
Manual | EN

TF8560
TwinCAT 3 | Plastic Technology Functions

2024-01-16 | Version: 1.0.1

Table of contents

TF8560 3Version: 1.0.1

Table of contents
1 Foreword.. 7

1.1 Notes on the documentation ... 7
1.2 For your safety .. 7
1.3 Notes on information security.. 9

2 Concept of Libraries ... 10

3 Concept of Axes.. 12
3.1 FB_AxisBase and derived Axes.. 12
3.2 Axes Instantiation.. 12

3.2.1 FB_AxisHydraulicBase... 13
3.2.2 FB_AxisInvBase... 14
3.2.3 FB_AxisNcBase ... 14

3.3 Access to axes .. 15
3.3.1 Access to the axes via interfaces... 15
3.3.2 Accessing the properties of an axis ... 19
3.3.3 Calling methods of an axis ... 19
3.3.4 States & state machine of an axis.. 19

3.4 Transformation axes ... 20
3.4.1 Construction of a transforming axis.. 20
3.4.2 Semi-transformation mode... 21
3.4.3 Full transformation mode ... 22

4 Core functions concept .. 23
4.1 Embedding core functions in an axis .. 23
4.2 The basics of core functions ... 23
4.3 Classification of core functions.. 24

4.3.1 Permanently active core functions ... 24
4.3.2 Commanded core functions ... 24

5 Core functions of the axis .. 32
5.1 Actuals .. 33
5.2 ActualsHydraulics (hydraulics axes only) .. 33
5.3 ActualsNc (Nc axes only) .. 34
5.4 AutoIdent (hydraulic axes only) ... 34

5.4.1 DoAutoIdent ... 35
5.4.2 SetParameter ... 36

5.5 Camming... 38
5.5.1 DoCamming ... 39
5.5.2 SetGuidingValue .. 40
5.5.3 SetLookupInterface .. 40

5.6 DirectOutput (hydraulics axes only) .. 41
5.6.1 DoActivate.. 41

5.7 DisableSoftEnd ... 42
5.7.1 DoDisable... 43
5.7.2 ReEnable ... 43

5.8 Estop ... 44

Table of contents

TF85604 Version: 1.0.1

5.8.1 DoEstop ... 45
5.9 Homing.. 45

5.9.1 Abort... 46
5.9.2 AbsoluteSwitch... 48
5.9.3 AbsoluteSwitchDetect .. 51
5.9.4 Block .. 54
5.9.5 BlockDetect .. 57
5.9.6 Finish.. 61
5.9.7 LimitSwitch ... 63
5.9.8 LimitSwitchDetect... 66

5.10 Jog .. 68
5.10.1 DoJogM.. 69
5.10.2 DoJogP .. 70
5.10.3 SetParameter ... 71

5.11 MotionParams ... 72
5.12 MotionSetpoints .. 74
5.13 Power .. 74

5.13.1 DoPower .. 75
5.13.2 FeedEnable.. 76

5.14 PressureControl .. 76
5.14.1 PressureControl.PID .. 77
5.14.2 FB_PressureControlParams_PID .. 81
5.14.3 E_PressureControlParam .. 85

5.15 Ptp... 86
5.15.1 CheckPoint... 87
5.15.2 DoMove.. 87
5.15.3 GetClampPoint... 88
5.15.4 GetPoint ... 88
5.15.5 GetUpdatedPoint.. 89
5.15.6 InvalidateClampPoint ... 89
5.15.7 InvalidateTable... 90
5.15.8 SetClampPoint ... 90
5.15.9 SetPoint.. 90
5.15.10 UpdatePosition... 91

5.16 PtpLookUp .. 92
5.16.1 GetPoint ... 93
5.16.2 Invalidate.. 93
5.16.3 ReadMaster.. 93
5.16.4 SetPoint.. 94
5.16.5 UpdatePosition... 95
5.16.6 ST_LookUpPtpPoint... 96

5.17 SetPosition .. 96
5.17.1 DoSetPosition .. 97
5.17.2 SetParameter ... 97

5.18 Stop... 98
5.18.1 DoStop ... 99

Table of contents

TF8560 5Version: 1.0.1

5.18.2 SetParameter ... 99
5.19 ToolAdaptation .. 100
5.20 VelocityFeed ... 101

5.20.1 DoFeed .. 101

6 Axis properties and methods... 103
6.1 Axis properties .. 103
6.2 Axis methods... 104

6.2.1 FB_init .. 106
6.2.2 Cyclic.. 108
6.2.3 SetProcessHandler .. 109

7 Utilities ... 110
7.1 Functions for customizing enumerations... 110
7.2 Filter .. 110

7.2.1 FB_FilterBase .. 110
7.2.2 FB_FilterPt1 ... 111
7.2.3 FB_FilterSlewRateLimit.. 112

7.3 Simulation ... 112
7.3.1 Simulation of an EtherCAT based servo drive axis.. 113
7.3.2 Simulation of an inverter drive axis .. 118
7.3.3 I/O Simulation containers ... 121
7.3.4 Common simulation components... 123
7.3.5 Components of the hydraulic simulation .. 128

7.4 Pressure handling ... 136
7.4.1 FB_ProcessHandlerBase... 136
7.4.2 E_SwitchoverParameter .. 139
7.4.3 FB_ReadProcessValue.. 140

7.5 FB_CheckDemoMode... 141
7.5.1 Cyclic.. 142

Table of contents

TF85606 Version: 1.0.1

Foreword

TF8560 7Version: 1.0.1

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TF85608 Version: 1.0.1

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF8560 9Version: 1.0.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Concept of Libraries

TF856010 Version: 1.0.1

2 Concept of Libraries
TF8560 TC3 Plastic Technology Functions is a solution that allows the plastics processing industry to rapidly
implement TwinCAT 3-based motion tasks.

In plastics processing machines, two different drive types, electric and hydraulic, can be used individually or
in combination. The underlying Motion Control libraries for these two drive types are different. Therefore,
there is the TwinCAT 3 NC PTP (TF5000) for electric axes and the TwinCAT 3 Hydraulic Positioning
(TF5810) for hydraulic axes on the TwinCAT 3 platform. If the control program is developed directly on the
basis of these two Motion Control libraries, the customer must re-implement all interfaces that call different
libraries when the drive technology is changed.

TC3 Plastic Technology Functions provides a unified interface for the common functions of the hydraulic and
electric Motion Control libraries. When developing the control program based on TC3 Plastic Technology
Functions, only minimal modification is necessary for a different drive technology.

In addition, the elementary motion tasks commonly used in plastics processing, such as cam plates for wall
thickness control, multi-segment PTP motion, and pressure control, have been implemented and fully tested
in TC3 Plastic Technology Functions, encapsulated as core functions. Customers are freed from building
them from scratch and can directly use the provided components to achieve complex functions with little
engineering effort.

The basic concept of TC3 Plastic Technology Functions:

• Uniformity: A uniform interface for calling common Motion Control functions for hydraulic and electric
axes.

• Ready-to-use: Implementation and encapsulation of essential motion tasks commonly used in plastics
processing processes.

• Expandability: Extension or modification of the functions through inheritance.
• Flexibility: Choice of language, object/process-oriented programming approach, multitasking/multi-core

capability (to be tested).

TC3 Plastic Technology Functions libraries and license

TC3 Plastic Technology Functions can be considered as an interface between the customer application and
the TwinCAT 3 platform. TC3 Plastic Technology Functions consists of three libraries, namely
Tc3_PlasticFunctions, Tc3_PlasticNc, and Tc3_PlasticHydraulic. Their dependencies are as shown in the
figure below. Tc3_PlasticFunctions implements the common functions for both drive types. The functions
specific to the electric or hydraulic axes are implemented respectively in Tc3_PlasticNc and
Tc3_PlasticHydraulic and will correspondingly call TF5000 TwinCAT 3 NC PTP or TF5810 TwinCAT 3
Hydraulic Positioning.

Concept of Libraries

TF8560 11Version: 1.0.1

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

Concept of Axes

TF856012 Version: 1.0.1

3 Concept of Axes
When setting up the functions of an axis, the methods and properties for implementing an elementary motion
task are bundled in special function blocks. These are so-called core functions, which can be an active
command, such as executing a multi-segment PTP movement, or a passive task, such as displaying the
motion state and parameters of an axis, and are described in more detail in the chapter "Core functions
concept".

3.1 FB_AxisBase and derived Axes
TC3 Plastic Technology Functions defines FB_AxisBase as a virtual base axis. This provides the core
functions required for both electric and hydraulic drives. FB_AxisBase cannot be instantiated because it is
defined as ABSTRACT and the link to specific Motion Control libraries is missing.

FB_AxisNcBase for electrical axes or FB_AxisHydraulicBase for hydraulic axes are derived by inheriting
FB_AxisBase. On the one hand, the connection to the Motion Control libraries is established. On the other
hand FB_AxisNcBase and FB_AxisHydraulicBase add core functions for their specific scene. The following
figure shows how the axis FBs are structured in TC3_Plastic Technology Functions.

3.2 Axes Instantiation
FB_AxisNcBase, FB_AxisHydraulicBase and FB_AxisInvBase can be instantiated. Following you will find
sample code of how to create instances of these axis types. The input variables of these FBs are all defined
in the method FB_init(). FB_init() is always called implicitly when initializing an instance of a FB. For a
detailed description see FB_init().

Some input variables of FB_init() must be assigned mandatory, while others are optional and can be 0. The
following table shows the requirements of FB_AxisNcBase, FB_AxisHydraulicBase and FB_AxisInvBase
when assigning their input variables. For a detailed explanation of each input variable, see METHOD
FB_init().

The open source Tc3_PlasticBaseApplication project, based on TC3_Plastic Technology Functions, has
designed common machine axes and their motion tasks in blow molding or injection molding machines, such
as clamp, carriage, blow pin, wall thickness control, etc. Customers can use it according to their needs,
either to create their own applications or to use this Tc3_PlasticBaseApplication project as a tutorial for
TC3_Plastic Technology Functions. The code for Tc3_PlasticBaseApplication is available here.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/6413748235.html?id=2638086927809860687
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/5094414603.html?id=6967794353598129051
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/5094414603.html?id=6967794353598129051
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/5094414603.html?id=6967794353598129051
https://infosys.beckhoff.com/content/1033/tf85xx_plastic_application/index.html?id=4930837044086417637

Concept of Axes

TF8560 13Version: 1.0.1

Name Description
FB_AxisHydraulicBase Hydraulic axes, operated with the Tc2_Hydraulics library.
FB_AxisNcBase Servo axes, operated with the Tc2_MC2 library.
FB_AxisInvBase Inverter axes.

3.2.1 FB_AxisHydraulicBase

This FB creates an axis operated with the Tc2_Hydraulics library.

Syntax:
fbHydClampAxis1 : FB_AxisHydraulicBase
 (
 AxisName := 'HydClampAxis1',
 nPtpPoints := 10,
 iProcessHandler := 0,
 iPosCamLookup := 0,
 iVeloCamLookup := 0,
 iEncoder := fbHydClampAxisEncIn01,
 iDrive := fbHydClampAxisDriveOut01,
 iPressureP := fbHydClampAxis1PrsInP,
 iPressureM := fbHydClampAxis1PrsInM,
 iPosFilter := 0,
 iVeloFilter := 0
);

Name Type Obligatory
AxisName STRING Yes Used for messages and file names,

among other things.
nPtpPoints INT Yes Number of available segments in PTP

tables.
iProcessHandler I_ProcessHandler No Optional: A function block for handling

pressures and other process variables.
iPosCamLookup I_CammingLookup No Optional: A lookup function block with a

PvsP camming table.
iVeloCamLookup I_CammingLookup No Optional: A lookup function block with a

VvsP camming table.
iEncoder I_InputBase Yes A function block for determining the

actual position.
iDrive I_OutputBase Yes A function block for the connection of a

drive.
iPressureP I_InputBase No Optional: A function block for

determining the pressure on the positive
acting cylinder surface.

iPressureM I_InputBase No Optional: A function block for
determining the pressure on the
negative acting cylinder surface.

iPosFilter I_Filter No Optional: A function block for filtering the
actual position.

iVeloFilter I_Filter No Optional: A function block for filtering the
actual velocity.

Required libraries
Hydraulic axes require the Tc2_Hydraulics library.

Concept of Axes

TF856014 Version: 1.0.1

3.2.2 FB_AxisInvBase

This FB creates an axis operated with a simple inverter. The axis does not require position feedback and
does not support position-bound functions.

Syntax:
fbInvExtruder : FB_AxisInvBase
 (
 AxisName := 'InvExtruder',
 nPtpPoints := 10,
 iProcessHandler := 0,
 iPosCamLookup := 0,
 iVeloCamLookup := 0
);

Name Type Obligatory
AxisName STRING Yes Used for messages and file names,

among other things.
nPtpPoints INT Yes Number of available segments in PTP

tables.
iProcessHandler I_ProcessHandler No Optional: A function block for handling

pressures and other process variables.
iPosCamLookup I_CammingLookup No Optional: A lookup function block with a

PvsP camming table.
iVeloCamLookup I_CammingLookup No Optional: A lookup function block with a

VvsP camming table.

Required libraries
Inverter axes are fully implemented in Tc3_PlasticFunctions and do not require the libraries
mentioned above.

This type of axis is prepared for the use of drive components whose definition is below the possibilities of a
servo axis. The biggest problem might be the lack of position feedback. But even very simple drives like
frequency inverters may be used to support some tasks in a machine, such as turning an extruder or moving
a conveyor belt.

3.2.3 FB_AxisNcBase

This FB creates an axis operated with the Tc2_MC2 library.

Syntax:
fbNcClampAxis1 : FB_AxisNcBase
 (
 AxisName := 'NcClampAxis1',
 nPtpPoints := 10,
 iProcessHandler := 0,
 iPosCamLookup := 0,
 iVeloCamLookup := 0
);

Concept of Axes

TF8560 15Version: 1.0.1

Name Type Obligatory
AxisName STRING Yes Used for messages and file names,

among other things.
nPtpPoints INT Yes Number of available segments in PTP

tables.
iProcessHandler I_ProcessHandler No Optional: A function block for handling

pressures and other process variables.
iPosCamLookup I_CammingLookup No Optional: A lookup function block with a

PvsP camming table.
iVeloCamLookup I_CammingLookup No Optional: A lookup function block with a

VvsP camming table.

Required libraries
NC-based axes require the Tc2_MC2 library and a TwinCAT NC license.

3.3 Access to axes

3.3.1 Access to the axes via interfaces
The TC3_Plastic Technology Functions creates the corresponding INTERFACEs for each function block
(FB). For a detailed description see INTERFACE concept. In this document the following naming rules are
applied:

FB_Xyz: Declaration of a function block

fbXyz: an instance of FB_Xyz

I_Xyz: the INTERFACE declaration corresponding to FB_Xyz

iXyz: a variable of I_Xyz that is instantiated with fbXyz

NOTICE
Don't access the fbXyz of an axis directly
We suggest that you don't access the fbXyz of an axis directly, but instead access the properties and
methods of the FB_Xyz via iXyz, as is shown below. This is because the development of I_Xyz in
TC3_Plastic Technology Functions only considers the properties and methods that are needed externally to
operate FB_Xyz. In contrast to that, the properties and methods that are only to be called by other methods
inside FB_Xyz do not appear in I_Xyz. As a result, iXyz is clearer than fbXyz and customers can find the
information they need faster than with fbXyz, while the risk of misuse is prevented.

It should be noted that TC3_Plastic Technology Functions creates two INTERFACEs with different
information content for each function block of the axes. E.g. FB_AxisBase has I_AxisBase and
I_AxisBaseDev. I_AxisBase contains the necessary functions of the axes for most common cases. In
contrast, I_AxisBaseDev provides more information access and enables customers to implement more
complex functions. For reasons of simplicity and security, it is recommended to use I_AxisBase.

The following table shows the properties and methods that can be accessed via the interfaces of the
individual axes. For detailed definitions, see Calling methods of an axis [} 19][link].

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/4256428299.html&id=

Concept of Axes

TF856016 Version: 1.0.1

I_AxisBase

Name Description
Actuals [} 33] An interface to a local function block that provides current actual values (positions,

velocities, etc.).
AutoTorqueLimitSelect A TRUE allows the axis to select an internal function block for torque limitation if

the type of a servo drive (CoE, SoE) has been detected.
AxisName The text-based name of the axis.
Camming [} 38] An interface to a local function block that provides functions for processing cam

plates.
CycleTime The call cycle time of the most important axis functionalities.
CycleTimeValid TRUE, if the call cycle time was determined to be valid.
Cyclic This method is called cyclically and organizes the calculation of the runtime values

of the axis.
DisableSoftEnd [} 42] An interface to a local function block that provides the ability to temporarily disable

the software limit switches of the axis and restore them to their original state.
DoReset This method triggers the clearing of error states in the axis and its local functions.
Estop [} 44] An interface to a local function block that cancels an active travel command and

brings the axis to a stop. If available, increased dynamic parameters are applied.
GetProcessHandler Reserved for future extension.
Homing [} 45] An interface to a local function block that provides a choice of homing procedures.

Jog [} 68] An interface to a local function block that commands motion without a specified
destination (driving on revocation).

MotionParams [} 72] An interface to a local function block that provides a set of axis parameters.

MotionSetpoints [} 74] An interface to a local function block that provides current setpoints (position,
velocity, etc.).

Power [} 74] An interface to a local function block that controls the general enable of the axis
and its directional feed enables.

Ptp [} 86] An interface to a local function block that triggers active motion. A table with a
section-by-section definition is used.

SetPosition [} 96] An interface to a local function block that is used to change the actual position of
the axis.

SetProcessHandler Reserved for future extension.
State The current state of the axis.
Stop [} 98] An interface to a local function block that cancels an active travel command and

brings the axis to a stop. The dynamics parameters of the travel command are
used.

SwitchOver Reserved for future extension.
TeachPosition An interface to a local function block that supports the commissioning of axes with

analog position measuring systems.
TeachUpdate An interface to a local function block that supports the commissioning of axes with

analog position measuring systems.
ToolAdaption [} 100] An interface to a local function block that performs the conversion of positions and

velocities between an axis and a tool.
TorqueLimiting An interface to a function block used for torque limitation of the axis.
VelocityFeed [} 101] An interface to a local function block that triggers a motion without specifying a

destination.

I_AxisBaseDev

Name Description
Actuals [} 33] See I_AxisBase
AppendCorefunction Reserved, for internal use only.
AutoTorqueLimitSelect See I_AxisBase

Concept of Axes

TF8560 17Version: 1.0.1

Name Description
AxisIsInverter TRUE, if the axis is implemented with a frequency inverter.
AxisIsNc TRUE, if the axis is based on TwinCAT NC.
AxisName See I_AxisBase
Camming [} 38] See I_AxisBase
CmdCurrent Reserved, a counter that assigns an identification to each activated command.
CmdNext Reserved, the next value to be used as CmdCurrent.
ConvertCountToPos Reserved, for internal use only.
ConvertPosToCount Reserved, for internal use only.
CoreDebug Reserved, an interface to a local function block that supports debugging.
CycleTime See I_AxisBase
CycleTimeValid See I_AxisBase
Cyclic See I_AxisBase
DisableSoftEnd [} 42] See I_AxisBase
DoReset See I_AxisBase
EnterCriticalSection Reserved, for internal use only.
Estop [} 44] See I_AxisBase
GetProcessHandler See I_AxisBase
ExtGenerated TRUE, if the setpoint generation is done via a special method.
ForceState This method changes the state of the axis with high priority.
GoErrorBase This method can be used to set the axis to an error state.
Homing [} 45] See I_AxisBase

Jog [} 68] See I_AxisBase
LeaveCriticalSection Reserved, for internal use only.
MotionParams [} 72] See I_AxisBase

MotionSetpoints [} 74] See I_AxisBase

Power [} 74] See I_AxisBase

Ptp [} 86] See I_AxisBase
PtpPoints The number of supported segments in the table supported by Ptp.
ReadCycleTime Reserved, used to determine the cycle time.
SetPosition [} 96] See I_AxisBase
SetProcessHandler See I_AxisBase
SetTorqueLimiting This method connects a function block for torque limitation with the axis.
State See I_AxisBase
Stop [} 98] See I_AxisBase
SwitchOver See I_AxisBase
TeachPosition See I_AxisBase
TeachUpdate See I_AxisBase
ToolAdaption [} 100] See I_AxisBase
TorqueLimiting See I_AxisBase
VelocityFeed [} 101] See I_AxisBase

I_AxisNcBase EXTENDS I_AxisBase

Name Description
ActualsNc [} 34] An interface to a local function block that provides current actual values

(positions, velocities, torque, etc.). It is an extended version of Actuals.

Concept of Axes

TF856018 Version: 1.0.1

I_AxisNcBaseDev EXTENDS I_AxisBaseDev

Name Description
ActualsNc [} 34] See I_AxisNcBase.
GetNcAxisRef The address to the mapping interface between NC and PLC.

I_AxisHydraulicBase EXTENDS I_AxisBase

Name Description
ActualsHydraulics [} 33] An interface to a local function block that provides current actual values

(positions, velocities, pressures, etc.). It is an extended version of Actuals.
AutoIdent [} 34] An interface to a function block that performs the automatic characteristic

measurement of the axis.
DirectOutput [} 41] An interface to a function block that allows direct output via the drive interface of

the axis.
UseDatFile A TRUE here signals that the axis loads its parameters with function blocks of

the hydraulics library from a file during startup.

I_AxisHydraulicBaseDev EXTENDS I_AxisBaseDev

Name Description
ActualsHydraulics [} 33] See I_AxisHydraulicsBase.

AutoIdent [} 34] See I_AxisHydraulicsBase.

DirectOutput [} 41] See I_AxisHydraulicsBase.
GetHydAxisRef The address to the mapping interface between hydraulics library and PLC.
NextHydAxisRef The hydraulic axes are organized in a simple linked list. This property gives

an interface to the successor.
NextHydAxisChainlength The number of successors of the axis.
PosFilter An interface to the function block used for filtering the actual position of the

axis.
PressureInputM An interface to the function block used to determine the actual pressure of

the axis acting in the negative direction of movement.
PressureInputP An interface to the function block used to determine the actual pressure of

the axis acting in the positive direction of movement.
SetDrive Here, an interface is transferred to a function block that executes the

communication with the hardware for the drive of the axis.
SetEncoder Here, an interface is transferred to a function block that executes the

communication with the hardware for the actual value acquisition of the axis.
UseDatFile See I_AxisHydraulicsBase.
VeloFilter An interface to the function block used for filtering the actual velocity of the

axis.

I_AxisInvBase EXTENDS I_AxisBase

Name Description
no additional functionality

I_AxisInvBaseDev EXTENDS I_AxisBaseDev

Name Description
RefDevice An interface to a local function block of the axis, which is used as an

interface between the general inverter axis and the special adaptation to the
used or simulated device.

