BECKHOFF New Automation Technology

Documentation | EN

KL6224 IO-Link Master Terminal

2023-08-30 | Version: 2.2.0

Table of contents

1	Fore	word	5
	1.1	Notes on the documentation	5
	1.2	Safety instructions	6
	1.3	Documentation issue status	7
2	Prod	luct overview	8
	2.1	Introduction	8
	2.2	Technical data	9
	2.3	IO-Link - Basics	10
3	Mour	nting and wiring	12
	3.1	Instructions for ESD protection	12
	3.2	Installation on mounting rails	13
	3.3	Disposal	15
	3.4	Installation instructions for enhanced mechanical load capacity	16
	3.5	Connection system	17
	3.6	Contact assignment	19
	3.7	LED display	20
4	KS20	000 Configuration Software	21
	4.1	KS2000 - Introduction	21
	4.2	Configuration of the KL6224	23
	4.3	Register	25
	4.4	Settings	26
5	Prog	Jramming	33
	5.1	Data structures	33
		5.1.1 Process image	33
		5.1.2 Control and status byte	37
		5.1.3 Register overview	38
		5.1.4 Register description	39
		5.1.5 Register pages for IO-Link parameters	40
	5.2	Examples of Register Communication	44
		5.2.1 Example 1: Reading the firmware version from register 9	44
		5.2.2 Example 2: Writing to an user register	44
	5.3	Accessing IO-Link parameters	47
6	Appe	endix	50
	6.1	Firmware version of the Bus Couplers	50
	6.2	Beckhoff Identification Code (BIC)	52
	6.3	Support and Service	54

BECKHOFF

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] and XPlanar[®] are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

EtherCAT[®] is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to persons and property, read and follow the safety and warning notices.

Personal injury warnings

Hazard with high risk of death or serious injury.				
Hazard with medium risk of death or serious injury.				
There is a low-risk hazard that could result in medium or minor injury.				

Warning of damage to property or environment

NOTICE

The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:

recommendations for action, assistance or further information on the product.

1.3 Documentation issue status

Version	Comment
2.2.0	Chapter TwinCAT libraries removed
2.1.0	Chapter Technical data updated
	Chapter Instructions for ESD protection added
	Chapter <i>Disposal</i> added
	Chapter TwinCAT libraries added
	Chapter Beckhoff Identification Code (BIC) added
	Document structure updated
	New title page
2.0.0	Migration
1.0.0	Product overview updated
	Technical data updated
	 Description of the KS2000 configuration software expanded
	Register description updated
0.5	Preliminary version

Firmware and hardware versions

Documentation	KL6224		
Version	Firmware	Hardware	
2.2.0	04	05	
2.1.0	04	05	
2.0.0	04	04	
1.0.0	03	02	
0.5	00	01	

The firmware and hardware versions (delivery state) can be taken from the serial number printed on the side of the terminal.

The KL6224 supports the IO-Link specification 1.1 from firmware version 02.

Syntax of the serial number

Structure of the serial number: WW YY FF HH

WW - week of production (calendar week)

YY - year of production

FF - firmware version

HH - hardware version

Example with serial number 02 13 00 01:

02 - week of production 02

- 13 year of production 2013
- 00 firmware version 00
- 01 hardware version 01

2 Product overview

2.1 Introduction

Fig. 1: KL6224 - IO-Link master terminal

The KL6224 IO-Link master terminal enables connection of up to four IO-Link devices. These can be actuators, sensors or a combination of both. A point-to-point connection is used between the terminal and the device.

IO-Link is designed as an intelligent link between the fieldbus level and the sensor, wherein parameterization information can be exchanged bidirectionally via the IO-Link connection. The IO-Link devices can be parameterized via the KS2000 configuration software or from the PLC via register communication.

By default the KL6224 operates as a four-channel input terminal (24 V_{DC}), which communicates with connected IO-Link devices, parameterizes them and adjusts their operating mode as required.

Thanks to the integration of the KL6224 in the HD housing with 16 connection points, each IO-Link device can be operated in 3-wire mode. The direct plug-in technique enables toolless construction.

2.2 Technical data

Technical data	KL6224
Technology	IO-Link
Number of channels	4
IO-Link interfaces	4
Field voltage	24 V _{DC} (via power contacts)
Connection	3-wire, HD terminal
Data transfer rates	4.8 kBaud, 38.4 kBaud and 230.4 kBaud
Cable length between IO-Link Master and Device	max. 20 m
Power supply	via K-Bus and power contacts
Supply current for devices	500 mA per device
Current consumption from K-bus	typ. 85 mA
Current consumption from power contacts	not specified
Nominal voltage	24 V _{DC} (-15 %/+20 %)
Electrical isolation	500 V (IO-Link / K-bus)
Weight	арр. 60 g
K-bus bit width	depends on the process image
Configuration	via fieldbus parameter interface, DP-V1 or Bus Coupler via Configuration software KS2000
Permissible ambient temperature during operation	0°C +55°C
Permissible ambient temperature during storage	-25°C +85°C
Permissible relative humidity	95 %, no condensation
Mounting [13]	on 35 mm mounting rail conforms to EN 60715
Enhanced mechanical load capacity	yes, see also <u>installation instructions [▶_16]</u> for enhanced mechanical load capacity
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
EMC resistance burst / ESD	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP20
Installation position	Variable
Approvals/markings*	CE, UKCA, cULus, EAC

*) Real applicable approvals/markings see type plate on the side (product marking).

2.3 IO-Link - Basics

IO-Link represents a communication system for the connection of intelligent sensors and actuators to an automation system in the IEC 61131-9 standard under the designation "Single-drop digital communication interface for small sensors and actuators" (SDCI).

Both the electrical connection data and the communication protocol are standardized and summarized in the <u>IO-Link Spec</u>.

IO-Link specification

The development of the EL6224 was subject to the IO-Link specification 1.1. At the time of the preparation of this documentation, the IO-Link specification is entering the IEC standardization and will be adopted in extended form as IEC 61131-9. The new designation SDCI will be introduced at the same time.

As a member of the respective committee, Beckhoff supports the development of IO-Link and reflects changes to the specification in its products.

An IO-Link system consists of an IO-Link master and one or more IO-Link devices, i.e. sensors or actuators. The IO-Link master provides the interface to the higher-level controller and controls communication with the connected IO-Link devices. The Beckhoff EL6224 IO-Link Master Terminal has four IO-Link ports. One IO-Link device can be connected to each of them. Therefore, IO-Link is not a fieldbus, but a peer-to-peer connection (see Fig. *Peer-to-peer communication IO-Link*).

The connected IO-Link devices have individual parameter information in the form of an IO device description (IODD), which is set with the KS2000 configuration software (see chapter <u>KS2000 - Settings [\blacktriangleright 26]).</u>

Parameter data exchange

An intelligent IO-Link device can support parameterization through SPDUs (service protocol data units). The PLC must explicitly query or, when marked as such, send these acyclic service data.

SPDU access

TwinCAT currently only supports access via ADS.

The so-called SPDU index is used to address the corresponding parameter. The following ranges are available.

Index range	Name
0x000x0F	System
0x100x1F	Identification
0x200x2F	Diagnostic
0x300x3F	Communication
0x400xFE	Preferred Index
0x01000x3FFF	Extended Index
0x40000xFFFF	not specified (reserved)

The use and implementation of these ranges is the responsibility of the sensor/actuator manufacturer.

For clarification, just a few of the possible indices are listed here; refer to the documentation for the IO-Link device used.

Index	Name
0x0010	Vendor Name
0x0011	Vendor Text
0x0012	Product Name
0x0013	Product ID
0x0015	Serial Number
0x0016	Hardware Revision
0x0017	Firmware Revision

3 Mounting and wiring

3.1 Instructions for ESD protection

NOTICE

Destruction of the devices by electrostatic discharge possible!

The devices contain components at risk from electrostatic discharge caused by improper handling.

- Please ensure you are electrostatically discharged and avoid touching the spring contacts (see fig.) of the device directly.
- Avoid contact with highly insulating materials (synthetic fibers, plastic film etc.).
- Surroundings (working place, packaging and personnel) should by grounded probably, when handling with the devices.
- Each assembly must be terminated at the right hand end with a KL9010 bus end terminal, to ensure the protection class and ESD protection.

Fig. 3: Spring contacts of the Beckhoff I/O components

3.2 Installation on mounting rails

▲ WARNING

Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!

