BECKHOFF

TET000

TwinCAT 3 | PLC Library: Tc2_System

Fle Edt View projeq Buld Debug
.o H N
Build 40244 (Loaded) . r‘;‘@" o
4821 @
Solution Explorer . '

p New Project -
®DE-| B

TwinCAT s
- a- TWinSAFE PLC Tegmn Scope Tools

~ | TwinCATRT (x64)
98 | TuinCAT Project

Vindow Help

P Attach.. v

b Recent

ch Solution Exp

y: | Default
. . 4 Installed
%] Solution ‘TwinCAT Project’ (1 project) et
4 /| TWinCAT Project
4 (@] SvSTEM
¥ License

P Controtes E'.J TwinCAT XAE Project (XML format)
b TwinCAT Measurement
TwinCAT CAD Interface Beta Version

D Real-Time TwinCAT Projects

B Tasks TwinCAT PLC

52 Routes

23 Type System

] TcCOM Objects
[moTIoN
g ric

SAFETY

C++
& AnaLTICS

o
» G0 Not finding what youae loaking o’

TeXaeShell Solution

(Open Visual Studio Installer -
TwinCAT Project
= forsolution
l et e

3 [trol
3] AddtoSource Con

i Create new solution .

ution:
g TwinCAT Project
=

Solution nam

2025-07-24 | Version: 1.17.0

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 7
1.1 Notes on the doCUMENTALION ... e e e e e 7
L o Yo TN T =Y |V USRS POPPPP 7
1.3 Notes on infOrmation SECUNITYcooi i 9

B © 1Y =Y VT 10

B 1T 4o e T o Lo o €= 14
3.1 General FUNCHON DIOCKScoiiiiiii et e e e e e e e s te e e e s nnneeeeas 14

3.1.1 DRAND ...ttt ettt e e e e bttt e e e e e e e e et b — e e e e e e b —raeeeaaabaeeeeearbaeeeeearreaeeeans 14
3.1.2 FB_1eCCritiCalSECHONt 14
3.1.3 FB_ReadTaskEXCEEACOUNIETuuiiiiiiiiie et e 16
3.1.4 FB_ResetTaskEXCEEACOUNIEN.......ooii it e e e e e 17
3.1.5 FB_SetLedCoIOr_BAPI ...ttt 18
3.1.6 FB_SetLedCoIOrEX BAPIooiiiiieeee ettt 19
3.1.7 GETCURTASKINDEX.......utiiiieiiiieite et e e e ettt e e s ettt e e e s et eesssseeeaesannsseeaeaansnneeesannneeeens 20
3.1.8 FB _Creat@GUIDocoi ittt e e e e e e e e e e e e e e e e e s e e aaaaae s 20
IC T2 AN I S 30 {0 Vo 1o o N o] (o o1 < SO 21
3.2.1 (00T 0] (o] IR] = | (- ST 21
3.2.2 INAICAtION + RESPONSE ...ttt e e e 26
3.2.3 ADSREAD ..ottt e e e e e e e e e e e e e e e b e e e e e anntaraeeaarrreaeeanaes 39
3.24 ADSREADEX ...ttt e e e e e e e e e anees 40
3.2.5 ADSWRITE ... ettt ettt et e e e e e e e e e e e e e e s e e e e e e abb e e e e e anbreeeeeannees 41
3.2.6 ADSRDWRT ...ttt e e e ettt e e e e sttt e e e e e este e e e e e snsaeeeeeaanbaeaeeeanreeaeeeanraeeeeeanees 43
3.2.7 ADSRDWRTEX ...ttt ittt ettt ettt e et e e e ettt e e e e et e e e s st e e e e e nbaeeeeeanbeeeeeeannees 45
G TR T 1 1= 0o T3 T o 1][Yo € SO 47
3.3.1 = T =L PRSPPI 47
3.3.2 = T 11T o= o SO PPPRR 48
3.3.3 FB_ FIlECIOSE. ...ttt ettt e e e et e e e e e st e e e e e enb e e e e e e nbe e e e e e anraeeeeeennres 51
3.34 = 1 o =T PSSP 53
3.35 FB _FIlEGELS ...ttt e e e e e a e e e 54
3.3.6 S 1 U PP 55
3.3.7 = 1 Y =T Vo PRSP 57
3.3.8 FB_ FIEWVIILE ..ttt ettt e e e e et e e e e et e e e e e anbaee e e e ennres 59
3.3.9 FB FIlESEEK. ..ttt a e e e e e enees 61
TR 0 T o = IR PSR 62
3311 FB_FIlEDEIELE ... 64
3.3.12 FB_FIlERENAME ... e e e e e e e e e e e e e e e e e e e aaaraaa 65
R R G T o = 07 Y= 1 (=1 I | TSRS 66
3.3.14 FB _REMOVEDIN ...ttt e e e e e e e e e e aaae s 68
3.4 EventLogger fUNCHON DIOCKSccoiiiiiiieeeee e 70
3.4.1 ADSLOGEVENT oottt ettt e et e e e e e e b e e e e e st e e e e e s bb e e e e e e eabaeeeeennnees 70
3.4.2 ADSCLEAREVENTS ..ottt ettt e e e et e e e e e et e e e e e nnreeae e e nnnees 72
343 FB_SIimMpPIEAdSLOGEVENTeiiiiiiiiiiiee et e e e e 73
3.5 |EC steps/ SFC flags funCtion DIOCKSeeiiiiiiiiiiei e 75
3.51 ANAIYZEEXDPIESSION. ... e e e 75

TE1000

Version: 1.17.0 3

Table of contents BEGKHOFF

3.5.2 ANalyZEEXPreSSIONTADIE.veiiiiieee e e e e e e e e e e e e e e e 78
3.5.3 AnalyzeEXpressionCombiNedoiiiiiiiiiiii e 80
354 P o] 01T g e =ty o] 53 {4 TV OSSP 80
3.5.5 SFCACHONCONTION ...ttt 81
3.6 Watchdog fUNCHON DIOCKSeiiiiiiee ettt e e 81
3.6.1 FB_PCWaCRAOQG ...cceiiiiieiii et e e 81
3.6.2 FB_PCWatChDOG _BAPI ... 83
R T A 10 T {1 e 1 o g T o] o T3 << USSR 84
3.7.1 GETCPUACCOUNT ..ottt e st e e e et e e e s et e e e e nnnteeeesannneeeas 84
3.7.2 GETCPUCOUNTER ..ottt ettt e et e e e e e e e s ae e e e e nsneeens 85
O V] T oo L= 87
g B € 1= o 1= = I 0o T3 4o) o 1SR 87
411 F CheCKMEMOIYAICAttt e e e e e e e e e e eeeeaaaeens 87
4.1.2 F CMPLIDVEISION ...t e e e e e e e e e e e e aaae s 88
4.1.3 @7 (== 1= Y27 o o | SRR 88
414 F _ScanIPVAAAAIIAScooooiiiieeeeee et a e 89
4.1.5 F_GetCPUCOrEINAEXeeiiieiiiiiiee ettt ettt e et e e e et e e e e 90
4.1.6 e €= (07 o]0 @] =Y o] TSR a0
4.1.7 F_ GetMappingPartner............uuuiiiiiiiieee et 91
4.1.8 F_GetMappingStatUuscooiiiiiie et 91
419 F_GetStructMemberAlIignmeENt..... ... 92
4110 F_GEetTASKINTO ...uviiiiiiiiiiee et a e e e e e e aaaaae s 95
4111 F_RAISEEXCEPHON ... 96
4112 F_SPItPAthNGMEcoeiiiie e 97
g I TS 1 I 1 PSP PPRPRRUPSR 99
g B S O I =] 1 I 3PSO SOURRR 99
g ST € = = 1 SRR 100
o B T O I N =] G 1O PSSO PRSPPI 101
4117 GETCURTASKINDEXEX.......iiittiiteiiiiiieee e ettt e e seieee e e s st e e e sssseeeasssssseeeessnsseeaesnnnneeeens 101
g T I e S [€1 RSER 102
4119 TESEANASEL ...ooiiiiieeeeee et e e e e e e s naraaas 103
A B IS 3 {0 o Tox 17 1RSSR 104
421 F S| 0 11 1\ SRR EPR 104
422 ADSLOGLREAL ..o ettt ettt e et e e e s et e e e e e bt e e e e e et a e e e e e enntraeeeearreaaeeans 106
423 ADSLOGSTR ...ttt et e e e et e e e e et e e e e e b bt e e e e e e be e e e e anntaeeeeearraeaaeans 107
424 F_Create AMSNELIoeiiiie et 109
425 F SCaNAMSNELIAS ...t e e e e e 109
4.3 Character FUNCHIONSoiiiieiii ettt ettt st e e aab e e sbe e s 110
4.3.1 F U TOCHR ... et e e e et e e e s bt e e e e s et e e e e e e asbseeeesssbaneaeans 110
4.3.2 F UTOASKC .ot e e et e e e e ettt e e e e a e e e e e et ae e e e e e anbreaeeeanrnaeaean 111
N (O B o To 4 = Tt ed =T PRSPPI 111
4.4.1 F IOPOIMREAAeiiiciiiiiee ettt e e e et e e e s st e e e e e anbaeeeessraeaeeeeans 111
442 | (@] o AT (= SRR PRSP 112
S T |V =10 T Y 0 o T 1o 1 SRRSO 114
451 MEIMOCMP ...ttt e et e e e et e e e e e st et e e e essaeeeeaanssseeeeannssneeeeannneeens 114
45.2 1Y SRR 115

Version: 1.17.0 TE1000

BEGKHOFF Table of contents

45.3 MEMMONVE ...ttt e et e e ettt e e e et e e e e e s e e e e e aanseeeeesannneeens 116

454 1Y] i OSSOSO PRSPPI 117

4.6 TIME FUNCHIONS ...ttt e e oo oottt e et e e e e e e e e e et ee e e e eeeeaaaeeeeaannnneeneees 118
4.6.1 F o GetSYSIEMTIME oot e e e e e e e e e e e e aaaaeeeas 118

4.6.2 €= 1= TS 1T =SSR 119

4.6.3 F GetTaskTotalTime ..ot 119

A (] o Y~To] [(= PR PRR 120
4.71 F_GetVersioNTCSYSIEM ...ccoiiiiiee et 120

4.7.2 GETSYSTEMTIME ...ttt et e et e e e et e e e e e e e e e e nnees 121

4.7.3 GETTASKTIME ...ttt e e e e e e e et e e e e s ab e e e e e nsreeaeeensees 121

LI T - T 47 o 1= 123
5.1 E_TOACCESSSIZE ...eeeiiiiieiee ettt e e e e e e 123
5.2 B _OPENPAtN....cc e a e 123
LR T S ToTCY (@ o Lo I USSP PP 123
Lo e e =T o (=TSO 124
5.5 E_TCEVENICIEANMOUESeeeeiiiiiieieieeeeeee ettt ettt e e e e e e e e e e eeeaaae e 124
5.6 E_TCEVENTPIIONTY ..oeeiiiiiiieee ettt e et e e e e e e e e e nnnees 124
L A = e Y=Y g 8 4 == o I8 o PSR 124
Lo I = Wl [=Ta (o] V7Y (== [PRSPPI 125
IR = U L 4 I R 7 o] o RO SRR 125
L L = T =T o) o] T] = (1 1 USSP 125
LTt I B Yo 457 X o[PRSPPI 126
512 ST_CPUCOTEINTO ...ttt e et e e e et e e et e e e e e s e e e e e nnnees 126
513 SYSTEMINFOTYPE..... . oottt ettt e e e et e e e et e e e e nbae e e e e e nbeeeeeeennbeeeeeennnees 126
514 SYSTEMTASKINFOTYPE ...ttt ettt e e e e e et e e e e e et e e e e e nnees 126
5.5 T _AMSNELID ...ttt e e e e e et e e e e r e e e e e e e e e nr e e e e e nnrareeeeannres 127
BUAG T AMSNEIAAIT et e et e e e e e e e e e e e e e e et et e e e e aeae s s et a e e e e e e aeaaaaaaaeas 127
ST I A B Yo 1] o T S PRSP 127
TR T W Y27 7N o [PRSPPI 128
LT T W V27 7N o[y PRSP 129
ST O B 1Y =4S {4 T PRSPPI 129
LT B I =T o | USRI 129
6 Global CONSTIANES ..o e e e e e e e e e e ean 131
0t B 0 o 1= = | T RSP RRR 131
L A I o = VA=Y] o] o PSPPI 136
A= - 1141 [SORP 137
7.1 Example with AdsReadInd /AdsReadRes function bIOCKScccoiiiiiiiiiiiiee e, 137
7.2 Example with AdsWritelnd/AdsWriteRes function blocks ... 139
7.3 Example with AdsRead fuNCLioN DIOCKcooiiiiiiiiiieeee e 140
7.4 Example with AdsWrite function DIOCKcoiiiiiiiii e 141
7.5 Sending/acknowledging EventLogger signals from the PLC ..o, 142
7.6 File access from the PLCueiiiiiie e et e e e e e e e e e nnnees 143
7.7 Testing the CPU reserve Of @ CXTOXXiiuuuiiiiiiiiiiee it e e e e 146
L LY o o 1= Lo [G 148
8.1 ADS REtUM COUBS ... ettt e ettt e e e e e e e e e ettt e e e e e e e e e e e e e nnnennnnneeaaaaeens 148

TE1000

Version: 1.17.0 5

Table of contents BECKHOFF

8.2 SUPPOIt @NA SEIVICEuuuiiiiiiiieiee ettt e e e e e e e e et e e e e e e e e e e e e e s et a e e e eaaaaeeas 153

6 Version: 1.17.0 TE1000

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

The documentation and the following notes and explanations must be complied with when installing and
commissioning the components.

The trained specialists must always use the current valid documentation.

The trained specialists must ensure that the application and use of the products described is in line with all
safety requirements, including all relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

Claims to modify products that have already been supplied may not be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, ATRO®, EtherCAT®, EtherCAT G®, EtherCAT G10°®, EtherCAT P®, MX-System®, Safety over
EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar®, and XTS® are registered
and licensed trademarks of Beckhoff Automation GmbH.

If third parties make use of the designations or trademarks contained in this publication for their own
purposes, this could infringe upon the rights of the owners of the said designations.

EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Third-party trademarks

Trademarks of third parties may be used in this documentation. You can find the trademark notices here:
https://www.beckhoff.com/trademarks.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

TE1000 Version: 1.17.0 7

https://www.beckhoff.com/trademarks

Foreword BECKHOFF

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:
1 recommendations for action, assistance or further information on the product.

Version: 1.17.0 TE1000

0]

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TE1000 Version: 1.17.0 9

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

BECKHOFF

2 Overview

Not all those function blocks and functions that are often needed in PLC applications are standardized in
IEC61131-3. The Tc2_System library contains such functions and function blocks for the TwinCAT system
which do not belong to the standard scope of IEC61131-3, and which are therefore manufacturer-specific.

General function blocks

Name

Description

DRAND [» 14]

Random number generator

FB lecCriticalSection [» 14]

Critical sections should be made mutually exclusive

FB SetLedColor BAPI [» 18]

Switches the user LED to PCs and Embedded PCs
with BIOS API support

GETCURTASKINDEX [»_20]

Determines the index of the current task

ADS function blocks

Name

Description

ADSREAD [»_39]

Reading data via ADS

ADSREADEX [P 40]

Reading data via ADS and returning the number of
read data bytes

ADSWRITE [P 41]

Writing data via ADS

ADSRDWRT [p 43]

Reading and writing data via ADS

ADSRDWRTEX [P 45]

Writing data via ADS and returning the number of
read data bytes

ADSRDSTATE [» 21]

Read the state of a device via ADS

ADSWRTCTL [» 23]

Write control words to a device via ADS

ADSRDDEVINFO [» 25]

Read device information via ADS

Expanded ADS function blocks

Name

Description

ADSREADIND [p 28]

ADSREAD Indication

ADSWRITEIND [» 30]

ADSWRITE Indication

ADSRDWRTIND [r 33]

ADSRDWRT Indication

ADSREADRES [P 36]

ADSREAD Response

ADSWRITERES [r_37]

ADSWRITE Response

ADSRDWRTRES [»_38]

ADSRDWRT Response

Function blocks for data access

The function blocks can be used to process files from the PLC locally on the PC. The TwinCAT target system
is identified by the AMS network address. This mechanism makes it possible, amongst other things, to store
or to edit files on other TwinCAT systems in the network. Access to files consists of three sequential phases:

1. Opening the file.
2. Read or write access to the opened file.
3. Closing the file.

Opening the file has the purpose of establishing a temporary connection between the external file, whose
name is all that initially is known, and the running program. Closing the file has the purpose of indicating the
end of the processing and placing it in a defined output state for processing by other programs.

10 Version: 1.17.0 TE1000

BECKHOFF

Overview

Name Description

FB EQOF [» 47] Check the end of file
FB FileOpen [r 48] Open afile

FB FileClose [» 51] Close a file

FB FileGets [P 54]

Get string from a file

FB FilePuts [» 55]

Put string to a file

FB FileRead [» 57]

Read from a file

FB FileWrite [» 59]

Write to a file

FB FileSeek [» 61]

Move the file pointer

FB FileTell [» 62]

Get the file pointer position

FB FileDelete [P 64]

Delete a file

FB FileRename [P 65]

Rename a file

FB CreateDir [» 66]

Create new directory

FB RemoveDir [P 68]

Remove directory

EventLogger function blocks

The TwinCAT EventLogger has the task of managing all messages (events) appearing in the TwinCAT
system; to forward them and where necessary to write them into the TwinCAT log file.

Name

Description

ADSLOGEVENT [r 70]

Sending and acknowledging TwinCAT EventLogger
messages.

ADSCLEAREVENTS [r 72]

Sending and acknowledging TwinCAT EventLogger
messages.

FB SimpleAdsLogEvent [» 73]

Sending and acknowledging TwinCAT EventLogger
messages.

TwinCAT EventLogger vs. TwinCAT 3 EventLogger

o

1 The TwinCAT EventLogger was replaced by the successor TwinCAT 3 EventLogger. The older
TwinCAT EventLogger is supported by TwinCAT 3 up to version 3.1.4024. Newer TwinCAT
versions (>= 3.1.4026.0) only support the newer TwinCAT 3 EventLogger. PLC function blocks for
this can be found in the PLC library Tc3_EventLogger.

IEC steps / SFC flags function blocks

These functions / function blocks are required if IEC steps or SFC flags are used in SFC programs/projects.

Name

Description

AnalyzeExpression [P 75]

Required if SFC flags are used

AnalyzeEspressionTable [P 78]

Required if SFC flags are used

AnalyzeExpressionCombined [P 80]

Required if SFC flags are used

AppendErrorString [»_80]

Required if SFC flags are used in order to format
strings with error description

SFECActionControl [» 81]

Enables the use of IEC steps

TE1000

Version: 1.17.0 11

Overview

BECKHOFF

Watchdog function blocks

Name

Description

FB PcWatchdog [» 81]

Activates or deactivates the PC watchdog

Only available on IPCs with the following
mainboards: IP-4GVI63, CB1050, CB2050, CB3050,
CB1051, CB2051, CB3051

FB PcWatchdog BAPI [» 83]

Activates or deactivates the PC watchdog

Only available on IPCs with the following
mainboards: CBxx63 with a BIOS version >=0.44

Time function blocks

Name

Description

GETCPUCOUNTER [P 85]

Read the CPU cycle counter

GETCPUACCOUNT [r 84]

Read the PLC task cycle counter

General functions

Name

Description

F CheckMemoryArea [P 87]

Returns information about the memory area in which
the requested variable with the specified size is
located

F CmplibVersion [P 88]

Compares an existing library with the required
version

F CreatelPv4Addr [P 88]

Converts individual IPv4 address bytes to a string

F ScanlPv4Addrids [» 89]

Converts an IPv4 address string to individual address
bytes

F GetMappingPartner [» 911

Returns the object ID of the partner side of the
mapping

F GetMappingStatus [» 91]

Returns the current mapping status of a PLC variable

F GetStructMemberAlignment [» 92]

Reads information about the memory alignment used

F SplitPathName [» 97]

Splits the path name into four individual components

SETBIT32 [» 99]

Sets a bit in a DWORD

CSETBIT32 [» 99]

Setting/resetting of a bit in a DWORD

GETBIT32 [»_100]

Reads a bit from a DWORD

CLEARBIT32 [»_101]

Clears a bit in a DWORD

GETCURTASTINDEXEX [»_101]

Determining the task index

LPTSIGNAL [»_102]

Outputs a signal on one of the parallel port pins

TestAndSet [P 103]

Setting and checking a flag without option to interrupt
it

ADS functions

Functions are described below which, with the aid of the ADS interface makes some of the functions of the
Windows-NT operating system (such as the output of message boxes) accessible through PLC calls.

12

Version: 1.17.0 TE1000

BECKHOFF

Overview

Name

Description

ADSLOGDINT [»_104]

Log a DINT variable into NT Eventlog and/or
Messagebox

ADSLOGLREAL [r_106]

Log a (L)REAL variable into NT Eventlog and/or
Messagebox

ADSLOGSTR [»_107]

Log a STRING variable into NT Eventlog and/or
Messagebox

F CreateAmsNetld [P 109]

Creates AmsNetld string

F ScanAmsNetlds [P 109]

Converts AmsNetld string to array of address bytes

Character functions

Name

Description

F ToASC [r 111

Converts string character to ASCII number

F ToCHR [»_110]

Converts ASCII number to string character

1/0 port access

Name

Description

F IOPortRead [» 111]

Reads from 1/O Port

F 10OPortWrite [P_112]

Writes to 1/O Port

Memory functions

Number of functions, which provide direct access to memory areas in the PLC runtime system.

NOTICE

memory areas.

System crash or access to forbidden memory areas

The fact that these functions allow direct access to the physical memory means that special care is called
for in applying them! Incorrect parameter values can result in a system crash, or in access to forbidden

Name

Description

MEMCMP [» 114]

Compares the values of variables in two memory
areas

MEMCPY [»_115]

Copies the values of variables from one memory area
to another

MEMMOVE [»_116]

Copies the values from overlapping memory areas

MEMSET [»_117]

Sets the variables in a memory area to a particular
value

Time functions

Name

Description

F GetSystemTime [P 118]

Read the operating system time stamp

F GetTaskTime [» 119]

Read the target start time of the task

TE1000

Version: 1.17.0 13

Function blocks BEGKHOFF

3 Function blocks

3.1 General function blocks

3.1.1 DRAND

DRAND
—{Seed Num —

The function block permits generation of a (pseudo-) random number of type LREAL.

Inputs

VAR INPUT
Seed : INT;
END VAR

Name Type Description
Seed INT Initial value for specification of the random number series.

E- Qutputs

VAR OUTPUT
Num : LREAL;
END_ VAR

Name Type Description

Num LREAL This output returns a pseudo-random number in the range 0.0 ... 1.0 with double
accuracy. The generator here creates a number series with 1075 stochastic
values per period.

Example of the function block in FBD:

Randomfumber

DRAND
i5eed —Seed Hum

IrRandRes

In the example the LREAL value 0.643412 is generated and returned. The input parameter Seed affects the
initial value of the series. If, for instance, a deterministically reproducible random number series is desired in
different sessions, and identical Seed value must be used.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.1.2 FB_lecCriticalSection

The function block is used to make critical sections mutually exclusive. Critical sections are characterized by
modifications affecting one or usually several variables, which have an inconsistent state during
modifications. It is therefore imperative that such modifications are only carried out by one task at a time.
The function block provides the methods Enter() and Leave() for this purpose. A successful call of Enter()
makes the critical section accessible; the section is then regarded as occupied. Once the modifications are
complete, the critical section must be exited through Leave().

14 Version: 1.17.0 TE1000

BEGKHOFF Function blocks

Cycle timeout due to stopped task

o

1 If another task tries to access an occupied critical area through an Enter() call, it is blocked by the
TwinCAT scheduler. The task is blocked until the section is enabled again! Once enabled,
processing of the program code continues, and the critical section is entered.

» Ensure that the critical sections are kept short, in order to avoid cycle overruns in the waiting
task. If several tasks are waiting to enter the critical section, access is granted based on their
priority.

If a task is blocked by the TwinCAT scheduler because it attempted to enter an occupied critical area, this is
done without "busy waiting". Low-priority tasks can therefore utilize the CPU capacity during this time.

® Windows CE

The functionality is supported under Windows CE operating systems from TwinCAT v3.1.4022.29
onwards. (In older TwinCAT versions the methods return FALSE.)

Alternative

Critical sections can also be realized with the function TestAndSet() [»_103]. The function can be used to
select and check the content of a critical section. However, the function does not have a blocking effect, and
it is possible that the section cannot be processed in a cycle.

As a rule, the number and length of the critical sections should be kept as small as possible.

Enter() method

Enter
Enterp—

The method marks the start of a critical section.
Possible return values:
TRUE:

» The critical section may be entered.

FALSE:
» The critical section may not be entered.
» The function block is not yet supported by the runtime.

» The critical section is occupied by another PLC task. This task is on stop in a break point. The return
value FALSE avoids permanent blocking of the task and ensures updating of the /0.

Leave() method

Leave
Leavep—

The method marks the end of a critical section. It must always be called when a critical section is completed.
Possible return values:
TRUE:

» The section was exited successfully.

FALSE:

» The function block is not supported by the runtime.
» The critical section was not occupied with Enter.

TE1000 Version: 1.17.0 15

Function blocks BEGKHOFF

Application sample for the function block:

The function block FB_lecCriticalSection enables access to shared files to be secured. The instance of the
function block and the data to be secured are created globally.
VAR GLOBAL

fbCrititcalSection : FB IecCriticalSection;
END VAR

IF fbCrititcalSection.Enter () THEN
(* start of critical section *)

(* end of critical section *)

fbCrititcalSection.Leave () ;
END IF

Requirements

Development environment |Target platform PLC libraries to be integrated (cate-
gory group)
TwinCAT v3.1.4020 PC or CX (x86, x64) Tc2_System (system)
WES, WES7, Win7, Win10
TwinCAT v3.1.4022.29 PC or CX (x86, ARM) Tc2_System (system)
WinCE

3.1.3 FB_ReadTaskExceedCounter

FB_ReadTaskExceedCounter
—bExecute bBusy—
—nTaskadsPort bErrorf—
nErrorID F—
nExceedCounter f—

The function block reads the Exceed Counter. The Exceed Counter is incremented by the system whenever
the selected task exceeds the set task time. This means that maintaining real-time in the cycle was not
possible.

There can be many reasons for exceeding real-time, but it is usually due to the PLC runtime and the
application within this runtime. An example of this is programming loops such as FOR, WHILE, REPEAT,
since these are always processed in one cycle.

Inputs

VAR INPUT
bExecute : BOOL;
nTaskAdsPort : UINT;
END VAR

Name Type Description

bExecute BOOL A positive edge activates the function block.

nTaskAdsPort |UINT ADS Port of the selected task

Example of a possible assignment:
TwinCAT_SystemInfoVarList._Taskinfol GETCURTASKINDEXEX()].
AdsPort

& Qutputs

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrorID : UDINT;
nExceedCounter : UDINT;
END VAR

16 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

Name Type Description

bBusy BOOL The function block is active and working.

bError BOOL An error has been detected in the function block.
nErrorlD UDINT ADS error code.

nExceedCount [UDINT Read value of the Exceed Counter.

er

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1.4024.22

PC or CX (x86, x64, ARM)

Tc2_System (system) >= 3.4.25.0

3.1.4 FB_ResetTaskExceedCounter

—bBExecute
—InTaskAdsPaort

FB_ResetTaskExceedCounter

bBusyr—
bErrorf—

nErrorlD —

The function block can reset the Exceed Counter. The Exceed Counter is incremented whenever the
selected task exceeds the set task time. This means that maintaining real-time in the cycle was not possible.

There can be many reasons for exceeding real-time, but it is usually due to the PLC runtime and the
application within this runtime. An example of this is programming loops such as FOR, WHILE, REPEAT,
since these are always processed in one cycle.

! Inputs
VAR INPUT

“bExecute : BOOL;
nTaskAdsPort : UINT;

END VAR

Name Type

Description

bExecute BOOL

A positive edge activates the function block.

nTaskAdsPort |UINT

ADS Port of the selected task

Example of a possible assignment:
TwinCAT_SysteminfoVarList._ Taskinfof GETCURTASKINDEXEX()].
AdsPort

E- Qutputs
VAR_OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrorID : UDINT;
END VAR
Name Type Description
bBusy BOOL The function block is active and working.
bError BOOL An error has been detected in the function block.
nErroriD UDINT ADS error code.

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1.4024.22

PC or CX (x86, x64, ARM)

Tc2_System (system) >= 3.4.25.0

TE1000

Version: 1.17.0 17

Function blocks BEGKHOFF

3.1.5 FB_SetLedColor_BAPI

FB_SetLedColor_BAPI
—sNetlD bBusy —
—eNewColor bErrorf—
—bExecute nErriD —
—tTimeout
o

This functionality is only available on IPCs and Embedded PCs with a Usr-LED and with a BIOS
1 version which supports the BIOS-API.

The function block FB_SetLedColor_BAPI can be used to switch the user LED to PCs and embedded PCs
with BIOS API support. The LED color is switched via a positive edge at bExecute and the eNewColor
parameter. The LED can be switched off (eNewColor = eUsrLED_Off) or set to red (eNewColor =
eUsrLED_Red), blue (eNewColor = eUsrLED_BIlue) or green (eNewColor = eUsrLED_Green).

Inputs
VAR INPUT
sNetID : T AmsNetID;
eNewColor : E_UsrLED Color;
bExecute : BOOL;
tTimeout : TIME;
END VAR
Name Type Description
sNetID T_AmsNetID AMS network ID of the device (empty string or local network ID)

(type T_AmsNetID [»_127])

eNewColor E_UsrLED_Color New LED color (type E_UsrLED Color [F_125])

bExecute BOOL The command is executed with a rising edge. The input must be
reset as soon as the function block is no longer active
(bBusy=FALSE).

tTimeout TIME Time until the internal ADS communication is aborted.
& QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
END_VAR
Name Type Description
bBusy BOOL TRUE, as long as the function block is active.
bError BOOL TRUE if an error occurs during command execution.
nErriD UDINT Contains the ADS error code or the command-specific error code of
the last executed command. Is reset to 0 by the execution of a
command at the inputs.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_System (System) v3.4.14

18 Version: 1.17.0 TE1000

BECKHOFF Function blocks

3.1.6 FB_SetLedColorEx_BAPI

FB_SetledColorEx_BAPI
—sMetID bBusy—
—nLedID bErrorf—
—leMewCalor nErriD f—
— bExecute
—tTimeout
o

This functionality is only available on IPCs and Embedded PCs with a Usr-LED and with a BIOS
version which supports the BIOS-API.

The function block FB_SetLedColorEx_BAPI can be used to switch the user LEDs (USR, U1 or U2) on PCs
and embedded PCs with BIOS API support. The LED color is switched via a rising edge at bExecute and the
eNewColor parameter. The LED can be switched off (eNewColor = eUsrLED_Off) or set to red (eNewColor =
eUsrLED_Red), blue (eNewColor = eUsrLED_Blue) or green (eNewColor = eUsrLED_Green).

! Inputs
VAR _INPUT
sNetID : T _AmsNetID;
nLedID : USINT
eNewColor : E_UsrLED Color;
bExecute : BOOL;
tTimeout : TIME;
END VAR
Name Type Description
sNetID T_AmsNetID AMS network ID of the device (empty string or local network ID)
(type T_AmsNetID [»_127])
nLedID USINT ID for the selection of the user LED: For devices with only one USR

LED, the USR LED is selected via nLedID = 0 (default value is 0).
For devices with several user LEDs, the U1 LED is selected via
nLedID = 1 or the U2 LED via nLedID = 2.

eNewColor E_UsrLED_Color New LED color (type E_UsrLED Color [»_125])

bExecute BOOL The command is executed with a rising edge. The input must be
reset as soon as the function block is no longer active
(bBusy=FALSE).

tTimeout TIME Time until the internal ADS communication is aborted.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
END VAR
Name Type Description
bBusy BOOL TRUE, as long as the function block is active.
bError BOOL TRUE if an error occurs during command execution.
nErriD UDINT Contains the ADS error code or the command-specific error code of
the last executed command. Is reset to 0 by the execution of a
command at the inputs.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_System (system) v3.6.1

TE1000 Version: 1.17.0 19

Function blocks BEGKHOFF

3.1.7 GETCURTASKINDEX

GETCURTASKINDEX
index —

@® Outdated function block
1 This function block is outdated. Use the function GETCURTASKINDEXEX() [»_101] instead.

The function block GETCURTASKINDEX determines the task index of the task in which it is currently called.

To differentiate whether the current call occurs in the real-time context or from a cyclic PLC task, see the
documentation for the function GETCURTASKINDEXEX [P_101]. For example, the automatic call of FB_init
methods during initialization does not occur from a cyclic PLC task.

! Inputs
VAR _INPUT
(*none*)
END_ VAR

E- Qutputs

VAR OUTPUT
index : BYTE;
END VAR

Name Type Description
index BYTE Returns the current task index of the calling task (1..4).

Example of calling the block in FBD:

GetThisTasskIdx

GETCURTASEINDEX
index byThisCurrTaskIdx

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.1.8 FB_CreateGUID

FB_CreateGUID
—bE:xecute bBusy F—
—sietld bError F—
—[kTimeout = DEFAULT_ADS_TIMEOUT] nErrorid—
—piauidBuffer
—nisuidBufferSize

The function block generates a new GUID. It is possible to get a list of different new GUIDs with one call if an
array of type GUID is specified as buffer at the input.

| Inputs
VAR _INPUT
bExecute : BOOL;
sNetId : T AmsNetId;
tTimeout : TIME := DEFAULT ADS TIMEOUT;

20 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

pGuidBuffer : POINTER TO GUID;
nGuidBufferSize : UDINT;
END_VAR
Name Type Description
bExecute BOOL The function block is activated by a rising edge at this
input.
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [P _127]).
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
pGuidBuffer POINTER TO GUID Indicates the address to the buffer for generated GUIDs. It
is possible to specify the address on an ARRAY OF GUID.
nGuidBufferSize UDINT Indicates the size in bytes of the specified buffer.
& Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;
END VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output is
set, once the bBusy output has been reset.
nErrorld UDINT In the event of a set bError output returns the ADS error
code [»_148].

