Documentation

TwinCAT Safety PLC

PC based Safety Controller

‘$§I2§°": 2621'?-06-29 BECKHOFF

BEGKHUFF Table of contents

Table of contents

1

L o1 =NV o o S 5
1.1 Notes on the dOCUMENTATION i e e e e e e e e e e 5
1.2 SaAfEtY INSITUCHIONSeveeeieiieee e e e e e e e e e e e e e e e e aaeeeeesannnnes 6
121 DElIVENY STAE oo 6
1.2.2 Operator's obligation to exercise diligenCecooiiiiiiiii i 6
1.2.3 Description of safety SYMDOIS ... 7
1.3 Documentation ISSUE STALUS.........uuiiiiiiiiiie et e e 7
RS 253 0= 4 1 Te L= o3 T o1 e o 8
2.1 Extension of the Beckhoff I/O system with safety functionsc.cccccooiiiiiii 8
2.2 TWINCAT SafEty PLC ...ttt e e et e e e e et e e e e setb e e e e e e anbaeeeeeesntseeaeeanns 8
2.3 ST 1 (] 42T (o= o PRSP 8
e Yo 11T e [T o3 4 T o'oY o T 10
3.1 Ta1 (=T g o [=To I U ET PR PSPPI 10
3.2 LI a1 117 I - = PRSPPI 12
3.3 S T= oY Y o =T = 41 (= OSSR 13
3.4 Project design lIMitSooo oo e annnnnee 13
L0 o= -1 oo 14
4.1 1S3 =11 F= 11T o TP PP PPPPPP 14
4,11 Safety INSITUCHIONS ... e e e e e e e 14
4.1.2 Specifications for transport and StOrageocceeiiiiiiiii i 14
4.1.3 Mechanical iINStallationoiiiiiiii e 14
4.1.4 Electrical inStallation..........c.ceeiiieeei e e e e 15
4.1.5 Software iNStallationoooiiiiiii e 15
4.1.6 TWINSAFE reaction tiMeS.......cuuuiiiiiiiiiii et e e e e e e e e e enes 15
4.2 Configuration of the TwinCAT Safety PLC in TWINCATooiiiiiiiie e 17
421 Configuration reqUIrEMENTS.........coiiiiiiiiei i e e 17
4.2.2 Creating a safety project in TWINCAT 3 ... e 17
4.2.3 CRC distriDULIONeiiiiiiiiie et e et e e e s st e e e e st e e e e e anneeeeeeanes 39
4.2.4 Downloading the safety appliCationccuviiiiiiiiii e 40
4.2.5 Activating the safety appliCation............ooo i 41
426 Safety and CRC tOOIDArSueiiiiiiiiiiie e 42
S A [01 Yo - = LSRR 43
4.2.8 TASK SEIINGS -ttt e e e e e e e et eaaaaee e an 48
Safety C application development 50
51 Programming in SAfety C.....oooiiiiiii e 50
5.1.1 Differentiation between programming in Safety C and C/C++cccceveeeeieeiiiiiiiciiinne, 50
5.1.2 Source Code teMPIALESeeiiiiiiieiie e 51
5.2 SAfE COUING FUIES ...ttt e et e e e bt e e e s aab e e e e s abeeeeeeeaaes 55
STV I B 1Y 101 o o T SRR 55
IV 1= 1= - | PRSP 56
V2R B 1 o] oo IR 1Y/ o1 T PSPPSR 58
5.3 Permissible [angUage SCOPEcoi ittt 66
5.3.1 SIMPIE data tYPES ...eeeeeieiiiiii et eas 66
5.3.2 ENUMEratioN TYPES ...t e e eas 68
5.3.3 Data StrUCIUIES ...ttt e e e e e e 68
5.3.4 Simple StatemeEnts...... ..o 69
LR I T o] o1 (o =3 { U o (1] =Y S 70
5.3.6 EXPressions and OPEratorsccc.uuuiiiiiiiea e neeeeeeeas 73

TwinCAT Safety PLC Version: 1.2.0 3

Table of contents BEGKHUFF

5.3.7 Literals and CONSIANTSiiiiiic e 74

5.3.8 Function calls and user-defined fUNCHONS...........ccoiiiiiiiii e 75

5.3.9 ASSErS @NA trACESveeiiiiiiiiei et e e e e e e e neeees 76

54 Performance optimizationsooooi i ——————— 78
5.5 Interfacing With the 1/O TEVEIooei i ee e 79
5.6 Verification and validationoooo e 81
5.7 ONINE IAGNOSTICS ...veiiieiiiiiiie et e e ettt e e e ettt e e e aate e e e e s antaeeeeeaanbeeeeeeaneeeeeeaanes 82
5.8 Safe Helper FUNCHONSttt e e ettt e e e e e st e e e e e sbaeeeeeenes 86
5.8.1 Safe [0giC FUNCHONScoiiiiiiiiiie e 86

5.8.2 Safe integer arithmetic fuNCHONSccuiiiiiii 89

5.8.3 Safe bit Shift fUNCHONScueiiiie e 97

5.8.4 Safe conversion functions (Boolean to iNtEger)c..oeviiiiiiiiiiiiiiieeeee e 100

5.8.5 Safe conversion functions (integer to iNteger)cvvvviiiiiieiiiiiice e 102

6 Graphical application development........ .. 111
A - « L= o | S 112
71 SUPPOI NG SEIVICE ..ot e e e ettt e e e e e e e e e e et aeeeeaaaeeeaeans 112
7.2 L0724 1)o7 | (= PSPPSRI 113

4 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Foreword

1 Foreword
1.1 Notes on the documentation
Target group

This description is aimed specifically at trained qualified persons with a control and automation technology

background, who are familiar with the current national and international standards and guidelines.

These persons must be trained in the development, validation and verification of safety-related applications
in a high-level language in accordance with the normative software lifecycle, based on the requirements of

EN 61508.

The following instructions and explanations must be followed during installation and commissioning of the
components.

The qualified personnel must ensure that the application of the described products meets all safety
requirements, including all applicable laws, specifications, regulations and standards.

Origin of the document

This documentation was originally written in German. All other languages are derived from the German
original.

Currentness

Please check whether you are using the current and valid version of this document. The current version can
be downloaded from the Beckhoff homepage at http://www.beckhoff.com/english/download/twinsafe.htm.
In case of doubt, please contact Technical Support [P 112].

Product features

Only the product features specified in the current user documentation are valid. Further information given on
the product pages of the Beckhoff homepage, in emails or in other publications is not authoritative.

Disclaimer

The documentation has been prepared with care. The products described are subject to cyclical revision. For
that reason the documentation is not in every case checked for consistency with performance data,
standards or other characteristics. We reserve the right to revise and change the documentation at any time
and without prior announcement. No claims for the modification of products that have already been supplied
may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TWinSAFE®, XFC® and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

TwinCAT Safety PLC Version: 1.2.0 5

http://www.beckhoff.com/english/download/twinsafe.htm

Foreword BEGKHUFF

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: EP1590927, EP1789857, DE102004044764, DE102007017835 with corresponding applications or
registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents: EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Delivery conditions

In addition, the general delivery conditions of the company Beckhoff Automation GmbH & Co. KG apply.
1.2 Safety instructions

1.21 Delivery state

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

1.2.2 Operator's obligation to exercise diligence

The operator must ensure that
« the TwinSAFE products are only used as intended (see chapter Product description);
+ the TwinSAFE products are only operated in sound condition and in working order.
» the TwinSAFE products are operated only by suitably qualified and authorized personnel.

+ the personnel is instructed regularly about relevant occupational safety and environmental protection
aspects, and is familiar with the operating instructions and in particular the safety instructions contained
herein.

« the operating instructions are in good condition and complete, and always available for reference at the
location where the TwinSAFE products are used.

» none of the safety and warning notes attached to the TwinSAFE products are removed, and all notes
remain legible.

6 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Foreword

1.2.3 Description of safety symbols

In these operating instructions the following symbols are used with an accompanying safety instruction or
note. The safety instructions must be read carefully and followed without fail!

A

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the
life and health of persons.

DANGER
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and
health of persons.
WARNING
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to
persons.
CAUTION
' Damage to the environment or devices
. Failure to follow the instructions associated with this symbol can lead to damage to the en-
vironment or equipment.
Attention
Tip or pointer
This symbol indicates information that contributes to better understanding.
Note
1.3 Documentation issue status
Version |Comment
1.2.0 » Application development in Safety C updated
1.1.0 » Description of safe helper functions added
* General revision of all chapters
1.0.0 » First released version
» Certificate added
» Diagnostic data updated
0.3 » Target group updated
» Operation updated - Configuration of the hardware platform
0.2 » Provisional version for certification
0.0.1 First draft. For internal use only.

TwinCAT Safety PLC Version: 1.2.0 7

System description BEGKHUFF

2 System description

2.1 Extension of the Beckhoff I/0O system with safety
functions

The TwinSAFE products from Beckhoff enable convenient expansion of the Beckhoff I/O system with safety
components, and integration of all the cabling for the safety circuit within the existing fieldbus cable. Safe
signals can be mixed with standard signals without restriction. The transfer of safety-related TwinSAFE
telegrams is handled by the standard controller. Maintenance is simplified significantly thanks to faster
diagnosis and simple replacement of components.

The following basic functionalities are included in the TwinSAFE components:

digital inputs (e.g. EL19xx, EP1908), digital outputs (e.g. EL29xx), drive components (e.g. AX5805) and logic
units (e.g. EL6900, EL6910, TwinCAT Safety PLC). For a large number of applications, the complete safety
sensor and actuator technology can be wired on these components. The necessary logic link between the
inputs and outputs is handled by the EL69xx or the TwinCAT Safety PLC. In addition to Boolean operations,
the EL6910 also enables analog operations. The TwinCAT Safety PLC enables development of safety-
related logic in Safety C.

2.2 TwinCAT Safety PLC

The TwinCAT Safety PLC is used to realize the links between safety-related inputs and outputs via the
Safety-over-EtherCAT protocol (FSoE).

The TwinCAT Safety PLC meets the requirements of IEC 61508:2010 SIL 3 and EN ISO 13849-1:2015
(Cat 4, PLe).

The TwinCAT Safety PLC realizes a safety-related runtime environment on a standard Industrial PC.
Currently only Beckhoff IPCs can be used. Further information on permitted configurations can be found in
the document “List of approved system configurations” on the Beckhoff website.

The safety-related logic can be created in Safety C, in future also via the graphical TwinSAFE Editor.

2.3 Safety concept

TwinSAFE: Safety and I/0O technology in one system
» Extension of the familiar Beckhoff /0 system with TwinSAFE components
+ Safe and non-safe components can be combined as required
* Logic linking of the 1/Os in the TwinCAT Safety PLC

 Suitable for applications up to SIL 3 according to EN 61508:2010 and Cat 4, PL e according to
EN ISO 13849-1:2015

« Safety-relevant networking of machines via bus systems

* In the event of an error, all TWinSAFE components always switch to the deenergized and therefore
safe state

» No safety requirements for the higher-level standard TwinCAT system

Safety over EtherCAT protocol (FSoE)
« Transfer of safety-relevant data via any media (“genuine black channel”)

» TwinSAFE communication via fieldbus systems such as EtherCAT, Lightbus, PROFIBUS, PROFINET
or Ethernet

» |[EC 61508:2010 SIL 3 compliant
* FSoE is IEC standard (IEC 61784-3-12) and ETG standard (ETG.5100)

8 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF System description

Fail-safe principle (fail stop)

The basic rule for a safety system such as TwinSAFE is that failure of a part, a system component or the
overall system must never lead to a dangerous condition. The safe state is always the switched off and
wattless state.

Safe state
For all TWinSAFE components the safe state is always the switched-off, wattless state.

CAUTION

TwinCAT Safety PLC Version: 1.2.0 9

Product description BEGKHU FF

3 Product description

System limits
The TwinCAT Safety PLC is only permitted for hardware platforms that are included in the
"List of approved system configurations".

WARNING | The TwinSAFE Editor for engineering and the TwinCAT Safety PLC runtime must be in-
stalled and used on physically different PCs.

Software environment
To have the full functionality of the TwinCAT Safety PLC available, it is necessary to use
Visual Studio 2015 Professional or a later version.

Note

3.1 Intended use

Caution - Risk of injury!
The TwinCAT Safety PLC must not be used outside the scope of the intended use de-

scribed below!

WARNING

The TwinCAT Safety PLC expands the application area of the Beckhoff /O system with functions that enable
it to be used for machine safety applications. The TwinCAT Safety PLC is intended for safety functions of
machines and directly related tasks in industrial automation. They are therefore only approved for
applications with a defined fail-safe state. This safe state is the wattless state. Fail-safety according to the
relevant standards is required.

The software part of the TwinCAT Safety PLC is a software-based safety controller, which may only be used
on approved system configurations (consisting of development environment, runtime environment and
hardware platform).

Permitted system configurations

The certificate for the TwinCAT Safety PLC covers only system configurations that are in-
cluded in the “List of approved system configurations”.

Any system configurations that are not included in the “List of approved system configura-
tions” are not covered by the TwinCAT Safety PLC certificate.

For applications with different system configurations, the customer is responsible for
demonstrating compliance with the required safety level.

>

CAUTION

Note the Machinery Directive

The TwinCAT Safety PLC and the TwinSAFE terminals may only be used in machines that
are covered by the Machinery Directive.

>

CAUTION

Ensure traceability
The operator must ensure traceability of the equipment via the serial number.

>

CAUTION

Industrial PC used

Please note the technical data of Industrial PC used and ensure that it is only used as in-
tended.

>

CAUTION

Security

The TwinCAT Safety PLC is regarded as a self-contained system. Accordingly, the user is
responsible for evaluating and implementing appropriate safety and security measures for
CAUTION | the individual components, including the development PC and the runtime environment.

>

10 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Product description

' User name and password
. Users must ensure that their login data are not accessible to unauthorized persons.

Attention

TwinCAT Safety PLC Version: 1.2.0 11

Product description BEGKHUFF

3.2 Technical data

Product ID TwinCAT Safety PLC

Number of inputs 0

Number of outputs 0

Status indicator depending on the used hardware platform

Minimum/maximum cycle time approx. 500 us / depending on the project size

Fault response time < watchdog times

Watchdog time min. 1 ms, max. 60,000 ms

Input process image Dynamic, according to the TwinSAFE configuration in
TwinCAT 3

Output process image Dynamic, according to the TWinSAFE configuration in
TwinCAT 3

Supply voltage (SELV/PELV) depending on the used hardware platform (see
document “List of approved system configurations”)

Permissible ambient temperature (operation) 0°Cto+55°C

(unless specified otherwise in the technical data for
the hardware platform)

Permissible ambient temperature (transport/storage) |-25 °C to +65 °C
(unless specified otherwise in the technical data for
the hardware platform)

Permissible humidity 5% to 95%, non-condensing
(unless specified otherwise in the technical data for
the hardware platform)

Permissible air pressure (operation/storage/transport) | 750 hPa to 1100 hPa

(unless specified otherwise in the technical data for
the hardware platform)

(This corresponds to an altitude of approx. - 690 m to
2450 m above sea level, based on an international
standard atmosphere)

Climate category according to EN 60721-3-3 3K3
(unless specified otherwise in the technical data for
the hardware platform)

Permissible level of contamination Level of contamination 2

according to EN 60664-1 (unless specified otherwise in the technical data for
the hardware platform)

Inadmissible operating conditions TwinSAFE components must not be used under the

following conditions:

 under the influence of ionizing radiation
(exceeding the natural background radiation)

¢ in corrosive environments

* in an environment that leads to unacceptable
contamination of the hardware platform

Vibration / shock resistance conforms to EN 60068-2-6 / EN 60068-2-27

EMC resistance burst / ESD conforms to EN 61000-6-2 / EN 61000-6-4

Shocks depending on the used hardware platform (see
document “List of approved system configurations”)

Protection class P20

Permitted installation position depending on the used hardware platform (see
document “List of approved system configurations”)

Technical approvals TUV SUD

12 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Product description

3.3 Safety parameters

Key data TwinCAT Safety PLC
Lifetime [a] not applicable
(if a value is required for calculations, 20 can be assumed)
Proof test interval [a] not required
PFH, 5.5E-10
%SIL3 of PFH, 0.55%
PFD,,, 5.5E-10
%SIL3 of PFD,,, 0.000055%
MTTF, high
DC > 99%
Performance level PLe
Category 4
HFT 0
Classification element ? Type B

1. No special proof tests are required during the entire service life of the TwinCAT Safety PLC.
2. Classification according to IEC 61508-2:2010 (see chapters 7.4.4.1.2 and 7.4.4.1.3)

The TwinCAT Safety PLC can be used for safety-related applications as defined in
IEC 62061:2005/A2:2015 SIL3, IEC 61508:2010 to SIL3 and EN ISO 13849-1:2015 to PL e (Cat4).

Further information on calculating or estimating the MTTF, value from the PFH, value can be found in the
TwinSAFE application manual or in EN ISO 13849-1:2015, Table K.1.

In terms of safety-related parameters, the Safety-over-EtherCAT communication is already considered with
1% of SIL3 according to the protocol specification.

. Occurrence of serious internal errors during processing

The system must no longer be operated if more than one serious error occurs per hour.

If this is the case, the first thing to check are the basic conditions listed under intended use
DANGER | and the technical data of the hardware platform used.

If the problem persists, please contact Beckhoff support.

3.4 Project design limits

The project design limits depend on the licensing. Different licenses are available for different maximum
numbers of permitted FSoE connections.

TwinCAT Safety PLC Version: 1.2.0 13

Operation BEGKHUFF

4 Operation

Please ensure that the TwinCAT Safety PLC is only transported, supported and operated under the ambient
conditions specified for the respective hardware platform (see technical data for the corresponding hardware
platform).

Risk of injury!
The TwinSAFE components must not be used under the following conditions.

+ under the influence of ionizing radiation (exceeding the natural background radiation)

WARNING
* in corrosive environments
* in an environment that leads to unacceptable contamination of the hardware platform
' Electromagnetic compatibility
. The TwinSAFE components comply with the current standards on electromagnetic compat-

ibility with regard to spurious radiation and immunity to interference in particular.

Attention | However, in cases where devices such as mobile phones, radio equipment, transmitters or
high-frequency systems that exceed the interference emissions limits specified in the stan-
dards are operated near TwinSAFE components, the function of the TwinSAFE compo-
nents may be impaired.

' Using the hardware platform
L]

The hardware platform (see List of approved system configurations), on which the Twin-
) CAT Safety PLC is to be installed and operated, may only be used in machines that are
Attention | configured and installed in accordance with the requirements of EN 60204-1, Chapter

442,
' Configuration of the hardware platform
. The hardware platform must be configured such that “common mode” interference accord-
ing to IEC 61000-4-16 is avoided in the frequency range between 0 Hz and 150 kHz.
Attention
4.1 Installation

411 Safety instructions
Before installing and commissioning the TwinCAT Safety PLC, read the safety instructions in the introduction

to this documentation and the safety instructions in the corresponding documentation of the hardware
platform used.

4.1.2 Specifications for transport and storage

Instructions for transport and storage can be found in the documentation for the respective hardware
platform.

41.3 Mechanical installation

Instructions for the mechanical installation can be found in the documentation for the respective hardware
platform. Note in particular the permitted installation position.

14 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Operation

414 Electrical installation

Instructions for the electrical installation can be found in the documentation for the respective hardware
platform.

41.5 Software installation

The TwinCAT Safety PLC is always installed together with TwinCAT. The installation of
TwinCAT 3.1 build 4022 or higher always includes the latest approved version of the TwinCAT Safety PLC. It
is activated via the corresponding license.

41.6 TwinSAFE reaction times

The TwinSAFE terminals together with the TwinCAT Safety PLC form a modular system that exchanges
safety-related data via the Safety-over-EtherCAT protocol. This chapter is intended to help determine the
system response time between the signal change at the sensor and the response at the actuator.

Typical response time

The typical response time is the time required for transferring a piece of information from the sensor to the
actuator, when the whole system operates normally, without error.

TwinCAT Safety PLC

O

*

Sensor Input - Output Actor

FSoE Communication

Reaction time -
Fig. 1: Typical response time
Definition Description
RTSensor Response time of the sensor, until the signal is made available at the interface. Typically
provided by the sensor manufacturer.
RTInput Response time of the safe input, e.g. EL1904 or EP1908. This time can be found in the
technical data. For the EL1904 the time is 4 ms, for example.
RTComm Response time of the communication. This is typically 3 times the EtherCAT cycle time,

since a new Safety-over-EtherCAT telegram has to be generated before new data can be
sent. These times directly depend on the standard control system (cycle time of the PLC/NC/
SafetyTask). Note which task synchronously controls the EtherCAT segment.

RTLogic Response time of the TwinCAT Safety PLC. This is the cycle time of the task in which the
TwinCAT Safety PLC is executed, if no timeout errors occur.

RTOutput Response time of the output terminal. This is typically between 2 and 3 ms.

RTActor Response time of the actuator. This information is typically provided by the actuator
manufacturer

WDComm Watchdog time of the communication

The typical response time is based on the following formula:

ReacrionTimetyp = RTSensm’ + RTinput + 3 * RTCmnm + RTLogiC + 3 * RTComm + RToutput + RTActor

TwinCAT Safety PLC Version: 1.2.0 15

Operation BEGKHUFF

with

ReactionTime,,,, = 5ms + 4ms + 3 = Ims + 1ms + 3 = Ims + 3ms + 15ms = 34ms

Worst case response time

The worst-case response time is the maximum time required for switching off the actuator in the event of an
error.

TwinCAT Safety PLC

O

Sensor Input * — Output Actor

FSoE Communication

Worst-Case Reaction time -

Fig. 2: Worst case response time

It is assumed that a signal change takes place at the sensor, and that this is passed to the input. A
communication error occurs just at the moment when the signal is to be passed to the communication
interface. This is detected by the logic once the watchdog time of the communication link has elapsed. This
information should then be passed on to the output, resulting in a further communication error. This fault is
detected at the output once the watchdog time has elapsed, resulting in shutdown.

This results in the following formula for the worst-case response time:

ReactionTime,, .. = WDcomm + WDcomm + RTactor

with

ReactionTime,,,, = 100ms + 100ms + 15ms = 215ms

16 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Operation

4.2 Configuration of the TwinCAT Safety PLC in TwinCAT

421 Configuration requirements

Configuration of the TwinCAT Safety PLC requires TwinCAT automation software version 3.1 build 4022 or
higher. The latest version is available for download from the Beckhoff website at www.beckhoff.de .

TwinCAT support
The TwinCAT Safety PLC cannot be used under TwinCAT 2.

Note

4.2.2 Creating a safety project in TwinCAT 3

A safety project created in Safety C must be developed based on the applicable standards. See also chapter
Safety C application development [» 50]

Source text of the safety application
The user source text must be developed based on the applicable standards, in particular

IEC 61508:2010. See also chapter Verification and validation [» 81].

DANGER

4221 Add new item

In TwinCAT 3 a new project can be created via Add New ltem... in the context menu of the Safety node.

fa] Solution 'TwinSAFE-Example' (1 project)
4 ol TwinSAFE-Example
b @l SYSTEM
MOTION

[C++ ‘0 Add New ltem... Ins
4 Fvo 0 Add Existing Item... Shift+Alt+A
ﬂ% Devices

ﬁ:l Mappings
Fig. 3: Creating a safety project - Add New ltem

The project name and the directory can be freely selected.

TwinCAT Safety PLC Version: 1.2.0 17

http://www.beckhoff.de

Operation BEGKH“FF
i B
Add Mew Item - TwinSAFE-Example M

4 Installed Sort by: Default -| i Search Installed Templates (Ctrl+E) R ~

TwinCAT Safety Project L :
wn =ty Froje @ TwinCAT Default Safety Project TwinCAT Safety Project ~ 1YP€: TwinCAT Safety Project
I Online Creates a new default safety project.

@ TwinCAT Empty Safety Project TwinCAT Safety Project

MName: Safety_project 1

Location: o\TwinSAFE-Exampleh |v Add I[Cancel

Fig. 4: Creating a safety project - project name and directory

e

4.2.2.2 TwinCAT Safety Project Wizard

In the TwinCAT Safety Project wizard you can then select the target system, the programming language, the
author and the internal project name. Select TwinCAT Safety PLC as the target system and Safety C as the
programming language. The author and the internal project name can be freely selected by the user.

TwinCAT Safety Project Wizard =
i
s .

Target System | TwinCAT Safety PLC -

Pragramming Language [Safety 5 'l

Author Administrator

Internal Project Name SafetyPLC

Ok | l Cancel

Fig. 5: TwinCAT Safety Project Wizard

18 Version: 1.2.0 TwinCAT Safety PLC

BEGKHOFF Operation

4.2.2.3 Target System

Once the project has been created with the project wizard, the safety project can be assigned to the task for
the corresponding safety application by selecting the Target System node.

