
Manual | EN

TE1000
TwinCAT 3 | PLC Library: Tc3_BA_Common

2024-06-05 | Version: 1.2.2

Table of contents

TE1000 3Version: 1.2.2

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7

2 Introduction ... 8

3 General Information .. 9

4 Programming... 10
4.1 POUs... 10

4.1.1 Controller.. 10
4.1.2 Universal .. 22

4.2 DUTs ... 40
4.2.1 Structures... 40
4.2.2 Enums.. 41

4.3 GVLs ... 43
4.3.1 Parameter .. 43

5 Appendix.. 44
5.1 Support and Service.. 44

Table of contents

TE10004 Version: 1.2.2

Foreword

TE1000 5Version: 1.2.2

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TE10006 Version: 1.2.2

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TE1000 7Version: 1.2.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction

TE10008 Version: 1.2.2

2 Introduction
The TwinCAT3 Building Automation library (TC3 BA Common) provides controller function blocks and a
sequence linker function block.
These function blocks are used by both the TC3_BA library and the Tc2_BACnetRev12 library.

General Information

TE1000 9Version: 1.2.2

3 General Information
Further libraries required

For PC systems and Embedded PCs (CXxxxx):

• Tc2_Standard
• Tc2_TcBase
• Tc2_TcSystem
• Tc2_TcUtilities

Programming

TE100010 Version: 1.2.2

4 Programming

4.1 POUs

4.1.1 Controller

Function blocks

Name Description
FB_BA_SeqCtrl [} 16] Sequence controller (see Introduction – sequence

controller [} 10]).
FB_BA_SeqLink [} 20] Sequence controller control function block.

FB_BA_PIDCtrl [} 13] Universal PID controller.

4.1.1.1 Introduction – sequence controller
In heating, ventilation and air-conditioning systems, it is often the case that several actuators, working in a
so-called controller sequence, are used in order to achieve a control variable.

In the air conditioning system shown below, three actuators are involved in the regulation of the supply air
temperature. In the project a dedicated sequence controller is instanced for each of these actuators.

During active control only one of these sequence controllers is active. The other, non-active controllers fix
their control signal so that it is energetically optimal for the tempering of the inlet air temperature.

Depending on the direction of action of the individual controller, this means either the maximum or the
minimum for the control value lrY.

If the effect of the active actuator (controller) is insufficient when reaching an end position, the active
controller switches to the adjacent controller to the left or right.
This then takes over control. The previously active controller remains at the end position of lrYMax or lrYMin,
depending on the direction of action. This is repeated with the remaining actuators until the set value or the
left or right end of the sequence is reached.

In the sequence of the illustrated air conditioning system, all actuators that influence the control variable are
shown from left to right. At the far left is the actuator that enables the greatest possible increase in the supply
air temperature; at the far right is the actuator that effects the greatest possible decrease in the supply air
temperature.

Some actuators, such as a recirculating air flap or a heat recovery unit change their direction of action during
operation. (indirect = heating, direct = cooling)

Actuators with varying direction of action, such as outside air flap, recirculating air flap or heat recovery unit,
are only listed once.

• 1: Preheater controller
• 2: Mixed air controller
• 3: Cooler

Schematic diagram

This plant is schematically represented as follows:

Programming

TE1000 11Version: 1.2.2

Rules for creating a sequence

The following rules must be followed for creating the sequences; inlet air control is used as reference:

• The sequence controllers are numbered starting with the heating sequences with low ordinal numbers
to the cooling sequences with high ordinal numbers.

• A series of heating sequences should not include a cooling sequence. Similarly, a series of cooling
sequences should not include a heating sequence. Sequences with reversal of direction of action for a
mixed air system or heat recovery should be positioned between the heating and cooling sequences.

In this diagram controller 4 would be placed incorrectly, if controller 5 changed to heating mode. Or:
Controller 4 is correct, but controller 5 would have to be a pure cooling controller.
In both cases there would be two switches from heating to cooling.

• The set values within the sequence must be monotonically increasing. This requirement is a result of
the switching behavior explained above: If the set value of a controller with a lower number is higher
than the next higher one, the result could be continuous switching between the two controllers. As
mentioned above, controllers with the same direction of action usually have the same set value.
SP1 ≤ SP2 ≤ SP3 ≤ SP4 ≤ SP5 ≤ SP6 ≤ SP7 ≤ SP8 ≤ SP9

Sequence controllers in the PLC

The TC3_BA_Common library provides two function blocks for the implementation of a sequence controller
in the PLC program:

The function block FB_BA_SeqCtrl [} 16]: This function block provides an individual controller as part of a
sequence of up to 16 controllers.

Programming

TE100012 Version: 1.2.2

The function block FB_BA_SeqLink [} 20]: This function block is the control function block of the sequence
and therefore only exists once per sequence. It decides which controller of the sequence is currently active
and checks the sequence for certain error states, such as duplicate allocation of ordinal number at the
controllers.

The structure variable ST_BA_SeqLink [} 40] is used to link the sequence controllers with the sequence
linker FB_BA_SeqLink [} 20].

This structure variable has to be declared once per sequence control.

The sequence control is enabled at input bEn of the function block FB_BA_SeqLink [} 20]. The variable
usiStartCtrl is used to determine which controller is used as the first one after the start of control mode. In the
example, the sequence controller with the no. 5 is assigned as the start controller. Switching from controller
5 to another controller in the sequence after restarting the control is blocked for the value of the input
variable udiIniSwiOvrDly_sec.

Programming

TE1000 13Version: 1.2.2

4.1.1.2 FB_BA_PIDCtrl

Universal PID controller, alternatively in parallel structure or with upstream proportional component.

Functional description

This controller is divided internally into two consecutive parts:

• the controller itself, illustrated in the functional diagrams below as P, I and D component with an output
limitation.

• a deadband element that applies a hysteresis to the output changes of the controller.

Functional diagram

udiMode = 0 (upstream proportional component):

udiMode = 1 (parallel structure):

Programming

TE100014 Version: 1.2.2

Passive behavior (bEn = FALSE)

The outputs are set as follows:

rY 0.0
rE 0.0
bARW FALSE

The internal values for the P, I, and D components are set to 0, also the values for the I and D components
of the preceding cycle. In case of a restart the control value is thus calculated in the first cycle without past
values.

Active behavior (bEn = TRUE)

In the first cycle, the I and D components are calculated "clean", i.e. without historical values, as already
mentioned.

Synchronization

A positive signal at bSync sets the I component such that the control value assumes the value rSync. If bEn
and bSync are set at the same time, this method can be used to set an initial value as a starting point for the
control. If the I component is not active, the D component is set accordingly. Note that internally only the
rising edge of bSync is evaluated, in view of the fact that it is a set action. For a further synchronization, e.g.
with a transfer value, a TRUE signal must be set again at input bSync.

Anti-Reset-Windup

If the I component is active, the controller ensures that it this maintained if the controller output rY should try
to go beyond the limits rYMin or rYMax. A preliminary calculation of the controller output takes place inside
the controller in every cycle. If this is smaller than the lower output limit rYMin or greater than the upper limit
rYMax, then the I component is adjusted in such a way that the sum of the P, I and D components results in
rYMin or rYMax respectively. This ensures that the I component is always just large enough so that the
control value can immediately assume values within the limits in the case of a corresponding control
deviation without an integral component that has become too large having to be reduced first.