RefMotionSetpoints An interface to a local function block of the axis, which allows the inverter
axis to provide its setpoints.

Concept of Axes

TF8560 19Version: 1.0.1

Name Description
RefReadParameter An interface to a local function block of the axis, which allows the inverter

axis to provide parameters.
RefReset An interface to a local function block of the axis, which allows the inverter

axis to clear errors that have occurred.
RefWriteParameter An interface to a local function block of the axis, which allows the inverter

axis to write parameters.

3.3.2 Accessing the properties of an axis
Some of the properties of axes are standard variables (e.g. iNcSampleAxis.AxisName of type STRING) and
the required information can be processed directly. Others are so-called core functions and of type
INTERFACE.

For example, the axis has a property of type I_Power called Power, which is the INTERFACE of FB_Power.
This interface can be used to access properties (e.g. iNcSampleAxis.Power.Status) and methods (e.g.
iNcSampleAxis.Power.DoPower()) provided there.

3.3.3 Calling methods of an axis
In TC3 Plastic Technology Functions, none of the code implementation is in the body of FBs, but in their
methods. The code in the methods is executed only when the methods are called. In TC3 Plastic Technology
Functions, the code that must be executed in every PLC cycle is placed in the Cyclic() method. Customers
should call this Cyclic() method in every PLC cycle when developing on the basis of TC3 Plastic Technology
Functions. For more details on how to call the methods of the axes, you can refer to Tc3
PlasticBaseApplication. See [Link] for more details on methods.

3.3.4 States & state machine of an axis
The state of an axis is declared via an enumeration of the type E_AxisState. This information is provided by
each axis as a property with the name State (e.g. iNcSampleAxis.State). The following states are defined:

State Description
eInit The axis is in the initialization phase and must be initialized according to the

application requirements. In this state the axis is not ready for operation.
eConfig The axis applies a series of parameters from the subordinate drive technology (NC,

hydraulics library). Settings that are important for correct operation are checked for
correspondence to the motion technology. ADS and mapping connections are also
tested at the same time.

eReady The axis has been successfully initialized and configured. It is ready to accept an
enable, given via iAxis.Power.

eIdle The axis is enabled and ready to accept motion commands (e.g. JogP()).
eBusy The axis is processing a command (e.g. JogP()).
eDone The axis has successfully completed a command (e.g.TableMove()).
eStopping The axis is in the state of processing a stop or Estop command.
eStopped The Stop command was successful.
eEmergencyStop The Estop command was successful.
eResetting The axis was instructed by Reset() to initiate the change from the state eFailed to the

state eReady.
eFailed The axis is in the error state.

The state machine of an axis is shown in the figure below:

Concept of Axes

TF856020 Version: 1.0.1

3.4 Transformation axes
The mechanical solution for some axes is created by implementing a non-linear transmission. Here, the tool
travel is not following the actuator movement by a constant ratio. This enables the optimization of axis
properties for varying requirements in individual areas of the travel. A differing behavior like this must be
represented by a matching software concept.

Examples: Toggles, Cranks, Scotch Yokes, Customized concepts.

3.4.1 Construction of a transforming axis
A transformation axis is a container object that implements the same interface as a standard Nc axis. Inside
this object there are two local standard axis objects, named Load Side and Drive Side. These internal
objects are used to handle the specific requirements for the effective tool and the actuator part. There is
almost no exchange between the application project and these internal objects because the usual
interactions use the interfaces of the container object.

Concept of Axes

TF8560 21Version: 1.0.1

Used symbols

Symbol Description
Actuals A common core function that contains information about the current

situation of the axis. There are alternative sub-versions for the different
axis types.

TA: Tool Adaptation A common core function that is used to handle the differences between
the axis and the effective tool.

TRx: Transformation A core function specific to transforming axes. It is used to convert actual
values of the drive side axis into load side actual values (TR1) and load
side setpoints (TR2) or setpoints (TR3) into drive side values.

MM: Operation mode select In this figure the "Full transformation mode" is selected.

3.4.2 Semi-transformation mode
In this operation mode all commands are forwarded to the Drive Side axis. To avoid unexpected position lag
errors, the Load Side axis is not enabled.

The actual position and velocity values of the Load Side are updated using translated values from the Drive
Side.

Any commanded motion will be executed by the Drive Side using translated target position values. A
commanded move to 100.0 will make the tool travel to 100.0 mm, no matter what Drive Side motor angle is
required.

Velocity cannot be translated
The commanded velocity cannot be translated because the result would depend on the position.

Concept of Axes

TF856022 Version: 1.0.1

No constant velocity
Because the profile generation is executed by the Drive Side axis, the tool will not travel with
constant velocity.

No position or velocity camming
A position or velocity camming is not supported.

3.4.3 Full transformation mode
In this operation mode, almost all commands are forwarded to the Load Side axis. Enabling the container
object will enable both internal axes.

The actual position and velocity values of the Load Side are updated using translated values from the Drive
Side.

The transformation will be performed by converting the output of the Load Side profile calculation. Again, a
commanded move to 100.0 will make the tool travel to 100.0 mm, no matter what Drive Side motor angle is
required.

Constant velocity
Because the profile generation is executed by the Load Side axis, the tool will travel with constant
velocity.

Excessive Drive Side velocity values required
In some areas of the travel, even low tool velocities may require excessive Drive Side velocity
values.

Full transformation temporarily paused
For Jog or Homing commands, the full transformation is temporarily paused. All position and
velocity values are used following Drive Side definitions without any translation.

Core functions concept

TF8560 23Version: 1.0.1

4 Core functions concept
In plastics machines, an axis must perform a variety of elementary motion tasks, such as multi-stage PTP
movements, pressure control, homing, and so on. Usually, these motion commands are independent of each
other and the axis performs only one motion command at a time. TC3 Plastic Technology Functions
implements and encapsulates each of these motion tasks in a separate FB called a core function.

The core functions are well tested and have been defined in a consistent format. The base axis defined in
TC3_Plastic Technology Functions provides the common core functions. By deriving a specific axis,
customers can also replace or append the function of a core function without affecting the behavior of other
core functions. This makes the TC3 Plastic Technology Functions flexible and easy to customize.

4.1 Embedding core functions in an axis
A core function cannot operate independently because it contains only the code implementation of the
motion task, but is not connected to the Motion Control library. When an axis is initialized, the core function
receives the interface of the axis, while the axis contains an interface of the core function. At the same time,
the core function receives interfaces to Motion Control library functions.

The axis creates a concatenated list to call its core functions. This list is used during the operation of the axis
for the following tasks:

• Signaling an Online Change
• Passing on information about the cycle time
• Cyclic calling of methods
• Command for resetting errors

The core functions have access to the information of the axis. In addition, it is possible to call the interfaces
of other core functions of the axis if this is necessary for the coordinated execution of tasks.

4.2 The basics of core functions
All core functions have a number of common features that are implemented in an ABSTRACT
FB_Corefunction.

A number of core functions are derived from FB_CorefunctionFeedback [} 24] and provide further properties
and methods.

Through the inheritance of FB_Corefunction, each core function receives the following properties:

Name Type Description
AxisState E_AxisState The current state of the axis state machine.
CycleTime LREAL The cycle time of the PLC task from which the Cyclic() method

of the core function is executed.
CycleTimeValid BOOL A TRUE signals that the CycleTime of the core function is

defined.
NextCore I_Corefunction This property is part of the execution chain and must not be

affected by the application task!
OnlineChangeMark BOOL The axis uses this property to signal an Online Change to the

core function.

 Methods

Name Description
Cyclic This method is called cyclically by the axis.

Core functions concept

TF856024 Version: 1.0.1

4.3 Classification of core functions
Core functions can be classified according to their different characteristics.

4.3.1 Permanently active core functions
A core function from this group does not accept any commands and remains active once it has established
and maintained a connection with the axis, i.e. it remains in ReadyState. The state transitions and conditions
of the constantly active core functions are shown in the figure below.

The following core functions are of this type:

Permanently active core
functions

Description

Actuals [} 33] Contains the state of the axis.

ActualsHydraulics [} 33] Is inherited from MotionActuals and extends it by hydraulic-specific elements.

ActualsNc [} 34] Is inherited from MotionActuals and extends it by NC-specific elements.

MotionParams [} 72] Provides access to a range of axis parameters.

MotionSetpoints [} 74] Contains the current setpoints of the axis.

PtpLookUp [} 92] Contains the multi-segment PTP move command.

ToolAdaptation [} 100] Contains the parameters of a tool adaptation. It provides methods for the
conversion between axis and tool positions.

4.3.2 Commanded core functions
These core functions are activated by a command. The functions of this group are derived from an
ABSTRACT FB_CorefunctionFeedback.

Thus all core functions of this group have the following properties:

Core functions concept

TF8560 25Version: 1.0.1

Name Type Description
AbortedState BOOL Signals the abort of a command by another core function.
BusyState BOOL Signals the active execution of a command.
DoneState BOOL Signals the successful execution of a command.
FailedState BOOL If IsActivated is TRUE at the same time: Signals the failure of an accepted

command.
If IsActivated is FALSE at the same time: Signals the rejection of a
command.

HasFeedback BOOL The core function has responded to a pending command.
IdleState BOOL The core function is ready for operation and commandable.
InitState BOOL The core function is not completely and successfully initialized.
IsActivated BOOL The core function has an accepted command pending.
IsCommanded BOOL Signals the pending of a command
IsLocalCmd BOOL Signals that the axis is assigned with a command of this core function.
ReadyState BOOL The core function is ready for operation, but is not commandable at this

time. Possible reasons are:
The axis is not released.
Another core function is active.

 Methods

Name Description
ApplyCommand This method is used internally by a number of core functions when they start an

active access to an axis.
DoReset This method resets the error message and the FailedState signal of the core

function.
RemoveCmd This method is used internally by a number of core functions when active

access to the axis is complete. A call to this method will cause IsLocalCmd to
report FALSE.

4.3.2.1 Edge-triggered core functions
The command accepted by these core functions is usually called bExcute (with the exception of Power,
which is described below).

The rising edge of bExecute triggers a series of checks to see if the execution conditions are met. If the
execution conditions are not met, the command is rejected and the core function is set to FailedState (case 1
in the figure below). If the execution conditions are met, the command is accepted and the core function
enters BusyState. The falling edge of bExecute does not directly trigger a response in BusyState (case b
below). If the command was executed successfully, the core function enters the DoneState (case 2 below),
otherwise it enters the FailedState (case 3 below). At this time it is checked if bExcute is still TRUE and the
state of the core function is changed in the next PLC cycle. The state transition is shown in the figure below.

Core functions concept

TF856026 Version: 1.0.1

Core functions concept

TF8560 27Version: 1.0.1

The following functions are edge-triggered core functions:

Core function Description
DisableSoftEnd
[} 42]

Is used to temporarily disable and re-enable the soft limit switches of the axis.

Homing [} 45] Provides a range of homing methods.

Power [} 74] Used to activate and deactivate the axis.

Ptp [} 86] Is used to perform multi-segment PTP movements.
Reset Is used to reset the error state of axis and devices.
SetPosition [} 96] Is used to change the actual position of the axis.

Estop [} 44] Command for emergency shutdown using the maximum dynamic parameters to stop
the axis.

Stop [} 98] Command for stop with the standard dynamic parameters for stopping the axis.

Core functions concept

TF856028 Version: 1.0.1

Core function Description
TeachPosition Reserved for future extension.
TeachUpdate Reserved for future extension.
AutoIdent [} 34] A special core function for hydraulic axes. It is used to identify the characteristic

velocity behavior of the axis.
DirectOutput
[} 41]

A special core function for hydraulic axes. It is used to send output signals directly to
the control device.

NOTICE
Power is different
Although power is an edge-triggered core function, the command for power is called bEnable. Power has a
different state machine than other edge-triggered core functions: with DoneState it returns to BusyState
when the bEnable signal changes.

Core functions concept

TF8560 29Version: 1.0.1

4.3.2.2 Statically controlled core functions
The command that is accepted by these core functions is usually called bEnable.

The rising edge of bEnable triggers a series of checks to determine whether the execution conditions are
met. If the execution conditions are not met, the command is rejected and the core function enters the
FailedState (case 1 in the figure below). If the execution conditions are met, the command is accepted and
the core function enters BusyState. The falling edge of bEnable triggers a response to terminate execution
(case 2 below).

If an error occurs during the execution of the command, the core function enters the FailedState (case 3
below). At this time it is checked if bEnable is still TRUE and the state of the core function is changed in the
next PLC cycle. The state machine is shown in the following figure.

The following core functions are statically controlled:

Core function Description
Camming [} 38] Is used to activate setpoint generation that is controlled by a guide value.

Jog [} 68] Is used to command a movement without a specified target.
PressureControl Is used to activate a pressure control circuit.
VelocityFeed [} 101] Is used to activate a movement without a specified target and a velocity that is

controlled by a guide value.

Core functions concept

TF856030 Version: 1.0.1

Core functions concept

TF8560 31Version: 1.0.1

Core functions of the axis

TF856032 Version: 1.0.1

5 Core functions of the axis
A wide range of axis commands is implemented as core function. Each core function is accessible via an
axis property and provides an interface. This implementation enables the following use:
Axis.CoreFunction.Property := assigned_value;

hrvar : HRESULT;

hrvar := Axis.CoreFunction.Methode(input:=…);
IF SUCCEEDED(hrvar) THEN …
IF FAILED(hrvar) THEN …

Core functions are instantiated within axes as local elements. At startup, the core function receives an
interface to its host axis and, if necessary, to a drive-related adaptation.

Terms used

Non-functional situation

A situation that does not allow the use of the core function. This may be caused by a failed or missing
initialization or any other problem that causes damage to the axis or its sub-components. In this case the
axis is permanently in InitState.

Idling situation

In this situation, the axis has no active, failed or completed command pending. As a rule, there are some
requirements that must be considered when activating the core function. If it can be activated, it reports
IdleState, otherwise ReadyState. Refer to the core function documentation for details.

No command
The core functions of the always active group do not support a command (and do not need one).
Consequently, they will not report IdleState at any time.

Active situation

While the core function is actively performing its task, it reports BusyState. This situation ends when a fault is
detected in the controlled component or device, or when another function has taken over control. For edge-
triggered core functions and some statically controlled core functions, this situation ends when the task is
successfully completed. In these cases, the core function is changed to the final situation.

Performed task is aborted
Statically controlled core functions leave this situation by terminating the executed task and falling
back into idle mode as soon as the command of the core function is cleared.

Final situation

In this situation, the signals are determined by the result of the previous active situation. A DoneState reports
a successfully completed task. A FailedState or AbortedState signals a bad result or the abort by another
function.

Check the command input
In the next cycle, after the result of the above active situation has been signaled, the core function
starts checking the command input. If the input is FALSE, the core function falls back to idle.

Core functions of the axis

TF8560 33Version: 1.0.1

5.1 Actuals

This core function is not instantiated directly. It is used as a common part of type-specific core functions like
ActualsHydraulics or ActualsNc.

All derivatives of Actuals are members of the group of permanently active core functions.

 Properties

Name Type Description
Acceleration LREAL The current actual acceleration.
DynamicsExceeded BOOL TRUE if the dynamic limits of the axis were exceeded during a

currently active camming.
This signal is only deleted when camming is stopped.

Jerk LREAL The current actual jerk.
Position LREAL The current actual position.
ProcessValue LREAL The current actual process value.
RawAxisPosition LREAL The unconverted current actual position.
SetEvent BOOL Reserved.
Velocity LREAL The current actual velocity.

New status interface

In a non-functional situation, the core function reports InitState. Otherwise ReadyState is reported.

5.2 ActualsHydraulics (hydraulics axes only)

This core function is used to display a compilation of actual values of the axis. It is an extension of Actuals
and extends the range of its parent element by adding specific values for hydraulic axes.

Like all derivatives of Actuals, this core function belongs to the group of permanently active core functions.

Core function supports all Actuals properties and adds the following elements.

Core functions of the axis

TF856034 Version: 1.0.1

 Properties

Name Type Description
OilPressureA LREAL The current actual pressure on the A-side of the cylinder.
OilPressureB LREAL The current actual pressure on the B-side of the cylinder.
ValveFeedback LREAL The current feedback value (slider actual position) of the valve.
ValveOutput LREAL The current output value (slider set position) for the valve.

The terms A and B
The terms A and B are used in the definition of the hydraulics library, i.e. the side of the cylinder
that makes the axis move in positive direction is regarded as the A side.

Sometimes no feedback
Not all types of proportional valves support this kind of feedback.

5.3 ActualsNc (Nc axes only)

This core function is used to display a compilation of actual values of the axis. It is an extension of Actuals
and extends the range of its parent element by adding specific values for NC axes.

Like all derivatives of Actuals, this core function belongs to the group of permanently active core functions.

Core function supports all Actuals properties and adds the following elements.

 Properties

Name Type Description
Torque LREAL The current torque actual value.
TorqueLimitExceeded BOOL TRUE if the torque limit has been reached.

Clear this property
TorqueLimitExceeded is set by the library, but not cleared. The application must be sure to clear
this property at the start of a function that has to be monitored.

5.4 AutoIdent (hydraulic axes only)

This core function is used to analyze the non-linear transfer characteristic of hydraulic axes. It belongs to the
group of edge-triggered core functions.

Core functions of the axis

TF8560 35Version: 1.0.1

 Methods

Name Description
DoAutoIdent [} 35] Activates and terminates the measurement procedure.

SetParameter [} 36] Sets the parameters for the measurement procedure.

5.4.1 DoAutoIdent

This method is used to activate the core function.

Syntax:
METHOD DoAutoIdent : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoAutoIdent HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bExecute BOOL A rising edge starts the identification. A falling edge cancels a still active

identification with an invalid table.

Core functions of the axis

TF856036 Version: 1.0.1

5.4.2 SetParameter

This method can be used to set the parameters for identification.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 EnableArreaRatio : BOOL;
 EnableEndOfTravel : BOOL;
 EnableOverlapp : BOOL;
 EnableValveCharacteristic : BOOL;
 EnableZeroAdjust : BOOL;
 EndOfTravelNegativ : LREAL;
 EndOfTravelPositiv : LREAL;
 EndOfTravelNegativLimit : LREAL;
 EndOfTravelPositivLimit : LREAL;
 EndOfVelocityNegativLimit : LREAL;
 EndOfVelocityPositivLimit : LREAL;
 DecelerationFactor : LREAL;
 ValveCharacteristicLowEnd : LREAL;
 ValveCharacteristicHighEnd : LREAL;
 ValveCharacteristicRamp : LREAL;
 ValveCharacteristicSettling: LREAL;
 ValveCharacteristicRecovery: LREAL;
 ValveCharacteristicMinCycle: LREAL;
 ValveCharacteristicTblCount: INT;
 ValveCharacteristicType : INT;
 ValveLinLimitM : LREAL;
 ValveLinLimitP : LREAL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

Core functions of the axis

TF8560 37Version: 1.0.1

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
EnableArreaRatio BOOL A TRUE will request a separate identification of effects

caused by cylinder asymmetry.
EnableEndOfTravel BOOL A TRUE will request a separate identification of

mechanical limits of traveling.
EnableOverlapp BOOL A TRUE will request a separate identification of effects

caused by valve overlap.
EnableValveCharacteristic BOOL A TRUE will request the identification of the valves transfer

characteristic.
EnableZeroAdjust BOOL A TRUE will request a separate identification of effects

caused by valve offset.
EndOfTravelNegativ LREAL A mechanical travel limit. This value may be found by

identification or entered by using an HMI.
EndOfTravelPositiv LREAL A mechanical travel limit. This value may be found by

identification or entered by using an HMI.
EndOfTravelNegativLimit LREAL This value defines a control value limit. The identification

will be concluded for that direction if the output to the
control device has reached the limit.

EndOfTravelPositivLimit LREAL This value defines a control value limit. The identification
will be concluded for that direction if the output to the
control device has reached the limit.

EndOfVelocityNegativLimit LREAL This value defines an actual velocity limit. The
identification will be concluded for that direction if the
actual velocity exceeds the limit.

EndOfVelocityPositivLimit LREAL This value defines an actual velocity limit. The
identification will be concluded for that direction if the
actual velocity exceeds the limit.

DecelerationFactor LREAL This value defines the limits of travel that will be used for
the identification.

ValveCharacteristicLowEnd LREAL This value defines the limits of travel that will be used for
the identification.

ValveCharacteristicHighEnd LREAL This value defines the limits of travel that will be used for
the identification.

ValveCharacteristicRamp LREAL This parameter defines the ramping to the output value
currently under investigation.

ValveCharacteristicSettling LREAL This parameter defines the delay for starting the
investigation after ramping to the output value.

ValveCharacteristicRecovery LREAL This parameter defines a recovery time before continuing
the identification in the opposite direction.

ValveCharacteristicMinCycle LREAL This value specifies a minimum limit for identification.

Core functions of the axis

TF856038 Version: 1.0.1

Name Type Description
ValveCharacteristicTblCount INT This parameter defines the number of points in the

linearization table.

Notice This value must be an odd number. It must be
in the range of 5 to 1001. Recommended values are
101, 201 or 401.

ValveCharacteristicType INT This parameter is reserved to indicate the use of valves
with special behavior details.
For more details, see the hydraulics library
documentation.

ValveLinLimitM LREAL This value limits the use of the linearization table.
ValveLinLimitP LREAL This value limits the use of the linearization table.

5.5 Camming

The property provides two options: Camming.Pos for position camming and Camming.Velo for velocity
camming. To do this, two elements of the same type are instantiated, but with different rule settings.

All these functions belong to the group of statically controlled core functions.

Not supported by all axis types
The core function position camming is not supported by inverter axes. Any use will report
DEVICE_NOTINIT and trigger an error message.

 Properties

Name Type Description
Overrun BOOL TRUE if the current default value is not within the range of the camming

lookup table.
Synchronize BOOL With Synchronize=FALSE the axis should follow every setpoint change

immediately. A TRUE requires the axis to follow setpoint changes with
respect to the dynamic limit parameters.

Synchronized BOOL TRUE if Synchronize=TRUE and the setpoint changes are within the limits of
the dynamic parameters of the axis.

UseAsPosition BOOL This property defines the camming rule. A TRUE causes the core function to
act as a position camming. A FALSE will cause it to act as a velocity
camming.
This property is set during startup. The application must not change its
setting.

 Methods

Name Description
DoCamming This method is used to enable and disable the core function.
SetGuidingValue This method is used to update the default value.

Core functions of the axis

TF8560 39Version: 1.0.1

Name Description
SetLookupInterface This method must be used to connect a camming table.

Both types of camming use a default value to identify a control value within a camming lookup table. For
details see CammingLookUp.

