
Manual | EN

TF3820
TwinCAT 3 | Machine Learning Server

2024-11-21 | Version: 1.0.2

Table of contents

TF3820 3Version: 1.0.2

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 6
1.3 Notes on information security.. 7
1.4 Documentation issue status .. 8

2 Overview .. 9

3 Installation ... 11
3.1 Licensing ... 12
3.2 Setting up an NVIDIA graphics card ... 14

4 Quickstart .. 16

5 Technical introduction.. 19
5.1 Workflow.. 19

5.1.1 Preparing ONNX for use with TwinCAT Machine Learning Server.................................. 19
5.1.2 Make model description files available on the Server Device .. 21
5.1.3 Configuring the server from the PLC client .. 22
5.1.4 Execute AI model ... 23
5.1.5 Updating the AI model.. 25

5.2 TwinCAT Machine Learning Model Manager.. 26
5.2.1 Graphical user interface ... 26
5.2.2 Python interface ... 28
5.2.3 Command Line Interface.. 29

5.3 ONNX Support .. 30
5.4 TcMlServer Service... 31

5.4.1 Execution Provider ... 32

6 API .. 33
6.1 Function blocks ... 33

6.1.1 FB_MlSvrPrediction ... 33
6.2 Data types ... 38

6.2.1 E_ExecutionProvider.. 38
6.2.2 ST_PredictionParameter.. 38

7 Samples ... 40
7.1 AI-based image processing... 40
7.2 Custom attributes .. 42

8 Appendix.. 46
8.1 Error Codes... 46
8.2 Log files... 49
8.3 Third-party components .. 49
8.4 Support and Service.. 50

Table of contents

TF38204 Version: 1.0.2

Foreword

TF3820 5Version: 1.0.2

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Foreword

TF38206 Version: 1.0.2

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF3820 7Version: 1.0.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Foreword

TF38208 Version: 1.0.2

1.4 Documentation issue status
Version Modifications
1.0.2 The hexadecimal values have been added to the error codes [} 46].
1.0.x
1.0.0 First release

Overview

TF3820 9Version: 1.0.2

2 Overview
Introduction

The TwinCAT Machine Learning Server enables the execution of AI models directly on the control IPC or on
an Edge Device.

The TwinCAT Machine Learning Server consists of two components:
• The PLC function block as a client of the Machine Learning Server.
• The Machine Learning Server as a provider of services (loading, execution, ... of AI models).

These components provide asynchronous execution functionality for PLC programs. The concept of
asynchronous calculation effectively decouples the AI model execution time from the cyclic operation of the
PLC. The Machine Learning Server enables the execution of any sophisticated AI models on both CPUs and
NVIDIA GPUs and is therefore particularly suitable for use with the C6043 Industrial PC. The
Machine Learning Server is executed in the user mode of the operating system. This results in non-
deterministic behavior that can only be partially mitigated by configuring the user mode components
accordingly.

The TwinCAT Machine Learning Server loads AI models that are provided as ONNX files. All relevant AI
frameworks, such as Tensor Flow, Pytorch, Scikit Learn, etc. support this interoperability standard. This
decouples the training environment from the execution environment. Any training environment can be used
to create AI models, which can then be executed with the TwinCAT Machine Learning Server.

Target groups and use cases

The Machine Learning Server is aimed at the following use cases, among others:

• Use of computationally intensive AI models where the expected reduction in computing time due to
acceleration on a GPU overcompensates for the expected computing time fluctuations (jitter).

◦ In particular, vision AI models for image classification, object recognition or segmentation should
be mentioned here.

• Use of AI models in low-priority tasks that are only loosely coupled with the deterministic PLC program.
◦ AI models whose results are not used by the control system, but are communicated to systems

above the control level. For example, process analysis models in which the machine operator is
informed, predictive maintenance models in which the service personnel are informed, etc.

◦ AI models whose results are not required by the controller at a specific point in time. For example,
AI models to provide optimized or adapted process parameters.

Differentiation and comparison with similar TwinCAT products

In addition to the TwinCAT Machine Learning Server, there are other TwinCAT products with similar
functionality, i.e. the execution of AI models.

• TF3800 TwinCAT Machine Learning Inference Engine
• TF3810 TwinCAT Neural Network Inference Engine
• TF7800 TwinCAT Vision Machine Learning
• TF7810 TwinCAT Vision Neural Network

The main differences between the listed products and the TwinCAT Machine Learning Server are listed in
the following table.

Table 1: Product properties in comparison

Deterministic AI: TF3800, TF3810, TF7810 Accelerated AI: TF3820
Deterministic AI execution in the TwinCAT process Near-real-time execution in a separate process
Execution on standard x64 CPUs Hardware acceleration on NVIDIA GPUs possible
Supports selected AI models and operators Supports current ONNX Opset version and thus

current and diverse AI models

Overview

TF382010 Version: 1.0.2

Deterministic AI: TF3800, TF3810, TF7810 Accelerated AI: TF3820
Standard PLC function block for easy integration in
TwinCAT

Standard PLC function block for easy integration in
TwinCAT

Interoperability through ONNX support Interoperability through ONNX support
License bundle: TF3810 includes TF3800, TF7800
and TF7810

Can also be used as a server in a network with
several clients

Installation

TF3820 11Version: 1.0.2

3 Installation
To use the TwinCAT Machine Learning Server you need three components:

• TF3820 | TwinCAT Machine Learning Server
Install and license this workload either directly on your control IPC or on an Edge IPC.

◦ Installs the TcMlServer [} 31] service on the system.
• TF3830 | TwinCAT Machine Learning Server Client

Install this workload on your engineering PC to use the required PLC library.

◦ Installs the PLC library Tc3_MlServer [} 33] for the TwinCAT 3 XAE.
• TF38xx | TwinCAT Machine Learning Model Manager

Install this workload on your engineering PC to prepare the ONNX file for use in TwinCAT [} 19].

System requirements: TwinCAT Machine Learning Server (TF3820)

Technical data Requirements
Operating system Windows10
Target platform x64
Minimum TwinCAT version TwinCAT 3.1 Build 4026
Required TwinCAT setup level TwinCAT 3 XAR
Required TwinCAT license TC1000

System requirements: TwinCAT Machine Learning Server Client (TF3830)

Technical data Requirements
Operating system Windows10
Target platform x64
Minimum TwinCAT version TwinCAT 3.1 Build 4026
Required TwinCAT setup level TwinCAT 3 XAE
Required TwinCAT license TC1200

TwinCAT Package Manager: Installation (TwinCAT 3.1 Build 4026)

Detailed instructions on installing products can be found in the chapter Installing workloads in the TwinCAT
3.1 Build 4026 installation instructions.

Install the following workload to be able to use the product:

TwinCAT Package Manager UI: TF3820 | TwinCAT 3 Machine Learning Server

TwinCAT Package Manager CLI:
tcpkg install TF3820.MachineLearningServer.XAR

https://infosys.beckhoff.com/content/1033/tc3_installation/15731787659.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id

Installation

TF382012 Version: 1.0.2

TwinCAT Package Manager UI: TF3830 | TwinCAT 3 Machine Learning Server Client

TwinCAT Package Manager CLI:
tcpkg install TF3830.MachineLearningServerClient.XAE

TwinCAT Package Manager UI: TF38xx | TwinCAT 3 Machine Learning Model Manager

TwinCAT Package Manager CLI:
tcpkg install TF38xx.MachineLearningModelManager.XAE

Installation on systems with TF3800 or TF3810 version 3.2.6 and later

Potential conflict with old installations
There may be conflicts regarding the packages for the TwinCAT Machine Learning Model Manager.
This conflict is quickly resolved by uninstalling.

If you have installed a version of the workload TF3800.MachineLearningInferenceEngine.XAE or
TF3810.NeuralNetworkInferenceEngine.XAE in version 3.2.6 or lower, you should first uninstall these
workloads:
tcpkg uninstall TF3800.MachineLearningInferenceEngine.XAE --include-dependencies

tcpkg uninstall TF3810.NeuralNetworkInferenceEngine.XAE --include-dependencies

Only then should you install the workloads in version 3.2.10 or higher.

3.1 Licensing
The TF3820 TwinCAT Machine Learning Server license is requested by the server component (TcMLServer
service). The license must be stored on the IPC on which the server process is executed. The TF3820
license includes the TF3830 license, so that local communication between the function block and server is
possible without additional licenses.

The TF3830 TwinCAT Machine Learning Server Client license is queried by the function block of the PLC
library Tc3_MlServer. The license is required on runtime systems that access the
TwinCAT Machine Learning Server remotely. No separate TF3830 license is required for local
communication between function block and server.

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Cyclic license query of the TwinCAT Machine Learning Server
If no or only a 7-day test license is available for the TwinCAT Machine Learning Server, a license
query is performed cyclically every 10 seconds.