Requirements

Development environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.4022

PC or CX (x86, x64, ARM)

Tc2_System (system) >= 3.4.18.0

3.2

ADS function blocks

3.21 Control + State
3.2.11 ADSRDSTATE
ADSRDSTATE

—NETID BUSY

—PORT ERR

—RDSTATE ERRID

—TMOUT ADSSTATE
DEVSTATE

The function block requests the state of an ADS device.

Inputs

VAR _INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;

TE1000

Version: 1.17.0 21

Function blocks

BECKHOFF

RDSTATE : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;

END_VAR

Name Type Description

NETID T_AmsNetld String containing the AMS network ID of the target device to which the
ADS command is addressed (type: T_AmsNetld [»_127]).

PORT T_AmsPort Port number of the ADS device (type: T_AmsPort [»_127]).

RDSTATE BOOL The ADS command is triggered by a rising edge at this input.

TMOUT TIME Indicates the time before the function is canceled.

E- Qutputs

VAR OUTPUT

BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
ADSSTATE : UINT;
DEVSTATE : UINT;

END_VAR

Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a
command, but at the longest for the duration supplied to the Timeout
input. While BUSY = TRUE, no new command will be accepted at the
inputs. Note that it is not the execution of the service but its acceptance
whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the
execution of a command. The command-specific error code is contained
in ERRID. If the function block has a timeout error, ERR is TRUE and
ERRID is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution
of a command at the inputs.

ERRID UDINT ADS error code [>_148] or command-specific error code of the last
executed command. Is reset to 0 by the execution of a command at the
inputs.

ADSSTATE UDINT Contains the state identification code of the ADS target device.

DEVSTATE UDINT Contains the specific state identification code of the ADS target device.
The codes returned here are supplementary information specific to the
ADS device.

State identification code of the ADS target device

The codes returned here are specified for all ADS servers:

+ ADSSTATE_INVALID = 0;

+ ADSSTATE_IDLE =1,

+ ADSSTATE_RESET =2;

+ ADSSTATE_INIT = 3;

+ ADSSTATE_START = 4;

+ ADSSTATE_RUN = 5;

+ ADSSTATE_STOP = 6;

+ ADSSTATE_SAVECFG =7;
+ ADSSTATE_LOADCFG = 8;

ADSSTATE_POWERFAILURE = 9;
ADSSTATE_POWERGOOD = 10;
ADSSTATE_ERROR = 11;
ADSSTATE_SHUTDOWN = 12;
ADSSTATE_SUSPEND = 13;

22

Version: 1.17.0

TE1000

BECKHOFF

Function blocks

ADSSTATE_RESUME = 14;
ADSSTATE_CONFIG = 15;
ADSSTATE_RECONFIG = 16;
ADSSTATE_STOPPING = 17;
ADSSTATE_INCOMPATIBLE = 18;

+ ADSSTATE_EXCEPTION = 19;

Sample of calling the function block in FBD:

RdsFReadState 1

ADSEDSTATE
'1.1.1.2.7.1" —HETIL BUSY
801 —PORT ERE |- bErr4d
bReadStatel — RDSTATE ERRID [~ errId4d
TIME#ls —({TMOUT RDSSTATE |- adsStatel
DEVSTATE |~ dev3tatel

In this sample the PLC runtime system 1 (port no. 801) on the computer with network address 1.1.1.2.7.1 is
asked about its state. The answer is adsState = 1 (IDLE) without supplementary code devState=0.

Prerequisites

Development Environment Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.21.2

ADSWRTCTL

—METID
—PORT
—ADSSTATE
—DEVSTATE
—LEN
—SRCADDR
—WRITE
—{TMOUT

ADSWRTCTL
BUSY —

ERRf—

ERRID —

This function block permits the execution of an ADS control command to affect the state of an ADS device,

e.g. to start, stop or reset a device.

Inputs

VAR INPUT
NETID
PORT
ADSSTATE
DEVSTATE
LEN
SRCADDR
WRITE
TMOUT

END VAR

: T AmsNetId;

: T _AmsPort;

: UINT;

: UINT;

: UDINT;

: PVOID;

: BOOL;

: TIME := DEFAULT_ ADS_TIMEOUT;

TE1000

Version: 1.17.0

23

Function blocks

BECKHOFF

Name Type Description

NETID T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:

T AmsNetld [P 127]).

PORT T_AmsPort Port number of the ADS device (type: T_AmsPort [»_1271).

ADSSTATE UINT State identification code of the ADS target device.

DEVSTATE UINT Contains the specific state identification code of the ADS
target device. The codes given here are supplementary
information which is specific to the ADS device.

LEN UDINT Number of data to be written in bytes.

SRCADDR PVOID Address of the buffer from which the data to be written is
to be fetched. The programmer is himself responsible for
dimensioning the buffer to such a size that 'LEN' bytes
can be taken from it. The buffer can be a single variable,
an array or a structure, whose address can be found with
the ADR operator.

WRITE BOOL The ADS command is triggered by a rising edge at this
input.

TMOUT TIME Indicates the time before the function is canceled.

State identification code of the ADS target device

The codes shown here are specified for all ADS servers:
+ ADSSTATE_IDLE =1;
+ ADSSTATE_RESET = 2;
« ADSSTATE_INIT = 3;
+ ADSSTATE_START =4;
+ ADSSTATE_RUN=5;
« ADSSTATE_STOP = 6;
+ ADSSTATE_SAVECFG =7,
+ ADSSTATE_LOADCFG = 8;

E- Qutputs
VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
END VAR
Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a command, but at
the longest for the duration supplied to the Timeout input. No new commands are
accepted at the inputs as long as BUSY = TRUE. Note that it is not the execution of
the service but its acceptance whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the execution of a
command. The command-specific error code is contained in ERRID. If the function
block has a timeout error, ERR is TRUE and ERRID is 1861 (hexadecimal 0x745). Is
reset to FALSE by the execution of a command at the inputs.

ERRID UDINT |ADS error code [P 148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.

Example of calling the block in FBD:

24 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

r1.1.1.2.7.1"
300 —
2 —
0 —]
4 —

ADR
alUDINTVar

bWriteCtll WEITE
T#ls TMOUT

AdsWriteltl_1

ADSWETCTL
HETID BUSY
EORT ERR [~ bErrd

ADSSTATE ERRID [~ errldd
DEVSTATE
LEN
SRCADDR

In the example a reset command (ADSSTATE=2) is sent to the 1/O server (Port300), along with
supplementary data hex.AFFE. As a result the 1/O server executes a bus reset.

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.21.3 ADSRDDEVINFO
ADSRDDEVINFO
—INETID BUSY|—
—PORT ERR|—
—RDINFO ERRID|—
—{TMoUT DEVNAMEf—
DEVVERf—

The function block reads the genera

| device information.

Inputs
VAR INPUT
NETID : T AmsNetId;
PORT : T AmsPort;
RDINFO : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
NETID T_AmsNetld String containing the AMS network ID of the target device to which the ADS
command is addressed (type: T_AmsNetld [»_127]).
PORT T_AmsPort Port number of the ADS device (type: T_AmsPort [»_127]).
RDINFO BOOL The ADS command is triggered by a rising edge at this input.
TMOUT TIME Indicates the time before the function is canceled.
E- Qutputs
VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
DEVNAME : STRING(19);
DEVVER : UDINT;
END VAR
TE1000 Version: 1.17.0 25

Function blocks

BECKHOFF

Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a command,
but at the longest for the duration supplied to the Timeout input. While BUSY
= TRUE, no new command will be accepted at the inputs. Note that it is not
the execution of the service but its acceptance whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the
execution of a command. The command-specific error code is contained in
ERRID. If the function block has a timeout error, ERR is TRUE and ERRID is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command
at the inputs.

ERRID UDINT ADS error code [»_148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.

DEV STRING Name of the ADS device

NAME

DEVVER UDINT Version number of the ADS device

Example of calling the block in FBD:

'1.1.1.2.7.1"
801
LR4Info

T#ls

AdsRdDevInfo 1
ADSRDDEVINFO
BUSY
ERR
ERRID
DEVNEME
DEVVER

— bErrd
— errldd
— devlame
- devVer

In the example, the device information of the first PLC run-time system (port 801) on computer 1.1.1.2.7.1 is
read. As a result the name “PLC Server” and the version number 02.00.7 are received.

Prerequisites

PLC libraries to be integrated
(category group)
Tc2_System (system)

Development Environment Target platform

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®)

3.2.2 Indication + Response

3.2.21

The expanded ADS function blocks make it possible to create a client-server communication between an
ADS device and a PLC task. The ADS device can be, for example, a Windows application (uses the
AdsDLL/AdsOcx) or another PLC runtime system. Communication between the ADS device and the PLC
task is processed using the following service primitives:

Overview

* Request

* Indication

* Response

+ Confirmation
The communication between an ADS device and a PLC task has the following sequence: an ADS device
sends a request to the target device (PLC task). This request is registered in the target device by an
indication. The target device (PLC task) then carries out a corresponding service. The service to be carried

out is encrypted via the index-group/offset parameter. Next the PLC task sends a response to the ADS
device. The response is registered as confirmation by the ADS source device.

The ADS devices are addressed via a port address and a network address (NETID). (Port address of the
PLC task = _TaskInfo.AdsPort)

In order for a request to be routed to the PLC task, the most significant bit (e.g. 0x80000001) must be
entered in the index group parameter when the request is made.

26 Version: 1.17.0 TE1000

BECKHOFF Function blocks

Communication via IndexGroup 0x80000000 - 0x80FFFFFF

Only one instance of the indication and response function block can be used per PLC task (one instance of
ADSREADIND, ADSREADRES, ADSWRITEIND, ADSWRITERES, ADSRDWRTIND and ADSRDWRTRES).
Corresponding with the available ADS services: READ, WRITE and READ & WRITE there is an appropriate
indication or response function block for each service.

Service Name Description

READ ADSREADIND [» 28] ADSREAD Indication
ADSREADRES [»r 36] ADSREAD Response

WRITE ADSWRITEIND [»_30] ADSWRITE Indication
ADSWRITERES [» 37] ADSWRITE Response

READ & WRITE ADSRDWRTIND [» 33] ADS-READ & WRITE Indication
ADSRDWRTRES [38] ADS-READ & WRITE Response

FiFos

o

1 Each PLC task has 3 FIFOS in which the incoming requests (indications) are first stored. This
means that there is an ADSREADIND FIFO, an ADSWRITEIND FIFO and an ADSRDWRTIND
FIFO.
In each FIFO a maximum of 10 indications can be stored, until these were processed (until
Response was sent). If, for example, 12 ADSREAD requests are sent to a PLC task simultaneously,
10 requests are stored in the FIFO as indications and two are acknowledged (discarded) with ADS
error message 1814 (0x716). In this case, the error code should be analyzed and the two failed
ADSREAD requests repeated if necessary. The indications are retrieved individually from the
associated FIFO by calling the ADSxxxxxxIND instance. Only then can new indications be stored
successfully in the FIFO.

Communication via IndexGroup 0x8n000000 - 0Ox8nFFFFFF

To realize more than one client-server communication per PLC task, the following Indication function blocks
are required. These are extended by the possibility to specify a desired range of the IndexGroup.

This way, requests are filtered and only desired areas are responded to.

There are 16 freely selectable ranges available:
0x80000000 - Ox80FFFFFF
0x81000000 - Ox81FFFFFF

0x8E000000 — Ox8EFFFFFF
0x8F000000 — Ox8FFFFFFF

To specify such a range of the index group at an Indication function block, the index group value with which
the selected range begins is specified at input MINIDXGRP.

Example: With MINIDXGRP:=16#85000000 all requests are filtered and requests with an index group in the
range 0x85000000 - Ox85FFFFFF are registered as Indication.

Service Name Description
READ ADSREADINDEX [» 29] ADSREAD Indication with
indication of the index group
ADSREADRES [» 36] ADSREAD Response
WRITE ADSWRITEINDEX [» 31] ADSWRITE Indication with
indication of the index group
ADSWRITERES [» 37] ADSWRITE Response
READ & WRITE ADSRDWRTINDEX [» 34] ADS-READ & WRITE Indication
with indication of the index group
ADSRDWRTRES [» 38] ADS-READ & WRITE Response

TE1000 Version: 1.17.0 27

Function blocks

BECKHOFF

3.2.2.2

ADSREADIND

—CLEAR

ADSREADIND

VALID
METID
PORT
INVOKEID
IDXGRP
IDXOFFS
LENGTH

The function block registers ADSREAD Requests at a PLC task as Indications and allows them to be
processed. The queuing of an Indication is reported at the VALID output port by means of a rising edge. The
Indication is reported as processed via a positive edge at the CLEAR input. A negative edge at the CLEAR
input releases the function block for processing further Indications. After an Indication has been processed a
response must be sent to the source device via the ADSREADRES [P_36] function block. The PORT and
NETID parameters can be used to address the source device for this purpose. The INVOKEID parameter is
used by the source device to assign the responses to the requests and is also sent back to the source
device as a parameter.

Inputs
VAR INPUT
CLEAR : BOOL;

END VAR

Name Type Description

CLEAR BOOL With a rising edge at this input an Indication is reported as processed and the outputs

of the ADSREADIND function block are reset. A falling edge releases the function
block for the processing of further indications.

E- Qutputs

VAR OUTPUT

VALID : BOOL;
NETID : T _AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LENGTH : UDINT;

END VAR

Name Type Description

VALID BOOL The output is set if an Indication was registered from the
function block and remains set until the latter was
reported as processed by a positive edge at the CLEAR
input.

NETID T_AmsNetld String containing the AMS network ID of the source
device, from which the ADS command was sent (type:

T AmsNetld [»_127]).

PORT T_AmsPort Contains the port number of the ADS source device, from
which the ADS command was sent (type: T_AmsPort
»127]).

INVOKEID UDINT Handle of the command, which was sent. The InvokelD is
specified from the source device and serves to identify the
commands.

IDXGRP UDINT Index group number (32-bit, unsigned) of the requested
ADS service.

IDXOFFS UDINT Index offset number (32-bit, unsigned) of the requested
ADS service.

LENGTH UDINT Number of data to be read in bytes.

28

Version: 1.17.0

TE1000

BECKHOFF Function blocks

Example of calling the block in ST:
« Example with AdsReadInd /AdsReadRes function blocks [P 137]

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.2.2.3 ADSREADINDEX

The function block registers ADSREAD Requests at a PLC task as Indications and allows them to be
processed. The queuing of an Indication is reported at the VALID output port by means of a rising edge. The
Indication is reported as processed via a positive edge at the CLEAR input. A negative edge at the CLEAR
input releases the function block for processing further Indications. After an Indication has been processed a
response must be sent to the source device via the ADSREADRES [P_36] function block. The PORT and
NETID parameters can be used to address the source device for this purpose. The INVOKEID parameter is
used by the source device to assign the responses to the requests and is also sent back to the source
device as a parameter.

Compared to the function block ADSREADIND [» 28] there is the possibility to specify a desired range of the
IndexGroup via an additional input.

This way, requests are filtered and only desired areas are responded to.

There are 16 freely selectable ranges available:
0x80000000 - Ox80FFFFFF
0x81000000 - 0x81FFFFFF

0x8E000000 — OX8EFFFFFF
0x8F000000 — Ox8FFFFFFF

To specify such a range of the index group at an Indication function block, the index group value with which
the selected range begins is specified at input MINIDXGRP.

Example: With MINIDXGRP:=16#85000000 all requests are filtered and requests with an index group in the
range 0x85000000 - Ox85FFFFFF are registered as Indication.

Inputs
VAR _INPUT
CLEAR : BOOL;
MINIDXGRP : UDINT;
END_ VAR
Name Type Description
CLEAR BOOL With a rising edge at this input an Indication is reported as processed and the

outputs of the ADSREADIND function block are reset. A falling edge releases
the function block for the processing of further indications.

MINIDXGRP UDINT This input allows filtering the requests by IndexGroup ranges. Specification of
the IndexGroup value with which the selected range begins.

E- Qutputs

VAR OUTPUT
VALID : BOOL;
NETID : T AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LENGTH : UDINT;

END VAR

TE1000 Version: 1.17.0 29

Function blocks

BECKHOFF

Name

Type

Description

VALID

BOOL

The output is set if an Indication was registered from the
function block and remains set until the latter was
reported as processed by a positive edge at the CLEAR
input.

NETID

T_AmsNetld

String containing the AMS network ID of the source
device, from which the ADS command was sent (type:

T AmsNetld [P 127]).

PORT

T_AmsPort

Contains the port number of the ADS source device, from
which the ADS command was sent (type: T_AmsPort

> 1271).

INVOKEID

UDINT

Handle of the command, which was sent. The InvokelD is
specified from the source device and serves to identify the
commands.

IDXGRP

UDINT

Index group number (32-bit, unsigned) of the requested
ADS service.

IDXOFFS

UDINT

Index offset number (32-bit, unsigned) of the requested
ADS service.

LENGTH

UDINT

Number of data to be read in bytes.

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1.4024.35

PC or CX (x86, x64, ARM)

Tc2_System (system) >= 3.4.26.0

3.2.24

ADSWRITEIND

—CLEAR

ADSWRITEIND

VALID
NETID
PORT
INVOKEID
IDXGRP
IDXOFFS
LENGTH
DATAADDR

The function block registers ADSWRITE Requests to a PLC task as Indications and allows them to be
processed. The queuing of an Indication is reported at the VALID output port by means of a rising edge. The
Indication is reported as processed via a positive edge at the CLEAR input. A falling edge releases the
function block for the processing of further indications. After an Indication has been processed a response
must be sent to the source device via the ADSWRITERES [»_37] function block. The PORT and NETID
parameters can be used to address the source device for this purpose. The INVOKEID parameter is used by
the source device to assign the responses to the requests and is also sent back to the source device as a

parameter.

% Inputs
VAR INPUT

"CLEAR :

END VAR

Name

Typ

Beschreibung

CLEAR

BOOL

With a rising edge at this input an indication is reported as processed
and the outputs of the ADSWRITEIND function block are reset

(DATAADDR =0, LENGTH = 0!). A falling edge releases the function
block for the processing of further indications.

30

Version: 1.17.0

TE1000

BECKHOFF Function blocks

& QOutputs

VAR OUTPUT
VALID : BOOL;
NETID : T AmsNetId;
PORT : T _AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LENGTH : UDINT;
DATAADDR : PVOID;

END VAR

Name Type Description

VALID BOOL The output is set if an Indication was registered from the
function block and remains set until the latter was
reported as processed by a positive edge at the CLEAR
input.

NETID T_AmsNetld String containing the AMS network ID of the source
device, from which the ADS command was sent (type:

T AmsNetld [»_127]).

PORT T_AmsPort Contains the port number of the ADS source device, from
which the ADS command was sent (type: T_AmsPort
»_127]).

INVOKEID UDINT Handle of the command, which was sent. The InvokelD is
specified from the source device and serves to identify the
commands.

IDXGRP UDINT Index group number (32-bit, unsigned) of the requested
ADS service.

IDXOFFS UDINT Index offset number (32-bit, unsigned) of the requested
ADS service.

LENGTH UDINT Length of the written data in bytes.

DATAADDR PVOID Address of the data buffer in which the written data is
located.

Example of calling the block in ST:
* Example with AdsWritelnd/AdsWriteRes function blocks [P _139]

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)
3.225 ADSWRITEINDEX
ADSWRITEINDEX
—CLEAR VALID—
—|MINIDXGRP NETID |—
PORT—
INVOKEID —
IDXGRP|—
IDXOFFSF—
LENGTH}—
DATAADDRE—

The function block registers ADSWRITE Requests to a PLC task as Indications and allows them to be
processed. The queuing of an Indication is reported at the VALID output port by means of a rising edge. The
Indication is reported as processed via a positive edge at the CLEAR input. A falling edge releases the
function block for the processing of further indications. After an Indication has been processed a response

must be sent to the source device via the ADSWRITERES [» 37] function block. The PORT and NETID

TE1000 Version: 1.17.0 31

Function blocks BEGKHOFF

parameters can be used to address the source device for this purpose. The INVOKEID parameter is used by
the source device to assign the responses to the requests and is also sent back to the source device as a
parameter.

Compared to the ADSWRITEIND [»_30] function block there is the possibility to specify a desired range of the
IndexGroup via an additional input.

This way, requests are filtered and only desired areas are responded to.

There are 16 freely selectable ranges available:
0x80000000 - 0x80FFFFFF
0x81000000 - 0x81FFFFFF

0x8E000000 — OX8EFFFFFF
0x8F000000 — Ox8FFFFFFF

To specify such a range of the index group at an Indication function block, the index group value with which
the selected range begins is specified at input MINIDXGRP.

Example: With MINIDXGRP:=16#85000000 all requests are filtered and requests with an index group in the
range 0x85000000 - 0x85FFFFFF are registered as Indication.

#* Inputs
VAR INPUT
CLEAR : BOOL;
MINIDXGRP : UDINT;
END VAR
Name Type Description
CLEAR BOOL With a rising edge at this input an Indication is reported as processed and

the outputs of the ADSWRITEIND function block are reset (DATAADDR =
0, LENGTH = 0!). A falling edge releases the function block for the
processing of further indications.

MINIDXGRP UDINT This input allows filtering the requests by IndexGroup ranges. Specification
of the IndexGroup value with which the selected range begins.

E- Qutputs

VAR OUTPUT
VALID : BOOL;
NETID : T _AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LENGTH : UDINT;
DATAADDR : PVOID;

END VAR

32 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

Name Type Description

VALID BOOL The output is set if an Indication was registered from the
function block and remains set until the latter was
reported as processed by a positive edge at the CLEAR
input.

NETID T_AmsNetld String containing the AMS network ID of the source
device, from which the ADS command was sent (type:

T AmsNetld [»_127]).

PORT T_AmsPort Contains the port number of the ADS source device, from
which the ADS command was sent (type: T_AmsPort
»_127)).

INVOKEID UDINT Handle of the command, which was sent. The InvokelD is
specified from the source device and serves to identify the
commands.

IDXGRP UDINT Index group number (32-bit, unsigned) of the requested
ADS service.

IDXOFFS UDINT Index offset number (32-bit, unsigned) of the requested
ADS service.

LENGTH UDINT Length of the written data in bytes.

DATAADDR PVOID Address of the data buffer in which the written data is
located.

Development environment Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x86, x64, ARM) Tc2_System (system) >= 3.4.26.0

3.2.2.6 ADSRDWRTIND

ADSRDWRTIND
—ICLEAR VALIDF—
NETID|—
PORT—
INVOKETD —
IDXGRP—
IDXOFFSF—
RDLENGTH—
WRTLENGTH—
DATAADDR |—

The function block registers ADSRDWRT Requests to a PLC task as Indications and allows them to be
processed. The queuing of an Indication is reported at the VALID output port by means of a rising edge. The
Indication is reported as processed via a positive edge at the CLEAR input. A falling edge releases the
function block for the processing of further indications. After an Indication has been processed a response
must be sent to the source device via the ADSRDWRTRES [P_38] function block. The PORT and NETID
parameters can be used to address the source device for this purpose. The INVOKEID parameter is used by
the source device to assign the responses to the requests and is also sent back to the source device as a

parameter.

Inputs
VAR INPUT

CLEAR : BOOL;

END VAR

Name Type Description

CLEAR BOOL With a rising edge at this input an indication is reported as processed and the

outputs of the ADSRDWRTIND function block are reset. A falling edge releases
the function block for the processing of further indications.

TE1000

Version: 1.17.0 33

Function blocks BEGKHOFF

& QOutputs
VAR OUTPUT
VALID : BOOL;
NETID : T AmsNetId;
PORT : T _AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
RDLENGTH : UDINT;
WRTLENGTH : UDINT;
DATAADDR : PVOID;
END VAR
Name Type Description
VALID BOOL The output is set if an Indication was registered from the function
block and remains set until the latter was reported as processed by
a positive edge at the CLEAR input.
NETID T_AmsNetld String containing the AMS network ID of the source device, from
which the ADS command was sent (type: T_AmsNetld [»_127]).
PORT T_AmsPort Contains the port number of the ADS source device, from which the
ADS command was sent (type: T_AmsPort [P_127]).
INVOKEID UDINT Handle of the command, which was sent. The Invokeld is specified
from the source device and serves to identify the commands.
IDXGRP UDINT Index group number (32-bit, unsigned) of the requested ADS
service.
IDXOFFS UDINT Index offset number (32-bit, unsigned) of the requested ADS
service.
RDLENGTH UDINT Length of the data to be read in bytes.
WRTLENGTH UDINT Length of the written data in bytes.
DATAADDR PVOID Address of the data buffer in which the written data is located.
Prerequisites
Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)
3.2.2.7 ADSRDWRTINDEX
ADSRDWRTINDEX
—CLEAR VALID—
— MINIDXGRP METID f—
PORT—
INVOKEID —
ID¥GRP—
IDXOFFS—
ROLENGTHR—
WRTLENGTH —
DATAADDRE—

The function block registers ADSRDWRT Requests to a PLC task as Indications and allows them to be
processed. The queuing of an Indication is reported at the VALID output port by means of a rising edge. The
Indication is reported as processed via a positive edge at the CLEAR input. A falling edge releases the
function block for the processing of further indications. After an Indication has been processed a response
must be sent to the source device via the ADSRDWRTRES [P 38] function block. The PORT and NETID
parameters can be used to address the source device for this purpose. The INVOKEID parameter is used by
the source device to assign the responses to the requests and is also sent back to the source device as a
parameter.

Compared to the ADSRDWRTIND [P 33] function block there is the possibility to specify a desired range of the
IndexGroup via an additional input.

34 Version: 1.17.0 TE1000

BECKHOFF Function blocks

This way, requests are filtered and only desired areas are responded to.

There are 16 freely selectable ranges available:
0x80000000 - 0x80FFFFFF
0x81000000 - 0x81FFFFFF

0x8E000000 — OX8EFFFFFF
0x8F000000 — Ox8FFFFFFF

To specify such a range of the index group at an Indication function block, the index group value with which
the selected range begins is specified at input MINIDXGRP.

Example: With MINIDXGRP:=16#85000000 all requests are filtered and requests with an index group in the
range 0x85000000 - 0x85FFFFFF are registered as Indication.

#* Inputs
VAR INPUT
CLEAR : BOOL;
MINIDXGRP : UDINT;
END VAR
Name Type Description
CLEAR BOOL With a rising edge at this input an indication is reported as processed and the

outputs of the ADSRDWRTIND function block are reset. A falling edge
releases the function block for the processing of further indications.

MINIDXGRP UDINT This input allows filtering the requests by IndexGroup ranges. Specification of
the IndexGroup value with which the selected range starts.

E- Qutputs

VAR OUTPUT
VALID : BOOL;
NETID : T AmsNetId;
PORT : T_AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;

RDLENGTH : UDINT;
WRTLENGTH : UDINT;

DATAADDR : PVOID;

END VAR

Name Type Description

VALID BOOL The output is set if an Indication was registered from the function
block and remains set until the latter was reported as processed by
a positive edge at the CLEAR input.

NETID T_AmsNetld String containing the AMS network ID of the source device, from
which the ADS command was sent (type: T_AmsNetld [P_127]).

PORT T_AmsPort Contains the port number of the ADS source device, from which the
ADS command was sent (type: T_AmsPort [P_127]).

INVOKEID UDINT Handle of the command, which was sent. The Invokeld is specified
from the source device and serves to identify the commands.

IDXGRP UDINT Index group number (32-bit, unsigned) of the requested ADS
service.

IDXOFFS UDINT Index offset number (32-bit, unsigned) of the requested ADS
service.

RDLENGTH UDINT Length of the data to be read in bytes.

WRTLENGTH UDINT Length of the written data in bytes.

DATAADDR PVOID Address of the data buffer in which the written data is located.

TE1000 Version: 1.17.0 35

Function blocks BEGKHOFF

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.35 PC or CX (x86, x64, ARM) Tc2_System (system) >= 3.4.26.0

3.2.2.8 ADSREADRES

ADSREADRES

—METID
—PORT
—INVOKEID
—RESULT
—LEN
—DATAADDR
—RESPOND

The ADSREADRES function block acknowledges Indications of a PLC task. A response is sent to the ADS
source device via a positive edge on the RESPOND input. The source device is addressed via the PORT
and NETID parameters. The INVOKEID parameter is used by the source device to assign the responses to
the requests and is adopted by the output of the ADSREADIND [P 28] function block. An error code can be
returned to the ADS source device via the RESULT parameter.

% Inputs
VAR INPUT
NETID : T AmsNetId;
PORT : T _AmsPort;
INVOKEID : UDINT;
RESULT : UDINT;
LEN : UDINT;
DATAADDR : PVOID;
RESPOND : BOOL;
END VAR
Name Type Description
NETID T_AmsNetld String containing the AMS network ID of the source device, to which
the ADS command is to be sent (type: T AmsNetld [P_127]).
PORT T_AmsPort Port number of the ADS source device to which the response should
be sent (type: T_AmsPort [»_127]).
INVOKEID UDINT Handle of the command, which was sent. The InvokelD is specified
from the source device and serves to identify the commands.
RESULT UDINT ADS error code [>_148] or command-specific error code to be sent to
the source device.
LEN UDINT Number of data to be read in bytes.
DATAADDR PVOID Address of the data buffer, which should be read.
RESPOND BOOL The function block is activated by a positive edge at this input.
E- Qutputs
VAR OUTPUT
(*none*)
END_VAR

Example of calling the block in ST:
+ Example with AdsReadInd /AdsReadRes function blocks [»_137]

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

36 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

3.2.29

ADSWRITERES

—METID
—PORT
—INVOKEID
—RESULT
—RESPOND

ADSWRITERES

The ADSWRITERES function block is used to acknowledge indications of a PLC task. A response is sent to
the ADS source device via a rising edge on the RESPOND input. The source device is addressed via the
PORT and NETID parameters. The INVOKEID parameter sorts the responses to the requests for the source
device and is adopted by the output of the ADSWRITEIND [» 28] function block. An error code can be
returned to the ADS source device via the RESULT parameter.

Inputs
VAR _INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
RESULT : UDINT;
RESPOND : BOOL;
END VAR
Name Type Description
NETID T_AmsNetld String containing the AMS network ID of the source device, to which the
ADS command is to be sent (type: T_AmsNetld [P_127]).
PORT T_AmsPort Port number of the ADS source device to which the ADS command is to
be sent (type: T_AmsPort [P 127]).
INVOKEID UDINT Handle of the command, which was sent. The Invokeld is specified from
the source device and serves to identify the commands.
RESULT UDINT ADS error code [P_148] or command-specific error code to be sent to the
source device.
RESPOND BOOL The function block is activated by a positive edge at this input.
& Qutputs
VAR OUTPUT
(*none*)
END VAR

Example of calling the block in ST:
+ Example with AdsWritelnd/AdsWriteRes function blocks [»_139]

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

TE1000 Version: 1.17.0 37

Function blocks

BECKHOFF

3.2.2.10 ADSRDWRTRES

—{NETID
—{PORT
—{INVOKEID
—{RESULT
—{LEN
—{DATAADDR
—{RESPOND

ADSRDWRTRES

The ADSRDWRTRES function block is used to acknowledge indications of a PLC task. A response is sent to
the ADS source device via a rising edge on the RESPOND input. The source device is addressed via the
PORT and NETID parameters. The INVOKEID parameter sorts the responses to the requests for the source
device and is adopted by the output of the ADSRDWRTIND [»_33] function block. An error code can be
returned to the ADS source device via the RESULT parameter.

Inputs
VAR INPUT
NETID : T AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
RESULT : UDINT;
LEN : UDINT;
DATAADDR : PVOID;
RESPOND : BOOL;
END_VAR
Name Type Description
NETID T_AmsNetld String containing the AMS network ID of the source device, to which
the ADS command is to be sent (type: T_AmsNetld [P_127]).
PORT T_AmsPort Port number of the ADS source device to which the ADS command is
to be sent (type: T_AmsPort [P_127]).
INVOKEID UDINT Handle of the command, which was sent. The InvokelD is specified
from the source device and serves to identify the commands.
RESULT UDINT ADS error code [>_148] or command-specific error code to be sent to
the source device.
LEN UDINT Length, in bytes, of the read data.
DATAADDR PVOID Address of the data buffer, in which the read data is located.
RESPOND BOOL The function block is activated by a positive edge at this input.
& Qutputs
VAR OUTPUT
(*none*)
END VAR

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

38

Version: 1.17.0 TE1000

BECKHOFF

Function blocks

3.2.3

ADSREAD

—METID
—PORT
—{IDXGRP
—{IDXOFFS
— LEN

ADSREAD

—DESTADDR

—READ
—{TMOUT

BUSY—
ERRF—
ERRID —

The function block executes an ADS read command to request data from an ADS device.

@® Outdated response data

After a disconnection, the old response data is output when the connection is reconnected.
To prevent this, be careful not to use the same ADS-Read instance for multiple targets.