4 SAFETY
4 SafetyPLC
4 SafetyPLC Project
I 8 Target System I
] Iﬁ TwinbateGroupl
TwinSafeGroupl Config.grp
[p@ Alias Devices
[Analysis Files
[Header Files
A Source Files
[T Test Files
4[] SafetyPLC Instance
b [Diag Data
» [l Info Data
b [l Safety Timer Diag Data
P li‘ TwinSafeGroupl

v v v v v

Fig. 6: Target system in the Solution Explorer

The target system is set to TwinCAT Safety PLC in the drop-down list. Use the link button next to Append to
Task to link the target system to the task, with which the TwinCAT Safety PLC is to be executed.

Target System o)
Configuration: | N/A

CRC Distribution

A Platform: |N_e’A v|

Target System: |Twinc;-w Safety PLC - |

Appendto Task: naot available @

Ohject Name: SafetyPLC Instance

Object Id: (01010010

Software Version: 1

Project CRC: not available
Map Ohject I1d: Map Project CRC:

Version Mumber: 1 |@|

Safe Address: 1

Fig. 7: Target System Property Page

TwinCAT Safety PLC Version: 1.2.0 19

Operation BEGKHUFF

4224 TwinSAFE groups

Creating TwinSAFE groups makes sense for realizing different safety zones in a machine or in situations
where different C++ source files are to be used. A connection error within a group (here: alias device) leads
to a ComError for the group, resulting in disabling of all outputs for this group.

A further group can be created by opening the context menu of the safety project and selecting Add and New
Item....

" Add New Hem - Safety Project 1 P [t

4 Installed Sort by: Default -| " Search Installed Templates (Ctrl+E) P-
G .
SAL TwinSafeGroup Group Type: Group
i Online Creates a new group in a Twin5afe project.
Mame: Twin5afeGroup2 Add | [Cancel l

Fig. 8: Creating a TwinSAFE group

A group consists of subitems for the group configuration (*.grp), alias devices (*.sds), header files (*.h) and
source files (*.cpp). In addition there are subitems for test and for analysis files.

For each group there is one header file and one source file, which the user can use and adapt for the safety
application. These are the files <GroupName=>.h and <GroupName>.cpp.

The test files ModuleTests.cpp and ModuleTests.h can be used for debugging the safety application. In
these files the safe inputs and outputs can be set and remain set if breakpoints are used, without having to
enable the whole configuration. In this state the communication is not safe!

4 2% TwinSafeGroupl
TwinSafeGroupl Config.grp
4 a7 Alias Devices
@ DiscrepancyCounter.sds
@ DiscrepancyError.sds
#1] EL1904 FSoE 211.sds
EL2904 FSoE_13.sds
EL2904_FSoE_d4.sds
nﬂ ErrAck.sds
mﬂ Run.sds
[Zr Analysis Files
[ModuleDatabase.saxml
[£=F Header Files
[SafeModuleHelper.h
[}l TwinSafeGroupl.h
[(] TwinSafeGrouplloData.h
[£5 Source Files
++ TwinSafeGroupl.cpp
[£5 Test Files
++ ModuleTests.cpp
[ModuleTests.h

[

[

o

[

Fig. 9: TWinSAFE group

The group configuration is used for the general group settings, including the info data or group ports for error
acknowledge and run/stop.

20 Version: 1.2.0 TwinCAT Safety PLC

BEGKHGFF Operation

General Settings |Gruup Ports | Process Image

Group Orderld; 0O

Info Diata Mapping
Map Diag: [l
[

Map State:

Fig. 10: TwinSAFE Group - General Settings

General Settings | Group Ports | Process Image

Group Port Direction Alias Port
Err Ack input E]

Run/Stop | input E]

Com Err output E]
FEB Err output E]
Ot Err output E]

Fig. 11: TwinSAFE Group - Group Ports

In addition, there is an option to create an internal process image for the TwinSAFE group. This process
image contains all the signals for use in other TWinSAFE groups. The defined variables are made available
to all other groups in a structure called TSGData in the header file <GroupName>loData.h.

TwinSAFE group outputs

Please ensure that TwinSAFE groups only have outputs in the TSGData structure. These

outputs can be read by all other groups. It is not possible to define inputs for a TwinSAFE
Note group.

| General Settings | Group Ports | Process Image

Inputs QOutputs

Mame Type Size Position Mame Type Size Position
AnalogOutl =safellINT 20
EStopOut =afeBOOL 1.0

Fig. 12: TwinSAFE group process image

TwinCAT Safety PLC Version: 1.2.0 21

Operation BEGKHGFF

//V Struct storing the TwinSAFE group exchange data
struct TsGData

1
/Y L TwinSafeGroup: TwinSafeGroupl
struct _TwinSafeGroupl
{
//Y .. Outputs
struct _Out
{
safeUINT AnalogOutl;
safeBOOL EStopOut;
T Out;
T TwinsafeGroupl;
/Y L TwinSafeGroup: TwinSafeGroup2
struct _TwinSafeGroup2
//Y .. Outputs
struct _Out
{
} Out;
} TwinsafeGroup2;
Ii

Fig. 13: TSGData struct

4.2.2.5 Alias devices

The communication between the safety logic and the 1/O level is realized via an alias level. At this alias level
(subnode Alias Devices) corresponding alias devices are created for all safe inputs and outputs, and also for
standard signal types. For the safe inputs and outputs, this can be done automatically via the I/O
configuration.

The connection- and device-specific parameters are set via the alias devices.

4 SAFETY
4 SafetyProject
4 SafetyProject Project
"3 Target Systern

4 Gi TwinSafeGroupl

L Error. Add r
I Terrr Scopeto This
Bl Terrr Mew Solution Explorer View
B
TwinSafi
b 03 TwinSafeGr Add multiple standard variables

SafetyProject Ir Import Alias-Device(s)

Fig. 14: Starting the automatic import from the I/O configuration

If the automatic import is started from the 1/O configuration, a selection dialog opens, in which the individual
terminals, which are to be imported automatically, are selected.

22 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

Select from 170 tree

4 Device L (EtherCAT)
4 Term 3 (EK1100)

4 Term 5 (EL2904)
Module 1 (FSOES)

4 Term 7 (EL1904)
Module 1 (FSOES)

Select All || Select None

oK I|

Cancel

Fig. 15: Selection from the 1/O tree

The alias devices are created in the safety project when the dialog is closed via OK.

Alternatively, the user can create the alias devices individually. To this end select Add and New item from

the context menu, followed by the required device.

Add New Item - SafetyProject
| 4 Installed | Sort b}f. Default - ;;:
Standard 3
anear @ 4 digital inputs
Safety
4 EtherCAT 2 4 digital outout
Beckhoff Automation GmbH : gital outputs
KBus 3 o
PROFlsafe w & digital inputs
L] 2 A 5 a7 .
w 2 digital inputs and 2 digital outputs
B Online -
@ AX 5805 Drive Option Card (1 axis, up to FW 4)
@ AX 5805 Drive Option Card (2 axes, up to FW 4)
@ AX 5805 Drive Option Card (1 axis, FW 5)
@ AX 5805 Drive Option Card (2 axes, FW 5)
@ EK1960 (Compact Controller)
@ 000001390 - TSC (EL5021-0090)
Marne: 4 digital inputs_1.sds

Safety

Safety

Safety

Safety

Safety

Safety

Safety

Safety

Safety

Safety

Type: Safety

Search Installed Templates (Ctrl+E) P

Alias device for 4 digital inputs on

EtherCAT.

Add

I [Cancel

Fig. 16: Creating alias devices by the user

TwinCAT Safety PLC

Version: 1.2.0

23

Operation BEGKHUFF

4.2.2.6 Safe time signal

A safety project for the TwinCAT Safety PLC is only valid if a safe external time signal is available for
executing the safety project. To this end at least one of the safe communication links must offer functionality
for providing a safe time signal via the safe communication link. This may be an EL6910 TwinSAFE
component, for example. The EL6910 TwinSAFE component is used to illustrate the process of assigning a
safe time value to the input process image via the Process Image tab of the alias device.

| Linking | Connection | Process Image | DEBUG |

Inputs Outputs
Meszage Size: [? Bytes (£ Bytes Safe Data) "l Message Size: |6 Bytes (1 Bytes Safe Data) -

Mame Type Size Position Mame Type Size Position
@In_SafeTimer . 20 000.0) Safe Data Byte 0[0] BIT 071 0.0(1.00
Safe Data Byte 0[1] BIT 01 0.1 (1.1)
Safe Data Byte 0[2] BIT 01 02(1.2)
Safe Data Byte 0[3] BIT 01 03(1.3)
Safe Data Byte 0f¢] BIT 01 04 (1.4}
Safe Data Byte 0[5] BIT 01 05(1.5)
Safe Data Byte 0[6] BIT 01 0.6(1.6)
Safe Data Byte 0[7] BIT 01 0.7(1.7)

Fig. 17: Alias device - Process Image tab

Select Edit in this dialog to adapt the process image and add the SafeTimer.

' '
E:'E] Configure I/Q element(s) E@g

Configured: Available:
Mame Type Size Position < Add < Mame Type | Size
(JIn_SafeTi.. UINT 20 00 0.1
2.0 In_BIT EIT 0.1
In_BYTE BYTE 1.0
In_UINT UINT 20
In_INT INT 20
In_UDINT UDINT 4.0
In_DINT DINT 40

GIn SafeTi.. UINT 20

Check

Cancel

L vy

i

Fig. 18: Configuring the 1/0 elements

In addition, tick the checkbox for Use provided Safe Timer as reference under the Connection tab.

24 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

Linking | Connection | Process Image | DEBUG |

Connection Settings

Conn-No: 1
Conn-ld: 2
Mode: | FSoE master -
Type: | None -

Watchdog (ms): 100
[] Module Fault (Fail Safe Data) is COM ER

Safe Parameters
Appl. Param.:

Comm. Param. Length: 02 00 {2) =
Watchdog: &4 00 (100}

Appl. Param. Length: 00 00 {0)
Besult:

02 00 &4 00 00 00 R

Connecton Varniables

COM ERR Ack:

Info Data

["] Map State [*] Map Inputs
[Map Diag [} Map Outputs
Safe Timer

lse provided Safe Timer as reference

Fig. 19: Alias device - Connection tab

For a safety project a specific TWInSAFE component must be selected as provider for a safe time signal, to
ensure that a safety project can be loaded and started successfully. The safety project is only executed if the
provided safe time signal is available (i.e. the corresponding communication link must be in DATA state).

An error in the context of the safe time signal leads to triggering of the safe state for the TwinCAT Safety

PLC.

4227 Parameterization of the alias device

The settings can be opened by double-clicking on the alias device in the safety project structure.

P SAFETY
p SafetyPLC
4 SafetyPLC Project
"4.}, Target System
4 5% TwinSafeGroupl
TwinSafeGroupl Config.grp
4 |57 Alias Devices
@ DiscrepancyCounter.sds
[DiscrepancyError.sds
[EL2904 FSoE 13.sds
[EL2904_FSoF 4.sds
u@ Errfck.sds
| Run.sds
3 Analysis Files
[Header Files
[Source Files

I
[
I
P @ Test Files

Fig. 20: Alias device in the safety project structure

TwinCAT Safety PLC

Version: 1.2.0

25

Operation

BECKHOFF

The Linking tab contains the FSoE address, the checkbox for setting as External Device and the link to the
physical I/0O device. If an ADS online connection to the physical I/O device exists, the DIP switch setting is

—
displayed. Re-reading of the setting can be started via the button . The links to the TwinCAT Safety
PLC process image are displayed under Full Name (input) and Full Name (output).

Linking | Connection | Safety Parameters | Process Image | DEEBUG |

Dip Switch:

FSoE Address:

Phyzical Device:

Full Mame (input):
Full Name (output): TISC SafetyPLC SafetyPLC Instance™TwinSafeGroup1Term 4 (i

211

TID"Device 2 (EtherCAT)*Term 1 (EK1100) Term 4 (EL1904)"M

211

TISC 3afetyPLC™SafetyPLC Instance”™ TwinSafeGroup1™Term 4 (I

Fig. 21: Links to the TwinCAT Safety PLC process image

The Connection tab shows the connection-specific parameters.

Linking | Connection | Safety Parameters | Process Image |

Conn-Mo:
Conn-ld:

Mode:

Watchdog:

Connection Settings

Connection Variables
2 COM ERR Ack: b 1
3

Info Data

FSoE master ']] Map State [Map Inputs

o Map Diag]| Map Cutputs
100

] Module Fault (Fail Safe Data) is COM ERR

Fig. 22: Connection-specific parameters

Parameter |Description User in-
teraction
required
Conn-No. |Connection number - automatically assigned by the TwinCAT system No
Conn-ID |Connection ID: pre-allocated by the system; can be changed by the user. A Conn ID |Control
must be unique within a configuration. Duplicate connection IDs result in an error
message.

Mode FSoE master: TwinCAT Safety PLC is FSoE master for this device. Control
FSoE slave: TwinCAT Safety PLC is FSoE slave for this device.

Watchdog |Watchdog time for this connection. A ComError is generated, if the device fails to Yes

return a valid telegram to the TwinCAT Safety PLC within the watchdog time.

Module This checkbox is used to specify the behavior in the event of an error. If the Yes

Fault is checkbox is ticked and a module error occurs on the alias device, this also leads to a

ComError |connection error and therefore to disabling of the TwinSAFE group, in which this

connection is defined.

ComErrAck |If ComErrAck is linked to a variable, the connection must be reset via this signal in |Yes

the event of a communication error, before the corresponding group can be reset.

Info Data |The info data to be shown in the process image of the TwinCAT Safety PLC can be |Yes

defined via these checkboxes. Further information can be found in the
documentation for TwinCAT function blocks for TwinSAFE logic terminals.
26 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

The TwinCAT Safety PLC supports activation of a ComErrAck for each connection. If this signal is

connected, the respective connection must be reset after a communication error via the signal ComErrAck,

in addition to the ErrAck of the TwinSAFE group. This signal is linked via the link button next to COM
ERR Ack. The following dialog can be used for selecting an alias device. The signal can be canceled via the
Clear button in the link dialog.

Map to

=

4 Safety Project_1
4 G| TwinSafeGroupl
4 Alias Devices
4 ComErrdck - Connection 1
4 Channel 1

g In |

Clear

Standard [/Cs
Local group
["] Other groups

Usage
@ Unused only
) Used and unused

Direction

In
Out

oK || cancel

Fig. 23: Selecting an alias device

The safety parameters matching the device are displayed under the Safety Parameters tab. They have to be
set correctly to match the required performance level. Further information can be found in the TwinSAFE
application manual.

| Linking | Connection | Safely Parameters | Process Image |

Index
4 30000
2000:01
4 3001:0
8001:01
8001:02
8001:03
8001:04
4 30020
200201
8002:03

Mame
F3 Operating Mode
Operating Mode
F3 Sensor Test
Sensor test Channel 1 active
Sensor test Channel 2 active
Sensor test Channel 3 active
Sensor test Channel 4 active
F3 Logic of Input pairs
Logic of Channel 1and 2
Logic of Channel 3 and 4

Value
=3 4
digital ()
wha
TRUE (1)
TRLUE (1)
TRUE (1)
TRLE (1)
=R

single logic ch...
single logic ch...

Linit

Fig. 24: Safety parameter for the device

For each alias device an entry with the corresponding FSoE stack is created in the safety PLC. It contains
links to the safe input and output components and also provides the data pointer for access to the safe

inputs and outputs within the safety application.

TwinCAT Safety PLC

Version: 1.2.0

27

Operation BEGKHUFF

4 @ SafetyPLC Instance

W Diag Data

B Info Data

By Safety Timer Diag Data

@ TwinSafeGroupl
StandardInputs

Wy StandardOutputs

B TwinSAFE Group Info Data

&y Safetylnputs

&y SafetyOutputs

& Internallnputs

& InternalQutputs

@ Application

IE‘ EL1904 FSoE 211 FSof Stack

P Connectionlnputs

b [ConnectionOutputs

[B Data Pointer

IE‘ EL2904 F5oE 13 FSoE Stack

[Connectionlnputs

i [ConnectionOutputs

[[Data Pointer

[EH] EL2904_FSoE _4 FSoE Stack

[Connectionlnputs

p [ConnectionOutputs

[[Data Pointer

vV T
[VW T vV VT v

[%

[%

Fig. 25: Safety PLC instance - Alias devices

The data for each individual connection are declared as struct data type in <GroupName>loData.h and
instantiated in the header file <GroupName>.h.

The user can access a safe input directly via the instance variable, e.g.
sSafetylnputs.EL1904 _FSoE 211.InputChannell.

//V Struct providing input data of the corresponding safety alias devices
struct SafetyInputs

1
AU L \Alias Devices\EL1984 FSoE_211.sds
struct _EL1%984 FSoE_211
1
safeBOOL InputChannell;
safeB0OL InputChannel2;
safeB0OL InputChannel3;
safeB0OL InputChanneld;
} EL1984 FSoE_211;
bi

Fig. 26: Structure of the alias device

28 Version: 1.2.0 TwinCAT Safety PLC

BEGKHGFF Operation

4.2.2.8 Connection to AX5805/AX5806

There are separate dialogs for linking an AX5805 or AX5806 TwinSAFE Drive option card, which can be
used to set the safety functions of the AX5000 safety drive options.

Creating and opening of an alias device for an AX5805 results in five tabs; the Linking, Connection and
Safety Parameters tabs are identical to other alias devices.

Drive Option Card -...(2 axes, FW 5) 1.sds & X -

Linking | Connection | Safety Parameters | General AX5805 Settings | Process Image |
FSoE Address: 1 Linking Mode:

Physical Device: TID"Device 1 (EtherCAT)"Drive 5 (AX5206-0000-0203)"Term 6 |,
Dip Switch: n.a.

Full Mame {input): TID"Device 1 (EtherCAT)"Term 1 (EK1100)"Term 2 (ELEI00)"C

Full Name (output); THD*Device 1 (EtherCAT)Y Term 1 (EK1100)"Term 2 (ELEZ00)C

Fig. 27: AX5000 safety drive functions

The General AX5805 Settings tab can be used to set the motor string and the SMS and SMA functions for
one or two axes, depending on the added alias device.

Drive Option Card -...(2 axes, FW 5) 1.sds & X -
| Linking | Connection | Safety Farameters | General AX5805 Settings | Process Image
Axis
Motor String: AMB0271xD0x
Maximum Values: [SM3 l [SMA]
Axis2
Motor String: AMBE023-x0F0
Maximum Values: [SM3 l [SMA]

Fig. 28: AX5000 safety drive options - general AX5805 settings

The Process Image tab can be used to set the different safety functions for the AX5805.

TwinCAT Safety PLC Version: 1.2.0 29

Operation

BECKHOFF

Drive Option Card -...(2 axes, FW 5) 1.sds & X

Inputs

Cutputs

Message Size: | 11 Bytes (4 Bytes Safe Data)

| Linking I Connection | Safety Farameters | General AX5305 Settingﬂ Process Image

'] Message Size: [11 Eytes (4 Bytes Safe Data) -

Mame
Axis 1 5TO
Axis 1 S5M(1)
Axis 1 S5M(2)
Locis 1 S0S(T)
Axis 1 SSR(1)
Axis 1 SDIp
Az 1 SD0In
Axis 1 Error_Ack

Type Size Position
BIT 01 0.0

BIT 01 0.1
BIT 01 02
BIT 01 03

BIT 01 0.4
BIT 01 0.5
BIT 01 0.6
BIT 01 0.7

0.1 1.0
01 11
0.1 12
01 13
01 14
01 15
01 1.6

— Mame

Axiz 1 5TO

Axiz 1 331(1)
Axiz 1 332(1)
Axiz 1 505(1)
Axiz 1 33R(1)
Axiz 1 5Dlp
Axiz 150N

Axiz 1 Error_Ack

Type Size Position —
BIT 01 0.0
BIT 01 0.1
BIT 01 0.2
BIT 01 0.3
BIT 01 0.4
BIT 01 0.5
BIT 01 0.6
BIT 01 0.7
0.1 1.0
0.1 1.1
0.1 1.2
0.1 13
0.1 14
0.1 15
0.1 16

N4

4 77

Fig. 29: AX5000 safety drive options - Process Image

The parameters under the General AX5805 Settings and Process Image tabs are identical to the parameters
under the Safety Parameters tab. Offers user-friendly display and editing of the parameters. The parameters
under the Safety Parameters tab can also be edited.

The parameters for this function can be set by selecting a function in the inputs or outputs and pressing the
Edit button. New safety functions can be added in the process image by selecting an empty field (---) and

pressing Edit.

The parameter list corresponding to the safety function can be shown; in addition, an optional diagram of the
function can be shown. At present the diagram is still static and does not show the currently selected values.

30

Version: 1.2.0

TwinCAT Safety PLC

BEGKHOFF Operation

Drive Option Card -...(2 axes, FW 5) 1.sds & X -
| Linking | Connection | Safety Parameters | General AX5805 Settings | Process Image
Inputs
E] Configure /O element(s) -
Message Size: [11 Bytes (4 Bytes Safe Data) vl —
Function: | 0x66ED Axis 1 S5M | Inst s (1 -
Mame Type Size Position - -un en [nstance -
Axis 1 85TO BIT 0.1 0.0 ~ | Function Diagram
Axis 1 SSM(1) BIT 01 01
. 1
Ax!s‘l S3M(2) BIT 01 0.2 _— J—
Axis 1 308(1) BIT 01 0.3 .
Axis 1 33R(1) BIT 01 04 t
Axis 1 SDIp EBIT 01 0.5 .
Axiz 1 5DIn BIT 01 0.6
Axis 1 Error_Ack BIT 01 0.7
- 0.1 1.0 nUIL_SSM_2
- t
- 0.1 11 Spesd
- 0.1 12 UL S 1
- 0.1 13 n_LL_SSM_1
- 0.1 14
- 0.1 15
= 01 1.6 - nLL S5 2
Edit
b
[L
S8M_1
Watch1 '
Expression Application P |
SEM_2
4 "t
Watch 1 | Error List| Qutput Index Mame Value Unit
_ 66E2:01 n_UL_SSM 32 Bit 0x000007D0 (2000) Increments per millisecond
66E4:01 n_LL 55M 32 Bit OxDO00003EB (1000) Increments per millisecond
o s

Fig. 30: AX5000 safety drive options - Function Diagram

TwinCAT Safety PLC Version: 1.2.0 31

Operation BEGKHUFF

4229 External connection

An external Custom FSoE Connection can be created for a connection to a further EL69x0, EJ6910, KL6904
or third-party device. If a dedicated ESI file exists for a third-party device, the device is listed as a selectable
safety device, and the Custom FSoE Connection option is not required.

P ™
Add New Item - SafetyProject L[S
3 Search Installed Templates (Ctrl+E) P

Standard :)
e @ Custom FSoE Connection Safety Type: Safety
4 Safety

Alias device for a custom FSoE connection
Bl EtherCAT to an external device.
Beckhoff Automation GmbH
KBus
PROFIzafe

4 Installed Sort by: Default =

L] [
B Online

Mame: Custorn F5oF Connection_2.sds

Add || Cancel

Fig. 31: Creating an external connection (Custom FSoE Connection)

Before the connection can be used and linked further, the process image size must be parameterized. This
can be set under the Process Image tab. Suitable data types for different numbers of safety data are
provided in the dropdown lists for the input and output parameters.

| Linking | Connection | Process Image
Inputs Cutputs

Message Size: |11 Bytes (4 Bytes Safe Data) v| Message Size: |11 Bytes (4 Bytes Safe Data) v

: - G Bytes (1 Bytes Safe Data)
Fs
Mame Type Size Posi Mame 7B 2B Safe Da
Safe Data Byte 0[0] BIT 01 00 Safte Data Byte Ry -y .

Safe Data Byte O[1] BIT &1 01 Safe Data Byte| 15 Bytes (B Bytes Safe Data)
Safe DataByte 0[2] BIT 0.1 0.2 Safe Data Byte| 19 Bytes (8 Bytes Safe Data)
Safe Data Byvte 0[3] BIT 0.1 03 Safe Data Byte| 23 Bytes (10 Bytes Safe Data)
Safe Data Byte 0[4] BIT 0.1 04 Safe Data Byte| 2/ Bytes (12 Bytes Safe Data)
Safe Data Byte 0[5] BIT 0.1 05 Safe Data Byte o, oxies (14 Bytes Safe Data)
Safe DataByte 0[6] BIT 0.1 06 Safe DataByte 0[6] BIT 0.1 06

Safe DataByte 0[7] BIT 0.1 07 Safe DataByte 0[7] BIT 0.1 07

Safe DataByte 1[0] BIT 0.1 1.0 Safe DataByte 1[0] BIT 0.1 1.0

Safe Data Byte 1[1] BIT 01 11 Safe Data Byte 1[1] BIT 0.1 1.1

Safe DataByte 1[2] BIT 01 1.2 Safe DataByte 1[2] BIT 0.1 1.2

Safe DataByte 1[3] BIT 0.1 1.3 Safe DataByte 1[3] BIT 0.1 1.3

Safe DataByte 1[4] BIT 0.1 14 Safe DataByte 1[4] BIT 0.1 14

Safe DataByte 1[5] BIT 0.1 15 Safe DataByte 1[5] BIT 0.1 15

Safe DataByte 1[6] BIT 0.1 16 . Safe Data Byte 1[6] BIT 0.1 16 .

