BECKHOFF New Automation Technology

Dokumentation | DE

EP5xxx

EtherCAT-Box-Module für die Winkel- und Wegmessung

Inhaltsverzeichnis

1	Vorw			
	1.1		e zur Dokumentation	
	1.2		eitshinweise	
	1.3	Ausgab	estände der Dokumentation	9
2	Ethe	rCAT Bo	x - Einführung	. 11
3	Prod	uktübers	sicht	. 13
	3.1	Modulük	persicht	. 13
	3.2	EP5001	-0002	. 14
		3.2.1	EP5001-0002 - Einführung	. 14
		3.2.2	EP5001-0002 - Technische Daten	. 15
		3.2.3	EP5001-0002 - Lieferumfang	. 16
		3.2.4	EP5001-0002 - Prozessabbild	. 17
	3.3	EP5101	-x002	. 18
		3.3.1	EP5101-x002 - Einführung	. 18
		3.3.2	EP5101-x002 - Technische Daten	. 19
		3.3.3	EP5101-x002 - Lieferumfang	. 20
		3.3.4	EP5101-x002 - Prozessabbild	. 21
	3.4	EP5101	-x011	. 22
		3.4.1	EP5101-x011 - Einführung	. 22
		3.4.2	EP5101-x011 - Technische Daten	. 23
		3.4.3	EP5101-x011 - Lieferumfang	
		3.4.4	EP5101-0011 - Prozessabbild	. 25
		3.4.5	EP5101-2011 - Prozessabbild	. 26
	3.5	EP5151	-0002	
		3.5.1	EP5151-0002 - Einführung	
		3.5.2	EP5151-0002 - Technische Daten	
		3.5.3	EP5151-0002 - Lieferumfang	
		3.5.4	EP5151-0002 - Prozessabbild	. 30
4	Mont	tage und	Anschluss	. 31
	4.1	Montage	e	. 31
		4.1.1	Abmessungen	. 31
		4.1.2	Befestigung	. 32
		4.1.3	Anzugsdrehmomente für Steckverbinder	
	4.2	EtherCA	AT	
		4.2.1	Steckverbinder	
		4.2.2	Status-LEDs	. 34
		4.2.3	Leitungen	
	4.3	Versorg	ungsspannungen	. 35
		4.3.1	Steckverbinder	
		4.3.2	Status-LEDs	
		4.3.3	Leitungsverluste	
	4.4	•	nschluss und Bedeutung der LEDs	
		4.4.1	Schirmung	. 38

		4.4.2	EP5001-0002 - Signalanschluss	38
		4.4.3	EP5101-x002 - Signalanschluss	39
		4.4.4	EP5101-x011 - Signalanschluss	40
		4.4.5	EP5151-0002 - Signalanschluss	41
	4.5	UL-Anfo	orderungen	42
	4.6	ATEX-H	łinweise	43
		4.6.1	ATEX - Besondere Bedingungen	43
		4.6.2	BG2000 - Schutzgehäuse für EtherCAT Box	44
		4.6.3	ATEX-Dokumentation	45
	4.7	Entsorg	ung	46
5	Inbet	riebnahn	me/Konfiguration	47
	5.1	Einbinde	en in ein TwinCAT-Projekt	47
	5.2	EP5001	-0002 - Parameter und Modi	48
		5.2.1	Grundlagen der SSI-Kommunikation	48
		5.2.2	Prozessdaten	49
		5.2.3	DC (Distributed Clocks)	51
		5.2.4	Features CoE	52
	5.3	EP51x1-	-x0xx - Parameter und Modi	54
		5.3.1	Grundlagen zur Funktion	54
		5.3.2	Prozessdaten	55
		5.3.3	DC (Distributed Clocks)	66
		5.3.4	Features CoE	67
	5.4	EP5001	- Schnittstellenpegel	72
	5.5	EP5101	- Schnittstellenpegel	73
	5.6	EP5151	- Schnittstellenpegel	74
	5.7	Wiederh	nerstellen des Auslieferungszustands	75
	5.8	Außerbe	etriebnahme	76
6	CoE-	Paramet	er	77
	6.1		-0002	
	6.2	EP5101	-x002	83
		6.2.1	Restore-Objekt	83
		6.2.2	Konfigurationsdaten	84
		6.2.3	Eingangsdaten	85
		6.2.4	Ausgangsdaten	86
		6.2.5	Informations-/Diagnosedaten (kanalspezifisch)	86
		6.2.6	Standardobjekte	86
	6.3	EP5101	-0011	97
		6.3.1	Restore-Objekt	97
		6.3.2	Konfigurationsdaten	98
		6.3.3	Eingangsdaten	100
		6.3.4	Ausgangsdaten	101
		6.3.5	Informations-/Diagnosedaten (kanalspezifisch)	101
		6.3.6	Standardobjekte	101
	6.4	EP5151	-0002	110
		6.4.1	Restore-Objekt	110

		6.4.2	Konfigurationsdaten	. 111
		6.4.3	Eingangsdaten	. 113
		6.4.4	Ausgangsdaten	. 114
		6.4.5	Standardobjekte	. 114
7	Anha	ang		. 123
	7.1	Allgeme	ine Betriebsbedingungen	. 123
	7.2	Zubehö	ſ	. 124
	7.3	Version	sidentifikation von EtherCAT-Geräten	. 125
		7.3.1	Allgemeine Hinweise zur Kennzeichnung	. 125
		7.3.2	Versionsidentifikation von IP67-Modulen	. 126
		7.3.3	Beckhoff Identification Code (BIC)	. 127
		7.3.4	Elektronischer Zugriff auf den BIC (eBIC)	. 129
	7.4	Support	und Service	. 131

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
2.10	Technische Daten von EP5151-0002 aktualisiert
2.9	Schnittstellenpegel aktualisiert
2.8	Kapitel "Versorgungsspannungen" aktualisiert
2.7	Einführungen aktualisiert
	Technische Daten aktualisiert
	Signalanschluss aktualisiert
2.6	Abmessungen aktualisiert
	UL-Anforderungen aktualisiert
2.5	Titelseite aktualisiert
	Lieferumfang hinzugefügt
	Struktur-Update
2.4	EP5101-0011: Farbe der Error-LED korrigiert
	EP5151-0002: Farbe der Error-LED korrigiert
2.3.0	Hinweis Schirmung eingefügt
2.2.0	Update chapter EP5001-0002 - Signalanschluss
2.1.0	• EP5101-2011 eingefügt
	Update Kapitel <i>Montage</i>
	Update Kapitel Inbetriebnahme
	Update Struktur
2.0.0	Migration
	EP5001-0002 hinzugefügt
	Umbenennung auf EP5xxx
	Aktualisierung diverser Kapitel
1.6.0	Steckerbelegung aktualisiert
	Status-LEDs aktualisiert
	Kapitel Anzugsmomente für Steckverbinder aktualisiert
	Zubehör aktualisiert
1.5.0	Power-Anschluss aktualisiert
1.4.0	Einführung erweitert

Version	Änderungen
1.3.0	Titelblatt um EP5101-1002 und EP5151-0002 erweitert
	EP51x1 - Einführung um EP5101-1002 und EP5151-0002 erweitert
	EP5151 Signallevel (Schnittstellenpegel) hinzugefügt
	Status-LEDs um EP5101-1002 und EP5151-0002 erweitert
	Technische Daten um EP5101-1002 und EP5151-0002 erweitert
	Encoder-Anschluss, M12, 8-polig um EP5151 erweitert
	Grundlagen zur Funktion angepasst
	Parameter und Modi angepasst
	Prozessabbild der EP5151-0002 hinzugefügt
	Prozessabbild der EP5101-0002 angepasst
	Hinweise zur Dokumentation aktualisiert
	Support & Service aktualisiert
	Sicherheitshinweise aktualisiert
	EtherCAT-Kabel aktualisiert
	EtherCAT-Box Zubehör aktualisiert
	Anzugsmomente für Steckverbinder aktualisiert
	EtherCAT-Anschluss aktualisiert
	Befestigung aktualisiert
1.2.0	Schnittstellenpegel ergänzt (single ended und differentielle Signale)
1.1.0	Beschreibung des Power-Anschlusses aktualisiert
	 Hinweis auf die Dokumentation Hinweise zum Einsatz von EtherCAT-Box-Modulen (EPxxxx- xxxx) in explosionsgefährdeten Bereichen (ATEX) hinzugefügt.
1.0.0	erste Veröffentlichung

Firm- und Hardware-Stände

Diese Dokumentation bezieht sich auf den zum Zeitpunkt ihrer Erstellung gültigen Firm- und Hardware-Stand.

Die Eigenschaften der Module werden stetig weiterentwickelt und verbessert. Module älteren Fertigungsstandes können nicht die gleichen Eigenschaften haben, wie Module neuen Standes. Bestehende Eigenschaften bleiben jedoch erhalten und werden nicht geändert, so dass ältere Module immer durch neue ersetzt werden können.

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der EtherCAT Box aufgedruckten Batch-Nummer (D-Nummer) entnehmen.

Syntax der Batch-Nummer (D-Nummer)

D: WW YY FF HH

WW - Produktionswoche (Kalenderwoche)
YY - Produktionsjahr
FF - Firmware-Stand
HH - Hardware-Stand

Beispiel mit D-Nr. 29 10 02 01:
29 - Produktionswoche 29
10 - Produktionsjahr 2010
02 - Firmware-Stand 02
01 - Hardware-Stand 01

Weitere Informationen zu diesem Thema: Versionsidentifikation von EtherCAT-Geräten [▶ 125].

2 EtherCAT Box - Einführung

Das EtherCAT-System wird durch die EtherCAT-Box-Module in Schutzart IP67 erweitert. Durch das integrierte EtherCAT-Interface sind die Module ohne eine zusätzliche Kopplerbox direkt an ein EtherCAT-Netzwerk anschließbar. Die hohe EtherCAT-Performance bleibt also bis in jedes Modul erhalten.

Die außerordentlich geringen Abmessungen von nur 126 x 30 x 26,5 mm (H x B x T) sind identisch zu denen der Feldbus Box Erweiterungsmodule. Sie eignen sich somit besonders für Anwendungsfälle mit beengten Platzverhältnissen. Die geringe Masse der EtherCAT-Module begünstigt u. a. auch Applikationen, bei denen die I/O-Schnittstelle bewegt wird (z. B. an einem Roboterarm). Der EtherCAT-Anschluss erfolgt über geschirmte M8-Stecker.

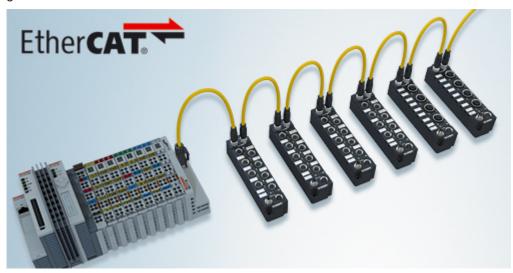


Abb. 1: EtherCAT-Box-Module in einem EtherCAT-Netzwerk

Die robuste Bauweise der EtherCAT-Box-Module erlaubt den Einsatz direkt an der Maschine. Schaltschrank und Klemmenkasten werden hier nicht mehr benötigt. Die Module sind voll vergossen und daher ideal vorbereitet für nasse, schmutzige oder staubige Umgebungsbedingungen.

Durch vorkonfektionierte Kabel vereinfacht sich die EtherCAT- und Signalverdrahtung erheblich. Verdrahtungsfehler werden weitestgehend vermieden und somit die Inbetriebnahmezeiten optimiert. Neben den vorkonfektionierten EtherCAT-, Power- und Sensorleitungen stehen auch feldkonfektionierbare Stecker und Kabel für maximale Flexibilität zur Verfügung. Der Anschluss der Sensorik und Aktorik erfolgt je nach Einsatzfall über M8- oder M12-Steckverbinder.

Die EtherCAT-Module decken das typische Anforderungsspektrum der I/O-Signale in Schutzart IP67 ab:

- digitale Eingänge mit unterschiedlichen Filtern (3,0 ms oder 10 μs)
- digitale Ausgänge mit 0,5 oder 2 A Ausgangsstrom
- analoge Ein- und Ausgänge mit 16 Bit Auflösung
- · Thermoelement- und RTD-Eingänge
- · Schrittmotormodule

Auch XFC (eXtreme Fast Control Technology)-Module wie z. B. Eingänge mit Time-Stamp sind verfügbar.

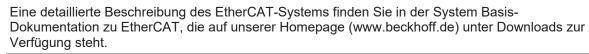

Abb. 2: EtherCAT Box mit M8-Anschlüssen für Sensor/Aktoren

Abb. 3: EtherCAT Box mit M12-Anschlüssen für Sensor/Aktoren

Basis-Dokumentation zu EtherCAT

3 Produktübersicht

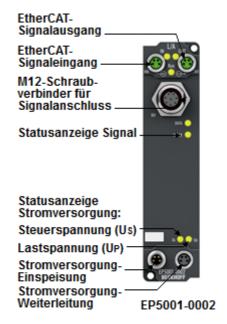
3.1 Modulübersicht

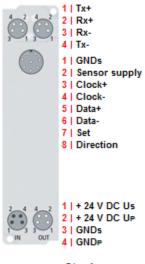
SSI-Geber-Interface

			Sensor- versorgung	Kommentar
EP5001-0002 [▶ 14]	M12-Buchse, 8-polig	1	24 V _{DC}	Distributed Clocks

Inkremental-Encoder-Interface mit Differenzeingängen

Modul	Anschluss Encoder/Sensor	Anzahl Kanäle	Sensor- versorgung	Kommentar
EP5101-0002 [▶ 18]	M12-Buchse, 8-polig	1	5 V _{DC} , 150 mA	Distributed Clocks
				4 Mio. Inkremente/s
EP5101-0011 [22]	D-Sub-Buchse, 15-polig	1	5 V _{DC} , 150 mA	Distributed Clocks
				4 Mio. Inkremente/s
				Latch, Gate
EP5101-1002 [▶ 18]	M12-Buchse, 8-polig	1	24 V _{DC} , 500 mA	Distributed Clocks
				4 Mio. Inkremente/s
EP5101-2011 [22]	D-Sub-Buchse, 15-polig	1	5 V _{DC} , 150 mA	Distributed Clocks
				• 20 Mio. Inkremente/s
				Latch, Gate


Inkremental-Encoder-Interface mit Single-ended Eingängen


Modul		1	Sensor- versorgung	Kommentar
EP5151-0002 [> 27]	M12-Buchse, 8-polig	1	24 V _{DC} , 0,5 A	Distributed Clocks
				400.000 Inkremente/s
				Latch, Gate

3.2 EP5001-0002

3.2.1 EP5001-0002 - Einführung

Steckerbelegung

SSI-Geber-Interface

Die EtherCAT Box EP5001-0002 ist ein SSI-Master und erlaubt den direkten Anschluss eines Absolutgebers mit SSI (Synchron-Serielle Schnittstelle). Es werden sowohl Singleturn- als auch Multiturn-Encoder unterstützt. Als Geberanschluss wird eine 8-polige M12-Buchse verwendet. Die 24-V-Versorgung des Gebers erfolgt direkt über die M12-Buchse der Box.

Umfangreiche Parametriermöglichkeiten erlauben eine optimale Anpassung an verschiedene Encodertypen.

Besondere Eigenschaften:

- · Baudrate bis max. 1 MHz
- · Kodierung: Gray und binär
- · Datenlänge bis 32 Bit, flexibel einstellbar.
- separate Auswertung eines Status-Fehler-Bit (Power-Fail-Bit) in den Prozessdaten.

Über die Distributed-Clocks-Funktion erfolgt das Auslesen des Positionswertes exakt systemsynchron mit anderen Prozessen. Bei deaktivierter Distributed-Clocks-Funktion taktet die EP5001-0002 synchron mit dem EtherCAT-Zyklus. Das Encoderprofil erlaubt eine einfache und schnelle Verknüpfung der Prozessdaten zur Motion-Control-Anwendung.

Quick Links

Technische Daten [▶ 15]
Prozessabbild [▶ 17]
Signalanschluss [▶ 38]
Inbetriebnahme [▶ 48]

3.2.2 **EP5001-0002 - Technische Daten**

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT		
Anschluss	2 x M8-Buchse, 4-polig, A-kodiert, geschirmt	
Potenzialtrennung	500 V	
Distributed Clocks	ja	

Versorgungsspannungen		
Anschluss	Eingang: M8-Stecker, 4-polig, A-kodiert	
	Weiterleitung: M8-Buchse, 4-polig, A-kodiert	
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)	
U _S Summenstrom: I _{S,sum}	max. 4 A	
Stromaufnahme aus U _s	130 mA	
	+ Sensorversorgung	
U _P Nennspannung	24 V _{DC} (-15 % / +20 %)	
U _P Summenstrom: I _{P,sum}	max. 4 A	
Stromaufnahme aus U _P	Keine. U _P wird nur weitergeleitet.	

SSI-Geber	
Anzahl Geber-Eingänge	1
Anschluss	M12-Buchse, 8-polig
Signaltyp	differenziell (RS422 / RS485)
Signale	Daten-Eingang: Data+, Data- Takt-Ausgang: Clock+, Clock-
	Der Daten-Eingang hat einen internen Abschlusswiderstand von 120 Ω
Sensorversorgung "Sensor supply"	24 V _{DC} aus U _s .
	max. 0,5 A, kurzschlussfest.
Übertragungsraten	Einstellbar bis 1 MHz. 250 kHz voreingestellt.
Serieller Eingang	24-Bit-Breite (einstellbar)
Datenrichtung	Lesen
Besondere Eigenschaften	Baudrate, Kodierung und Datenlänge einstellbar.

Gehäusedaten		
Abmessungen B x H x T	30 mm x 126 mm x 26,5 mm (ohne Steckverbinder)	
Gewicht	ca. 165 g	
Einbaulage	beliebig	
Material	PA6 (Polyamid)	

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	0 55 °C	
Umgebungstemperatur bei Lagerung	-25 +85 °C	
Schwingungsfestigkeit, Schockfestigkeit gemäß EN 60068-2-6 / EN 60068-2-27		
	Zusätzliche Prüfungen [▶ 16]	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	

Zulassungen / Kennzeichnungen	
Zulassungen / Kennzeichnungen *)	CE, <u>cURus</u> [<u>\(\begin{align*} 42 \) \\ \end{align*} \)</u>

*) Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Zusätzliche Prüfungen

Die Geräte sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung
Vibration	10 Frequenzdurchläufe, in 3 Achsen
	5 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
Schocken	1000 Schocks je Richtung, in 3 Achsen
	35 g, 11 ms

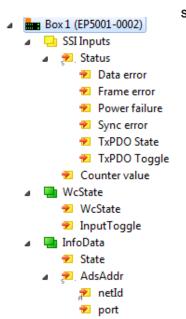
3.2.3 EP5001-0002 - Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

- 1x EtherCAT Box EP5001-0002
- 2x Schutzkappe für EtherCAT-Buchse, M8, grün (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Eingang, M8, transparent (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Ausgang, M8, schwarz (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz

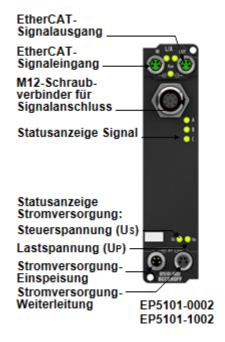
Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u.U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

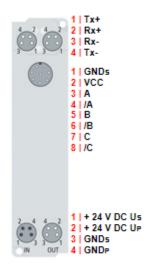

Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.2.4 EP5001-0002 - Prozessabbild

TwinCAT zeigt das Prozessabbild in einer Baumstruktur an.

TwinCAT zeigt die Daten der EP5001-0002 in einer Baumstruktur an.




SSI Inputs Status · Data error Fehler am SSI-Eingang · Frame error Es liegt ein falscher Datenrahmen vor Power failure Es ist ein geberspezifischer Fehler aufgetreten. Aktivierung durch Enable Power failure bit (Index 0x8000:02) · Sync error EtherCAT Fehler, siehe EtherCAT System-**Dokumentation** TxPDO State Siehe <u>Objektbeschreibung</u> [▶ <u>81]</u> TxPDO Toggle Siehe Objektbeschreibung [▶ 81] Aktueller Zählerwert des Encoders Counter value

3.3 EP5101-x002

3.3.1 EP5101-x002 - Einführung

Steckerbelegung

Inkremental-Encoder-Interface mit Differenzeingängen

Die EtherCAT Box EP5101-x002 ist ein Interface zum direkten Anschluss von Inkremental-Encodern mit Differenzsignalen (RS422) oder TTL-Single-Ended-Signalen. Es können Eingangsfrequenzen bis zu 1 MHz ausgewertet werden. Der C-Eingang kann optional als Latch-Eingang genutzt werden. Die Versorgung des Gebers erfolgt direkt über die M12-Buchse der EP5101-x002.

Besondere Eigenschaften:

- · Zähler speichern, sperren, setzen
- integrierte Frequenz- und Periodenmessung
- · optional als 5-V-Zähler einsetzbar
- · Mikroinkremente
- synchrones Einlesen des Positionswertes über Distributed Clocks
- · Zeitstempel auf die letzte registrierte Inkrementalflanke

Zusätzlich ermöglicht die EP5101-x002 die Messung einer Periode oder Frequenz mit einer Auflösung von 100 ns. Durch die optionale interpolierende Mikroinkremente-Funktionalität, kann die EP5101-x002 bei dynamischen Achsen noch genauere Achspositionen liefern. Zudem unterstützt sie über die hochpräzisen EtherCAT-Distributed-Clocks (DC) das synchrone Einlesen des Geberwertes zusammen mit anderen Eingangsdaten im EtherCAT-System. Zusätzlich steht ein Zeitstempel für die letzte registrierte Inkrementalflanke zur Verfügung. Die Verwendung von Encoderprofilen erlaubt eine einfache und schnelle Verknüpfung der Prozessdaten zur Motion-Control-Anwendung.

Version: 2.10

Quick Links

Technische Daten [▶ 19]
Prozessabbild [▶ 21]
Signalanschluss [▶ 39]
Inbetriebnahme [▶ 54]

3.3.2 EP5101-x002 - Technische Daten

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT		
Anschluss	2 x M8-Buchse, 4-polig, A-kodiert, geschirmt	
Potenzialtrennung	500 V	
Distributed Clocks	ja	

Versorgungsspannungen		
Anschluss	Eingang: M8-Stecker, 4-polig, A-kodiert	
	Weiterleitung: M8-Buchse, 4-polig, A-kodiert	
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)	
U _S Summenstrom: I _{S,sum}	max. 4 A	
Stromaufnahme aus U _s	130 mA	
	+ Sensorversorgung	
U _P Nennspannung	24 V _{DC} (-15 % / +20 %)	
U _P Summenstrom: I _{P,sum}	max. 4 A	
Stromaufnahme aus U _P	Keine. U _P wird nur weitergeleitet.	

Inkremental-Encoder	EP5101-0002	EP5101-1002
Anzahl Encoder-Eingänge	1	
Anschluss	M12-Buchse, 8-polig [▶ 39]	
Signale	A, /A, B, /B, C, /C (RS422 / RS485 Differenzeingä	inge)
	Auch Single-ended-Anschluss (5 V ±20%) möglich.
Sensorversorgung Vcc	5 V _{DC} aus U _s .	24 V _{DC} aus U _{s.}
	max. 150 mA	max. 0,5 A, kurzschlussfest
Zähler	32 Bit oder 16 Bit, binär	
Grenzfrequenz	4 Mio. Inkremente/s (bei Vierfachauswertung)	
Quadraturdecoder	Vierfachauswertung	
Nullimpuls-Latch	16 Bit	
Befehle	Lesen, Setzen, Aktivieren	

Gehäusedaten		
Abmessungen B x H x T	30 mm x 126 mm x 26,5 mm (ohne Steckverbinder)	
Gewicht	ca. 165 g	
Einbaulage	beliebig	
Material	PA6 (Polyamid)	

Umgebungsbedingungen	EP5101-0002	EP5101-1002
Umgebungstemperatur im Betrieb	-25+60 °C -25+55 °C gemäß cURus 0+55 °C gemäß ATEX	-25+60 °C -25+55 °C gemäß cURus
Umgebungstemperatur bei Lagerung	-40+85 °C	
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 600	68-2-27
	Zusätzliche Prüfungen [▶ 20]	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60	529)

Zulassungen / Kennzeichnungen	EP5101-0002	EP5101-1002
Zulassungen / Kennzeichnungen	ATEX, CE, <u>cURus [▶ 42]</u> , EAC, UKCA	CE, <u>cURus [▶ 42]</u> , EAC, UKCA

Zusätzliche Prüfungen

Die Geräte sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung
Vibration	10 Frequenzdurchläufe, in 3 Achsen
5 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude	
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
Schocken	1000 Schocks je Richtung, in 3 Achsen
	35 g, 11 ms

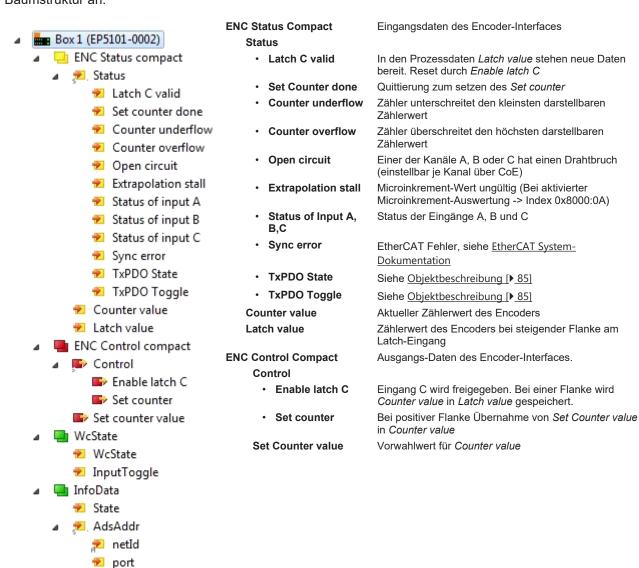
3.3.3 EP5101-x002 - Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

- 1x EtherCAT Box EP5101-x002
- 2x Schutzkappe für EtherCAT-Buchse, M8, grün (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Eingang, M8, transparent (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Ausgang, M8, schwarz (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

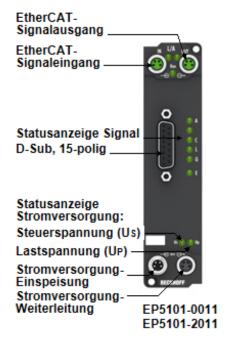
•

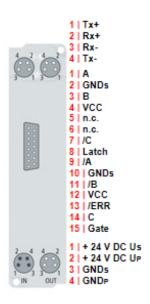
Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz


Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u.U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.3.4 EP5101-x002 - Prozessabbild


TwinCAT zeigt die Daten der EP5101-0002 und EP5101-1002 am Beispiel der EP5101-0002 in einer Baumstruktur an.