Direction of action

bActn = FALSE can be used to reverse the direction of action such that a control deviation of less than 0
results in a change in control value to positive. This is achieved by a negative calculation of the control
deviation:

bActn rXW (control deviation) Direction of action
TRUE rX-rW (actual value-set value) direct (cooling)
FALSE rW-rX (set value-actual value) indirect (heating)

Neutral zone

A value of rNZ > 0.0 enables the function of the neutral zone (deadband). A value equal to zero deactivates
the deadband element and the values at the input are passed directly through.

If, in the active case, the change at the input of the element rYin in a PLC cycle is smaller than rNZ/2 in
comparison with the previous PLC cycle, then the output is held at the value of the previous cycle until the
change is larger than or equal to rNZ/2.

Example: rNZ = 1, rYin = 55.0, rY = 55.0

Programming

TE1000 15Version: 1.2.2

PLC cycle+1 rYin = 55.2 rY = 55.0
PLC cycle+2 rYin = 55.3 rY = 55.0
PLC cycle+3 rYin = 55.1 rY = 55.0
PLC cycle+4 rYin = 55.6 rY = 55.6
PLC cycle+5 rYin = 55.4 rY = 55.6
PLC cycle+6 rYin = 55.3 rY = 55.6
PLC cycle+7 rYin = 55.1 rY = 55.1

This function is intended to avoid an unnecessarily large number of actuating pulses.

VAR_INPUT
bEn : BOOL;
rW : REAL;
rX : REAL;
udiOpMode : UDINT;
bActn : BOOL;
rKp : REAL;
udiTn_ms : UDINT;
udiTv_ms : UDINT;
udiTd_ms : UDINT;
rYMax : REAL;
rYMin : REAL;
rNZ : REAL;
udiCycCl : UDINT;
bSync : BOOL;
rSync : REAL;

bEn: Controller activation.

rW: Set value.

rX: Actual value.

udiOpMode: udiMode = 0: Controller with upstream proportional component, udiMode = 1: Controller in
parallel structure. Internally limited to the values 0 and 1.

bActn: Direction of action [} 14] of the controller.

rKp: Controller gain. Only affects the proportional component. Internally limited to a minimum value of 0.

udiTn_ms: Integral action time of the I component [ms]. A zero value at this parameter disables the I
component. Internally limited to a minimum value of 0.

udiTv_ms: Rate time of the D component [ms]. A zero value at this parameter disables the D component.
Internally limited to a minimum value of 0.

udiTd_ms: Damping time of the D component [s]. Internally limited to a minimum value of 0.

rYMax: Upper controller output limit. Selectable range: 0..100%.

rYMin: Lower controller output limit [%]. Selectable range: 0..100%. The value rYMin is upwardly limited by
rYMax.

rNZ: Neutral zone.

udiCycCl: Call cycle of the function block as a multiple of the cycle time. Internally limited to a minimum
value of 1.

Example: tTaskCycleTime = 20ms, udiCtrlCycleCall =10 -> The control algorithm is called every 200 ms.
Thus the outputs are also updated only every 200 ms.

bSync / rSync: Synchronization command: Set output value rY to rSync. The value rSync is limited
internally to values ranging from rYMin to rYMax.

VAR_OUTPUT
rY : REAL;
rE : REAL;
bARW : BOOL;

Programming

TE100016 Version: 1.2.2

rY: Control value. Range limited by rYMin and rYMax.

rE: Control deviation (The calculation depends on the direction of action [} 14]).

bARW: Anti-Reset-Windup function is active.

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.1.1.3 FB_BA_SeqCtrl

PID controller as part of a sequence.

Functional description

The functionalities of this controller are identical to FB_BA_PIDCtrl [} 13].

udiOpMode = 0 (upstream proportional component)

udiOpMode = 1 (parallel structure)

Programming

TE1000 17Version: 1.2.2

In addition the controller, if enabled by bEn = TRUE, is controlled via a higher level control function block
FB_BA_SeqLink [} 20].

The data exchange between the control function block FB_BA_SeqLink [} 20] and the sequence controllers
FB_BA_SeqCtrl takes place via the structure variable stSeqLink [} 40].

Heating-cooling sequence

The controller sequence should be configured such that the sequence controller with lower ordinal number
are used for heating and the ones with the higher number for cooling. Only one change is permitted:

• Sequence controller n (udiMyNum=n, bActn=TRUE)
• Sequence controller n+1 (udiMyNum = n+1, bActn = FALSE)

Exclusive programming of cooling and heating controllers is also possible.

Any parameterization that contradicts this convention is detected and indicated as an error at control function
block FB_BA_SeqLink [} 20].

Controller output

The control function block FB_BA_SeqLink [} 20] specifies which sequence controller is active. What is
output at the respective control output rY is determined inside the individual sequence controllers. Each
controller receives the information about the states of the other controllers via the in-out variable stSeqLink
and evaluates four cases internally.

1. None of the sequence controllers is enabled, whether due to a missing enable signal (bEn) at the input
or due to an error detected on the control function block FB_BA_SeqLink [} 20]
-> The internal PID controllers are inactive and output 0.0 at the control output rY.

2. The sequence controller is enabled and has been set to active by the control function block
FB_BA_SeqLink [} 20].
-> The internal PID controller is active. Its output signal is output at the control output rY.

3. The sequence controller is enabled, but a sequence controller with a higher ordinal number has been
set to active by the control function block FB_BA_SeqLink [} 20]
-> The internal PID controller is inactive. If the sequence controller is in heating mode (bActn=FALSE),
it will output its minimum value rYMin at the control output rY. Conversely, if it is in cooling mode
(bActn = TRUE), then it outputs the maximum value rYMax at the control output rY.

4. The sequence controller is enabled, but a sequence controller with a lower ordinal number has been
set to active by the control function block FB_BA_SeqLink [} 20]
-> The internal PID controller is inactive. If the sequence controller is in heating mode (bActn=FALSE),
it will output its maximum value rYMax at the control output rY. If it is in cooling mode (bActn=TRUE),
it will output its minimum value rYMin at the control output rY.

Synchronization

If a sequence controller is activated by the higher-level controller, this always results in synchronization, i.e.
the controller starts with a fixed value at the output rY. 3 cases are distinguished:

Programming

TE100018 Version: 1.2.2

1. The entire sequence control was switched on via the input bEn of the higher-level controller
FB_BA_SeqLink [} 20]. The controller with the ordinal number udiSttCtrl at the input of FB_BA_SeqLink
[} 20] is the start controller.
-> The sequence controller is synchronized with the value, which is entered at its input rYSeqInit.

2. The sequence controller, which has just has been activated, had a higher ordinal number than the
"previous" one
-> If the sequence controller is in heating mode (bActn = FALSE), then it is synchronized with its
minimum value rYMin. If it is in cooling mode (bActn=TRUE), the synchronization value is its maximum
value rYMax.

3. The sequence controller, which has just has been activated, had a lower ordinal number than the
"previous" one
-> If the sequence controller is in heating mode (bActn = FALSE), then it is synchronized with its
maximum value rYMax. If it is in cooling mode (bActn=TRUE), the synchronization value is its
minimum value rYMin.

Each sequence controller can also be synchronized by specifying a value rSync and activating bSync, if it
has just been activated by the higher-level controller. A constant TRUE signal at the input bSync (e.g.
accidental) is internally intercepted through edge formation, so that obstruction of the synchronization
described above on activation is avoided.