Installation

TF3820 13Version: 1.0.2

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab.
6. In the Add License column, activate the check box for the license you want to add to your project (in this

case "TF3820 TC3 Machine Learning Server" and/or "TF3830 TC3 Machine Learning Server Client").
Please note that TF3820 includes the license TF3830 for the local system. If a TF3820 is on the
local system, you do not need the TF3830 for the client. TF3830 is only required on remote
clients.

7. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

Installation

TF382014 Version: 1.0.2

8. Click 7 Days Trial License... to activate the 7 days trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

9. Enter the code exactly as it is displayed and confirm the entry.
10. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
11. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

3.2 Setting up an NVIDIA graphics card
If no Beckhoff hardware with the associated Beckhoff image is used for the GPU-accelerated AI model
execution, the customer is independently responsible for creating the necessary framework conditions on his
system for operating the graphics card.

If you are using a Beckhoff IPC with GPU and associated Beckhoff image, you can skip this section.

System requirements

System requirements are specific to NVIDIA components. The software versions listed below should not be
newer than the specified versions (e.g. do not install CUDA 12.6), otherwise incompatibilities may occur.

NVIDIA drivers
• Normal NVIDIA GPU: Version 560.67
• Quadro/RTX GPU: Version 522.86

CUDA (Compute Unified Device Architecture)

Installation

TF3820 15Version: 1.0.2

• CUDA Version12.5.1

cuDNN
• cuDNN Version 9.2.1.18 (as zip file, do not use as Windows Installer)

• Installation instructions can be found at NVIDIA: Tarball Installation.
• It is necessary to add the path to the cuDNN libraries to the PATH variable of the system, not that of

the user.

In general, the above measures meet the following system requirements:

• Availability of the cuda.dll library
• Availability of the nvml.dll library

Optimized runtime behavior

When using Beckhoff hardware, e.g. C6043 Industrial PC with GPU and associated Beckhoff image, the
runtime behavior of the NVIDIA GPU is optimally designed for interaction with the TwinCAT real-time. When
using third-party GPUs, considerable runtime fluctuations may occur during model execution, depending on
the specific GPU and its settings.

The TwinCAT Machine Learning Server informs about possible challenges of the used graphics card in the
log file [} 49] immediately after starting the server.

https://docs.nvidia.com/deeplearning/cudnn/latest/installation/windows.html

Quickstart

TF382016 Version: 1.0.2

4 Quickstart
Create or download ONNX file

If you do not have your own ONNX to hand for an initial test, you can use the ONNX Model Zoo on GitHub
for tests, for example. The ResNet50 from the ONNX Model Zoo is used as an example in the following.

Netron can be used to easily inspect whether the requirements [} 30] for execution with the TwinCAT
Machine Learning Server are met.

The Input Nodes are not dynamic and the ONNX Opset used is also supported.

Preparing ONNX file with TwinCAT Machine Learning Model Manager

Open TwinCAT XAE and navigate to TwinCAT > Machine Learning > Machine Learning Model Manager
[} 26].

Load the downloaded ONNX with "Select files" and then select "Convert files". The ONNX and the
associated JSON and PlcOpenXml created are now displayed in the target path.

Select "Open target path" to open the File Explorer on this path.

https://github.com/onnx/models
https://github.com/onnx/models/blob/main/Computer_Vision/res2net50_48w_2s_Opset18_timm/res2net50_48w_2s_Opset18.onnx

Quickstart

TF3820 17Version: 1.0.2

Making files available on the target system

In this Quickstart, it is assumed that the TwinCAT Machine Learning Server is operated on the same device
as the PLC. Accordingly, the model files (res2net50_48w_2s_Opset18.onnx and
res2net50_48w_2s_Opset18.json) are stored on the target device under the path C:\models.

Further information on this step can be found here: Make model description files available on the Server
Device [} 21].

Writing source code

It starts with an empty PLC project. First import the created res2net50_48w_2s_Opset18_plcopen.xml by
right-clicking on the DUTs folder and selecting "Import PLCopenXML".

Also add the PLC library Tc3_MlServer under References.

In the minimal sample, the code consists of two steps. First, a session is created on the TwinCAT Machine
Leanring Server and then the inference of the loaded model is executed.

Declaration
stModelInput : ST_res2net50_48w_2s_Opset18Input;
stModelOutput : ST_res2net50_48w_2s_Opset18Output;

fbMlSvr : FB_MlSvrPrediction;
bConfigured : BOOL := FALSE;
bError : BOOL := FALSE;

sSuccess : T_MaxString;
nInferenceCount : UDINT := 0;

Quickstart

TF382018 Version: 1.0.2

Code
IF NOT bConfigured AND NOT bError THEN

 fbMlSvr.stPredictionParameter.sMlModelFilePath := 'C:\models\res2net50_48w_2s_Opset18.json';
 fbMlSvr.stPredictionParameter.sMlSvrNetId := '127.0.0.1.1.1';
 fbMlSVr.stPredictionParameter.eExecutionProvider := E_ExecutionProvider.CPU;

 IF fbMlSvr.Configure(nTimeout := 10000, nPriority:=0) THEN
 IF fbMlSvr.nErrorCode <> 0 THEN
 bError := TRUE;
 ELSE
 bConfigured := TRUE;
 END_IF
 END_IF
END_IF

IF bConfigured AND NOT bError THEN
 IF fbMlSvr.Predict(
 pDataIn := ADR(stModelInput),
 nDataInSize := SIZEOF(stModelInput),
 pDataOut := ADR(stModelOutput),
 nDataOutSize := SIZEOF(stModelOutput),
 nTimeout := 1000,
 nPriority := 0)
 THEN
 IF fbMlSvr.nErrorCode <> 0 THEN
 bError := TRUE;
 ELSE
 sSuccess := 'You made your first inference';
 nInferenceCount := nInferenceCount + 1;
 // use stModelOutput here
 END_IF
 END_IF
END_IF

Activating the configuration

Activate your configuration and start the PLC. The result is shown below. The counter value
nInferenceCount increases and the variable sSuccess displays a success message.

Technical introduction

TF3820 19Version: 1.0.2

5 Technical introduction

5.1 Workflow
The workflow consists of the following steps:

• Extract PLC interface description [} 19] from the ONNX file (with the TwinCAT Machine Learning
Model Manager [} 26]).

◦ A PlcOpenXml is created from the ONNX file, which provides the input and output data type of the
model for the PLC.

◦ A JSON file is generated which contains metadata about the model. Metadata is TwinCAT-specific
on the one hand and application-specific from the user on the other.

• Provide JSON file and ONNX file on the target system [} 21].

• Import PlcOpenXml in TwinCAT Engineering [} 19] and incorporate it into the PLC program using
FB_MlSvrPrediction [} 33].

• Configure the TwinCAT Machine Learning Server from the PLC [} 22] and load the AI model.

• Call the loaded AI model asynchronously to the PLC task cycle [} 23].

• Exchange/update an AI model at runtime of the machine [} 25].

5.1.1 Preparing ONNX for use with TwinCAT Machine Learning
Server

Generate interface descriptions for the PLC

To be able to use an ONNX with the FB_MlSvrPrediction [} 33] in the TwinCAT PLC, interface information is
required. These are generated by the TwinCAT Machine Learning Model Manager [} 26].

Information on the supported ONNX Opset and restrictions can be found here: ONNX Support [} 30].

JSON file

The JSON file contains metadata required by the function block FB_MlSvrPrediction. Users can also
add their own metadata to the JSON file via the Custom Attributes [} 42]. The JSON file is loaded by the
function block, see Configure method [} 34]. Both the JSON file and the ONNX file must be available for
loading on the runtime PC, see Make model description files available on the Server Device [} 21].

Technical introduction

TF382020 Version: 1.0.2

PlcOpenXml

The PlcOpenXml contains the PLC type description of the input and output nodes. The automatically
generated input/output structures (DUTs) reflect the input/output definition of the ONNX file provided by you.
Therefore, make sure that you use meaningful names for the input and output nodes in your ONNX.

The use of these created data types is strictly required.

Sample of name generation in the PlcOpenXml:

File name: lemon_model.onnx

Name Input node: input.1

Name Output node: 367

Two DUTs of type STRUCT are generated with the names ST_lemon_modelInput and
ST_lemon_modelOutput. Each STRUCT has a header (do not change!) and a data area. The data area
elements are named according to the input and output nodes, in the above case in_input1 and out_367.
Characters not permitted in the PLC are automatically removed. If an AI model has several input or output
nodes, these are each displayed as an element of the STRUCT.

