
Manual | EN

TF6600
TwinCAT 3 | RFID Reader Communication

2023-11-22 | Version: 1.3.1





Table of contents

TF6600 3Version: 1.3.1

Table of contents
1 Foreword....................................................................................................................................................  5

1.1 Notes on the documentation .............................................................................................................  5
1.2 For your safety ..................................................................................................................................  5
1.3 Notes on information security............................................................................................................  7

2 Overview ....................................................................................................................................................  8

3 Installation .................................................................................................................................................  9
3.1 System requirements ........................................................................................................................  9
3.2 Installation .........................................................................................................................................  9
3.3 Licensing .........................................................................................................................................  12

4 Technical introduction............................................................................................................................  15
4.1 RFID reader hardware ....................................................................................................................  15
4.2 RFID reader connection ..................................................................................................................  19
4.3 RFID command set .........................................................................................................................  21

5 Configuration...........................................................................................................................................  26
5.1 RFID reader settings and handling .................................................................................................  26

5.1.1 Balluff ...............................................................................................................................  26
5.1.2 Baltech .............................................................................................................................  27
5.1.3 Deister electronic .............................................................................................................  29
5.1.4 Leuze electronic ...............................................................................................................  30
5.1.5 Pepperl-Fuchs..................................................................................................................  31

6 PLC API ....................................................................................................................................................  34
6.1 Function block .................................................................................................................................  34

6.1.1 FB_RFIDReader ..............................................................................................................  34
6.1.2 Handling instructions........................................................................................................  38
6.1.3 Configuration....................................................................................................................  39
6.1.4 Low level communication .................................................................................................  40

6.2 Data types .......................................................................................................................................  41
6.2.1 Structures.........................................................................................................................  41
6.2.2 Enumerations ...................................................................................................................  62
6.2.3 T_RFID_TranspSRN........................................................................................................  66

6.3 Global Constants.............................................................................................................................  66
6.3.1 Global_version .................................................................................................................  66

7 Examples .................................................................................................................................................  67
7.1 Tutorial ............................................................................................................................................  67

7.1.1 Glossary ...........................................................................................................................  68
7.1.2 Installation/libraries ..........................................................................................................  68
7.1.3 Serial connection..............................................................................................................  68
7.1.4 Function block declaration ...............................................................................................  69
7.1.5 Using the function block ...................................................................................................  69
7.1.6 Test ..................................................................................................................................  70

7.2 Sample 1 .........................................................................................................................................  71
7.3 Sample 2 .........................................................................................................................................  72
7.4 Sample 3 .........................................................................................................................................  73



Table of contents

TF66004 Version: 1.3.1

8 Appendix..................................................................................................................................................  75
8.1 RFID error codes.............................................................................................................................  75
8.2 Support and Service........................................................................................................................  77



Foreword

TF6600 5Version: 1.3.1

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations. 
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: 
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.



Foreword

TF66006 Version: 1.3.1

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.



Foreword

TF6600 7Version: 1.3.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo


Overview

TF66008 Version: 1.3.1

2 Overview
The TC3 RFID Reader Communication library makes communication with RFID readers possible from the
PLC program. RFID readers can be read-only or read/write devices.

The TwinCAT RFID library facilitates implementation of a wide range of applications using different
RFID reader functions. The implementation expenditure is very low, because no manufacturer-specific
interface protocol needs to be investigated in detail and implemented. The library automatically deals with
frame configuration, telegram composition, command designation, telegram recognition and some other
protocol characteristics.

The following figure illustrates an RFID reader application.

Handling of the library is the same for all supported RFID reader models. In the event of a change of
manufacturer, only minor changes to the application are required.

An overview of the supported RFID reader models can be found in the section Technical introduction > RFID
reader hardware [} 15]. Among the supported models are devices of the manufacturers Balluff, Baltech,
Deister electronic, Leuze electronic and Pepperl+Fuchs.

For Beckhoff Multi-touch Control Panels the Compact RFID Reader is optionally available. In contrast to the
other RFID reader models, the Compact RFID Reader is not addressed from TwinCAT using the TF6600
RFID Reader Communication, but solely using the TF6340 Serial Communication. A product description of
the Compact RFID Reader and a PLC example showing the communication with this device can be found in
the Online Information System in the section Industrial PC > Compact RFID Reader.

https://infosys.beckhoff.de/content/1033/rfid_reader/index.html?id=5160515441240193661


Installation

TF6600 9Version: 1.3.1

3 Installation

3.1 System requirements
Technical data Description
Operating system WinXP, WES, Win7, WES7, Win10
Target platform PC or CX (x86, x64, ARM): WinXP, WES, Win7, WES7,

WEC7, Win10
Minimum platform level P 20

P 30 for connection via USB / VirtualComPort
TwinCAT version TwinCAT 3.1.4013 or higher
Required TwinCAT setup level TwinCAT XAE TC3 SPS
Required TwinCAT license TF6600 TC3 RFID Reader Communication
TwinCAT PLC library to be integrated Tc2_RFID

Tc2_SerialCom

Depending on the RFID reader model, you may need a proprietary tool for the initial basic configuration (see
RFID reader settings and handling [} 26]). Also note its system requirements. This presetting can also be
performed from another PC. The use of proprietary test tools for the setup is also possible.

3.2 Installation
The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

ü The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run as administrator in the context

menu of the file.
ð The installation dialog opens.

2. Accept the end user licensing agreement and click Next.



Installation

TF660010 Version: 1.3.1

3. Enter your user data.

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If
you want to install the TwinCAT 3 Function components separately, select Custom.



Installation

TF6600 11Version: 1.3.1

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.
6. Confirm the dialog with Yes.



Installation

TF660012 Version: 1.3.1

7. Select Finish to exit the setup.

ð The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [} 12]).

3.3 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html


Installation

TF6600 13Version: 1.3.1

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.



Installation

TF660014 Version: 1.3.1

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog. 

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.



Technical introduction

TF6600 15Version: 1.3.1

4 Technical introduction

4.1 RFID reader hardware
General notes

• Assembly instructions as well as information on transponder reader handling and reading speeds etc.
can be found in the manufacturer's own product manuals.

• RFID readers sometimes offer an external trigger or a switching output. This does not have to be used
for the functionality of the TwinCAT RFID library.

• The TwinCAT RFID library does not cover the complete scope of the manufacturer's own RFID
communication protocols. Further information can be found in the description of the instruction set of
the library function block (see RFID command set [} 21]). In addition, the integrated option to send and
receive raw data can be used (see command eRFC_Send_RawData).

RFID reader models

The TwinCAT RFID library supports different RFID reader models.

The following table shows which RFID reader models from which manufacturers are supported. The sample
photos illustrate the various RFID reader models. They may differ from the actual models that are listed.
Also, not every supported model is illustrated by a photo. In some cases, outdated reader firmware versions
are not supported.



Technical introduction

TF660016 Version: 1.3.1

RFID reader manufac-
turer

RFID reader model Sample photo

Balluff BIS M-400-007 (RS232)
BIS M-401-007 (RS232)
BIS L-6000-007 (2 read heads) (RS232)
BIS L-6020-007 (2 read heads) (RS232)

 

 
Picture credits: BALLUFF

Baltech ID-engine SD-M1415-ANT1F (RS232 or USB)
ID-engine SD-LP-ANT1F (RS232 or USB)
ID-engine PAD M1415 (USB)
ID-engine ZM-L2M-U2-A1 (RS232)

Deister electronic RDL90 (deBus) (RS232, RS485) 
UDL 500 (deBus) (RS485)
PRM5M/2V (deBus) (RS232, RS485)

 



Technical introduction

TF6600 17Version: 1.3.1

RFID reader manufac-
turer

RFID reader model Sample photo

Leuze electronic RFM12 (SL200) (RS232) 
RFM32 (SL200) (RS232)
RFM32ex (SL200) (RS232)

Pepperl+Fuchs IDENTControl Compact (2 read heads) [ IC-
KP2-2HRX-2V1 ] (RS232)
IDENTControl (4 read heads) [IC-KP-R2-V1]
(RS232)

The following table shows which RFID reader models are compatible according to the manufacturer's
description and protocol. The compatibility of the listed models as well as other models is, however, not
confirmed by Beckhoff. The devices are not officially supported. We recommend contacting Beckhoff
Automation before using them.

RFID reader manufac-
turer

Reader models

Balluff BIS M-6000
Baltech ID-engine series (BRP)
Deister electronic RDL30; RDL150; RDL160; UDL 50; UDL 100; UDL 120; UDL 150; UDL 160;

PRM5
Leuze electronic RFM62 (SL200)
Pepperl+Fuchs IDENTControl Compact (1 read head)

Other models from the above-mentioned manufacturers, which Beckhoff Automation may not be aware of,
may be supported implicitly. According to Deister electronic, the same protocol (deBus) is implemented in
other models. It may be the case that some of these models can only be used with limited functionality.

Furthermore, some manufacturers offer their own software to make their devices accessible for Beckhoff
TwinCAT systems.

TwinCAT PLC library "Serial Communication"
Further RFID readers are supported with the TwinCAT PLC library "Serial Communication". This
library makes it possible to exchange data bytes with any serial device.
This alternative to the TwinCAT RFID library can be useful with read-only RFID readers. It may
enable unsupported devices to be used with TwinCAT on a Beckhoff controller. If only the serial
number of the transponder is required and this is sent autonomously from the RFID device, the
effort involved in evaluating the bytes received is manageable.



Technical introduction

TF660018 Version: 1.3.1

Use of the Beckhoff Compact RFID Reader (iDTRONIC)
The Beckhoff Compact RFID Reader is a possibility to integrate an RFID device from the
manufacturer iDTRONIC in a push button extension for Beckhoff Multitouch Control Panels.
Contrary to the integration of Baltech devices in Beckhoff Panels, the PLC library Tc2_SerialCom
(TF6340) is used instead of the PLC library Tc2_RFID (TF6600).

Transponder types

For a complete list of all supported transponder types, please refer to the manual for the respective
RFID reader. If necessary, clarify with the manufacturer of the RFID reader or transponder which
transponder type is appropriate for the application.

The TwinCAT RFID library uses the data obtained from the serial interface. The manufacturer’s serial
transmission protocol is therefore decisive for support by the library. The radio frequency used, for example,
is irrelevant.