Fig. 32: Parameterization of the process image size

Once the size is selected, the individual signals within the telegram can be renamed, so that a corresponding
plain text is displayed when these signals are used in the logic. If the signals are not renamed, the default
name is displayed in the editor (Safe Data Byte 0[0], ...).

32 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

| Linking | Cﬂnne-::tianl Process Image

Inputs Outputs

Message Size: [ﬂ Bytes (4 Bytes Safe Data) *l Message Size: | 11 Bytes (4 Bytes Safe Data)

-

Mame Type Size Posi o
EStop 1 (external) BIT 01 0.0

Mame Type Size Posi
Safe Data Byte O[0] BIT 0.1 0.0

Safe Data Byte O[1] BIT 01 01

»
Safe DataByte 0[2] BIT 01 02 [Configure 1/O element

25|

Safe Data Byte 0(3] BIT 01 03

Safe Data Byte 0[] BIT 0.1 04 Name: Safe Data Byte O[1]

Safe Data Byte 0[5] BIT 01 05 e s [Brr 1 Bit(s) v]
Safe Data Byte 0[6] BIT 0.1 0.6

Safe Data Byte 0[7] BIT 0.1 0.7

Safe DataByte 1[0] BIT 01 10 | ok || cancel |

Safe Data Byte 1[1] BIT 0.1 1.1
Safe Data Byte 102 BIT 01 1.2

Safe Data Byte 103] BIT 0.1 1.3 Safe Data Byte 1[3] BIT
Safe Data Byte 1[4] BIT 0.1 14 Safe Data Byte 1[4] BIT
Safe Data Byte 1[5] BIT 0.1 15 Safe Data Byte 1[5] BIT
Safe Data Byte 18] BIT 0.1 16 . Safe Data Byte 1[6] BIT

L Mi_i_ M.a_ 47 miT mn 4 i i O Meoa_ M.a_ 4770 niT

0.1
0.1

0.1
0.1

mn 4

13
14
1.5
1.6

1477

Fs

Fig. 33: Renaming the individual signals within the telegram

il
The connection is linked under the Linking tab. The Link button next to Full Name (input) and Full

Name (output) can be used to select the corresponding variable.

Linking |{}c|-rme-::tic|-r1 | Frocess Image

Safe Address: 7 Device is an external device:
Physical Device:

Dip Switch:

Full Mame (input): K1100)*Term 4 (ELG310} " Connectionlnputs™Message_4 TxPDO
Full Name (ocutpuf): 11007 Term 4 (ELEZ10)"ConnectionOutputs“Meszage_4 RxPDO

Fig. 34: Selecting the variables

This can be a PLC variable, for example, which is then forwarded to the remote device or can be linked

directly with the process image of an EtherCAT Terminal (e.g. EL69x0 or EL6695).

TwinCAT Safety PLC Version: 1.2.0

33

Operation BEGKHUFF

i ™y
B ' Attach Variable Message_4 TxPDO (Input) ﬁ

Search: E] Shiow Y anables

@ Unuszed

: . (7 Used and unused
iz Devices [F] Exclude disabled

- Device 2 [EtherCAT
E__,%;?v?;m FIEI [EEII_EEEI]E] [Exclude other Devices

M AFSoE_Dutl > OF 39.0, Safety. FSOE_11[11.0] "] Exclude same Image
Show T ooltipz
[] Sort by Address

Show Yariable Types
[Matching Type
Matching Size

[] Al Types
Array Mode

Offzets

[] Continuaus
[Show Dialog

" ariable Mame

[Hand owver
[Take over

[Cancel] [Ok J

N = — — -

Fig. 35: Direct linking with the process image of an EtherCAT Terminal

Further information can be found in the TwinCAT documentation for the variable selection dialog.

The Connection tab is used to set the connection-specific parameters.

Linking | Connection F"rﬂoesslmage|

Connection Settings Connection Vanables
Conn-No: 3 COM ERR Ack
Conn-id: 4
= Info Data
Mode: [FSGE master vl [] Map State [] Map Inputs
[] Map Diag [] Map Outputs
Type: [Nﬂ-ne "l

Watchdog: 100
[] Module Fault (Fail 3afe Data) i= COM ERR

Safe Parameters

Appl. Param. OT0MFF10

Watchdog: &4 00 (100) -~
Appl. Param. Length: 04 00 ({4)
Besult:

02 00 &4 00 04 00 01 01

£ff 14 -

Fig. 36: Connection-specific parameters

34 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF Operation
Detailed information about the individual settings can be found in the following table.
Parameter Description User in-
teraction
required
Conn-No. Connection number: automatically assigned by the TwinCAT system No
Conn-ID Connection ID: pre-allocated by the system; can be changed by the user. A Conn |Control
ID must be unique within a configuration. Duplicate connection IDs result in an
error message

Mode FSoE master: TwinCAT Safety PLC is FSoE master for this device. Control
FSoE slave: TwinCAT Safety PLC is FSoE slave for this device. (This option is
not supported in the first version of the TwinCAT Safety PLC).

Type None: Setting for third-party equipment, for which no ESI file is available. Yes
KL6904: Setting for KL6904 (safety parameter inactive)
ELB69XX: Setting for EL6900/EL6930/EL6910/EJ6910 (safety parameter inactive)

Watchdog Watchdog time for this connection: A ComError is generated, if the device fails to |Yes

return a valid telegram to the TwinCAT Safety PLC within the watchdog time.

Module Fault |This checkbox is used to specify the behavior in the event of an error. If the Yes

is ComError |checkbox is ticked and a module error occurs on the alias device, this also leads

to a connection error and therefore to disabling of the TwinSAFE group, in which
this connection is defined.

Safe Device-specific parameters: The parameter length is automatically calculated Yes

Parameters |from the number of characters that is entered. This information will typically be

(Appl. Param) |provided by the device manufacturer.

ComErrAck If ComErrAck is linked to a variable, the connection must be reset via this signal |Yes

in the event of a communication error.
Info Data The info data to be shown in the process image of the TwinCAT Safety PLC can |Yes
be defined via these checkboxes. Further information can be found in the
documentation for TwinCAT function blocks for TWinSAFE logic terminals.
TwinCAT Safety PLC Version: 1.2.0 35

Operation BEGKHUFF

4.2.210 TwinSAFE group - Header files

The subfolder Header Files of the TwinSAFE group contains a list of all header files assigned to this group.

4 115 TwinSafeGroupl
TwinSafeGroupl Config.grp
4 |57 Alas Devices
DiscrepancyCounter.sds
@ DiscrepancyError.sds
Al EL1904_FSoE_211.5ds
@ EL2904_FSoE_13.5ds
[EL2904_FSoF 4.sds
m Errfick.sds
W_| Run.zds
4 [Analysis Files
[ModuleDatabase.saxml
|-Z Header Files
[7] SafeModuleHelper.h
[}] TwinSafeGroupl.h
[} TwinSafeGrouplloData.h
4 | Source Files
++ TwinSafeGroupl.cpp
| Test Files
++ ModuleTests.cpp
ModuleTests.h

o

[

Fig. 37: TWinSAFE group - Header files

The header files SafeModuleHelper.h and <GroupName>loData.h are automatically created by the safety
editor. The files are not write-protected, i.e. the user could modify them, although they are recreated during
the compile process, which means all modifications would be overwritten.

SafeModuleHelper.h contains type definitions, macros and functions created by the safety editor.
<GroupName>loData.h contains the 1/0O data structures of the alias devices and the TwinSAFE groups.

The header file <GroupName>.h can be used and expanded by the programmer. Here you can create type
definitions, variables and functions for the safety application module (<GroupName>.cpp).

36 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

4.2.2.11 TwinSAFE group - Source files

The subfolder Source Files of the TwinSAFE group contains the C++ source file assigned to this group.

4 75 TwinSafeGroupl

TwinSafeGroupl Config.grp

4 [5F Alias Devices

o

[

[

DiscrepancyCounter.sds
@ DiscrepancyError.sds
Rl EL1904_FSoE_211.sds
@ EL2904_FSoE_13.5ds

[EL2904_FSoF 4.sds

m Errfick.sds

W_| Run.zds

[Z Analysis Files

[ModuleDatabase.saxml

[Header Files

[7] SafeModuleHelper.h
[}] TwinSafeGroupl.h
[} TwinSafeGrouplloData.h

[£5 Source Files

++ TwinSafeGroupl.cpp

[£5 Test Files

++ ModuleTests.cpp
ModuleTests.h

Fig. 38: TwinSAFE group - Source files

The file <GroupName>.cpp is split into four parts. Four module functions are pre-defined and cannot be
changed. These include the Init function, which is called when the user application is initialized. The other
functions are InputUpdate, CycleUpdate, OutputUpdate, which are used for integrating the user application
in the cyclic process. Each of these functions is therefore called in each cyclic process (in the order
InputUpdate, CycleUpdate, OutputUpdate). These functions may only be called by the safe runtime
environment.

Note

m Module variables

initialized as part of the Init function.

All module variables (i.e. variables defined in file <TwinSAFE GroupName>.h) have to be

/*<safeUserApplicationCppFrontend:*/

#include "TwinSafeGroupl.h” // Rename according to TwinSAFE group name
—|SAFE_MODULE_DEF(TwinSafeGroupl) // Rename according to TwinSAFE group name
1

LEEEETLEEESEE T EEEEEET TR TE I E T T TE i F i 7T i it iiidiiid i fiiiiidtiiiiiiiifiriii
//1 Abrief Implementation of the safe user module initialization function
LEEEETLEEESEE T EEEEEET TR TE I E T T TE i F i 7T i it iiidiiid i fiiiiidtiiiiiiiifiriii
fF<TcInits*/

VOID CsafeModule: :Init()

1
// Put your module initialization code here
Counter = 8U;
DiscrepancyError = false;

¥

{*</TcInits*/

Fig. 39: Init function

TwinCAT Safety PLC Version: 1.2.0

37

Operation BEGKHOFF

= FELETERLERLETLITL T TL TSP T Tdd s iddidddiidiididdidddddidfiiiddisdiiiidis
J/1 Abrief Implementation of the safe user module input update function
FELETERLERLETLITL T TL TSP T Tdd s iddidddiidiididdidddddidfiiiddisdiiiidis
/*<TcInputUpdate>*®/
= VOID CSafetodule: :InputUpdate()
1

// Put your module input update code here

/*<IntentionallyEmpty/=*/

¥
/¥ TcInputUpdates*/

Fig. 40: InputUpdate function

El FELLETILERELET LR ET LR 8T LR L83 LR L8 i i Ei it idiiidiiiiiiidy
£V Abrief Implementation of the safe user module output update function
FELLETILERELET LR ET LR 8T LR L83 LR L8 i i Ei it idiiidiiiiiiidy
S*¥<TcOutputUpdate>*/
= VOID CSafeModule::OutputUpdate()
1

/! Put your module cutput update code here

/*<IntentionallyEmpty/>*/

¥
S*¥</ToOutputUpdates»*/

Fig. 41: OutputUpdate function

38 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

- LEELTEREEEEETET LT d P AT FEr i i riidrid i iidi i iidiidiidtiddidiifiriiiisy
[\brief Implementation of the safe user module cycle update function

FEETEPETETEE T T E R I T LT PP T T EEi i i it iiidif ity

/*<TcCycleUpdate»*/
= VOID CSafeModule: :CycleUpdate()

{

/{ Put your cycle update code here

// assign safe inputs to internal wvariable

safeB0OOL safelnl = sSafetyInputs.EL1984 FSoE 211.InputChannell;
safeB0O0OL safeln2 = sSafetyInputs.EL1984 FSoE_211.InputChannel?;
// write Counter value to standard alias device to main plc
sStandardOutputs.DiscrepancyCounter.0ut = Counter;
sStandardOutputs.DiscrepancyError.0ut = DiscrepancyError;

/f if discrepancy error occured set outputs to false

if (DiscrepancyError == true)

{
sSafetyOutputs.EL2984 FSoE_4._0OutputChannell = false;
sSafetyOutputs.EL2984 FSoE_13.0utputChanneld = false;

h
/{ no discrepancy error - execute AND function
else
{
if ((safeInl && safeln2) == true)
{
sSafetyQutputs.EL2984 FSoE_4.0utputChannell = true;
sSafetyOutputs.EL2984 FS50E_ 13 _OutputChanneld = true;
}
else
{
sSafetyOutputs.EL2984 FSoE_4.0utputChannell = false;
sSafetyOutputs.EL2984 FSoE_13.0utputChanneld = false;
}
b
L I]

Fig. 42: CycleUpdate function

423

CRC distribution

For automatic startup the TwinCAT Safety PLC has to check whether the current project was enabled for the
present system. To this end an internally calculated checksum is distributed to TwWinSAFE components,
which can be selected by the user, and verified when the TwinCAT Safety PLC starts up. If the comparison
fails, the TwinCAT Safety PLC does not start. If the comparison is successful, the safety project is executed
on the TwinCAT Safety PLC.

Double-click on Target System to open the Target System dialog. In addition to the target system, the CRC
distribution can also be configured here.

TwinCAT Safety PLC Version: 1.2.0

39

Operation BEGKHUFF

4 |3 SAFETY
4 |33 SafetyPLC
4| safetyPLC Project
8 Target System I
4 15 TwinsafeGroupl
TwinSafeGroupl Config.grp
|ad Alias Devices
3 Analysis Files
[Header Files
_d Source Files
A Test Files
4 @ SafetyPLC Instance
> [l Diag Data
> [l Info Data
> [Safety Timer Diag Data
B @TwinSafeGroupl

v v v v v

Fig. 43: Target System

The CRC Distribution dialog lists all safe alias devices that can be used for the CRC distribution. The
checkbox next to each entry can be used to specify whether the CRC is to be stored on the component. In
addition, the user can specify how many of the selected components have to return the correct CRC for the
TwinCAT Safety PLC to start. At least one component has to be selected here, in order to enable the safety
project to be downloaded and enabled for the TwinCAT Safety PLC.

Target Systern

MR, M/,

CRC Distribution

Axailable Alias Devices for Project CRC distribution

EL2904_FSoE_4 [TwinSafeGroupl)
EL1904_FSaE_211 [TwinSafelraupl]
EL2904_FSoE_13 [TwinSafelGroupl]

Startup, if 2 from 3 FSoE-Slaves have the cormect CRC stored
Fig. 44: Dialog CRC Distribution

4.2.4 Downloading the safety application

The safety configuration is downloaded in two stages: download and activation (unlock). For a download the
user first has to establish a connection to the required target system. This is done via the standard
mechanisms included in TwinCAT 3 for connecting to a non-local runtime environment (including controlled
user authentication). The safety application can then be downloaded to the runtime environment (the runtime

environment has to be in Config state). Use the download button % inthe Safety toolbar, or the menu

item oy D] St e . No user input is required for downloading the safety application. The

project CRC of the safety project to be downloaded is displayed in the Download dialog. Use Finish to
confirm the project CRC and start the actual download.

40 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

Download Safety Project (SafetyPLC Instance)

Steps

Download

Download

Project CRC to Download 0x2SB0ALCD

Finish | | Cancel

Fig. 45: Downloading the safety application

the TwinCAT Safety PLC.
CAUTION

Use only qualified tools
A qualified tool (TwinCAT 3.1) must be used for downloading and activating the project on

P>

DANGER

Source text of the safety application

The user source text must be developed based on the applicable standards, in particular
IEC 61508:2010. See also chapter Verification and validation [P 81].

Identification of the target system
Before downloading and activating the safety project, the user must ensure that the linked

target system is the required target system. An error during this process can only be de-
CAUTION |tected during verification and validation of the safety application.

4.2.5 Activating the safety application

Once the safety application has been downloaded successfully, it has to be activated before it can be

executed.

To this end the current configuration has to be activated first, and TwinCAT has to be started in run mode. If
the safety project is not activated, a corresponding message appears in the TwinCAT 3 output window. Once

the configuration is active, the activation can be started via the unlock button ég or via the menu.

Unlock Safety Project (SafetyPLC Instance)

Steps

Unlock 5afety Project

Unlock Safety Project

Cnline Project CRC 0x25B041CD

Confirm Project CRC

]

Finish | | Cancel

Fig. 46: Unlock Safety Project

The user has to confirm the displayed online CRC.

TwinCAT Safety PLC

Version: 1.2.0

41

Operation BEGKHUFF
Unlock Safety Project (SafetyPLC Instance) =]
Steps Unlock Safety Project
Unlock Safety Project

Online Project CRC 0x25B0A1CD
Confirm Project CRC 0x25B0A1CD
Finish | | Cancel

Fig. 47: Unlock Safety Project

Confirming the CRC with the Finish button enables and starts the safety application. While the safety
application starts up, the CRC is distributed to the safe communication devices configured as part of the
CRC distribution. When the TwinCAT system is restarted, the safety application starts without having to

activate it again.

After the activation the TwWinSAFE CRC toolbar shows the same CRC for online and offline.

. CRCs: (n25B0A1CD | 0x25B0M1CD _

Fig. 48: Identical CRCs

4.2.6 Safety and CRC toolbars

Right-click in the toolbar area of TwinCAT 3.1 to activate the Safety toolbar and the Safety CRC toolbar.

Y TwinCAT Safety
V' TwinCAT Safety CRCs
Y TwinCAT XAE Base

Fig. 49: Activating the Safety and CRC toolbars

Safety Toolbar Description
Checking the safety application
o
= Checking the safety application, including hardware level
; Downloading the safety application to the TwinCAT Safety PLC
: Deleting the safety application from the TwinCAT Safety PLC
=5
659 Activating the safety application
currently not used
i’
The CRC toolbar shows the online and offline CRC. In addition, an icon indicates whether or not they are
identical.
42

Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

CRC Toolbar

Description

7 [l CRCs: 0:25BOALCD | 0x25BOALCD _

Green icon: CRCs are identical

Red icon: CRCs are different

i CRCs O | 0x25B0AICD

Online CRC (32-Bit)
i . 0:25B041CD | -

; Offline CRC (32-Bit)
2l | (x2SBOAICD -
4.2.7 Info data

Info data for the target system

CRC Distribution

Fig. 50: Target system - Map Object ID and Map Project CRC

Configuration: | MFA

Platformm;

A,

d
sl i

T arget System:
Append to Tazk:
Object Hame:
Object 1d:
Software Version:

Project CRC:
tap Object |d:
Yerzion Mumber:

Safe Address:

TwinCAT Safety FLC

SafePLCT ask [0x02010

SaftetyPLC Instance

0=071010010

1

niot available
Map Project CRC:

1 o)

200

The checkboxes Map Object ID and Map Project CRC can be used to specify that the object ID and the
project CRC should be copied into the process image of the TwinCAT Safety PLC on the target system.
From here, the entries Object Id and Project CRC can be linked to the standard PLC.

P SafetyPLC Instance

b [l Diag Data
4 [y Info Data

B+ Project CRC

B+ Object Id

b [l Safety Timer Diag Data
[Twin5afeGroupl

Fig. 51: Target System Info Data

Info Data Description

Project CRC 32-bit project CRC (online)

Object Id Unique ID of the TwinCAT Safety PLC instance (unique across the whole
TwinCAT 3 project)

TwinCAT Safety PLC

Version: 1.2.0

43

Operation

BECKHOFF

Diag Data - TwinCAT Safety PLC

4 @ SafetyPLC Instance

4 [Diag Data

&+ Safety Project State
- Diag Info
&~ Internal Diag

[[l Info Data

b [l Safety Timer Diag Data
[@TwinSafeGrDupl

Fig. 52: Diag Data - TwinCAT Safety PLC

Diag Data

Description

Safety Project State

601 (0x0259) Init
The Init state is assumed when the instance starts up, in order to test the
internal configuration before the actual startup.

602 (0x025A) Run
The Run state is assumed when no error occurred during startup. In Run
state the configured TwinSAFE groups are integrated in the cyclic process.

603 (0x025B) Error

The Error state is assumed if an internal error occurs. This state can only be
existed by restarting the whole configuration. In Error state the TwinSAFE
groups (and therefore also the subordinate communication links and the
subordinate user application) are no longer executed, with the result that the
Safe state is assumed.

604 (0x025C) Checking Download Completion

In this state the system checks whether the safety project to be started has
been downloaded properly and is valid. An error during this process leads to
Error state.

605 (0x025D) Checking Unlocking Data

In this state the system checks whether the safety project to be started has
been successfully pre-enabled. If the check is unsuccessful, state 606 is
assumed.

606 (0x025E) Waiting for Activation

This state is assumed if the safety project was not enabled in advance. The
state can only be exit by triggering activation of the safety project from the
corresponding TwinCAT 3 project.

607 (0x025F) Writing Unlocking Data
Once the safety project has been activated successfully, corresponding data
are written to indicate the successful activation for the next startup.

608 (0x0260) Waiting for Project CRC Acknowledge

If a safety project is started that was already activated, the activation data
are verified with the data previously queried by the safe communication
devices previously configured as part of the CRC distribution.

Diag Info Diagnostic information for the instance
Internal Diag Internal diagnostic information (not relevant for users)
44 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Operation

Safety Timer Diag Data - TwinCAT Safety PLC

4 @ SafetyPLC Instance
{+ [Diag Data
[Bl Info Data
4 [Safety Timer Diag Data
B~ Current Value
- Execution Time
[+ @ TwinSafeGroupl

Fig. 53: Safety Timer Diag Data - TwinCAT Safety PLC

Safety Timer Diag Data |Description

Current Value Current value of the safe time signal

Execution Time Internally determined execution time from the start of InputUpdate to the end of
OutputUpdate for the whole instance

Group info data

General Settings | Group Ports | Process Image |

Group Order|d: 0
Info Data kapping
hdap Diag:
hdap State:

e

Fig. 54: Group MapDiag MapState

4 @ SafetyPLC Instance
{+ [Diag Data
[Bl Info Data
t+ [Safety Timer Diag Data
4 @Twinﬂafeﬁrnupl
P StandardInputs
b [StandardOutputs
4 [TwinSAFE Group Info Data
- Diag
- State

Fig. 55: Group info data

TwinCAT Safety PLC Version: 1.2.0

45

Operation

BECKHOFF

Group Info Data Description

State » 701 (0x02BD) Stop

set to TRUE.
» 702 (0x02BE) Run

- 703 (0x02BF) Safe

« 704 (0x02CO0) Error

OocCcurs.
« 705 (0x02C1) Reset

state.
« 706 (0x02C2) Global Error

The Stop state is assumed while the instance starts up. During operation this
state is assumed if the corresponding Run/Stop signal is configured and is not

The Run state is assumed if none of the safe connections involved is faulty and
the Run/Stop input (if configured) is set to TRUE.

The Safe state is assumed if at least one of the connections is not in Data state.

The Error state is assumed if an application error or a communication error

The Reset state is assumed if the ErrorAck signal shows a rising edge in Error

The Global Error state is assumed if a fatal error occurs during internal
processing. This state can only be existed by restarting the current configuration.

Diag » Diagnostic information

Connection info data

Linking | Connection |Safety Pararmeters | Process Image | DEBUG

Connection Settings Caonnection Yariables
Conn-Mo: 2 COk ERR Ack:
Caonn-ld: 3
Info Data

hAode: FSoE master v] bdap State

kdap Diag
Watchdog (ms); 100

fdodule Fault (Fail Safe Data) iz COMM ERR

hdap Inputs
[hlap Outputs

Fig. 56: FSoE connection map info data

4 @ EL1904_F5oE_211 FSoE Stack
4 Connectionlnputs
b [ConnectionOutputs
4 [Connection Info Data
4 W& Message_3 Info Data
K- State
- Diag
&+ Input Safe Data InputChannell
- Input Safe Data InputChannel2
- Input 5afe Data InputChannel2
&+ Input Safe Data InputChanneld
[+ [Data Pointer

Fig. 57: FSoE connection info data

46 Version: 1.2.0

TwinCAT Safety PLC

BECKHOFF

Operation

Connection
Info Data

Description

State

100 (0x64) Reset
The reset state is used to re-initialize the Safety over EtherCAT connection after the
power-on or a Safety over EtherCAT communication error.

101 (0x65) Session

During the transition to or in the Session state a session ID is transferred from the
Safety over EtherCAT master to the Safety over EtherCAT slave, which responds with
its own session ID.

102 (0x66) Connection
In Connection state a connection ID is transferred from the Safety over EtherCAT
master to the Safety over EtherCAT slave.

103 (0x67) Parameter
In Parameter state safe communication and device-specific application parameters are
transferred.

104 (0x68) Data
In Data state Safety over EtherCAT cycles are transferred until either a communication
error occurs or a Safety over EtherCAT node is stopped locally.