Sample of the generated input data types
TYPE ST_lemon_modelInput :
STRUCT
 {attribute 'hide'} _header_DO_NOT_CHANGE : ARRAY[0..63] OF SINT := [-1,-112,120,86,52,18,-1,-1,1,
-1,0,0,-1,-1,-112,-112,104,-72,-97,-115,-17,4,98,-85,-50,-67,-12,-50,-6,33,-10,-11,88,80,121,12,119,
-56,-24,8,110,-32,-69,113,-21,3,102,-60,64,48,9,0,0,0,0,0,0,0,0,0,0,0,0,0];
 in_input1 : ARRAY[0..0,0..2,0..223,0..223] OF REAL;
END_STRUCT
END_TYPE

The header represents a hash of the shape of the input tensors (or the output tensors for the output data
type) of the AI model. This ensures that the data type is used together with the correct ONNX. This also
means that models with identical input and output shapes and lexicographical order carry the same hashes
and therefore the data types are interoperable. This is especially important for model updates [} 25].

Technical introduction

TF3820 21Version: 1.0.2

The byte array of the header must not be changed!
The names of the elements of the STRUCT can be adjusted if required, but not their order in the STRUCT.

Import of a PlcOpenXml in TwinCAT 3

The generated PlcOpenXml can be transferred to the PLC project in the PLC by right-clicking on a folder
(e.g. DUTs) via the "Import PLCopenXML" field.

NOTICE
Verified signature: Operation of the Machine Learning Server only via generated input and
output model types
Note that the use of the input/output model types defined in the supplied PlcOpen file is mandatory. The
types have a signature verified by the TcMlServer to ensure secure inference operations.

5.1.2 Make model description files available on the Server Device
In order to be able to load models, they must be made known to the TwinCAT Machine Learning Server.
This means that the server must know the location of the created JSON and ONNX file on the file system in
order to successfully load the AI model. This announcement is made using the Configure [} 34] method.
The method is passed the full path to the JSON file, which contains the interface description. The associated
ONNX file must be stored in the same folder path. A hash is always used to validate the connection between
JSON and ONNX.

The ONNX file is required on the device on which the TwinCAT Machine Learning Server is installed. The
JSON file, in turn, is required on the client device. The storage path itself is arbitrary; but JSON and ONNX
must have the same path.

Variant 1 - Client and server are installed on the same IPC: The JSON and ONNX file must be stored on the
IPC in any path.

Variant 2 - Client and server are installed on different IPCs: The ONNX file can be stored directly on the
server. The JSON file must then be stored on the client device under the same path.

Technical introduction

TF382022 Version: 1.0.2

Variant 3 - Client and server are installed on different IPCs: The model files (ONNX and JSON) can
alternatively both be stored on the client. When the Configure method is called, the path on the Server
Device is checked first. If the ONNX file is not found there, the path on the Client Device is checked. If the
JSON and ONNX are found on the Client Device, the ONNX file is transferred to the server device via ADS
and then loaded from the server. This variant is time-consuming and is only carried out once for this model.
The model is then loaded directly from the Server Device.

The ADS router memory must be large enough to be able to send the model via ADS.

5.1.3 Configuring the server from the PLC client
Calling the method configure [} 34] instantiates a session for the respective instance of the function block
FB_MlSvrPrediction in the TcMlServer. The configuration defined in the FB member
stPredictionParameter [} 38] is used for instantiation. As a rule, each instance of FB_MlSvrPrediction is
assigned its own session on the server. However, sessions can also be used together via the parameter
bExclusiveSession.

During the configuration call, the following is defined in particular:

• Where is the TwinCAT Machine Learning Server?
◦ Is specified via the AMS Net Id of the Server Device. The default value is "local".

Technical introduction

TF3820 23Version: 1.0.2

• Which AI model should be loaded?
◦ Is specified via the path to the corresponding JSON file.

• On which hardware should the AI model be executed?

◦ Is defined via the Execution Provider (E_ExecutionProvider [} 38]) and optionally the DeviceId of
the GPU.

Each session that is opened allocates resources on the Server Device. The number of parallel sessions is
not limited on the software side, but is restricted solely by the available hardware resources. If there is not
enough memory (RAM or vRAM) available to open another session, the Configure command will fail.

The deconfigure [} 35] method can be used to close a session and thus release the resources.

If a client does not send a request to the server for a defined period of time, the so-called session time-out
period, the server assumes that the client is no longer active. The session is automatically closed when the
configured session timeout [} 38] is reached.

Sample

Declaration
fbMlSvr : FB_MlSvrPrediction();

Code
// configure session paramaters
fbMlSvr.stPredictionParameter.sMlModelFilePath := 'C:\mdl\lemon_model.json';
fbMlSvr.stPredictionParameter.sMlSvrNetId := '127.0.0.1.1.1';
fbMlSVr.stPredictionParameter.eExecutionProvider := E_ExecutionProvider.CPU;

// Submit configuration request to the TcMlServer
// Provide a generous nTimeout, as the configuration can take a substantial amount of time
IF fbMlSvr.Configure(nTimeout := 1000, nPriority:=0) THEN
// check for error
// change state
END_IF;

5.1.4 Execute AI model
The execution of an AI model with the FB_MlSvrPrediction [} 33] is triggered via the Predict [} 35] method
(or PredictBatched [} 36] in the case of a batched call), which is asynchronous to the PLC task cycle.

The input data type and the output data type (see PlcOpenXml in the Machine Learning Model Manager
[} 26] section), as well as a timeout and a priority are passed to the method.

Send inference order:

When the method is called, the input data area is sent to the server via ADS. The copying process required
for this is carried out synchronously in the task cycle. Please note that larger amounts of data require more
time. When transferring large amounts of data, such as large image data, the PLC task cycle time must be
configured to prevent cycle timeouts.

Edit inference order:

The inference order is then accepted by the TwinCAT Machine Learning Server. If there are multiple
requests that cannot be processed at the same time, a queue is created, with higher priorities moving up in
the queue. CPU-based inference orders are always processed sequentially, i.e. the queue is particularly
relevant here. GPU-based inferences, on the other hand, can be processed in parallel. Each FB instance
can only ever have one outstanding request on the server, i.e. the maximum number of requests on the
server is the number of active clients.

Request inference result:

Technical introduction

TF382024 Version: 1.0.2

It is important to note that the processing of the asynchronous request can only be monitored with the
temporal granularity of the PLC task cycle time. It is therefore important that applications with a low delay
budget have the lowest possible cycle times and correspondingly high sampling rates in order to minimize
delays caused by time resolution. This is particularly important when interacting with other, computationally
intensive and synchronously executed algorithms, e.g. when pre- or post-processing data.

Sample Predict()

Declaration
stModelInput : ST_LemonModelInput; // DUT from PlcOpenXml produced with TC ML Model Manager
stModelOutput : ST_LemonModelOutput; // DUT from PlcOpenXml produced with TC ML Model Manager
fbMlSvr : FB_MlSvrPrediction();

Code:
// Submission of an inference request at the TcMlServer
// and subsequent postprocessing of the inference result
// Submission of the asynchronous inference request to the TcMlServer
IF fbMlSvr.Predict(
 pDataIn := ADR(stModelInput),
 nDataInSize := SIZEOF(ST_LemonModelInput),
 pDataOut := ADR(stModelOutput),
 nDataOutSize := SIZEOF(ST_LemonModelOutput),
 nTimeout := 100,
 nPriority := 0) THEN
 IF fbMlSvr.nErrorCode <> 0 AND NOT fbMlSvr.bConfigured THEN
 // If nErrorCode -1 is encountered, increase nTimeout
 eState := E_State.eError;
 ELSE
 // Postprocessing of the inference results
 END_IF
END_IF

Sample PredictBatched()

Declaration
stModelInputBatch : ARRAY[0..3] OF ST_LemonModelInput;
stModelOutputBatch : ARRAY[0..3] OF ST_LemonModelOutput;

Code

Technical introduction

TF3820 25Version: 1.0.2

IF fbMlSvr.PredictBatched(
 pDataIn := ADR(stModelInputBatch),
 nDataInSize := SIZEOF(ST_LemonModelInput),
 nBatchSize := 4,
 pDataOut := ADR(stModelOutputBatch),
 nDataOutSize := SIZEOF(ST_LemonModelOutput),
 nTimeout := 100,
 nPriority := 0) THEN

In the sample calls, the timeout for the inference request is set to 100 cycles in each case. In the figure
above, the result is available after 3 cycles (top) or 2 cycles (bottom). The jitter that may be experienced can
be queried via fbMlSvr.nMaxInferenceDuration. This shows the maximum number of PLC cycles that
were required to execute an inference. Based on this value, the timeout value can usually be interpreted
well.

5.1.5 Updating the AI model
AI models can be exchanged at runtime. The following describes two cases and the steps to follow.

Case 1: Model update without changing the model interface

Definition of the case:

In this case, the input and output interface to the AI model remains identical when the model is replaced. To
do this, the input and output nodes must remain unchanged in their sequence (if there are several nodes)
and in their shape.