Inputs
VAR INPUT
NETID : T AmsNetId;
PORT : T _AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LEN : UDINT;
DESTADDR : PVOID;
READ : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
NETID T_Ams |String containing the AMS network ID of the target device to which the ADS
Netld command is addressed (type: T_AmsNetld [»_127]).
PORT T_Ams |Port number of the ADS device (type: T AmsPort [»_127])
Port
IDXGRP |UDINT |Index group number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.
IDXOFFS |UDINT |Index offset number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.
LEN UDINT |Number of data to be read in bytes
DESTADD |PVOID |Address of the buffer that is to receive the read data. The programmer is responsible
R for dimensioning the buffer such that it can accommodate LEN bytes. The buffer can
be a single variable, an array or a structure, whose address can be found with the
ADR operator.
READ BOOL The ADS command is triggered by a rising edge at this input.
TMOUT | TIME Indicates the time before the function is canceled.
& Qutputs
VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
END_ VAR
TE1000 Version: 1.17.0 39

Function blocks BEGKHOFF

Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a command, but at
the longest for the duration supplied to the Timeout input. No new commands are
accepted at the inputs as long as BUSY = TRUE. Note that it is not the execution of
the service but its acceptance whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the execution of a
command. The command-specific error code is contained in ERRID. If the function
block has a timeout error, ERR is TRUE and ERRID is 1861 (hexadecimal 0x745). Is
reset to FALSE by the execution of a command at the inputs.

ERRID UDINT |ADS error code [P _148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.

Example of calling the block in ST:
+ Example with AdsRead function block [»_140]

Example of calling the block in FBD:

AdsRead 1

ADE ADSEEAD
datalRR r1.1.1.2.7.1" HETID BUSY f|—— bBusyl

500 —{BPORT ERR [-bErrl
16800004008 —IDXEGRP ERRID |- errIdl
16400000001 —IDXOFFS

4 —LEN
DESTADDR
bERead —READ
TIME#0.1s —TMOUT

Here the error status of axis no. 6, as an element with a size of 4 bytes, is interrogated and written into the
dataArr buffer. The IDXGRP 00004006 (hex) and the IDXOFFS 00000001 (hex) can be found in the NC-
ADS documentation.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.24 ADSREADEX

ADSREADEX
—METID BUSY —
—PORT ERRf—
—IDXGRP ERRID —
—IDXOFFS COUNT_RF—
—LEN
—DESTADDR
—READ
—{TMOUT

The function block executes an ADS read command to request data from an ADS device. The function block
has the same functionality as the ADSREAD function block; in addition it returns the number of actually read
data bytes as parameter.

% Inputs

VAR INPUT
NETID : T AmsNetId;
PORT : T AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LEN : UDINT;

DESTADDR : PVOID;

40 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

READ : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;

END_VAR

Name Type Description

NETID T_AmsN |String containing the AMS network ID of the target device to which the ADS

etld command is addressed (type: T_AmsNetld [»_127]).

PORT T_AmsPo |Port number of the ADS device (type: T AmsPort [>_127])

rt

IDXGRP |UDINT |Index group number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS |UDINT |Index offset number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

LEN UDINT |Number of data to be read in bytes

DESTADD |PVOID |Address of the buffer that is to receive the read data. The programmer is responsible

R for dimensioning the buffer such that it can accommodate LEN bytes. The buffer can
be a single variable, an array or a structure, whose address can be found with the
ADR operator.

READ BOOL The ADS command is triggered by a rising edge at this input.

TMOUT |TIME Indicates the time before the function is canceled.

E- Qutputs

VAR OUTPUT

BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
COUNT R : UDINT;

END_ VAR

Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a command, but at
the longest for the duration supplied to the Timeout input. While BUSY = TRUE, no
new command will be accepted at the inputs. Note that it is not the execution of the
service but its acceptance whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the execution of a
command. The command-specific error code is contained in ERRID. If the function
block has a timeout error, ERR is TRUE and ERRID is 1861 (hexadecimal 0x745). Is
reset to FALSE by the execution of a command at the inputs.

ERRID UDINT |ADS error code [»_148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.

COUNT_R |[UDINT |Number of successfully read data bytes

Prerequisites

Development Environment

Target platform PLC libraries to be integrated

(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®) Tc2_System (system)

3.2.5

ADSWRITE

NETID
PORT
IDXGRP
IDXOFFS
LEN
SRCADDR
WRITE
TMOUT

ADSWRITE

BUSY
ERR
ERRID

TE1000

Version: 1.17.0 41

Function blocks BEGKHOFF

Block for executing an ADS write command for transferring data to an ADS device.

% Inputs

VAR INPUT
NETID : T AmsNetId;
PORT : T AmsPort;

IDXGRP : UDINT;
IDXOFFS : UDINT;

LEN : UDINT;
SRCADDR : PVOID;
WRITE : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;
END_ VAR
Name Type Description
NETID T_AmsN |String containing the AMS network ID of the target device to which the ADS
etld command is addressed (type: T_AmsNetld [»_127]).
PORT T_AmsPo Port number of the ADS device (type: T_AmsPort [»_127])
rt

IDXGRP |UDINT |Index group number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS |UDINT |Index offset number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

LEN UDINT |Number of data to be read in bytes

SRCADDR|PVOID |Address of the buffer from which the data to be written is to be fetched. The
programmer is responsible for dimensioning the buffer such that LEN bytes can be
taken from it. The buffer can be a single variable, an array or a structure, whose
address can be found with the ADR operator.

WRITE BOOL The ADS command is triggered by a rising edge at this input.
TMOUT |TIME Indicates the time before the function is canceled.

E- Qutputs
VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
END_ VAR
Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a command, but at
the longest for the duration supplied to the Timeout input. No new commands are
accepted at the inputs as long as BUSY = TRUE. Note that it is not the execution of
the service but its acceptance whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the execution of a
command. The command-specific error code is contained in ERRID. If the function
block has a timeout error, ERR is TRUE and ERRID is 1861 (hexadecimal 0x745). Is
reset to FALSE by the execution of a command at the inputs.

ERRID UDINT |ADS error code [»_148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.

Example of calling the block in ST:
« Example with AdsWrite function block [»_141]

Example of calling the block in FBD

42 Version: 1.17.0 TE1000

BEGKHOFF Function blocks

AdsWrite_1

ADSWRITE
r1.1.1.2.7.1" HETID BUSY f|—— bBusyl
500 EORT ERR [~ bErr2

16#00004201
16#00000050
a

a

blrite
TIME#0.13

IDXGRFE ERRID [~ errIdl

NC axis no. 1 is here deactivated through a write instruction with IDXGRP 00004201 (hex) and the IDXOFFS
00000050 (hex). To activate the axis another write instruction with the IDXOFFS 00000051 (hex) must be
given. Since this write instruction does not require any parameters, the inputs LEN and SRCADDR have no
significance, but must nevertheless be set to zero.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.2.6 ADSRDWRT

ADSRDWRT
—METID BUSY —
—PORT ERRf—
—IDXGRP ERRID —
—IDXOFFS
—WRITELEN
— READLEN
—SRCADDR
—DESTADDR
—WRTRD
—{TMOUT

The function block executes a combined ADS read-write command. Data is transmitted to an ADS device
(write) and its response data read with one call.

Inputs

VAR _INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
WRITELEN : UDINT;
READLEN : UDINT;
SRCADDR : PVOID;
DESTADDR : PVOID;
WRTRD : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;

END VAR

TE1000 Version: 1.17.0 43

Function blocks

BECKHOFF

Name Type Description

NETID T_AmsN |String containing the AMS network ID of the target device to which the ADS

etld command is addressed (type: T_AmsNetld [»_127]).

PORT T_AmsPo|Port number of the ADS device (type: T_AmsPort [»_127])

rt

IDXGRP |UDINT |Index group number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS |UDINT |Index offset number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

WRITELE |UDINT |Number of data to be written in bytes

N

READLEN |UDINT |Number of data to be read in bytes

SRCADDR|PVOID |Address of the buffer from which the data to be written is to be fetched. The
programmer is responsible for dimensioning the buffer such that WRITELEN bytes
can be taken from it. The buffer can be a single variable, an array or a structure,
whose address can be found with the ADR operator.

DESTADD |PVOID |Address of the buffer that is to receive the read data. The programmer is responsible

R for dimensioning the buffer such that it can accommodate READLEN bytes. The
buffer can be a single variable, an array or a structure, whose address can be found
with the ADR operator.

WRTRD |BOOL The ADS command is triggered by a rising edge at this input.

TMOUT |TIME Indicates the time before the function is canceled.

& Qutputs

VAR OUTPUT

BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;

END_ VAR

Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a command, but at
the longest for the duration supplied to the Timeout input. No new commands are
accepted at the inputs as long as BUSY = TRUE. Note that it is not the execution of
the service but its acceptance whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the execution of a
command. The command-specific error code is contained in ERRID. If the function
block has a timeout error, ERR is TRUE and ERRID is 1861 (hexadecimal 0x745). Is
reset to FALSE by the execution of a command at the inputs.

ERRID UDINT |ADS error code [»_148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.

Example of calling the block in FBD:

44

Version: 1.17.0 TE1000

BECKHOFF

Function blocks

1234.587 alRealVar

alRealVa aBuf

ADE

aBuf

resultVar

|
4=

ADSEDWRT

r1.1.1.2.7.1" HETID
201 —EORT
16#F004 —{IDXGRP
0 —IDXOFFS
10 —WRITELEN
8 —BERDLEN

BUSY
ERR
ERRID

- bErré
- errIDé

SRCADDR
DESTADDR

biWrtRdl WETRD
TIME#13 TMOUT

The value of the variable with the name “aLRealVar” is here read from the PLC which is running on the
computer with the Net-Id 1.1.1.2.7.1. For this purpose, the computer address mentioned, the port number of
the PLC'’s first run-time system, the index group, and the index offset for reading the variable by name (FO04
hex, 0) are given. The name of the variable is to be supplied to the PLC server; it is placed for this purpose in
a buffer. Since the variable is global, it has a leading dot. This makes the length of the data to be written 10
characters (1 dot and 9 letters). Since the variable to be read is of type LREAL, the number of bytes to be
read is 8. The address of the name buffer is given as the address for the data to be written, while for the
receive data the address of an LREAL variable (resultVar) is given. The diagram shows the state of the block
in flow control after execution of the WriteRead instruction: the value 1234.567, which was previously
contained in aLRealVar is now also contained in resultVar.

Prerequisites

Target platform PLC libraries to be integrated
(category group)

Tc2_System (system)

Development Environment

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®)

3.2.7 ADSRDWRTEX

ADSRDWRTEX

—NETID
—PORT
—{IDXGRP
—{IDXOFFS
—{WRITELEN
—READLEN
—13RCADDR
—{DESTADDR
—{WRTRD
—{TMOUT

BUSY —
ERR|—
ERRID [—
COUNT_Rf—

This block allows execution of a combined ADS write/read instruction. Data is transmitted to an ADS device
(write) and its response data read with one call. Contrary to the ADSRDWRT function block ADSRDWRTEX
supplies the number of actually read data bytes as parameter.

Inputs

VAR INPUT
NETID : T AmsNetId;
PORT : T _AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
WRITELEN : UDINT;
READLEN : UDINT;
SRCADDR : PVOID;
DESTADDR : PVOID;

TE1000 Version: 1.17.0 45

Function blocks BEGKHOFF

WRTRD : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;
END_VAR
Name Type Description
NETID T_AmsN |String containing the AMS network ID of the target device to which the ADS
etld command is addressed (type: T_AmsNetld [»_127]).
PORT T_AmsPo |Port number of the ADS device (type: T AmsPort [>_127])
rt

IDXGRP |UDINT |Index group number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.
IDXOFFS |UDINT |Index offset number (32-bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

WRITELE |UDINT |Number of data to be written in bytes
N

READLEN |UDINT |Number of data to be read in bytes

SRCADDR|PVOID |Address of the buffer from which the data to be written is to be fetched. The
programmer is responsible for dimensioning the buffer such that WRITELEN bytes
can be taken from it. The buffer can be a single variable, an array or a structure,
whose address can be found with the ADR operator.

DESTADD |PVOID |Address of the buffer that is to receive the read data. The programmer is responsible
R for dimensioning the buffer such that it can accommodate READLEN bytes. The
buffer can be a single variable, an array or a structure, whose address can be found
with the ADR operator.

WRTRD |BOOL The ADS command is triggered by a rising edge at this input.

TMOUT TIME Indicates the time before the function is canceled.

E- Qutputs
VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
COUNT R : UDINT;
END_ VAR
Name Type Description

BUSY BOOL This output remains TRUE until the function block has executed a command, but at
the longest for the duration supplied to the Timeout input. While BUSY = TRUE, no
new command will be accepted at the inputs. Note that it is not the execution of the
service but its acceptance whose time is monitored.

ERR BOOL This output is switched to TRUE as soon as an error occurs during the execution of a
command. The command-specific error code is contained in ERRID. If the function
block has a timeout error, ERR is TRUE and ERRID is 1861 (hexadecimal 0x745). Is
reset to FALSE by the execution of a command at the inputs.

ERRID UDINT |ADS error code [»_148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.

COUNT_R |[UDINT |Number of successfully read data bytes

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

46 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

3.3 File function blocks

@ These function blocks are only suitable for logging in real-time to a limited extent.

For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

3.3.1 FB_EOF

FB_EOF
—sNetId bBusy —
—hFile bErrarf—
—bExecute nErrId—
—{tTimeout bEOF—

The function block FB_EOF can check whether the end of the file was reached.

@ This function block is only suitable for logging in real-time to a limited extent.
For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR _INPUT
sNetId : T _AmsNetId;
hFile : UINT;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END_VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [»_127]).
hFile UINT File handle, which was generated when the function block
FB_FileOpen was created.
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
bEOF : BOOL;
END_ VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrld UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.
bEOF BOOL This output is set when the end of the file is reached.

TE1000

Version: 1.17.0 47

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html
https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

Function blocks

BECKHOFF

Command-specific error code

Possible cause

0x703

Invalid or unknown file handle.

0x70E

File was opened with wrong method (e.g. with
obsolete FILEOPEN function block).

Example of calling the function block in FBD:
PROGRAM Test
VAR
fbEOF : FB_EOF;
hFile : UINT;
bFileEOF : BOOL;
bEOFBusy : BOOL;
bEOFError : BOOL;
nEOFErrorId : UDINT;
PISEOF : BOOL;
END VAR
FB _EOF 1
FB_EOF
'1.1.1.2.7.1" —{sNetId bBusy LEQFBusy
hFile —hFile bError |- bEOFError

bFileEQF —|bExecute nErrlId |- bEOFErrId

T#23 —tTimeout LECF |- bISEQOF

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.3.2 FB_FileOpen

FB_FileOpen
—sNetld

—sPathName

—nMode

—ePath

—bExecute

—tTimeout

bBusy —
bErrorp—
nErrId—

hFile}—

The function block FB_FileOpen creates a new file or opens an existing file for editing.

@ This function block is only suitable for logging in real-time to a limited extent.
For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which

is subject to a charge.

| Inputs
VAR _INPUT
sNetId : T _AmsNetId;
sPathName : T MaxString;
nMode : DWORD;
ePath : E OpenPath := PATH GENERIC;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END_ VAR
48 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF

Function blocks

Name

Type

Description

sNetld

T_AmsNetld

String containing the AMS network ID of the target device
to which the ADS command is addressed (type:

T AmsNetld [P 127]).

sPathName

T_MaxString

Storage path and file name of the file to be opened. The
path can only point to the local file system of the
computer. Network paths cannot be specified here

(type: T_MaxString [P_129]).

nMode

DWORD

Mode for opening the file.

ePath

E_OpenPath

This input can be used to select a TwinCAT system path
on the target device for opening the file (type: E OpenPath
[»_123]).

bExecute

BOOL

The function block is activated by a rising edge at this
input.

tTimeout

TIME

States the length of the timeout that may not be exceeded
by execution of the ADS command.

Predefined opening modes for nMode

Mode for opening the file. The codes listed below are the various opening modes which are already pre-

defined as constants in the library and which can accordingly be passed symbolically to the function block.
The opening modes can be ORed. The opening modes can be combined, similar to the opening modes of
the fopen function in C or C++.

Modes

Description

FOPEN_MODEREAD

r: Opens a file for reading. An error is returned if the file cannot
be found or does not exist.

FOPEN_MODEWRITE

w: Opens an empty file for writing. If the file already exists, it is
overwritten.

FOPEN_MODEAPPEND

a: Opens a file for writing at the end of the file (append). If the file
does not exist, a new file is created.

FOPEN_MODEREAD OR
FOPEN_MODEPLUS

r+: Opens a file for reading and writing. The file must exist.

FOPEN_MODEWRITE OR
FOPEN_MODEPLUS

w+: Opens an empty file for reading and writing. If the file already
exists, it is overwritten.

FOPEN_MODEAPPEND OR
FOPEN_MODEPLUS

a+: opens a file for reading and writing at the end of the file
(append). If the file does not exist, a new file is created. For this,
the memory path must be known, otherwise error 1804 appears.
All write operations are always performed at end of a file, if the
file was opened in the modes a or a+. The file pointer can be
moved with FB_FileSeek, although for writing it is moved to the
end of the file by default, i.e. existing data cannot be overwritten.

FOPEN_MODEBINARY

b: Opens the file in binary mode

FOPEN_MODETEXT

t: Opens the file in text mode

E- Qutputs

VAR OUTPUT
bBusy

bError :
nErrId :

hFile
END VAR

: BOOL;

BOOL;
UDINT;

: UINT; (* file handle *)

TE1000

Version: 1.17.0 49

Function blocks BEGKHOFF

Name Type Description

bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.

bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.

nErrid UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.

hFile UINT Contains the file handle created for the file when opening

has been successful.

This handle is then transferred to the other file function
blocks as ID for the file to be edited.

Error codes for hFile

Command-specific error code Possible cause

0x703 Unknown or invalid nMode or ePath parameter.
0x70C File not found. Invalid file name or path.

0x716 No further free file handles.

Information:

In the opening mode, a maximum of 3 parameters may be ORed:
Mode = [Parameter1] OR [Parameter2] OR [Paramerter3]
Parameter1 may have only a subordinate value:

+ FOPEN_MODEREAD

+ FOPEN_MODEWRITE

+ FOPEN_MODEAPPEND

Parameter2 may have only one subordinate value:
« FOPEN_MODEPLUS

Parameter3 may have only one subordinate value:

+ FOPEN_MODEBINARY
+ FOPEN_MODETEXT

If no binary or text mode is specified, the file opens in a mode defined by an operating system variable. In
most cases, the file will then open in text mode. However, it is not possible to make a clear statement. It is
useful to always specify the text or binary mode. This system variable cannot be changed in the PLC!
This results in the following permissible combinations:

50 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

Text file opening modes

Binary file opening modes

FOPEN_MODEREAD OR
FOPEN_MODETEXT

FOPEN_MODEREAD OR
FOPEN_MODEBINARY

FOPEN_MODEWRITE OR
FOPEN_MODETEXT

FOPEN_MODEWRITE OR
FOPEN_MODEBINARY

FOPEN_MODEAPPEND OR
FOPEN_MODETEXT

FOPEN_MODEAPPEND OR
FOPEN_MODEBINARY

FOPEN_MODEREAD OR
FOPEN_MODEPLUS OR
FOPEN_MODETEXT

FOPEN_MODEREAD OR
FOPEN_MODEPLUS OR
FOPEN_MODEBINARY

FOPEN_MODEWRITE OR
FOPEN_MODEPLUS OR
FOPEN_MODETEXT

FOPEN_MODEWRITE OR
FOPEN_MODEPLUS OR
FOPEN_MODEBINARY

FOPEN_MODEAPPEND OR
FOPEN_MODEPLUS OR
FOPEN_MODETEXT

FOPEN_MODEAPPEND OR
FOPEN_MODEPLUS OR
FOPEN_MODEBINARY

All other combinations are wrong. Examples of invalid opening modes:
FOPEN_MODEBINARY OR FOPEN_MODETEXT
FOPEN_MODEWRITE OR FOPEN_MODEAPPEND

Example of calling the block in ST:

* File access from the PLC

[»_143]

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileOpen : FB FileOpen;
bFileOpen : BOOL;
bFileOpenBusy : BOOL;
bFileOpenError : BOOL;
nFileOpenErrId : UDINT;
hFile : UINT;
END VAR
FB File0Qpen_1
FBE_FileOpen
'1.1.1.2.7.1" —sNetId bBusy
'C:\TestFile.txt" —sPathName LError
FOPEN_MODEWRITE OR FOPEN_MODETEXT —jnMcde nErrId

PATH_GENERIC —
bFileQpen —
T#33 —

ePath hFile
bExecute
tTimeout

bFileQpenBusy
— bFilelpenErrocr
— bFilelpenErrId
— hFile

This should create (or overwrite) the file TestFile2.txt in the root directory of drive C: in the text mode.

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.3.3 FB_FileClose
FB_FileClose

—sNetId bBusy —

—1hFile bErrorf—

—{bExecute nErrId—

—tTimeout

The function block FB_FileClose closes the file, thereby putting it in a defined state for further processing by

other programs.

TE1000

Version: 1.17.0

51

Function blocks

BECKHOFF

@ This function block is only suitable for logging in real-time to a limited extent.
1 For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which

is subject to a charge.

Inputs
VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [»_127]).
hFile UINT Handle of the file to be closed.
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
& Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrld UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.

Command specific error code for nErrid

Returns the ADS error code [»_148] or the command-specific error code when the bError output is set.

Command-specific error code

Possible cause

0x703

Invalid or unknown file handle.

0x70E

File was opened with wrong method (e.g. with
obsolete FILEOPEN function block).

Example of calling the block in ST:
* File access from the PLC [»_143]

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileClose : FB FileClose;
hFile : UINT;
bFileClose : BOOL;
bFileCloseBusy : BOOL;
bFileCloseError : BOOL;
nFileCloseErrorId : UDINT;

END VAR

52 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF Function blocks

FB FileClose 1
FB FileClose
'1.1.1.2.7.1" —sNEtI_d bBusy f————bFileClocseBusy

hFile —hFile bError |- bFileCloseError
bFileClose —{bExecute nErrld |- bFileCloseErrId
T#33 —tTimeout

Here the file associated with the file handle (which was itself generated by FB_FileOpen) is closed again.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.34 FB_FileLoad

FB_FileLoad
—sNetld bBusyF—
—sPathMame bErrorg—
—{pReadBuff nErrld f—
—cbReadLen chRead—
— bExecute
—tTimeout

The contents of a file can be read out with the function block FB_FileLoad. The file is opened implicitly in
binary mode, the contents are read out and the file is then closed again.

@ This function block is only suitable for logging in real-time to a limited extent.

1 For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

% Inputs
VAR INPUT
sNetId : T AmsNetId;
sPathName : T MaxString;
pReadBuff : PVOID;
cbReadLen : UDINT;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device

to which the ADS command is addressed (type:
T AmsNetld [P 127]).

sPathName T_MaxString Storage path and file name of the file to be opened. The
path can only point to the local file system of the
computer. Network paths cannot be specified here (type:
T_MaxString [»_129])

pReadBuff PVOID Address of the buffer into which the data are to be read.

The buffer can be a single variable, an array or a
structure, whose address can be found with the ADR

operator.

cbReadLen UDINT Number of bytes to be read.

bExecute BOOL The function block is activated by a rising edge at this
input.

tTimeout TIME States the length of the timeout that may not be exceeded

by execution of the internal ADS command.

TE1000 Version: 1.17.0 53

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

Function blocks

BECKHOFF

& QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
cbRead : UDINT;
END VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrid UDINT Returns the ADS error code [»_148] or the command-
specific error code when the bError output is set.
cbRead UDINT Number of currently read bytes

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.4022.0 PC or CX (x86, x64, ARM) Tc2_System (System) >=v3.4.22.0
3.3.5 FB_FileGets
FB_FileGets
—shetId bBusy
—hFile bError
—bExecute nErrid
—tTimeout sLine
bEOF

The function block FB_FileGest reads strings from a file. The string is read up to and including the line feed
character, or up to the end of the file or the maximum permitted length of sLine. The null termination is
appended automatically. The file must have been opened in text mode.

@ This function block is only suitable for logging in real-time to a limited extent.
For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [»_127]).
hFile UINT File handle, which was generated when the function block
FB_FileOpen was created.
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.

54

Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF

Function blocks

& QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sLine : T _MaxString;
bEOF : BOOL;
END VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrld UDINT Returns the ADS error code [»_148] or the command-
specific error code when the bError output is set.
sLine T_MaxString String that was read (type: T_MaxString [»_129]).
bEOF BOOL This output is set if the end of the file was reached and no
further data bytes could be read (cbRead=0). This output
is not set if further data bytes could be read (cbRead>0).

Command-specific error code

Possible cause

0x703 Invalid or unknown file handle.
0x70A No memory for read buffer.
0x70E File was opened with wrong method (e.g. with

obsolete FILEOPEN function block).

Example of calling the function block in FBD:

PROGRAM Test

VAR
fbFileGets : FB FileGets;
hFile : UINT;
bFileGets : BOOL;
bFileGetsBusy : BOOL;
bFileGetsError : BOOL;
nFileGetsErrorId : UDINT;
strBuffer : STRING;
bFileGetsEOF : BOOL;
END VAR
fbFileGets_1
FBE FileGets
"1.1.1.2.7.1' —{aNetId bEBuay

hFile —hFile
bFileGets —|bExecute
T#33 —tTimeout

LError [~ bErrd
nErrld [~ errIdd
sLine |- strBuffer
LEOF |~ bFileGetsEQF

Prerequisites

bFileGetsBusy

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.3.6 FB_FilePuts

FB_FilePuts
—sNetId bBusy —
—hFile bErrorp—
—sLine nErrId—
—bExecute
—tTimeout

TE1000

Version: 1.17.0

55

Function blocks

BECKHOFF

The function block FB_FilePuts writes strings into a file. The string is written to the file up to the null
termination, but without the null character. The file must have been opened in text mode.

@ This function block is only suitable for logging in real-time to a limited extent.
For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

! Inputs
VAR _INPUT
sNetId : T AmsNetId;
hFile : UINT;
sLine : T MaxString; (* string to write *)
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [»_127]).
hFile UINT File handle, which was generated when the function block
FB_FileOpen was created.
sLine T_MaxString String to be written into the file (type: T_MaxString
»_129)).
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;

bError : BOOL;

nErrId : UDINT;

END_ VAR

Name Type Description

bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.

bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.

nErrld UDINT Returns the ADS error code [>_148] or the command-

specific error code when the bError output is set.

Command-specific error code

Possible cause

0x703

Invalid or unknown file handle.

0x70E

File was opened with wrong method (e.g. with
obsolete FILEOPEN function block).

Example of calling the function block in FBD:

PROGRAM Test

: FB_FilePuts;

VAR
fbFilePuts
hFile : UINT;
bFilePuts : BOOL;
bFilePutsBusy : BOOL;
bFilePutsError : BOOL;

nFilePutsErrorId : UDINT;

END VAR

56

Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF Function blocks

FB FilePuts_1
FB FilePuts

'1.1.1.2.7.1" —{sNetId bBusy f——bFilePutsBusy
hFile —hFile bError |- bFilePutsError
'Puts this line! $L' —sLine nErrld |- bFilePutsErrId

bFilePuts —|bExecute
T#23 —tTimeout

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.3.7 FB_FileRead

FB_FileRead
—sNetId bBusy —
—1hFile bErrorf—
—pReadBuff nErrld—
—{cbReadLen cbRead—
—{bExecute bEQOF—
—tTimeout

With the function block FB_FileRead the contents of an already opened file can be read. Before a read
access, the file must have been opened in the corresponding mode. In addition to the FOPEN MODEREAD,
the appropriate format (FOPEN MODEBINARY or FOPEN MODETEXT) is also important to achieve the desired
result.

@ This function block is only suitable for logging in real-time to a limited extent.

For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
pReadBuff : PVOID;
cbReadLen : UDINT;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS_ TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [»_127]).
hFile UINT File handle, which was generated when the function block
FB_FileOpen was created.
pReadBuff PVOID Address of the buffer into which the data are to be read.
The buffer can be a single variable, an array or a
structure, whose address can be found with the ADR
operator.
cbReadLen UDINT Number of bytes to be read
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.

TE1000 Version: 1.17.0 57

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

Function blocks

BECKHOFF

& QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
cbRead : UDINT;
bEOF : BOOL;
END_ VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrld UDINT Returns the ADS error code [»_148] or the command-
specific error code when the bError output is set.
cbRead UDINT Number of currently read bytes
bEOF BOOL This output is set if the end of the file was reached and no
further data bytes could be read (cbRead=0). This output
is not set if further data bytes could be read (cbRead>0).

Command-specific error code

Possible cause

0x703 Invalid or unknown file handle.
0x70A No memory for read buffer.
0x70E File was opened with wrong method (e.g. with

obsolete FILEOPEN function block).

Example of calling the block in ST:
+ File access from the PLC [P _143]

Example of calling the function block in FBD:

PROGRAM Test

VAR
fbFileRead : FB _FileRead;
hFile : UINT;
bFileRead : BOOL;
bFileReadBusy : BOOL;
bFileReadError : BOOL;
nFileReadErrorId : UDINT;
nFileReadCount : UDINT;
bFileReadEOF : BOOL;
fileData : ARRAY[0..9] OF BYTE;
END_VAR
FB_FileRead 1
FB_FileRead
"1.1.1.2.7.1" —{sWetId bBusy
hFile —hFile bError |- bFileReadError
ADR (FILEDATR) —pReadBuff nErrlId - nFileReadErrId

SIZEQF (FILEDATR) —jcbReadLlen
bFileRead —|bExecute
T#33 —tTimeout

cbRead [~ nFileReadCount
LEOF |~ bFileReadEQF

bFileReadBusy

After a rising edge at bExecute and successful execution of the read instruction the currently read bytes from
the file are found in FILEDATA. The parameter cbRead can be used to determine how many bytes were

actually read during the last read operation.

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

58 Version: 1.17.0

TE1000

BECKHOFF

Function blocks

3.3.8 FB_FileWrite
FB_FileWrite

—sNetId bBusy —
—hFile bErrorp—
—pWriteBuff nErrld—
—jchWritelen chWritef—
—bExecute

—tTimeout

The function block FB_FileWrite writes data into a file. For write access the file must have been opened in
the corresponding mode, and it must be closed again for further processing by external programs.

@ This function block is only suitable for logging in real-time to a limited extent.
For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.
Inputs
VAR INPUT
sNetId : T _AmsNetId;
hFile : UINT;
pWriteBuff : PVOID;
cbWriteLen : UDINT;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [P 127]).
hFile UINT File handle, which was generated when the function block
FB_FileOpen was created.
pWriteBuff PVOID Address of the buffer containing the data to be written.
The buffer can be a single variable, an array or a
structure, whose address can be found with the ADR
operator.
cbWriteLen UDINT Number of bytes to be written
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
E- Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
cbWrite : UDINT;
END_VAR
TE1000 Version: 1.17.0 59

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

Function blocks

BECKHOFF

Name Type Description

bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.

bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.

nErrld UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.

cbWrite UDINT Contains the number of the last successfully written data

bytes. A write error indicates that the number of
successfully written data bytes is less than the requested
length (cbWriteLen) or zero. A write error can occur if the
data carrier is full, for example. If a write error occurs, the
bError and nErrID outputs are not set. Since the PLC
application knows the number of data bytes to be written,
it can compare the actual written length with the
requested length and detect write errors. When a write
error occurs, the internal file pointer has an undefined
position.

Command-specific error code

Possible cause

0x703

Invalid or unknown file handle.

0x70E

File was opened with wrong method (e.g. with
obsolete FILEOPEN function block).

Example of call

» File access

ing the block in ST:
from the PLC [»_143]

Example of call

PROGRAM Test
VAR

ing the block in FBD:

fbFileWrite : FB FileWrite;
hFile : UINT;
bFileWrite : BOOL;
bFileWriteBusy : BOOL;
bFileWriteError : BOOL;
nFileWriteErrorId: UDINT;
nFileWriteCount : UDINT;
fileData : ARRAY[0..9] OF BYTE;
END VAR

FB FileWrite_1

FB_FileWrite
"1.1.1.2.7.1' —{aNetId bEBuay

hFile —

ALDR (FILEDATR) —
SIZEQF (FILEDATR) —
bFileWrite —

T#33 —

hFile
pHriteBuff
chiWritelen
bExecute

bError |- bFileWriteError
nErrId

chiWirite

- nFileWriteErrId
- nFileWriteCount

tTimeout

bFileWriteBusy

In the example, after a rising edge at bFileWrite, 10 bytes of the array FILEDATA are written to the file.

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

60

Version: 1.17.0

TE1000

BECKHOFF Function blocks

3.3.9

FB_FileSeek

—sNetld
—hFile
—nSeekPos
—leOrigin
—bExecute
—tTimeout

FB_FileSeek
bBusy —
bErrorp—
nErrId—

The function block FB_FileSeek sets the file pointer of an open file to a definable position.

@ This function block is only suitable for logging in real-time to a limited extent.

For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR _INPUT
sNetId : T _AmsNetId;
hFile : UINT;
nSeekPos : DINT; (* new seek pointer position *)
eOrigin : E SeekOrigin:= SEEK SET;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [»_127]).
hFile UINT File handle, which was generated when the function block
FB_FileOpen was created.
nSeekPos DINT New position of the file pointer
eOrigin E_SeekOrigin Relative position, to which the file pointer is to be moved
(type: E_SeekOrigin [»_123]).
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
& Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END_VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrld UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.
Command-specific error code Possible cause
0x703 Invalid or unknown file handle.
0x70E File was opened with wrong method (e.g. with
obsolete FILEOPEN function block).
TE1000 Version: 1.17.0 61

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

Function blocks BEGKHOFF

Example of calling the function block in FBD:

PROGRAM Test

VAR
fbFileSeek : FB_FileSeek;
hFile : UINT;
nSeekPos : DINT;
bFileSeek : BOOL;
bFileSeekBusy : BOOL;
bFileSeekError : BOOL;
nFileSeekErrorId : UDINT;
END VAR
FB FileSeek 1
FB FileSeek
'1.1.1.2.7.1" —{sNetId bBusy f———bFileSeekBusy

hFile —hFile bError |- bFileSeekError
nSeekPos —nSeekPos nErrld |- bFileSeekErrId
SEEK CUR —jelrigin
bFileSeek —|bExecute
T#33 —tTimeout

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.3.10 FB_FileTell

FB_FileTell
—shetId bBusy F—
—hFile bError—
—bExecute nErrld —
—tTimeout nseekPost—

The function block FB_FileTell determines the current position of the file pointer. The position indicates the
relative offset from the start of the file.

