannungen und EtherCAT

4.2.5.1 Eingang und Weiterleitung

⚠ WARNUNG

Spannungsversorgung aus SELV- / PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV- / PELV-Stromkreise (Sicherheitskleinspannung, "safety extra-low voltage" / Schutzkleinspannung, "protective extra-low voltage") nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

⚠ VORSICHT

UL-Anforderungen beachten

• Beachten Sie beim Betrieb unter UL-Bedingungen die Warnhinweise im Kapitel <u>UL-Anforderungen</u> [▶ 45].

HINWEIS

Brems-Chopper erforderlich

Es können Überspannungs-Spitzen auf der Versorgungsspannung U_P auftreten, die das Gerät zerstören können.

Die Überspannungs-Spitzen entstehen bei Bremsvorgängen des Motors oder durch manuelles Verschieben von Gegenständen auf dem Rollenförderer.

• Setzen Sie einen Brems-Chopper ein, um Überspannungen abzuleiten. Z.B. EP9576-1032 oder EL9576.

Die EtherCAT Box wird mit zwei Versorgungsspannungen versorgt. Die Versorgungsspannungen sind in der EtherCAT Box galvanisch getrennt.

- Steuerspannung U_s
- Peripheriespannung U_P

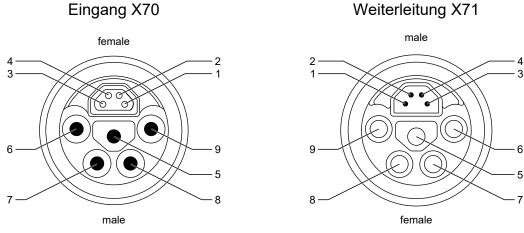
Weiterleitung der Versorgungsspannungen

Sie können mehrere EP7402 in Reihe schalten, indem Sie die Versorgungsspannungen und EtherCAT über X71 an das jeweils nachfolgende Gerät weiterleiten.

HINWEIS

Maximalen Strom beachten

Beachten Sie bei der Weiterleitung der Versorgungsspannungen U_s und U_p , dass der für die Steckverbinder zulässige Strom von 28 A bei 45 °C nicht überschritten wird:

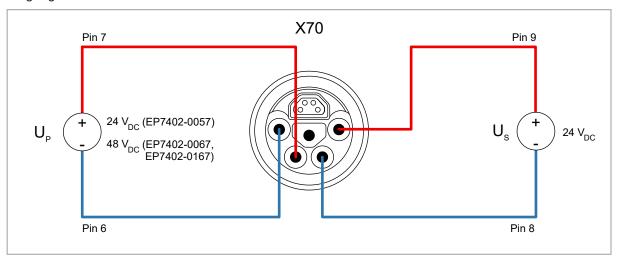

Pinbelegung

HINWEIS

U_P ist nicht verpolungsgeschützt

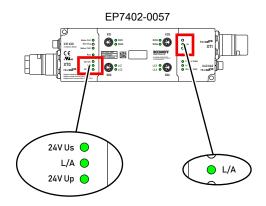
Defekt möglich durch Verpolung.

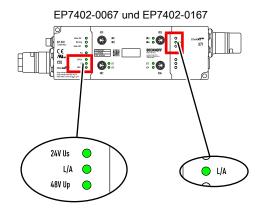
 \bullet Stellen Sie sicher, dass die Versorgungsspannung U_{P} richtig angeschlossen ist.



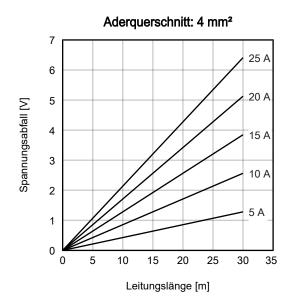
Pin	Aderfarbe 1)	Funktion		
		EP7402-0057	EP7402-0067 und EP7402-0167	
1	gelb	EtherCAT Tx +	EtherCAT Tx +	
2	weiß	EtherCAT Rx +	EtherCAT Rx +	
3	blau	EtherCAT Rx -	EtherCAT Rx -	
4	orange	EtherCAT Tx -	EtherCAT Tx -	
5	grün/gelb	FE	FE	
6	grau	GND _P	GND _P	
7	schwarz	U _P : 24 V _{DC}	U _P : 48 V _{DC}	
8	blau	GND _s	GNDs	
9	braun	U _s : 24 V _{DC}	U _s : 24 V _{DC}	

¹⁾ Die Aderfarben gelten für Leitungen vom Typ ZK7314-3xxx-Axxx. Siehe Kapitel Zubehör [▶ 96].


Anschluss-Diagramm


Dieses Diagramm zeigt den korrekten Anschluss der Versorgungsspannungen am Versorgungsspannungs-Eingang X70.

4.2.5.1.1 Status-LEDs


LED	Signal	Bedeutung
24V Us	aus	Die Versorgungsspannung U _s ist nicht vorhanden.
	leuchtet grün	Die Versorgungsspannung U _s ist vorhanden.
L/A	aus	Keine Verbindung zum angeschlossenen EtherCAT-Gerät.
	leuchtet grün	LINK: Verbindung zum angeschlossenen EtherCAT-Gerät.
	blinkt grün	ACT: Kommunikation mit dem angeschlossenen EtherCAT-Gerät.
24V Up	aus	Die Versorgungsspannung U _P ist nicht vorhanden.
	leuchtet grün	Die Versorgungsspannung U _P ist vorhanden.

4.2.5.1.2 Leitungsverluste

Beachten Sie bei der Planung einer Anlage den Spannungsabfall an der Versorgungs-Zuleitung. Vermeiden Sie, dass der Spannungsabfall so hoch wird, dass die Versorgungsspannungen an der Box die minimale Nennspannung unterschreiten.

Berücksichtigen Sie auch Spannungsschwankungen des Netzteils.

Spannungsabfall an der Versorgungs-Zuleitung

4.2.5.2 EtherCAT-Abzweig X40 (nur EP7402-0057 und EP7402-0067)

HINWEIS

Verwechselungs-Gefahr

M8-Steckverbinder für Versorgungsspannungen haben die gleiche Bauform wie M8-Steckverbinder für EtherCAT. Beachten Sie die farbliche Codierung der Steckverbinder, um Fehlstecken zu vermeiden:

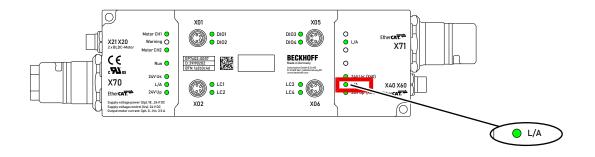
schwarz: Versorgungsspannungen

grün: EtherCAT

Abb. 1: M8-Buchse

EtherCAT	M8-Buchse	Aderfarben	Aderfarben			
Signal	Kontakt	ZB9010, ZB9020, ZB9030, ZB9032, ZB9031 und alte Versionen von ZB9030, ZB9032, ZK1090-3xxx-ZK1090-3xxx-XXX		TIA-568B		
Tx +	1	gelb ¹⁾	orange/weiß	weiß/orange		
Tx -	4	orange ¹⁾	orange	orange		
Rx +	2	weiß ¹⁾	blau/weiß	weiß/grün		
Rx -	3	blau ¹⁾	blau	grün		
Shield	Gehäuse	Schirm	Schirm	Schirm		

¹⁾ Aderfarben nach EN 61918



Anpassung der Aderfarben für die Leitungen ZB9030, ZB9032 und ZK1090-3xxxx-xxxx

Zur Vereinheitlichung wurden die Aderfarben der Leitungen ZB9030, ZB9032 und ZK1090-3xxx-xxxx auf die Aderfarben der EN61918 umgestellt: gelb, orange, weiß, blau. Es sind also verschiedene Farbkodierungen im Umlauf. Die elektrischen Eigenschaften der Leitungen sind bei der Umstellung der Aderfarben erhalten geblieben.

Passende Anschlussleitungen finden Sie im Kapitel Zubehör [▶ 96].

4.2.5.2.1 Status-LED

LED	Signal	Bedeutung
	aus	Keine Verbindung zum angeschlossenen EtherCAT-Gerät.
	leuchtet grün	LINK: Verbindung zum angeschlossenen EtherCAT-Gerät
	blinkt grün	ACT: Kommunikation mit dem angeschlossenen EtherCAT-Gerät

4.2.5.3 Versorgungsspannungs-Ausgang X60 (nur EP7402-0057 und EP7402-0067)

Der Versorgungsspannungs-Ausgang ist vorgesehen für die Versorgung von EtherCAT-Geräten, die am EtherCAT-Abzweig X40 [*) 36] angeschlossen sind.

⚠ VORSICHT

Die ausgehende Peripheriespannung Up' wird *nicht* abgeschaltet, wenn Sie die eingehende Peripheriespannung U_p abschalten. (EP7402-0057 ab Hardware 03, EP7402-0067 ab Hardware 00)

Aktoren am Versorgungsspannungs-Ausgang bleiben aktiv.

• Wenn Sie Aktoren am Versorgungsspannungs-Ausgang sicher abschalten wollen, verwenden Sie TwinSAFE-Komponenten.

HINWEIS

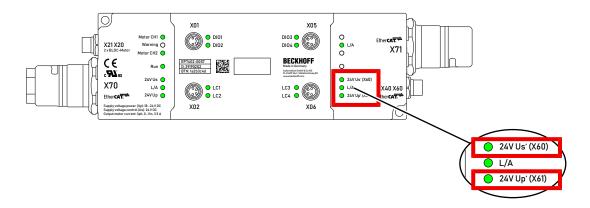
Die ausgehenden Versorgungsspannungen sind *nicht* galvanisch getrennt. (EP7402-0057 ab Hardware 03, EP7402-0067 ab Hardware 00)

Die analogen Spezifikationen von EtherCAT-Box-Modulen mit analogen Eingängen oder Ausgängen können unter Umständen nicht eingehalten werden.

Abb. 2: M8-Buchse

Kontakt	Symbol	Beschreibung	Aderfarbe
1	24V Us'	Steuerspannung	Braun
2	24V Up'	Peripheriespannung 1)	Weiß
3	GND	Gemeinsames Massepotential für	Blau
4	GND	beide Ausgangsspannungen ²⁾	Schwarz

¹⁾ Up' ist je nach Hardware-Stand von unterschiedlichen Versorgungsspannungen abgezweigt:


- Ab Hardware-Stand 03:
 Up' ist von der eingehenden Steuerspannung U_s an X70 [▶ 33] abgezweigt.
- Bis einschließlich Hardware-Stand 02:
 Up' ist von der eingehenden Peripheriespannung U_P an X70 [▶ 33] abgezweigt.

Passende Anschlussleitungen finden Sie im Kapitel Zubehör [▶ 96].

²⁾ Bis einschließlich Hardware-Stand 02 liegt an Pin 3 GND_S und an Pin 4 GND_P. Ab Hardware-Version 03 liegen beide Pins auf dem gleichen Massepotential GND_S.

4.2.5.3.1 Status-LEDs

LED	Signal	Bedeutung	
24V Us' (X60)	aus	Die Versorgungsspannung U _s ' wird nicht ausgegeben.	
	leuchtet grün	Die Versorgungsspannung U _s ' wird ausgegeben.	
24V Up' (X60)	aus	Die Versorgungsspannung U _P ' wird nicht ausgegeben.	
	leuchtet grün	Die Versorgungsspannung U _P ' wird ausgegeben.	

4.2.6 Motor-Anschlüsse von EP7402-0057

4.2.6.1 Pinbelegung

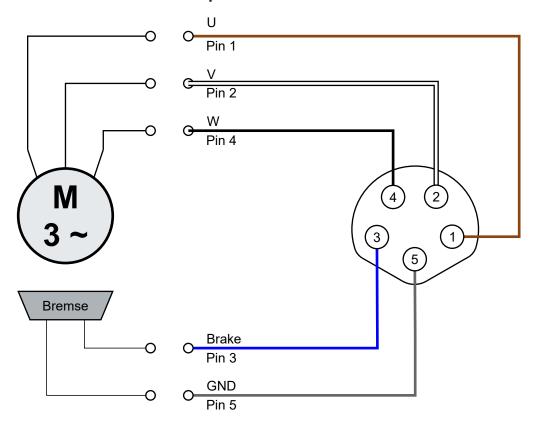
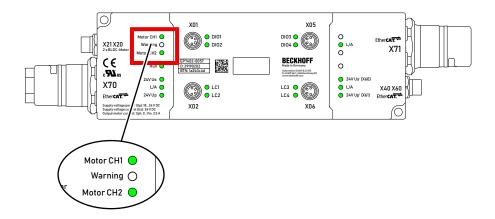

X20 und X21

Abb. 3: M8-Buchse, b-codiert

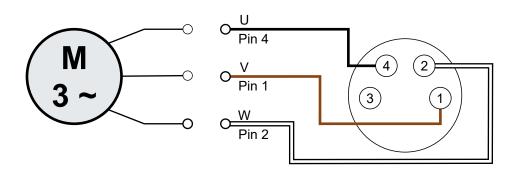

Pin	Aderfarbe	Funktion	
1	braun	Motorphase U	
2	weiß	Motorphase V	
3	blau	Brems-Ausgang	
4	schwarz	Motorphase W	
5	grau	GND _P	

4.2.6.2 Anschluss-Beispiel

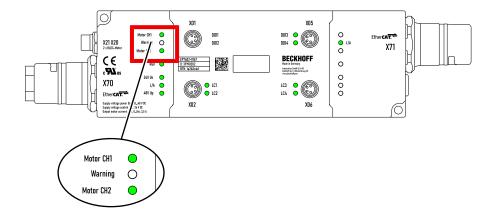
4.2.6.3 Status-LEDs

LED	Signal	Bedeutung
Motor CH1	aus	Der Motorkanal 1 ist deaktiviert.
		Sie können ihn aktivieren, indem Sie "Enable" im Prozessdatenobjekt <u>STM Control Channel 1 [▶ 20]</u> auf 1 setzen.
	leuchtet grün	Der Motorkanal 1 ist aktiviert.
	leuchtet rot	Der Motorkanal 1 wurde wegen eines Fehlers gesperrt. Prüfen Sie die <u>Diagnose-Bits [* 79]</u> , um die Ursache des Fehlers zu ermitteln.
Warning	leuchtet orange	Warnmeldung.
		Prüfen Sie die <u>Diagnose-Bits [▶ 79]</u> um die Ursache der Warnmeldung zu ermitteln.
Motor CH2	aus	Der Motorkanal 2 ist deaktiviert.
		Sie können ihn aktivieren, indem Sie "Enable" im Prozessdatenobjekt <u>STM Control Channel 2 [▶ 20]</u> auf 1 setzen.
leuchtet grün Der Motorkana		Der Motorkanal 2 ist aktiviert.
	leuchtet rot	Der Motorkanal 2 wurde wegen eines Fehlers gesperrt.
		Prüfen Sie die <u>Diagnose-Bits [▶ 79]</u> , um die Ursache des Fehlers zu ermitteln.