It is recommended not to change the entire model architecture when updating the model, i.e. to carry out
transfer training/fine-tuning on the existing AI model. As a result, the interfaces to the model do not change
and the runtime behavior remains the same.

A model update can be carried out without a compile process and without a TwinCAT stop.

Steps to update the model:
• Create JSON and PlcOpenXml with the TwinCAT Machine Learning Model Manager.
• Make JSON and ONNX available on the relevant systems. If the full path has changed, make the new

path known in a variable via ADS, for example.
• The hash of the input and output data types does not change. This means that no new PlcOpenXml

needs to be read. The new PlcOpenXml remains unused.

• Change the state in the running PLC, e.g. set a corresponding variable via ADS, and call Deconfigure
[} 35]() to close the current session.

• Call Configure to load the new JSON.

During the time from Deconfigure to the completion of the Configure method, no inference calls can be sent
to the server with this function block.

Case 2: Model update with model interface change

Definition of the case:

In this case, the input and output interface to the AI model changes when the model is swapped. As a result,
the input and output data types in the PLC no longer match the model. As a rule, several places in the
source code have to be changed.

It is recommended to revise the source code in TwinCAT XAE, retest the project and only then load it onto
the machine. Please note that the runtime behavior of the AI model may also have changed.

In this case, a model update is connected with a TwinCAT stop when the new, modified TwinCAT project is
loaded.

Technical introduction

TF382026 Version: 1.0.2

5.2 TwinCAT Machine Learning Model Manager
The TwinCAT Machine Learning Model Manager is used to manage the ONNX model files and prepare them
for use with TwinCAT. The functions of the TwinCAT Machine Learning Model Manager are summarized:

• Creation of a metadata file (JSON file).
• Creation of a PlcOpenXml, which describes a PLC data type description of the model input and output.
• Optional: Inserting application-specific metadata (Custom attributes). A user can add the Custom

attributes to the JSON. The attributes can then be read out in the PLC at runtime using methods at
FB_MlSvrPrediction [} 33].

The TwinCAT Machine Learning Model Manager has three different interfaces:

1. A graphical user interface (Visual Studio plugin)
2. A Python interface (Python package)
3. A Command Line Interface (CLI)

These are described in more detail below.

5.2.1 Graphical user interface
The TwinCAT 3 Machine Learning Model Manager is the central UI for editing ONNX files. The tool is
integrated in Visual Studio and can be opened via the menu bar under TwinCAT > Machine Learning >
Machine Learning Model Manager.

Required Visual Studio version
The graphic interface of the TwinCAT 3 Machine Learning Model Manager is compatible with Visual
Studio 2017, 2019, 2022 and the TcXaeShell.

Creating the JSON and PlcOpenXml
1. Open the Convert Tool tab.

ð Click Select files to open the file browser.
2. Select ONNX files (multi-select possible by Ctrl-clicking).

ð Selected ONNX files are listed on the left-hand side with their path and file name.
3. If required, you can select files and remove them from the list again by clicking the Remove selected

from list button.
4. Click on Convert files to create the required JSON and PlcOpenXml.

ð The files are stored in the converted file path. The default path is <TwinCATPath>\Functions\TF38xx-
Machine-Learning\ConvertToolFiles.

5. Click on Open target path to open the converted file path in the file browser.
ð The path can be changed with Select target path. The change is retained even after restarting the PC.

Technical introduction

TF3820 27Version: 1.0.2

The tool described here is also the central tool for managing ONNX files for the TwinCAT Machine Learning
Inference Engine and TwinCAT Neural Network Inference Engine. For this reason, description files for the
optional execution of the AI model are also generated with these products if the ONNX is compatible. The
Convert to *.xml drop-down menu is relevant for these products. This is not relevant for the TwinCAT
Machine Learning Server.

A pop-up window indicates the TwinCAT product with which the ONNX is compatible for each converted
ONNX.

Creating Custom attributes

A JSON can be selected via Select File and then edited. After editing, the original file is overwritten using
Save changes.

Technical introduction

TF382028 Version: 1.0.2

The Custom attributes are edited using the buttons:

• Add attribute entry: Adds an attribute to the selected Tree item. The Tree item must be selected in
the left-hand list.

◦ If an attribute is created, then the name, the data type and the value or values respectively must
be specified.

◦ The attributes are deleted by selecting the attribute and pressing the Delete button.
• Add tree entry: Adds a Tree item under the selected Tree item (as a Sub Tree Item).
• Rename tree entry: The selected Tree item can be renamed.
• Remove tree entry: The selected Tree item incl. the Sub Tree Items is deleted.

5.2.2 Python interface

Installation of the Python package

The Python package is stored as a whl file in the folder <TwinCatInstallDir>\Functions\TF38xx-Machine-
Learning\Utilities\ModelManagerAPI\PythonPackage.

To install the package, use pip install <TwinCatInstallDir>\Functions\TF38xx-Machine-
Learning\Utilities\ModelManagerAPI\PythonPackage\<whl-file-name>. The folder may contain different
versions of the package (only if you have installed a new setup on top of an old TwinCAT Machine Learning
Setup).

Make sure you always use the current version.

Using the API

The package is loaded with
import beckhoff.toolbox as tb

Creating a JSON and PlcOpenXml from an ONNX file
tb.onnxprep("C:\\PathTo\\myONNX.onnx")

Technical introduction

TF3820 29Version: 1.0.2

Display of model information
tb.info("C:\\PathTo\\myONNX.json")

Add Custom Attributes
new_ca = { 'nID' : -34234, 'bTested' : True, 'fNum' : 324.3E-12, 'AnotherTreeItem' : { 'fPi' : 3.134
12, 'bFalseFlag' : False }}
tb.modify_ca("C:\\PathTo\\myONNX.json","C:\\PathTo\\myONNX_ca.json", new_ca)

Add Model Description (name, version, author, etc. of a model)
model_description = {
 "new_version" : "2.3.1.0",
 "new_name" : "CurrentPreControlAxis42",
 "new_desc":"This is the most awesome model to control Axis42",
 "new_author":"Max",
 "new_tags":"awesome, ingenious, astounding",
}
tb.modify_md("C:\\PathTo\\myONNX.json", "C:\\PathTo\\myONNX_md.json",
 **model_description)

5.2.3 Command Line Interface
The Model Manager can also be used via the Command Prompt. The mllib_toolbox.exe is available for this
purpose.

The Executable is located in <TwinCatInstallDir>\Functions\TF38xx-Machine-
Learning\Utilities\ModelManagerAPI.

Help is displayed by running the exe without arguments.

Using the API

Creating a JSON and PlcOpenXml from an ONNX file
mllib_toolbox.exe onnxprep C:\PathTo\mymodel.onnx

Display of model information
mllib_toolbox.exe info C:\PathTo\mymodel.json

The creation of Custom attributes is not supported in the CLI.

Technical introduction

TF382030 Version: 1.0.2

5.3 ONNX Support
Supported ONNX opset version

The TwinCAT Machine Learning Server, more precisely the TcMlServer service, supports ONNX Opset
version 21. Backward compatibility with more recent ONNX Opset versions is generally provided by ONNX.

The Opset version used is normally listed in the ONNX file under imports. In the image below, visualized with
Netron, ONNX Opset version 18 as an example.

Restrictions on supported ONNX properties

No dynamic input or output shapes

Dynamic input or output shapes are not supported. Only the leading batchsize parameter may be a dynamic
value (see next section).

Permitted are for example:

float32[244, 244, 1]

float32[1, 3, 244, 244]

float32[5, 244, 244, 3]

Not permitted are:

float32[244, 244, ?]

float32[244, height, 3]

float32[?, 244, 244, ?]

float32[1, 244, 244, unknown]

You can quickly fix the shape of ONNX nodes, e.g. using the onnxruntime package in Python, see Make
dynamic input shape fixed | onnxruntime.

The shape...

float32[-1, 3, ?, ?]

becomes with...
python -m onnxruntime.tools.make_dynamic_shape_fixed --input_name x --input_shape 1,3,960,960
model.onnx model.fixed.onnx

float32[1, 3, 960, 960]

Batchsize must be leading

The TwinCAT Machine Learning Server only supports models with Batchsize as the leading parameter of the
input node. The batchsize parameter may be dynamic (unlike all other parameters). Permitted are for
example:

float32[batch, 3, 244, 244]

float32[?, 3, 244, 244]

float32[unknown, 244, 244, 3]

The PredictBatched() [} 36] method can only be used if the model contains a dynamic batchsize as the
leading parameter.

https://netron.app/
https://onnxruntime.ai/docs/tutorials/mobile/helpers/make-dynamic-shape-fixed.html
https://onnxruntime.ai/docs/tutorials/mobile/helpers/make-dynamic-shape-fixed.html

Technical introduction

TF3820 31Version: 1.0.2

ONNX file size

Currently the size limit for a loadable ONNX file is 2 GB. Contact Beckhoff (see Support and Service [} 50])
if this limit is a challenge for your application.