The following table indicates which transponder types are supported for the respective RFID reader models
according to the manufacturer. This list is not complete. For complete and more detailed information, please
contact the manufacturer of the RFID reader model. Please note that some RFID readers only accept
transponders with certain manufacturer IDs. Unfortunately, this restriction cannot be influenced.
RFID reader model RFID transponder types
Balluff M-401 [13.56 MHz] Fujitsu MB89R118; I-Code SLI; Infineon My-D SRF55(1024 Bytes);

Mifare Classic (752 Bytes); TI TagIT HFI (256 Bytes), ...
Balluff L-6000 [125kHz]
Baltech ID-engine SD ANT1F (M1415, LP) [13.56 MHz] Infineon My-D, Legic Prime, Mifare Classic, ...
Deister electronic RDL90 [13.56 MHz] I-Code SLI; Infineon My-D SRF55(1024 Bytes), ...
Deister electronic UDL 500 [868 MHz] EPCclass1gen2 (12 Bytes), ...
Deister electronic PRM5 [13.56 MHz] Mifare Classic (752 Bytes), ...
Leuze electronic RFM12, RFM32, RFM32ex [13.56 MHz] I-Code SLI; Infineon My-D SRF55(1024 Bytes); TI TagIT HFI (256

Bytes), ...
Pepperl+Fuchs IDENTControl Compact [125 kHz; 250 kHz; 13.56 MHz; 2.45 GHz (depends on read head)]

I-Code SLI; Fujitsu MB89R118; TI TagIT HFI; Infineon My-D SRF55, ...

These transponder types are additionally available with other memory capacities. Compatibility is hardware-
dependent and is not guaranteed. A test is recommended.

Special factory programming of the transponders is sometimes possible. This has no effect on the protocol
and must therefore be decided on according to the application in consultation with the manufacturer.

Specific transponder parameters used in the TwinCAT RFID library can be adapted by the user using a
special transponder (see ST_RFID_AccessData [} 50]).

The TwinCAT RFID library supports transponders up to a maximum size of 64 kilobytes.
Frequency Transponder

Types
HF standards range metallic

influence
fluid in-
fluence

data rate radio in-
teraction

hardware
position-
ing

tempera-
ture influ-
ence

LF 125-135 kHz ... ISO 11784/5,
ISO 14223,
ISO 18000-2

< 2m + + + - - + + ++

HF 13,56 MHz Fujitsu
MB89R118, I-
Code SLI,
Infineon My-D,
Legic, Mifare, TI
TagIT HFI, ...

ISO 14443,
ISO 15693,
ISO 18000-3

< 1m + + + + + + +

UHF 865-868
MHz (EU),
902-928 MHz
(USA)

EPCclass1gen2, ..
.

ISO 18000-6,
EPC-Gen2

< 10m - - + + + +

MW 2.45 GHz ... < 12m - - + + + + - -

[++ very good; + good; - bad]

https://infosys.beckhoff.com/index.php?content=../content/1033/rfid_reader/9007204508173451.html&id=4693137531435195643


Technical introduction

TF6600 19Version: 1.3.1

4.2 RFID reader connection
All RFID readers supported by this PLC library are connected to the controller via serial communication
interfaces (RS 232, RS 422, RS 485 and virtual serial COM ports).

The following Beckhoff products can be used for this:

• Serial EtherCAT Terminals: EL6001, EL6002, EL6021, ...
• Serial K-bus terminals: KL6001/KL6031, KL6021, ...
• COM port of any IPC and Embedded PC with TwinCAT system

A separate connection must be made to a separate terminal for each RFID reader. The TwinCAT
RFID library does not support multiple RFID readers on the same RS485 network for the time
being.

Setting up serial communication in TwinCAT 3 XAE

Serial data exchange is set up with the function blocks of the TwinCAT PLC library Tc2_SerialCom.

Create a send buffer and a receive buffer of type "ComBuffer". This can take place globally, but does not
have to. In addition, you should create two data structures as they are used for serial communication in the
TwinCAT System Manager.

If the COM port is used, it looks like this:
gPcComRxBuffer         : ComBuffer;
gPcComTxBuffer         : ComBuffer;
PcComInData     AT %I* : PcComInData;
PcComOutData    AT %Q* : PcComOutData;

When using a serial terminal, EL6inData22B/EL6outData22B as well as KL6inData5B/KL6outData5B, other
data types are possible in addition to PcComInData/PcComOutData.

Link the structures in the TwinCAT System Manager to the channels of the serial interface. When using the
ComPort, you must additionally activate the SyncMode option on the IO device in the
TwinCAT System Manager. The PLC variables must be assigned to the correct (fast) task in the
TwinCAT System Manager and linked appropriately from there.

For serial communication, create an instance of the SerialLineControl. This must be called cyclically in a fast
task (<= 1 ms). The required task cycle time depends on the application, the data volume, the baud rate and
the interface. Depending on the application and interface, it often makes sense to execute this in an
additional task that is faster than the application's task.

Example 1: When connecting an RFID device to a COM port and a baud rate of 115,200 baud, a cycle time
of 1 ms is required.

Example 2: When connecting an RFID device to an EL6001 and a baud rate of 9,600 baud, a cycle time of
6 ms max. is required.



Technical introduction

TF660020 Version: 1.3.1

Further information and explanations on the use of virtual COM ports can be found in the documentation for
the PLC library "Serial Communication".

Exemplary display of the COM port settings in the TwinCAT System Manager:

The call of the SerialLineControl is represented by way of example below.

Call as StructuredText in the case of use of the COM port:
LineControl(
    Mode      := SERIALLINEMODE_PC_COM_PORT,
    pComIn    := ADR(PcComInData),
    pComOut   := ADR(PcComOutData),
    SizeComIn := SIZEOF(PcComInData),
    TxBuffer  := gPcComTxBuffer,
    RxBuffer  := gPcComRxBuffer
);

Call as StructuredText in the case of use of an EtherCAT terminal:
LineControl(
    Mode      := SERIALLINEMODE_EL6_22B,
    pComIn    := ADR(EL6ComInData),
    pComOut   := ADR(EL6ComOutData),
    SizeComIn := SIZEOF(EL6ComInData),
    TxBuffer  := gEL6ComTxBuffer,
    RxBuffer  := gEL6ComRxBuffer
);

Call as StructuredText in the case of use of a K-bus terminal:
KL6Config3(
    Execute       := bConfig3,
    Mode          := SERIALLINEMODE_KL6_5B_STANDARD,
    Baudrate      := 9600,
    NoDatabits    := 8,
    Parity        := 0,
    Stopbits      := 1,
    Handshake     := RS485_FULLDUPLEX,
    ContinousMode := FALSE,
    pComIn        := ADR(KlComInData3),
    pComOut       := ADR(KlComOutData3),
    SizeComIn     := SIZEOF(KlComInData3),
    Busy  => bConfig3Act,
    Done  => bConfig3Done,
    Error => bConfig3Error
);
IF NOT KL6Config3.Busy THEN
    bConfig3 := FALSE;

    LineControl3(
        Mode      := SERIALLINEMODE_KL6_5B_STANDARD,
        pComIn    := ADR(KlComInData3),
        pComOut   := ADR(KlComOutData3),
        SizeComIn := SIZEOF(KlComInData3),
        TxBuffer  := gKlComTxBuffer3,



Technical introduction

TF6600 21Version: 1.3.1

        RxBuffer  := gKlComRxBuffer3
    );
END_IF

4.3 RFID command set
The following matrix lists the available RFID instruction set.

Because of the fundamental differences between the various RFID reader models, not all instructions can be
made available with each model.

The complexity of some proprietary protocols makes it necessary that not every command or every detailed
parameterization option can be provided via the TwinCAT PLC library. In individual cases, therefore,
recourse can be taken to the less convenient communication option by means of the offered low level
interface. Information can be found in the description of the instruction SendRawData [} 25] and in the
section low‑level communication [} 40].

Information on the features and characteristics of proprietary protocols can be obtained from the
manufacturer for each model and is usually supplied with the device. The user should at least be in
possession of these protocol specifications, in order to be able to investigate detailed questions and to read
up on the peculiarities of the RFID reader. Reference is already made as far as possible to the peculiarities
of the individual RFID readers at special places within this documentation. However, the manufacturer of the
RFID devices remains responsible for describing its devices and for guaranteeing their behavior and
characteristics. A detailed description of each command and the special behavior of the RFID reader is given
in the proprietary protocol specifications. The manufacturer’s proprietary command corresponding to the
command listed here is indicated below in each case in italics. Details can also be found in the output
structure ST_RFID_RawData [} 43] of the function block FB_RFIDReader [} 34].



Technical introduction

TF660022 Version: 1.3.1

Command Balluff 
BIS M-40x
BIS
L-60x0

Baltech
IDE SD
ANT1F

Deister
electronic
RDL90

Deister
electronic
UDL 500

Deister
electronic
PRM5M/2V

Leuze
electronic
RFM12;
RFM32;
RFM32ex

Pepperl+Fuchs
IDENTControl
Compact

GetReaderVersion
[} 22]

x x x x x x

GetConfig [} 22] x x x x

SetConfig [} 23] x x x x

GetInventory
[} 23]

x x x x x

Polling [} 23] x x x

TriggerOn [} 23] x x x

TriggerOff [} 23] x x x

AbortCommand
[} 24]

x x x

ResetReader
[} 24]

x x x x x x x

ReadBlock [} 24] x x x x x x

WriteBlock [} 24] x x x x x x

OutputOn [} 25] x x x

OutputOff [} 25] x x x

FieldOn [} 25] x x x x

FieldOff [} 25] x x x x

SendRawData
[} 25]

x x x x x x x

ChangeDCType
[} 25]

x

This list is analogous to the enumeration E_RFID_Command [} 62] in the TwinCAT RFID library.
Successful processing of the requested command by the RFID reader is indicated by the status outputs of
the function block and the respective response. A list of possible responses can be found in the description
of the enumeration E_RFID_Response [} 63].

The commands are explained in detail below:

GetReaderVersion [16#01]

Information on the RFID reader can be queried with this command. Depending upon availability, the model
designation, the hardware and software version of the reader etc. are output from the function block in the
structure ST_RFID_ReaderInfo [} 42].