Start-up behavior

In order to enable "sensible" adjustment of the entire control sequence, the start controller is maintained in
active state as a minimum for the time udiIniSwiOvrDly_sec [s], which is entered at the function block
FB_BA_SeqLink [} 20]. During this time, no switching takes place to another controller of this sequence.
The output rY of the start controller is synchronized once to its value rYSeqInit.

VAR_INPUT
bEn : BOOL;
rW : REAL;
rX : REAL;
udiOpMode : UDINT;
bActn : BOOL;
rKp : REAL;
udiTn_ms : UDINT;
udiTv_ms : UDINT;
udiTd_ms : UDINT;
rYMax : REAL;
rYMin : REAL;
rNZ : REAL;
udiCycCl : UDINT;
bSync : BOOL;
rSync : REAL;
rYSeqInit : REAL;
udiMyNum : UDINT;

bEn: Activation of the sequence controller

rW: Set value

rX: Actual value

udiOpMode: udiOpMode=0: Controller with upstream proportional component, udiOpMode = 1: Controller in
parallel structure. The values are limited internally to 0 and 1.

bActn: Direction of action reversal of the controller. For heating/cooling operation: bActn=FALSE
corresponds to heating mode, bActn=TRUE corresponds to cooling mode.

rKp: Controller gain. Only affects the proportional component. Internally limited to a minimum value of 0.

udiTn_ms: Integral action time of the I component [ms]. A zero value at this parameter disables the I
component. Internally limited to a minimum value of 0.

udiTv_ms: Rate time of the D component [ms]. A zero value at this parameter disables the D component.
Internally limited to a minimum value of 0.

udiTd_ms: Damping time of the D component [s]. Internally limited to a minimum value of 0.

Programming

TE1000 19Version: 1.2.2

rYMax: Upper controller output limit [%]. Selectable range: 0..100%.

rYMin: Lower controller output limit [%]. Selectable range: 0..100%. The value lrMin is upwardly limited by
lrYMax.

rNZ: neutral zone (see Deadband diagram). Internally limited to a minimum value of 0. Mode of action is
same as FB_BA_PID_Ctrl [} 13].

udiCycCl: Call cycle of the function block as a multiple of the cycle time. Internally limited to a minimum
value of 1.
Example: tTaskCycleTime = 20 ms, udiCycCl = 10 -> the control algorithm is called every 200 ms. Thus the
outputs are also updated only every 200 ms.

bSync / rSync: Synchronization command: Set output value rY to rSync. The value rSync is limited
internally to values ranging from rYMin to rYMax.

rYSeqInit: Starting value of the controller after restart of the whole control sequence.

udiMyNum: Ordinal number of the sequence controller. Internally limited to values ranging from 0 to
gBA_cMaxSeqCtrl.

VAR_OUTPUT
rY : REAL;
rE : REAL;
bErr : BOOL;
sErrDescr : T_MAXSTRING;

rY: Control value. Section: 0..100%, unless limited further by rYMin and rYMax.

rE: Control deviation (The calculation depends on the direction of action [} 14]).

bErr: This output is switched to TRUE if the parameters entered are erroneous.

sErrDescr: Contains the error description.

Error description
01: Error: The controller ordinal number udiMyNum has been assigned twice
02: Error: The controller ordinal number udiMyNum of the enabled controller is 0. That is only allowed for
controllers that are not in use and thus not enabled.

VAR_IN_OUT
stSeqLink : ST_BA_SeqLink;

stSeqLink: Data and command structure (see ST_BA_SeqLink / ST_BA_SeqLinkData [} 40]) between the
individual sequence controllers and the control function block FB_BA_SeqLink [} 20].

If several sequence controllers have the same number (diMyNum), this is detected and output as an
error at the sequence controller and at the control function block FB_BA_SeqLink [} 20].

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

Programming

TE100020 Version: 1.2.2

4.1.1.4 FB_BA_SeqLink

This function block represents the higher-level control unit, which specifies which sequence controller is
currently active.

The data exchange between the control function block FB_BA_SeqLink and the sequence controllers
FB_BA_SeqCtrl [} 16] takes place via the structure variable stSeqLink [} 40].

Functional description

Start-up behavior

A TRUE signal at input bEn activates the entire sequence control. The function block will initially activate the
sequence controller named on udiSttCtrl. All other sequence controller base their output value on the ranking
of the active controller, see FB_BA_SeqCtrl [} 16]. The start controller will be set once to its value rSync at the
start of the sequence.
In order to enable "sensible" adjustment of the entire control sequence, the start controller is maintained in
active state as a minimum for the time udiIniSwiOvrDly_sec [s]. During this time, no switching takes place to
another controller of this sequence.

Switching behavior

When the sequence controller reaches its maximum or minimum value, the next controller in the sequence is
activated, depending on the controller direction of action, if the actual value is below or above the set value
of the next controller.
4 cases are distinguished:

• The still active controller has direct direction of action (cooling) and is at its maximum value: The next
higher controller in the sequence will be selected if the actual value exceeds the set value for this
controller.

• The still active controller has direct direction of action (cooling) and is at its minimum value: The next
lower controller in the sequence is then selected, if the actual value falls below the set value for this
controller.

• The still active controller has indirect direction of action (heating) and is at its maximum value: The next
lower controller in the sequence is then selected, if the actual value falls below the set value for this
controller.

• The still active controller has indirect direction of action (heating) and is at its minimum value: The next
higher controller in the sequence will be selected if the actual value exceeds the set value for this
controller.

Switch-off behavior

If the enable status is removed from a controller within the sequence or if it develops a fault, it is no longer
available for the whole sequence.
If this is not the previously active controller, a temperature change may occur, depending on which control
value this controller has output, which is compensated by the controller sequence, if possible.
However, if it is the active controller whose enable is canceled, the next "sensible" controller must be
selected. The sequence link function block uses the following rules:

• The deactivated controller had direct direction of action (cooling)

Programming

TE1000 21Version: 1.2.2

There is an operational controller with a higher ordinal number → switch to the next higher operational
controller.
Only an operational controller with lower ordinal number is available → switch to the next lower
operational controller.
No operational controller is available → fault message

• The deactivated controller had indirect direction of action (heating)
• An operational controller with lower ordinal number is available → switch to the next lower operational

controller.
There is an operational controller with a higher ordinal number → switch to the next higher operational
controller.
No operational controller is available → fault message

Sequence behavior

If a controller is added to the sequence, it is in any case initially inactive and will output its minimum or
maximum value, depending on the direction of action and positioning within the sequence order. The
resulting temperature change is compensated by the controller sequence, if possible.

VAR_INPUT
bEn : BOOL;
udiSttCtrl : UDINT;
udiIniSwiOvrDly_sec : UDINT;
rX : REAL

bEn: Activation of the sequence controller.

udiSttCtrl: Ordinal number of the sequence controller that should be the start controller upon general
activation. Internally limited to values ranging from 0 to gBA_cMaxSeqCtrl.

udiIniSwiOvrDly_sec: The first controller remains active for at least this time [s] in the sequence before
other criteria (see Switching behavior [} 20]) allow switching to a different controller.

rX: Actual value of the control.