5.4 TcMlServer Service
The installation of TF3820 can be verified by checking the presence of the TcMlServer.exe service. Note that
the TcMlServer service offers a delayed autonomous start on restart. Please note the delayed start time
here. The TcMlServer allocates ADS port 19900 on the system at startup.

System requirements

Apart from a 64-bit Windows and a TC1000 TwinCAT 3 ADS installation (workload TC1000.ADS.XAR), the
TcMlServer does not formally place any further requirements on the system apart from a hard disk
requirement of approx. 500 MB. However, the highest possible number of UM cores is recommended for
high-performance operation of the TcMlServer.

License query

When starting, the TcMlServer checks whether the TF3820 license is available. If the license is not initially
available, the license status is queried every ten seconds. It may therefore take a short time for a license to
become effective. A corresponding error code is issued for requests if the TcMlServer is not correctly
licensed.

Installation path and log files:

C:\ProgramData\Beckhoff\TwinCAT\Functions\TF38xx-Machine-Learning\TcMlServer

In support cases, log files with any recorded messages are available in the logs folder.

The logs folder has the following structure:

After each restart, the TcMlServer creates a new directory whose name is made up of the creation date and
time. The logs are stored in JSON file format in the directory and regularly written by the TcMlServer, if
available. In the event of an error, there may therefore be several JSON files whose names specify an
interval of the errors or warnings they contain.

Technical introduction

TF382032 Version: 1.0.2

5.4.1 Execution Provider
The following ExecutionProviders are currently available:

• CPU
• CUDA

The ExecutionProvider [} 38] is transferred with the Configure [} 34] method of the FB_MlSvrPrediction
[} 33].

CPU

The loaded AI model is executed on the CPU resources of the IPC. If a TwinCAT runtime is active on the
same device, only the CPU resources that are not used by TwinCAT can be used (isolated cores are only
used by TwinCAT, shared cores can only be used for a limited time). The operating system takes over the
parallelization of the calculation on all available threads.

If several clients create a session with Execution Provider CPU on a server, the inference requests are
processed one after the other. Please note the Priority parameter when calling Predict.

CUDA

The loaded AI model is executed on the GPU resources of the IPC. Several sessions can be run in parallel
on one GPU if the GPU resources are sufficient.

The nDeviceId field allows you to distinguish between multiple graphics cards that may be installed. For
computers with a maximum of one graphics card, the value can be left at the default value, otherwise the
field corresponds to the CUDA compute index of the graphics cards. If a computer with several graphics
cards is used, the following system environment variable should be set:

CUDA_DEVICE_ORDER='PCI_BUS_ID'

Furthermore, the TcMlServer allows sharing of inference resources between different FBs that provide the
same specification for their inference session. The use of a shared inference engine (bExclusiveSession
= FALSE) can occur in cases where a bottleneck - for example in memory on graphics cards - would
otherwise be expected. For stateful models (e.g. recurrent models), however, such a configuration should be
avoided.

API

TF3820 33Version: 1.0.2

6 API

6.1 Function blocks

6.1.1 FB_MlSvrPrediction
FB_MlSvrPrediction is a TcMlServer client that provides asynchronous and optionally hardware-
accelerated AI model inference for the PLC.

The function block is located in the PLC library Tc3_MlServer.

Syntax

Declaration:
fbMlSvr : FB_MlSvrPrediction;

Definition:
FUNCTION_BLOCK FB_FTR_IIRCoeff
VAR_INPUT
 stPredictionParameter : ST_PredictionParameter;
END_VAR
VAR_OUTPUT
 bError : BOOL;
 nErrorCode : HRESULT;
 bConfigured : BOOL;
 nMaxInferenceDuration : UDINT;
END_VAR

 Inputs

Name Type Description
stPredictionParamete
r [} 38]

ST_PredictionParameter Configuration structure of the Machine Learning Server
session

 Outputs

Name Type Description
bError BOOL TRUE if the currently pending asynchronous request to the

TcMLServer was canceled with an error.
nErrorCode HRESULT Return code [} 46] for the currently pending

asynchronous request to the TcMlServer.
bConfigured BOOL TRUE if the configuration was successful. Indicates

whether the function block has a valid session with the
TcMlServer. If FALSE, "configure" must be called. Please
note: bConfigured can change to FALSE due to an error
during the execution of the request at the TcMlServer.

nMaxInferenceDurati
on

UDINT Maximum number of PLC cycles required to execute an
inference. See also Execute AI model [} 23].

 Methods

Name Definition location Description
Configure [} 34] Local Create a session for the FB instance on the TcMlServer

according to the configuration defined in
stPredictionParameter [} 38].

Deconfigure [} 35] Local End a session of the function block on the TcMlServer. The
allocated resources on the server are released again.

API

TF382034 Version: 1.0.2

Name Definition location Description
GetCustomAttribute_
array [} 37]

Local Get custom attributes of type ARRAY of the AI model

GetCustomAttribute_
bool [} 37]

Local Get custom attributes of type BOOL of the AI model

GetCustomAttribute_
fp64 [} 37]

Local Get custom attributes of type LREAL of the AI model

GetCustomAttribute_
int64 [} 37]

Local Get custom attributes of type LINT of AI model

GetCustomAttribute_
str [} 38]

Local Get custom attributes of type STRING of the AI model

Predict [} 35] Local Transmission of an asynchronous inference request to the
TcMlServer

PredictBatched
[} 36]

Local Transmission of an asynchronous, bundled inference
request to the TcMLServer

6.1.1.1 Asynchronous methods
The asynchronous methods of FB_MlSvrPrediction are characterized in their signature by the fact that
they accept a timeout parameter and return a bool indicating the execution state of the asynchronous
request. The PLC program must therefore wait for the asynchronous methods to finish executing and
configure the timeout according to the requirements of the application so that the application can respond
appropriately to any delays in the TcMlServer. Note that the specified timeout is given in the unit PLC task
cycles.

It is also important to note that the processing of the asynchronous request can of course only be monitored
with the temporal granularity of the PLC task cycle time. It is therefore important that applications with a low
delay budget have the lowest possible cycle times and correspondingly high sampling rates in order to
minimize delays caused by time resolution. This is particularly important when interacting with other,
computationally intensive and synchronously executed algorithms, e.g. when pre- or post-processing data.

However, a restriction regarding the minimum PLC task cycle time is imposed by the amount of data that has
to be transported from the client to the server. When transferring large amounts of data, such as large image
data, the PLC task cycle time must be configured to prevent cycle timeouts.

6.1.1.1.1 Configure()
Calling the method configure instantiates a session for the respective instance of the function block
FB_MlSvrPrediction in the TcMlServer. The configuration defined in the FB member
stPredictionParameter is used for instantiation.

The instantiation of a session can take a considerable amount of time, in particular because several
inferences are made to temper the inference engine (model warm-up). This fact should be taken into account
when selecting the timeout parameter of the method call.

It should also be taken into account that calling the method when configuring a CUDA accelerated session
temporarily requires exclusive access to the GPU. The configuration of such a session can therefore
interfere considerably with the inference performance of other FBs operating in parallel.

After the method indicates the completion of the processing of the asynchronous instantiation call by
returning TRUE, the result can be evaluated via the FB members bError and, in the event of an error,
nErrorCode. Once an inference session has been successfully instantiated, the FB will set the member
bConfigured to TRUE.

See also Configuring the server from the PLC client [} 22].

Parameter Type Default Description
INPUT nTimeout ULINT Number of PLC task cycles before

the timeout error is returned.

API

TF3820 35Version: 1.0.2

Parameter Type Default Description
INPUT nPriority UDINT 0 Priority of the request. Bigger means

higher priority.
OUTPUT Configure BOOL Return value. TRUE as soon as the

result of the asynchronous call is
available. The result of the call can
then be checked using the 'bError'
and 'nErrorCode' properties.

6.1.1.1.2 Deconfigure()
The Deconfigure method closes the inference session of the FB in the TcMlServer. After a successful call to
Deconfigure, the FB can set up a new inference session using the Configure method.

After a successful configuration of an inference session, all calls to Configure are ignored until a call to
Deconfigure has been made.

Parameter Type Default Description
INPUT nTimeout ULINT Number of PLC task

cycles before the
timeout error is
returned.

OUTPUT Deconfigure BOOL Return value. TRUE
as soon as the result
of the asynchronous
call is available. The
result of the call can
then be checked
using the 'bError'
and 'nErrorCode'
properties.