3.4 EP5101-x011

3.4.1 **EP5101-x011 - Einführung**

Steckerbeleauna

Inkremental-Encoder-Interface mit Differenzeingängen

Die EtherCAT Box EP5101-x011 ist ein Interface zum direkten Anschluss von Inkremental-Encodern mit Differenzsignalen (RS422) oder TTL-Single-Ended-Signalen. Zwei zusätzliche 24-V-Digital-Eingänge stehen zum Speichern, Sperren und Setzen des Zählerstandes zur Verfügung. Über den Statuseingang kann der Störmeldeausgang eines Encoders angeschlossen und ausgewertet werden. Die 5-V-Versorgung des Gebers erfolgt direkt über die D-Sub-Buchse der EP5101-x011.

Besondere Eigenschaften:

- Zähler speichern, sperren, setzen
- · integrierte Frequenz- und Periodenmessung
- · optional als 5-V-Zähler einsetzbar
- Mikroinkremente
- synchrones Einlesen des Positionswertes über Distributed Clocks
- · Zeitstempel auf die letzte registrierte Inkrementalflanke
- 20 MHz Grenzfrequenz (EP5101-2011)

Zusätzlich ermöglicht die EP5101-x011 die Messung einer Periode oder Frequenz mit einer Auflösung von 100 ns. Durch die optionale interpolierende Mikroinkremente-Funktionalität kann die EP5101-x011 bei dynamischen Achsen noch genauere Achspositionen liefern. Zudem unterstützt sie über die hochpräzisen EtherCAT-Distributed-Clocks (DC) das synchrone Einlesen des Geberwertes zusammen mit anderen Eingangsdaten im EtherCAT-System. Zusätzlich steht ein Zeitstempel für die letzte registrierte Inkrementalflanke zur Verfügung. Die Verwendung von Encoderprofilen erlaubt eine einfache und schnelle Verknüpfung der Prozessdaten zur Motion-Control-Anwendung.

Quick Links

Technische Daten [▶ 23]

Prozessabbild EP5101-0011 [▶ 25]

Prozessabbild EP5101-2011 [▶ 26]

Signalanschluss [▶ 40]

3.4.2 EP5101-x011 - Technische Daten

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT	
Anschluss	2 x M8-Buchse, 4-polig, A-kodiert, geschirmt
Potenzialtrennung	500 V
Distributed Clocks	ja

Versorgungsspannungen	
Anschluss	Eingang: M8-Stecker, 4-polig, A-kodiert
	Weiterleitung: M8-Buchse, 4-polig, A-kodiert
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)
U _S Summenstrom: I _{S,sum}	max. 4 A
Stromaufnahme aus U _s	130 mA
	+ Sensorversorgung
U _P Nennspannung	24 V _{DC} (-15 % / +20 %)
U _P Summenstrom: I _{P,sum}	max. 4 A
Stromaufnahme aus U _P	Keine. U _P wird nur weitergeleitet.

Inkremental-Encoder	EP5101-0011	EP5101-2011
Anzahl Encoder-Eingänge	1	
Anschluss	D-Sub-Buchse, 15-polig [▶ 39]	
Signale	A, /A, B, /B, C, /C (RS422 / RS485 Differenzeingä	inge)
	auch Single-ended-Anschluss (5 V ±20%) möglich,
	Latch, Gate	
Sensorversorgung Vcc	5 V _{DC} aus U _s .	
	max. 150 mA	
Zähler	32 Bit oder 16 Bit, binär	
Grenzfrequenz	4 Mio. Inkremente/s (bei Vierfachauswertung)	20 Mio. Inkremente/s (bei Vierfachauswertung)
Quadraturdecoder	Vierfachauswertung	
Nullimpuls-Latch	16 Bit	
Befehle	Lesen, Setzen, Aktivieren	

Gehäusedaten		
Abmessungen B x H x T	30 mm x 126 mm x 26,5 mm (ohne Steckverbinder)	
Gewicht	ca. 165 g	
Einbaulage	beliebig	
Material	PA6 (Polyamid)	

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	-25 +60 °C	
	-25 +55 °C gemäß cURus	
Umgebungstemperatur bei Lagerung	-40 +85 °C	
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27	
	Zusätzliche Prüfungen [▶ 24]	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	

Zulassungen / Kennzeichnungen	
Zulassungen / Kennzeichnungen *)	CE, <u>cURus</u> [<u>\(\begin{align*} 42 \) \\ \end{align*} \)</u>

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Zusätzliche Prüfungen

Die Geräte sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung
Vibration	10 Frequenzdurchläufe, in 3 Achsen
	5 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
Schocken	1000 Schocks je Richtung, in 3 Achsen
	35 g, 11 ms

3.4.3 EP5101-x011 - Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

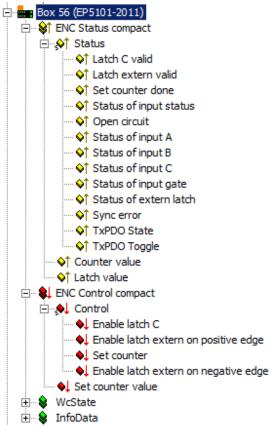
- 1x EtherCAT Box EP5101-x011
- 2x Schutzkappe für EtherCAT-Buchse, M8, grün (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Eingang, M8, transparent (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Ausgang, M8, schwarz (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz

Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u.U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.4.4 EP5101-0011 - Prozessabbild


TwinCAT zeigt die Daten des EP5101-0011 in einer Baumstruktur an.

_	ENC Status Compact	
Box 1 (EP5101-0011)	Status	
■ ENC Status compact ■ Ø. Status	Latch C valid	In den Prozessdaten <i>Latch value</i> stehen neue
Latch C valid		Daten bereit. Reset durch Enable latch C
✓ Latch extern valid	Latch extern valid	In den Prozessdaten Latch value stehen neue
Set counter done		Daten bereit. Reset durch Enable latch extern
Counter underflow		on positive/negative edge
Counter overflow	 Set Counter done 	Quittierung zum setzen des Set counter
Status of input status	Counter underflow	Zähler unterschreitet den kleinsten
Open circuit		darstellbaren Zählerwert
Extrapolation stall	 Counter overflow 	Zähler überschreitet den höchsten
Status of input A		darstellbaren Zählerwert
Status of input BStatus of input C	 Status of input status 	Status des Error-Signal (typisch vom Encoder
Status of input gate	·	kommend)
Status of extern latch	 Open circuit 	Einer der Kanäle A, B oder C hat einen
Sync error	·	Drahtbruch (einstellbar je Kanal über CoE)
TxPDO State	 Extrapolation stall 	Microinkrement-Wert ungültig (Bei aktivierter
📆 TxPDO Toggle		Microinkrement-Auswertung -> Index
Counter value		0x8000:0A)
✓ Latch value	 Status of Input A, B,C 	Status der Eingänge A, B und C
■ ENC Control compact	 Status of input gate 	Status des Gate-Eingangs
△ ► Control	 Status of extern latch 	Status des Latch-Eingangs
Enable latch C Enable latch extern on positive edge	Sync error	EtherCAT Fehler, siehe EtherCAT System-
Set counter	5,	Dokumentation
Enable latch extern on negative edge	TxPDO State	
Set counter value		Siehe Objektbeschreibung [> 85]
■ WcState	 TxPDO Toggle 	Siehe <u>Objektbeschreibung</u> [▶ 85]
✓ WcState	Counter value	Aktueller Zählerwert des Encoders
InputToggle	Latch value	Zählerwert des Encoders bei steigender
△ ■ InfoData		Flanke am Latch-Eingang
State	ENC Control Compact	Ausgangs-Daten des Encoder-Interfaces.
	Control	
port	Enable latch C	Eingang C wird freigegeben. Bei einer Flanke wird Counter value in Latch value gespeichert.
	 Enable latch extern on positive edge 	Externer Latch Eingang wird freigegeben. Bei einer positiven Flanke wird <i>Counter value</i> in <i>Latch value</i> gespeichert.
	Set counter	Bei positiver Flanke Übernahme von Set Counter value in Counter value
	 Enable latch extern on negative edge 	Externer Latch Eingang wird freigegeben. Bei einer negativen Flanke wird <i>Counter value</i> in <i>Latch value</i> gespeichert.
	Set Counter value	Vorwahlwert für Counter value

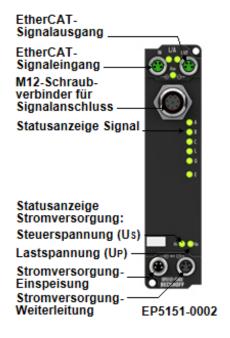
3.4.5 EP5101-2011 - Prozessabbild

TwinCAT zeigt die Daten des EP5101-2011 in einer Baumstruktur an.

ENC Status Compact

LIVO Status Compact	
Status	
Latch C valid	In den Prozessdaten <i>Latch value</i> stehen neue Daten bereit. Reset durch <i>Enable latch C</i>
 Latch extern valid 	In den Prozessdaten <i>Latch value</i> stehen neue Daten bereit. Reset durch <i>Enable latch extern or positive/negative edge</i>
 Set Counter done 	Quittierung zum setzen des Set counter
 Status of input status 	Status des Error-Signal (typisch vom Encoder kommend)
Open circuit	Einer der Kanäle A, B oder C hat einen Drahtbruch (einstellbar je Kanal über CoE)
 Status of Input A, B,C 	Status der Eingänge A, B und C
 Status of input gate 	Status des Gate-Eingangs
 Status of extern latch 	Status des Latch-Eingangs
Sync error	EtherCAT Fehler, siehe <u>EtherCAT System-</u> <u>Dokumentation</u>
 TxPDO State 	Siehe Objektbeschreibung
 TxPDO Toggle 	Siehe Objektbeschreibung
Counter value	Aktueller Zählerwert des Encoders
Latch value	Zählerwert des Encoders bei steigender Flanke am Latch-Eingang
ENC Control Compact	Ausgangs-Daten des Encoder-Interfaces.

ENC Control Compact Ausgangs-Daten des Encoder-Interfaces.


Control


Eingang C wird freigegeben. Bei einer Flanke wird Counter value in Latch value gespeichert.
Externer Latch Eingang wird freigegeben. Bei einer positiven Flanke wird <i>Counter value</i> in <i>Latch value</i> gespeichert.
Bei positiver Flanke Übernahme von Set Counter value in Counter value
Externer Latch Eingang wird freigegeben. Bei einer negativen Flanke wird <i>Counter value</i> in <i>Latch value</i> gespeichert.
Vorwahlwert für Counter value

3.5 EP5151-0002

3.5.1 EP5151-0002 - Einführung

Steckerbelegung

1-Kanal-Encoder-Interface, inkremental, 24 V_{DC} HTL, 100 kHz, M12

Die EtherCAT Box EP5151-0002 ist ein Interface zum direkten Anschluss von 24-V-DC-Single-Ended-Signalen. Zwei zusätzliche 24-V-Digital-Eingänge stehen zum Speichern, Sperren und Setzen des Zählerstandes zur Verfügung. Über den Statuseingang kann der Störmeldeausgang eines Encoders angeschlossen und ausgewertet werden. Die 24-V-Versorgung des Gebers erfolgt direkt über die M12-Buchse der EP5151-0002.

Besondere Eigenschaften:

- · Zähler speichern, sperren, setzen
- · integrierte Frequenz- und Periodenmessung
- · optional als 5-V-Zähler einsetzbar
- · Mikroinkremente
- · synchrones Einlesen des Positionswertes über Distributed Clocks
- · Zeitstempel auf die letzte registrierte Inkrementalflanke

Zusätzlich ermöglicht die EP5151-0002 die Messung einer Periode oder Frequenz. Durch die optionale interpolierende Mikroinkremente-Funktionalität kann die EP5151-0002 bei dynamischen Achsen noch genauere Achspositionen liefern. Zudem unterstützt sie über die hochpräzisen EtherCAT-Distributed-Clocks (DC) das synchrone Einlesen des Geberwertes zusammen mit anderen Eingangsdaten im EtherCAT-System. Zusätzlich steht ein Zeitstempel für die letzte registrierte Inkrementalflanke zur Verfügung. Die Verwendung von Encoderprofilen erlaubt eine einfache und schnelle Verknüpfung der Prozessdaten zur Motion-Control-Anwendung.

Quick Links

Technische Daten [▶ 28]
Prozessabbild [▶ 30]
Signalanschluss [▶ 41]
Inbetriebnahme [▶ 54]

3.5.2 **EP5151-0002 - Technische Daten**

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT	
Anschluss	2 x M8-Buchse, 4-polig, A-kodiert, geschirmt
Potenzialtrennung	500 V
Distributed Clocks	ja

Versorgungsspannungen	
Anschluss	Eingang: M8-Stecker, 4-polig, A-kodiert
	Weiterleitung: M8-Buchse, 4-polig, A-kodiert
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)
U _S Summenstrom: I _{S,sum}	max. 4 A
Stromaufnahme aus U _s	130 mA
	+ Sensorversorgung
U _P Nennspannung	24 V _{DC} (-15 % / +20 %)
U _P Summenstrom: I _{P,sum}	max. 4 A
Stromaufnahme aus U _P	Keine. U _P wird nur weitergeleitet.

Inkremental-Encoder		
Anzahl Encoder-Eingänge	1	
Anschluss	M12-Buchse, 8-polig [▶ 41]	
Signale	A, B, C (24 V _{DC} , single-ended), Latch, Gate	
	HTL-Signalpegel (Push-Pull) [> 74]	
Sensorversorgung "ENC_Supply"	24 V _{DC} aus U _s	
Zähler	32 Bit oder 16 Bit, binär	
Grenzfrequenz	400.000 Inkremente/s (bei 4-fach-Auswertung), entspricht 100 kHz	
Quadraturdecoder	Vierfachauswertung	
Nullimpuls-Latch	16 Bit	
Befehle	Lesen, Setzen, Aktivieren	

Gehäusedaten	
Abmessungen B x H x T	30 mm x 126 mm x 26,5 mm (ohne Steckverbinder)
Gewicht	ca. 165 g
Einbaulage	beliebig
Material	PA6 (Polyamid)

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	0 55 °C	
Umgebungstemperatur bei Lagerung	-25 +85 °C	
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27	
	Zusätzliche Prüfungen [▶ 29]	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	

Zulassungen / Kennzeichnungen	
Zulassungen / Kennzeichnungen *)	CE, <u>cURus [▶ 42]</u>

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Zusätzliche Prüfungen

Die Geräte sind folgenden zusätzlichen Prüfungen unterzogen worden:

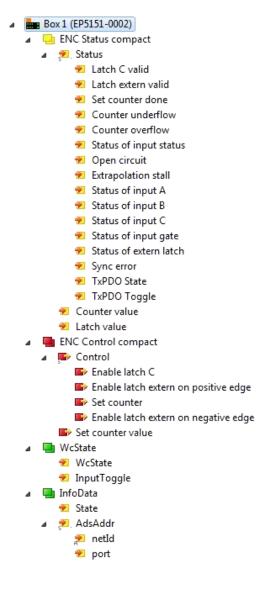
Prüfung	Erläuterung	
Vibration	10 Frequenzdurchläufe, in 3 Achsen	
	5 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude	
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude	
Schocken 1000 Schocks je Richtung, in 3 Achsen 35 g, 11 ms		

3.5.3 EP5151-0002 - Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

- 1x EtherCAT Box EP5151-0002
- 2x Schutzkappe für EtherCAT-Buchse, M8, grün (vormontiert)
- 1x Schutzkappe f
 ür Versorgungsspannungs-Eingang, M8, transparent (vormontiert)
- 1x Schutzkappe für Versorgungsspannungs-Ausgang, M8, schwarz (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz



Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u.U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.5.4 EP5151-0002 - Prozessabbild

ENC Status Compact	
Status	
Latch C valid	In den Prozessdaten <i>Latch value</i> stehen neue Daten bereit. Reset durch <i>Enable latch C</i>
Latch extern valid	In den Prozessdaten <i>Latch value</i> stehen neue Daten bereit. Reset durch <i>Enable latch extern</i> on positive/negative edge
 Set Counter done 	Quittierung zum setzen des Set counter
Counter underflow	Zähler unterschreitet den kleinsten darstellbaren Zählerwert
Counter overflow	Zähler überschreitet den höchsten darstellbaren Zählerwert
Status of input status	Status des Error-Signal (typisch vom Encoder kommend)
Open circuit	Einer der Kanäle A, B oder C hat einen Drahtbruch (einstellbar je Kanal über CoE)
Extrapolation stall	Microinkrement-Wert ungültig (Bei aktivierter Microinkrement-Auswertung -> Index 0x8000:0A)
 Status of Input A, B,C 	Status der Eingänge A, B und C
 Status of input gate 	Status des Gate-Eingangs
 Status of extern latch 	Status des Latch-Eingangs
Sync error	EtherCAT Fehler, siehe <u>EtherCAT System-</u> <u>Dokumentation</u>
 TxPDO State 	Siehe Objektbeschreibung [▶ 113]
	Siene <u>Objektbeschreibung [F_113]</u>
 TxPDO Toggle 	Siehe Objektbeschreibung [113]
 TxPDO Toggle Counter value 	
	Siehe <u>Objektbeschreibung</u> [▶ 113]
Counter value	Siehe <u>Objektbeschreibung</u> [▶ 113] Aktueller Zählerwert des Encoders Zählerwert des Encoders bei steigender Flanke
Counter value Latch value	Siehe <u>Objektbeschreibung</u> [▶ 113] Aktueller Zählerwert des Encoders Zählerwert des Encoders bei steigender Flanke am Latch-Eingang
Counter value Latch value ENC Control Compact	Siehe <u>Objektbeschreibung</u> [▶ 113] Aktueller Zählerwert des Encoders Zählerwert des Encoders bei steigender Flanke am Latch-Eingang
Counter value Latch value ENC Control Compact Control	Siehe Objektbeschreibung [▶ 113] Aktueller Zählerwert des Encoders Zählerwert des Encoders bei steigender Flanke am Latch-Eingang Ausgangs-Daten des Encoder-Interfaces. Eingang C wird freigegeben. Bei einer Flanke

· Enable latch extern

on negative edge

Set Counter value

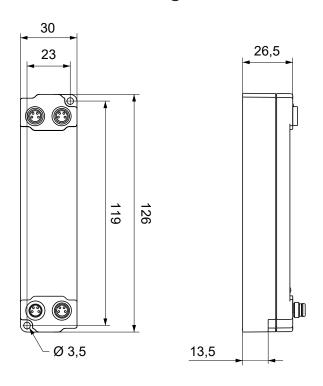
Version: 2.10

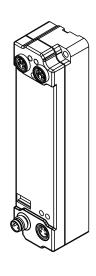
Counter value in Counter value

Vorwahlwert für Counter value

Latch value gespeichert.

Externer Latch Eingang wird freigegeben. Bei


einer negativen Flanke wird Counter value in



4 Montage und Anschluss

4.1 Montage

4.1.1 Abmessungen

Alle Maße sind in Millimeter angegeben. Die Zeichnung ist nicht maßstabsgetreu.

Gehäuseeigenschaften

Gehäusematerial	PA6 (Polyamid)	
Vergussmasse	Polyurethan	
Montage	zwei Befestigungslöcher Ø 3,5 mm für M3	
Metallteile	Messing, vernickelt	
Kontakte	CuZn, vergoldet	
Stromweiterleitung	max. 4 A	
Einbaulage	beliebig	
Schutzart	im verschraubten Zustand IP65, IP66, IP67 (gemäß EN 60529)	
Abmessungen (H x B x T)	ca. 126 x 30 x 26,5 mm (ohne Steckverbinder)	

4.1.2 Befestigung

HINWEIS

Verschmutzung bei der Montage

Verschmutzte Steckverbinder können zu Fehlfunktion führen. Die Schutzart IP67 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind.

• Schützen Sie die Steckverbinder bei der Montage vor Verschmutzung.

Montieren Sie das Modul mit zwei M3-Schrauben an den Befestigungslöchern in den Ecken des Moduls. Die Befestigungslöcher haben kein Gewinde.

4.1.3 Anzugsdrehmomente für Steckverbinder

Schrauben Sie M8-Steckverbinder mit einem Drehmomentschlüssel fest. (z.B. ZB8801 von Beckhoff) Drehmoment: 0,4 Nm.

4.2 EtherCAT

4.2.1 Steckverbinder

HINWEIS

Verwechselungs-Gefahr: Versorgungsspannungen und EtherCAT

Defekt durch Fehlstecken möglich.

 Beachten Sie die farbliche Codierung der Steckverbinder: schwarz: Versorgungsspannungen

 OAT

grün: EtherCAT

Für den ankommenden und weiterführenden EtherCAT-Anschluss haben EtherCAT-Box-Module zwei grüne M8-Buchsen.

Kontaktbelegung

Abb. 4: M8-Buchse

EtherCAT	M8-Buchse	Aderfarben		
Signal	Kontakt	ZB9010, ZB9020, ZB9030, ZB9032, ZK1090-6292, ZK1090-3xxx-xxxx	ZB9031 und alte Versionen von ZB9030, ZB9032, ZK1090-3xxx- xxxx	TIA-568B
Tx +	1	gelb ¹⁾	orange/weiß	weiß/orange
Tx -	4	orange ¹⁾	orange	orange
Rx +	2	weiß ¹⁾	blau/weiß	weiß/grün
Rx -	3	blau ¹⁾	blau	grün
Shield	Gehäuse	Schirm	Schirm	Schirm

¹⁾ Aderfarben nach EN 61918

Anpassung der Aderfarben für die Leitungen ZB9030, ZB9032 und ZK1090-3xxxx-xxxx

Zur Vereinheitlichung wurden die Aderfarben der Leitungen ZB9030, ZB9032 und ZK1090-3xxx-xxxx auf die Aderfarben der EN61918 umgestellt: gelb, orange, weiß, blau. Es sind also verschiedene Farbkodierungen im Umlauf. Die elektrischen Eigenschaften der Leitungen sind bei der Umstellung der Aderfarben erhalten geblieben.

4.2.2 Status-LEDs

L/A (Link/Act)

Neben jeder EtherCAT-Buchse befindet sich eine grüne LED, die mit "L/A" beschriftet ist. Die LED signalisiert den Kommunikationsstatus der jeweiligen Buchse:

LED	Bedeutung	
aus	keine Verbindung zum angeschlossenen EtherCAT-Gerät	
leuchtet	LINK: Verbindung zum angeschlossenen EtherCAT-Gerät	
blinkt	ACT: Kommunikation mit dem angeschlossenen EtherCAT-Gerät	

Run

Jeder EtherCAT-Slave hat eine grüne LED, die mit "Run" beschriftet ist. Die LED signalisiert den Status des Slaves im EtherCAT-Netzwerk:

LED	Bedeutung	
aus	Slave ist im Status "Init"	
blinkt gleichmäßig	Slave ist im Status "Pre-Operational"	
blinkt vereinzelt	Slave ist im Status "Safe-Operational"	
leuchtet	Slave ist im Status "Operational"	

Beschreibung der Stati von EtherCAT-Slaves

4.2.3 Leitungen

Verwenden Sie zur Verbindung von EtherCAT-Geräten geschirmte Ethernet-Kabel, die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen.