The Bus Terminal system and is designed for mounting in a control cabinet or terminal box.

Assembly

Fig. 4: Attaching on mounting rail

The bus coupler and bus terminals are attached to commercially available 35 mm mounting rails (DIN rails according to EN 60715) by applying slight pressure:

- 1. First attach the fieldbus coupler to the mounting rail.
- 2. The bus terminals are now attached on the right-hand side of the fieldbus coupler. Join the components with tongue and groove and push the terminals against the mounting rail, until the lock clicks onto the mounting rail.

If the terminals are clipped onto the mounting rail first and then pushed together without tongue and groove, the connection will not be operational! When correctly assembled, no significant gap should be visible between the housings.

Fixing of mounting rails

The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At the installation, the locking mechanism of the components must not come into conflict with the fixing bolts of the mounting rail. To mount the mounting rails with a height of 7.5 mm under the terminals and couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).

Disassembly

Fig. 5: Disassembling of terminal

Each terminal is secured by a lock on the mounting rail, which must be released for disassembly:

- 1. Pull the terminal by its orange-colored lugs approximately 1 cm away from the mounting rail. In doing so for this terminal the mounting rail lock is released automatically and you can pull the terminal out of the bus terminal block easily without excessive force.
- 2. Grasp the released terminal with thumb and index finger simultaneous at the upper and lower grooved housing surfaces and pull the terminal out of the bus terminal block.

Connections within a bus terminal block

The electric connections between the Bus Coupler and the Bus Terminals are automatically realized by joining the components:

- The six spring contacts of the K-Bus/E-Bus deal with the transfer of the data and the supply of the Bus Terminal electronics.
- The power contacts deal with the supply for the field electronics and thus represent a supply rail within the bus terminal block. The power contacts are supplied via terminals on the Bus Coupler (up to 24 V) or for higher voltages via power feed terminals.

Power Contacts

During the design of a bus terminal block, the pin assignment of the individual Bus Terminals must be taken account of, since some types (e.g. analog Bus Terminals or digital 4-channel Bus Terminals) do not or not fully loop through the power contacts. Power Feed Terminals (KL91xx, KL92xx or EL91xx, EL92xx) interrupt the power contacts and thus represent the start of a new supply rail.

PE power contact

The power contact labeled PE can be used as a protective earth. For safety reasons this contact mates first when plugging together, and can ground short-circuit currents of up to 125 A.

BECKHOFF

Fig. 6: Power contact on left side

NOTICE

Possible damage of the device

Note that, for reasons of electromagnetic compatibility, the PE contacts are capacitatively coupled to the mounting rail. This may lead to incorrect results during insulation testing or to damage on the terminal (e.g. disruptive discharge to the PE line during insulation testing of a consumer with a nominal voltage of 230 V). For insulation testing, disconnect the PE supply line at the Bus Coupler or the Power Feed Terminal! In order to decouple further feed points for testing, these Power Feed Terminals can be released and pulled at least 10 mm from the group of terminals.

WARNING

Risk of electric shock!

The PE power contact must not be used for other potentials!

3.3 Disposal

Products marked with a crossed-out wheeled bin shall not be discarded with the normal waste stream. The device is considered as waste electrical and electronic equipment. The national regulations for the disposal of waste electrical and electronic equipment must be observed.

3.4 Installation instructions for enhanced mechanical load capacity

WARNING

Risk of injury through electric shock and damage to the device!

Bring the Bus Terminal system into a safe, de-energized state before starting mounting, disassembly or wiring of the Bus Terminals!

Additional checks

The terminals have undergone the following additional tests:

Verification	Explanation		
Vibration	10 frequency runs in 3 axes		
	6 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude		
	60.1 Hz < f < 500 Hz acceleration 5 <i>g</i> , constant amplitude		
Shocks	1000 shocks in each direction, in 3 axes		
	25 g, 6 ms		

Additional installation instructions

For terminals with enhanced mechanical load capacity, the following additional installation instructions apply:

- · The enhanced mechanical load capacity is valid for all permissible installation positions
- Use a mounting rail according to EN 60715 TH35-15
- Fix the terminal segment on both sides of the mounting rail with a mechanical fixture, e.g. an earth terminal or reinforced end clamp
- The maximum total extension of the terminal segment (without coupler) is: 64 terminals (12 mm mounting with) or 32 terminals (24 mm mounting with)
- Avoid deformation, twisting, crushing and bending of the mounting rail during edging and installation of the rail
- The mounting points of the mounting rail must be set at 5 cm intervals
- · Use countersunk head screws to fasten the mounting rail
- The free length between the strain relief and the wire connection should be kept as short as possible. A distance of approx. 10 cm should be maintained to the cable duct.

3.5 Connection system

A WARNING

Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!

Overview

The bus terminal system offers different connection options for optimum adaptation to the respective application:

- The terminals of ELxxxx and KLxxxx series with standard wiring include electronics and connection level in a single enclosure.
- The terminals of ESxxxx and KSxxxx series feature a pluggable connection level and enable steady wiring while replacing.
- The High Density Terminals (HD Terminals) include electronics and connection level in a single enclosure and have advanced packaging density.

Standard wiring (ELxxxx / KLxxxx)

Fig. 7: Standard wiring

The terminals of ELxxxx and KLxxxx series have been tried and tested for years. They feature integrated screwless spring force technology for fast and simple assembly.

Pluggable wiring (ESxxxx / KSxxxx)

Fig. 8: Pluggable wiring

The terminals of ESxxxx and KSxxxx series feature a pluggable connection level.

The assembly and wiring procedure is the same as for the ELxxxx and KLxxxx series.

The pluggable connection level enables the complete wiring to be removed as a plug connector from the top of the housing for servicing.

The lower section can be removed from the terminal block by pulling the unlocking tab.

Insert the new component and plug in the connector with the wiring. This reduces the installation time and eliminates the risk of wires being mixed up.

The familiar dimensions of the terminal only had to be changed slightly. The new connector adds about 3 mm. The maximum height of the terminal remains unchanged.

A tab for strain relief of the cable simplifies assembly in many applications and prevents tangling of individual connection wires when the connector is removed.

Conductor cross sections between 0.08 mm² and 2.5 mm² can continue to be used with the proven spring force technology.

The overview and nomenclature of the product names for ESxxxx and KSxxxx series has been retained as known from ELxxxx and KLxxxx series.

High Density Terminals (HD Terminals)

Fig. 9: High Density Terminals

The terminals from these series with 16 terminal points are distinguished by a particularly compact design, as the packaging density is twice as large as that of the standard 12 mm bus terminals. Massive conductors and conductors with a wire end sleeve can be inserted directly into the spring loaded terminal point without tools.

Wiring HD Terminals

The High Density Terminals of the ELx8xx and KLx8xx series doesn't support pluggable wiring.

Ultrasonically "bonded" (ultrasonically welded) conductors

Ultrasonically "bonded" conductors

It is also possible to connect the Standard and High Density Terminals with ultrasonically "bonded" (ultrasonically welded) conductors. In this case, please note the tables concerning the wire-size width!

3.6 Contact assignment

Fig. 10: KL6224 - Contact assignment

Contact assignment

Terminal point		Description	
Name	No.		
Input 1	1	Input 1	
+ 24 V	2	+ 24 V	
Input 2	3	Input 2	
+ 24 V	4	+ 24 V	
Input 3	5	Input 3	
+ 24 V	6	+ 24 V	
Input 4	7	Input 4	
+ 24 V	8	+ 24 V	
+ 24 V	9	+ 24 V	
0 V	10	0 V	
+ 24 V	11	+ 24 V	
0 V	12	0 V	
+ 24 V	13	+ 24 V	
0 V	14	0 V	
+ 24 V	15	+ 24 V	
0 V	16	0 V	

3.7 LED display

Fig. 11: KL6224 - LED display

LED display

LED	Color	Meaning	
RUN	green	These LEDs indicate the terminal's operating state:	
		off	no data transfer on the K-bus
		flashes	data transmission on the K-bus
State Ch. 1 - 4	green	on / off	Status of the signal line (if configured as STD in / out)
		flashes briefly twice	establishing IO-Link communication
		permanently flashing	IO-Link communication established and in operation

4 KS2000 Configuration Software

4.1 KS2000 - Introduction

The <u>KS2000</u> configuration software permits configuration, commissioning and parameterization of bus couplers, of the affiliated bus terminals and of Fieldbus Box Modules. The connection between bus coupler / Fieldbus Box Module and the PC is established by means of the serial configuration cable or the fieldbus.