Note that for files opened in "Append at end of file" mode, the current position is determined by the last I1/0
operation, not by the position of the next write access. After a read operation, for example, the file pointer is
at the position where the next read access will take place, not at the position where the next write access will
take place. In append mode, the file pointer is always moved to the end before the write operation.

If no previous I/O operation was performed and the file was opened in append mode, the file pointer is at the
start of the file.

@ This function block is only suitable for logging in real-time to a limited extent.
1 For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR INPUT

sNetId : T AmsNetId;

hFile : UINT;

bExecute : BOOL;

tTimeout : TIME := DEFAULT ADS TIMEOUT;
END_ VAR

62 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF

Function blocks

Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [P 127]).
hFile UINT File handle, which was generated when the function block
FB_FileOpen was created.
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
& QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
nSeekPos : DINT; (* On error, nSEEKPOS returns -1 *)
END VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrid UDINT Returns the ADS error code [»_148] or the command-
specific error code when the bError output is set.
nSeekPos DINT Returns the current position of the file pointer.
Command-specific error code Possible cause
0x703 Invalid or unknown file handle.
0x70E File was opened with wrong method (e.g. with
obsolete FILEOPEN function block).

Example of calling the function block in FBD:

PROGRAM Test
VAR

fbFileTell : FB FileTell;
hFile : UINT;
bFileTell : BOOL;
bFileTellBusy : BOOL;
bFileTellError : BOOL;
nFileTellErrorId : UDINT;
nFileTellSeekPos : DINT;
END VAR
FB_FileTell 1
FB FileTell
'1.1.1.2.7.1" —{sNetId bBusy bFileTellBusy

hFile —hFile
bFileTell —|bExecute
T#23 —tTimeout

LError [-bFileTellError
nErrld [~ bFileTellErrId
nSeekPos [-nFileTellSeekPos

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

TE1000

Version: 1.17.0

63

Function blocks

BECKHOFF

3.3.11 FB_FileDelete

FB_FileDelete
—shetId bBusy F—
—sPathName bError—
—ePath nErrld —
—bExecute
—tTimeout

The function block FB_FileDelete deletes a file from the data storage device.

@ This function block is only suitable for logging in real-time to a limited extent.
For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR _INPUT
sNetId : T AmsNetId;
sPathName : T MaxString; (* file path and name *)
ePath : E_OpenPath := PATH GENERIC;
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [»_127]).
sPathName T_MaxString File name, including the full path (type: T_MaxString
»_129)).
ePath E_OpenPath This input can be used to select a TwinCAT system path
on the target device for opening the file (type: E OpenPath
[»_123]).
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
& Qutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrid UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.

Command-specific error code

Possible cause

0x70C File not found. Invalid sPathName or ePath
parameter.

Example of calling the function block in FBD:

64 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF

Function blocks

PROGRAM Test
VAR

fbFileDelete : FB FileDelete;
bFileDelete : BOOL;
bFileDeleteBusy : BOOL;
bFileDeleteError : BOOL;
nFileDeleteErrId : UDINT;
END VAR

fbFileDelete 1

FB FileDelete
"1.1.1.2.7.1' —{aNetId bEBuay

"C:\MyDldFile.txt' —
PATH_GENERIC —
bFileDelete —

T#33 —

sPathName LError [~ bErrd

ePath nErrld |- errIdd

bExecute
tTimeout

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.3.12

FB_FileRename

FB_FileRename

—sNetld
—sOldName
—{sNewName

bBusy —
bErrorp—
nErrId—

—ePath
—bExecute
—tTimeout

The function block FB_FileRename can be used to rename a file.

@ This function block is only suitable for logging in real-time to a limited extent.
For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR INPUT

sNetId : T _AmsNetId;
sOldName : T MaxString;
sNewName : T MaxString;

ePath : E OpenPath := PATH GENERIC;

bExecute : B

OOL;

(* Default: generic file path*)

tTimeout : TIME := DEFAULT ADS TIMEOUT;

END VAR

Name Type Description

sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [P 127]).

sOldName T_MaxString Old file name (type: T_MaxString [»_129])

sNewName T_MaxString New file name (type: T_MaxString [»_129])

ePath E_OpenPath This input can be used to select a TwinCAT system path
on the target device for opening the file (type: E OpenPath
[»_123]).

bExecute BOOL The function block is activated by a rising edge at this
input.

tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.

TE1000 Version: 1.17.0 65

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

Function blocks BEGKHOFF

& QOutputs

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

Name Type Description

bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.

bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.

nErrid UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.

Command-specific error code Possible cause

0x70C File not found. Invalid sOldName, sNewName or

ePath parameter.

Example of calling the function block in FBD:

PROGRAM Test

VAR
fbFileRename : FB FileRename;
bFileRename : BOOL;
bFileRenameBusy : BOOL;
bFileRenameError : BOOL;
nFileRenameErrId : UDINT;
END VAR
fbFileRename 1
FBE_FileRename
'1.1.1.2.7.1" —{sNetId bBusy bFileRenameBusy
'C:\MyFile.dat' —(30ldName bBError [~ bFileRenameErrer
'C:\0ldFile.dat' —sNewName nErrlId |- bFileRenameErrId

PATH_GENERIC —jePath
bFileRename —|bExecute
T#33 —tTimeout

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.3.13 FB_CreateDir

FB_ CreateDir
—sNetId bBusy —
—sPathName bErrarf—
—1ePath nErrId—
—bExecute
—tTimeout

The function block FB_CreateDir can be used to create new directories on the data storage device.

@ This function block is only suitable for logging in real-time to a limited extent.
1 For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

66 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF

Function blocks

% Inputs
VAR INPUT
sNetId : T AmsNetId;
sPathName : T MaxString;
ePath : E OpenPath := PATH GENERIC; (* Default: generic file path¥)
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [P 127]).
sPathName T_MaxString Name of the new directory. When the function block is
called, the only option is to create a new directory (type:
T MaxString [» 129]).
ePath E_OpenPath This input can be used to select a TwinCAT system path
for the new directory on the target device (type:
E OpenPath [123]).
bExecute BOOL The function block is activated by a rising edge at this
input.
tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.
& QOutputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be executed.
bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.
nErrld UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.

Command-specific error code

Possible cause

0x723

Folder is already existing or invalid sPathName or
ePath parameter.

Example in ST:

By a rising edge at bCreate a new directory in the main directory C:\ named “PRJDATA” is created. By a
rising edge at bRemove a directory with the same name can be deleted.

At bBootFolder = TRUE a directory in the ..\TwinCAT\Boot directory can be created or deleted.

PROGRAM MAIN
VAR
sFolderName
bBootFolder

ePath
sPathName

fbCreateDir
bCreate
bCreate Busy

bCreate Error :
nCreate ErrID :

: STRING :=
: BOOL;

: E OpenPath;

: STRING;

: FB_CreateDir;

: BOOL;
: BOOL;
BOOL;
UDINT;

(* folder name *)

(* folders root path *)

TE1000

Version: 1.17.0 67

Function blocks BEGKHOFF

fbRemoveDir : FB _RemoveDir;
bRemove : BOOL;
bRemove Busy : BOOL;

bRemove Error : BOOL;
nRemove ErrID : UDINT;

END VAR
ePath := SEL(bBootFolder, PATH GENERIC, PATH BOOTPATH)8
sPathName := SEL(bBootFolder, CONCAT('C:\', sFolderName), sFolderName) ;

IF bCreate THEN
bCreate := FALSE;
fbCreateDir (bExecute := FALSE);
fbCreateDir (sNetId:= "',
sPathName:= sPathName,
ePath:= ePath,
bExecute:= TRUE,
tTimeout:= DEFAULT ADS TIMEOUT,
bBusy=>bCreate Busy, bError=>bCreate Error, nErrId=>nCreate ErrID);
ELSE
fbCreateDir (bExecute := FALSE, bBusy=>bCreate Busy, bError=>bCreate Error, nErrId=>nCreate ErrI
D);
END IF

IF bRemove THEN
bRemove := FALSE;
fbRemoveDir (bExecute := FALSE);
fbRemoveDir (sNetId:= "',
sPathName:= sPathName,
ePath:= ePath,
bExecute:= TRUE,
tTimeout:= DEFAULT ADS TIMEOUT,
bBusy=>bRemove Busy, bError=>bRemove Error, nErrId=>nRemove ErrID);
ELSE
fbRemoveDir (bExecute := FALSE, bBusy=>bRemove Busy, bError=>bRemove Error, nErrId=>nRemove ErrI
D);
END IF

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.3.14 FB_RemoveDir

FB_RemoveDir
—sNetId bBusy —
—sPathName bErrarf—
—ePath nErrId—
—bExecute
—tTimeout

The function block FB_RemoveDir can be used to delete a directory from the data storage device. A
directory containing files cannot be deleted.

@ This function block is only suitable for logging in real-time to a limited extent.
1 For good performance, we recommend using the TF3500 TwinCAT Analytics Logger product, which
is subject to a charge.

Inputs
VAR INPUT
sNetId : T AmsNetId;
sPathName : T MaxString;
ePath : E OpenPath := PATH GENERIC; (* Default: generic file path¥*)
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END_VAR

68 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/index.html

BECKHOFF

Function blocks

Name Type Description

sNetld T_AmsNetld String containing the AMS network ID of the target device
to which the ADS command is addressed (type:
T AmsNetld [P 127]).

sPathName T_MaxString Directory name to be deleted. When the function block is
called, only one directory can be deleted. The last
component of sPathName must contain the directory
name to be deleted (type: T _MaxString [»_129]).

ePath E_OpenPath This input can be used to select a TwinCAT system path
for deleting the directory on the target device (type:
E OpenPath [123]).

bExecute BOOL The function block is activated by a rising edge at this
input.

tTimeout TIME States the length of the timeout that may not be exceeded
by execution of the ADS command.

& Qutputs

VAR OUTPUT

bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END_ VAR

Name Type Description

bBusy BOOL When the function block is activated, this output is set to
TRUE and remains set until feedback is received. As long
as bBusy is TRUE, no new command can be created.

bError BOOL If an error occurs during command execution, this output
is set, once the bBusy output has been reset.

nErrid UDINT Returns the ADS error code [>_148] or the command-
specific error code when the bError output is set.

Command-specific error code

Possible cause

0x70C

Folder not found or invalid sPathName or ePath

parameter.
Example in ST:
See description of FB CreateDir [»_66].
Prerequisites
Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

TE1000

Version: 1.17.0 69

Function blocks BEGKHOFF

3.4 EventLogger function blocks

3.4.1 ADSLOGEVENT

ADSLOGEVENT
—MNETID EventState —
—PORT Errf—
— Event Errld f—
—EventQuit Quitl—
—EventConfigData
—EventDataAddress
—EventDatalLength
—FbCleanup

— TMOUT

This function block allows the sending and acknowledgment of messages to the TwinCAT EventLogger.

® TwinCAT EventLogger vs. TwinCAT 3 EventLogger

1 The TwinCAT EventLogger was replaced by the successor TwinCAT 3 EventLogger. The older
TwinCAT EventLogger is supported by TwinCAT 3 up to version 3.1.4024. Newer TwinCAT
versions (>= 3.1.4026.0) only support the newer TwinCAT 3 EventLogger. PLC function blocks for
this can be found in the PLC library Tc3_EventLogger.

Inputs
VAR INPUT
NETID : T AmsNetId;
PORT : T AmsPort;
Event : BOOL;
EventQuit : BOOL;
EventConfigData : TcEvent;
EventDataAddress : PVOID;
EventDatalLength : UDINT;
FbCleanup : BOOL;
TMOUT : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
NETID T_AmsNetld |String containing the AMS network ID of the target device to which the
ADS command is addressed (type: T AmsNetld [P _127]).
PORT T_AmsPort Port number of the ADS device. The TwinCAT EventLogger has the port
number 110 (type: T_AmsPort [P 127]).
Event BOOL The "coming" of the event is signaled with the rising edge, the "going" of
the event with the falling edge.
EventQuit BOOL The event is acknowledged with the rising edge.
EventConfig TcEvent Data structure with the event parameters (type: TcEvent [»_129]).
Data
EventData PVOID Address with the data to be sent with the event.
Address
EventData UDINT Length of the data to be sent with the event.
Length
FbCleanup BOOL If TRUE, the function block is completely initialized.
TMOUT TIME Indicates the time before the function is canceled.
& Qutputs
VAR OUTPUT
EventState : UDINT;
Err : BOOL;
ErrId : UDINT;
Quit : BOOL;
END_VAR

70 Version: 1.17.0 TE1000

BEGKHOFF Function blocks

Name Type Description
EventState UDINT State of the event.
Err BOOL This output is switched to TRUE as soon as an error occurs during the

execution of a command. The command-specific error code is contained
in Errld. If the function block has a timeout error, Err is TRUE and Errld
is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a
command at the inputs.

Errid UDINT ADS error code [»_148] or command-specific error code of the last
executed command. Is reset to 0 by the execution of a command at the
inputs.

Quit BOOL Acknowledges the event.

Acknowledge messages
Event without Acknowledgement

Event
active |‘ |\
Redquest Reso
Event) 4
flag I/

Event with Acknowledgement {(Scenario 1)

Ewvent
active |\

equest lgna
Ewvent Hesg Sign Reset Hesg
flag

Quit Confirm

flag

}J—

Event with Acknowledgement {Scenario 2)
Event

active i\

Request Rese

Event

flay V
&
Qult Confirm

flag —‘

The upper figure represents the general sequence.

In the case of messages not requiring acknowledgment, the event is announced with the rising edge at the
event input of the function block and is thus active in the EventLogger. The falling edge at the event input
initiates the reset. This signal deletes the event in the EventLogger again.

In the case of messages requiring acknowledgment, the event is activated again with the rising edge at the
event input. The event is deactivated either

* by the falling edge at the event input (if an acknowledgment signal had previously come from the PLC
with the Quit input or from the visualization) or

+ by the rising edge at the Quit input (if a reset had previously been initiated by a falling edge at the
event input).

TE1000 Version: 1.17.0 71

Function blocks BEGKHOFF

If there is a reset of the event between event activation and the arrival of the acknowledgement, the next
arrival of the event input is called "signal". A request is thus announced in case of already active events.

Example for the use of the ADSLOGEVENT function block in ST:

» Sending/acknowledging event logger signals from the PLC [»_142]

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_System (system)

up to

TwinCAT v3.1.4024

3.4.2 ADSCLEAREVENTS

ADSCLEAREVENTS
—NetID bBusy F—
—bClear bErr—
—iMode iErrId —
—tTimeout

The function block sends and acknowledges messages to the TwinCAT EventLogger.

® TwinCAT EventLogger vs. TwWinCAT 3 EventLogger

1 The TwinCAT EventLogger was replaced by the successor TwinCAT 3 EventLogger. The older
TwinCAT EventLogger is supported by TwinCAT 3 up to version 3.1.4024. Newer TwinCAT
versions (>= 3.1.4026.0) only support the newer TwinCAT 3 EventLogger. PLC function blocks for
this can be found in the PLC library Tc3_EventLogger.

Inputs

VAR INPUT
NETID : T AmsNetId;
bClear : BOOL;
iMode : UDINT;
tTimeout : TIME := DEFAULT ADS TIMEOUT;

END_ VAR

Name Type Description

NETID T_AmsNetld String containing the AMS network ID of the target device to which the

ADS command is addressed (type: T_AmsNetld [»_127]).
bClear BOOL With the rising edge the events are deleted.
iMode UDINT Mode for deleting the events. Defined in the enum E_TcEventClearModes
[»_124].

tTimeout TIME Indicates the time before the function is canceled.

E- Qutputs

VAR OUTPUT
bBusy : BOOL;
bErr : BOOL;
iErrId : UDINT;

END_ VAR

72 Version: 1.17.0 TE1000

BECKHOFF Function blocks

Name Type Description

bBusy BOOL When the function block is activated, this output is set to TRUE and
remains set until feedback is received. As long as bBusy is TRUE, no new
command can be executed.

bErr BOOL This output is switched to TRUE as soon as an error occurs during the
execution of a command. The command-specific error code is contained in
iErrld. If the function block has a timeout error, bErr is TRUE and iErrld is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a
command at the inputs.

iErrld UDINT ADS error code [»_148] or command-specific error code of the last

executed command. Is reset to 0 by the execution of a command at the
inputs.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_System (system)

up to

TwinCAT v3.1.4024

3.4.3 FB_SimpleAdsLogEvent

FB_SimpleAdsLogEvent
—{SourcelD Errld —
—EventID Error—
—bSetEvent
—bQuit

This function block allows the sending and acknowledgment of messages to the TwinCAT EventLogger. As
opposed to the ADSLOGEVENT block, events cannot be parameterized from the PLC with the
FB_SimpleAdsLogEvent block; however, events can be set, reset and acknowledged in a simple manner.

TwinCAT EventLogger vs. TwinCAT 3 EventLogger

o

1 The TwinCAT EventLogger was replaced by the successor TwinCAT 3 EventLogger. The older
TwinCAT EventLogger is supported by TwinCAT 3 up to version 3.1.4024. Newer TwinCAT
versions (>= 3.1.4026.0) only support the newer TwinCAT 3 EventLogger. PLC function blocks for
this can be found in the PLC library Tc3_EventLogger.

Inputs
VAR INPUT
Sourceld : INT;
EventId : INT;
bSetEvent : BOOL;
bQuit : BOOL;
END VAR
Name Type Description
Sourceld INT ID of the source. Used to clearly identify the source in the EventLogger.
Eventld INT ID of the event. Used to clearly identify the event in the EventLogger.
bSetEvent BOOL The "coming" of the event is signaled with the rising edge, the "going" of the
event with the falling edge.
bQuit BOOL The event is acknowledged with the rising edge.

TE1000 Version: 1.17.0 73

Function blocks BEGKHOFF

& QOutputs
VAR OUTPUT
ErrId : UDINT;
Error : BOOL;
END VAR
Name Type Description
Errld UDINT ADS error code [»_148] or command-specific error code of the last executed
command. Is reset to 0 by the execution of a command at the inputs.
Error BOOL This output is switched to TRUE as soon as an error occurs during the

execution of a command. The command-specific error code is contained in
Errld. If the function block has a timeout error, Error is TRUE and Errld is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a
command at the inputs.

Acknowledge messages

Event without Acknowledgement

Ewvent

active |\ |‘
Request Rese

Event) 9

flag l/

Event with Acknowledgement {Scenario 1)
Ewvent

active |\

equest Igna
Event Hesg Slgn Reset Resg
flag

Quit Confirm

flag

}J—

Event with Acknowledgement {(Scenario 2)

Event
active i\

Request Rese
Ewvent

flag l"
&
Qult Confirm

flag —‘

The upper figure represents the general sequence.

In the case of messages not requiring acknowledgment, the event is announced with the rising edge at the
event input of the function block and is thus active in the EventLogger. The falling edge at the event input
initiates the reset. This signal deletes the event in the EventLogger again.

In the case of messages requiring acknowledgment, the event is activated again with the rising edge at the
event input. The event is deactivated either

* by the falling edge at the event input (if an acknowledgment signal had previously come from the PLC
with the Quit input or from the visualization) or

74 Version: 1.17.0 TE1000

BECKHOFF Function blocks

by the rising edge at the Quit input (if a reset had previously been initiated by a falling edge at the
event input).

If there is a reset of the event between event activation and arrival of the acknowledgement, the next arrival
of the event input is called "signal". A request is thus announced in case of already active events.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_System (system)

up to

TwinCAT v3.1.4024

3.5 IEC steps / SFC flags function blocks

3.5.1 AnalyzeExpression

AnalyzeExpression
—InputExp ExpResult —
—DoAnalyze Qutstring —

The function block can be used in PLC projects that use the SFC flags. No instances are generated. The
corresponding PLC library must be integrated in the project. Further configuration requirements can be found
in the following explanatory notes.

The AnalyzeExpression and AnalyzeExpressionTable function blocks can be used to analyze transitions and
step-enabling conditions. If a transition is not triggered after a set time, the transition can be analyzed using
these function blocks.

The function blocks can only be used to analyze expressions or transitions that are implemented in
the ST programming language.

* AnalyzeExpression:

o The function block outputs the result of the analysis, i.e. the reason why no switch has occurred
(that is, which partial condition(s) is/are not fulfilled), bundled in a STRING. The variables that form
the partial conditions are linked to one another by operators (e.g. bvarl AND (bVar2 OR
bvar3)).

o The SFC flag "SFCErrorAnalyzation" is used for the output.
* AnalyzeExpressionTable:

> The function block outputs all non-switching variables individually. The individual variables are
recorded or output as array elements. The information listed for each array element includes the
name, address, comment and current value of the variable.

o The SFC flag "SFCErrorAnalyzationTable" is used for the output.

Configuration requirements

The following settings are required to enable AnalyzeExpression or AnalyzeExpressionTable for SFC:

* Include the PLC library Tc2_System.

« Declare the following variable in the SFC-POU:
SFCEnableLimit: BOOL := TRUE;

* In the Properties window, configure a maximum active time for the step(s) of the SFC diagram whose
subsequent transition/switchover condition is to be analyzed (see also SFC element properties).

+ Configure the SFC settings in the PLC project properties or in the POU properties (see also SFC flags
and Command Properties (PLC project) > Category SFC):

TE1000 Version: 1.17.0 75

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528384651.html
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528481163.html%20
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528384651.html
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528384651

Function blocks BEGKHOFF

o Flags tab:
Check the Active and Declare check boxes for the following SFC flags:
SFCError, SFCEnableLimit, SFCErrorAnalyzation, SFCErrorAnalyzationTable

o Build tab:
Enable the option Calculate active transitions only.

Sample

The configurations mentioned above have been implemented in the following sample. For "Step1", the
maximum active time was set to 1 s. If the associated outgoing transition "Trans_ST" has not triggered after
1 s, this transition is analyzed by the function blocks AnalyzeExpression and AnalyzeExpressionTable. The
variable SFCError is set to TRUE and the variable SFCErrorStep is given the value 'Step 1.

The analysis results "SFCErrorAnalyzation" or "SFCErrorAnalyzationTable" indicate which (partial)
expression has not yet been triggered, so that "Step1" can be exited.
The transition "Trans_ST" consists of the expression
bl AND (b2 OR b3);
« Situation 1: None of the three variables b1, b2, b3 is TRUE.
o "SFCErrorAnalyzation" shows the analysis result 'b1 AND (b2 OR b3)'.
o "SFCErrorAnalyzationTable" lists all three variables b1, b2, b3 with detailed variable information.
> See also Figure 1.
« Situation 2: Variable b1 is set to TRUE. The analysis results change accordingly.
o "SFCErrorAnalyzation" shows the analysis result '(b2 OR b3)'".

o "SFCErrorAnalyzationTable" only lists the two variables b2 and b3 with the corresponding variable
information.

> See also Figure 2.

Figure 1:

76 Version: 1.17.0 TE1000

BECKHOFF

Function blocks

Expression Type Prepared walue Address Cornment s
% bo BOOL
& bl BOOL YuT* My comment For b1
@ bz BOOL Iy comment For b2
% b3 BOOL My comment for b3
@ b4 BOOL Iy comment For b4
 SFCEnableLimit EOOL
SFCError BOOL
@ SFCErroranalyzation STRING b1 AND (bZ OR b3)'
= @ SFCErroranalyzationTable ARRAY [0.. TABLE_UPPER_EOUMD] OF ExpressionResult L
= @ SFCErrorAnalyzationTable[0] ExpressionResult 3
@ name STRING(STRING_LENGTH_EXF) b1’
% address STRING(STRING_LENGTH_ADDRESS) eIk
@ comment STRING(STRING_LENGTH_COMMENT) * My comment For b1’
@ wale BOOL
faled BOOL
= SFCErrorAnalyzationTable[1] ExpressionResult
@ name STRING(STRING_LENGTH_EXF) b2
@ address STRING(STRING_LENGTH_ADDRESS) "
@ comment STRING(STRING_LENGTH_COMMENT) * My comment For b2’ -
@ value BOOL
& faled BOOL
= @ SFCErorfnalyzationTable[2] ExpressionResult
@ name STRING(STRING_LENGTH_EXP) b
@ address STRING(STRING_| ENGTH_ADDRESS) "
@ comment STRING(STRING_LENGTH_COMMENT)
@ value BOOL
@ Failed BOOL
= @ SFCErrorAnalyzationTable[3] ExzpressionResult
 name STRING(STRING_LENGTH_EXP) "
@ address STRING(STRING_LENGTH_ADDRESS) " <
=
Tnit T#0us
b
T#25450us
T#ls
Trans_sT
Step2 T#0us
T#ls
b4
Init L
M +Q | ooe @ -
Figure 2:
Expression Type Walue Prepared value Address Carnment o
@ b0 BOOL
@ b1 BOOL I My comment For bl
@ b2 BOOL My comment For b2
@ b3 BOOL Iy comment For b3
@ ba BOOL My comment for b4
@ SFCEnableLimit BOOL
@ SFCError BOOL
@ SFCErroranalyzation STRING b2 OR b3y
= ¢ SFCErrorAnalyzationTable ARRAY [0, TABLE_UPPER_EOUND] OF ExpressionResult

@ SFCErrorAnalyzationTable[0]
name

*

address

wvalug

L]
@ comment
@
#

Failed

Expressiorfesult
STRING(STRING_LENGTH_EXP)
STRING{STRING_LENGTH_ADDRESS)
STRINGSTRING _LENGTH_COMMENT)
BOOL

BOOL

(]

= @ SFCErrorAnalyzationTablel1] ExpressionResult
4 name STRING{STRING_LENGTH_EXP)
@ address STRING{STRING_LENGTH_ADDRESS)
% comment STRING{STRING_LENGTH_COMMENT) W
@ value BOOL
4 Falled BOOL
= 4 SFCErrorAnalyzationTable[2] ExpressionResult
@ name STRING{STRING_LENGTH_EXF) "
@ address STRING{STRING_LENGTH_ADDRESS) "
4 comment STRING{STRING_LENGTH_COMMENT) "
@ value BOOL
@ Failed BOOL
= 4 SFCErrorAnalyzationTable[3] ExpressionResult
@ name STRING{STRING_LENGTH_EXP) "
@ address STRING{STRING_ENGTH_ADDRESS) " <
==
Tnit T#0ns
B0
T#535640ms
T#ls
Trans_ST
Step? T#0ns
T#ls
b4
Init

(]

[NESETRET T @j

TE1000

Version: 1.17.0

77

Function blocks BEGKHOFF

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.5.2 AnalyzeExpressionTable

AnalyzeExpressionTable
—InputExp ExpResult F—
—DoAnalyze OutTablef—

The function block can be used in PLC projects that use the SFC flags. No instances are generated. The
corresponding PLC library must be integrated in the project. Further configuration requirements can be found
in the following explanatory notes.

The AnalyzeExpression and AnalyzeExpressionTable function blocks can be used to analyze transitions and
step-enabling conditions. If a transition is not triggered after a set time, the transition can be analyzed using
these function blocks.

d The function blocks can only be used to analyze expressions or transitions that are implemented in
1 the ST programming language.

* AnalyzeExpression:

o The function block outputs the result of the analysis, i.e. the reason why no switch has occurred
(that is, which partial condition(s) is/are not fulfilled), bundled in a STRING. The variables that form
the partial conditions are linked to one another by operators (e.g. bvarl AND (bVar2 OR

bvar3)).
o The SFC flag "SFCErrorAnalyzation" is used for the output.
* AnalyzeExpressionTable:

o The function block outputs all non-switching variables individually. The individual variables are
recorded or output as array elements. The information listed for each array element includes the
name, address, comment and current value of the variable.

o The SFC flag "SFCErrorAnalyzationTable" is used for the output.

Configuration requirements

The following settings are required to enable AnalyzeExpression or AnalyzeExpressionTable for SFC:

¢ Include the PLC library Tc2_System.

» Declare the following variable in the SFC-POU:
SFCEnableLimit: BOOL := TRUE;

 In the Properties window, configure a maximum active time for the step(s) of the SFC diagram whose
subsequent transition/switchover condition is to be analyzed (see also SFC element properties).

+ Configure the SFC settings in the PLC project properties or in the POU properties (see also SFC flags
and Command Properties (PLC project) > Category SFC):

> Flags tab:
Check the Active and Declare check boxes for the following SFC flags:
SFCError, SFCEnableLimit, SFCErrorAnalyzation, SFCErrorAnalyzationTable

o Build tab:
Enable the option Calculate active transitions only.

Sample

The configurations mentioned above have been implemented in the following sample. For "Step1", the
maximum active time was set to 1 s. If the associated outgoing transition "Trans_ST" has not triggered after
1 s, this transition is analyzed by the function blocks AnalyzeExpression and AnalyzeExpressionTable. The
variable SFCError is set to TRUE and the variable SFCErrorStep is given the value 'Step 1.

78 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528384651.html
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528481163.html%20
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528384651.html
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528384651

Function blocks

BECKHOFF

The analysis results "SFCErrorAnalyzation" or "SFCErrorAnalyzationTable" indicate which (partial)
expression has not yet been triggered, so that "Step1" can be exited.

The transition "Trans_ST" consists of the expression
bl AND (b2 OR b3);
e Situation 1: None of the three variables b1, b2, b3 is TRUE.
o "SFCErrorAnalyzation" shows the analysis result 'b1 AND (b2 OR b3)'.
o "SFCErrorAnalyzationTable" lists all three variables b1, b2, b3 with detailed variable information.
o See also Figure 1.
« Situation 2: Variable b1 is set to TRUE. The analysis results change accordingly.
o "SFCErrorAnalyzation" shows the analysis result '(b2 OR b3)".

o "SFCErrorAnalyzationTable" only lists the two variables b2 and b3 with the corresponding variable
information.

> See also Figure 2.

Figure 1:

Expression Type Walue Prepared value Address Corment e
% bo BOOL |
bt BOOL %al* My comment for b1
@ b2 BOOL Iy comment For b2
@ b3 BOOL Iy comment For b3
$ be BOOL MMy comment For b4
4 SFCEnableLimit EOOL
@ SFCError BOOL
@ SFCErroraAnalyzation STRING ‘b1 AND {bZ OR b3Y

= @ SFCErroranalyzationTable ARRAY [0, TABLE_UPPER_EOUND] OF ExpressionResult l
= SFCErrorAnalyzationTable[0] ExpressionResult 3

@ name STRING(STRING_LENGTH_EXF) bt
@ address STRING(STRING_LENGTH_ADDRESS) e
§ comment STRING(STRING_LENGTH_COMMENT) * My comment For b1’
@ wale BOOL
& faled BoOL
= @ SFCErorfnalyzationTable[1] ExpressionResult
@ name STRING(STRING_LENGTH_EXF) b2
@ address STRING(STRING_| ENGTH_ADDRESS) "
@ comment STRING(STRING_LENGTH_COMMENT) * My comment for b2’ —
@ walue BOOL A
@ Failed BOOL
= @ SFCErrorAnalyzationTable[2] ExzpressionResult
@ name STRING{STRING_LENGTH_EXP) B3
@ address STRING(STRING_LENGTH_ADDRESS) "
@ comment STRING(STRING_LENGTH_COMMENT)
@ walue EOOL
@ Failed BOOL
= @ SFCErroranalyzationTable[3] ExprassionResult
@ name STRING(STRING_LENGTH_EXP)
@ address STRING(STRING_LENGTH_ADDRESS) =
=
-
Init T#0us
T#25450us
T#ls
Trans_sT
Step2 T#0us
T#ls
QEM
Init L4
K| Q | 100% B -

Figure 2:

TE1000

Version: 1.17.0

79

Function blocks

BECKHOFF

Prepared value Address Comment

[[

Py comment For b1
My comment For b2
Py commenk For b3
Py comment for b4

@ SFCErrorAnalyzation
= @ SFCErrorAnalyzationTable
= @ SFCErrorAnalyzationTable[0]

Expression Type
@ b0 BGOL
bt BOOL
@ b2 BOOL
@ b3 BOL
@ be BOOL
SFCEnablsLimit BOOL
@ SFCError BOOL

STRING

ARRAY [0, TABLE_UPPER_EOUND] OF ExpressionResult

ExpressionResult

!

% name STRING{STRING_LENGTH_EXP) b2’
@ address STRING{STRING_LENGTH_ADDRESS) "
4 comment STRING{STRING_LENGTH_COMMENT) My comment For bz'
& walue BOOL
& failed BOOL
= @ SFCErrorAnalyzationTable[1] ExpressionResul
@ name STRING{STRING_LENGTH_EXP) =3
@ address STRING{STRING_LENGTH_ADDRESS) "
% comment STRING{STRING_LENGTH_COMMENT) ' My comment for b3’ -
@ valu Bl
4 Failed BOOL
= @ SFCErrorAnalyzationTable[2] ExpressionResult
@ name STRING(STRING_LENGTH_EXF) "
@ address STRING(STRING_LENGTH_ADDRESS) "
@ comment STRING{STRING_LENGTH_COMMENT) "
& vaue BOOL
@ Failed BOOL FALSE
= @ SFCErrorAnalyzationTable[3] ExpressionResult
% name STRING{STRING_LENGTH_EXP)
$ address STRING(STRING_LENGTH_ADDRESS) S
=
Tnit T4#0ns
B0
T# 53640ns
Téls
Trans_ST
Step? T#0ns
T#ls
JEM
Init L4
kA o0 B~

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.5.3 AnalyzeExpressionCombined

—{InputExp
—DoAnalyze

AnalyzeExpressionCombined

ExpResult —
OutTable}—
Outstring —

The function block is needed in PLC projects that uses sfc flags.No instances are created. The
corresponding PC library has to be included in the project.