4.2.7 Motor-Anschlüsse von EP7402-0067 und EP7402-0167


4.2.7.1 Pinbelegung

M8-Buchsen X20 und X21


Pin	Aderfarbe	Funktion
1	braun	Motorphase V
2	weiß	Motorphase W
3	blau	GND _P
4	schwarz	Motorphase U

4.2.7.2 Anschluss-Beispiel

4.2.7.3 Status-LEDs

LED	Signal	Bedeutung	
Motor CH1	aus	Der Motorkanal 1 ist deaktiviert.	
		Sie können ihn aktivieren, indem Sie "Enable" im Prozessdatenobjekt <u>STM Control Channel 1 [▶ 20]</u> auf 1 setzen.	
	leuchtet grün	Der Motorkanal 1 ist aktiviert.	
	leuchtet rot	Der Motorkanal 1 wurde wegen eines Fehlers gesperrt. Prüfen Sie die <u>Diagnose-Bits</u> [• 79], um die Ursache des Fehlers zu ermitteln.	
Warning	leuchtet orange	Warnmeldung.	
		Prüfen Sie die <u>Diagnose-Bits [▶ 79]</u> um die Ursache der Warnmeldung zu ermitteln.	
Motor CH2	aus	Der Motorkanal 2 ist deaktiviert.	
		Sie können ihn aktivieren, indem Sie "Enable" im Prozessdatenobjekt <u>STM Control Channel 2 [▶ 20]</u> auf 1 setzen.	
leuchtet grün Der Motorkanal 2 ist aktiviert.		Der Motorkanal 2 ist aktiviert.	
	leuchtet rot	Der Motorkanal 2 wurde wegen eines Fehlers gesperrt.	
		Prüfen Sie die <u>Diagnose-Bits</u> [▶ 79], um die Ursache des Fehlers zu ermitteln.	

4.2.8 Digitale Eingänge/Ausgänge

Jeder Kanal kann wahlweise als Digital-Eingang oder als Digital-Ausgang betrieben werden.

M8-Buchsen X01, X02, X05, X06

Pin	Aderfarbe 1)	Funktion	Bezeichnung im ZPA-Betrieb			
			X01	X02	X05	X06
1	braun	U _{S1} : 24 V _{DC} Ausgang	-	-	-	-
2	weiß	Eingang B / Ausgang B ²⁾	Input 2 / Output 2	Control Input 2 /	Input 4 / Output 4	Control Input 4 /
				Control Output 2		Control Output 4
3	blau	GND _s	-	-	-	-
4	schwarz	Eingang A / Ausgang A ²⁾	Input 1 / Output 1	Control Input 1 /	Input 3 / Output 3	Control Input 3 /
			-	Control Output 1		Control Output 3

¹⁾ Die Aderfarben gelten für Kabel vom Typ ZK2000-3xxx. Siehe Kapitel <u>Zubehör [▶ 96]</u>.

4.2.8.1 Anschluss-Beispiele

Digitaler Sensor, Zweileiter-Anschluss an Kanal A

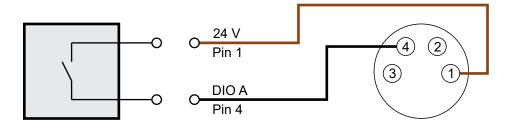


Abb. 4: Digitaler Sensor, Zweileiter-Anschluss

²⁾ Siehe <u>Zuordnung zu Prozessdaten [▶ 22]</u>.

Digitaler Sensor, Dreileiter-Anschluss an Kanal A

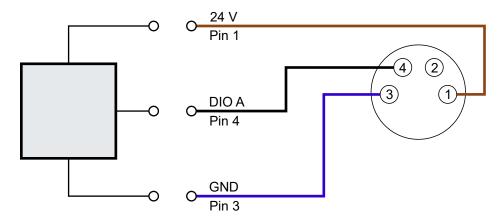


Abb. 5: Digitaler Sensor, Dreileiter-Anschluss

4.3 UL-Anforderungen

Die Installation der nach UL zertifizierten EtherCAT-Box-Module muss den folgenden Anforderungen entsprechen.

Versorgungsspannung

⚠ VORSICHT

VORSICHT!

Die folgenden genannten Anforderungen gelten für die Versorgung aller so gekennzeichneten EtherCAT-Box-Module.

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nur mit einer Spannung von 24 V_{DC} versorgt werden, die

- von einer isolierten, mit einer Sicherung (entsprechend UL248) von maximal 4 A geschützten Quelle, oder
- von einer Spannungsquelle die NEC class 2 entspricht stammt.
 Eine Spannungsquelle entsprechend NEC class 2 darf nicht seriell oder parallel mit einer anderen NEC class 2 entsprechenden Spannungsquelle verbunden werden!

△ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nicht mit unbegrenzten Spannungsquellen verbunden werden!

Netzwerke

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nicht mit Telekommunikations-Netzen verbunden werden!

Umgebungstemperatur

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nur in einem Umgebungstemperaturbereich von -25 °C bis +55 °C betrieben werden!

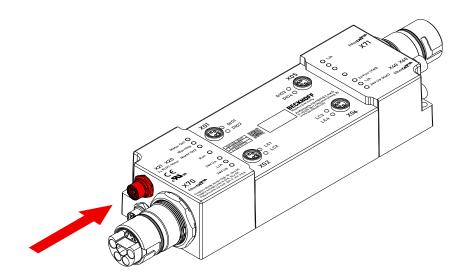
Kennzeichnung für UL

Alle nach UL (Underwriters Laboratories) zertifizierten EtherCAT-Box-Module sind mit der folgenden Markierung gekennzeichnet.

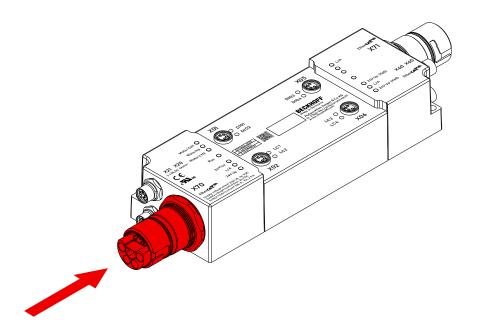
Abb. 6: UL-Markierung

4.4 Entsorgung

Die mit einer durchgestrichenen Abfalltonne gekennzeichneten Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

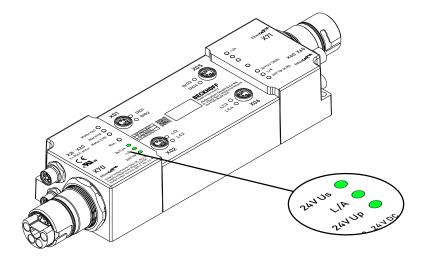

5 Inbetriebnahme

5.1 Schnellstart


Dieses Kapitel beschreibt die Inbetriebnahme am Beispiel der EP7402-0057. Es gilt aber genauso für die EP7402-0067 und EP7402-0167.

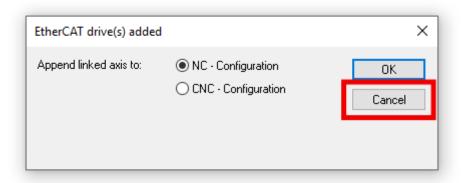
5.1.1 Schritt 1: Hardware Setup

1. Einen Rollenmotor an die Buchse X20 anschließen. Die Pinbelegung finden Sie im Kapitel Motor-Anschlüsse von EP7402-0057 [▶39].

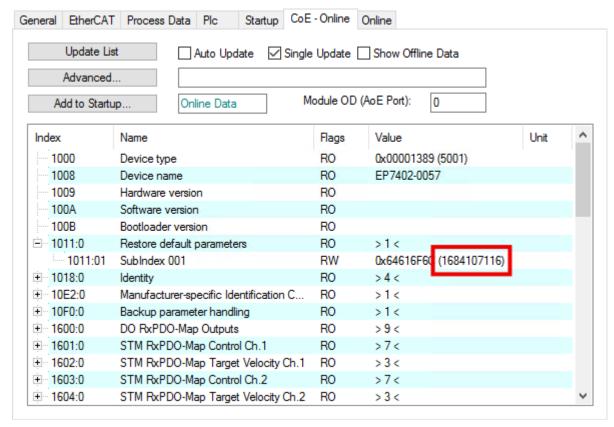


2. Die Versorgungsspannungen und EtherCAT an die Buchse X70 anschließen. Die Pinbelegung finden Sie im Kapitel <u>Versorgungsspannungen und EtherCAT</u> [▶ 33].

3. Den korrekten Anschluss mithilfe der Status-LEDs kontrollieren:


Sollzustand:

- "24V Us" leuchtet grün.
- "24V Up" leuchtet grün.
- "L/A" zeigt den LINK/ACT-Status der EtherCAT-Kommunikation.


5.1.2 Schritt 2: TwinCAT-Konfiguration

- 1. Die EP7402 in ein TwinCAT-Projekt einbinden. (siehe Schnellstartanleitung)
 - ⇒ Bei Firmware-Versionen bis einschließlich 02 erscheint ein Dialogfenster:

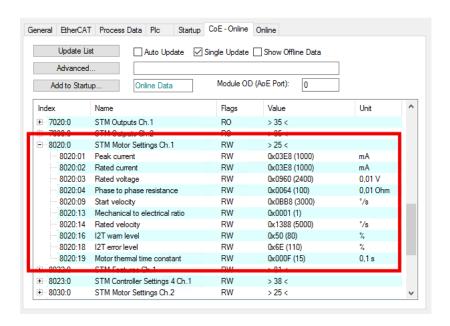
Auf "Cancel" klicken, um das Dialogfenster zu schließen.

2. Die EP7402 auf die Werkseinstellungen zurücksetzen: Den Parameter 1011:01 auf den Wert 1684107116_{dez} setzen.

Weitere Informationen finden Sie im Kapitel Wiederherstellen des Auslieferungszustands [> 77].

5.1.3 Schritt 3: Parametrierung

Beispiel-Parameter für einen Servomotor von Beckhoff:


AM8111-0F20-0000 [▶ 94]

5.1.3.1 Motorparameter einstellen

Vorgehensweise:

- 1. Die Registerkarte "CoE Online" öffnen.
- Alle unten beschriebenen Parameter einstellen.
 Alle nicht beschriebenen Parameter in der Werkseinstellung lassen.

Die Werte für die Parameter finden Sie im Datenblatt des Motors.

8020:01 "Peak current"

Einheit: mA

Spitzenstrom, der nur für kurze Zeit fließen darf.

8020:02 "Rated current"

Einheit: mA

Der Nennstrom ist der Strom, den der Motor aufnimmt, wenn er bei Nenndrehzahl und Nenndrehmoment betrieben wird.

8020:03 "Rated voltage"

Einheit: 0,01 V

8020:04 "Phase to phase resistance"

Einheit: 0,01 Ω

Gleichstrom-Widerstand, gemessen zwischen zwei Motor-Phasen.

Bemerkung: ab Firmware 04 wird dieser Wert beim Scannen des Motors automatisch ermittelt. Siehe folgendes Kapitel <u>Motor scannen (nur Firmware 04 und höher)</u> [▶ 53].

8020:09 "Start velocity"

Einheit: °/s (Grad pro Sekunde)

Es gibt zwei Möglichkeiten, den Wert für diesen Parameter zu berechnen:

• Falls die Nenngeschwindigkeit der Förderrolle bekannt ist, nutzen Sie diese Formel:

$$n_{start} = \frac{1}{10} \times \frac{1}{i} \times \frac{v}{\pi \times d} \times 360^{\circ}$$

n_{start}: Wert für den Parameter 8020:09 "Start velocity"

i: Übersetzungsverhältnis. (i = 1, wenn kein Getriebe verwendet wird)

v: Nenngeschwindigkeit in m/s (Hinweis: v [m/s] = v [fpm] / 196,85)

d: Förderrollen-Durchmesser in m

• Falls die Nenndrehzahl des Rollenmotors bekannt ist, nutzen Sie diese Formel:

$$n_{start} = \frac{1}{10} \times \frac{n_N}{i} \times \frac{360^{\circ}}{60 \frac{s}{min}}$$

n_{start}: Wert für den Parameter 8020:09 "Start velocity"

n_N: Nenndrehzahl des Motors in rpm

i: Übersetzungsverhältnis (i = 1, wenn kein Getriebe verwendet wird)

8020:13 "Mechanical to electrical ratio"

Sie können den Wert für diesen Parameter berechnen oder experimentell ermitteln.

· Falls die Polzahl des Rollenmotors bekannt ist, verwenden Sie diese Formel:

$$p = \frac{Polzahl}{2} \times i$$

p: Wert für den Parameter 8020:13 "Mechanical to electrical ratio"

i: Übersetzungsverhältnis. (i = 1, wenn kein Getriebe verwendet wird)

· Beispiel:

Polzahl = 8

Übersetzungsverhältnis = 12:1

 \rightarrow "Mechanical to electrical ratio" = (8 / 2) x 12 = 48

• Falls die Polzahl des Rollenmotors nicht bekannt ist: Ermitteln Sie das "Mechanical to electrical ratio" experimentell [▶ 59].

Version: 1.9

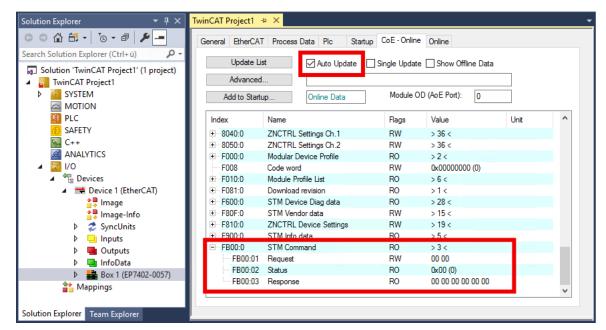
8020:14 "Rated velocity"

Einheit: °/s

Nenn-Drehzahl des Rollenmotors.

8020:19 "Motor thermal time constant"

Einheit: 1/10 s (0,1 Sekunden)


5.1.3.2 Motor scannen (nur Firmware 04 und höher)

Die folgenden Parameter werden beim Scannen des Motors ermittelt:

- Der Wicklungswiderstand des Motors: Parameter 8020:04 "Phase to phase resistance".
- Reglerparameter für den Stromregler:
 - 8023:23 "Current loop proportional gain"
 - 8023:24 "Current loop integral time"

Scan ausführen

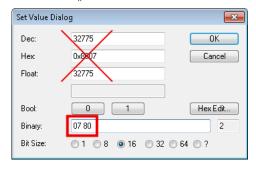
- ✓ Voraussetzung: Sie haben alle Parameter im vorigen Kapitel Motorparameter einstellen [▶ 50] gewissenhaft eingestellt.
- 1. Die Registerkarte "CoE Online" öffnen und das Kontrollkästchen "Auto Update" aktivieren.
- 2. In den Parameter 0xFB00:01 "Request" einen der folgenden Werte schreiben: Wert 0x8007 für Kanal 1.
 - Wert 0x8017 für Kanal 2.