6.1.1.1.3 Predict()
The Predict method submits an asynchronous inference order to the TcMlServer.

The method expects the provision of input data according to the specification of the ONNX file, see Preparing
ONNX for use with TwinCAT Machine Learning Server [} 19].

The provided pointer to the output data must be valid and point to an instance of the output data type
according to the created PlcOpenXml. Once the asynchronous inference has been successfully completed,
the data in the transferred output memory area is valid and released for further processing.

See also Execute AI model [} 23].

Parameter Type Default Description
INPUT pDataIn PVOID Pointer to the

instance of the input
data type

INPUT nDataInSize UDINT 0 Size of the input
data type

INPUT pDataOut PVOID Pointer to the
instance of an output
data type

INPUT pDataOutSize UDINT Size of the output
data type

INPUT nTimeout ULINT Number of PLC task
cycles before the
timeout error is
returned.

API

TF382036 Version: 1.0.2

Parameter Type Default Description
INPUT nPriority UDINT 0 Priority of the

request. Bigger
means higher
priority.

OUTPUT Predict BOOL Return value. TRUE
as soon as the result
of the asynchronous
call is available. The
result of the call can
then be checked
using the 'bError'
and 'nErrorCode'
properties.

6.1.1.1.4 PredictBatched()
The PredictBatched method submits an asynchronous batch inference order to the TcMlServer.

The method expects the provision of an array of the input data type of the model according to the
specification of the ONNX file, see Preparing ONNX for use with TwinCAT Machine Learning Server [} 19].

The provided pointer to the output data must be valid and point to an instance of an array of output data
types according to the created PlcOpenXml. Once the asynchronous inference has been successfully
completed, the data in the transferred output memory area is valid and released for further processing.

See also Execute AI model [} 23].

Parameter Type Default Description
INPUT pDataIn PVOID Pointer to the

instance of an array
of input data types

INPUT nDataInSize UDINT 0 Size of the input
data type (size of an
element, not of the
array)

INPUT nBatchSize UINT Size of the batch
INPUT pDataOut PVOID Pointer to the

instance of an output
data type

INPUT pDataOutSize UDINT Size of the output
data type

INPUT nTimeout ULINT Number of PLC task
cycles before the
timeout error is
returned.

INPUT nPriority UDINT 0 Priority of the
request. Bigger
means higher
priority.

OUTPUT PredictBatched BOOL Return value. TRUE
as soon as the result
of the asynchronous
call is available. The
result of the call can
then be checked
using the 'bError'
and 'nErrorCode'
properties.

API

TF3820 37Version: 1.0.2

6.1.1.2 Synchronous methods

6.1.1.2.1 GetCustomAttribute_array

Parameter Type Description
INPUT sCustomAttributeName T_MaxString Name of the Custom

attribute
INPUT fmtAttributeDataType Reference to

ETcMllDataType
Data format of the Custom
attribute

INPUT pDataBuffer PVOID Destination data buffer
into which the user-
defined attribute is copied.

INPUT nDataBufferLen UDINT Length of the destination
data buffer in bytes

INPUT nArrayLength Reference To UDINT Number of data type
elements (i.e. number of
fp32 values) found in the
user-defined attribute.

INPUT pnBytesWritten Pointer To UDINT Returns the number of
bytes written to the
destination buffer.

OUTPUT GetCustomAttribute_array BOOL TRUE if an error occurred
in the method.

6.1.1.2.2 GetCustomAttribute_bool

Parameter Type Description
INPUT sCustomAttributeName T_MaxString Name of the Custom

attribute
INPUT nDataOut Reference To BOOL Output value Custom

attributes of type Bool
OUTPUT GetCustomAttribute_bool BOOL TRUE if an error occurred

in the method.

6.1.1.2.3 GetCustomAttribute_fp64

Parameter Type Description
INPUT sCustomAttributeName T_MaxString Name of the Custom

attribute
INPUT nDataOut Reference To LREAL Output value of the

Custom attribute fp64
OUTPUT GetCustomAttribute_fp64 BOOL TRUE if an error occurred

in the method.

6.1.1.2.4 GetCustomAttribute_int64

Parameter Type Description
INPUT sCustomAttributeName T_MaxString Name of the Custom

attribute
INPUT nDataOut Reference To LINT Output value of the

Custom attribute int64
OUTPUT GetCustomAttribute_int64 BOOL TRUE if an error occurred

in the method.

API

TF382038 Version: 1.0.2

6.1.1.2.5 GetCustomAttribute_str

Parameter Type Description
INPUT sCustomAttributeName T_MaxString Name of the Custom

attribute
INPUT nDataOut Reference To

T_MaxString
Output value of the
Custom attribute of type
String

OUTPUT pnStringLen Pointer To UDINT (Optional) Actual length of
the string attribute

OUTPUT GetCustomAttribute_strin
g

BOOL TRUE if an error occurred
in the method.

6.2 Data types

6.2.1 E_ExecutionProvider
Enum describes all supported execution modes of the TcMlServer.

Name Type Value Description
CPU USINT 0 Execution on CPU
CUDA USINT 1 Execution on CUDA-

capable NVIDIA GPUs

6.2.2 ST_PredictionParameter
Configuration options for an inference session on the TcMlServer.

Name Type Default Description
sMlModelFilePath STRING(255) Fullpath to the created

JSON file (see Model
Manager [} 26])

eExecutionProvider E_ExecutionProvider
[} 38]

ExecutionProvider.CPU The AI model named
under sMlModelFilePath
is to be executed on this
specified hardware.

nDeviceId UDINT 0 Index of the desired GPU
device when using the
"CUDA"
ExecutionProvider. The
index corresponds to the
CUDA Compute Index
and is only relevant for
IPCs with multiple GPUs.

bExclusiveSession BOOL TRUE Determines the exclusivity
of the inference session
that is created for the FB
instance on the
TcMlServer. If TRUE, the
TcMlServer creates an
exclusive session, which
is necessary for state-
dependent models (e.g.
RNNs) in order to avoid
interference. If FALSE,
the session can be shared
with other FB instances

API

TF3820 39Version: 1.0.2

Name Type Default Description
that request the same
configuration, which can
reduce the memory load.

nSessionTimeout ULINT 72 Duration of inactivity in
hours after which the FB
session on the
TcMlServer expires. The
server then releases the
allocated resources of the
relevant client again.

sMlSvrNetId T_AmsSvrNetId '127.0.0.1.1.1' AMS Net Id of the device
on which the TcMlServer
service is accessible.
Default is ‘local’.

Samples

TF382040 Version: 1.0.2

7 Samples

7.1 AI-based image processing
This sample demonstrates how to:

• Use TwinCAT Vision to load image data from the local hard disk and make it available in the PLC.
• Pre-process images with the TwinCAT Vision library.
• Use FB_MlSvrPrediction to start a session on the locally installed TwinCAT Machine Learning Server

and load an AI model (classification model).
• Execute the inference on the TwinCAT Machine Learning Server.
• Continue to use the result in the PLC.

Download and overview of the files

You can download the project here: https://infosys.beckhoff.com/content/1033/
TF3820_TC3_Machine_Learning_Server/Resources/17328164363.zip

• The ZIP contains a tnzip, which you can open in TwinCAT XAE via
File > Open > Open Solution from Archive....

• The models folder contains an ONNX and the already created JSON and PlcOpenXml.
• The dataset folder contains sample images that are to be processed.

Requirements

Install the following workloads:

• TwinCAT Standard
• TF3820 | TwinCAT Machine Learning Server
• TF3830 | TwinCAT Machine Learning Server Client
• TF7xxx | TwinCAT 3 Vision

Setting up the project
• Open the tnzip and save your project.
• Set up the FileSpource:

◦ In the System Manager, select the Tree Item
Vision > FileSource > ImageSource

◦ Add the images from the models folder.
◦ Set the Cycle Time of the ImageSource to 100 ms.

• Name the FullPath to the model JSON in line 9 of the MAIN. The ONNX must be in the same folder.
• Make sure that all software licenses are available at least in the 7-day trial license:

◦ TC1200 TwinCAT PLC
◦ TF3820 TwinCAT Machine Learning Server
◦ TF7100 TwinCAT Vision Base

Executing the project

Start the application with Activate Configuration on your target system. If all points are set correctly, after a
short time the eState should be set to eInference and the variable sLabel should display the result of
the current inference.

https://infosys.beckhoff.com/content/1033/TF3820_TC3_Machine_Learning_Server/Resources/17328164363.zip
https://infosys.beckhoff.com/content/1033/TF3820_TC3_Machine_Learning_Server/Resources/17328164363.zip

Samples

TF3820 41Version: 1.0.2

If an error has occurred, the eState is set to Error. You can then open the fbMlSvr instance and read out
the error code. Use the table of error codes [} 46] to narrow down the problem.