Prerequisites

Development Environment Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®)

Tc2_System (system)

3.5.4 AppendErrorString

AppendErrorString
—stx0ld ——
—|strNew

80 Version: 1.17.0

TE1000

BECKHOFF Function blocks

This function is required in PLC projects, which use the SFC flags. The function must not be called in the
project. Only the corresponding PLC library must be included to the project.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.5.5 SFCActionControl

SFCActionControl
— N Q—
—R0
—50
—iL
—D

—P

—5D
—Ds
—5L
—T

This function is required to use IEC steps in SFC programs / projects. Only the library with the FB must be
included to the project, but no instances are required.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

3.6 Watchdog function blocks

3.6.1 FB_PcWatchdog

d This functionality is only available on IPCs with the following mainboards: IP-4GVI63, CB1050,
1 CB2050, CB3050, CB1051, CB2051, CB3051.

FB_PcWatchdog
—tTimeout bEnabled -—
—bEnable bBusy —
bErrorp—
nErrId—

The function block FB_PcWatchdog activates a hardware watchdog on the PC. The watchdog is activated
via bEnable = TRUE and the timeout time. The timeout time can range between 1 and 255 seconds. The
watchdog is activated via bEnable = TRUE and tTimeOut >= 1 s.

Once the watchdog has been activated, the function block must be called cyclically at shorter intervals than
tTimeOut, since the PC restarts automatically when tTimeOut has elapsed. The watchdog can therefore be
used to automatically reboot systems, which have entered an infinite loop or where the PLC has become
stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = 0.

TE1000 Version: 1.17.0 81

Function blocks

BECKHOFF

PC reboot

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the PC would reboot immediately once the timeout has elapsed.

#l Inputs
VAR INPUT
tTimeOut : TIME;
bEnable : BOOL;
END VAR
Name Type Description
tTimeOut TIME Watchdog time, after which a restart is performed.
bEnable BOOL Enabling/disabling the watchdog.
& Qutputs
VAR OUTPUT
bEnabled : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END_VAR
Name Type Description
bEnabled BOOL TRUE = watchdog activated, FALSE = watchdog
deactivated
bBusy BOOL This output remains TRUE until the function block has
executed a command.
bError BOOL This output is switched to TRUE as soon as an error
occurs during the execution of a command. The command-
specific error code is contained in nErrld. Is reset to
FALSE by the execution of a command at the inputs.
nErrid UDINT ADS error code [>_148] or command-specific error code of
the last executed command. Is reset to 0 by the execution
of a command at the inputs.

Example of calling the function block in ST:

PROGRAM MAIN
VAR

fbPcWatchDog

tWDTime : TIME :=

bEnableWD : BOOL;

bWDActive : BOOL;
END VAR

IF bEnableWD OR bWDActive THEN

fbPcWatchDog (tTimeOut :

bWDActive
END IF

Requirements

: FB_PcWatchdog;

tWDTime, bEnable := bEnableWD) ;
:= fbPcWatchDog.bEnabled;

Development environment

Target platform PLC libraries to be integrated

(category group)

TwinCAT v3.1.0

IPCs with the following
mainboards: IP-4GV163, CB1050,
CB2050, CB3050, CB1051,
CB2051, CB3051

PLC Lib Tc2_System

82

Version: 1.17.0 TE1000

BEGKHOFF Function blocks

3.6.2 FB_PcWatchDog_BAPI

FB_PcWatchdog_BAPI
—shetID bEnabled I—
—nWatchdogTimes bBusy —
—bExecute bError—
—tTimeout nErrIDF—
o

This functionality is only available on IPCs and Embedded PCs with a BIOS version which supports
1 the BIOS-AP!I.

The function block FB_PcWatchdog_BAPI activates a hardware watchdog on the PC. The watchdog is
activated via bExecute = TRUE and the watchdog time. The watchdog time can range between 1 and
15300 seconds (255 minutes). The watchdog is activated via bEnable = TRUE and nWatchdogTimeS >=1 s.

Once the watchdog has been activated, the function block must be called cyclically at shorter intervals than
nWatchdogTimeS, since the PC restarts automatically when nWatchdogTimeS has elapsed. The watchdog
can therefore be used to automatically reboot systems, which have entered an infinite loop or where the PLC
has become stuck.

PC reboot

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the PC would reboot immediately once nWatchdogTimeS has elapsed.

#l Inputs
VAR INPUT
sNetID : T AmsNetID;
nWatchdogTimeS : UDINT;
bExecute : BOOL;
tTimeout : TIME;
END VAR
Name Type Description
sNetID T_AmsNetID AMS network ID of the device (empty string or local
network ID)
nWatchdogTimeS |UDINT Watchdog time in seconds, 0 = deactivated, >0 (max.
15300) = activated.
bExecute BOOL The command is executed with a rising edge. The input
must be reset as soon as the function block is no longer
active (bBusy=FALSE).
tTimeout TIME Indicates the time until the internal ADS communication is
terminated.
E- Qutputs
VAR OUTPUT
bEnabled : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END_ VAR

TE1000 Version: 1.17.0 83

Function blocks BEGKHOFF

Name Type Description

bEnabled BOOL TRUE = watchdog activated, FALSE = watchdog
deactivated

bBusy BOOL This output remains TRUE until the function block has
executed a command.

bError BOOL This output is switched to TRUE as soon as an error

occurs during the execution of a command. The command-
specific error code is contained in nErrld. Is reset to
FALSE by the execution of a command at the inputs.

nErrld UDINT ADS error code [»_148] or command-specific error code of
the last executed command. Is reset to 0 by the execution
of a command at the inputs.

Sample of calling the function block in ST:
PROGRAM MAIN

VAR
fbWatchdog : FB _PcWatchdog BAPI;
nWatchdogTimeS : UDINT := 10; (* 10s *)
bEnabled : BOOL; (* TRUE: watchdog is activated *)
bError : BOOL;
nErrID : UDINT;
fbTimer : TON := (IN := TRUE, PT := T#0S);
END VAR

fbTimer () ;

(* 1st enable, then refresh watchdog every 1ls *)
IF fbTimer.Q THEN

fbWatchdog (
sNetID ="',
nWatchdogTimeS := nWatchdogTimeS,
bExecute = TRUE,
tTimeout = T#5S,

)i

IF NOT fbWatchdog.bBusy THEN
bEnabled := fbWatchdog.bEnabled;

bError = fbWatchdog.bError;
nErrID = fbWatchdog.nErrID;
fbWatchdog (bExecute := FALSE) ;

(* restart timer*)

fbTimer (IN := FALSE) ;
fbTimer (IN := TRUE, PT := T#1S); (* refresh watchdog every s *)
END IF

END IF

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 IPCs and Embedded PCs with a PLC Lib Tc2_System-Version
BIOS version which supports the |>=3.4.14.0
BIOS-API.

3.7 Time function blocks

3.71 GETCPUACCOUNT

([
1 This functionality is not available on PLC runtime system under Windows CE.

84 Version: 1.17.0 TE1000

BEGKHOFF Function blocks

GETCPUACCOUNT
CpuAccountDW —

The PLC task cycle ticker can be read with this function block. The PLC task cycle ticker is only incremented
while the task is being executed. The numerical value is a 32 bit integer, which, independently of the CPU's
internal clock rate, is output in a form converted into 100 ns ticks. The number is refreshed to a precision of
100 ns every time the PLC task is called, and can be used, for instance, for timing purposes. One unit is
equivalent to 100 ns.

Inputs
VAR INPUT
(*none*)
END VAR

E- Qutputs

VAR _OUTPUT
cpuAccountDW : UDINT;
END VAR

Name Type Description
cpuAccountDW UDINT Current value of the PLC task ticker

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64) Tc2_System (System)

3.7.2 GETCPUCOUNTER

GETCPUCOUNTER

cpuCntLoDW f—
CpUCNtHIDW |—

The CPU cycle counter can be read with this function block. The numerical value is a relative 64 bit integer,
which, independently of the CPUs internal clock rate, is output in a form converted into 100 ns ticks. The
number is refreshed to a precision of 100 ns with every call by the PLC system, and can be used, for
instance, for timing tasks. One unit is equivalent to 100 ns. The reason for which this service is implemented
as a block and not as a function is simply in the fact that two values must be returned, which, by definition,
cannot be done by a function.

| Inputs
VAR _INPUT
(*none*)
END VAR

& Qutputs

VAR _OUTPUT
cpuCntLoDW : UDINT;
cpuCntHiDW : UDINT;

END VAR

Name Type Description

cpuCntLoDW UDINT Least significant 4 bytes of the count value
cpuCntHiDW UDINT Most significant 4 bytes of the count value

TE1000 Version: 1.17.0 85

Function blocks

BECKHOFF

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

86

Version: 1.17.0

TE1000

BEGKHOFF Functions

4 Functions

4.1 General functions

411 F_CheckMemoryArea

F_CheckMemoryArea
—{pData F_CheckMemory&reafp—
—nSize

The function returns information about the memory area in which the requested variable with the specified
size is located. A return value of type E TcMemoryArea [P_125] is used for this purpose.

FUNCTION F_CheckMemoryArea: E_TcMemoryArea

Inputs

VAR INPUT
pData : PVOID;
nSize : UDINT;
END VAR

Name Type Description
pData PVOID Memory address of the variable
nSize UDINT Size of the variable in bytes

Example

PROGRAM MAIN

VAR
nCounter : USINT;
eMemAreaStatic : E TcMemoryArea;
pDynamicVariable : POINTER TO LREAL;
eMemAreaDynamic : E_TcMemoryArea;

pNull : PVOID := 0;
eMemAreaUnknown : E TcMemoryArea;
END VAR
nCounter := nCounter + 1;
eMemAreaStatic := F CheckMemoryArea(pData:=ADR(nCounter), nSize:=SIZEOF (nCounter));

IF nCounter = 100 THEN

pDynamicVariable := NEW(LREAL);
IF pDynamicVariable <> 0 THEN
pDynamicVariable” := 7 * 4.5;
eMemAreaDynamic := F CheckMemoryArea (pData:=pDynamicVariable, nSize:=SIZEOF (LREAL));
__ DELETE (pDynamicVariable) ;
END IF
END IF
eMemAreaUnknown := F CheckMemoryArea(pData:=pNull, nSize:=1);
Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.4022 PC or CX (x86, x64, Arm®) Tc2_System (system)

TE1000 Version: 1.17.0 87

Functions BEGKHOFF

4.1.2 F_CmpLibVersion

F_CmpLibVersion
—stVersion F_CmplLibVersion —
—liMajor
—iMinor
—iBuild
—iRevision

The function F_CmpLibVersion compares the version of the existing library with the required version. Each
library has its own version information as a constant of type: ST_LibVersion. The name of the constant has
the format: stLibVersion_libraryname.

FUNCTION F_CmpLibVersion: DINT

Inputs
VAR _INPUT
stVersion : ST LibVersion;
iMajor : UINT;
iMinor : UINT;
iBuild : UINT;
iRevision : UINT;
END VAR
Name Type Description
stVersion ST _LibVersion Version of the existing library (type: ST_LibVersion)
iMajor UINT Required major number
iMinor UINT Required minor number
iBuild UINT Required build number
iRevision UINT Required revision number
Return parameter Version relationship
-1 Your version is lower than the required
version.
0 Your version is the required version.
+1 Your version is higher than then required
version.
Example in ST:
IF F CmpLibVersion(stLibVersion Tc2 System, 3, 3, 8, 0) >= 0 THEN
(* newer lib ...%*)
ELSE
(* older lib... *)
END IF

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

41.3 F_CreatelPv4Addr

F_CreateIPv4Addr
—nlds F_CreateIlPv4Addr—

The function generates a formatted (IPv4) Internet protocol network address and returns it as a return
parameter of type string (e.g. 172.16.7.199).

88 Version: 1.17.0 TE1000

BECKHOFF Functions

FUNCTION F_CreatelPv4Addr : T_IPv4Addr

% Inputs
VAR INPUT
nIds : T IPv4AddrArr;
END VAR
Name Type Description
nlds T_IPv4AddrArr Byte array: Each byte corresponds to one address byte of

the (IPv4) Internet Protocol network address. The address
bytes have the network byte order (type: T IPv4AddrArr

[»_129]).

Example in structured text:
PROGRAM MAIN
VAR

ids : T IPv4AddrArr := 172, 16, 7, 199;

sIPv4 : T IPv4Addr := '';
END_ VAR
sIPv4 := F CreateIPv4Addr(ids); (* Result: '172.16.7.199' *)
Prerequisites
Development Environment Target platform PLC libraries to be integrated

(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)
414 F_ScaniPv4Addrids
F_ScanIPv4AddrIds
—sIPv4 F_ScanIPv4Addrids —

The function F_ScanlPv4Addrlds converts a string with the (IPv4) Internet Protocol network address into
single address bytes. The single address bytes are converted from left to right. They are returned as an
array of bytes. The address bytes are represented in network byte order.

FUNCTION F_ScanlPv4Addrids: T_IPv4AddrArr

Inputs
VAR _INPUT

sIPv4 : T IPv4Addr;
END VAR
Name Type Description
sIPv4 T _IPv4AddrArr Internet Protocol network address as a string (type:

T IPv4Addr [»_128]). E.g. 172.16.7.199.

Input parameters Return parameter Description
sIPv4 # " (empty string) All bytes are null Error during the conversion, check
and sIPv4 #'0.0.0.0' the formatting of the sIPv4 string.

Example in structured text:

Internet Protocol (IPv4) network address string: '172.16.7.199' is converted to an array of address bytes.

PROGRAM MAIN
VAR
ids : T IPv4AddrArr;
sIPv4 : T IPv4Addr := '172.16.7.199';

TE1000 Version: 1.17.0 89

Functions BEGKHOFF
END VAR

ids := F ScanIPv4AddrIds(sIPv4); (* Result: ids[0]:=172, ids[1l]:=16, ids[2]:=7, ids[3]:=199 ¥*)
Prerequisites

Development Environment Target platform PLC libraries to be integrated

(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

41.5 F_GetCpuCorelndex
F_GetCpuCorelndex
—nTaskIndex F_GetCpuCarelndex —

For a task index the function F_GetCpuCorelndex returns the index of the CPU core on which the task runs.

If 0 is passed as task index, the CPU core index of the task in which the function is called is determined. If an
invalid task index is passed, the function returns the CPU core index -1.

The function returns the determined CPU core index as a return parameter. It corresponds to the value of the
Core column that is displayed in the Real-time sub-node below the SYSTEM node.

FUNCTION F_GetCpuCoreindex: DINT

% Inputs
VAR INPUT
nTaskIndex : DINT;
END VAR
Name Type Description
nTasklndex DINT Index of the task whose associated CPU index is to be
determined. If 0 is passed as task index, the CPU core
index of the task in which the function is called is
determined.
See also:
e GETCURTASKINDEX [» 20]
Development Environment Target platform PLC libraries to include

TwinCAT v3.1.4024.11

PC or CX (x86, x64, Arm®)

Tc2_System (system) >= 3.4.24.0

41.6 F_GetCpuCorelnfo

F_GetCpuCoreInfo
—inCpuiZorelnde:x F_zetCpuorelnfo
—pInfo

The function F_GetCpuCorelnfo returns information about the CPU core whose index is passed to the
function. The information that is read out includes the base time and the core limit for the specified CPU

core.

The CPU core index to be passed can be determined with the function F_GetCpuCorelndex [»_90].

The CPU core index corresponds to the value of the Core column that is displayed in the Real-time sub-
node below the SYSTEM node. The information that can be read via the CPU core via the function
F_GetCpuCorelnfo is also displayed in this view.

90

Version: 1.17.0

TE1000

BECKHOFF Functions

The function returns an error code as HRESULT (see also ADS Return Codes [»_148]). It indicates whether
the function call was successful. If an invalid CPU core index is passed, the function returns an error
(0x9811070B = invalid parameter values).

FUNCTION F_GetCpuCoreinfo: HRESULT

Inputs
VAR_INPUT

nCpuCoreIndex : DINT;

pInfo : POINTER TO ST CpuCorelInfo;
END VAR
Name Type Description
nCpuCorelndex |DINT Index of the CPU core whose information is to be read.
plnfo POINTER TO ST_CpuCorelnf |Address of the variable that is to receive the read data.

o] The address must point to an instance of type
ST CpuCorelnfo [P_126].

Development Environment Target platform PLC libraries to include
TwinCAT v3.1.4024.11 PC or CX (x86, x64, Arm®) Tc2_System (system) >= 3.4.24.0

4.1.7 F_GetMappingPartner

F_GetMappingPartner
—p F_GetMappingPartnerf—

The function F_GetMappingPartner returns the object ID (data type: OTCID) of the partner side of the
mapping.

FUNCTION F_GetMappingPartner: OTCID

Inputs
VAR _INPUT
p : PVOID;
n : UDINT;
END VAR
Name Type Description
P PVOID Memory address of the variable
n UDINT Size of the variable in bytes
Development Environment Target platform PLC libraries to include
TwinCAT v3.1.4020 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.1.8 F_GetMappingStatus

F_GetMappingStatus
—p F_GetMappingStatusfF—

The function F_GetMappingStatus returns the current mapping status of a PLC variable. The function returns

an ENUM value (data type: EPIcMappingStatus [P_125]) with the values MS_Unmapped, MS_Mapped or
MS_Partial.

TE1000 Version: 1.17.0 91

Functions BEGKHOFF

FUNCTION F_GetMappingStatus: EPIcMappingStatus

% Inputs
VAR INPUT
p : PVOID;
n : UDINT;
END VAR
Name Type Description
P PVOID Memory address of the variable
n UDINT Size of the variable in bytes
Development Environment Target platform PLC libraries to include
TwinCAT v3.1.4020 PC or CX (x86, x64, Arm®) Tc2_System (system)

41.9 F_GetStructMemberAlignment

F_GetStructMemberAlignment
F_GetStructMemberAlignment f—

The function returns information about used data struct member alignment setting. The alignment is affecting
the way data structure elements are arranged in computer memory.

FUNCTION F_GetStructMemberAlignment : BYTE

Inputs
VAR INPUT
(* keine Eingangsparameter *)
END_VAR
Return parameter Description
1 1 byte alignment (e.g. TwinCAT v2.11, x86 target
platform)
2 2 byte alignment
4 4 byte alignment (e.g. TwWinCAT v2.11, Arm® target
platform)
8 8 byte alignment

The following samples show the arrangement of the data structure elements in the memory, depending on
the memory alignment employed.

?? := padding byte

Example 1

TYPE STiTESTl
STRUCT
ui8 : BYTE := 16#FF; (* FF *)
f64 : LREAL := 1234.5678; (* AD FA 5C 6D 45 4A 93 40 ¥*)
END_ STRUCT
END_ TYPE

testl : ST _TESTI1;

92 Version: 1.17.0 TE1000

BECKHOFF Functions

Alignment SIZEOF(test1) Memory contents
1 byte 9 FF AD FA 5C 6D 45 4A 93 40
2 byte 10 FF ?? AD FA 5C 6D 45 4A 93 40
4 byte 12 FF ?? ?? ?? AD FA 5C 6D 45 4A
93 40
8 byte 16 FF 2?2?2722 72?7?77 7?? AD FA5C
6D 45 4A 93 40
Example 2

Converting the order of the structure elements changes the arrangement of the padding bytes. These are
now added at the end.

TYPE ST TEST2

STRUCT
f64 : LREAL := 1234.5678; (* AD FA 5C 6D 45 4A 93 40 *)
ui8 : BYTE := 16#FF; (* FF *)

END_ STRUCT

END_TYPE

test2 : ST TEST2;

Alignment SIZEOF(test2) Memory contents
1 byte 9 AD FA 5C 6D 45 4A 93 40 FF
2 byte 10 AD FA 5C 6D 45 4A 93 40 FF ?7?
4 byte 12 AD FA 5C 6D 45 4A 93 40
FF ??2 2?2 ??
8 byte 16 AD FA 5C 6D 45 4A 93 40
FF 2222722222222 72?77

Example 3

In the case of 2, 4 and 8 byte alignment, the elements ui32 and f64 are already suitably aligned, so that no
padding bytes need to be added.

TYPE STiTEST3
STRUCT
ui8 : BYTE
uil6 : WORD
ui32 : DWORD :
fo4d : LREAL
END_ STRUCT
END TYPE

16#FF; (* FF *)

16#1234; (* 34 12 ¥*)
16#AABBCCDD; (* DD CC BB AA *)
1234.5678; (* AD FA 5C 6D 45 4A 93 40 *)

test3 : ST TEST3;

Alignment SIZEOF(test3) Memory contents
1 byte 15 FF 34 12 DD CC BB AAAD FA 5C
6D 45 4A 93 40
2 byte 16 FF ?? 34 12 DD CC BB AA AD FA
5C 6D 45 4A 93 40
4 byte 16 FF ?? 34 12 DD CC BB AA AD FA
5C 6D 45 4A 93 40
8 byte 16 FF ?? 34 12 DD CC BB AA AD FA
5C 6D 454A 93 40
Example 4
TYPE ST Al
STRUCT
uis : BYTE := 16#FF; (* FF *)
ui32 : DWORD := 16#AABBCCDD; (* DD CC BB AA *)
rsv : BYTE := 16#EE; (* EE *)
END_STRUCT
END TYPE
TYPE ST A2
STRUCT

TE1000 Version: 1.17.0 93

Functions

BECKHOFF

uilé : WORD
ui8 : BYTE
END_STRUCT
END TYPE

TYPE ST TEST4

1e#1234; (* 34 12 *)
16#55; (* 55 *)

STRUCT
al : ST Al;
a2 : ST A2;
END_ STRUCT
END TYPE
test4 : ST TEST4;
Alignment SIZEOF(test4) |SIZEOF(test4.a1|a1/a2 padding |SIZEOF(test4.a2| Memory con-
) bytes) tents
1 byte 9 6 - 3 FF DD CC BB
AA EE 34 12 55
2 byte 12 8 - 4 FF ?? DD CC BB
AA EE ?? 34 12
55 77?
4 byte 16 12 - 4 FF ?? ?? ?? DD
CC BB AA
EE ?? ?? 7?7 34
1255 7?7?
8 byte 16 12 - 4 FF ?????? DD
CC BB AA
EE 7?7?77 34
125577
Example 5
TYPE ST D1
STRUCT
uil6 : WORD := 16#1234; (* 34 12 *)
ui8 : BYTE := 16#55; (* 55 *)
END STRUCT
END TYPE
TYPE ST D2
STRUCT
ui8 : BYTE := 16#FF; (* FF *)
£64 : LREAL := 1234.5678; (* AD FA 5C 6D 45 4A 93 40 *)
rsv : BYTE := 16#EE; (* EE *)
END_STRUCT
END TYPE
TYPE ST_TEST5
STRUCT
dl : ST D1;
d2 : ST D2;
END_STRUCT
END_TYPE
test5 : ST_TESTS;
94 Version: 1.17.0 TE1000

BECKHOFF

Functions

Alignment |SIZEOF(test5)

SIZEOF(test5.d1) d1/d2 padding

bytes

SIZEOF(test5.d | Memory con-
2) tents

1 byte 13

3 -

10 34 12 55 FF AD
FA 5C 6D 45 4A
9340 EE

2 byte 16

12 34125577

FF ?? AD FA5C
6D 45 4A 93 40
EE ??

4 byte 20

16 34125577
FF ?? ?? ?? AD
FA 5C 6D 45 4A

93 40
EE 7?7?77 77

8 byte 32

24 3412

55?7?27 ?° 7?77
?
FE?2?2?27°??7??7
???7??AD FA
5C 6D 45 4A 93
40

EE ?? 2?72?77
7?7?77

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

41.10

F_GetTaskinfo

F_GetTaskInfo

F_GetTaskInfo —

The function determines the Task System Info of the task in which it is called.

FUNCTION F_GetTaskinfo : PlcTaskSysteminfo

Inputs
VAR _INPUT

(*keine*)
END_ VAR

Return parameter

Description

PlcTaskSystemInfo

Task System Info of the task in which the function is called.

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.4026

PC or CX (x86, x64, Arm®)

Tc2_System (system) >= 3.9.1.0

Also see about this

GETCURTASKINDEX [20]

TE1000

Version: 1.17.0

95

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/714821259.html?id=7349667482175727446

Functions BEGKHOFF

41.11 F_RaiseException

Calling the function makes it possible to throw a runtime exception with a specific exception code.

d If you use the F_RaiseException() function outside a __ TRY block, the exception is caught by
1 TwinCAT Exception Handling and the execution of the control is stopped.

@® Basicinformation on __TRY, __ CATCH, _ FINALLY, __ ENDTRY

1 See the documentation on TRY, CATCH, FINALLY, ENDTRY to gain a basic understanding of
exception handling.

FUNCTION F_RaiseException

Inputs

VAR INPUT
ExceptionCode : UDINT;
END VAR

Name Type Description
ExceptionCode |UDINT Specification of the ExceptionCode. See
SYSTEM.ExceptionCode

Example

PROGRAM MAIN
VAR
nCounterl : INT;
nCounter?2 ¢ INT;
nCounter TRY1 : INT;
nCounter TRYZ2 : INT;
nCounter CATCH : INT;
abData : ARRAY[1..cMax] OF INT;
nIndex : UINT;

exc : _ SYSTEM.ExceptionCode;
lastExc : SYSTEM.ExceptionCode;
END VAR
VAR CONSTANT
cMax : UINT := 10;
END VAR

// Counter 1
nCounterl := nCounterl + 1;

nIndex := nIndex + 1;

// TRY-CATCH block
__TRY
nCounter TRY1l := nCounter TRY1l + 1;
IF nIndex > cMax THEN
F RaiseException(__ SYSTEM.ExceptionCode.RTSEXCPT ARRAYBOUNDS) ;

END IF
nCounter TRY2 := nCounter TRY2 + 1;
__ CATCH (exc)
nCounter CATCH := nCounter CATCH + 1;

// Exception logging
lastExc := exc;

// Correct the faulty variable values

IF (exc = SYSTEM.ExceptionCode.RTSEXCPT ARRAYBOUNDS) AND (nIndex > cMax) THEN
nIndex := cMax;
END IF
__ENDTRY
aData[nIndex] := 123;

96 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529187211.html?id=8164276621849278358
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/6753940235.html?id=4834837644666911098

BECKHOFF

Functions

// Counter 2
nCounter2 := nCounter2 + 1;

Example with user-specific ExceptionCode

User-specific Exception Codes should be OR-ed with RTSEXCPT_VENDOR_EXCEPTION_BASE before

use.
PROGRAM MAIN
VAR
nCounterl : INT;
nCounter?2 : INT;
nCounter TRY1 : INT;
nCounter TRY2 : INT;
nCounter CATCH : INT;
aData : ARRAY[1..cMax] OF INT;
nIndex : UINT;
exc : SYSTEM.ExceptionCode;
lastExc : _ SYSTEM.ExceptionCode;
END VAR
VAR CONSTANT
cMyOwnExceptionCode : UDINT := 123;
cMax : UINT := 10;
END VAR
// Counter 1
nCounterl := nCounterl + 1;
nIndex := nIndex + 1;

// TRY-CATCH block

__TRY
nCounter TRY1l := nCounter TRY1l + 1;
IF nIndex > cMax THEN

F RaiseException(_SYSTEM.ExceptionCode.RTSEXCPT VENDOR EXCEPTION BASE OR

cMyOwnExceptionCode) ;

END IF

nCounter TRY2 := nCounter TRY2 + 1;
__ CATCH (exc)

nCounter CATCH := nCounter CATCH + 1;

// Exception logging
lastExc := exc;

// Correct the faulty variable values

IF (exc = _ SYSTEM.ExceptionCode.RTSEXCPT VENDOR EXCEPTION BASE OR
cMyOwnExceptionCode) AND (nIndex > cMax) THEN
nIndex := cMax;
END IF
__ ENDTRY
aData[nIndex] := 123;

// Counter 2
nCounter2 := nCounter2 + 1;

Development Environment Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.4026.15

PC or CX (x86, x64, Arm®)

Tc2_System (system) >= 3.8.1.0

4112 F_SplitPathName

F_SplitPathName

—sPathName
—sDrive
—sDir
—sFileName
—sExt

F_SplitPathNamef—

TE1000 Version: 1.17.0

97

Functions

BECKHOFF

This function splits a complete path name into its four components. These are stored in the strings named

sDrive, sDir, sFileName and sExt.

FUNCTION F_SplitPathName : BOOL

% Inputs
VAR INPUT
sPathName : T MaxString;
END VAR
Name Type Description
sPathName T_MaxString Complete file name as string (type: T_MaxString [»_129])

in the form: "X:\DIR\SUBDIR\FILENAME.EXT".

#//E- Inputs/outputs

VAR_IN_OUT
sDrive : STRING (3);
sDir : T_MaxString;
sFileName : T MaxString;
sExt : T _MaxString;
END VAR
Name Type Description
sDrive STRING Drive ID (type: T_MaxString [»_129]) with a colon ('C:', 'A:'
etc.)
sDir T_MaxString Directory name (type: T_MaxString [»_129]) including the
leading and trailing backslash (\BC \INCLUDEY',
"SOURCEY\ etc.)
sFileName T_MaxString File name (type: T_MaxString [»_129])
sExt T_MaxString Contains the dot and the file extension (type: T_MaxString
[»_129]) (example: ".C', ".EXE' etc.).
Return parameter Description
TRUE No error
FALSE Error. Check the function parameters.

Sample of a call in ST:

The pathname: C:\TwinCAT\PIc\ProjectO1\Data.txt is split into the following individual components:

sDrive: ='C:'

sDir: \TwinCAT\PIc\Project01\'
sFileName: 'Data’

sExt: ".txt'

PROGRAM MAIN
VAR

bSplit : BOOL;
sPathName : T MaxString := 'C:\TwinCAT\Plc\ProjectOl\Data.txt';
sDrive : STRING(3);
sDir : T_MaxString;
sFileName : T MaxString;
sExt : T _MaxString;
bSuccess : BOOL;
END VAR
IF bSplit THEN
bSplit := FALSE;
bSuccess := F SplitPathName(sPathName := sPathName,
sDrive := sDrive,
sDir := sDir,
sFileName := sFileName,
sExt := sExt);
END IF

98

Version: 1.17.0

TE1000

BECKHOFF Functions

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

41.13 SETBIT32

SETBIT32
—inVal32 SETBIT32 |—
—bitNo

The function sets the bit specified by a bit number in the 32 bit value that is passed to it and returns the
resulting value.

FUNCTION SETBIT32 : DWORD

| Inputs
VAR _INPUT
inval32 : DWORD;
bitNo : SINT;
END VAR
Name Type Description
inVal32 DWORD 32-bit value to be changed.
bitNo SINT Number of the bit that is to be set (0-31). This number is
internally converted to a modulo 32 value prior to
execution.

Sample of calling the function in FBD:

SETBIT32
16#0-inYal32 ——aSetBitResultYar=16£80000000
31 bitNo

Here bit 31 is set in the input value 0. The result is the (hex) value "80000000".

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

41.14 CSETBIT32

CSETBIT32
—inVal32 CSETBIT32 —
— bitho
—bitVal

The function sets/resets the bit specified by a bit number in the 32 bit value that is passed to it and returns
the resulting value.

TE1000 Version: 1.17.0 99

Functions

BECKHOFF

FUNCTION CSETBIT32 : DWORD

% Inputs
VAR INPUT
invVal32 : DWORD;
bitNo : SINT;
bitval : BOOL;
END VAR
Name Type Description
inVal32 DWORD 32-bit value
bitNo SINT Number of the bit to be set or reset (0-31). This number is
internally converted to a modulo 32 value prior to
execution.
bitVal BOOL Value to which the bit is to be set or reset (TRUE = 1,
FALSE = 0).

Sample of calling the function in FBD:

CSETBIT32
16430000000 —inVal3z
15 —jbitHNo
TRUE ===bitWVal

CSetBitResultVal [1&6$80008000

Here bit 15 in the input value "16#80000000" is set to 1. The result (16#80008000) is assigned to the

variable CSetBitResultVal.

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

41.15 GETBIT32

GETBIT32

—inval32 GETBIT32

—bitNo

The function returns the status of the bit specified by a bit number in the 32 bit value that is passed to it as a
boolean resulting value. The input value is not altered.

FUNCTION GETBIT32 : BOOL

Inputs
VAR INPUT
inval32 : DWORD;
bitNo : SINT;
END_ VAR
Name Type Description
inVal32 DWORD 32-bit value
bitNo SINT Number of the bit to be read (0-31). This number is

internally converted to a modulo 32 value prior to
execution.

Sample of calling the function in FBD:

100

Version: 1.17.0 TE1000

BECKHOFF Functions

GETBIT32
16#04 —)inVal3z
2 —bitNo

aGetBitResultVar

Here bit 2 in the input value "16#04" is queried and assigned to the boolean variable aGetBitResultVar. The
query returns TRUE in this example.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.1.16 CLEARBIT32

CLEARBIT32
—inVal32 CLEARBIT32 —
— bitho

The function resets the bit specified by a bit number in the 32 bit value that is passed to it to zero and returns
the resulting value.

FUNCTION CLEARBIT32 : DWORD

% Inputs
VAR INPUT
invVal32 : DWORD;
bitNo : SINT;
END_VAR
Name Type Description
inVal32 DWORD 32-bit value to be changed.
bitNo SINT Number of the bit that is to be set (0-31). This number is
internally converted to a modulo 32 value prior to
execution.

Sample of calling the function in FBD:

CLEARBIT32
16#C0000000 —inVal3z
31 —jbitHo

aClearBitResultVar [1&6$40000000

Here bit 31 in the input value "C0000000" is reset. The result is the (hex) value "40000000".

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.1.17 GETCURTASKINDEXEX

GETCURTASKINDEXEX
GETCURTASKINDEXEX —

The function determines the task index of the task in which it is called. In contrast to the function block

GETCURTASKINDEX [P 20], a distinction can be made as to whether the function is called in a cyclic real-time
context or not.