Fig. 12: KS2000 configuration software

Configuration

You can configure the Fieldbus stations with the Configuration Software KS2000 offline. That means, setting up a terminal station with all settings on the couplers and terminals resp. the Fieldbus Box Modules can be prepared before the commissioning phase. Later on, this configuration can be transferred to the terminal station in the commissioning phase by means of a download. For documentation purposes, you are provided with the breakdown of the terminal station, a parts list of modules used and a list of the parameters you have modified. After an upload, existing fieldbus stations are at your disposal for further editing.

Parameterization

KS2000 offers simple access to the parameters of a fieldbus station: specific high-level dialogs are available for all bus couplers, all intelligent bus terminals and Fieldbus Box modules with the aid of which settings can be modified easily. Alternatively, you have full access to all internal registers of the bus couplers and intelligent terminals. Refer to the register description for the meanings of the registers.

Commissioning

The KS2000 software facilitates commissioning of machine components or their fieldbus stations: Configured settings can be transferred to the fieldbus modules by means of a download. After a *login* to the terminal station, it is possible to define settings in couplers, terminals and Fieldbus Box modules directly *online*. The same high-level dialogs and register access are available for this purpose as in the configuration phase.

The KS2000 offers access to the process images of the bus couplers and Fieldbus Box modules.

- Thus, the coupler's input and output images can be observed by monitoring.
- Process values can be specified in the output image for commissioning of the output modules.

All possibilities in the *online mode* can be used in parallel with the actual fieldbus mode of the terminal station. The fieldbus protocol always has the higher priority in this case.

4.2 Configuration of the KL6224

Connect the configuration interface of your fieldbus coupler with the serial interface of your PC via the configuration cable and start the *KS2000* Configuration Software.

Click on the *Login* button. The configuration software will now load the information for the connected fieldbus station.

In the example shown, this is

- a BK9000 Ethernet Coupler
- a KL1xx2 Digital Input Terminal
- a KL6224 IO-Link terminal
- a KL9010 bus end terminal

Fig. 13: Display of the fieldbus station in KS2000

The left-hand KS2000 window displays the terminals of the fieldbus station in a tree structure. The right-hand KS2000 window contains a graphic display of the fieldbus station terminals.

In the tree structure of the left-hand window, click on the plus-sign next to the terminal whose parameters you wish to change (item 1 in the example).

Fig. 14: KS2000 branches for channel 1 of the KL6224

For the KL6224, the branches *Register*, *Settings* and *ProcData* are displayed:

- <u>Register [> 25]</u> permits direct access to the registers of the KL6224.
- Dialog boxes for the parameterization of the KL6224 can be found under <u>Settings [> 26]</u>.
- ProcData displays the process data of the KL6224.

4.3 Register

You can access the registers of the KL6224 directly under *Register*. The meaning of the register is explained in the register overview [> 38].

KS2000		_ 🗆 🗙
🏭 Project Online Options Help		
	8	
[⊕] Pos 0: BK9000-0000 (BK9000)		
Pos 1:KL1xx2-0000 (2 channel dig. input)	Register	<u> </u>
Pos 2: KL6224-0000 (1 channel communication)		
📄 😓 Channel 1	000 0x0000 0 0000 0000 0000 0000	
🔁 Settings	▶ 002 0x0000 0 0000 0000 0000 0000	
ProcData		
Pos 3: KL9010-0000 (End terminal)		
	006 0x0000 0 0000 0000 0000 0000	
	007 0x0000 0 0000 0000 0000 0000	
	008 0x1850 6224 0001 1000 0101 0000	
	009 0x0100 256 0000 0001 0000 0000	
	010 0x0160 352 0000 0001 0110 0000	
	011 0x0160 352 0000 0001 0110 0000	
	012 0x6060 24672 0110 0000 0110 0000	
	013 0x0001 1 0000 0000 0001	
	014 0x0003 3 0000 0000 0001 0011	
	015 0x0000 0 0000 0000 0000 0000	
	020 0x0000 0 0000 0000 0000 0000 021 0x0000 0 0000 000	
		<u>R</u> efresh
Online Check diagnostic data OK Resume ohne Fehler		
Status	Online 14.01.2013 09:	10 //
J	,	11

Fig. 15: Register view in KS2000

The screenshot shows the registers of the KL6224.

4.4 Settings

Start the KS2000 Configuration Software.

Beckhoff KS	2000		
Project Online	Options Help		
		2	۱
Welcome to KS200	00 !		*
Status	OnlineStatus	18.03.2014	18:16 //

Fig. 16: KS2000 - Starting the configuration software

Communication channel

The communication between KS2000 and the KL6224 can take place either via the fieldbus (**via ADS**) or via a serial cable (**via COM** interface).

Click on Options/Communication channel to select the communication channel.

Fig. 17: KS2000 - Selecting the communication channel

Login

Click on Login. 📕

The fieldbus station is displayed as a tree structure.

BECKHOFF

Fig. 18: KS2000 - Display of the fieldbus station

Insert the IO-Link devices

There are three options to integrate an IO-Link device:

- 1. <u>Automatic scan [▶ 27]</u> of the IO-Link ports, [Scan devices] button
- 2. <u>Manual insertion [> 28]</u> via catalog, [Catalog] button
- 3. Import the device description [> 30], [Import Device Description] button

General	General	
⊡-Port1 Settings Parameter	Port1: 0-Link Device	Catalog
Port2	Port2: IO-Link Device	Catalog
Settings Parameter	Port3: 0-Link Device	Catalog
⊡- Port3	Port4: 0-Link Device	Catalog
Parameter Port4 Settings	Import Device Description Scan Devices	
Parameter	K-Bus Settings	
	Use fix 14 Byte K-Bus	
	V 1,1,0,3	ð IO-Link

Fig. 19: Insert the IO-Link devices

Automatic scan of the IO-Link ports

Connect the IO-Link sensor to the KL6224.

Switch on the Bus Coupler with the KL6224.

Click on *Login* to connect to the fieldbus station and read the modified KL6224 process image. In the *General* dialog click on the [Scan devices] button.

General	General	
Settings	Port1: 0-Link Device	Catalog
Port2	Port2: IO-Link Device	Catalog
Settings Parameter	Port3: 0-Link Device	Catalog
⊡- Port3	Port4: 0-Link Device	Catalog
Parameter - Port4	Import Device Description Scan Devices	
Settings Parameter		
	K-Bus Settings	
	Use fix 14 Byte K-Bus	
	V1102	
	V 1,1,0,3	😢 IO-Link

Fig. 20: Automatic scan of the IO-Link ports

Communication Mode For scanning, the Communication mode must not be set to Communication (Port1/Settings).

General Port1 Settings Parameter Port2 Port3 Port4	Settings Information DeviceDescription: VendorID: IO-Link Revision: V 1.0	DeviceID: 0x000000
	Start-up checks Check VendorID Check DeviceID	Cycletime Master Cycletime in ms 2.3 set
	Communication mode communication StdDigIn communication	Error Reaction Set Input Data to 0
	Advanced	

Fig. 21: Display of the detected IO-Link devices

The detected IO-Link devices are displayed, and the required process data are created.

Manual insertion via catalog

In the General dialog click on the [Catalog] button.

BECKHOFF

General	General	
- Settings Parameter	Port1: 0-Link Device	Catalog
Port2	Port2: 0-Link Device	Catalog
Parameter	Port3: IO-Link Device	Catalog
Port3	Port4: 0-Link Device	Catalog
Parameter	Import Device Description Scan Devices]
Parameter	K-Bus Settings	
	🔲 Use fix 14 Byte K-Bus	
	V 1,1,0,3	🛛 IO-Link

Fig. 22: Manual insertion via catalog

IO-Link Device ca	atalog		×
none Std-I/O dig in dig out			
	create Device	ОК	Abbrechen

Fig. 23: Calling the create Device dialog

use the create Device dialog to manually create an IO-Link device

create Device	×
Identification	Processdata length Settings
Vendor Name Vendor ID	in 0 bit min Cycle Time 2,3 ms
Device Name Device ID	out 0 bit 🗖 S-Pdu supported
	OK Abbrechen

Fig. 24: The create Device dialog

with the main communication parameters.

Import the device description

In the General dialog click on the [Import Device Description] button.