EtherCAT nutzt vier Adern für die Signalübertragung.

Aufgrund der automatischen Leitungserkennung "Auto MDI-X" können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte, als auch gekreuzte Kabel (Cross-Over) verwenden.

Detaillierte Empfehlungen zur Verkabelung von EtherCAT-Geräten

4.3 Versorgungsspannungen

⚠ WARNUNG

Spannungsversorgung aus SELV/PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV/PELV-Stromkreise (Schutzkleinspannung, Sicherheitskleinspannung) nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung (Safety Extra Low Voltage) liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung (Protective Extra Low Voltage) benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

⚠ VORSICHT

UL-Anforderungen beachten

Beachten Sie beim Betrieb unter UL-Bedingungen die Warnhinweise im Kapitel <u>UL-Anforderungen</u>
 [<u>*42</u>].

Die EtherCAT Box hat einen Eingang für zwei Versorgungsspannungen:

Steuerspannung U_S

Die folgenden Teilfunktionen werden aus der Steuerspannung Us versorgt:

- Der Feldbus
- · Die Prozessor-Logik
- typischerweise die Eingänge und die Sensorik, falls die EtherCAT Box Eingänge hat.
- Peripheriespannung U_P

Bei EtherCAT-Box-Modulen mit digitalen Ausgängen werden die digitalen Ausgänge typischerweise aus der Peripheriespannung U_P versorgt. U_P kann separat zugeführt werden. Falls U_P abgeschaltet wird, bleiben die Feldbus-Funktion, die Funktion der Eingänge und die Versorgung der Sensorik erhalten.

Die genaue Zuordnung von U_S und U_P finden Sie in der Pinbelegung der I/O-Anschlüsse.

Weiterleitung der Versorgungsspannungen

Die Power-Anschlüsse IN und OUT sind im Modul gebrückt. Somit können auf einfache Weise die Versorgungsspannungen U_S und U_P von EtherCAT Box zu EtherCAT Box weitergereicht werden.

HINWEIS

Maximalen Strom beachten!

Beachten Sie auch bei der Weiterleitung der Versorgungsspannungen U_s und U_p , dass jeweils der für die Steckverbinder zulässige Strom nicht überschritten wird:

M8-Steckverbinder: max. 4 A 7/8"-Steckverbinder: max 16 A

HINWEIS

Unbeabsichtigte Aufhebung der Potenzialtrennung möglich

In einigen Typen von EtherCAT-Box-Modulen sind die Massepotenziale GND_S und GND_P miteinander verbunden.

• Falls Sie mehrere EtherCAT-Box-Module mit denselben galvanisch getrennten Spannungen versorgen, prüfen Sie, ob eine EtherCAT Box darunter ist, in der die Massepotenziale verbunden sind.

4.3.1 Steckverbinder

HINWEIS

Verwechselungs-Gefahr: Versorgungsspannungen und EtherCAT

Defekt durch Fehlstecken möglich.

• Beachten Sie die farbliche Codierung der Steckverbinder: schwarz: Versorgungsspannungen

grün: EtherCAT

Stecker Buchse
Eingang Weiterleitung

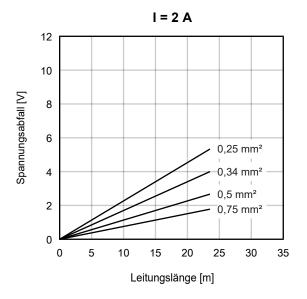
Abb. 5: M8-Steckverbinder

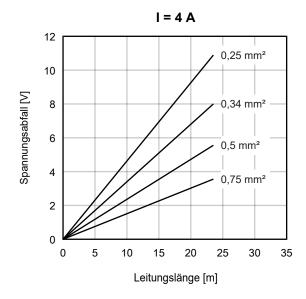
Kontakt	Funktion	Beschreibung	Aderfarbe 1)
1	Us	Steuerspannung	Braun
2	U _P	Peripheriespannung	Weiß
3	GND _s	GND zu U _s	Blau
4	GND _P	GND zu U _P	Schwarz

¹⁾ Die Aderfarben gelten für Leitungen vom Typ: Beckhoff ZK2020-3xxx-xxxx

4.3.2 Status-LEDs

LED	Anzeige	Bedeutung
U _s (Steuerspannung)	aus	Die Versorgungsspannung U _s ist nicht vorhanden.
	leuchtet grün	Die Versorgungsspannung U _s ist vorhanden.
U _P (Peripheriespannung)	aus	Die Versorgungsspannung U _P ist nicht vorhanden.
	leuchtet grün	Die Versorgungsspannung U _P ist vorhanden.

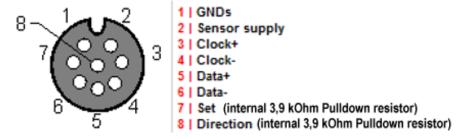



4.3.3 Leitungsverluste

Beachten Sie bei der Planung einer Anlage den Spannungsabfall an der Versorgungs-Zuleitung. Vermeiden Sie, dass der Spannungsabfall so hoch wird, dass die Versorgungsspannungen an der Box die minimale Nennspannung unterschreiten.

Berücksichtigen Sie auch Spannungsschwankungen des Netzteils.

Spannungsabfall an der Versorgungs-Zuleitung


4.4 Signalanschluss und Bedeutung der LEDs

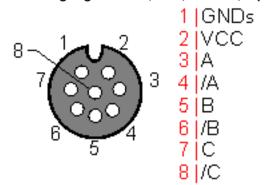
4.4.1 Schirmung

Schirmung

Encoder, analoge Sensoren und Aktoren sollten immer mit geschirmten, paarig verdrillten Leitungen angeschlossen werden.

4.4.2 EP5001-0002 - Signalanschluss

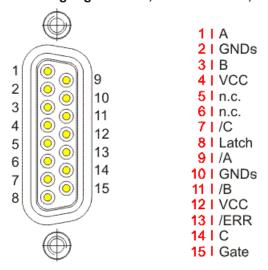
Bedeutung der LEDs

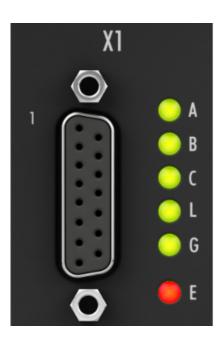


LED	grün	rot
Data	Geberversorgung eingeschaltet	SSI hat keine Spannungsversorgung
	(funktionsfähiger Zustand, nicht kurzgeschlossen)	Drahtbruch auf dem SSI-Dateneingang D+ oder D-
	kurzgeschlossen/	Datenleitungen vertauscht
		Der SSI-Eingang des Moduls liegt auf Low-Pegel, es findet keine Datenübertragung statt.
		Falsche Parametrierung im CoE
		Drahtbruch auf Clock-Leitungen
CLOCK	Keine Funktion	

4.4.3 EP5101-x002 - Signalanschluss

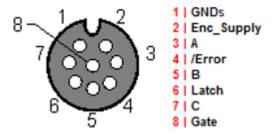
Pinbelegung Encoder, M12, Buchse, 8-polig


Bedeutung der LEDs


Anschluss	LED	Anzeige	Bedeutung	
M12	Α	aus	Eingang A / Spur A low	
		grün	Eingang A / Spur A High	
	В	aus	Eingang B / Spur B low	
		grün	Eingang B / Spur B high	
	С	aus	Eingang C / Spur C low	
		grün	Eingang C / Spur C high	

4.4.4 EP5101-x011 - Signalanschluss

Pinbelegung Encoder, D-Sub-Buchse, 15-polig


Bedeutung der LEDs

Anschluss	LED	Anzeige	Bedeutung			
D-Sub)-Sub A aus		Eingang A / Spur A low			
		grün	Eingang A / Spur A High			
	В	aus	Eingang B / Spur B low			
		grün	Eingang B / Spur B high			
	C aus		Eingang C / Spur C low			
L aus Eingang Latch low grün Eingang Latch Hig G aus Eingang Gate low		grün	Eingang C / Spur C high			
		aus	Eingang Latch low			
		grün	Eingang Latch High			
		aus	Eingang Gate low			
		grün	Eingang Gate high			
	E	aus	Eingang Error low			
		rot	Eingang Error high			

4.4.5 EP5151-0002 - Signalanschluss

Encoder-Anschluss, M12-Buchse, 8-polig

Bedeutung der LEDs

Anschluss	LED	Anzeige	Bedeutung		
M12	A aus		Eingang A / Spur A low		
		grün	Eingang A / Spur A High		
	В	aus	Eingang B / Spur B low		
		grün	Eingang B / Spur B high		
	С		Eingang C / Spur C low		
		grün	Eingang C / Spur C high		
	L	aus	Eingang Latch low		
		grün	Eingang Latch High		
	G	aus	Eingang Gate low		
		grün	Eingang Gate high		
	E	aus	Eingang Error low		
	rot		Eingang Error high		

4.5 UL-Anforderungen

Die Installation der nach UL zertifizierten EtherCAT-Box-Module muss den folgenden Anforderungen entsprechen.

Versorgungsspannung

⚠ VORSICHT

VORSICHT!

Die folgenden genannten Anforderungen gelten für die Versorgung aller so gekennzeichneten EtherCAT-Box-Module.

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nur mit einer Spannung von 24 V_{DC} versorgt werden, die

- von einer isolierten, mit einer Sicherung (entsprechend UL248) von maximal 4 A geschützten Quelle, oder
- von einer Spannungsquelle die NEC class 2 entspricht stammt.
 Eine Spannungsquelle entsprechend NEC class 2 darf nicht seriell oder parallel mit einer anderen NEC class 2 entsprechenden Spannungsquelle verbunden werden!

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nicht mit unbegrenzten Spannungsquellen verbunden werden!

Netzwerke

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nicht mit Telekommunikations-Netzen verbunden werden!

Umgebungstemperatur

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nur in einem Umgebungstemperaturbereich von -25 °C bis +55 °C betrieben werden!

Kennzeichnung für UL

Alle nach UL (Underwriters Laboratories) zertifizierten EtherCAT-Box-Module sind mit der folgenden Markierung gekennzeichnet.

Abb. 6: UL-Markierung

4.6 ATEX-Hinweise

4.6.1 ATEX - Besondere Bedingungen

MARNUNG

Beachten Sie die besonderen Bedingungen für die bestimmungsgemäße Verwendung von EtherCAT-Box-Modulen in explosionsgefährdeten Bereichen – Richtlinie 94/9/EG!

- Die zertifizierten Komponenten sind mit einem <u>Schutzgehäuse BG2000-0000 oder BG2000-0010 [\rightarrow 44]</u> zu errichten, das einen Schutz gegen mechanische Gefahr gewährleistet!
- Wenn die Temperaturen bei Nennbetrieb an den Einführungsstellen der Kabel, Leitungen oder Rohrleitungen höher als 70°C oder an den Aderverzweigungsstellen höher als 80°C ist, so müssen Kabel ausgewählt werden, deren Temperaturdaten den tatsächlich gemessenen Temperaturwerten entsprechen!
- Beachten Sie beim Einsatz von EtherCAT-Box-Modulen in explosionsgefährdeten Bereichen den zulässigen Umgebungstemperaturbereich von 0 bis 55°C!
- Es müssen Maßnahmen zum Schutz gegen Überschreitung der Nennbetriebsspannung durch kurzzeitige Störspannungen um mehr als 40% getroffen werden!
- Die Anschlüsse der zertifizierten Komponenten dürfen nur verbunden oder unterbrochen werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!

Normen

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden durch Übereinstimmung mit den folgenden Normen erfüllt:

EN 60079-0: 2006EN 60079-15: 2005

Kennzeichnung

Die für den explosionsgefährdeten Bereich zertifizierten EtherCAT-Box-Module tragen folgende Kennzeichnung:

II 3 G Ex nA II T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

oder

II 3 G Ex nA nC IIC T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

Batch-Nummer (D-Nummer)

Die EtherCAT-Box-Module tragen eine Batch-Nummer (D-Nummer), die wie folgt aufgebaut ist:

D: KW JJ FF HH

WW - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr

FF - Firmware-Stand

HH - Hardware-Stand

Beispiel mit Batch-Nummer 29 10 02 01:

- 29 Produktionswoche 29
- 10 Produktionsjahr 2010
- 02 Firmware-Stand 02
- 01 Hardware-Stand 01

4.6.2 BG2000 - Schutzgehäuse für EtherCAT Box

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das EtherCAT-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Module beginnen!

ATEX

▲ WARNUNG

Schutzgehäuse montieren!

Um die Einhaltung der <u>besonderen Bedingungen gemäß ATEX [▶ 43]</u> zu erfüllen, muss ein Schutzgehäuse BG2000-0000 oder BG2000-0010 über der EtherCAT Box montiert werden!

Installation

Schieben Sie die Anschlussleitungen für EtherCAT, Spannungsversorgung und die Sensoren/Aktoren durch die Öffnung des Schutzgehäuses.

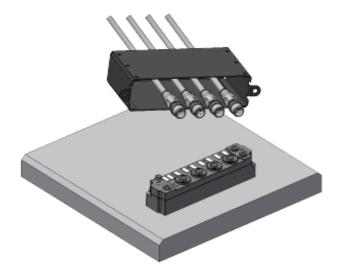


Abb. 7: BG2000 - Anschlussleitungen durchschieben

Schrauben Sie die Anschlussleitungen für die EtherCAT, Spannungsversorgung und die Sensoren/Aktoren an der EtherCAT Box fest.

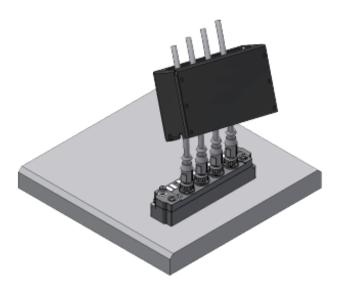


Abb. 8: BG2000 - Anschlussleitungen festschrauben

Montieren Sie das Schutzgehäuse über der EtherCAT Box.

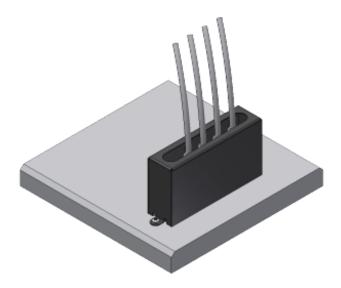


Abb. 9: BG2000 - Schutzgehäuse montieren

4.6.3 ATEX-Dokumentation

Hinweise zum Einsatz von EtherCAT-Box-Modulen (EPxxxx-xxxx) in explosionsgefährdeten Bereichen (ATEX)

Beachten Sie auch die weiterführende Dokumentation Hinweise zum Einsatz von EtherCAT-Box-Modulen (EPxxxx-xxxx) in explosionsgefährdeten Bereichen (ATEX) die Ihnen auf der Website von Beckhoff http://www.beckhoff.de im Bereich Download zur Verfügung steht!

4.7 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

5 Inbetriebnahme/Konfiguration

5.1 Einbinden in ein TwinCAT-Projekt

Die Vorgehensweise zum Einbinden in ein TwinCAT-Projekt ist in dieser <u>Schnellstartanleitung</u> beschrieben.

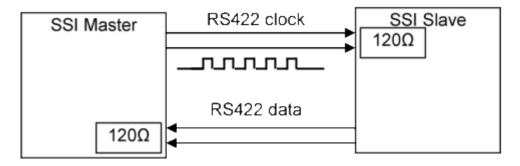
5.2 EP5001-0002 - Parameter und Modi

5.2.1 Grundlagen der SSI-Kommunikation

SSI Grundlagen

Ablauf der SSI-Kommunikation

- Der SSI-Master beginnt auf der Clock-Leitung mit festem Takt in das Schieberegister des SSI-Slave zu takten.
- Dieser "schiebt" auf der Datenleitung in der Regel Daten mit 25 Bit Breite zurück. Mit der ersten fallenden Flanke des Signals am Clock-Eingang sollte ein SSI-Geber seine Position ermitteln ("latchen"), diese wird nun übertragen.
- Nachdem die vorgegeben Anzahl von Bits geschoben wurde, wird das Taktsignal beendet.
- · Nach einer Pause beginnt die Abfrage durch den SSI-Master erneut.


Das letzte Bit der Daten kann ein PowerFail-Bit sein, d. h. der Slave gibt einen Power-Fehler bekannt. Diese Ausgabe ist vom Slave abhängig.

Die Anzahl der Bitwechsel ist gleich der Taktfrequenz, d. h. bei 1 MHz Takt können max. auch 1 MBit/s Daten übertragen werden.

Unterschiedliche SSI-Slaves haben unterschiedliche Kommunikations-Parameter. Die Kommunikations-Parameter des Slaves müssen im SSI-Master eingestellt werden:

- Baudrate (z. B. 500 kBaud)
- Codierung (z. B. Gray-Code)
- · Datenframe-Art, z. B. Multiturn 25 Bit
- · Datenframe Größe, z. B. 25 Bit
- Datenlänge, also wie viele Bits im Datenframe die eigentlichen Positionsdaten sind, z. B. 24 Bit.

Sie finden die Kommunikations-Parameter im Datenblatt des SSI-Slave.

Referenzieren eines SSI Signals

Ein SSI-Geber ist ein Absolutwertgeber, d. h. der Positionswert steht ohne Referenzieren unmittelbar nach dem Einschalten zur Verfügung.

Viele SSI-Geber bieten über einen zusätzlichen digitalen Eingang die Möglichkeit, den Positionswert zu referenzieren bzw. zu nullen. Dieser kann durch den <u>digitalen Ausgang "Set" [▶ 38]</u> gesetzt werden: <u>CoE-Parameter 800D:03 [▶ 82]</u>.

5.2.2 Prozessdaten

Die EP5001-0002 kann sowohl mit 16 Bit Status Daten und einen 32-Bit Zählerwert zur Verfügung.

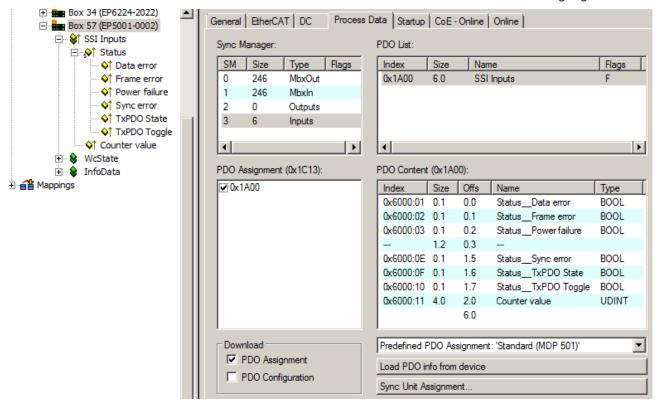


Abb. 10: EP5001-0002

5.2.2.1 EP5001-0002 - PDO-Zuordnung

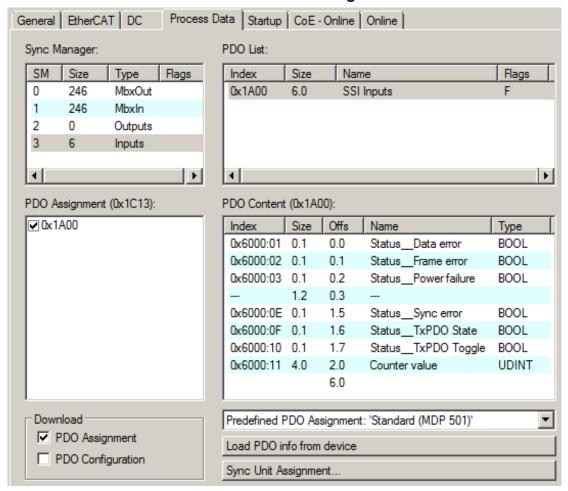


Abb. 11: PDO-Zuordnung und Inhalte am Beispiel EP5001-0002

Die Änderung der Zusammenstellung des PDO 0x1A00 der EP5001-0002 ist nicht möglich.

PDO-Zuordnung

SM3, PDO	SM3, PDO-Zuordnung 0x1C13					
Index	Index ausgeschlossener PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)		
0x1A00 (default)		6.0	SSI Inputs	0x6000:01 [▶ 81] - Data error 0x6000:02 [▶ 81] - Frame error 0x6000:03 [▶ 81] - Power failure 0x6000:0E [▶ 81] - Sync error 0x6000:0F [▶ 81] - TxPDO State 0x6000:10 [▶ 81] - TxPDO Toggle 0x6000:11 [▶ 81] - Counter value (32-Bit)		

5.2.3 DC (Distributed Clocks)

Beschreibt, ob das Modul mit Unterstützung von Distributed Clocks-betrieben wird:

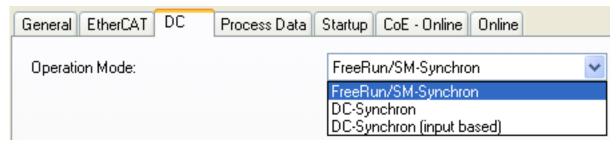


Abb. 12: Distributed Clocks

- **FreeRun**: das Modul arbeitet Frame-getriggert, der zyklische Betrieb wird durch die SyncManager der EtherCAT-Frame-Bearbeitung gestartet.
- **DC-Synchron**: der Zyklische Betrieb in dem Modul wird durch die lokale Distributed Clock in exakten Zeitabständen gestartet. Dabei ist der Startzeitpunkt so gewählt, dass er mit anderen Output-Slaves im EtherCAT-System zusammenfällt.
- **DC-Synchron (input based):** Arbeitsweise wie DC-Synchron, aber der zyklische Startzeitpunkt ist so gewählt, dass er mit anderen Input-Slaves im EtherCAT-System zusammenfällt.

5.2.4 Features CoE

Im CoE (CAN over EtherCAT)-Verzeichnis sind weitere Einstellungen anwählbar.

Parametrierung über das CoE-Verzeichnis (CAN over EtherCAT)

Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise:

- StartUp-Liste führen für den Austauschfall
- Unterscheidung zwischen Online/Offline Dictionary, Vorhandensein aktueller XML-Beschreibung
- CoE-Reload zum Zurücksetzen der Veränderungen

Folgende CoE-Einstellungen aus den Objekten 0x8000 und 0x800D sind möglich und hier in den Default-Einstellungen wiedergegeben:

Die Parameter werden im Kapitel Objektbeschreibung erläutert.

SSI-Settings

- Index 0x8000:01 [▶ 81], Disable Frame Error
 Wenn das Bit auf TRUE gesetzt ist, werden Datenfehler wie falsche Telegrammgröße nicht mehr im Prozessdatum Data error angezeigt.
- Index 0x8000:02 [▶ 81], Enable Power failure bit
 Wenn das Bit auf TRUE gesetzt ist, wird das letzte Bit (LSB) im SSI-Telegramm als PowerFail-Bit des
 SSI-Slave interpretiert und im Prozessdatum angezeigt.
- Index 0x8000:03 [▶ 81], Enable Inhibit time
 Wenn Bit auf TRUE gesetzt, wird mit dem Start der nächsten SSI-Kommunikation mindestens die Min.
 Inhibit time (Index 0x8000:13 [▶ 81]) abgewartet, auch wenn schon früher die nächste
 Startanforderung durch EtherCAT oder Distributed Clocks kam.
- Index 0x8000:04 [▶ 81], Enable test mode Nur für Produktionszwecke.
- Index 0x8000:06 [▶ 81], SSI-encoding
 Einzustellen auf Dual oder Gray-Codierung (üblich).
- Index 0x8000:09 [▶81], SSI-baudrate
 Einzustellen auf 125, 250, 500 kBaud (default) oder 1 MBaud.
- Index 0x8000:0F [▶ 81], SSI-frame type 25, 13 oder variable Bitbreite (25 default).
- Index 0x8000:11 [> 81], SSI-frame size Gesamtumfang der Daten inkl. PowerFail-Bit.
- Index 0x8000:12 [▶ 81], SSI-data length Umfang der Daten exkl. PowerFail-Bit.
- Index 0x8000:13 [▶ 81], Min. Inhibit time [μs] Siehe Index 0x8000:03 [▶ 81].