- ⇒ Der Scan wird ausgeführt.
- \Rightarrow Der Wert des Registers FB00:02 "Status" zeigt den Fortschritt des Scans an. Die Werte $100_{\rm dez}$ … $200_{\rm dez}$ entsprechen 0 … 100 %.
- 3. Warten, bis das Register FB00:02 "Status" den Wert 0 oder 3 annimmt.
 - ⇒ Wert 0: Der Scan war erfolgreich.
 - ⇒ Wert 3: Fehler. Siehe Fehlerbehebung [▶ 54].

Fehlerbehebung

Falls während des Scans ein Fehler auftritt, wird im Parameter FB00:03 "Response" ein Fehlercode ausgegeben. Die folgende Tabelle zeigt die möglichen Fehlercodes:

Response	Bedeutung und Abhilfe		
03 00 00 00 00 01	Stellen Sie sicher, dass die folgenden Bits beider Kanäle den richtigen Wert haben:		
	PDO "STM Status Channel n", Bit "Ready to enable" = 1		
	PDO "STM Control Channel n", Bit "Enable" = 0		
03 00 00 00 00 02	Stellen Sie sicher, dass das Bit "Ready to enable" den Wert 1 hat.		
03 00 00 00 00 03	Ein interner Fehler ist aufgetreten.		
	Siehe auch Diagnose-Bit General hardware error.		
03 00 00 00 00 04	Der Scan konnte nicht erfolgreich durchgeführt werden.		
	Prüfen Sie, ob der Motor richtig angeschlossen ist und die Motorwelle sich frei drehen kann.		

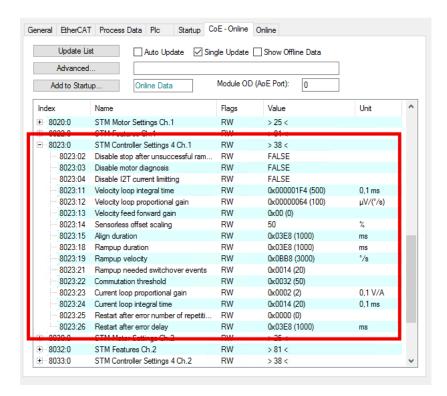

Ein Fehler muss nicht quittiert werden. Falls ein Scan mit einer Fehlermeldung abgebrochen wurde, können Sie einfach einen neuen Scan starten.

5.1.3.2.1 Motor scannen mit TwinCAT 2

In TwinCAT 2 ist eine dezimale oder hexadezimale Eingabe der Kommandos nicht möglich.

Um das Kommando "Scan Motor" auszuführen, tragen Sie einen der folgenden Werte in das Feld "Binary" ein:

- Wert "07 80" für Kanal 1
- Wert "17 80" für Kanal 2



5.1.3.3 Reglerparameter einstellen

Vorgehensweise:

- 1. Die Registerkarte "CoE Online" öffnen.
- Alle unten beschriebenen Parameter einstellen.
 Alle nicht beschriebenen Parameter in der Werkseinstellung lassen.

(Detaillierte Beschreibungen der Parameter finden Sie im Kapitel Objekte zur Parametrierung [88].)

8023:03 "Disable motor diagnosis"

Setzen Sie diesen Parameter auf TRUE. Dadurch wird die Diagnose-Funktion während der Ausrichtungs-Phase deaktiviert.

8023:12 "Velocity loop proportional gain"

Setzen Sie diesen Parameter auf null. Dadurch wird der Geschwindigkeits-Regler deaktiviert. Reaktivieren sie ihn, nachdem <u>Schritt 4: Testlauf [\bullet 56]</u> erfolgreich abgeschlossen wurde.

8023:13 "Velocity feed forward"

Setzen Sie diesen Parameter auf 100. Dadurch wird der Geschwindigkeitsregler umgangen.

8023:14 "Sensorless offset scaling"

Setzen Sie diesen Parameter auf 80.

8023:19 "Rampup velocity"

Setzen Sie diesen Parameter auf den gleichen Wert wie Parameter 8020:09 "Start velocity". Einheit: °/s (Grad pro Sekunde).

8023:21 "Rampup needed switchover events"

Setzen Sie diesen Parameter auf 1.

5.1.4 Schritt 4: Testlauf

- 1. Sicherstellen, dass alle vorhergehenden Schritte erfolgreich abgeschlossen wurden.
- 2. Jegliche Last von der Förderrolle entfernen.
- 3. Falls der Motor eine Haltebremse hat: die Haltebremse lösen, indem Sie "Brake output" auf 1 setzen.
 - STM Control Channel 1
 - ▲ E Control
 - Enable
 - Reset
 - Invert direction
 - Brake output
- 4. "Velocity" auf 50 % der Nenndrehzahl des Motors inklusive Getriebe setzen:
 - STM Target Velocity Channel 1
 - Velocity
 - Accelleration
 - Decceleration

Formel zur Berechnung von 50 % der Nenndrehzahl:

$$n = \frac{1}{2} \times \frac{n_N}{i} \times \frac{360^{\circ}}{60 \frac{s}{min}}$$

- n: Wert für die Ausgangsvariable "Velocity"
- n_N: Nenndrehzahl des Motors in rpm
- i: Übersetzungsverhältnis. (i = 1, wenn kein Getriebe

verwendet wird)

Version: 1.9

- 5. "Enable" auf 1 setzen.
 - STM Control Channel 1

- Invert direction
- Brake output
- ⇒ Der Rotor wird 1 Sekunde lang ausgerichtet.
- ⇒ Danach versucht die Box, den Motor zu drehen.
- 6. <u>Das Resultat bewerten.</u> [▶ 57]

Mögliche Resultate des Testlaufs

- Falls sich der Motor kontinuierlich dreht: springen Sie zum <u>nächsten Schritt [\rightarrow 58]</u> der Inbetriebnahme.
- Falls sich der Motor nicht kontinuierlich dreht:
 - Die Ausgangsvariable "Enable" auf 0 setzen
 - Die Status-Bits in der Eingangsvariablen "Device Diag" prüfen.
 - Die Status-Bits mithilfe der untenstehenden Tabelle auswerten.
 - Die Ausgangsvariable "Reset" auf 1 setzen. (dadurch werden die Status-Bits zurückgesetzt)
 - Die Ausgangsvariable "Reset" auf 0 setzen.
 - Den Testlauf wiederholen: dazu die Ausgangsvariable "Enable" auf 1 setzen.

Gesetztes Bit in "Device Diag"	Mögliche Gründe	Lösung	
(keins)	Die Ausgangsvariable "Velocity" ist kleiner als der Parameter 8020:09 "start velocity".	Berechnungen prüfen.	
"Channel 1 motor overload I2T error"	Der Ausgangsstrom ist zu hoch.	Den Wert von Parameter 8023:14 "Sensorless offset scaling" reduzieren.	
"Channel 1 commutation error"	Die Förderrolle ist belastet 1)	Jegliche Last von der Förderrolle entfernen.	
	Der Ausgangsstrom ist zu niedrig.	Den Wert von Parameter <u>8023:14</u> <u>"Sensorless offset scaling" [▶ 88]</u> erhöhen.	
	"Rampup velocity" ist zu hoch 1)	Die Berechnung des Parameters 8023:19 "Rampup velocity" [▶ 55] prüfen. Wenn die Berechnung korrekt ist, den Wert dieses Parameters reduzieren.	
	"Rampup needed switchover events" ist zu niedrig.	Den Wert von Parameter 8023:21 "Rampup needed switchover events" [▶ 55] erhöhen.	
	Falsche Motor-Parameter	Überprüfen Sie die Motor-Parameter	
	Der Motor ist zu schwach 1)	Ein Getriebe einsetzen und alle Parameter neu berechnen.	

¹⁾ Besonders wahrscheinlich, wenn der Motor ein Geräusch mit ansteigender Tonhöhe von sich gibt.

5.1.5 Schritt 5: Abschluss

- 1. "Enable" auf 0 setzen.
 - STM Control Channel 1
 Control
 Enable

■ Reset

- Invert direction
- Brake output
- 2. Den Parameter 8023:12 "Velocity loop proportional gain" auf $100_{\rm dez}$ setzen. (Jeder Wert über null aktiviert den Geschwindigkeitsregler.)
 - ⇒ Jetzt können Sie den Motor mit den Variablen "Enable" und "Velocity" steuern.
- 3. Während des Betriebs die <u>Diagnose-Bits</u> [▶ <u>79</u>] überwachen.
- 4. Feinabstimmung der Parameter [▶ 60]

5.2 "Mechanical to electrical ratio" experimentell ermitteln

Der Parameter 8020:13 "Mechanical to electrical ratio" ist ein zentraler Parameter für den Betrieb der EP7402. Sie können diesen Parameter berechnen, falls die Polzahl und das Übersetzungsverhältnis bekannt sind. Ansonsten müssen Sie den Parameter experimentell ermitteln. Die Vorgehensweise ist abhängig von der Firmware-Version:

5.2.1 Firmware 04 und höher

Das Prinzip zur experimentellen Ermittlung des "Mechanical to electrical ratio" besteht darin, den Motor schrittweise eine ganze Umdrehung ausführen zu lassen und dabei die Schritte zu zählen. Gehen Sie dazu wie folgt vor:

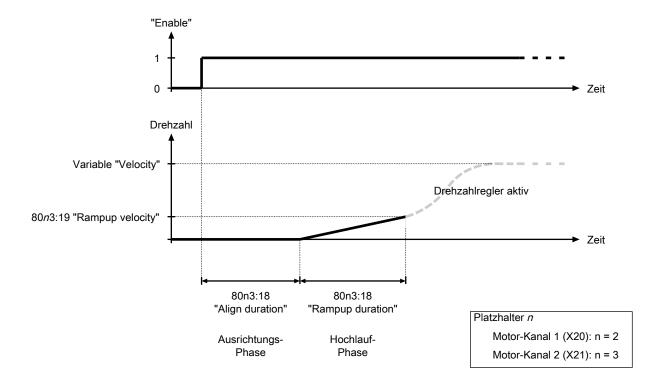
- 1. Sicherstellen, dass sich die Motorwelle frei bewegen kann.
- 2. "Velocity" auf 0 setzen.
- 3. Sicherstellen, dass der Kanal bereit ist ("Ready to enable" = 1).
- 4. "Enable" auf 1 setzen.
 - ⇒ Eine der Motorphasen wird bestromt.
 - ⇒ Möglicherweise hören Sie ein "Klick"-Geräusch von dem Rollenmotor.
- 5. In den Parameter 0xFB00:01 "Request" einen der folgenden Werte schreiben:
 - Wert 0x800A für Kanal 1.
 - Wert 0x801A für Kanal 2.
 - ⇒ Der Motor am entsprechenden Kanal dreht einen Schritt vorwärts.
- 6. Das Register FB00:02 "Response" auslesen.
 - ⇒ Byte 0 = 0: kein Fehler. Fortfahren.
 - ⇒ Byte 0 = 2: Fehler. Diagnose-Bits prüfen. Siehe Kapitel <u>Diagnose-Bits [▶ 79]</u>.
- 7. Die Handlungsschritte 5 und 6 mehrfach wiederholen, bis der Motor genau eine Umdrehung ausgeführt hat. Dabei die Anzahl der Schritte zählen. 1)
- 8. "Enable" auf 0 setzen.
- 9. Die Anzahl der Schritte durch 6 teilen und das Ergebnis in den Parameter 8020:13 "Mechanical to electrical ratio" eintragen.

5.2.2 Firmware 03 und niedriger

- 1. Den Parameter 8023:03 "Disable motor diagnosis" auf TRUE setzen.
- 2. "Velocity" auf 0 setzen.
- 3. "Enable" auf 1 setzen.
 - ⇒ Eine Motorphase wird bestromt.
 - ⇒ Möglicherweise hören Sie ein "Klick"-Geräusch von dem Rollenmotor.
- 4. Die Förderrolle mit der Hand drehen. Fühlen Sie definierte Rastschritte?
 - Ja: Unten fortfahren
 - Nein: Den Wert von Parameter 8023:14 "Sensorless offset voltage" um 10_{dez} erhöhen und erneut versuchen.
- 5. Die Förderrolle mit der Hand um 360° drehen. Dabei die Anzahl der Rastschritte zählen. 1)
- 6. "Enable" auf 0 setzen.
- 7. Den Parameter 8023:03 "Disable motor diagnosis" zurück auf FALSE setzen.
- 8. Die Anzahl der Rastschritte in Parameter 8020:13 "Mechanical to electrical ratio" eintragen.

¹⁾ Tipp: Falls Sie nicht sicher sind, wann der Motor eine ganze Umdrehung ausgeführt hat (z.B. durch Spiel im Getriebe), können Sie den Motor auch zwei oder mehr Umdrehungen drehen lassen. Teilen Sie anschließend die gezählten Schritte durch die Anzahl der Umdrehungen.

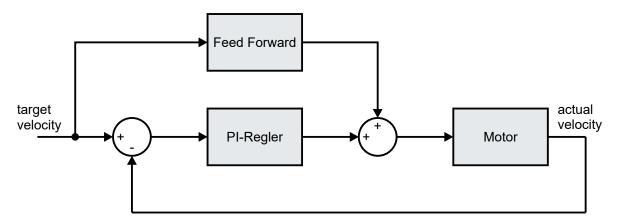
¹⁾ Tipp: bringen Sie eine Markierung an der Rolle an. Das macht es einfacher, die Rolle genau um 360° zu drehen.


5.3 Feinabstimmung der Parameter (Tuning)

5.3.1 Ausrichtungs-Phase und Hochlauf-Phase

Verwenden Sie das folgende Diagramm, um die Parameter der Ausrichtungs-Phase und der Hochlauf-Phase einzustellen. Die CoE-Indizes der Parameter stehen in dem Diagramm.

Empfohlene Vorgehensweise für die Feinabstimmung eines Parameters:


- 1. Setzen Sie die Ausgangsvariable "Enable" auf 0
- 2. Ändern Sie den the betreffenden Parameter
- 3. Setzen Sie die Ausgangsvariable "Enable" auf 1
- 4. Bewerten Sie das Ergebnis
 - Prüfen Sie, ob die <u>Diagnose-Bits</u> [▶ <u>79</u>] Warnungen oder Fehler melden
 - Versuchen Sie es gegebenenfalls erneut.

5.3.2 Geschwindigkeitsregler

Der Geschwindigkeitsregler ist ein PI-Regler mit Feed Forward.

Die Reglerparameter befinden sich im CoE-Verzeichnis:

- Proportional-Anteil K_p: Parameter 80n3:12_{hex} "Velocity loop proportional gain"
- Integral-Anteil T_i: Parameter 80n3:11_{hex} "Velocity loop integral time"
- Parameter 80n3:13_{hex} "Velocity feed forward gain"

Sie können den Drehzahlregler deaktivieren, indem Sie den Proportional-Anteil K_P auf null setzen und den Feed-Forward-Faktor auf einen Wert größer null.

Optimieren des Geschwindigkeitsreglers

Die folgende Handlungsanweisung beschreibt eine praktische Vorgehensweise zur Optimierung des Geschwindigkeitsreglers.