Any useful information can serve as a default value. Common options are a time (LREAL variable that starts
with zero and is cyclically updated by adding the cycle time of the PLC tasks) or the position of another axis.

 WARNING
Unexpected responses of the controlled axis
Unsuitable default values or table points can lead to unexpected reactions of the controlled axis. This may
result in risk of accident or damage.

Using a camming requires several steps:

• A camming lookup table must be instantiated. There is no rule for the number of these tables. A table
used once can be used again at a later time by repeating the following steps.

• The table must be defined by loading the table points. Make sure that the point data corresponds to the
camming type (position, velocity) for which it is to be used.

• The properties of the table must be updated.
• The table must be assigned to the camming with the SetLookupinterface() method. At this time,

camming must not be commanded.
• An initial default value must be specified with the SetGuidingValue() method.
• At the right time use DoCamming(bEnable:=TRUE) to activate the function. Make sure that the axis is

in a situation (position, velocity) that matches the situation of the camming table.
• Make sure that the default value is updated cyclically.
• Use DoCamming(bEnable:=FALSE) at the right time to disable the function. Pay attention to the

situation (position, velocity) of the axis.

5.5.1 DoCamming

This method is used to enable and disable the core function.

Syntax:
METHOD DoCamming : HRESULT
VAR_INPUT
 bEnable: BOOL;
END_VAR

 Return value

Name Type Description
DoCamming HRESULT See below

 Inputs

Name Type Description
bEnable BOOL A TRUE activates the camming. A FALSE ends the camming and slows down a

still existing movement.

Core functions of the axis

TF856040 Version: 1.0.1

5.5.2 SetGuidingValue

This method must be used cyclically to update the default value.

Syntax:
METHOD SetGuidingValue : HRESULT
VAR_INPUT
 fGuidingValue: LREAL;
END_VAR

 Return value

Name Type Description
SetGuidingValue HRESULT See below

 Inputs

Name Type Description
fGuidingValue LREAL The default value valid in the next cycle.

5.5.3 SetLookupInterface

This method must be used to connect a camming table.

Syntax:
METHOD SetLookupInterface: HRESULT
VAR_INPUT
 iLookup: I_CammingLookUp;
END_VAR

 Return value

Name Type Description
SetLookupInterface HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.

Core functions of the axis

TF8560 41Version: 1.0.1

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
iLookUp I_CammingLookUp The camming table to use.

5.6 DirectOutput (hydraulics axes only)

This core function is used to directly control the output of a hydraulic axis. There will be no monitoring of
position limits.

This core function is a member of the group of statically-controlled core functions.

 Properties

Name Type Description
OutputReference LREAL This property defines the value that must be specified as OutPutValue

to cause a full-scale output to the controlled device.
OutputValue LREAL This property is used to define the output to the device.

OutputReference as a scaling here.
Ramptime LREAL RampTime is used to define the time for ramping from zero to the full-

scale value.

Any change in the output whose amount is less than the full-scale value requires a proportional part
of RampTime.

 Methods

Name Description
DoActivate This method enables and disables the direct output.

5.6.1 DoActivate

This method enables and disables the direct output.

Core functions of the axis

TF856042 Version: 1.0.1

Syntax:
METHOD DoActivate : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoActivate HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bExecute BOOL A TRUE enables the output. A FALSE ramps the output to zero and disables

the core function.

5.7 DisableSoftEnd

This core function is used to temporarily disable and re-enable the software position limits of the axis.

DisableSoftEnd is a member of the group of edge-triggered core functions.

Not supported by all axis types
This core function is not supported by inverter axes. Any use will report DEVICE_NOTINIT and
trigger an error message.

Core functions of the axis

TF8560 43Version: 1.0.1

 Properties

Name Type Description
Disabled BOOL A TRUE signal reports active disabling.

 Methods

Name Description
DoDisable [} 43] This method disables the set software position limits.

ReEnable [} 43] This method re-enables the set software position limits.

5.7.1 DoDisable

This method disables the set software position limits.

Syntax:
METHOD DoDisable:
HRESULT
VAR_INPUT
 bExecute: BOOL;
END_VAR

 Return value

Name Type Description
DoDisable HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers the disabling.

5.7.2 ReEnable

This method re-enables the set software position limits.

Syntax:
METHOD ReEnable: HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

Core functions of the axis

TF856044 Version: 1.0.1

 Return value

Name Type Description
ReEnable HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers the re-enabling.

5.8 Estop

This core function is used to trigger an emergency shutdown operation. It will use the maximum dynamic
parameters that are allowed for this axis by the underlying motion technology.

 Properties

Name Type Description
NoCreeping BOOL A TRUE in this property avoids the creep phase at the end of the stopping

process of the hydraulics library.

 Methods

Name Description
DoEstop [} 45] A rising edge triggers the stop.

Core functions of the axis

TF8560 45Version: 1.0.1

5.8.1 DoEstop

This method is used to trigger the stop.

Syntax:
METHOD DoEstop : HRESULT
VAR_INPUT
 bExecute: BOOL;
END_VAR

 Return value

Name Type Description
DoEstop HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bExecute BOOL A rising edge at this input triggers the stop.

5.9 Homing

The property offers access to a range of homing functions.

Core functions of the axis

TF856046 Version: 1.0.1

All these functions belong to the group of edge-triggered core functions.

Not supported by all axis types
This core function is not supported by inverter axes. Any use will report DEVICE_NOTINIT and
trigger an error message.

There are two groups of homing functions: Initiating or continuing functions (AbsoluteSwitch,
AbsoluteSwitchDetect, Block, BlockDetect, LimitSwitch, LimitSwitchDetect) and terminating functions (Abort,
Finish).

Triggering a function of the first group changes the behavior of the axis by activating the homing mode. If this
change has already been made by another function in this group, this has no effect. In this mode, the
underlying motion technology disables a number of mechanisms such as lag monitoring, velocity pre-control,
software position limit switch, etc.

NOTICE
Unexpected behavior
Axes in homing mode may respond to motion commands in an unexpected manner.

As the last step of a homing procedure, the functions of the second group are used to terminate the homing
mode and set the axis to a normal behavior.

 Properties

Name Type Description
Abort [} 46] I_HomingAbort An active homing is aborted without

success.
AbsoluteSwitch [} 48] I_HomingAbsoluteSwitch Homing is performed at a position

reported by a binary sensor.
AbsoluteSwitchDetect
[} 51]

I_HomingAbsoluteSwitchDetection The actual position is recorded at a
position reported by a binary
sensor.

Block [} 54] I_HomingBlock Homing is performed on a
mechanical stop.

BlockDetect [} 57] I_HomingBlockDetection The actual position is recorded at a
mechanical stop.

Finish [} 61] I_HomingFinish An active homing is completed
successfully.

LimitSwitch [} 63] I_HomingLimitSwitch Homing is performed at a position
reported by a hardware limit switch.

LimitSwitchDetect [} 66] I_HomingLimitSwitchDetection The actual position is recorded at a
position reported by a hardware
limit switch.

5.9.1 Abort

This core function can be used to abort a homing in case of a problem.

Abort required
Abort is also required if a homing function fails.

Core functions of the axis

TF8560 47Version: 1.0.1

 Methods

Name Description
DoAbort [} 47] A rising edge triggers the abort.

SetParameter [} 47] The procedure for returning to normal operation can be specified.

5.9.1.1 DoAbort

This method triggers the abort in case of a rising edge.

Syntax:
METHOD DoAbort : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoAbort HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers the abort.

5.9.1.2 SetParameter

The procedure for returning to normal operation can be specified.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 bOptionsDisableDriveAccess : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

Core functions of the axis

TF856048 Version: 1.0.1

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bOptionsDisableDriveAccess BOOL A TRUE prevents ADS communication via the fieldbus from

being used to change parameters of the controlled device in
order to return to normal operation.

Non-Beckhoff servo drives
This option must be used for most non-Beckhoff servo drives.

5.9.2 AbsoluteSwitch

This core function performs homing by searching for a fixed edge of a signal. A specified position is set at
this location.

 Properties

Name Type Description
AbsoluteSwitch BOOL This signal indicates the homing position.
NegativeLimitSwitch BOOL The hardware limit switch at the lower end of the available travel path.
PositiveLimitSwitch BOOL The hardware limit switch at the upper end of the available travel path.

The action of the limit switches is defined by PLCopen standards.

 Methods

Name Description
DoHoming [} 49] This method triggers the homing.

SetParameter [} 49] A set of parameters specific to this homing procedure is set.

SetParameterGeneral [} 50] A set of travel parameters for the homing procedure is set.

Core functions of the axis

TF8560 49Version: 1.0.1

5.9.2.1 DoHoming

This method triggers the homing.

Syntax:
METHOD DoHoming : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoHoming HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers homing.

5.9.2.2 SetParameter

A set of parameters specific to this homing procedure is set.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 fSetPosition : LREAL;
 eSwitchMode : E_AdaptableSwitchMode;
 bOptionsDisableDriveAccess : BOOL;
 bOptionsEnableLagErrorDetection : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

 Inputs

Name Description
fSetPosition Specifies the value that is applied to the actual position at the

homing event.
eSwitchMode Defines how the AbsoluteSwitch is interpreted as a homing

event.

Core functions of the axis

TF856050 Version: 1.0.1

Name Description
bOptionsDisableDriveAccess A TRUE prevents the underlying motion technology from using

ADS communication via the fieldbus to change parameters of
the controlled device and return to normal operation.

Notice This option must be used for most non-Beckhoff
servo drives.

bOptionsEnableLagErrorDetection A TRUE will enable the lag error detection while the function is
being executed.

5.9.2.3 SetParameterGeneral

A set of travel parameters for the homing procedure is set.

Syntax:
METHOD SetParameterGeneral : HRESULT
VAR_INPUT
 eDirection : E_AdaptableHomingDirection;
 fVelocity : LREAL;
 fAcceleration : LREAL;
 fDeceleration : LREAL;
 fJerk : LREAL;
 tTimeLimit : TIME;
 fDistanceLimit : LREAL;
 fTorqueLimit : LREAL;
END_VAR

 Return value

Name Type Description
SetParameterGeneral HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.

Core functions of the axis

TF8560 51Version: 1.0.1

Return value Cause
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
eDirection E_AdaptableHomingDirection The movement with which the homing event is

found.
fVelocity LREAL The velocity of the movement used in the search

of the homing event.
fAcceleration LREAL The acceleration of the movement used in the

search of the homing event.
fDeceleration LREAL The deceleration of the movement used in the

search of the homing event.
fJerk LREAL The jerk of the movement used in the search of

the homing event.
tTimeLimit TIME The timeout limit of the core function.
fDistanceLimit LREAL The maximum distance that may be traveled in

the search of the homing event.
fTorqueLimit LREAL The limit of the torque applied in the search of the

homing event.

Torque limitation in the event of a mechanical blockage
The torque limitation is used to prevent damage if the axis encounters a mechanical blockage
without having detected the homing event.

5.9.3 AbsoluteSwitchDetect

This core function performs homing by searching for a fixed edge of a signal. At this location the actual
position is latched and reported.

 Properties

Name Type Description
AbsoluteSwitch BOOL This signal indicates the homing position.
NegativeLimitSwitch BOOL The hardware limit switch at the lower end of the available travel

path.
PositiveLimitSwitch BOOL The hardware limit switch at the upper end of the available travel

path.
RecordedPosition LREAL The position latched at the location of the signal.

The action of the limit switches is defined by PLCopen standards.

Core functions of the axis

TF856052 Version: 1.0.1

 Methods

Name Description
DoHoming [} 52] This method triggers the homing.

SetParameter [} 52] A set of parameters specific to this homing procedure is set.

SetParameterGeneral [} 53] A set of travel parameters for the homing procedure is set.

5.9.3.1 DoHoming

This method triggers the homing.

Syntax:
METHOD DoHoming : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoHoming HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers homing.

5.9.3.2 SetParameter

A set of parameters specific to this homing procedure is set.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 eSwitchMode : E_AdaptableSwitchMode;
 bOptionsDisableDriveAccess : BOOL;
 bOptionsEnableLagErrorDetection : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

Core functions of the axis

TF8560 53Version: 1.0.1

 Inputs

Name Description
eSwitchMode Defines how the AbsoluteSwitch is interpreted as a homing

event.
bOptionsDisableDriveAccess A TRUE prevents the underlying motion technology from using

ADS communication via the fieldbus to change parameters of
the controlled device and return to normal operation.

Notice This option must be used for most non-Beckhoff
servo drives.

bOptionsEnableLagErrorDetection A TRUE will enable the lag error detection while the function is
being executed.

5.9.3.3 SetParameterGeneral

A set of travel parameters for the homing procedure is set.

Syntax:
METHOD SetParameterGeneral : HRESULT
VAR_INPUT
 eDirection : E_AdaptableHomingDirection;
 fVelocity : LREAL;
 fAcceleration : LREAL;
 fDeceleration : LREAL;
 fJerk : LREAL;
 tTimeLimit : TIME;
 fDistanceLimit : LREAL;
 fTorqueLimit : LREAL;
END_VAR

 Return value

Name Type Description
SetParameterGeneral HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.

Core functions of the axis

TF856054 Version: 1.0.1

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
eDirection E_AdaptableHomingDirection The movement with which the homing event is

found.
fVelocity LREAL The velocity of the movement used in the search

of the homing event.
fAcceleration LREAL The acceleration of the movement used in the

search of the homing event.
fDeceleration LREAL The deceleration of the movement used in the

search of the homing event.
fJerk LREAL The jerk of the movement used in the search of

the homing event.
tTimeLimit TIME The timeout limit of the core function.
fDistanceLimit LREAL The maximum distance that may be traveled in

the search of the homing event.
fTorqueLimit LREAL The limit of the torque applied in the search of the

homing event.

Torque limitation in the event of a mechanical blockage
The torque limitation is used to prevent damage if the axis encounters a mechanical blockage
without having detected the homing event.

5.9.4 Block

This core function performs homing by searching for a mechanical stop. At this location the actual position is
latched and reported.

 Methods

Name Description
DoHoming [} 55] This method triggers the homing.

SetParameter [} 55] A set of parameters specific to this homing procedure is set.

SetParameterGeneral
[} 56]

A set of travel parameters for the homing procedure is set.

Core functions of the axis

TF8560 55Version: 1.0.1

5.9.4.1 DoHoming

This method triggers the homing.

Syntax:
METHOD DoHoming : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoHoming HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers homing.

5.9.4.2 SetParameter

A set of parameters specific to this homing procedure is set.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 fSetPosition : LREAL;
 fDetectionVelocityLimit : LREAL;
 tDetectionVelocityTime : TIME;
 fTorqueTolerance : LREAL;
 bOptionsDisableDriveAccess : BOOL;
 bOptionsInstantLagReduction : BOOL;
 bOptionsTorquePolarityInverted : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

 Inputs

Name Description
fSetPosition The position to be assigned to the homing event.

Core functions of the axis

TF856056 Version: 1.0.1

Name Description
fDetectionVelocityLimit A velocity threshold for the detection of the homing event. For

details see below.
tDetectionVelocityTime A filter time for the detection of the homing event. For details

see below.
fTorqueTolerance A torque threshold for the detection of the homing event. For

details see below.
bOptionsDisableDriveAccess A TRUE prevents the underlying motion technology from using

ADS communication via the fieldbus to change parameters of
the controlled device and return to normal operation.

Notice This option must be used for most non-Beckhoff
servo drives.

bOptionsInstantLagReduction A TRUE causes the lag error to be cleared (set position :=
actual position) when the homing event is detected.

bOptionsTorquePolarityInverted A TRUE causes an inverted evaluation of the torque.

Notice This inversion must be used if the signs of the
torque and the direction of movement do not match. This
may be caused by direction-reversing mechanics (gears,
etc.).

The homing event

A mechanical block as a homing event is detected if at the same time the torque is below the torque limit by
less than fTorqueTolerance and the actual velocity has been continuously below fDetectionVelocityLimit
since tDetectionVelocityTime.

5.9.4.3 SetParameterGeneral

A set of travel parameters for the homing procedure is set.

Syntax:
METHOD SetParameterGeneral : HRESULT
VAR_INPUT
 eDirection : E_AdaptableHomingDirection;
 fVelocity : LREAL;
 fAcceleration : LREAL;
 fDeceleration : LREAL;
 fJerk : LREAL;
 tTimeLimit : TIME;
 fDistanceLimit : LREAL;
 fTorqueLimit : LREAL;
END_VAR

 Return value

Name Type Description
SetParameterGeneral HRESULT See below

Return values of core function methods

Core functions of the axis

TF8560 57Version: 1.0.1

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
eDirection E_AdaptableHomingDirection The movement with which the homing event is

found.
fVelocity LREAL The velocity of the movement used in the search

of the homing event.
fAcceleration LREAL The acceleration of the movement used in the

search of the homing event.
fDeceleration LREAL The deceleration of the movement used in the

search of the homing event.
fJerk LREAL The jerk of the movement used in the search of

the homing event.
tTimeLimit TIME The timeout limit of the core function.
fDistanceLimit LREAL The maximum distance that may be traveled in

the search of the homing event.
fTorqueLimit LREAL The limit of the torque applied in the search of the

homing event.

Torque limitation in the event of a mechanical blockage
The torque limitation is used to prevent damage if the axis encounters a mechanical blockage
without having detected the homing event.

5.9.5 BlockDetect

This core function performs homing by searching for a mechanical stop. At this location the actual position is
latched and reported.

Core functions of the axis

TF856058 Version: 1.0.1

 Properties

Name Type Description
RecordedPosition LREAL The position latched at the location of the signal.

 Methods

Name Description
DoHoming [} 58] This method triggers the homing.

SetParameter [} 58] A set of parameters specific to this homing procedure is set.

SetParameterGeneral [} 59] A set of travel parameters for the homing procedure is set.

5.9.5.1 DoHoming

This method triggers the homing.

Syntax:
METHOD DoHoming : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoHoming HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers homing.

5.9.5.2 SetParameter

A set of parameters specific to this homing procedure is set.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 fDetectionVelocityLimit : LREAL;
 tDetectionVelocityTime : TIME;
 fTorqueTolerance : LREAL;
 bOptionsDisableDriveAccess : BOOL;

Core functions of the axis

TF8560 59Version: 1.0.1

 bOptionsInstantLagReduction : BOOL;
 bOptionsTorquePolarityInverted : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

 Inputs

Name Description
fDetectionVelocityLimit A velocity threshold for the detection of the homing event. For

details see below.
tDetectionVelocityTime A filter time for the detection of the homing event. For details

see below.
fTorqueTolerance A torque threshold for the detection of the homing event. For

details see below.
bOptionsDisableDriveAccess A TRUE prevents the underlying motion technology from using

ADS communication via the fieldbus to change parameters of
the controlled device and return to normal operation.

Notice This option must be used for most non-Beckhoff
servo drives.

bOptionsInstantLagReduction A TRUE causes the lag error to be cleared (set position :=
actual position) when the homing event is detected.

bOptionsTorquePolarityInverted A TRUE causes an inverted evaluation of the torque.

Notice This inversion must be used if the signs of the
torque and the direction of movement do not match. This
may be caused by direction-reversing mechanics (gears,
etc.).

The homing event

A mechanical block as a homing event is detected if at the same time the torque is below the torque limit by
less than fTorqueTolerance and the actual velocity has been continuously below fDetectionVelocityLimit
since tDetectionVelocityTime.

5.9.5.3 SetParameterGeneral

A set of travel parameters for the homing procedure is set.

Syntax:
METHOD SetParameterGeneral : HRESULT
VAR_INPUT
 eDirection : E_AdaptableHomingDirection;
 fVelocity : LREAL;
 fAcceleration : LREAL;
 fDeceleration : LREAL;
 fJerk : LREAL;

Core functions of the axis

TF856060 Version: 1.0.1

 tTimeLimit : TIME;
 fDistanceLimit : LREAL;
 fTorqueLimit : LREAL;
END_VAR

 Return value

Name Type Description
SetParameterGeneral HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
eDirection E_AdaptableHomingDirection The movement with which the homing event is

found.
fVelocity LREAL The velocity of the movement used in the search

of the homing event.
fAcceleration LREAL The acceleration of the movement used in the

search of the homing event.
fDeceleration LREAL The deceleration of the movement used in the

search of the homing event.
fJerk LREAL The jerk of the movement used in the search of

the homing event.
tTimeLimit TIME The timeout limit of the core function.
fDistanceLimit LREAL The maximum distance that may be traveled in

the search of the homing event.
fTorqueLimit LREAL The limit of the torque applied in the search of the

homing event.

Torque limitation in the event of a mechanical blockage
The torque limitation is used to prevent damage if the axis encounters a mechanical blockage
without having detected the homing event.

Core functions of the axis

TF8560 61Version: 1.0.1

5.9.6 Finish

This core function must be used to successfully complete a homing.

Abort required
Abort is required if a homing function fails.

 Methods

Name Description
DoFinish [} 61] A rising edge triggers the termination.

SetParameter [} 61] The procedure for returning to normal operation can be specified.

5.9.6.1 DoFinish

This method triggers the termination on a rising edge.

Syntax:
METHOD DoFinish : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoFinish HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers the termination.

5.9.6.2 SetParameter

The procedure for returning to normal operation can be specified.

Core functions of the axis

TF856062 Version: 1.0.1

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 fDistance : LREAL;
 fVelocity : LREAL;
 fAcceleration : LREAL;
 fDeceleration : LREAL;
 fJerk : LREAL;
 bOptionsDisableDriveAccess : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
fDistance LREAL Here you can define a distance by which the axis should

move away from the homing position.

Notice In many cases, there is a torque at the end of a
homing procedure. The mechanics of the axis can be
relieved by a movement suitably selected in amount
and direction.

fVelocity LREAL The velocity to be commanded for this.
fAcceleration LREAL The acceleration to be commanded for this.
fDeceleration LREAL The deceleration to be commanded for this.
fJerk LREAL The jerk to be commanded for this.
bOptionsDisableDriveAccess BOOL A TRUE prevents ADS communication via the fieldbus

from being used to change parameters of the controlled
device in order to return to normal operation.

Non-Beckhoff servo drives
The bOptionsDisableDriveAccess option must be used for most non-Beckhoff servo drives.

Core functions of the axis

TF8560 63Version: 1.0.1

5.9.7 LimitSwitch

This core function performs homing by searching for a fixed edge of a signal. A specified position is set at
this location.

 Properties

Name Type Description
NegativeLimitSwitch BOOL The hardware limit switch at the lower end of the available travel path.
PositiveLimitSwitch BOOL The hardware limit switch at the upper end of the available travel path.

The action of the limit switches is defined by PLCopen standards.

 Methods

Name Description
DoHoming [} 63] This method triggers the homing.