SSI Advanced Settings

- Index 0x800D:01 [▶ 82], Encoder power supply on Schaltet die 24 V Versorgungsspannung
- Index 0x800D:02 [▶82], Encoder direction pin on Schaltet die 24 V am Direction pin
- Index 0x800D:03 [▶ 82], Encoder reset pin on Schaltet die 24 V am Reset pin

Der Gesamtumfang der Daten hängt vom eingesetzten Encoder ab. Ebenso ist es typenspezifisch, ob ein PowerFail-Bit oder ein anderes Zusatzbit unterstützt wird. Der Zählerstand in *Counter Value* Index <u>0x6000:11</u> [\(\bigvere \text{81}\)] wird anhand des im Objekt *SSI-data length* Index <u>0x8000:12</u> [\(\bigvere \text{81}\)] eingetragenen Wertes bestimmt. Im Folgenden sind einige Beispielkonfigurationen dargestellt:

Spezif	Spezifikation des Encoders		Einstellungen im C	Einstellungen im CoE der Box					
ST	МТ	Error Bit	0x8000:0F SSI-fra- me type	0x8000:11 SSI-fra- me size	0x8000:12 SSI-data length	0x8000:02 Enable power failure bit			
13	0	0	1: Single-turn analysis is active	13	13	0: Power failure bit is not active			
12	12	1	0: Multi-turn analysis is active	25	24	1: Power failure bit is active			
12	12	0	2: Variable analysis is active	24	24	0: Power failure bit is not active			
12	13	0	2: Variable analysis is active	25	25	0: Power failure bit is not active			
16	16	0	2: Variable analysis is active	32	32	0: Power failure bit is not active			
16	0	0	2: Variable analysis is active	16	16	0: Power failure bit is not active			
13	16	1	2: Variable analysis is active	30	29	1: Power failure bit is active			
12	12	2	2: Variable analysis is active	26*	26*	0: Power failure bit is not active			

^{*)} Analyse der Daten und Aufteilung in Position und Zusatzbits muss in der SPS erfolgen.

Bietet der Encoder mehr als 1 Zusatzbit, so kann dies durch geeignete Konfiguration der Objekte 0x8000:11 *SSI-frame size* und 0x8000 *SSI-data length* erfolgen. Hierbei ist die maximal Größe von 32 Bit zu beachten. Haben die Parameter die gleiche Größe, so werden im *Counter Value* Index 0x6000:11 [▶ 81] nicht nur die Position, sondern auch Zusatzbits mit angezeigt. Die Analyse der Daten und Aufteilung in Position und Zusatzbits muss in der SPS erfolgen.

Wurden die Einstellungen im CoE nicht korrekt vorgenommen, oder besteht ein Fehler bei den Eingängen, so wird dies über die Statusbits angezeigt

Data Error (Index 0x6000:01 [> 81])	Frame error (Index <u>0x6000:02</u> [<u>> 81]</u>)	Mögliche Fehlerart
TRUE	FALSE	Fehler am SSI-Eingang: - SSI hat keine Spannungsversorgung - Drahtbruch auf einer der SSI-Leitungen Wenn keine Datenübertragung stattfindet, liegt der SSI-Eingang auf Low-Pegel.
FALSE	TRUE	Es liegt ein falscher Datenrahmen vor, der Datenrahmen wurde nicht mit Null abgeschlossen evtl Drahtbruch auf Clock-Leitungen - Falsche Parametrierung im CoE
TRUE	TRUE	- Drahtbruch auf den SSI-Dateneingänge D+ oder D Datenleitungen vertauscht
FALSE	FALSE	Sind Bits im Counter Value, trotz korrekter CoE Parametrierung, verschoben, so kann es mit einem Vertauschen der Clock-Leitungen zusammen hängen

5.3 EP51x1-x0xx - Parameter und Modi

5.3.1 Grundlagen zur Funktion

Die Box erfasst an Kanal A und B die um 90° phasenverschobenen digitalen Ausgangssignale eines Inkremental-Encoders. Der Nullimpuls wird an Kanal C erfasst. Diese Signale werden mit Hilfe des Quadraturdecoders und des 32 Bit Zählers in einen Positionswert mit vierfach - Auswertung gewandelt. Die Latch- und Reset- Funktionalitäten ermöglichen ein exaktes und geschwindigkeitsunabhängiges Referenzieren und Speichern des Zählerstandes.

Inkremental-Encoder teilen eine 360° - Drehung der Encoderachse in einzelne Schritte (Inkremente) auf und kennzeichnen eine volle Umdrehung durch eine Sondermarke (Nullimpuls).

Die Phasenlage zwischen den Signalen an Kanal A und Kanal B gibt die Zählrichtung vor.

Vorwärts: Signal an Kanal A ist 90 ° voreilend gegenüber Kanal B Rückwärts: Signal an Kanal A ist 90 ° nacheilend gegenüber Kanal B.

Bei einfach - Auswertung werden die steigenden Flanken an Kanal A gezählt.

Bei vierfach - Auswertung werden die steigenden und fallenden Flanken an Kanal A und Kanal B gezählt.

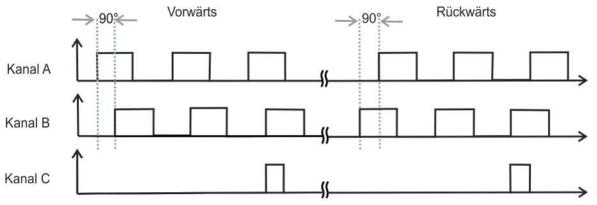


Abb. 13: Quadraturdecoder

Während Absolutwertencoder direkt nach dem Einschalten einen absoluten und über den kompletten Verfahrweg eindeutigen Positionswert liefern, muss bei Inkremental-Encodern nach dem Einschalten eine Referenzfahrt (Homing) durchgeführt werden, um eine eindeutige Position ermitteln zu können. Das Referenzieren kann z. B. mit Hilfe von Referenznocken oder über den Nullimpuls des Gebers vorgenommen werden.

5.3.2 Prozessdaten

16 oder 32 Bit Prozessdaten

Die Box kann sowohl mit 16 Bit Prozessdaten (default), als auch mit 32 Bit Prozessdaten betrieben werden. Diese Einstellung erfolgt über das *Predefined PDO Assignment* im Tabellenreiter *Process Data*.

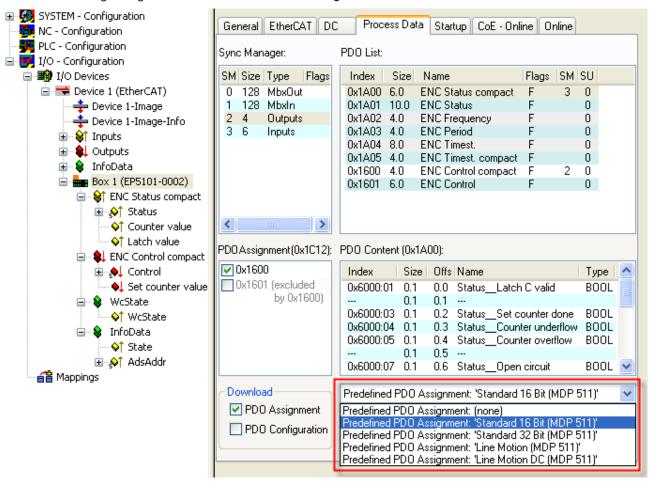


Abb. 14: 16 oder 32 Bit Prozessdaten

Haupt-PDO

Auswahl der Basis-Prozessdaten

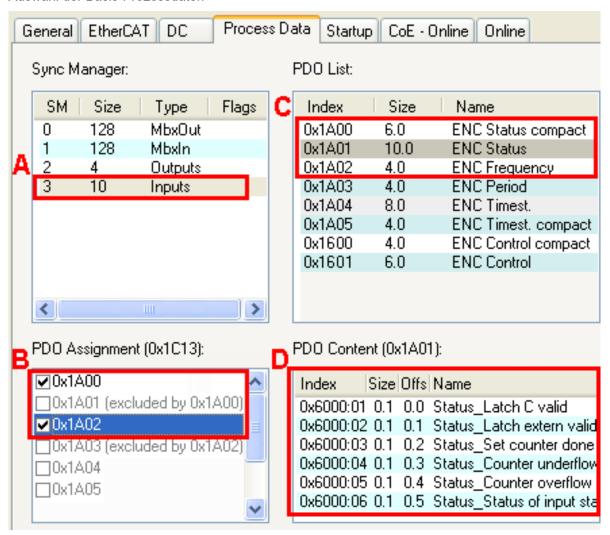


Abb. 15: Haupt-PDO Beispiel

A: Anwahl der Datenrichtung: Input oder Output C: Erläuterungen zu den PDO

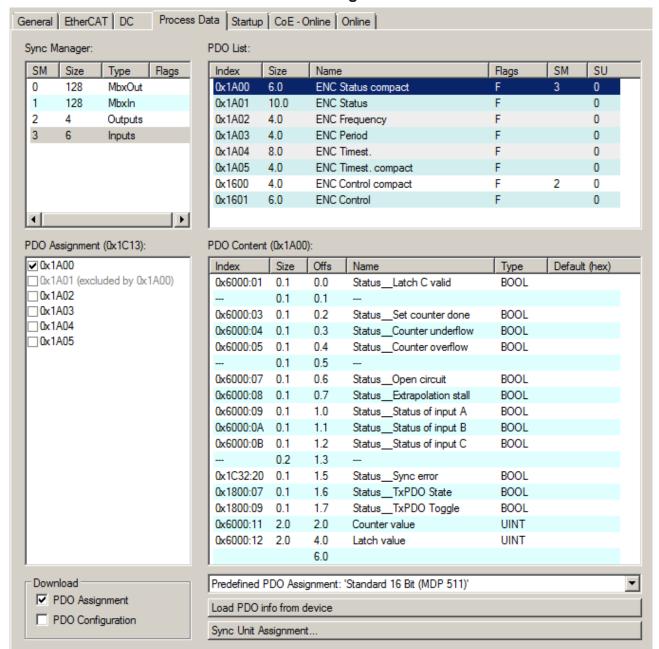
B: Auswahl (optionaler) PDO (Prozessdatenobjekte) D: Inhalte der PDO

• **compact**: die Prozessdaten können mit 16 Bit Umfang als *compact* oder mit 32 Bit Umfang dargestellt werden.

Optionale PDO

Zum Haupt-PDO optional wählbare PDO:

- PDO 1 (0x1A02 oder 0x1A03): als optionales PDO 1 ist entweder die Frequenz oder die Periode anwählbar.
- PDO 2 (0x1A04 oder 0x1A05): In einem der DC-Modi ist ein 32 Bit oder 64 Bit großer Timestamp zuwählbar. Der Timestamp gibt die Uhrzeit der letzten registrierten Inkrementflanke, basierend auf dem Distributed Clocks System an.


Zuordnung und Inhalte der PDOs

Zuordnung und Inhalte der PDOs sind bei den Modulen teilweise unterschiedlich. Entnehmen Sie Inhalte und Zuordnung der PDOs dem

- TwinCAT System Manager im Karteireiter Prozess Daten oder dem
- · Kapitel Zuordnung der PDOs der betreffenden Box.

5.3.2.1 EP5101-x002 - PDO-Zuordnung

PDO-Zuordnung

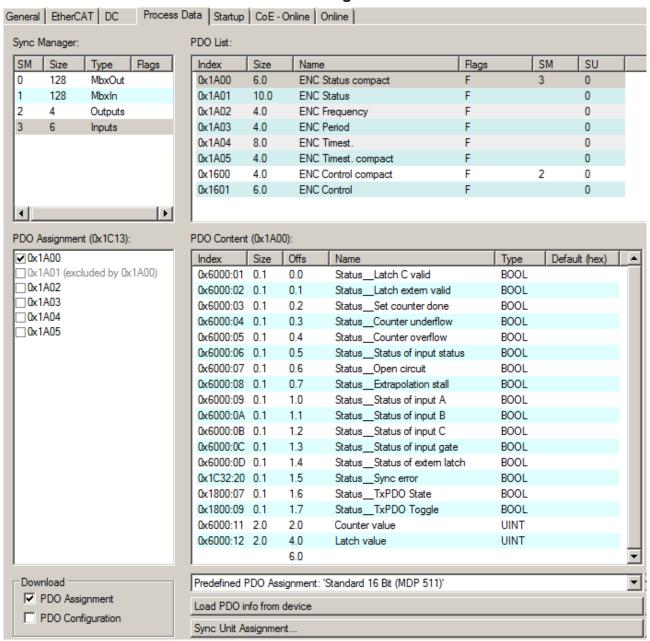
Zur Konfiguration der Prozessdaten markieren Sie im oberen linken Feld *Sync Manager* (siehe Abb.oben) den gewünschten Sync Manager (editierbar sind hier SM 2 + SM 3). Im Feld darunter *PDO Assignment* können dann die diesem Sync Manager zugeordneten Prozessdaten an- oder abschaltet werden. Ein Neustart des EtherCAT-Systems oder Neuladen der Konfiguration im Config-Modus (F4) bewirkt einen Neustart der EtherCAT-Kommunikation und die Prozessdaten werden von der Box übertragen.

SM2, PDO	SM2, PDO-Zuordnung 0x1C12				
Index	Index ausgeschlossener PDOs	Größe (Byte.Bit)		PDO Inhalt (Index - Name)	
0x1600 (default)	0x1601	4.0		0x7000:01 [▶ 86] - Enable Latch C 0x7000:03 [▶ 86] - Set counter 0x7000:11 [▶ 86] - Set counter value (16-bit)	
0x1601	0x1600	6.0		0x7000:01 [▶ 86] - Enable Latch C 0x7000:03 [▶ 86] - Set counter 0x7000:11 [▶ 86] - Set counter value (32-bit)	

SM3, PDC	SM3, PDO-Zuordnung 0x1C13						
Index	Index ausgeschlosse- ner PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)			
0x1A00 (default)	0x1A01	6.0	ENC Status compact	0x6000:01 [▶ 85] - Latch C valid 0x6000:03 [▶ 85] - Set counter done 0x6000:04 [▶ 85] - Counter underflow 0x6000:05 [▶ 85] - Counter overflow 0x6000:07 [▶ 85] - Open circuit 0x6000:08 [▶ 85] - Extrapolation stall 0x6000:09 [▶ 85] - Status of input A 0x6000:0A [▶ 85] - Status of input B 0x6000:0B [▶ 85] - Status of input C 0x1C32:20 [▶ 94] - Sync error 0x1800:07 [▶ 88] - TxPDO State 0x1800:09 [▶ 88] - TxPDO Toggle 0x6000:11 [▶ 85] - Counter value (16-Bit) 0x6000:12 [▶ 85] - Latch value (16-Bit)			
0x1A01	0x1A00	10.0	ENC Status	0x6000:01 [▶ 85] - Latch C valid 0x6000:03 [▶ 85] - Set counter done 0x6000:04 [▶ 85] - Counter underflow 0x6000:05 [▶ 85] - Counter overflow 0x6000:07 [▶ 85] - Open circuit 0x6000:08 [▶ 85] - Extrapolation stall 0x6000:09 [▶ 85] - Status of input A 0x6000:0A [▶ 85] - Status of input B 0x6000:0B [▶ 85] - Status of input C 0x1C32:20 [▶ 94] - Sync error 0x1800:07 [▶ 88] - TxPDO State 0x1800:09 [▶ 88] - TxPDO Toggle 0x6000:11 [▶ 85] - Counter value (32-Bit) 0x6000:12 [▶ 85] - Latch value (32-Bit)			
0x1A02	0x1A03	4.0	ENC Frequency	0x6000:13 [▶ 85] - Frequency value			
0x1A03	0x1A02	4.0	ENC Period	0x6000:14 [▶ 85] - Period value			
0x1A04	0x1A05	8.0	ENC Timest.	0x6000:16 [▶ 85] - Timestamp (64-Bit)			
0x1A05	0x1A04	4.0	ENC Timest. compact	0x6000:16 [▶ 85] - Timestamp compact (32-Bit)			

PDO-Zuordnung

Zur Konfiguration der Prozessdaten markieren Sie im oberen linken Feld *Sync Manager* (siehe Abb.oben) den gewünschten Sync Manager (editierbar sind hier SM 2 + SM 3). Im Feld darunter *PDO Assignment* können dann die diesem Sync Manager zugeordneten Prozessdaten an- oder abschaltet werden. Ein Neustart des EtherCAT-Systems oder Neuladen der Konfiguration im Config-Modus (F4) bewirkt einen Neustart der EtherCAT-Kommunikation und die Prozessdaten werden von der Box übertragen.


SM2, PDC	SM2, PDO-Zuordnung 0x1C12				
Index	Index ausgeschlosse- ner PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)	
0x1600 (default)	0x1601	4.0	ENC Control compact	0x7000:01 [▶ 114] - Enable Latch C 0x7000:02 [▶ 114] - Enable Latch extern on positive edge 0x7000:03 [▶ 114] - Set counter 0x7000:04 [▶ 114] - Enable Latch extern on negative edge 0x7000:11 [▶ 114] - Set counter value (16-bit)	
0x1601	0x1600	6.0	ENC Control	0x7000:01 [▶ 114] - Enable Latch C 0x7000:02 [▶ 114] - Enable Latch extern on positive edge 0x7000:03 [▶ 114] - Set counter 0x7000:04 [▶ 114] - Enable Latch extern on negative edge 0x7000:11 [▶ 114] - Set counter value (32-bit)	

SM3, PDC	SM3, PDO-Zuordnung 0x1C13				
Index	Index ausgeschlossener PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)	
0x1A00 (default)	0x1A01	6.0	ENC Status compact	0x6000:01 [▶ 113] - Latch C valid 0x6000:02 [▶ 113] - Latch extern valid 0x6000:04 [▶ 113] - Set counter done 0x6000:05 [▶ 113] - Counter underflow 0x6000:06 [▶ 113] - Status of input status 0x6000:07 [▶ 113] - Open circuit 0x6000:08 [▶ 113] - Extrapolation stall 0x6000:09 [▶ 113] - Status of input A 0x6000:0A [▶ 113] - Status of input B 0x6000:0C [▶ 113] - Status of input gate 0x6000:0D [▶ 113] - Status of extern latch 0x1C32:20 [▶ 120] - Sync error 0x1800:07 [▶ 116] - TxPDO State 0x1800:01 [▶ 113] - Counter value (16-Bit) 0x6000:12 [▶ 113] - Latch value (16-Bit)	
0x1A01	0x1A00	10.0	ENC Status	0x6000:01 [▶ 113] - Latch C valid 0x6000:02 [▶ 113] - Latch extern valid 0x6000:03 [▶ 113] - Set counter done 0x6000:04 [▶ 113] - Counter underflow 0x6000:05 [▶ 113] - Counter overflow 0x6000:06 [▶ 113] - Status of input status 0x6000:07 [▶ 113] - Open circuit 0x6000:08 [▶ 113] - Extrapolation stall 0x6000:09 [▶ 113] - Status of input A 0x6000:08 [▶ 113] - Status of input B 0x6000:0C [▶ 113] - Status of input gate 0x6000:0D [▶ 113] - Status of extern latch 0x1C32:20 [▶ 120] - Sync error 0x1800:07 [▶ 116] - TxPDO State 0x1800:09 [▶ 116] - TxPDO Toggle 0x6000:11 [▶ 113] - Latch value (32-Bit)	
0x1A02	0x1A03	4.0	ENC Frequency		
0x1A03	0x1A02	4.0	ENC Period	0x6000:14 [▶ 113] - Period value	
0x1A04	0x1A05	8.0	ENC Timest.	0x6000:16 [▶ 113] - Timestamp (64-Bit)	
0x1A05	0x1A04	4.0	ENC Timest. compact	0x6000:16 [▶ 113] - Timestamp compact (32-Bit)	

5.3.2.2 EP5101-0011 - PDO-Zuordnung

PDO-Zuordnung

Zur Konfiguration der Prozessdaten markieren Sie im oberen linken Feld *Sync Manager* (siehe Abb.oben) den gewünschten Sync Manager (editierbar sind hier SM 2 + SM 3). Im Feld darunter *PDO Assignment* können dann die diesem Sync Manager zugeordneten Prozessdaten an- oder abschaltet werden. Ein Neustart des EtherCAT-Systems oder Neuladen der Konfiguration im Config-Modus (F4) bewirkt einen Neustart der EtherCAT-Kommunikation und die Prozessdaten werden von der Box übertragen.

SM2, PDO	SM2, PDO-Zuordnung 0x1C12				
Index	Index ausgeschlossener PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)	
0x1600 (default)	0x1601	4.0	ENC Control compact	0x7000:01 [▶ 101] - Enable Latch C 0x7000:02 [▶ 101] - Enable Latch extern on positive edge 0x7000:03 [▶ 101] - Set counter 0x7000:04 [▶ 101] - Enable Latch extern on negative edge 0x7000:11 [▶ 101] - Set counter value (16-bit)	
0x1601	0x1600	6.0	ENC Control	0x7000:01 [▶ 101] - Enable Latch C 0x7000:02 [▶ 101] - Enable Latch extern on positive edge 0x7000:03 [▶ 101] - Set counter 0x7000:04 [▶ 101] - Enable Latch extern on negative edge 0x7000:11 [▶ 101] - Set counter value (32-bit)	

SM3, PDO	SM3, PDO-Zuordnung 0x1C13				
Index	Index ausgeschlosse- ner PDOs	Größe (Byte.Bit)	Name	PDO Inhalt	
0x1A00 (default)	0x1A01	6.0	ENC Status compact	\(\text{\substack} \) \(\text{\substack}	
0x1A01	0x1A00	10.0	ENC Status	0x6000:01 [▶ 100] - Latch C valid 0x6000:02 [▶ 100] - Latch extern valid 0x6000:03 [▶ 100] - Set counter done 0x6000:04 [▶ 100] - Counter underflow 0x6000:05 [▶ 100] - Counter overflow 0x6000:06 [▶ 100] - Status of input status 0x6000:07 [▶ 100] - Open circuit 0x6000:08 [▶ 100] - Extrapolation stall 0x6000:09 [▶ 100] - Status of input A 0x6000:0A [▶ 100] - Status of input B 0x6000:0C [▶ 100] - Status of input gate 0x6000:0D [▶ 100] - Status of extern latch 0x1C32:20 [▶ 107] - Sync error 0x1800:07 [▶ 103] - TxPDO State 0x1800:09 [▶ 103] - TxPDO Toggle 0x6000:11 [▶ 100] - Latch value (32-Bit)	
0x1A02	0x1A03	4.0	ENC Frequency	0x6000:13 [▶_100] - Frequency value	
0x1A03	0x1A02	4.0	ENC Period	0x6000:14 [▶_100] - Period value	
0x1A04	0x1A05	8.0	ENC Timest.	0x6000:16 [▶ 100] - Timestamp (64-Bit)	
0x1A05	0x1A04	4.0	ENC Timest. compact	0x6000:16 [▶ 100] - Timestamp compact (32-Bit)	

General EtherCAT DC Process Data | Startup | CoE - Online | Online | Sync Manager: PDO List: Flags Name Flags SM Size SM SU Туре Index Size 0x1A00 10.0 **ENC Status** F 128 MbxOut 0 128 MbxIn 0x1A01 6.0 **ENC Status compact** 0 1 2 Outputs 0x1A02 4.0 **ENC Period** F 0 F 6 4.0 0 3 Inputs 0x1A03 **ENC Frequency** 0x1A04 8.0 ENC Timest. F 0 0x1A05 4.0 ENC Timest, compact F 0 F 0x1600 6.0 ENC Control 0 0x1601 4.0 **ENC Control compact** F PDO Assignment (0x1C13): PDO Content (0x1A01): 0x1A00 (excluded by 0x1A01) Size Offs Index Name Default (hex) Type **▼** 0x1A01 0x6000:01 0.1 0.0 Status__Latch C valid BOOL 0x1A02 0x6000:02 0.1 0.1 Status Latch extern valid BOOL 0x1A03 0x6000:03 0.1 0.2 Status_Set counter done BOOL 0x1A04 0.2 0.3 0x1A05 0x6000:06 0.1 0.5 Status Status of input status BOOL 0x6000:07 0.1 0.6 Status Open circuit BOOL 0.1 0.7 Status_Status of input A 0x6000:09 0.1 1.0 BOOL 0x6000:0A 0.1 1.1 Status_Status of input B BOOL 0x6000:0B 0.1 Status_Status of input C BOOL 1.2 0x6000:0C 0.1 1.3 Status_Status of input gate BOOL 0x6000:0D 0.1 Status Status of extern latch 1.4 BOOL 0x6000:0E 0.1 Status_Sync error BOOL 15 Status_TxPDO State 0x6000:0F 0.1 BOOL 1.6 0x6000:10 0.1 1.7 Status_TxPDO Toggle BOOL 0x6000:11 2.0 2.0 Counter value UINT 0x6000:12 2.0 Latch value UINT 4.0 6.0 Download Predefined PDO Assignment: 'Standard 16 Bit (MDP 511)' ▼ PDO Assignment

5.3.2.3 EP5101-2011 - PDO-Zuordnung

Abb. 16: PDO-Zuordnung und Inhalte EP5101-2011

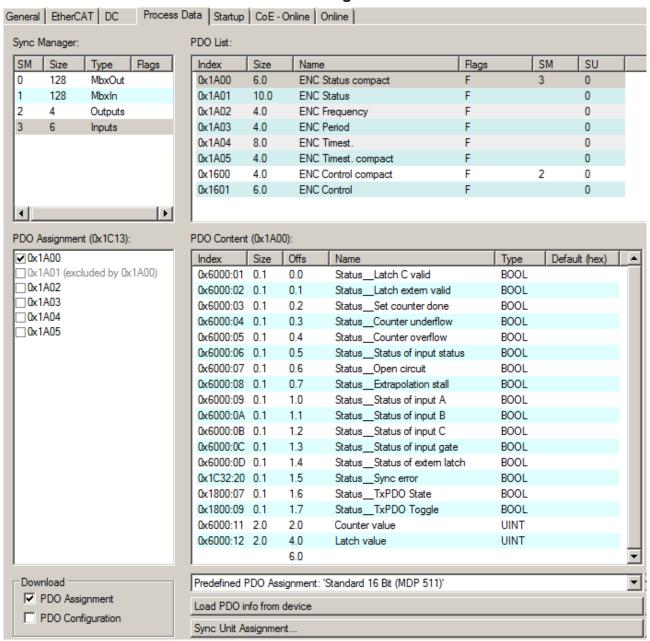
PDO-Zuordnung

PDO Configuration

Zur Konfiguration der Prozessdaten markieren Sie im oberen linken Feld Sync Manager (siehe Abb.oben) den gewünschten Sync Manager (editierbar sind hier SM 2 + SM 3). Im Feld darunter PDO Assignment können dann die diesem Sync Manager zugeordneten Prozessdaten an- oder abschaltet werden. Ein Neustart des EtherCAT-Systems oder Neuladen der Konfiguration im Config-Modus (F4) bewirkt einen Neustart der EtherCAT-Kommunikation und die Prozessdaten werden von der Box übertragen.