Diag

xxxx 0001 - Invalid command

xxxx 0010 - Unknown command

xxxx 0011 - Invalid connection ID

xxxx 0100 - Invalid CRC

xxxx 0101 - Watchdog expired

xxxx 0110 - Invalid FSoE address

xxxx 0111 - Invalid data

xxxx 1000 - Invalid communication parameter length
xxxx 1001 - Invalid communication parameters
xxxx 1010 - Invalid user parameter length
xxxx 1011 - Invalid user parameters

xxxx 1100 - FSoE master reset

xxxx 1101 - Module error detected on slave, with option "Module error is ComError"
activated

xxxx 1110 - Module error detected on EL290x, with option "Error acknowledge active
activated

xxxx 1111 - Slave not yet started, or unexpected error argument
xxx1 xxxx - FSoE slave error detected

xx1x xxxx - FSoE slave reports Failsafe Value active

X1xx xxxx - StartUp

1xxx xxxx - FSoE master reports Failsafe Value active

Inputs

safe inputs of the connection

Outputs

safe outputs of the connection

TwinCAT Safety PLC Version: 1.2.0 47

Operation BEGKHUFF

4.2.8 Task settings

Right-click on Tasks and select Add New Item... to create a new task.

4 [SYSTEM
¥ License
b @ Real-Time

[Z1 PlcTask 7 Add Mew erm... Ins

gtz Routes O Add Existing em.., Shift +A1t+4,
[E8] TcCOM Objects

Fig. 58: Adding a new task

The Insert Task dialog is used to enter a task name and to specify whether the task is to be created with or
without image. Both options are available for the TwinCAT Safety PLC; in the example With Image is
selected.

o "

Insert Task @
Mame: SafePLCT ask
() TwinCAT Task

@ TwinCAT Tazk with Image

Fig. 59: Dialog Insert Task

Settings

Double-click on the task to open the task settings. Here you can set the cycle time and the priority.

Cycle time and priority
The cycle time can be selected freely but should be selected such that no limits are ex-

ceeded (ExceedCounter does not increment).
Note The priority should be set as high as possible (low number), in order to minimize disrup-
tions and jitter of the TwinCAT Safety PLC.

48 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Operation

Task | Online | Farameter [Elnline]l

M ame: SafePLLCT azk

Auto start
Auto Prionty Management

Priority: 1 ﬂ
Cycle ticks: 1 ﬂ 1.000

Start tick. [rmadula); 0 =

Separate input update

Pre ticks:

Part: 3m ﬂ

Object 14 0=02010020

Ophions
Dhzable

Create symbols

[] Include extermal symbols

Estern spnc
W arning by exceeding
[] Mezzage box
Floating point exceptions
YWatchdog Cpcles:] =
4= IZ' W atchdog stack
Comment:

Fig. 60: Task settings

Checking the ExceedCounter

The Online tab for the respective task can be used to check the execution time and the exceed counter.

Task | Online |F'arameter [Elnline]l

1 1
1000 w I;pul'l 1 s
Taotal 1.2 us
0us
Exceed counter: Feset

Fig. 61: Task execution time and exceed counter

TwinCAT Safety PLC

Version: 1.2.0

49

Safety C application development BEGKHUFF

5 Safety C application development

Safety C application development
The user source text must be developed based on the applicable standards, in particular

IEC 61508:2010.

DANGER
. Warnings relating to the advanced configuration process for the safety-re-

lated application

The user must evaluate all warnings that may occur during the build process and rectify the
DANGER | causes or comment/document them as appropriate.

5.1 Programming in Safety C

511 Differentiation between programming in Safety C and C/C++

Safety C is a C++-based high-level language for programming safety applications for the TwinCAT Safety
PLC with a safe language scope, which complies with the strongly typed and modular version of the C
language, without dynamic memory or pointer (arithmetic). The syntax and semantics of Safety C therefore
generally match the corresponding, valid C++ language subset (see ISO standard C++11 N3242, for
example), as processed by the corresponding C++ compiler. The Safety C compile process for the TwinCAT
Safety PLC requires the Microsoft Visual C++ 2015 compiler or higher.

C++ is essentially an upward compatible extension of C with language support for object orientation and
meta-programming, so that C programs can also be processed by C++ compiler (with some restrictions).
Programming in Safety C therefore also permits limited utilization of object-oriented C++ extensions for data
encapsulation and modularization of program modules by the application developer, although typical C++
concepts such as inheritance, polymorphism and generic template programming are basically not used.
From an application developer perspective, programming in Safety C is therefore closer to the development
procedure in C.

Compared with function block-based programming, high-level languages such as C/C++ enable
programmers much more freedom, although this also creates potential sources of systematic application
errors. In addition, the ISO standards for C/C++ deliberately leave scope for implementing efficient
compilers, so that a standard-compliant C/C++ program may contain undefined or platform-dependent
behavior (e.g. data type widths, division by zero or overflow/underflow of signed integer data types).

The safety standards to be applied for PLC systems therefore require the full scope of C/C++ to be restricted
for the development of safety functions in high-level languages (see IEC 61508-3:2010, for example) through
the application of language subsets with coding rules, in order to avoid programs with ambiguous semantics
and reduce the risk of generating faulty program code or programs with unexpected behavior. Furthermore,
this is intended to facilitate tool-based program analysis and verification, as well as manual analyses through
code inspections.

The permissible language scope of Safety C largely prevents generation of source code with undefined
behavior. At some points alternative helper functions with unambiguous semantics or integrated detection of
undefined behavior are offered, so that the application developer has the option to choose between native
operations and helper functions.

The main restrictions of Safety C compared with C and C++ can be summarized as follows:

» No support (with a few exceptions) for object orientation, meta-programming or other typical C++
extensions (compared with C)

« Limited data types and strong typing of all data types to avoid implicit type conversion effects

+ Limitation to simple statements, operators and expressions to avoid unexpected results and side
effects

« Limitation of control flow statements (if-else, for, while, and switch-case) for understandable and
program sequences that can be analyzed

50 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

» No direct or indirect recursion
» No dynamic data structures, no pointer- or address-based data access or function calls
» No global or static functions and variables

» Specification of structured source code templates as a basis for the development of safe program
modules (application, function block)

* No user-defined preprocessor or compiler statements for conditional source code compilation or
implementation of further source code files

* No implementation of standard libraries or legacy code

5.1.2 Source code templates

When a TwinSAFE group is created, header and source code files for the safer user program are created at
the same time. Of particular relevance for programmers are the files <GroupName>.h and
<GroupName>.cpp. Furthermore, the user is offered the option to define custom function blocks (not yet
supported in V1).

The templates are designed such that programmers can implement modifications and extensions only within
predefined ranges. It is not permissible to create further *.h / *.cpp files within the TwinSAFE group.

Preprocessor defines, type definitions (structs, enums) and module variables can be created in the module
header file (<group name>.h) (enums are not yet supported in V1). Only declaration of the module class with
user-defined module variables and functions is permitted, no implementation.

The module class is implemented in the file <GroupName>.cpp.

Once a group has been created, changes to <group name>.h and <group name>.cpp can only be made by
the user. Any changes are immediately secured through checksums (and are thus indirectly indicated to the
user through a change in the project CRC). This means that, if the group name is renamed, the source code
of <group name>.h and <group name>.cpp must be adapted manually. This applies to the name-specific
source code components that are generated at the time of creation (see comments in the source code
template).

Additional header files are dynamically created by the safety editor and cannot be modified by the user. Any
changes the user may have made in these files are overwritten during the compile process!

5.1.2.1 Application module for a TwinSAFE group

Source code template for declaring a Safety C application module
<TwinSAFE GroupName>.h

[T
//' \file TwinSafeGroupl.h

//' \brief Header file of the TwinSafeGroupl application module

//!' \ingroup TwinSafeGroupl

//! \defgroup TwinSafeGroupl

//!' \brief Put brief description of your application module here

//! \authors Administrator

//! \copyright Put affiliation and copyright notice here

//! \version V1.0

//' \date 2016-09-29

//' \ingroup Empty
VN NN

//\internal////// /1111777777777 7777777777 77777777777777777777777777777777777777
//! XML tags <...> enclosed by C style block comment markups are protected for
//! structural and semantic code analysis. Do NOT remove or reorder any of the
//! mandatory markups within the source code template as safe build process may
//!' fail otherwise! For further information on how to write compliant Safety C
//! user code please refer to the provided Safety C coding guidelines document!

N

/*<SafeUserApplicationHFrontend>*/
#pragma once

/*<UserDefinedIncludes>*/ // Include other safe module headers here

TwinCAT Safety PLC Version: 1.2.0 51

Safety C application development

BECKHOFF

/*</UserDefinedIncludes>*/

#include "TwinSafeGrouplIoData.h" // Rename

/*<UserDefinedDefines>*/ // Define
/*</UserDefinedDefines>*/

NAMESPACE (TwinSafeGroupl) // Rename

{

/*<UserDefinedTypes>*/ // Define
/*</UserDefinedTypes>*/

according to TwinSAFE group name

preprocessor constants here

according to TwinSAFE group name

custom data types here

N

/7!
/7!
/7!

\class TwinSafeGroupl
\brief Declaration of the Safety C user application module class
\details Put detailed description of your module functionality here

L1117 007 7770777777777 777 777777777777 777777777777777777777777777777777777
SAFE MODULE (TwinSafeGroupl) // Rename

{

bi

// Public module interface
PUBLIC:

VOID Init();

VOID InputUpdate();
VOID OutputUpdate () ;
VOID CycleUpdate() ;

SafetyInputs sSafetyInputs;
SafetyOutputs sSafetyOutputs;
StandardInputs sStandardInputs;
StandardOutputs sStandardOutputs;
safeUINT16 ul6SafeTimer

TSGData sTSGData;

// Module internals
PRIVATE:

}i

/7

/*<UserDefinedVariables>*/
/*</UserDefinedVariables>*/

/*<UserDefinedFunctions>*/
/*</UserDefinedFunctions>*/

SAFE MODULE EXPORT () ;

Reference to project FCS symbol
extern UINT32 SAFETY PROJECT FCS;

/*</SafeUserApplicationHFrontend>*/

according to TwinSAFE group name

//!< Module initialization function
//'< Module input update function
//!< Module output update function
//!< Module cycle update function
//!< Safe input data struct

//!< Safe output data struct

//!< Non-safe input data struct

//!< Non-safe output data struct

//!'< Safe external timer input (in ms)

//!< TwinSAFE group exchange data struct

// Define internal variables here

// Define internal functions here

// Do NOT read, write or remove!

52

Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

Permissible modifications <TwinSAFE GroupName>.h

project tree, the user must adjust this entry accordingly)
Note

the project tree, the user must adjust this entry accordingly)

User includes only between
[*<UserDefinedInclude>*/ ... [*</UserDefinedInclude>*/

» User defines only between
[*<UserDefinedDefines>*/ ... [*</UserDefinedDefines>*/

User type definitions only between
[*<UserDefinedTypes>*/ ... [*</UserDefinedTypes>*/

User variables only between
/*<UserDefinedVariables>*/ ... /*</UserDefinedVariables>*/

User functions only between
[*<UserDefinedFunctions>*/ ... /*</UserDefinedFunctions>*/

« Comments can amended/modified as required
(except protected comments of the form /*<...>*/)

* NAMESPACE <TwinSAFE GroupName> (if the TwinSAFE group name changes in the

« SAFE_MODULE <TwinSAFE GroupName> (if the TwinSAFE group name changes in

Source code template for implementing a Safety C application module: <TwinSAFE GroupName>.cpp

N
//! \file TwinSafeGroupl.cpp

//! \brief Source file of the TwinSafeGroupl application module

//! \ingroup TwinSafeGroupl

//! \authors Administrator

//!' \copyright Put affiliation and copyright notice here

//' \version V1.0

//! \date 2016-09-29

//!' \details Put detailed description of your module implementation here

N

///\internal///// /111117170 TL TS T
//! XML tags <...> enclosed by C style block comment markups are protected for
//! structural and semantic code analysis. Do NOT remove or reorder any of the
//! mandatory markups within the source code template as safe build process may
//!' fail otherwise! For further information on how to write compliant Safety C
//! user code please refer to the provided Safety C coding guidelines document!

NN
/*<SafeUserApplicationCppFrontend>*/
#include "TwinSafeGroupl.h" // Rename according to TwinSAFE group name

SAFE MODULE DEF (TwinSafeGroupl) // Rename according to TwinSAFE group name
{
[T
//1 \brief Implementation of the safe user module initialization function
L1110 7077777007777 7 77777777777 777
/Ll 3 //
VOID CSafeModule::Init ()
{
// Put your module initialization code here
}
/*</TcInit>*/

L1117 0707777077777 777
//!' \brief Implementation of the safe user module input update function
LITTTT 7000777777777 7777777777777 7777777777777 77777
/*<TcInputUpdate>*/
VOID CSafeModule: :InputUpdate ()
{

// Put your module input update code here
}
/*</TcInputUpdate>*/

[7777777777777 777777777777 77
//! \brief Implementation of the safe user module output update function
A
/*<TcOutputUpdate>*/

VOID CSafeModule: :OutputUpdate ()

TwinCAT Safety PLC Version: 1.2.0

53

Safety C application development BEGKHUFF

{

// Put your module output update code here

}
/*</TcOutputUpdate>*/

[T 7777777777777 7777777777777 7777777777777777777777777777
//! \brief Implementation of the safe user module cycle update function
s
/*<TcCycleUpdate>*/

VOID CSafeModule::CycleUpdate ()

{
// Put your cycle update code here

}
/*</TcCycleUpdate>*/

/*<UserDefinedFunctionsDef>*/ // Implement internal module functions here
/*</UserDefinedFunctionsDef>*/

//! Reference to project FCS symbol
extern UINT32 SAFETY PROJECT_FCS; // Do NOT read, write or remove!
bi

// Rename according to TwinSAFE group name
SAFE _MODULE DEF EXPORT (TwinSafeGroupl) ;

/*</SafeUserApplicationCppFrontend>*/

Valid modifications <TwinSAFE GroupName>.cpp

* SAFE_MODULE_DEF <TwinSAFE GroupName> (if the TwinSAFE group name
changes in the project tree, the user must adjust this entry accordingly)

+ SAFE_MODULE_DEF_EXPORT <TwinSAFE GroupName> (if the TwinSAFE group
name changes in the project tree, the user must adjust this entry accordingly)

Note

» User program initialization only between
[*<Tclnit>/ ... /*</TcInit>*/

» User program input update only between
[*<TclnputUpdate>/ ... /*</TclnputUpdate>*/

» User program cycle update only between
[*<TcCycleUpdate>/ ... [*</TcCycleUpdate>*/

» User program output update only between
[*<TcOutputUpdate>/ ... /*</TcOutputUpdate>*/

User functions only in the range between
[*<UserDefinedFunctions>*/ ... /*<UserDefinedFunctions>*/

* In order to avoid warnings, for unused or empty code blocks a comment should be
added of the form:
[*<IntentionallyEmpty/>*/

54 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Safety C application development

5.2 Safe coding rules

5.2.1 Definitions

Term

Explanation

strict/strong typing

Implicit type conversions are not permitted in Safety C. For each operation,
assignment or parameter passing, the data type of all operands must match the
target data type (with few exceptions that are regarded as safe). Any discrepancy
between the data types must be resolved through an explicit conversion. (see

chapter Strong typing [P 58])

pure functions

The function always provides the same result, when the same arguments are
transferred to the function. The result of the function does not depend on internal
locals or globals and variables, other internal information or input signals. A pure
function is a function without side effect. All helper functions provided are pure
functions.

non-pure functions /
impure functions

Each function that uses state variables or input/output signals or other internal
information should be regarded as potentially "impure" or "non-pure", since it may
return different results at different call times. A non-pure / impure function is a
function with side effect. User-defined functions are generally regarded as impure,
even if they meet the criteria of a pure function.

Operator precedence

Determines the order to be used for the operators of a programming language,
whereby a composite expression can be transferred to a syntax tree for further
processing by the compiler. In Safety C, the operator precedences are clearly
defined through the derivation from the C/C++ standard.

Operator associativity

Determines the order of operators of the same precedence in a composite
expression, unless explicitly given by parentheses. In Safety C, the operator
associativity is clearly defined through the derivation from the C/C++ standard. The
expression (a + b + ¢) is therefore unambiguously processed through the left
associativity of the addition with the following implicit parentheses: ((a + b) + c)
This effect is particularly important in cases where the order of the operators to be
applied can affect on the overall result. In Safety C the operator associativity must
also be taken into account for compliance with the strong typing.

Evaluation
sequence

Determines the order to be used when evaluating operands, such as performing
function calls or incrementing a variable as part of a composite expression. The
evaluation sequence can affect the result of an expression if it contains several
mutually dependent side effects. The C/C++ standard does not define a clear
evaluation sequence! For the sake of clarity of Safety C Code, restrictions are
therefore imposed on expressions, in order to avoid the effects of an ambiguous
evaluation sequence.

Recursion

A recursion means that a function or procedure calls itself. A distinction is made
between direct and indirect recursion:

direct recursion: A() calls A()
indirect recursion: A() calls B(), B() calls A(), ...

Short circuit evaluation

Short circuit evaluation or conditional evaluation refers to a behavior, which for
Boolean operations results in premature abortion of the evaluation. If a result is
unambiguously determined after part of an operation, the following sub-operations
are no longer executed.

Example: ¢ = a&&b;

If a is false, the result ¢ is unambiguously determinable; the operation is therefore
aborted, and c is directly set to false, without evaluation of b.

TwinCAT Safety PLC

Version: 1.2.0 55

Safety C application development BEGKHUFF

5.2.2 General

Data types

In the development of the safety application, the user should ensure that a distinction is

made between the data types BOOL and safeBOOL and other safe and non-safe data
Note types. This simplifies the subsequent verification and validation of the realized application.
In V1 safe and non-safe data types are identical from the perspective of the type system.
The user therefore has to assess intermixing of safe and non-safe input signals based on
current standards.

Control structures
For loops are preferable to while loops, since the termination is easier to realize.

Note

The following general rules apply for context-dependent restriction of operators and function calls in
expressions:

+ The logic operators &&, || may only be used in conditional expressions of if, for and while statements
(and in the conditional expressions of assert statements).

» The conditional expressions of if, for and while statements must return the result of a comparison

operation (==, I=, <, >, <=, >=). In addition, complex composite operands of this compare operations
should be enclosed in parentheses, e.g.:

while (flag==true) //Statt while(flag)

if (0>(a+b)) //Statt if (0>a+b) oder if (a+b)

» Function calls with potential side effects (so-called "non-pure functions") may only be called as simple
statements, either without assignment of a return value or (if a return value is used) with direct
assignment of the return value to a variable, in order to ensure that the order of evaluation is clearly
determined (i.e. they must not be called as part of a condition or switch expression). Permitted
(example):

INT32 r1 = MyNonPureFunc1();
INT32 r2 = MyNonPureFunc2();
INT32r=r1+r2;
Not permitted (example):
INT32 r = MyNonPureFunc1() + MyNonPureFunc2();

» Functions without side effects ("pure functions") may also be used as part of switch or conditional
expressions. Examples of side effect-free functions include helper functions provided by the TwinCAT
Safety PLC, such as mathematical functions or conversion functions. They can be combined with "non-
pure” functions, as long as there is only one call of a "non-pure” function per expression. Permitted
(example):

INT32 r1 = MyPureFunc1() + MyNonPureFunc1(MyPureFunc2());

« ltis generally assumed that the predefined module interface functions (Init, InputUpdate, CycleUpdate,
OutputUpdate), user-defined functions and function blocks have potential side effects. For this reason
they may only be called as simple line statements, with or without assignment (see item 3), e.g.:
MyFB1.CycleUpdate();
int y = MyFunction(42, y);

y = MyFunction2();

Calling the interface functions as entry point for the user application is only permitted from the safe
runtime environment. User-defined calls of Init() and CycleUpdate() are only allowed for FB instances
(FBs are not supported in V1).

» The operators post-increment (++) and post-decrement (--) may only be used as simple line statements
(e.g. i++; i--;) (except the third expression of the statement line in a for head of the loop).

» The assignment operator may only be used as part of simple statements with assignment, with the
exception of the first and third expression of the statement line of a for head of the loop (e.g. INT32
i=0;). Multiple assignments are not permitted in a line statement (e.g. a=b=c;), neither are assignments
as default value initialization in function signatures.

+ In general, all primitive data types must be strongly typed on assignment and for parameter passing
and function return, in contrast to standard C/C++. Exceptions are combinations of a smaller source

datatype with a larger target datatype with the same signedness (see chapter Strong typing [» 58]).

56 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

» To avoid unintentional effects, further combinations of data types and operators are restricted (see
chapter Strong typing [» 58]).

» The use of the explicit type conversion operators requires additional parentheses if the expression to
the right of the transformation operator is a non-bracketed, complex expression:
INT32i32 = (INT32)u16 * -u16; // Not permitted, since it is not clear which expression is meant as the
operand of the type conversion operator
INT32i32 = (INT32)(u16) * -u16; // Permitted, since unambiguous

Limitation of complexity
Warnings are issued when a certain complexity is exceeded (known as McCabe index or
zyclomatic complexity). An index of < 10 per function is recommended.
Note . .
* index > 20 per module function

* index > 50 per module (error for index > 1000)

A warning is issued if the number of module variables exceeds 50, an error is issued if the

m Limitation of the number of module variables
number exceeds 1000.

Note

TwinCAT Safety PLC Version: 1.2.0 57

Safety C application development BEGKHUFF

5.2.3 Strong typing

The following applies for all type identifiers mentioned:

BOOL is equivalent to safeBOOL.

INT8 is equivalent to safeINT8, SINT, safeSINT.

UINT8 is equivalent to safeUINT8, USINT, safeUSINT.
INT16 is equivalent to safeINT16, INT, safelNT.

UINT16 is equivalent to safeUINT16, UINT, safeUINT.
INT32 is equivalent to safeINT32, DINT, safeDINT.
UINT32 is equivalent to safeUINT32, UDINT, safeUDINT

Explanations for the operator type constraints shown in the following tables:

1.

2.

Logic operators (&&, ||, !) may only have variables, literals (frue, false) or expressions of type BOOL as
operands.

Arithmetic operators (+, -, *, /, %) may only have variables, literals (decimal, hexadecimal, binary) or
expressions of integer arithmetic types (U)INT(8/16/32) as operands.

. Bitwise operators (&, |, *, ~, <<, >>) may only have variables, literals (decimal, hexadecimal, binary) or

expressions of integer unsigned arithmetic types UINT(8/16/32) as operands.

. The comparison operators (<, >, <=, >=) may not have variables, literals (frue, false) or expressions of

type BOOL as operands.

. Binary operators (comparison, arithmetic, bitwise, logic) with left and right operand (+, -, *, /, %, &, |, *,

<<, >> == = < > <= >=)may only contain variables, literals (Boolean, decimal, hexadecimal, bi-
nary) or expressions of the same type (for other restrictions see above).

. "Integral promotions" (C++ standard conversions to type INT32) of the result expression of operations

with operands of small integer data types (U)INT(8/16) have to be neutralized through an explicit type
conversion, if one of the rules under 1. - 5. is violated,

e.g. in the event of summation of UIN8 expressions in the UINT8 number range:

1: UINT8 z=..,;UINT8a=..;

2: 2= (UINT8)(a + (UINT8)(a + a)); //instead of a=a + a + a;

Without type conversion of the INT32 result expression from a+a back to INT8, the type equality rule
for the subsequent addition would be violated. The same applies to the subsequent assignment to the
UINTS type. Alternatively, all UINT8 expressions can be previously converted to INT32 expressions,
before the summation in the INT32 number range is applied:

3:UINT8z=...;UINT8a=..;

4:z=((INT32)a) + ((INT32)a) + ((INT32)a);

Note, however, that this may lead to a different result. The aim of strong typing is to make the intention
of the application developer regarding type conversion effects explicitly visible.

Permitted (example):

INT16i16; UINT8 us; ...

INT32i32 = i16; // Not type-equivalent, but permitted

UINT16 u16 = u8; // Not type-equivalent, but permitted

Further exceptions apply for the initialization of module variables with constant literals. Permitted (ex-
ample):

INT8 i8; // Declaration as module variable

UNT16 u16; // Declaration as module variable

|8= 0; // Permitted, despite the fact that it is a constant literal of type INT32
u16 = 42U; // Permitted, despite the fact that it is a constant literal of type UINT32

. The explicit type conversion operator () may only be used for conversion of a variable, literal (decimal,

hexadecimal, binary) or expression from one integer arithmetic type (U)INT(8/16/32) to another. The
explicit type conversion operator may lead to loss of data or sign. If this is not desired or if it should be
detected, the helper functions should be used for the conversion.

. The same source and target types or function signatures must be used for assignment (=), transfer

and return of function parameters and results, or from smaller arithmetic data types to larger data
types without conversion between signed and unsigned data type (safe exception of strong typing).
For initialization statements of type UINT8 a = 10U, the compiler checks whether the literal matches
the declared data type. However, this is only permitted if the declaration and initialization are com-
bined in a simple line statement, or if the initialization applies to a simple module variable.

58

Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Safety C application development

9. Complex data types (structs) only support assignments for the same type (=), transfer as function pa-
rameter and return through functions, as well as the access operator (.) for data members. The appli-
cation of explicit type conversion to complex data types is generally not forbidden.