VAR_OUTPUT
udiCurCtrl : UDINT;
bSeqActv : BOOL;
bNotRead : BOOL;
bNoneOp : BOOL;
udiRemTiIniSwiOvrDly_sec : UDINT;
bErr : BOOL;
sErrDescr : T_MAXSTRING;

udiCurCtrl: Ordinal number of the currently active sequence controller. If no controller is active, 0 is output
here.

bSeqActv: The sequence function block is enabled (bEn) and has no error resulting in switch-off, see error
detection.

bNotRead: Each sequence controller transfers data to the control function block via the structure stSeqLink.
This output is TRUE, as long as no data were transmitted - this is the case when the PLC is switched on.

bNoneOp: This output is switched to TRUE, if none of the sequence controller is enabled (bEn=TRUE).

udiRemTiIniSwiOvrDly_sec: Remaining initialization time [s] before switching for the first time (see
Switching behavior [} 20]).

bErr: This output is switched to TRUE if the parameters entered are erroneous. This function block may not
suspend its execution in the event of an error, see error detection.

sErrDescr: Contains the error description.

Programming

TE100022 Version: 1.2.2

Error description
01: Error: The sequence link has been informed that the controller ordinal number udiMyNum has been
assigned twice.
02: Warning: Direction of action changed twice in the controller sequence.
03: Warning: In the controller sequence, a controller with a higher ordinal number has a lower set value than
its "predecessor". No correction takes place; the controller sequence runs with the parameters that were
entered.
04: Warning: The sequence controller, which is defined as start controller (udiSttCtrl) is not parameterized at
all, i.e. it is not present. The controller with the lowest ordinal number is used as start controller.
05: Warning: The ordinal number of the start controller is higher than the maximum permitted number of
controllers or zero. The controller with the lowest ordinal number is used as start controller.
06: Warning: The sequence controller, which is defined as start controller (udiSttCtrl) is not enabled
(present). The controller with the lowest ordinal number is used as start controller.

Only the first error triggers a fault in the sequence link function block and blocks its execution (bSeqActv =
FALSE). All associated controllers are then no longer active, and all controllers issue the control value "0".
The function block is not active:

VAR_IN_OUT
stSeqLink : ST_BA_SeqLink;

stSeqLink: Data and command structure (see ST_BA_SeqLink / ST_BA_SeqLinkData [} 40]) between the
individual sequence controllers and the control function block FB_BA_SeqLink. This structure is used by the
sequence link function block to receive all relevant sequence controller data and at the same time to notify
the controllers which is the active one.

If several sequence controllers have the same number (udiMyNum), this is detected and output as
an error at the sequence controller and at the control function block.

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.1.2 Universal

4.1.2.1 Analog inputs/outputs

4.1.2.1.1 FB_BA_KL32xxConfig

Programming

TE1000 23Version: 1.2.2

Configuration of the Bus Terminals for temperature measurement.

Functional description

The function block is for the configuration of Bus Terminals of the types KL3208_0010, KL3201, KL3202 and
KL3204.

VAR_INPUT
TI_usiState : USINT;
TI_iDataIn : INT;
bConfigurate : BOOL;
bReadConfig : BOOL;
eTerminal : E_BA_TERMINAL_KL;
eSensor : E_BA_SENSOR;

TI_usiState: Linking with the corresponding status byte of the Bus Terminal in the I/O area of the program.

TI_iDataIn: Linking with the corresponding raw data (Data In) of the Bus Terminal in the I/O area of the
program (0 - 32767).

bConfigurate: A rising edge starts the configuration of the Bus Terminal.

bReadConfig: A rising edge starts the reading of the Bus Terminal.

eTerminal: Selection of the respective Bus Terminal (see E_BA_Terminal_KL [} 41]).

eSensor: Selection of the sensor type (see E_BA_Sensor [} 42]).

VAR_OUTPUT
TO_usiCtrl : USINT;
TO_iDataOut : INT;
usiState : USINT;
iData : INT;
rVal : REAL;
bWireBreak : BOOL;
bShortCircuit : BOOL;
wTerminalType : WORD;
wSpecialType : WORD;
wFirmwareVersion : WORD;
sDescription : STRING;
sSensorType : STRING;
bErr : BOOL;
sErrDescr : T_MAXSTRING;

TO_usiCtrl: Linking with the corresponding control byte of the Bus Terminal in the I/O area of the program.

TO_iDataOut: Linking with the corresponding raw data (Data Out) of the Bus Terminal in the I/O area of the
program.

usiState: Output of the present terminal status.

iData: Output of the present process data.

rVal: Scaled output value.

bWireBreak: Display of the channel status, sensor wire breakage.

bShortCircuit: Display of the channel status, sensor short-circuit.

wTerminalType: Display of the terminal type.

wSpecialType: Display of the special version of the terminal.

wFirmwareVersion: Display of the terminal firmware.

sDescription: Display of the terminal type and firmware.

sSensorType: Display of the sensor type.

bErr: Error in the terminal configuration.

Programming

TE100024 Version: 1.2.2

sErrDescr: Contains the error description.

Error description
01: Error: Check the terminal configuration KL32xx eTerminal/eSensor/TI_usiState/TI_iDataIn/TO_usiCtrl/
TO_iDataOut

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.1.2.2 Array

4.1.2.2.1 FB_BA_DynamicArray

The function block generates and deletes memory areas dynamically so that entries can be added and
removed at runtime.

As soon as the maximum capacity [} 28] of the array is reached, the internal memory area is automatically
extended. If the capacity is more than sufficient, the internal memory area is reduced in size.

The internally used memory is allocated from the router memory pool and is generated via _NEW
and released via _DELETE at runtime.
With each adaptation (i.e. extension or reduction in size) of the internal memory, the pointers to the
obsolete/adapted memory are also invalid!

The data type of the entries is not important for the dynamic array!
The user must ensure in every case that the data type is always correctly observed by the
application when dealing with contained entries.
Furthermore, all data added to the array must have a uniformly defined size [} 24]!

It is recommended to use the dynamic array in particular in cases where the expected memory utilization can
be estimated relatively well. Router memory is only available to a limited extent (especially with small
controllers) and is to be used as efficiently as possible! If necessary, the amount of router memory available
in the target system must additionally be adapted.

VAR_OUTPUT
bReady : BOOL;
discount : DINT;

bReady: Status of the allocated memory. (TRUE if at least one entry is contained in the array and memory is
thus already generated)

diCount: Current number of entries contained.

VAR

Internal variables that have to be initialized during the declaration.
uiEntrySize : UINT;
uiMinExpCount: : UINT;

uiEntrySize: Expected size of entries. Used to allocate internal memory and to manage memory areas of
recorded entries.

uiMinExpCount: Expected size of the internal memory (specified in [number of entries]) on reaching the
maximum capacity [} 28].

Programming

TE1000 25Version: 1.2.2

For further information, see examples [} 25] of initialization during variable declaration.

Application

Two typical application cases are imaginable:

Case 1) Array contains data sets

In this case the array contains data sets (generic types such as BOOL, INT, STRING or structures) by
reserving internal memory in accordance with the size of the type used.

Case 2) Array contains pointers

In this case the array contains pointers to externally declared data and only memory corresponding to the
size of memory addresses is reserved.

Instances of the dynamic array are not called cyclically. It is sufficient to use the management
functions and properties described here.

Examples

Example 1:

Data sets of the data type ST_DATA are stored in an array.