TE1000 Version: 1.17.0 101

Functions BEGKHOFF

FUNCTION GETCURTASKINDEXEX : DINT

% Inputs
VAR INPUT
(*keine*)

END_ VAR

Return parameter Description

-1 The function is called from the Windows context.

0 The function is called from the real-time context, but not from a cyclic PLC
task. This is the case, for example, with the automatic call of FB_init
methods during initialization.

1ton The function is called from a cyclic PLC task. The return value is the task
index.

Prerequisites

Development Environment Target platform PLC libraries to be integrated

(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

41.18 LPTSIGNAL

LPTSIGNAL
—{Partaddr LPTSIGNALF—
—PinNo
—OnOff

This function sets a defined output bit in a Centronics interface to a logical high or low level, and can, for
example, be used for run-time measurements with an oscilloscope.

FUNCTION LPTSIGNAL: BOOL

Inputs
VAR _INPUT

PortAddr : UINT;

PinNo : INT;

OnOff : BOOL;
END VAR
Name Type Description
PortAddr UINT Address of the port which is available for the desired LPT

interface.
PinNo INT Number of the pin (pin 0 .. 7) to be written by the PLC.
OnOff BOOL State to be written to the pin.
Sample of calling the function in FBD:
LPTSIGHAL

uiPortiddr=16#0378qPortiddr houat

usiPinNo=16#07-Finllo
hPFinon—-on0LfL

In the example, bit 7 of port 378 (hex) is set to 1.

102 Version: 1.17.0 TE1000

BEGKHOFF Functions

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.1.19 TestAndSet

TestAndSet
—Flag TestAndSet—

You can use this function to check and set a flag. There is no option to interrupt the process. This allows
data accesses to be synchronized. The mode of operation of a semaphore can be achieved with
TestAndSet.

If the function call is successful, the function returns TRUE and the desired data can be accessed. If the
function call is unsuccessful, the function returns FALSE and the desired data cannot be accessed. In this
case, an alternative treatment must be provided for.

#/E- Inputs/outputs

VAR _IN OUT
Flag : BOOL; (* Flag to check if TRUE or FALSE *)
END VAR
Name Type Description
Flag BOOL Boolean flag to be checked
« if it was FALSE, the flag was free and is set (and
therefore blocked from now on), and the function
returns TRUE
« if it was TRUE, the flag was already assigned (and
therefore blocked), and the function returns FALSE
Sample
VAR GLOBAL
bGlobalTestFlag : BOOL;
END VAR
VAR
nLocalBlockedCounter : DINT;
END VAR

IF TestAndSet (GVL.bGlobalTestFlag) THEN
(* bGlobalTestFlag was FALSE, nobody was blocking, NOW
bGlobalTestFlag is set to TRUE and blocking others *)

(* ooo *)

(* remove blocking by resetting the flag *)

GVL.bGlobalTestFlag := FALSE;
ELSE
(* bGlobalTestFlag was TRUE, somebody is blocking *)
nLocalBlockedCounter := nLocalBlockedCounter + 1;
(* ... *)
END IF

NEGATIVE sample

Caution is advised with a further encapsulation, e.g. in a function block, as this can destroy the desired
atomic operation. Secure synchronization of data accesses can then no longer take place. In the following, a
NEGATIVE sample is included that shows how the function may NOT be used. If two contexts were to
request access at the same time in this implementation, both might assume that the access is allowed and
simultaneous, unsecured accessing of the data would take place.

TE1000 Version: 1.17.0 103

Functions BEGKHOFF

FUNCTION BLOCK FB MyGlobalLock
VAR _INPUT
bLock : BOOL; // set TRUE to lock & set FALSE to unlock
END VAR
VAR OUTPUT
bLocked : BOOL;
END VAR

IF bLock THEN
TestAndSet (bLocked) ;
ELSE // unlock

blLocked := FALSE;
END IF
IF NOT GVL.fbGlobalLock.bLocked THEN
GVL. fbGloballock (bLock := TRUE) ;
(* ... *)
GVL. fbGloballLock (bLock := FALSE) ;
END IF
([

The function block FB lecCriticalSection [P_14] offers the application of critical sections as an
1 alternative Mutex method.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.2 ADS functions

421 ADSLOGDINT

ADSLOGDINT
— msgCtriMask ADSLOGDINT —
—{msgFmtstr
—dintArg

When called, the function outputs a message box with a predefinable text to the screen and writes an entry
to the system's event log. As PLC programs are processed cyclically, it is necessary for items such as
message boxes to be output edge-triggered. This is most easily achieved with an R_TRIG or F_TRIG
function block placed in series (see also samples below).

Using the ADSLOGDINT function, a DINT value (4-byte signed integer) can be inserted in the text to be
output at a point specified by the user. For this purpose, the created format string must contain the string %d
at the desired position. The return parameter contains the function error code, or 0 if successful.

FUNCTION ADSLOGDINT : DINT

Inputs

VAR INPUT
msgCtrlMask : DWORD;
msgFmtStr : T _MaxString;
dintArg : DINT;

END VAR

104 Version: 1.17.0 TE1000

BEGKHOFF Functions

Name Type Description
msgCtriMask DWORD Control mask which determines the type and effect of the message
output (see separate table).
msgFmtStr T _MaxString Contains the message to be output. It can contain the formatting
[129] character %d for the output of a DINT value at any position.

Information: The length of the message is limited to 253 bytes
(corresponds to 253 characters for strings in standard format).

dintArg DINT Contains the numerical value to be inserted into the message.
Constant Description
ADSLOG_MSGTYPE_HINT Message type is hint.
ADSLOG_MSGTYPE_WARN Message type is warning.
ADSLOG_MSGTYPE_ERROR Message type is error.
ADSLOG_MSGTYPE_LOG Message is written into the log.
ADSLOG_MSGTYPE_MSGBOX Message is output in a message box.

Information: This functionality is not available for Windows CE.
ADSLOG_MSGTYPE_STRING Message is a directly given string (default).

The control masks can be ORed in the desired combination.

Example of calling the function in FBD:

rtMessagelutput

R_TRIG
bFeedTocHigh [EEREI=—{CLK Q peCm= 1cMe 33278

OR ADSLOGDINT

ADSLOG_MSGTYPE_HINT [1eg0c0ocool} - [1egooooooz) msgCtrlMask —— udildsLogRes
LD3LOG_MSGTYPE MSGBOX [1eg0o0ooozd '"ELC Msg:Feed too high! Current feed: $d' —msgFmt3tr
4711 —(dintaArg

The resulting message box:

TwinCAT PlcTazk Server @

|0I PLC Msg:Feed too high! Current feed: 4711

A

The DINT value 4711 is inserted here into a message. The insertion point is marked by the %d characters in
the format string.

Example of calling the function in ST:

PROGRAM MAIN

VAR
rtMessageOutput: R TRIG; (* Declaration ¥*)
bFeedTooHigh: BOOL;
udiAdsLogRes: UDINT;

END VAR
rtMessageOutput (CLK := bFeedTooHigh) ;
IF rtMessageOutput.Q THEN
UdiAdsLogRes := ADSLOGDINT (msgCtrlMask := ADSLOG_MSGTYPE_HINT OR ADSLOG_MSGTYPE MSGBOX,
msgFmtStr := 'PLC Msg: Feed too high! Current feed: %d', dintArg:= 4711);
END IF

TE1000 Version: 1.17.0 105

Functions

BECKHOFF

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.2.2 ADSLOGLREAL

ADSLOGLREAL
— msgCtriMask

—{msgFmtStr

—lrealArg

ADSLOGLREAL —

When called, the function outputs a message box with a predefinable text to the screen and writes an entry
to the system's event log. An LREAL value (floating-point number) can be incorporated into the text to be
output at a position specified by the user. For this purpose, the created format string must contain the string
'%f'" at the desired position. Please keep in mind that the function must be called edge-triggered (see also

note in description ADSLOGDINT [P_104]). The return parameter contains the function error code, or 0 if

successful.

FUNCTION ADSLOGLREAL : DINT

Inputs
VAR INPUT
msgCtrlMask : DWORD;
msgFmtStr : T MaxString;
lrealArg : LREAL;
END VAR
Name Type Description
msgCtriMask DWORD Control mask which determines the type and effect of the
message output (see separate table).
msgFmtStr T MaxString [» 129] Contains the message to be output. It can contain the
formatting code %f for the output of a LREAL value at any
position.
Information: The length of the message is limited to 253
bytes (corresponds to 253 characters for strings in
standard format).
IrealArg LREAL Contains the numerical value to be inserted into the
message.
Constant Description

ADSLOG_MSGTYPE_HINT

Message type is hint.

ADSLOG_MSGTYPE_WARN

Message type is warning.

ADSLOG_MSGTYPE_ERROR

Message type is error.

ADSLOG_MSGTYPE_LOG

Message is written into the log.

ADSLOG_MSGTYPE_MSGBOX

Message is output in a message box.
Information: This functionality is not available for Windows CE.

ADSLOG_MSGTYPE_STRING

Message is a directly given string (default).

The control masks can be ORed in the desired combination.

Example of calling the function in FBD:

ADSLOGLEEAL
ADSLOG_MSGTYPE MSGBOX —magCtrlMask —— udildsLcgRes
'"PLC Msg:Feed teoo high! Current feed: %f' —msgFmtStr
137.203045 —{lrealkrg
The resulting message box:
106 Version: 1.17.0 TE1000

BECKHOFF

Functions

I:o:l PLC Msg:Feed too high! Current feed: 187.203045

b

TwinCAT PlcTask Server Iﬁ

Here the LREAL value 187.203045 is inserted into a message. The insertion point is marked by the %f
characters in the format string. The number is truncated after the sixth decimal point during output.

Example of calling the function in ST:

PROGRAM MAIN

VAR
rtMessageOutput: R TRIG; (* Declaration ¥*)
bTemperatureTooHigh: BOOL;
udiAdsLogRes: UDINT;

END VAR
rtMessageOutput (CLK := bTemperatureTooHigh) ;
IF rtMessageOutput.Q THEN

udiAdsLogRes := ADSLOGLREAL(msgCtrlMask := ADSLOG_MSGTYPE_ HINT OR ADSLOG_MSGTYPE MSGBOX, msgFmt
Str := 'PLC Msg.: Max Temp. reached ! Temperature: %f', lrealArg := 187.203045);

END IF;

Prerequisites

Development Environment Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, Arm®)

Tc2_System (system)

Also see about this
ADSLOGDINT [104]

423 ADSLOGSTR

ADSLOGSTR

— msgCtriMask ADSLOGSTR (—
—{msgFmtsStr

—strArg

When called, the function outputs a message box with a predefinable text to the screen and writes an entry
to the system's event log. A STRING can be inserted into the text to be output at a position specified by the
user. For this purpose, the created format string must contain the string %s at the desired position. Please
keep in mind that the function must be called edge-triggered (see also note in description ADSLOGDINT

[»_104]). The return parameter contains the function error code, or 0 if successful.

FUNCTION ADSLOGSTR : DINT

Inputs

VAR INPUT
msgCtrlMask : DWORD;
msgFmtStr : T MaxString;
strArg : T MaxString;

END VAR

TE1000 Version: 1.17.0

107

Functions BEGKHOFF

Name Type Description

msgCtriMask DWORD Control mask which determines the type and effect of the
message output (see separate table).

msgFmtStr T MaxString [» 129] Contains the message to be output. It can contain the

formatting character %s for the output of a text argument
at any position.

Information: The length of the message is limited to 253
bytes (corresponds to 253 characters for strings in
standard format).

strArg T MaxString [» 129] Contains the string which is to be inserted into the
message.
Constant Description
ADSLOG_MSGTYPE_HINT Message type is hint.
ADSLOG_MSGTYPE_WARN Message type is warning.
ADSLOG_MSGTYPE_ERROR Message type is error.
ADSLOG_MSGTYPE_LOG Message is written into the log.
ADSLOG_MSGTYPE_MSGBOX Message is output in a message box.
Information: This functionality is not available for Windows CE.
ADSLOG_MSGTYPE_STRING Message is a directly given string (default).

The control masks can be ORed in the desired combination.

Example of calling the function in FBD:

rtMessageiutputc

E_TRIG NOT
bLSFCError—{CLE] oMessage

OR ADSLOGATR
ADSLOG M3GTYPE_ERROR=4— =gl 1Mask ucliAd
AD3LOG_M3IGTYPE M3IGBOX=3Z- 'PLC M=g.: Guarding time executed in 3FC step: %¥s' —msgFmtStr
str3FCError3tep='HMachineCallihration' qstrirg

NoMessage:

o™

The resulting message box:

i TennCAT PLC Server

Q FLC M2g.: Guarding time executed in SFC step: MachineCallibration

With this, the PLC programmer inserts the string stored in the variable strSFCErrorStep into the message.
The insertion point is marked by the %s characters in the format string.

Example of calling the function in ST:

PROGRAM MAIN

VAR
strSFCErrorStep : STRING; (* Declaration*)
rtMessageOutput: R _TRIG;
bSFCError: BOOL;

END VAR

rtMessageOutput (CLK := bSFCError) ;
IF rtMessageOutput.Q THEN

108 Version: 1.17.0 TE1000

BECKHOFF Functions

udiAdsLogRes := ADSLOGSTR(msgCtrlMask := ADSLOG MSGTYPE ERROR OR ADSLOG MSGTYPE MSGBOX, msgFmtsS
tr := 'PLC Msg.: Guarding time executed in SFC step: %$s', strArg := strSFCErrorStep);
END IF;

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

Also see about this
ADSLOGDINT [104]

4.2.4 F_CreateAmsNetld

F_CreateAmsNetId
—nlds F_CreateAmsNetId —

The function generates a formatted NetID string (type: T_AmsNetID [P _127]) and returns it as return
parameter (e.g. '127.16.17.3.1.1").

FUNCTION F_CreateAmsNetld : T_AmsNetid

% Inputs
VAR INPUT
nIds : T AmsNetIdArr;
END_ VAR
Name Type Description
nids T_AmsNetldArr Byte array (type: T_AmsNetldArr [»_1271]). Each byte

corresponds to a number of the network address. The
address bytes have a network byte order.

Example of a call in ST:

PROGRAM MAIN

VAR
ids : T _AmsNetIdArr := 127, 16, 17, 3, 1, 1;
sNetID : T AmsNetID := '';
END VAR
sNetID := F CreateAmsNetId(ids); (* Result: '127.16.17.3.1.1"' *)

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.2.5 F_ScanAmsNetlds

F_ScanAmsNetIds
—=NetID F_ScanAmshetIds—

The function F_ScanAmsNetlds can be used to convert a string containing the TwinCAT network address to
individual address bytes. The individual address bytes are converted from left to right and returned as an

array of bytes (type: T_AmsNetIdArr [»_127]). The address bytes have a network byte order.

TE1000 Version: 1.17.0 109

Functions

BECKHOFF

FUNCTION F_ScanAmsNetlds : T_AmsNetldArr

% Inputs
VAR INPUT
sNetID : T AmsNetID;
END_VAR
Name Type Description
sNetlD T_AmsNetlD TwinCAT network address as string (type: T_AmsNetld

[»127]). E.g.'127.16.17.3.1.1'

Input parameters

Return parameter

Description

sNetID # " (empty string)
and sNetID # '0.0.0.0.0.0'

All bytes are null

Error during the conversion, check
the formatting of the sNetlD string.

Example of a call in ST:

In the following example, a string with the network address '127.16.17.3.1.1" is converted to an array of

address bytes.
PROGRAM MAIN

VAR

ids : T AmsNetIDArr;

sNetID : T AmsNetID := '127.16.17.3.1.1";
END_VAR
ids := F ScanAmsNetIds(sNetID);

(* Result: ids[0]:=127, ids[1]:=16, ids[2]:=17, ids[3]

Prerequisites

:=3, 1ids[4]

:=1, ids[5]:=1 *)

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

4.3 Character functions

4.3.1 F_ToCHR

F_ToCHR

F_ToCHR|—

The function converts ASCIl Code to STRING.

FUNCTION F_ToCHR: STRING

Inputs
VAR INPUT
c : BYTE;
END_VAR
Name Type Description
c BYTE ASCII code to be converted

Sample of calling the function in FBD:

110

Version: 1.17.0

TE1000

BECKHOFF

Functions

PROGRAM P TEST

VAR
sCharacter : STRING(1l) := '';
cAsciiCode : BYTE := 16#31;
END VAR

F_ToCHR
chsciiCode c cCharacter

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

4.3.2 F_ToASC

F_ToASC

F_ToASC—

This function converts STRING to ASCII Code. Only the first sign of the STRING will be converted. An empty

STRING delivers a zero.

FUNCTION F_ToASC : BYTE

! Inputs
VAR _INPUT
str : STRING;
END VAR
Name Type Description
str STRING String to convert

Sample of calling the function in FBD:

PROGRAM P _TEST

VAR
sCharacter : STRING(1l) := '1';
cAsciiCode : BYTE := 0;

END_ VAR

F_ToASC
cCharacter Str chsciiCode

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

4.4

I/O port access

441 F_IOPortRead
F_IOPortRead
—nAddr F_IOPortRead —
—esize
TE1000 Version: 1.17.0 111

Functions BEGKHOFF

A digital I/O port is usually an I/O position with a width of 1 byte, which is mapped either in the memory or as
a port. If a value is written at this point, the electrical signal at the output pins is modified according to the
written bits. If a value is read from the input position, the current logical level at the input pins is returned as
an individual bit value.

The function F_IOPortRead can be used to read an I/O position with a width of eSize. The function returns
the read value as return parameter. See also description of the F_10PortWrite [»_112] function.

FUNCTION F_IOPortRead : DWORD

Inputs

VAR INPUT
nAddr : UDINT;
eSize : E_TOAccessSize;

END VAR

Name Type Description

nAddr UDINT I/O port address

eSize E_IOAccessSize Number of data bytes to be read (type: E_|OAccessSize
»_123])

Prerequisites

Development Environment Target platform PLC libraries to be integrated

(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

442 F_lIOPortWrite

F_IOPortWrite
—nAddr F_IOPortWritef—
—eSize

—inValue

The function F_IOPortWrite can be used to write to an I/O position with a width of eSize. See also
description of the F_IOPortRead [»_111] function.

Hardware damage

A direct hardware access is not a problem, as long as data is only read. Write access can result in crashes
and/or destroy the hardware or the data on the storage media. This function can damage the hardware to
such an extent that it is no longer bootable.

FUNCTION F_IOPortWrite : BOOL

Inputs
VAR INPUT
nAddr : UDINT;
eSize : E_TIOAccessSize;
nValue : DWORD;
END VAR
Name Type Description
nAddr UDINT I/O port address
eSize E_IOAccessSize Number of data bytes to be written (type: E_I0AccessSize
»_123]).
nValue DWORD Value to be written.

112 Version: 1.17.0 TE1000

BECKHOFF Functions

Return parameter Description
TRUE No error
FALSE Error

Sample code in ST:

In the following example a PLC Function block for direct control of a PC speaker is implemented with the aid
of the 1/0 -Port functions.
Interface:

FUNCTION BLOCK FB Speaker
(* Sample code from: "PC INTERN 2.0", ISBN 3-89011-331-1, Data Becker *)

VAR INPUT
freq : DWORD := 10000; (* Frequency [Hz] *)
tDuration : TIME := T#ls; (* Tone duration *)
bExecute : BOOL; (* Rising edge starts function block execution *)
END VAR
VAR OUTPUT
bBusy : BOOL;

bError : BOOL;
nErrID : UDINT;
END VAR
VAR
fbTrig : R TRIG;
nState : BYTE;
sts6lH : DWORD;
cnt42H : DWORD;

cntLo : DWORD;

cntHi : DWORD;

timer : TON;
END VAR

Implementation:

fbTrig(CLK := bExecute);
CASE nState OF
0:
IF fbTrig.Q THEN
bBusy := TRUE;
bError := FALSE;
nErrID := 0;
timer (IN := FALSE);

IF F _IOPortWrite(16#43, NoOfByte Byte, 182) THEN

cntd42H := 1193180 / freq;
cntLo := cnt42H AND 16#FF;
cntHi := SHR(cnt42H, 8) AND 16#FF;

F IOPortWrite(16#42, NoOfByte Byte, cntLo); (* LoByte *)
F IOPortWrite(16#42, NoOfByte Byte, cntHi); (* HiByte ¥*)

timer (IN := TRUE, PT := tDuration);
sts6lH := F_IOPortRead(16#61, NoOfByte Byte);
sts6lH := sts6lH OR 2#11;
F _IOPortWrite(16#61, NoOfByte Byte, sts6lH); (* speaker ON *)
nState := 1;
ELSE
nState := 100;
END IF
END IF
i3
timer ();

IF timer.Q THEN

sts6lH := F_IOPortRead(16#61, NoOfByte Byte);
sts6lH := sts6lH AND 2#11111100;
F IOPortWrite(16#61, NoOfByte Byte, sts6lH); (* speaker off *)
bBusy := FALSE;
nState := 0;
END IF
100:
bBusy := FALSE;

TE1000 Version: 1.17.0 113

Functions BEGKHOFF
bError := TRUE;

nErrID := 16#8000;

nState := 0;

END CASE

Test application:

PROGRAM MAIN

VAR
fbSpeaker : FB Speaker;
bStart : BOOL;

END VAR

fbSpeaker (freqg:= 5000,
tDuration:= t#ls,
bExecute:= bStart);

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

4.5 Memory functions

4.5.1 MEMCMP
MEMCMP

—pBufl MEMCMP

—pBuf2

—in

The function MEMCMP allows the values of PLC variables in two different memory areas to be compared.

MEMCMP FUNCTION: DINT

! Inputs

VAR _INPUT
pBufl : PVOID;
pBuf2 : PVOID;

n : UDINT;

END VAR

Name Type Description

pBuf1 PVOID Start address of the first memory area (the first data
buffer).

pBuf2 PVOID Start address of the second memory area (the second
data buffer).

n UDINT Number of bytes to be compared.

The function compares the first n bytes in the two data buffers and returns a value that corresponds to their

ratio.

114 Version: 1.17.0 TE1000

BEGKHOFF Functions

Return parameter Ratio of the first byte that is different in the first and second data
buffers

-1 pBuf1 lower than pBuf2

0 pBuf1 identical to pBuf2

1 pBuf1 greater than pBuf2

OxFF Incorrect parameter values. pBuff1 =0 or pBuff2=00orn=20

Example of a call in FBD:

PROGRAM MAIN

VAR
Bufferl : ARRAY[0..3] OF BYTE;
Buffer2 : ARRAY[0..3] OF BYTE;
CmpResult : DINT;

END VAR

MEMCMP
pBufl —— CmpResult

ﬁpﬂufZ

Bufferl

Bufferz

SIZEOF

1 [[:

Bufferz

In this example, 4 bytes of data in Buffer2 are compared with those in Buffer1. The first differing byte is
larger in Buffer1 than it is in Buffer2.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.5.2 MEMCPY

MEMCPY
—destaddr MEMCPY —
—{srchAddr
—n

The function MEMCPY can be used to copy the values of PLC variables from one memory area to another.

System crash or access to unauthorized memory areas

Since the function directly accesses the physical memory, special care must be taken when using it.
Incorrect parameter values can result in a system crash, or in access to forbidden memory areas.

@® The behavior of MEMCPY is undefined if the destination and source memory areas overlap. This is
1 the case, for example, when several values stored in an array are to be moved one position forward

or backward. In such a case, use the function MEMMOVE [»_116].

TE1000 Version: 1.17.0 115

Functions BEGKHOFF

FUNCTION MEMCPY : UDINT

% Inputs
VAR INPUT
destAddr : PVOID;
srcAddr : PVOID;
n : UDINT;
END VAR
Name Type Description
destAddr PVOID Start address of the destination memory area.
srcAddr PVOID Start address of the source memory area.
n UDINT Number of bytes to be copied.

The function copies n bytes from the memory area with the start address srcAddr to the memory area with
the start address destAddr.

Return parameter Meaning

0 Incorrect parameter values. destAddr == 0 or srcAddr
==0orn==

>0 If successful, the number of bytes copied (n).

Example of a call in FBD:
PROGRAM MAIN

VAR
Bufferl : ARRAY[0..3] OF BYTE;
Buffer2 : ARRAY[0..3] OF BYTE;
CpyResult : UDINT;

END VAR

ADR MEMCFY
Bufferl destRddr — CpyResult
) srchAddr
n
ADR
Bufferz «‘

SIZEOQF
Bufferz

In the example, 4 bytes are copied from Buffer2 to Buffer1.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

453 MEMMOVE

MEMMOVE
—destAddr MEMMOVE F—
—srcAddr
—in

Use the MEMMOVE function to copy values from one memory area to another; the memory areas may
overlap.

116 Version: 1.17.0 TE1000

BEGKHOFF Functions

System crash or access to unauthorized memory areas

Since the function directly accesses the physical memory, special care must be taken when using it.
Incorrect parameter values can result in a system crash, or in access to forbidden memory areas.

FUNCTION MEMMOVE : UDINT

#l Inputs
VAR INPUT
destAddr : PVOID;
srcAddr : PVOID;
n : UDINT;
END VAR
Name Type Description
destAddr PVOID Start address of the destination memory area.
srcAddr PVOID Start address of the source memory area.
n UDINT Number of bytes to be copied.

The function copies n bytes from the memory area with the start address srcAddr to the memory area with
the start address destAddr.

Return parameter Meaning

0 Incorrect parameter values. destAddr == 0 or srcAddr
==0orn==

>0 If successful, the number of bytes copied (n).

Example of a call in FBD:

PROGRAM MAIN

VAR
Bufferl : ARRAY[0..3] OF BYTE;
Buffer?2 : ARRAY[0..3] OF BYTE;
MoveResult : UDINT;

END VAR

MEMMOVE
[destRddr —— MoveResult

srchAddr
n

In the example, 4 bytes are moved from Buffer2 to Buffer1.

Bufferl

Bufferz

SIZEOF

1 [[

Bufferz

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

454 MEMSET

MEMSET
—{destaddr MEMSET}—
—ffillByte

—1Nn

TE1000 Version: 1.17.0 117

Functions

BECKHOFF

The function MEMSET allows PLC variables in a particular memory area to be set to a particular value.

System crash or access to unauthorized memory areas

Since the function directly accesses the physical memory, special care must be taken when using it.
Incorrect parameter values can result in a system crash, or in access to forbidden memory areas.

MEMSET FUNCTION: UDINT

Inputs
VAR INPUT
destAddr : PVOID;
fillByte : USINT;
n : UDINT;
END VAR
Name Type Description
destAddr PVOID Start address of the memory area that is to be set.
fillByte USINT Value of the filler byte.
n UDINT Number of bytes to be set.

The function fills n bytes with the fillByte values; starting from the memory area with the start address

destAddr.

(n).

Return parameter Meaning
0 Incorrect parameter values. destAddr == 0 or n ==
>0 If successful, the number of bytes that have been set

Example of a call in FBD:

PROGRAM MAIN

VAR
Bufferl : ARRAY[0..3] OF BYTE;
SetResult : UDINT;

END_ VAR

ADE

Bufferl

MEMSET
[destRddr
16#AF —|fillBvte

SetResult

n
SIZEOQF
Bufferl

In the example, 4 bytes in Buffer1 are set to the value OxAF.

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

4.6

4.6.1

Time functions

F_GetSystemTime

F_GetSystemTime

F_GetSystemTimep—

118

Version: 1.17.0

TE1000

BECKHOFF Functions

This function can be used to read the operating system timestamp. The timestamp is a 64-bit integer value,
with an accuracy of 100 ns, which is updated with every call of the PLC. Among other things, it can be used
for timing tasks or time measurements. One unit corresponds to 100 ns. The time represents the number of
100 ns intervals since January 1, 1601 (UTC).

E- Qutputs

VAR OUTPUT
F GetSystemTime : ULINT;
END_VAR

The return value contains the timestamp.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1 PC or CX (x86, x64, ARM) Tc2_System (system)
>=3.4.17.0

4.6.2 F_GetTaskTime

F_GetTaskTime

F_GetTaskTimel—

This function can be used to read the start time of the task (time at which the task should start). The function
always returns the start time of the task in which the function was called. The time stamp is a 64-bit integer
value with an accuracy of 100 ns. It can be used for timing tasks or time measurements, among other things.
One unit corresponds to 100 ns. The time represents the number of 100 ns intervals since 1 January 1601.

& Qutputs

VAR OUTPUT
F GetTaskTime : ULINT;
END VAR

The return value contains the timestamp.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1 PC or CX (x86, x64, ARM) Tc2_System (system)
>=3.4.17.0

4.6.3 F_GetTaskTotalTime

F_GetTaskTotalTime
—nTaskInde:x F_GetTaskTokalTime —

For a task index the function F_GetTaskTotalTime returns the total execution time of this task from the last
cycle. The total execution time is the sum of the computing times of all modules that are registered on to the
task.

If 0 is passed as task index, the value for the task in which the function is called is determined. If an invalid
task index is passed, the function returns 0 as the total execution time.

The total execution time that was determined is shown as a multiple of 100 ns and returned by the function
as a return parameter.

TE1000 Version: 1.17.0 119

Functions

BECKHOFF

FUNCTION F_GetTaskTotalTime: UDINT

% Inputs
VAR_INPUT
nTaskIndex : DINT;

END VAR

Name Type Description

nTasklndex DINT Index of the task whose total execution time is to be
determined. If 0 is passed as task index, the value for the
task in which the function is called is determined.

See also:

* GETCURTASKINDEX [r 201

Development Environment

Target platform

PLC libraries to include

TwinCAT v3.1.4024.11

PC or CX (x86, x64, Arm®)

Tc2_System (system) >= 3.4.24.0

4.7 [Obsolete]
4.7.1 F_GetVersionTcSystem
()

This function is obsolete and should not be used. Use the global constant stLibVersion Tc2 System
[»_136] instead to read version information of the PLC library.

F GetVersicnTcSystem
nVersionElement

This function can be used to read PLC library version information.

FUNCTION F_GetVersionTcSystem : UINT

#* Inputs
VAR INPUT
nVersionElement : INT;
END VAR
Name Type Description
nVersionElement |INT nVersionElement : Version element to be read. Possible

parameters:

* 1: major number;

* 2 : minor number;

» 3 :revision number;

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

120

Version: 1.17.0

TE1000

BECKHOFF Functions

4.7.2 GETSYSTEMTIME

d This function block is replaced by the newer function F_GetSystemTime(), which only needs one
1 return value, not two.

GETSYSTEMTIME
timeLoDW —
timeHIDW —

With this function block the operating system time stamp can be read. The time stamp is a 64 bit integer
value, with a precision of 100ns, which is updated with every call of the PLC. Amongst other uses, it can be
utilized for timing tasks or time measurements. One unit corresponds to 100 ns. The time represents the
number of 100 ns intervals since 1 January 1601.

See: F GetSystemTime [118]

Inputs

VAR_INPUT
(*none*)
END VAR

& QOutputs

VAR OUTPUT
timeLoDW : UDINT;
timeHiDW : UDINT;
END VAR

Name Type Beschreibung
timeLoDW UDINT Contains the low-value 4 bytes of the time stamp.
timeHIDW UDINT Contains the high-value 4 bytes of the time stamp.

Sample of calling the function block in FBD:

GetSystemTimel

GETSYSTEMTIME
timeLoDW [——— timeLoDW
timeHiDW [~ timeHiDw

The sample illustrates calling the function block via the instance ‘GetSystemTime1’, and delivers the 64 bit,
integer value (hex) 1BCD6EABO5C4EGO as the time stamp.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

4.7.3 GETTASKTIME
[

This function block is replaced by the newer function F_GetTaskTime(), which only needs one
return value, not two.

GETTASKTIME
timeLoDW —
timeHIDW —

TE1000 Version: 1.17.0 121

Functions BEGKHOFF

This function block can be used to read the start time of the task (time at which the task should start). The
function block always returns the start time of the task in which the function block instance was called. The
time stamp is a 64-bit integer value with an accuracy of 100 ns. It can be used for timing tasks or time
measurements, among other things. One unit corresponds to 100 ns. The time represents the number of
100 ns intervals since 1 January 1601.

See: F GetTaskTime [P 119]

! Inputs
VAR_INPUT
(*none*)
END_ VAR

E- Qutputs

VAR OUTPUT
timeLoDW : UDINT;
timeHiDW : UDINT;

END_ VAR

Name Type Beschreibung

timeLoDW UDINT Contains the low-value 4 bytes of the time stamp.
timeHiDW UDINT Contains the high-value 4 bytes of the time stamp.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

122 Version: 1.17.0 TE1000

BECKHOFF Data types

5 Data types

5.1 E_IOAccessSize

Byte size of I/O position (number of bytes to be written or read).

TYPE E_IOAccessSize
(
NoOfByte Byte :=1,
NoOfByte Word
NoOfByte DWord :=

(]
SN
~

)i
END_ TYPE

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.2 E_OpenPath

The variable of this type selects generic or one of the TwinCAT system paths on the target device to perform
the file open operation.

TYPE E_OpenPath :

(
PATH GENERIC :=1, (* search/open/create files in selected/generic folder *)

PATH BOOTPRJ, (* search/open/create files in the TwinCAT/
Boot directory (adds the extension .wbp) *)
PATH BOOTDATA, (* reserved for future use*)
PATH BOOTPATH, (* refers to the TwinCAT/Boot directory without adding an extension (.wbp) *)
PATH USERPATH1 :=11, (*reserved for future use¥)
PATH _USERPATHZ2, (*reserved for future use¥*)
PATH_USERPATH3, (*reserved for future use¥)
PATH USERPATH4, (*reserved for future use¥*)
PATH USERPATHS, (*reserved for future use¥*)
PATH USERPATHG6, (*reserved for future use¥*)
PATH_USERPATH7, (*reserved for future useY)
PATH USERPATHS, (*reserved for future use¥*)
PATH USERPATH9 (*reserved for future use¥*)
)i
END TYPE

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.3 E_SeekOrigin

A variable of this type shows the origin point by moving the pointer.