Excerpts from the PLC program

Declaration

In the declaration, the main points concerning the handling of the TwinCAT Machine Learning Server are the
input and output data types of the AI model and the instance of the clients to the Machine Learning Server.
stModelInput : ST_lemon_modelInput; //model input datatype, imported via PlcOpenXml
stModelOutput : ST_lemon_modelOutput; //model output datatype, imported via PlcOpenXml
fbMlSvr : FB_MlSvrPrediction(); // Instance of Client to TcMlServer

The data types have already been read into the TwinCAT project via the PlcOpenXml (see models folder).
The description can be found in the DUTs folder.

Configuration of the session

In this sample, the client opens a session on the TwinCAT Machine Learning Server in the
E_State.eMlSvrConfiguration state. This specifies the system on which the server is accessible, which model
is loaded in the session and on which hardware the model is to be executed.
fbMlSvr.stPredictionParameter.sMlModelFilePath := 'C:
\models\lemon_model.json'; // fullpath to model
fbMlSvr.stPredictionParameter.sMlSvrNetId := '127.0.0.1.1.1'; //
Server on local system
fbMlSVr.stPredictionParameter.eExecutionProvider := E_EXECUTIONPROVIDER.CPU;
 // CPU execution

// Submit configuration request to the TcMlServer
// Provide a generous nTimeout, as the configuration can take a substantial amount of time
IF fbMlSvr.Configure(nTimeout := 1000, nPriority:=0) THEN
 IF fbMlSvr.nErrorCode <> 0 THEN
 // If nErrorCode -1 is encountered, increase nTimeout
 eState := E_State.eError;
 ELSE
 eState := E_State.eImageAcquisition;
 END_IF
END_IF

Calling the method Configure() sends the request to open a session to the server. The call is
asynchronous to the PLC task and is acknowledged with a TRUE when the session setup has been
successfully completed.

Executing the model

Samples

TF382042 Version: 1.0.2

In the state E_State.eInference, the Predict call is sent to the Machine Learning Server. This call is
also asynchronous to the PLC task. The method returns TRUE if the result is available.

In this sample, the image of type ITcVnImage is copied to the model input data type using the
F_VN_ExportImage function before the inference call.
F_VN_ExportImage(ipTensorImage, ADR(stModelInput.in_input1), nImageSize, hrVision);
// Submission of the asynchronous inference request to the TcMlServer
IF fbMlSvr.Predict(pDataIn := ADR(stModelInput),
 nDataInSize := SIZEOF(stModelInput),
 pDataOut := ADR(stModelOutput),
 nDataOutSize := SIZEOF(stModelOutput),
 nTimeout := 100,
 nPriority := 0) THEN
 IF fbMlSvr.nErrorCode <> 0 AND NOT fbMlSvr.bConfigured THEN
 // If nErrorCode -1 is encountered, increase nTimeout
 eState := E_State.eError;
 ELSE

 // Postprocessing of the inference results
 F_Softmax(stModelOutput.out_367);
 nPredictedClass := F_ArgMax(stModelOutput.out_367);

The result of the inference can be used after a successful error check.

7.2 Custom attributes
With the Custom attributes, it is possible to provide the AI model with metadata that is to be taken into
account in the PLC at runtime. The metadata concept also exists similarly in ONNX, but these cannot be
evaluated in the PLC at runtime.

In principle, you can use both metadata areas at the same time. Distinguish between information required at
runtime in the PLC (Custom attribute area) and information required by the PLC programmer only at the
engineering stage (ONNX metadata or Custom attributes).

In any case, the aim is for the creator of an ONNX to be able to pass on enough information to the consumer
of the ONNX so that the consumer can use the AI model correctly and efficiently.

Custom attributes for image preprocessing

In the following, the sample AI-based image processing [} 40] is extended. Information about the input image
is added. The aim is to adapt the image pre-processing according to the metadata.

Implementation in the TwinCAT Machine Learning Model Manager

The Configuration Tool can be used in the graphical environment to enter the Custom attributes.

https://github.com/onnx/onnx/blob/main/docs/MetadataProps.md

Samples

TF3820 43Version: 1.0.2

Implementation in Python

From a workflow perspective, it is often more convenient to enter all required Custom attributes directly in
Python after model training.
new_ca = { 'ImageInput' : {'nwidth' : 244, 'nheight' : 244, 'nMaxPixelValue' : 255, 'fMean' : [0.485
, 0.456, 0.40], 'fStd' : [0.229, 0.224, 0.225]} }
tb.modify_ca("C:\\models\\lemon_model.json", "C:\\models\\lemon_model.json", new_ca)

The result can be traced in plain text in the JSON.

Samples

TF382044 Version: 1.0.2

Reading the Custom attributes in TwinCAT

The PLC project from the sample is expanded below.

Once a session has been successfully configured on the TwinCAT Machine Learning Server, the stored
Custom attributes are read out.
IF fbMlSvr.Configure(nTimeout := 1000, nPriority:=0) THEN
 IF fbMlSvr.nErrorCode <> 0 THEN
 // If nErrorCode -1 is encountered, increase nTimeout
 eState := E_State.eError;
 ELSE

 // read all relevant meta information from custom attributes
 IF fbMlSVr.GetCustomAttribute_int64('ImageInput/height', nHeight) THEN
 // check fbMlSVr.nErrorCode for further reference
 eState := E_State.eError;
 END_IF
 fbMlSVr.GetCustomAttribute_int64('ImageInput/width', nWidth);
 fbMlSVr.GetCustomAttribute_int64('ImageInput/MaxPixelValue', nMaxPixelValue);
 fbMlSVr.GetCustomAttribute_array('ImageInput/
Mean', dtypeCustomAttribute, ADR(aMean), SIZEOF(aMean), nLength, ADR(nBytes));
 fbMlSVr.GetCustomAttribute_array('ImageInput/

Samples

TF3820 45Version: 1.0.2

Std', dtypeCustomAttribute, ADR(aStd), SIZEOF(aStd), nLength, ADR(nBytes));

 eState := E_State.eImageAcquisition;
 END_IF
END_IF

The Custom attributes stored in PLC variables are then used in the pre-processing pipeline. Essentially, all
that needs to be considered here are the necessary type conversions.
// Adjust the dimensions of the input image to match the model input requirements
hrVision := F_VN_ResizeImageExp(ipInputImage, ipTensorImage, LINT_TO_UDINT(nWidth), LINT_TO_UDINT(nH
eight), eInterpolationType, ePaddingMode, aBlack, hrVision);
// Convert the image to type REAL and scale to the range [0.0, 1.0]
hrVision := F_VN_ConvertElementTypeExp(ipTensorImage, ipTensorImage, TCVN_ET_REAL, 1.0 / LINT_TO_REA
L(nMaxPixelValue), 0, hrVision);
// Normalization
hrVision := F_VN_SubtractVectorFromImage(ipTensorImage, aMean, ipTensorImage,hrVision);
hrVision := F_VN_DivideImageByVector(ipTensorImage, aStd, ipTensorImage, hrVision);

Once the configuration has been activated, you can use the Online View to check that the values have been
applied correctly.

Appendix

TF382046 Version: 1.0.2

8 Appendix

8.1 Error Codes
Error Code
(dec)

Error Code (hex) Description Hints

0 0000 Operation successful -
-1 FFFF ML server timeout Increase the timeout argument of

your request. Check, that the
TcMlServer service is running.

-3 FFFD ML server malformed data -
-5 FFFB PLC protocol error Make sure to call the methods of

the FB in a canonical order, i.e.
make sure the FB is configured
before making inference calls.

-8 FFF8 Invalid AMS Net ID Check the syntactical correctness of
the provided AmsNetId.

-9 FFF7 Input pointer is null Check the validity of the input data
pointer provided to the predict
methods.

-11 FFF5 Output pointer is null Check the validity of the output data
pointer provided to the predict
methods.

-13 FFF3 Batch size is zero Provide a valid batch size (>= 1).
-15 FFF1 Input size is zero Provide a valid input data size (>0).
-17 FFEF Output size is zero Check your installation of TF3830.
-18 FFEE Driver instantiation failed Check your installation of TF3830.
-20 FFEC Driver state propagation to state

OP failed
Check the validity and integrity of
your model file (existing path, valid
file format).

-22 FFEA Driver loading failed Check your installation of TF3830.
-24 FFE8 Driver state depropagation failed Check your installation of TF3830.
-26 FFE6 Driver parameter configuration

failed
TwinCAT-internal error

-28 FFE4 Could not instantiate file
accessor

TwinCAT-internal error

-30 FFE2 Could not propagate file accessor
state

TwinCAT-internal error

-32 FFE0 Could not access model file Check the validity of your model file
(existing path, valid file format).