General	General	
⊡ Port1	Port1: IO-Link Device	Catalog
Parameter	Port2: IO-Link Device	Catalog
- Settings Parameter	Port3: IO-Link Device	Catalog
- Port3	Port4: IO-Link Device	Catalog
Parameter	/ Import Device Description Scan Devices	
⊡ Port4	Import Device Description Scan Devices	
In Parameter	K-Bus Settings	
	Optimized Mode	
	Use fix 14 Byte K-Bus	
	V 1,1,0,3	😢 IO-Link

Fig. 25: Import the device description

The XML files for the IO-Link devices are stored in the IO-Link folder of the KS2000 (e.g. under Windows 7 in the folder C:\Program Files (x86)\KS2000_V4\IOLink)

Open					? ×
Look in:	C KS2000_V4		•	+ 🗈 💣 🎟•	
Recent Desktop My Documents My Computer	IOLink Report SnvtTypes TcTerminals TerminalResour test2 test2b TwinCATTermin				
My Network Places	File name:			-	Open Cancel
	Files of type:	IO-Link description (*.xml)		•	

Fig. 26: Selecting the XML file

Select the XML file for the required sensor and open it.

Now continue scanning the IO-Link ports (see <u>above [▶ 27]</u>).

The detected IO-Link devices are displayed, and the required process data are created.

Always import IODD

Always read in existing IODDs before scanning or manually inserting IO-Link devices, in order to obtain further sensor-specific information.

K-bus interface

Please note: When changing IO-Link devices the following message may occur.

Info 🔀
K-Bus interface changed
ОК

Fig. 27: The K-bus interface of the KL6224 has changed

This message indicates that the K-bus interface of the KL6224 has changed, because the connection of a further IO-Link device has changed the process image of the KL6224. However, this message does not affect the integration of IO-Link devices.

IO-Link port settings

In the General dialog click on Settings for the required port.

General	Settings
Port1 Settings Port2 Settings Port2 Parameter	Information Device description: Vendor ID: 0x001A Device ID: 0x0FDEF7
Port3 Settings Parameter Port4 Settings Parameter	ID-Link Revision: V 1.0 Start-up checks Cycle time ✓ check Vendor ID Master cycle time in ms ✓ check Device ID 2.3
	Communication mode Error reaction
	Advanced

StartUpChecks

This parameter can be used to specify that the vendor ID and the device ID should be checked when the IO-Link device starts up.

CycleTime

Specifies the cycle time for the IO-Link master

Communication mode

An IO-Link device can be operated in different modes. The default mode for IO-Link devices is Communication.

Error reaction

If this checkbox is checked, the input data are set to 0 in the event of an error.

Advanced

Click on [Advanced] to open the dialog for the advanced settings.

Advanced	×
Data Storage	Timestamp
🗖 enable	🔲 enable Input
nable upload	
Process Data Format	
only Octet String	
	Cancel OK

Fig. 29: Advanced settings

Data Storage

Please note the sensor versions:

- V1.0: Data Storage is not supported
- V1.1: Data Storage is supported: in delivery state (default) data (sensor parameters) are stored.

Process Data Format

Here you can adjust the process data format.

If the checkbox *only Octet String* is checked, complex data types (process data) are created as octet string in the interest of simplification.

5 Programming

5.1 Data structures

5.1.1 Process image

The process image of the KL6224 consists of a 6-byte parameter data block and a 6-, 8-, 18-, 30- or 42-byte process data block.

The result is a 12-, 14-, 24-, 36- or 48-byte process image.

The size of the process image can be set via the KS2000 configuration software, or fieldbus-specific via the Bus Coupler. It is stored in register R27 of the KL6224.

After changing the process image the Bus Coupler must be restarted for the modified process image to take effect.

Please refer to chapter <u>Firmeware version of the Bus Couplers [> 50]</u> to find out which process images your Bus Coupler supports.

Description of the process images

Selection of the process image

The process image should not be larger than necessary for operating your IO-Link devices! This saves bandwidth for the higher-level fieldbus and the K-bus. Since only 12 bytes can be transferred to the KL6224 in a K-bus cycle, the update rate of the other terminals is also optimally fast with minimal selection.

12-byte process image

The 12-byte process image consists of a 6-byte parameter data block and a 6-byte process data block.

Output data (PLC -> KL6224)

Paramete	er data b	lock (6 byte	es)			Process d	ata block (6	6 bytes)			
Byte 0	Byte 1	Byte 2	Byte 3	yte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 By					Byte 10	Byte 11	
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut5

Input data (KL6224 -> PLC)

Paramete	er data bl	lock (6 byte	s)			Process d	ata block (6	bytes)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 By					Byte 10	Byte 11
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	DataIn0	DataIn1

Key

CB n: Control byte n of the KL6224 SB n: Status byte n of the KL6224 Para Out n: Output parameter, byte n Para In n: Input parameter, byte n StatusCH n: Status information of IO-Link device n DataOut n: Output data byte n DataIn n: Input data byte n

12-byte process image, compressed mode

In compressed mode the data are compacted in order to save space (e.g. for CANopen Bus Coupler). It can be activated via the parameter <u>Master Control (register R41 on register page 4) [> 41]</u>. If compressed mode is active, it applies to all IO-Link ports.

The compressed mode is also available for the larger process images (14, 24, 36 and 48 bytes). For the larger process images the structure of the mixed data block is exactly as shown here, and the process data block then includes the further data bytes from DataOut2/DataIn2.

Output data (PLC -> KL6224)

Mixed da	ta block	(6 bytes)				Process d	ata block (6	6 bytes)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2 ¹ or DataOut ²	ParaOut3 ¹ or DataOut ²	DataOut2	DataOut3	DataOut4	DataOut5	DataOut6	DataOut7

Input data (KL6224 -> PLC)

Mixed dat	a block (6 k	oytes)				Process d	ata block (6	6 bytes)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
SB0 ¹ or StatusCh 1/2 ²	SB1 ¹ or StatusCh3 /4 ²	Paraln0	Paraln1	Paraln3 ¹ or Dataln0 ²	Paraln4 ¹ or Dataln1 ²	Dataln2	Dataln3	DataIn4	Dataln5	Dataln6	DataIn7

¹) for register communication (see chapter <u>Control and status byte [> 37]</u>)

²) for process data mode

Key

CB n: Control byte n of the KL6224 SB n: Status byte n of the KL6224 Para Out n: Output parameter, byte n Para In n: Input parameter, byte n StatusCh1/2: Status information of IO-Link device n (4-bit low = port 1 / 4-bit high = port 2) StatusCh3/4: Status information of IO-Link device n (4-bit low = port 3 / 4-bit high = port 4) DataOut n: Output data byte n DataIn n: Input data byte n

14-byte process image

The 14-byte process image consists of a 6-byte parameter data block and an 8-byte process data block.

Output data (PLC -> KL6224)

Parame	ter data	block (6	bytes)			Process	data blo	ock (8 by	/tes)				
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13
CB0	CB1	ParaOu t0	ParaOu t1	ParaOu t2	-	DataOu t0	DataOu t1	DataOu t2	DataOut 3	DataOut4	DataOut5	DataOut6	DataOut7

Input data (KL6224 -> PLC)

Parame	ter data	block (6	bytes)			Process	data blo	ock (8 by	vtes)				
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	Status Ch1			StatusC h4	DataIn0	Dataln1	Dataln2	Dataln3

Key

See 12-byte process image.

24-byte process image (default)

The 24-byte process image consists of a 6-byte parameter data block and an 18-byte process data block. This setting is enabled in the delivery state of the KL6224.

Output data (PLC -> KL6224)

Paramete	er data b	lock (6 byte	es)			Process d	ata block (1	8 bytes)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut5

Process	Process data block (18 bytes, continuation)													
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21	Byte 22	Byte 23			
DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut14	DataOut15	DataOut16	DataOut17			
6	7	8	9	10	11	12	13							

Input data (KL6224 -> PLC)

Paramete	er data bl	ock (6 byte	es)			Process d	ata block (1	8 bytes)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	DataIn0	DataIn1

Process	Process data block (18 bytes, continuation)													
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21	Byte 22	Byte 23			
DataIn2	DataIn3	DataIn4	DataIn5	DataIn6	DataIn7	Dataln8	DataIn9	DataIn10	DataIn11	Dataln12	DataIn13			

Key

See 12-byte process image.

36-byte process image

The 36-byte process image consists of a 6-byte parameter data block and a 30-byte process data block.