Access to the respective data sets takes place by means of pointers to the internal memory of the array or by
means of a copy of a data set.
VAR
 fbArray : FB_DynamicArray := (uiEntrySize:=SIZEOF(ST_Data), uiMinExpCount:=5);
 stMyDataTmp : ST_Data;
 ptrMyDataTmp : POINTER TO ST_Data;
 diIndexTmp : DINT;
END_VAR

// 1) Save data in array and remove them with the help of index position:
IF (fbArray.AddEntry(ADR(stMyDataTmp), diResultIndex=>diIndexTmp)) THEN
 fbArray.RemoveEntry(diIndexTmp);
END_IF

// 2) List all data sets consecutively:
FOR diIndexTmp = 0 TO fbArray.LastIndex DO
 IF (fbArray.GetEntryEx(diIndexTmp, pMemoryPtr=>ptrMyDataTemp)) THEN
 ptrMyDataTmp^.diValue := (diIndexTmp+1);
 END_IF
END_FOR

// 3) Get a copy of the first data set:
If (fbArray.GetEntry(0, ADR(stMyDataTmp))) THEN
 // Edit and update data set:
 stMyDataTmp.diValue := 99;

 fbArray.SetEntry(0, ADR(stMyDataTmp));
END_IF

Example 2:

The addresses of externally declared instances of the function block FB_Object are stored in an array.
VAR
 fbArray : FB_DynamicArray := (uiEntrySize:=SIZEOF(POINTER TO FB_Object), uiMinExpCount:=5);
 fbMyObject1 : FB_Object;
 fbMyObject2 : FB_Object;
 fbObjectTmp : POINTER TO FB_Object;

 diIndexTmp : DINT;
END_VAR

// 1) Add object to array and remove it with the help of index position:
If (fbArray.AddEntryPtr(ADR(fbMyObject1), diResultIndex=>diIndexTmp)) THEN
 fbArray.RemoveEntry(diIndexTmp);
END_IF

// 2) Add object to array and remove subsequently with the use of the pointer:

Programming

TE100026 Version: 1.2.2

fbArray.AddEntryPtr(ADR(fbMyObject1));
fbArray.RemoveEntryExPtr(ADR(fbMyObject1));

// 3) Determine the index position of an object within an array:
IF (fbArray.FindEntryPtr(ADR(fbMyObject1), diResultIndex=>diIndexTemp)) THEN
 // Replace entry on position "fbMyObject1" with "fbMyObject2":
 fbArray.SetEntryPtr(diIndexTmp, ADR(fbMyObject2));
ELSE
 // Error handling
 …
END_IF

// 4) Determine first object:
IF (fbArray.GetEntry(0,ADR(fbObjTemp))) THEN
 // …
END_IF

// 5) Remove content of the array if it has more than 10 entries:
IF(fbArray.diCount > 10) THEN
 fb_Array.Reset();
END_IF

Error messages

The following error messages may be output in the TwinCAT display window at runtime:

[EDB4] Entry-size of array not defined!
The expected size [} 24] of entries was not initialized during the declaration of the array.

[EDB7] Expansion-count of entries not defined!
The expected size [} 24] of the internal memory was not initialized during the declaration of the array.

Programming

TE1000 27Version: 1.2.2

Methods of FB_BA_DynamicArray

Name Definition location Description
AddEntry [} 28] Local Creates a new data set at the end

of the array and copies the content
of the specified entry to the internal
memory

FindEntry [} 28] Local Determines the position of the
specified entry in the array by
comparing its content with the data
sets of the array.

GetEntry [} 29] Local Copies the contents of the data set
to a certain position in the specified
memory area.

GetEntryEx [} 29] Local Determines a pointer to the internal
memory of the specified data set.

RemoveEntry [} 29] Local Removes the data set at the
specified index position from the
array.

RemoveEntryEx [} 30] Local Determines the position of the
specified entry and deletes it from
the array.

Reset [} 30] Local Resets the complete content of the
array.

SetEntry [} 30] Local Replaces the existing data set with
a new one by overwriting the
internal memory area of the
existing data set with the value of
the new entry.

AddEntryPtr [} 31] Local Creates a new entry at the end of
the array and copies its memory
address (i.e. the address to which
the pointer pEntry points) to the
internal memory.

FindEntryPtr [} 31] Local Determines the position of an entry
in the array by comparing its
address with the addresses stored
in the array.

GetEntryExPtr [} 31] Local Outputs a pointer to the memory
address of the requested entry.

RemoveEntryExPtr [} 32] Local Determines the position of the
specified entry and deletes it from
the array.

SetEntryPtr [} 32] Local Replaces an existing entry with a
new one.

Programming

TE100028 Version: 1.2.2

Properties of FB_BA_DynamicArray

Name Type Access Definition loca-
tion

Initial value Description

CurCapacity DINT Get Local - Current capacity of the
array (number of entries).
Corresponds to the
maximum number of
entries that can be
accepted by the internal
memory.

EntrySize DINT Get Local uiEntrySize
[} 24]

Expected size of entries
that are stored in the array

LastIndex DINT Get Local - Index position of the last
entry.
This is -1 if no entries
exist

UsedMemory DINT Get Local - Size of the internal
memory consumed
[bytes].

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.1.2.2.1.1 AddEntry

Creates a new data set at the end of the array and copies the content of the specified entry to the internal
memory.

VAR_INPUT
pEntry : PVOID;

pEntry: Pointer to the entry to be added.

VAR_OUTPUT
AddEntry : BOOL;
diResultIndex : DINT;

AddEntry: Result of the function.

diResultIndex: Index position of the entry added.

4.1.2.2.1.2 FindEntry

Determines the position of the specified entry in the array by comparing its content with the data sets of the
array.

Programming

TE1000 29Version: 1.2.2

VAR_INPUT
pEntry : PVOID;

pEntry: Pointer to the entry sought.

VAR_OUTPUT
FindEntry : BOOL;
diResultIndex : DINT;

FindEntry: Result of the function.

diResultIndex: Index position of the entry added.

4.1.2.2.1.3 GetEntry

Copies the contents of the data set to a certain position in the specified memory area.

VAR_INPUT
diIndex : DINT;
pResultEntry : PVOID;

diIndex: Index position of the data set to be output.

pResultEntry: Pointer to the memory area that is to be used to output the data record.

VAR_OUTPUT
GetEntry : BOOL;

GetEntry: Result of the function.

4.1.2.2.1.4 GetEntryEx

Determines a pointer to the internal memory of the specified data set.

VAR_INPUT
diIndex : DINT;

diIndex: Index position of the data set to be output.

VAR_OUTPUT
GetEntryEx : BOOL;
pMemoryPtr : POINTER TO PVOID;

GetEntry: Result of the function.

pMemoryPtr: Pointer that is to be used to output the data set.

4.1.2.2.1.5 RemoveEntry

Removes the data set at the specified index position from the array.

Programming

TE100030 Version: 1.2.2

VAR_INPUT
diIndex : DINT;

diIndex: Index position of the data set to be removed.

VAR_OUTPUT
RemoveEntry : BOOL;

RemoveEntry: Result of the function.

4.1.2.2.1.6 RemoveEntryEx

Determines the position of the specified entry and deletes it from the array.

VAR_INPUT
pEntry : PVOID;

pEntry: Pointer to the entry to be removed.

VAR_OUTPUT
RemoveEntryEx : BOOL;

RemoveEntryEx: Result of the function.

4.1.2.2.1.7 Reset

Resets the complete content of the array.

4.1.2.2.1.8 SetEntry

Replaces the existing data set with a new one by overwriting the internal memory area of the existing data
set with the value of the new entry.

VAR_INPUT
diIndex : DINT;
pEntry : PVOID;

diIndex: Index position of the data set to be replaced.

pEntry: Pointer to the entry to be removed.

VAR_OUTPUT
SetEntry : BOOL;

SetEntry: Result of the function.