- ✓ Voraussetzung: der Motorkanal wurde vollständig gemäß dem Kapitel Schnellstart [▶ 47] konfiguriert.
- 1. Sicherstellen, dass der Parameter 80n2:11 "Select info data 1" auf 7 "Motor velocity" eingestellt ist. Die entsprechende Variable "Info data 1" in einem Scope View beobachten.
- 2. Den Proportionalanteil 80n3:12 "Velocity loop proportional gain" auf 0 einstellen.
 - ⇒ Der Geschwindigkeitsregler ist vorübergehend deaktiviert.
- 3. Die Variable Velocity auf die halbe Nenngeschwindigkeit des Rollenmotors setzen.
- 4. Den Parameter 80n3:13 "Velocity feed forward gain" so einstellen, dass die vorgegebene Geschwindigkeit ungefähr erreicht wird.
- 5. Den Integralanteil 80n3:11 "Velocity loop integral time" eher träge konfigurieren.
- 6. Den Proportionalanteil 80n3:12 "Velocity loop proportional gain" in 10er-Schritten erhöhen, bis die "Motor Velocity" im Scope View anfängt zu schwingen.
- 7. Den Integralanteil 80n3:13 "Velocity loop integral time" erhöhen, bis das Schwingen ausreichend minimiert ist.
- 8. Die beiden vorhergehenden Punkte bei Bedarf wiederholen, da ein erhöhter Integralteil in der Regel die Schwingneigung reduziert.
- 9. Den Proportionalanteil 80n3:12 "Velocity loop proportional gain" um 30 % reduzieren. Die 30 % dienen als Regelreserve.

Falls die Geschwindigkeit beim Start überschwingt, 80n3:13: "Velocity feed forward gain" reduzieren.

5.4 Autoacknowledge: Fehler automatisch quittieren

Diese Funktion ist ab Firmware 05 verfügbar.

Falls ein Kommutierungsfehler auftritt, wird der betroffene Motorkanal deaktiviert. Die Autoacknowledge-Funktion kann den Motorkanal automatisch wieder aktivieren und den Motor erneut starten.

Autoacknowledge funktioniert sowohl im Betrieb mit einer zentralen SPS als auch im ZPA-Betrieb.

Auslieferungszustand

Im Auslieferungszustand ist die Autoacknowledge-Funktion deaktiviert. Um sie zu aktivieren, setzen Sie den Parameter F810:14 "Autoacknowledge number of attempts" auf einen Wert größer als 0. Siehe Kapitel Autoacknowledge konfigurieren [•62].

5.4.1 Autoacknowledge konfigurieren

Es gibt zwei Parameter, mit denen Sie die Autoacknowledge-Funktion konfigurieren können:

Maximale Anzahl der Fehler, die automatisch guittiert werden

Mit dem Parameter F810:14 "Autoacknowledge number of attempts" legen Sie die maximale Anzahl der Kommutierungsfehler fest, die durch die Autoacknowledge-Funktion automatisch quittiert werden sollen. Wenn diese Anzahl überschritten wird, geht der Motorkanal in einen Fehlerzustand, der manuell quittiert werden muss. Siehe Kapitel Fehler quittieren [▶ 81].

Falls dieser Parameter den Wert 0 hat, ist die Autoacknowledge-Funktion für den entsprechenden Motorkanal deaktiviert.

Verzögerungszeit nach Fehler

Mit dem Parameter F810:15 "Autoacknowledge delay" legen Sie die Zeitspanne zwischen dem Auftreten eines Kommutierungsfehlers und dem automatischen Quittieren des Fehlers fest. Einheit: Millisekunden.

5.4.2 Status auslesen

Anzahl der quittierten Fehler

Der Parameter 9040:01 "Autoacknowledge current number of attempts" enthält die Anzahl der Kommutierungs-Fehler, die seit dem letzten manuellen Quittieren oder dem Einschalten der Box quittiert wurden.

Verstrichene Zeit seit dem letzten Autoacknowledge

Der Parameter 9040:02 "Autoacknowledge current waiting time" enthält die Zeit in Millisekunden, die seit dem letzten Autoacknowledge-Ereignis verstrichen ist.

5.5 ZPA: Zero Pressure Accumulation

Dieses Kapitel beschreibt die Konfiguration einer EP7402 für den autonomen Betrieb mit "Zero Pressure Accumulation" (ZPA).

5.5.1 Voraussetzungen

Software

- Firmware-Version 03 oder höher
- · ESI-Version 0020 oder höher

Hardware

- Eine EP7402 für je zwei Zonen
- · Ein Sensor pro Zone

5.5.2 Grundlagen

ZPA ist eine Strategie zur Steuerung des Warentransports auf einem Rollenförderer. ZPA wird durch zwei zentrale Aspekte charakterisiert:

- · Vermeidung von Kollisionen zwischen den Fördergütern.
- · Autonomer Betrieb der Motor-Controller. Eine zentrale Steuerung wird nicht benötigt.

5.5.2.1 Glossar

Im Umfeld von Rollenförderern mit ZPA-Betrieb haben sich einige Begriffe etabliert. Die Begriffe werden auch in dieser Dokumentation verwendet:

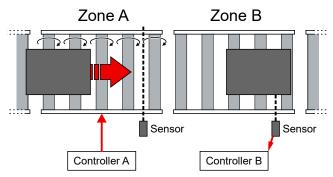
Begriff	Bedeutung	
Blockabzug	Deutscher Begriff für "Train release".	
Downstream	Richtungsangabe: in Förder-Richtung	
Einzelabzug	Deutscher Begriff für "Singulated release".	
MDR	Abkürzung für "Motor Driven Roller" (Rollenmotor)	
Singulated release	Siehe Kapitel Abzugsarten [▶ 65].	
Train release	Siehe Kapitel Abzugsarten [▶ 65].	
Upstream	Richtungsangabe: entgegen der Förder-Richtung	
Zone	Ein Abschnitt eines Rollenförderers.	
ZPA	Abkürzung für "Zero Pressure Accumulation".	

5.5.2.2 Funktionsweise

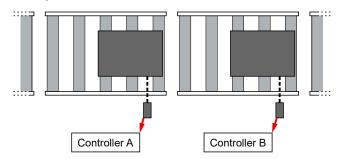
Ein Rollenförderer wird für den Betrieb mit ZPA in Zonen eingeteilt. Jede Zone hat einen Rollenmotor als Antrieb und einen Sensor, der feststellt, ob sich Fördergut in der Zone befindet. Ein Motor-Controller steuert den Rollenmotor und wertet die Informationen des Sensors aus.

Eine EP7402 enthält zwei Motor-Controller. Für die Ansteuerung von zwei Zonen wird also nur eine EP7402 benötigt.

Ein Paket wird nur dann von einer Zone in die nachfolgende Zone weitergefördert, wenn sich in der nachfolgenden Zone kein Paket befindet oder wenn das vorhandene Paket bereits weitergefördert wird. Um dies zu ermöglichen, kommunizieren die Motor-Controller von benachbarten Zonen miteinander.

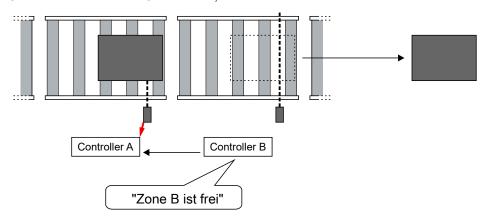


Beispiel

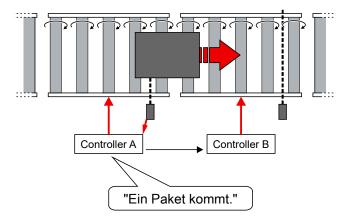

In diesem Beispiel wird das Verhalten der Motor-Controller zweier benachbarter Zonen dargestellt. Die beiden Zonen können sich an einer beliebigen Position innerhalb eines Rollenförderers befinden. Die Abbildungen zeigen eine Ansicht von oben.

1. Ausgangssituation:

Zone A nimmt ein Paket aus der vorhergehenden Zone an. In Zone B liegt ein Paket, das aktuell nicht weiter gefördert wird. Das kann z.B. daran liegen, dass in der nachfolgenden Zone ebenfalls ein Paket liegt.



2. Sobald der Sensor von Zone A das Paket detektiert, stoppt Controller A den Motor. Er wartet nun darauf, dass Zone B frei wird.


3. Das Fördergut ist aus Zone B entfernt worden, z.B. indem es weiter gefördert wurde oder durch manuelles Entfernen.

Controller B meldet an Controller A, dass Zone B frei ist.

4. Controller A meldet an Controller B, dass er ein Paket in Zone B fördert. Beide Controller starten ihre Motoren, um das Paket weiter zu fördern.

5.5.2.3 Abzugsarten

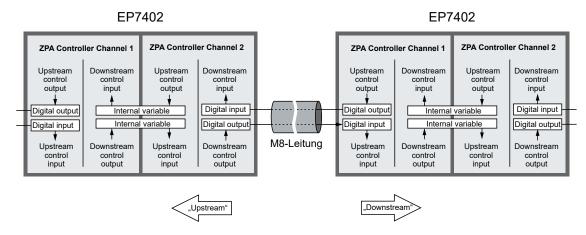
Die Abzugsart bestimmt den Zeitpunkt, ab dem eine Zone als "frei" für nachfolgende Pakete angenommen wird.

- Mit Einzelabzug "Singulated release" wird eine Zone erst als "frei" angenommen, wenn das aktuell in der Zone befindliche Paket den Erfassungsbereich des Sensors verlassen hat.
- Mit Blockabzug "Train release" wird eine Zone als "frei" angenommen, sobald das aktuell in der Zone befindliche Paket weitergefördert wird.

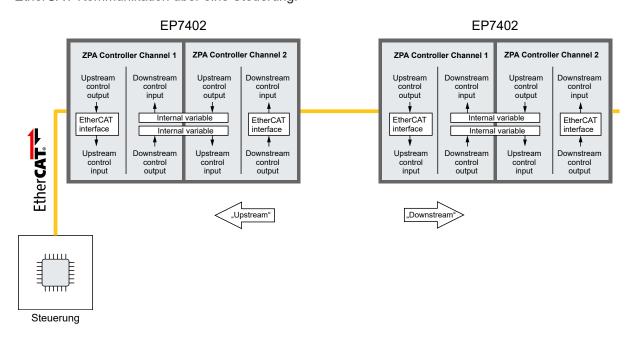
"Train release" ermöglicht einen höheren Durchsatz.

5.5.2.4 **ZPA-Betrieb mit EP7402**

Eine EP7402 enthält zwei Motor-Controller. Für die Ansteuerung von zwei Zonen wird also nur eine EP7402 benötigt.


ZPA-Kommunikation

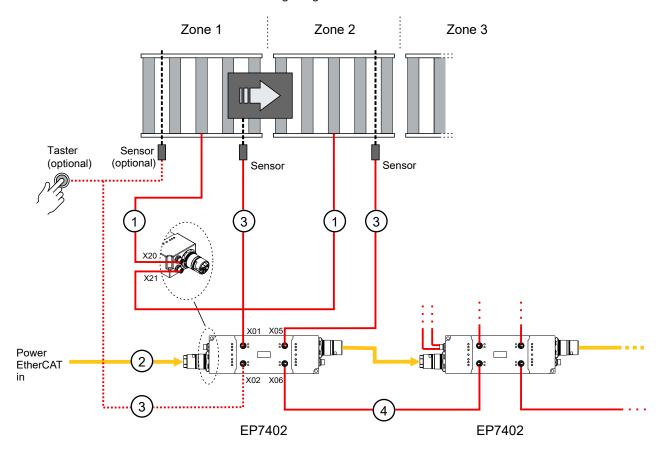
Im ZPA-Betrieb ist eine Kommunikation zwischen den Motor-Controllern benachbarter Zonen erforderlich.


Die interne ZPA-Kommunikation zwischen den beiden Motor-Controllern innerhalb einer EP7402 erfolgt über interne Variablen.

Die externe ZPA-Kommunikation zwischen den Motor-Controllern zweier benachbarter EP7402 erfolgt wahlweise über einen der folgenden Mechanismen:

 Schaltsignale der digitalen Ein-/Ausgänge (X01, X02, X05, X06) über M8-Leitungen. (Werkseinstellung)

· EtherCAT-Kommunikation über eine Steuerung.


Siehe Kapitel ZPA-Kommunikation über EtherCAT [▶ 69].

5.5.3 Verkabelung

Die folgende Abbildung zeigt den Anfang eines Rollenförderers.

Verkabeln Sie die EP7402 wie in der Abbildung dargestellt.

Leitungen

Nr.	Тур	Anzahl pro Zone	Funktion	
1	Motorleitung	2	Anschluss der MDR	
2	Hybridleitung B23 ENP	1	Anschluss von EtherCAT und Versorgungsspannungen	
3	Sensorleitung M8,	2	Anschluss der Sensoren	
4	4-polig	1	ZPA-Kommunikation mit der benachbarten EP7402. 1)	

¹⁾ Diese Leitung entfällt, wenn die ZPA-Kommunikation über EtherCAT erfolgt, siehe Kapitel <u>ZPA-</u>Kommunikation über EtherCAT [▶ 69].

Alle benötigten Leitungen sind von Beckhoff erhältlich. Siehe Kapitel Zubehör [▶ 96].

Die Anschlussbelegungen finden Sie im Kapitel Anschlüsse [▶ 29].

Die erste Zone: Zone 1

Prinzipiell können Sie die erste Zone genauso aufbauen und verkabeln wie alle anderen Zonen. Der Fördervorgang startet, sobald ein Paket im Erfassungsbereich des Sensors platziert wird.

Da allerdings die Zuführung von Paketen am *Anfang* von Zone 1 stattfindet und der Sensor in der Regel am *Ende* der Zone ist, kann es sinnvoll sein, einen zusätzlichen Sensor oder Taster am Anfang von Zone 1 einzusetzen. Der zusätzliche Sensor oder Taster ist in der Abbildung als "optional" dargestellt.

Verbinden Sie das Signal des Sensors oder Tasters mit Pin 4 von X02 der ersten EP7402. Die Pinbelegung finden Sie im Kapitel <u>Digitale Eingänge/Ausgänge</u> [▶ 43].

Die letzte Zone

In der Werkseinstellung der EP7402 stoppt der Fördervorgang, sobald ein Paket den Erfassungsbereich des Sensors der letzten Zone erreicht.

Die Verkabelung und Konfiguration der letzten Zone ist abhängig davon, ob die letzte Zone an Kanal 1 oder an Kanal 2 einer EP7402 angeschlossen ist.

- Kanal 1: Deaktivieren Sie Kanal 2, indem Sie den Parameter 8050:01_{hex} "Disable zone" auf TRUE setzen.
- Kanal 2: Lassen Sie den Anschluss X06 der letzten EP7402 unbeschaltet.

Sensorsignale

In der Werkseinstellung erwartet die EP7402 einen digitalen Hi-Pegel, wenn ein Sensor ein Paket detektiert.