-34 FFDE Mismatch in read model file bytes TwinCAT-internal error
-36 FFDC Could not parse model file Check the integrity of your model

file.
-38 FFDA String buffer overflow Check the integrity of your model

file, especially the length of the
contained model hash.

-40 FFD8 Could not find model config in file Check the integrity of your model
file, especially the defined model
configuration.

-42 FFD6 Could not retrieve model
attributes

Check the integrity of your model
file, especially the availability of a
model hash.

-43 FFD5 ADS server connection error ADS messages could not be sent.
Check integrity of AmsRouter.

Appendix

TF3820 47Version: 1.0.2

Error Code
(dec)

Error Code (hex) Description Hints

-44 FFD4 Engine mismatch The model file you intended to load
is not designated for the
TcMlServer.

-45 FFD3 Invalid CST attribute name Check the name of the attribute in
your model file or your query. The
name must not be empty.

-47 FFD1 CST attribute retrieval failed The queried attribute could not be
found. Check the queried attribute
name in query and model file.

-49 FFCF CST attribute invalid buffer Check the destination pointer
provided to the retrieval function.
Must not be a null pointer.

-50 FFCE Versioned model could not be
resolved

Check the valditiy of the model
version you are querying.

-51 FFCD If a PLC online change is
detected, a running predict is
discarded with the error

-101 FF9B Invalid PLC request variant Internal error
-102 FF9A Invalid device index Verify the device index provided in

prediction parameters of the FB.
-103 FF99 Invalid request data Internal error
-201 FF37 Invalid data Internal error
-202 FF36 Invalid model type Requested tensor of unsupported

datatype. See log files.
-206 FF32 Invalid model The provided model file is not

supported. check especially, that no
dimension parameters are left
except for an optional batch
dimension.

-300 FED4 Invalid execution provider The requested execution provider is
invalid. Make sure to select an EP
from the enum
E_ExecultionProvider.

-302 FED2 Unsupported execution provider The requested execution provder is
valid but not supported on your
system (for instance due to a lack of
GPU support).

-400 FE70 Session config file not found Internal error
-402 FE6E Environment config file not found Internal error
-404 FE6C Run config file not found Internal error
-406 FE6A Server config file not found Internal error
-408 FE68 Device config files not found Internal error
-500 FE0C Invalid session config file Internal error
-502 FE0A Invalid environment config file Internal error
-504 FE08 Invalid run config file Internal error
-506 FE06 Invalid server config file Internal error
-508 FE04 Invalid device config files Internal error
-600 FDA8 Targeted inference provider

unavailable
Internal error

-602 FDA6 Inference provider session
timeout

Increase the session timeout in the
prediction parameters.

-701 FD43 Dynamic loaded library not found Internal error

Appendix

TF382048 Version: 1.0.2

Error Code
(dec)

Error Code (hex) Description Hints

-703 FD41 Symbol not loadable from
dynamic library

Internal error

-801 FCDF Unknown job execution error Internal error
-803 FCDD Unknown error Internal error
-901 FC7B Failed backend execution Internal error
-1100 FBB4 License server connection error Internal licensing error
-1102 FBB2 License server ADS error Internal licensing error
-1104 FBB0 License ADS error Internal licensing error
-1106 FBAE License invalid Make sure, that a license TF3820 is

available.
-1108 FBAC License invalid unknown Internal licensing error
-1201 FB4F Expected tensor collection type Make sure, that only types defined

in the PLCopen files generated by
the Beckhoff model management
products is used. Do not manipulate
the contained header

-1203 FB4D Mismatching tensor collection
hashes

Make sure, that only types defined
in the PLCopen files generated by
the Beckhoff model management
products is used. Do not manipulate
the contained header

-1205 FB4B Invalid tensor collection header Make sure, that only types defined
in the PLCopen files generated by
the Beckhoff model management
products is used. Do not manipulate
the contained header

-1207 FB49 Tensor collection offset feature
not supported

Make sure, that only types defined
in the PLCopen files generated by
the Beckhoff model management
products is used. Do not manipulate
the contained header

-1209 FB47 Internal allocation special type
header

Internal error

-1300 FAEC Server startup cannot build log
directory

No Logs directory available and
could not be generated.

-1801 F8F7 NVIDIA NVML library function
failure

Make sure the Nvidia nvml.dll is
avilable.

-1803 F8F5 NVIDIA NVML library extraction
failure

Make sure the Nvidia nvml.dll is
avilable.

-1901 F893 NVIDIA CUDA library function
failure

Make sure the Nvidia cuda.dll is
available.

-1903 F891 NVIDIA CUDA library extraction
failure

Make sure the Nvidia cuda.dll is
available.

-2000 F830 Model registry file storage error Internal error
-2002 F82E Model registry file deletion error Internal error
-2003 F82D Model registry invalid reference Internal error
-2004 F82C Model registry entry failed to load

model
Internal error

-2006 F82A Model registry inconsistent model
hashes

Internal error

-2008 F828 ADS could not open remote file Make sure, that an .onnx file with
the same name as your .json model
description file is located in the
same directory.

Appendix

TF3820 49Version: 1.0.2

Error Code
(dec)

Error Code (hex) Description Hints

-2010 F826 ADS could not retrieve size of
remote file

Internal error

-2012 F824 ADS could not load remote file Make sure, that your AMS router
has sufficient memory for
your .onnx file.

-2014 F822 ADS could not close remote file Internal error
-2018 F81E ADS could not open client port Make sure your TwinCAT

installation is valid.
-2201 F767 Buffer base is null Internal error
-2203 F765 Not enough memory for head Internal error
-2205 F763 Buffer out of memory Internal error
-2207 F761 Buffer cannot read from null Internal error
-2209 F75F Buffer cannot write to null Internal error
-2211 F75D Buffer corrupted with invalid

string
Internal error

-2020 F81C Insufficient AMS Router Memory
on Client

Increase Router Memory on the
Client system

-2022 F81A Insufficient AMS Router Memory
on Server

Increase Router Memory on the
Server system

-2024 F818 Could not read router memory on
client

Internal error

-2026 F816 Could not read router memory on
server

Internal error

-2301 F703 Invalid CUDA setup detected Check your CUDA and cuDNN
installation.

8.2 Log files
TwinCAT Machine Learning Model Manager Logs: C:\ProgramData\Beckhoff\TwinCAT\Functions\TF38xx-
Machine-Learning\Logs

TwinCAT Machine Learning Server Logs: C:\ProgramData\Beckhoff\TwinCAT\Functions\TF38xx-Machine-
Learning\TcMlServer\Logs

8.3 Third-party components
This software contains third-party components.
Please refer to the license file provided in the following folder for further information:
C:\Program Files (x86)\Beckhoff\Legal\TwinCAT-XAR-MlServer
C:\Program Files (x86)\Beckhoff\Legal\TwinCAT-XAE-ModelManagerCore

Appendix

TF382050 Version: 1.0.2

8.4 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/TF3820

mailto:info@beckhoff.com?subject=TF3820
https://www.beckhoff.com
https://www.beckhoff.com/TF3820

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security
	1.4 Documentation issue status

	2 Overview
	3 Installation
	3.1 Licensing
	3.2 Setting up an NVIDIA graphics card

	4 Quickstart
	5 Technical introduction
	5.1 Workflow
	5.1.1 Preparing ONNX for use with TwinCAT Machine Learning Server
	5.1.2 Make model description files available on the Server Device
	5.1.3 Configuring the server from the PLC client
	5.1.4 Execute AI model
	5.1.5 Updating the AI model

	5.2 TwinCAT Machine Learning Model Manager
	5.2.1 Graphical user interface
	5.2.2 Python interface
	5.2.3 Command Line Interface

	5.3 ONNX Support
	5.4 TcMlServer Service
	5.4.1 Execution Provider

	6 API
	6.1 Function blocks
	6.1.1 FB_MlSvrPrediction
	6.1.1.1 Asynchronous methods
	6.1.1.1.1 Configure()
	6.1.1.1.2 Deconfigure()
	6.1.1.1.3 Predict()
	6.1.1.1.4 PredictBatched()

	6.1.1.2 Synchronous methods
	6.1.1.2.1 GetCustomAttribute_array
	6.1.1.2.2 GetCustomAttribute_bool
	6.1.1.2.3 GetCustomAttribute_fp64
	6.1.1.2.4 GetCustomAttribute_int64
	6.1.1.2.5 GetCustomAttribute_str

	6.2 Data types
	6.2.1 E_ExecutionProvider
	6.2.2 ST_PredictionParameter

	7 Samples
	7.1 AI-based image processing
	7.2 Custom attributes

	8 Appendix
	8.1 Error Codes
	8.2 Log files
	8.3 Third-party components
	8.4 Support and Service

		documentation@beckhoff.com
	2024-11-21T14:45:56+0100
	Beckhoff Automation, Verl
	Documentation Publishing