Programming

TE1000 31Version: 1.2.2

4.1.2.2.1.9 AddEntryPtr

Creates a new entry at the end of the array and copies its memory address (i.e. the address to which the
pointer pEntry points) to the internal memory.

VAR_INPUT
pEntry : PVOID;

pEntry: Pointer to the entry to be added.

VAR_OUTPUT
AddEntryPtr : BOOL;
diResultIndex : DINT;

AddEntryPtr: Result of the function.

diResultIndex: Index position of the entry added.

4.1.2.2.1.10 FindEntryPtr

Determines the position of an entry in the array by comparing its address with the addresses stored in the
array.

VAR_INPUT
pEntry : PVOID;

pEntry: Pointer to the entry sought.

VAR_OUTPUT
FindEntryPtr : BOOL;
diResultIndex : DINT;

FindEntryPtr: Result of the function.

diResultIndex: Index position of the entry sought.

4.1.2.2.1.11 GetEntryExPtr

Outputs a pointer to the memory address of the requested entry.

VAR_INPUT
diIndex : DINT;

diIndex: Index position of the entry to be output.

VAR_OUTPUT
GetEntryExPtr : BOOL;
pEntryPtr : POINTER TO PVOID;

GetEntryExPtr: Result of the function.

Programming

TE100032 Version: 1.2.2

pEntryPtr: Pointer that is to be used to output the entry.

4.1.2.2.1.12 RemoveEntryExPtr

Determines the position of the specified entry and deletes it from the array.

VAR_INPUT
pEntry : PVOID;

pEntry: Pointer to the entry to be removed.

VAR_OUTPUT
RemoveEntryExPtr : BOOL;

RemoveEntryExPtr: Result of the function.

4.1.2.2.1.13 SetEntryPtr

Replaces an existing entry by a new one by overwriting the memory address of the existing entry with the
memory address of the new entry.

VAR_INPUT
diIndex : DINT;
pEntry : PVOID;

diIndex: Index position of the entry to be replaced.

pEntry: Pointer to the entry to be replaced.

VAR_OUTPUT
SetEntryPtr : BOOL;

SetEntryPtr: Result of the function.

4.1.2.2.2 FB_BA_StaticArray

The function block is an extension of the function block FB_DynamicArray [} 24].

The background to this extension is to avoid the use of router memory and to use static memory instead.
This must be declared in the application, where its size can be adapted as desired.

The static memory must be provided by the application, but it must never be changed outside of the
array! The management should take place in all cases via the array itself.

It is recommended to always use the static array in cases where the expected memory utilization can be
precisely estimated.

Programming

TE1000 33Version: 1.2.2

For reasons of efficiency the memory size should be dimensioned such that as little memory as possible and
as much memory as necessary is reserved. Global constants and parameter lists are suitable for declaring
the limits of the memory area.

Application

In principle the application cases are identical to those with the dynamic array [} 24]. Only the declaration
differs in part, as the external memory area and its size are to be transferred there.

Further information

See examples [} 33] of initialization during variable declaration.

Examples

Example declaration of the array, its static memory and corresponding constants.
VAR_GLOBAL CONSTANT
 uiObjectCount : UINT := 100;
 uiArrayMemSize : UINT := TO_UINT(uiObjectCount * SIZEOF(FB_OBJECT));
END_VAR

VAR
 bArrayMemory : ARRAY[0.. uiArrayMemSize] OF BYTE;
 fbArray : FB_StaticArray := (uiEntrySize:=SIZEOF(FB_Object), pExtMemory:=ADR(bArrayMemory
), uiExtMemorySize:=uiArrayMemSize);)
END_VAR

Further information

Since the static array is to be used in exactly the same way as the dynamic array [} 24], appropriate
application examples [} 25] are documented there.

Methods of FB_BA_StaticArray

Name Definition location Description
AddEntry [} 28] Local Creates a new data set at the end

of the array and copies the content
of the specified entry to the internal
memory

Reset [} 30] Local Resets the complete content of the
array.

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.1.2.3 Log

4.1.2.3.1 FB_BA_LogMessage

The function block outputs messages in the TwinCAT display window.

The symbol path of the function block is inserted for each message to be output so that the user can
recognize the calling function block instance by the message.

Programming

TE100034 Version: 1.2.2

Instances of this function block cannot be called explicitly.

Separate functions are available for various application cases, which are described in the following
section of this documentation.

The functionality to output messages is provided by the ADSLOGDINT function, which is used
internally.

VAR_OUTPUT
sResult : T_MaxSTRING;

sResult: Content of the message last output.

Application

Context-related additional information

The developer has the possibility to output an abbreviation in each message.

Using this abbreviation, messages can be localized more easily in the source code (e.g. when searching for
the abbreviation using the search function).

Suppression of cyclically repeated messages

In order to suppress the cyclic output of the same message, the current log code is compared with the log
code used last. If the two values correspond, the output of the message is suppressed, which conversely
means that different successive messages would be displayed.

This behavior can be influenced with the bIgnoreBlock option from the Show function:

TRUE prevents the suppression of a cyclically repeated message.

Example 1:

The example function DoWork() outputs a warning in row 150:
FUNCTION_BLOCK FB_TEST
VAR
 fbLogMsg : FB_BA_LogMessage;
END_VAR

FUNCTION DoWork

fbLogMsg.Show(ADSLOG_MSGTYPE_WARN, 'DW150', 'Function not ready.', FALSE;

Example 2:

The example function Init() outputs an error message in row 80 that could be Suppression of cyclically
repeated messages [} 34]
FUNCTION_BLOCK FB_TEST
VAR
 fbLogMsg : FB_BA_LogMessage;
 iState : INT := 0;
 sDevice : STRING := 'CX9020';
END_VAR

FUNCTION Init

fbLogMsg.Show1(ADSLOG_MSGTYPE_ERROR, 'I80', 'device %s has an Invalid state
"%d".', F_STRINGEx(sDevice), F_INT(iState), TRUE;

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

Programming

TE1000 35Version: 1.2.2

4.1.2.3.1.1 Show

Output of a simple message.

VAR_INPUT
dLogType : DWORD;
sLogCode : T_MaxString;
sLogText : T_MaxString;
bIgnoreBlock : BOOL;

dLogType: Log type of the message to be displayed.

sLogCode: Optional, context-related additional information [} 34].

sLogText: Content of the message.

bIgnoreBlock: Prevents the suppression of cyclically repeated messages [} 34].

VAR_OUTPUT
Show : BOOL;

Show: Indicator of whether a message was output (TRUE) or discarded (FALSE).

4.1.2.3.1.2 Show1

Output of a message with a value to be formatted.

VAR_INPUT
dLogType : DWORD;
sLogCode : T_MaxString;
sLogText : T_MaxString;
tArg1 : T_Arg;
bIgnoreBlock : BOOL;

dLogType: Log type of the message to be displayed.

sLogCode: Optional, context-related additional information [} 34].

sLogText: Content of the message.

tArg1: Value to be formatted (see T_Arg).

bIgnoreBlock: Prevents the suppression of cyclically repeated messages [} 34].

VAR_OUTPUT
Show1 : BOOL;

Show1: Indicator of whether a message was output (TRUE) or discarded (FALSE).

Programming

TE100036 Version: 1.2.2

4.1.2.3.1.3 Show2

Output of a message with two values to be formatted.