Falls Sie Sensoren einsetzen, die ein Low-aktives Signal liefern, ändern Sie die folgenden Parameter:

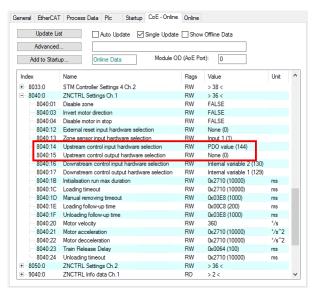
- Kanal 1: Den Wert des Parameters 8040:13_{hex} von "Input 1" auf "Input 1 [low active]" ändern.
- Kanal 2: Den Wert des Parameters 8050:13_{hex} von "Input 3" auf "Input 3 [low active]" ändern.

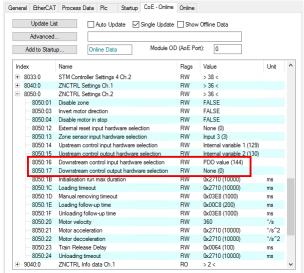
ZPA-Kommunikation über EtherCAT 5.5.4

In der Werkseinstellung der EP7402 erfolgt die ZPA-Kommunikation zu benachbarten EP7402 mittels digitaler Schaltsignale über M8-Leitungen.

Dieses Kapitel beschreibt, wie Sie eine EP7402 so konfigurieren, dass die ZPA-Kommunikation stattdessen über EtherCAT erfolgt.

Digitale Eingänge und Ausgänge werden verfügbar

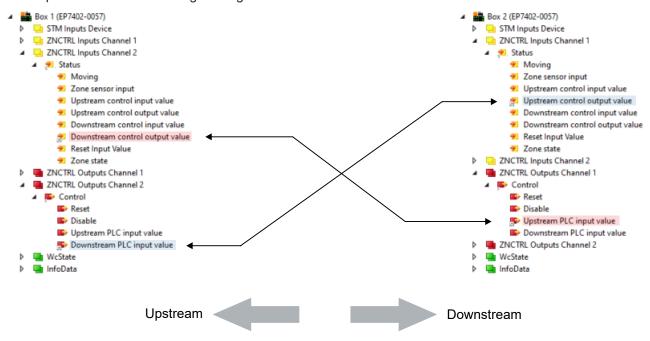



Wenn die ZPA-Kommunikation über EtherCAT erfolgt, können Sie die digitalen Eingänge und Ausgänge, die ursprünglich für die ZPA-Kommunikation genutzt wurden, anderweitig verwenden. Siehe Kapitel Digitale Eingänge und Ausgänge im ZPA-Betrieb [> 75].

Parameter einstellen

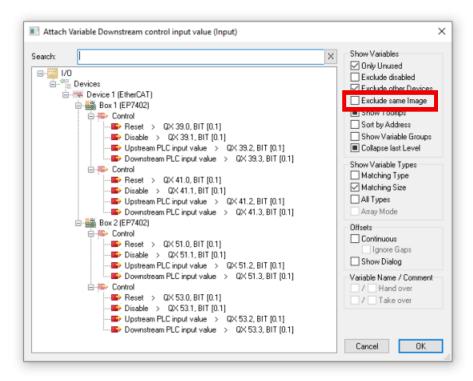
Stellen Sie die folgenden Parameter im CoE-Verzeichnis ein:

Parameter		Wert		
8040:14	"Upstream control input hardware selection"	144 _{dez}	"PDO value"	
8040:15	"Upstream control output hardware selection"	0	"None"	
8050:16	"Downstream control input hardware selection"	144 _{dez}	"PDO value"	
8050:17	"Downstream control output hardware selection"	0	"None"	



Variablen verknüpfen

Verknüpfen Sie in der Steuerung die folgenden Variablen zwischen allen benachbarten EP7402:



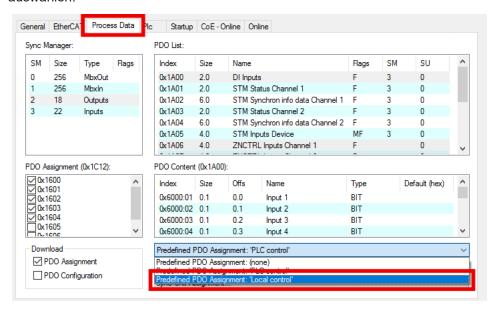
Variablen direkt verknüpfen

Um zwei Variablen in TwinCAT direkt zu verknüpfen, gehen Sie wie folgt vor:

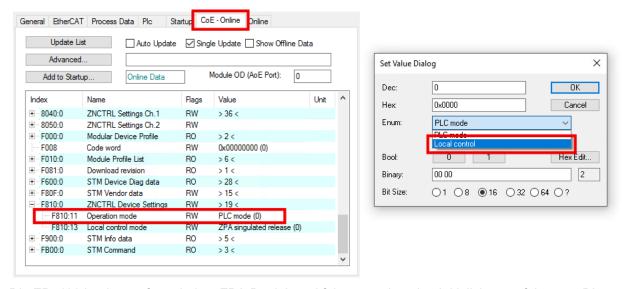
- Eine Variable mit rechts anklicken und im Kontextmenü "Change Link…" auswählen.
- Im Dialogfenster den Haken bei "Exclude same Image" entfernen.

Version: 1.9

- ⇒ Die Variablen des EtherCAT-Zweiges werden sichtbar.
- · Variable auswählen und "OK" klicken.


5.5.5 Inbetriebnahme

⚠ VORSICHT


Der Motor dreht sich bei der Inbetriebnahme

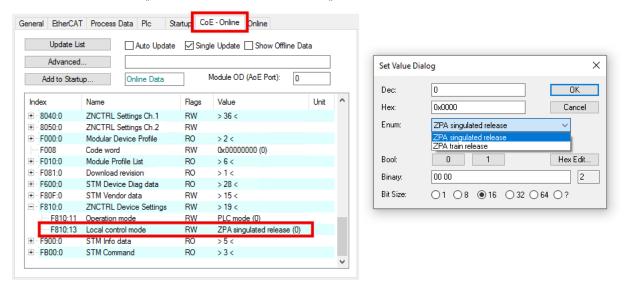
Verletzungen und Sachschäden sind möglich.

- Stellen Sie sicher, dass sich der Motor jederzeit frei bewegen kann und dass er keine Verletzungen oder Schäden verursachen kann.
- 1. Beide Motor-Kanäle konfigurieren wie im Kapitel Schnellstart [▶ 47] beschrieben.
- Das ZPA-Prozessabbild aktivieren, indem Sie das Predefined PDO Assignment "Local control" auswählen.

- 3. ZPA-Kommunikation konfigurieren:
 - Falls die ZPA-Kommunikation über M8-Leitungen erfolgen soll, überspringen Sie diesen Schritt.
 - Falls die ZPA-Kommunikation über EtherCAT erfolgen soll, siehe Kapitel <u>ZPA-Kommunikation über EtherCAT [</u> 69].
- 4. Den ZPA-Betrieb aktivieren, indem Sie den CoE-Parameter F810:11 "Operation mode" auf "Local control" setzen.

- ⇒ Die EP7402 beginnt sofort mit dem ZPA-Betrieb und führt zunächst eine Initialisierungsfahrt aus. Die Initialisierungsfahrt dauert 10 s. (Werkseinstellung)
- ⇒ Falls die ZPA-Kommunikation über M8-Leitungen erfolgt, können Sie die EP7402 jetzt von der Steuerung trennen.

Testlauf durchführen


- 1. Den Förder-Vorgang starten. Je nach Aufbau und Verkabelung des Rollenförderers wird der Fördervorgang auf eine der folgenden Arten gestartet:
 - Ein Paket in den Erfassungsbereich des Sensors in der ersten Zone legen.
 - Start-Taster drücken
- 2. Falls ein Fehler auftritt, der nach Überprüfung von Verkabelung und Mechanik nicht beseitigt werden konnte:
 - die Diagnose-Bits [▶ 79] prüfen.
 - die Verläufe der Variablen "Zone State" mithilfe des Kapitels <u>State-Machine</u> [▶ 73] nachvollziehen.
- 3. Gegebenenfalls die ZPA-Parameter optimieren. Siehe <u>CoE-Objekte 8040 und 8050 "ZNCTRL Settings Ch.n" [▶ 89]</u>.

Bei Bedarf: "Train release" aktivieren

"Train Release" ist eine Abzugsart, die einen höheren Durchsatz ermöglicht als die vorkonfigurierte Abzugsart "Singulated Release". Eine Übersicht der Abzugsarten finden Sie im Kapitel <u>Abzugsarten [▶ 65]</u>.

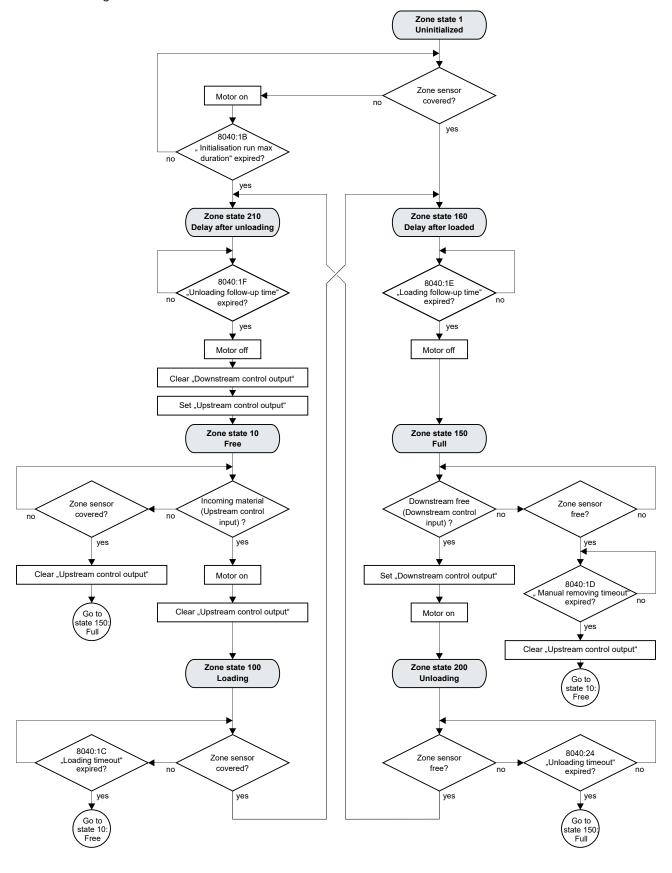
Vorgehensweise zur Aktivierung:

Im Parameter F810:13 "Local control mode" den Wert "ZPA train release" auswählen.

Anschließend einen erneuten Testlauf durchführen und gegebenenfalls weitere Parameter optimieren.

5.5.6 State-Machine

Die Variable "Zone State" enthält den aktuellen Zustand der ZPA-State-Machine einer Zone.


- ZNCTRL Inputs Channel 1
 - 🔺 🎅 Status
 - Moving
 - Zone sensor input
 - Upstream control input value
 - Upstream control output value
 - Downstream control input value
 - Downstream control output value
 - Reset Input Value
 - Zone state

Die folgende Abbildung zeigt die interne State-Machine einer Zone bzw. eines Kanals einer EP7402.

Zur besseren Übersicht sind die folgenden Elemente nicht in der Abbildung dargestellt:

- Der Zone State 5 "Disabled".
- Die Abzugsart "Train Release".

5.5.7 Digitale Eingänge und Ausgänge im ZPA-Betrieb

HINWEIS

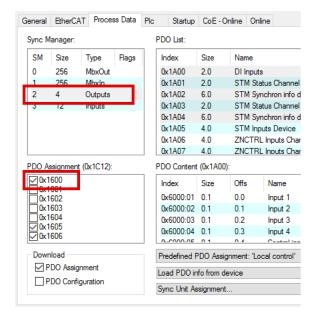
Störung des ZPA-Betriebs

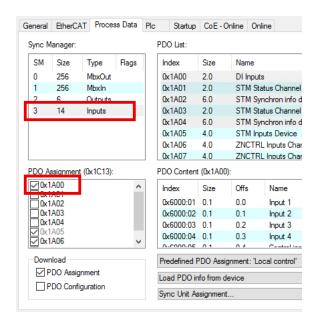
Die ZPA-Kommunikation erfolgt in der Werkseinstellung über digitale Ein-/Ausgänge. Wenn Sie die digitalen Ausgänge dieser Ein-/Ausgänge über die Prozessdaten schalten, kann die ZPA-Kommunikation gestört werden. Die Folge können z.B. Kollisionen zwischen den Fördergütern sein.

- Schalten Sie ausschließlich digitale Ausgänge von Ein-/Ausgängen, die nicht an der ZPA-Kommunikation beteiligt sind.
- Stellen Sie sicher, dass die Ausgangsvariablen aller an der ZPA-Kommunikation beteiligten Ein-/ Ausgänge konstant auf 0 gesetzt sind.
 In der Werkseinstellung betrifft das alle Variablen mit dem Namensmuster "Control output x".

Funktionalität abhängig von der Firmware-Version

Die digitalen Ausgänge können im ZPA-Betrieb erst ab Firmware 05 geschaltet werden.

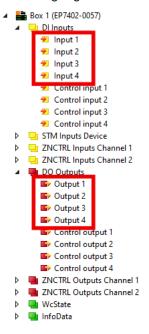

Bis einschließlich Firmware 04 sind Änderungen des Signalzustands der Ausgangs-Variablen im ZPA-Betrieb wirkungslos.


In der Werkseinstellung sind die Prozessdaten der digitalen Eingänge und Ausgänge im ZPA-Betrieb deaktiviert.

Prozessdaten aktivieren

Aktivieren Sie im Karteireiter "Process Data" die folgenden Prozessdatenobjekte:

Index	Prozessdatenobjekt
0x1600	"DO Outputs"
0x1A00	"DI Inputs"



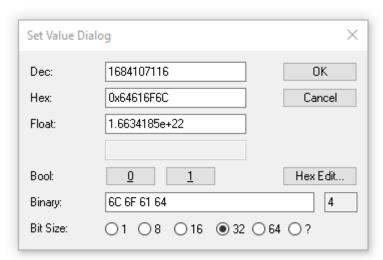
Verfügbare Ein-/Ausgänge

Wenn die ZPA-Kommunikation über digitale Ein-/Ausgänge erfolgt (Werkseinstellung), sind vier der acht digitalen Ein-/Ausgänge für die ZPA-Kommunikation reserviert.

Die anderen vier digitalen Ein-/Ausgänge können Sie frei verwenden. In der Werkseinstellung sind das die Ein-/Ausgänge an den Buchsen X01 und X05 bzw. die Variablen "Input 1...4" und "Output 1...4":

Die Zuordnung zwischen den Buchsen-Nummern und den Variablen-Namen in TwinCAT finden Sie im Kapitel Zuordnung von Anschlüssen und Prozessdaten [▶ 22].

Aktivieren Sie die ZPA-Kommunikation über EtherCAT, um alle acht digitalen Ein-/Ausgänge frei verwenden zu können. Siehe Kapitel ZPA-Kommunikation über EtherCAT [▶ 69].


