
Documentation

TwinCAT Safety PLC

PC based Safety Controller

1.2.0
2017-06-29

Version:
Date:

Table of contents

TwinCAT Safety PLC 3Version: 1.2.0

Table of contents
1 Foreword .. 5

1.1 Notes on the documentation... 5
1.2 Safety instructions .. 6

1.2.1 Delivery state ... 6
1.2.2 Operator's obligation to exercise diligence .. 6
1.2.3 Description of safety symbols .. 7

1.3 Documentation issue status.. 7

2 System description ... 8
2.1 Extension of the Beckhoff I/O system with safety functions ... 8
2.2 TwinCAT Safety PLC.. 8
2.3 Safety concept .. 8

3 Product description... 10
3.1 Intended use ... 10
3.2 Technical data .. 12
3.3 Safety parameters .. 13
3.4 Project design limits.. 13

4 Operation.. 14
4.1 Installation... 14

4.1.1 Safety instructions.. 14
4.1.2 Specifications for transport and storage .. 14
4.1.3 Mechanical installation... 14
4.1.4 Electrical installation... 15
4.1.5 Software installation... 15
4.1.6 TwinSAFE reaction times... 15

4.2 Configuration of the TwinCAT Safety PLC in TwinCAT.. 17
4.2.1 Configuration requirements.. 17
4.2.2 Creating a safety project in TwinCAT 3 ... 17
4.2.3 CRC distribution... 39
4.2.4 Downloading the safety application ... 40
4.2.5 Activating the safety application... 41
4.2.6 Safety and CRC toolbars ... 42
4.2.7 Info data ... 43
4.2.8 Task settings.. 48

5 Safety C application development ... 50
5.1 Programming in Safety C.. 50

5.1.1 Differentiation between programming in Safety C and C/C++ ... 50
5.1.2 Source code templates .. 51

5.2 Safe coding rules .. 55
5.2.1 Definitions .. 55
5.2.2 General .. 56
5.2.3 Strong typing.. 58

5.3 Permissible language scope... 66
5.3.1 Simple data types .. 66
5.3.2 Enumeration types ... 68
5.3.3 Data structures... 68
5.3.4 Simple statements.. 69
5.3.5 Control structures... 70
5.3.6 Expressions and operators .. 73

Table of contents

TwinCAT Safety PLC4 Version: 1.2.0

5.3.7 Literals and constants .. 74
5.3.8 Function calls and user-defined functions.. 75
5.3.9 Asserts and traces ... 76

5.4 Performance optimizations ... 78
5.5 Interfacing with the I/O level ... 79
5.6 Verification and validation... 81
5.7 Online diagnostics .. 82
5.8 Safe Helper Functions .. 86

5.8.1 Safe logic functions ... 86
5.8.2 Safe integer arithmetic functions ... 89
5.8.3 Safe bit shift functions.. 97
5.8.4 Safe conversion functions (Boolean to integer) ... 100
5.8.5 Safe conversion functions (integer to integer) ... 102

6 Graphical application development... 111

7 Appendix .. 112
7.1 Support and Service ... 112
7.2 Certificates.. 113

Foreword

TwinCAT Safety PLC 5Version: 1.2.0

1 Foreword

1.1 Notes on the documentation

Target group

This description is aimed specifically at trained qualified persons with a control and automation technology
background, who are familiar with the current national and international standards and guidelines.
These persons must be trained in the development, validation and verification of safety-related applications
in a high-level language in accordance with the normative software lifecycle, based on the requirements of
EN 61508.

The following instructions and explanations must be followed during installation and commissioning of the
components.

The qualified personnel must ensure that the application of the described products meets all safety
requirements, including all applicable laws, specifications, regulations and standards.

Origin of the document

This documentation was originally written in German. All other languages are derived from the German
original.

Currentness

Please check whether you are using the current and valid version of this document. The current version can
be downloaded from the Beckhoff homepage at http://www.beckhoff.com/english/download/twinsafe.htm.
In case of doubt, please contact Technical Support [} 112].

Product features

Only the product features specified in the current user documentation are valid. Further information given on
the product pages of the Beckhoff homepage, in emails or in other publications is not authoritative.

Disclaimer

The documentation has been prepared with care. The products described are subject to cyclical revision. For
that reason the documentation is not in every case checked for consistency with performance data,
standards or other characteristics. We reserve the right to revise and change the documentation at any time
and without prior announcement. No claims for the modification of products that have already been supplied
may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC® and XTS® are registered
trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

http://www.beckhoff.com/english/download/twinsafe.htm

Foreword

TwinCAT Safety PLC6 Version: 1.2.0

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: EP1590927, EP1789857, DE102004044764, DE102007017835 with corresponding applications or
registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications and
patents: EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Delivery conditions

In addition, the general delivery conditions of the company Beckhoff Automation GmbH & Co. KG apply.

1.2 Safety instructions

1.2.1 Delivery state
All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

1.2.2 Operator's obligation to exercise diligence
The operator must ensure that

• the TwinSAFE products are only used as intended (see chapter Product description);
• the TwinSAFE products are only operated in sound condition and in working order.
• the TwinSAFE products are operated only by suitably qualified and authorized personnel.
• the personnel is instructed regularly about relevant occupational safety and environmental protection

aspects, and is familiar with the operating instructions and in particular the safety instructions contained
herein.

• the operating instructions are in good condition and complete, and always available for reference at the
location where the TwinSAFE products are used.

• none of the safety and warning notes attached to the TwinSAFE products are removed, and all notes
remain legible.

Foreword

TwinCAT Safety PLC 7Version: 1.2.0

1.2.3 Description of safety symbols
In these operating instructions the following symbols are used with an accompanying safety instruction or
note. The safety instructions must be read carefully and followed without fail!

DANGER

Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the
life and health of persons.

WARNING

Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and
health of persons.

CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to
persons.

Attention

Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the en-
vironment or equipment.

Note

Tip or pointer
This symbol indicates information that contributes to better understanding.

1.3 Documentation issue status
Version Comment
1.2.0 • Application development in Safety C updated
1.1.0 • Description of safe helper functions added

• General revision of all chapters
1.0.0 • First released version

• Certificate added
• Diagnostic data updated

0.3 • Target group updated
• Operation updated - Configuration of the hardware platform

0.2 • Provisional version for certification
0.0.1 • First draft. For internal use only.

System description

TwinCAT Safety PLC8 Version: 1.2.0

2 System description

2.1 Extension of the Beckhoff I/O system with safety
functions

The TwinSAFE products from Beckhoff enable convenient expansion of the Beckhoff I/O system with safety
components, and integration of all the cabling for the safety circuit within the existing fieldbus cable. Safe
signals can be mixed with standard signals without restriction. The transfer of safety-related TwinSAFE
telegrams is handled by the standard controller. Maintenance is simplified significantly thanks to faster
diagnosis and simple replacement of components.

The following basic functionalities are included in the TwinSAFE components:
digital inputs (e.g. EL19xx, EP1908), digital outputs (e.g. EL29xx), drive components (e.g. AX5805) and logic
units (e.g. EL6900, EL6910, TwinCAT Safety PLC). For a large number of applications, the complete safety
sensor and actuator technology can be wired on these components. The necessary logic link between the
inputs and outputs is handled by the EL69xx or the TwinCAT Safety PLC. In addition to Boolean operations,
the EL6910 also enables analog operations. The TwinCAT Safety PLC enables development of safety-
related logic in Safety C.

2.2 TwinCAT Safety PLC
The TwinCAT Safety PLC is used to realize the links between safety-related inputs and outputs via the
Safety-over-EtherCAT protocol (FSoE).

The TwinCAT Safety PLC meets the requirements of IEC 61508:2010 SIL 3 and EN ISO 13849-1:2015
(Cat 4, PL e).

The TwinCAT Safety PLC realizes a safety-related runtime environment on a standard Industrial PC.
Currently only Beckhoff IPCs can be used. Further information on permitted configurations can be found in
the document “List of approved system configurations” on the Beckhoff website.

The safety-related logic can be created in Safety C, in future also via the graphical TwinSAFE Editor.

2.3 Safety concept

TwinSAFE: Safety and I/O technology in one system
• Extension of the familiar Beckhoff I/O system with TwinSAFE components
• Safe and non-safe components can be combined as required
• Logic linking of the I/Os in the TwinCAT Safety PLC
• Suitable for applications up to SIL 3 according to EN 61508:2010 and Cat 4, PL e according to

EN ISO 13849-1:2015
• Safety-relevant networking of machines via bus systems
• In the event of an error, all TwinSAFE components always switch to the deenergized and therefore

safe state
• No safety requirements for the higher-level standard TwinCAT system

Safety over EtherCAT protocol (FSoE)
• Transfer of safety-relevant data via any media (“genuine black channel”)
• TwinSAFE communication via fieldbus systems such as EtherCAT, Lightbus, PROFIBUS, PROFINET

or Ethernet
• IEC 61508:2010 SIL 3 compliant
• FSoE is IEC standard (IEC 61784-3-12) and ETG standard (ETG.5100)

System description

TwinCAT Safety PLC 9Version: 1.2.0

Fail-safe principle (fail stop)

The basic rule for a safety system such as TwinSAFE is that failure of a part, a system component or the
overall system must never lead to a dangerous condition. The safe state is always the switched off and
wattless state.

CAUTION

Safe state
For all TwinSAFE components the safe state is always the switched-off, wattless state.

Product description

TwinCAT Safety PLC10 Version: 1.2.0

3 Product description

WARNING

System limits
The TwinCAT Safety PLC is only permitted for hardware platforms that are included in the
"List of approved system configurations".
The TwinSAFE Editor for engineering and the TwinCAT Safety PLC runtime must be in-
stalled and used on physically different PCs.

Note

Software environment
To have the full functionality of the TwinCAT Safety PLC available, it is necessary to use
Visual Studio 2015 Professional or a later version.

3.1 Intended use

WARNING

Caution - Risk of injury!
The TwinCAT Safety PLC must not be used outside the scope of the intended use de-
scribed below!

The TwinCAT Safety PLC expands the application area of the Beckhoff I/O system with functions that enable
it to be used for machine safety applications. The TwinCAT Safety PLC is intended for safety functions of
machines and directly related tasks in industrial automation. They are therefore only approved for
applications with a defined fail-safe state. This safe state is the wattless state. Fail-safety according to the
relevant standards is required.

The software part of the TwinCAT Safety PLC is a software-based safety controller, which may only be used
on approved system configurations (consisting of development environment, runtime environment and
hardware platform).

CAUTION

Permitted system configurations
The certificate for the TwinCAT Safety PLC covers only system configurations that are in-
cluded in the “List of approved system configurations”.
Any system configurations that are not included in the “List of approved system configura-
tions” are not covered by the TwinCAT Safety PLC certificate.
For applications with different system configurations, the customer is responsible for
demonstrating compliance with the required safety level.

CAUTION

Note the Machinery Directive
The TwinCAT Safety PLC and the TwinSAFE terminals may only be used in machines that
are covered by the Machinery Directive.

CAUTION

Ensure traceability
The operator must ensure traceability of the equipment via the serial number.

CAUTION

Industrial PC used
Please note the technical data of Industrial PC used and ensure that it is only used as in-
tended.

CAUTION

Security
The TwinCAT Safety PLC is regarded as a self-contained system. Accordingly, the user is
responsible for evaluating and implementing appropriate safety and security measures for
the individual components, including the development PC and the runtime environment.

Product description

TwinCAT Safety PLC 11Version: 1.2.0

Attention

User name and password
Users must ensure that their login data are not accessible to unauthorized persons.

Product description

TwinCAT Safety PLC12 Version: 1.2.0

3.2 Technical data
Product ID TwinCAT Safety PLC
Number of inputs 0
Number of outputs 0
Status indicator depending on the used hardware platform
Minimum/maximum cycle time approx. 500 µs / depending on the project size
Fault response time ≤ watchdog times
Watchdog time min. 1 ms, max. 60,000 ms
Input process image Dynamic, according to the TwinSAFE configuration in

TwinCAT 3
Output process image Dynamic, according to the TwinSAFE configuration in

TwinCAT 3
Supply voltage (SELV/PELV) depending on the used hardware platform (see

document “List of approved system configurations”)
Permissible ambient temperature (operation) 0 °C to +55 °C

(unless specified otherwise in the technical data for
the hardware platform)

Permissible ambient temperature (transport/storage) -25 °C to +65 °C
(unless specified otherwise in the technical data for
the hardware platform)

Permissible humidity 5% to 95%, non-condensing
(unless specified otherwise in the technical data for
the hardware platform)

Permissible air pressure (operation/storage/transport) 750 hPa to 1100 hPa
(unless specified otherwise in the technical data for
the hardware platform)
(This corresponds to an altitude of approx. - 690 m to
2450 m above sea level, based on an international
standard atmosphere)

Climate category according to EN 60721-3-3 3K3
(unless specified otherwise in the technical data for
the hardware platform)

Permissible level of contamination
according to EN 60664-1

Level of contamination 2
(unless specified otherwise in the technical data for
the hardware platform)

Inadmissible operating conditions TwinSAFE components must not be used under the
following conditions:

• under the influence of ionizing radiation
(exceeding the natural background radiation)

• in corrosive environments
• in an environment that leads to unacceptable

contamination of the hardware platform
Vibration / shock resistance conforms to EN 60068-2-6 / EN 60068-2-27
EMC resistance burst / ESD conforms to EN 61000-6-2 / EN 61000-6-4
Shocks depending on the used hardware platform (see

document “List of approved system configurations”)
Protection class IP20
Permitted installation position depending on the used hardware platform (see

document “List of approved system configurations”)
Technical approvals TÜV SÜD

Product description

TwinCAT Safety PLC 13Version: 1.2.0

3.3 Safety parameters
Key data TwinCAT Safety PLC
Lifetime [a] not applicable

(if a value is required for calculations, 20 can be assumed)
Proof test interval [a] not required 1)

PFHD 5.5E-10
%SIL3 of PFHD 0.55%
PFDavg 5.5E-10
%SIL3 of PFDavg 0.000055%
MTTFD high
DC > 99%
Performance level PL e
Category 4
HFT 0
Classification element 2) Type B

1. No special proof tests are required during the entire service life of the TwinCAT Safety PLC.
2. Classification according to IEC 61508-2:2010 (see chapters 7.4.4.1.2 and 7.4.4.1.3)

The TwinCAT Safety PLC can be used for safety-related applications as defined in
IEC 62061:2005/A2:2015 SIL3, IEC 61508:2010 to SIL3 and EN ISO 13849-1:2015 to PL e (Cat4).

Further information on calculating or estimating the MTTFD value from the PFHD value can be found in the
TwinSAFE application manual or in EN ISO 13849-1:2015, Table K.1.

In terms of safety-related parameters, the Safety-over-EtherCAT communication is already considered with
1% of SIL3 according to the protocol specification.

DANGER

Occurrence of serious internal errors during processing
The system must no longer be operated if more than one serious error occurs per hour.
If this is the case, the first thing to check are the basic conditions listed under intended use
and the technical data of the hardware platform used.
If the problem persists, please contact Beckhoff support.

3.4 Project design limits
The project design limits depend on the licensing. Different licenses are available for different maximum
numbers of permitted FSoE connections.

Operation

TwinCAT Safety PLC14 Version: 1.2.0

4 Operation
Please ensure that the TwinCAT Safety PLC is only transported, supported and operated under the ambient
conditions specified for the respective hardware platform (see technical data for the corresponding hardware
platform).

WARNING

Risk of injury!
The TwinSAFE components must not be used under the following conditions.

• under the influence of ionizing radiation (exceeding the natural background radiation)
• in corrosive environments
• in an environment that leads to unacceptable contamination of the hardware platform

Attention

Electromagnetic compatibility
The TwinSAFE components comply with the current standards on electromagnetic compat-
ibility with regard to spurious radiation and immunity to interference in particular.
However, in cases where devices such as mobile phones, radio equipment, transmitters or
high-frequency systems that exceed the interference emissions limits specified in the stan-
dards are operated near TwinSAFE components, the function of the TwinSAFE compo-
nents may be impaired.

Attention

Using the hardware platform
The hardware platform (see List of approved system configurations), on which the Twin-
CAT Safety PLC is to be installed and operated, may only be used in machines that are
configured and installed in accordance with the requirements of EN 60204-1, Chapter
4.4.2.

Attention

Configuration of the hardware platform
The hardware platform must be configured such that “common mode” interference accord-
ing to IEC 61000-4-16 is avoided in the frequency range between 0 Hz and 150 kHz.

4.1 Installation

4.1.1 Safety instructions
Before installing and commissioning the TwinCAT Safety PLC, read the safety instructions in the introduction
to this documentation and the safety instructions in the corresponding documentation of the hardware
platform used.

4.1.2 Specifications for transport and storage
Instructions for transport and storage can be found in the documentation for the respective hardware
platform.