VAR_INPUT
dLogType : DWORD;
sLogCode : T_MaxString;
sLogText : T_MaxString;
tArg1 : T_Arg;
tArg2 : T_Arg;
bIgnoreBlock : BOOL;

dLogType: Log type of the message to be displayed.

sLogCode: Optional, context-related additional information [} 34].

sLogText: Content of the message.

tArg1: First value to be formatted (see T_Arg).

tArg2: Second value to be formatted (see T_Arg).

bIgnoreBlock: Prevents the suppression of cyclically repeated messages [} 34].

VAR_OUTPUT
Show2 : BOOL;

Show2: Indicator of whether a message was output (TRUE) or discarded (FALSE).

4.1.2.3.1.4 Show3

Output of a message with two values to be formatted.

VAR_INPUT
dLogType : DWORD;
sLogCode : T_MaxString;
sLogText : T_MaxString;
tArg1 : T_Arg;
tArg2 : T_Arg;
tArg3 : T_Arg;
bIgnoreBlock : BOOL;

dLogType: Log type of the message to be displayed.

sLogCode: Optional, context-related additional information [} 34].

sLogText: Content of the message.

Programming

TE1000 37Version: 1.2.2

tArg1: First value to be formatted (see T_Arg).

tArg2: Second value to be formatted (see T_Arg).

tArg3: Second value to be formatted (see T_Arg).

bIgnoreBlock: Prevents the suppression of cyclically repeated messages [} 34].

VAR_OUTPUT
Show3 : BOOL;

Show3: Indicator of whether a message was output (TRUE) or discarded (FALSE).

4.1.2.3.1.5 Show4

Output of a message with four values to be formatted.

VAR_INPUT
dLogType : DWORD;
sLogCode : T_MaxString;
sLogText : T_MaxString;
tArg1 : T_Arg;
tArg2 : T_Arg;
tArg3 : T_Arg;
tArg4 : T_Arg;
bIgnoreBlock : BOOL;

dLogType: Log type of the message to be displayed.

sLogCode: Optional, context-related additional information [} 34].

sLogText: Content of the message.

tArg1: First value to be formatted (see T_Arg).

tArg2: Second value to be formatted (see T_Arg).

tArg3: Second value to be formatted (see T_Arg).

tArg4: Second value to be formatted (see T_Arg).

bIgnoreBlock: Prevents the suppression of cyclically repeated messages [} 34].

VAR_OUTPUT
Show4 : BOOL;

Show4: Indicator of whether a message was output (TRUE) or discarded (FALSE).

Programming

TE100038 Version: 1.2.2

4.1.2.3.1.6 Show5

Output of a message with five values to be formatted.

VAR_INPUT
dLogType : DWORD;
sLogCode : T_MaxString;
sLogText : T_MaxString;
tArg1 : T_Arg;
tArg2 : T_Arg;
tArg3 : T_Arg;
tArg4 : T_Arg;
tArg5 : T_Arg;
bIgnoreBlock : BOOL;

dLogType: Log type of the message to be displayed.

sLogCode: Optional, context-related additional information [} 34].

sLogText: Content of the message.

tArg1: First value to be formatted (see T_Arg).

tArg2: Second value to be formatted (see T_Arg).

tArg3: Second value to be formatted (see T_Arg).

tArg4: Second value to be formatted (see T_Arg).

tArg5: Second value to be formatted (see T_Arg).

bIgnoreBlock: Prevents the suppression of cyclically repeated messages [} 34].

VAR_OUTPUT
Show5 : BOOL;

Show5: Indicator of whether a message was output (TRUE) or discarded (FALSE).

4.1.2.4 Trigger

4.1.2.4.1 FB_BA_ATrigCOV

The function block monitors the value xValue for changes (Change of Value).

The monitored value is independent of the data type (ANY).
For reasons of performance, however, only data types smaller than or equal to 4 bytes are
supported!

Programming

TE1000 39Version: 1.2.2

VAR_INPUT
xValue : ANY;
bForce : BOOL;

xValue: Value to be monitored.

bForce: Forces a positive comparison ("bQ=TRUE").

VAR_OUTPUT
bReady : BOOL;
bQ : BOOL;

bReady: Indicates operability:

If xValue is valid.
Correct value assignment and observance of the permissible data type size.

Memory is initialized.
The comparison can be made at the earliest after one cycle, as the internal memory first has to be initialized
with the value xValue.

bQ: Result of the last comparison (TRUE if the value has changed).

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.1.2.4.2 FB_BA_RFTrig

Function block for the detection of a rising or falling edge on a Boolean variable. The use of the separate
function blocks R_TRIG and F_TRIG can be avoided with the block.

VAR_INPUT
bValue : BOOL;

bValue: Value to be monitored.

VAR_OUTPUT
Q : BOOL;
Qr : BOOL;
Qf : BOOL;

Q: TRUE if an edge is detected.

Qr: Result of the last comparison (TRUE as soon as the monitored value changes from FALSE to TRUE).

Qf: Result of the last comparison (TRUE as soon as the monitored value changes from TRUE to FALSE).

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

Programming

TE100040 Version: 1.2.2

4.2 DUTs

4.2.1 Structures

4.2.1.1 ST_BA_SeqLink / ST_BA_SeqLinkData

Structure of the data and command exchange between the control function block FB_BA_SeqLink [} 20] and
the sequence controllers FB_BA_SeqCtrl [} 16].

This structure has to be created once per sequence control:
stSeqLink : ST_BA_SeqLink;

Within this structure, a further field structure is declared automatically, through which the sequence link
function block and the individual sequence controllers exchange all relevant data. Each sequence controller
writes its data into the field element corresponding to its ordinal number (entry at input diMyNum at the
sequence controller function block). It is always the complete structure with all field elements that is linked to
the function blocks.

The structures have the following setup:
TYPE ST_BA_SeqLink :
STRUCT
 arrSeqLinkData : ARRAY[1..16] OF ST_BA_SeqLinkData;
 diCurCtrl : DINT;
 bSeqActv : BOOL;
END_STRUCT
END_TYPE

arrSeqLinkData: Parameters of the individual sequence controllers. See below for a description of the
structure ST_BA_SeqLinkData.

diCurCtrl: from FB_BA_SeqLink: Specification of current sequence controllers.

bSeqActv: The sequence control is enabled and active.
TYPE ST_BA_SeqLinkData:
STRUCT
 lrY : LREAL;
 lrYMin : LREAL;
 lrYMax : LREAL;
 lrW : LREAL;
 bActn : BOOL;
 bOp : BOOL;
 bPresence : BOOL;
 bErrDouble : BOOL;
 diCurCtrl : DINT;
END_STRUCT
END_TYPE

lrY: from FB_BA_SeqCtrl: Transfer of current control value.

lrYMin: from FB_BA_SeqCtrl: Transfer of minimum control value.

lrYMax: from FB_BA_SeqCtrl: Transfer of maximum control value.

lrW: from FB_BA_SeqCtrl: Transfer of current set value.

bActn: from FB_BA_SeqCtrl: Transfer of inverse direction of action (bActn = FALSE: heating mode - bActn =
TRUE: cooling mode).

bOp: from FB_BA_SeqCtrl: Sequence controller is enabled, i.e. its input bEn is set to TRUE.

bPresence: from FB_BA_SeqCtrl: Checkbit, see below

bErrDouble: from FB_BA_SeqCtrl: Error during number verification: Two or more sequence controllers exist
with the same ordinal number diMyNum.

diCurCtrl: from FB_BA_SeqLink: Specification of current sequence controllers.