Output data (PLC -> KL6224)

Parame	ter data	block (6 by	/tes)			Process d	ata block (3	80 bytes)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut25

Process	data bloci	(30 bytes	s, continu	ation)						Process data block (30 bytes, continuation)													
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21		Byte 35												
DataOut 6	DataOut 7	DataOut 8	DataOut 9	DataOut 10	DataOut11	DataOut12	DataOut13	DataOut14	DataOut15		DataOut29												

Input data (KL6224 -> PLC)

Parameter data block (6 bytes)						Process data block (30 bytes)						
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	DataIn0	DataIn1	

Process data block (30 bytes, continuation)													
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21		Byte 35		
DataIn2	DataIn3	DataIn4	DataIn5	DataIn6	DataIn7	DataIn8	DataIn9	DataIn10	DataIn11		DataIn13		

Key

See 12-byte process image.

48-byte process image

The 48-byte process image consists of a 6-byte parameter data block and a 42-byte process data block.

Output data (PLC -> KL6224)

Parameter data block (6 bytes)						Process data block (42 bytes)						
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut25	

Process data block (42 bytes, continuation)													
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21		Byte 48		
DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut12	DataOut13	DataOut14	DataOut15		DataOut41		
6	7	8	9	10	11								

Input data (KL6224 -> PLC)

Parameter data block (6 bytes)					Process data block (42 bytes)							
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	Dataln0	DataIn1	

Process data block (42 bytes, continuation)												
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21		Byte 48	
DataIn2	DataIn3	DataIn4	DataIn5	DataIn6	Dataln7	Dataln8	Dataln9	DataIn10	DataIn11		DataIn37	

Key

See 12-byte process image.
5.1.2 Control and status byte

Register communication

Control byte (for register communication)

The control byte (CB) is located in the <u>output image [>33]</u>, and is transmitted from the controller to the terminal.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	R/W	Reg. no.					

Key

Bit	Name	Description					
CB.7	RegAccess	1 _{bin}	Register communication switched on				
CB.6	R/W	0 _{bin} Read access					
		1 _{bin} Write access					
CB.5 to CB.0	Reg. no.	Register	number:				
		Enter the	Enter the number of the register [> 38] that you want to read or write				
		here.					

Status byte (for register communication)

The status byte (SB) is located in the input image [> 33], and is transmitted from terminal to the controller.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	R/W	Reg. no.					

Key

Bit	Name	Description			
SB.7	RegAccess	1 _{bin}	1 _{bin} Acknowledgement for register access		
SB.6	R	0 _{bin}	Read access		
SB.5 to SB.0	Reg. no.	Number	Number of the register that was read or written.		

Process data mode

Control and status byte in process data mode

In process data mode the control and status bytes of the KL6224 currently have no additional function.

Control byte in process data mode

The control byte (CB) is located in the <u>output image [>33]</u>, and is transmitted from the controller to the terminal.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	-	-	-	-	-	-	-

Key

Bit	Name	Description				
CB.7	RegAccess	0 _{bin} Register communication off (process data mode)				
CB.6 to CB.0	-	0 _{bin}	reserved			

Status byte in process data mode

The status byte (SB) is located in the input image [>33], and is transmitted from terminal to the controller.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	-	-	-	-	-	-	-

Key

Bit	Name	Description				
SB.7	RegAccess	O _{bin} Acknowledgement for process data mode				
SB.6 to SB.0	Error	0 _{bin} reserved				

5.1.3 Register overview

The registers are used for parameterization of the terminal and can be read or written via the <u>register</u> <u>communication [\blacktriangleright 44]</u>.

Register	Comment	Default valu	e	R/W	Memory
R0 to R3	reserved	0x0000	0 _{dec}	-	-
<u>R4 [• 39]</u>	Register page [> 40]	0x0004	4 _{dec}	R/W	
R5 to R7	reserved	0x0000	0 _{dec}	-	-
<u>R8 [) 39]</u>	Terminal description	0x1850	6224_{dec}	R	ROM
<u>R9 [Þ_39]</u>			e.g. 256 _{dec}	R	ROM
<u>R10 [) 39]</u>	Multiplex shift register	0x0160	352 _{dec}	R	ROM
<u>R11 [▶ 39]</u>	Signal channels	0x0160	352 _{dec}	R	ROM
<u>R12 [) 39]</u>	Minimum data length	0x6060	24672 _{dec}	R	ROM
<u>R13 [▶ 39]</u>	Data structure of the Bus Terminal	0x0001	1 _{dec}	R	ROM
R14	reserved	-	-	-	-
<u>R15 [) 39]</u>	Alignment register	-	-	R/W	RAM
R16 to R26	reserved	0x0000	0 _{dec}	-	-
R27	reserved	0x0001	1 _{dec}	R/W	SEEROM/RAM
R28 to R30	reserved	0x0000	0 _{dec}	-	-
<u>R31 [) 39]</u>	Code word register (not used)	0x0000	0 _{dec}	R/W	RAM
<u>R32 to R63</u> [▶ <u>39]</u>	Register for displaying the <u>register pages</u> $[\blacktriangleright 40]$	-	-	-	-

5.1.4 Register description

The registers are used for parameterization of the terminal and can be read or written via the <u>register</u> <u>communication [\blacktriangleright 44]</u>.

Registers 0 to 31 always have the same meaning. The contents of registers 32 to 63 are specified via the register page selection register ($\underline{R4} [\ge 39]$).

R4: Register page selection register

This register specifies which <u>register page [\blacktriangleright 40]</u> is displayed in registers R32 to R63 of the KL6224 (default: 0x0000).

The register pages provide access to the IO-Link configuration, diagnostics and parameterization of the KL6224.

R8: Terminal description

Register R8 contains the terminal identifier in hexadecimal coding: 0x1850 (6224_{dec})

R9: Firmware version

Register R9 contains the firmware revision level of the terminal in hexadecimal coding, e. g. 0x0100 (256_{dec}).

R10: Shift register length

0x0160

R11: Number of signal channels

0x0160

R12: Minimum data length

0x6060

R13: Data structure of the Bus Terminal

Register R13 contains the data structure of the Bus Terminal.

R15: Alignment register

R31: Code word register

The code word register of the KL6224 has no function for the user, since all settings that are specified via registers R32 to R63 (register pages) immediately take effect in the KL6224.

Register pages

In registers R32 to R64 the KL6224 shows the IO-Link configuration, diagnostics and parameterization of the register page [\blacktriangleright 40] selected with register R4 [\triangleright 39].

Register page 2 (RP2)

Write 2 into the register page selection register R4 [> 39] to facilitate access to register RP2.R32.

RP2.R32

This register specifies the size of the process image of the KL6224.

BECKHOFF

Value	Process image	Default
0002 _{hex}	<u>12-byte process image [} 33]</u> (6 bytes parameter interface and 6 bytes IO-Link process data)	0004 _{hex}
0004 _{hex}	24-byte process image [34]	
0005 _{hex}	36-byte process image [35]	_
0006 _{hex}	48-byte process image [35]	_
further	reserved	

After changing the process image the Bus Coupler must be restarted for the modified process image to take effect.

Register pages 4 to 9

See chapter <u>Register pages for IO-Link parameters [} 40]</u>.

5.1.5 Register pages for IO-Link parameters

The parameters of the KL6224 can be accessed via register communication or via the <u>KS2000 [> 21]</u> configuration software. The register model of the terminals is used as a basis. The KL6224 has 64 registers (words). Registers 0 to 31 always have the same meaning. The contents of registers 32 to 63 are specified via the register page selection register (<u>R4 [> 39]</u>).