4.1.3 Mechanical installation
Instructions for the mechanical installation can be found in the documentation for the respective hardware
platform. Note in particular the permitted installation position.

Operation

TwinCAT Safety PLC 15Version: 1.2.0

4.1.4 Electrical installation
Instructions for the electrical installation can be found in the documentation for the respective hardware
platform.

4.1.5 Software installation
The TwinCAT Safety PLC is always installed together with TwinCAT. The installation of
TwinCAT 3.1 build 4022 or higher always includes the latest approved version of the TwinCAT Safety PLC. It
is activated via the corresponding license.

4.1.6 TwinSAFE reaction times
The TwinSAFE terminals together with the TwinCAT Safety PLC form a modular system that exchanges
safety-related data via the Safety-over-EtherCAT protocol. This chapter is intended to help determine the
system response time between the signal change at the sensor and the response at the actuator.

Typical response time

The typical response time is the time required for transferring a piece of information from the sensor to the
actuator, when the whole system operates normally, without error.

Fig. 1: Typical response time

Definition Description
RTSensor Response time of the sensor, until the signal is made available at the interface. Typically

provided by the sensor manufacturer.
RTInput Response time of the safe input, e.g. EL1904 or EP1908. This time can be found in the

technical data. For the EL1904 the time is 4 ms, for example.
RTComm Response time of the communication. This is typically 3 times the EtherCAT cycle time,

since a new Safety-over-EtherCAT telegram has to be generated before new data can be
sent. These times directly depend on the standard control system (cycle time of the PLC/NC/
SafetyTask). Note which task synchronously controls the EtherCAT segment.

RTLogic Response time of the TwinCAT Safety PLC. This is the cycle time of the task in which the
TwinCAT Safety PLC is executed, if no timeout errors occur.

RTOutput Response time of the output terminal. This is typically between 2 and 3 ms.
RTActor Response time of the actuator. This information is typically provided by the actuator

manufacturer
WDComm Watchdog time of the communication

The typical response time is based on the following formula:

Operation

TwinCAT Safety PLC16 Version: 1.2.0

with

Worst case response time

The worst-case response time is the maximum time required for switching off the actuator in the event of an
error.

Fig. 2: Worst case response time

It is assumed that a signal change takes place at the sensor, and that this is passed to the input. A
communication error occurs just at the moment when the signal is to be passed to the communication
interface. This is detected by the logic once the watchdog time of the communication link has elapsed. This
information should then be passed on to the output, resulting in a further communication error. This fault is
detected at the output once the watchdog time has elapsed, resulting in shutdown.

This results in the following formula for the worst-case response time:

with

Operation

TwinCAT Safety PLC 17Version: 1.2.0

4.2 Configuration of the TwinCAT Safety PLC in TwinCAT

4.2.1 Configuration requirements
Configuration of the TwinCAT Safety PLC requires TwinCAT automation software version 3.1 build 4022 or
higher. The latest version is available for download from the Beckhoff website at www.beckhoff.de .

Note

TwinCAT support
The TwinCAT Safety PLC cannot be used under TwinCAT 2.

4.2.2 Creating a safety project in TwinCAT 3
A safety project created in Safety C must be developed based on the applicable standards. See also chapter
Safety C application development [} 50]

DANGER

Source text of the safety application
The user source text must be developed based on the applicable standards, in particular
IEC 61508:2010. See also chapter Verification and validation [} 81].

4.2.2.1 Add new item

In TwinCAT 3 a new project can be created via Add New Item… in the context menu of the Safety node.

Fig. 3: Creating a safety project - Add New Item

The project name and the directory can be freely selected.

http://www.beckhoff.de

Operation

TwinCAT Safety PLC18 Version: 1.2.0

Fig. 4: Creating a safety project - project name and directory

4.2.2.2 TwinCAT Safety Project Wizard

In the TwinCAT Safety Project wizard you can then select the target system, the programming language, the
author and the internal project name. Select TwinCAT Safety PLC as the target system and Safety C as the
programming language. The author and the internal project name can be freely selected by the user.

Fig. 5: TwinCAT Safety Project Wizard

Operation

TwinCAT Safety PLC 19Version: 1.2.0

4.2.2.3 Target System

Once the project has been created with the project wizard, the safety project can be assigned to the task for
the corresponding safety application by selecting the Target System node.

Fig. 6: Target system in the Solution Explorer

The target system is set to TwinCAT Safety PLC in the drop-down list. Use the link button next to Append to
Task to link the target system to the task, with which the TwinCAT Safety PLC is to be executed.

Fig. 7: Target System Property Page

Operation

TwinCAT Safety PLC20 Version: 1.2.0

4.2.2.4 TwinSAFE groups

Creating TwinSAFE groups makes sense for realizing different safety zones in a machine or in situations
where different C++ source files are to be used. A connection error within a group (here: alias device) leads
to a ComError for the group, resulting in disabling of all outputs for this group.

A further group can be created by opening the context menu of the safety project and selecting Add and New
Item....

Fig. 8: Creating a TwinSAFE group

A group consists of subitems for the group configuration (*.grp), alias devices (*.sds), header files (*.h) and
source files (*.cpp). In addition there are subitems for test and for analysis files.

For each group there is one header file and one source file, which the user can use and adapt for the safety
application. These are the files <GroupName>.h and <GroupName>.cpp.

The test files ModuleTests.cpp and ModuleTests.h can be used for debugging the safety application. In
these files the safe inputs and outputs can be set and remain set if breakpoints are used, without having to
enable the whole configuration. In this state the communication is not safe!

Fig. 9: TwinSAFE group

The group configuration is used for the general group settings, including the info data or group ports for error
acknowledge and run/stop.

Operation

TwinCAT Safety PLC 21Version: 1.2.0

Fig. 10: TwinSAFE Group - General Settings

Fig. 11: TwinSAFE Group - Group Ports

In addition, there is an option to create an internal process image for the TwinSAFE group. This process
image contains all the signals for use in other TwinSAFE groups. The defined variables are made available
to all other groups in a structure called TSGData in the header file <GroupName>IoData.h.

Note

TwinSAFE group outputs
Please ensure that TwinSAFE groups only have outputs in the TSGData structure. These
outputs can be read by all other groups. It is not possible to define inputs for a TwinSAFE
group.

Fig. 12: TwinSAFE group process image

Operation

TwinCAT Safety PLC22 Version: 1.2.0

Fig. 13: TSGData struct

4.2.2.5 Alias devices

The communication between the safety logic and the I/O level is realized via an alias level. At this alias level
(subnode Alias Devices) corresponding alias devices are created for all safe inputs and outputs, and also for
standard signal types. For the safe inputs and outputs, this can be done automatically via the I/O
configuration.

The connection- and device-specific parameters are set via the alias devices.

Fig. 14: Starting the automatic import from the I/O configuration

If the automatic import is started from the I/O configuration, a selection dialog opens, in which the individual
terminals, which are to be imported automatically, are selected.

Operation

TwinCAT Safety PLC 23Version: 1.2.0

Fig. 15: Selection from the I/O tree

The alias devices are created in the safety project when the dialog is closed via OK.

Alternatively, the user can create the alias devices individually. To this end select Add and New item from
the context menu, followed by the required device.

Fig. 16: Creating alias devices by the user

Operation

TwinCAT Safety PLC24 Version: 1.2.0

4.2.2.6 Safe time signal

A safety project for the TwinCAT Safety PLC is only valid if a safe external time signal is available for
executing the safety project. To this end at least one of the safe communication links must offer functionality
for providing a safe time signal via the safe communication link. This may be an EL6910 TwinSAFE
component, for example. The EL6910 TwinSAFE component is used to illustrate the process of assigning a
safe time value to the input process image via the Process Image tab of the alias device.

Fig. 17: Alias device - Process Image tab

Select Edit in this dialog to adapt the process image and add the SafeTimer.

Fig. 18: Configuring the I/O elements

In addition, tick the checkbox for Use provided Safe Timer as reference under the Connection tab.

Operation

TwinCAT Safety PLC 25Version: 1.2.0

Fig. 19: Alias device - Connection tab

For a safety project a specific TwinSAFE component must be selected as provider for a safe time signal, to
ensure that a safety project can be loaded and started successfully. The safety project is only executed if the
provided safe time signal is available (i.e. the corresponding communication link must be in DATA state).

An error in the context of the safe time signal leads to triggering of the safe state for the TwinCAT Safety
PLC.

4.2.2.7 Parameterization of the alias device

The settings can be opened by double-clicking on the alias device in the safety project structure.

Fig. 20: Alias device in the safety project structure

Operation

TwinCAT Safety PLC26 Version: 1.2.0

The Linking tab contains the FSoE address, the checkbox for setting as External Device and the link to the
physical I/O device. If an ADS online connection to the physical I/O device exists, the DIP switch setting is

displayed. Re-reading of the setting can be started via the button . The links to the TwinCAT Safety
PLC process image are displayed under Full Name (input) and Full Name (output).

Fig. 21: Links to the TwinCAT Safety PLC process image

The Connection tab shows the connection-specific parameters.

Fig. 22: Connection-specific parameters

Parameter Description User in-
teraction
required

Conn-No. Connection number - automatically assigned by the TwinCAT system No
Conn-ID Connection ID: pre-allocated by the system; can be changed by the user. A Conn ID

must be unique within a configuration. Duplicate connection IDs result in an error
message.

Control

Mode FSoE master: TwinCAT Safety PLC is FSoE master for this device.
FSoE slave: TwinCAT Safety PLC is FSoE slave for this device.

Control

Watchdog Watchdog time for this connection. A ComError is generated, if the device fails to
return a valid telegram to the TwinCAT Safety PLC within the watchdog time.

Yes

Module
Fault is
ComError

This checkbox is used to specify the behavior in the event of an error. If the
checkbox is ticked and a module error occurs on the alias device, this also leads to a
connection error and therefore to disabling of the TwinSAFE group, in which this
connection is defined.

Yes

ComErrAck If ComErrAck is linked to a variable, the connection must be reset via this signal in
the event of a communication error, before the corresponding group can be reset.

Yes

Info Data The info data to be shown in the process image of the TwinCAT Safety PLC can be
defined via these checkboxes. Further information can be found in the
documentation for TwinCAT function blocks for TwinSAFE logic terminals.

Yes

Operation

TwinCAT Safety PLC 27Version: 1.2.0

The TwinCAT Safety PLC supports activation of a ComErrAck for each connection. If this signal is
connected, the respective connection must be reset after a communication error via the signal ComErrAck,

in addition to the ErrAck of the TwinSAFE group. This signal is linked via the link button next to COM
ERR Ack. The following dialog can be used for selecting an alias device. The signal can be canceled via the
Clear button in the link dialog.

Fig. 23: Selecting an alias device

The safety parameters matching the device are displayed under the Safety Parameters tab. They have to be
set correctly to match the required performance level. Further information can be found in the TwinSAFE
application manual.

Fig. 24: Safety parameter for the device

For each alias device an entry with the corresponding FSoE stack is created in the safety PLC. It contains
links to the safe input and output components and also provides the data pointer for access to the safe
inputs and outputs within the safety application.

Operation

TwinCAT Safety PLC28 Version: 1.2.0

Fig. 25: Safety PLC instance - Alias devices

The data for each individual connection are declared as struct data type in <GroupName>IoData.h and
instantiated in the header file <GroupName>.h.

The user can access a safe input directly via the instance variable, e.g.
sSafetyInputs.EL1904_FSoE_211.InputChannel1.

Fig. 26: Structure of the alias device

Operation

TwinCAT Safety PLC 29Version: 1.2.0

4.2.2.8 Connection to AX5805/AX5806

There are separate dialogs for linking an AX5805 or AX5806 TwinSAFE Drive option card, which can be
used to set the safety functions of the AX5000 safety drive options.

Creating and opening of an alias device for an AX5805 results in five tabs; the Linking, Connection and
Safety Parameters tabs are identical to other alias devices.

Fig. 27: AX5000 safety drive functions

The General AX5805 Settings tab can be used to set the motor string and the SMS and SMA functions for
one or two axes, depending on the added alias device.

Fig. 28: AX5000 safety drive options - general AX5805 settings

The Process Image tab can be used to set the different safety functions for the AX5805.

Operation

TwinCAT Safety PLC30 Version: 1.2.0

Fig. 29: AX5000 safety drive options - Process Image

The parameters under the General AX5805 Settings and Process Image tabs are identical to the parameters
under the Safety Parameters tab. Offers user-friendly display and editing of the parameters. The parameters
under the Safety Parameters tab can also be edited.

The parameters for this function can be set by selecting a function in the inputs or outputs and pressing the
Edit button. New safety functions can be added in the process image by selecting an empty field (---) and
pressing Edit.

The parameter list corresponding to the safety function can be shown; in addition, an optional diagram of the
function can be shown. At present the diagram is still static and does not show the currently selected values.

Operation

TwinCAT Safety PLC 31Version: 1.2.0

Fig. 30: AX5000 safety drive options - Function Diagram

Operation

TwinCAT Safety PLC32 Version: 1.2.0

4.2.2.9 External connection

An external Custom FSoE Connection can be created for a connection to a further EL69x0, EJ6910, KL6904
or third-party device. If a dedicated ESI file exists for a third-party device, the device is listed as a selectable
safety device, and the Custom FSoE Connection option is not required.

Fig. 31: Creating an external connection (Custom FSoE Connection)

Before the connection can be used and linked further, the process image size must be parameterized. This
can be set under the Process Image tab. Suitable data types for different numbers of safety data are
provided in the dropdown lists for the input and output parameters.

Fig. 32: Parameterization of the process image size

Once the size is selected, the individual signals within the telegram can be renamed, so that a corresponding
plain text is displayed when these signals are used in the logic. If the signals are not renamed, the default
name is displayed in the editor (Safe Data Byte 0[0], …).

Operation

TwinCAT Safety PLC 33Version: 1.2.0

Fig. 33: Renaming the individual signals within the telegram

The connection is linked under the Linking tab. The Link button next to Full Name (input) and Full
Name (output) can be used to select the corresponding variable.

Fig. 34: Selecting the variables

This can be a PLC variable, for example, which is then forwarded to the remote device or can be linked
directly with the process image of an EtherCAT Terminal (e.g. EL69x0 or EL6695).

Operation

TwinCAT Safety PLC34 Version: 1.2.0

Fig. 35: Direct linking with the process image of an EtherCAT Terminal

Further information can be found in the TwinCAT documentation for the variable selection dialog.

The Connection tab is used to set the connection-specific parameters.

Fig. 36: Connection-specific parameters

Operation

TwinCAT Safety PLC 35Version: 1.2.0

Detailed information about the individual settings can be found in the following table.

Parameter Description User in-
teraction
required

Conn-No. Connection number: automatically assigned by the TwinCAT system No
Conn-ID Connection ID: pre-allocated by the system; can be changed by the user. A Conn

ID must be unique within a configuration. Duplicate connection IDs result in an
error message

Control

Mode FSoE master: TwinCAT Safety PLC is FSoE master for this device.
FSoE slave: TwinCAT Safety PLC is FSoE slave for this device. (This option is
not supported in the first version of the TwinCAT Safety PLC).

Control

Type None: Setting for third-party equipment, for which no ESI file is available.
KL6904: Setting for KL6904 (safety parameter inactive)
EL69XX: Setting for EL6900/EL6930/EL6910/EJ6910 (safety parameter inactive)

Yes

Watchdog Watchdog time for this connection: A ComError is generated, if the device fails to
return a valid telegram to the TwinCAT Safety PLC within the watchdog time.

Yes

Module Fault
is ComError

This checkbox is used to specify the behavior in the event of an error. If the
checkbox is ticked and a module error occurs on the alias device, this also leads
to a connection error and therefore to disabling of the TwinSAFE group, in which
this connection is defined.

Yes

Safe
Parameters
(Appl. Param)

Device-specific parameters: The parameter length is automatically calculated
from the number of characters that is entered. This information will typically be
provided by the device manufacturer.

Yes

ComErrAck If ComErrAck is linked to a variable, the connection must be reset via this signal
in the event of a communication error.

Yes

Info Data The info data to be shown in the process image of the TwinCAT Safety PLC can
be defined via these checkboxes. Further information can be found in the
documentation for TwinCAT function blocks for TwinSAFE logic terminals.

Yes

Operation

TwinCAT Safety PLC36 Version: 1.2.0

4.2.2.10 TwinSAFE group - Header files

The subfolder Header Files of the TwinSAFE group contains a list of all header files assigned to this group.

Fig. 37: TwinSAFE group - Header files

The header files SafeModuleHelper.h and <GroupName>IoData.h are automatically created by the safety
editor. The files are not write-protected, i.e. the user could modify them, although they are recreated during
the compile process, which means all modifications would be overwritten.

SafeModuleHelper.h contains type definitions, macros and functions created by the safety editor.