SetParameter [} 64] A set of parameters specific to this homing procedure is set.

SetParameterGeneral [} 64] A set of travel parameters for the homing procedure is set.

5.9.7.1 DoHoming

This method triggers the homing.

Syntax:
METHOD DoHoming : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoHoming HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers homing.

Core functions of the axis

TF856064 Version: 1.0.1

5.9.7.2 SetParameter

A set of parameters specific to this homing procedure is set.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 fSetPosition : LREAL;
 eSwitchMode : E_AdaptableSwitchMode;
 bOptionsDisableDriveAccess : BOOL;
 bOptionsEnableLagErrorDetection : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

 Inputs

Name Description
fSetPosition Specifies the value that is applied to the actual position at the

homing event.
eSwitchMode Defines how the AbsoluteSwitch is interpreted as a homing

event.
bOptionsDisableDriveAccess A TRUE prevents the underlying motion technology from using

ADS communication via the fieldbus to change parameters of
the controlled device and return to normal operation.
This option must be used for most non-Beckhoff servo
drives.

bOptionsEnableLagErrorDetection A TRUE will enable the lag error detection while the function is
being executed.

5.9.7.3 SetParameterGeneral

A set of travel parameters for the homing procedure is set.

Syntax:
METHOD SetParameterGeneral : HRESULT
VAR_INPUT
 eDirection : E_AdaptableHomingDirection;
 fVelocity : LREAL;
 fAcceleration : LREAL;
 fDeceleration : LREAL;

Core functions of the axis

TF8560 65Version: 1.0.1

 fJerk : LREAL;
 tTimeLimit : TIME;
 fDistanceLimit : LREAL;
 fTorqueLimit : LREAL;
END_VAR

 Return value

Name Type Description
SetParameterGeneral HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
eDirection E_AdaptableHomingDirection The movement with which the homing event is

found.
fVelocity LREAL The velocity of the movement used in the search

of the homing event.
fAcceleration LREAL The acceleration of the movement used in the

search of the homing event.
fDeceleration LREAL The deceleration of the movement used in the

search of the homing event.
fJerk LREAL The jerk of the movement used in the search of

the homing event.
tTimeLimit TIME The timeout limit of the core function.
fDistanceLimit LREAL The maximum distance that may be traveled in

the search of the homing event.
fTorqueLimit LREAL The limit of the torque applied in the search of the

homing event.

Torque limitation in the event of a mechanical blockage
The torque limitation is used to prevent damage if the axis encounters a mechanical blockage
without having detected the homing event.

Core functions of the axis

TF856066 Version: 1.0.1

5.9.8 LimitSwitchDetect

This core function performs homing by searching for a fixed edge of a signal. At this location the actual
position is latched and reported.

 Properties

Name Type Description
NegativeLimitSwitch BOOL The hardware limit switch at the lower end of the available travel path.
PositiveLimitSwitch BOOL The hardware limit switch at the upper end of the available travel

path.
RecordedPosition LREAL The position latched at the location of the signal.

The action of the limit switches is defined by PLCopen standards.

 Methods

Name Description
DoHoming [} 66] This method triggers the homing.

SetParameter [} 67] A set of parameters specific to this homing procedure is set.

SetParameterGeneral [} 67] A set of travel parameters for the homing procedure is set.

5.9.8.1 DoHoming

This method triggers the homing.

Syntax:
METHOD DoHoming : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

 Return value

Name Type Description
DoHoming HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers homing.

Core functions of the axis

TF8560 67Version: 1.0.1

5.9.8.2 SetParameter

A set of parameters specific to this homing procedure is set.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 eSwitchMode : E_AdaptableSwitchMode;
 bOptionsDisableDriveAccess : BOOL;
 bOptionsEnableLagErrorDetection : BOOL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

 Inputs

Name Description
eSwitchMode Defines how the AbsoluteSwitch is interpreted as a homing

event.
bOptionsDisableDriveAccess A TRUE prevents the underlying motion technology from using

ADS communication via the fieldbus to change parameters of
the controlled device and return to normal operation.
This option must be used for most non-Beckhoff servo
drives.

bOptionsEnableLagErrorDetection A TRUE will enable the lag error detection while the function is
being executed.

5.9.8.3 SetParameterGeneral

A set of travel parameters for the homing procedure is set.

Syntax:
METHOD SetParameterGeneral : HRESULT
VAR_INPUT
 eDirection : E_AdaptableHomingDirection;
 fVelocity : LREAL;
 fAcceleration : LREAL;
 fDeceleration : LREAL;
 fJerk : LREAL;
 tTimeLimit : TIME;
 fDistanceLimit : LREAL;
 fTorqueLimit : LREAL;
END_VAR

Core functions of the axis

TF856068 Version: 1.0.1

 Return value

Name Type Description
SetParameterGeneral HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
eDirection E_AdaptableHomingDirection The movement with which the homing event is

found.
fVelocity LREAL The velocity of the movement used in the search

of the homing event.
fAcceleration LREAL The acceleration of the movement used in the

search of the homing event.
fDeceleration LREAL The deceleration of the movement used in the

search of the homing event.
fJerk LREAL The jerk of the movement used in the search of

the homing event.
tTimeLimit TIME The timeout limit of the core function.
fDistanceLimit LREAL The maximum distance that may be traveled in

the search of the homing event.
fTorqueLimit LREAL The limit of the torque applied in the search of the

homing event.

Torque limitation in the event of a mechanical blockage
The torque limitation is used to prevent damage if the axis encounters a mechanical blockage
without having detected the homing event.

5.10 Jog

Core functions of the axis

TF8560 69Version: 1.0.1

This core function is used to start and stop the axis with a certain velocity but without a defined target
position.

 Properties

Name Type Description
IsJoggingM BOOL A TRUE signals an active jogging in negative direction.
IsJoggingP BOOL A TRUE signals an active jogging in positive direction.
IsStopping BOOL A TRUE signals the stopping of the axis after an active jogging.
TorqueLimiting LREAL This sets the torque limit during jogging.

 Methods

Name Description
DoJogM [} 69] This method performs the start and stop of the axis in the negative direction.

DoJogP [} 70] This method performs the start and stop of the axis in the positive direction.

SetParameter [} 71] This method is used to set the parameters of a movement in jogging mode.

5.10.1 DoJogM

This method performs the start and stop of the axis in the negative direction.

Syntax:
METHOD DoJogM : HRESULT
VAR_INPUT
 bEnable : BOOL;
END_VAR

 Return value

Name Type Description
DoJogM HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.

Core functions of the axis

TF856070 Version: 1.0.1

Return value Cause
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bEnable BOOL A rising edge starts a jogging in negative direction. A falling edge triggers a

stop of the axis.

5.10.2 DoJogP

This method performs the start and stop of the axis in the positive direction.

Syntax:
METHOD DoJogP : HRESULT
VAR_INPUT
 bEnable : BOOL;
END_VAR

 Return value

Name Type Description
DoJogP HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bEnable BOOL A rising edge starts a jogging in positive direction. A falling edge triggers a

stop of the axis.

Core functions of the axis

TF8560 71Version: 1.0.1

5.10.3 SetParameter

This method is used to set the parameters of a movement in jogging mode.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
 fAcceleration : LREAL;
 fDeceleration : LREAL;
 fJerk : LREAL;
 fVelocity : LREAL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
fAcceleration LREAL The commanded acceleration.
fDeceleration LREAL The commanded deceleration.
fJerk LREAL The commanded jerk.
fVelocity LREAL The commanded velocity.

Core functions of the axis

TF856072 Version: 1.0.1

5.11 MotionParams

This core function is used to represent a range of parameter values of the axis.

Not all parameters are writeable.
Some parameters are read only (r/o) while others are readable and writeable (r/w).

Axis must be disabled
Some parameters cannot be written while the axis is enabled.

Signal pattern deviating from the standards
This core function implements a signal pattern that is different from the standards. See below for
more information.

Syntax:
FUNCTION_BLOCK FB_MotionParams EXTENDS FB_Corefunction IMPLEMENTS I_MotionParams
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Description
AsymTargeting BOOL Get, Set TRUE if the parameters for the target approach are

direction-dependent. Otherwise, the parameters for the
negative direction are ignored and the parameters for
the positive direction are used regardless of the
direction.
Only active with hydraulic axes.

AutoBrakeCalculation BOOL Get, Set TRUE if the braking distance is determined
automatically.
Only active with hydraulic axes.

Core functions of the axis

TF8560 73Version: 1.0.1

Name Type Description
AxisIsNc BOOL Get TRUE, if the axis is operated with TwinCAT NC.
BrakeDistanceM LREAL Get, Set The braking distance time in negative direction.

Only active with hydraulic axes.
See also AsymTargeting.

BrakeDistanceP LREAL Get, Set The braking distance time in negative direction.
Only active with hydraulic axes.

BusyState BOOL Get TRUE, if the function block writes changed
parameters.

CreepDistanceM LREAL Get, Set The creep distance in negative direction.
Only active with hydraulic axes.
See also AsymTargeting.

CreepDistanceP LREAL Get, Set The creep distance in positive direction.
Only active with hydraulic axes.

CreepSpeedM LREAL Get, Set The creep speed in negative direction.
Only active with hydraulic axes.

CreepSpeedP LREAL Get, Set The creep speed in negative direction.
Only active with hydraulic axes.

CycleTime LREAL Get The cycle time of the task in which the real-time
functions of the axis are executed.

DriveIsCoE BOOL Get TRUE, if the axis has a CoE interface.
DriveIsServo BOOL Get TRUE if the axis is a servo drive.
DriveIsSimulated BOOL Get TRUE if the drive of the axis is simulated.
DriveIsSoE BOOL Get TRUE, if the axis has a SoE interface.
DriveReversed BOOL Get, Set TRUE if the drive of the axis is inverted.
DriveType UDINT Get A numeric identifier for the type of the connected drive.

The meaning of the constants is defined in the Tc2
NC or the Tc2_Hydraulics library.

EncoderInterpolation LREAL Get, Set The divider for the encoder evaluation. It specifies the
number of increments corresponding to the distance
specified by EncoderWeighting.

EncoderIsAnalog BOOL Get TRUE if the encoder of the axis uses an analog input.
EncoderIsSimulated BOOL Get TRUE if the encoder of the axis is simulated.
EncoderReversed BOOL Get, Set TRUE if the encoder of the axis is inverted.
EncoderType UDINT Get A numeric identifier for the type of the connected

encoder.
The meaning of the constants is defined in the Tc2
NC or the Tc2_Hydraulics library.

EncoderWeighting LREAL Get, Set The factor for encoder evaluation. It specifies the
distance corresponding to a number of increments
specified by EncoderInterpolation.

EncoderZeroShift LREAL Get, Set The zero offset shift of the encoder.
HasTorqueLimiting BOOL Get TRUE if the axis has a torque limit.
LagControlled BOOL Get TRUE if the axis has a position controller.
LagCtrlKp LREAL Get, Set The kP factor of the position controller.
LagFilter LREAL Get, Set The filter time of the lag error monitoring.
LagLimit LREAL Get, Set The threshold value of the lag error monitoring.
LagMonitored BOOL Get, Set TRUE, if the lag error monitoring of the axis is active.
MaxAcceleration LREAL Get, Set The maximum permissible acceleration.
MaxDeceleration LREAL Get, Set The maximum permissible deceleration.
MaxJerk LREAL Get, Set The maximum permissible jerk.

Core functions of the axis

TF856074 Version: 1.0.1

Name Type Description
MaxVeloApplication LREAL Get, Set The maximum permissible velocity of the axis.
MaxVeloSystem LREAL Get, Set The maximum velocity of the axis.
MinVeloJog LREAL Get, Set The minimum jogging velocity.

Only relevant for hydraulic axes. This parameter is
0.0 for NC axes.

ScalingOilPressure LREAL Get, Set The scaling factor for the actual pressure acquisition.
Only active with hydraulic axes.

SoftEndMax LREAL Get, Set The maximum software limit switch.
SoftEndMaxEna BOOL Get, Set Enable for the maximum software limit switch.
SoftEndMaxSystem LREAL Get, Set For the load side of transforming axes: The converted

maximum software limit switch of the drive side.
For the drive side of transforming axes: The converted
maximum software limit switch of the load side.
For non-transforming axes: A copy of the maximum
software limit switch.

SoftEndMin LREAL Get, Set The minimum software limit switch.
SoftEndMinEna BOOL Get, Set Enable for the minimum software limit switch.
SoftEndMinSystem LREAL Get, Set For the load side of transforming axes: The converted

minimum software limit switch of the drive side.
For the drive side of transforming axes: The converted
minimum software limit switch of the load side.
For non-transforming axes: A copy of the minimum
software limit switch.

Valid BOOL Get TRUE if all parameters are valid.

5.12 MotionSetpoints

This core function offers a range of current setpoint values.

 Properties

Name Type Description
Acceleration LREAL The current acceleration setpoint.
Jerk LREAL The current jerk setpoint.
Position LREAL The current position setpoint.
TorqueLimiting LREAL The current setpoint for torque limitation.
Velocity LREAL The current velocity setpoint.

5.13 Power

Core functions of the axis

TF8560 75Version: 1.0.1

This core function is used to enable the operation of the controlled device.

Syntax:
FUNCTION_BLOCK FB_Power EXTENDS FB_CorefunctionFeedback IMPLEMENTS I_Power
VAR_INPUT
END_VAR

 Properties

Name Type Access Description
IsFeedEnabledM BOOL Get TRUE if the axis is enabled for active movement in

negative direction.
IsFeedEnabledP BOOL Get TRUE if the axis is enabled for active movement in

positive direction.
Override LREAL Get, Set A factor for scaling commanded velocities.

The effect is significantly influenced by the type of
axis and its parameterization.

Status BOOL Get TRUE, if the axis is enabled for active operation.
For an active movement, the direction-related enable
is also required.

 Methods

Name Description
DoPower [} 75] Enable for active operation of the axis.

FeedEnable [} 76] Directional enables for commanding active axis movements.

5.13.1 DoPower

This method is used to enable or disable the axis for active operation. If this requires an exchange of signals
with a device, this exchange is performed and monitored.

Syntax:
METHOD DoPower: HRESULT
VAR_INPUT
 bEnable: BOOL;
END_VAR

 Return value

Name Type Description
DoPower HRESULT See below

 Inputs

Name Type Description
bEnable BOOL A rising edge starts the enable process.

A falling edge starts the disable process.

Core functions of the axis

TF856076 Version: 1.0.1

5.13.2 FeedEnable

This method is used to define directional enables for active movements of the axis.

Syntax:
METHOD FeedEnable: HRESULT
VAR_INPUT
 bFeedEnaPositive: BOOL;
 bFeedEnaNegative: BOOL;
END_VAR

 Return value

Name Type Description
FeedEnable HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bFeedEnaPositive BOOL A TRUE enables active movements in positive direction.
bFeedEnaNegative BOOL A TRUE enables active movements in negative direction.

5.14 PressureControl

This core function is provided to allow access to a number of controller types. Currently, there is an extended
PID controller [} 77].

Core functions of the axis

TF8560 77Version: 1.0.1

5.14.1 PressureControl.PID

This core function implements an extended PID controller functionality that can be used for a number of
tasks:

• Holding pressure control in injection molding machines
• Back pressure control in injection molding machines
• Others

 Properties

Name Type Description
IsEnabled BOOL A TRUE signals the active state of the controller.

 Methods

Name Description
Activate [} 77] Activate / deactivate the controller

EnableSwitchOver [} 78] Enable for automatic activation by a PressureHandler.

GetActual [} 78] The actual value of the controller is determined.

GetParams [} 79] An interface to the connected parameter set is determined.

SetParams [} 79] A parameter set is connected to the controller.

Setpoint [} 80] The setpoint of the controller is set.

SwitchOver [} 80] Automatic activation by a PressureHandler.

5.14.1.1 Activate

This method is used to activate and deactivate the controller.

Syntax:
METHOD Activate: HRESULT
VAR_INPUT
 bEnable: BOOL;
END_VAR

Core functions of the axis

TF856078 Version: 1.0.1

 Return value

Name Type Description
Activate HRESULT See below

 Inputs

Name Type Description
bEnable BOOL Enable for the controller.

5.14.1.2 EnableSwitchOver

This method can be used to enable or disable automatic activation by a pressure handler.

Syntax:
METHOD EnableSwitchOver: HRESULT
VAR_INPUT
 bEnable: BOOL;
END_VAR

 Return value

Name Type Description
EnableSwitchOver HRESULT See below

 Inputs

Name Type Description
bEnable BOOL The enable for automatic activation.

5.14.1.3 GetActual

The actual value of the controller is determined.

Syntax:
METHOD GetActual : HRESULT
VAR_INPUT
fActual: REFERENCE TO LREAL;
END_VAR

 Return value

Name Type Description
GetActual HRESULT See below

Core functions of the axis

TF8560 79Version: 1.0.1

 Inputs

Name Type Description
fActual REFERENCE TO

LREAL
A reference to the variable to be updated with the actual value.

5.14.1.4 GetParams

An interface to the parameters of the controller is determined.

Syntax:
METHOD GetParams: HRESULT
VAR_INPUT
 iParameters: REFERENCE TO I_PressureControlParams_PID;
END_VAR

 Return value

Name Type Description
GetParams HRESULT See below

 Inputs

Name Type Description
iParameters REFERENCE TO

I_PressureControlParams_PID
A reference to the variable to be updated with the
interface.

5.14.1.5 SetParams

A parameter set is connected to the controller.

Syntax:
METHOD SetParams: HRESULT
VAR_INPUT
 iParams: I_PressureControlParams_PID [} 81];
END_VAR

 Return value

Name Type Description
SetParams HRESULT See below

 Inputs

Name Type Description
iParameters I_PressureControlParams_PID An interface to the parameter set.

Core functions of the axis

TF856080 Version: 1.0.1

5.14.1.6 Setpoint

The setpoint of the controller is defined.

Syntax:
METHOD Setpoint: HRESULT
VAR_INPUT
 fValue: LREAL;
END_VAR

 Return value

Name Type Description
Setpoint HRESULT See below

 Inputs

Name Type Description
fValue LREAL The setpoint.

5.14.1.7 SwitchOver

This method can be used by a pressure handler function block.

A TRUE at bSwitchover will activate the controller if EnableSwitchOver(TRUE) has been called before.

Syntax:
METHOD SwitchOver: HRESULT
VAR_INPUT
 bSwitchOver: BOOL;
END_VAR

 Return value

Name Type Description
SwitchOver HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.

Core functions of the axis

TF8560 81Version: 1.0.1

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bSwitchOver BOOL The activation signal of the pressure handler.

5.14.2 FB_PressureControlParams_PID

This function block contains a parameter set to be used by a FB_PressureControl_PID [} 77] function block.

Syntax:
FUNCTION_BLOCK FB_PressureControlParams_PID IMPLEMENTS I_PressureControlParams_PID
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Access Properties
ChangeRate LREAL Get, Set The ramp rate to use.

See EnableChangeRate for details.
Enable BOOL Get, Set This property is used to activate and deactivate the

proportional component of the PID controller.
For details see Kp.

EnableChangeRate BOOL Get, Set A setpoint ramp function can be activated and
deactivated.

Core functions of the axis

TF856082 Version: 1.0.1

Name Type Access Properties
The internally used setpoint for the controller may
be updated to the given setpoint by a limited rate,
given as ChangeRate. This parameter is given in
pressure units per second.
A setting of ChangeRate:=0.0 or
EnableChangeRate:=FALSE disables the ramp
function and causes the internal setpoint to
immediately follow the specified setpoint.

EnableClipping BOOL Get, Set A limiting function for the output can be activated and
deactivated.
For details see OutputLimit.

EnableD BOOL Get, Set The differential component of the PID controller can be
activated and deactivated.
For details see Td.

EnableFeedForward BOOL Get, Set A velocity pre-control can be activated and deactivated.
For details see FeedForward.

EnableI BOOL Get, Set This property is used to enable and disable the
integrating component of the PID controller. For details
see Tn below.

EnableM BOOL Get, Set This property is used to enable and disable a negative
output of the controller.

EnableP BOOL Get, Set This property is used to enable or disable a positive
output of the controller.

FeedForward LREAL Get, Set A velocity feed forward component.
When EnableFeedForward is set to TRUE, the value
of FeedForward is multiplied by FeedForwardFactor
and added to the PID response output.
An active back pressure controller is used to match
the injector backward velocity to the effect of the
dosing axis. This function can be used to achieve a
more dynamic adjustment to changes in turn rate.

FeedForwardFactor LREAL Get, Set This property is a parameter of the velocity feed forward
function.
For details see FeedForward.

Kp LREAL Get, Set The proportional gain of the PID controller. Enable must
be TRUE to allow the calculation.
The unit is velocity unit per pressure unit.

OutputLimit LREAL Get, Set A limit for the response of the controller.
Reversed BOOL Get, Set This property is used to invert the output of the PID

controller.
In a number of applications, the axis must move in
the positive direction to relieve excess pressure.
Typical examples are holding pressure and back
pressure controllers in injection molding machines.

Td LREAL Get, Set The differential component of the PID controller.
The response is calculated if EnableD is TRUE and
Td and Tdd are >=cycle time, otherwise it is zero.
The unit is velocity units * second per pressure unit.

Tdd LREAL Get, Set A parameter of the differential component of the PID
controller. For details see Td above.

Tn LREAL Get, Set The integrating component of the PID controller.

Core functions of the axis

TF8560 83Version: 1.0.1

Name Type Access Properties
The response is calculated if EnableI is TRUE and Tn
>= cycle time, otherwise it is zero. The output is limited
to WuLimit.
The unit is velocity units per (pressure unit *
second).

WuLimit LREAL Get, Set A parameter of the integrating component of the PID
controller.
For details see Tn above.

 Methods

Name Description
GetBoolParameter [} 83] This method is used to read BOOL parameters of the

controller. For details see E_PressureControlParam
[} 85].

GetFloatParameter [} 84] This method is used to read LREAL parameters of
the controller. For details see
E_PressureControlParam [} 85].

SetBoolParameter [} 84] This method is used to define BOOL parameters of
the controller. For details see
E_PressureControlParam [} 85].

SetFloatParameter [} 85] This method is used to define LREAL parameters of
the controller. For details see
E_PressureControlParam [} 85].

5.14.2.1 GetBoolParameter

This method is used to read BOOL parameters of the controller. For details see E_PressureControlParam
[} 85].

Syntax:
METHOD GetBoolParameter : HRESULT
VAR_INPUT
 eSelect: E_PressureControlParam;
 bValue : REFERENCE TO BOOL;
END_VAR

 Return value

Name Type Description
GetBoolParameter HRESULT See below

 Inputs

Name Type Description
eSelect E_PressureControlParam The selection of the parameter.
bValue REFERENCE TO BOOL A reference to the variable to be updated with the

parameter.