A register page has 32 registers (64 bytes). The following register pages are used:

- <u>Register page 4 [) 41]</u>: Parameter(s) for channel 1 (IO-Link device 1)
- Register page 5: Parameter(s) for channel 2 (IO-Link device 2)
- Register page 6: Parameter(s) for channel 3 (IO-Link device 4)
- Register page 7: Parameter(s) for channel 4 (IO-Link device 4)
- Register page 8 [) 43]: CMD/status interface and acyclic data for IO-Link devices
- <u>Register page 9 [) 43]</u>: acyclic data

Assignment of the IO-Link parameters to the register page and the terminal register

Register page 4 (RP4): Parameter(s) for channel 1 (IO-Link device 1)

KL6224 registers	Description	Name		Comm	ent			
RP4.R32	IO-Link	IO-Link De	eviceID LowWord	Device	ID of th	e IO-L	ink device	
RP4.R33	master	IO-Link De						
RP4.R34	configuration	IO-Link Ve	endorID LowWord	Vendor	r ID of th	ne IO-I	Link device	
RP4.R35	The master	IO-Link Ve	endorID HighWord					
RP4.R36	parameters for operating an IO-Link	LowByte	owByte IO-Link revision: Bit 03: MinorRev Bit 47: MajorRev		ID of the specification version based on which the IO-Link device communicates.			
	device are entered here (similar to object 0x8000 of	HighByte	FrameCapability: Bit 0: SPDU Bit 1: Type1 Bit 7: PHY1	The Frame Capability indicates certain functionalities of the IO-Link device (e.g. supported).				
RP4.R37	the EL6224).	LowByte	minCycleTime: Bit 6, 7: Time Base Bit 05: Multiplier	See tal	ole belov	w (<u>tim</u>	<u>e base [▶ 41]</u>)	
	_	HighByte	OffsetTime	reserve	ed			
RP4.R38		LowByte	ProcDataLenght	Bit 7	Byte	0 _{bin}	Length is counted in bits	
			Input (in IO-Link format)			1 _{bin}	Length is counted in bytes	
			(In IO-Link Ionnal)	Bit 6	SIO	1 _{bin}	The device supports the standard IO mode	
				Bit 0 4	Length		Length of the process data	
		HighByte	ProcDataLenght Output (in IO-Link format)	see Lo	wByte			
RP4.R39		Compatibl	eld	Currently not used				
RP4.R40	-	-		reserve	•			
RP4.R41		MasterCo	ntrol	0	Channe	el 1 is	inactive	
				1	Channe	el 1 is	digital input	
				2	Channe	el 1 is	digital output	
				3			IO-Link port and es via the IO-Link protocol	
				4	reserve			
				5			IO-Link port and es via the IO-Link protocol	
					with <u>co</u> Note: If channe	<u>mpres</u> f comp el 1, it	sed mode [▶ <u>33]</u> . bressed mode is active for is active for all channels that IO-Link ports.	

Time Base

Time Base	Time base meaning	Calculation	Min. Cycle Time
00 _{bin}	0.1 ms	Multiplier x Time Base	0.06.3 ms
01 _{bin}	0.4 ms	6.4 ms + Multiplier x Time Base	6.431.6 ms
10 _{bin}	1.6 ms	32.0 ms + Multiplier x Time Base	32.0132.8 ms
11 _{bin}	6.4 ms	134.4 ms + Multiplier x Time Base	134.4537.6 ms

BECKHOFF

KL6224 registers	Description	Name		Comm	omment		
RP4.R42	IO-Link	IO-Link DeviceID LowWord Device ID of the IO-Link device		Link device			
RP4.R43	actual data:	IO-Link DeviceID HiWord IO-Link VendorID LowWord					
RP4.R44	The actual data of the			Vendo	Vendor ID of the IO-Link device		Link device
RP4.R45	connected	IO-Link Ve	endorID HiWord				
RP4.R46		LowByte	IO-Link revision Bit 03: MinorRev Bit 47: MajorRev				n version based on which the nunicates.
here. This is used for comparison with the	HighByte	FrameCapability: Bit 0: SPDU Bit 1: Type1 Bit 7: PHY1	The Frame Capability indicates certain functionalities of the IO-Link device (e.g. SPDU supported).				
RP4.R47	7 master parameters described above Bit 05: Multiplier See table below (<u>time base [▶ 42]</u>		ne base [▶_42])				
	(similar to	HighByte	OffsetTime	reserved			
RP4.R48	object	bject x9000 of ne EL6224). LowByte Input (in IO-Link forma		Bit 7	Byte	0 _{bin}	Length is counted in bits
						1 _{bin}	Length is counted in bytes
	uie EL0224).		(In IO-LINK format)	Bit 6	SIO	1 _{bin}	The device supports the standard IO mode
				Bit 0 4	Length	1	Length of the process data
		HighByte ProcDataLenght Output (in IO-Link format)		see Lo	wByte		
RP4.R49		-		reserved			
RP4.R50		-		reserved			
RP4.R51		-		reserved			

Time Base	Time base meaning	Calculation	Min. Cycle Time
00 _{bin}	0.1 ms	Multiplier x Time Base	0.06.3 ms
01 _{bin}	0.4 ms	6.4 ms + Multiplier x Time Base	6.431.6 ms
10 _{bin}	1.6 ms	32.0 ms + Multiplier x Time Base	32.0132.8 ms
11 _{bin}	6.4 ms	134.4 ms + Multiplier x Time Base	134.4537.6 ms

KL6224 registers	Description	Name		Comment	
RP4.R52	IO-Link	LowByte	IO-Link state	0	Inactive
	diagnostics		The value of the IO-	1	DigInput
		2	DigOutput		
		3	EstablishComm		
			Link master state	4	InitMaster
			machine (5	InitDevice
			similar to object	6	reserved
			0xA000 of the EL6224).	7	reserved
			LL0224).	8	Operate
		9	Stop		
		HighByte	ghByte LostFrames	telegrams. This value is	he number of lost IO-Link deleted whenever IO-Link incremented continuously.

Register page 5 (RP5): Parameter(s) for channel 2 (IO-Link device 2)

Structure like register page 4 [41]

Register page 6 (RP6): Parameter(s) for channel 3 (IO-Link device 3)

Structure like register page 4 [▶ 41]

Register page 7 (RP7): Parameter(s) for channel 4 (IO-Link device 4)

Structure like register page 4 [▶ 41]

Register page 8 (RP8): CMD/status interface and acyclic data for IO-Link device

KL6224 registers	Description	Name		Comment
RP8.R32	Cmd	TACYCLICKBUSCMD_CMD	_START	0x0000001
		TACYCLICKBUSCMD_CMD_ACK		0x0000002
		TACYCLICKBUSCMD_CMD	_READ_CH1	0x0000010
		TACYCLICKBUSCMD_CMD	_READ_CH2	0x0000020
		TACYCLICKBUSCMD_CMD	_READ_CH3	0x0000030
		TACYCLICKBUSCMD_CMD	_READ_CH4	0x0000040
		TACYCLICKBUSCMD_CMD	_WRITE_CH1	0x00000100
		TACYCLICKBUSCMD_CMD	_WRITE_CH2	0x0000200
		TACYCLICKBUSCMD_CMD	_WRITE_CH3	0x0000300
		TACYCLICKBUSCMD_CMD	_WRITE_CH4	0x00000400
		TACYCLICKBUSCMD_CMD_SCAN_CH1		0x00001000
		TACYCLICKBUSCMD_CMD	0x00002000	
		TACYCLICKBUSCMD_CMD_SCAN_CH3		0x00003000
		TACYCLICKBUSCMD_CMD_SCAN_CH4		0x00004000
RP8.R33	Status	TACYCLICKBUSCMD_STATUS_IDLE		0x0000000
		TACYCLICKBUSCMD_STATUS_BUSY		0x0000001
		TACYCLICKBUSCMD_STATUS_DATAREADY		0x0000002
		TACYCLICKBUSCMD_STATUS_DATAERROR		0x0000003
RP8.R34		SPDU / ISDU Subldx		SPDU / ISDN index
RP8.R35		LowByte	Length	Length of the data
		HighByte	SPDU / ISDU SubIdx	SPDU / ISDN subindex
RP8.R36	Acyclic data for the			
	IO-Link device			
RP8.R61				

Register page 9 (RP9): Further acyclic data for the IO-Link device

KL6224 registers	Description	Value	Comment
RP9.R0	Further acyclic data for the IO-Link device		
RP9.R61			

Process of an acyclic query

The process of an acyclic query to an IO-Link device is as follows:

1. Reading of register page 8 R33 (status) to ascertain whether status is Idle

- 2. If status = Idle, write TACYCLICKBUSCMD_CMD_START to register page 8 R32 (Cmd)
- 3. Write acyclic data into the buffer from register page 8, R36, as required
- 4. Start the service by writing the corresponding services in register page 8 R32 (Cmd)
- 5. Read register page 8 R33 (status) until no longer busy
- 6. Read acyclic data from the buffer from register page 8, R36, as required
- 7. Conclude the service by writing TACYCLICKBUSCMD_CMD_ACK to register page 8 R32 (Cmd)

5.2 Examples of Register Communication

The numbering of the bytes in the examples corresponds to the display without word alignment.