<GroupName>IoData.h contains the I/O data structures of the alias devices and the TwinSAFE groups.

The header file <GroupName>.h can be used and expanded by the programmer. Here you can create type
definitions, variables and functions for the safety application module (<GroupName>.cpp).

Operation

TwinCAT Safety PLC 37Version: 1.2.0

4.2.2.11 TwinSAFE group - Source files

The subfolder Source Files of the TwinSAFE group contains the C++ source file assigned to this group.

Fig. 38: TwinSAFE group - Source files

The file <GroupName>.cpp is split into four parts. Four module functions are pre-defined and cannot be
changed. These include the Init function, which is called when the user application is initialized. The other
functions are InputUpdate, CycleUpdate, OutputUpdate, which are used for integrating the user application
in the cyclic process. Each of these functions is therefore called in each cyclic process (in the order
InputUpdate, CycleUpdate, OutputUpdate). These functions may only be called by the safe runtime
environment.

Note

Module variables
All module variables (i.e. variables defined in file <TwinSAFE GroupName>.h) have to be
initialized as part of the Init function.

Fig. 39: Init function

Operation

TwinCAT Safety PLC38 Version: 1.2.0

Fig. 40: InputUpdate function

Fig. 41: OutputUpdate function

Operation

TwinCAT Safety PLC 39Version: 1.2.0

Fig. 42: CycleUpdate function

4.2.3 CRC distribution
For automatic startup the TwinCAT Safety PLC has to check whether the current project was enabled for the
present system. To this end an internally calculated checksum is distributed to TwinSAFE components,
which can be selected by the user, and verified when the TwinCAT Safety PLC starts up. If the comparison
fails, the TwinCAT Safety PLC does not start. If the comparison is successful, the safety project is executed
on the TwinCAT Safety PLC.

Double-click on Target System to open the Target System dialog. In addition to the target system, the CRC
distribution can also be configured here.

Operation

TwinCAT Safety PLC40 Version: 1.2.0

Fig. 43: Target System

The CRC Distribution dialog lists all safe alias devices that can be used for the CRC distribution. The
checkbox next to each entry can be used to specify whether the CRC is to be stored on the component. In
addition, the user can specify how many of the selected components have to return the correct CRC for the
TwinCAT Safety PLC to start. At least one component has to be selected here, in order to enable the safety
project to be downloaded and enabled for the TwinCAT Safety PLC.

Fig. 44: Dialog CRC Distribution

4.2.4 Downloading the safety application
The safety configuration is downloaded in two stages: download and activation (unlock). For a download the
user first has to establish a connection to the required target system. This is done via the standard
mechanisms included in TwinCAT 3 for connecting to a non-local runtime environment (including controlled
user authentication). The safety application can then be downloaded to the runtime environment (the runtime

environment has to be in Config state). Use the download button in the Safety toolbar, or the menu

item . No user input is required for downloading the safety application. The
project CRC of the safety project to be downloaded is displayed in the Download dialog. Use Finish to
confirm the project CRC and start the actual download.

Operation

TwinCAT Safety PLC 41Version: 1.2.0

Fig. 45: Downloading the safety application

CAUTION

Use only qualified tools
A qualified tool (TwinCAT 3.1) must be used for downloading and activating the project on
the TwinCAT Safety PLC.

DANGER

Source text of the safety application
The user source text must be developed based on the applicable standards, in particular
IEC 61508:2010. See also chapter Verification and validation [} 81].

CAUTION

Identification of the target system
Before downloading and activating the safety project, the user must ensure that the linked
target system is the required target system. An error during this process can only be de-
tected during verification and validation of the safety application.

4.2.5 Activating the safety application
Once the safety application has been downloaded successfully, it has to be activated before it can be
executed.

To this end the current configuration has to be activated first, and TwinCAT has to be started in run mode. If
the safety project is not activated, a corresponding message appears in the TwinCAT 3 output window. Once

the configuration is active, the activation can be started via the unlock button or via the menu.

Fig. 46: Unlock Safety Project

The user has to confirm the displayed online CRC.

Operation

TwinCAT Safety PLC42 Version: 1.2.0

Fig. 47: Unlock Safety Project

Confirming the CRC with the Finish button enables and starts the safety application. While the safety
application starts up, the CRC is distributed to the safe communication devices configured as part of the
CRC distribution. When the TwinCAT system is restarted, the safety application starts without having to
activate it again.

After the activation the TwinSAFE CRC toolbar shows the same CRC for online and offline.

Fig. 48: Identical CRCs

4.2.6 Safety and CRC toolbars
Right-click in the toolbar area of TwinCAT 3.1 to activate the Safety toolbar and the Safety CRC toolbar.

Fig. 49: Activating the Safety and CRC toolbars

Safety Toolbar Description
Checking the safety application

Checking the safety application, including hardware level

Downloading the safety application to the TwinCAT Safety PLC

Deleting the safety application from the TwinCAT Safety PLC

Activating the safety application

currently not used

The CRC toolbar shows the online and offline CRC. In addition, an icon indicates whether or not they are
identical.

Operation

TwinCAT Safety PLC 43Version: 1.2.0

CRC Toolbar Description
Green icon: CRCs are identical

Red icon: CRCs are different

Online CRC (32-Bit)

Offline CRC (32-Bit)

4.2.7 Info data

Info data for the target system

Fig. 50: Target system - Map Object ID and Map Project CRC

The checkboxes Map Object ID and Map Project CRC can be used to specify that the object ID and the
project CRC should be copied into the process image of the TwinCAT Safety PLC on the target system.
From here, the entries Object Id and Project CRC can be linked to the standard PLC.

Fig. 51: Target System Info Data

Info Data Description
Project CRC 32-bit project CRC (online)
Object Id Unique ID of the TwinCAT Safety PLC instance (unique across the whole

TwinCAT 3 project)

Operation

TwinCAT Safety PLC44 Version: 1.2.0

Diag Data - TwinCAT Safety PLC

Fig. 52: Diag Data - TwinCAT Safety PLC

Diag Data Description
Safety Project State • 601 (0x0259) Init

The Init state is assumed when the instance starts up, in order to test the
internal configuration before the actual startup.

• 602 (0x025A) Run
The Run state is assumed when no error occurred during startup. In Run
state the configured TwinSAFE groups are integrated in the cyclic process.

• 603 (0x025B) Error
The Error state is assumed if an internal error occurs. This state can only be
existed by restarting the whole configuration. In Error state the TwinSAFE
groups (and therefore also the subordinate communication links and the
subordinate user application) are no longer executed, with the result that the
Safe state is assumed.

• 604 (0x025C) Checking Download Completion
In this state the system checks whether the safety project to be started has
been downloaded properly and is valid. An error during this process leads to
Error state.

• 605 (0x025D) Checking Unlocking Data
In this state the system checks whether the safety project to be started has
been successfully pre-enabled. If the check is unsuccessful, state 606 is
assumed.

• 606 (0x025E) Waiting for Activation
This state is assumed if the safety project was not enabled in advance. The
state can only be exit by triggering activation of the safety project from the
corresponding TwinCAT 3 project.

• 607 (0x025F) Writing Unlocking Data
Once the safety project has been activated successfully, corresponding data
are written to indicate the successful activation for the next startup.

• 608 (0x0260) Waiting for Project CRC Acknowledge
If a safety project is started that was already activated, the activation data
are verified with the data previously queried by the safe communication
devices previously configured as part of the CRC distribution.

Diag Info Diagnostic information for the instance
Internal Diag Internal diagnostic information (not relevant for users)

Operation

TwinCAT Safety PLC 45Version: 1.2.0

Safety Timer Diag Data - TwinCAT Safety PLC

Fig. 53: Safety Timer Diag Data - TwinCAT Safety PLC

Safety Timer Diag Data Description
Current Value Current value of the safe time signal
Execution Time Internally determined execution time from the start of InputUpdate to the end of

OutputUpdate for the whole instance

Group info data

Fig. 54: Group MapDiag MapState

Fig. 55: Group info data

Operation

TwinCAT Safety PLC46 Version: 1.2.0

Group Info Data Description
State • 701 (0x02BD) Stop

The Stop state is assumed while the instance starts up. During operation this
state is assumed if the corresponding Run/Stop signal is configured and is not
set to TRUE.

• 702 (0x02BE) Run
The Run state is assumed if none of the safe connections involved is faulty and
the Run/Stop input (if configured) is set to TRUE.

• 703 (0x02BF) Safe
The Safe state is assumed if at least one of the connections is not in Data state.

• 704 (0x02C0) Error
The Error state is assumed if an application error or a communication error
occurs.

• 705 (0x02C1) Reset
The Reset state is assumed if the ErrorAck signal shows a rising edge in Error
state.

• 706 (0x02C2) Global Error
The Global Error state is assumed if a fatal error occurs during internal
processing. This state can only be existed by restarting the current configuration.

Diag • Diagnostic information

Connection info data

Fig. 56: FSoE connection map info data

Fig. 57: FSoE connection info data

Operation

TwinCAT Safety PLC 47Version: 1.2.0

Connection
Info Data

Description

State • 100 (0x64) Reset
The reset state is used to re-initialize the Safety over EtherCAT connection after the
power-on or a Safety over EtherCAT communication error.

• 101 (0x65) Session
During the transition to or in the Session state a session ID is transferred from the
Safety over EtherCAT master to the Safety over EtherCAT slave, which responds with
its own session ID.

• 102 (0x66) Connection
In Connection state a connection ID is transferred from the Safety over EtherCAT
master to the Safety over EtherCAT slave.

• 103 (0x67) Parameter
In Parameter state safe communication and device-specific application parameters are
transferred.

• 104 (0x68) Data
In Data state Safety over EtherCAT cycles are transferred until either a communication
error occurs or a Safety over EtherCAT node is stopped locally.

Diag • xxxx 0001 - Invalid command
• xxxx 0010 - Unknown command
• xxxx 0011 - Invalid connection ID
• xxxx 0100 - Invalid CRC
• xxxx 0101 - Watchdog expired
• xxxx 0110 - Invalid FSoE address
• xxxx 0111 - Invalid data
• xxxx 1000 - Invalid communication parameter length
• xxxx 1001 - Invalid communication parameters
• xxxx 1010 - Invalid user parameter length
• xxxx 1011 - Invalid user parameters
• xxxx 1100 - FSoE master reset
• xxxx 1101 - Module error detected on slave, with option "Module error is ComError"

activated
• xxxx 1110 - Module error detected on EL290x, with option "Error acknowledge active"

activated
• xxxx 1111 - Slave not yet started, or unexpected error argument
• xxx1 xxxx - FSoE slave error detected
• xx1x xxxx - FSoE slave reports Failsafe Value active
• x1xx xxxx - StartUp
• 1xxx xxxx - FSoE master reports Failsafe Value active

Inputs safe inputs of the connection
Outputs safe outputs of the connection

Operation

TwinCAT Safety PLC48 Version: 1.2.0

4.2.8 Task settings
Right-click on Tasks and select Add New Item… to create a new task.

Fig. 58: Adding a new task

The Insert Task dialog is used to enter a task name and to specify whether the task is to be created with or
without image. Both options are available for the TwinCAT Safety PLC; in the example With Image is
selected.

Fig. 59: Dialog Insert Task

Settings

Double-click on the task to open the task settings. Here you can set the cycle time and the priority.

Note

Cycle time and priority
The cycle time can be selected freely but should be selected such that no limits are ex-
ceeded (ExceedCounter does not increment).
The priority should be set as high as possible (low number), in order to minimize disrup-
tions and jitter of the TwinCAT Safety PLC.

Operation

TwinCAT Safety PLC 49Version: 1.2.0

Fig. 60: Task settings

Checking the ExceedCounter

The Online tab for the respective task can be used to check the execution time and the exceed counter.

Fig. 61: Task execution time and exceed counter

Safety C application development

TwinCAT Safety PLC50 Version: 1.2.0

5 Safety C application development

DANGER

Safety C application development
The user source text must be developed based on the applicable standards, in particular
IEC 61508:2010.

DANGER

Warnings relating to the advanced configuration process for the safety-re-
lated application
The user must evaluate all warnings that may occur during the build process and rectify the
causes or comment/document them as appropriate.

5.1 Programming in Safety C

5.1.1 Differentiation between programming in Safety C and C/C++
Safety C is a C++-based high-level language for programming safety applications for the TwinCAT Safety
PLC with a safe language scope, which complies with the strongly typed and modular version of the C
language, without dynamic memory or pointer (arithmetic). The syntax and semantics of Safety C therefore
generally match the corresponding, valid C++ language subset (see ISO standard C++11 N3242, for
example), as processed by the corresponding C++ compiler. The Safety C compile process for the TwinCAT
Safety PLC requires the Microsoft Visual C++ 2015 compiler or higher.

C++ is essentially an upward compatible extension of C with language support for object orientation and
meta-programming, so that C programs can also be processed by C++ compiler (with some restrictions).
Programming in Safety C therefore also permits limited utilization of object-oriented C++ extensions for data
encapsulation and modularization of program modules by the application developer, although typical C++
concepts such as inheritance, polymorphism and generic template programming are basically not used.
From an application developer perspective, programming in Safety C is therefore closer to the development
procedure in C.

Compared with function block-based programming, high-level languages such as C/C++ enable
programmers much more freedom, although this also creates potential sources of systematic application
errors. In addition, the ISO standards for C/C++ deliberately leave scope for implementing efficient
compilers, so that a standard-compliant C/C++ program may contain undefined or platform-dependent
behavior (e.g. data type widths, division by zero or overflow/underflow of signed integer data types).

The safety standards to be applied for PLC systems therefore require the full scope of C/C++ to be restricted
for the development of safety functions in high-level languages (see IEC 61508-3:2010, for example) through
the application of language subsets with coding rules, in order to avoid programs with ambiguous semantics
and reduce the risk of generating faulty program code or programs with unexpected behavior. Furthermore,
this is intended to facilitate tool-based program analysis and verification, as well as manual analyses through
code inspections.

The permissible language scope of Safety C largely prevents generation of source code with undefined
behavior. At some points alternative helper functions with unambiguous semantics or integrated detection of
undefined behavior are offered, so that the application developer has the option to choose between native
operations and helper functions.

The main restrictions of Safety C compared with C and C++ can be summarized as follows:

• No support (with a few exceptions) for object orientation, meta-programming or other typical C++
extensions (compared with C)

• Limited data types and strong typing of all data types to avoid implicit type conversion effects
• Limitation to simple statements, operators and expressions to avoid unexpected results and side

effects
• Limitation of control flow statements (if-else, for, while, and switch-case) for understandable and

program sequences that can be analyzed

Safety C application development

TwinCAT Safety PLC 51Version: 1.2.0

• No direct or indirect recursion
• No dynamic data structures, no pointer- or address-based data access or function calls
• No global or static functions and variables
• Specification of structured source code templates as a basis for the development of safe program

modules (application, function block)
• No user-defined preprocessor or compiler statements for conditional source code compilation or

implementation of further source code files
• No implementation of standard libraries or legacy code

5.1.2 Source code templates
When a TwinSAFE group is created, header and source code files for the safer user program are created at
the same time. Of particular relevance for programmers are the files <GroupName>.h and
<GroupName>.cpp. Furthermore, the user is offered the option to define custom function blocks (not yet
supported in V1).

The templates are designed such that programmers can implement modifications and extensions only within
predefined ranges. It is not permissible to create further *.h / *.cpp files within the TwinSAFE group.

Preprocessor defines, type definitions (structs, enums) and module variables can be created in the module
header file (<group name>.h) (enums are not yet supported in V1). Only declaration of the module class with
user-defined module variables and functions is permitted, no implementation.

The module class is implemented in the file <GroupName>.cpp.

Once a group has been created, changes to <group name>.h and <group name>.cpp can only be made by
the user. Any changes are immediately secured through checksums (and are thus indirectly indicated to the
user through a change in the project CRC). This means that, if the group name is renamed, the source code
of <group name>.h and <group name>.cpp must be adapted manually. This applies to the name-specific
source code components that are generated at the time of creation (see comments in the source code
template).

Additional header files are dynamically created by the safety editor and cannot be modified by the user. Any
changes the user may have made in these files are overwritten during the compile process!