Load PDO info from device

Sync Unit Assignment..



SM2, PDO-Zuordnung 0x1C12				
Index	Index ausgeschlosse- ner PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)
0x1600	0x1601	6.0	ENC Control	0x7000:01 - Enable Latch C 0x7000:02 - Enable Latch extern on positive edge 0x7000:03 - Set counter 0x7000:04 - Enable Latch extern on negative edge 0x7000:11 - Set counter value (32-bit)
0x1601 (default)	0x1600	4.0	ENC Control compact	0x7000:01 - Enable Latch C 0x7000:02 - Enable Latch extern on positive edge 0x7000:03 - Set counter 0x7000:04 - Enable Latch extern on negative edge 0x7000:11 - Set counter value (16-bit)

SM3, PDC	SM3, PDO-Zuordnung 0x1C13				
Index	Index ausgeschlosse- ner PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)	
0x1A00	0x1A01	10.0	ENC Status	0x6000:01 - Latch C valid 0x6000:02 - Latch extern valid 0x6000:03 - Set counter done 0x6000:06 - Status of input status 0x6000:07 - Open circuit 0x6000:09 - Status of input A 0x6000:0A - Status of input B 0x6000:0B - Status of input C 0x6000:0C - Status of input gate 0x6000:0D - Status of extern latch 0x6000:0E - Sync error 0x6000:0F - TxPDO State 0x6000:10 - TxPDO Toggle 0x6000:11 - Counter value (32-Bit) 0x6000:12 - Latch value (32-Bit)	
0x1A01 (default)	0x1A00	6.0	ENC Status compact	0x6000:01 - Latch C valid 0x6000:02 - Latch extern valid 0x6000:03 - Set counter done 0x6000:06 - Status of input status 0x6000:07 - Open circuit 0x6000:09 - Status of input A 0x6000:0A - Status of input B 0x6000:0B - Status of input C 0x6000:0C - Status of input gate 0x6000:0D - Status of extern latch 0x6000:0E - Sync error 0x6000:0F - TxPDO State 0x6000:10 - TxPDO Toggle 0x6000:11 - Counter value (16-Bit) 0x6000:12 - Latch value (16-Bit)	
0x1A02	0x1A03	4.0	ENC Period	0x6000:14 - Period value	
0x1A03	0x1A02	4.0	ENC Frequency	0x6000:13 - Frequency value	
0x1A04	0x1A05	8.0	ENC Timest.	0x6000:16 - Timestamp (64-Bit)	
0x1A05	0x1A04	4.0	ENC Timest. compact	0x6000:16 - Timestamp compact (32-Bit)	

5.3.2.4 EP5151-0002 - PDO-Zuordnung

PDO-Zuordnung

Zur Konfiguration der Prozessdaten markieren Sie im oberen linken Feld *Sync Manager* (siehe Abb.oben) den gewünschten Sync Manager (editierbar sind hier SM 2 + SM 3). Im Feld darunter *PDO Assignment* können dann die diesem Sync Manager zugeordneten Prozessdaten an- oder abschaltet werden. Ein Neustart des EtherCAT-Systems oder Neuladen der Konfiguration im Config-Modus (F4) bewirkt einen Neustart der EtherCAT-Kommunikation und die Prozessdaten werden von der Box übertragen.

SM2, PDO-Zuordnung 0x1C12				
Index	Index ausgeschlossener PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)
0x1600 (default)	0x1601	4.0	ENC Control compact	0x7000:01 [▶ 114] - Enable Latch C 0x7000:02 [▶ 114] - Enable Latch extern on positive edge 0x7000:03 [▶ 114] - Set counter 0x7000:04 [▶ 114] - Enable Latch extern on negative edge 0x7000:11 [▶ 114] - Set counter value (16-bit)
0x1601	0x1600	6.0	ENC Control	0x7000:01 [▶ 114] - Enable Latch C 0x7000:02 [▶ 114] - Enable Latch extern on positive edge 0x7000:03 [▶ 114] - Set counter 0x7000:04 [▶ 114] - Enable Latch extern on negative edge 0x7000:11 [▶ 114] - Set counter value (32-bit)

SM3, PDO-Zuordnung 0x1C13				
Index	Index ausgeschlossener PDOs	Größe (Byte.Bit)	Name	PDO Inhalt (Index - Name)
0x1A00 (default)	0x1A01	6.0	ENC Status compact	0x6000:01 [▶ 113] - Latch C valid 0x6000:02 [▶ 113] - Latch extern valid 0x6000:04 [▶ 113] - Set counter done 0x6000:05 [▶ 113] - Counter underflow 0x6000:06 [▶ 113] - Status of input status 0x6000:07 [▶ 113] - Open circuit 0x6000:08 [▶ 113] - Extrapolation stall 0x6000:09 [▶ 113] - Status of input A 0x6000:08 [▶ 113] - Status of input B 0x6000:08 [▶ 113] - Status of input C 0x6000:00 [▶ 113] - Status of input gate 0x6000:00 [▶ 113] - Status of extern latch 0x1C32:20 [▶ 120] - Sync error 0x1800:07 [▶ 116] - TxPDO State 0x1800:09 [▶ 113] - Counter value (16-Bit) 0x6000:12 [▶ 113] - Latch value (16-Bit)
0x1A01	0x1A00	10.0	ENC Status	0x6000:01 [▶ 113] - Latch C valid 0x6000:02 [▶ 113] - Latch extern valid 0x6000:03 [▶ 113] - Set counter done 0x6000:05 [▶ 113] - Counter underflow 0x6000:05 [▶ 113] - Status of input status 0x6000:07 [▶ 113] - Open circuit 0x6000:08 [▶ 113] - Extrapolation stall 0x6000:09 [▶ 113] - Status of input A 0x6000:0A [▶ 113] - Status of input B 0x6000:0B [▶ 113] - Status of input C 0x6000:0D [▶ 113] - Status of input gate 0x6000:0D [▶ 113] - Status of extern latch 0x1C32:20 [▶ 120] - Sync error 0x1800:07 [▶ 116] - TxPDO State 0x1800:09 [▶ 116] - TxPDO Toggle 0x6000:12 [▶ 113] - Latch value (32-Bit)
0x1A02	0x1A03	4.0	ENC Frequency	0x6000:13 [▶ 113] - Frequency value
0x1A03	0x1A02	4.0	ENC Period	0x6000:14 [▶ 113] - Period value
0x1A04	0x1A05	8.0	ENC Timest.	0x6000:16 [▶_113] - Timestamp (64-Bit)
0x1A05	0x1A04	4.0	ENC Timest. compact	0x6000:16 [▶ 113] - Timestamp compact (32-Bit)

5.3.3 DC (Distributed Clocks)

Beschreibt, ob das Modul mit Unterstützung von Distributed Clocks-betrieben wird:

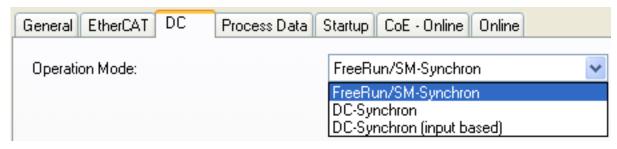


Abb. 17: Distributed Clocks

- **FreeRun**: das Modul arbeitet Frame-getriggert, der zyklische Betrieb wird durch die SyncManager der EtherCAT-Frame-Bearbeitung gestartet.
- **DC-Synchron**: der Zyklische Betrieb in dem Modul wird durch die lokale Distributed Clock in exakten Zeitabständen gestartet. Dabei ist der Startzeitpunkt so gewählt, dass er mit anderen Output-Slaves im EtherCAT-System zusammenfällt.
- **DC-Synchron (input based):** Arbeitsweise wie DC-Synchron, aber der zyklische Startzeitpunkt ist so gewählt, dass er mit anderen Input-Slaves im EtherCAT-System zusammenfällt.

5.3.4 Features CoE

Abhängig von den Haupt-PDO/optionalen PDO sind im CoE (CAN over EtherCAT)-Verzeichnis weitere Einstellungen anwählbar.

Parametrierung über das CoE-Verzeichnis (CAN over EtherCAT)

Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise:

- · StartUp-Liste führen für den Austauschfall
- Unterscheidung zwischen Online/Offline Dictionary, Vorhandensein aktueller XML-Beschreibung
- CoE-Reload zum Zurücksetzen der Veränderungen

Folgende CoE-Einstellungen aus dem Objekt 0x8000 sind möglich und hier in den Default-Einstellungen am Beispiel der EP5101-0011 wiedergegeben:

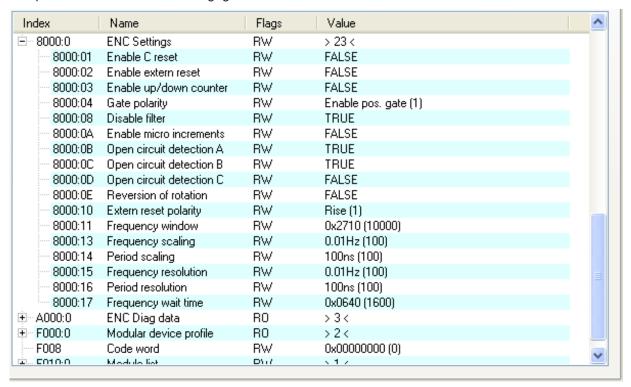


Abb. 18: Objekt 0x8000 - Default am Beispiel EP5101-0011

Die Parameter werden im Kapitel Objektbeschreibung der entsprechenden EtherCAT-Box erläutert.

- Auf Grund der unterschiedlichen Pin-Belegung werden die folgenden Objekte von der Modulen EP51x1-x002 nicht unterstützt!
 - 0x8000:02 Enable extern reset
 - 0x8000:04 Gate polarity
 - 0x8000:10 Extern reset polarity
- Auf Grund einer anderen Firmware werden die folgenden Objekte von dem Modul EP5101-2011 nicht unterstützt!
 - 0x8000:03 Enable up/down counter
 - 0x8000:08 Disable filter
 - 0x8000:0A Enable micro increments

Weitere Hinweise

Frequenz

- Das Zeitfenster für die Frequenzberechnung sowie die Auflösung kann in den CoE-Objekten Frequency window 0x8000:11, Frequency scaling 0x8000:13, Frequency resolution 0x8000:15, Frequency wait time 0x8000:17 parametriert werden.
- Es werden die positiven Flanken der Spur A im angegebenen Zeitfenster gezählt und die nächste folgende Flanke inkl. der Zeit bis dahin gezählt. Die Zeit, wie lange auf die Flanke gewartet wird, ist im CoE Objekt *Frequency Wait Time* 0x8000:17 einstellbar (Einheit: ms) und standardmäßig auf 1,6 s gesetzt. Das ist auch der Maximalwert.
- Das Zeitfenster ist 10 ms (default), min. 1 µs. Mit der Standardeinstellung können Frequenzen bis ca.
 800 kHz gemessen werden, bei höheren Frequenzen ist ein kleinerer Wert für das Zeitfenster zu wählen.
- Die Zeit wird mit einer Auflösung von 100 ns gemessen.
- Diese Berechnung wird im Slave ohne Bezug zum Distributed Clocks-System ausgeführt, ist also von der DC-Betriebsart unabhängig.
- Wenn der Zähler durch das Gate gesperrt ist, ist keine Frequenzmessung möglich; die Messung der Periodendauer kann in diesem Fall trotzdem durchgeführt werden.
- Ein C- oder externer Reset startet die Frequenzmessung neu, der zuletzt ausgegebene Frequenzwert bleibt bis zur Ermittlung eines neuen Frequenzwertes unverändert.

Frequenzmessung

• Basiseinheit 1 µs: alle Fenstergrößen

Ablauf der Messung

- Die Messung beginnt mit einer steigenden Flanke der Spur A, aktueller Zählerstand und Zeit (Auflösung: 100 ns) werden gespeichert.
- Nach Ablauf des Messfensters (Index 0x8000:11) wird noch bis zur folgenden steigenden Flanke an Spur A gewartet, maximal jedoch 1,6 s bzw. die Zeit aus *Frequency Wait Time* 0x8000:17.
- · Die Frequenz wird berechnet aus der Flankendifferenz und der real vergangenen Zeit.

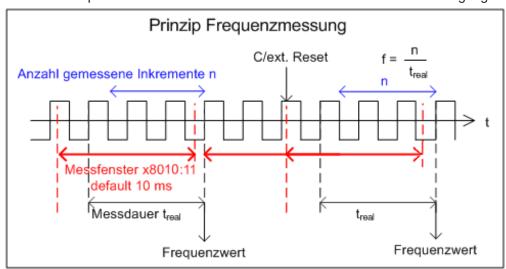


Abb. 19: Prinzip Frequenzmessung im erweiterten Betriebsmodus

Periodenberechnung

- Diese Berechnung wird im Slave ohne Bezug zum Distributed Clocks-System ausgeführt, ist also von der DC-Betriebsart unabhängig.
- Es wird in jedem Zyklus der Abstand zwischen 2 positiven Flanken von Eingang A gezählt.
- Ereignet sich 1,6 s lang kein Flankenwechsel, wird die evtl. bestehende Periodenangabe gelöscht.

Latch

- Aktivierung des Latch C-Eingangs (Enable latch C Index 0x7000:01) und Speichern ("Latchen") des Zählerstandes
 - Beim ersten externen Latchimpuls (positive Flanke an Eingang "C") nach gesetztem Bit (TRUE) in Enable latch C Index 0x7000:01 wird der Counterwert gespeichert (hat Vorrang vor Enable latch extern on positive / negative edge 0x7000:02 / 0x7000:04). Die folgenden Impulse an den anderen Eingängen haben bei gesetztem Bit keinen Einfluss auf den Latch-Wert in Index 0x6000:12.
 - Hinweis Latch C valid Bit: Erst wenn der Wert des Latch C valid Bit (Index 0x6000:01) FALSE ist, kann ein neuer Counterwert auf den Latch-Eingang geschrieben werden.
- Aktivierung des externen Latch-Eingangs ("Gate/Latch") und Verriegeln ("Latchen") des Zählerstandes (Index 0x7000:02, 0x7000:04) (nicht bei der Produktvariante -x002)
 - Bei gesetztem Bit (TRUE) in Enable latch extern on positive edge Index 0x7000:02 wird beim ersten externen Latchimpuls mit steigender Flanke der Counterwert auf den Latch-Eingang (Index 0x6000:12) gespeichert. Die folgenden Impulse haben keinen Einfluss auf den Latch-Wert in Index 0x6000:12.
 - Bei gesetztem Bit (TRUE) in Enable latch extern on negative edge Index 0x7000:04 wird beim ersten externen Latchimpuls mit fallender Flanke der Counterwert auf den Latch-Eingang (Index 0x6000:12) gespeichert. Die folgenden Impulse haben keinen Einfluss auf den Latch-Wert in Index 0x6000:12.
 - Hinweis Latch extern valid Bit: Erst wenn der Wert des Latch extern valid Bit Index 0x6000:02)
 FALSE ist, kann ein neuer Counterwert auf den Latch-Eingang geschrieben werden.

Reset

- Reset des Zählers über den Eingang C:
 - Für den Zähler-Reset ist das Bit in Enable latch C Index 0x8000:01 zu setzen.
- Reset des Zählers über den externen Latch-Eingang (nicht für die Produktivarianten -x002)
 - Für den Reset über den externen Latch-Eingang ist das Bit in Enable extern reset Index 0x8000:02 zu setzen
 - Über Extern reset polarity Index 0x8000:10 besteht die Möglichkeit zur Auswahl der Flanke, um den Zähler auf null zu setzen.
 - Bit nicht gesetzt: Zähler wird mit fallender Flanke auf null gesetzt.
 - Bit gesetzt: Zähler wird mit steigender Flanke auf null gesetzt.
- Die Aktivierung der Funktionen *Enable C reset* (0x8000:01) und das *Enable extern reset* (0x8000:02) sind gleichzeitig nicht möglich.

Vorwärts-/Rückwärts-Zähler

- Die Betriebsartenwahl (Encoder oder V/R-Zähler) wird über *Enable up/down counter* Index 0x8000:03 vorgenommen. (nicht für die Produktvariante -2011)
 - Klicken Sie auf die entsprechende Zeile des zu parametrierenden Indizex,
 - geben Sie den Wert "1" im SetValue-Dialog ein und
 - · bestätigen Sie mit OK.
- Ebenso ist über das Objekt 0x8000:04 die Gate-Polarität einzustellen.
- Eine zusätzliche Option zur Drehrichtungsumkehr ist mit Setzen des Bits in *Reversion of rotation* Index 0x8000:0E gegeben.

Over-/Underflow (nicht für die Produktvariante -2011)

- In Kombination mit einer aktivierten Reset-Funktion (C/extern) ist die Over-/Underflowkontrolle unwirksam.
- Das Underflow-Bit (0x6000:04) wird gesetzt, wenn ein Unterlauf ...00 ->...FF eintritt. Es wird zurückgesetzt, wenn 2/3 des Zählerbereiches unterschritten werden.
- Das Overflow-Bit (0x6000:05) wird gesetzt, wenn ein Überlauf FF...-> 00... eintritt. Es wird zurückgesetzt, wenn 1/3 des Zählerbereiches überschritten werden.

Drahtbrucherkennung / Open circuit detection

- Für die Kanäle A, B und C kann jeweils separat eine Drahtbrucherkennung aktiviert werden (Index 0x8000:0B, 0x8000:0C, 0x8000:0D).
- Standardmäßig ist die Drahtbrucherkennung für die Kanäle A und B aktiviert.
- Eine differentielle Spannung < 1,5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.
- Ein erkannter Drahtbruch wird als Prozessdatum *Open circuit* =TRUE angezeigt (Bit in Objekt *Open circuit* 0x6000:07 wird gesetzt). Die separate Anzeige eines Drahtbruchs wird in den Indizes 0xA000:01 (Spur A), 0xA000:02 (Spur B) und 0xA000:03 (Spur C) angezeigt.
- TxPDO State wird bei einem erkannten Drahtbruch ebenfalls TRUE, da von ungültigen Daten ausgegangen werden muss.

Mikroinkremente

- · Arbeitet mit und ohne Distributed Clocks, ist aber nur in Verbindung mit einem der DC-Modi sinnvoll.
- Über das Zählerstand-Setzen kann nur der ganzzahlige Anteil verändert werden.
- · das Prinzip Frequenzmessung im erweiterten Betriebsmodus:

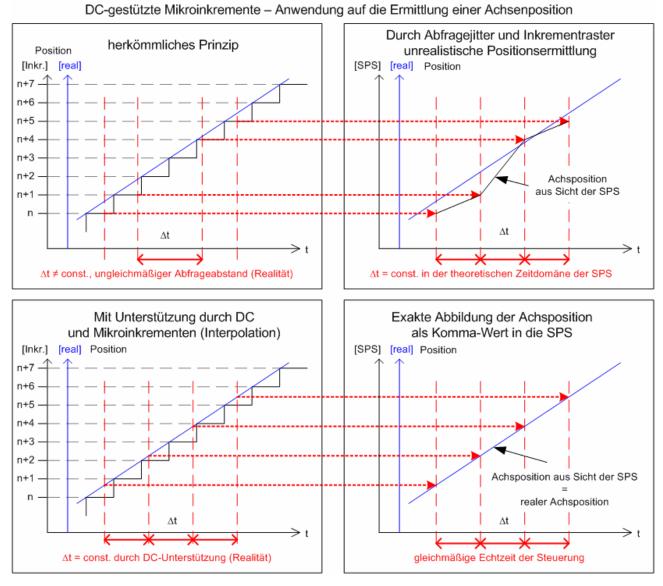
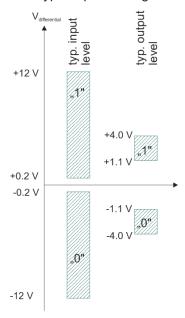


Abb. 20: DC-gestützte Mikroinkremente

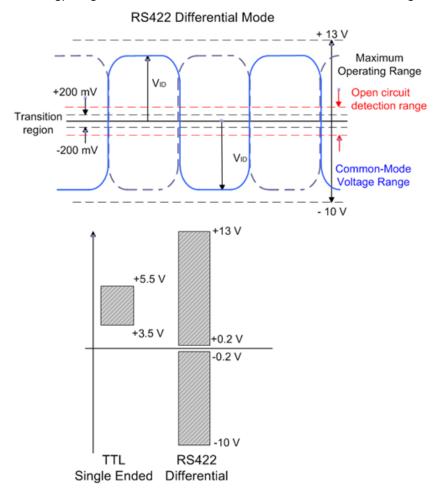
Die hochkonstanten Abfragezyklen (Genauigkeit: 100 ns) des Distributed Clocks-Systems erlauben es der Box, ab einer bestimmten Geschwindigkeit interpolierte Achspositionen zwischen die gezählten Encoder-Inkremente zu interpolieren. Die Interpolationsauflösung beträgt dabei 8 Bit entsprechend 256 Werte. Ein Standard-Encoder mit 1.024 Strichen wird so mit 4-fach Auswertung und Mikroinkrementen zu einem hochauflösenden Achsgeber mit 4096 x 256 = 1.048.567 Strichen.


Die Unterschreitung der Mindestgeschwindigkeit wird durch das Objekt *Extrapolation stall* 0x6000:08 (nicht bei der Produktvariante -2011) in den Prozessdaten angezeigt.

5.4 EP5001 - Schnittstellenpegel

Die SSI-Schnittstelle arbeitet mit differenziellen Signalpegeln nach RS422 / RS485.

Das "typ. output level" gilt bei einer Last von minimal 60 Ohm.

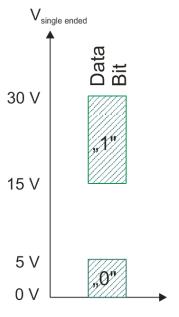


Single-ended Signalpegel werden nicht unterstützt.

5.5 EP5101 - Schnittstellenpegel

Der Encoder-Eingang erwartet im Differentialmode Signalpegel nach RS422 / RS485. Die Daten werden ohne Massebezug als Spannungsdifferenz zwischen zwei Leitungen (Signal A und invertiertes Signal /A) übertragen. Der Encoder-Eingang wertet Differenzen größer 200 mV als gültige Signale aus. Das Differenzsignal muss im Common Mode Bereich (<+13,2 V und >-10 V, in Bezug zu GND) liegen (vgl. Abbildung), Pegel außerhalb dieses Bereiches können zur Zerstörung führen

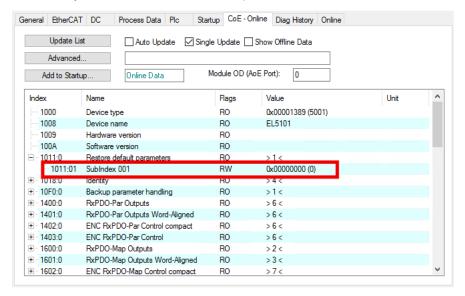
Im Differentialmode wird nur die Spannungsdifferenz ausgewertet, so dass Gleichtaktstörungen auf der Übertragungsstrecke zur keiner Verfälschung des Nutzsignals führen, da diese Störung auf beide Leitungen gleichzeitig wirken.

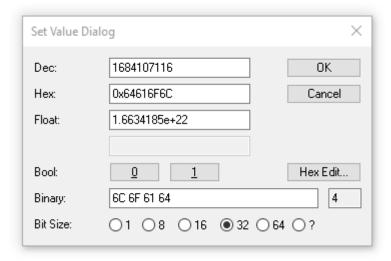

Im single ended Modus erwartet der Encoder-Eingang einen Signalpegel von nominell 3,5 V bis 5,5 V.

Ein differentieller Signalpegel zwischen -1,5 V und +1,5 V wird als <u>Drahtbruch [▶ 70]</u> erkannt.