Equivalent in proprietary protocol:
Deister: 0x02
Leuze: 'V'
Pepperl+Fuchs: 'VE'
Baltech: System GetInfo

GetConfig [16#02]

The current configuration of the RFID reader is queried with this command. All relevant received parameters
are explained in the description of structure ST_RFID_Config [} 49]. Further information is summarized in
section Configuration [} 39].



Technical introduction

TF6600 23Version: 1.3.1

Equivalent in proprietary protocol:
Deister: 0x09
Leuze: 'G'
Pepperl+Fuchs: 'GS'

SetConfig [16#03]

Parameterized configuration settings can be transferred to the RFID reader. For more information about the
possible configuration of the RFID reader, see the description of structure ST_RFID_ConfigIn [} 48].

Following a configuration command it is recommended to query the current configuration of the reader once
again using the GetConfig [} 22] command. Further information is summarized in section Configuration
[} 39].

Equivalent in proprietary protocol:
Baltech: System CfgWriteTLVBlock
Deister: 0x09
Leuze: 'C'

GetInventory [16#04]

This command is used to query the type and serial number of a transponder currently present in the reading
field. If no transponder is found, a corresponding response follows.

Pepperl+Fuchs: The parameter iHeadNumber in the structure ST_RFID_Control [} 44] determines for which
read head the command is to be executed.

Equivalent in proprietary protocol:
Balluff: 'U'
Deister: 0x82
Leuze: 'I'
Pepperl+Fuchs: 'SF' & 'EF'
Baltech: VHLSelect + VHLGetSnr

Polling [16#05]

This command is used to retrieve information from the RFID reader stack. This may be, for example, the
serial number of the last transponder. Note that different RFID readers have stacks of different sizes. In
some cases only one message is stored.

Presence detection: If this cannot be set via a configuration parameter, it is necessary to keep the reader
ready for reading by means of a cyclic polling command so that a transponder within range is automatically
detected.

Equivalent in proprietary protocol:
Deister: 0x0B

TriggerOn [16#06]

If the trigger mode is active, then a software trigger instead of hardware trigger can be initiated with this
command. The subsequent response telegram is received by the function block of the TwinCAT RFID library.
There is no assignment of read transponder data in this case. The received raw data can be taken from the
function block interface for further processing.

Equivalent in proprietary protocol:
Deister: 0x85
Leuze: '+'

TriggerOff [16#07]

See TriggerOn [} 23].



Technical introduction

TF660024 Version: 1.3.1

Equivalent in proprietary protocol:
Deister: 0x85
Leuze: '-'

AbortCommand [16#08]

If a command is being processed by the RFID reader, it is aborted with this command.

Pepperl+Fuchs: The parameter iHeadNumber in the structure ST_RFID_Control [} 44] determines for which
read head the command is to be executed.

Equivalent in proprietary protocol:
Leuze: 'H'
Pepperl+Fuchs: 'QU'

ResetReader [16#09]

This command causes the RFID reader to perform a reset.

Equivalent in proprietary protocol:
Balluff: 'Q'
Deister: 0x01
Leuze: 'R'
Pepperl+Fuchs: 'RS'
Baltech: System Reset

ReadBlock [16#0A]

This command is used to read a certain number of data bytes from the transponder memory in the form of
blocks of a defined size.

The transfer of the input structure ST_RFID_AccessData [} 50] is necessary for this command.

Before data is read from a transponder, it is usual to identify and select the transponder (see command
GetInventory [} 23]).

Pepperl+Fuchs: The parameter iHeadNumber in the structure ST_RFID_Control [} 44] determines for which
read head the command is to be executed.

Equivalent in proprietary protocol:
Balluff: 'L'
Deister: 0x83
Leuze: 'N'
Pepperl+Fuchs: 'SR' & 'ER'
Baltech: VHLRead

WriteBlock [16#0B]

This command is used to write a certain number of data bytes to the transponder memory in the form of
blocks of a defined size.

The transfer of the input structure ST_RFID_AccessData [} 50] is necessary for this command.

Before data is written to a transponder, it is usual to identify and select the transponder (see command
GetInventory [} 23]).

Pepperl+Fuchs: The parameter iHeadNumber in the structure ST_RFID_Control [} 44] determines for which
read head the command is to be executed.

Equivalent in proprietary protocol:
Balluff: 'P'
Deister: 0x84
Leuze: 'W'
Pepperl+Fuchs: 'SW' & 'EW'
Baltech: VHLWrite



Technical introduction

TF6600 25Version: 1.3.1

OutputOn [16#0C]

This command sets the switching output of the RFID reader permanently to TRUE. This is only possible if the
switching output is not automatically addressed via the configuration.

Equivalent in proprietary protocol:
Deister: 0x0F
Leuze: 'A0FF'

OutputOff [16#0D]

This command sets the switching output of the RFID reader permanently to FALSE. This is only possible if
the switching output is not automatically addressed via the configuration.

Equivalent in proprietary protocol:
Deister: 0x0F
Leuze: 'A000'

FieldOn [16#0E]

The RFID field can be turned on with this command.

Equivalent in proprietary protocol:
Deister: 0x81
Leuze: 'F1'
Baltech: System HFReset

FieldOff

The RFID field can be turned off with this command. Depending on the RFID reader model, the field is
reactivated in the case of a trigger or another command.

Equivalent in proprietary protocol:
Deister: 0x81
Leuze: 'F2'
Baltech: System HFReset

SendRawData [16#10]

With this command, the RFID function block can be used as a low-level interface. The data to be transmitted
are transferred in the control structure [} 44] as a pointer. A telegram is composed internally in the library
and sent. Arbitrary data can be sent to the RFID reader in this way. The data received as a result is available
at the output of the function block in the raw data structure [} 43] as an addressed data field. For more
information on the process, see section Low-level communication [} 40].

When using the command SendRawData [} 25], an evaluation of the received response cannot be
guaranteed.

Example: If a read command is sent manually as a byte sequence by means of the SendRawData
command, then received transponder data are not written at an address specified in ST_RFID_AccessData
[} 50]. Evaluation/storage of the data should therefore also be done manually with the help of the raw data
structure [} 43], which is always specified.

ChangeDCType [16#11]

This command can be used to set the transponder type on the read head. Use iDCType in ST_RFID_Control
[} 44] to specify the type.

Pepperl+Fuchs: The parameter iHeadNumber in the structure ST_RFID_Control [} 44] determines for which
read head the command is to be executed.

Equivalent in proprietary protocol:
Pepperl+Fuchs: 'CT'



Configuration

TF660026 Version: 1.3.1

5 Configuration

5.1 RFID reader settings and handling
The following sections describe the individual RFID reader models based on information provided by the
device manufacturers. The required settings and the handling are explained for each device.

5.1.1 Balluff

RFID reader settings

For smooth communication between controller and RFID readers, some settings need to be made before the
system startup. These include, for example, the baud rate for the serial communication. A proprietary tool
from the manufacturer of the RFID reader may be required in order to transfer these settings to the RFID.

For all supported RFID reader models, the following standard data transfer settings have been tried and
tested:

Setting Value
Baud rate (RS232 and RS485) 9600 baud
Parity Bit none
Data bits 8
Stop bits 1

Depending on the hardware, other parameters can also be set, or the factory settings of the RFID reader can
be used. These must then also be adopted in the software reader connection (see RFID reader connection
[} 19]).

Using the proprietary tools, the following special settings must be parameterized before starting the system:

Setting Value
Data transmission parameters (see above) Setting analogous to the values selected in the PLC program
Type of protocol - telegram end identifier LF CR
Data carrier type All types (or setting according to needs)
Send CT data immediately deactivated (or activated – however, no evaluation takes place)
Dynamic operation deactivated
Send power-on message deactivated (or activated – however, no evaluation takes place)
CRC16 data check deactivated
Type and serial number with CT pres. deactivated (or activated, as required)

If Type and serial number with CT pres. is enabled, the RFID reader automatically sends the transponder
type and its serial number as soon as a transponder is detected. If a command is sent immediately after the
detection of a transponder and receipt of this set message, then the correct attribution of the type of the
following response and an associated evaluation cannot be guaranteed. It is advisable to manually query
existing transponders using the GetInventory [} 23] command. Otherwise at least a short waiting period
should be adhered to before sending the command and the structure should be subjected to a test cycle.

If the RFID reader is set up so that telegrams are sent automatically from the reader to the controller (for
example, on detection of a transponder by Type and serial number with CT pres.), then the following must
be observed:

The end identifier (LF CR) is used in this case as a suffix for the recognition of telegrams. Previous data are
combined into a telegram as soon as these 2 bytes are detected in the data stream. This may lead to an
error and failure to evaluate the telegram. If it is possible for the end identifier to be present within the data in
automatically sent telegrams, then a data query must be selected by means of a command call instead of the
automatic transmission. The telegrams are recognized reliably as a result of this measure.



Configuration

TF6600 27Version: 1.3.1

RFID reader handling

The function blocks of the library support communication from Balluff readers to transponders with 4-8 bytes
serial number.

If Balluff RFID readers are used, the serial number of 13.56 Mhz transponders is rotated byte-by-byte by the
library function block. This takes place because the serial number read out from a transponder would
otherwise not correspond to the serial number read out on another reader. This allows devices from different
manufacturers to be operated together in the same network.

When using a Balluff BIS-L60x0:

• The variable iDCType = 0 must be set (see input structure stCtrl [} 44]).

• When the GetInventory [} 23] command is called, information from both read heads is returned via the
serial interface. However, only the information from the read head selected by stCtrl.iHeadNumber is
evaluated and output at the stTranspInfo output.

• If Type and serial number with CT pres. is enabled, the RFID reader automatically sends the
transponder type and its serial number as soon as a transponder is detected. By default, this only
affects the first read head. Switching to the second read head is not directly supported by the library.
Furthermore, the number of the read head on which the tag was recognized cannot be assigned
(iHeadNumber = 0).

It must be pointed out here that not all peculiarities of every supported RFID reader model can be named
here. For detailed information, please refer to the manufacturer's own documentation.