TYPE E_SeekOrigin
(

SEEK_SET := 0, (* Seek from beginning of file *)
SEEK CUR, (* Seek from current position of file pointer ¥*)
SEEK_END (* Seek from the end of file *)
)i
END_TYPE
Value Description
SEEK_SET Seek from beginning of file
SEEK CUR Seek from current position of file pointer
SEEK_END Seek from the end of file

TE1000 Version: 1.17.0 123

Data types

BECKHOFF

Prerequisites

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

5.4

TYPE E TcEventClass :

(
TCEVENTCLASS NONE

TCEVENTCLASS MAINTENANCE :=

TCEVENTCLASS MESSAGE
TCEVENTCLASS HINT
TCEVENTCLASS STATEINFO

TCEVENTCLASS INSTRUCTION :

TCEVENTCLASS WARNING
TCEVENTCLASS ALARM
TCEVENTCLASS PARAMERROR
);
END TYPE

Prerequisites

E_TcEventClass

(* No class *)

(* Maintenance hint *)
(* Message ¥*)

(* Hint *)

(* State information *)
(* Instruction *)

(* Warning *)

(* Alarm *)

(* Parameter error *)

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

5.5

TYPE E TcEventClearModes :
(

TCEVENTLOGIOFFS_ CLEARACTIVE

TCEVENTLOGIOFFS CLEARLOGGED ,

TCEVENTLOGIOFFS CLEARALL
)i
END TYPE

Prerequisites

E_TcEventClearModes

g= i,

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

5.6

TYPE E_TcEventPriority :
(
TCEVENTPRIO_ IMPLICIT :=
)i
END TYPE

Prerequisites

E_TcEventPriority

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

5.7

TYPE E TcEventStreamType :
(
TCEVENTSTREAM INVALID
TCEVENTSTREAM SIMPLE,
TCEVENTSTREAM NORMAL,

E_TcEventStreamType

:= 0, (* no source name, no prog id *)
(* no source name, no prog id *)

(* source name AND prog id *)

124

Version: 1.17.0

TE1000

BECKHOFF

Data types

TCEVENTSTREAM NOSOURCE,
TCEVENTSTREAM CLASSID,
TCEVENTSTREAM CLSNOSRC,
TCEVENTSTREAM READCLASSCOUNT,
TCEVENTSTREAM MAXTYPE

)i

END_TYPE

Prerequisites

no source name, but prog
source name AND class id
no source name but class
*)

no source name but class

id *)
id *)

id *)

Development Environment

Target platform

PLC libraries to be integrated
(category group)

TwinCAT v3.1.0

PC or CX (x86, x64, Arm®)

Tc2_System (system)

5.8

E_TcMemoryArea

The F_CheckMemoryArea [»_87] function returns information about the memory area in which the requested
variable with the specified size is located. A return value of type E_TcMemoryArea is used for this purpose.

{attribute 'qualified only'}
{attribute 'strict'}

TYPE E_TcMemoryArea :

(

Unknown := 0,
Static =1, // static PLC memory
Dynamic := 2, // dynamic memory
CNC =3
) UDINT;
END TYPE
Name Description
Unknown The memory area is unknown. For example, this could be memory in a Windows context.
The memory area is also output as unknown if the specified memory size results in two
different memory areas being involved. Furthermore, the memory area is output as
unknown if it is a stack memory.
Static These are static PLC memories.
Dynamic These are dynamically allocated memories, which were allocated during the runtime or
during the initialization phase of the PLC.
CNC These are memories of the CNC driver.
Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.4022 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.9 E_UsrLED Color

TYPE E_UsrLED Color :
(
eUsrLED_Off
eUsrLED_ Red
eUsrLED_Blue
eUsrLED Green :

~

w N = o
~ ~

);
END TYPE

5.10 EPIcMappingStatus

Type EPlcMappingStatus :
(
MS Unmapped,
MS Mapped,
MS Partial
) i
End TYPE

This data type is defined in the global type system.

TE1000 Version: 1.17.0 125

Data types BEGKHOFF

Development Environment Target platform PLC libraries to include
TwinCAT v3.1.4020 PC or CX (x86, x64, Arm®) Tc2_System (system)

511 ST_AmsAddr

A variable of this type contains the TwinCAT network address.

TYPE ST AmsAddr :

STRUCT
netId : T _AmsNetIdArr;
port : T AmsPort;
END STRUCT
END_TYPE
Name Type Description
netld T_AmsNetldArr AMS network address (type: T_AmsNetlIdArr [»_1271)
port T_AmsPort AMS port number (type: T_AmsPort [»_127])

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.12 ST_CpuCoreinfo

A variable of this type contains information about a CPU core. The information can be read for a particular
CPU core with the aid of the function F_GetCpuCorelnfo [»_90] and the corresponding CPU core index.

TYPE ST CpuCorelInfo :

STRUCT
bRTCore : BOOL;
bIsolatedCore : BOOL;
nBaseTime : UDINT;
nCorelLimit : UDINT;
END_STRUCT
END TYPE
Name Type Description
bRTCore BOOL This variable has a value of TRUE if it is a real-time
kernel.
blsolatedCore BOOL This variable has a value of TRUE if it is an isolated core.
nBaseTime UDINT Base time of the CPU core, specified as a multiple of
100 ns
nCoreLimit UDINT Core limit of the CPU core, specified in %
Development Environment Target platform PLC libraries to include
TwinCAT v3.1.4024.11 PC or CX (x86, x64, Arm®) Tc2_System (system) >= 3.4.24.0

5.13 SYSTEMINFOTYPE

This TwinCAT2 data type does not exist in TwinCAT 3 any more.

SystemInfoType is replaced by PlcAppSystemInfo which is a Global Data Type.

5.14 SYSTEMTASKINFOTYPE

This TwinCAT2 data type does not exist in TwinCAT 3 any more.

SystemTaskInfoType is replaced by PlcTaskSystemInfo which is a Global Data Type.

126 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1031/tc3_plc_intro/714818699.html
https://infosys.beckhoff.com/content/1031/tc3_plc_intro/714821259.html

BECKHOFF Data types

515 T_AmsNetID

A PLC variable of this type is a string containing the AMS network ID of the target device to which the ADS
command is directed. The string consists of six numerical fields, separated by dots. Valid AMS network
addresses are, for example, '1.1.1.2.7.1" or '200.5.7.170.1.7". If an empty string is passed, the AMS network
ID of the local device is automatically assumed.

Namespace: Tc2_System
Library: Tc2_System (Tc2_System.compiled-library)

TYPE T AmsNetID : STRING(23);
END_TYPE

516 T_AmsNetidArr

TYPE T AmsNetIdArr : ARRAY[0..5] OF BYTE;
END TYPE

The variable of this type is a array of bytes containing the AMS network identifier. The address bytes are
represented in network byte order. E.g. '"127.16.17.3.1.1" is represented as:

byte[0] = 127

byte[1] = 16
byte[2] = 17
byte[3] = 3
byte[4] = 1
byte[5] =1

Example: F ScanAmsNetlds [»_109]

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

517 T_AmsPort

A variable of this type contains the ADS port number. ADS devices in the TwinCAT network are identified by
an AMS network address and a port number. The following port numbers are invariably specified on every
individual TwinCAT system.

TYPE T AmsPort : UINT;
END_TYPE

Table with specified ADS port numbers:

ADS device Port number

Cam controller 900

Runtime system 1 Runtime system 1: 851 (in TwinCAT 2: 801)
Runtime system 2 Runtime system 2: 852 (in TwinCAT 2: 811)
Runtime system 3 Runtime system 3: 853 (in TwinCAT 2: 821)
Runtime system 4 Runtime system 4: 854 (in TwinCAT 2: 831)
Runtime system 5 Runtime system 5: 855

Runtime system n Runtime system n: 850 + n, and so on

NC 500

Reserved 400

1/O 300

Real-time core 200

Event System (logger) 100

TE1000 Version: 1.17.0 127

Data types BEGKHOFF

Up to four independent PLC runtime systems (PLC projects) can run on a TwinCAT 2 system; each PLC
project is to be regarded as a stand-alone PLC. The port number and the network address are both required
as input parameters when the ADS blocks are called.

The ADS ports from 800 to 899 are generally available for the PLC in TwinCAT3. In order to separate
TwinCAT 2 and TwinCAT 3 systems, however, we recommend using only the ports from 851 to 899.

If you set the ADS port with the help of the dialog, port 851 is displayed as the lowest port that can be set. In
order to use the range 800-850, you need to type in the port number.

Proceed as follows to enter the port number via the dialog box:
1. Right-click the desired PLC project.

2. Click Change ADS Port.

o5 | L p—

2. Activate Boot Project...
:F:ile Edit v Autostart Boot Project =
00 Change ADS Port...
i Burld 4021 Install Project Libraries L
Solution Expl Install Project Libraries (Unknown versions)
m Update Project Library Folder...
Search Solut Update Instances from Target
4 E X Remove Del
4 [[] Rename
Change Project...
ﬁ Add New ltem... Ins
Save SPST As...
@ Save SPST as Archive..
_J Send SPS1 by E-Mail..
1 58 Compare SPS1 with Target...
4 uj Twir Update SPS1 from Target

<
b _\.‘Zj 1 Independent Project File

4 E] SPS1 Project

= The dialog box opens.

Change Port 'SPS1 Instance’ x
Pot [EH =
Cancel

3. Select the desired port number using the arrow keys or type in the desired port number.
4. Confirm the entry with OK.
= The port number has been entered in the system.

To ensure separation between TwinCAT 2 and TwinCAT 3 systems, we recommend using only the
ADS ports from 851 to 899.

ADS ports outside the range from 800 bis 899 will not be accepted by the input system.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.18 T_IPv4Addr

A variable of this type is a string with the (Ipv4) Internet protocol network address. E.g. '172.16.7.199'".

128 Version: 1.17.0 TE1000

BECKHOFF Data types

TYPE T IPv4Addr : STRING(15);
END TYPE

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.19 T_IPv4AddrArr

The variable of this type is a array of bytes containing the (IPv4) Internet Protocol network address.

TYPE T IPv4AddrArr: ARRAY[O0..3] OF BYTE;
END_TYPE

The address bytes are represented in network byte order.
E.g.'172.16.7.199' is represented as:

byte[0] := 172
byte[1] := 16
byte[2] := 7
byte[3] := 199

Example: F Scan|Pv4Addrids [» 89]

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.20 T_MaxString

The variable of this type is PLC string with the maximal length. Longer strings are allowed, but the string
functions are limited to 255 characters.

TYPE T_MaXString : STRING (MAX STRING LENGTH) ;

END_TYPE

VAR_GLOBAL CONSTANT
MAX_STRING_LENGTH : UDINT := 255;
ENd VAR

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

5.21 TcEvent

® TwinCAT EventLogger vs. TwinCAT 3 EventLogger

1 The TwinCAT EventLogger was replaced by the successor TwinCAT 3 EventLogger. The older
TwinCAT EventLogger is supported by TwinCAT 3 up to version 3.1.4024. Newer TwinCAT
versions (>= 3.1.4026.0) only support the newer TwinCAT 3 EventLogger. PLC function blocks for
this can be found in the PLC library Tc3_EventLogger.

TYPE TcEvent

STRUCT
Class : UDINT;
Prio : UDINT;
Id : UDINT;
bQuitRequired : BOOL;

TE1000 Version: 1.17.0 129

Data types BEGKHOFF

DataFormatStrAddress : PVOID;

UserFlags : DWORD;
Flags : DWORD;
StreamType : UDINT;
SourceString : STRING([15]; (* TCEVENT SRCNAMESIZE *)
SourcelId : UDINT;
ProgId : STRING([31]; (* TCEVENT_ FMTPRGSIZE *)
END STRUCT
END TYPE
Name Type Description
Class UDINT Event class, get value from enum E_TcEventClass [»_124].
Prio UDINT Priority of the event within a class, freely selectable
number (1..MaxUDINT)
Id UDINT Id of the event, used for unique identification in the
EventLogger.
bQuitRequired BOOL Flag for switching the acknowledgement requirement on
and off (TRUE — acknowledgement required)
DataFormatStrAd |PVOID Address of a string, string contains formatting instructions
dress (e.g. %d%f formats an integer and a real (float) value).
UserFlags DWORD 32-bit number for free disposal
Flags DWORD 32-bit number identifying the event, the meaning of the
individual bits are declared in the global variables [P 131]
of the library.
StreamType UDINT Type of the event, get value from the enum
E TcEventStreamType [»_124].
SourceString STRING String with the source name (max. 15 characters [P 131])
Sourceld UDINT Source-ID
Progld STRING String (Prog-Id) with the name of the formatter (max. 31
characters [P_131]). Default:
"TcEventLogger.TcLogFormatter' or
"TcEventFormatter. TcXmlFormatter'

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_System (system)

up to

TwinCAT v3.1.4024

130 Version: 1.17.0 TE1000

BECKHOFF Global constants

6 Global constants

6.1 Constants

Port numbers

Port numbers Value |Description
AMSPORT_LOGGER 100 Port number of the Standard-Logger.
AMSPORT_EVENTLOG 110 Port number of the TwinCAT Eventlogger.
AMSPORT_RO_RTIME 200 Port number of the TwinCAT Realtime Server.
AMSPORT_RO_IO 300 Port number of the TwinCAT 1/O Server.
AMSPORT_RO_NC 500 Port number of the TwinCAT NC Server.
AMSPORT_RO_NCSAF 501 Port number of the TwinCAT NC Serves (Task SAF).
AMSPORT_RO_NCSVB 511 Port number of the TwinCAT NC Server (Task SVB).
AMSPORT_RO_ISG 550 internal
AMSPORT_RO_CNC 600 Port number of the TwinCAT NC | Server.
AMSPORT_RO_LINE 700 internal
AMSPORT_RO_PLC 800 Port number of the TwinCAT PLC Servers (only on the
Buscontroller).
AMSPORT_RO_PLC_RTS1 801 Port number of the TwinCAT 2.xx PLC Server runtime 1
AMSPORT_RO_PLC_RTS2 811 Port number of the TwinCAT 2.xx PLC Server runtime 2
AMSPORT_RO_PLC RTS3 821 Port number of the TwinCAT 2.xx PLC Server runtime 3
AMSPORT_RO_PLC RTS4 831 Port number of the TwinCAT 2.xx PLC Server runtime 4
AMSPORT_R0O_CAM 900 Port number of the TwinCAT CAM Server.
AMSPORT_R0O_CAMTOOL 950 Port number of the TwinCAT CAMTOOL Server.
AMSPORT_R3_SYSSERV 10000 |Port number of the TwinCAT System Service.
AMSPORT_R3_SCOPESERVER 14001 |Port number of the TwinCAT Scope Server.

TE1000 Version: 1.17.0 131

Global constants

BECKHOFF

Ads-States
ADS States Value Description
ADSSTATE_INVALID 0 ADS Status: invalid
ADSSTATE_IDLE 1 ADS Status: idle
ADSSTATE_RESET 2 ADS Status: reset.
ADSSTATE_INIT 3 ADS Status: init
ADSSTATE_START 4 ADS Status: start
ADSSTATE_RUN 5 ADS Status: run
ADSSTATE_STOP 6 ADS Status: stop
ADSSTATE_SAVECFG 7 ADS Status: save configuration
ADSSTATE_LOADCFG 8 ADS Status: load configuration
ADSSTATE_POWERFAILURE 9 ADS Status: Power failure
ADSSTATE_POWERGOOD 10 ADS Status: Power good
ADSSTATE_ERROR 11 ADS Status: Error
ADSSTATE_SHUTDOWN 12 ADS Status: Shutdown
ADSSTATE_SUSPEND 13 ADS Status: Suspend
ADSSTATE_RESUME 14 ADS Status: Resume
ADSSTATE_CONFIG 15 ADS Status: Configuration (System is in config mode)
ADSSTATE_RECONFIG 16 ADS Status: Reconfiguration (System should restart in
config mode)
ADSSTATE_STOPPING 17
ADSSTATE_INCOMPATIBLE 18
ADSSTATE_EXCEPTION 19
ADSSTATE_MAXSTATES 20 Max. number of available ads states

132

Version: 1.17.0

TE1000

BECKHOFF

Global constants

ADS/System Services

Reserved Index Groups Value Description
ADSIGRP_SYMTAB 16#F000
ADSIGRP_SYMNAME 16#F001
ADSIGRP_SYMVAL 16#F002
ADSIGRP_SYM_HNDBYNAME 16#F003
ADSIGRP_SYM_VALBYNAME 16#F004
ADSIGRP_SYM_VALBYHND 16#F005
ADSIGRP_SYM_RELEASEHND 16#F006
ADSIGRP_SYM_INFOBYNAME 16#F007
ADSIGRP_SYM_VERSION 16#F008
ADSIGRP_SYM_INFOBYNAMEEX 16#F009
ADSIGRP_SYM_DOWNLOAD 16#F00A
ADSIGRP_SYM_UPLOAD 16#F00B
ADSIGRP_SYM_UPLOADINFO 16#F00C
ADSIGRP_SYMNOTE 16#F010
ADSIGRP_IOIMAGE_RWIB 16#F020
ADSIGRP_IOIMAGE_RWIX 16#F021
ADSIGRP_IOIMAGE_RISIZE 16#F025
ADSIGRP_IOIMAGE_RWOB 16#F030
ADSIGRP_IOIMAGE_RWOX 16#F031
ADSIGRP_IOIMAGE_RWOSIZE 16#F035
ADSIGRP_IOIMAGE_CLEARI 16#F040
ADSIGRP_IOIMAGE_CLEARO 16#F050
ADSIGRP_IOIMAGE_RWIOB 16#F060
ADSIGRP_DEVICE_DATA 16#F 100
ADSIOFFS_DEVDATA_ADSSTATE 16#0000
ADSIOFFS_DEVDATA_DEVSTATE 16#0002

TE1000

Version: 1.17.0

133

Global constants BEGKHOFF

System Service File Service

System Service Index Groups Value Description
SYSTEMSERVICE_OPENCREATE 100
SYSTEMSERVICE_OPENREAD 101
SYSTEMSERVICE_OPENWRITE 102
SYSTEMSERVICE_CREATEFILE 110
SYSTEMSERVICE_CLOSEHANDLE 111
SYSTEMSERVICE_FOPEN 120
SYSTEMSERVICE_FCLOSE 121
SYSTEMSERVICE_FREAD 122
SYSTEMSERVICE_FWRITE 123
SYSTEMSERVICE_FSEEK 124
SYSTEMSERVICE_FTELL 125
SYSTEMSERVICE_FGETS 126
SYSTEMSERVICE_FPUTS 127
SYSTEMSERVICE_FSCANF 128
SYSTEMSERVICE_FPRINTF 129
SYSTEMSERVICE_FEOF 130
SYSTEMSERVICE_FDELETE 131
SYSTEMSERVICE_FRENAME 132
SYSTEMSERVICE_REG_HKEYLOCALMA |200
CHINE

SYSTEMSERVICE_SENDEMAIL 300
SYSTEMSERVICE_TIMESERVICES 400
SYSTEMSERVICE_STARTPROCESS 500
SYSTEMSERVICE_CHANGENETID 600

System Servie Timeservices

System Service Index Offsets Value Description
(Timeservices)

TIMESERVICE_DATEANDTIME 1
TIMESERVICE_SYSTEMTIMES 2
TIMESERVICE_RTCTIMEDIFF 3

4

TIMESERVICE_ADJUSTTIMETORT
C

ADSLOG message types

Masks for log output Value Description
ADSLOG_MSGTYPE_HINT 16#01
ADSLOG_MSGTYPE_WARN 16#02
ADSLOG_MSGTYPE_ERROR 16#04
ADSLOG_MSGTYPE_LOG 16#10
ADSLOG_MSGTYPE_MSGBOX 16#20
ADSLOG_MSGTYPE_RESOURCE 16#40
ADSLOG_MSGTYPE_STRING 16#80

134 Version: 1.17.0 TE1000

BECKHOFF

Global constants

BOOTDATA flags

Masks for Bootdata flags Value Description

BOOTDATAFLAGS_RETAIN_LOADED 16#01

BOOTDATAFLAGS_RETAIN_INVALID 16#02

BOOTDATAFLAGS_RETAIN_REQUESTED 16#04

BOOTDATAFLAGS_PERSISTENT_LOADED 16#10

BOOTDATAFLAGS_PERSISTENT_INVALID 16#20

Masks for BSOD flags Value Description

SYSTEMSTATEFLAGS_BSOD 16#01 BSOD: Blue Screen of Death

SYSTEMSTATEFLAGS_RTVIOLATION 16#02 Realtime violation latency overrun

File output modes

Masks for File output Value Description

FOPEN_MODEREAD 16#0001 'r': Opens file for reading

FOPEN_MODEWRITE 16#0002 'w': Opens file for reading, (possible) existing files were
overwritten.

FOPEN_MODEAPPEND 16#0004 'a. Opens file for reading, is attached to (possible)
existing file. If no file existes, it will be created.

FOPEN_MODEPLUS 16#0008 '+'": Opens file for reading and writing.

FOPEN_MODEBINARY 16#0010 'b": Opens file forbinary reading and writing.

FOPEN_MODETEXT 16#0020 't": Opens file for textual reading and writing:

Eventlogger constants

Masks for Eventlogger Flags Value Description

TCEVENTFLAG_PRIOCLASS 16#0010 Class and priority are defined by the formatter

TCEVENTFLAG_FMTSELF 16#0020 The formatting information comes with the event

TCEVENTFLAG_LOG 16#0040 Logg.

TCEVENTFLAG_MSGBOX 16#0080 Show message box.

TCEVENTFLAG_SRCID 16#0100 Use Source-Id instead of Source name.

TwinCAT Eventlogger Status Value Description

messages

TCEVENTSTATE_INVALID 16#0000 Not valid, occurs also if the event was not reported.

TCEVENTSTATE_SIGNALED 16#0001 Event is reported, but neither signed off or
acknowledged..

TCEVENTSTATE_RESET 16#0002 Event is signed off ('gone’).

TCEVENTSTATE_CONFIRMED |16#0010 Event is acknowledged.

TCEVENTSTATE_RESETCON 16#0012 Event is signed off and acknowledged

TwinCAT Eventlogger Status Value Description

messages

TCEVENT_SRCNAMESIZE 15 Max. Length for the Source name.

TCEVENT_FMTPRGSIZE 31 Max. Length for the name of the formatter.

Other Value Description

PI 3.14159265358979323846264338 |Pi number

32795

DEFAULT_ADS_TIMEOUT

T#5s

Default ADS timeout

MAX_STRING_LENGTH

255

The max. string length of
T_MaxString data type

TE1000

Version: 1.17.0

135

Global constants BEGKHOFF

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

6.2 Library version

All libraries have a certain version. The version is indicated in the PLC library repository, for example. A
global constant contains the information about the library version:
Global_Version

VAR GLOBAL CONSTANT
stLibVersion Tc2 System : ST LibVersion;

END VAR

Name Type Description

stLibVersion_Tc2 |ST_LibVersion Version number of the Tc2_System library (type:
_System ST_LibVersion)

To check whether the version you have is the version you need, use the function F CmplibVersion [»_88].

All other options for comparing library versions, which you may know from TwinCAT 2, are outdated.

Prerequisites

Development Environment Target platform PLC libraries to be integrated
(category group)
TwinCAT v3.1.0 PC or CX (x86, x64, Arm®) Tc2_System (system)

136 Version: 1.17.0 TE1000

BEGKHOFF Samples

7 Samples

7.1 Example with AdsReadlnd /AdsReadRes function
blocks

The example shows the implementation of a simple ADS Server application to the PLC. The server
application can process the ADSREAD requests of an ADS Client application.

In the example application, ADSREAD requests are used to increment/decrement or reset a PLC counter
variable in the PLC task. If successful the value of the counter variable is returned to the ADS Client
application

The complete sources of the ADS server application can be unpacked here: https://infosys.beckhoff.com/
content/1033/TcPlcLib Tc2 System/Resources/710574987.zip

An ADS Client application suitable for the ADS Server can be found here: Example with ADSREAD function
block. [»_140

ADS Client application

The required service in the PLC task is encoded in the index group parameter:
IG:0x80000001 — increment the counter variable;

IG:0x80000002 — decrement the counter variable;

IG:0x80000003 — set the counter variable = 0;

The index offset parameter is zero.

hd So that the requests can be routed to the PLC task, the highest value bit must be set in the index

group parameter.

PLC program

The ADSREAD requests are intercepted as indications in the PLC task by an instance of the ADSREADIND
[»_28] function block. Afterwards the index group and index offset parameters and the required data length
and validity are checked. In the CASE instruction the desired operation with the PLC variables is carried out.
If successful a response is sent back by an instance of the ADSREADRES [P_36] function block to the caller
with the current value of the PLC variables. In the case of an error an appropriate error message. In the next
cycle the CLEAR and RESPOND flags on the function blocks are reset in order to be able to process further
indications.

Declaration Part
PROGRAM MAIN

VAR
fbReadInd : ADSREADIND; (* Indication function block instance *)
fbReadRes : ADSREADRES; (* Response function block instance ¥*)
sNetId : T AmsNetID;
nPort : T_AmsPort;
nInvokeId : UDINT;
nIdxGrp : UDINT;
nIdxOffs : UDINT;
cbLength : UDINT; (* Requested read data/buffer byte size *)
cbRead : UDINT; (* Returned read data/buffer byte size *)
pRead : PVOID; (* Pointer to returned read data/buffer *)
nErrID : UDINT; (* Read indication result error code *)
nCounter : INT; (* Server data *)

END VAR

TE1000 Version: 1.17.0 137

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710574987.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710574987.zip

Samples BEGKHOFF

Implementation

fbReadRes (RESPOND := FALSE); (* Reset response function block *)
fbReadInd(CLEAR := FALSE); (* Trigger indication function block *)
IF fbReadInd.VALID THEN (* Check for new indication *)

sNetID := fbReadInd.NETID;

nPort := fbReadInd.PORT;
nInvokeID := fbReadInd.INVOKEID;
nIdxGrp := fbReadInd.IDXGRP;
nIdxOffs := fbReadInd.IDXOFFS;
cbLength := fbReadInd.LENGTH;
cbRead := 0;

pRead := 0;

nErrID := DEVICE_ SRVNOTSUPP;

CASE nIdxGrp OF

16#80000001:
CASE nIdxOffs OF
0: (* Increment counter value *)
IF cbLength >= SIZEOF (nCounter) THEN

nCounter := nCounter + 1;
cbRead := SIZEOF (nCounter);
pRead := ADR(nCounter);
nErrID := NOERR;
ELSE (* ADS error (example): Invalid size *)
nErrID := DEVICE INVALIDSIZE;
END IF
ELSE (* ADS error (example): Invalid index offset *)
nErrID := DEVICE INVALIDOFFSET;
END CASE
(* __ *)
16#80000002:

CASE nIdxOffs OF
0: (* Decrement counter value *)
IF cbLength >= SIZEOF (nCounter) THEN

nCounter := nCounter - 1;
cbRead := SIZEOF (nCounter) ;
pRead := ADR(nCounter);
nErrID := NOERR;
ELSE (* ADS error (example): Invalid size ¥*)
nErrID := DEVICE INVALIDSIZE;
END IF
ELSE (* ADS error (example): Invalid index offset *)
nErrID := DEVICE INVALIDOFFSET;
END_CASE
(* __ *)
16#80000003:

CASE nIdxOffs OF
0: (* Reset counter value *)
IF cbLength >= SIZEOF (nCounter) THEN

nCounter := 0;
cbRead := SIZEOF (nCounter);
pRead := ADR(nCounter);
nErrID := NOERR;
ELSE (* ADS error (example): Invalid size *)
nErrID := DEVICE INVALIDSIZE;
END IF
ELSE (* ADS error (example): ervice is not supported by server *)
nErrID := DEVICE SRVNOTSUPP;
END CASE
ELSE (* ADS error (example): Invalid index group *)
nErrID := DEVICE INVALIDGRP;
END CASE
fbReadRes (NETID := sNetID,
PORT := nPort,
INVOKEID := nInvokelID,
LEN := cbRead,
DATAADDR := pRead,
RESULT := nErrID,
RESPOND := TRUE); (* Send read response *)
fbReadInd(CLEAR := TRUE); (* Clear indication entry *)
END IF

138 Version: 1.17.0 TE1000

BEGKHOFF Samples

7.2 Example with AdsWriteInd/AdsWriteRes function blocks

The example shows the implementation of a simple ADS Server application to the PLC. The server
application can process the ADSWRITE requests of an ADS Client application.

In the example application ADSWRITE requests are used to transfer arrays with integer values to the PLC
task. The received data are copied in the PLC into an appropriate array variable.

The complete sources of the ADS server application can be unpacked here: https://infosys.beckhoff.com/
content/1033/TcPlcLib Tc2 System/Resources/710582923.zip

An ADS Client application suitable for the ADS Server can be found here: Example with ADSWRITE function
block. [» 141

ADS Client application

The desired service/command from the PLC task is encoded in the index group and index offset parameters.
E.g.:

1G:0x80000005 and 10:0x00000007— copy the sent data to the array in the PLC.

d So that the requests can be routed to the PLC task, the highest value bit must be set in the index

group parameter.

PLC program

The requests are intercepted as indications in the PLC task by an instance of the ADSWRITEIND [»_30]
function block. Following this, the index group, index offset and transmitted data length parameters are
checked for validity, and the desired operation is carried out on the PLC variable. The next step is for a
response to be returned to the caller (including an error code, if appropriate) by an instance of the
ADSWRITERES [P _37]-function block. In the next cycle the CLEAR and RESPOND flags are reset in order to
be able to process further indications.

d With the rising edge at the CLEAR input of the ADSWRITEIND function block the address pointer to
1 the most recently sent data becomes invalid (== ZERO).

For this reason the sent data is first copied into the PLC variable before the CLEAR input is set to
TRUE.

Declaration Part
PROGRAM MAIN

VAR
fbWriteInd : ADSWRITEIND;
fbWriteRes : ADSWRITERES;
sNetId : T AmsNetID;
nPort : T _AmsPort;
nInvokeId : UDINT;
nIdxGrp : UDINT;
nIdxOffs : UDINT;
cbWrite : UDINT; (* Byte size of written data *)
pWrite : PVOID; (* Pointer to written data buffer *)
nResult : UDINT; (* Write indication result error code *)
arrInt : ARRAY[0..9] OF INT; (* Server data *)
END VAR

Implementation

fbWriteRes (RESPOND := FALSE); (* Reset response function block *)
fbWriteInd(CLEAR := FALSE); (* Trigger indication function block ¥*)
IF (fbWriteInd.VALID) THEN

sNetId = fbWriteInd.NETID;
nPort = fbWriteInd.PORT;
nInvokeId = fbWriteInd.INVOKEID;

TE1000 Version: 1.17.0 139

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710582923.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710582923.zip

Samples BECKHOFF
nIdxGrp := fbWriteInd.IDXGRP;
nIdxOffs := fbWriteInd.IDXOFFS;
cbWrite := fbWriteInd.LENGTH;
pWrite := fbWriteInd.DATAADDR;
nResult := DEVICE SRVNOTSUPP;

CASE nIdxGrp OF
16#80000005:
CASE nIdxOffs OF
16#00000007:
IF cbWrite
MEMCPY (
nResult
ELSE (* ADS
nResult
END IF
ELSE (* ADS error
nResult :=
END_CASE
ELSE (* ADS error
nResult :=
END CASE

fbWriteRes (NETID :=
PORT := nPort,
INVOKEID := nI
RESULT := nRes
RESPOND :=

fbWriteInd(CLEAR :=
END IF

7.3

(example) :
DEVICE INVALIDGRP;

TRUE) ;

TRUE) ;

<= SIZEOF(arrInt)
ADR(arrInt), pWrite,
:= NOERR;

error (example): Invalid size *)
:= DEVICE INVALIDSIZE;

THEN

MIN(cbWrite, SIZEOF (arrInt)));

(example) : Invalid index offset *)

DEVICE INVALIDOFFSET;

Invalid index group *)

sNetId,

nvokeIld,
ult,

(* Send write response *)

(* Clear indication entry *)

Example with AdsRead function block

The example demonstrates the use of the ADSREAD function block in an ADS Client application.

The complete sources of the ADS Client application can be unpacked here: https://infosys.beckhoff.com/
content/1033/TcPlcLib Tc2 System/Resources/710578827.zip

Declaration Part
PROGRAM MAIN

VAR
fbReadReq ADSREADEX := (NETID := '', PORT := 851, TMOUT := DEFAULT ADS TIMEOUT)8
bIncrement BOOL; (* Rising edge at this variable starts command execution *)
bDecrement BOOL; (* Rising edge at this variable starts command execution *)
bReset BOOL; (* Rising edge at this variable starts command execution ¥*)
bOther BOOL; (* Rising edge at this variable starts command execution ¥*)
nState BYTE;
bBusy BOOL;
bError BOOL;
nErrID UDINT;
cbRead UDINT;
nCounter INT; (* Server data to be read *)

END_VAR

Implementation
CASE nState OF

0:
IF bIncrement OR bDecrement OR bReset OR bOther THEN
bBusy := TRUE;
bError := FALSE;
nErrID := 0;

fbReadReq(READ :=

FALSE);

IF bIncrement THEN(* Incement counter value ¥*)

bIncrement := FALSE;
fbReadReqg(IDXGRP := 16#80000001, IDXOFFS := 0, LEN := SIZEOF (nCounter), DESTADDR :=
ADR (nCounter), READ := TRUE);
ELSIF bDecrement THEN (* Decrement counter value ¥*)
bDecrement := FALSE;
fbReadReqg(IDXGRP := 16#80000002, IDXOFFS := 0, LEN := SIZEOF (nCounter), DESTADDR :=

140

Version: 1.17.0

TE1000

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710578827.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710578827.zip

BEGKHOFF Samples

ADR (nCounter), READ := TRUE);
ELSIF bReset THEN (* Reset counter value *)
bReset := FALSE;
fbReadReqg (IDXGRP := 16#80000003, IDXOFFS := 0, LEN := SIZEOF (nCounter), DESTADDR :=
ADR (nCounter), READ := TRUE);
ELSIF bOther THEN (* Call unsupported function *)
bOther := FALSE;
fbReadReqg (IDXGRP := 16#80000004, IDXOFFS := 0, LEN := SIZEOF (nCounter), DESTADDR :=
ADR (nCounter), READ := TRUE);
END IF
nState := 1;
END IF
1s
fbReadReq(READ := FALSE, BUSY=>bBusy, ERR=>bError, ERRID=>nErrID, COUNT_ R=>cbRead);

IF NOT bBusy THEN
IF NOT bError THEN

nState := 0; (* Success *)
ELSE

nState := 100; (* Error *)
END IF

END IF

100: (* TODO::Implement error handler *)
nState := 0;

END_CASE

7.4 Example with AdsWrite function block

The example demonstrates the use of the ADSWRITE function block in an ADS Client application.