Only operator type combinations that have an entry in the following tables are allowed. The type identifier in
the cell is the result type of the operation (taking into account C++ standard type conversions). The right-

hand operand (RHS) is shown in the header, the left-hand operand (LHS) in the first column.

LHS/RHS: left/right operand of unary or binary operators.

Type rules for arithmetic operators

+,-%1,% BOOL INT8

UINT8

INT16

UINT16 INT32

UINT32

BOOL

INT8 INT32

UINT8

INT32

INT16

INT32

UINT16

INT32

INT32

INT32

UINT32

UINT32

Unary BOOL INT8

UINT8

INT16

UINT16 INT32

UINT32

-X INT32

INT32

INT32

INT32 INT32

+X

Unary

X++

BOOL

INT8

INT8

INT8

UINT8

UINT8

UINT8

INT16

INT16

INT16

UINT16

UINT16

UINT16

INT32

INT32

INT32

UINT32

UINT32

UINT32

— — K-
+_! = =

I=, %=

, |BOOL INT8

UINTS8

INT16

UINT16 INT32

UINT32

BOOL

INT8 INT8

UINTS

UINTS

INT16

INT16

UINT16

UINT16

INT32

INT32

UINT32

UINT32

Type rules for bitwise operators

&,],A,<<,>> BOOL INT8

UINT8

INT16

UINT16 INT32

UINT32

BOOL

INT8

UINT8

INT32

INT16

UINT16

INT32

INT32

UINT32

UINT32

TwinCAT Safety PLC

Version: 1.2.0

59

Safety C application development

BECKHOFF

Unary

BOOL

INT8

UINT8

INT16

UINT16

INT32

UINT32

~X

INT32

INT32

UINT32

&=, |=, A=

<<=, >>=

3

BOOL

INT8

UINT8

INT16

UINT16

INT32

UINT32

BOOL

INT8

UINT8

UINT8

INT16

UINT16

UINT16

INT32

UINT32

UINT32

Type rules for logic operators

&&, ||

BOOL

INT8

UINTS8

INT16

UINT16

INT32

UINT32

BOOL

BOOL

INT8

UINT8

INT16

UINT16

INT32

UINT32

Unary

BOOL

INT8

UINT8

INT16

UINT16

INT32

UINT32

Ix

BOOL

BOOL

INT8

UINT8

INT16

UINT16

INT32

UINT32

BOOL

BOOL

INT8

BOOL

UINT8

BOOL

INT16

BOOL

UINT16

BOOL

INT32

BOOL

UINT32

BOOL

>,<,>=,<=

BOOL

INT8

UINTS8

INT16

UINT16

INT32

UINT32

BOOL

INT8

BOOL

UINT8

BOOL

INT16

BOOL

UINT16

BOOL

INT32

BOOL

UINT32

BOOL

60

Version: 1.2.0

TwinCAT Safety PLC

BECKHOFF

Safety C application development

Type rules for the explicit cast operator

() BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL

INT8 INT8 INT8 INT8 INT8 INT8 INT8
UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8
INT16 INT16 INT16 INT16 INT16 INT16 INT16
UINT16 UINT16 UINT16 UINT16 UINT16 UINT16 UINT16
INT32 INT32 INT32 INT32 INT32 INT32 INT32
UINT32 UINT32 UINT32 UINT32 UINT32 UINT32 UINT32
() struct A struct B struct C

struct A

struct B

struct C

Type rules for the member access operator

. struct A struct B struct C

BOOL BOOL BOOL BOOL

INT8 INT8 INT8 INT8

UINT8 UINT8 UINT8 UINT8

INT16 INT16 INT16 INT16

UINT16 UINT16 UINT16 UINT16

INT32 INT32 INT32 INT32

UINT32 UINT32 UINT32 UINT32

struct A struct B struct C

struct B struct A struct C

struct C struct A struct B

Type rules for assignments, and transfer of function parameters and return of return values

= BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL BOOL

INT8 INT8

UINT8 UINT8

INT16 INT16 INT16

UINT16 UINT16 UINT16

INT32 INT32 INT32 INT32

UINT32 UINT32 UINT32 UINT32
= struct A struct B struct C

struct A struct A

struct B struct B

struct C struct C

TwinCAT Safety PLC Version: 1.2.0 61

Safety C application development BEGKHUFF

5.2.31 Examples for the strong type system

This chapter provides examples to illustrate the strong type system used for the TwinCAT Safety PLC.

Consideration of the expressions as trees

The C/C++ standard stipulates that complex expressions are processed according to a tree structure based
on the implicit operator precedences and operator associativity.

The tree structure is determined by the C/C++ compiler based on the standard and may include implicit type
conversions that are not allowed in Safety C. Apart from a few safe exceptions, in Safety C the permitted
operator type combinations or function signatures have to be considered exactly (strong typing, see matrix
tables)

The implicit operator precedences and the operator associativity can be influenced and the tree structure can
be changed through explicit parentheses.

Trees consist of the following components:

* Leaf nodes
(these are literals, data references and parameterless function calls)

* Inner nodes ®

(these are operators or parameterized function calls, which each process one or several sub-
expressions)

INT32

+ Tree edges
(these are intermediate results of evaluated partial expressions, each with a data type which can be
statically determined at the time of compilation through processing of the nodes according to the tree
structure from the leaf node (at the bottom of the tree structure) to the root node (at the top of the tree
structure))

The evaluation sequence of the leaf nodes is not clearly defined by the C/C++ standard and is specified by
the compiler. In Safety C, expressions with possible side effects have to be restricted, due to the undefined

evaluation sequence (see also Expressions and operators [P 73])

Summation as example

Initial situation: The user wants to program a summation of integer expressions of type UINT8 in Safety C.
The expressions can be literals, variables or function returns, in this case: a, b, c.

Intuitive approach in standard C++:

Case 1:

If the sum can exceed the UINT8 number range:
INT32 z = a + b + c;

Case 2:

If it is clear that the sum cannot exceed the UINT8 number range, or if implicit truncation (modulo arithmetic)
is desired:

UINT8 z = a + b + c;

62 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

5.2.3.1.1 Case 1

Sample 1
INT32 Q\
Z
INT32 UINTS
+ C
UINT8 UINT8

a b

Fig. 62: Strong type system case 1 - example 1

UINT8 a; UINT8 b; UINT8 c;

INT32 z = a + b + ¢c; // Type system error T8006 : binary ,+ operator‘ is restricted to operands with
equal type

Sample 2

UINT8 UINTS UINTS8

a b| |c

Fig. 63: Strong type system case 1 - example 2

UINT8 a; UINT8 b; UINT8 c;

INT32 z = a + b + (INT32)c; // OK but intention might be unclear

TwinCAT Safety PLC Version: 1.2.0 63

Safety C application development BEGKHUFF

Sample 3

INT32

<\\§ UINTS
(+) c

INT32 UINT8

(32 b

UINT8

d

Fig. 64: Strong type system case 1 - example 3

UINT8 a; UINT8 b; UINT8 c;

INT32 z = ((INT32)a) + b + c¢; // Again, type system error T8006 as C/C++ binary addition operator is
left-associative

Sample 4

Fig. 65: Strong type system case 1 - example 4

UINT8 a; UINT8 b; UINT8 c;

INT32 z = ((INT32)a) + (b + c); // OK but intention might be unclear

64 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

Sample 5

Fig. 66: Strong type system case 1 - example 5

UINT8 a; UINT8 b; UINT8 c;

INT32 z = ((INT32)a) + ((INT32)b) + ((INT32)c); // OK with clear intention
// Use this when lines get too long:
INT32 z = (INT32)a;

z += (INT32)Db;

z += (INT32)c; // OK with clear intention and short lines

// Use this when overflow might accidentally occur and should be trapped:
INT32 z = (INT32)a;

.. // Maybe lots of accumulations to z

= ADDI32(z, (INT32)Db);

7z =
z = ADDI32(z, (INT32)c);

5.2.3.1.2 Case 2

Sample 1

Fig. 67: Strong type system case 2 - example 1

UINT8 a; UINT8 b; UINT8 c;

UINT8 z = (UINT8) (((INT32)a) + ((INT32)b) + ((INT32)c)); // OK but lots of code to write

TwinCAT Safety PLC Version: 1.2.0 65

Safety C application development BEGKHU FF

Sample 2

UINT8 UINT8

a b

Fig. 68: Strong type system case 2 - example 2

UINT8 a; UINT8 b; UINT8 c;
UINT8 z = (UINTS8) ((UINT8) (a + b) + c); // OK but can get hard to read

// Better use this:

UINT8 z = a;

z = (UINT8) (z + b);

z (UINT8) (z + c); // OK and with clear intention

// Or even that:

UINT8 z = a;

z += b;

z += c; // OK, compact and with clear intention

5.3 Permissible language scope

5.3.1 Simple data types

The following table shows the permissible simple data types and alternative type identifiers with value
ranges.

' Overflows/underflows and division by zero
L]

Overflows or underflows of the permitted range of values or data type INT32 are not de-
fined in the C/C++ standard and may lead to data inconsistencies. In the TwinCAT Safety
Attention | PLC such inconsistencies only lead to a safe runtime error if they affect an output telegram.
If this case cannot be safely ruled out through the application or by the user, the safe helper
functions should be used instead of the native C/C++ operators.

On the other hand, overflows or underflows of the permitted range of values of data type
UINT32 are defined in the C/C++ standard and lead to a passage (modulo arithmetic).

Division by zero is not defined in the C/C++ standard and can lead to data inconsistencies
or to abortion of the safety application, which in turn leads to a safe runtime error in the
TwinCAT Safety PLC. If this case cannot be safely ruled out through the application or by
the user, the safe helper functions should be used instead of the native C/C++ operators.
Users must select the correct data types for the values expected from their operations.

66 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Safety C application development

Data type Data type Range of values
Standard Safe
BOOL safeBOOL FALSE / TRUE
UINT8 safeUINT8 0..255
USINT safeUSINT 0..255
INT8 safelNT8 -128 .. 127
SINT safeSINT -128 .. 127
UINT16 safeUINT16 0 .. 65535
UINT safeUINT 0 .. 65535
INT16 safelNT16 -32768 .. 32767
INT safelNT -32768 .. 32767
UINT32 safeUINT32 0 ..4.294.967.295
UDINT safeUDINT 0 ..4.294.967.295
INT32 safelNT32 -2.147.483.648 .. 2.147.483.647
DINT safeDINT -2.147.483.648 .. 2.147.483.647
Data types
INT and UINT are 16-bit types in the TwinCAT Safety PLC, as defined in IEC 61131-3.
In TwinCAT C++, INT and UINT are 32-bit types.
Note
Difference between safe and standard
From a safety perspective there is no difference between processing safe and standard
data types (safe<TYPE> / <TYPE>), although we recommended using the prefix "safe" in
Note the type declaration to identify safe signals, in order to facilitate validation and verification of
the application. Users must assess any linking of safe and non-safe data within the applica-
tion based on the applicable standards.
' Invalid types
M Any C/C++ type identifiers that are not listed, such as unsigned int, char, etc., are not per-
) mitted. Pointer types and reference types are also not permitted. All value transfers must
Attention | pe based on call-by-value.
Specifications
* Local variables must be initialized before they are used and must be used
Note » Module variables must be initialized in the Init function and read in the code
* Input variables may not be written
» Output variables may not be read

TwinCAT Safety PLC

Version: 1.2.0 67

Safety C application development BEGKHUFF

5.3.2 Enumeration types

No provision is made for enumerations (user-defined enum types) in V1. Alternatively, constant definitions
can be used, see Literals and constants [» 74].

5.3.3 Data structures

5.3.3.1 Structs

Struct types encapsulate the /O data (safe/non-safe input/output data and cross-group data). These struct
types are generated as part of <TwinSAFEGroupName>loData.h from the alias device configuration.

Default variables of this struct types are created in the TwinSAFE group template as module variables with
the name prefix "s".

Furthermore, user-defined struct types can be created in the module header file under
<UserDefinedTypes>...</UserDefinedTypes>; this definition can have an optional leading "typedef". A global
instance variable for a struct type is NOT permitted.

They may be nested hierarchically. Inner struct types of nested struct type definitions MUST have an inner
instance variable for access. Inner struct types are anonymous types and must not be instantiated
independent of their hierarchical parent struct type.

Examples

typedef struct MyData
{

INT32 a;
UINT8 b;
BOOL @g

}i

struct MyFunctionInterface
{
struct
{
BOOL a;
BOOL Db;
} In;
struct
{
BOOL z;
} Out;
}

Variables of struct instances are accessed via the "." access operator.

User-defined struct types can be used as bidirectional interface for transfer of /0 data for function calls. The
transfer is still based on value transfer ("call-by-value").

Access examples:

MyFunctionInterface callFunc;
callFunc.In.a true;

callFunc.In.b false;

callFunc MyFunction (callFunc) ;
BOOL result callFunc.Out.z;

Struct instances must be initialized before they can be used, just like simple variables. Default initialization
within the type definitions are not permitted.

5.3.3.2 Arrays

Not yet supported in V1.

68 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

5.3.4 Simple statements

Simple line statement end with a semicolon.

The following types are supported as part of a function body or the body of a control structure block:

Type-0

<expression>;
e.g. function call without return.

Type-1

<type> <identifier>;
e.g. declaration of variables without initialization.

Type-2

<identifier> = <expression>;
e.g. initialization of variables
e.g. operations/function call with result assignment

Type-3
<type> <identifier> = <expression>;

e.g. declaration of variables with initialization.

Special cases
Statements for post-increment/decrement (e.g. i++;) are regarded as type 2 statements.

The same applies to operations with assignment (e.g. a += b).

Restrictions

Combined variable declarations are not permitted:
e.g. INT321, j;

Multiple assignments are not permitted:
eg.a=b=gc;

NOTE: Component 1 and 3 of a for control flow statement (for (<1>; <2>; <3>)) are regarded as simple
instructions, despite the fact that they appear to belong to a line statement.

Special statements

return <expression>;

Is only permitted at the end of a function with return value.
Break;

Is only permitted at the end of a "case:" / 'default:" block.

Any further C/C++ control flow statements such as goto, continue, throw, etc. are not permitted

TwinCAT Safety PLC Version: 1.2.0 69

Safety C application development

BECKHOFF

5.3.5 Control structures

5.3.5.1 If-Else

Basic form

if (<COND>)
{
<BLOCK>

<BLOCK>
}

Guidelines
* The else branch is compulsory

(if it is empty, the special comment /*<IntentionallyEmpty/>*/ must be added to avoid a warning)

* No else-if branches are permitted

» Restrictions for the <COND> expression:

o Must always be the result of a comparison operation (<,>,<=,>=,==,1=); the left and right sub-
expressions of comparison may have to be enclosed in parentheses (if they do not consist of a

simple literal or identifier)

> No function calls with potential side effects

> No assignments, no post-/pre-increment/decrement

[CODE SAMPLE]

if ((safeInl && safeIn2) == true)
{

sSafeOutputs.EL2904 FSoE 4.OutputChannell
sSafeOutputs.EL2904 FSoE 13.OutputChannel4

sSafeOutputs.EL2904 FSoE 4.OutputChannell
sSafeOutputs.EL2904_FSoE_13.0OutputChannel4

5.3.5.2 While

Basic form

while (<COND>)

{
<BLOCK>

}

Guidelines
* No break statement allowed
* No continue statement allowed

» Restrictions for the <COND> expression:

true;
true;

false;
false;

o Must always be the result of a comparison operation (<,>,<=,>=,==,1=); the left and right sub-
expressions of comparison may have to be enclosed in parentheses (if they do not consist of a

simple literal or identifier)

> No function calls with potential side effects

o No assignments, no post-/pre-increment/decrement

» Special comment /*<LoopBound max="N"/>*/ must be added at the start of <Block> in order to avoid a
warning; N is the number of expected passes (N>1).

[CODE SAMPLE]

70

Version: 1.2.0

TwinCAT Safety PLC

BECKHOFF

Safety C application development

while (safeCounter < 10)

{
/*<LoopBound max="10"/>*/
safeCounter++;

5.3.5.3 For

Basic form

for (<STMT1>; <COND>; <STMT2>)

{
<BLOCK>

}
* No break statement allowed
» No continue statement allowed
» Restriction for <STMT1> expression
o Type 3 (see simple statements)
 Restrictions for the <COND> expression

o Must always be the result of a comparison operation (<,>,<=,>=,==,1=); the left and right sub-
expressions of comparison may have to be enclosed in parentheses (if they do not consist of a

simple literal or identifier)
> No function calls with potential side effects
> No assignments, no post-/pre-increment/decrement
» Restriction for <STMT2> expression
o Type 2 (see simple statements)
o Post-increment/decrement instruction

» The following applies if the for loop is not in a basic form, e.g. for (int i=0; i<10; i++):
Special comment /*<LoopBound max="N"/>*/ must be added at the start of <Block> in order to avoid a

warning; N is the number of expected passes (N>1).

[CODE SAMPLE]

for (INT32 i=N; i >= 0; i-=2)
{
/*<LoopBound max="42"/>%/
DoSomeComputations () ;

5.3.5.4 Switch case

Basic form

switch (<EXPR1>)

{
case <EXPR2>:
<BLOCK>
break;

default:
<BLOCK>
break; }

Guidelines
» At least one case block is required
» A default block is mandatory
» The case/default block must end with a break statement
» Restriction for <EXPR1> expression
> No function calls with potential side effects
> Not a logical expression (no expression of type BOOL)

TwinCAT Safety PLC Version: 1.2.0

71

Safety C application development BEGKHUFF

> No assignments, no post-/pre-increment/decrement
 Restriction for <EXPR2> expression

o Constant expression (no variables, no function calls)

> Not a logical expression (no expression of type BOOL)

72 Version: 1.2.0 TwinCAT Safety PLC

BEGKHU FF Safety C application development

5.3.6 Expressions and operators

Expressions and operators
All operations follow the C++ semantics for the corresponding simple data types. All opera-

tions use the type extensions defined in the C++ standard (promotion rules), so that the re-
Note sult expression of an operation may not match that of the operand. This may have to be
taken into account through an explicit type conversion, due to the strong typing of simple
data types in Safety C (no implicit type conversions are permitted, apart from a few excep-
tions).

Permissible operators

Assignment operators
binary a=b

Restrictions:

» Not permitted as part of conditional expressions, no multiple assignments.

* Operands a and b must be of the same type, or signed/signed or unsigned/unsigned and with bit width
a greater than b.

Arithmetic operators

unary -a
binary atb, a-b, a*b, a/b, a%b

with assignment a+=b, a-=b, a*=b, a/=b, a%=b
Post-increment/decrement at+, a--

Restrictions:

* Only simple, arithmetic data types are permitted (no BOOL, no structs).

» The operands a, b must be of the same type.

» With assignment only permitted as part of type 2 statements.

Increment/decrement not permitted as part of expressions (only as simple line statement).

Overflows/underflows may generate undefined behavior. Carry out appropriate checks or use safe
helper functions!

Bitwise operators

unary ~a
binary a&b, a|b, a*b, a<<b, a>>b

with assignment a&=b, a|=b, a*=b, a<<=b, a>>=b
Restrictions:

* Only simple, unsigned arithmetic data types are permitted (UINT8, UINT16, UINT32).
» The operands a, b must be of the same type.
« With assignment only permitted as part of type 2 statements.

« Shift operations can lead to undefined behavior. Carry out appropriate checks or use safe helper
functions!

Logic operators

unary la
binary a&&b, a||b, al=a
Restrictions:

* Only type BOOL permitted.

+ Short-circuit operators &&, || are only permitted as part of conditional expressions.
As a substitute, see safe helper functions with complete evaluation: AND(a,b), AND3(a,b,c),
AND4(a,b,c,d) and OR(a,b), OR3(a,b,c), OR4(a,b,c,d).

TwinCAT Safety PLC Version: 1.2.0 73

Safety C application development BEGKHUFF

Comparison operators
binary ‘a==b, al=b, a<b, a>b, a<=b, a>=b

Restrictions:
* Only simple data types permitted (no structs).
» The operands a, b must be of the same type.
» Comparison of BOOL is only permitted with == and !=.

Explicit type cast
binary ‘(<type>)<expression>

Restrictions:

» Only simple data types permitted (no structs).

* No explicit type conversion from/to BOOL is permitted.
As a substitute for type conversion from BOOL to arithmetic, see safe helper functions with
unambiguous definition.

» Explicit conversions can lead to sign and data loss. Carry out appropriate checks or use safe helper
functions!

Struct access
binary ‘a.b

5.3.7 Literals and constants

Literals can be specified in Boolean, decimal, hexadecimal and binary form. The C/C++ promotion rules
apply.

Integer literals

Range of values 0 .. 2¥'-1 is specified as an expression of type (safe)INT32.

Value Range 2°'.. 2%-1 is specified as an expression of type (safe)UINT32.

The suffix "U" defines literals of type UINT32, even if they can be represented as INT32.

Sign

m Literals are specified unsigned, i.e. a minus sign is regarded as an operation. A plus sign is
not permitted, since literals are implicitly regarded as positive.

Note

Boolean literals

The literals false, true are specified as expression of type (safe)BOOL

Decimal format

0-9 with optional suffix U

Hexadecimal format

0-9 and a-f or A-F with prefix O0x or 0X and optional suffix U

Binary format

0-1 with prefix Ob or OB and optional suffix U

Examples for invalid literals
o true

74 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

+ false

+ 0U

« 987654321

» OxFF

* Ox0

+ OXFEDCBA98U
+ 0b11010100

+ 0BOU

Type cast
The type of the captured expression must also be taken into account for the assignment of
literals. For example,
Note INTS8 x;
x=0;
leads to a type error (in this case a type cast through (INT8) is required)
An exception is a declaration statement with combined initialization, provided the literal
matches the target type and the sign suffix is selected correctly, e.g.:
UINT16 x = 65535U;
A further exception is the initialization of simple module variables, which can be assigned
apart from their declaration in the module header through a type 2 statement with suitable
literal, e.g.:
i8ModuleVar = 42;

Constant / preprocessor "defines"

The keyword "const" is not permitted. Constants have to be defined via a preprocessor "define" (see
dedicated section in the module header file).
A preprocessor directive for defining a constant must have the following form (with optional parenthesis):

#define <IDENTIFIER> [<TYPECAST>] <-><LITERAL>

Predefined constant

SafeModuleHelper.h defines constants for minimum and maximum values of the permitted data types. Note
that the maximum negative value of INT32 (-2147483648) cannot be used directly as literal:
#define ISiMIN ((INT8) -128)

#define ISiMAX ((INT8) 127)

#define I16 MIN ((INT16) -32768)

#define I16 MAX ((INT16) 32767)

#define I32_MIN (-2147483647-1)

#define I32 MAX 2147483647

#define U8 MAX ((UINT8) 255U)

#define Ul6 MAX ((UINT16) 65535U)

#define U32 MAX 4294967295U

5.3.8 Function calls and user-defined functions

A TwinSafeGroup module provides the interfaces functions void Init(), void InputUpdate(), void
OutputUpdate() and void CycleUpdate(). These may only be called by the TwinCAT Safety PLC runtime.

In addition, the user may declare and define module functions with or without return value. Dedicated
sections are available in the .cpp/.h files for this purpose. Functions with return value must have a final
"return” statement.

User-defined functions can be called from the four interface functions and from the specially defined
functions, provided this does not lead to direct/indirect recursion. In addition, auxiliary functions are available
for application via SafeModuleHelper.h.

TwinCAT Safety PLC Version: 1.2.0 75

Safety C application development BEGKHUFF

Restrictions for function calls

« A distinction is made between “pure functions” (without side effects) and “impure functions” (with
possible side effects).

+ All user-implemented functions are essentially regarded as “impure functions”, since the module
variables and outputs can potentially change.

« Initially, only the functions integrated by SafeModuleHelper.h are regarded as "pure functions".

« Impure functions can only be called within an instruction of type 2 or type 3. An instruction may contain
no more than one call of an “impure function”.

» Pure functions may be called anywhere (statements and conditional expressions)

« The return value of a function with return must always be used, either through assignment or as
parameter for a further function call, or as operand for an operation.

5.3.9 Asserts and traces

5.3.9.1 Asserts
FAILSAFE_ASSERT(<id>, <cond>)

The instruction FAILSAFE_ASSERT() can be used as tool for defensive programming for dealing with
undefined application states at runtime without fallback strategy, e.g. in situations with invalid yet possible
inputs. If a response at application level is possible (e.g. through setting of safe default values), a case
distinction with if-else/switch control structures should be used instead.

It should be able to trigger a FAILSAFE_ASSERT() through a fault test (negative test) at module test level. If
this is not the case, the instruction is presumably unnecessary, since detection of the incorrect execution of
the user code is already ensured through the safe runtime environment. For c=a+b;, for example, it can
therefore be assumed that the statement is executed correctly or any inconsistency is detected. The same
applies to control structures, function calls, etc.