5.1.2 Baltech
If a supported Baltech RFID stand-alone device is used, the TwinCAT RFID library can be used as an
interface. Alternatively certain Beckhoff Control Panels or Panel PCs can be used. In these devices an
RFID reader can be integrated as an option. In this case an SDK containing the proprietary documentation is
provided. The functionality if the TwinCAT library is the same in both cases.

RFID reader settings

For smooth communication between controller and RFID readers, some settings need to be made before the
system startup. These include, for example, the baud rate for the serial communication. The proprietary tool
"Baltech id-engine explorer" provided by the RFID reader manufacturer can be used to transfer these
settings to the RFID reader. The tool can also be used to perform a function test to determine whether the
RFID device and the transponder cards are recognized.

The following standard data transmission settings have been tried and tested:

Setting Value
Baud rate 115200 baud
Parity Bit none
Data bits 8
Stop bit 1



Configuration

TF660028 Version: 1.3.1

This matches the factory setting of the supported Baltech RFID devices. Other parameters can be set, if
required. These must then also be adopted in the software reader connection (see RFID reader connection
[} 19]).

The baud rate of the readers can be changed with the tool "Baltech id-engine explorer" (see Baltech
documentation: IdEngineExplorer.pdf).

The tool "Baltech id-engine explorer" only runs under Windows XP. It is not available for Windows CE. The
baud rate is therefore not configurable under Windows CE.

In the PLC a fast task is required for processing the incoming data. When connecting the RFID device to a
COM port and a baud rate of 115,200 baud, a cycle time of 1 ms is required (see RFID reader connection
[} 19]).

In order to configure the baud rate from the PLC, the following byte sequence can be transferred as a raw
data block [ 0x 1C 00 09 06 00 01 03 00 02 xx xx - with xx xx representing the baud rate, e.g. 9600 baud: 96
units at 100 baud -> 0x 00 60 ]. Details are explained in section Low-level communication [} 40]. This is
also possible under Windows CE, if a transfer with the currently set baud rate is possible.

Using the virtual serial COM port (USB)

If the device is connected via USB, the appropriate USB-to-Virtual-Com-Port driver must be installed. If it is a
Beckhoff Panel PC, the driver is already pre-installed. The SDK of the RFID device also contains the driver.
The virtual COM port is displayed in the Windows Device Manager.

Communication to the driver takes place via Beckhoff TwinCAT serial communication. However, no
corresponding device is created in the TwinCAT System Manager, and no link is established there. Further
information can be found in the documentation for the PLC library "Serial Communication".

RFID reader handling

The library supports the standard settings for the Baltech communication. "Host Operation" mode is
supported as "Operational Mode". Other modes are not supported. The BRP (Baltech Reader Protocol) is
used for internal access in "Communication Mode" "Normal Mode". If raw data is sent via the low-level
communication option, make sure that the above settings are correctly specified within the frame.

It must be pointed out here that not all peculiarities of every supported RFID reader model can be named
here. Therefore you are referred to the manufacturer’s own documentation for more detailed information.

Configuration

If encrypted transponder cards are used, the same key must be available in the RFID device. The Baltech
RFID reader is configured once, i.e. the key only has to be specified once. For security reasons the key
cannot be read from the device configuration. In keeping with the encryption of a transponder card, a VHL
file is stored in the device configuration. Several such VHL files can be stored in order to access different
cards without the need for reconfiguration.

There are three ways to transfer such a VHL file into the configuration of the RFID device:



Configuration

TF6600 29Version: 1.3.1

Configuration type Description
Configuration card A configuration can be transferred via a configuration card. This is the

preferred option.
"Baltech id-engine explorer" tool The tool can be used to transfer a configuration to the memory of the

Baltech RFID device (see Baltech documentation: IdEngineExplorer.pdf).
In simple cases the specific configuration can be created directly in the
tool. Alternative Baltech offers technical support and can provide a file
containing the configuration.
The tool "Baltech id-engine explorer" runs on all Windows operating
systems from Windows XP. It is not available for Windows CE.

from the PLC For Mifare Classic cards the transfer of a VHL file configuration can be
programmed in the PLC program code. The command SetConfig [} 23]
transfers the configuration specified at the input in ST_RFID_ConfigIn
[} 48]. The structure of a Mifare card and the possible settings for key
allocation are explained in ST_RFID_CfgStruct_BaltechMifVHLFile [} 51].
(Detailed information about Mifare cards can be found in the Baltech
document Mifare.pdf in the Baltech SDK)

Transponders

Suitable transponder cards for Baltech RFID devices are available from several manufacturers. If cards with
encryption are to be used, Baltech offers preconfigured cards for this purpose.

Manufacturer contact

http://www.baltech.de

5.1.3 Deister electronic

RFID reader settings

For smooth communication between controller and RFID readers, some settings need to be made before the
system startup. These include, for example, the baud rate for the serial communication. A proprietary tool
from the manufacturer of the RFID reader may be required in order to transfer these settings to the RFID.

For all supported RFID reader models, the following standard data transfer settings have been tried and
tested:

Setting Value
Baud rate (RS232 and RS485) 9600 baud
Parity Bit none
Data bits 8
Stop bit 1

Depending on the hardware, other parameters can also be set, or the factory settings of the RFID reader can
be used. These must then also be adopted in the software reader connection (see RFID reader connection
[} 19]).

Using the proprietary tools, the following special settings may have to be parameterized before the system is
started:

Setting Value
Data transmission parameters (see above) Setting analogous to the values selected in the PLC program

http://www.baltech.de


Configuration

TF660030 Version: 1.3.1

RFID reader handling

Here, too, the "Polling" function should be noted, which can be used to call the command repeatedly in cases
where the current transponder information is important (see command description [} 21]).

In addition there is the peculiarity that, in the case of the proxEntry models, a polling command must be
present in order to establish a connection to the transponder. In the case of UDL models, on the other hand,
the configuration provides the automatic establishment of a connection to detected transponders, so that no
polling command is absolutely necessary.

The block size corresponding to the tag must be configured in the RFID reader configuration.

Deister RDL devices support 4 bytes or 8 bytes block size.

Example: If a block size of 8 bytes is specified for the transponder, then the reader must be configured with
the parameter iBlocksize:=8 and the read or write access via the structure ST_RFID_AccessData [} 50] must
take place with an 8-byte block size.

Deister RDL: A write command can write up to 36 bytes of data at a time. If more data is to be written to the
transponder, it must be divided into several commands.

It must be pointed out here that not all peculiarities of every supported RFID reader model can be named
here. Therefore you are referred to the manufacturer’s own documentation for more detailed information.

Configuration

Note the following when a new configuration is written to the RFID device (command SetConfig [} 23]):

Deister RDL devices: Not every combination of configuration parameters is allowed (see
ST_RFID_CfgStruct_DeisterRDL [} 54]). Disregard of the required dependencies leads to an error
(eRFERR_InvalidCfg):

Configuration parameters Required dependencies
eReadMode = eRFRD_ContinuousRead eTriggerMode = eRFTR_ImmediateRead

eWriteMode = eRFWR_ImmediateWrite
eWriteMode = eRFWR_WriteToNextTag eTriggerMode = eRFTR_ReadWithTrigger
bMultiTranspMode = TRUE bSerialNumberMode = TRUE

eWriteMode = eRFWR_ImmediateWrite
eReadMode = eRFRD_SingleShot

If the configuration is transmitted as a register, these dependencies also exist and the RFID device will return
an error code if inadmissible.

5.1.4 Leuze electronic

RFID reader settings

For smooth communication between controller and RFID readers, some settings need to be made before the
system startup. These include, for example, the baud rate for the serial communication. A proprietary tool
from the manufacturer of the RFID reader may be required in order to transfer these settings to the RFID.

For all supported RFID reader models, these standard data transmission settings have been tried and
tested:

Setting Value
Baud rate (RS232 and RS485) 9600 baud
Parity Bit none
Data bits 8
Stop bit 1



Configuration

TF6600 31Version: 1.3.1

Depending on the hardware, other parameters can also be set, or the factory settings of the RFID reader can
be used. These must then also be adopted in the software reader connection (see RFID reader connection
[} 19]).

Using the proprietary tools, the following special settings may have to be parameterized before the system is
started:

Setting Value
Data transmission parameters (see above) Setting analogous to the values selected in the PLC program

If the RFID reader is triggered, the following response telegram is received by the function block of the
TwinCAT RFID library. There is no assignment of read transponder data in this case. The received raw data
can be taken from the function block interface for further processing.

RFID reader handling

The block size corresponding to the tag must be configured in the RFID reader configuration.

The Leuze devices support 4 bytes or 8 bytes block size.

Example: If a block size of 8 bytes is specified for the transponder, then the reader must be configured with
the parameter iBlocksize := 8 and the read or write access via the structure ST_RFID_AccessData [} 50] must
take place with an 8-byte block size.

A write command can write up to 36 bytes of data at a time. If more data is to be written to the transponder, it
must be divided into several commands.

It must be pointed out here that not all peculiarities of every supported RFID reader model can be named
here. Therefore you are referred to the manufacturer’s own documentation for more detailed information.

Configuration

Note the following when a new configuration is written to the RFID device (command SetConfig [} 23]):

Not every combination of configuration parameters (structure ST_RFID_CfgStruct_LeuzeRFM [} 59]) is
allowed. Disregard of the required dependencies leads to an error (eRFERR_InvalidCfg):

Configuration parameters Required dependencies
eReadMode = eRFRD_ContinuousRead eTriggerMode = eRFTR_ImmediateRead

eWriteMode = eRFWR_ImmediateWrite
eWriteMode = eRFWR_WriteToNextTag eTriggerMode = eRFTR_ReadWithTrigger
bMultiTranspMode = TRUE bSerialNumberMode = TRUE

eWriteMode = eRFWR_ImmediateWrite
eReadMode = eRFRD_SingleShot

If the configuration is transmitted as a register, these dependencies also exist and the RFID device will return
an error code if inadmissible.

5.1.5 Pepperl-Fuchs

RFID reader settings

For smooth communication between controller and RFID readers, some settings need to be made before the
system startup. These include, for example, the baud rate for the serial communication. A proprietary tool
from the manufacturer of the RFID reader may be required in order to transfer these settings to the RFID.

