BECKHOFF New Automation Technology

Information notice pursuant to Art. 3 Para. 2 EU Data Act | EN

Industrial PC

Table of contents

1	Note	es on the documentation	5
2	Infor	rmation about the connected product	6
	2.1	Manufacturer	6
	2.2	Product(s)	6
3	Туре	e, format and estimated volume of product data	7
	3.1	Type of data	7
	3.2	Data format	7
	3.3	Estimated volume of the data	8
4	Сара	ability of generating data continuously and in real-time	9
5	Stor	age of data	10
		On the device	
	5.2	On a remote server	10
		ess, retrieval and erasure of data	
	6.1	Access and retrieval	11
		Fragure	

Version: 1.0

3

1 Notes on the documentation

This information notice serves to fulfill the pre-contractual information requirements pursuant to Art. 3 para. 2 of Regulation (EU) 2023/2854 (EU Data Act). It is intended for buyers, renters, or lessees of the connected products described below and is intended to provide a transparent and comprehensible overview of the product data generated and their handling.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without notice. Claims to modify products that have already been supplied may not be made on the basis of the data, diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, ATRO®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar®, and XTS® are registered and licensed trademarks of Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document, as well as the use and communication of its contents without express authorization, are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility model, or design are registered.

Third-party trademarks

Trademarks of third parties may be used in this documentation. You can find the trademark notices here: https://www.beckhoff.com/trademarks.

Documentation issue status

Version	Changes
1.0	First release

Industrial PC Version: 1.0 5

2 Information about the connected product

2.1 Manufacturer

Beckhoff Automation GmbH & Co. KG, Hülshorstweg 20, 33415 Verl, Germany

2.2 Product(s)

This information notice applies to the following products of Beckhoff Automation GmbH & Co. KG:

- Cxxxx (https://www.beckhoff.com/control-cabinet-pc)
- CPxxxx (https://www.beckhoff.com/panel-pcs/)
- CXxxxx (https://www.beckhoff.com/embedded-pc)
- MCxxxx (https://www.beckhoff.com/mcxxxx)

3 Type, format and estimated volume of product data

3.1 Type of data

Category	Description	Examples
Master data	Fixed, product-related identification data that does not change during use.	Manufacturer, order number, serial number, firmware version
Life cycle data	Updated usage data documenting the state or use of the device over its entire service life.	Operating hours counter, overload counter, start/stop cycles
Operating data	Runtime data generated during active operation. These depend on the operating system* and the respective applications of the users.	Log data

3.2 Data format

Operating data

OS	Logging system		Human-readable out-of-box	Export formats without additional tools
Windows	Windows Event Log	EVTX (Binary)	Via GUI (Event Viewer)	XML, CSV, Plain Text
TwinCAT/BSD®	BSD syslogd	Plain Text (RFC 3164)	Yes (cat/less)	Plain text, gzip archive
Beckhoff RT Linux®	systemd-journald (+rsyslog)	Binary (Structured)	Yes (journalctl)	JSON, text, binary export

Life cycle and master data

This includes static or updated stored values that describe the life cycle and identity of the device. Numerical formats (e.g. counter readings, version numbers) are stored in binary or integer representation, textual content (e.g. manufacturer name, product name, serial number) as ASCII or UTF-8 strings.

Industrial PC Version: 1.0 7

3.3 Estimated volume of the data

Operating data

Operating system	Logging system	Format Internal	Ø volume/day (nor- mal operation)	Comment on the fluctuation
Windows	Event Log (EVTX)	Binary		significantly more for software installations or security events
TwinCAT/BSD®	BSD syslogd	Plain Text (RFC 3164)		little, increases with debug level
Beckhoff RT Linux®	systemd-journald (+rsyslog)	Binary + Text		higher for heavily used services

Life cycle and master data can only be retrieved acyclically; depending on the individual datum, the data volume amounts to several bytes.

4 Capability of generating data continuously and in real-time

The products are capable of generating operating data continuously and in real-time when the operating system and suitable user applications are installed and running. The nature, format and scope of this data regardless of whether it is generated on the device or processed or communicated by the device - depends on the operating system and user application in use.

For these products, "continuously" means that the process data are generated at regular intervals, usually several times per second and, in rare cases, at intervals of a few seconds.

For these products, "real-time" means that the process data are always (in every case) generated within a defined time span. This time span typically ranges from a few microseconds (µs) to several seconds.

Industrial PC Version: 1.0 9

5 Storage of data

5.1 On the device

The product stores operating data directly on the device. This local storage is permanent. The data remains on the device until the user deletes it, uninstalls the operating system or software or formats or replaces the data carrier.

Depending on the operating system used, the data is stored in different locations:

- By default, Windows stores events in the Windows Event Log, divided into several channels. All logs are displayed via Event Viewer and saved as *.evtx files under C:\Windows\System32\winevt\Logs\.
- TwinCAT/BSD® uses syslog(3) and, depending on the configuration (default in /etc/syslog.conf), writes to several files under /var/log/.
- Beckhoff RT Linux® uses systemd-journald for logging by default.
 By default, the data is stored in the journal in /var/log/journal/ (persistent memory, if activated) or in RAM.

5.2 On a remote server

The products themselves are not capable of storing data on a remote server.

Data are only stored on remote servers if the connected product is linked to a service designed for this purpose and data transmission to this service is enabled. This data is stored on the remote servers until the link between the connected product and the related service is removed.

6 Access, retrieval and erasure of data

6.1 Access and retrieval

Operating system	Access method (GUI)	Access method (CLI)	Comments on the for- mat/selection	Human-read- able (out-of- the-box)
Windows	Event Viewer - Start menu → eventvwr.msc	wevtutil, PowerShell: Get-WinEvent, Get- EventLog	Internal EVTX (binary); readable via Event Viewer, CLI requires parsing/export	Yes, via Event Viewer – not directly as a raw file, only via tool
TwinCAT/ BSD®	No standard GUI, text editor/terminal	cat, less, grep on /var/log/ messages etc.	Plain text pursuant to RFC 3164, .gz for rotation	Yes, direct raw file in plain text without tool
Beckhoff RT Linux®	No standard GUI, optional WebGUI	journalctl (text, JSON, binary), if necessary cat / var/log/syslog with rsyslog	Internal binary with struct. Fields; journalctl generates text or JSON output	Yes, via journalctl - not directly from raw file, only via tool

6.2 Erasure

Data stored on the device can be reset (formatted) by the user, with the exception of information stored by the manufacturer at the factory (master and life cycle data) such as the serial number, hardware version and software version.

Data stored on a remote server can be deleted if the operating system and suitable user applications are installed and running.

Industrial PC Version: 1.0

Trademark statements
Beckhoff®, ATRO®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®, TwinCATBSD®, TwinSAFE®, XFC®, XPlanar® and XTS® are registered and licensed trademarks of Beckhoff Automation GmbH.
Third-party trademark statements
The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
the mark on a worldwide basis. Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

More Information: www.beckhoff.com/ipc

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