Parameter Description

<id> A short, concise C++ identifier (output as plain text either in the module test output or
via ADS message in the TwinCAT error list window)

<cond> Boolean conditional expression, for which the same restrictions apply as for if(),
while(), etc.
Is triggered if <cond> is FALSE, i.e. <cond> must hold in a valid case!

Triggering in a non-safe module test results in termination of a test case with text output. In the event of a
fault test case, the test case is regarded as passed if the termination with given <ID> and in a given test step
was expected. Otherwise the test case or fault test case is regarded as failed.

FAILSAFE_ASSERT()
The instruction FAILSAFE_ASSERT() sets the safe state of the TwWinSAFE group in the
safe runtime environment, if the condition <cond> returns FALSE.

Note

DEBUG_ASSERT(<id>, <cond>)

The instruction DEBUG_ASSERT() can be used for documenting and checking internal assumptions relating
to user-defined program code (preconditions, postconditions, invariants) during the test phase.
Example: Testing of return values or parameters and operands BEFORE a function call or an operation.

Parameter Description

<id> A short, concise C++ identifier (output as plain text either in the module test output or
via ADS message in the TwinCAT error list window)

<cond> Boolean conditional expression, for which the same restrictions apply as for if(),
while(), etc.
Is triggered if <cond> is FALSE, i.e. <cond> must hold in a valid case!

76 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

Triggering in a non-safe module test results in termination of a test case with text output and evaluation as
failed.

DEBUG_ASSERT()

In a safe runtime environment the instruction DEBUG_ASSERT() leads to an error or Log-

Window message, if the condition <cond> returns FALSE. Execution of the safety-related
Note application is being continued!

TEST_ASSERT(<cond>)

The instruction TEST_ASSERT() is used to check the assumptions relating to the outputs from a program
module to be tested as part of a module test. Concrete results can be evaluated and general assumptions
can be defined, e.g. to check the relationship between inputs and outputs and internal module variables.
TEST_ASSERTY() is the test counterpart to DEBUG_ASSERT() and should therefore ideally be defined by an
independent person.

Parameter Description

<cond> Boolean conditional expression, for which the same restrictions apply as for if(),
while(), etc.
Is triggered if <cond> is FALSE, i.e. <cond> must hold in a valid case!

The instruction TEST_ASSERT() is only permitted in the code for the module test bench. It
leads to termination of a test case (and its evaluation as failed), if the condition <cond> re-
Note turns FALSE. The derivation of TEST_ASSERT () and DEBUG_ASSERT () statements in
combination with module test and test cover measurement is an effective means for detect-
ing implementation errors or specification errors at the design stage. In addition, generically
formulated assertions (pre-conditions, post-conditions, invariants) enable the test coverage
to be increased through additional, automatically generated test cases (e.g. through ran-
domized test data).

m Using TEST_ASSERT() and DEBUG_ASSERT()

5.3.9.2 Traces

BRANCH_TRACE()

BRANCH_TRACE() is required for branch coverage measurement in the module test environment, if no
external tool is used for this purpose. A branch ID is automatically numbered according to the document
sequence. The output is generated via ADS by selecting a corresponding log level when the branch is

reached. The output only takes place within the safe runtime environment, not in the module test output.

A BRANCH_TRACE(), if used, must be positioned at the end of a branch, or, if return/break statements are
used, directly before the statement.

A warning is generated if they are set redundantly or are incomplete. The test takes place when a
BRANCH_TRACE() is used only.

Coverage of the branches is indicated in the output at the end of the module test execution. The output IDs
of branches that could not be reached can be assigned to source text lines via the information in
ModuleDatabase.saxml in the TwinSAFE group folder “Analysis Files”. A module test branch coverage of
100% is generally regarded as a minimum criterion for safety-related applications! The special comment
/*<DefensiveBranch/>*/ can be used to exclude branches from the test coverage measurement. This should
only be used in cases where unreachable code is to remain in the source text for a justified reason. This
should not include branches for trapping invalid inputs, since these can be covered by a negative test.

DEBUG_TRACE(<expr>)

The instruction DEBUG_TRACE() can be used for test outputs of local variables and intermediate results for
simple data types, which cannot be output via the process image.

The log output takes place via ADS in TwinCAT if the safe runtime environment is used. Within a module test
a simple text output is used.

TwinCAT Safety PLC Version: 1.2.0 77

Safety C application development BEGKHUFF

Parameter Description

<expr> may be a side effect-free expression of a simple data type, i.e. structs are not
permitted

5.4 Performance optimizations

The implementation of necessary safety measures results in additional execution effort at runtime. In order to
minimize this, the following code optimizations should be considered.

Conditional expressions in control flow statements

Complex calculations in control flow statements, particularly function calls and real-valued mathematical
functions (not yet supported in V1), should initially be performed in a line statement, involving assignment to
a local variable. The intermediate result stored in the variable can be incorporated in the condition, e.g. in an
if-else instruction:

not optimized optimized
if (SINF32(x) >= 0.0f) FLOAT y = SINF32(x);
{ if (y >= 0.0f)
{
}
else{...}... }
else{...}

For loop conditions, constant sub-expressions that may contain complex sub-calculations should also be
assigned to a variable as provisional result in line statements:

not optimized

optimized

#define _K_ 13U

while (n < factorial(_ K_ - 1U))
{

n++;

}

#define _K_ 13U

UINT32 upper_limit = factorial(K_ - 1U);
while (n < upper_limit) {

n++;

}

If switch case constructs with many cases are used, the switch expression should also be handled
externally. The following example illustrates in which cases an optimization should be considered (even for a

purely integer based expression):

78

Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

not optimized optimized
UINT32 w1; UINT32 w1;
UINT32 w2; UINT32 w2;
UINT32 w3; UINT32 w3;
switch((((w1>>8U) & (w2>>16U)) | UINT32 select = ((w1>>8U) & (w2>>16U)) |
(w3<<24U)) % 0xffU) (Ww3<<24U)) % O0xffU;
{ switch(select)
case 0x0U: {
... break; case 0x0U:
case 0x1U: ... break;
... break; case 0x1U:
case 0x2U: ... break;
... break; case 0x2U:
... break;
case OxfeU:
... break; case OxfeU:
default: ... break;
... break; default:
} ... break;
}

5.5

Interfacing with the 1/O level

Interface to standard inputs and outputs

Standard inputs

//! Struct providing input data of the corresponding standard alias devices
struct StandardInputs

{

bi

//! ..\Alias Devices\ErrAck.sds
struct _ErrAck
{

BOOL In;
} ErrAck;
//! ..\Alias Devices\Run.sds

struct _Run

{
BOOL 1In;
} Run;

Standard outputs

//! Struct storing output data for the corresponding standard alias devices
struct StandardOutputs

{

//' ..\Alias Devices\DiscrepancyError.sds
struct DiscrepancyError
{
BOOL Out;
} DiscrepancyError;
//!' ..\Alias Devices\DiscrepancyCounter.sds
struct DiscrepancyCounter
{
UINT32 Out;
} DiscrepancyCounter;

TwinCAT Safety PLC Version: 1.2.0 79

Safety C application development BEGKHUFF

Interface to safe inputs and outputs

Safe inputs

//! Struct providing input data of the corresponding safety alias devices

struct SafetyInputs
{
//' ..\Alias Devices\EL1904 FSoE 211.sds
struct EL1904 FSoE 211
{
safeBOOL InputChannell;
safeBOOL InputChannel?2;
safeBOOL InputChannel3;
safeBOOL InputChannel4;
} EL1904 FSoE 211;
//' ..\Alias Devices\2 safe in 2 safe out.sds
struct = 2 safe in 2 safe out
{
safeBOOL InputChannell;
safeBOOL InputChannel?2;
} 2 safe in 2 safe out;
//! ..\Alias Devices\AX 5805 Drive Option.sds
struct AX 5805 Drive Option
{
safeBOOL Axis 1 STO;
safeBOOL Axis 1 SSMI1;
safeBOOL Axis 1 SSM2;
safeBOOL Axis 1 SOS1;
safeBOOL Axis 1 SSRI1;
safeBOOL Axis 1 SDIp;
safeBOOL Axis 1 SDIn;
safeBOOL Axis 1 Error Ack;
} AX 5805 Drive Option;

bi

Safe outputs

//! Struct storing output data for the corresponding safety alias devices

struct SafetyOutputs
{
//! ..\Alias Devices\EL2904 FSoE 13.sds
struct _EL2904_FSoE_13
{
safeBOOL OutputChannell;
safeBOOL OutputChannel2;
safeBOOL OutputChannel3;
safeBOOL OutputChannel4;
} EL2904 FSoE 13;
//! ..\Alias Devices\EL2904 FSoE 4.sds
struct _EL2904_FSoE_4
{
safeBOOL OutputChannell;
safeBOOL OutputChannel2;
safeBOOL OutputChannel3;
safeBOOL OutputChannel4;
} EL2904 FSoE 4;
//! ..\Alias Devices\2 safe in 2 safe out.sds
struct 2 safe in 2 safe out
{
safeBOOL OutputChannell;
safeBOOL OutputChannel2;
} 2 safe in 2 safe out;
//!' ..\Alias Devices\AX 5805 Drive Option.sds
struct AX 5805 Drive Option
{
safeBOOL Axis 1 STO;
safeBOOL Axis 1 SS11;
safeBOOL Axis 1 SS21;
safeBOOL Axis 1 SOS1;
safeBOOL Axis 1 SSRI1;
safeBOOL Axis 1 SDIp;
safeBOOL Axis 1 SDIn;
safeBOOL Axis 1 Error Ack;
} AX 5805 Drive Option;

80 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Safety C application development

Interface between TwinSAFE groups

//! Struct storing the TwinSAFE group exchange data
struct TSGData
{
//! ..TwinSafeGroup: TwinSafeGroupl
struct TwinSafeGroupl
{
//! ..Outputs
struct Out
{
safeUINT AnalogOutl;
safeBOOL EStopOut;
} Out;
} TwinSafeGroupl;

Interface to safe time signal

safeUINT16 ulé6SafeTimer //!< Safe external timer input (in ms)

The module variables u16SafeTimer can be used to access the safe time signal. This is a 16-bit timer value,
which can be used for time-dependent functionalities within the safety application. This time value may not
be used in the Init function (since it is not yet available at this time). The timer is only suitable for time
measurements across application cycles, since the timer variable remains constant within an application
cycle. Write access to the timer variable is not permitted.

5.6 Verification and validation

Safety C application development
The user source text should be developed based on the applicable standards, in particular

IEC 61508:2010. If the standard to be used is IEC 61508:2010, the explanations for the
DANGER | terms verification and validation can be taken from Part 4 of this standard.

Verification
Confirmation that the requirements are met, based on an examination and provision of evidence.
NOTE

In the context of this standard, verification refers to the process of demonstrating in each phase of the
relevant safety lifecycle (total, E/E/PE system and software) that the results for the special inputs meet the
aims and requirements specified for the phase in every respect, through analysis, mathematical inference
and/or testing.

SAMPLE

Verification activities include:

» checking of the results (documents from all phases of the safety lifecycle), in order to ensure
compliance with the aims and requirements of the phase, taking into account the relevant inputs of the
phase;

+ design reviews;
» executed tests on developed products, to ensure that they operate according to their specification;

» execution of integration tests, in which different parts of a system are assembled step by step,
accompanied by testing under ambient conditions, to ensure that all parts work together as specified.

Validation

Confirmation that the special requirements for a special application are met, based on an examination and
provision of objective evidence.

NOTE 1

This standard covers three validation phases:

TwinCAT Safety PLC Version: 1.2.0 81

Safety C application development BEGKHUFF

« validation of overall safety (see IEC 61508-1, Figure 2);
« validation of the E/E/PE system (see IEC 61508-1, Figure 3);
+ validation of the software (see IEC 61508-1, Figure 4).

NOTE 2

Validation refers to the process of demonstrating that the safety-relevant system meets the specific safety
specification in every respect, before and after the installation. Validation of the software, for example,
therefore includes examination and provision of evidence that the software meets the safety specification
and requirements.

5.7 Online diagnostics

Module tests

The developer can test the created safety application via ModuleTests.cpp in standard C++ mode. During
the test the safety application is not compiled and executed in the safety context, but directly within a
standard C++-environment. Also, there is no assignment to the task with which the TwinCAT Safety PLC is
executed in release mode.

The module test can be accessed via MODULE_TEST_BENCH_DEF(<id>), in which the test coverage
measurement is controlled and the test groups are specified via the instruction
MODULE_TEST_GROUP(<id>). Each test group requires a unique ID. A test group consolidates defined
test cases of a group via the instruction MODULE_TEST_CASE(<id>), which was previously defined via
MODULE_TEST_CASE_DEF(<id>). A test case can be subdivided into further logical test steps via the
instruction MODULE_TEST_STEP(<id>). A test case defined with MODULE_TEST_CASE_DEF(<id>) can
be integrated in a test group as fault test/negative test case by calling it via the instruction
MODULE_FIT_CASE(<id>, <step-id>, <asset-id>). It is expected that the test case fails in a given test step
with given assertion ID, in order to be deemed to have passed. This mechanism is used to test
FAILSAFE_ASSERT instructions, e.g. by using invalid input values.

During creation of a TwinSAFE group, a module test bench template with a general test case is created,
which can be used directly for debugging. The interface functions of a TWinSAFE group module are called
periodically.

The module to be tested (TwinSAFE group) is already created and available as a test instance within the
module test via the variable DUT (Device Under Test). All module variables and module functions of a
TwinSAFE group module (including those declared as private) can be accessed via DUT.<variable name/
function name>.

In the example test case DUT.init(); is called once, followed by calls of DUT.Input-, DUT.Cycle- and
DUT.OutputUpdate(); in a For loop.

Before the call the application developer or tester can set the internal variables and analyze the calculation
result after the call via a TEST_ASSERT instruction.

The module test is compiled via the context menu under Test Files (Build) and started in Debug mode. In
future, the test results can be displayed in the safety editor via Run/Analyze (not yet supported in V1).

In addition, the user can open, extend and execute the corresponding Visual Studio project
ModuleTests.vexproj directly in the TwinSAFE group folder "Test Files". For the source code of the module
tests there are no constraints in terms of coding rules or the implementation of standard libraries.

82 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Safety C application development

4 SAFETY
4 SafetyPLC

p SafetyPLC Project
"..‘E Target Systern

4 |7 TwinSafeGroupl
TweinzafeGrouplCanfig.qrp
B d Alias Devices
B T &nalysis Files
4 [/Z Header Files
[(] SafebdoduleHelper.h
[} TwinSafeGrouplh
TuwinSafeGroupllaData.h
4 [Source Files
*++ TwinSafeGroupl.cpp

*++ Mod
[A Mod
b [E] SafetyPLC Insta
Q C++
4 Fro
B 4}% Dewices

B ﬁj Pappings

X & &

S
Scope to This

Mewe Solution Explorer Wiew

Exclude Frorm Project

Cut

Copy
Delete

Properties
kodule Tests

Fig. 69: Module Tests context menu

In Debug mode the usual Visual Studio mechanisms such as breakpoints, step into, step over, etc. can be

used from the TwinCAT Safety Editor.

The variable values can be monitored online via the Locals window or via data tips in Visual Studio. The

output is displayed in the Output window (Debug).

Crl +
Chrl+0C
Drel

Alt+Enter

k

Euild
Debug

TwinCAT Safety PLC

Version: 1.2.0

83

Safety C application development BEGKHUFF

Example

Extract from TwinSafeGroup1.h

// Module internals
PRIVATE:

/*<UserDefinedVariables>*/ // Define internal variables here
INT32 a;
INT32 b;
INT32 z;
BOOL neg;
/*</UserDefinedVariables>*/

Extract from TwinSafeGroup1.cpp
[7777777777777 777777777 77

//! \brief Implementation of the safe user module initialization function
s
/*<TcInit>*/

VOID CSafeModule::Init ()

{

// Put your module initialization code here

a = 0;
b =1;
z = 0;
neg = false;

BRANCH TRACE () ;

}
J¥L/Telmil €%/

Vs
//! \brief Implementation of the safe user module input update function
L1117 7777777777777 777777777 77777777 7777777777777777777777777777777
/*<TcInputUpdate>*/
VOID CSafeModule: :InputUpdate ()
{

// Put your module input update code here

BRANCH_TRACE () ;
}
/*</TcInputUpdate>*/

[7777777777777 7777777777777 7777777777777 7777777777777 7777777777777/
//!' \brief Implementation of the safe user module output update function
L1177 00 77777777777 777777 777777777777 777777777777777777777777777777777777
/*<TcOutputUpdate>*/
VOID CSafeModule: :OutputUpdate ()
{
// Put your module output update code here
BRANCH TRACE () ;
}
/*</TcOutputUpdate>*/

L1117 70077777 0077777 77
//! \brief Implementation of the safe user module cycle update function
s
/*<TcCycleUpdate>*/
VOID CSafeModule: :CycleUpdate ()
{

// Put your cycle update code here

FAILSAFE ASSERT (DIV_BY ZERO, b != 0);

z =a / b;

if (z >= 0)

neg = false;
BRANCH TRACE () ;

neg = true;
BRANCH TRACE () ;

BRANCH TRACE () ;

}
/*</TcCycleUpdate>*/

84 Version: 1.2.0 TwinCAT Safety PLC

BEGKH“FF Safety C application development

ModuleTests.cpp
[11111777077177111111111111117

//!' \file ModuleTests.cpp

//! \brief Source file with module test definitions for TwinSafeGroupl
//!' \authors User01

//!' \copyright Put affiliation and copyright notice here

//!' \version V1.0

//! \date 2016-10-20

//! \details Put detailed description of your module tests here

L1177 0 0077007777707 7777777777777 7 77777777777 777777777777777777777777777

//! Define name of the safe module under test
#define MODULE_NAME TwinSafeGroupl::CSafeModule

#include "TwinSafeGroupl.h"
#include "ModuleTests.h"

//! Definition of test case IDs
#define TC ID O 0
#define TC ID 1 1

LILTITT L7700 7777777777707 077777777777 77777777777
//' \brief Test bench definition containing testsets triggered by TwinCAT3
L1117 7777077707777 7777777077707 7777777777777 777
MODULE_TEST BENCH DEF ()

{

// Reset branch counters for coverage measurement
START COVERAGE MEASUREMENT () ;

// Run test group TG ID 0
MODULE_TEST GROUP (TG_ID 0);

// Compute branch coverage and identify uncovered branches
STOP_COVERAGE MEASUREMENT () ;

}

L1177 7777777777777 77777777777777777
//!' \brief TC_ID 0 (put a reference to your test specification here)

//!' \test Generic module test sequence calling init and 1000 task cycles
L1111 7077777777777 7777777777777 777
MODULE_TEST CASE_DEF (TC_ID 0)

{

// Test case starts with an initial test step to prepare preconditions
MODULE_TEST STEP (0) ;
DUT.Init(); // e.g., call Init() to set state variables to default values

// Perform post initialization checks on module state variables here,
// e.g., using TEST_ ASSERT (<condition>) statements

for (int nCycle = 1; nCycle <= 1000; nCycle++)
{ // Execute a test sequence consisting of 1000 module execution cycles

MODULE_TEST_ STEP (nCycle) ;
// BRpply test step stimuli to safe and non-safe module inputs here
DUT.ul6SafeTimer = (nCycle * 5) % 65536U; // e.g. 5ms task period

DUT.a = 2*cycle;
DUT.b = cycle;

// Perform a single cycle of a periodic task execution
DUT. InputUpdate () ;
DUT.CycleUpdate () ;
DUT.OutputUpdate () ;

// Perform invariant checks on safe and non-safe module outputs and
// also state variables here, e.g., using TEST ASSERT (<condition>)

// Perform checks on test step response w.r.t. test step stimuli
// here, e.g., using TEST ASSERT (<condition>) statements
TEST ASSERT (DUT.z == 2); // As (2*cycle)/cycle is always 2

}

// Perform checks on the final module state w.r.t. test specification
// here, e.g., using TEST ASSERT (<condition>) statements

TwinCAT Safety PLC Version: 1.2.0 85

Safety C application development BEGKHUFF

L1117 007 7777007777770 77
//! \brief TC ID 1 (put a reference to your test specification here)

//! \test Negative test case for invalid input b=0 (division by zero)
L1111 7777000777707 7777777777
MODULE TEST CASE DEF (TC ID 1)

{

// Test case starts with an initial test step to prepare preconditions
MODULE TEST STEP(0);
DUT.Init(); // e.g., call Init() to set state variables to default values

// Perform post initialization checks on module state variables here,
// e.g., using TEST ASSERT (<condition>) statements

// RApply test step stimuli to safe and non-safe module inputs here
MODULE_TEST_STEP (1) ;

DUT.a
DUT.b

1;
0;

// Perform a single execution cycle
DUT. InputUpdate () ;
DUT.CycleUpdate () ;
DUT.OutputUpdate () ;

// Should not reach here as CycleUpdate is expected to trigger fail safe!
TEST ASSERT (false);

}
VN

//' \brief Test group TG _ID 0 definition containing a set of test cases
L1117 7777770777777 7777777777777 777777777777777777777777777777777777777
MODULE TEST GROUP DEF (TG ID 0)

{

// Run positive example test case TC_ID 0

MODULE_TEST CASE_RUN(TC_ID 0);

// Run negative example test case TC ID 1 expecting fail-safe

// assertion DIV _BY ZERO being triggered at test step 1!
MODULE_FIT_CASE_RUN(TC_ID 1, 1 /* Step */, DIV_BY ZERO /* ID */);

5.8 Safe Helper Functions

The Safe Helper Functions offer users safe extensions for the limited Safety C language scope, which
corresponds to a subset of the native C/C++ scope and therefore does not permit inclusion of non-safe
standard libraries.

Helper functions are free from side effects, so that they can be used without restriction in all Safety C
expressions and statements, i.e. the return value of a helper function only depends on the user-defined
function parameters. Furthermore, helper functions do not directly change the module data of a safe
application module or other global application data.

In the event of undefined inputs, helper functions respond by assuming the safe state for the TwinSAFE
group in which they are integrated in the application execution. Undefined inputs are inputs for which a
helper function is unable to generate valid output (referred to as undef. below). However, since function
signatures enable such inputs to be transferred to helper functions as parameters, they are intercepted
internally with a FAILSAFE_ASSERT instruction, thereby programmatically triggering the safe error state of
the TwWinSAFE group. The user is notified of this case via a corresponding log message.

5.8.1 Safe logic functions

The safe logic functions evaluate all Boolean operands, i.e. no "short-circuit evaluation" is used, in contrast
to the native C/C++ operators && and ||.

86 Version: 1.2.0 TwinCAT Safety PLC

BEGKH“FF Safety C application development

5.8.1.1 AND

Executes a safe logical AND for two Boolean expressions.

Safety C function interface

BOOL AND{BOOL xa, BOOL xb)
safeBOOL AND{=afeBOOL xa, s=safeBOOL xb)

Functional specification
v = MiD{xa, zbl: [flz, 75 =y

Ta € 1 false, true}
Ty £ 1 false, true}
y e 1 false, true}
flag, z) = Ty Mg

5.8.1.2 AND3

Executes a safe logical AND for three Boolean expressions.
Safety C function interface

BOOL AND3(BOOL =xa, BOOL xb, BOOL xc)
safeBOOL AND3{safeBOOL xa, safeBOOL xb, safeBOOL xc)

Functional specification

v = AMD3{xa, xb, xc): fle,, o, 2.0 =y

T, e { false, true}
Ty £ 1 false, true}
T € 1 false, true}
y e {false, true}
floeg, zp,x0) = LN AL

5.8.1.3 AND4

Executes a safe logical AND for four Boolean expressions.

Safety C function interface
BOOL LNDA(BOOL xa, BOOL b, BOOL xc, BOOL x=d)
safeBOOL AND4{safeBOOL xa, s=safeBO0L xb, safeBO0OL xc, safeBOOL xd)

Functional specification
v = MiDd{xa, xb, xc, xd): fle,, xp, o0 34) =y

T, £ { false, true}
Ty € 1 false, true}
T € 1 false, true}
P 1 false, true}
Y e 1 false, true}
f'::-i"ﬂ- Ehy Ty -i"rl:] = rg Arphxg ey

TwinCAT Safety PLC Version: 1.2.0 87

Safety C application development

BECKHOFF

5814 OR

Executes a safe logical OR

for two Boolean expressions.

Safety C function interface

BOOL OR(BOOL =xa,
safeBO0OL OR{=safeBOOL

Functional specification

BOOL xb)
xa, s=safeBOOL xb)

v = ORixa, xbl: fle,, xp) =y

T € 1 false,
T £ 1 false,
y £ 1 false,
fley, 2 = Ta W T

5.8.1.5 OR3

true}
true}
true}

fr

Executes a safe logical OR for three Boolean expressions.

Safety C function interface

BoOOL OR3{BOOL xa,

Functional specification
v = OR3(xa, xb, xc):

Ta €

Ty &

T

v e

fleg, zp,) =

5.8.1.6 OR4

BOOL xb, BOOL xc)
safeBOOL O0R3(safeB00L xa, safeBOOL xb, safeBOOL xc)

fleg, zp 2.) =y

1 false, true}
1 false, true}
1 false, true}
1 false, true}

o WV Ep WV I

Executes a safe logical OR for four Boolean expressions.