5.6 EP5151 - Schnittstellenpegel

Der Encoder-Eingang erwartet Pegel nach HTL (Push-Pull).




5.7 Wiederherstellen des Auslieferungszustands

Sie können den Auslieferungszustand der Backup-Objekte wie folgt wiederherstellen:

- 1. Sicherstellen, dass TwinCAT im Config-Modus läuft.
- 2. Im CoE-Objekt 1011:0 "Restore default parameters" den Parameter 1011:01 "Subindex 001" auswählen.

- 3. Auf "Subindex 001" doppelklicken.
 - ⇒ Das Dialogfenster "Set Value Dialog" öffnet sich.
- 4. Im Feld "Dec" den Wert 1684107116 eintragen. Alternativ: im Feld "Hex" den Wert 0x64616F6C eintragen.

- 5. Mit "OK" bestätigen.
- ⇒ Alle Backup-Objekte werden in den Auslieferungszustand zurückgesetzt.

Alternative

Alternativer Restore-Wert

Bei einigen Modulen älterer Bauart lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen:

Dezimalwert: 1819238756 Hexadezimalwert: 0x6C6F6164

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung.

5.8 Außerbetriebnahme

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag!

Setzen Sie das Bus-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Demontage der Geräte beginnen!

6 CoE-Parameter

6.1 EP5001-0002

Parametrierung

Sie können die Box über die Registerkarte "CoE - Online" in TwinCAT parametrieren.

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description.

Empfehlung: laden Sie die jeweils aktuellste XML-Datei von https://www.beckhoff.com/ herunter und installieren Sie sie gemäß der Installationsanweisungen.

Einführung

In der CoE-Übersicht sind Objekte mit verschiedenem Einsatzzweck enthalten:

- · Objekte die zu Parametrierung bei der Inbetriebnahme nötig sind
- Objekte die zum regulären Betrieb z. B. durch ADS-Zugriff bestimmt sind.
- · Objekte die interne Settings anzeigen und ggf. nicht veränderlich sind

Im Folgenden werden zuerst die im normalen Betrieb benötigten Objekte vorgestellt, dann die für eine vollständige Übersicht noch fehlenden Objekte.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0		Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	_	0x01F51389 (32838537 _{dez})

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EP5001-0002

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	-

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	-

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Herstellen der Default-Einstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	RW	0x0000000 (0 _{dez})

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x13894052 (327762002 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x0000000 (0 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x0000000 (0 _{dez})

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	' '	Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	-	0x0000000 (0 _{dez})

Index 1800 SSI TxPDO-Par Inputs

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1801:0	SSI TxPDO-Par Inputs	PDO Parameter TxPDO 1	UINT8	RO	0x06 (6 _{dez})
1801:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 1 übertragen werden dürfen		RO	00 1A

Index 1A00 SSI TxPDO-Map Inputs

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1A00:0	SSI TxPDO-Map Inputs	PDO Mapping TxPDO 1	UINT8	RO	0x08 (8 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (SSI Inputs), entry 0x01 (Data error))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (SSI Inputs), entry 0x02 (Frame error))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (SSI Inputs), entry 0x03 (Power failure))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (10 bits align)	UINT32	RO	0x0000:00, 10
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (SSI Inputs), entry 0x0E (Sync error))	UINT32	RO	0x6000:0E, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (SSI Inputs), entry 0x0F (TxPDO State))	UINT32	RO	0x6000:0F, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (SSI Inputs), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6000:10, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (SSI Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x00 (0 _{dez})

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Data type	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RO	0x02 (2 _{dez})
1C13:01	SubIndex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16		0x1A00 (6656 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
IC33:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x000F4240
		Free Run: Zykluszeit des lokalen Timers			(1000000 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
IC33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
IC33:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC00B
	supported	Bit 0: Free Run wird unterstützt			(49163 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C33:08)			
IC33:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x00030D40 (0 _{dez})
IC33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
IC33:07	Minimum delay time	-	UINT32	RO	0x000001B0 (7600 _{dez})
IC33:08	Command	Mit diesem Eintrag kann eine Messung der real benötigten Prozessdatenbereitstellungszeit durchgeführt werden.	UINT16	RW	0x0000 (0 _{dez})
		0: Messung der lokalen Zykluszeit wird gestoppt			
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C33:03, 0x1C33:06, 0x1C33:09 werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt			
IC33:09	Maximum Delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x000001B0 (7600 _{dez})
IC33:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
C33:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
IC33:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 6000 SSI Inputs

Index (hex)	Name	Bedeutung	Data type	Flags	Default
6000:0	SSI Inputs	Länge dieses Objekts	UINT8	RO	0x11 (17 _{dez})
6000:01	Data error	Fehler am SSI-Eingang: - SSI hat keine Spannungsversorgung - Drahtbruch auf den SSI-Dateneingänge D+ oder D Datenleitungen vertauscht	BOOLEAN	RO	0x00 (0 _{dez})
		Wenn keine Datenübertragung stattfindet, liegt der SSI- Eingang auf Low-Pegel.			
6000:02	Frame error	Es liegt ein falscher Datenrahmen vor, d. h. der Datenrahmen wurde nicht mit Null abgeschlossen (evtl. Drahtbruch auf Clock-Leitungen)	BOOLEAN	RO	0x00 (0 _{dez})
6000:03	Power failure	Es ist ein geberspezifischer Fehler aufgetreten. Dieses Fehlerbit wird nur angezeigt, wenn es zuvor durch <i>Enable power failure bit</i> Index 0x8000:02 [> 81] aktiviert wurde.	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist.	BOOLEAN	RO	0x00 (0 _{dez})
		Das bedeutet, ein SYNC-Signal wurde in der Box ausgelöst, es lagen aber keine neuen Prozessdaten vor (0=ok, 1=nok).			
6000:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO (0=valid, 1=invalid).	BOOLEAN	RO	0x00 (0 _{dez})
6000:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:11	Counter value	Wert des Zählerstandes	UINT32	RO	0x0000000 (0 _{dez})

Index 8000 SSI Settings

Index (hex)	Name	Bedeutung	Data type	Flags	Default
8000:0	SSI Settings	Länge dieses Objekts	UINT8	RO	0x13 (19 _{dez})
8000:01	Disable frame error	0: Frame-Error wird nicht unterdrückt 1: Frame-Error wird unterdrückt	BOOLEAN	RW	0x00 (0 _{dez})
8000:02	Enable power failure bit	0: Power-Failure-Bit ist nicht aktiv 1: Power-Failure-Bit ist aktiv: das letztes Bit des Datenrahmens (geberspezifisches Fehlerbit) wird als Fehlerbit im Objekt <i>Power failure</i> (Index 0x6000:03) und Bit 2 des Status-Worts eingeblendet.	BOOLEAN	RW	0x00 (0 _{dez})
8000:03	Enable inhibit time	0: Inhibit-Zeit ist nicht aktiv 1: Inhibit-Zeit ist aktiv	BOOLEAN	RW	0x00 (0 _{dez})
8000:04	Enable test mode	0: Test mode ist nicht aktiv 1: Test mode ist aktiv	BOOLEAN	RW	0x00 (0 _{dez})
8000:06	SSI-coding	0: Binär-Code aktiv 1: Gray-Code aktiv	BIT1	RW	0x01 (1 _{dez})
8000:09	SSI-baudrate	0: reserviert 1: 1250 kBaud 2: 1000 kBaud 3: 500 kBaud 4: 250 kBaud 5: 125 kBaud 6 - 65535: reserviert	ВІТЗ	RW	0x03 (3 _{dez})
8000:0F	SSI-frame type	0: Multiturn-Auswertung aktiv (25 Bit Datenrahmen) 1: Singleturn-Auswertung aktiv (13 Bit Datenrahmen) 2: Variable Auswertung aktiv. Die Länge des Datenrahmens (1 bis 32 Bit) wird mit Objekt SSI-frame size (Index 0x8000:11) festgelegt.	BIT2	RW	0x00 (0 _{dez})
8000:11	SSI-frame size	Länge des SSI-Datenrahmens (in Bit)	UINT16	RW	0x0019 (25 _{dez})
8000:12	SSI-data length	Datenlänge	UINT16	RW	0x0018 (24 _{dez})
8000:13	Min. inhibit time[µs]	Minimale Inhibit-Zeit in µs (1 bis 65535)	UINT16	RW	0x0000 (0 _{dez})

Index 800D SSI Advanced Settings

Index (hex)	Name	Bedeutung	Data type	Flags	Default
800D:0	SSI Advanced Settings	SSI Advanced Settings		RW	0x03 (3 _{dez})
800D:01	Encoder power supply on	Schaltet die 24 V Versorgungsspannung		RW	0x01 (1 _{dez})
800D:02	Encoder direction pin on	Schaltet die 24 V am direction pin		RW	0x00 (0 _{dez})
800D:03	Encoder reset pin on	Schaltet die 24 V am reset pin		RW	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0001 (1 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Data type	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(O _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Data type	Flags	Default
F010:0	Module list	Länge dieses Objekts	UINT8	RW	0x02 (2 _{dez})
F010:01	SubIndex 001	-	UINT32	RW	0x000001F5 (501 _{dez})

6.2 EP5101-x002

Parametrierung

Sie können die Box über die Registerkarte "CoE - Online" in TwinCAT parametrieren.

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description.

Empfehlung: laden Sie die jeweils aktuellste XML-Datei von https://www.beckhoff.com/ herunter und installieren Sie sie gemäß der Installationsanweisungen.

6.2.1 Restore-Objekt

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Wiederherstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt. Hinweis: manche FW-Ausgaben akzeptieren auch auf die Eingabe "0x6C6F6164".	UINT32	RW	0x00000000 (0 _{dez})

6.2.2 Konfigurationsdaten

Index 8000 ENC Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:0	ENC Settings	Maximaler Subindex	UINT8	RO	0x17 (23 _{dez})
8000:01	Enable C reset [▶ 69]	Ein Reset des Zählers erfolgt über die C-Eingang.	BOOLEAN	RW	0x00 (0 _{dez})
8000:03	Enable up/down counter [▶ 69]	Freigabe des V/R-Zählers an Stelle des Encoders bei gesetztem Bit. Gezählt werden Inkremente am Eingang A, Zählrichtung gibt Eingang B vor.	BOOLEAN	RW	0x00 (0 _{dez})
8000:08	Disable filter	0: Aktiviert Eingangsfilter (nur Eingänge A, /A, B, /B, C, /C) 1: Deaktiviert Eingangsfilter Bei aktiviertem Filter muss eine Signalflanke mind. 2,4 μs anliegen um als Inkrement gezählt zu werden.	BOOLEAN	RW	0x01 (1 _{dez})
8000:0A	Enable micro increments [> 70]	Bei Aktivierung interpoliert die Box im DC-Modus zwischen die ganzzahligen Encoderinkremente Microincremente hinein. Zur Anzeige werden die jeweils unteren 8 bit des Counter Value benutzt. Aus einem 32-bit-Zähler wird so ein 24+8bit Zähler, aus einem 16-bit-Zähler ein 8+8bit Zähler.		RW	0x00 (0 _{dez})
8000:0B	Open circuit detection A [▶ 70]	Ein Drahtbruch auf der A-Spur wird im Objekt <i>Open circuit</i> (Index <u>0x6000:07</u> [> <u>85</u>]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.	BOOLEAN	RW	0x01 (1 _{dez})
8000:0C	Open circuit detection B [▶ 70]	Ein Drahtbruch auf der B-Spur wird im Objekt <i>Open circuit</i> (Index <u>0x6000:07 [</u>	BOOLEAN	RW	0x01 (1 _{dez})
8000:0D	Open circuit detection C [▶ 70]	Ein Drahtbruch auf der C-Spur wird im Objekt <i>Open circuit</i> (Index 0x6000:07 [> 85]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.	BOOLEAN	RW	0x00 (0 _{dez})
8000:0E	Reversion of rotation [> 69]	Aktiviert die Drehrichtungsumkehr	BOOLEAN	RW	0x00 (0 _{dez})
8000:11	Frequency window [▶ 68]	Dies ist die minimale Zeit, über die die Frequenz ermittelt wird Standardwert 10 ms [Auflösung: 1 µs]. Es wird die Anzahl der Pulse im Zeitfenster + dem nächsten folgenden gemessen. Dabei wird max. Frequency Wait Time lang gewartet. Die Anzahl der Impulse wird dann durch die tatsächliche Zeitfenstergröße geteilt. Die ermittelte Frequenz wird im Objekt Frequency value (Index 0x6000:13 [▶ 85]) und als Prozessdatum ausgegeben. Die Frequenzberechnung wird lokal ausgeführt und nutzt keine Distributed-Clocks-Funktion.	UINT16	RW	0x2710 (10000 _{dez})
8000:13	Frequency scaling [• 68]	Skalierung der Frequenzmessung (durch diesen Wert muss dividiert werden, damit man die Einheit in Hz erhält): 100: "0,01 Hz"	UINT16	RW	0x0064 (100 _{dez})
8000:14	Period scaling [▶ 68]	Auflösung der Periodendauer im Prozessdatum: 100: "100 ns" Periodendauerwert ist Vielfaches von 100 ns 500: "500 ns" Periodendauerwert ist Vielfaches von 500 ns	UINT16	RW	0x0064 (100 _{dez})
8000:15	Frequency resolution [> 68]	Auflösung der Frequenzmessung: 100: "0,01 Hz"	UINT16	RW	0x0064 (100 _{dez})
8000:16	Period resolution [• 68]	Interne Auflösung der Periodendauermessung: 100: "100 ns" Periodendauerwert ist Vielfaches von 100 ns Intern wird die Periode mit 100 ns Auflösung gerechnet. Die max. messbare Periode kann ca. 1,6 Sekunden betragen. 500: "500 ns" Periodendauerwert ist Vielfaches von 500 ns Intern wird die Periode mit 500 ns Auflösung gerechnet, die	UINT16	RW	0x0064 (100 _{dez})
		max. messbare Periode kann ca.32,7 ms betragen. Die Auflösung des Prozessdatums beträgt aber weiterhin den Wert nach Objekt <i>Period scaling</i> (Index 0x8000:14) (z. B. 100 ns [default]).			

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:17	Frequency wait time [• 68]	Wartezeit [ms] der Frequenzmessung Ist die Zeit aus <i>Frequency window</i> abgelaufen, wird noch solange auf die nächste positive Flanke aus Spur A gewartet. In Abhängigkeit von den erwarteten Frequenzen kann so eine schnellstmögliche Aktualisierung des Prozessdatums <i>Frequency</i> erreicht werden. Hier sollte mindestens die doppelte Periodendauer der minimal zu messenden Frequenz eingetragen werden. T >= 2* (1 / f _{min})	UINT16	RW	0x0640 (1600 _{dez})

6.2.3 Eingangsdaten

Index 6000 ENC Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	ENC Inputs	Maximaler Subindex	UINT8	RO	0x16 (22 _{dez})
6000:01	Latch C valid [▶ 69]	Der Zählerstand wurde mit dem "C"-Eingang verriegelt. Die Daten mit dem <i>Latch Value</i> (Index 0x6000:12) entsprechen dem gelatchten Wert bei gesetztem Bit. Um den Latch-Eingang neu zu aktivieren, muss <i>Enable latch C</i> (Index 0x7000:01 [80]) erst zurückgenommen	BOOLEAN	RO	0x00 (0 _{dez})
6000:03	Set counter done	und dann neu gesetzt werden.	BOOLEAN	RO	0×00 (0)
		Der Zähler wurde gesetzt.		RO	0x00 (0 _{dez})
6000:04	Counter underflow [• 70]	Der Zähler hat rückwärts den Nulldurchgang durchschritten. In Kombination mit einer Reset-Funktion (C/extern) ist die Under-/Overflowkontrolle unwirksam.	BOOLEAN	RU	0x00 (0 _{dez})
6000:05	Counter overflow [▶_70]	Der Zähler ist übergelaufen. In Kombination mit einer Reset-Funktion (C/extern) ist die Under-/Overflowkontrolle unwirksam.	BOOLEAN	RO	0x00 (0 _{dez})
6000:07	Open circuit [▶ 70]	Zeigt einen Drahtbruch an. Konfiguration über die Objekte Open circuit detection A Index 0x8000:0B [▶ 84], Open circuit detection B Index 0x8000:0C [▶ 84], Open circuit detection C Index 0x8000:0D [▶ 84]	BOOLEAN	RO	0x00 (0 _{dez})
6000:08	Extrapolation stall [▶ 70]	Der extrapolierte Teil des Zählers ist ungültig.	BOOLEAN	RO	0x00 (0 _{dez})
6000:09	Status of input A	Status von Eingang A	BOOLEAN	RO	0x00 (0 _{dez})
6000:0A	Status of input B	Status von Eingang B	BOOLEAN	RO	0x00 (0 _{dez})
6000:0B	Status of input C	Status von Eingang C	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist. Das bedeutet, ein SYNC-Signal wurde in der Box ausgelöst, es lagen aber keine neuen Prozessdaten vor (0=ok, 1=nok).	BOOLEAN	RO	0x00 (0 _{dez})
6000:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO (0=valid, 1=invalid).	BOOLEAN	RO	0x00 (0 _{dez})
6000:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:11	Counter value	Wert des Zählerstandes	UINT32	RO	0x0000000 (0 _{dez})
6000:12	Latch value	Latch-Wert	UINT32	RO	0x0000000 (0 _{dez})
6000:13	Frequency value [▶ 68]	Die Frequenz (Einstellung der Skalierung und Auflösung in den Objekten <i>Frequency scaling</i> Index 0x8000:13 [▶ 84] und <i>Frequency resolution</i> Index 0x8000:15 [▶ 84])	UINT32	RO	0x00000000 (0 _{dez})
6000:14	Period value [> 68]	Die Periodendauer (Einstellung der Skalierung und Auflösung in den Objekten <i>Period scaling</i> Index <u>0x8000:14</u> [▶ <u>84]</u> und <i>Period resolution</i> Index <u>0x8000:16</u> [▶ <u>84]</u>)	UINT32	RO	0x0000000 (0 _{dez})
6000:16	Timestamp [▶ 56]	Zeitstempel der letzten Zähleränderung	UINT64	RO	

6.2.4 Ausgangsdaten

Index 7000 ENC Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7000:0	ENC Outputs	Maximaler subindex	UINT8	RO	0x11(17 _{dez})
7000:01	Enable latch C [▶ 69]	Das Verriegeln über den Eingang "C" aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:03	Set counter	Zählerstand setzen	BOOLEAN	RO	0x00 (0 _{dez})
7000:11	Set counter value	Der über <i>Set counter</i> (Index 0x7000:03) zu setzende Zählerstand.	UINT32	RO	0x0000000 (_{dez})

6.2.5 Informations-/Diagnosedaten (kanalspezifisch)

Index A000 ENC Diag data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
A000:0	ENC Diag data	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
A000:01	Open circuit A [▶ 70]	Drahtbruch auf Spur A	BOOLEAN	RO	0x00 (0 _{dez})
A000:02	Open circuit B [▶ 70]	Drahtbruch auf Spur B	BOOLEAN	RO	0x00 (0 _{dez})
A000:03	Open circuit C [▶ 70]	Drahtbruch auf Spur C	BOOLEAN	RO	0x00 (0 _{dez})

6.2.6 Standardobjekte

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0	,,	Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	_	0x01FF1389 (33493897 _{dez})

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EP5101-0002
					EP5101-1002

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	-

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	-

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x13ED4052 (334315602 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x0000000 (0 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x0000000 (0 _{dez})

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	' '	Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	_	0x0000000 (0 _{dez})

Index 1400 ENC RxPDO-Par Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC RxPDO-Par Control compact	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dez})
1400:06			OCTET- STRING[2]	RO	01 16

Index 1401 ENC RxPDO-Par Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1401:0	ENC RxPDO-Par Control	PDO Parameter RxPDO 2	UINT8	RO	0x06 (6 _{dez})
1401:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 2 übertragen werden dürfen	OCTET- STRING[2]	RO	00 16

Index 1600 ENC RxPDO-Map Control compact (Produktvariante -0002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	ENC RxPDO-Map Control compact	PDO Mapping RxPDO 3	UINT8	RO	0x06 (6 _{dez})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1600:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1600:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1600:06	SubIndex 006	6. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16
1600:07	SubIndex 007	7. reserviert	UINT32	RO	-

Index 1600 ENC RxPDO-Map Control compact (Produktvariante -1002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	ENC RxPDO-Map Control compact	PDO Mapping RxPDO 3	UINT8	RO	0x07 (7 _{dez})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1600:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (1 bits align)	UINT32	RO	0x0000:00, 1
1600:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1600:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1600:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1601 ENC RxPDO-Map Control (Produktvariante -0002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	ENC RxPDO-Map Control compact	PDO Mapping RxPDO	UINT8	RO	0x06 (6 _{dez})
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1601:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00,1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), ventry 0x03 (Set counter))	UINT32	RO	0x7000:03,1
1601:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00,5
1601:05	SubIndex 005	5. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00,8
1601:06	SubIndex 006	6. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11,32
1601:07	SubIndex 007	7. reserviert	UINT32	RO	-

Index 1601 ENC RxPDO-Map Control (Produktvariante -1002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	ENC RxPDO-Map Control compact	PDO Mapping RxPDO	UINT8	RO	0x07 (7 _{dez})
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1601:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00,1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7000:03,1
1601:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04,1
1601:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00,4
1601:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00,8
1601:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11,32

Index 1800 ENC TxPDO-Par Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1800:0	ENC TxPDO-Par Status compact	PDO Parameter TxPDO 1	UINT8	RO	0x09 (9 _{dez})
1800:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 1 übertragen werden dürfen.	OCTET- STRING[2]	RO	01 1A
1800:07	TxPDO State	Der TxPDO State wird gesetzt, wenn die zugehörigen Eingangsdaten nicht korrekt eingelesen werden konnten.	BOOLEAN	RO	0x00 (0 _{dez})
1800:09	TxPDO Toggle	Das TxPDO Toggle wird mit jedem Aktualisieren der zugehörigen Eingangsdaten getoggelt.	BOOLEAN	RO	0x00 (0 _{dez})

Index 1801 ENC TxPDO-Par Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1801:0	ENC TxPDO-Par Status	PDO Parameter TxPDO 2	UINT8	RO	0x09 (9 _{dez})
1801:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 2 übertragen werden dürfen.	OCTET- STRING[2]	RO	00 1A
1801:07	TxPDO State	Der TxPDO State wird gesetzt, wenn die zugehörigen Eingangsdaten nicht korrekt eingelesen werden konnten.	BOOLEAN	RO	0x00 (0 _{dez})
1801:09	TxPDO Toggle	Das TxPDO Toggle wird mit jedem Aktualisieren der zugehörigen Eingangsdaten getoggelt.	BOOLEAN	RO	0x00 (0 _{dez})

Index 1802 ENC TxPDO-Par Frequency

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1802:0	ENC TxPDO-Par Frequency	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6 _{dez})
1802:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 3 übertragen werden dürfen.	OCTET- STRING[2]	RO	03 1A

Index 1803 ENC TxPDO-Par Period

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1803:0	ENC TxPDO-Par Period	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6 _{dez})
1803:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 4 übertragen werden dürfen.	OCTET- STRING[2]	RO	02 1A

Index 1804 ENC TxPDO-Par Timestamp

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1804:0	ENC TxPDO-Par Timestamp	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6 _{dez})
1804:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 5 übertragen werden dürfen.	OCTET- STRING[2]	RO	05 1A

Index 1805 ENC TxPDO-Par Timestamp compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1.000.0	ENC TxPDO-Par Timestamp compact	PDO Parameter TxPDO 6	UINT8	RO	0x06 (6 _{dez})
1805:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 6 übertragen werden dürfen.	OCTET- STRING[2]	RO	04 1A

Index 1A00 ENC TxPDO-Map Status compact (Produktvariante -0002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	ENC TxPDO-Map Status compact	ENC TxPDO-Map Status compact	UINT8	RO	0x011 (17 _{dez})
IA00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A00:0C	SubIndex 012	12. PDO Mapping entry (2 bit align)	UINT32	RO	0x0000:00, 2
1A00:0D	SubIndex 013	13. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A00:0E	SubIndex 014	14. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x07 (TxPDO State)	UINT32	RO	0x1800:07, 1
1A00:0F	SubIndex 015	15. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x09 (TxPDO Toggle)	UINT32	RO	0x1800:09, 1
IA00:10	SubIndex 016	16. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
IA00:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16
1A00:12	SubIndex 018	reserviert	UINT32	RO	-

Index 1A00 ENC TxPDO-Map Status compact (Produktvariante -1002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	ENC TxPDO-Map Status compact	ENC TxPDO-Map Status compact	UINT8	RO	0x012 (18 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A00:0C	SubIndex 012	12. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A00:0D	SubIndex 013	13. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A00:0E	SubIndex 014	14. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A00:0F	SubIndex 015	15. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x07 (TxPDO State)	UINT32	RO	0x1800:07, 1
1A00:10	SubIndex 016	16. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x09 (TxPDO Toggle)	UINT32	RO	0x1800:09, 1
1A00:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
1A00:12	SubIndex 018	18. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16

Index 1A01 ENC TxPDO-Map Status (Produktvariante -0002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	ENC TxPDO-Map Status compact	ENC TxPDO-Map Status	UINT8	RO	0x11 (17 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (2 bit align)	UINT32	RO	0x0000:00, 2
1A01:0D	SubIndex 013	13. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:0E	SubIndex 014	14. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x07 (TxPDO State))	UINT32	RO	0x1801:07, 1
1A01:0F	SubIndex 015	15. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1801:09, 1
1A01:10	SubIndex 016	16. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32
1A01:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 32
1A01:12	SubIndex 018	18. reserviert	UINT32	RO	-

Index 1A01 ENC TxPDO-Map Status (Produktvariante -1002)

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	ENC TxPDO-Map Status compact	ENC TxPDO-Map Status	UINT8	RO	0x12 (18 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A01:0D	SubIndex 013	13. PDO Mapping entry (1 bit align)	UINT32	RO	0x0000:00, 1
1A01:0E	SubIndex 014	14. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:0F	SubIndex 015	15. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x07 (TxPDO State))	UINT32	RO	0x1801:07, 1
1A01:10	SubIndex 016	16. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1801:09, 1
1A01:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32
1A01:12	SubIndex 018	18. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 32

Index 1A02 ENC TxPDO-Map Frequency

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	TxPDO-Map Frequency	PDO Mapping TxPDO	UINT8	RO	0x01 (1 _{dez})
1A02:01		PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x13 (Frequency value))	UINT32	RO	0x6000:13, 32

Index 1A03 ENC TxPDO-Map Period

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	ENC TxPDO-Map Period	ENC TxPDO-Map Period	UINT8	RO	0x01 (1 _{dez})
1A03:01		1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x14 (Period value))	UINT32	RO	0x6000:14, 32

Index 1A04 ENC TxPDO-Map Timest.