For all supported RFID reader models, the following standard data transfer settings have been tried and
tested:



Configuration

TF660032 Version: 1.3.1

Setting Value
Baud rate (RS232 and RS485) 38400 baud
Parity Bit none
Data bits 8
Stop bit 1

If required, other parameters can be set, depending on the hardware. These must then also be adopted in
the software reader connection (see RFID reader connection [} 19]).

RFID reader handling

The model information (GetReaderVersion [} 22] command) and the current reader configuration (GetConfig
[} 22] command) must be evaluated at the system start.

The received status of the device is displayed via output iErrCodeRcv of function block FB_RFIDReader and
signaled in case of error by bError = TRUE and iErrorId = eRFERR_ErrorRcv. The read heads also have
their own status. These can be checked with the configuration structure [} 61] read via GetConfig.

The set transponder types should be checked on restarting. If the configuration structure read via GetConfig
does not display the correct transponder types for each read head, they can be corrected with the
ChangeDCType [} 25] command. It is recommended to set the value specified for the transponder in place of
the default value (99). The read/write head additionally recognizes the data storage device more quickly as a
result.

When accessing the data memory of a transponder for writing and/or reading, a block size (see
ST_RFID_AccessData [} 50]) suitable for the transponder must be used for all Pepperl+Fuchs RFID devices!

Block sizes of possible transponders:

4 bytes (IQC21, IPC03, IQC22, IQC24)
8 bytes (IQC33)
16 bytes (IQC40, IQC41, IQC42 and IQC43)
32 bytes (IQC37)

The use of a 4-byte block size only is supported up to version 3.3.3.0 of the library.

It must be pointed out here that not all peculiarities of every supported RFID reader model can be named
here. Therefore you are referred to the manufacturer’s own documentation for more detailed information.

Buffered Command

Using the bBufferedCmd input variable in ST_RFID_Control [} 44], it is possible to transmit commands that
can be buffered for continuous execution at a later time. This is possible with the eRFC_GetInventory,
eRFC_ReadBlock and eRFC_WriteBlock commands. A buffered command can be ended with the
eRFC_AbortCommand command.

Buffered command
If such a buffered command is active on a read head, the trigger mode may neither be active nor
activated for this channel! Similarly, no raw data command may be transmitted that concerns this
channel!

Trigger mode

It is recommended not to use any trigger or sensor channel. The trigger mode should also be deactivated for
all channels. In the factory setting for the RFID device the trigger is deactivated for all channels.

Alternatively, for example, the GetInventory command can be called cyclically or GetInventory can be called
as a buffered command (bBufferedCmd in ST_RFID_Control [} 44]).

The TwinCAT library offers the following option for using a sensor channel as trigger for the RFID unit:



Configuration

TF6600 33Version: 1.3.1

The trigger sends a message to indicate whether it is triggered or the value is outside the trigger range.
These messages are received and displayed as eResponse = eRFR_CmdConfirmation or
eRFR_NoTransponder. The application can respond accordingly and trigger the required command.

To configure a channel as sensor channel/trigger, the corresponding Ident channel must be 0. The required
raw data command is explained in the next paragraph.

Trigger setting
The trigger setting must not be accomplished from the manufacturer's proprietary tool. Otherwise
the messages of the sensor channel received as a result cannot be read by the function block of the
TwinCAT RFID library.

The correct setting of the trigger mode should be checked with the command GetConfig [} 22] and by
evaluating the read configuration structure. If necessary the setting can be made up for on program startup.

Sending the settings via raw data commands

For details see Low-level communication [} 40] and the description of structures ST_RFID_Control [} 44]
and ST_RFID_RawData [} 43].

Baud rate:

To set the baud rate of the RFID device to 9600 baud send the following raw data:

ASCII hex
CI0,9600 43 49 30 2C 39 36 30 30

After changing the baud rate, a reset of the RFID device is necessary.

Trigger mode:

To deactivate a trigger sensor on channel 3 so that the channel can be used as read head, the following raw
data should be sent:

ASCII hex
TM300 54 4D 33 30 30

To configure a sensor as trigger on channel 2, the following raw data should be sent:

ASCII hex
TM201 54 4D 32 30 31

Answer: eResponse = eRFR_CmdConfirmation when the sensor is triggered.

Answer: eResponse = eRFR_NoTransponder when the sensor is exited.

The output stTranspInfo.iHeadNumber indicates the sensor channel from which the response was sent.

To configure a sensor as inverted trigger on channel 4, the following raw data should be sent:

ASCII hex
TM402 54 4D 34 30 32

Answer: eResponse = eRFR_NoTransponder when the sensor is triggered.

Answer: eResponse = eRFR_CmdConfirmation when the sensor is exited.

The output stTranspInfo.iHeadNumber indicates the sensor channel from which the response was sent.

Once such setting has been made, the device configuration must be re-read with the command Get Config
[} 22]. It is advisable to check the settings by analyzing the read configuration structure.



PLC API

TF660034 Version: 1.3.1

6 PLC API

6.1 Function block

6.1.1 FB_RFIDReader
The TwinCAT RFID library only consists of one function block.

This section explains the interface variables of the function block for a quick introduction to the handling of
the library. See also the Tutorial [} 67] and the Examples [} 67].

The uniform handling of all RFID reader models and the associated prepared interface declarations are
particularly user-friendly. However, it should be noted that the function block of the TwinCAT RFID library
has a slight overheat due to the differences of some RFID reader models. This indispensable characteristic
is, however, strongly outweighed by the advantages that the available flexibility offers.

Syntax
FUNCTION_BLOCK FB_RFIDREADER
VAR_INPUT
    bExecute      : BOOL;
    eCommand      : E_RFID_Command;
    stAccessData  : ST_RFID_AccessData;
    stCtrl        : ST_RFID_Control;
    stCfg         : ST_RFID_ConfigIn;
    eManufacturer : E_RFID_ReaderManufacturer;
    tTimeOut      : TIME := T#5s;
END_VAR
VAR_IN_OUT
    RxBuffer      : ComBuffer;
    TxBuffer      : ComBuffer;
END_VAR
VAR_OUTPUT
    bBusy         : BOOL;
    bResponseRcv  : BOOL;
    eResponse     : E_RFID_Response;

    bError        : BOOL;
    iErrorID      : UINT;     (* general RFID error *)
    iErrCodeRcv   : UINT;     (* error received by reader *)

    stReaderCfg   : ST_RFID_Config;
    stReaderInfo  : ST_RFID_ReaderInfo;
    stTranspInfo  : ST_RFID_TranspInfo;
    stRawData     : ST_RFID_RawData;
END_VAR



PLC API

TF6600 35Version: 1.3.1

 Inputs

Name Type Description
bExecute BOOL In order to receive messages from the RFID reader, the

function block is called with a FALSE on this input.
The function block reacts to a rising edge on bExecute by
executing the selected command eCommand or querying it at
the RFID reader.

eCommand E_RFID_Command
[} 62]

The eCommand input offers a choice of commands, such as
reading from or writing to a transponder, in the form of an
enumeration.
A command is executed by setting the bExecute input.

stAccessData ST_RFID_AccessData
[} 50]

If a write or read command is to be executed, then parameters
must be transferred with this input structure.

stCtrl ST_RFID_Control [} 44] Various control parameters can be transferred at the input with
stCtrl. This includes the possibility to specify delay times.

stCfg ST_RFID_ConfigIn
[} 48]

An RFID reader has an internal configuration. This can be read
out and changed on some devices. Configuration parameters
to be transmitted to the RFID reader are transferred at the
stCfg input.

See also: Configuration [} 39]
eManufacturer E_RFID_ReaderManufact

urer [} 65]
The manufacturer of the RFID reader model in use is specified
at this input.

tTimeOut TIME Specifies a maximum length of time for the execution of the
function block. The default value is 5 seconds.

The condition tTimeOut > tPreSendDelay + tPostSendDelay applies. Otherwise an error is generated at the
output. See details of the delay times in ST_RFID_Control [} 44].

/  Inputs/outputs

Name Type Description
RxBuffer ComBuffer Specifies the receive buffer that was declared as an input

variable and linked to the serial terminal in the
TwinCAT System Manager.
See the description of the serial connection of an RFID reader
in section RFID reader connection [} 19].

TxBuffer ComBuffer Specifies the transmit buffer that was declared as an output
variable and linked to the serial terminal in the
TwinCAT System Manager.
See the description of the serial connection of an RFID reader
in section RFID reader connection [} 19].

https://infosys.beckhoff.de/content/1033/tf6340_tc3_serial_communication/18014398595402507.html?id=5328166679626016499
https://infosys.beckhoff.de/content/1033/tf6340_tc3_serial_communication/18014398595402507.html?id=5328166679626016499


PLC API

TF660036 Version: 1.3.1

 Outputs



PLC API

TF6600 37Version: 1.3.1

Name Type Description
bBusy BOOL If the command call is valid, the bBusy output goes to TRUE for

at least one cycle. The function block may only be called again
for a new command with bExecute = TRUE if bBusy has
changed to FALSE and the function block is thus no longer in
the active transmission state. Thus, if bBusy = FALSE is
detected, all other output variables bResponseRcv,
eResponse, bError, iErrCodeRcv,... and stRawData can be
evaluated.
If a response to an executed command call is expected, then
the function block remains at bBusy = TRUE until a telegram is
received or until the timeout tTimeOut is reached.
If the delay times tPreSendDelay and/or tPostSendDelay have
been given to the function block, bBusy remains TRUE for at
least as long as the sum of these times.