Programming

TE1000 41Version: 1.2.2

Note regarding check bit:

Every sequence controller sets the bPresence flag in the structure that is valid for itself. If it is already set,
however, then it is mandatory for diMyNum to be assigned twice and two sequence controllers access the
same structure. After the evaluation, the sequence link function block resets all check bits, so that this test
takes place cyclically. This means that an error can automatically be rectified via an online change, and new
sequence controllers can be added, if required.

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.2.2 Enums

4.2.2.1 E_BA_Terminal_KL
Enumerator for selecting the respective Bus Terminal.
TYPE E_BA_TERMINAL_KL:
(
 KL3208_0010 := 0,
 KL320x_0000 := 1,
 KL300x := 2,
 KL301x := 3,
 KL302x := 4,
 KL304x := 5,
 KL305x := 6,
 KL306x := 7,
 KL3132_0000 := 8,
 KL3142_0000 := 9,
 KL3152_0000 := 10,
 KL3162_0000 := 11,
 KL3172_0000 := 12,
 KL3172_0500 := 13,
 KL3172_1000 := 14,
 KL3182_0000 := 15,
 KL3404 := 16,
 KL3464 := 17,
 KL3408 := 18,
 KL3468 := 19,
 KL3444 := 20,
 KL3454 := 21,
 KL3448 := 22,
 KL3458 := 23,
 Undefined := 16#FFFF
)DINT;
END_TYPE

KL3208_0010: Temperature sensors with wire breakage and short-circuit detection.

KL320x_0000: Temperature sensors with wire breakage and short-circuit detection.

KL300x: -10 V to 10 V.

KL301x: 0 mA to 20 mA with wire breakage and short-circuit detection.

KL302x: 4 mA to 20 mA with wire breakage and short-circuit detection.

KL304x: 0 mA to 20 mA with wire breakage and short-circuit detection.

KL305x: 4 mA to 20 mA with wire breakage and short-circuit detection.

KL306x: 0 V to 10 V.

KL3132_0000: -10 V to +10 V.

KL3142_0000: 0 mA to 20 mA with wire breakage and short-circuit detection.

KL3152_0000: 4 mA to 20 mA with wire breakage and short-circuit detection.

Programming

TE100042 Version: 1.2.2

KL3162_0000: 0 V to +10 V.

KL3172_0000: 0 V to +2 V.

KL3172_0500: 0 V to +0.5 V.

KL3172_1000: 0 V to +1.0 V.

KL3182_0000: -2.0 V to +2.0 V.

KL3404: -10 V to +10 V.

KL3464: 0 V to +10 V.

KL3408: -10 V to +10 V.

KL3468: 0 V to +10 V.

KL3444: 0 mA to 20 mA with wire breakage and short-circuit detection.

KL3454: 4 mA to 20 mA with wire breakage and short-circuit detection.

KL3448: 0 mA to 20 mA with wire breakage and short-circuit detection.

KL3458: 4 mA to 20 mA with wire breakage and short-circuit detection.

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.2.2.2 E_BA_Sensor
Enumerator for selecting a sensor type for measuring analog values.
TYPE E_BA_SENSOR :
(
 KL3208_0010_PT1000 := 0,
 KL3208_0010_NI1000 := 1,
 KL3208_0010_NI1000_LS := 2,
 KL3208_0010_NTC1K8 := 3,
 KL3208_0010_NTC1K8_TK := 4,
 KL3208_0010_NTC2K2 := 5,
 KL3208_0010_NTC3K := 6,
 KL3208_0010_NTC5K := 7,
 KL3208_0010_NTC10K := 8,
 KL3208_0010_NTC10KPRE := 9,
 KL3208_0010_NTC10K_3204 := 10,
 KL3208_0010_NTC10KTYP2 := 11,
 KL3208_0010_NTC10KTYP3 := 12,
 KL3208_0010_NTC10KDALE := 13,
 KL3208_0010_NTC10K3A221 := 14,
 KL3208_0010_NTC20K := 15,
 KL3208_0010_NTC100K := 16,
 KL3208_0010_Poti_Resolution_01 := 17,
 KL3208_0010_Poti_Resolution_1_1 := 18,
 KL320x_0000_PT1000 := 19,
 KL320x_0000_NI1000 := 20,
 KL320x_0000_PT100 := 21,
 KL320x_0000_PT200 := 22,
 KL320x_0000_PT500 := 23,
 KL320x_0000_NI100 := 24,
 KL320x_0000_NI120 := 25,
 KL320x_0000_Output_10_5000 := 26,
 KL320x_0000_Output_10_1200 := 27,
 Undefined := 16#FFFF
)DINT;
END_TYPE

Programming

TE1000 43Version: 1.2.2

Requirements

Development environment Required library Necessary function
TwinCAT3.1 4022.16 Tc3_BA_Common from V1.0.4.3 TF8040 | TwinCAT Building

Automation from V1.0.5.0

4.3 GVLs

4.3.1 Parameter
Global parameters
VAR_GLOBAL CONSTANT
 usiMaxSeqCtrl : USINT := 16;
END_VAR

usiMaxSeqCtrl: Maximum number of sequence controllers in a sequence.

Appendix

TE100044 Version: 1.2.2

5 Appendix

5.1 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/te1000

mailto:info@beckhoff.com?subject=TE1000
https://www.beckhoff.com
https://www.beckhoff.com/te1000

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Introduction
	3 General Information
	4 Programming
	4.1 POUs
	4.1.1 Controller
	4.1.1.1 Introduction – sequence controller
	4.1.1.2 FB_BA_PIDCtrl
	4.1.1.3 FB_BA_SeqCtrl
	4.1.1.4 FB_BA_SeqLink

	4.1.2 Universal
	4.1.2.1 Analog inputs/outputs
	4.1.2.1.1 FB_BA_KL32xxConfig

	4.1.2.2 Array
	4.1.2.2.1 FB_BA_DynamicArray
	4.1.2.2.1.1 AddEntry
	4.1.2.2.1.2 FindEntry
	4.1.2.2.1.3 GetEntry
	4.1.2.2.1.4 GetEntryEx
	4.1.2.2.1.5 RemoveEntry
	4.1.2.2.1.6 RemoveEntryEx
	4.1.2.2.1.7 Reset
	4.1.2.2.1.8 SetEntry
	4.1.2.2.1.9 AddEntryPtr
	4.1.2.2.1.10 FindEntryPtr
	4.1.2.2.1.11 GetEntryExPtr
	4.1.2.2.1.12 RemoveEntryExPtr
	4.1.2.2.1.13 SetEntryPtr

	4.1.2.2.2 FB_BA_StaticArray

	4.1.2.3 Log
	4.1.2.3.1 FB_BA_LogMessage
	4.1.2.3.1.1 Show
	4.1.2.3.1.2 Show1
	4.1.2.3.1.3 Show2
	4.1.2.3.1.4 Show3
	4.1.2.3.1.5 Show4
	4.1.2.3.1.6 Show5

	4.1.2.4 Trigger
	4.1.2.4.1 FB_BA_ATrigCOV
	4.1.2.4.2 FB_BA_RFTrig

	4.2 DUTs
	4.2.1 Structures
	4.2.1.1 ST_BA_SeqLink / ST_BA_SeqLinkData

	4.2.2 Enums
	4.2.2.1 E_BA_Terminal_KL
	4.2.2.2 E_BA_Sensor

	4.3 GVLs
	4.3.1 Parameter

	5 Appendix
	5.1 Support and Service

		documentation@beckhoff.com
	2024-06-05T15:41:19+0200
	Beckhoff Automation, Verl
	Documentation Publishing