Index (hex) Na	ame	Bedeutung	Datentyp	Flags	Default
1A04:0	l	NC TxPDO-Map mest.	ENC TxPDO-Map Timest.	UINT8	RO	0x01 (1 _{dez})
1A04:0	1 Su		1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 64

Index 1A05 ENC TxPDO-Map Timest. compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	ENC TxPDO-Map Timest. compact	ENC TxPDO-Map Timest. compact	UINT8	RO	0x01 (1 _{dez})
1A05:01		1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 32

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write(Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x01 (1 _{dez})
1C12:01	SubIndex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632 _{dez})

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x01 (1 _{dez})
1C13:01	SubIndex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	SubIndex 002	2. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:03	SubIndex 003	3. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C32 SM output parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1 _{dez})
		0: Free Run			
		1: Synchron with SM 2 Event			
		2: DC-Mode - Synchron with SYNC0 Event			
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x00000000
		Free Run: Zykluszeit des lokalen Timers			(O _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
IC32:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0 = 1: Free Run wird unterstützt			(49159 _{dez})
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC- Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08)			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0000000 (0 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C32:08	Command	Mit diesem Eintrag kann eine Messung der real benötigten Prozessdatenbereitstellungszeit durchgeführt werden.	UINT16	RW	0x0000 (0 _{dez})
		0: Messung der lokalen Zykluszeit wird gestoppt			
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C32:03, 0x1C32:05, 0x1C32:06, 0x1C32:09, 0x1C33:03, 0x1C33:06, 0x1C33:09 werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie 0x1C32:02	UINT32	RW	0x0000000 (0 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0: Free Run wird unterstützt			(49159 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 oder 0x1C33:08)			
1C33:05	Minimum cycle time	wie 0x1C32:05	UINT32	RO	0x0000000 (0 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C33:08	Command	wie 0x1C32:08	UINT16	RW	0x0000 (0 _{dez})
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:0B	SM event missed counter	wie 0x1C32:11	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	wie 0x1C32:12	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	wie 0x1C32:13	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	wie 0x1C32:32	BOOLEAN	RO	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0001 (1 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(0 _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x02 (2 _{dez})
F010:01	SubIndex 001	reserviert	UINT32		0x000001FE (510 _{dez})

6.3 EP5101-0011

Parametrierung

Sie können die Box über die Registerkarte "CoE - Online" in TwinCAT parametrieren.

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description.

Empfehlung: laden Sie die jeweils aktuellste XML-Datei von https://www.beckhoff.com/ herunter und installieren Sie sie gemäß der Installationsanweisungen.

6.3.1 Restore-Objekt

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Wiederherstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt. Hinweis: manche FW-Ausgaben akzeptieren auch auf die Eingabe "0x6C6F6164".	UINT32	RW	0x00000000 (0 _{dez})

6.3.2 Konfigurationsdaten

Index 8000 ENC Settings

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:0	ENC Settings	Maximaler Subindex	UINT8	RO	0x17 (23 _{dez})
8000:01	Enable C reset [▶ 69]	Ein Reset des Zählers erfolgt über die C-Eingang.	BOOLEAN	RW	0x00 (0 _{dez})
8000:02	Enable extern reset [• 69]	Ein Reset des Zählers erfolgt über den externen Latch Eingang (24 V).	BOOLEAN	RW	0x00 (0 _{dez})
8000:03	Enable up/down counter [• 69]	Freigabe des V/R-Zählers an Stelle des Encoders bei gesetztem Bit. Gezählt werden Inkremente am Eingang A, Zählrichtung gibt Eingang B vor.	BOOLEAN	RW	0x00 (0 _{dez})
8000:04	Gate polarity [▶ 69]	D: Disable gate Enable pos. gate (Gate sperrt mit HIGH-Pegel) Enable neg. gate (Gate sperrt mit LOW-Pegel)	BIT2	RW	0x01 (1 _{dez})
80:008	Disable filter	0: Aktiviert Eingangsfilter (nur Eingänge A, /A, B, /B, C, /C) 1: Deaktiviert Eingangsfilter Bei aktiviertem Filter muss eine Signalflanke mind. 2,4 μs anliegen um als Inkrement gezählt zu werden.	BOOLEAN	RW	0x01 (1 _{dez})
A0:000	Enable micro increments [> 70]	Bei Aktivierung interpoliert die Box im DC-Modus zwischen die ganzzahligen Encoderinkremente Microincremente hinein. Zur Anzeige werden die jeweils unteren 8 bit des Counter Value benutzt. Aus einem 32-bit-Zähler wird so ein 24+8bit Zähler, aus einem 16-bit-Zähler ein 8+8bit Zähler.		RW	0x00 (0 _{dez})
8000:0B	Open circuit detection A [▶ 70]	Ein Drahtbruch auf der A-Spur wird im Objekt <i>Open circuit</i> (Index 0x6000:07 [> 100]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.	BOOLEAN	RW	0x01 (1 _{dez})
8000:0C	Open circuit detection B [▶ 70]	Ein Drahtbruch auf der B-Spur wird im Objekt <i>Open circuit</i> (Index 0x6000:07 [> 100]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.	BOOLEAN	RW	0x01 (1 _{dez})
8000:0D	Open circuit detection C [▶ 70]	Ein Drahtbruch auf der C-Spur wird im Objekt <i>Open circuit</i> (Index 0x6000:07 [> 100]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.		RW	0x00 (0 _{dez})
8000:0E	Reversion of rotation [• 69]	Aktiviert die Drehrichtungsumkehr	BOOLEAN	RW	0x00 (0 _{dez})
8000:10	Extern reset polarity [▶ 69]	O: Fall (mit der fallenden Flanke wird der Zähler auf null gesetzt) 1: Rise (mit der steigenden Flanke wird der Zähler auf null gesetzt)	BIT2	RW	0x01 (1 _{dez})
8000:11	Frequency window [▶ 68]	Dies ist die minimale Zeit, über die die Frequenz ermittelt wird Standardwert 10 ms [Auflösung: 1 µs]. Es wird die Anzahl der Pulse im Zeitfenster + dem nächsten folgenden gemessen. Dabei wird max. Frequency Wait Time lang gewartet. Die Anzahl der Impulse wird dann durch die tatsächliche Zeitfenstergröße geteilt. Die ermittelte Frequenz wird im Objekt Frequency value (Index 0x6000:13 [▶ 100]) und als Prozessdatum ausgegeben. Die Frequenzberechnung wird lokal ausgeführt und nutzt keine Distributed-Clocks-Funktion.	UINT16	RW	0x2710 (10000 _{dez})
8000:13	Frequency scaling [▶ 68]	Skalierung der Frequenzmessung (durch diesen Wert muss dividiert werden, damit man die Einheit in Hz erhält): 100: "0,01 Hz"	UINT16	RW	0x0064 (100 _{dez})
8000:14	Period scaling [• 68]	Auflösung der Periodendauer im Prozessdatum: 100: "100 ns" Periodendauerwert ist Vielfaches von 100 ns 500: "500 ns" Periodendauerwert ist Vielfaches von 500 ns	UINT16	RW	0x0064 (100 _{dez})
8000:15	Frequency resolution [> 68]	Auflösung der Frequenzmessung: 100: "0,01 Hz"	UINT16	RW	0x0064 (100 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:16	Period resolution [▶ 68]	Interne Auflösung der Periodendauermessung: 100: "100 ns" Periodendauerwert ist Vielfaches von 100 ns	UINT16	RW	0x0064 (100 _{dez})
		Intern wird die Periode mit 100 ns Auflösung gerechnet. Die max. messbare Periode kann ca. 1,6 Sekunden betragen.			
		500: "500 ns" Periodendauerwert ist Vielfaches von 500 ns			
		Intern wird die Periode mit 500 ns Auflösung gerechnet, die max. messbare Periode kann ca.32,7 ms betragen. Die Auflösung des Prozessdatums beträgt aber weiterhin den Wert nach Objekt <i>Period scaling</i> (Index 0x8000:14) (z. B. 100 ns [default]).			
8000:17	Frequency wait time [• 68]	Wartezeit [ms] der Frequenzmessung Ist die Zeit aus Frequency window abgelaufen, wird noch solange auf die nächste positive Flanke aus Spur A gewartet. In Abhängigkeit von den erwarteten Frequenzen kann so eine schnellstmögliche Aktualisierung des Prozessdatums Frequency erreicht werden. Hier sollte mindestens die doppelte Periodendauer der minimal zu messenden Frequenz eingetragen werden. T >= 2* (1 / fmin)	UINT16	RW	0x0640 (1600 _{dez})

6.3.3 Eingangsdaten

Index 6000 ENC Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	ENC Inputs	Maximaler Subindex	UINT8	RO	0x16 (22 _{dez})
6000:01	Latch C valid [▶ 69]	Der Zählerstand wurde mit dem "C"-Eingang verriegelt. Die Daten mit dem Latch Value (Index 0x6000:12) entsprechen dem gelatchten Wert bei gesetztem Bit. Um den Latch-Eingang neu zu aktivieren, muss Enable latch C (Index 0x7000:01 [\dagger 101]) erst zurückgenommen und dann neu gesetzt werden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:02	Latch extern valid [▶ 69]	Der Zählerstand wurde über das externe Latch verriegelt. Die Daten mit dem Latch Value (Index 0x6000:12) entsprechen dem gelatchten Wert bei gesetztem Bit. Um den Latch-Eingang neu zu aktivieren, muss Enable latch extern on positive edge (Index 0x7000:02 [▶ 101]) bzw. Objekt Enable latch extern on negative edge (Index 0x7000:04 [▶ 101]) erst zurückgenommen und dann neu gesetzt werden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:03	Set counter done	Der Zähler wurde gesetzt.	BOOLEAN	RO	0x00 (0 _{dez})
6000:04	Counter underflow [▶ 70]	Der Zähler hat rückwärts den Nulldurchgang durchschritten. In Kombination mit einer Reset-Funktion (C/extern) ist die Under-/Overflowkontrolle unwirksam.	BOOLEAN	RO	0x00 (0 _{dez})
6000:05	Counter overflow [> 70]	Der Zähler ist übergelaufen. In Kombination mit einer Reset-Funktion (C/extern) ist die Under-/Overflowkontrolle unwirksam.	BOOLEAN	RO	0x00 (0 _{dez})
6000:06	Status of input status	Der Zustand des Status-Eingangs, (Störmeldeeingang "Input 1")	BOOLEAN	RO	0x00 (0 _{dez})
6000:07	Open circuit [▶ 70]	Zeigt einen Drahtbruch an. Konfiguration über die Objekte: Open circuit detection A Index0x8000:0B, [▶ 98] Open circuit detection B Index0x8000:0C, [▶ 98] Open circuit detection C Index0x8000:0D [▶ 98]	BOOLEAN	RO	0x00 (0 _{dez})
80:000	Extrapolation stall [• 70]	Der extrapolierte Teil des Zählers ist ungültig.	BOOLEAN	RO	0x00 (0 _{dez})
6000:09	Status of input A	Status von Eingang A	BOOLEAN	RO	0x00 (0 _{dez})
A0:000	Status of input B	Status von Eingang B	BOOLEAN	RO	0x00 (0 _{dez})
6000:0B	Status of input C	Status von Eingang C	BOOLEAN	RO	0x00 (0 _{dez})
6000:0C	Status of input gate	Der Zustand des Gate-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
6000:0D	Status of extern ledge	Der Zustand des ext. Latch-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist. Das bedeutet, ein SYNC-Signal wurde in der Box ausgelöst, es lagen aber keine neuen Prozessdaten vor (0=ok, 1=nok).	BOOLEAN	RO	0x00 (0 _{dez})
6000:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO (0=valid, 1=invalid).	BOOLEAN	RO	0x00 (0 _{dez})
5000:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
5000:11	Counter value	Wert des Zählerstandes	UINT32	RO	0x0000000 (0 _{dez})
5000:12	Latch value	Latch-Wert	UINT32	RO	0x0000000 (0 _{dez})
6000:13	Frequency value [• 68]	Die Frequenz (Einstellung der Skalierung in Index 0x8000:13 [▶ 98] und Auflösung in Index 0x8000:15 [▶ 98])	UINT32	RO	0x0000000 (0 _{dez})
6000:14	Period value [▶ 68]	Die Periodendauer (Einstellung der Skalierung in Index 0x8000:14 [▶ 98] und Auflösung in Index 0x8000:16 [▶ 98])	UINT32	RO	0x0000000 (0 _{dez})
6000:16	Timestamp [▶ 56]	Zeitstempel der letzten Zähleränderung	UINT64	RO	

6.3.4 Ausgangsdaten

Index 7000 ENC Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7000:0	ENC Outputs	Maximaler subindex	UINT8	RO	0x11(17 _{dez})
7000:01	Enable latch C [▶ 69]	Das Verriegeln über den Eingang "C" aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:01	Enable latch extern on positive edge [• 69]	Das externe Latch mit positiver Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:03	Set counter	Zählerstand setzen	BOOLEAN	RO	0x00 (0 _{dez})
7000:04	Enable latch extern on negative edge [> 69]	Das externe Latch mit negativer Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:11	Set counter value	Der über Set counter (Index 0x7000:03) zu setzende Zählerstand.	UINT32	RO	0x0000000 (_{dez})

6.3.5 Informations-/Diagnosedaten (kanalspezifisch)

Index A000 ENC Diag data

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
A000:0	ENC Diag data	Maximaler Subindex	UINT8	RO	0x03 (3 _{dez})
A000:01	Open circuit A [▶ 70]	Drahtbruch auf Spur A	BOOLEAN	RO	0x00 (0 _{dez})
A000:02	Open circuit B [▶ 70]	Drahtbruch auf Spur B	BOOLEAN	RO	0x00 (0 _{dez})
A000:03	Open circuit C [▶ 70]	Drahtbruch auf Spur C	BOOLEAN	RO	0x00 (0 _{dez})

6.3.6 Standardobjekte

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0	,	Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.	UINT32	-	0x01FF1389 (33493897 _{dez})

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EP5101-0011

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	-

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	-

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x13ED4052 (334315602 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x0000000 (0 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x0000000 (0 _{dez})

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
		Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	_	0x0000000 (0 _{dez})

Index 1400 ENC RxPDO-Par Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1400:0	ENC RxPDO-Par Control compact	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dez})
1400:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 1 übertragen werden dürfen	OCTET- STRING[2]	RO	01 16

Index 1401 ENC RxPDO-Par Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1401:0	ENC RxPDO-Par Control	PDO Parameter RxPDO 2	UINT8	RO	0x06 (6 _{dez})
1401:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 2 übertragen werden dürfen	OCTET- STRING[2]	RO	00 16

Index 1600 ENC RxPDO-Map Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	ENC RxPDO-Map	PDO Mapping RxPDO 3	UINT8	RO	0x07 (7 _{dez})
	Control compact				
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1600:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02,1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs),entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1600:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1600:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1600:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1601 ENC RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	ENC RxPDO-Map	PDO Mapping RxPDO	UINT8	RO	0x07 (7 _{dez})
	Control compact				
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1601:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02,1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x700:03,1
1601:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x700:04,1
1601:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00,4
1601:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00,8
1601:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11,32

Index 1800 ENC TxPDO-Par Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1800:0	ENC TxPDO-Par Status	PDO Parameter TxPDO 1	UINT8	RO	0x09 (9 _{dez})
1800:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 1 übertragen werden dürfen	OCTET- STRING[2]	RO	01 1A
1800:07	TxPDO State	Der TxPDO State wird gesetzt, wenn die zugehörigen Eingangsdaten nicht korrekt eingelesen werden konnten	BOOLEAN	RO	0x00 (0 _{dez})
1800:09	TxPDO Toggle	Das TxPDO Toggle wird mit jedem aktualisieren der zugehörigen Eingangsdaten getoggelt	BOOLEAN	RO	0x00 (0 _{dez})

Index 1801 ENC TxPDO-Par Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1801:0	ENC TxPDO-Par Status compact	PDO Parameter TxPDO 2	UINT8	RO	0x09 (9 _{dez})
1801:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 2 übertragen werden dürfen	OCTET- STRING[2]	RO	00 1A
1801:07	TxPDO State	Der TxPDO State wird gesetzt, wenn die zugehörigen Eingangsdaten nicht korrekt eingelesen werden konnten	BOOLEAN	RO	0x00 (0 _{dez})
1801:09	TxPDO Toggle	Das TxPDO Toggle wird mit jedem aktualisieren der zugehörigen Eingangsdaten getoggelt	BOOLEAN	RO	0x00 (0 _{dez})

Index 1802 ENC TxPDO-Par Frequency

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1802:0	ENC TxPDO-Par Frequency	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6 _{dez})
1802:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 3 übertragen werden dürfen	OCTET- STRING[2]	RO	03 1A

Index 1803 ENC TxPDO-Par Period

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1803:0	ENC TxPDO-Par Period	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6 _{dez})
1803:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 4 übertragen werden dürfen	OCTET- STRING[2]	RO	02 1A

Index 1804 ENC TxPDO-Par Timest.

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1804:0	ENC TxPDO-Par Timest.	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6 _{dez})
1804:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 5 übertragen werden dürfen	OCTET- STRING[2]	RO	05 1A

Index 1805 ENC TxPDO-Par Timest. compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1805:0	ENC TxPDO-Par Timest. compact	PDO Parameter TxPDO 6	UINT8	RO	0x06 (6 _{dez})
1805:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 6 übertragen werden dürfen	OCTET- STRING[2]	RO	04 1A

Index 1A00 ENC TxPDO-Map Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	ENC TxPDO-Map Status	ENC TxPDO-Map Status compact	UINT8	RO	0x012 (18 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
IA00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
IA00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
IA00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
IA00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
IA00:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A00:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C; 2
IA00:0D	SubIndex 013	13. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D; 2
IA00:0E	SubIndex 014	14. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
IA00:0F	SubIndex 015	15. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x07 (TxPDO State)	UINT32	RO	0x1800:07, 1
IA00:10	SubIndex 016	16. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1800:09, 1
A00:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
IA00:12	SubIndex 018	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16

Index 1A01 ENC TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	ENC TxPDO-Map Status compact	PDO Mapping TxPDO 2	UINT8	RO	0x12 (18 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C, 1
1A01:0D	SubIndex 013	13. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0D (Status of extern latch))	UINT32		0x6000:0D, 1
1A01:0E	SubIndex 014	14. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:0F	SubIndex 015	15. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x07 (TxPDO State))			0x1801:07, 1
1A01:10	SubIndex 016	16. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1801:09, 1
1A01:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
1A01:12	SubIndex 018	18. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16

Index 1A02 ENC TxPDO-Map Frequency

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	TxPDO-Map Frequency	PDO Mapping TxPDO	UINT8	RO	0x01 (1 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (Inputs), entry 0x13 (Frequency value))	UINT32	RO	0x6000:13, 32

Index 1A03 ENC TxPDO-Map Period

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	ENC TxPDO-Map Period	ENC TxPDO-Map Period	UINT8	RO	0x01 (1 _{dez})
1A03:01		1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x14 (Period value))	UINT32	RO	0x6000:14, 32

Index 1A04 ENC TxPDO-Map Timest.

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	ENC TxPDO-Map Timest. compact	PDO Mapping TxPDO	UINT8	RO	0x01 (1 _{dez})
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 64

Index 1A05 ENC TxPDO-Map Timest. compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	ENC TxPDO-Map Timest. compact	PDO Mapping TxPDO	UINT8	RO	0x01 (1 _{dez})
1A05:01		1. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 32

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write(Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x01 (1 _{dez})
1C12:01	SubIndex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16		0x1600 (5632 _{dez})

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x01 (1 _{dez})
1C13:01	SubIndex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	SubIndex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:03	SubIndex 003	3. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

Index 1C32 SM output parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1 _{dez})
		0: Free Run			
		1: Synchron with SM 2 Event			
		2: DC-Mode - Synchron with SYNC0 Event			
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x00000000
		Free Run: Zykluszeit des lokalen Timers			(0 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0 = 1: Free Run wird unterstützt			(49159 _{dez})
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC-Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08)			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0000000 (0 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:08	Command	Mit diesem Eintrag kann eine Messung der real benötigten Prozessdatenbereitstellungszeit durchgeführt werden.	UINT16	RW	0x0000 (0 _{dez})
		0: Messung der lokalen Zykluszeit wird gestoppt			
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C32:03, 0x1C32:05, 0x1C32:06, 0x1C32:09, 0x1C33:03 [▶ 108], 0x1C33:06 [▶ 107], 0x1C33:09 [▶ 108] werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt.			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie <u>0x1C32:02</u> [▶ <u>107]</u>	UINT32	RW	0x0000000 (0 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0: Free Run wird unterstützt			(49159 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		 Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 107] oder 0x1C33:08) 			
1C33:05	Minimum cycle time	wie <u>0x1C32:05 [▶ 107]</u>	UINT32	RO	0x0000000 (0 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C33:08	Command	wie <u>0x1C32:08</u> [▶ <u>107]</u>	UINT16	RW	0x0000 (0 _{dez})
1C33:09	Delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:0B	SM event missed counter	wie <u>0x1C32:11 [▶ 107]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	wie <u>0x1C32:12</u> [▶ <u>107]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	wie <u>0x1C32:13</u> [▶ <u>107]</u>	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	wie <u>0x1C32:32</u> [▶ <u>107]</u>	BOOLEAN	RO	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0		Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0001 (1 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(O _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x02 (2 _{dez})
F010:01	SubIndex 001	reserviert	UINT32	RW	0x000001FE (510 _{dez})
F010:02	SubIndex 002	reserviert	UINT32	RW	0x000001FF (511 _{dez})

EP5xxx Version: 2.10 109

6.4 EP5151-0002

Parametrierung

Sie können die Box über die Registerkarte "CoE - Online" in TwinCAT parametrieren.

EtherCAT XML Device Description

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT XML Device Description.

Empfehlung: laden Sie die jeweils aktuellste XML-Datei von https://www.beckhoff.com/ herunter und installieren Sie sie gemäß der Installationsanweisungen.