Wiederherstellen des Auslieferungszustands 5.6

Sie können den Auslieferungszustand der Backup-Objekte wie folgt wiederherstellen:

- 1. Sicherstellen, dass TwinCAT im Config-Modus läuft.
- 2. Im CoE-Objekt 1011:0 "Restore default parameters" den Parameter 1011:01 "Subindex 001" auswählen.

- 3. Auf "Subindex 001" doppelklicken.
 - ⇒ Das Dialogfenster "Set Value Dialog" öffnet sich.
- 4. Im Feld "Dec" den Wert 1684107116 eintragen. Alternativ: im Feld "Hex" den Wert 0x64616F6C eintragen.

- 5. Mit "OK" bestätigen.
- ⇒ Alle Backup-Objekte werden in den Auslieferungszustand zurückgesetzt.

Alternativer Restore-Wert

Bei einigen Modulen älterer Bauart lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen:

Dezimalwert: 1819238756 Hexadezimalwert: 0x6C6F6164

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung.

6 Troubleshooting

Die folgende Tabelle zeigt eine Auswahl möglicher Probleme und Lösungen.

Problem	Mögliche Gründe	Mögliche Lösungen
Der Motor dreht sich nicht.	Der Motorkanal wurde wegen eines Fehlers gesperrt.	 Prüfen Sie, ob ein <u>Diagnose-</u> <u>Bit [▶ 79]</u> einen Fehler meldet.
		2. Setzen Sie "Enable" auf 0.
		3. Beseitigen Sie den Fehler.
		4. Quittieren Sie den Fehler. Siehe Kapitel <u>Fehler quittieren</u> [▶ <u>81]</u> .
	Der Motorkanal ist deaktiviert.	Setzen Sie die Variable "Enable" des entsprechenden Motorkanals auf 1.
	Die Variable "Velocity" ist kleiner als der Parameter "Start velocity".	Erhöhen Sie die "Velocity" oder reduzieren Sie den Parameter 80n0:09 _{hex} "Start velocity".
Der Motor reagiert nicht auf Änderungen der Ausgangsvariablen "Velocity". Er dreht mit konstanter Drehzahl.	Der Drehzahlregler ist deaktiviert, weil der Proportionalanteil null ist.	Setzen Sie den Parameter 80n3:12 _{hex} "Velocity loop proportional gain" auf einen Wert größer als null.
Unerklärlicher Defekt einer EP7402 oder eines anderen Geräts, das aus der gleichen Versorgungsspannung versorgt wird.	Überspannungen auf der Versorgungsspannung U _P , verursacht durch Energie- Rückspeisung z.B. bei den folgenden Ereignissen:	Setzen Sie einen Brems-Chopper ein, um Überspannungen auf der Versorgungspannung U _P zu verhindern.
	Bremsvorgänge	
	Manuelles Verschieben von Gegenständen auf der Förderrolle	

6.1 Diagnose-Bits

Die Diagnose-Bits befinden sich im <u>Prozessdatenobjekt "STM Inputs Device"</u> [▶ 20].

▲ STM Inputs Device
 Device Diag

Die Diagnose-Bits zeigen Warnmeldungen und Fehlermeldungen an.

- Warnmeldungen ("warning") sind vorübergehend.
 Eine Warnmeldung zeigt an, dass ein Messwert außerhalb des Nennbereichs liegt. Eine Warnmeldung wird aufgehoben, wenn der Messwert wieder im Nennbereich liegt.
- Fehlermeldungen ("error") sind beständig. Wenn ein Fehler auftritt, werden die betroffenen Motorkanäle gesperrt, bis Sie den Fehler quittieren. Siehe Kapitel Fehler quittieren [▶ 81].

Es gibt zwei unterschiedliche Geltungsbereiche für Diagnose-Bits:

- · Modulfehler und Modulwarnungen betreffen die gesamte Box.
- Kanalbezogene Fehler und Warnungen betreffen nur einen Motorkanal.

Im Folgenden sind die Diagnose-Bits nach diesen beiden Kategorien unterteilt.

Modulfehler und Modulwarnungen

Wenn ein Modulfehler auftritt, werden beide Motorkanäle gesperrt. Beide Kanäle werden erst wieder entsperrt, wenn der Modulfehler korrekt quittiert wird. Siehe Kapitel <u>Fehler quittieren [** 81]</u>.

Bit-Name	Bedeutung	Mögliche Gründe	Mögliche Lösungen
Device undervoltage	Die Versorgungsspannung U _P ist Unterspannungs-Erkennung.	niedriger als der Schwellwert der	Stellen Sie sicher, dass U _P im Nennspannungs-Bereich liegt.
Device overvoltage	Die Versorgungsspannung $U_{\scriptscriptstyle P}$ ist höher als der Schwellwert der Überspannungs-Erkennung.		Prüfen Sie den Messwert der Spannung U _P im CoE-Parameter F900:05 _{hex} "Motor supply voltage".
Overtemperature warning	Die interne Temperatur liegt über dem Warnungs- Schwellwert: Parameter F80F:04 Werkseinstellung: 80 °C.	 Die Umgebungstemperatur ist zu hoch. Der angeschlossene Motor erfüllt die Spezifikationen nicht 	Betreiben Sie das Gerät nur innerhalb der <u>Spezifikationen</u> [• 10].
Overtemperature error	Die interne Temperatur hat den Fehler-Schwellwert überschritten: Parameter F80F:05 Werkseinstellung: 100 °C.		
General hardware error	Die Initialisierung war nicht erfolgreich.	Das Gerät ist defekt.	Keine.

Kanalbezogene Fehler und Warnungen

Wenn ein kanalbezogener Fehler auftritt, wird nur der Motorkanal gesperrt, an dem der Fehler aufgetreten ist.

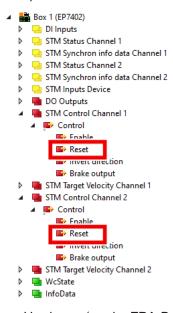
Bit-Name	Bedeutung	Mögliche Gründe	Mögliche Lösungen
Channel <i>n</i> openload	Drahtbruch	Eine Motorphase ist nicht richtig angeschlossen.	Prüfen Sie den Motor- Anschluss.
		Eine Motorphase ist durchgebrannt.	• Ersetzen Sie den Motor, falls er defekt ist.
		Fehlauslösung der Drahtbruch- Erkennung: Die Motorwelle wurde bei Stillstand des Motors durch ein externes Drehmoment bewegt. (bei enabled=1 und velocity=0)	
Channel <i>n</i> short circuit	Mindestens ein Phasenstrom hat den Wert des Parameters "Maximal current" überschritten: Siehe CoE index 80n0:01.	Eine Motorphase ist kurzgeschlossen.Der Motor ist defekt.	Prüfen Sie den Motor- Anschluss. Ersetzen Sie den Motor, falls er
	Der Motorkanal wurde gesperrt.		defekt ist.
Channel <i>n</i> motor overload	Der berechnete l ² T-Wert liegt über dem Warnungs-	Falls dieses Bit während der Hochlaufphase gesetzt wird:	Reduzieren Sie den Wert des Parameters "Sensorless offset
I2T warning	Schwellwert: CoE-Index 80n0:16 [▶ 86].	Der Ausgangsstrom ist zu hoch.	scaling": <u>CoE-Index 80n3:14</u> [> 88].
	Default: 80 %.	Falls diese Warnmeldung im Dauerbetrieb auftritt:	Verringern Sie die Last.
		Mechanische Überlast.	
Channel <i>n</i> motor overload	Der berechnete l ² T-Wert hat den Fehler-Schwellwert	Falls dieses Bit während der Hochlauf-Phase gesetzt wird:	Reduzieren Sie den Wert des Parameters "Sensorless offset
121 01101	überschritten: CoE-Index 80n0:18 [▶ 86].	Der Ausgangsstrom ist zu hoch.	scaling": <u>CoE-Index 80n3:14</u> [• <u>88</u>].
	Default: 110 %.	Falls dieses Bit im Dauerbetrieb gesetzt wird:	Verringern Sie die Last.
		Mechanische Überlast.	
Channel <i>n</i> amplifier overload I2T warning	Der berechnete l ² T-Wert der Endstufe liegt aktuell über dem Warnungs-Schwellwert:	Parameter falsch eingestellt: Die Endstufe erreicht den Warnungs-Schwellwert	Prüfen Sie die Motor-Parameter: <u>CoE-Index 80n0 [▶ 86]</u> .
Channel <i>n</i> amplifier overload I2T error	Der berechnete l ² T-Wert hat den Fehler-Schwellwert überschritten:	gewöhnlich später als Motoren, die die Spezifikationen erfüllen.	
Channel <i>n</i> in limit	Der Strom wird begrenzt, weil der I ² T-Wert des Motors 97 % überschreitet.	Mechanische Überlast	Sie können diese Schutzfunktion deaktivieren, indem Sie den Parameter 80n3:03 auf TRUE setzen.
Channel <i>n</i> commutation error	Der Kommutierungs-Algorithmus hat festgestellt, dass das Drehfeld und der Rotor nicht synchron laufen. Tipp: Sie können "commutation	Falls dieses Bit während der Hochlauf-Phase gesetzt wird: • Mechanische Überlast ²) • Der Ausgangsstrom ist zu niedrig.	 Prüfen Sie die Motorlast. Erhöhen Sie den Wert des Parameters "Sensorless offset scaling": CoE-Index 80n3:14.
	errors" automatisch quittieren lassen. Siehe Kapitel Autoacknowledge: Fehler automatisch quittieren [Der Parameter "ramp-up velocity" ist zu hoch.	Reduzieren Sie den Wert des Parameters "Rampup velocity": CoE-Index 80n3:19
		Falls dieses Bit im Dauerbetrieb gesetzt wird:	Versuchen Sie es erneut mit höherer Drehzahl.
		Die Drehzahl (Ausgangsvariable "Velocity") ist zu niedrig.	Erhöhen Sie den Wert des Parameters "Start velocity" (<u>CoE-Index 80n0:09</u> [\(\bigveright\) 86]) um sicherzustellen, dass der Motor mit zu niedriger Drehzahl- Vorgabe nicht startet.

¹⁾ Das passiert z.B., wenn aus der vorhergehenden Zone ein Paket gefördert wird und das Paket durch seine Vorwärtsbewegung die nicht-angetriebene Förderrolle dreht.

²⁾ Besonders wahrscheinlich, wenn der Motor ein Geräusch mit ansteigender Tonhöhe von sich gibt.

6.2 Fehler quittieren

Es gibt zwei Kategorien von Fehlern, die auf unterschiedliche Art quittiert werden müssen:


- Modulfehler
- · Kanalbezogene Fehler

Um herauszufinden, zu welcher Kategorie der aktuell vorliegende Fehler gehört, schauen Sie in das Kapitel <u>Diagnose-Bits</u> [▶ 79]. Dort sind die Diagnose-Bits in die beiden oben genannten Kategorien unterteilt.

Modulfehler quittieren

Sie können Modulfehler auf zwei Arten quittieren:

 per Software: Beide Motorkanäle haben eine Variable "Reset". Geben Sie auf jede Variable "Reset" eine positive Flanke.

• per Hardware (nur im ZPA-Betrieb): Geben Sie eine positive Flanke auf die Reset-Eingänge beider Kanäle. Siehe CoE-Parameter 8040:12 [▶ 89] und 8050:12 [▶ 90].

Es genügt nicht, den Fehler nur an einem Motorkanal zu quittieren. Der Modulfehler und die Sperrung beider Motorkanäle werden erst zurückgenommen, wenn die Fehler an beiden Motorkanälen quittiert wurden.

Auch wenn ein Motorkanal nicht genutzt wird, muss an diesem Kanal der Fehler quittiert werden.

Kanalbezogene Fehler quittieren

Sie können kanalbezogene Fehler auf zwei Arten quittieren:

- per Software: Geben Sie eine positive Flanke auf die Variable "Reset" des betroffenen Motorkanals. Die Variable "Reset" befindet sich im Prozessdatenobjekt "STM Control Channel *n*" (*n* = 1...2).
- per Hardware (nur im ZPA-Betrieb): Geben Sie eine positive Flanke auf den Reset-Eingang des betroffenen Kanals. Siehe CoE-Parameter 8040:12 [▶ 89] und 8050:12 [▶ 90].

Troubleshooting

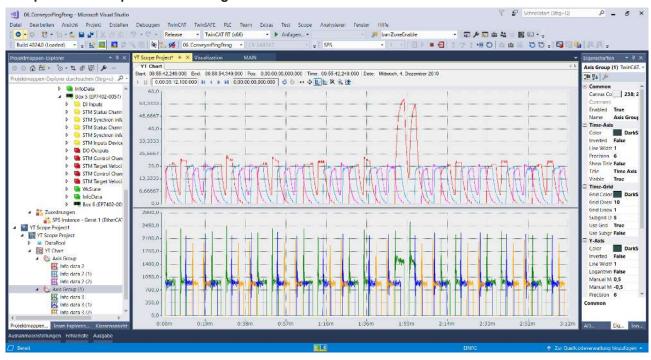
- Falls eine Fehlermeldung nach dem Quittieren weiterhin besteht, ist der Fehler vermutlich noch nicht beseitigt.
- Um den Fehler "Open Load" erfolgreich zu quittieren, müssen Sie vorher "Enable" auf 0 setzen.

7 Außerbetriebnahme

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag!

Setzen Sie das Bus-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Demontage der Geräte beginnen!


8 Application Hints

8.1 Motor-Diagnose

Sie können den l²T-Wert zur Langzeit-Diagnose und Verschleißerkennung des Motors und der Mechanik nutzen.

- 1. Weisen Sie den l²T-Wert zu einer der Variablen "Info data" in "STM Synchron info data Channel n" zu. CoE index 80n2 "STM Features" [▶ 87].
- 2. Überwachen Sie die Variable "Info data" in einem TwinCAT Scope-Projekt.
- ⇒ So können Sie Unregelmäßigkeiten erkennen.