See also: ST_RFID_Control [} 44].
bResponseRcv BOOL As soon as a response from the RFID reader has arrived at the

controller, this flag is set for at least one cycle.
The arrival of a telegram is generally signaled with a rising
edge to bResponseRcv = TRUE. Thus, if this flag is detected,
unexpected telegrams and the corresponding output variables
eResponse, bErr, iErrCodeRcv,... and stRawData can be
evaluated.
If a response is expected for an executed command call, the
function block remains bBusy = TRUE until a telegram is
received. Depending on the command call, more than one
response can arrive before the action is completed and
bBusy = FALSE.
Depending on the configuration setting of the delay times in
ST_RFID_Control [} 44], bResponseRcv can go to TRUE even
before bBusy changes to FALSE.

eResponse E_RFID_Response
[} 63]

As soon as bResponseRcv shows TRUE, this enumeration
indicates the type of message received. The appropriate
evaluation can follow, for example, depending on the type.

bError BOOL The bError output becomes TRUE as soon as an error occurs.
This can be due to incorrect input parameters, transmission
errors, errors on the part of the RFID reader or a timeout.
The type of error that has occurred is indicated by the output
variable iErrorID. Details about the error display can be found
in the Error codes [} 75] section.

iErrorID UNIT If an error occurs, the type of error at output iErrorID is
displayed. Details of the possible error IDs are given in the
Error codes [} 75] section.

iErrCodeRcv UINT The error code indicated at the iErrCodeRcv output
corresponds to the error code sent by the RFID reader to the
controller. Details about the error display can be found in the
Error codes [} 75] section.

stReaderCfg ST_RFID_Config [} 49] An RFID reader has an internal configuration. This can be read
out and changed on some devices. These read-out
configuration parameters are made available at the
stReaderCfg output.

stReaderInfo ST_RFID_ReaderInfo
[} 42]

Each RFID reader has its own identification data such as
designation, hardware version, etc. These values, which can
be queried with the command GetReaderVersion [} 22] among
others, are specified in the output structure stReaderInfo.



PLC API

TF660038 Version: 1.3.1

Name Type Description
stTranspInfo ST_RFID_TranspInfo

[} 41]
The structure stTranspInfo contains information on the last
read transponder. Among other things, the serial number of the
transponder is output here.

stRawData ST_RFID_RawData
[} 43]

The output structure stRawData outputs both the sent and the
received raw data.

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.1.2 Handling instructions

RFID library handling

If you have included the library file Tc2_RFID, you have access to all functions. The library places a function
block at your disposal for communication with an RFID reader.

You can use the general function block FB_RFIDReader, which is usable for all RFID reader models, or one
of the manufacturer-specific function blocks. These offer the same range of functions and almost the same
interface and the same handling, and they are also optimized in terms of the code and the performance.

The function block made available for RFID reader communication offers high level communication with a
high level interface. A instruction set provides various commands (see RFID command set [} 21]). In addition,
the integrated low-level communication allows sending and receiving of raw data (see Low level
communication [} 40]).

The Tc2_RFID library expects the RFID reader to respond immediately to a command and that the dialog is
not interrupted by another telegram. Otherwise an evaluation may not be possible.

General handling of the function block

Depending on the RFID reader model, the device can send a telegram to the controller without a prior
request. A cyclic call of the RFID function block with bExecute = FALSE is sufficient for reception.

All possible active accesses to the RFID device are listed in the instruction set (see RFID command set
[} 21]). The following procedure is common to all commands:

The function block is called by a rising edge on the bExecute input. Afterwards, cyclic calling of the function
block (bExecute = FALSE) returns the result of the query at the output as soon as the processing of the
query has been completed (bBusy = FALSE). The function block must be called (bExecute = FALSE) for as
long as it takes for the internal processing (bBusy = FALSE) to be completed. During that time, all inputs of
the function block must remain unchanged.

All received messages are additionally made available completely as raw data in unprocessed form at the
output.

Further handling instructions can be found in the description of the input and output variables of the function
block and in the tutorial and examples in this documentation.

Initialization of an RFID reader integrated via the TwinCAT library

When the system is started, the following actions are required for initializing an RFID reader integrated via
the TwinCAT library:

Insofar as they are available according to the instruction set, the model information (GetReaderVersion [} 22]
command) and the current reader configuration (GetConfig [} 22] command) must be evaluated. Because
successful communication with the RFID reader is dependent on these data, it must be ensured that the
current values are always available and queried if necessary.



PLC API

TF6600 39Version: 1.3.1

RFID reader handling

The characteristics of the supported RFID reader models are listed in section RFID reader settings and
handling [} 26]. The notes listed there are allocated to the special RFID reader manufacturers.

6.1.3 Configuration
All supported RFID readers can be configured with the same command. This must be available according to
the instruction set for the specific model (see RFID command set [} 21]).

In addition to the reader version, the current configuration of the reader should also be requested at each
program start.

Since RFID readers from different manufacturers never have identical configuration options, in addition to
the input configuration structure the TwinCAT RFID library offers a substructure for each manufacturer with
the specific parameters (ST_RFID_CfgStruct_DeisterUDL, ST_RFID_CfgStruct_LeuzeRFM,...). The
parameters listed there can be parameterized by the user as desired within the limits of the valid ranges of
values. The meaning of the parameters is to be taken either from the structure declaration or the proprietary
specifications.

Reading the configuration

The GetConfig [} 22] command from the instruction set is used in order to read the current RFID reader
configuration. After that, the configuration data can be taken from the output of the function block if the query
was successful. They are available there in the structure ST_RFID_Config [} 49] both as a configuration
structure and as a configuration register.

Changing the configuration

The SetConfig [} 23] command from the instruction set is used in order to write an RFID reader
configuration. After a SetConfig command, the current configuration must be read once with the GetConfig
[} 22] command.

If the user sets further reaching special configuration parameters via an external tool and wants to retain
these, then the flag for "Default Values" bUseCfgDefault in the structure ST_RFID_ConfigIn [} 48] should be
deactivated.

Invalid combination of configuration parameters
Certain combinations of configuration parameters are sometimes impermissible. You can find out
which parameter values are excluded in which combination from the proprietary protocol
specifications of the RFID reader manufacturers.
If the parameters are entered incorrectly, then either an error will be generated even before the
configuration query, or the RFID reader signals by its response that the configuration data could not
be adopted.

Configuration data

Each configuration can be seen as a register (byte array) or as a structure. This is not the parameterization
of the TwinCAT RFID library but the proprietary configuration of the RFID reader. The TwinCAT RFID library
contains various configuration structures, which process the raw data of the configuration registers of
different RFID readers. If available, both variants are provided in ST_RFID_Config [} 49] at the output of the
library function block. This takes place via pointers.

Baltech

The configuration data is used as a structure for Baltech RFID readers.

• ST_RFID_CfgStruct_BaltechMifVHLFile [} 51]

The structure is suitable for writing with the eRFC_SetConfig command (see RFID command set [} 21]).

Balluff



PLC API

TF660040 Version: 1.3.1

No configuration options are offered.

Deister

The configuration data can be used for Deister RFID readers both as a structure and as a register.

If a register array (byte array) is used, it must always have the size of the complete configuration data. For
the supported Deister RDL devices this is 88 bytes, for the UDL devices 117 bytes.

• ST_RFID_CfgStruct_DeisterRDL [} 54]

• ST_RFID_CfgStruct_DeisterUDL [} 56]

The structures are suitable for writing with eRFC_SetConfig and reading with eRFC_GetConfig (see RFID
command set [} 21]).

Leuze

For Leuze RFID readers the configuration data can be used as a structure and as a register.

If a register array (byte array) is used, it must always have the size of the complete configuration data. For
supported Leuze devices this is 88 bytes.

• ST_RFID_CfgStruct_LeuzeRFM [} 59]

The structure is suitable for writing with eRFC_SetConfig and reading with eRFC_GetConfig (see RFID
command set [} 21]).

Pepperl+Fuchs

For Pepperl+Fuchs RFID readers the configuration data are used as a structure.

• ST_RFID_CfgStruct_PepperlFuchsIDENT [} 61]

The structure is suitable for reading with eRFC_GetConfig (see RFID command set [} 21]).

6.1.4 Low level communication
In addition to the high-level instruction set, the TwinCAT RFID library also offers the possibility of low-level
communication. This is solved implicitly. The same function block is used.
Any telegrams up to a maximum size of 1024 bytes can be received and sent up to a size of 300 bytes.

A complete telegram is composed as follows:

| Prefix | Addressing | Raw data | CRC | Suffix |

Depending upon the proprietary protocol specification, individual components may be missing. In general,
however, the composition is the same.

Sending

The eRFC_SendRawData command from the instruction set is used for sending (see RFID command set
[} 21]). The raw data to be sent is specified in the input structure ST_RFID_Control [} 44].

In order to send a low level telegram, only the raw data is specified. The other telegram components are
automatically supplemented by the TwinCAT RFID library. Checking data such as CRC are likewise
generated and added internally.

If the protocol requires recoding of certain bytes within the raw data, this is also done automatically by the
TwinCAT RFID library.

If an RS485 interface is involved, the addressing must be specified separately. It may not be contained in the
specified raw data. By default, the addressing is performed automatically by the library. However, it can be
parameterized via the input variables in ST_RFID_Control [} 44].

The raw data last sent can be viewed at any time at the output of the function block by means of the
structure ST_RFID_RawData [} 43]. This is independent of the command used.



PLC API

TF6600 41Version: 1.3.1

Receiving

The raw data last received can be viewed at any time at the output of the function block by means of the
structure ST_RFID_RawData [} 43]. The associated addressing is output in the structure ST_RFID_ReaderInfo
[} 42].

When using the command SendRawData [} 25], a direct evaluation of the received response cannot be
guaranteed.

Example: If a read command is sent manually as a byte sequence by means of the SendRawData
command, then received transponder data are not written at an address specified in ST_RFID_AccessData
[} 50]. Evaluation/storage of the data should therefore also be done manually with the help of the raw data
structure ST_RFID_RawData [} 43], which is always specified. The specified raw data consists of the
received telegram, but without prefix, suffix, checksum, CRC or shift sequence coding. If the received
telegram has not been regularly evaluated by the function block, this is additionally indicated by an error.

In order to be able to use the received data, these must be copied, for example, to a byte array.

Example of the assignment of received data with the aid of the MEMCPY() function:
fbRFIDReader    : FB_RFIDReader;
arrReceivedData : ARRAY [0..511] OF BYTE;

MEMSET( ADR(arrReceivedData), 0, SIZEOF(arrReceivedData) );
MEMCPY( ADR(arrReceivedData),
        fbRFIDReader.stRawData.pReceivedRsp,
        MIN(fbRFIDReader.stRawData.iReceivedRspLen, SIZEOF(arrReceivedData)) );

Balluff RFID Reader: The end identifier (LF CR) is used as a suffix for the recognition of telegrams. Previous
data are combined into a telegram as soon as these 2 bytes are detected in the data stream.