5.1.2.1 Application module for a TwinSAFE group

Source code template for declaring a Safety C application module
<TwinSAFE GroupName>.h
///
//! \file TwinSafeGroup1.h
//! \brief Header file of the TwinSafeGroup1 application module
//! \ingroup TwinSafeGroup1
//! \defgroup TwinSafeGroup1
//! \brief Put brief description of your application module here
//! \authors Administrator
//! \copyright Put affiliation and copyright notice here
//! \version V1.0
//! \date 2016-09-29
//! \ingroup Empty
///

//\internal//
//! XML tags <...> enclosed by C style block comment markups are protected for
//! structural and semantic code analysis. Do NOT remove or reorder any of the
//! mandatory markups within the source code template as safe build process may
//! fail otherwise! For further information on how to write compliant Safety C
//! user code please refer to the provided Safety C coding guidelines document!
///

/*<SafeUserApplicationHFrontend>*/
#pragma once

/*<UserDefinedIncludes>*/ // Include other safe module headers here

Safety C application development

TwinCAT Safety PLC52 Version: 1.2.0

/*</UserDefinedIncludes>*/

#include "TwinSafeGroup1IoData.h" // Rename according to TwinSAFE group name

/*<UserDefinedDefines>*/ // Define preprocessor constants here
/*</UserDefinedDefines>*/

NAMESPACE(TwinSafeGroup1) // Rename according to TwinSAFE group name
{

 /*<UserDefinedTypes>*/ // Define custom data types here
 /*</UserDefinedTypes>*/

///
//! \class TwinSafeGroup1
//! \brief Declaration of the Safety C user application module class
//! \details Put detailed description of your module functionality here
///
 SAFE_MODULE(TwinSafeGroup1) // Rename according to TwinSAFE group name
{

 // Public module interface
 PUBLIC:
 VOID Init(); //!< Module initialization function
 VOID InputUpdate(); //!< Module input update function
 VOID OutputUpdate(); //!< Module output update function
 VOID CycleUpdate(); //!< Module cycle update function

 SafetyInputs sSafetyInputs; //!< Safe input data struct
 SafetyOutputs sSafetyOutputs; //!< Safe output data struct
 StandardInputs sStandardInputs; //!< Non-safe input data struct
 StandardOutputs sStandardOutputs; //!< Non-safe output data struct

 safeUINT16 u16SafeTimer //!< Safe external timer input (in ms)

 TSGData sTSGData; //!< TwinSAFE group exchange data struct

 // Module internals
 PRIVATE:

 /*<UserDefinedVariables>*/ // Define internal variables here
 /*</UserDefinedVariables>*/

 /*<UserDefinedFunctions>*/ // Define internal functions here
 /*</UserDefinedFunctions>*/

 SAFE_MODULE_EXPORT();
 };

 //! Reference to project FCS symbol
 extern UINT32 SAFETY_PROJECT_FCS; // Do NOT read, write or remove!

};
/*</SafeUserApplicationHFrontend>*/

Safety C application development

TwinCAT Safety PLC 53Version: 1.2.0

Note

Permissible modifications <TwinSAFE GroupName>.h
• NAMESPACE <TwinSAFE GroupName> (if the TwinSAFE group name changes in the

project tree, the user must adjust this entry accordingly)
• SAFE_MODULE <TwinSAFE GroupName> (if the TwinSAFE group name changes in

the project tree, the user must adjust this entry accordingly)
• User includes only between

/*<UserDefinedInclude>*/ ... /*</UserDefinedInclude>*/
• User defines only between

/*<UserDefinedDefines>*/ ... /*</UserDefinedDefines>*/
• User type definitions only between

/*<UserDefinedTypes>*/ ... /*</UserDefinedTypes>*/
• User variables only between

/*<UserDefinedVariables>*/ ... /*</UserDefinedVariables>*/
• User functions only between

/*<UserDefinedFunctions>*/ ... /*</UserDefinedFunctions>*/
• Comments can amended/modified as required

(except protected comments of the form /*<…>*/)

Source code template for implementing a Safety C application module: <TwinSAFE GroupName>.cpp
///
//! \file TwinSafeGroup1.cpp
//! \brief Source file of the TwinSafeGroup1 application module
//! \ingroup TwinSafeGroup1
//! \authors Administrator
//! \copyright Put affiliation and copyright notice here
//! \version V1.0
//! \date 2016-09-29
//! \details Put detailed description of your module implementation here
///

///\internal///
//! XML tags <...> enclosed by C style block comment markups are protected for
//! structural and semantic code analysis. Do NOT remove or reorder any of the
//! mandatory markups within the source code template as safe build process may
//! fail otherwise! For further information on how to write compliant Safety C
//! user code please refer to the provided Safety C coding guidelines document!
///

/*<SafeUserApplicationCppFrontend>*/

#include "TwinSafeGroup1.h" // Rename according to TwinSAFE group name

SAFE_MODULE_DEF(TwinSafeGroup1) // Rename according to TwinSAFE group name
{
 ///
 //! \brief Implementation of the safe user module initialization function
 ///
 /*<TcInit>*/
 VOID CSafeModule::Init()
 {
 // Put your module initialization code here
 }
 /*</TcInit>*/

 ///
 //! \brief Implementation of the safe user module input update function
 ///
 /*<TcInputUpdate>*/
 VOID CSafeModule::InputUpdate()
 {
 // Put your module input update code here
 }
 /*</TcInputUpdate>*/

 ///
 //! \brief Implementation of the safe user module output update function
 ///
 /*<TcOutputUpdate>*/
 VOID CSafeModule::OutputUpdate()

Safety C application development

TwinCAT Safety PLC54 Version: 1.2.0

 {
 // Put your module output update code here
 }
 /*</TcOutputUpdate>*/

 ///
 //! \brief Implementation of the safe user module cycle update function
 ///
 /*<TcCycleUpdate>*/
 VOID CSafeModule::CycleUpdate()
 {
 // Put your cycle update code here
 }
 /*</TcCycleUpdate>*/

 /*<UserDefinedFunctionsDef>*/ // Implement internal module functions here
 /*</UserDefinedFunctionsDef>*/

 //! Reference to project FCS symbol
 extern UINT32 SAFETY_PROJECT_FCS; // Do NOT read, write or remove!
};

// Rename according to TwinSAFE group name
SAFE_MODULE_DEF_EXPORT(TwinSafeGroup1);

/*</SafeUserApplicationCppFrontend>*/

Note

Valid modifications <TwinSAFE GroupName>.cpp
• SAFE_MODULE_DEF <TwinSAFE GroupName> (if the TwinSAFE group name

changes in the project tree, the user must adjust this entry accordingly)
• SAFE_MODULE_DEF_EXPORT <TwinSAFE GroupName> (if the TwinSAFE group

name changes in the project tree, the user must adjust this entry accordingly)
• User program initialization only between

/*<TcInit>/ … /*</TcInit>*/
• User program input update only between

/*<TcInputUpdate>/ … /*</TcInputUpdate>*/
• User program cycle update only between

/*<TcCycleUpdate>/ … /*</TcCycleUpdate>*/
• User program output update only between

/*<TcOutputUpdate>/ … /*</TcOutputUpdate>*/
• User functions only in the range between

/*<UserDefinedFunctions>*/ … /*<UserDefinedFunctions>*/
• In order to avoid warnings, for unused or empty code blocks a comment should be

added of the form:
/*<IntentionallyEmpty/>*/

Safety C application development

TwinCAT Safety PLC 55Version: 1.2.0

5.2 Safe coding rules

5.2.1 Definitions
Term Explanation
strict/strong typing Implicit type conversions are not permitted in Safety C. For each operation,

assignment or parameter passing, the data type of all operands must match the
target data type (with few exceptions that are regarded as safe). Any discrepancy
between the data types must be resolved through an explicit conversion. (see
chapter Strong typing [} 58])

pure functions The function always provides the same result, when the same arguments are
transferred to the function. The result of the function does not depend on internal
locals or globals and variables, other internal information or input signals. A pure
function is a function without side effect. All helper functions provided are pure
functions.

non-pure functions /
impure functions

Each function that uses state variables or input/output signals or other internal
information should be regarded as potentially "impure" or "non-pure", since it may
return different results at different call times. A non-pure / impure function is a
function with side effect. User-defined functions are generally regarded as impure,
even if they meet the criteria of a pure function.

Operator precedence Determines the order to be used for the operators of a programming language,
whereby a composite expression can be transferred to a syntax tree for further
processing by the compiler. In Safety C, the operator precedences are clearly
defined through the derivation from the C/C++ standard.

Operator associativity Determines the order of operators of the same precedence in a composite
expression, unless explicitly given by parentheses. In Safety C, the operator
associativity is clearly defined through the derivation from the C/C++ standard. The
expression (a + b + c) is therefore unambiguously processed through the left
associativity of the addition with the following implicit parentheses: ((a + b) + c)
This effect is particularly important in cases where the order of the operators to be
applied can affect on the overall result. In Safety C the operator associativity must
also be taken into account for compliance with the strong typing.

Evaluation
sequence

Determines the order to be used when evaluating operands, such as performing
function calls or incrementing a variable as part of a composite expression. The
evaluation sequence can affect the result of an expression if it contains several
mutually dependent side effects. The C/C++ standard does not define a clear
evaluation sequence! For the sake of clarity of Safety C Code, restrictions are
therefore imposed on expressions, in order to avoid the effects of an ambiguous
evaluation sequence.

Recursion A recursion means that a function or procedure calls itself. A distinction is made
between direct and indirect recursion:
direct recursion: A() calls A()
indirect recursion: A() calls B(), B() calls A(), ...

Short circuit evaluation Short circuit evaluation or conditional evaluation refers to a behavior, which for
Boolean operations results in premature abortion of the evaluation. If a result is
unambiguously determined after part of an operation, the following sub-operations
are no longer executed.
Example: c = a&&b;
If a is false, the result c is unambiguously determinable; the operation is therefore
aborted, and c is directly set to false, without evaluation of b.

Safety C application development

TwinCAT Safety PLC56 Version: 1.2.0

5.2.2 General

Note

Data types
In the development of the safety application, the user should ensure that a distinction is
made between the data types BOOL and safeBOOL and other safe and non-safe data
types. This simplifies the subsequent verification and validation of the realized application.
In V1 safe and non-safe data types are identical from the perspective of the type system.
The user therefore has to assess intermixing of safe and non-safe input signals based on
current standards.

Note

Control structures
For loops are preferable to while loops, since the termination is easier to realize.

The following general rules apply for context-dependent restriction of operators and function calls in
expressions:

• The logic operators &&, || may only be used in conditional expressions of if, for and while statements
(and in the conditional expressions of assert statements).

• The conditional expressions of if, for and while statements must return the result of a comparison
operation (==, !=, <, >, <=, >=). In addition, complex composite operands of this compare operations
should be enclosed in parentheses, e.g.:

while(flag==true) //Statt while(flag)
if (0>(a+b)) //Statt if(0>a+b) oder if(a+b)

• Function calls with potential side effects (so-called "non-pure functions") may only be called as simple
statements, either without assignment of a return value or (if a return value is used) with direct
assignment of the return value to a variable, in order to ensure that the order of evaluation is clearly
determined (i.e. they must not be called as part of a condition or switch expression). Permitted
(example):
 INT32 r1 = MyNonPureFunc1();
 INT32 r2 = MyNonPureFunc2();
 INT32 r = r1 + r2;
Not permitted (example):
 INT32 r = MyNonPureFunc1() + MyNonPureFunc2();

• Functions without side effects ("pure functions") may also be used as part of switch or conditional
expressions. Examples of side effect-free functions include helper functions provided by the TwinCAT
Safety PLC, such as mathematical functions or conversion functions. They can be combined with "non-
pure” functions, as long as there is only one call of a "non-pure” function per expression. Permitted
(example):
INT32 r1 = MyPureFunc1() + MyNonPureFunc1(MyPureFunc2());

• It is generally assumed that the predefined module interface functions (Init, InputUpdate, CycleUpdate,
OutputUpdate), user-defined functions and function blocks have potential side effects. For this reason
they may only be called as simple line statements, with or without assignment (see item 3), e.g.:
MyFB1.CycleUpdate();
int y = MyFunction(42, y);
y = MyFunction2();
Calling the interface functions as entry point for the user application is only permitted from the safe
runtime environment. User-defined calls of Init() and CycleUpdate() are only allowed for FB instances
(FBs are not supported in V1).

• The operators post-increment (++) and post-decrement (--) may only be used as simple line statements
(e.g. i++; i--;) (except the third expression of the statement line in a for head of the loop).

• The assignment operator may only be used as part of simple statements with assignment, with the
exception of the first and third expression of the statement line of a for head of the loop (e.g. INT32
i=0;). Multiple assignments are not permitted in a line statement (e.g. a=b=c;), neither are assignments
as default value initialization in function signatures.

• In general, all primitive data types must be strongly typed on assignment and for parameter passing
and function return, in contrast to standard C/C++. Exceptions are combinations of a smaller source
datatype with a larger target datatype with the same signedness (see chapter Strong typing [} 58]).

Safety C application development

TwinCAT Safety PLC 57Version: 1.2.0

• To avoid unintentional effects, further combinations of data types and operators are restricted (see
chapter Strong typing [} 58]).

• The use of the explicit type conversion operators requires additional parentheses if the expression to
the right of the transformation operator is a non-bracketed, complex expression:
INT32 i32 = (INT32)u16 * -u16; // Not permitted, since it is not clear which expression is meant as the
operand of the type conversion operator
INT32 i32 = (INT32)(u16) * -u16; // Permitted, since unambiguous

Note

Limitation of complexity
Warnings are issued when a certain complexity is exceeded (known as McCabe index or
zyclomatic complexity). An index of < 10 per function is recommended.

• index > 20 per module function
• index > 50 per module (error for index > 1000)

Note

Limitation of the number of module variables
A warning is issued if the number of module variables exceeds 50, an error is issued if the
number exceeds 1000.

Safety C application development

TwinCAT Safety PLC58 Version: 1.2.0

5.2.3 Strong typing
The following applies for all type identifiers mentioned:

• BOOL is equivalent to safeBOOL.
• INT8 is equivalent to safeINT8, SINT, safeSINT.
• UINT8 is equivalent to safeUINT8, USINT, safeUSINT.
• INT16 is equivalent to safeINT16, INT, safeINT.
• UINT16 is equivalent to safeUINT16, UINT, safeUINT.
• INT32 is equivalent to safeINT32, DINT, safeDINT.
• UINT32 is equivalent to safeUINT32, UDINT, safeUDINT

Explanations for the operator type constraints shown in the following tables:

1. Logic operators (&&, ||, !) may only have variables, literals (true, false) or expressions of type BOOL as
operands.

2. Arithmetic operators (+, -, *, /, %) may only have variables, literals (decimal, hexadecimal, binary) or
expressions of integer arithmetic types (U)INT(8/16/32) as operands.

3. Bitwise operators (&, |, ^, ~, <<, >>) may only have variables, literals (decimal, hexadecimal, binary) or
expressions of integer unsigned arithmetic types UINT(8/16/32) as operands.

4. The comparison operators (<, >, <=, >=) may not have variables, literals (true, false) or expressions of
type BOOL as operands.

5. Binary operators (comparison, arithmetic, bitwise, logic) with left and right operand (+, -, *, /, %, &, |, ^,
<<, >>, ==, !=, <, >, <=, >=) may only contain variables, literals (Boolean, decimal, hexadecimal, bi-
nary) or expressions of the same type (for other restrictions see above).

6. "Integral promotions" (C++ standard conversions to type INT32) of the result expression of operations
with operands of small integer data types (U)INT(8/16) have to be neutralized through an explicit type
conversion, if one of the rules under 1. - 5. is violated,
e.g. in the event of summation of UIN8 expressions in the UINT8 number range:
1: UINT8 z = …; UINT8 a = …;
2: z = (UINT8)(a + (UINT8)(a + a)); //instead of a = a + a + a;
Without type conversion of the INT32 result expression from a+a back to INT8, the type equality rule
for the subsequent addition would be violated. The same applies to the subsequent assignment to the
UINT8 type. Alternatively, all UINT8 expressions can be previously converted to INT32 expressions,
before the summation in the INT32 number range is applied:
3: UINT8 z = …; UINT8 a = …;
4: z = ((INT32)a) + ((INT32)a) + ((INT32)a);
Note, however, that this may lead to a different result. The aim of strong typing is to make the intention
of the application developer regarding type conversion effects explicitly visible.
Permitted (example):
INT16 i16; UINT8 u8; …
INT32 i32 = i16; // Not type-equivalent, but permitted
UINT16 u16 = u8; // Not type-equivalent, but permitted
Further exceptions apply for the initialization of module variables with constant literals. Permitted (ex-
ample):
INT8 i8; // Declaration as module variable
UNT16 u16; // Declaration as module variable
…
i8 = 0; // Permitted, despite the fact that it is a constant literal of type INT32
u16 = 42U; // Permitted, despite the fact that it is a constant literal of type UINT32

7. The explicit type conversion operator () may only be used for conversion of a variable, literal (decimal,
hexadecimal, binary) or expression from one integer arithmetic type (U)INT(8/16/32) to another. The
explicit type conversion operator may lead to loss of data or sign. If this is not desired or if it should be
detected, the helper functions should be used for the conversion.

8. The same source and target types or function signatures must be used for assignment (=), transfer
and return of function parameters and results, or from smaller arithmetic data types to larger data
types without conversion between signed and unsigned data type (safe exception of strong typing).
For initialization statements of type UINT8 a = 10U, the compiler checks whether the literal matches
the declared data type. However, this is only permitted if the declaration and initialization are com-
bined in a simple line statement, or if the initialization applies to a simple module variable.