Beispiel einer Scope-Aufzeichnung

9 CoE-Parameter

9.1 Verzeichnis

Index (hex)	Name
1000	Device type [▶93]
1008	Device name [▶ 93]
1009	Hardware version [> 93]
100A	
	Software version [▶ 93]
100B 1011	Bootloader version
1011	Restore default parameters
10F0	Identity Backup parameter handling
1600	DO RxPDO-Map Outputs
1601	STM RxPDO-Map Control Ch. 1
1602	STM RXPDO-Map Control Cri. 1 STM RXPDO-Map Target Velocity Ch. 1
1603	STM RXPDO-Map Control Ch. 2
1604	STM RXPDO-Map Control Ch. 2 STM RXPDO-Map Target Velocity Ch. 2
1605	ZNCTRL RxPDO-Map Outputs Ch.1
1606	ZNCTRL RXPDO-Map Outputs Ch.1 ZNCTRL RxPDO-Map Outputs Ch.2
1A00	DI TXPDO-Map Inputs
1A01	STM TxPDO-Map Status Ch. 1
1A02	STM TXPDO-Map Status GH. 1
1A03	STM TxPDO-Map Status Ch. 1
1A04	STM TXPDO-Map Status GH. 1
1A05	STM TxPDO-Map Inputs Device
1A06	ZNCTRL TxPDO-Map Inputs Ch.1
1A07	ZNCTRL TXPDO-Map Inputs Ch.2
1C00	Sync manager type
1C12	RxPDO assign
1C13	TxPDO assign
1C32	SM output parameter
1C33	SM input parameter
6000	DI Inputs
6020	STM Inputs Ch.1
6030	STM Inputs Ch.2
6040	ZNCTRL Inputs Ch.1
6050	ZNCTRL Inputs Ch.2
7010	DO Outputs
7020	STM Outputs Ch.1
7030	STM Outputs Ch.2
7040	ZNCTRL Outputs Ch.1
7050	ZNCTRL Outputs Ch.2
8020	STM Motor Settings Ch.1 [▶ 86]
8022	STM Features Ch.1 [▶ 87]
8023	STM Controller Settings 4 Ch.1 [▶ 88]
8030	STM Motor Settings Ch.2 [> 86]
8032	STM Features Ch.2 [> 87]
8033	STM Controller Settings 4 Ch.2 [▶ 88]
8040	ZNCTRL Settings Ch.1 [▶ 89]
8050	ZNCTRL Settings Ch.2 [▶ 89]
0000	TINCT VE DETITINGS CITY TE GOT

Index (hex)	Name
F000	Modular Device Profile
F008	Code word
F010	Module Profile List
F081	Download revision
F600	STM Device Diag data
F80F	STM Vendor data [▶ 92]
F900	STM Info data [▶ 92]
F810	ZNCTRL Device Settings [▶ 91]

9.2 Objekt-Beschreibungen

9.2.1 Objekte zur Parametrierung

Stellen Sie diese Parameter bei der Inbetriebnahme ein.

Index 8020: STM Motor Settings Ch. 1 Index 8030: STM Motor Settings Ch. 2

Zugriffsrechte: Lesen und Schreiben

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Default Wert
8020:01	Peak current	Wenn der Motorstrom diesen Wert überschreitet, wird die	mA	UINT	1000 _{dez}
8030:01	r ear current	Endstufe des betroffenen Kanals deaktiviert und das Diagnose-Bit "Channel n short circuit" gesetzt.		Olivi	TOOO _{dez}
8020:02	Rated current	Der Nennstrom des Motors. Siehe Motor-Datenblatt. Dieser	mA	UINT	1000 _{dez}
8030:02		Parameter wird für die I ² T-Berechnung des Motors verwendet. (Thermischer Überlastschutz)			
8020:03	Rated voltage	Die Nennspannung des Motors. Siehe Motor-Datenblatt.	0.01 V	UINT	2400 _{dez}
8030:03					
8020:04	Phase to phase	Der ohmsche Widerstand zwischen zwei Motorphasen.	0.01 Ω	UINT	100 _{dez}
8030:04	resistance				
8020:09	Start velocity	Schwellwert: der Motor bleibt in der Ausrichtungs-Phase,	°/s	UINT	3000 _{dez}
8030:09	030:09	solange die Ausgangsvariable "Velocity" kleiner ist als dieser Parameter.			
		Wenn der Wert dieses Parameters zu niedrig ist, können Kommutierungsfehler auftreten.			
8020:13	Mechanical to	Sie können den Wert für diesen Parameter experimentell	-	UINT	1
8030:13	electrical ratio	ermitteln [▶ 59] oder berechnen.			
8020:14	Rated velocity				5000 _{dez}
8030:14					
8020:16	I2T warn level	Warnungs-Schwellwert des I²T-Überlastschutzes für den	%	USINT	80 _{dez}
8030:16		Motor.			
		Wenn der I ² T-Wert diesen Schwellwert überschreitet, wird das Diagnose-Bit "Channel <i>n</i> overload I2T warning" gesetzt.			
8020:18	I2T error level	Fehler-Schwellwert des l ² T-Überlastschutzes für den Motor.	%	USINT	110 _{dez}
8030:18		Wenn der I ² T -Wert diesen Schwellwert überschreitet, wird das Diagnose-Bit "Channel <i>n</i> overload I2T error" gesetzt. Der Motor wird drehmomentfrei geschaltet.			
3020:19	Motor thermal time	Thermische Zeitkonstante des I ² T-Überlastschutzes für den	0.1 s	UINT	15 _{dez}
8030:19	constant	Motor.			
		Sie finden die thermische Zeitkonstante im Datenblatt des Motors.			

Index 8022: STM Features Channel 1 Index 8032: STM Features Channel 2

Zugriffsrechte: Lesen und Schreiben

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Default
8022:11	Select info data 1	Hier können Sie festlegen, welche Messwerte den	-	USINT	7 _{dez}
8032:11		Eingangsvariablen im Prozessdatenobjekt STM Synchron info			
8022:19	Select info data 2	data Channel n [• 19] zugewiesen werden.	-	USINT	11 _{dez}
8032:19		Enum:			
8022:51	Select info data 3	"Motor velocity" = 7	-	USINT	13 _{dez}
8032:51		 "Motor velocity filtered" = 8 (ab Firmware 03) 			
		"Motor I2T load" = 11 _{dez}			
		• "Amplifier I2T load" = 12 _{dez}			
		• "Motor dc current" = 13 _{dez}			
		 "Motor dc current filtered" = 14_{dez} (ab Firmware 03) 			
		"Motor back emf" = 17 _{dez}			
		"Motor restart counter" = 18 _{dez}			
		• "Internal temperature" = 101 _{dez}			
		"Motor supply voltage" = 104 _{dez}			

Index 8023: STM Controller Settings 4 Ch. 1 Index 8033: STM Controller Settings 4 Ch. 2

Zugriffsrechte: Lesen und Schreiben

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Default Wert
8023:03	Disable motor	Dieser Parameter deaktiviert die Motorschutz-Funktionen für	-	BOOL	FALSE
8033:03	diagnosis	die Dauer der Ausrichtungs-Phase.			
8023:04	Disable I2T current	Dieser Parameter deaktiviert die Strombegrenzung, die	-	BOOL	FALSE
8033:04	limiting	einsetzt, wenn der l ² T-Wert des Motors zu hoch wird.			
		FALSE: Der Ausgangsstrom wird begrenzt, wenn der I ² T-Wert des Motors 97 % überschreitet.			
		TRUE: keine Strombegrenzung.			
8023:11	Velocity loop integral	Drehzahlregler: Integralanteil T _i	0,1 ms	UDINT	500 _{dez}
8033:11	time				
8023:12	Velocity loop	Drehzahlregler: Proportionalanteil K _P	μV (°/s)	UDINT	100 _{dez}
8033:12	proportional gain				
8023:13	Velocity feed forward	Drehzahlregler Vorsteuerung: Dieser Parameter bestimmt den	%	USINT	0
8033:13	gain	Anteil der Drehzahl-Vorgabe, der am Drehzahlregler vorbeigeleitet wird. With correct Rated voltage and speed the Actual velocity will be close to the Target velocity at 100% Feed Forward.			
8023:14	Sensorless offset	Ausgangsstrom während der Ausrichtungs-Phase und der	%	USINT	50 _{dez}
8033:14	scaling	Hochlauf-Phase, angegeben in % des Nennstroms CoE index 80n0:02.			
8023:15	Align duration	Zeitdauer der Ausrichtungs-Phase	ms	UINT	1000 _{dez}
8033:15					
8023:18	Rampup duration	Zeitdauer der Hochlauf-Phase	ms	UINT	1000 _{dez}
8033:18					
8023:19 8033:19	Rampup velocity	Soll-Geschwindigkeit, die die Förderrolle am Ende der Hochlauf-Phase haben soll.	°/s	UINT	3000 _{dez}
0033.19		Siehe Subindex 02 _{hex} .			
8023:21	Rampup needed	Die Anzahl der erfolgreichen Kommutierungen, die innerhalb	-	UINT	20 _{dez}
8033:21	switchover events	der Hochlauf-Phase nötig sind, damit die Hochlauf-Phase als "erfolgreich" gewertet wird. Wenn die Hochlauf-Phase nicht erfolgreich ist, wird die Endstufe abgeschaltet und ein Kommutierungs-Fehler ausgegeben.			
8023:22	Commutation	Dieser Parameter dient dazu, die Kommutierung für	-	UINT	50 _{dez}
8033:22	threshold	unterschiedliche Motoren anzupassen.			
8023:23	Current loop	Proportionalanteil Stromregler	0,1 V/A	UINT	2
8033:23	proportional gain				
8023:24	Current loop integral	Nachstellzeit (Tn) Stromregler	0,1 ms	UINT	20 _{dez}
8033:24	time				
8023:25	Restart after error	Autoacknowledge: Fehler automatisch quittieren [▶ 62]	-	UINT	0
8033:25	number of repetition	Nachdem ein Kommutierungs-Fehler aufgetreten ist, kann der Motor automatisch neu gestartet werden. Dieser Parameter legt fest, wie viele Kommutierungsfehler mit anschließendem Neustart auftreten dürfen, bevor der Motor endgültig abgeschaltet wird. Wenn dieser Parameter null ist, wird der Motor nach einem Kommutierungs-Fehler im Nennbetrieb sofort abgeschaltet.			
8023:26 8033:26	Restart after error delay	Dieser Parameter legt fest, wie lange nach einem Kommutierungs-Fehler im Nennbetrieb gewartet wird, bevor der Motor neu gestartet wird. Siehe auch Subindex 25.	ms	UINT	1000 _{dez}

Index 8040_{hex}: ZNCTRL Settings Ch.1

Zugriffsrechte: Lesen und Schreiben

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Default Wert
8040:01	Disable zone	Den ZPA-Betrieb für diese Zone deaktivieren.	-	BOOL	FALSE
8040:03	Invert motor direction	Umkehr der Drehrichtung des Motors.	-	BOOL	FALSE
		Falls die Motorphasen falsch herum angeschlossen wurden, dreht sich der Motor in die falsche Richtung. Mit diesem Parameter können Sie das korrigieren, ohne den Motor neu verdrahten zu müssen.			
8040:04	Disable motor in stop	Schaltet den Motor im Stillstand drehmomentfrei.	-	BOOL	FALSE
8040:12	External reset input hardware selection	Auswahl des digitalen Eingangs für ein externes Reset-Signal. Die Zuordnung der Anschlussbezeichnungen finden Sie im Kapitel Digitale Eingänge/Ausgänge [• 43].	-	UINT16	0 "None"
8040:13	Zone sensor input	Auswahl des digitalen Eingangs für den Zonen-Sensor.	-	UINT16	1 "Input 1"
	hardware selection	Empfehlung: ändern Sie diesen Parameter nur, falls Sie das Sensorsignal invertieren müssen. Siehe Kapitel "Verkabelung", Abschnitt Sensorsignale [• 68].			
8040:14	Upstream control input hardware selection	Konfiguration der digitalen Eingänge und Ausgänge für die ZPA-Kommunikation. Ändern Sie diese Parameter nur, wenn Sie genau wissen, was	-	UINT16	65 _{dez} "Control input 1"
8040:15	Upstream control output hardware selection	Sie tun. Diese Parameter müssen in der Werkseinstellung stehen, damit die ZPA-Kommunikation über M8-Leitungen funktioniert.	-	UINT16	66 _{dez} "Control output 2"
8040:16	Downstream control input hardware selection	Die Zuordnung der Anschlussbezeichnungen finden Sie im Kapitel <u>Digitale Eingänge/Ausgänge [▶ 43]</u> .	-	UINT16	130 _{dez} "Internal variable 2"
8040:17	Downstream control output hardware selection		-	UINT16	129 _{dez} "Internal variable 1"
8040:1B	Initialisation run max duration	Die maximale Dauer der Initialisierungsfahrt.	ms	UINT16	10000 _{dez} (10 s)
8040:1C	Loading timeout	Die maximale Dauer für das Annehmen eines Pakets aus der vorhergehenden Zone. Bei Zeitüberschreitung wird die Zone als leer angenommen.	ms	UINT16	10000 _{dez} (10 s)
8040:1D	Manual removing timeout	Wenn ein Paket den Erfassungsbereich des Sensors verlässt, obwohl es nicht durch den Motor weitergefördert wurde, wird angenommen, dass das Paket manuell entfernt wurde. Anschließend wartet der Controller eine Zeitspanne, bevor er annimmt, dass die Zone tatsächlich leer ist.	ms	UINT16	1000 _{dez} (1 s)
		Die Zeitspanne wird durch diesen Parameter festgelegt.			
8040:1E	Loading follow-up time	Wenn die Zone ein Paket annimmt, läuft der Motor, bis der Sensor das Paket detektiert. Anschließend läuft der Motor noch eine kurze Zeitspanne weiter, um sicherzustellen, dass das Paket sicher im Erfassungsbereich des Sensors liegt.	ms	UINT16	200 _{dez}
		Die Zeitspanne wird durch diesen Parameter festgelegt.			
8040:1F	Unloading follow-up time	Wenn die Zone ein Paket weiterfördert, läuft der Motor, bis das Paket den Erfassungsbereich des Sensors verlässt. Anschließend läuft der Motor noch eine kurze Zeitspanne weiter, um sicherzustellen, dass das Paket von den Rollen der nachfolgenden Zone erfasst wurde.	ms	UINT16	1000 _{dez} (1 s)
		Die Zeitspanne wird durch diesen Parameter festgelegt.			
		Je näher der Sensor am Ende der Zone ist, desto kürzer muss diese Zeitspanne sein.			
8040:20	Motor velocity	Vorgabe der Motor-Drehzahl.	°/s	INT16	360 _{dez}
8040:21	Motor acceleration Motor decceleration	Vorgabe der Beschleunigungsrampe beim Starten des Motors.	° / S ²	UINT16	10000 _{dez}
8040:22 8040:23	Train Release Delay	Vorgabe der Bremsrampe beim Stoppen des Motors. Verzögerungszeit für die Abzugsart "Train Release".	ms	UINT16 UINT16	10000 _{dez}
0040.23	Trail Nelease Delay	Diese Verzögerungszeit verhindert Stromspitzen, die durch das gleichzeitige Starten mehrerer Motoren entstehen würden.	1115	OINTTO	(100 ms)
8040:24	Unloading timeout	Die maximale Dauer für das Fördern eines Pakets aus der Zone heraus. Bei Zeitüberschreitung wird die Zone weiterhin als voll angenommen.	ms	UINT16	10000 _{dez} (10 s)