The complete sources of the ADS Client application can be unpacked here: https://infosys.beckhoff.com/
content/1033/TcPlcLib Tc2 System/Resources/710586763.zip

Declaration Part
PROGRAM MAIN

VAR
fbWriteReq : ADSWRITE := (NETID := '', PORT := 851, TMOUT := DEFAULT ADS TIMEOUT)8
bWrite : BOOL; (* Rising edge at this variable starts command execution *)
nState : BYTE;
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
arrInt : ARRAY[0..9] OF INT; (* Server data to be written *)
i : INT;
END_ VAR

Implementation

FOR i:=0 TO 9 BY 1 DO (* modify/simulate new data *)
arrInt[i] := arrInt[i] + 1;
END_FOR

CASE nState OF

0:
IF bWrite THEN
bWrite := FALSE;
bBusy := TRUE;
bError := FALSE;
nErrID := 0;
fbWriteReqg(WRITE := FALSE);
fbWriteReqg(IDXGRP 16#80000005, IDXOFFS := 7,
LEN := SIZEOF(arrInt), SRCADDR := ADR(arrInt),
WRITE := TRUE);
nState := 1;
END IF
1:
fbWriteReqg(WRITE := FALSE, BUSY=>bBusy, ERR=>bError, ERRID=>nErrID);

IF NOT bBusy THEN
IF NOT bError THEN

TE1000 Version: 1.17.0 141

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710586763.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/710586763.zip

Samples BEGKHOFF

nState := 0; (* Success *)
ELSE
nState := 100; (* Error *)
END IF
END IF

100: (* TODO::Implement error handler ¥*)
nState := 0;

END_CASE

7.5 Sending/acknowledging EventLogger signals from the
PLC

The example demonstrates the use of the ADSLOGEVENT function block.

The complete sources for the example application can be unpacked here: https://infosys.beckhoff.com/
content/1033/TcPIcLib Tc2 System/Resources/711421451.zip

Step by step sequence

Configuration of an event:

Parameterisation of EventConfigData [» 129] structure

Transfer of parameters:

Generate an address of a structure, an array or a single variable with ADR operator at EventDataAddress.
Determine the length of the structure, array or single variable using the SIZEOF operator and apply it to the
EventDatalLength input. If, for example, a structure with an INT and an LREAL variable is to be transferred
with the event, then a structure must be created with these two components and instanced. The address and
the length of this instance must be transferred.

Setting an event:

Rising edge at the Event input
Resetting an event:

Falling edge at the Event input

To acknowledge an events:

Rising edge at the Quit input
Complete deletion of the instance:

The contents of the instance are completely deleted with a rising edge at the FbCleanup input. An existing
event from the EventLogger is not directly deleted by this.

After an event has been sent to the EventLogger, the status of the event [>_131] changes visibly at the
Eventstate output.

Calling the ADSLOGEVENT function block
PROGRAM MAIN

VAR
FB _Eventl : ADSLOGEVENT;
CfgEvent : TcEvent;
Eventdata : ParaStruct;
EventState : UDINT;
bEvent : BOOL;
bQuit : BOOL;

END VAR

VAR CONSTANT
TCEventDataFormatString : STRING:='%f%d';
TcEventTimeOut : TIME:=T#ls;

END_ VAR

142 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/711421451.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/711421451.zip

BEGKHOFF Samples

FB Eventl

ADR _J ADSLOGEVENT
Eventdata r1.1.1.2.7.1" HETID EventState [——————EventS5tate

AMSPORT_EVENTLOG —PORT Err [-bError
bEvent —Event ErrlId [-bErrid
SIZEOF bQuit —EventQuit Quit |-
Eventdata CigEvent —{EwventConfigData
EventDataRddress
EventDatalength

FALSE —{FbCleanup
TCEventTimeOut —TMOUT

Declaration Part
PROGRAM MAIN

VAR
CfgEvent : TcEvent;
fbEvent : ADSLOGEVENT;
bSetEvent : BOOL; (* Rising edge sets event *)
eventData : ST EventData;
TcEventDataFormatString : STRING = '%fed';

END VAR

Implementation

CfgEvent.Class := TCEVENTCLASS ALARM;

CfgEvent.Prio := 2;

CfgEvent.Id := 1;

CfgEvent.SourceId := 100;

CfgEvent.bQuitRequired := TRUE;

CfgEvent.DataFormatStrAddress := ADR(TcEventDataFormatString);
CfgEvent.Flags := TCEVENTFLAG LOG OR TCEVENTFLAG SRCID OR TCEVENTFLAG AUTOFMTALL;
CfgEvent.StreamType := TCEVENTSTREAM SIMPLE;

CfgEvent.Progld :='TcEventFormatter.TcXMLFormatter' ;
eventData.rVal 1= 2.65;

eventData.ival = 3;

fbEvent (NETID:= '',

PORT:= 110,

Event:= bSetEvent,

EventConfigData:= CfgEvent,
EventDataAddress := ADR(eventData) ,
EventDataLength := SIZEOF (eventData),
TMOUT:= t#3s);

7.6 File access from the PLC

The use of the PLC function blocks for data access from the Tc2_system library is introduced in this
example. A new function block, FB_FileCopy, is implemented with the aid of the existing function blocks.
Using the FB_FileCopy function block, binary files can be copied in the local TwinCAT system or between a
local and a remote TwinCAT system.

The complete source code for the example project can be unpacked from here: https://infosys.beckhoff.com/
content/1033/TcPIcLib Tc2 System/Resources/707895179.zip

([
1 Network drives cannot be accessed using the FB_FileCopy function block.

A rising edge at the bExecute input of the FB_FileCopy block results in execution of the following steps.
a) Open the source and destination files

b) Read the source file into a buffer

c) Write the bytes that have been read from the buffer into the destination file

d) Check whether the end of the source file has been reached. If not, then repeat b) and c). If yes, then jump
toe)

TE1000 Version: 1.17.0 143

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/707895179.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/707895179.zip

Samples

BECKHOFF

e) Close the source and destination files;

The file is copied one segment at a time. In this example, the size of the buffer has been specified as 1000

bytes, but this can be modified.

PLC program

[PrOGRAM MATH
VAR

fbFileCopy : FB_FileCopy:
bCopy : BOOL;
bBusy BOOL;
bError : BOOL;
nErrlid : UDINT:
END VAR

I

"172.17.60.233.1.1"
"C:\Temp'\Settings.txt’
'172.17.60.240.1.1"
"'C:\IwinCAT \NewSettings.txt'
bCopy

T#&5s

Declaration Part
FUNCTIONiBLOCK FBiFileCopy

F
fbFileCopy

FB FileCopy
sSrcNEtIE
sS5rcPathName
gDestHetId
sDestPathHame
bBExecute
tTimelut

bBuay
bBError
nErrid

bBusy
—bError
—nErrld

VAR INPUT
sSrcNetId : T AmsNetId;
sSrcPathName : T _MaxString;
sDestNetId : T AmsNetId;
sDestPathName : T MaxString;
bExecute : BOOL;
tTimeOut : TIME := DEFAULT ADS TIMEOUT;
END VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
VAR
fbFileOpen FB FileOpen;
fbFileClose FB FileClose;
fbFileRead FB FileRead;
fbFileWrite : FB FileWrite;
hSrcFile : UINT := 0; (* File handle of the source file *)
hDestFile : UINT := 0; (* File handle of the destination file ¥*)
Step : DWORD;
RisingEdge : R _TRIG;
buffRead : ARRAY[1..1000] OF BYTE; (* Buffer *)
cbReadLength : UDINT := 0;
END_ VAR
Implementation
RisingEdge (CLK:=bExecute) ;
CASE Step OF
0: (* Idle state *)
IF RisingEdge.Q THEN
bBusy := TRUE;
bError:= FALSE;
nErrId:=0;
Step := 1;

cbReadLength:=0;
hSrcFile:=0;

144

Version: 1.17.0

TE1000

BEGKHOFF Samples

hDestFile:=0;
END IF

1s (* Open source file *)
fbFileOpen (bExecute := FALSE);
fbFileOpen(sNetId := sSrcNetlId, sPathName := sSrcPathName,
nMode := FOPEN MODEREAD OR FOPEN_MODEBINARY,
ePath := PATH GENERIC, tTimeout := tTimeOut, bExecute := TRUE);
Step := Step + 1;

fbFileOpen (bExecute := FALSE);
IF NOT fbFileOpen.bBusy THEN
IF fbFileOpen.bError THEN
nErrId := fbFileOpen.nErrId;
bError := TRUE;
Step := 50;
ELSE
hSrcFile := fbFileOpen.hFile;
Step := Step + 1;
END IF
END IF

33 (* Open destination file *)
fbFileOpen (bExecute := FALSE);
fbFileOpen(sNetId := sDestNetlId, sPathName := sDestPathName,
nMode := FOPEN MODEWRITE OR FOPEN MODEBINARY,
ePath := PATH GENERIC, tTimeout := tTimeOut, bExecute := TRUE);
Step := Step+tl;

fbFileOpen (bExecute := FALSE);
IF NOT fbFileOpen.bBusy THEN
IF fbFileOpen.bError THEN
nErrId := fbFileOpen.nErrId;
bError := TRUE;
Step := 50;
ELSE
hDestFile := fbFileOpen.hFile;
Step := Step + 1;
END IF
END IF

53 (* Read data from source file ¥*)
cbReadLength := 0;
fbFileRead (bExecute:= FALSE);
fbFileRead (sNetId:=sSrcNetId, hFile:=hSrcFile,
pReadBuff:= ADR (buffRead), cbReadLen:= SIZEOF (buffRead),
bExecute:=TRUE, tTimeout:=tTimeOut) ;
Step := Step + 1;

fbFileRead (bExecute:= FALSE);
IF NOT fbFileRead.bBusy THEN
IF fbFileRead.bError THEN
nErrId := fbFileRead.nErrId;
bError := TRUE;
Step := 50;
ELSE
cbReadLength := fbFileRead.cbRead;
Step := Step + 1;
END IF
END IF

7: (* Write data to destination file *)
fbFileWrite (bExecute := FALSE);
fbFileWrite (sNetId:=sDestNetId, hFile:=hDestFile,
pWriteBuff:= ADR (buffRead), cbWritelen:= cbReadlLength,
bExecute:=TRUE, tTimeout:=tTimeOut) ;
Step := Step + 1;

fbFileWrite (bExecute := FALSE);
IF NOT fbFileWrite.bBusy THEN
IF fbFileWrite.bError THEN

nErrId := fbFileWrite.nErrId;
bError := TRUE;
Step := 50;
ELSE
IF fbFileRead.bEOF THEN (* Check if the EOF flag ist set *)
Step := 50; (* Cleanup: close the destination and source files ¥*)
ELSE
Step := 5; (* Repeat reading/writing *)
END IF

TE1000 Version: 1.17.0 145

Samples BEGKHOFF

END IF
END IF
30: (* Close the destination file ¥*)
fbFileClose (bExecute := FALSE);
fbFileClose (sNetId:=sDestNetId, hFile:=hDestFile, bExecute:=TRUE, tTimeout:=tTimeOut);
Step := Step + 1;
31:
fbFileClose (bExecute := FALSE);
IF NOT fbFileClose.bBusy THEN
IF fbFileClose.bError THEN
nErrId := fbFileClose.nErrId;
bError := TRUE;
END IF
Step := 50;
hDestFile := 0;
END IF
40: (* Close source file *)
fbFileClose (bExecute := FALSE);
fbFileClose (sNetId:=sSrcNetlId, hFile:=hSrcFile, bExecute:=TRUE, tTimeout:=tTimeOut);
Step := Step + 1;
41:
fbFileClose (bExecute := FALSE);

IF NOT fbFileClose.bBusy THEN
IF fbFileClose.bError THEN

nErrId := fbFileClose.nErrId;
bError := TRUE;

END IF

Step := 50;

hSrcFile := 0;

END IF

50: (* Error or ready => Cleanup *)
IF (hDestFile <> 0) THEN

Step := 30; (* Close the destination file¥)
ELSIF (hSrcFile <> 0) THEN

Step := 40; (* Close the source file *)
ELSE

Step := 0; (* Ready ¥*)

bBusy := FALSE;
END IF

END_CASE

7.7 Testing the CPU reserve of a CX70xx

This example is a test project for testing the CPU reserve of a CX70xx. The included function block

FB Test CPU Performance measures the CPU reserve you have with your application. The function
block reads the current CPU power and cycle time. The function block then increases the CPU load until the
CXT7k no longer operates in real time. Then it reduces the load again until a stable real time is reached. The
function block then determines the CPU power and the cycle time and offsets them against the time and load
taken at the start of the measurement and gives you the delta. Use the function block for test purposes only
and not in a real environment.

If the CPU reserve is greater than 20%, you can make the task cycle time faster than the one currently in
use. The advantages of a faster task are faster reaction to inputs and, depending on the program content, a
faster application. A few milliseconds can add up to increase the output of a machine. A reserve power of 20
% is ideal.

The sources for the sample project can be unpacked here: https://infosys.beckhoff.com/content/1033/
TcPlclib Tc2 System/Resources/11298888331.zip

@ Falsified measurement result

1 If the function block is used in a low-priority task, the result is falsified and the real data cannot be
determined. Due to the long measurement, the slow tasks are also taken into account.

* If possible, always use the function block in the fastest high-priority task.

146 Version: 1.17.0 TE1000

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/11298888331.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc2_System/Resources/11298888331.zip

BECKHOFF

Samples

Loops or program sections not run through during the measurement falsify the

o
1 measurement

Loops, multiple tasks and thus strongly fluctuating cycle times cause a strongly fluctuating CPU

load.

» Set the TimeOut of the function block to a larger value, because the function block searches for
the highest CPU load and then takes longer than with a constant CPU load.

® Aborting the measurement

1 The function block can only be used if there are no real-time violations in your configuration. If the
function block reads out real-time violations already at start-up, the function block aborts the

measurement.

Information on the function block FB_ Test CPU Performance:

VAR_INPUT

Name Type Description

bExecute BOOL A positive edge activates the function block.
tTimeOut TIME Time to stop the measurement if exceeded.
VAR_OUTPUT

Name Type Description

bBusy BOOL The function block is active and working.

bError BOOL The function block has an error.

nErroriD UDINT ADS error code

nCpulLoadReserve UDINT Reserve of CPU in [%]

fCycleTimeReserve LREAL Cycle time reserve in [ms]

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.22 PC or CX (x86, x64, ARM) Tc2_System (system) >= 3.4.25.0

TE1000

Version: 1.17.0 147

Appendix BEGKHOFF

8 Appendix

8.1 ADS Return Codes

Grouping of error codes:

Global error codes: 0x0000 [»_148]... (0x9811_0000 ...)
Router error codes: 0x500 [P 148]... (0x9811_0500 ...)
General ADS errors: 0x700 [»_149]... (0x9811_0700 ...)
RTime error codes: 0x1000 [»_151]... (0x9811_1000 ...)

Global error codes

Hex Dec HRESULT Name Description

0x0 0 0x98110000 |ERR_NOERROR No error.

0x1 1 0x98110001 ERR_INTERNAL Internal error.

0x2 2 0x98110002 |ERR_NORTIME No real time.

0x3 3 0x98110003 |ERR_ALLOCLOCKEDMEM Allocation locked — memory error.

0x4 4 0x98110004 |ERR_INSERTMAILBOX Mailbox full — the ADS message could not be sent.
Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 |ERR_WRONGRECEIVEHMSG Wrong HMSG.

0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found — ADS server is not started, not
reachable or not installed.

0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found — AMS route was not found.

0x8 8 0x98110008 ERR_UNKNOWNCMDID Unknown command ID.

0x9 9 0x98110009 |ERR_BADTASKID Invalid task ID.

0xA 10 0x9811000A |ERR_NOIO No 10.

0xB 11 0x9811000B |ERR_UNKNOWNAMSCMD Unknown AMS command.

0xC 12 0x9811000C |ERR_WIN32ERROR Win32 error.

0xD 13 0x9811000D |ERR_PORTNOTCONNECTED Port not connected.

OxE 14 0x9811000E |ERR_INVALIDAMSLENGTH Invalid AMS length.

OxF 15 0x9811000F |ERR_INVALIDAMSNETID Invalid AMS Net ID.

0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low —TwinCAT 2 license error.

0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.

0x12 18 0x98110012 |ERR_PORTDISABLED Port disabled — TwinCAT system service not started.

0x13 19 0x98110013 |ERR_PORTALREADYCONNECTED Port already connected.

0x14 20 0x98110014 |ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.

0x15 |21 0x98110015 |ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.

0x16 |22 0x98110016 |ERR_AMSSYNC_AMSERROR AMS Sync error.

0x17 |23 0x98110017 |ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.

0x18 |24 0x98110018 |ERR_INVALIDAMSPORT Invalid AMS port.

0x19 25 0x98110019 |ERR_NOMEMORY No memory.

0x1A |26 0x9811001A |ERR_TCPSEND TCP send error.

0x1B |27 0x9811001B |ERR_HOSTUNREACHABLE Host unreachable.

0x1C |28 0x9811001C |ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.

0x1D |29 0x9811001D |ERR_TLSSEND TLS send error — secure ADS connection failed.

Ox1E |30 0x9811001E |ERR_ACCESSDENIED Access denied — secure ADS access denied.

Router error codes

148 Version: 1.17.0 TE1000

BEGKHOFF Appendix
Hex Dec HRESULT Name Description

0x500 |1280 |0x98110500 |ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 |1281 |0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 |1282 |0x98110502 |ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 |1283 |0x98110503 |ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 (1284 |0x98110504 |ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.

0x505 |1285 |0x98110505 |ROUTERERR_NOTINITIALIZED The router is not initialized.

0x506 (1286 |0x98110506 |ROUTERERR_PORTALREADYINUSE The port number is already assigned.

0x507 (1287 |0x98110507 |ROUTERERR_NOTREGISTERED The port is not registered.

0x508 |1288 |0x98110508 |ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.

0x509 (1289 |0x98110509 |ROUTERERR_INVALIDPORT The port is invalid.

0x50A |1290 |0x9811050A |ROUTERERR_NOTACTIVATED The router is not active.

0x50B {1291 |0x9811050B |ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for
fragmented messages.

0x50C [1292 |0x9811050C |ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.

0x50D {1293 |0x9811050D |ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

TE1000

Version: 1.17.0

149

Appendix BEGKHOFF
Hex Dec HRESULT Name Description

0x700 (1792 |0x98110700 |ADSERR_DEVICE_ERROR General device error.

0x701 (1793 |0x98110701 |ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.

0x702 (1794 |0x98110702 |ADSERR_DEVICE_INVALIDGRP Invalid index group.

0x703 (1795 |0x98110703 |ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.

0x704 (1796 |0x98110704 |ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
Several causes are possible. For example, an
incorrect password was entered when creating
routes.

0x705 (1797 |0x98110705 |ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.

0x706 [1798 |0x98110706 |ADSERR_DEVICE_INVALIDDATA Invalid data values.

0x707 (1799 |0x98110707 |ADSERR_DEVICE_NOTREADY Device is not ready to operate.

0x708 [1800 |0x98110708 |ADSERR_DEVICE_BUSY Device is busy.

0x709 [1801 |0x98110709 |ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result
from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A [1802 |0x9811070A |ADSERR_DEVICE_NOMEMORY Insufficient memory.

0x70B (1803 |0x9811070B |ADSERR_DEVICE_INVALIDPARM Invalid parameter values.

0x70C [1804 |0x9811070C |ADSERR_DEVICE_NOTFOUND Not found (files, ...).

0x70D (1805 |0x9811070D |ADSERR_DEVICE_SYNTAX Syntax error in file or command.

0x70E [1806 |0x9811070E |ADSERR_DEVICE_INCOMPATIBLE Objects do not match.

0x70F [1807 |0x9811070F |ADSERR_DEVICE_EXISTS Object already exists.

0x710 [1808 |0x98110710 |ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.

0x711 [1809 |0x98110711 |ADSERR_DEVICE_SYMBOLVERSIONINVALID |Invalid symbol version. This can occur due to an
online change. Create a new handle.

0x712 1810 |0x98110712 |ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.

0x713 |1811 |0x98110713 |ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.

0x714 [1812 |0x98110714 |ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.

0x715 (1813 |0x98110715 |ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.

0x716 [1814 |0x98110716 |ADSERR_DEVICE_NOMOREHDLS No further handle available.

0x717 [1815 |0x98110717 |ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.

0x718 |1816 |0x98110718 |ADSERR_DEVICE_NOTINIT Device not initialized.

0x719 [1817 |0x98110719 |ADSERR_DEVICE_TIMEOUT Device has a timeout.

0x71A [1818 |0x9811071A |ADSERR_DEVICE_NOINTERFACE Interface query failed.

0x71B [1819 |0x9811071B |ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.

0x71C [1820 |0x9811071C |ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.

0x71D [1821 |0x9811071D |ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.

0x71E |1822 |0x9811071E |ADSERR_DEVICE_PENDING Request pending.

0x71F [1823 |0x9811071F |ADSERR_DEVICE_ABORTED Request is aborted.

0x720 [1824 |0x98110720 |ADSERR_DEVICE_WARNING Signal warning.

0x721 [1825 |0x98110721 |ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.

0x722 [1826 |0x98110722 |ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.

0x723 (1827 |0x98110723 |ADSERR_DEVICE_ACCESSDENIED Access denied.
Several causes are possible. For example, a
unidirectional ADS route is used in the opposite
direction.

0x724 |1828 |0x98110724 |ADSERR_DEVICE_LICENSENOTFOUND Missing license.

0x725 [1829 |0x98110725 |ADSERR_DEVICE_LICENSEEXPIRED License expired.

0x726 [1830 |0x98110726 |ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.

0x727 [1831 |0x98110727 |ADSERR_DEVICE_LICENSEINVALID Invalid license.

0x728 [1832 |0x98110728 |ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.

0x729 [1833 |0x98110729 |ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.

0x72A (1834 |0x9811072A |ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.

0x72B (1835 |0x9811072B |ADSERR_DEVICE_LICENSETIMETOLONG License period too long.

0x72C [1836 |0x9811072C |ADSERR_DEVICE_EXCEPTION Exception at system startup.

0x72D [1837 |0x9811072D |ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.

0x72E |1838 |0x9811072E |ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.

0x72F [1839 |0x9811072F |ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.

0x730 [1840 |0x98110730 |ADSERR_DEVICE_LICENSEOEMNOTFOUND |Public key not known from OEM.

0x731 [1841 |0x98110731 |ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.

150

Version: 1.17.0

TE1000

BEGKHOFF Appendix
Hex Dec HRESULT Name Description

0x732 [1842 |0x98110732 |ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.

0x733 [1843 |0x98110733 |ADSERR_DEVICE_INVALIDFNCID Invalid function ID.

0x734 |1844 |0x98110734 |ADSERR_DEVICE_OUTOFRANGE Outside the valid range.

0x735 (1845 |0x98110735 |ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

0x736 |1846 |0x98110736 |ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

0x737 (1847 |0x98110737 |ADSERR_DEVICE_FORWARD_PL Context — forward to passive level.

0x738 (1848 |0x98110738 |ADSERR_DEVICE_FORWARD_DL Context — forward to dispatch level.

0x739 [1849 |0x98110739 |ADSERR_DEVICE_FORWARD_RT Context — forward to real-time.

0x740 [1856 |0x98110740 |ADSERR_CLIENT_ERROR Client error.

0x741 [1857 |0x98110741 |ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.

0x742 [1858 |0x98110742 |ADSERR_CLIENT_LISTEMPTY Polling list is empty.

0x743 (1859 |0x98110743 |ADSERR_CLIENT_VARUSED Var connection already in use.

0x744 [1860 |0x98110744 |ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.

0x745 (1861 |0x98110745 |ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred — the remote terminal is not
responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 [1862 |0x98110746 |ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.

0x747 [1863 |0x98110747 |ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.

0x748 [1864 |0x98110748 |ADSERR_CLIENT_PORTNOTOPEN Port not open.

0x749 [1865 |0x98110749 |ADSERR_CLIENT_NOAMSADDR No AMS address.

0x750 [1872 |0x98110750 |ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.

0x751 [1873 |0x98110751 |ADSERR_CLIENT_ADDHASH Hash table overflow.

0x752 [1874 |0x98110752 |ADSERR_CLIENT_REMOVEHASH Key not found in the table.

0x753 |1875 |0x98110753 |ADSERR_CLIENT_NOMORESYM No symbols in the cache.

0x754 (1876 |0x98110754 |ADSERR_CLIENT_SYNCRESINVALID Invalid response received.

0x755 [1877 |0x98110755 |ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

0x756 [1878 |0x98110756 |ADSERR_CLIENT_REQUESTCANCELLED The request was canceled.

RTime error codes

Hex Dec HRESULT Name Description

0x1000 4096 |0x98111000 |RTERR_INTERNAL Internal error in the real-time system.

0x1001 |4097 |0x98111001 |RTERR_BADTIMERPERIODS Timer value is not valid.

0x1002 |4098 |0x98111002 |RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).

0x1003 4099 |0x98111003 |RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).

0x1004 4100 |0x98111004 |RTERR_PRIOEXISTS The request task priority is already assigned.

0x1005 |4101 |0x98111005 |RTERR_NOMORETCB No free TCB (Task Control Block) available. The
maximum number of TCBs is 64.

0x1006 (4102 |0x98111006 |RTERR_NOMORESEMAS No free semaphores available. The maximum number of
semaphores is 64.

0x1007 [4103 |0x98111007 |RTERR_NOMOREQUEUES No free space available in the queue. The maximum
number of positions in the queue is 64.

0x100D 4109 |0x9811100D |RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.

0x100E |4110 |0x9811100E |RTERR_EXTIRQNOTDEF No external sync interrupt applied.

0x100F 4111 |0x9811100F |RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has
failed.

0x1010 4112 |0x98111010 |RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context

0x1017 |4119 |0x98111017 |RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.

0x1018 4120 |0x98111018 |RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.

0x1019 4121 |0x98111019 |RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.

0x101A |4122 |0x9811101A |RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

TE1000

Version: 1.17.0

151

Appendix BEGKHOFF
HRESULT Name Description

0x0000_0000 S_OK No error.

0x0000_0001 S_FALSE No error.
Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.

Example: successful processing, but a timeout occurred.

TCP Winsock error codes

Hex Dec

Name

Description

0x274C 10060

WSAETIMEDOUT

A connection timeout has occurred - error while establishing the
connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.
0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes
152 Version: 1.17.0 TE1000

BEGKHOFF Appendix

8.2 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:
* support
» design, programming and commissioning of complex automation systems
» and extensive training program for Beckhoff system components
Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
 spare parts service
* hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20

33415 Verl

Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

TE1000 Version: 1.17.0 153

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Trademark statements

Beckhoff®, ATRO® , EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®,
TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar®, and XTS® are registered and licensed trademarks of Beckhoff Automation GmbH.

Third-party trademark statements

Arm, Arm9 and Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere.
Intel, the Intel logo, Intel Core, Xeon, Intel Atom, Celeron and Pentium are trademarks of Intel Corporation or its subsidiaries.

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

More Information:
www.beckhoff.com/te1000

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.com?subject=TE1000
https://www.beckhoff.com
https://www.beckhoff.com/te1000

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Function blocks
	3.1 General function blocks
	3.1.1 DRAND
	3.1.2 FB_IecCriticalSection
	3.1.3 FB_ReadTaskExceedCounter
	3.1.4 FB_ResetTaskExceedCounter
	3.1.5 FB_SetLedColor_BAPI
	3.1.6 FB_SetLedColorEx_BAPI
	3.1.7 GETCURTASKINDEX
	3.1.8 FB_CreateGUID

	3.2 ADS function blocks
	3.2.1 Control + State
	3.2.1.1 ADSRDSTATE
	3.2.1.2 ADSWRTCTL
	3.2.1.3 ADSRDDEVINFO

	3.2.2 Indication + Response
	3.2.2.1 Overview
	3.2.2.2 ADSREADIND
	3.2.2.3 ADSREADINDEX
	3.2.2.4 ADSWRITEIND
	3.2.2.5 ADSWRITEINDEX
	3.2.2.6 ADSRDWRTIND
	3.2.2.7 ADSRDWRTINDEX
	3.2.2.8 ADSREADRES
	3.2.2.9 ADSWRITERES
	3.2.2.10 ADSRDWRTRES

	3.2.3 ADSREAD
	3.2.4 ADSREADEX
	3.2.5 ADSWRITE
	3.2.6 ADSRDWRT
	3.2.7 ADSRDWRTEX

	3.3 File function blocks
	3.3.1 FB_EOF
	3.3.2 FB_FileOpen
	3.3.3 FB_FileClose
	3.3.4 FB_FileLoad
	3.3.5 FB_FileGets
	3.3.6 FB_FilePuts
	3.3.7 FB_FileRead
	3.3.8 FB_FileWrite
	3.3.9 FB_FileSeek
	3.3.10 FB_FileTell
	3.3.11 FB_FileDelete
	3.3.12 FB_FileRename
	3.3.13 FB_CreateDir
	3.3.14 FB_RemoveDir

	3.4 EventLogger function blocks
	3.4.1 ADSLOGEVENT
	3.4.2 ADSCLEAREVENTS
	3.4.3 FB_SimpleAdsLogEvent

	3.5 IEC steps / SFC flags function blocks
	3.5.1 AnalyzeExpression
	3.5.2 AnalyzeExpressionTable
	3.5.3 AnalyzeExpressionCombined
	3.5.4 AppendErrorString
	3.5.5 SFCActionControl

	3.6 Watchdog function blocks
	3.6.1 FB_PcWatchdog
	3.6.2 FB_PcWatchDog_BAPI

	3.7 Time function blocks
	3.7.1 GETCPUACCOUNT
	3.7.2 GETCPUCOUNTER

	4 Functions
	4.1 General functions
	4.1.1 F_CheckMemoryArea
	4.1.2 F_CmpLibVersion
	4.1.3 F_CreateIPv4Addr
	4.1.4 F_ScanIPv4AddrIds
	4.1.5 F_GetCpuCoreIndex
	4.1.6 F_GetCpuCoreInfo
	4.1.7 F_GetMappingPartner
	4.1.8 F_GetMappingStatus
	4.1.9 F_GetStructMemberAlignment
	4.1.10 F_GetTaskInfo
	4.1.11 F_RaiseException
	4.1.12 F_SplitPathName
	4.1.13 SETBIT32
	4.1.14 CSETBIT32
	4.1.15 GETBIT32
	4.1.16 CLEARBIT32
	4.1.17 GETCURTASKINDEXEX
	4.1.18 LPTSIGNAL
	4.1.19 TestAndSet

	4.2 ADS functions
	4.2.1 ADSLOGDINT
	4.2.2 ADSLOGLREAL
	4.2.3 ADSLOGSTR
	4.2.4 F_CreateAmsNetId
	4.2.5 F_ScanAmsNetIds

	4.3 Character functions
	4.3.1 F_ToCHR
	4.3.2 F_ToASC

	4.4 I/O port access
	4.4.1 F_IOPortRead
	4.4.2 F_IOPortWrite

	4.5 Memory functions
	4.5.1 MEMCMP
	4.5.2 MEMCPY
	4.5.3 MEMMOVE
	4.5.4 MEMSET

	4.6 Time functions
	4.6.1 F_GetSystemTime
	4.6.2 F_GetTaskTime
	4.6.3 F_GetTaskTotalTime

	4.7 [Obsolete]
	4.7.1 F_GetVersionTcSystem
	4.7.2 GETSYSTEMTIME
	4.7.3 GETTASKTIME

	5 Data types
	5.1 E_IOAccessSize
	5.2 E_OpenPath
	5.3 E_SeekOrigin
	5.4 E_TcEventClass
	5.5 E_TcEventClearModes
	5.6 E_TcEventPriority
	5.7 E_TcEventStreamType
	5.8 E_TcMemoryArea
	5.9 E_UsrLED_Color
	5.10 EPlcMappingStatus
	5.11 ST_AmsAddr
	5.12 ST_CpuCoreInfo
	5.13 SYSTEMINFOTYPE
	5.14 SYSTEMTASKINFOTYPE
	5.15 T_AmsNetID
	5.16 T_AmsNetIdArr
	5.17 T_AmsPort
	5.18 T_IPv4Addr
	5.19 T_IPv4AddrArr
	5.20 T_MaxString
	5.21 TcEvent

	6 Global constants
	6.1 Constants
	6.2 Library version

	7 Samples
	7.1 Example with AdsReadInd /AdsReadRes function blocks
	7.2 Example with AdsWriteInd/AdsWriteRes function blocks
	7.3 Example with AdsRead function block
	7.4 Example with AdsWrite function block
	7.5 Sending/acknowledging EventLogger signals from the PLC
	7.6 File access from the PLC
	7.7 Testing the CPU reserve of a CX70xx

	8 Appendix
	8.1 ADS Return Codes
	8.2 Support and Service

		documentation@beckhoff.com
	2025-07-24T13:29:40+0200
	Beckhoff Automation, Verl
	Documentation Publishing