6.4.1 Restore-Objekt

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Wiederherstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt. Hinweis: manche FW-Ausgaben akzeptieren auch auf die Eingabe "0x6C6F6164".	UINT32	RW	0x0000000 (0 _{dez})

6.4.2 Konfigurationsdaten

Index 8000 ENC Settings

Index (hex)		Bedeutung	Datentyp	Flags	Default
0:0008	ENC Settings	Maximaler Subindex	UINT8	RO	0x17 (23 _{dez})
8000:01	Enable C reset [▶ 69]	Ein Reset des Zählers erfolgt über die C-Eingang.	BOOLEAN	RW	0x00 (0 _{dez})
8000:02	Enable extern reset [• 69]	Ein Reset des Zählers erfolgt über den externen Latch Eingang (24 V).	BOOLEAN	RW	0x00 (0 _{dez})
8000:03	Enable up/down counter [> 69]	Freigabe des V/R-Zählers an Stelle des Encoders bei gesetztem Bit. Gezählt werden Inkremente am Eingang A, Zählrichtung gibt Eingang B vor.	BOOLEAN	RW	0x00 (0 _{dez})
8000:04	Gate polarity [▶ 69]	0: Disable gate 1: Enable pos. gate (Gate sperrt mit HIGH-Pegel) 2: Enable neg. gate (Gate sperrt mit LOW-Pegel)	BIT2	RW	0x01 (1 _{dez})
8000:08	Disable filter	0: Aktiviert Eingangsfilter (nur Eingänge A, /A, B, /B, C, /C) 1: Deaktiviert Eingangsfilter Bei aktiviertem Filter muss eine Signalflanke mind. 2,4 μs anliegen um als Inkrement gezählt zu werden.	BOOLEAN	RW	0x01 (1 _{dez})
8000:0A	Enable micro increments [▶ 70]	Bei Aktivierung interpoliert die Box im DC-Modus zwischen die ganzzahligen Encoderinkremente Microincremente hinein. Zur Anzeige werden die jeweils unteren 8 bit des Counter Value benutzt. Aus einem 32-bit-Zähler wird so ein 24+8bit Zähler, aus einem 16-bit-Zähler ein 8+8bit Zähler.		RW	0x00 (0 _{dez})
8000:0B	Open circuit detection A [▶ 70]	Ein Drahtbruch auf der A-Spur wird im Objekt <i>Open circuit</i> (Index 0x6000:07 [> 113]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.		RW	0x01 (1 _{dez})
8000:0C	Open circuit detection B [▶ 70]	Ein Drahtbruch auf der B-Spur wird im Objekt <i>Open circuit</i> (Index 0x6000:07 [> 113]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.		RW	0x01 (1 _{dez})
8000:0D	Open circuit detection C [▶ 70]	Ein Drahtbruch auf der C-Spur wird im Objekt <i>Open circuit</i> (Index <u>0x6000:07</u> [• <u>113</u>]) und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist - Eine differentielle Spannung < 3.5 V (typ., Änderungen vorbehalten) wird als Drahtbruch detektiert.		RW	0x00 (0 _{dez})
8000:0E	Reversion of rotation [• 69]	Aktiviert die Drehrichtungsumkehr	BOOLEAN	RW	0x00 (0 _{dez})
8000:10	Extern reset polarity [> 69]	O: Fall (mit der fallenden Flanke wird der Zähler auf null gesetzt) 1: Rise (mit der steigenden Flanke wird der Zähler auf null gesetzt)	BIT2	RW	0x01 (1 _{dez})
8000:11	Frequency window [▶ 68]	Dies ist die minimale Zeit, über die die Frequenz ermittelt wird Standardwert 10 ms [Auflösung: 1 µs]. Es wird die Anzahl der Pulse im Zeitfenster + dem nächsten folgenden gemessen. Dabei wird max. Frequency Wait Time lang gewartet. Die Anzahl der Impulse wird dann durch die tatsächliche Zeitfenstergröße geteilt. Die ermittelte Frequenz wird im Objekt Frequency value (Index 0x6000:13 [▶ 113]) und als Prozessdatum ausgegeben. Die Frequenzberechnung wird lokal ausgeführt und nutzt keine Distributed-Clocks-Funktion.	UINT16	RW	0x2710 (10000 _{dez})
8000:13	Frequency scaling [▶ 68]	Skalierung der Frequenzmessung (durch diesen Wert muss dividiert werden, damit man die Einheit in Hz erhält): 100: "0,01 Hz"	UINT16	RW	0x0064 (100 _{dez})
8000:14	Period scaling [▶ 68]	Auflösung der Periodendauer im Prozessdatum: 100: "100 ns" Periodendauerwert ist Vielfaches von 100 ns	UINT16	RW	0x0064 (100 _{dez})
8000:15		500: "500 ns" Periodendauerwert ist Vielfaches von 500 ns Auflösung der Frequenzmessung: 100: "0,01 Hz"	UINT16	RW	0x0064 (100 _{dez})
0000.10	Frequency resolution [• 68]	Authorating delit requesizitiessurig. 100. 0,01 Fiz	OINT TO	IXVV	UXUUU4 (TUU _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
8000:16	Period resolution [▶ 68]	Interne Auflösung der Periodendauermessung: 100: "100 ns" Periodendauerwert ist Vielfaches von 100 ns	UINT16	RW	0x0064 (100 _{dez})
		Intern wird die Periode mit 100 ns Auflösung gerechnet. Die max. messbare Periode kann ca. 1,6 Sekunden betragen.			
		500: "500 ns" Periodendauerwert ist Vielfaches von 500 ns			
		Intern wird die Periode mit 500 ns Auflösung gerechnet, die max. messbare Periode kann ca.32,7 ms betragen. Die Auflösung des Prozessdatums beträgt aber weiterhin den Wert nach Objekt <i>Period scaling</i> (Index 0x8000:14) (z. B. 100 ns [default]).			
8000:17	Frequency wait time [▶ 68]	Wartezeit [ms] der Frequenzmessung Ist die Zeit aus Frequency window abgelaufen, wird noch solange auf die nächste positive Flanke aus Spur A gewartet. In Abhängigkeit von den erwarteten Frequenzen kann so eine schnellstmögliche Aktualisierung des Prozessdatums Frequency erreicht werden. Hier sollte mindestens die doppelte Periodendauer der minimal zu messenden Frequenz eingetragen werden. T >= 2* (1 / fmin)	UINT16	RW	0x0640 (1600 _{dez})

6.4.3 Eingangsdaten

Index 6000 ENC Inputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
6000:0	ENC Inputs	Maximaler Subindex	UINT8	RO	0x16 (22 _{dez})
6000:01	Latch C valid [▶ 69]	Der Zählerstand wurde mit dem "C"-Eingang verriegelt. Die Daten mit dem Latch Value (Index 0x6000:12) entsprechen dem gelatchten Wert bei gesetztem Bit. Um den Latch-Eingang neu zu aktivieren, muss Enable latch C (Index 0x7000:01 [* 14]) erst zurückgenommen und dann neu gesetzt werden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:02	<u>Latch extern valid</u> [▶ 69]	Der Zählerstand wurde über das externe Latch verriegelt. Die Daten mit dem Latch Value (Index 0x6000:12) entsprechen dem gelatchten Wert bei gesetztem Bit. Um den Latch-Eingang neu zu aktivieren, muss Enable latch extern on positive edge (Index 0x7000:02 [▶ 114]) bzw. Objekt Enable latch extern on negative edge (Index 0x7000:04 [▶ 114]) erst zurückgenommen und dann neu gesetzt werden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:03	Set counter done	Der Zähler wurde gesetzt.	BOOLEAN	RO	0x00 (0 _{dez})
6000:04	Counter underflow [> 70]	Der Zähler hat rückwärts den Nulldurchgang durchschritten. In Kombination mit einer Reset-Funktion (C/extern) ist die Under-/Overflowkontrolle unwirksam.	BOOLEAN	RO	0x00 (0 _{dez})
6000:05	Counter overflow [▶ 70]	Der Zähler ist übergelaufen. In Kombination mit einer Reset-Funktion (C/extern) ist die Under-/Overflowkontrolle unwirksam.	BOOLEAN	RO	0x00 (0 _{dez})
6000:06	Status of input status	Der Zustand des Status-Eingangs, (Störmeldeeingang "Input 1")	BOOLEAN	RO	0x00 (0 _{dez})
6000:07	Open circuit [▶ 70]	Zeigt einen Drahtbruch an. Konfiguration über Objekt: Open circuit detection A Index 0x8000:0B [▶ 111], Open circuit detection B Index 0x8000:0C [▶ 111], Open circuit detection C Index 0x8000:0D [▶ 111],	BOOLEAN	RO	0x00 (0 _{dez})
6000:08	Extrapolation stall [• 70]	Der extrapolierte Teil des Zählers ist ungültig.	BOOLEAN	RO	0x00 (0 _{dez})
6000:09	Status of input A	Status von Eingang A	BOOLEAN	RO	0x00 (0 _{dez})
6000:0A	Status of input B	Status von Eingang B	BOOLEAN	RO	0x00 (0 _{dez})
6000:0B	Status of input C	Status von Eingang C	BOOLEAN	RO	0x00 (0 _{dez})
6000:0C	Status of input gate	Der Zustand des Gate-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
6000:0D	Status of extern ledge	Der Zustand des ext. Latch-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
6000:0E	Sync error	Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob in dem abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist. Das bedeutet, ein SYNC-Signal wurde in der Box ausgelöst, es lagen aber keine neuen Prozessdaten vor (0=ok, 1=nok).	BOOLEAN	RO	0x00 (0 _{dez})
6000:0F	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO (0=valid, 1=invalid).	BOOLEAN	RO	0x00 (0 _{dez})
6000:10	TxPDO Toggle	Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
6000:11	Counter value	Wert des Zählerstandes	UINT32	RO	0x0000000 (0 _{dez})
6000:12	Latch value	Latch-Wert	UINT32	RO	0x0000000 (0 _{dez})
6000:13	Frequency value	Die Frequenz (Einstellung der Skalierung in Index 0x8000:13 [▶ 111] und Auflösung in Index 0x8000:15 [▶ 111])	UINT32	RO	0x0000000 (0 _{dez})
6000:14	Period value	Die Periodendauer (Einstellung der Skalierung in Index 0x8000:14 [▶ 111] und der Auflösung in Index 0x8000:16 [▶ 111])	UINT32	RO	0x0000000 (0 _{dez})
6000:16	Timestamp	Zeitstempel der letzten Zähleränderung	UINT64	RO	

6.4.4 Ausgangsdaten

Index 7000 ENC Outputs

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
7000:0	ENC Outputs	Maximaler subindex	UINT8	RO	0x11(17 _{dez})
7000:01	Enable latch C [69]	Das Verriegeln über den Eingang "C" aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:01	Enable latch extern on positive edge [▶ 69]	Das externe Latch mit positiver Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:03	Set counter	Zählerstand setzen	BOOLEAN	RO	0x00 (0 _{dez})
7000:04	Enable latch extern on negative edge [▶ 69]	Das externe Latch mit negativer Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
7000:11	Set counter value	Der über Set counter (Index 0x7000:03) zu setzende Zählerstand.	UINT32	RO	0x0000000 (_{dez})

6.4.5 Standardobjekte

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0	,,	Geräte-Typ des EtherCAT-Slaves: Das Lo-Word enthält das verwendete CoE Profil (5001). Das Hi-Word enthält	UINT32	_	0x01FF1389 (33493897 _{dez})
		das Modul Profil entsprechend des Modular Device Profile.			

Index 1008 Device name

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EP5151-0002

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	-

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	-

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x141F4052 (337592402 _{dez})
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves, das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer, das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung	UINT32	RO	0x0000000 (0 _{dez})
1018:04	Serial number	Seriennummer des EtherCAT-Slaves, das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr, das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche, das High-Word (Bit 16-31) ist 0	UINT32	RO	0x00000000 (0 _{dez})

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	' '	Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	_	0x0000000 (0 _{dez})

Index 1400 ENC RxPDO-Par Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC RxPDO-Par Control compact	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dez})
1400:06	Exclude RxPDOs		OCTET- STRING[2]	RO	01 16

Index 1401 ENC RxPDO-Par Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1401:0	ENC RxPDO-Par Control	PDO Parameter RxPDO 2	UINT8	RO	0x06 (6 _{dez})
1401:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 2 übertragen werden dürfen	OCTET- STRING[2]	RO	00 16

Index 1600 ENC RxPDO-Map Control compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	ENC RxPDO-Map Control compact	PDO Mapping RxPDO 3	UINT8	RO	0x07 (7 _{dez})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1600:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02,1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1600:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1600:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1600:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1601 ENC RxPDO-Map Control

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	ENC RxPDO-Map	PDO Mapping RxPDO	UINT8	RO	0x07 (7 _{dez})
	Control				
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x01 (Enable latch C))	UINT32	RO	0x7000:01,1
1601:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02,1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x03 (Set counter))	UINT32	RO	0x700:03,1
1601:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x700:04,1
1601:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00,4
1601:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00,8
1601:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11,32

EP5xxx Version: 2.10 115

Index 1800 ENC TxPDO-Par Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1800:0	ENC TxPDO-Par Status compact	PDO Parameter TxPDO 1	UINT8	RO	0x09 (9 _{dez})
1800:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 1 übertragen werden dürfen.	OCTET- STRING[2]	RO	01 1A
1800:07	TxPDO State	Der TxPDO State wird gesetzt, wenn die zugehörigen Eingangsdaten nicht korrekt eingelesen werden konnten.	BOOLEAN	RO	0x00 (0 _{dez})
1800:09	TxPDO Toggle	Das TxPDO Toggle wird mit jedem Aktualisieren der zugehörigen Eingangsdaten getoggelt.	BOOLEAN	RO	0x00 (0 _{dez})

Index 1801 ENC TxPDO-Par Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1801:0	ENC TxPDO-Par Status	PDO Parameter TxPDO 2	UINT8	RO	0x09 (9 _{dez})
1801:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 2 übertragen werden dürfen.	OCTET- STRING[2]	RO	00 1A
1801:07	TxPDO State	Der TxPDO State wird gesetzt, wenn die zugehörigen Eingangsdaten nicht korrekt eingelesen werden konnten.	BOOLEAN	RO	0x00 (0 _{dez})
1801:09	TxPDO Toggle	Das TxPDO Toggle wird mit jedem Aktualisieren der zugehörigen Eingangsdaten getoggelt.	BOOLEAN	RO	0x00 (0 _{dez})

Index 1802 ENC TxPDO-Par Frequency

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC TxPDO-Par Frequency	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6 _{dez})
1802:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 3 übertragen werden dürfen.	OCTET- STRING[2]	RO	03 1A

Index 1803 ENC TxPDO-Par Period

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC TxPDO-Par Period	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6 _{dez})
1803:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 4 übertragen werden dürfen.		RO	02 1A

Index 1804 ENC TxPDO-Par Timestamp

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1804:0	ENC TxPDO-Par Timestamp	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6 _{dez})
1804:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 5 übertragen werden dürfen.	OCTET- STRING[2]	RO	05 1A

Index 1805 ENC TxPDO-Par Timestamp compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1805:0	ENC TxPDO-Par Timestamp compact	PDO Parameter TxPDO 6	UINT8	RO	0x06 (6 _{dez})
1805:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 6 übertragen werden dürfen.	OCTET- STRING[2]	RO	04 1A

Index 1A00 ENC TxPDO-Map Status compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	ENC TxPDO-Map Status	ENC TxPDO-Map Status compact	UINT8	RO	0x012 (18 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A00:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C, 1
1A00:0D	SubIndex 013	13. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A00:0E	SubIndex 014	14. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A00:0F	SubIndex 015	15. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x07 (TxPDO State)	UINT32	RO	0x1800:07, 1
1A00:10	SubIndex 016	16. PDO Mapping entry (object 0x1800 (ENC TxPDO-Par Status compact), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1800:09, 1
1A00:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
1A00:12	SubIndex 018	18. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16

Index 1A01 ENC TxPDO-Map Status

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	ENC TxPDO-Map Status compact	PDO Mapping TxPDO 2	UINT8	RO	0x12 (17 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
IA01:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C, 1
1A01:0D	SubIndex 013	13. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A01:0E	SubIndex 014	14. PDO Mapping entry (object 0x1C32 (SM output parameter), entry 0x20 (Sync error))	UINT32	RO	0x1C32:20, 1
1A01:0F	SubIndex 015	15. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x07 (TxPDO State))	UINT32	RO	0x1801:07, 1
IA01:10	SubIndex 016	16. PDO Mapping entry (object 0x1801 (ENC TxPDO-Par Status), entry 0x09 (TxPDO Toggle))	UINT32	RO	0x1801:09, 1
IA01:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32
1A01:12	SubIndex 018	18. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 32

Index 1A02 ENC TxPDO-Map Frequency

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	TxPDO-Map Frequency	PDO Mapping TxPDO	UINT8	RO	0x01 (1 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (Inputs), entry 0x13 (Frequency value))	UINT32	RO	0x6000:13, 32

Index 1A03 ENC TxPDO-Map Period

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	ENC TxPDO-Map Period	ENC TxPDO-Map Period	UINT8	RO	0x01 (1 _{dez})
1A03:01	SubIndex 001	PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x14 (Period value))	UINT32	RO	0x6000:14,32

Index 1A04 ENC TxPDO-Map Timest.

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	ENC TxPDO-Map Timest. compact	PDO Mapping TxPDO	UINT8	RO	0x01 (1 _{dez})
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 64

Index 1A05 ENC TxPDO-Map Timest. compact

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	ENC TxPDO-Map Timest. compact	PDO Mapping TxPDO	UINT8	RO	0x01 (1 _{dez})
1A05:01		1. PDO Mapping entry (object 0x6000 (ENC Inputs), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 32

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write(Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x01 (1 _{dez})
1C12:01	SubIndex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632 _{dez})

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x01 (1 _{dez})
1C13:01	SubIndex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	SubIndex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})
1C13:03	SubIndex 003	3. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0 _{dez})

EP5xxx Version: 2.10 119

Index 1C32 SM output parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1 _{dez})
		0: Free Run			
		1: Synchron with SM 2 Event			
		2: DC-Mode - Synchron with SYNC0 Event			
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x00000000
		Free Run: Zykluszeit des lokalen Timers			(O _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0 = 1: Free Run wird unterstützt			(49159 _{dez})
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC-Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08)			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0000000 (0 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:07	Minimum delay time		UINT32	RO	0x0000000 (0 _{dez})
1C32:08	Command	Mit diesem Eintrag kann eine Messung der real benötigten Prozessdatenbereitstellungszeit durchgeführt werden.	UINT16	RW	0x0000 (0 _{dez})
		0: Messung der lokalen Zykluszeit wird gestoppt			
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C32:03, 0x1C32:05, 0x1C32:06, 0x1C32:09, 0x1C33:03, 0x1C33:06, 0x1C33:09 werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie 0x1C32:02	UINT32	RW	0x0000000 (0 _{dez})
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0xC007
	supported	Bit 0: Free Run wird unterstützt			(49159 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 oder 0x1C33:08)			
1C33:05	Minimum cycle time	wie 0x1C32:05	UINT32	RO	0x0000000 (0 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:06	Minim delay time		UINT32	RO	0x0000000 (0 _{dez})
1C33:08	Command	wie 0x1C32:08	UINT16	RW	0x0000 (0 _{dez})
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C33:0B	SM event missed counter	wie 0x1C32:11	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	wie 0x1C32:12	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	wie 0x1C32:13	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	wie 0x1C32:32	BOOLEAN	RO	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0001 (1 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(0 _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x01 (1 _{dez})
F010:01	SubIndex 001	reserviert	UINT32		0x000001FF (511 _{dez})

7 Anhang

7.1 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Schutzarten werden mit den Buchstaben "IP" und zwei Kennziffern bezeichnet: **IPxy**

- Kennziffer x: Staubschutz und Berührungsschutz
- · Kennziffer y: Wasserschutz

X	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø 50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø 12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø 2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø 1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

у	Bedeutung			
0	Nicht geschützt			
1	Geschützt gegen Tropfwasser			
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist			
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben			
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben			
5	Geschützt gegen Strahlwasser.			
6	Geschützt gegen starkes Strahlwasser.			
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist			

Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der IP67-Module und die verwendeten Metallteile. In der nachfolgenden Tabelle finden Sie einige typische Beständigkeiten.

Art	Beständigkeit		
Wasserdampf	ei Temperaturen >100°C nicht beständig		
Natriumlauge (ph-Wert > 12)	bei Raumtemperatur beständig > 40°C unbeständig		
Essigsäure	unbeständig		
Argon (technisch rein)	beständig		

Legende

- · beständig: Lebensdauer mehrere Monate
- bedingt beständig: Lebensdauer mehrere Wochen
- · unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung

7.2 Zubehör

Befestigung

Bestellangabe	Beschreibung	Link
ZS5300-0011	Montageschiene	<u>Website</u>

Beschriftungsmaterial, Schutzkappen

Bestellangabe	Beschreibung			
ZS5000-0010	Schutzkappe für M8-Buchsen, IP67 (50 Stück)			
ZS5100-0000	Beschriftungsschilder nicht bedruckt, 4 Streifen à 10 Stück			
ZS5000-xxxx	Beschriftungsschilder bedruckt, auf Anfrage			
ZS5000-0020	Schutzkappe für M12-Buchsen, IP67 (50 Stück)			

Leitungen

Eine vollständige Übersicht von vorkonfektionierten Leitungen für IO-Komponenten finden sie hier.

Bestellangabe	Beschreibung	Link
ZK1090-3xxx-xxxx	EtherCAT-Leitung M8, grün	<u>Website</u>
ZK1093-3xxx-xxxx	EtherCAT-Leitung M8, gelb	<u>Website</u>
ZK2000-8xxx-xxxx	Sensorleitung M12, 8-polig	<u>Website</u>
ZK2020-3xxx-xxxx	Powerleitung M8, 4-polig	<u>Website</u>

Werkzeug

Bestellangabe	Beschreibung
ZB8801-0000	Drehmoment-Schraubwerkzeug für Stecker, 0,41,0 Nm
ZB8801-0001	Wechselklinge für M8 / SW9 für ZB8801-0000
ZB8801-0002	Wechselklinge für M12 / SW13 für ZB8801-0000
ZB8801-0003	Wechselklinge für M12 feldkonfektionierbar / SW18 für ZB8801-0000

Weiteres Zubehör

Weiteres Zubehör finden Sie in der Preisliste für Feldbuskomponenten von Beckhoff und im Internet auf https://www.beckhoff.com.

7.3 Versionsidentifikation von EtherCAT-Geräten

7.3.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016		3314	0000	0016
	12 mm, nicht steckbare Anschlussebene	4-kanalige Thermoelementklemme	Grundtyp	
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	12 mm, steckbare Anschlussebene	2-kanalige Spannungsmessung	hochpräzise Version	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		8 Port FastEthernet Switch	Grundtyp	

Hinweise

- die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die Revision -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.
 Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht.
 Die Revision wird seit 2014/01 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL5021 EL-
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

Klemme, Standard IP20-IO-Gerät mit Chargennummer und Revisionskennzeichnung (seit 2014/01)".

7.3.2 Versionsidentifikation von IP67-Modulen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder auf einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr FF - Firmware-Stand HH - Hardware-Stand Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12 06 - Produktionsjahr 2006 3A - Firmware-Stand 3A 02 - Hardware-Stand 02

Ausnahmen können im **IP67-Bereich** auftreten, dort kann folgende Syntax verwendet werden (siehe jeweilige Gerätedokumentation):

Syntax: D ww yy x y z u

D - Vorsatzbezeichnung ww - Kalenderwoche

yy - Jahr

x - Firmware-Stand der Busplatine

y - Hardware-Stand der Busplatine

z - Firmware-Stand der E/A-Platine

u - Hardware-Stand der E/A-Platine

Beispiel: D.22081501 Kalenderwoche 22 des Jahres 2008 Firmware-Stand Busplatine: 1 Hardware Stand Busplatine: 5 Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig) Hardware-Stand E/A-Platine: 1

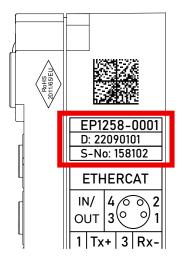


Abb. 21: EP1258-0001 IP67 EtherCAT Box mit Chargennummer/ DateCode 22090101 und eindeutiger Seriennummer 158102

7.3.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 22: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- · direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z.B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 23: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

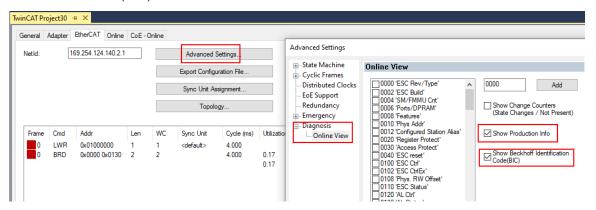
Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

7.3.4 Elektronischer Zugriff auf den BIC (eBIC)

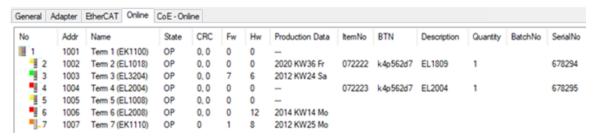
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt elektronisch angesprochen werden kann.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, dass die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).


In das ESI-EEPROM wird durch Beckhoff auch die eBIC gespeichert. Die Einführung des eBIC in die Beckhoff IO Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen
 - Ab TwinCAT 3.1 build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter
 EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC.
- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:

• Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein:

Inc	iex	Name	Rags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
+	1011:0	Restore default parameters	RO	>1<		
	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 build 4024.24 in der *Tc2 Utilities* zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den Beckhoff Identification Code (BIC) sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST_SplittedBIC als Rückgabewert
 - BIC_TO_BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Technischer Hintergrund Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen. Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.
- · Sonderfälle
 - Sind mehrere ESC in einem Gerät verbaut die hierarchisch angeordnet sind, trägt nur der TopLevel ESC die eBIC Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC des TopLevel-Geräts, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

7.4 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com
Internet: www.beckhoff.com

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com