Index 8050_{hex}: ZNCTRL Settings Ch.2

Zugriffsrechte: Lesen und Schreiben

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Default Wert
8050:01	Disable zone	Den ZPA-Betrieb für diese Zone deaktivieren.	-	BOOL	FALSE
8050:03	Invert motor direction	Umkehr der Drehrichtung des Motors. Falls die Motorphasen falsch herum angeschlossen wurden, dreht sich der Motor in die falsche Richtung. Mit diesem Parameter können Sie das korrigieren, ohne den Motor neu verdrahten zu müssen.	-	BOOL	FALSE
8050:04	Disable motor in stop	Schaltet den Motor im Stillstand drehmomentfrei.	-	BOOL	FALSE
8050:12 8050:13	External reset input hardware selection Zone sensor input	Auswahl des digitalen Eingangs für ein externes Reset-Signal. Die Zuordnung der Anschlussbezeichnungen finden Sie im Kapitel Digitale Eingänge/Ausgänge [▶ 43]. Auswahl des digitalen Eingangs für den Zonen-Sensor.	-	UINT16	0 "None" 3 "Input 3"
6030.13	hardware selection	Empfehlung: ändern Sie diesen Parameter nur, falls Sie das Sensorsignal invertieren müssen. Siehe Kapitel "Verkabelung", Abschnitt Sensorsignale [• 68].	-	OINTTO	3 "Iliput 3
8050:14	Upstream control input hardware selection	Konfiguration der digitalen Eingänge und Ausgänge für die ZPA-Kommunikation. Ändern Sie diese Parameter nur, wenn Sie genau wissen, was	-	UINT16	129 "Internal variable 1
8050:15	Upstream control output hardware selection	Sie tun. Diese Parameter müssen in der Werkseinstellung stehen, damit die ZPA-Kommunikation über M8-Leitungen funktioniert.	-	UINT16	130 "Internal variable 2
8050:16	Downstream control input hardware selection	Die Zuordnung der Anschlussbezeichnungen finden Sie im Kapitel <u>Digitale Eingänge/Ausgänge [▶ 43]</u> .	-	UINT16	68 _{dez} "Control input 4"
8050:17	Downstream control output hardware selection		-	UINT16	67 _{dez} "Control output 3"
8050:1B	Initialisation run max duration	Die maximale Dauer der Initialisierungsfahrt.	ms	UINT16	10000 _{dez} (10 s)
8050:1C	Loading timeout	Die maximale Dauer für das Annehmen eines Pakets aus der vorhergehenden Zone. Bei Zeitüberschreitung wird die Zone als leer angenommen.	ms	UINT16	10000 _{dez} (10 s)
8050:1D	Manual removing timeout	Wenn ein Paket den Erfassungsbereich des Sensors verlässt, obwohl es nicht durch den Motor weitergefördert wurde, wird angenommen, dass das Paket manuell entfernt wurde. Anschließend wartet der Controller eine Zeitspanne, bevor er annimmt, dass die Zone tatsächlich leer ist.	ms	UINT16	1000 _{dez} (1 s)
		Die Zeitspanne wird durch diesen Parameter festgelegt.			
8050:1E	Loading follow-up time	Wenn die Zone ein Paket annimmt, läuft der Motor, bis der Sensor das Paket detektiert. Anschließend läuft der Motor noch eine kurze Zeitspanne weiter, um sicherzustellen, dass das Paket sicher im Erfassungsbereich des Sensors liegt.	ms	UINT16	200 _{dez}
		Die Zeitspanne wird durch diesen Parameter festgelegt.			
8050:1F	Unloading follow-up time	Wenn die Zone ein Paket weiterfördert, läuft der Motor, bis das Paket den Erfassungsbereich des Sensors verlässt. Anschließend läuft der Motor noch eine kurze Zeitspanne weiter, um sicherzustellen, dass das Paket von den Rollen der nachfolgenden Zone erfasst wurde.	ms	UINT16	1000 _{dez} (1 s)
		Die Zeitspanne wird durch diesen Parameter festgelegt. Je näher der Sensor am Ende der Zone ist, desto kürzer muss			
		diese Zeitspanne sein.			
8050:20	Motor velocity	Vorgabe der Motor-Drehzahl.	°/s	INT16	360 _{dez}
8050:21	Motor acceleration	Vorgabe der Beschleunigungsrampe beim Starten des Motors.	° / S²	UINT16	10000 _{dez}
8050:22	Motor decceleration	Vorgabe der Bremsrampe beim Stoppen des Motors.	° / S²	UINT16	10000 _{dez}
8050:23	Train Release Delay	Verzögerungszeit für die Abzugsart "Train Release". Diese Verzögerungszeit verhindert Stromspitzen, die durch das gleichzeitige Starten mehrerer Motoren entstehen würden.	ms	UINT16	100 _{dez} (100 ms)
8050:24	Unloading timeout	Die maximale Dauer für das Fördern eines Pakets aus der Zone heraus. Bei Zeitüberschreitung wird die Zone weiterhin als voll angenommen.	ms	UINT16	10000 _{dez} (10 s)

Index F810 $_{\rm hex}$: ZNCTRL Device Settings

Zugriffsrechte: Lesen und Schreiben

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Default Wert
F810:11	Operation mode	Betriebsart einstellen:	-		0
		0: PLC mode			
		• 16 _{dez} : Local control			
F810:13	Local control mode	ZPA-Abzugsart einstellen:	-		0
		0: ZPA singulated release			
		1: ZPA train release			
		Siehe Kapitel Abzugsarten [> 65].			
F810:14	Autoacknowledge number of attempts	Siehe Kapitel <u>Autoacknowledge: Fehler automatisch quittieren</u> [<u>▶ 62</u>].	-		0
F810:15	Autoacknowledge delay	Siehe Kapitel <u>Autoacknowledge: Fehler automatisch quittieren</u> [<u>▶ 62</u>].	ms		0x03E8 (1000 _{dez})

9.2.2 Informations-Objekte

Index F80F: STM Vendor data

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Wert
F80F:04	Warning temperature	Interne Temperatur: Warnungs-Schwellwert.	°C	USINT	80 _{dez}
F80F:05	Switch off temperature	Interne Temperatur: Fehler-Schwellwert.	°C	USINT	100 _{dez}
F80F:09	Amplifier switchoff current		mA	UINT	18000 _{dez}
F80F:0A	Amplifier peak current	Wenn der Ausgangsstrom den Wert dieses Parameters überschreitet, wird die Endstufe abgeschaltet.	mA	UINT	12000 _{dez}
F80F:0B	Amplifier rated current	Der Wert dieses Parameters ist der maximale Dauerstrom, den die Endstufe liefern kann.	mA	UINT	3500 _{dez}
		Dieser Parameter wird verwendet für die I ² T-Berechnung der Endstufe.			
F80F:0C	Amplifier minimal voltage	Schwellwert der Unterspannungs-Erkennung.	0.01 V	UINT	1800 _{dez}
F80F:0D	Amplifier maximal voltage	Schwellwert der Überspannungs-Erkennung.	0.01 V	UINT	3000 _{dez} (EP7402- 0057)
					6000 _{dez} (EP7402- 0067, EP7402-0 167)
F80F:0E	Amplifier thermal time constant	l²T-Grenzwert-Überwachung: Thermische Zeitkonstante der Endstufe.	0.1 s	UINT	35 _{dez}
F80F:0F	Maximum rotary field frequency	Maximale Drehfeldfrequenz	Hz	UINT	599 _{dez}

Index F900: STM Info data

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Default value
F900:01	Internal temperature	Interne Temperatur	°C	SINT	-
F900:02	Motor supply voltage	Aktueller Wert der Peripheriespannung U _P	0.01 V	UINT	-

9.2.3 Standard-Objekte

Index 1000 Device type

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Wert
1000:0	, ,,	Bit 0 15: Device profile number Bit 16 31: Module profile number	-	UDINT	5001 _{dez}
		(Device profile number 5001: Modular Device Profile MDP)			

Index 1008 Device name

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Wert
1008:0	Device Name	Geräte-Name	-	String	"EP7402- 0057"
					/
					"EP7402- 0067"
					/
					"EP7402- 0167"

Index 1009 Hardware version

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Wert
1009:0	Hardware Version	Hardware-Version	-	String	1)

¹⁾ Siehe <u>Firm- und Hardware-Stände [▶ 7]</u>.

Index 100A Software version

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Einheit	Datentyp	Wert
100A:0	Software Version	Firmware-Version	-	String	1)

¹⁾ Siehe <u>Firm- und Hardware-Stände [▶ 7]</u>.

10 Anhang

10.1 Beispiel für Motor-Parameter

Parameter		Beckhoff
Index	Name	AM8111-0F20-0000
8020:01 _{hex}	Maximal current	3500
8020:02 _{hex}	Nominal current	2850
8020:09 _{hex}	Start velocity	666
8020:13 _{hex}	Mechanical to electrical ratio	3
8020:19 _{hex}	Motor thermal time constant	15
8023:11 _{hex}	Velocity loop integral time	300
8023:12 _{hex}	Velocity loop proportional gain	100
8023:14 _{hex}	Align power	53
8023:15 _{hex}	Align duration	1000
8023:16 _{hex}	Rampup power	60
8023:18 _{hex}	Rampup duration	666
8023:19 _{hex}	Rampup velocity	2000
8023:21 _{hex}	Rampup needed switchover events	10
8023:22 _{hex}	Commutation threshold	45

10.2 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Schutzarten werden mit den Buchstaben "IP" und zwei Kennziffern bezeichnet: **IPxy**

- Kennziffer x: Staubschutz und Berührungsschutz
- · Kennziffer y: Wasserschutz

х	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø 50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø 12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø 2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø 1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

У	Bedeutung	
0	Nicht geschützt	
1	Geschützt gegen Tropfwasser	
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist	
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben	
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben	
5	Geschützt gegen Strahlwasser.	
6	Geschützt gegen starkes Strahlwasser.	
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist	

Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der IP67-Module und die verwendeten Metallteile. In der nachfolgenden Tabelle finden Sie einige typische Beständigkeiten.

Art	Beständigkeit
Wasserdampf	bei Temperaturen >100°C nicht beständig
Natriumlauge (ph-Wert > 12)	bei Raumtemperatur beständig > 40°C unbeständig
Essigsäure	unbeständig
Argon (technisch rein)	beständig

Legende

- · beständig: Lebensdauer mehrere Monate
- bedingt beständig: Lebensdauer mehrere Wochen
- unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung

10.3 Zubehör

Leitungen

Bestellangabe	Beschreibung	Link
ZK1090-3xxx-xxxx	EtherCAT-Leitung M8, grün	<u>Website</u>
ZK1093-3xxx-xxxx	EtherCAT-Leitung M8, gelb	Website
ZK2000-3xxx-xxxx	Sensorleitung M8, 4-polig	Website
ZK2020-3xxx-xxxx	Powerleitung M8, 4-polig	<u>Website</u>
ZK2080-4100-0xxx	Motorleitung M8, 5-polig, B-kodiert	Website
ZK7314-3xxx-Axxx	Hybridleitung B23 ENP, 5 G 4,0 mm ²	<u>Website</u>

Schutzkappen für Steckverbinder

Bestellangabe	Beschreibung
ZS5000-0010	Schutzkappe für M8-Buchsen, IP67 (50 Stück)
ZS7300-B001	Schutzkappe für B23, Kunststoff
ZS7300-B002	Schutzkappe für B23, Metall

Werkzeug

Bestellangabe	Beschreibung
ZB8801-0000	Drehmoment-Schraubwerkzeug für Stecker, 0,41,0 Nm
ZB8801-0001	Wechselklinge für M8 / SW9 für ZB8801-0000
ZB8802-0003	Schraubwerkzeug für B23-Steckverbinder

Weiteres Zubehör

Weiteres Zubehör finden Sie in der Preisliste für Feldbuskomponenten von Beckhoff und im Internet auf https://www.beckhoff.com.

10.4 Versionsidentifikation von EtherCAT-Geräten

10.4.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016		3314	0000	0016
	12 mm, nicht steckbare Anschlussebene	4-kanalige Thermoelementklemme	Grundtyp	
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	12 mm, steckbare Anschlussebene	2-kanalige Spannungsmessung	hochpräzise Version	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		8 Port FastEthernet Switch	Grundtyp	

Hinweise

- Die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die **Revision** -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.

 Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 - Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit Januar 2014 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL2872 mit Revision 0022 und Seriennummer 01200815".
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

10.4.2 Versionsidentifikation von IP67-Modulen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder mit einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module innerhalb einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr FF - Firmware-Stand HH - Hardware-Stand Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12 06 - Produktionsjahr 2006 3A - Firmware-Stand 3A 02 - Hardware-Stand 02

Ausnahmen können im **IP67-Bereich** auftreten, dort kann folgende Syntax verwendet werden (siehe jeweilige Gerätedokumentation):

Syntax: D ww yy x y z u

D - Vorsatzbezeichnung ww - Kalenderwoche

yy - Jahr

x - Firmware-Stand der Busplatine

y - Hardware-Stand der Busplatine

z - Firmware-Stand der E/A-Platine

u - Hardware-Stand der E/A-Platine

Beispiel: D.22081501 Kalenderwoche 22 des Jahres 2008 Firmware-Stand Busplatine: 1 Hardware Stand Busplatine: 5 Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig) Hardware-Stand E/A-Platine: 1

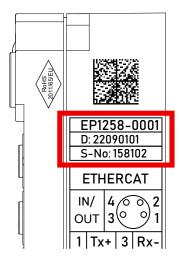


Abb. 7: EP1258-0001 IP67 EtherCAT Box mit Chargennummer/ DateCode 22090101 und eindeutiger Seriennummer 158102

10.4.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 8: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P 072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTN k4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1K EL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q 1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P 401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z.B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S 678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	12	30P F971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 9: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

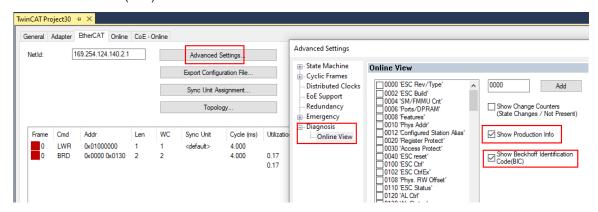
Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumenation können keine Ansprüche auf Änderung geltend gemacht werden.

10.4.4 Elektronischer Zugriff auf den BIC (eBIC)

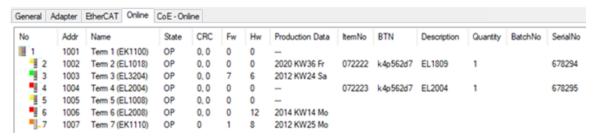
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff-Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt angesprochen werden kann.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, das die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).


In das ESI-EEPROM wird durch Beckhoff auch die eBIC geschrieben. Die Einführung des eBIC in die Beckhoff-IO-Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT-Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen:
 - Ab TwinCAT 3.1 Build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter
 EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab
 v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC bereit.
- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:

Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein

Index		Name	Rags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
•	1011:0	Restore default parameters	RO	>1<		
•	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB EcCoEReadBIC und FB EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 Build 4024.24 in der Tc2_Utilities zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den BIC sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST_SplittedBIC als Rückgabewert
 - BIC_TO_BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Zum technischen Hintergrund:
 Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT-Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen.
 Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.
- · Sonderfälle
 - Bei einer hierarchischen Anordnung mehrerer ESC (EtherCAT Slave Controller) in einem Gerät trägt lediglich der oberste ESC die eBIC-Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC-Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC dieses ESC, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

10.5 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com
Internet: www.beckhoff.com

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com