Safety C application development

TwinCAT Safety PLC 59Version: 1.2.0

9. Complex data types (structs) only support assignments for the same type (=), transfer as function pa-
rameter and return through functions, as well as the access operator (.) for data members. The appli-
cation of explicit type conversion to complex data types is generally not forbidden.

Only operator type combinations that have an entry in the following tables are allowed. The type identifier in
the cell is the result type of the operation (taking into account C++ standard type conversions). The right-
hand operand (RHS) is shown in the header, the left-hand operand (LHS) in the first column.

LHS/RHS: left/right operand of unary or binary operators.

Type rules for arithmetic operators

+,-,*,/,% BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL
INT8 INT32
UINT8 INT32
INT16 INT32
UINT16 INT32
INT32 INT32
UINT32 UINT32

Unary BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
-x INT32 INT32 INT32 INT32 INT32
+x

Unary x++ x--
BOOL
INT8 INT8 INT8
UINT8 UINT8 UINT8
INT16 INT16 INT16
UINT16 UINT16 UINT16
INT32 INT32 INT32
UINT32 UINT32 UINT32

+=, -=, *=,
/=, %=

BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32

BOOL
INT8 INT8
UINT8 UINT8
INT16 INT16
UINT16 UINT16
INT32 INT32
UINT32 UINT32

Type rules for bitwise operators

&,|,^,<<,>> BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL
INT8
UINT8 INT32
INT16
UINT16 INT32
INT32
UINT32 UINT32

Safety C application development

TwinCAT Safety PLC60 Version: 1.2.0

Unary BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
~x INT32 INT32 UINT32

&=, |=, ^=,
<<=, >>=

BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32

BOOL
INT8
UINT8 UINT8
INT16
UINT16 UINT16
INT32
UINT32 UINT32

Type rules for logic operators

&&, || BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL BOOL
INT8
UINT8
INT16
UINT16
INT32
UINT32

Unary BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
!x BOOL

==, != BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL BOOL
INT8 BOOL
UINT8 BOOL
INT16 BOOL
UINT16 BOOL
INT32 BOOL
UINT32 BOOL

>,<,>=,<= BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL
INT8 BOOL
UINT8 BOOL
INT16 BOOL
UINT16 BOOL
INT32 BOOL
UINT32 BOOL

Safety C application development

TwinCAT Safety PLC 61Version: 1.2.0

Type rules for the explicit cast operator

() BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL
INT8 INT8 INT8 INT8 INT8 INT8 INT8
UINT8 UINT8 UINT8 UINT8 UINT8 UINT8 UINT8
INT16 INT16 INT16 INT16 INT16 INT16 INT16
UINT16 UINT16 UINT16 UINT16 UINT16 UINT16 UINT16
INT32 INT32 INT32 INT32 INT32 INT32 INT32
UINT32 UINT32 UINT32 UINT32 UINT32 UINT32 UINT32

() struct A struct B struct C
struct A
struct B
struct C

Type rules for the member access operator

. struct A struct B struct C
BOOL BOOL BOOL BOOL
INT8 INT8 INT8 INT8
UINT8 UINT8 UINT8 UINT8
INT16 INT16 INT16 INT16
UINT16 UINT16 UINT16 UINT16
INT32 INT32 INT32 INT32
UINT32 UINT32 UINT32 UINT32
struct A struct B struct C
struct B struct A struct C
struct C struct A struct B

Type rules for assignments, and transfer of function parameters and return of return values

= BOOL INT8 UINT8 INT16 UINT16 INT32 UINT32
BOOL BOOL
INT8 INT8
UINT8 UINT8
INT16 INT16 INT16
UINT16 UINT16 UINT16
INT32 INT32 INT32 INT32
UINT32 UINT32 UINT32 UINT32

= struct A struct B struct C
struct A struct A
struct B struct B
struct C struct C

Safety C application development

TwinCAT Safety PLC62 Version: 1.2.0

5.2.3.1 Examples for the strong type system

This chapter provides examples to illustrate the strong type system used for the TwinCAT Safety PLC.

Consideration of the expressions as trees

The C/C++ standard stipulates that complex expressions are processed according to a tree structure based
on the implicit operator precedences and operator associativity.

The tree structure is determined by the C/C++ compiler based on the standard and may include implicit type
conversions that are not allowed in Safety C. Apart from a few safe exceptions, in Safety C the permitted
operator type combinations or function signatures have to be considered exactly (strong typing, see matrix
tables)

The implicit operator precedences and the operator associativity can be influenced and the tree structure can
be changed through explicit parentheses.

Trees consist of the following components:

• Leaf nodes
(these are literals, data references and parameterless function calls)

• Inner nodes
(these are operators or parameterized function calls, which each process one or several sub-
expressions)

• Tree edges
(these are intermediate results of evaluated partial expressions, each with a data type which can be
statically determined at the time of compilation through processing of the nodes according to the tree
structure from the leaf node (at the bottom of the tree structure) to the root node (at the top of the tree
structure))

The evaluation sequence of the leaf nodes is not clearly defined by the C/C++ standard and is specified by
the compiler. In Safety C, expressions with possible side effects have to be restricted, due to the undefined
evaluation sequence (see also Expressions and operators [} 73])

Summation as example

Initial situation: The user wants to program a summation of integer expressions of type UINT8 in Safety C.
The expressions can be literals, variables or function returns, in this case: a, b, c.

Intuitive approach in standard C++:

Case 1:

If the sum can exceed the UINT8 number range:
INT32 z = a + b + c;

Case 2:

If it is clear that the sum cannot exceed the UINT8 number range, or if implicit truncation (modulo arithmetic)
is desired:
UINT8 z = a + b + c;

Safety C application development

TwinCAT Safety PLC 63Version: 1.2.0

5.2.3.1.1 Case 1

Sample 1

Fig. 62: Strong type system case 1 - example 1

UINT8 a; UINT8 b; UINT8 c;
…
INT32 z = a + b + c; // Type system error T8006 : binary ‚+ operator‘ is restricted to operands with
equal type

Sample 2

Fig. 63: Strong type system case 1 - example 2

UINT8 a; UINT8 b; UINT8 c;
…
INT32 z = a + b + (INT32)c; // OK but intention might be unclear

Safety C application development

TwinCAT Safety PLC64 Version: 1.2.0

Sample 3

Fig. 64: Strong type system case 1 - example 3

UINT8 a; UINT8 b; UINT8 c;
…
INT32 z = ((INT32)a) + b + c; // Again, type system error T8006 as C/C++ binary addition operator is
left-associative

Sample 4

Fig. 65: Strong type system case 1 - example 4

UINT8 a; UINT8 b; UINT8 c;
…
INT32 z = ((INT32)a) + (b + c); // OK but intention might be unclear

Safety C application development

TwinCAT Safety PLC 65Version: 1.2.0

Sample 5

Fig. 66: Strong type system case 1 - example 5

UINT8 a; UINT8 b; UINT8 c;
…
INT32 z = ((INT32)a) + ((INT32)b) + ((INT32)c); // OK with clear intention
// Use this when lines get too long:
INT32 z = (INT32)a;
z += (INT32)b;
z += (INT32)c; // OK with clear intention and short lines
// Use this when overflow might accidentally occur and should be trapped:
INT32 z = (INT32)a;
… // Maybe lots of accumulations to z
z = ADDI32(z, (INT32)b);
z = ADDI32(z, (INT32)c);

5.2.3.1.2 Case 2

Sample 1

Fig. 67: Strong type system case 2 - example 1

UINT8 a; UINT8 b; UINT8 c;
…
UINT8 z = (UINT8)(((INT32)a) + ((INT32)b) + ((INT32)c)); // OK but lots of code to write

Safety C application development

TwinCAT Safety PLC66 Version: 1.2.0

Sample 2

Fig. 68: Strong type system case 2 - example 2

UINT8 a; UINT8 b; UINT8 c;
…
UINT8 z = (UINT8)((UINT8)(a + b) + c); // OK but can get hard to read

// Better use this:
UINT8 z = a;
z = (UINT8)(z + b);
z = (UINT8)(z + c); // OK and with clear intention

// Or even that:
UINT8 z = a;
z += b;
z += c; // OK, compact and with clear intention

5.3 Permissible language scope

5.3.1 Simple data types
The following table shows the permissible simple data types and alternative type identifiers with value
ranges.

Attention

Overflows/underflows and division by zero
Overflows or underflows of the permitted range of values or data type INT32 are not de-
fined in the C/C++ standard and may lead to data inconsistencies. In the TwinCAT Safety
PLC such inconsistencies only lead to a safe runtime error if they affect an output telegram.
If this case cannot be safely ruled out through the application or by the user, the safe helper
functions should be used instead of the native C/C++ operators.
On the other hand, overflows or underflows of the permitted range of values of data type
UINT32 are defined in the C/C++ standard and lead to a passage (modulo arithmetic).
Division by zero is not defined in the C/C++ standard and can lead to data inconsistencies
or to abortion of the safety application, which in turn leads to a safe runtime error in the
TwinCAT Safety PLC. If this case cannot be safely ruled out through the application or by
the user, the safe helper functions should be used instead of the native C/C++ operators.
Users must select the correct data types for the values expected from their operations.

Safety C application development

TwinCAT Safety PLC 67Version: 1.2.0

Data type
Standard

Data type
Safe

Range of values

BOOL safeBOOL FALSE / TRUE
UINT8 safeUINT8 0 .. 255
USINT safeUSINT 0 .. 255
INT8 safeINT8 -128 .. 127
SINT safeSINT -128 .. 127
UINT16 safeUINT16 0 .. 65535
UINT safeUINT 0 .. 65535
INT16 safeINT16 -32768 .. 32767
INT safeINT -32768 .. 32767
UINT32 safeUINT32 0 .. 4.294.967.295
UDINT safeUDINT 0 .. 4.294.967.295
INT32 safeINT32 -2.147.483.648 .. 2.147.483.647
DINT safeDINT -2.147.483.648 .. 2.147.483.647

Note

Data types
INT and UINT are 16-bit types in the TwinCAT Safety PLC, as defined in IEC 61131-3.
In TwinCAT C++, INT and UINT are 32-bit types.

Note

Difference between safe and standard
From a safety perspective there is no difference between processing safe and standard
data types (safe<TYPE> / <TYPE>), although we recommended using the prefix "safe" in
the type declaration to identify safe signals, in order to facilitate validation and verification of
the application. Users must assess any linking of safe and non-safe data within the applica-
tion based on the applicable standards.

Attention

Invalid types
Any C/C++ type identifiers that are not listed, such as unsigned int, char, etc., are not per-
mitted. Pointer types and reference types are also not permitted. All value transfers must
be based on call-by-value.

Note

Specifications
• Local variables must be initialized before they are used and must be used
• Module variables must be initialized in the Init function and read in the code
• Input variables may not be written
• Output variables may not be read

Safety C application development

TwinCAT Safety PLC68 Version: 1.2.0

5.3.2 Enumeration types
No provision is made for enumerations (user-defined enum types) in V1. Alternatively, constant definitions
can be used, see Literals and constants [} 74].

5.3.3 Data structures

5.3.3.1 Structs

Struct types encapsulate the I/O data (safe/non-safe input/output data and cross-group data). These struct
types are generated as part of <TwinSAFEGroupName>IoData.h from the alias device configuration.

Default variables of this struct types are created in the TwinSAFE group template as module variables with
the name prefix "s".

Furthermore, user-defined struct types can be created in the module header file under
<UserDefinedTypes>…</UserDefinedTypes>; this definition can have an optional leading "typedef". A global
instance variable for a struct type is NOT permitted.

They may be nested hierarchically. Inner struct types of nested struct type definitions MUST have an inner
instance variable for access. Inner struct types are anonymous types and must not be instantiated
independent of their hierarchical parent struct type.

Examples
typedef struct MyData
{
 INT32 a;
 UINT8 b;
 BOOL c;
};

struct MyFunctionInterface
{
 struct
 {
 BOOL a;
 BOOL b;
 } In;
 struct
 {
 BOOL z;
 } Out;
}

Variables of struct instances are accessed via the "." access operator.

User-defined struct types can be used as bidirectional interface for transfer of I/O data for function calls. The
transfer is still based on value transfer ("call-by-value").

Access examples:
MyFunctionInterface callFunc;
callFunc.In.a = true;
callFunc.In.b = false;
callFunc = MyFunction(callFunc);
BOOL result = callFunc.Out.z;

Struct instances must be initialized before they can be used, just like simple variables. Default initialization
within the type definitions are not permitted.

5.3.3.2 Arrays

Not yet supported in V1.

Safety C application development

TwinCAT Safety PLC 69Version: 1.2.0

5.3.4 Simple statements
Simple line statement end with a semicolon.

The following types are supported as part of a function body or the body of a control structure block:

Type-0

<expression>;
e.g. function call without return.

Type-1

<type> <identifier>;
e.g. declaration of variables without initialization.

Type-2

<identifier> = <expression>;
e.g. initialization of variables
e.g. operations/function call with result assignment

Type-3

<type> <identifier> = <expression>;

e.g. declaration of variables with initialization.

Special cases

Statements for post-increment/decrement (e.g. i++;) are regarded as type 2 statements.

The same applies to operations with assignment (e.g. a += b).

Restrictions

Combined variable declarations are not permitted:
e.g. INT32 i, j;

Multiple assignments are not permitted:

e.g. a = b = c;

NOTE: Component 1 and 3 of a for control flow statement (for (<1>; <2>; <3>)) are regarded as simple
instructions, despite the fact that they appear to belong to a line statement.

Special statements

return <expression>;

Is only permitted at the end of a function with return value.

Break;

Is only permitted at the end of a "case:" / 'default:" block.

Any further C/C++ control flow statements such as goto, continue, throw, etc. are not permitted

Safety C application development

TwinCAT Safety PLC70 Version: 1.2.0

5.3.5 Control structures

5.3.5.1 If-Else

Basic form
if (<COND>)
{
 <BLOCK>
}
else
{
 <BLOCK>
}

Guidelines
• The else branch is compulsory

(if it is empty, the special comment /*<IntentionallyEmpty/>*/ must be added to avoid a warning)
• No else-if branches are permitted
• Restrictions for the <COND> expression:

◦ Must always be the result of a comparison operation (<,>,<=,>=,==,!=); the left and right sub-
expressions of comparison may have to be enclosed in parentheses (if they do not consist of a
simple literal or identifier)

◦ No function calls with potential side effects
◦ No assignments, no post-/pre-increment/decrement

[CODE SAMPLE]
if ((safeIn1 && safeIn2) == true)
{
 sSafeOutputs.EL2904_FSoE_4.OutputChannel1 = true;
 sSafeOutputs.EL2904_FSoE_13.OutputChannel4 = true;
}
else
{
 sSafeOutputs.EL2904_FSoE_4.OutputChannel1 = false;
 sSafeOutputs.EL2904_FSoE_13.OutputChannel4 = false;
}

5.3.5.2 While

Basic form
while (<COND>)
{
 <BLOCK>
}

Guidelines
• No break statement allowed
• No continue statement allowed
• Restrictions for the <COND> expression:

◦ Must always be the result of a comparison operation (<,>,<=,>=,==,!=); the left and right sub-
expressions of comparison may have to be enclosed in parentheses (if they do not consist of a
simple literal or identifier)

◦ No function calls with potential side effects
◦ No assignments, no post-/pre-increment/decrement

• Special comment /*<LoopBound max="N"/>*/ must be added at the start of <Block> in order to avoid a
warning; N is the number of expected passes (N>1).

[CODE SAMPLE]

Safety C application development

TwinCAT Safety PLC 71Version: 1.2.0

while (safeCounter < 10)
{
 /*<LoopBound max=”10”/>*/
 safeCounter++;
}

5.3.5.3 For

Basic form
for (<STMT1>; <COND>; <STMT2>)
{
 <BLOCK>
}

• No break statement allowed
• No continue statement allowed
• Restriction for <STMT1> expression

◦ Type 3 (see simple statements)
• Restrictions for the <COND> expression

◦ Must always be the result of a comparison operation (<,>,<=,>=,==,!=); the left and right sub-
expressions of comparison may have to be enclosed in parentheses (if they do not consist of a
simple literal or identifier)

◦ No function calls with potential side effects
◦ No assignments, no post-/pre-increment/decrement

• Restriction for <STMT2> expression
◦ Type 2 (see simple statements)
◦ Post-increment/decrement instruction

• The following applies if the for loop is not in a basic form, e.g. for (int i=0; i<10; i++):
Special comment /*<LoopBound max="N"/>*/ must be added at the start of <Block> in order to avoid a
warning; N is the number of expected passes (N>1).