Core functions of the axis

TF856084 Version: 1.0.1

5.14.2.2 GetFloatParameter

This method is used to read LREAL parameters of the controller. For details see E_PressureControlParam
[} 85].

Syntax:
METHOD GetFloatParameter : HRESULT
VAR_INPUT
 eSelect: E_PressureControlParam;
 fValue : REFERENCE TO LREAL;
END_VAR

 Return value

Name Type Description
GetFloatParameter HRESULT See below

 Inputs

Name Type Description
eSelect E_PressureControlParam The selection of the parameter.
fValue REFERENCE TO LREAL A reference to the variable to be updated with the

parameter.

5.14.2.3 SetBoolParameter

This method is used to define BOOL parameters of the controller. For details see E_PressureControlParam
[} 85].

Syntax:
METHOD SetBoolParameter : HRESULT
VAR_INPUT
 eSelect: E_PressureControlParam;
 bValue : BOOL;
END_VAR

 Return value

Name Type Description
SetBoolParameter HRESULT See below

 Inputs

Name Type Description
eSelect E_PressureControlParam The selection of the parameter.
bValue BOOL The value with which the parameter is to be defined.

Core functions of the axis

TF8560 85Version: 1.0.1

5.14.2.4 SetFloatParameter

This method is used to define LREAL parameters of the controller. For details see E_PressureControlParam
[} 85].

Syntax:
METHOD SetFloatParameter : HRESULT
VAR_INPUT
 eSelect: E_PressureControlParam;
 fValue : LREAL;
END_VAR

 Return value

Name Type Description
SetFloatParameter HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
eSelect E_PressureControlParam The selection of the parameter.
fValue LREAL The value with which the parameter is to be defined.

5.14.3 E_PressureControlParam
The values of this enumeration are used by GetBoolParameter(), GetFloatParameter(), SetBoolParameter()
and SetFloatParameter() of FB_PressureControlParams_PID [} 77].
TYPE E_PressureControlParam :
(
eKp := 1,
eTn,
eTd,
eTdd,

Core functions of the axis

TF856086 Version: 1.0.1

 //
eWuLimit,
eOutLimit,
//
eChangeRate,
eFeedForward,
eFeedForwardFactor,

eEnable,
eEnableP,
eEnableM,
//
eReversed,
//
eEnableFF,
eEnableI,
eEnableD,
eEnableClipping,
eEnableChangeRate
);
END_TYPE

5.15 Ptp

This core function is used to perform multi-segment movements with the possibility to switch to torque or
constant output clamping at the end.

Connection during startup
The internal PtpLookUp core function of the axis is connected to the Ptp core function at startup.

Not supported by all axis types
This core function is not supported by inverter axes. Any use will report DEVICE_NOTINIT and
trigger an error message.

 Properties

Name Type Description
ActiveSegment INT The number of the segment that is currently being executed.
IsClamping BOOL TRUE, if the axis has switched to Clamping.
MovingNegative BOOL TRUE if the axis is actively moving in the negative direction.
MovingPositive BOOL TRUE if the axis is actively moving in the positive direction.
NumberOfPoints INT The number of motion segments that the core function can store.

 Methods

Name Description
CheckPoint [} 87] The specified segment is compared with the axis parameters.

DoMove [} 87] The execution is triggered.

GetClampPoint [} 88] A segment of the clamping table is read back.

GetPoint [} 88] A segment of the lookup table is read back.

GetUpdatedPoint [} 89] A segment of the lookup table is read back.

InvalidateClampPoint [} 89] All segments in the clamping table are marked as invalid.

InvalidateTable [} 90] All segments in the lookup table are marked as invalid.

Core functions of the axis

TF8560 87Version: 1.0.1

Name Description
SetClampPoint [} 90] A segment of the clamping table is defined.

SetPoint [} 90] A segment of the lookup table is defined.

UpdatePosition [} 91] The target position of the segment is changed after it is defined.

5.15.1 CheckPoint

The specified segment is compared with the axis parameters. The result is only tested as SUCCEEDED() if
the target does not exceed any of the enabled software position limits and does not fall below the minimum
velocity.

Syntax:
METHOD CheckPoint: HRESULT
VAR_INPUT
 stPoint: ST_LookUpPtpPoint;
END_VAR

 Return value

Name Type Description
CheckPoint HRESULT See below

 Inputs

Name Type Description
stPoint LookUpPtpPoint The segment to be checked.

5.15.2 DoMove

The execution is triggered.

Syntax:
METHOD DoMove: HRESULT
VAR_INPUT
 bExecute: BOOL;
END_VAR

 Return value

Name Type Description
DoMove HRESULT See below

Core functions of the axis

TF856088 Version: 1.0.1

 Inputs

Name Type Description
bExecute BOOL A rising edge triggers the start.

5.15.3 GetClampPoint

A segment of the clamping table is read back.

Syntax:
METHOD GetClampPoint: HRESULT
VAR_INPUT
 nIdx: INT;
END_VAR

 Return value

Name Type Description
GetClampPoint HRESULT See below

 Inputs

Name Type Description
nIdx INT The index of the segment.

5.15.4 GetPoint

A segment of the lookup table is read back.

Syntax:
METHOD GetPoint: HRESULT
VAR_INPUT
 nIdx : INT;
 stPoint: REFERENCE TO ST_LookUpPtpPoint;
END_VAR

 Return value

Name Type Description
GetPoint HRESULT See below

 Inputs

Name Type Meeting
nIdx INT The index of the segment.

Core functions of the axis

TF8560 89Version: 1.0.1

Name Type Meeting
stPoint REFERENCE TO

ST_LookUpPtpPoint
A reference to the variable that is to be updated.

5.15.5 GetUpdatedPoint

A segment of the lookup table is read back.

Syntax:
METHOD GetUpdatedPoint: HRESULT
VAR_INPUT
 nIdx : INT;
 stPoint: REFERENCE TO ST_LookUpPtpPoint;
END_VAR

 Return value

Name Type Description
GetUpdatedPoint HRESULT See below

 Inputs

Name Type Meeting
nIdx INT The index of the segment.
stPoint REFERENCE TO

ST_LookUpPtpPoint
A reference to the variable that is to be updated.

5.15.6 InvalidateClampPoint

All segments in the clamping table are marked as invalid.

Syntax:
METHOD InvalidateClampPoint: HRESULT
VAR_INPUT
END_VAR

 Return value

Name Type Description
InvalidateClampPoint HRESULT See below

Core functions of the axis

TF856090 Version: 1.0.1

5.15.7 InvalidateTable

All segments in the lookup table are marked as invalid.

Syntax:
METHOD InvalidateTable: HRESULT
VAR_INPUT
END_VAR

 Return value

Name Type Description
InvalidateTable HRESULT See below

5.15.8 SetClampPoint

A segment of the clamping table is defined.

Syntax:
METHOD SetClampPoint: HRESULT
VAR_INPUT
 Idx: INT;
END_VAR

 Return value

Name Type Description
SetClampPoint HRESULT See below

 Inputs

Name Type Description
nIdx INT The index of the clamping segment.
stClampPoint ST_LookUpClamping The clamping segment to be used.

5.15.9 SetPoint

A segment of the lookup table is defined.

Core functions of the axis

TF8560 91Version: 1.0.1

Syntax:
METHOD SetPoint: HRESULT
VAR_INPUT
 nIdx : INT;
 stPoint: REFERENCE TO ST_LookUpPtpPoint;
END_VAR

 Return value

Name Type Description
SetPoint BOOL See below

 Inputs

Name Type Description
nIdx INT The index of the segment.
stPoint REFERENCE TO

ST_LookUpPtpPoint
A reference to the variable that is to be updated.

5.15.10 UpdatePosition

The target position of the segment is changed after it is defined.

Syntax:
METHOD UpdatePosition: HRESULT
VAR_INPUT
 nIdx : INT;
 fPosition: LREAL;
 bSwap : BOOL;
 bForce : BOOL;
END_VAR

 Return value

Name Type Description
UpdatePosition BOOL See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.

Core functions of the axis

TF856092 Version: 1.0.1

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
nIdx INT The index of the segment to be updated.
fPosition LREAL The new target position.
bSwap BOOL With bSwap=TRUE the direction related enables (PositiveOnly, NegativeOnly) are

swapped.
bForce BOOL If TRUE, the segment will be updated even if the axis executes a command.

Make sure that the axis does not execute a Ptp command.

5.16 PtpLookUp

This core function is used to store the definition of a complex multi-segment movement.

Connection during startup
The internal PtpLookUp core function of the axis is connected to the Ptp core function at startup.

Not available via the axis interfaces
This core function is not available via the axis interfaces. Direct access by the application is not
required. Nevertheless, this is documented here for a better understanding of the Ptp function.

 Properties

Name Type Description
NumberOfPoints INT The number of motion segments that the core function can store.

Definition at the instantiation
The capacity of the core function is determined at instantiation.

 Methods

Name Description
GetPoint [} 93] A segment from the lookup table is read back.

Invalidate [} 93] All segments in the lookup table are marked as invalid.

ReadMaster [} 93] A master value is determined that corresponds to the specified slave value.

SetPoint [} 94] A segment of the lookup table is defined.

UpdatePosition [} 95] In some applications, the target position of the segments must be changed after
definition.
This method is used, for example, with transforming axes.

Core functions of the axis

TF8560 93Version: 1.0.1

5.16.1 GetPoint

A segment from the lookup table is read back.

Syntax:
METHOD GetPoint: HRESULT
VAR_INPUT
 nIdx : INT;
 stPoint: REFERENCE TO ST_LookUpPtpPointIntern;
END_VAR

 Return value

Name Type Description
GetPoint HRESULT See below

 Inputs

Name Type Description
nIdx INT The index of the segment. Permissible range 1 ...

NumberOfPoints.
stPoint REFERENCE TO

ST_LookUpPtpPointIntern [} 96]
A reference to the variable to be updated with the segment
data.

5.16.2 Invalidate

This method invalidates all segments in the lookup table.

Syntax:
METHOD Invalidate: HRESULT
VAR_INPUT
END_VAR

 Return value

Name Type Description
Invalidate HRESULT See below

5.16.3 ReadMaster

This method finds a master value that corresponds to the specified slave value.

Core functions of the axis

TF856094 Version: 1.0.1

Syntax:
METHOD ReadMaster : HRESULT
VAR_INPUT
fSlave: LREAL;
fMaster: REFERENCE TO LREAL;
END_VAR

 Return value

Name Type Description
ReadMaster HRESULT See below

 Inputs

Name Type Description
fSlave LREAL The specified slave value.
fMaster REFERENCE TO

LREAL
A reference to the variable to be updated with the master position.

5.16.4 SetPoint

A segment of the lookup table is defined.

Syntax:
METHOD SetPoint: HRESULT
VAR_INPUT
 nIdx : INT;
 stPoint: REFERENCE TO ST_LookUpPtpPoint;
 bForce : BOOL;
END_VAR

 Return value

Name Type Description
SetPoint HRESULT See below

 Inputs

Name Type Description
nIdx INT The index of the segment. Permissible range 1 ...

NumberOfPoints.
stPoint REFERENCE TO

ST_LookUoPtpPoint [} 96]
A reference to the variable with which the segment is to be
updated.

bForce BOOL If TRUE, the segment will be updated even if the axis executes a
command.
Make sure that the axis does not execute a Ptp command.

Core functions of the axis

TF8560 95Version: 1.0.1

5.16.5 UpdatePosition

In some use cases, the target position of the segments must be modified after definition. This method is
used for transforming axes, for example.

Syntax:
METHOD UpdatePosition: HRESULT
VAR_INPUT
 nIdx : INT;
 fPosition: LREAL;
 bSwap : BOOL;
 bForce : BOOL;
END_VAR

 Return value

Name Type Description
UpdatePosition HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
nIdx INT The index of the segment. Permissible range 1 ... NumberOfPoints.
fPosition LREAL The value to be used for the update.
bSwap BOOL With bSwap=TRUE the direction related enables (PositiveOnly, NegativeOnly)

are swapped.
bForce BOOL If TRUE, the segment will be updated even if the axis executes a command.

Make sure that the axis does not execute a Ptp command.

Core functions of the axis

TF856096 Version: 1.0.1

5.16.6 ST_LookUpPtpPoint
This data type is used to hold segments of a complex movement.

Syntax:
TYPE ST_LookUpPtpPoint :
STRUCT
 Position : LREAL;
 Velocity : LREAL;
 Acceleration: LREAL;
 Deceleration: LREAL;
 Jerk : LREAL;
 Limiting : LREAL;
 Valid : BOOL;
 PositiveOnly: BOOL;
 NegativeOnly: BOOL;
END_STRUCT
END_TYPE

Name Type Description
Position LREAL The target of the segment. If there is another segment in the motion profile,

it will be blended with the BlendingLow rule.
Velocity LREAL The velocity in the segment.

Due to circumstances, the specified velocity may be unattainable.
Acceleration LREAL The acceleration in the segment.
Deceleration LREAL The deceleration in the segment.
Jerk LREAL The jerk in the segment.
Limiting LREAL The torque limiting in the segment.
Valid BOOL Must be set to TRUE to validate the segment.
PositiveOnly BOOL Will prevent movement in the negative direction due to the segment.
NegativeOnly BOOL Will prevent movement in the positive direction due to the segment.

5.17 SetPosition

This core function is used to change the actual position without physically moving the axis. It updates the
offset of the position encoder function.

NOTICE
Not supported by all axis types
This core function is not supported by inverter axes. Any use will report DEVICE_NOTINIT and trigger an
error message.

 Properties

Name Type Description
Mode BOOL Mode := TRUE causes the actual position to be changed by an amount

specified as Target.
Mode := FALSE causes the actual position to be set to the value specified as
the target.
The Mode property has the same effect as the bRelative input of the
SetParameter() method.

Core functions of the axis

TF8560 97Version: 1.0.1

Name Type Description
Target LREAL This sets the new position value.

The Target property has the same effect as the fPosition input of the
SetParameter() method.

 Methods

Name Description
DoSetPosition [} 97] A rising edge at the bExecute input triggers the core function.

SetParameter [} 97] Here the new position and the operation mode of the core function are
defined.

5.17.1 DoSetPosition

This method triggers the core function.

Syntax:
METHOD DoSetPosition : HRESULT
VAR_INPUT
bExecute: BOOL;
END_VAR

 Return value

Name Type Description
DoSetPosition HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge starts the core function.

5.17.2 SetParameter

Here the new position and the operation mode of the core function are defined.

Syntax:
METHOD SetParameter : HRESULT
VAR_INPUT
fPosition: LREAL;
bRelative: BOOL;
END_VAR

Core functions of the axis

TF856098 Version: 1.0.1

 Return value

Name Type Description
SetParameter HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
fPosition LREAL The position value to be used is defined here.
bRelative BOOL bRelative := TRUE causes the actual position to be changed by an amount

specified as fPosition.
bRelative:= FALSE causes the actual position to be set to the value specified
as fPosition.

5.18 Stop

This core function is used to perform a stop operation using certain dynamic parameters.

 Properties

Name Type Description
NoCreeping BOOL A TRUE in this property avoids the creep phase at the end of the stopping

process of the hydraulics library.

 Methods

Name Description
DoStop [} 99] A rising edge triggers the stop.

Core functions of the axis

TF8560 99Version: 1.0.1

Name Description
SetParameter
[} 99]

This method is used to define the dynamic parameters of the operation.

5.18.1 DoStop

This method is used to trigger the stop.

Syntax:
METHOD DoStop : HRESULT
VAR_INPUT
 bExecute: BOOL;
END_VAR

 Return value

Name Type Description
DoStop HRESULT See below

 Inputs

Name Type Description
bExecute BOOL A rising edge at this input triggers the stop.

5.18.2 SetParameter

This method is used to define the dynamic parameters of the operation.

Syntax:
METHOD SetParameter: HRESULT
VAR_INPUT
 fDeceleration: LREAL;
 fJerk : LREAL;
END_VAR

 Return value

Name Type Description
SetParameter HRESULT See below

Return values of core function methods

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

Core functions of the axis

TF8560100 Version: 1.0.1

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
fDeceleration LREAL The deceleration to be used.
fJerk LREAL The jerk to be used.

5.19 ToolAdaptation

This core function is used to convert between axis coordinates and tool working position. An offset and an
optional inversion are taken into account.

 Properties

Name Type Description
Inverting BOOL A TRUE here signals a reversal of direction between axis and tool movement.
Offset LREAL The difference between axis and tool position.

 Methods

Name Description
AxisPosition The axis position is determined for a given tool position.
AxisVelocity The axis velocity is determined for a given tool velocity.

Core functions of the axis

TF8560 101Version: 1.0.1

Name Description
ToolPosition The tool position is determined for a given axis position.
ToolVelocity The tool velocity is determined for a given axis velocity.

5.20 VelocityFeed

This core function is used to start the axis with a commanded velocity but without a defined target position.

 Properties

Name Type Description
GearFactor LREAL The factor with which to respond to GuidingValue.
GuidingValue LREAL The commanded velocity.

Decouple the axis
A GearFactor of 0.0 will effectively decouple the axis from the GuidingValue.

Move in the opposite direction
A negative GearFactor causes the axis to move in the opposite direction.

 Methods

Name Description
DoFeed A rising edge triggers the core function.

5.20.1 DoFeed

A rising edge at bEnable triggers the core function, while a falling edge causes it to stop and return to idle.

Syntax:
METHOD DoFeed : HRESULT
VAR_INPUT
bEnable: BOOL;
END_VAR

 Return value

Name Type Description
DoFeed HRESULT See below

Return values of core function methods

Core functions of the axis

TF8560102 Version: 1.0.1

The return values of the methods are of type HRESULT. This 32-bit data type encodes various other
information in the upper 16 bits besides success / failure. In the lower 16 bits an indication of a cause is
transported.

To evaluate a HRESULT the FUNCTIONs SUCCEEDED(hr) and FAILED(hr) can be used.

The following values are to be expected here:

Return value Cause
F_HresultFailure(E_AdsErr.DEVICE_BUSY) The axis is busy performing another core

function.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDDATA) Not all data and parameters for the core

function are available and valid.
F_HresultFailure(E_AdsErr.DEVICE_INVALIDSTATE) The state of the axis does not allow the

execution.
F_HresultFailure(E_AdsErr.DEVICE_NOTINIT) The core function is not or not

completely initialized.
F_HresultSuccess(E_AdsErr.NOERR) The core function has accepted the

command.

 Inputs

Name Type Description
bEnable BOOL A rising edge triggers the core function, while a falling edge causes it to stop

and return to idle.

Axis properties and methods

TF8560 103Version: 1.0.1

6 Axis properties and methods

6.1 Axis properties
A range of data elements (i.e. parameters, states etc.) of the axis are implemented as properties. Some of
these elements are readable and writable (i.e. Get, Set), while others are read-only (Get).

Interfaces to core functions
There is a range of properties that return interfaces to core functions. Details about these functions
are given in a separate part of this documentation.

Name Type Access Description
AutoTorqueLimitSelect BOOL Get,

Set
An NC-based axis provides integrated function
blocks for torque-limiting communication with SoE
(i.e. Sercos over EtherCAT) and CoE (i.e. CAN over
EtherCAT). If AutoTorqueLimitSelect is TRUE
(default setting), the axis uses the appropriate
internal function block as soon as it can detect the
type of the connected servo drive.
This property must be set to FALSE if there is an
application function block used for torque-
limiting communication.

AxisIsInverter BOOL Get TRUE, if the drive of the axis is a frequency
converter.

AxisIsNc BOOL Get TRUE, if the axis is based on TwinCAT NC.
AxisName STRING Get,

Set
The textual designation of the axis.
In most cases the name is given in the instantiation
of the axis as in fbSomeAxis:
FB_AxisNcBase(AxisName:='NcClampAxis1', …
The name can be defined at the latest as the first
action in the first cyclic call of the axis.
The axis name must be unique. This is of particular
importance for hydraulic axes. The library used here
uses the axis name as file name for loading and
saving the axis parameters.

CycleTime LREAL Get In the startup phase, the axis will determine the
cycle time of the PLC task that runs the axis
function. The axis will not execute any function if it
could not update this value.

CycleTimeValid BOOL Get TRUE, if CycleTimeValid was determined.
State E_AxisState Get,

Set
The state [} 19] of the axis.
This property is writeable for technical reasons.
The application must not use this to modify the
situation or behavior of the axis.

SwitchOver BOOL Get TRUE if a pressure handling has triggered a
pressure controller activation.

UseDatFile BOOL Axis parameters are loaded from a DAT file if TRUE.
Only effective with hydraulic axes.
A TRUE must be set before the first Cyclic call.

Axis properties and methods

TF8560104 Version: 1.0.1

6.2 Axis methods
METHOD Cyclic

This method implements all axis mechanisms that must be called cyclically.

No implementation of real-time requirements
The library does not implement real-time requirements. The application is responsible for calling this
method for all axes.

METHOD DoReset : HRESULT
VAR_INPUT
 bExecute : BOOL;
END_VAR

This method calls the DoReset() method of all core functions and all torque-limiting functions associated with
or contained within the axis. The error state of the axis is deleted.

METHOD FB_init : BOOL (NC based axis)
VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
 AxisName : STRING;
 nPtpPoints : INT;
 iProcessHandler : I_ProcessHandler;
 iPosCamLookup : I_CammingLookUp;
 iVeloCamLookup : I_CammingLookUp;
END_VAR

This method is used by TwinCAT PLC to initialize, move or enable NC-based axes. The specified
parameters are used to initialize parameters, assign buffers and connect optional components.

This method is different for hydraulics library axes. Details can be found below.

NOTICE
This method must not be called by the application.

bInitRetains : BOOL;

bInCopyCode : BOOL;

These inputs are used to coordinate the commissioning of objects (i.e. FBs), the start, the stop or the Online
Change of PLC projects. They are defined by the TwinCAT PLC runtime. Details can be found in the
TwinCAT documentation.
AxisName : STRING;

This string is used to label the axis.

Hydraulic axes use this string to create the path to the parameter file.

nPtpPoints : INT;

This parameter is used to allocate memory for a buffer for multi-segmented motion definitions. The allocation
is done at PLC start. The memory will be released automatically at PLC stop.

This parameter can be 0 for axes that do not use a Ptp command at any time.

iProcessHandler : I_ProcessHandler;

Reserved for future extension.
iPosCamLookup : I_CammingLookUp;

Axis properties and methods

TF8560 105Version: 1.0.1

This parameter is an INTERFACE to a Camming Lookup FB. This can be set during commissioning or later.
iVeloCamLookup : I_CammingLookUp;

This parameter is an INTERFACE to a Camming Lookup FB. This can be set during commissioning or later.