5.2.1 Example 1: Reading the firmware version from register 9

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0x89 (1000 1001 _{bin})	0xXX	0xXX

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 not set means: reading the register.
- Bits 0.5 to 0.0 specify the register number 9 with 00 1001_{bin}.
- The output data word (byte 1 and byte 2) has no meaning during read access. To change a register, write the required value into the output word.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DataIN1, high byte	Byte 2: DatalN1, low byte
0x89	0x33	0x41

Explanation:

- The terminal returns the value of the control byte as a receipt in the status byte.
- The terminal returns the firmware version 0x3341 in the input data word (byte 1 and byte 2). This is to be interpreted as an ASCII code:
 - ASCII code 0x33 represents the digit 3
 - ASCII code 0x41 represents the letter A The firmware version is thus 3A.

5.2.2 Example 2: Writing to an user register

Code word

In normal mode all user registers are read-only with the exception of Register 31. In order to deactivate this write protection you must write the code word (0x1235) into Register 31. If a value other than 0x1235 is written into Register 31, write protection is reactivated. Please note that changes to a register only become effective after restarting the terminal (power-off/power-on).

I. Write the code word (0x1235) into register 31.

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0xDF (1101 1111 _{bin})	0x12	0x35

44

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 set means: writing to the register.
- Bits 0.5 to 0.0 specify the register number 31 with 01 1111_{bin}.
- The output data word (byte 1 and byte 2) contains the code word (0x1235) for deactivating write protection.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DatalN1, high byte	Byte 2: DatalN1, low byte
0x9F (1001 1111 _{bin})	0xXX	0xXX

Explanation:

- The terminal returns a value as a receipt in the status byte that differs only in bit 0.6 from the value of the control byte.
- The input data word (byte 1 and byte 2) is of no importance after the write access. Any values still displayed are invalid!

II. Read Register 31 (check the set code word)

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0x9F (1001 1111 _{bin})	0xXX	0xXX

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 not set means: reading the register.
- Bits 0.5 to 0.0 specify the register number 31 with 01 1111_{bin}.
- The output data word (byte 1 and byte 2) has no meaning during read access.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DatalN1, high byte	Byte 2: DataIN1, low byte
0x9F (1001 1111 _{bin})	0x12	0x35

Explanation:

- The terminal returns the value of the control byte as a receipt in the status byte.
- The terminal returns the current value of the code word register in the input data word (byte 1 and byte 2).

III. Write to Register 32 (change contents of the feature register)

Output data

Byte 0: Control byte	Byte 1: DatalN1, high byte	Byte 2: DatalN1, low byte
0xE0 (1110 0000 _{bin})	0x00	0x02

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 set means: writing to the register.
- Bits 0.5 to 0.0 indicate register number 32 with 10 0000_{bin}.
- The output data word (byte 1 and byte 2) contains the new value for the feature register.

Observe the register description!

The value of 0x0002 given here is just an example!

The bits of the feature register change the properties of the terminal and have a different meaning, depending on the type of terminal. Refer to the description of the feature register of your terminal (chapter *Register description*) regarding the meaning of the individual bits before changing the values.

Input data (response from the Bus Terminal)

Byte 0: Status byte	Byte 1: DataIN1, high byte	Byte 2: DatalN1, low byte
0xA0 (1010 0000 _{bin})	0xXX	0xXX

Explanation:

- The terminal returns a value as a receipt in the status byte that differs only in bit 0.6 from the value of the control byte.
- The input data word (byte 1 and byte 2) is of no importance after the write access. Any values still displayed are invalid!

IV. Read register 32 (check changed feature register)

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0xA0 (1010 0000 _{bin})	0xXX	0xXX

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 not set means: reading the register.
- Bits 0.5 to 0.0 indicate register number 32 with 10 0000_{bin}.
- The output data word (byte 1 and byte 2) has no meaning during read access.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	s byte Byte 1: DatalN1, high byte Byte 2: DatalN1,	
0xA0 (1010 0000 _{bin})	0x00	0x02

Explanation:

- The terminal returns the value of the control byte as a receipt in the status byte.
- The terminal returns the current value of the feature register in the input data word (byte 1 and byte 2).

V. Write register 31 (reset code word)

Output Data

Byte 0: Control byte	rol byte Byte 1: DataOUT1, high byte Byte 2: DataOU	
0xDF (1101 1111 _{bin})	0x00	0x00

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 set means: writing to the register.
- Bits 0.5 to 0.0 specify the register number 31 with 01 1111_{bin}.
- The output data word (byte 1 and byte 2) contains 0x0000 for reactivating write protection.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DataIN1, high byte Byte 2: DataIN1, low b	
0x9F (1001 1111 _{bin})	0xXX	0xXX

Explanation:

- The terminal returns a value as a receipt in the status byte that differs only in bit 0.6 from the value of the control byte.
- The input data word (byte 1 and byte 2) is of no importance after the write access. Any values still displayed are invalid!

5.3 Accessing IO-Link parameters

The parameters of the KL6224 IO-Link master terminal can be accessed via the parameter data block. Write and read access are documented below, including examples.

Writing a parameter

The following sequence should be used for writing a parameter:

First check whether the previous access was fully completed. To do this, assess status byte 1: Bits 4 to 7 should be 0_{bin} . If this is not the case, control bytes 0 and 1 should be set to 0, until bits 4 to 7 in status byte 1 are set to 0_{bin} .

Write access (PLC->KL6224): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control byte 0	Control byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Value	$01_{bin}A_5A_4A_3A_2A_1A_0$	$0100_{bin} A_9 A_8 A_7 A_6$	P ₀ P ₇	P ₈ P ₁₅	P ₁₆ P ₂₃	P ₂₄ P ₃₁

 A_0 to A_9 : bits of the parameter address

 P_0 to P_{31} : bits of the parameter value

Response to write access (KL6224->PLC): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status byte 0	Status byte 1	ParaIn0	Paraln1	Paraln2	Paraln3
Value	XXXX XXXX _{bin}	01F1 xxx1 _{bin}	Error code	Error code	Error code	Error code

x: Bits can take on any value

F: error bit.

F=0_{bin}: Write access was successful.

F=1_{bin}: Write access was not successful. Bytes 2 to 5 contain an error code providing information about the cause of the error.

The write sequence is completed by setting the control bytes to zero:

Conclusion of write access (PLC->KL6224): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control byte 0	Control byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Value	0000 0000 _{bin}	0000 0000 _{bin}	x	х	x	x

x: The parameter values are not evaluated if the control bytes are 0x00.

Example

The list of currently projected slaves (LPS) is to be written. The IO-Link master is to communicate specifically with the IO-Link slaves with node numbers 1, 2, 3, 4, 12, 16, 17 and 30. In other words, the value 0x4003101E (0100 0000 0000 0011 0001 0000 0001 1110_{bin}) is to be written to parameter 0xA8 (1010 1000_{bin}).

Write access (PLC->KL6224): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control byte 0	Control byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Value	0110 1000 _{bin} (0x68)	0100 0010 _{bin} (0x42)	0x1E	0x10	0x03	0x40

Therefore the byte sequence 0x68 42 1E 10 03 40 has to be written in the parameter data block for the KL6224.

The terminal responds with the following data:

Response to write access (KL6224->PLC): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status byte 0	Status byte 1	ParaIn0	Paraln1	Paraln2	Paraln3
Value	XXXX XXXX _{bin}	0101 xxx1 _{bin}	0	0	0	0

The write sequence is completed with this byte sequence: 0x00 00 00 00 00 00 00

Reading a parameter

The following sequence should be used for reading a parameter:

First check whether the previous access was fully completed. This requires status 1 to be evaluated - bits 4 to 7 should be 0. If this is not the case, control bytes 0 and 1 should be set to 0, until bits 4 to 7 in status 1 are set to 0.

Read access (PLC->KL6224): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control byte 0	Control byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Value	$00_{bin} A_5 A_4 A_3 A_2 A_1 A_0$	$0100_{bin} A_9 A_8 A_7 A_6$	x	x	x	x

A₀ to A₉: bits of the parameter address

x: The parameter values are not evaluated

Response to read access (KL6224->PLC): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status byte 0	Status byte 1	ParaIn0	Paraln1	Paraln2	Paraln3
Value	XXXX XXXX _{bin}	01F1 xxx0 _{bin}	P ₀ P ₇	P ₈ P ₁₅	P ₁₆ P ₂₃	P ₂₄ P ₃₁

x: Bits can take on any value

F: error bit.

F=0_{bin}: Read access was successful. Bytes 2 to 5 contain the parameter value.