[CODE SAMPLE]
for (INT32 i=N; i >= 0; i-=2)
{
 /*<LoopBound max=”42”/>*/
 DoSomeComputations();
}

5.3.5.4 Switch case

Basic form
switch (<EXPR1>)
{
 case <EXPR2>:
 <BLOCK>
 break;
 …
 default:
 <BLOCK>
 break; }

Guidelines
• At least one case block is required
• A default block is mandatory
• The case/default block must end with a break statement
• Restriction for <EXPR1> expression

◦ No function calls with potential side effects
◦ Not a logical expression (no expression of type BOOL)

Safety C application development

TwinCAT Safety PLC72 Version: 1.2.0

◦ No assignments, no post-/pre-increment/decrement
• Restriction for <EXPR2> expression

◦ Constant expression (no variables, no function calls)
◦ Not a logical expression (no expression of type BOOL)

Safety C application development

TwinCAT Safety PLC 73Version: 1.2.0

5.3.6 Expressions and operators

Note

Expressions and operators
All operations follow the C++ semantics for the corresponding simple data types. All opera-
tions use the type extensions defined in the C++ standard (promotion rules), so that the re-
sult expression of an operation may not match that of the operand. This may have to be
taken into account through an explicit type conversion, due to the strong typing of simple
data types in Safety C (no implicit type conversions are permitted, apart from a few excep-
tions).

Permissible operators

Assignment operators
binary a=b

Restrictions:

• Not permitted as part of conditional expressions, no multiple assignments.
• Operands a and b must be of the same type, or signed/signed or unsigned/unsigned and with bit width

a greater than b.

Arithmetic operators
unary -a
binary a+b, a-b, a*b, a/b, a%b
with assignment a+=b, a-=b, a*=b, a/=b, a%=b
Post-increment/decrement a++, a--

Restrictions:

• Only simple, arithmetic data types are permitted (no BOOL, no structs).
• The operands a, b must be of the same type.
• With assignment only permitted as part of type 2 statements.
• Increment/decrement not permitted as part of expressions (only as simple line statement).
• Overflows/underflows may generate undefined behavior. Carry out appropriate checks or use safe

helper functions!

Bitwise operators
unary ~a
binary a&b, a|b, a^b, a<<b, a>>b
with assignment a&=b, a|=b, a^=b, a<<=b, a>>=b

Restrictions:

• Only simple, unsigned arithmetic data types are permitted (UINT8, UINT16, UINT32).
• The operands a, b must be of the same type.
• With assignment only permitted as part of type 2 statements.
• Shift operations can lead to undefined behavior. Carry out appropriate checks or use safe helper

functions!

Logic operators
unary !a
binary a&&b, a||b, a!=a

Restrictions:

• Only type BOOL permitted.
• Short-circuit operators &&, || are only permitted as part of conditional expressions.

As a substitute, see safe helper functions with complete evaluation: AND(a,b), AND3(a,b,c),
AND4(a,b,c,d) and OR(a,b), OR3(a,b,c), OR4(a,b,c,d).

Safety C application development

TwinCAT Safety PLC74 Version: 1.2.0

Comparison operators
binary a==b, a!=b, a<b, a>b, a<=b, a>=b

Restrictions:

• Only simple data types permitted (no structs).
• The operands a, b must be of the same type.
• Comparison of BOOL is only permitted with == and !=.

Explicit type cast
binary (<type>)<expression>

Restrictions:

• Only simple data types permitted (no structs).
• No explicit type conversion from/to BOOL is permitted.

As a substitute for type conversion from BOOL to arithmetic, see safe helper functions with
unambiguous definition.

• Explicit conversions can lead to sign and data loss. Carry out appropriate checks or use safe helper
functions!

Struct access
binary a.b

5.3.7 Literals and constants
Literals can be specified in Boolean, decimal, hexadecimal and binary form. The C/C++ promotion rules
apply.

Integer literals

Range of values 0 .. 231-1 is specified as an expression of type (safe)INT32.

Value Range 231 .. 232-1 is specified as an expression of type (safe)UINT32.

The suffix "U" defines literals of type UINT32, even if they can be represented as INT32.

Note

Sign
Literals are specified unsigned, i.e. a minus sign is regarded as an operation. A plus sign is
not permitted, since literals are implicitly regarded as positive.

Boolean literals

The literals false, true are specified as expression of type (safe)BOOL

Decimal format

0-9 with optional suffix U

Hexadecimal format

0-9 and a-f or A-F with prefix 0x or 0X and optional suffix U

Binary format

0-1 with prefix 0b or 0B and optional suffix U

Examples for invalid literals
• true

Safety C application development

TwinCAT Safety PLC 75Version: 1.2.0

• false
• 0U
• 987654321
• 0xFF
• 0x0
• 0XFEDCBA98U
• 0b11010100
• 0B0U

Note

Type cast
The type of the captured expression must also be taken into account for the assignment of
literals. For example,
INT8 x;
x = 0;
leads to a type error (in this case a type cast through (INT8) is required)
An exception is a declaration statement with combined initialization, provided the literal
matches the target type and the sign suffix is selected correctly, e.g.:
UINT16 x = 65535U;
A further exception is the initialization of simple module variables, which can be assigned
apart from their declaration in the module header through a type 2 statement with suitable
literal, e.g.:
i8ModuleVar = 42;

Constant / preprocessor "defines"

The keyword "const" is not permitted. Constants have to be defined via a preprocessor "define" (see
dedicated section in the module header file).
A preprocessor directive for defining a constant must have the following form (with optional parenthesis):

#define <IDENTIFIER> [<TYPECAST>] <-><LITERAL>

Predefined constant

SafeModuleHelper.h defines constants for minimum and maximum values of the permitted data types. Note
that the maximum negative value of INT32 (-2147483648) cannot be used directly as literal:
#define I8_MIN ((INT8) -128)
#define I8_MAX ((INT8) 127)
#define I16_MIN ((INT16) -32768)
#define I16_MAX ((INT16) 32767)
#define I32_MIN (-2147483647-1)
#define I32_MAX 2147483647
#define U8_MAX ((UINT8) 255U)
#define U16_MAX ((UINT16) 65535U)
#define U32_MAX 4294967295U

5.3.8 Function calls and user-defined functions
A TwinSafeGroup module provides the interfaces functions void Init(), void InputUpdate(), void
OutputUpdate() and void CycleUpdate(). These may only be called by the TwinCAT Safety PLC runtime.

In addition, the user may declare and define module functions with or without return value. Dedicated
sections are available in the .cpp/.h files for this purpose. Functions with return value must have a final
”return” statement.

User-defined functions can be called from the four interface functions and from the specially defined
functions, provided this does not lead to direct/indirect recursion. In addition, auxiliary functions are available
for application via SafeModuleHelper.h.

Safety C application development

TwinCAT Safety PLC76 Version: 1.2.0

Restrictions for function calls
• A distinction is made between “pure functions” (without side effects) and “impure functions” (with

possible side effects).
• All user-implemented functions are essentially regarded as “impure functions”, since the module

variables and outputs can potentially change.
• Initially, only the functions integrated by SafeModuleHelper.h are regarded as "pure functions".
• Impure functions can only be called within an instruction of type 2 or type 3. An instruction may contain

no more than one call of an “impure function”.
• Pure functions may be called anywhere (statements and conditional expressions)
• The return value of a function with return must always be used, either through assignment or as

parameter for a further function call, or as operand for an operation.

5.3.9 Asserts and traces

5.3.9.1 Asserts

FAILSAFE_ASSERT(<id>, <cond>)

The instruction FAILSAFE_ASSERT() can be used as tool for defensive programming for dealing with
undefined application states at runtime without fallback strategy, e.g. in situations with invalid yet possible
inputs. If a response at application level is possible (e.g. through setting of safe default values), a case
distinction with if-else/switch control structures should be used instead.

It should be able to trigger a FAILSAFE_ASSERT() through a fault test (negative test) at module test level. If
this is not the case, the instruction is presumably unnecessary, since detection of the incorrect execution of
the user code is already ensured through the safe runtime environment. For c=a+b;, for example, it can
therefore be assumed that the statement is executed correctly or any inconsistency is detected. The same
applies to control structures, function calls, etc.

Parameter Description
<id> A short, concise C++ identifier (output as plain text either in the module test output or

via ADS message in the TwinCAT error list window)
<cond> Boolean conditional expression, for which the same restrictions apply as for if(),

while(), etc.
Is triggered if <cond> is FALSE, i.e. <cond> must hold in a valid case!

Triggering in a non-safe module test results in termination of a test case with text output. In the event of a
fault test case, the test case is regarded as passed if the termination with given <ID> and in a given test step
was expected. Otherwise the test case or fault test case is regarded as failed.

Note

FAILSAFE_ASSERT()
The instruction FAILSAFE_ASSERT() sets the safe state of the TwinSAFE group in the
safe runtime environment, if the condition <cond> returns FALSE.

DEBUG_ASSERT(<id>, <cond>)

The instruction DEBUG_ASSERT() can be used for documenting and checking internal assumptions relating
to user-defined program code (preconditions, postconditions, invariants) during the test phase.
Example: Testing of return values or parameters and operands BEFORE a function call or an operation.

Parameter Description
<id> A short, concise C++ identifier (output as plain text either in the module test output or

via ADS message in the TwinCAT error list window)
<cond> Boolean conditional expression, for which the same restrictions apply as for if(),

while(), etc.
Is triggered if <cond> is FALSE, i.e. <cond> must hold in a valid case!

Safety C application development

TwinCAT Safety PLC 77Version: 1.2.0

Triggering in a non-safe module test results in termination of a test case with text output and evaluation as
failed.

Note

DEBUG_ASSERT()
In a safe runtime environment the instruction DEBUG_ASSERT() leads to an error or Log-
Window message, if the condition <cond> returns FALSE. Execution of the safety-related
application is being continued!

TEST_ASSERT(<cond>)

The instruction TEST_ASSERT() is used to check the assumptions relating to the outputs from a program
module to be tested as part of a module test. Concrete results can be evaluated and general assumptions
can be defined, e.g. to check the relationship between inputs and outputs and internal module variables.
TEST_ASSERT() is the test counterpart to DEBUG_ASSERT() and should therefore ideally be defined by an
independent person.

Parameter Description
<cond> Boolean conditional expression, for which the same restrictions apply as for if(),

while(), etc.
Is triggered if <cond> is FALSE, i.e. <cond> must hold in a valid case!

Note

Using TEST_ASSERT() and DEBUG_ASSERT()
The instruction TEST_ASSERT() is only permitted in the code for the module test bench. It
leads to termination of a test case (and its evaluation as failed), if the condition <cond> re-
turns FALSE. The derivation of TEST_ASSERT () and DEBUG_ASSERT () statements in
combination with module test and test cover measurement is an effective means for detect-
ing implementation errors or specification errors at the design stage. In addition, generically
formulated assertions (pre-conditions, post-conditions, invariants) enable the test coverage
to be increased through additional, automatically generated test cases (e.g. through ran-
domized test data).

5.3.9.2 Traces

BRANCH_TRACE()

BRANCH_TRACE() is required for branch coverage measurement in the module test environment, if no
external tool is used for this purpose. A branch ID is automatically numbered according to the document
sequence. The output is generated via ADS by selecting a corresponding log level when the branch is
reached. The output only takes place within the safe runtime environment, not in the module test output.

A BRANCH_TRACE(), if used, must be positioned at the end of a branch, or, if return/break statements are
used, directly before the statement.

A warning is generated if they are set redundantly or are incomplete. The test takes place when a
BRANCH_TRACE() is used only.

Coverage of the branches is indicated in the output at the end of the module test execution. The output IDs
of branches that could not be reached can be assigned to source text lines via the information in
ModuleDatabase.saxml in the TwinSAFE group folder “Analysis Files”. A module test branch coverage of
100% is generally regarded as a minimum criterion for safety-related applications! The special comment
/*<DefensiveBranch/>*/ can be used to exclude branches from the test coverage measurement. This should
only be used in cases where unreachable code is to remain in the source text for a justified reason. This
should not include branches for trapping invalid inputs, since these can be covered by a negative test.

DEBUG_TRACE(<expr>)

The instruction DEBUG_TRACE() can be used for test outputs of local variables and intermediate results for
simple data types, which cannot be output via the process image.

The log output takes place via ADS in TwinCAT if the safe runtime environment is used. Within a module test
a simple text output is used.

Safety C application development

TwinCAT Safety PLC78 Version: 1.2.0

Parameter Description
<expr> may be a side effect-free expression of a simple data type, i.e. structs are not

permitted

5.4 Performance optimizations
The implementation of necessary safety measures results in additional execution effort at runtime. In order to
minimize this, the following code optimizations should be considered.

Conditional expressions in control flow statements

Complex calculations in control flow statements, particularly function calls and real-valued mathematical
functions (not yet supported in V1), should initially be performed in a line statement, involving assignment to
a local variable. The intermediate result stored in the variable can be incorporated in the condition, e.g. in an
if-else instruction:

not optimized optimized
if (SINF32(x) >= 0.0f)
{
 ...
}
else { … }…

FLOAT y = SINF32(x);
if (y >= 0.0f)
{
 …
}
else { … }

For loop conditions, constant sub-expressions that may contain complex sub-calculations should also be
assigned to a variable as provisional result in line statements:

not optimized optimized
#define _K_ 13U
…
while (n < factorial(_K_ - 1U))
{
 …
 n++;
}

#define _K_ 13U
…
UINT32 upper_limit = factorial(_K_ - 1U);
while (n < upper_limit) {
 …
 n++;
}

If switch case constructs with many cases are used, the switch expression should also be handled
externally. The following example illustrates in which cases an optimization should be considered (even for a
purely integer based expression):

Safety C application development

TwinCAT Safety PLC 79Version: 1.2.0

not optimized optimized
UINT32 w1;
UINT32 w2;
UINT32 w3;
…
switch((((w1>>8U) & (w2>>16U)) |
 (w3<<24U)) % 0xffU)
{
 case 0x0U:
 … break;
 case 0x1U:
 … break;
 case 0x2U:
 … break;
 …
 case 0xfeU:
 … break;
 default:
 … break;
}

UINT32 w1;
UINT32 w2;
UINT32 w3;
…
UINT32 select = ((w1>>8U) & (w2>>16U)) |
 (w3<<24U)) % 0xffU;
switch(select)
{
 case 0x0U:
 … break;
 case 0x1U:
 … break;
 case 0x2U:
 … break;
 …
 case 0xfeU:
 … break;
 default:
 … break;
}

5.5 Interfacing with the I/O level

Interface to standard inputs and outputs

Standard inputs
 //! Struct providing input data of the corresponding standard alias devices
 struct StandardInputs
 {
 //! ..\Alias Devices\ErrAck.sds
 struct _ErrAck
 {
 BOOL In;
 } ErrAck;
 //! ..\Alias Devices\Run.sds
 struct _Run
 {
 BOOL In;
 } Run;
 };

Standard outputs
 //! Struct storing output data for the corresponding standard alias devices
 struct StandardOutputs
 {
 //! ..\Alias Devices\DiscrepancyError.sds
 struct _DiscrepancyError
 {
 BOOL Out;
 } DiscrepancyError;
 //! ..\Alias Devices\DiscrepancyCounter.sds
 struct _DiscrepancyCounter
 {
 UINT32 Out;
 } DiscrepancyCounter;
 };

Safety C application development

TwinCAT Safety PLC80 Version: 1.2.0

Interface to safe inputs and outputs

Safe inputs
 //! Struct providing input data of the corresponding safety alias devices

 struct SafetyInputs
 {
 //! ..\Alias Devices\EL1904_FSoE_211.sds
 struct _EL1904_FSoE_211
 {
 safeBOOL InputChannel1;
 safeBOOL InputChannel2;
 safeBOOL InputChannel3;
 safeBOOL InputChannel4;
 } EL1904_FSoE_211;
 //! ..\Alias Devices\2 safe in 2 safe out.sds
 struct __2_safe_in_2_safe_out
 {
 safeBOOL InputChannel1;
 safeBOOL InputChannel2;
 } _2_safe_in_2_safe_out;
 //! ..\Alias Devices\AX 5805 Drive Option.sds
 struct _AX_5805_Drive_Option
 {
 safeBOOL Axis_1_STO;
 safeBOOL Axis_1_SSM1;
 safeBOOL Axis_1_SSM2;
 safeBOOL Axis_1_SOS1;
 safeBOOL Axis_1_SSR1;
 safeBOOL Axis_1_SDIp;
 safeBOOL Axis_1_SDIn;
 safeBOOL Axis_1_Error_Ack;
 } AX_5805_Drive_Option;

 };

Safe outputs
 //! Struct storing output data for the corresponding safety alias devices

 struct SafetyOutputs
 {
 //! ..\Alias Devices\EL2904_FSoE_13.sds
 struct _EL2904_FSoE_13
 {
 safeBOOL OutputChannel1;
 safeBOOL OutputChannel2;
 safeBOOL OutputChannel3;
 safeBOOL OutputChannel4;
 } EL2904_FSoE_13;
 //! ..\Alias Devices\EL2904_FSoE_4.sds
 struct _EL2904_FSoE_4
 {
 safeBOOL OutputChannel1;
 safeBOOL OutputChannel2;
 safeBOOL OutputChannel3;
 safeBOOL OutputChannel4;
 } EL2904_FSoE_4;
 //! ..\Alias Devices\2 safe in 2 safe out.sds
 struct __2_safe_in_2_safe_out
 {
 safeBOOL OutputChannel1;
 safeBOOL OutputChannel2;
 } _2_safe_in_2_safe_out;
 //! ..\Alias Devices\AX 5805 Drive Option.sds
 struct _AX_5805_Drive_Option
 {
 safeBOOL Axis_1_STO;
 safeBOOL Axis_1_SS11;
 safeBOOL Axis_1_SS21;
 safeBOOL Axis_1_SOS1;
 safeBOOL Axis_1_SSR1;
 safeBOOL Axis_1_SDIp;
 safeBOOL Axis_1_SDIn;
 safeBOOL Axis_1_Error_Ack;
 } AX_5805_Drive_Option;

 };

Safety C application development

TwinCAT Safety PLC 81Version: 1.2.0

Interface between TwinSAFE groups
 //! Struct storing the TwinSAFE group exchange data
 struct TSGData
 {
 //! ..TwinSafeGroup: TwinSafeGroup1
 struct _TwinSafeGroup1
 {
 //! ..Outputs
 struct _Out
 {
 safeUINT AnalogOut1;
 safeBOOL EStopOut;
 } Out;
 } TwinSafeGroup1;
 };

Interface to safe time signal
 safeUINT16 u16SafeTimer //!< Safe external timer input (in ms)

The module variables u16SafeTimer can be used to access the safe time signal. This is a 16-bit timer value,
which can be used for time-dependent functionalities within the safety application. This time value may not
be used in the Init function (since it is not yet available at this time). The timer is only suitable for time
measurements across application cycles, since the timer variable remains constant within an application
cycle. Write access to the timer variable is not permitted.