METHOD FB_init : BOOL (Hydraulics library based axis)
VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
 AxisName : STRING;
 nPtpPoints : INT;
 iProcessHandler : I_ProcessHandler;
 iPosCamLookup : I_CammingLookUp;
 iVeloCamLookup : I_CammingLookUp;
 iEncoder : I_InputBase;
 iDrive : I_OutputBase;
 iPressureP : I_InputBase;
 iPressureM : I_InputBase;
 iPosFilter : I_Filter;
 iVeloFilter : I_Filter;
END_VAR

This method is used by TwinCAT PLC to initialize, move or release axes based on the hydraulics library. The
specified parameters are used to initialize parameters, to assign buffers and to connect external or optional
components.

Different for NC axes
This method is different for NC axes. Details can be found above.

NOTICE
Must not be called by the application
This method must not be called by the application.

bInitRetains : BOOL;
bInCopyCode : BOOL;
AxisName : STRING;
nPtpPoints : INT;
iProcessHandler : I_ProcessHandler;
iPosCamLookup : I_CammingLookUp;
iVeloCamLookup : I_CammingLookUp;

Same as above.
iEncoder : I_InputBase;

In the case of axes based on a hydraulics library, a variety of devices can be used as a source of position
information. This is done by assigning an INTERFACE to a standardized FB corresponding to the input
hardware used.
iDrive : I_OutputBase;

In the case of axes based on a hydraulics library, a variety of devices can be used as targets for the control
output. This is done by assigning an INTERFACE to a standardized FB that corresponds to the output
hardware used.
iPressureP : I_InputBase;

iPressureM : I_InputBase;

In the case of axes based on a hydraulics library, a wide range of devices can be used as a source of actual
pressure information. This is done by assigning an INTERFACE to a standardized FB corresponding to the
input hardware used.
iPosFilter : I_Filter;

In some cases, the actual position information may have a high noise level. This parameter allows a
standardized filter FB to be applied.

Axis properties and methods

TF8560106 Version: 1.0.1

Strong filtering
Strong filtering may have a negative effect on the performance of the axis.

iVeloFilter : I_Filter;

In some cases, the actual velocity information may have a high noise level. This parameter allows a
standardized filter FB to be applied.

Strong filtering
Strong filtering may have a negative effect on the performance of the axis.

METHOD ABSTRACT SetProcessHandler : HRESULT
VAR_INPUT
 iProcessHandler : I_ProcessHandler;
END_VAR

Reserved for future extension.

6.2.1 FB_init

The FB_init method is automatically called by the TwinCAT runtime environment during a system
start or stop of the PLC. Must not be called by the application.

FB_Init for FBs of the types FB_AxisNcBase and FB_AxisInvBase

FBs of the types FB_AxisNcBase and FB_AxisInvBase do not overwrite the FB_init method, but use a
constructor that is specified by FB_AxisBase. This constructor defines the syntax used to create an axis of
these types.

The inputs bInitRetains and bInCopyCode are specified by TwinCAT PLC and are present in the
FB_init() method of each function block. They are used by the TwinCAT runtime environment to
inform the method about the reason for the call.

Syntax:

Defined in FB_AxisBase:
METHOD FB_init : BOOL
VAR_INPUT
bInitRetains : BOOL;
bInCopyCode : BOOL;
AxisName : STRING;
nPtpPoints : INT;
iProcessHandler : I_ProcessHandler;
iPosCamLookup : I_CammingLookUp;
iVeloCamLookup : I_CammingLookUp;
END_VAR

Axis properties and methods

TF8560 107Version: 1.0.1

 Inputs

Name Type Description
bInitRetains BOOL Reserved for TwinCAT PLC, see above
bInCopyCode BOOL Reserved for TwinCAT PLC, see above
AxisName STRING The text-based name of the axis.
nPtpPoints INT The number of supported segments in Ptp commands.

This input can be initially set to zero. In this case,
the number must be specified at a later time.

iProcessHandler I_ProcessHandler An interface to a FB for automatic pressure controller
activation.
Reserved for extension: This input is currently
always to be assigned with null.

iPosCamLookUp I_CammingLookUp An interface to a FB with a position cam plate.
This input is usually assigned null, since the cam
plate is not used or is defined at a later time.

iVeloCamLookUp I_CammingLookUp An interface to a FB with a velocity cam plate.
This input is usually assigned null, since the cam
plate is not used or is defined at a later time.

FB_Init for FBs of the type FB_AxisHydraulicsBase

FBs of the type FB_AxisHydraulicsBase extend the constructor of FB_AxisBase. The extended constructor
defines the syntax used to create an axis of this type.

Syntax:

Extended in FB_AxisHydraulicBase:
METHOD FB_init : BOOL
VAR_INPUT
bInitRetains : BOOL;
bInCopyCode : BOOL;
AxisName : STRING;
nPtpPoints : INT;
iProcessHandler : I_ProcessHandler;
iPosCamLookup : I_CammingLookUp;
iVeloCamLookup : I_CammingLookUp;
iEncoder : I_InputBase;
iDrive : I_OutputBase;
iPressureP : I_InputBase;
iPressureM : I_InputBase;
iPosFilter : I_Filter;
iVeloFilter : I_Filter;
END_VAR

Axis properties and methods

TF8560108 Version: 1.0.1

 Inputs

Name Type Description
bInitRetains BOOL Reserved for TwinCAT PLC, see above
bInCopyCode BOOL Reserved for TwinCAT PLC, see above
AxisName STRING The text-based name of the axis.
nPtpPoints INT The number of supported segments in Ptp commands.

This input can be initially set to zero. In this case,
the number must be specified at a later time.

iProcessHandler I_ProcessHandler An interface to a FB for automatic pressure controller
activation.
Reserved for extension: This input is currently
always to be assigned with null.

iPosCamLookUp I_CammingLookUp An interface to a FB with a position cam plate.
This input is usually assigned null, since the cam
plate is not used or is defined at a later time.

iVeloCamLookUp I_CammingLookUp An interface to a FB with a velocity cam plate.
This input is usually assigned null, since the cam
plate is not used or is defined at a later time.

iEncoder I_InputBase An interface to a function block that establishes the
connection to a hardware (terminal, fieldbus device,
etc.). This function block is used to determine the actual
position of the axis.
A selection of typical FBs is available.

iDrive I_OutputBase An interface to a function block that establishes the
connection to a hardware (terminal, fieldbus device,
etc.). This function block is used to determine the set
velocity of the axis.
A selection of typical FBs is available.

iPressureP I_InputBase An interface to a function block that establishes the
connection to a hardware (terminal, fieldbus device,
etc.). This function block is used to determine the actual
pressure of a cylinder.
A selection of typical FBs is available.

iPressureM I_InputBase An interface to a function block that establishes the
connection to a hardware (terminal, fieldbus device,
etc.). This function block is used to determine the actual
pressure of a cylinder.
A selection of typical FBs is available.

iPosFilter I_Filter An interface to a function block used for filtering the
actual position of a cylinder.
A selection of typical FBs is available.

iVeloFilter I_Filter An interface to a function block used for filtering the
actual velocity of a cylinder.
A selection of typical FBs is available.

6.2.2 Cyclic

This method performs all cyclic calculations and decisions for the operation of the axis.

Axis properties and methods

TF8560 109Version: 1.0.1

The application must ensure that this method is called with an appropriate cycle time for each axis.

6.2.3 SetProcessHandler

Reserved for extension: An interface to a FB for automatic pressure controller activation is entered.

Utilities

TF8560110 Version: 1.0.1

7 Utilities

7.1 Functions for customizing enumerations
Tc3_MC2 and Tc2_Hydraulics libraries are using incompatible definitions for various enumerations. This is
solved by the Tc3_Plastic library family by using independent definitions like E_AdaptableDirection.
Tc3_PlasticMc and Tc3_PlasticHydraulic provide and use adapting functions to convert ENUM values as
required.

• FUN_AdaptBufferModusNc / FUN_AdaptBufferModusHyd
• FUN_AdaptDirectionNc / FUN_AdaptDirectionHyd
• FUN_AdaptHomingDirectionNc / FUN_AdaptHomingDirectionHyd
• FUN_AdaptSwitchModeNc / FUN_AdaptSwitchModeHyd

7.2 Filter
Filters are FBs that may be applied to reduce noise in actual values like axis position or velocity, pressures,
or forces. To be compatible with the intended use they must implement at least the pre-defined INTERFACE
I_Filter. Tc3 Plastic libraries supply a range of basic filter FBs. Find details below.

7.2.1 FB_FilterBase

This FB is defined ABSTRACT and cannot be instantiated. It is intended to be used to derive specific filters.

Syntax:
FUNCTION_BLOCK ABSTRACT FB_FilterBase EXTENDS FB_MessageBase IMPLEMENTS I_Filter

 Outputs

Name Type Access Initial value Description
Output LREAL Get 0.0 The current filtered value

 Methods

Name Description
Cyclic Cyclically called by TC3 Plastic
CyclicUpdate [} 111] Cyclic transfer of a new input value.

 Interfaces

Type Description
I_Filter Basic interface for filter function blocks

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

Utilities

TF8560 111Version: 1.0.1

7.2.1.1 CyclicUpdate

Cyclic transfer of a new value.

Syntax:
METHOD CyclicUpdate: LREAL
VAR_INPUT
bForce: BOOL;
fInput: LREAL;
END_VAR

 Inputs

Name Type Description
bForce BOOL The filtered value is updated with the input value regardless of filter

parameters if this input is TRUE.
Recommended standard: FALSE

fInput LREAL New input value

 Outputs

Name Type Description
CyclicUpdate LREAL The current filtered value

7.2.2 FB_FilterPt1

This FB derived from FB_FilterBase implements a filter of type PT1.

Syntax:
FUNCTION_BLOCK FB_FilterPt1 EXTENDS FB_FilterBase

 Properties

Name Type Access Initial value Description
Output LREAL Get 0.0 The current filtered value
Tau LREAL Get, Set 1.0 The filter time constant

 Methods

Name Description
Cyclic Cyclically called by TC3 Plastic
CyclicUpdate [} 111] Cyclic transfer of a new input value.

Utilities

TF8560112 Version: 1.0.1

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

7.2.3 FB_FilterSlewRateLimit

This FB, derived from FB_FilterBase, implements a filter that limits the rate of rise (i.e. the ramp rate).

Syntax:
FUNCTION_BLOCK FB_FilterSlewRateLimit EXTENDS FB_FilterBase

 Properties

Name Type Access Initial value Description
ChangeRateLimit The maximum rate of change of the filtered

value
Output LREAL Get 0.0 The current filtered value

 Methods

Name Description
Cyclic Cyclically called by TC3 Plastic
CyclicUpdate [} 111] Cyclic transfer of a new input value.

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

7.3 Simulation
A simulation requires the emulation of a process that is influenced by a controller. This is realized by sending
control values to output devices that control actuators. The state of the process is detected by sensors,
which respond by sending signals to input devices.

Typical examples for these devices are:

• servo drives and valves with direct fieldbus interface
• rotary encoders and sensors with direct fieldbus interface
• rotary encoders and sensors via analog input terminals
• servo drives and valves via analog output terminals

The most efficient way to connect a process simulation with a control implementation such as an application
based on TC3 Plastic Functions is to replace the real I/O devices with compatible container objects.

In such a concept, the simulation must perform the following tasks:

• emulate the functionality of the output device
• simulate the behavior of the actuator

Utilities

TF8560 113Version: 1.0.1

• simulate the effect on the process
• simulate the behavior of the sensor
• emulate the functionality of the input device

7.3.1 Simulation of an EtherCAT based servo drive axis
There are two types of EtherCAT-based servo drives: SoE and CoE devices. Both profiles can be
successfully used in real machines, but simulating them is another matter. In CoE drives, a device reset
command is triggered via a ControlWord/StatusWord mechanism, while SoE uses acyclic ADS via EtherCAT
communication. Since the simulation of the SoE mechanism is much more complicated, only a CoE-based
simulation is provided.

Implementing a simulated servo axis

A simulation requires an implementation that can run in one of two places:

• in the same context as the control implementation
• in a separate runtime or even on a separate CPU

Implementation in the same context is recommended in the form given below:

Name Type Description
{attribute
'TcContextName':='FastT
ask'}

Instructs TwinCAT RT to update the I/O of the
FB_SimCoE402_Servo function block in a specific
task. In this case it must be the calling task that
executes the Cyclic() method of the simulation
block.

fbNcAxisSim FB_SimCoE402_Servo Creates an instance of the simulation FB.
bNcAxisSimGoError BOOL Creates a signal with which the simulation triggers

an error state and requests a reset procedure.
fbNcAxisSimLimiter FB_SimTorqueLimitingCoE4

02_Servo
Creates an instance of a FB that is needed to
provide the simulation with the torque limitation
capability. This FB will exchange data with the
control functionality via an interface access.

Implementation in a separate context is recommended as described below:

Name Type Description
{attribute
'TcContextName':='FastT
ask'}

Instructs TwinCAT RT to update the I/O of the
FB_SimCoE402_Servo function block in a specific
task. In this case it must be the calling task that
executes the Cyclic() method of the simulation
block.

fbNcAxisSim FB_SimCoE402_Servo Creates an instance of the simulation block.
bNcAxisSimGoError BOOL Creates a signal with which the simulation triggers

an error state and requests a reset procedure.
{attribute
'TcContextName':='FastT
ask'}

Instructs the FB in line 5 to be updated in a specific
task. In this case it must be the calling task that
executes the Cyclic() method of the simulation
block.

fbNcAxisSimLimiter FB_SimTorqueLimitingCoE4
02_Servo

Creates an instance of a FB that is needed to
provide the simulation with the torque limitation
capability. This FB exchanges data with the control
functionality via mapping.

Initialization of a simulated servo axis

In the startup phase, it is necessary to implement an initialization sequence as described below.

Utilities

TF8560114 Version: 1.0.1

IF NOT bInitialised AND bSimulation THEN
fbNcAxisSim.EncoderWeighting:=5.0;
fbNcAxisSim.EncoderZeroShift:=100.0;
fbNcAxisSim.EncoderNoiseLevel:=0.001;
fbNcAxisSim.HighSideBlock:=700.0;
fbNcAxisSim.HighSideSpringLength:=1.0;
fbNcAxisSim.LowSideBlock:=100.0;
fbNcAxisSim.LowSideSpringLength:=1.0;
fbNcAxisSim.PositionLagKp:=1.0;
fbNcAxisSim.HighSideEndswitch:=699.0;
fbNcAxisSim.LowSideEndswitch:=101.0;
fbNcAxisSim.AbsSwitchHighEnd:=679.0;
fbNcAxisSim.AbsSwitchLowEnd:=21.0;
// the next line must be used if the simulation
// is implemented in a separate context
fbNcAxisSimLimiterMapped.ConnectToSim(ipSim:=fbNcAxis2Sim);
// the next two lines must be used if the simulation
// is implemented in the same context
fbNcAxisSimLimiter.ConnectToSim(ipSim:=fbNcAxis2Sim);
iNcAxis_D.SetTorqueLimiting(fbNcAxisSimLimiter);
END_IF

The last line defines the FB used by the axis for torque limitation when the simulation is performed in the
same context. In this case the penultimate line is required to connect this FB to the drive simulation.

Above these lines is an example of implementation in a separate context.

For details on the specified parameters, refer to the documentation below.

Mapping of a simulated servo axis

The simulation FB provides a local instance of a mapping interface defined as follows:
NcAdapt : FB_SimCoE402_ServoNcAdapt;

Details of this FB can be found in the documentation below.

The supplied mapping structures for encoder and drive inputs and outputs are compatible with the TwinCAT
NC interfaces and can thus be used.

Functionality of the CoE402 simulation

All mechanisms that use mapped interfaces are supported in a way that is expected by TwinCAT NC. This
also includes torque limitation.

Since there is no way to emulate ADS communication, some mechanisms cannot be supported.

• Simulated axes cannot be supported by DriveManager. There is no servo drive and no motor. The
commissioning requires just parameters and must be done hard coded in the application project.

• The Advanced Homing library of TwinCAT NC uses the ADS communication to disable some functions
of the AX servo drives while the homing procedures are executed. The core functions of the TC3
Plastic Functions provide methods to avoid the use of this communication. The homing mechanisms
are also ready for use with simulated servo axes.

7.3.1.1 NC simulation components

7.3.1.1.1 FB_SimCoE402_Servo

Utilities

TF8560 115Version: 1.0.1

With such a FB a simulation of a CoE402 servo drive is realized. The FB offers mapping elements for CoE
interfaces of servo drives and the mapping is done in the same way as for the real drive unit.

Syntax:
FUNCTION_BLOCK FB_SimCoE402_Servo EXTENDS FB_SimAxCommon IMPLEMENTS I_SimCoE402_Servo
VAR_INPUT
 NcAdapt: FB_CoE402_ServoAdapt;
END_VAR
VAR_OUTPUT
END_VAR

 Inputs

Name Type Description
NcAdapt FB_CoE402_ServoAdapt The mapping interface for the NC axis.

 Properties

Name Type Access Description
AbsolutSwitch BOOL Get The signal of the simulated absolute switch.
AbsSwitchHighEnd LREAL Get, Set The position at which an absolute switch is simulated

at the upper end of the travel path.
AbsSwitchHighSelect BOOL Get, Set A TRUE selects the absolute switch at the upper end

of the travel path.
A FALSE selects the absolute switch at the lower end
of the travel path.

AbsSwitchLowEnd LREAL Get, Set The position at which an absolute switch is simulated
at the lower end of the travel path.

ActualPosition LREAL Get, Set The actual position of the simulated servo.
ActualTorque LREAL Get The simulated actual torque.
CycleTime LREAL Get, Set The cycle time with which the Cyclic method is called.
EncoderInterpolation LREAL Get, Set The simulated encoder interpolation.

This value must match the parameter of the NC
axis.

EncoderNoiseLevel LREAL Get, Set A noise component for the signaled actual position
can be specified here.

EncoderWeighting LREAL Get, Set The simulated encoder weighting.
This value must match the parameter of the NC
axis.

EncoderZeroShift LREAL Get, Set The simulated zero offset shift.
Depending on homing methods applied, this value
may differ from that in the NC axis.

ExternalTorque LREAL Get, Set Here, an external torque can be specified from the
simulation of a simulated process.

HighSideBlock LREAL Get, Set The simulated mechanical block at the upper end of
the travel path.

HighSideEndswitch LREAL Get, Set The position at which a hardware limit switch is
simulated at the upper end of the travel path.

HighSideSpringLength LREAL Get, Set A spring travel before the upper mechanical block.
This simulates a torque increase.

LowerEndSwitch BOOL Get The signal of the limit switch at the lower end of the
travel path.

LowSideBlock LREAL Get, Set The simulated mechanical block at the lower end of
the travel path.

Utilities

TF8560116 Version: 1.0.1

Name Type Access Description
LowSideEndswitch LREAL Get, Set The position at which a hardware limit switch is

simulated at the lower end of the travel path.
LowSideSpringLength LREAL Get, Set A spring travel before the lower mechanical block.

This simulates a torque increase.
MovingMass LREAL Get, Set A mass can be specified here. It is used to simulate a

torque proportional to the acceleration.
NoBlock BOOL Get, Set A TRUE suppresses the mechanical stops at the

upper and lower end of the travel path. The axis can
travel endlessly.

PositionLagKp LREAL Get, Set The position control gain of the simulated servo.
Reversed BOOL Get, Set TRUE if the direction of rotation of the simulated

servo is inverted.
StatusWord WORD Get The status word of the servo
TorqueLimitNegative LREAL Get, Set The negative torque limit.
TorqueLimitPositive LREAL Get, Set The positive torque limit.
UpperEndSwitch BOOL Get The signal of the limit switch at the upper end of the

travel path.

NOTICE
When using a simulated servo drive, a FB of type FB_SimTorqueLimitingCoE402_Servo or
FB_SimTorqueLimitingCoE402_Mapped must be used to perform the data exchange between TC3 Plastic
Functions and the simulation.

 Methods

Name Description
Cyclic [} 116] This method must be called cyclically.

GoFaultState [} 116] This method can be used to simulate an error situation on the simulated axis.

Process [} 116] This method is called once per cycle to calculate the actual values for position and
torque.

7.3.1.1.1.1 Cyclic
METHOD Cyclic : BOOL

This method must be called cyclically. It performs all the calculations of the simulation.

7.3.1.1.1.2 GoFaultState
METHOD GoFaultState : BOOL

This method can be used to simulate an error situation on the simulated axis.

The simulated axis does not respond to setpoints, updates the simulated drive state machine and
reports the problem via the status word.

7.3.1.1.1.3 Process
METHOD Process : BOOL

This method is called once per cycle to calculate the actual values for position and torque.

Utilities

TF8560 117Version: 1.0.1

7.3.1.1.2 FB_SimTorqueLimitingCoE402_Servo

If the simulation is performed in the same task in which the process software of the axis is running: A FB of
this type must be used to provide a simulated servo drive with a torque limitation.

If the simulation is not performed in the same task in which the process software of the axis is running: A FB
of this type must be used to provide a simulated servo drive with a torque limitation and to connect it by a
mapping.

 Properties

Name Type Access Description
Activate BOOL Get, Set A TRUE signals that a torque limitation is active.

 Methods

Name Description
ConnectToSim [} 117] This method establishes a connection between the torque-limiting FB and the

simulated servo drive.
Cyclic [} 118] This method, to be called cyclically, performs all calculations and decisions.

7.3.1.1.2.1 ConnectToSim

This method establishes a connection between the torque-limiting FB and the simulated servo drive. This
connection replaces the EtherCAT communication with a real CoE402-based servo drive.

Syntax:
METHOD ConnectToSim : HRESULT
VAR_INPUT
ipSim: I_SimCoE402_Servo;
END_VAR

 Inputs

Name Type Description
ipSim I_SimCoE402_Servo The simulation block for the simulation of a CoE402 servo.

Utilities

TF8560118 Version: 1.0.1

7.3.1.1.2.2 Cyclic

This method is used to perform the necessary calculations. It must be called cyclically.

Syntax:
METHOD Cyclic

7.3.2 Simulation of an inverter drive axis
This simulation corresponds to an inverter axis and can be used to replace a real inverter drive. For this
purpose, compatible mapping elements are provided and a behavior very similar to that of a real axis is
emulated.

Implementation of a simulated inverter drive axis

A simulation requires an implementation that can run in one of two places:

• in the same context as the control implementation
• in a separate runtime or even on a separate CPU

Implementation in both contexts is recommended as described below:

Name Type Description
{attribute
'TcContextName':='FastT
ask'}

Instructs FB_SimCoE402_Servo to be updated in a
specific task. In this case it must be the calling task
that executes the Cyclic() method of the simulation
block.

fbInvAxisSim FB_SimCoE402_Inverter_X
yz

Creates an instance of the simulation FB.

bInvAxisSimGoError BOOL Creates a signal for the simulation to report an error
state and request a reset procedure.