6.2 Data types

6.2.1 Structures

6.2.1.1 ST_RFID_TranspInfo
The structure ST_RFID_TranspInfo indicates the type and the serial number of the last detected RFID
transponder. The command GetInventory [} 23] is used to query and update this information.
TYPE ST_RFID_TranspInfo :
STRUCT
    sSerialNumber : T_RFID_TranspSRN; (* serial number shown as hex coded string(ascii) *)
    eType         : E_RFID_TranspType;
    iHeadNumber   : USINT;  (* read head where the last transponder was detected *)
    iDCType       : USINT; 
(* data carrier type: the received transponder type code (see device specific type list) *)
END_STRUCT
END_TYPE

All manufacturers

Name Description
sSerialNumber The serial number of the transponder (frequently 8 bytes) is indicated in the

hexadecimal string sSerialNumber. The data type is T_RFID_TranspSRN [} 66].
If Balluff RFID readers are used, the serial number of 13.56 Mhz transponders is
rotated byte-by-byte by the library function block. This takes place because the
serial number read out from a transponder would otherwise not correspond to the
serial number read out on another reader. This allows devices from different
manufacturers to be operated together in the same network.

eType The type of transponder is indicated as an enumeration value of the enumeration
E_RFID_TranspType [} 65].

iDCType The type of transponder is specified as a numeric code. See the proprietary
device-specific transponder type list.



PLC API

TF660042 Version: 1.3.1

Pepperl+Fuchs

Name Description
iHeadNumber If an RFID reader with several read heads is connected, iHeadNumber indicates

by which head the RFID transponder was detected.

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.2 ST_RFID_ReaderInfo

Following the GetReaderVersion [} 22] command from the instruction set, the received data are processed in
this output structure.

Not every variable is thereby served by every RFID reader model in the form of the version information. For
example, one reader model indicates the production date while another RFID reader model transfers the
hardware version. More detailed information on the entries can be found in the manufacturer’s own protocol
specification and manuals.
TYPE ST_RFID_ReaderInfo :
STRUCT
    dDate         : DATE;
    eType         : E_RFID_ReaderType;
    eGroup        : E_RFID_ReaderGroup;
    eManufacturer : E_RFID_ReaderManufacturer;
    iReserved     : UINT;
    sSWVersion    : STRING(31);
    sHWVersion    : STRING(31);
    sCode         : STRING(39);
    sSerialNumber : STRING(39);

    iSrcAddrRcv   : UDINT;            (* RS485 address *)
    iDstAddrRcv   : UDINT;            (* RS485 address *)
END_STRUCT
END_TYPE

All manufacturers

Name Description
eType The RFID reader type is indicated as an enumeration at this output.
eGroup The RFID reader group/series is indicated at this output. The internal processing of

all telegrams in the library is specified by this group allocation.
eManufacturer The manufacturer of the connected RFID reader is indicated at this output.

The enumeration provides the following choices:
TYPE E_RFID_ReaderManufacturer : ( 
     eRFRM_Unknown, 
     eRFRM_Balluff, 
     eRFRM_Deister, 
     eRFRM_Leuze, 
     eRFRM_PepperlFuchs, 
     eRFRM_Baltech ); 
END_TYPE

iSrcAddrRcv In case of the RS485 interface, the received source address is indicated here.
iDstAddrRcv In case of the RS485 interface, the received destination address is indicated here.



PLC API

TF6600 43Version: 1.3.1

Baltech

Name Description
dDate The production date of the RFID reader is indicated at this output. The date

01/01/1970 means that no production date was transmitted.
sSWVersion Indicates the software version as text.
sCode The special type of the RFID reader is transmitted as numeric code. This is output

at output sCode as a string.
sSerialNumber The serial number of the RFID reader is output as a hexadecimal string at the

sSerialNumber output. This is not to be confused with the transponder serial
number.

Deister

Name Description
sSWVersion Indicates the software version as text.
sHWVersion Indicates the hardware version as text.
sCode The special type of the RFID reader is transmitted as numeric code. This is output

at output sCode as a string.
sSerialNumber The serial number of the RFID reader is output as a hexadecimal string at the

sSerialNumber output. This is not to be confused with the transponder serial
number.

Leuze

Name Description
dDate The production date of the RFID reader is indicated at this output. The date

01/01/1970 means that no production date was transmitted.
sCode The special type of the RFID reader is transmitted as numeric code. This is output

at output sCode as a string.

Pepperl+Fuchs:

Name Description
dDate The production date of the RFID reader is indicated at this output. The date

01/01/1970 means that no production date was transmitted.
sSWVersion Indicates the software version as text.
sCode The special type of the RFID reader is transmitted as numeric code. This is output

at output sCode as a string.

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.3 ST_RFID_RawData
This structure outputs the sent and received data as raw data. This is always the complete telegram, but
without prefix, suffix, checksum, CRC or shift sequence coding. Low-level communication is described in
detail in section Low-level communication [} 40].

The byte sequences can be viewed via the specified pointers. The MEMCPY() function can be used for
evaluation.
TYPE ST_RFID_RawData :
STRUCT
    pReceivedRsp :POINTER TO BYTE;
    pSentCommand :POINTER TO BYTE;



PLC API

TF660044 Version: 1.3.1

    iReceivedRspLen :UINT;
    iSentCommandLen :UINT;
END_STRUCT
END_TYPE

Name Description
pReceivedRsp A received telegram is stored as a byte sequence and the pReceivedRsp pointer

points to this byte sequence.
pSentCommand A sent telegram is stored as a byte sequence and the pSentCommand pointer points

to this byte sequence.
iReceivedRspLen Specifies the length of the stored byte sequence in bytes.
iSentCommandLen Specifies the length of the stored byte sequence in bytes.

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.4 ST_RFID_Control
The input structure stCtrl contains variables with which the behavior of the function block can be
parameterized.

The two variables tPreSendDelay and tPostSendDelay offer the option to parameterize delay times.
TYPE ST_RFID_Control :
STRUCT
    sSelTranspSRN      :T_RFID_TranspSRN; (* serial number shown as hex coded string(ascii) *)

    tPreSendDelay      :TIME;         (* condition: tTimeOut > tPreSendDelay + tPostSendDelay *)
    tPostSendDelay     :TIME;         (* condition: tTimeOut > tPreSendDelay + tPostSendDelay *)

    iSrcAddrSnd        :UDINT;        (* RS485 address *)
    iDstAddrSnd        :UDINT;        (* RS485 address *)
    bAddrAutoMode      :BOOL := TRUE; (* if AutoMode is activated the communication addresses are ha
ndled automatically and set addresses are not used. *)

    bLogging           :BOOL;

    iHeadNumber        :USINT := 1;   (* if multiple read heads are installed at the reader unit, on
e can be selected *)
    iDCType            :USINT := 1;

    pRawDataCommand    :POINTER TO BYTE; (* data input for low level communication *)
    iRawDataCommandLen :UINT;

    bBufferedCmd       :BOOL;

    iVHLFileID         :USINT := 16#FF;  (* selection of VHL file; default 0xFF (ad hoc VHL file of 
vhlSetup) *)

    iCardTypeMask      :UINT := 16#FFFF; (* select which card type should be detected via GetInvento
ry; default 0xFFFF (all types) *)
    bReselect          :BOOL := TRUE;    (* with Reselect every GetInventory gets the first item of 
the reader's detected card list *)
    bAcceptConfCard    :BOOL := TRUE;    (* a read command also accept configuration cards to config
ure the RFID Reader *)
END_STRUCT
END_TYPE

Multiple RFID readers on the same RS485 network
The TwinCAT RFID library does not support multiple RFID readers on the same RS485 network for
the time being. A separate connection must be made to a separate terminal for each RFID reader.
In this stand-alone mode, individual addressing with iSrcAddrSnd and iDstAddrSnd is not
necessary. Addressing can therefore be handled automatically by the TwinCAT RFID library, for
which the input variable bAddrAutoMode can be left as TRUE.



PLC API

TF6600 45Version: 1.3.1

All manufacturers

Name Description
tPreSendDelay Before sending a command to the RFID reader, the function block waits until the

time specified by tPreSendDelay has elapsed.
tPostSendDelay After sending a command to the RFID reader, the function block waits until at

least the time specified by tPostSendDelay has elapsed.
If the expected response has not arrived yet, the function block continues to wait
for the response until the specified timeout time tTimeOut has elapsed at the
latest.

iSrcAddrSnd Source address in the case of RS485 communication. This address is used if
bAddrAutoMode is not set.

iDstAddrSnd Destination address in the case of the RS485 communication. This address is
used if bAddrAutoMode is not set.

bAddrAutoMode Option in the case of RS485 communication. If bAddrAutoMode is enabled
[default: TRUE], the RS485 addresses are assigned automatically. The
addresses given above are not used. If bAddrAutoMode is disabled (FALSE), the
addresses specified above are used.

bLogging An additional output can be activated with bLogging. The serial communication
can thus be reconstructed with the aid of Log View Messages. These messages
can be viewed in the Windows Event Viewer as well as in the TwinCAT System
Manager. This is useful for testing and analysis purposes. The format of the
output is not specified, in order to facilitate extensions.

The first time the function block is called with bLogging = TRUE, the output
"Logging initialized" is generated. No communication data is monitored in this first
cycle.

pRawDataCommand The regular function block of the TwinCAT RFID library can also be used for low-
level communication. In this case, raw data can be sent directly to the
RFID reader. The raw data to be sent (e.g. as a byte array) must be specified in
this input variable. This is a pointer to the raw data to be sent. The library function
block accesses this address in read-only mode.
Further information on the process of low-level communication is summarized in
section Low-level communication [} 40]. Both the transmitted and the received
raw data can be viewed at any time at the output by means of the structure
ST_RFID_RawData [} 43].

iRawDataCommandLen The input variable iRawDataCommandLen specifies the length in bytes of the raw
data specified by the pointer pRawDataCommand.

Balluff

Name Description
iHeadNumber If an RFID reader with several read heads is addressed, the read head is

specified in the input variable iHeadNumber.
iDCType If Balluff readers are used via iDCType, the block size of the chip memory

(0→64bytes, 1→32bytes) can be specified.