5.6 Verification and validation

DANGER

Safety C application development
The user source text should be developed based on the applicable standards, in particular
IEC 61508:2010. If the standard to be used is IEC 61508:2010, the explanations for the
terms verification and validation can be taken from Part 4 of this standard.

Verification

Confirmation that the requirements are met, based on an examination and provision of evidence.

NOTE

In the context of this standard, verification refers to the process of demonstrating in each phase of the
relevant safety lifecycle (total, E/E/PE system and software) that the results for the special inputs meet the
aims and requirements specified for the phase in every respect, through analysis, mathematical inference
and/or testing.

SAMPLE

Verification activities include:

• checking of the results (documents from all phases of the safety lifecycle), in order to ensure
compliance with the aims and requirements of the phase, taking into account the relevant inputs of the
phase;

• design reviews;
• executed tests on developed products, to ensure that they operate according to their specification;
• execution of integration tests, in which different parts of a system are assembled step by step,

accompanied by testing under ambient conditions, to ensure that all parts work together as specified.

Validation

Confirmation that the special requirements for a special application are met, based on an examination and
provision of objective evidence.

NOTE 1

This standard covers three validation phases:

Safety C application development

TwinCAT Safety PLC82 Version: 1.2.0

• validation of overall safety (see IEC 61508-1, Figure 2);
• validation of the E/E/PE system (see IEC 61508-1, Figure 3);
• validation of the software (see IEC 61508-1, Figure 4).

NOTE 2

Validation refers to the process of demonstrating that the safety-relevant system meets the specific safety
specification in every respect, before and after the installation. Validation of the software, for example,
therefore includes examination and provision of evidence that the software meets the safety specification
and requirements.

5.7 Online diagnostics

Module tests

The developer can test the created safety application via ModuleTests.cpp in standard C++ mode. During
the test the safety application is not compiled and executed in the safety context, but directly within a
standard C++-environment. Also, there is no assignment to the task with which the TwinCAT Safety PLC is
executed in release mode.

The module test can be accessed via MODULE_TEST_BENCH_DEF(<id>), in which the test coverage
measurement is controlled and the test groups are specified via the instruction
MODULE_TEST_GROUP(<id>). Each test group requires a unique ID. A test group consolidates defined
test cases of a group via the instruction MODULE_TEST_CASE(<id>), which was previously defined via
MODULE_TEST_CASE_DEF(<id>). A test case can be subdivided into further logical test steps via the
instruction MODULE_TEST_STEP(<id>). A test case defined with MODULE_TEST_CASE_DEF(<id>) can
be integrated in a test group as fault test/negative test case by calling it via the instruction
MODULE_FIT_CASE(<id>, <step-id>, <asset-id>). It is expected that the test case fails in a given test step
with given assertion ID, in order to be deemed to have passed. This mechanism is used to test
FAILSAFE_ASSERT instructions, e.g. by using invalid input values.

During creation of a TwinSAFE group, a module test bench template with a general test case is created,
which can be used directly for debugging. The interface functions of a TwinSAFE group module are called
periodically.

The module to be tested (TwinSAFE group) is already created and available as a test instance within the
module test via the variable DUT (Device Under Test). All module variables and module functions of a
TwinSAFE group module (including those declared as private) can be accessed via DUT.<variable name/
function name>.

In the example test case DUT.init(); is called once, followed by calls of DUT.Input-, DUT.Cycle- and
DUT.OutputUpdate(); in a For loop.

Before the call the application developer or tester can set the internal variables and analyze the calculation
result after the call via a TEST_ASSERT instruction.

The module test is compiled via the context menu under Test Files (Build) and started in Debug mode. In
future, the test results can be displayed in the safety editor via Run/Analyze (not yet supported in V1).

In addition, the user can open, extend and execute the corresponding Visual Studio project
ModuleTests.vcxproj directly in the TwinSAFE group folder "Test Files". For the source code of the module
tests there are no constraints in terms of coding rules or the implementation of standard libraries.

Safety C application development

TwinCAT Safety PLC 83Version: 1.2.0

Fig. 69: Module Tests context menu

In Debug mode the usual Visual Studio mechanisms such as breakpoints, step into, step over, etc. can be
used from the TwinCAT Safety Editor.

The variable values can be monitored online via the Locals window or via data tips in Visual Studio. The
output is displayed in the Output window (Debug).

Safety C application development

TwinCAT Safety PLC84 Version: 1.2.0

Example

Extract from TwinSafeGroup1.h
 // Module internals
 PRIVATE:

 /*<UserDefinedVariables>*/ // Define internal variables here
 INT32 a;
 INT32 b;
 INT32 z;
 BOOL neg;
 /*</UserDefinedVariables>*/

Extract from TwinSafeGroup1.cpp
 ///
 //! \brief Implementation of the safe user module initialization function
 ///
 /*<TcInit>*/
 VOID CSafeModule::Init()
 {
 // Put your module initialization code here
 a = 0;
 b = 1;
 z = 0;
 neg = false;
 BRANCH_TRACE();
 }
 /*</TcInit>*/

 ///
 //! \brief Implementation of the safe user module input update function
 ///
 /*<TcInputUpdate>*/
 VOID CSafeModule::InputUpdate()
 {
 // Put your module input update code here
 BRANCH_TRACE();
 }
 /*</TcInputUpdate>*/

 ///
 //! \brief Implementation of the safe user module output update function
 ///
 /*<TcOutputUpdate>*/
 VOID CSafeModule::OutputUpdate()
 {
 // Put your module output update code here
BRANCH_TRACE();
 }
 /*</TcOutputUpdate>*/

 ///
 //! \brief Implementation of the safe user module cycle update function
 ///
 /*<TcCycleUpdate>*/
 VOID CSafeModule::CycleUpdate()
 {
 // Put your cycle update code here
 FAILSAFE_ASSERT(DIV_BY_ZERO, b != 0);
 z = a / b;
 if (z >= 0)
 {
 neg = false;
 BRANCH_TRACE();
 }
 else
 {
 neg = true;
 BRANCH_TRACE();
 }
 BRANCH_TRACE();
 }
 /*</TcCycleUpdate>*/

Safety C application development

TwinCAT Safety PLC 85Version: 1.2.0

ModuleTests.cpp
///
//! \file ModuleTests.cpp
//! \brief Source file with module test definitions for TwinSafeGroup1
//! \authors User01
//! \copyright Put affiliation and copyright notice here
//! \version V1.0
//! \date 2016-10-20
//! \details Put detailed description of your module tests here
///

//! Define name of the safe module under test
#define MODULE_NAME TwinSafeGroup1::CSafeModule

#include "TwinSafeGroup1.h"
#include "ModuleTests.h"

//! Definition of test case IDs
#define TC_ID_0 0
#define TC_ID_1 1

///
//! \brief Test bench definition containing testsets triggered by TwinCAT3
///
MODULE_TEST_BENCH_DEF()
{

 // Reset branch counters for coverage measurement
 START_COVERAGE_MEASUREMENT();

 // Run test group TG_ID_0
 MODULE_TEST_GROUP(TG_ID_0);

 // Compute branch coverage and identify uncovered branches
 STOP_COVERAGE_MEASUREMENT();

}

///
//! \brief TC_ID_0 (put a reference to your test specification here)
//! \test Generic module test sequence calling init and 1000 task cycles
///
MODULE_TEST_CASE_DEF(TC_ID_0)
{

 // Test case starts with an initial test step to prepare preconditions
 MODULE_TEST_STEP(0);
 DUT.Init(); // e.g., call Init() to set state variables to default values

 // Perform post initialization checks on module state variables here,
 // e.g., using TEST_ASSERT(<condition>) statements

 for (int nCycle = 1; nCycle <= 1000; nCycle++)
 { // Execute a test sequence consisting of 1000 module execution cycles

 MODULE_TEST_STEP(nCycle);
 // Apply test step stimuli to safe and non-safe module inputs here
 DUT.u16SafeTimer = (nCycle * 5) % 65536U; // e.g. 5ms task period

 DUT.a = 2*cycle;
 DUT.b = cycle;

 // Perform a single cycle of a periodic task execution
 DUT.InputUpdate();
 DUT.CycleUpdate();
 DUT.OutputUpdate();

 // Perform invariant checks on safe and non-safe module outputs and
 // also state variables here, e.g., using TEST_ASSERT(<condition>)

 // Perform checks on test step response w.r.t. test step stimuli
 // here, e.g., using TEST_ASSERT(<condition>) statements
 TEST_ASSERT(DUT.z == 2); // As (2*cycle)/cycle is always 2

 }

 // Perform checks on the final module state w.r.t. test specification
 // here, e.g., using TEST_ASSERT(<condition>) statements
}

Safety C application development

TwinCAT Safety PLC86 Version: 1.2.0

///
//! \brief TC_ID_1 (put a reference to your test specification here)
//! \test Negative test case for invalid input b=0 (division by zero)
///
MODULE_TEST_CASE_DEF(TC_ID_1)
{

 // Test case starts with an initial test step to prepare preconditions
 MODULE_TEST_STEP(0);
 DUT.Init(); // e.g., call Init() to set state variables to default values

 // Perform post initialization checks on module state variables here,
 // e.g., using TEST_ASSERT(<condition>) statements

 // Apply test step stimuli to safe and non-safe module inputs here
 MODULE_TEST_STEP(1);
 DUT.a = 1;
 DUT.b = 0;

 // Perform a single execution cycle
 DUT.InputUpdate();
 DUT.CycleUpdate();
 DUT.OutputUpdate();

 // Should not reach here as CycleUpdate is expected to trigger fail safe!
 TEST_ASSERT(false);

}

///
//! \brief Test group TG_ID_0 definition containing a set of test cases
///
MODULE_TEST_GROUP_DEF(TG_ID_0)
{

 // Run positive example test case TC_ID_0
 MODULE_TEST_CASE_RUN(TC_ID_0);
 // Run negative example test case TC_ID_1 expecting fail-safe
 // assertion DIV_BY_ZERO being triggered at test step 1!
 MODULE_FIT_CASE_RUN(TC_ID_1, 1 /* Step */, DIV_BY_ZERO /* ID */);
}

5.8 Safe Helper Functions
The Safe Helper Functions offer users safe extensions for the limited Safety C language scope, which
corresponds to a subset of the native C/C++ scope and therefore does not permit inclusion of non-safe
standard libraries.

Helper functions are free from side effects, so that they can be used without restriction in all Safety C
expressions and statements, i.e. the return value of a helper function only depends on the user-defined
function parameters. Furthermore, helper functions do not directly change the module data of a safe
application module or other global application data.

In the event of undefined inputs, helper functions respond by assuming the safe state for the TwinSAFE
group in which they are integrated in the application execution. Undefined inputs are inputs for which a
helper function is unable to generate valid output (referred to as undef. below). However, since function
signatures enable such inputs to be transferred to helper functions as parameters, they are intercepted
internally with a FAILSAFE_ASSERT instruction, thereby programmatically triggering the safe error state of
the TwinSAFE group. The user is notified of this case via a corresponding log message.

5.8.1 Safe logic functions
The safe logic functions evaluate all Boolean operands, i.e. no "short-circuit evaluation" is used, in contrast
to the native C/C++ operators && and ||.

Safety C application development

TwinCAT Safety PLC 87Version: 1.2.0

5.8.1.1 AND

Executes a safe logical AND for two Boolean expressions.

Safety C function interface

Functional specification

5.8.1.2 AND3

Executes a safe logical AND for three Boolean expressions.

Safety C function interface

Functional specification

5.8.1.3 AND4

Executes a safe logical AND for four Boolean expressions.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC88 Version: 1.2.0

5.8.1.4 OR

Executes a safe logical OR for two Boolean expressions.

Safety C function interface

Functional specification

5.8.1.5 OR3

Executes a safe logical OR for three Boolean expressions.

Safety C function interface

Functional specification

5.8.1.6 OR4

Executes a safe logical OR for four Boolean expressions.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC 89Version: 1.2.0

5.8.2 Safe integer arithmetic functions
The safe arithmetic functions for integer data types detect undefined behavior, which can occur with certain
C/C++ operators and standard functions due to overflows of the signed 32-bit integer type and for modulo/
division by zero. If invalid values are entered, the safe group state is assumed.
NOTE: A UINT16 multiplication with the C/C++ operator "*" can lead to an undefined overflow in the resulting
INT32 expression with a result greater than 2^31-1. No helper function is provided for this in V1.

5.8.2.1 ADDI32

Performs a secure addition for the signed 32-bit integer type.

Safety C function interface

Functional specification

5.8.2.2 SUBI32

Performs a secure subtraction for the signed 32-bit integer type.

Safety C function interface

Functional specification

5.8.2.3 MULI32

Performs a secure multiplication for the signed 32-bit integer type.

Safety C application development

TwinCAT Safety PLC90 Version: 1.2.0

Safety C function interface

Functional specification

5.8.2.4 DIVI32

Performs a secure division for the signed 32-bit integer type.

Safety C function interface

Functional specification

5.8.2.5 DIVU32

Performs a secure division for the unsigned 32-bit integer type.

Safety C function interface

Safety C application development

TwinCAT Safety PLC 91Version: 1.2.0

Functional specification

5.8.2.6 MODI32

Performs a secure residual value calculation for the signed 32-bit integer type.

Safety C function interface

Functional specification

5.8.2.7 MODU32

Performs a secure residual value calculation for the unsigned 32-bit integer type.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC92 Version: 1.2.0

5.8.2.8 DIVI16

Performs a secure division for the signed 16-bit integer type.

Safety C function interface

Functional specification

5.8.2.9 DIVU16

Performs a secure division for the unsigned 16-bit integer type.

Safety C function interface

Functional specification

5.8.2.10 MODI16

Performs a secure residual value calculation for the signed 16-bit integer type.

Safety C function interface

Safety C application development

TwinCAT Safety PLC 93Version: 1.2.0

Functional specification

5.8.2.11 MODU16

Performs a secure residual value calculation for the unsigned 16-bit integer type.

Safety C function interface

Functional specification

5.8.2.12 DIVI8

Performs a secure division for the signed 8-bit integer type.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC94 Version: 1.2.0

5.8.2.13 DIVU8

Performs a secure division for the unsigned 8-bit integer type.

Safety C function interface

Functional specification

5.8.2.14 MODI8

Performs a secure residual value calculation for the signed 8-bit integer type.

Safety C function interface

Functional specification

5.8.2.15 MODU8

Performs a secure residual value calculation for the unsigned 8-bit integer type.

Safety C function interface

Safety C application development

TwinCAT Safety PLC 95Version: 1.2.0

Functional specification

5.8.2.16 NEGI32

Performs a safe arithmetic negation for a signed 32-bit integer type.