Range of supported inverters

The term FB_SimCoE402_Inverter_Xyz above must be replaced by one of the following options:

FB_SimCoE402_Inverter_CoE402FI

FB_SimCoE402_Inverter_CoE402SI

Initialization of a simulated inverter drive axis

In the startup phase, it is necessary to implement an initialization sequence as described below.
IF NOT bInitialised AND bSimulation THEN
fbInverterSimDS402.CycleTime := 0.002;
fbInverterSimDS402.MaxTurnRate := 1380.0;
fbInverterSimDS402.MinTurnrate := 45.0;
fbInverterSimDS402.RampTime := 2.0;
fbInverterSimDS402.OutputFactor := 1.0;
fbInverterSimDS402.ReferenceLoad := 100.0;
END_IF

The parameters must correspond to the behavior of the simulated device, not to the intended use.

Utilities

TF8560 119Version: 1.0.1

7.3.2.1 Adaptation of an inverter

7.3.2.1.1 FB_SimCoE402_Inverter_CoE402FI

This simulation corresponds to an inverter axis and can be used to replace a real inverter drive by providing
compatible mapping elements and emulating behavior very similar to that of a real axis.

The FB provides mapping elements for CoE interfaces of basic frequency inverters (FI) that match the
interfaces implemented by the adapter FB for this drive type. Mapping is done in the same way as for the
real drive unit.

Syntax:
FUNCTION_BLOCK FB_InverterAdaption_CoE402FI
VAR_INPUT
CoE402FI_Outputs AT %Q* : ST_CoE402FI_Outputs;
CoE402FI_Inputs AT %I* : ST_CoE402FI_Inputs;
EtC_Device AT %I* : FB_EtC_Device;
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Access Description
InverterType E_Tc3pInverterType Get The type of the simulated inverter.
Load LREAL Get, Set Here you can specify a load that is

claimed by a simulated process.
MaxTurnRate LREAL Get, Set The maximum turn rate of the drive.
MinTurnrate LREAL Get, Set A minimum turn rate can be specified

here. If a value > 0.0 is specified, the
drive ignores set turn rates below this
threshold and a dead band is created.
If the default is less than 10 RPM, it is
assumed that the inverter supports
vector control.

RampTime LREAL Get, Set Here the time for the ramp from zero to
MaxTurnRate or vice versa is defined.

ReferenceLoad LREAL Get, Set A reference value for Load.
VectorControlled BOOL Get A TRUE specifies that the actual turn

rate is load independent.
If FALSE, the inverter responds to a
load torque with a proportional slip. The
simulation assumes a slip of 0 to 50 %
for a load of 0 to 100 % of the
reference load.

 Methods

Name Description
Cyclic This method must be called cyclically by the application.
TriggerError A call to this method places the simulated drive into the error state.

Utilities

TF8560120 Version: 1.0.1

7.3.2.1.2 FB_SimCoE402_Inverter_CoE402SI

This simulation corresponds to an inverter axis and can be used to replace a real inverter drive by providing
compatible mapping elements and emulating behavior very similar to that of a real axis.

The FB provides mapping elements for CoE interfaces of frequency inverters that implement a servo-like
architecture and that match the interfaces implemented by the adapter FB for this type of drives. Mapping is
done in the same way as for the real drive unit.

Syntax:
FUNCTION_BLOCK FB_InverterAdaption_CoE402SI
VAR_INPUT
CoE402SI_Outputs AT %Q* : ST_CoE402SI_Outputs;
CoE402SI_Inputs AT %I* : ST_CoE402SI_Inputs;
EtC_Device AT %I* : FB_EtC_Device;
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Access Description
InverterType E_Tc3pInverterType Get The type of the simulated inverter.
Load LREAL Get, Set Here you can specify a load that is claimed by

a simulated process.
MaxTurnRate LREAL Get, Set The maximum turn rate of the drive.
MinTurnrate LREAL Get, Set A minimum turn rate can be specified here. If

a value > 0.0 is specified, the drive ignores
set turn rates below this threshold and a dead
band is created.
If the default is less than 10 RPM, it is
assumed that the inverter supports vector
control.

OutputFactor LREAL Get, Set The factor used to exchange turn rates with
the device.

RampTime LREAL Get, Set Here the time for the ramp from zero to
MaxTurnRate or vice versa is defined.

ReferenceLoad LREAL Get, Set A reference value for Load.
VectorControlled BOOL Get A TRUE specifies that the actual turn rate is

load independent.
If FALSE, the inverter responds to a load
torque with a proportional slip. The simulation
assumes a slip of 0 to 50 % for a load of 0 to
100 % of the reference load.

 Methods

Name Description
Cyclic This method must be called cyclically by the application.
TriggerError A call to this method places the simulated drive into the error state.

Utilities

TF8560 121Version: 1.0.1

7.3.3 I/O Simulation containers
To create a simulation, function blocks are needed that can replace an I/O device in a compatible way.

Name Channels Description
FB_SimAnalogInputElTerminal4 [} 121] 4 Simulation of an analog EtherCAT input terminal.

Example EL3134
FB_SimAnalogOutputElTerminal4 [} 122] 4 Simulation of an analog EtherCAT output terminal.

Example EL4134
FB_SimSsiInputElTerminal1 [} 123] 1 Simulation of an EtherCAT SSI input terminal.

Example EL5001
FB_CoE402_ServoAdapt [} 122] 1 AX8000

7.3.3.1 Simulation of an analog input terminal

Simulation of a 4-channel analog input terminal. This FB only provides a mapping interface and does not
contain an implementation.

Syntax:
FUNCTION_BLOCK FB_SimAnalogInputElTerminal4

 Inputs

Name Type Access Initial value Description
AnalogValue1 INT IN 0 The simulated input value of the 1st channel.
AnalogValue2 INT IN 0 The simulated input value of the 2nd channel.
AnalogValue3 INT IN 0 The simulated input value of the 3rd channel.
AnalogValue4 INT IN 0 The simulated input value of the 4th channel.
WcState BOOL OUT FALSE The simulated Working Counter State.
Toggle BOOL OUT FALSE The simulated toggle bit.
InfoDataState UINT OUT 8 The simulated Device State.
AdsAddr AMSADDR OUT The simulated ADS address.

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

Utilities

TF8560122 Version: 1.0.1

7.3.3.2 Simulation of an analog output terminal

Simulation of a 4-channel analog output terminal. This FB only provides a mapping interface and does not
contain an implementation.

Syntax:
FUNCTION_BLOCK FB_SimAnalogOutputElTerminal4

 Inputs

Name Type Access Initial value Description
Output1 INT IN 0 The simulated output value of the 1st

channel.
Output2 INT IN 0 The simulated output value of the 2nd

channel.
Output3 INT IN 0 The simulated output value of the 3rd

channel.
Output4 INT IN 0 The simulated output value of the 4th

channel.
WcState BOOL OUT FALSE The simulated Working Counter State.
InfoDataState UINT OUT 8 The simulated Device State.
AdsAddr AMSADDR OUT The simulated ADS address.

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

7.3.3.3 Simulation of a CoE402 servo drive

Simulation of a CoE408 servo drive. This FB only provides a mapping interface and does not contain an
implementation.

Syntax:
FUNCTION_BLOCK FB_CoE402_ServoAdapt

 Inputs

Name Type Access Description
NcDriveIn NCDRIVESTRUCT_IN2 OUT For the DriveIn interface of the NC.

Utilities

TF8560 123Version: 1.0.1

Name Type Access Description
NcDriveOut NCDRIVESTRUCT_OUT2 IN For the DriveOut interface of the NC.
NcEncIn NCENCODERSTRUCT_IN2B OUT For the EncoderIn interface of the NC.
NcEncOut NCENCODERSTRUCT_OUT2 IN For the EncoderOut interface of the NC.

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

7.3.3.4 Simulation of an SSI input terminal

Simulation of a 1-channel SSI input terminal. This FB only provides a mapping interface and does not
contain an implementation.

Syntax:
FUNCTION_BLOCK FB_SimSsiInputElTerminal1

 Inputs

Name Type Access Initial value Description
AnalogValue1 INT IN 0 The simulated input value of the 1st channel.
AnalogValue2 INT IN 0 The simulated input value of the 2nd channel.
AnalogValue3 INT IN 0 The simulated input value of the 3rd channel.
AnalogValue4 INT IN 0 The simulated input value of the 4th channel.
WcState BOOL OUT FALSE The simulated Working Counter State.
Toggle BOOL OUT FALSE The simulated toggle bit.
InfoDataState UINT OUT 8 The simulated Device State.
AdsAddr AMSADDR OUT The simulated ADS address.

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

7.3.4 Common simulation components

7.3.4.1 FB_Noise

Utilities

TF8560124 Version: 1.0.1

This FB is used to generate a pseudo-random signal that resembles a white noise disturbance. Noise signals
may be used to simulate a common problem of analog sensors and interfaces.

Objects of this type are typically used as local elements in an implementation of an axis simulation.

Syntax:
FUNCTION_BLOCK FB_Noise

 Methods

Name Description
Cyclic [} 124] Cyclic call to generate a new value.

SetLineNoiseLevel [} 124] Determination of the level of an influence by a supply
network.

SetSparkNoiseLevel [} 125] Determination of the level of an influence by static
discharges.

SetWhiteNoiseLevel [} 125] Setting the level of the noise signal.

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

7.3.4.1.1 Cyclic
Method to be called cyclically to generate a new value.

Syntax:
METHOD Cyclic : LREAL

 Outputs

Name Type Description
Cyclic LREAL The new value of the noise signal

7.3.4.1.2 SetLineNoiseLevel

Determination of the level of an influence by a supply network.

Syntax:
METHOD SetLineNoiseLevel
VAR_INPUT
fLevel: LREAL;
END_VAR

Utilities

TF8560 125Version: 1.0.1

 Inputs

Name Type Description
fLevel LREAL Level of an influence by a supply network.

Recommended standard: depending on the use of the signal.

7.3.4.1.3 SetSparkNoiseLevel

Determination of the level of an influence by static discharges.

Syntax:
METHOD SetSparkNoiseLevel
VAR_INPUT
fLevel: LREAL;
END_VAR

 Inputs

Name Type Description
fLevel LREAL Level of an influence by static discharges.

Recommended standard: depending on the use of the signal.

7.3.4.1.4 SetWhiteNoiseLevel

Setting the level of the noise signal.

Syntax:
METHOD SetWhiteNoiseLevel
VAR_INPUT
fLevel: LREAL;
END_VAR

 Inputs

Name Type Description
fLevel LREAL Level of the noise signal.

Recommended standard: depending on the use of the signal.

7.3.4.2 FB_SimAxCommon

Utilities

TF8560126 Version: 1.0.1

Such a FB is used as a common platform for performing axle simulations of various types. It is not intended
to instantiate objects.

Syntax:
PROPERTY AbsolutSwitch : BOOL (r/o)
PROPERTY AbsSwitchHighEnd : LREAL (r/w)
PROPERTY AbsSwitchHighSelect : BOOL (r/w)
PROPERTY AbsSwitchLowEnd : LREAL
PROPERTY ActualPosition : LREAL
PROPERTY CycleTime : LREAL
PROPERTY EncoderInterpolation: LREAL
PROPERTY EncoderNoiseLevel : LREAL
PROPERTY EncoderWeighting : LREAL
PROPERTY EncoderZeroShift : LREAL
METHOD GoFaultState : BOOL
PROPERTY HighSideBlock : LREAL
PROPERTY HighSideEndswitch : LREAL
PROPERTY HighSideSpringLength: LREAL
PROPERTY LowerEndSwitch : BOOL
PROPERTY LowSideBlock : LREAL
PROPERTY LowSideEndswitch : LREAL
PROPERTY LowSideSpringLength : LREAL
PROPERTY MovingMass : LREAL
PROPERTY NoBlock : BOOL
PROPERTY UpperEndSwitch : BOOL

 Properties

Name Type Access Description
AbsolutSwitch BOOL Get This runtime value provides information about

the simulated feedback signal as defined by
AbsSwitchHighSelect.

AbsSwitchHighEnd LREAL Get, Set This parameter defines the threshold in case
AbsSwitchHighSelect=TRUE: AbsolutSwitch will
be TRUE if the simulated actuator position is >=
AbsSwitchHighEnd.
The simulated position of the actuator can
deviate from the reported axis position.

AbsSwitchHighSelect BOOL Get, Set This parameter defines the active AbsolutSwitch.
A TRUE will select AbsSwitchHighEnd while a
FALSE makes the AbsSwitchLowEnd the active
AbsolutSwitch.

AbsSwitchLowEnd LREAL Get, Set This parameter defines the threshold in case
AbsSwitchHighSelect=FALSE: AbsolutSwitch will
be TRUE if the simulated actuator position is <=
AbsSwitchLowEnd.
The simulated position of the actuator can
deviate from the reported axis position.

ActualPosition LREAL Get, Set This runtime value provides information about
the simulated axis position.
The simulated position of the actuator can
deviate from the reported axis position.

CycleTime LREAL Get, Set This parameter must be initialized with the
update calling cycle of the Cyclic() method and
will be forwarded to any sub-component if
required. It is used to define any time behavior.

EncoderInterpolation LREAL Get, Set This parameter must be initialized with the same
value as the corresponding parameter in the
motion technology:
• NC: encoder, parameter, scaling factor

denominator
• Hydraulics library: encoder, inc. Interpolation

Utilities

TF8560 127Version: 1.0.1

Name Type Access Description
EncoderNoiseLevel LREAL Get, Set The simulated axis offers the possibility to disturb

the reported position with a pseudo-random
white noise. This is realized by a FB_Noise()
function block. The parameter
EncoderNoiseLevel is forwarded as
SetWhiteNoiseLevel.

EncoderWeighting LREAL Get, Set This parameter must be initialized with the same
value as the corresponding parameter in the
motion technology:
• NC: encoder, parameter, scaling factor

numerator
• Hydraulics library: encoder, weighting factor

EncoderZeroShift LREAL Get, Set This parameter must be initialized with the same
value as the corresponding parameter in the
motion technology:
• NC: rotary encoder, parameter, position bias
• Hydraulics library: encoder, zero offset

HighSideBlock LREAL Get, Set The simulated position of the actuator is limited
to a value less than or equal to this parameter.

HighSideEndswitch LREAL Get, Set This parameter defines the UpperEndSwitch
threshold that becomes TRUE when the
simulated position of the actuator is >= this
parameter.

HighSideSpringLengt LREAL Get, Set This parameter defines the length of a simulated
spring-like effect at the upper side of the actuator
stroke.

LowerEndSwitch BOOL Get This runtime value provides information about
the state of a simulated sensor. Becomes TRUE
if the position of the simulated actuator is >=
HighSideEndswitch.

LowSideBlock LREAL Get, Set The simulated position of the actuator is limited
to a value above or equal to this parameter.

LowSideEndswitch LREAL Get, Set This parameter defines the LowerEndSwitch
threshold that becomes TRUE when the
simulated position of the actuator is <= this
parameter.

LowSideSpringLength LREAL Get, Set This parameter defines the length of a simulated
spring-like effect at the lower side of the actuator
stroke.

MovingMass LREAL Get, Set This parameter can be used to define a moving
mass. It is used to calculate dynamic
acceleration and deceleration forces, torques or
pressures.

NoBlock BOOL Get, Set If this parameter is set to TRUE, the use of the
springs and blocks on the upper and lower sides
will be disabled.

UpperEndSwitch BOOL Get This runtime value provides information about
the state of a simulated sensor. It becomes
TRUE if the position of the simulated actuator is
<= LowSideEndswitch.

 Methods

Name Description
GoFaultState This method can be used to simulate an error situation on the simulated axis.

Utilities

TF8560128 Version: 1.0.1

Requirements

Development environ-
ment

Target platform PLC libraries to include

TwinCAT v3.1.4024.35 PC or CX (x64, x86) Tc3_PlasticFunction V3.12.4.26 or higher

7.3.5 Components of the hydraulic simulation

7.3.5.1 FB_SimHydAx_Standard

This FB is a simplified simulation of a universal hydraulic axis. A number of typical effects are supported.

The implementation of this object is not a full-fledged and realistic simulation.

Syntax:
FUNCTION_BLOCK FB_SimHydAx_Standard EXTENDS FB_SimAxCommon IMPLEMENTS I_SimHydAx
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Access Description
AbsolutSwitch BOOL Get The signal of the simulated absolute switch.
AbsSwitchHighEnd LREAL Get, Set The position at which an absolute switch is

simulated at the upper end of the travel path.
AbsSwitchHighSelect BOOL Get, Set A TRUE selects the absolute switch at the

upper end of the travel path.
A FALSE selects the absolute switch at the
lower end of the travel path.

AbsSwitchLowEnd LREAL Get, Set The position at which an absolute switch is
simulated at the lower end of the travel path.

ActualPosition LREAL Get, Set The actual position of the simulated axis.
CycleTime LREAL Get, Set The cycle time with which the Cyclic method is

called.
Cylinder I_SimCylinder Get An interface to the local FB_SimCylinder object

within the simulated axis.
Encoder I_SimUniversalEnc

oder
Get An interface to the local

FB_SimUniversalEncoder object within the
simulated axis.

EncoderInterpolation LREAL Get, Set The simulated encoder interpolation.
This value must match the parameter of the
NC axis.

EncoderNoiseLevel LREAL Get, Set A noise component for the signaled actual
position can be specified here.

EncoderWeighting LREAL Get, Set The simulated encoder weighting.
This value must match the parameter of the
NC axis.

Utilities

TF8560 129Version: 1.0.1

Name Type Access Description
EncoderZeroShift LREAL Get, Set The simulated zero offset shift.

Depending on homing methods applied,
this value may differ from that in the NC
axis.

ExternalForce LREAL Get, Set This runtime value can be updated with
pressure values required for process
simulation. It is used to calculate the total
pressure on the simulated cylinder and is part
of the reported actual pressure.

HighSideBlock LREAL Get, Set The simulated mechanical block at the upper
end of the travel path.

HighSideEndswitch LREAL Get, Set The position at which a hardware limit switch is
simulated at the upper end of the travel path.

HighSideSpringLength LREAL Get, Set A spring travel before the upper mechanical
block.
This simulates a pressure increase.

LowSideBlock LREAL Get, Set The simulated mechanical block at the lower
end of the travel path.

LowSideEndswitch LREAL Get The signal of the limit switch at the lower end
of the travel path.

LowSideSpringLength LREAL Get, Set A spring travel before the lower mechanical
block.
This simulates a pressure increase.

MovingMass LREAL Get, Set A mass can be specified here. It is used to
simulate a torque proportional to the
acceleration.

NoBlock BOOL Get, Set A TRUE suppresses the mechanical stops at
the upper and lower end of the travel path. The
axis can travel endlessly.

PressureTransducerA I_PressureTransdu
cer

An interface to the local
FB_PressureTransducer object on the A-side
of the FB_SimCylinder object within the
simulated axis.

PressureTransducerB I_PressureTransdu
cer

An interface to the local
FB_PressureTransducer object on the B-side
of the FB_SimCylinder object within the
simulated axis.

Valve I_SimValve An interface to the local
FB_PressureTransducer object on the B-side
of the FB_SimCylinder object within the
simulated axis.

 Methods

Name Description
Cyclic [} 130] This method performs all calculations of the simulation.

GoFaultState [} 130] This method can be used to simulate an error situation on the simulated axis.

Utilities

TF8560130 Version: 1.0.1

7.3.5.1.1 Cyclic

This method must be called cyclically. It performs all the calculations of the simulation.

Syntax:
METHOD Cyclic
VAR_IN_OUT
AxisRef: AXIS_REF_BkPlcMc;
END_VAR

 Inputs

Name Type Description
AxisRef AXIS_REF_BkPlcMc The AXIS-REF of the hydraulic axis.

7.3.5.1.2 GoFaultState

This method can be used to simulate an error situation on the simulated axis. The axis reports a subsequent
error and is set to the fault state.

7.3.5.2 FB_SimValveAnalog

This simplified simulation of an analog proportional or servo valve is used as part of a simulated hydraulic
axis. It supports a range of typical variants of non-linearities. There is no dynamic behavior.

The implementation of this object is not a full-fledged and realistic simulation.

Objects of this type are typically used as local elements in an implementation of an axis simulation.

Syntax:
FUNCTION_BLOCK ABSTRACT FB_SimValve IMPLEMENTS I_SimValve
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR

Utilities

TF8560 131Version: 1.0.1

 Properties

Name Type Access Description
AdsAddr AMSADDR Get, Set This variable is used to implement a mapping

interface of an analog valve.
ControlValue INT Get, Set This runtime value must be updated cyclically with

an output property of a
FB_SimAnalogOutputElTerminal4 instance.
This assignment can be understood as the cable
connecting an output terminal to an input pin of
the valve connector.

ControlValueNorm LREAL Get This runtime value provides information about the
current control value in abstract units (e.g. %).

ControlValueType E_SimControlVal
ueType

Get, Set This parameter must be initialized with a value that
specifies the type of the control signal. It must match
the type of the simulated output terminal.

InfoDataState UINT Get, Set This variable is used to implement a mapping
interface of an analog valve.

Orifice_PA LREAL Get This runtime value provides information about the
current opening between the supply port and the A-
side port of the valve.

Orifice_PB LREAL Get This runtime value provides information about the
current opening between the supply port and the B-
side port of the valve.

Overlapp_PA LREAL Get, Set This parameter must be initialized with the overlap
on the A-side of the valve.
Typical values can be found in the
manufacturer's data sheets.

Overlapp_PB LREAL Get, Set This parameter must be initialized with the overlap
on the B-side of the valve.
Typical values can be found in the
manufacturer's data sheets.

P_A LREAL Get, Set This runtime value reports about the pressure at the
A-side port of the valve.

P_B LREAL Get, Set This runtime value reports about the pressure at the
B-side port of the valve.

Q_PA LREAL Get This runtime value reports about the oil flow between
the supply port and the A-side port of the valve.

Q_PB LREAL Get This runtime value reports about the oil flow between
the supply port and the B-side port of the valve.

Qnominal_PA LREAL Get, Set This parameter must be initialized with the capacity
of the supply to the A-side opening of the simulated
valve.
Typical values can be found in the
manufacturer's data sheets.

Qnominal_PB LREAL Get, Set This parameter must be initialized with the capacity
of the supply to the B-side opening of the simulated
valve.
Typical values can be found in the
manufacturer's data sheets.

SpoolFeedback INT Get This runtime value reports about the actual position
of the valve piston. It is used to implement a
mapping interface of an analog valve.

SupplyPressure LREAL Get, Set This runtime value must be updated with the supply
pressure. If the value is assumed to be constant, it
can be updated once during initialization.