Safety C function interface

BOOL OR4 (BOOL xa,

Functional specification

BOOL xb, BOOL xc,
safeBO0OL OR4{safeBO0OL xa, s=safeBOOL xb, s=safeBOOL xc,

v = O0R4(xa, b, xc, xd): flz, 24z 34) =y

Ty =

IR 'E

T &

I =

y e

flea, w20 4] =

1 false, true}
1 false, true}
1 false, true}
1false, true}
{false, true}

T W TV I VEy

safeB00L xd)

88

Version: 1.2.0

TwinCAT Safety PLC

BEGKH“FF Safety C application development

5.8.2 Safe integer arithmetic functions

The safe arithmetic functions for integer data types detect undefined behavior, which can occur with certain
C/C++ operators and standard functions due to overflows of the signed 32-bit integer type and for modulo/
division by zero. If invalid values are entered, the safe group state is assumed.

NOTE: A UINT16 multiplication with the C/C++ operator "*" can lead to an undefined overflow in the resulting
INT32 expression with a result greater than 2431-1. No helper function is provided for this in V1.

5.8.2.1 ADDI32

Performs a secure addition for the signed 32-bit integer type.

Safety C function interface

T3z ADDIZZ2(INT3Z =za, INT32 xb)
DINT ADDIZZ2(DINT =za, DINT xb)
safelllT32 ADDI32(safellT32 xa, =safellT32 xb)
safelINT ADDI32 (safeDINT xa, safeDINT xb)

Functional specification
v = ADDI32{xa, xb): fle,, ay) =y

T, € &, A ol |
zy € Z, —251 < gy, £ 29
y €L, S A TR A
. _ To+xp, —2 <Cx,4x, <28 -1
f{i'ﬂ.j'r,:l = . : - IR |
undef., (o +xp < =27V (2Y L2, + 1)

5.8.2.2 SUBI32

Performs a secure subtraction for the signed 32-bit integer type.

Safety C function interface

INT32 SUBI32(INT32 xa, INT32 xb)
DINT SUBIZ2(DINT =xa, DINT x=b)
gafelllT32 SUBI32(safellT32 xa, s=safellT32 xb)
safelINT SUBI32 (safeDINT xa, safelINT xb)

Functional specification
v = SUBI32{xa, xbl): fle,, a2y =y

o € &, 2% < g, <28
Ty € &, —2'“ i Tg i E'H —1
y € Z, -2 <y < 2% 1
)) 51 i i 31
f'::-i" _r-j— Tg — Tp, -2 Ejﬂ_jfri:g —1
@tk — . B . o
nndef. , (To —zp < =22 w (2% <2, — 1)

5.8.2.3 MULI32

Performs a secure multiplication for the signed 32-bit integer type.

TwinCAT Safety PLC Version: 1.2.0 89

Safety C application development

BECKHOFF

Safety C function interface

INT32 MULIZ2{INT32 xa, INT32 xb)
DINT MULIZ2(DINT zxa, DINT x=b)
safellT32 MULI32{=afeINT32 xa, s=safellT32 =xb)
safelINT MULI32 {satfeDINT xa, safeDINT xb)

Functional specification
v = MULI32{xa, xb): fle,, a3 =y

o € &, 2% < g, <28
Tp € &, _2.“ i I i 2.“ —1
y €L, =2 Sy < 2%

f{'rlﬂ' -i"f:-:l =

undef., (z, -z, < =25 v (23 < 5

. . 31 . . 31
{jﬂ'-rﬁ-- —2 i-':.i‘ﬂ-.i‘r?i:g —1

5.8.2.4 DIVI32

Performs a secure division for the signed 32-bit integer type.

Safety C function interface

INT32 DIVI3A2{INT32 xa, INT32 xb)
DINT DIVIA2(DINT zxa, DINT x=b)
safellT32 DIVI32({=afellT32 xa, s=safelllT32 xb)
safelINT DIVI32{safeDINT xa, safelINT xb)

Functional specification
v = DIVI32{xa, xbl: flz, o) =y

To € Z, e A L
Ty € Z, 981 = gy = 251
y € Z, -2 <y < 2% 1
Tg o .
_ |—, (=2% <z, <0) A0 < 2y)
flry, zy) = Ty~ . . .
undef., (xy = =25 (x5 = 0)

5.8.2.5 DIVU32

Performs a secure division for the unsigned 32-bit integer type.

Safety C function interface

UINT32 DIVU32(UINT32 xa, UINT32 xb)
UDINT DIVU32({UDINT xa, UDINT xbl
safelINT32 DIVU32{safelINT32 xa, safelINT32 xb}
safellDINT DIVU32{=atelDINT =xa, safellDINT xb)

- -i"f:v:]

90 Version: 1.2.0

TwinCAT Safety PLC

BECKHOFF

Safety C application development

Functional specification
v = DIVU32{xa, xbl: filz, o) =y

z, € L. 0« <252
zy € Z. 0 < < 292
y € L, 0y <291
Ta
— |, 0= xy
flza, zs) = Li'r;J :
wundef., xp =10
5.8.2.6 MODI32

Performs a secure residual value calculation for the signed 32-bit integer type.

Safety C function interface

INT32 MODI32({INT32 xa,
DINT MODIZ2 (DINT xa,
safelllT32 MODIS2(safeINT32 xa,
safelINT MODI32 (safeDINT xa.

Functional specification
v = MODI32{xa, xbl: flr,, >, —y

INT32 xb)
DINT xb)
safelllT32 xb)
safeDINT xb)

o — | 2] xp, (0 2,) AD < 1)

(2, < 0) v (zy =0

z, € Z, 2%l <, <2
rp € Z, -2 gy, £ O
y €L, 0=y=2%_2
flea,) = ',

undef.
5.8.2.7 MODU32

Performs a secure residual value calculation for the unsigned 32-bit integer type.

Safety C function interface

UINT32 MODU32(UINT32 xa,
UDINT MODU22(UDINT xa,
safellINT32 MODUZ2{(=afelUINT32 xa,
safelDINT MODU32{safeUDINT xa,

Functional specification

v = MODU32{xa, xb):

flea,zs) =y

UINT32 xb)
UDINT xb)}
safelINT32 xb)
safellDINT xb)

T, € &, 0=z, <21
g © &, 0z, < 2% -1
y €L, 0<y=<2%_—-2
T
) Fo— |—|- &, 0
flza, zp) = ’ L-i"rrJ ' '
wndef. | r, =1

TwinCAT Safety PLC Version: 1.2.0

91

Safety C application development

BECKHOFF

5.8.2.8 DIVI16

Performs a secure division for the signed 16-bit integer type.

Safety C function interface

INT16 DIVI1G (INT16 xa,

INT DIVI16 (INT xa,
safellliTi6 DIVI1G(safellT16 xa,
gafelllT DIVIiG (safellT =xa,

Functional specification
v = DIVIi6{xa, xbl: flz, o) =y

INT16 xb)

INT xb)
safelllT16 xb)
gafelllT xb)

T, &, B Ll L |
Ty € Z, —915 < gy = 215
U'EE _El':-_,_-_:];_c__-: 2[::-_1
7, s .
) LfJ. =20 3y, {]j A0 .i"[?:|
fley, x4 = T

undef., (z; =—2%)v (zy =0)

5.8.2.9 DIVU16

Performs a secure division for the unsigned 16-bit integer type.

Safety C function interface

UINT16 DIVULG{UINT16 xa,
UINT DIVULG{UINT xa,

safellINT16 DIVU16(=safelUINT16 xa.

safelINT DIVULG{satfeUINT =xa.

Functional specification
v = DIVU16{xa, xbl: filz. x) =y

UINT16 xb)
UINT xb)
safelINT16 xb)
safelINT xb)

To = &, 0z, <261
zy € I, 0« 2y < 216
y € Z, 0<y=2"—1
Ta
—. 0 < 3y
flza, zp) = Li'r;J :
wundef., xp =10

5.8.2.10 MODI16

Performs a secure residual value calculation for the signed 16-bit integer type.

Safety C function interface

INT16 MODI16 (INT16 xa,

INT MODIi6 (INT xa,
safelllTié MODI16 (safeINT16 xa,
safelllT MODI16 (safellT xa.

INTi6 xb)}

INT =b)
safelllTi6 xb)
safelllT xb)

92

Version: 1.2.0

TwinCAT Safety PLC

BECKHOFF

Safety C application development

Functional specification
v = MODI16{xa, xbl: filz, x) =y

T, L, AL T L
. 15 . 15
zy € L, —218 < gy, < 215 1
y € L, 0<y=<2%—2

g . .
T — | — | - ap, 0w, A D <)
flZa,zs) = Lf'rrJ - i "
undef. (2o < 0) W [z < 0)

5.8.2.11 MODU16

Performs a secure residual value calculation for the unsigned 16-bit integer type.

Safety C function interface

UINTi6 MODULG{UINTiE =xa, UINT1i6 xb)
UINT MODUL&(UINT xa, UINT =k}
safelINT16 MODULG(safelUINT16 xa, =safelUINT16 xb)
safelINT MODULG{safelUINT xa, safellINT xbl)

Functional specification
v = MODUL6{xa, xbl: flr,, >, =y

¥, S &, 0z, <3261
zy € I, 0 <z, <216
y €L, 0=y=21%_2
Ta
) Fo— | —|- -2, 0= 3y
fleg, zy) = : I--i"f:--l ' '
undef. =

5.8.2.12 DIVI8

Performs a secure division for the signed 8-bit integer type.

Safety C function interface

INTS DIVIS(INTS =xa, INTS =x=b)
SINT DIVISB(SINT =xa, SINT x=b)
safelllTE DIVIS(safellTE xa, safellT2 xb)
safeSIHT DIVIS(safeSINT xa, safeSINHT xb)

Functional specification
v o= DIVIB(xa, xb): flr,, 2, =y

T, = F, B O T (|
Ig = &, _EF i Ty i EF —1
y i, T |
Fa R)
i L—J {—Er < Fp < {]] M {{] < .i"r;,j
[o ze) = m (THEmsl
wndef., (r,=-271v (x, =0)

TwinCAT Safety PLC Version: 1.2.0

93

Safety C application development

BECKHOFF

5.8.2.13 DIVUS8

Performs a secure division for the unsigned 8-bit integer type.

Safety C function interface

UINTE DIVUB(UINTE xa,
USINT DIVUBCUSINT zxa,
safelINTS DIVUS(=afeUINTS xa,
safelSINT DIVUS(=afeUSINT =xa,

Functional specification

UINTE xb)
USINT xb)
safelINTE8 xb)
gafelSINT xb)

v = DIVUB(xa, xb):

flza,ze) = y

T, € L, 0<z, <28 -1
rp € &, 0 < @y, < % —1
y €L, D=y =2%—1
Ta
¢ L_J. 0 = N
flza, zp) = T

undef.,, =z

5.8.2.14 MODI8

Performs a secure residual value calculation for the signed 8-bit integer type.

Safety C function interface
INT2 MODIS(INTS xa,
SINT MODIS({SINT xa,
safelllT8 MODIS(safellTS xa,
safeSINT MODIB(safeSINT =xa.

Functional specification

' — 0

INTZ =b)
SINT =xb)
safellT8 xb)
safeSINT xb)

v = MODI8(xa, xb): flz,, o) =¥
To = &, B O A (|
Ty € Z, _EF i T i EF —1
y € Z, 0<y=2"-2
122 (0= 2,0 A (D < 24
To— | — |- 25, L L <y
f'::-r'ra--i"ﬁ-:l = Ty ’ ' "
undef. (zy < 0) v (zy < 0)

5.8.2.15 MODUS8

Performs a secure residual value calculation for the unsigned 8-bit integer type.

Safety C function interface

UINTE MODUB(UINTS zxa, UINTE xb)

USINT MODUS{USINT xa, USINT xb)

safellINTS MODUS(safeUINTS xa, safelINTS xb)

safellSINT MODUS(safeUSINT xa, safeUSINT xb)

94 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Safety C application development

Functional specification
v = MODUB(xa, xb): flz,, o) =¥

re €L, 0<a, <25 -1
rp € £, 0<a, <25 -1
y €4, 0<y=2"-2

Ta
Fo—|— | -®p 0 <xy
f'::.i"ﬂ..i"r,:] = L-i"fi-J ’ f
undef. =10

5.8.2.16 NEGI32

Performs a safe arithmetic negation for a signed 32-bit integer type.

Safety C function interface

INT32 NEGI32 (INT32 x)
DINT NEGI32 (DINT =x=)
safelllT32 NEGIA2 (safeIlT32 x)
satelINT NEGI32 (safeDINT x)

Functional specification
v = NEGI32(x): flz) =y

rex, B e L

y €L, —2) Sy 28

f(e) L I e L
7= . .
' wndef., »= —2%

5.8.2.17 NEGI16

Performs a safe arithmetic negation for a signed 16-bit integer type.

Safety C function interface

INT16 NEGI16 (INT16 =)

INT NEGI16 (INT)
safelllTi6 NEGI16 (safellNT16 x)
safelllT NEGI16 (safelNT x)

Functional specification
v = NEGIi6{x): flz) =y

ez, R

y = &, —abF 1< y=ath

fia) —r, AN I S LU
r) = .
: undef.,, x= —21°

5.8.2.18 NEGI8

Performs a safe arithmetic negation for a signed 8-bit integer type.

TwinCAT Safety PLC Version: 1.2.0

95

Safety C application development

BECKHOFF

Safety C function interface
INTE NEGIS(INTS x)
SINT NEGIS(SINT x)
safelllTE NEGIS(=safellNTS =x)
safeSINT HNEGIB(safeSINT =x)

Functional specification
v = NEGI&8(x): flz)—y

xr € &, 2T p <27 1

y €L, —2T 1= y<27—1

) —1 1T —1
=) = . __

fl, wndef.,, ¥ = —2'

5.8.2.19 ABSI32

Executes a safe absolute value calculation for a signed 32-bit integer type.

Safety C function interface

INT32 ABSI32 (INT32 x)
DINT ABST32 (DINT =x)
safelllT32 ABSI32 (safellT32 x)
satelINT ABSI132 (safeDINT x)

Functional specification
v = ABSI32{x): fiz) =y

€ L, —98l = o g8l
y € &, 0<y<2% 1
x, <z <2 1
flz) = — L S e ||
undef., »= —2%!

5.8.2.20 ABSI16

Executes a safe absolute value calculation for a signed 16-bit integer type.

Safety C function interface

INT16 ABST16 (INTE x)

INT ABST16 CINT)
safelllTi6 ABSI16(safelNT16 x)
safelllT ABST16 (safellT x)

Functional specification
¥ = MBST16(x): f{j] — Y

x € &, A e L |
y €L, 0<y<2 -1
z, D<x<
flz)= —x, 24
undef., »= —2!%
96

Version: 1.2.0

TwinCAT Safety PLC

BEGKH“FF Safety C application development

5.8.2.21 ABSI8

Executes a safe absolute value calculation for a signed 8-bit integer type.

Safety C function interface
INTS ABSTS(INTE =)
SINT ABSTS(SINT =)
safellT8 ABSIS(=safellT8 x)
safeSINT ABSIB(=afeSINT x)

Functional specification
v = ABSIB(x): flz) =y

> e &, —9T 27
y €L, N=y=27—1
T, 0<z=2"—-1
flz) = -z, —2T4+1=x<0
wndef,, » = —27

5.8.3 Safe bit shift functions

The safe bit shift functions prevent undefined C/C++ behavior of the native operators >> and <<. To this end
the function signature is used to ensure that no signed operands can be used (this also eliminates the
possibility of a signed arithmetic shift), and any shift by the right operand (shift operand), that is greater than
or equal to the word width of the left operand, is intercepted.

5.8.3.1 SHLU32

Shifts the bits of an unsigned 32-bit value to the left by up to 31 bits.

Safety C function interface

UINT32 SHLU32(UINT32 =xa, UINT32 xb)
UDINT SHLU3Z(UDINT =xa, UDINT =xb)
safelUINT32 SHLU32{safelUINT32 xa, s=safelUINT32 xb)
safellDINT SHLUZZ2 (zafelDINT xa, safellDINT xb)

Functional specification
v = SHLU32{xa, xbl: [flz..zy) =y

z, € Z, 0<x, <2521
g € Z, 0 <z, < 2371
y €L, 0= y=2%—1

[.IR-—'I —':.- ;'h{_‘-:-
I) {{j 27 mod 292 0 <3, < 31
-i"ﬂ--i"fr_ =

wndef. 32 < 3, <252 _ 1

5.8.3.2 SHLU16

Shifts the bits of an unsigned 16-bit value to the left by up to 15 bits.

TwinCAT Safety PLC Version: 1.2.0 97

Safety C application development

BECKHOFF

Safety C function interface

UINT18 SHLU16(UINT16 =xa, UTNT32 xb)
UINT SHLU16(UINT =xa, UDINT xbl
safellINT16 SHLU1G(safelUINTi6 xa, =safeUINT32 xb)
safelINT SHLU16{safelUINT xa, safelDINT xb)

Functional specification
v = SHLUM6G{xa, xbl: filz,, >.) =y

z, €L, 0<a, <291
zy € I, 0< < 2521
y € L, 0<y<2%_1

f{j'm- -i"r;J =

undef., 16 < 2y, < 252 _ 1

{{j'ﬂ 2270 o 215, 0 < ay, <15

5.8.3.3 SHLUS

Shifts the bits of an unsigned 8-bit value to the left by up to 7 bits.

Safety C function interface

UINTE SHLUB(UINTS =xa, UINT32 xb)
USINT SHLUS({USINT xa, UDINT =xb)
safellINTS SHLUS(safelINTS xa, safelUINT32 xb)
safelSINT SHLUS{safeUSINT xa., safelUDINT xb)

Functional specification
v = SHLUB(xa, xb): flz,,zn) =y

re €L, 0<z, <251
ry € L, 0<a, <2% -1
y €2, Oy <2%—1
[(- 2% mod 2%, 0 <2, =7
f':.-i"ﬂ- -i"fr:] = . .
undef., 8§ <y, <292

5.8.3.4 SHRU32

Shifts the bits of an unsigned 32-bit value to the right by up to 31 bits.

Safety C function interface

UINT32 SHRU32(UINT32 xa, UINT32 xb)
UDINT SHRU3Z2{UDINT xa, UDINT xbl
safelINT32 SHRU3Z2({=afelUINT32 xa, s=safeUINT32 xb)
safellDINT SHRU3Z2{=afelDINT =xa, safellDINT xb)

98 Version: 1.2.0

TwinCAT Safety PLC

BECKHOFF

Safety C application development

Functional specification
v = SHRU32{xa, xbl: flz, x4 =y

T € E, 0=z, < 2%
Ty € L, 0= m =291
y €L, 0<y=<2%—1
' T, - 277 0= w31
f':..i"ﬂ..i"[?:l = I‘ “] J ==k = -
wndef., 32 < p, = 2%

5.8.3.5 SHRU16

Shifts the bits of an unsigned 16-bit value to the right by up to 15 bits.

Safety C function interface

UINT16 SHRU1G{UILNT16 xa, UINT32 xb)
UINT SHEU1G{ULNT xa, UDINT xb)
safelIlTi6 SHRU1G{=safelUINT16 xa, =safeUINT32 xb)
safallINT SHRU1G6(=afeUINT =xa, safellDINT xb)

Functional specification:
v = SHRUi6{(xa, xb): [fle.,x) =y

2, € L, 0=z, =<2%_—1
zy, € ., 0=z, <2921
yeL, 0=y=<2%—1

Flza,ms) = {Lra-?‘“-J. 0< 2, <15
@kl =

wndef., 16 < 7, = 292 _ 1

5.8.3.6 SHRUS

Shifts the bits of an unsigned 8-bit value to the right by up to 7 bits.

Safety C function interface

UINTE SHRUB(UINTE =xa, UINT32 xb)
USINT SHRUB(USINT =xa, UDINT xbl
safellINTS SHRUS(=safeUINTS xa, =afelINT32 xb)
safellSINT SHRUS(=safeUSINT xa, safeUDINT xb)

Functional specification
v = SHRUB(xa, xb): flz,, 2. =y

JIREE- {]"-_:.?',1"'-_:2“—1
Tg EE- {] i T i 2:52—1
y i, 0<y=<2%-1

f{j'm- -i"r;J =

undef., By, = 2% 1

{Lj-ﬁ 2T DS, €T

TwinCAT Safety PLC Version: 1.2.0

99

Safety C application development BEGKHUFF

5.8.4 Safe conversion functions (Boolean to integer)

Safe conversions of Boolean expressions to integer data types map the Boolean truth value FALSE to
arithmetic 0 and the Boolean truth value TRUE to arithmetic 1 in the respective target data type. This avoids
any ambiguity of the explicit type conversion with the cast operator, which may otherwise lead to unexpected
behavior for the application developer.

5.8.41 BTOI32

Executes a safe conversion of a Boolean expression to a signed 32-bit integer type.

Safety C function interface

INT32 BTOI32{BOOL =}
DINT BTOI32{BOOL =}
safelNT32 BTOI32(safeBOOL x)
safeDINT BTOI32(safeBOOL x)

Functional specification
v o= BTOI32{x): filz) =y

T e { false, true}
y L, b=y=1

. L. x
I} = {u —

5.84.2 BTOI16

Executes a safe conversion of a Boolean expression to a signed 16-bit integer type.

Safety C function interface

INT16 BTOI16(BOOL =)

INT BTOI16(BOOL =)
safellTi6 BTOI16 (safeBOOL x)
safelllT BTOI16 (safeBOOL x)

Functional specification
v = BTOI16(x): filz) —y

T e { false, true}
y L, b=y=1
. 1, =
¥ =
flz, {{]. —r

5.8.4.3 BTOI8

Executes a safe conversion of a Boolean expression to a signed 8-bit integer type.

Safety C function interface
INT2 BTOIZ(BOOL =)
SINT BTOIB(BOOL =x=)
gatelliTE BTOIB(=afeBOOL x)
safeSINT BTOIB(=afeBOOL x)

100 Version: 1.2.0 TwinCAT Safety PLC

BEGKH“FF Safety C application development

Functional specification
v = BTOI&(x): flz)—y

= 1 false, true}
y €4, b=y=1

. 1, =

5.8.44 BTOU32

Executes a safe conversion of a Boolean expression to an unsigned 32-bit integer type.

Safety C function interface

UINT32 ETOU32(BOOL x)
UDINT BTOU32(BOOL x)
safelINT32 BTOU3Z2({safeBOOL x)
safelDINT BTOU32{safeBOOL x)

Functional specification
v = BTOU32{x): flz) =y

= 1 false, true}
y €L, b=y=1

) 1, =
fle)= {u -

5.8.4.5 BTOU16

Executes a safe conversion of a Boolean expression to an unsigned 16-bit integer type.

Safety C function interface

UINTi6 BTOUL6(BOOL =)
UINT ETOUL6(BOOL x)
safelUINT16 BTOULG6(safeBOOL x)
safelINT BTOULG{safeBOOL x)

Functional specification
v = BTOUL6(x): filz) =y

= {false, true}
y €4, b=y=1

. L. x
fe) = {u —

TwinCAT Safety PLC Version: 1.2.0 101

Safety C application development BEGKHUFF

5.8.4.6 BTOUS8

Executes a safe conversion of a Boolean expression to an unsigned 8-bit integer type.

Safety C function interface

UIHTS BTous{BOOL =x)
USINT BTous(BOOL =x=)
safellINTS BTOUS(=safeBOOL =)
safelUSINT BTOUS(=safeBOOL =)

Functional specification
¥ = BTOUB (x) : f{j] —+ Y

T e 1 false, true}
y €@, I=y=1

. L. =
fe) = {u —

5.8.5 Safe conversion functions (integer to integer)

Safe conversion functions between integer types are value-preserving and sign-preserving. The conversion
functions for all potentially lossy combinations of source and target types therefore intercept cases for which
it would not be possible to represent the value of the source type within the range of the target type. The
native C/C++ type conversion operator must be used for risk-free type conversion or possibly intended loss
of value or sign.

5.8.5.1 18TOUS8

Executes a safe conversion of the signed 8-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

UInTZ IsToOUS (INTS =)
USINT I8TOUS (SINT =)
gatfelIlTE I8TOUR(safellT8 x)
safelSINT I8TOUR(=afeSINT x)

Functional specification
v o= 18T0U8(x): flz) —y

r €L, 2 <z <21
yEL DZy=2"—1
flx) i O=x=27-1
T = 3
' wndef., —27< 3 <

5.8.5.2 I18TOU16

Executes a safe conversion of the signed 8-bit integer type to the unsigned 16-bit integer type.