Safety C function interface

Functional specification

5.8.2.17 NEGI16

Performs a safe arithmetic negation for a signed 16-bit integer type.

Safety C function interface

Functional specification

5.8.2.18 NEGI8

Performs a safe arithmetic negation for a signed 8-bit integer type.

Safety C application development

TwinCAT Safety PLC96 Version: 1.2.0

Safety C function interface

Functional specification

5.8.2.19 ABSI32

Executes a safe absolute value calculation for a signed 32-bit integer type.

Safety C function interface

Functional specification

5.8.2.20 ABSI16

Executes a safe absolute value calculation for a signed 16-bit integer type.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC 97Version: 1.2.0

5.8.2.21 ABSI8

Executes a safe absolute value calculation for a signed 8-bit integer type.

Safety C function interface

Functional specification

5.8.3 Safe bit shift functions
The safe bit shift functions prevent undefined C/C++ behavior of the native operators >> and <<. To this end
the function signature is used to ensure that no signed operands can be used (this also eliminates the
possibility of a signed arithmetic shift), and any shift by the right operand (shift operand), that is greater than
or equal to the word width of the left operand, is intercepted.

5.8.3.1 SHLU32

Shifts the bits of an unsigned 32-bit value to the left by up to 31 bits.

Safety C function interface

Functional specification

5.8.3.2 SHLU16

Shifts the bits of an unsigned 16-bit value to the left by up to 15 bits.

Safety C application development

TwinCAT Safety PLC98 Version: 1.2.0

Safety C function interface

Functional specification

5.8.3.3 SHLU8

Shifts the bits of an unsigned 8-bit value to the left by up to 7 bits.

Safety C function interface

Functional specification

5.8.3.4 SHRU32

Shifts the bits of an unsigned 32-bit value to the right by up to 31 bits.

Safety C function interface

Safety C application development

TwinCAT Safety PLC 99Version: 1.2.0

Functional specification

5.8.3.5 SHRU16

Shifts the bits of an unsigned 16-bit value to the right by up to 15 bits.

Safety C function interface

Functional specification:

5.8.3.6 SHRU8

Shifts the bits of an unsigned 8-bit value to the right by up to 7 bits.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC100 Version: 1.2.0

5.8.4 Safe conversion functions (Boolean to integer)
Safe conversions of Boolean expressions to integer data types map the Boolean truth value FALSE to
arithmetic 0 and the Boolean truth value TRUE to arithmetic 1 in the respective target data type. This avoids
any ambiguity of the explicit type conversion with the cast operator, which may otherwise lead to unexpected
behavior for the application developer.

5.8.4.1 BTOI32

Executes a safe conversion of a Boolean expression to a signed 32-bit integer type.

Safety C function interface

Functional specification

5.8.4.2 BTOI16

Executes a safe conversion of a Boolean expression to a signed 16-bit integer type.

Safety C function interface

Functional specification

5.8.4.3 BTOI8

Executes a safe conversion of a Boolean expression to a signed 8-bit integer type.

Safety C function interface

Safety C application development

TwinCAT Safety PLC 101Version: 1.2.0

Functional specification

5.8.4.4 BTOU32

Executes a safe conversion of a Boolean expression to an unsigned 32-bit integer type.

Safety C function interface

Functional specification

5.8.4.5 BTOU16

Executes a safe conversion of a Boolean expression to an unsigned 16-bit integer type.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC102 Version: 1.2.0

5.8.4.6 BTOU8

Executes a safe conversion of a Boolean expression to an unsigned 8-bit integer type.

Safety C function interface

Functional specification

5.8.5 Safe conversion functions (integer to integer)
Safe conversion functions between integer types are value-preserving and sign-preserving. The conversion
functions for all potentially lossy combinations of source and target types therefore intercept cases for which
it would not be possible to represent the value of the source type within the range of the target type. The
native C/C++ type conversion operator must be used for risk-free type conversion or possibly intended loss
of value or sign.

5.8.5.1 I8TOU8

Executes a safe conversion of the signed 8-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

Functional specification

5.8.5.2 I8TOU16

Executes a safe conversion of the signed 8-bit integer type to the unsigned 16-bit integer type.

Safety C application development

TwinCAT Safety PLC 103Version: 1.2.0

Safety C function interface

Functional specification

5.8.5.3 I8TOU32

Executes a safe conversion of the signed 8-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

Functional specification

5.8.5.4 U8TOI8

Executes a safe conversion of the signed 8-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC104 Version: 1.2.0

5.8.5.5 I16TOI8

Executes a safe conversion of the signed 16-bit integer type to the signed 8-bit integer type.

Safety C function interface

Functional specification

5.8.5.6 I16TOU8

Executes a safe conversion of the signed 16-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

Functional specification

5.8.5.7 I16TOU16

Executes a safe conversion of the signed 16-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

Safety C application development

TwinCAT Safety PLC 105Version: 1.2.0

Functional specification

5.8.5.8 I16TOU32

Executes a safe conversion of the signed 16-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

Functional specification

5.8.5.9 U16TOI8

Executes a safe conversion of the signed 16-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

Functional specification

5.8.5.10 U16TOU8

Executes a safe conversion of the unsigned 16-bit integer type to the unsigned 8-bit integer type.

Safety C application development

TwinCAT Safety PLC106 Version: 1.2.0

Safety C function interface

Functional specification

5.8.5.11 U16TOI16

Executes a safe conversion of the signed 16-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

Functional specification

5.8.5.12 I32TOI8

Executes a safe conversion of the signed 32-bit integer type to the signed 8-bit integer type.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC 107Version: 1.2.0

5.8.5.13 I32TOU8

Executes a safe conversion of the signed 32-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

Functional specification

5.8.5.14 I32TOI16

Executes a safe conversion of the signed 32-bit integer type to the signed 16-bit integer type.

Safety C function interface

Functional specification

5.8.5.15 I32TOU16

Executes a safe conversion of the signed 32-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

Safety C application development

TwinCAT Safety PLC108 Version: 1.2.0

Functional specification

5.8.5.16 I32TOU32

Executes a safe conversion of the signed 32-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

Functional specification

5.8.5.17 U32TOI8

Executes a safe conversion of the signed 32-bit integer type to the unsigned 8-bit integer type.

Safety C function interface

Functional specification

5.8.5.18 U32TOU8

Executes a safe conversion of the unsigned 32-bit integer type to the unsigned 8-bit integer type.

Safety C application development

TwinCAT Safety PLC 109Version: 1.2.0

Safety C function interface

Functional specification

5.8.5.19 U32TOI16

Executes a safe conversion of the signed 32-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

Functional specification

5.8.5.20 U32TOU16

Executes a safe conversion of the unsigned 32-bit integer type to the unsigned 16-bit integer type.

Safety C function interface

Functional specification

Safety C application development

TwinCAT Safety PLC110 Version: 1.2.0

5.8.5.21 U32TOI32

Executes a safe conversion of the signed 32-bit integer type to the unsigned 32-bit integer type.

Safety C function interface

Functional specification

Graphical application development

TwinCAT Safety PLC 111Version: 1.2.0

6 Graphical application development

Note

Use of the TwinCAT Safety Editor
The use of the TwinCAT Safety Editor together with the TwinCAT Safety PLC will be imple-
mented in one of the next releases. Currently this is not possible.

Appendix

TwinCAT Safety PLC112 Version: 1.2.0

7 Appendix

7.1 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages:
http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
e-mail: info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
e-mail: service@beckhoff.com

http://www.beckhoff.de/english/support/default.htm
http://www.beckhoff.com
http://www.beckhoff.com/english/download/default.htm

Appendix

TwinCAT Safety PLC 113Version: 1.2.0

7.2 Certificates

List of figures

TwinCAT Safety PLC114 Version: 1.2.0

List of figures
Fig. 1 Typical response time.. 15
Fig. 2 Worst case response time ... 16
Fig. 3 Creating a safety project - Add New Item.. 17
Fig. 4 Creating a safety project - project name and directory .. 18
Fig. 5 TwinCAT Safety Project Wizard .. 18
Fig. 6 Target system in the Solution Explorer.. 19
Fig. 7 Target System Property Page ... 19
Fig. 8 Creating a TwinSAFE group .. 20
Fig. 9 TwinSAFE group.. 20
Fig. 10 TwinSAFE Group - General Settings... 21
Fig. 11 TwinSAFE Group - Group Ports .. 21
Fig. 12 TwinSAFE group process image ... 21
Fig. 13 TSGData struct .. 22
Fig. 14 Starting the automatic import from the I/O configuration ... 22
Fig. 15 Selection from the I/O tree... 23
Fig. 16 Creating alias devices by the user... 23
Fig. 17 Alias device - Process Image tab .. 24
Fig. 18 Configuring the I/O elements ... 24
Fig. 19 Alias device - Connection tab .. 25
Fig. 20 Alias device in the safety project structure .. 25
Fig. 21 Links to the TwinCAT Safety PLC process image ... 26
Fig. 22 Connection-specific parameters .. 26
Fig. 23 Selecting an alias device ... 27
Fig. 24 Safety parameter for the device... 27
Fig. 25 Safety PLC instance - Alias devices .. 28
Fig. 26 Structure of the alias device .. 28
Fig. 27 AX5000 safety drive functions ... 29
Fig. 28 AX5000 safety drive options - general AX5805 settings.. 29
Fig. 29 AX5000 safety drive options - Process Image... 30
Fig. 30 AX5000 safety drive options - Function Diagram .. 31
Fig. 31 Creating an external connection (Custom FSoE Connection) ... 32
Fig. 32 Parameterization of the process image size.. 32
Fig. 33 Renaming the individual signals within the telegram... 33
Fig. 34 Selecting the variables... 33
Fig. 35 Direct linking with the process image of an EtherCAT Terminal.. 34
Fig. 36 Connection-specific parameters .. 34
Fig. 37 TwinSAFE group - Header files ... 36
Fig. 38 TwinSAFE group - Source files.. 37
Fig. 39 Init function .. 37
Fig. 40 InputUpdate function.. 38
Fig. 41 OutputUpdate function... 38
Fig. 42 CycleUpdate function... 39
Fig. 43 Target System ... 40
Fig. 44 Dialog CRC Distribution... 40

List of figures

TwinCAT Safety PLC 115Version: 1.2.0

Fig. 45 Downloading the safety application ... 41
Fig. 46 Unlock Safety Project .. 41
Fig. 47 Unlock Safety Project .. 42
Fig. 48 Identical CRCs... 42
Fig. 49 Activating the Safety and CRC toolbars .. 42
Fig. 50 Target system - Map Object ID and Map Project CRC.. 43
Fig. 51 Target System Info Data.. 43
Fig. 52 Diag Data - TwinCAT Safety PLC.. 44
Fig. 53 Safety Timer Diag Data - TwinCAT Safety PLC .. 45
Fig. 54 Group MapDiag MapState ... 45
Fig. 55 Group info data .. 45
Fig. 56 FSoE connection map info data... 46
Fig. 57 FSoE connection info data... 46
Fig. 58 Adding a new task ... 48
Fig. 59 Dialog Insert Task.. 48
Fig. 60 Task settings.. 49
Fig. 61 Task execution time and exceed counter .. 49
Fig. 62 Strong type system case 1 - example 1... 63
Fig. 63 Strong type system case 1 - example 2... 63
Fig. 64 Strong type system case 1 - example 3... 64
Fig. 65 Strong type system case 1 - example 4... 64
Fig. 66 Strong type system case 1 - example 5... 65
Fig. 67 Strong type system case 2 - example 1... 65
Fig. 68 Strong type system case 2 - example 2... 66
Fig. 69 Module Tests context menu... 83

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.2.1 Delivery state
	1.2.2 Operator's obligation to exercise diligence
	1.2.3 Description of safety symbols

	1.3 Documentation issue status

	2 System description
	2.1 Extension of the Beckhoff I/O system with safety functions
	2.2 TwinCAT Safety PLC
	2.3 Safety concept

	3 Product description
	3.1 Intended use
	3.2 Technical data
	3.3 Safety parameters
	3.4 Project design limits

	4 Operation
	4.1 Installation
	4.1.1 Safety instructions
	4.1.2 Specifications for transport and storage
	4.1.3 Mechanical installation
	4.1.4 Electrical installation
	4.1.5 Software installation
	4.1.6 TwinSAFE reaction times

	4.2 Configuration of the TwinCAT Safety PLC in TwinCAT
	4.2.1 Configuration requirements
	4.2.2 Creating a safety project in TwinCAT 3
	4.2.2.1 Add new item
	4.2.2.2 TwinCAT Safety Project Wizard
	4.2.2.3 Target System
	4.2.2.4 TwinSAFE groups
	4.2.2.5 Alias devices
	4.2.2.6 Safe time signal
	4.2.2.7 Parameterization of the alias device
	4.2.2.8 Connection to AX5805/AX5806
	4.2.2.9 External connection
	4.2.2.10 TwinSAFE group - Header files
	4.2.2.11 TwinSAFE group - Source files

	4.2.3 CRC distribution
	4.2.4 Downloading the safety application
	4.2.5 Activating the safety application
	4.2.6 Safety and CRC toolbars
	4.2.7 Info data
	4.2.8 Task settings

	5 Safety C application development
	5.1 Programming in Safety C
	5.1.1 Differentiation between programming in Safety C and C/C++
	5.1.2 Source code templates
	5.1.2.1 Application module for a TwinSAFE group

	5.2 Safe coding rules
	5.2.1 Definitions
	5.2.2 General
	5.2.3 Strong typing
	5.2.3.1 Examples for the strong type system
	5.2.3.1.1 Case 1
	5.2.3.1.2 Case 2

	5.3 Permissible language scope
	5.3.1 Simple data types
	5.3.2 Enumeration types
	5.3.3 Data structures
	5.3.3.1 Structs
	5.3.3.2 Arrays

	5.3.4 Simple statements
	5.3.5 Control structures
	5.3.5.1 If-Else
	5.3.5.2 While
	5.3.5.3 For
	5.3.5.4 Switch case

	5.3.6 Expressions and operators
	5.3.7 Literals and constants
	5.3.8 Function calls and user-defined functions
	5.3.9 Asserts and traces
	5.3.9.1 Asserts
	5.3.9.2 Traces

	5.4 Performance optimizations
	5.5 Interfacing with the I/O level
	5.6 Verification and validation
	5.7 Online diagnostics
	5.8 Safe Helper Functions
	5.8.1 Safe logic functions
	5.8.1.1 AND
	5.8.1.2 AND3
	5.8.1.3 AND4
	5.8.1.4 OR
	5.8.1.5 OR3
	5.8.1.6 OR4

	5.8.2 Safe integer arithmetic functions
	5.8.2.1 ADDI32
	5.8.2.2 SUBI32
	5.8.2.3 MULI32
	5.8.2.4 DIVI32
	5.8.2.5 DIVU32
	5.8.2.6 MODI32
	5.8.2.7 MODU32
	5.8.2.8 DIVI16
	5.8.2.9 DIVU16
	5.8.2.10 MODI16
	5.8.2.11 MODU16
	5.8.2.12 DIVI8
	5.8.2.13 DIVU8
	5.8.2.14 MODI8
	5.8.2.15 MODU8
	5.8.2.16 NEGI32
	5.8.2.17 NEGI16
	5.8.2.18 NEGI8
	5.8.2.19 ABSI32
	5.8.2.20 ABSI16
	5.8.2.21 ABSI8

	5.8.3 Safe bit shift functions
	5.8.3.1 SHLU32
	5.8.3.2 SHLU16
	5.8.3.3 SHLU8
	5.8.3.4 SHRU32
	5.8.3.5 SHRU16
	5.8.3.6 SHRU8

	5.8.4 Safe conversion functions (Boolean to integer)
	5.8.4.1 BTOI32
	5.8.4.2 BTOI16
	5.8.4.3 BTOI8
	5.8.4.4 BTOU32
	5.8.4.5 BTOU16
	5.8.4.6 BTOU8

	5.8.5 Safe conversion functions (integer to integer)
	5.8.5.1 I8TOU8
	5.8.5.2 I8TOU16
	5.8.5.3 I8TOU32
	5.8.5.4 U8TOI8
	5.8.5.5 I16TOI8
	5.8.5.6 I16TOU8
	5.8.5.7 I16TOU16
	5.8.5.8 I16TOU32
	5.8.5.9 U16TOI8
	5.8.5.10 U16TOU8
	5.8.5.11 U16TOI16
	5.8.5.12 I32TOI8
	5.8.5.13 I32TOU8
	5.8.5.14 I32TOI16
	5.8.5.15 I32TOU16
	5.8.5.16 I32TOU32
	5.8.5.17 U32TOI8
	5.8.5.18 U32TOU8
	5.8.5.19 U32TOI16
	5.8.5.20 U32TOU16
	5.8.5.21 U32TOI32

	6 Graphical application development
	7 Appendix
	7.1 Support and Service
	7.2 Certificates

	 List of figures