Utilities

TF8560132 Version: 1.0.1

Name Type Access Description
Toggle BOOL Get This variable is used to implement a mapping

interface of an analog valve.
ValveSpoolType E_SimValveSpoo

lType
Get, Set This parameter sets the transfer characteristic of the

valve.
WcState BOOL Get, Set This variable is used to implement a mapping

interface of an analog valve.

 Methods

Name Description
Cyclic [} 132] This method must be called cyclically. It performs all the calculations of the simulation.

7.3.5.2.1 Cyclic

This method must be called cyclically. It performs all the calculations of the simulation.

Syntax:
METHOD Cyclic
VAR_INPUT
END_VAR

7.3.5.3 FB_SimCylinder

This simplified simulation of a universal cylinder is used as part of a simulated hydraulic axis. A number of
typical effects are supported.

The implementation of this object is not a full-fledged and realistic simulation.

Objects of this type are typically used as local elements in an implementation of an axis simulation.

 Properties

Name Type Access Description
CycleTime LREAL Get, Set This parameter must be initialized with the call

cycle time.
ExternalForce LREAL Get, Set This runtime value can be used to update an

external force in the simulation calculation. It is
used for conversion to pressure values.

HighSideBlock LREAL Get, Set The simulated upper mechanical stop.
HighSideSpringLength LREAL Get, Set The simulated spring action before the upper

mechanical stop.

Utilities

TF8560 133Version: 1.0.1

Name Type Access Description
LowSideBlock LREAL Get, Set The simulated lower mechanical stop.
LowSideSpringLength LREAL Get, Set The simulated spring action before the lower

mechanical stop.
P_A LREAL Get, Set The simulated pressure at the A-side cylinder

port.
P_B LREAL Get, Set The simulated pressure at the B-side cylinder

port.
PistonDiameter LREAL Get, Set The diameter of the cylinder piston. It is used to

calculate the effective areas of the cylinder.
Position LREAL Get, Set The current position of the cylinder.
Q_PA LREAL Get, Set This runtime value provides information about the

oil flow flowing into or out of the A-side cylinder
port.
This value is usually determined by a valve
simulation and passed on by a hydraulic axis
simulation.

Q_PB LREAL Get, Set This runtime value provides information about the
oil flow flowing into or out of the A-side cylinder
port.
This value is usually determined by a valve
simulation and passed on by a hydraulic axis
simulation.

RodDiameter LREAL Get, Set The diameter of the rod of the cylinder. It is used
to calculate the effective areas of the cylinder.

Stroke LREAL Get, Set The stroke length (i.e. the distance between the
lower and upper mechanical end positions) of the
cylinder. It is used to limit the actual position.

 Methods

Name Description
Cyclic [} 133] This method must be called cyclically. It performs all the calculations of the simulation.

7.3.5.3.1 Cyclic

This method must be called cyclically. It performs all the calculations of the simulation.

Syntax:
METHOD Cyclic
VAR_INPUT
END_VAR

7.3.5.4 FB_SimPressureTransducer

This simplified simulation of a universal pressure transducer is used as component of a simulated hydraulic
axis. A number of typical effects are supported.

Utilities

TF8560134 Version: 1.0.1

The implementation of this object is not a full-fledged and realistic simulation.

Objects of this type are typically used as local elements in an implementation of an axis simulation.

Syntax:
FUNCTION_BLOCK FB_SimPressureTransducer IMPLEMENTS I_PressureTransducer
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Access Description
AdcValue INT Get This runtime value contains the input value of the simulated

terminal.
CycleTime LREA Get, Set This parameter must be initialized with the call cycle time.
NoiseLevel LREAL Get, Set This parameter can be used to set the amplitude of a

simulated noise signal that is added to the pressure at the
sensor.

NominalPressure LREAL Get, Set This parameter must be initialized with the rated pressure
(i.e. full scale) of the simulated transducer.

Pressure LREAL Get, Set This runtime value must be updated cyclically with the
pressure of a specific point in a simulated hydraulic system.

Signal LREAL Get This runtime value contains the electrical signal of a
simulated 0 to 10 V pressure transducer.

 Methods

Name Description
Cyclic [} 134] This method must be called cyclically. It performs all the calculations of the simulation.

7.3.5.4.1 Cyclic

This method must be called cyclically. It performs all the calculations of the simulation.

Syntax:
METHOD Cyclic
VAR_INPUT
END_VAR

Utilities

TF8560 135Version: 1.0.1

7.3.5.5 FB_SimUniversalEncoder

This simplified simulation of a universal encoder is used as part of a simulated hydraulic axis. A number of
typical effects are supported.

The implementation of this object is not a full-fledged and realistic simulation.

Objects of this type are typically used as local elements in an implementation of an axis simulation.

 Properties

Name Type Access Description
AdsAddr AMSADDR Get This variable is used to implement a mapping interface of

an analog valve.
Count_UDINT UDINT Get This variable is used to implement a mapping interface of

an analog valve.
Count_UINT UINT Get This variable is used to implement a mapping interface of

an analog valve.
InfoDataState UINT Get, Set This variable is used to implement a mapping interface of

an analog valve.
NoiseLevel LREAL Get, Set This parameter must be initialized with the white noise

amplitude to be simulated.
Offset LREAL Get, Set This parameter must be initialized with the displacement

between the cylinder zero point (e.g. the lower stop) and
the encoder zero point.

Position LREAL Get, Set This runtime value provides information about the actual
position of the encoder.

Resolution LREAL Get, Set This parameter must be initialized with the resolution (i.e.
the path per increment) of the encoder.

Toggle BOOL Get This variable is used to implement a mapping interface of
an analog valve.

WcState BOOL Get, Set This variable is used to implement a mapping interface of
an analog valve.

 Methods

Name Description
Cyclic [} 135] This method performs all calculations of the simulation.

7.3.5.5.1 Cyclic

This method must be called cyclically. It performs all the calculations of the simulation.

Utilities

TF8560136 Version: 1.0.1

Syntax:
METHOD Cyclic
VAR_INPUT
END_VAR

7.4 Pressure handling

7.4.1 FB_ProcessHandlerBase

This function block is used in injection molding machines to switch from injection pressure to holding
pressure.

Syntax:
FUNCTION_BLOCK FB_ProcessHandlerBase IMPLEMENTS I_ProcessHandler
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Description
Axis I_AxisBase An interface to the axis to be monitored.
BadSwitchOver BOOL TRUE if an undesired switchover occurred.
ProcessValue LREAL The process value to be monitored.
SwitchOver BOOL TRUE if an expected switchover occurred.

 Methods

Name Description
GetControlParameter
[} 137]

This method can be used to get access to the parameter container of the axis
pressure controller.

GetProcessValues [} 137] This method is used to update the FB with a range of actual values (pressure,
position, state) of the axis.
This method is called cyclically by the axis. The application is not
intended to call this method directly.

GetSwitchEnable [} 137] This method is used to read back the rules for the switchover.

GetSwitchParameter [} 138] This method may be used to read back parameters of the switchover rules.

SetControlParameter
[} 138]

This method can be used to assign a parameter container to the axis pressure
controller.

SetSwitchEnable [} 139] This method is used to define the rules for the switchover. See below for more
information.

SetSwitchParameter [} 139] This method may be used to define parameters of the switchover rules.

If the monitored axis is in an inactive state (Init, Ready, Idle), the FB is inactive.

An active command of the axis also activates the monitoring.

The rules set with SetSwitchEnable determine the response:

If no faulty switchover has been detected yet:

Utilities

TF8560 137Version: 1.0.1

• If bSwitchOnPressure is TRUE and the process value exceeds ePressureThreshold and the axis was
moved longer than eGardingTravel from the start point, an expected switchover is detected.

• If bSwitchOnTravel is TRUE and the axis has traveled longer than eTravelThreshold from the start
point, an expected switchover is detected.

• If bSwitchOnTime is TRUE and the time since the start of monitoring exceeds the eTimeThreshold, an
expected switchover is detected.

• If there is more than one active rule the first match will cause the expected switchover.

If there was still no switchover:

• If eTimeout is set to more than 0.0 and the time since the start of monitoring exceeds eTimeout, a
faulty switchover is detected.

• If the axis position falls below eAlarmPositionLimit, a faulty switchover is detected.
• If eAlarmPressureLimit is set to more than 0.0 and the process value exceeds eAlarmPressureLimit, a

faulty switchover is detected.

Also see about this
2 E_SwitchoverParameter [} 139]

7.4.1.1 GetControlParameter

This method can be used to get access to the parameter container of the axis pressure controller.

Syntax:
METHOD GetControlParameter : I_PressureControlParams_PID
VAR_INPUT
END_VAR

7.4.1.2 GetProcessValue

This method is used to update the FB with a range of actual values (pressure, position, state) of the axis.

This method is called cyclically by the axis. The application is not intended to call this method
directly.

Syntax:
METHOD GetProcessValues : HRESULT
VAR
END_VAR

7.4.1.3 GetSwitchEnable

This method is used to read back the rules for the switchover.

Utilities

TF8560138 Version: 1.0.1

Syntax:
METHOD GetSwitchEnable : HRESULT
VAR_INPUT
bSwitchOnPressure: REFERENCE TO BOOL;
bSwitchOnTravel: REFERENCE TO BOOL;
bSwitchOnTime: REFERENCE TO BOOL;
END_VAR

 Inputs

Name Type Description
bSwitchOnPressure REFERENCE TO BOOL A reference to the variable to be updated with the

parameter.
bSwitchOnTravel REFERENCE TO BOOL A reference to the variable to be updated with the

parameter.
bSwitchOnTime REFERENCE TO BOOL A reference to the variable to be updated with the

parameter.

7.4.1.4 GetSwitchParameter

This method may be used to read back parameters of the switchover rules.

Syntax:
METHOD SetSwitchParameter : HRESULT
VAR_INPUT
eSelect: E_SwitchoverParameter;
fValue: REFERENCE TO LREAL;
END_VAR

 Inputs

Name Type Description
eSelect E_SwitchoverParameter [} 139] The selection of the parameter.
fValue REFERENCE TO LREAL A reference to the variable to be updated with the parameter.

7.4.1.5 SetControlParameter

This method can be used to assign a parameter container to the axis pressure controller.

Syntax:
METHOD SetControlParameter : HRESULT
VAR_INPUT
iParams: I_PressureControlParams_PID;
END_VAR

Utilities

TF8560 139Version: 1.0.1

 Inputs

Name Type Description
iParams I_PressureControlParams_PID An interface to a FB with a parameter set for a

pressure controller.

7.4.1.6 SetSwitchEnable

This method is used to define the rules for the switchover. See below for more information.

Syntax:
METHOD SetSwitchEnable : HRESULT
VAR_INPUT
bSwitchOnPressure: BOOL;
bSwitchOnTravel: BOOL;
bSwitchOnTime: BOOL;
END_VAR

 Inputs

Name Type Description
bSwitchOnPressure BOOL A TRUE enables the switchover by exceeding the pressure threshold.
bSwitchOnTravel BOOL A TRUE enables the switchover by falling below a position threshold.
bSwitchOnTime BOOL A TRUE enables the switchover by reaching a time threshold.

7.4.1.7 SetSwitchParameter

This method may be used to define parameters of the switchover rules.

Syntax:
METHOD SetSwitchParameter : HRESULT
VAR_INPUT
eSelect: E_SwitchoverParameter;
fValue: LREAL;
END_VAR

 Inputs

Name Type Description
eSelect E_SwitchoverParameter [} 139] The selection of the parameter.
fValue LREAL The value with which the parameter should be updated.

7.4.2 E_SwitchoverParameter
Values of this enumeration are use by GetSwitchParameter() and SetSwitchParameter() of
FB_ProcessHandlerBase [} 136].

Utilities

TF8560140 Version: 1.0.1

TYPE E_SwitchoverParameter :
(
ePressureThreshold := 0,
eGardingTravel,
eTravelThreshold,
eTimeThreshold,

eAlarmPressureLimit,
eAlarmPositionLimit,
eTimeout
);
END_TYPE

7.4.3 FB_ReadProcessValue

A function block of this type is used to supply a function block of type FB_ProcessHandlerBase [} 136] with
actual values.

Syntax:
FUNCTION_BLOCK FB_ReadProcessValue EXTENDS FB_MessageBase IMPLEMENTS I_ReadProcessValue
VAR_INPUT
END_VAR
VAR_OUTPUT
fActualValue: LREAL;
END_VAR

 Outputs

Name Type Description
fActualValue LREAL The current actual value.

 Properties

Name Type Access Description
Offset LREAL Get, Set The offset taken into account when calculating the actual

value.
ProcessValue LREAL Get The current process value calculated by the last call to

Cyclic().
Weighting LREAL Get, Set The scaling factor.

 Methods

Name Description
Cyclic [} 140] This method must be called by the application once per cycle. It checks the EtherCAT

connection and updates the ProcessValue with a filtered actual value.
DoReset [} 141] A call of this method with bExecute=TRUE resets the connected sensor interface and

clears all local errors.

7.4.3.1 Cyclic

Utilities

TF8560 141Version: 1.0.1

This method must be called by the application once per cycle. It checks the EtherCAT connection and
updates the ProcessValue with a filtered actual value.

Syntax:
METHOD Cyclic
VAR_INPUT
END_VAR

7.4.3.2 DoReset

A call of this method with bExecute=TRUE resets the connected sensor interface and clears all local errors.

Syntax:
METHOD DoReset : HRESULT
VAR_INPUT
bExecute: BOOL;
END_VAR

7.5 FB_CheckDemoMode

A FB of this type can be instantiated and used by the PLC application to scan the fieldbus configuration. It
reports on fieldbuses with special features such as real-time performance or USB support.

Syntax:

FUNCTION_BLOCK FB_CheckDemoMode
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR

 Properties

Name Type Description
DemoMode BOOL A TRUE after scanning the fieldbus configuration has one of the

following causes:
There is no fieldbus configured with real-time performance.
ForceDemoMode=TRUE and ForceNonDemoMode=FALSE.

EtC_detected BOOL A TRUE after scanning the fieldbus configuration signals that the
configuration provides for an EtherCAT fieldbus.

ForceDemoMode BOOL With a TRUE the DemoMode can be forced.
ForceNonDemoMode BOOL With a TRUE the NonDemoMode can be forced.
NonDemoMode BOOL A TRUE after scanning the fieldbus configuration has one of the

following causes:
At least one fieldbus with real-time performance is configured.
ForceDemoMode=FALSE and ForceNonDemoMode=TRUE.

Utilities

TF8560142 Version: 1.0.1

Name Type Description
ReScan BOOL A TRUE on this property triggers a rescan of the fieldbus

configuration.
RtBus_detected BOOL A TRUE after scanning the fieldbus configuration signals that the

configuration provides for a fieldbus with real-time performance.
USB_detected BOOL A TRUE after scanning the fieldbus configuration signals that the

configuration provides for a USB connection. This typically indicates
a control panel.

 Methods

Name Description
Cyclic [} 142] This method is to be called cyclically by the application.

7.5.1 Cyclic

This method must be called cyclically by the application.

Syntax:
METHOD Cyclic

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf8560.html

mailto:info@beckhoff.de?subject=TF8560
https://www.beckhoff.com
https://www.beckhoff.com/tf8560.html

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Concept of Libraries
	3 Concept of Axes
	3.1 FB_AxisBase and derived Axes
	3.2 Axes Instantiation
	3.2.1 FB_AxisHydraulicBase
	3.2.2 FB_AxisInvBase
	3.2.3 FB_AxisNcBase

	3.3 Access to axes
	3.3.1 Access to the axes via interfaces
	3.3.2 Accessing the properties of an axis
	3.3.3 Calling methods of an axis
	3.3.4 States & state machine of an axis

	3.4 Transformation axes
	3.4.1 Construction of a transforming axis
	3.4.2 Semi-transformation mode
	3.4.3 Full transformation mode

	4 Core functions concept
	4.1 Embedding core functions in an axis
	4.2 The basics of core functions
	4.3 Classification of core functions
	4.3.1 Permanently active core functions
	4.3.2 Commanded core functions
	4.3.2.1 Edge-triggered core functions
	4.3.2.2 Statically controlled core functions

	5 Core functions of the axis
	5.1 Actuals
	5.2 ActualsHydraulics (hydraulics axes only)
	5.3 ActualsNc (Nc axes only)
	5.4 AutoIdent (hydraulic axes only)
	5.4.1 DoAutoIdent
	5.4.2 SetParameter

	5.5 Camming
	5.5.1 DoCamming
	5.5.2 SetGuidingValue
	5.5.3 SetLookupInterface

	5.6 DirectOutput (hydraulics axes only)
	5.6.1 DoActivate

	5.7 DisableSoftEnd
	5.7.1 DoDisable
	5.7.2 ReEnable

	5.8 Estop
	5.8.1 DoEstop

	5.9 Homing
	5.9.1 Abort
	5.9.1.1 DoAbort
	5.9.1.2 SetParameter

	5.9.2 AbsoluteSwitch
	5.9.2.1 DoHoming
	5.9.2.2 SetParameter
	5.9.2.3 SetParameterGeneral

	5.9.3 AbsoluteSwitchDetect
	5.9.3.1 DoHoming
	5.9.3.2 SetParameter
	5.9.3.3 SetParameterGeneral

	5.9.4 Block
	5.9.4.1 DoHoming
	5.9.4.2 SetParameter
	5.9.4.3 SetParameterGeneral

	5.9.5 BlockDetect
	5.9.5.1 DoHoming
	5.9.5.2 SetParameter
	5.9.5.3 SetParameterGeneral

	5.9.6 Finish
	5.9.6.1 DoFinish
	5.9.6.2 SetParameter

	5.9.7 LimitSwitch
	5.9.7.1 DoHoming
	5.9.7.2 SetParameter
	5.9.7.3 SetParameterGeneral

	5.9.8 LimitSwitchDetect
	5.9.8.1 DoHoming
	5.9.8.2 SetParameter
	5.9.8.3 SetParameterGeneral

	5.10 Jog
	5.10.1 DoJogM
	5.10.2 DoJogP
	5.10.3 SetParameter

	5.11 MotionParams
	5.12 MotionSetpoints
	5.13 Power
	5.13.1 DoPower
	5.13.2 FeedEnable

	5.14 PressureControl
	5.14.1 PressureControl.PID
	5.14.1.1 Activate
	5.14.1.2 EnableSwitchOver
	5.14.1.3 GetActual
	5.14.1.4 GetParams
	5.14.1.5 SetParams
	5.14.1.6 Setpoint
	5.14.1.7 SwitchOver

	5.14.2 FB_PressureControlParams_PID
	5.14.2.1 GetBoolParameter
	5.14.2.2 GetFloatParameter
	5.14.2.3 SetBoolParameter
	5.14.2.4 SetFloatParameter

	5.14.3 E_PressureControlParam

	5.15 Ptp
	5.15.1 CheckPoint
	5.15.2 DoMove
	5.15.3 GetClampPoint
	5.15.4 GetPoint
	5.15.5 GetUpdatedPoint
	5.15.6 InvalidateClampPoint
	5.15.7 InvalidateTable
	5.15.8 SetClampPoint
	5.15.9 SetPoint
	5.15.10 UpdatePosition

	5.16 PtpLookUp
	5.16.1 GetPoint
	5.16.2 Invalidate
	5.16.3 ReadMaster
	5.16.4 SetPoint
	5.16.5 UpdatePosition
	5.16.6 ST_LookUpPtpPoint

	5.17 SetPosition
	5.17.1 DoSetPosition
	5.17.2 SetParameter

	5.18 Stop
	5.18.1 DoStop
	5.18.2 SetParameter

	5.19 ToolAdaptation
	5.20 VelocityFeed
	5.20.1 DoFeed

	6 Axis properties and methods
	6.1 Axis properties
	6.2 Axis methods
	6.2.1 FB_init
	6.2.2 Cyclic
	6.2.3 SetProcessHandler

	7 Utilities
	7.1 Functions for customizing enumerations
	7.2 Filter
	7.2.1 FB_FilterBase
	7.2.1.1 CyclicUpdate

	7.2.2 FB_FilterPt1
	7.2.3 FB_FilterSlewRateLimit

	7.3 Simulation
	7.3.1 Simulation of an EtherCAT based servo drive axis
	7.3.1.1 NC simulation components
	7.3.1.1.1 FB_SimCoE402_Servo
	7.3.1.1.1.1 Cyclic
	7.3.1.1.1.2 GoFaultState
	7.3.1.1.1.3 Process

	7.3.1.1.2 FB_SimTorqueLimitingCoE402_Servo
	7.3.1.1.2.1 ConnectToSim
	7.3.1.1.2.2 Cyclic

	7.3.2 Simulation of an inverter drive axis
	7.3.2.1 Adaptation of an inverter
	7.3.2.1.1 FB_SimCoE402_Inverter_CoE402FI
	7.3.2.1.2 FB_SimCoE402_Inverter_CoE402SI

	7.3.3 I/O Simulation containers
	7.3.3.1 Simulation of an analog input terminal
	7.3.3.2 Simulation of an analog output terminal
	7.3.3.3 Simulation of a CoE402 servo drive
	7.3.3.4 Simulation of an SSI input terminal

	7.3.4 Common simulation components
	7.3.4.1 FB_Noise
	7.3.4.1.1 Cyclic
	7.3.4.1.2 SetLineNoiseLevel
	7.3.4.1.3 SetSparkNoiseLevel
	7.3.4.1.4 SetWhiteNoiseLevel

	7.3.4.2 FB_SimAxCommon

	7.3.5 Components of the hydraulic simulation
	7.3.5.1 FB_SimHydAx_Standard
	7.3.5.1.1 Cyclic
	7.3.5.1.2 GoFaultState

	7.3.5.2 FB_SimValveAnalog
	7.3.5.2.1 Cyclic

	7.3.5.3 FB_SimCylinder
	7.3.5.3.1 Cyclic

	7.3.5.4 FB_SimPressureTransducer
	7.3.5.4.1 Cyclic

	7.3.5.5 FB_SimUniversalEncoder
	7.3.5.5.1 Cyclic

	7.4 Pressure handling
	7.4.1 FB_ProcessHandlerBase
	7.4.1.1 GetControlParameter
	7.4.1.2 GetProcessValue
	7.4.1.3 GetSwitchEnable
	7.4.1.4 GetSwitchParameter
	7.4.1.5 SetControlParameter
	7.4.1.6 SetSwitchEnable
	7.4.1.7 SetSwitchParameter

	7.4.2 E_SwitchoverParameter
	7.4.3 FB_ReadProcessValue
	7.4.3.1 Cyclic
	7.4.3.2 DoReset

	7.5 FB_CheckDemoMode
	7.5.1 Cyclic

		documentation@beckhoff.com
	2024-01-16T11:01:08+0100
	Beckhoff Automation, Verl
	Documentation Publishing