102 Version: 1.2.0 TwinCAT Safety PLC

BEGKH“FF Safety C application development

Safety C function interface

UINT16 I8TOU1GCINTE =)
UINT I8TOUAR(SINT =)
safelINT16 I8TOU1G{safelNT8 x)
safellINT I8TOU16{safeSINT x=)

Functional specification
y = 1a8ToUi6(x): flz) =y

v €L, ST -1
yEL D=y=2" -1
flx) i Do =201
x)= .
' wndef.,, —27 <z <0

5.8.5.3 18TOU32

Executes a safe conversion of the signed 8-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

UINT32 18TOU32(INTE =)
UDINT I18TOU32(SINT =)
safelINT32 I8TOU32{safellT8 x)
satelDINT 18TOU32(safeSINT =)

Functional specification
v = 18T0U32{x): flz) =y

v €L, T <r<2 -1
y €L, 0=y=2"—1
flz) T, 0=<z=<2"—1
x) = .
' wndef., —2° <z <0

5.8.5.4 USTOI8

Executes a safe conversion of the signed 8-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

INTS UsTOIS(UINTS =)
SINT USTOIS(USINT =)
gafelllT8 USTOIS(=afeUINTE x)
gafeSINT USTOIS(=afeUSINT x)

Functional specification
v = U8T0I8(x): fiz) —y

r £ &, 0<x=2%—-1
yeL D=y=<2"—1
flz) z, 0<z<2" -1
x) = B
' undef., 27 <z <25 -1

TwinCAT Safety PLC Version: 1.2.0 103

Safety C application development BEGKHUFF

5.8.5.5 I16TOI8

Executes a safe conversion of the signed 16-bit integer type to the signed 8-bit integer type.

Safety C function interface

INTE T16TOIB(INT16 x)
SINT T16TOIB(INT x)
safelllT8 I16TOIS(safellNT16 x)
safeSINT I16TOIS(safellT x)

Functional specification
v = I16TOI8(x): flz) =y

rEZ, o i L
y = &L, —2T <y =27 -1

_ x, I |

) = - N _ i}
fiz) undef., (—21% <3 < —27) v (27 <z <215 1)

5.8.5.6 116TOUS8

Executes a safe conversion of the signed 16-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

UINTE T16TOUS{INT16 x)
USINT T16TOUBCINT x)
safellINT8 I16TOUS(safelllTi6 x)
safellSINT I16TOUS(safellT x)

Functional specification
v = I16TOUS(x): fiz) =y

x € &, B e L |
y €L 0<y=<2%—1
- , 0<r<as
flz)= . . .
undef., (=20 <z <0)v (25 <z <215 1)

5.8.5.7 116TOU16

Executes a safe conversion of the signed 16-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

UINT16 I16TOULG(INT16 =)
UINT T18TOULG(INT x)
safelINT16 I16TOULG(safellNT16 x)
satellNT I16TOULG (safe INT x)

104 Version: 1.2.0 TwinCAT Safety PLC

BEGKH“FF Safety C application development

Functional specification
v = I1I6TOULG(x): flz) =y

rEZ, B e L |
y £ &, 0<y< gls _ 4

- I, 0 <3< 215 _q
iz) = _ ==
It undef.,, —21% <3 <0

5.8.5.8 116TOU32

Executes a safe conversion of the signed 16-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

UINT32 I16TOU32(INT16 =)
UDINT I18TOUAZ(INT x)
safelINT32 I16TOU32(safellT16 x)
satelDINT I16TOU32(safe INT x)

Functional specification
y = I16TOU32(x): flz) —y

r €L, T -
y €L, 0= y=2—1
f(x) x, 0<x=<2% 1
r) = N
' undef.,, —21% <3 <0

5.8.5.9 U16TOI8

Executes a safe conversion of the signed 16-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

INTS UaTOIS{UINT16 =)
SINT ULETOIS(UINT =)
safelllT8 ULATOIS(=safeUINT16 x)
safeSINT UL6TOIS(safeUINT x)

Functional specification
v = WATOIE(x): flz) —y

rc X, 0<z<2lb_
y €L, 0= y<27 —1
flx) T 0<x<27—1
x) = i .
. wndef., 27 <z <215 _1

5.8.5.10 U16TOUS

Executes a safe conversion of the unsigned 16-bit integer type to the unsigned 8-bit integer type.

TwinCAT Safety PLC Version: 1.2.0 105

Safety C application development BEGKHUFF

Safety C function interface

UINTZ U1RTOUS(UINTiE =)
USINT U16TOUS(UIHT =)
safellINTS U1ATOUS(=safelUINT16 x)
safelSINT U18TOUS{safeUINT =x)

Functional specification
y = ULETOUB(x): flz) —y

x € L, 0<z<2%_1
y L, 0= y<2%—1

fla) =

undef., 95 <p < 2151

5.8.5.11 U16TOI16

Executes a safe conversion of the signed 16-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

INT16 ULSTOL 16 (UINT1E)

INT ULSTOL 16 (UINT =)
safelliTi6é UISTOI16{=safeUINT16 x)
safelllT U1BTOI 16 (safeUINT =)

Functional specification
v = U18TOI16 (3 _ﬂ_r] —y

T €&, 0< <26 _1
e D<y<2% -1
flz) , D€z <21
x) = - .
' undef.,, 2% < < 2151

5.8.5.12 132TOI8

Executes a safe conversion of the signed 32-bit integer type to the signed 8-bit integer type.

Safety C function interface

INTS 132T0I8 (INT32 x)
SINT 132TOI8(DINT =)
gafelllT8 I132T0I8(=afellT32 x)
gafeSINT I132T018 (safeDINT x)

Functional specification
v = 130T0I8(x): flz) =y

z €, D e
y = &L, —2T <y =27 -1
_ T, —T e 2T
Tl = . - -
fiz) undef., (—2%'< 3 < —27) v (27 <z < 2% 1)

106 Version: 1.2.0 TwinCAT Safety PLC

BEGKH“FF Safety C application development

5.8.5.13 132TOUS8

Executes a safe conversion of the signed 32-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

UINT: 132TOUS(INT32 =)
USINT 132TOUS(DINT =)
safellIlNT8 I132TOUS(=afellT32 x)
gafellSINT I32TOUS(=sateDINT x)

Functional specification
v = 132T0US(x): flz) =y

x € &, B - |
yeL n<y=2%—1
' T, 0<p<2"—1
flz) = v N
undef.,, (—2%' < x <0)v (2% <z <25 —1)

5.8.5.14 132TOI16

Executes a safe conversion of the signed 32-bit integer type to the signed 16-bit integer type.

Safety C function interface

INTE I132TOT16(INTA2 =)
SINT I32TOIL6(DINT x)
safelllT8 I32TOI16(safelllT32 x)
safeSINT I32TOI16(=afelINT x)

Functional specification
v = 130T0I16¢(x): flz)—y

= B ot L |
y € &, 2% <y als g
_ x, O R 2 Lol |
x) = B 5 ;
fiz) undef.,, (=23 <x < —215) v (215 < < 2% 1)

5.8.5.15 132TOU16

Executes a safe conversion of the signed 32-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

UINT16 I32TOULE(INT32 x)
UINT I32TOULG(DINT)
safelUINT16 I32TOULG(safeINT32 x)
safellNT T132TOULGE (safeDINT x)

TwinCAT Safety PLC Version: 1.2.0 107

Safety C application development BEGKHUFF

Functional specification
v o= 132TOULG(x): flz)—y

x € &, —25l g 2FL
y €L, 0<y<2% 1
. T {].c__‘__i,.i 2[1::_1
fe) = - (sl (516 51
wndef., (—2%' <@ < 0)w (210 <2 39 1)

5.8.5.16 132TOU32

Executes a safe conversion of the signed 32-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

UINT32 132TOU32(INT32 x)
UDINT 132T0U32(DINT =)
safelINT32 I132TOU32(=afellT32 x)
safelDINT 132TOU32 (sateDINT x)

Functional specification
y = I32TO0U32{x): flz) =y

€ L, B el L |
yEi, 0= y< 231
- T, 0=zx=2% -1
fz) = o3l . B 5l
undef., (—2%! <z < 0)v (25! < 2 <251 1)

5.8.5.17 U32TOI8

Executes a safe conversion of the signed 32-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

INTS U32T0I8 (UINT32 x)
SINT U32T0I8 (UDINT x=)
safelllT8 U32T0IS (safelINT32 x)
safeSINT U32T0I8 (safelUDINT x)

Functional specification
y o= U32T0I8(x): flz) —y

¥ e &, 0= z<2% 1
y € Z, 0=<y<2" -1
i) T, 0<x=<2"—1
)= _ .
' undef., 27 <z < 2521

5.8.5.18 U32TOUS

Executes a safe conversion of the unsigned 32-bit integer type to the unsigned 8-bit integer type.

108 Version: 1.2.0 TwinCAT Safety PLC

BECKHOFF

Safety C application development

Safety C function interface

UINTZ U32TOUS(UINT32 =)
USINT U32TOUS(UDINT =)
safellINTS U32TOUS(=safelUINT32 x)
safelSINT U32TOUB{safeUDINT x)

Functional specification
¥ = U32ToUs(x) _ﬂ.r] — Y

x € L, 0<z<2% 1
y L, 0= y<2%—1

fla) =

undef., 95 <x < 2%2_17)

5.8.5.19 U32TOI16

Executes a safe conversion of the signed 32-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

INTE U32TOI16CUTNT32 =)
SINT U32TOI16(UDINT =)
safelllTE U32TOIL1G6(safeUINT32 x)
safeSINT U32TOI16(safelUDINT =)

Functional specification
v = U3eTOI16(x): flz)—y

T € &, 0<x<2%
y €L, nEy<2t 1
fiz) r, 0<a<29 1
x| = - -
. wndef.,, 2% < x < 2%

5.8.5.20 U32TOU16

Executes a safe conversion of the unsigned 32-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

UINT16 U3ZTOULG(UINT32 x)
UINT U32TOULG (UDINT =)
gafellIlTi6 U32TOULS{safeUINT32 x)
safelINT U32TOULGE(=afe UDINT x)

Functional specification
y = U32ToU1& (x): f{j] — i

r €z, 0<z=2% 1
y €L, 0=y=2"—1

_ ¥, 0<z=<2%_1
fl=) = undef.,, 215 <z <292

TwinCAT Safety PLC Version: 1.2.0

109

Safety C application development

BECKHOFF

5.8.5.21 U32TOI32

Executes a safe conversion of the signed 32-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

INT32 U32TOI32(UINT32 x)
DINT U32TOL32(UDINT =)
gafelllT32 U32TOI32(=afelINT32 x)
safeDINT U32T0I32{=afeUDINT x)

Functional specification
y = U3AT0I32{x): flz) =y

x € F, 0= x=2%_
y €L, 0=y=2—1
_ ¥, 0<3=<2%_1
fl=) = undef.,, 2% <z <292
110 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF Graphical application development

6 Graphical application development

Use of the TwinCAT Safety Editor
The use of the TwinCAT Safety Editor together with the TwinCAT Safety PLC will be imple-

mented in one of the next releases. Currently this is not possible.

Note

TwinCAT Safety PLC Version: 1.2.0 111

Appendix BEGKHUFF

7 Appendix

71 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages:
http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters
Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20

33415 Verl

Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
e-mail: info@beckhoff.com
Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

e support
+ design, programming and commissioning of complex automation systems
+ and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157
e-mail: support@beckhoff.com
Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
* spare parts service
* hotline service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
e-mail: service@beckhoff.com

112 Version: 1.2.0 TwinCAT Safety PLC

http://www.beckhoff.de/english/support/default.htm
http://www.beckhoff.com
http://www.beckhoff.com/english/download/default.htm

BEGKHOFF Appendix

7.2 Certificates

Product Service

CERTIFICATE

No. Z10 16 12 62386 035

Holder of Certificate: Beckhoff Automation GmbH & Co. KG
Hulshorstweg 20

=
<t
[]
L
=
==
[SE]
[
L 4
=
(=]
= 33415 Verl
o GERMANY
(1
— Factory(ies):
= ry(ies)
(== . .
i Certification Mark:
[
*
-~ el
<
e
= Product: Safety-Related Programmable Systems
S
< Model(s): TwinCAT Safety PLC
-
a. Parameters: Supply voltage: SELV/PELV
L Protection class: IP 20
() Ambient temperature; 0°C ... +65°C
L 4 The report referenced below and the user documentation in
the currently valid revision are mandatory part of this
D certificate. The product complies with the following listed
[N safety requirements only if the specifications documented
i in the currently valid revisions of this report are met.
=
Ino
Ra Tested IEC 61508-1(ed.2) (SIL 3)
D according to: IEC 61508-2(ed.2) (SIL 3)
P IEC 61508-3(ed.2) (SIL 3)
IEC 61508-4(ed.2) (SIL 3)
Ll EN ISO 13849-1:2015 (Cat 4, PL e)
—
= The product was tested on a voluntary basis and complies with the essential requirements. The
(&) certification mark shown above can be affixed on the product. it is not permitted to alter the
E certification mark in any way. In addition the certification holder must not transfer the certificate
— to third parties. See also notes overleaf,
—
5 Test report no.: BV20306C
o Valid until: 2021-12-08
2
=L L/
E Date, 2016-12-12 (Jurgen Blum)
& Page 1 of 1
(-
S cc
S 58] o ®
< N TUV SUD Product Service GmbH - Zertifizierstelle . RidlerstraBe 65 - 80339 Miinchen - Germany TOV

TwinCAT Safety PLC Version: 1.2.0 113

List of figures BEGKHUFF

List of figures

Fig. 1 TYPICAl FESPONSE LM ...ttt et e e ettt e e e e e e e anbe e e e e e anneeeeeas 15
Fig. 2 WOrst Case reSPONSE TIMEuiiiiiiiiiiiee et e et e e e e e e e e e e e e e e eeaaaeeeaeeaannnes 16
Fig. 3 Creating a safety project - Add NeW HEMuiiiiiiiiiiii e 17
Fig.4 Creating a safety project - project name and direCtorycccoiiiiiiiiiii e 18
Fig. 5 TwinCAT Safety Project WIzardcooiiiiieiiiiiee ettt e 18
Fig.6 Target system in the Solution EXPIOrer...........uviiiiiiiiiiiie e 19
Fig. 7 Target System Property PAgeocueiiiiiiiii e 19
Fig. 8 Creating @ TWINSAFE GrOUDciiiiiiiiiie ettt ettt e ettt e et e e e e ettt e e e e e nbeeae e e snbeeeeeeennees 20
o TR N RS 7Y o e o U o PP SRR 20
Fig. 10 TWIinSAFE Group - General SEHNGS........ccuuviiiiiiiiiii e 21
Fig. 11 TWINSAFE Group - GroUp POISccoiiieiiiii ittt e e e e e e e e e e e e nnaaes 21
Fig. 12 TWINSAFE group ProCeSS IMAGEueeieiiiriiieeiiiiieee e ettt e e e ettt e e et e e e e et e e e e e anbe e e e e e anbeeeeeeannees 21
o T I T T - = IR 1 [PRSP EPR 22
Fig. 14 Starting the automatic import from the 1/0 configurationcccceveeeiiiiiiiiiie e, 22
Fig. 15 Selection from the /O tree.........ooi i 23
Fig. 16 Creating alias devices DY the USEI.........ccoiiiiiiiiii e 23
Fig. 17 Alias device - Process Image tabooiiiiiiiiiii e 24
Fig. 18 Configuring the 1/O €IE8MENTScooiiiiiiii e 24
Fig. 19 Alias device - CONNECHION TADcooiiiiiiiiiie e 25
Fig. 20 Alias device in the safety project StrUCLUIeooiiiiiiiiii e 25
Fig. 21 Links to the TWinCAT Safety PLC ProCess iMagec.uuiveeiiiiiiieeeiiiiieeeeeiiee e e siiee e eiteee e e 26
Fig. 22 Connection-SpecCific PAramMELEISccoiiiiiieeeee e e e e e e e e e e e 26
Fig. 23 Selecting an alias dEVICEueiiiiiiiiiee et 27
Fig. 24 Safety parameter for the deVICE..........coiiiiiiiiiie et 27
Fig. 25 Safety PLC IinStance - AliIaS dEVICEScoiuuiiieiiiiiiee ettt e 28
Fig. 26 Structure of the aliasS dEVICEcoiiiiiiiii e 28
Fig. 27 AX5000 safety drive fUNCHONSoooiiiiiiiieee e e e e e 29
Fig. 28 AX5000 safety drive options - general AX5805 SettingsS........cvuevieiiiiiiiiiiiiee e 29
Fig. 29 AX5000 safety drive options - ProCess IMage.........cooouii it 30
Fig. 30 AX5000 safety drive options - Function Diagramccccciuriiiiiiiieee e 31
Fig. 31 Creating an external connection (Custom FSOE Connection)...........ccceoiivieieeiiiieeie e 32
Fig. 32 Parameterization of the process image SIZe...........c.coviiiiiiiiiiiie e 32
Fig. 33 Renaming the individual signals within the telegramcccccoiiii e, 33
Fig. 34 Selecting the VariabIes. ... 33
Fig. 35 Direct linking with the process image of an EtherCAT Terminal.............cccoccveeiiiiiee e, 34
Fig. 36 Connection-sSpecific PAramMELErSoiiiiiiiiie et 34
Fig. 37 TwinSAFE group - Header filesuiiiiiiii e 36
Fig. 38 TWINSAFE group = SOUICE fil€S......ceiiiiiiiiiii it e e e e e e e e e e 37
o TR 1 B [0 11 8 {1 o3 o] o PRSP 37
Fig. 40 InputUpdate fUNCHON.........ooiiiiiie e et e e e et e e e e st eee e e e nnes 38
Fig. 41 OutputUpdate fUNCHON ... e e e e e e e e e et e e e e e aaeeeaeeannnnns 38
Fig. 42 CycleUpdate fUNCLION.o e e 39
o TR T 1= o 1= A0)V (=Y o o PRSP RP 40
Fig. 44 Dialog CRC DiStriDULIONcciiiiiiiee et e e e e 40
114 Version: 1.2.0 TwinCAT Safety PLC

BEGKHUFF List of figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Downloading the safety appliCationooiiiiiiiiii e 41
UNIOCK Safety PrOJECT ..o 41
UNIOCK Safety PrOJECTeeiiiiiiiiiiie e e e e e e e e e e e e 42
Lo [T 1 o= IO O SRS 42
Activating the Safety and CRC t0O0IDArScccuuiiiiiiiiiiiec e 42
Target system - Map Object ID and Map Project CRC...........ccoooiiiiiiiiiiiieee e 43
Target System INfO Data.........ooo i 43
Diag Data - TWINCAT Safety PLC.......oo ettt 44
Safety Timer Diag Data - TWINCAT Safety PLCooo e 45
Group MapDiag MapState e e 45
(€171 o 1 a]{oJNo L= | == OO O PP PP PPPURRRRRRRIN 45
FSoE connection map info data..........coooiiiiiiii e 46
FSOE connection info data....... ..o 46
AdAING @ NEW LASK ...ttt e e e e e e e e e e e aeaaeeeeanaanan 48
(DI E= [o [N g Y=Y o G 1=] SRR 48
TASK SEHINGS ... ettt e e e e e et e e e e e e e e e e et reeeaaaeaeas 49
Task execution time and exXCeed COUNTENooiiiiiiiiiii e 49
Strong type system €case 1 - @XamPIe .. .o 63
Strong type system case 1 - €XamMPIE 2.........ccooiiiiiiiiieeiee e 63
Strong type system €ase 1 - €XamPIE 3.......uuiiiiiiiiiii e 64
Strong type system case 1 - example 4........ooo e 64
Strong type system case 1 - eXampPle 5........oooiiiiiiiieee e 65
Strong type system €ase 2 - eXamPle .. .o 65
Strong type system Case 2 - €XAMPIE 2.........uiiiiiiiiiiiee et e e 66
Module TestS CONTEXE MENU.......oiiiiiiiiiiie e 83

TwinCAT Safety PLC Version: 1.2.0 115

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.2.1 Delivery state
	1.2.2 Operator's obligation to exercise diligence
	1.2.3 Description of safety symbols

	1.3 Documentation issue status

	2 System description
	2.1 Extension of the Beckhoff I/O system with safety functions
	2.2 TwinCAT Safety PLC
	2.3 Safety concept

	3 Product description
	3.1 Intended use
	3.2 Technical data
	3.3 Safety parameters
	3.4 Project design limits

	4 Operation
	4.1 Installation
	4.1.1 Safety instructions
	4.1.2 Specifications for transport and storage
	4.1.3 Mechanical installation
	4.1.4 Electrical installation
	4.1.5 Software installation
	4.1.6 TwinSAFE reaction times

	4.2 Configuration of the TwinCAT Safety PLC in TwinCAT
	4.2.1 Configuration requirements
	4.2.2 Creating a safety project in TwinCAT 3
	4.2.2.1 Add new item
	4.2.2.2 TwinCAT Safety Project Wizard
	4.2.2.3 Target System
	4.2.2.4 TwinSAFE groups
	4.2.2.5 Alias devices
	4.2.2.6 Safe time signal
	4.2.2.7 Parameterization of the alias device
	4.2.2.8 Connection to AX5805/AX5806
	4.2.2.9 External connection
	4.2.2.10 TwinSAFE group - Header files
	4.2.2.11 TwinSAFE group - Source files

	4.2.3 CRC distribution
	4.2.4 Downloading the safety application
	4.2.5 Activating the safety application
	4.2.6 Safety and CRC toolbars
	4.2.7 Info data
	4.2.8 Task settings

	5 Safety C application development
	5.1 Programming in Safety C
	5.1.1 Differentiation between programming in Safety C and C/C++
	5.1.2 Source code templates
	5.1.2.1 Application module for a TwinSAFE group

	5.2 Safe coding rules
	5.2.1 Definitions
	5.2.2 General
	5.2.3 Strong typing
	5.2.3.1 Examples for the strong type system
	5.2.3.1.1 Case 1
	5.2.3.1.2 Case 2

	5.3 Permissible language scope
	5.3.1 Simple data types
	5.3.2 Enumeration types
	5.3.3 Data structures
	5.3.3.1 Structs
	5.3.3.2 Arrays

	5.3.4 Simple statements
	5.3.5 Control structures
	5.3.5.1 If-Else
	5.3.5.2 While
	5.3.5.3 For
	5.3.5.4 Switch case

	5.3.6 Expressions and operators
	5.3.7 Literals and constants
	5.3.8 Function calls and user-defined functions
	5.3.9 Asserts and traces
	5.3.9.1 Asserts
	5.3.9.2 Traces

	5.4 Performance optimizations
	5.5 Interfacing with the I/O level
	5.6 Verification and validation
	5.7 Online diagnostics
	5.8 Safe Helper Functions
	5.8.1 Safe logic functions
	5.8.1.1 AND
	5.8.1.2 AND3
	5.8.1.3 AND4
	5.8.1.4 OR
	5.8.1.5 OR3
	5.8.1.6 OR4

	5.8.2 Safe integer arithmetic functions
	5.8.2.1 ADDI32
	5.8.2.2 SUBI32
	5.8.2.3 MULI32
	5.8.2.4 DIVI32
	5.8.2.5 DIVU32
	5.8.2.6 MODI32
	5.8.2.7 MODU32
	5.8.2.8 DIVI16
	5.8.2.9 DIVU16
	5.8.2.10 MODI16
	5.8.2.11 MODU16
	5.8.2.12 DIVI8
	5.8.2.13 DIVU8
	5.8.2.14 MODI8
	5.8.2.15 MODU8
	5.8.2.16 NEGI32
	5.8.2.17 NEGI16
	5.8.2.18 NEGI8
	5.8.2.19 ABSI32
	5.8.2.20 ABSI16
	5.8.2.21 ABSI8

	5.8.3 Safe bit shift functions
	5.8.3.1 SHLU32
	5.8.3.2 SHLU16
	5.8.3.3 SHLU8
	5.8.3.4 SHRU32
	5.8.3.5 SHRU16
	5.8.3.6 SHRU8

	5.8.4 Safe conversion functions (Boolean to integer)
	5.8.4.1 BTOI32
	5.8.4.2 BTOI16
	5.8.4.3 BTOI8
	5.8.4.4 BTOU32
	5.8.4.5 BTOU16
	5.8.4.6 BTOU8

	5.8.5 Safe conversion functions (integer to integer)
	5.8.5.1 I8TOU8
	5.8.5.2 I8TOU16
	5.8.5.3 I8TOU32
	5.8.5.4 U8TOI8
	5.8.5.5 I16TOI8
	5.8.5.6 I16TOU8
	5.8.5.7 I16TOU16
	5.8.5.8 I16TOU32
	5.8.5.9 U16TOI8
	5.8.5.10 U16TOU8
	5.8.5.11 U16TOI16
	5.8.5.12 I32TOI8
	5.8.5.13 I32TOU8
	5.8.5.14 I32TOI16
	5.8.5.15 I32TOU16
	5.8.5.16 I32TOU32
	5.8.5.17 U32TOI8
	5.8.5.18 U32TOU8
	5.8.5.19 U32TOI16
	5.8.5.20 U32TOU16
	5.8.5.21 U32TOI32

	6 Graphical application development
	7 Appendix
	7.1 Support and Service
	7.2 Certificates

	 List of figures