 $F=1_{bin}$: Read access was not successful. Bytes 2 to 5 contain an error code providing information about the cause of the error.

 P_0 to P_{31} : bits of the parameter value or error code

The read sequence is completed by setting the control bytes to zero:

Conclusion of read access (PLC->KL6224): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control byte 0	Control byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Value	0000 0000 _{bin}	0000 0000 _{bin}	x	х	x	x

x: The parameter values are not evaluated if the control bytes are 0x00.

Example

The list of detected slaves (LDS) is to be determined. This requires the parameter 0xB0 (1011 0000_{bin}) to be read.

Read access (PLC->KL6224): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control byte 0	Control byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Value	0011 0000 _{bin} (0x30)	0100 0010 _{bin} (0x42)	0x00	0x00	0x00	0x00

Therefore the byte sequence $0x30\ 42\ 00\ 00\ 00\ has$ to be written in the parameter data block for the KL6224. The terminal responds with the following data:

Response to write access (KL6224->PLC): parameter data block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status byte 0	Status byte 1	Paraln0	Paraln1	Paraln2	Paraln3
Value	XXXX XXXX _{bin}	0101 xxx0 _{bin}	0x4C	0x02	0x80	0x83

In this example the IO-Link master should have detected the slaves with node numbers 2, 3, 6, 9, 23, 24, 25 and 31. It therefore responds with the parameter data 0x8380024C (1000 0011 1000 0000 0000 0010 1100_{bin})

The read sequence is completed with the byte sequence 0x00 00 00 00 00 00.

6 Appendix

6.1 Firmware version of the Bus Couplers

Required firmware

A particular firmware version may be required for operating the KL6224 IO-Link terminal on the Bus Coupler / Bus Terminals Controller (see <u>table [\blacktriangleright 51]</u> below)

In delivery state the KL6224 is set to a process image of 24 bytes.

Most Bus Couplers and Bus Terminal Controllers listed in the table support the 12-byte process image. Bus Couplers / Bus Terminals Controllers that are not listed are not yet ready for operation with 24-byte process images or higher.

The delivered firmware version is shown on the back of the Bus Coupler (see example below for CANopen).

Fig. 30: Specification of the firmware version on a Bus Coupler

If required, the firmware can be updated via the serial port (KS2000 cable required) or - depending on the bus system - via the fieldbus. The current firmware versions and the program for the firmware update are available from the Beckhoff Support [\blacktriangleright 54].

Support of the different process images by the firmware versions of the Bus Couplers / Bus Terminals Controllers

Fieldbus system	Bus Coupler / Bus Terminal Controller	Firmware version required on the Bus Coupler / Bus Terminal Controller for the				
		12-byte process im- age	24-byte process image	36-byte process image	48-byte process image	
EtherCAT	BK1120		from 08 (B8)	from 08 (B8)	from 08 (B8)	
	BK1250		all	all	all	
Lightbus	BK2020		from B1	in preparation	in preparation	
PROFIBUS	BK3120		from B9	from BB	from BB	
	BK3150		all	all	all	
	BK3500		from B9	from BB	-	
	BK3520		from B9	from BB	-	
	BC3100		from C3	from C4	-	
	BC3150		all	all	all	
	BX3100		all	all	all	
Interbus	BK4020		from B0	in preparation	in preparation	
	BC4000		from B3	in preparation	in preparation	
CANopen	BK5120		from C4	from C5	-	
	BK5150		all	all	-	
	BC5150	These Bus Couplers and Bus	all	all	all	
	BX5100		all	all	all	
DeviceNet	BK5220		(from B3)*	in preparation	-	
	BC5250		all	all	all	
	BX5200		all	all	all	
ControlNet	BK7000	Terminal Controllers	from BC	from BC	-	
Modbus	BK7300	support the 12-byte	from B2	from B4	-	
Fip IO	BK7420	process image of the KL6204.	from B1	from B1	-	
RS485	BK8000		from C2	in preparation	in preparation	
RS232	BK8100	-	from C2	in preparation	in preparation	
	BC8150		all	all	all	
	BX8000		all	all	all	
Ethernet	BK9000		from B7	from BA	from BA	
	BK9100		from B1	from B1	from B1	
	BC9000	-	from B9	from BB	from BB	
	BC9100	1	from B1	from B1	from B1	
	BC9050	1	all	all	all	
	BX9000	1	all	all	all	
PROFINET	BK9103	in preparation	in preparation	in preparation	in preparation	
EtherNet/IP	BK9105	all	all	all	all	
USB	BK9500	This Bus Coupler supports the 12-byte process image of the KL6204.	(from B1)*	in preparation	in preparation	

*) only if the Bus Coupler is set to *complete mapping of the Bus Terminals* (e.g. via the KS2000 configuration software). On delivery, these Bus Couplers are set to *compact mapping of the Bus Terminals*.

6.2 Beckhoff Identification Code (BIC)

The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016.

Fig. 31: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

- · on the packaging unit
- directly on the product (if space suffices)
- on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling and product management.

Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it.

Following information is possible, positions 1 to 4 are always present, the other according to need of production:

Posi- tion	Type of information	Explanation	Data identifier	Number of digits incl. data identifier	Example
1	Beckhoff order number	Beckhoff order number	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Unique serial number, see note below	SBTN	12	SBTNk4p562d7
3	Article description	Beckhoff article description, e.g. EL1008	1K	32	1KEL1809
4	Quantity	Quantity in packaging unit, e.g. 1, 10, etc.	Q	6	Q1
5	Batch number	Optional: Year and week of production	2P	14	2P401503180016
6	ID/serial number	Optional: Present-day serial number system, e.g. with safety products	51S	12	<mark>51S</mark> 678294
7	Variant number	Optional: Product variant number on the basis of standard products	30P	32	30PF971, 2*K183

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

Structure of the BIC

Example of composite information from positions 1 to 4 and with the above given example value on position 6. The data identifiers are highlighted in bold font:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Accordingly as DMC:

Fig. 32: Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

An important component of the BIC is the Beckhoff Traceability Number (BTN, position 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC.

NOTICE

This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information.

6.3 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: <u>www.beckhoff.com</u>

You will also find further documentation for Beckhoff components there.

Support

The Beckhoff Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- · design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline:	+49 5246 963 157
e-mail:	support@beckhoff.com
web:	www.beckhoff.com/support

Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- repair service
- · spare parts service
- hotline service

Hotline:	+49 5246 963 460
e-mail:	service@beckhoff.com
web:	www.beckhoff.com/service

Headquarters Germany

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Germany

Phone:	+49 5246 963 0
e-mail:	info@beckhoff.com
web:	www.beckhoff.com

BECKHOFF

Table of figures

Fig. 1	KL6224 - IO-Link master terminal	8
Fig. 2	Peer-to-peer communication IO-Link	10
Fig. 3	Spring contacts of the Beckhoff I/O components	12
Fig. 4	Attaching on mounting rail	13
Fig. 5	Disassembling of terminal	14
Fig. 6	Power contact on left side	15
Fig. 7	Standard wiring	17
Fig. 8	Pluggable wiring	17
Fig. 9	High Density Terminals	18
Fig. 10	KL6224 - Contact assignment	19
Fig. 11	KL6224 - LED display	20
Fig. 12	KS2000 configuration software	21
Fig. 13	Display of the fieldbus station in KS2000	23
Fig. 14	KS2000 branches for channel 1 of the KL6224	24
Fig. 15	Register view in KS2000	25
Fig. 16	KS2000 - Starting the configuration software	26
Fig. 17	KS2000 - Selecting the communication channel	26
Fig. 18	KS2000 - Display of the fieldbus station	27
Fig. 19	Insert the IO-Link devices	27
Fig. 20	Automatic scan of the IO-Link ports	28
Fig. 21	Display of the detected IO-Link devices	28
Fig. 22	Manual insertion via catalog	29
Fig. 23	Calling the create Device dialog	29
Fig. 24	The create Device dialog	29
Fig. 25	Import the device description	30
Fig. 26	Selecting the XML file	30
Fig. 27	The K-bus interface of the KL6224 has changed	31
Fig. 28	IO-Link port settings?	31
Fig. 29	Advanced settings	32
Fig. 30	Specification of the firmware version on a Bus Coupler	50
Fig. 31	BIC as data matrix code (DMC, code scheme ECC200)	52
Fig. 32	Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294	53

More Information: www.beckhoff.com/KL6224

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