PLC API

TF660046 Version: 1.3.1

Baltech

Name Description
iVHLFileID Write and read commands are executed with the VHL file selected here. This

must be stored in the configuration of the RFID device. If iVHLFileID has the
value 0xFF [default], the RFID reader will not take a normal VHL file from its
configuration, but a simple ad-hoc file, which can be selected so that non-
configured/unencrypted blank cards can be used.

iCardTypeMask The iCardTypeMask can be used to set specific transponder card families. Only
the set card types are recognized with the command GetInventory. All other card
types are filtered out. If all card types are to be recognized, this value does not
have to be changed [default: 0xFFFF]. For each accepted card family, the
respective bit is set in the iCardTypeMask.

bReselect If bReselect is set [default: TRUE], a transponder is specified at the output for
each query with the GetInventory [} 23] command, provided a transponder is in
the HF field. If it is ensured that there is only one card before the RFID reader at a
time, this setting should be retained. If there is more than one transponder card in
the HF field, the RFID device contains a list of detected cards. To be able to
select all transponders with the command GetInventory, bReselect should be
switched off [FALSE]. The command GetInventory then goes through this list
through multiple sequential calls. After the last card has been selected, the
feedback eRFR_NoTransponder follows. The GetInventory command does not
return the transponder and its serial number to the output again until a card is
removed from the HF field and inserted again.

bAcceptConfCard If bAcceptConfCard is set [default: TRUE], configuration cards are also
recognized with the command GetInventory. An attempt is made automatically to
transfer the configuration on these cards to the RFID reader. This parameter can
be disabled to prevent influencing by other configuration cards.

Leuze

Name Description
sSelTranspSRN The serial number of the transponder to which the command (e.g. read/write) is to

be applied can be specified as a string on the input variable sSelTranspSRN. The
data type is T_RFID_TranspSRN [} 66].
This is not necessary in most cases. If a certain reader configuration makes this
necessary, details for this are to be found in the relevant description in the
proprietary specification.



PLC API

TF6600 47Version: 1.3.1

Pepperl+Fuchs

Name Description
iHeadNumber If an RFID reader with several read heads is addressed, the read head is

specified in the input variable iHeadNumber. iHeadNumber is also referred to as
IdentChannel.

iDCType With this variable and the command ChangeDCType [} 25] the transponder type
can be set on the read head of Pepperl+Fuchs readers. Possible values for this
are listed in the proprietary protocol under the ChangeTag command. (They do
not match the values of the enumeration E_RFID_TranspType.)
Extract of supported transponder types:

bBufferedCmd Most commands are processed once immediately after the call. Depending on the
RFID reader, commands can be present continuously. This enables, among other
things, a read process as soon as the RFID transponder enters the reading field,
without sending an extra command. This can either be configured in the RFID
reader configuration (Balluff, Deister, Leuze) or selected with this input variable
(Pepperl+Fuchs).
If such a buffered command is active on a read head, the trigger mode may
neither be active nor activated for this channel! Similarly, no raw data command
may be transmitted that concerns this channel!

Delay times

The two variables tPreSendDelay and tPostSendDelay offer the option to parameterize delay times. Both
variables ensure that a delay is awaited between two requests to the RFID reader.

If the delay time is specified as tPreSendDelay, a delay between the last response telegram and the next
request telegram is ensured. If the request telegram is to be sent as directly as possible, tPostSendDelay
can be used.

The condition tTimeOut > tPreSendDelay + tPostSendDelay applies. Otherwise an error is generated at the
output.

A minimum delay time of 300 ms between two commands is specified in the proprietary protocol of the
Balluff RFID reader.

A minimum delay time of 150 ms between reception and command is specified in the proprietary protocol of
the Leuze electronic RFID reader.



PLC API

TF660048 Version: 1.3.1

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.5 ST_RFID_ConfigIn
At the input of the RFID function block, this structure provides the possibility to transfer an arbitrary
configuration to the RFID reader.

The RFID reader configuration last read is specified at the output with the structure ST_RFID_Config [} 49].
Supplementary information about configurations can be found in its description.

Configuration data can be available in the form of a specific configuration structure
(ST_RFID_CfgStruct_DeisterUDL, ST_RFID_CfgStruct_LeuzeRFM,…) or also in the form of a configuration
register (byte array). This selection can be made with the variable bUseCfgReg.
(* defines the configuration input parameters.
The data can be set via Config structure or Config register.
Different RFID Reader in different ReaderGroups can differ in their configuration data. *)
TYPE ST_RFID_ConfigIn :
STRUCT
    pCfg           : POINTER TO BYTE; (* pointer to config structure or register *)
    iCfgSize       : UINT := 0;      (* size in bytes of the structure or register *)

    bUseCfgReg     : BOOL := FALSE;  (* Set Config via Register instead of CfgStructure *)
    bUseCfgDefault : BOOL := TRUE;   (* Set Config using default parameters beside CfgStructure *)

    (* An additional option to demand/
set a specific config parameter without transmission of the whole config register.
    Not possible at all reader models.
    Set a desired value before calling GetConfig/
SetConfig or keep the default for full register request. *)
    iRegIdx   : UINT := 0;
    iRegGroup : USINT := 0;     (* 0:full register; 1:reg.00-0F; 2:single register *)

    bReserved : BOOL;
END_STRUCT
END_TYPE

Baltech

Name Description
pCfg This pointer must contain the memory address of the configuration to be written. This is

the configuration structure ST_RFID_CfgStruct_BaltechMifVHLFile.
iCfgSize This input variable indicates the length in bytes of the configuration data specified via

the pointer.



PLC API

TF6600 49Version: 1.3.1

Deister

Name Description
pCfg This pointer must contain the memory address of the configuration to be written. This

can be both a configuration structure and a configuration register.
iCfgSize This input variable indicates the length in bytes of the configuration data specified via

the pointer.
bUseCfgReg If the input variable bUseCfgReg is set (TRUE), then a configuration register (byte

array) can be addressed via the pointer pCfg instead of a configuration structure. By
default a specific configuration structure is specified.

bUseCfgDefault This parameter is relevant only if the configuration data is present in the form of a
specific configuration structure. A configuration structure is not specifically an overall
representation of the configuration register. The structure contains only the most
important configuration parameters. If the input variable bUseCfgDefault is set (TRUE),
then default values are used for the unspecified configuration parameters. Otherwise
the value of this configuration parameter is not changed, because the last read values
are reused.

Leuze

Name Description
pCfg This pointer must contain the memory address of the configuration to be written. This

can be both a configuration structure and a configuration register.
iCfgSize This input variable indicates the length in bytes of the configuration data specified via

the pointer.
bUseCfgReg If the input variable bUseCfgReg is set (TRUE), then a configuration register (byte

array) can be addressed via the pointer pCfg instead of a configuration structure. By
default a specific configuration structure is specified.

bUseCfgDefault This parameter is relevant only if the configuration data is present in the form of a
specific configuration structure. A configuration structure is not specifically an overall
representation of the configuration register. The structure contains only the most
important configuration parameters. If the input variable bUseCfgDefault is set (TRUE),
then default values are used for the unspecified configuration parameters. Otherwise
the value of this configuration parameter is not changed, because the last read values
are reused.

iRegIdx If a special index is specified on iRegIdx, then exclusively this index of the configuration
register is changed/read. To this end, iRegGroup must additionally be specified as
"SingleRegister".
This configuration variant is only available for Leuze electronic RFID readers.

iRegGroup Three values are available: 0 to change/read the entire configuration register; 1 to
change/read the indices 16#00-16#0F of the register; 2 to change/read an individual
index of the register, whereby this must be specified with iRegIdx.
This configuration variant is only available for Leuze electronic RFID readers.

Further information on RFID reader configuration is summarized in section Configuration [} 39].

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.6 ST_RFID_Config
The structure indicates the RFID reader configuration that was last read. This is not the parameterization of
the TwinCAT RFID library but the proprietary configuration of the RFID reader. This can be queried with the
eRFC_GetConfig command (see RFID command set [} 21]).



PLC API

TF660050 Version: 1.3.1

Each configuration can be seen as a register (byte array) or as a structure. Hence, there are various
configuration structures in the TwinCAT RFID library (ST_RFID_CfgStruct_DeisterUDL,
ST_RFID_CfgStruct_LeuzeRFM,…), which process the raw data from the configuration registers of different
RFID readers. Both variants are made available at the output of the library function block. This takes place
via pointers. For further evaluation, the MEMCPY () function can be used with the specified data length in
bytes.
(* defines the configuration as structure and register.
Different RFID Reader in different ReaderGroups can differ in their configuration data. *)
TYPE ST_RFID_Config :
STRUCT
    pCfgStruct     : POINTER TO BYTE;    (* pointer to config structure *)
    pCfgReg        : POINTER TO BYTE;    (* pointer to config register *)
    iCfgStructSize : UINT := 0; (* size in bytes of the structure *)
    iCfgRegSize    : UINT := 0; (* size in bytes of the register *)
END_STRUCT
END_TYPE

Name Description
pCfgStruct This pointer indicates the memory address of the specific configuration structure.
pCfgReg This pointer indicates the memory address of the specific configuration register.
iCfgStructSize This output variable indicates the length in bytes of the specific configuration structure.
iCfgRegSize This output variable indicates the length in bytes of the specific configuration register. If

iCfgRegSize = 0, the configuration data is not available as a register (byte array).

Further information on RFID reader configuration is summarized in section Configuration [} 39].

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.7 ST_RFID_AccessData
If a read or write command is to be executed, it is necessary to specify the input structure stAccessData.

This structure specifies how many and which data should be read and where these should be stored, or how
many and which data are to be written.
TYPE ST_RFID_AccessData :
STRUCT
    (* access specific parameters *)
    pData       : POINTER TO BYTE; (* pointer to write data or free space for read data *)
    iDataSize   : UINT;     (* length of data buffer in Bytes *)
    iStartBlock : UINT;     (* attend that the UserDataStartBlock which is not obligatory 0 is added
 automatically. *)
    iBlockCount : UINT;     (* condition: Blockcount*Blocksize=Datasize *)
    iBlockSize  : UINT := 1; (* in Bytes *)

    iUserDataStartBlock : UINT := 0; (* depending on the transponder type its user data memory start
s with block index 0 or higher *)
    (* The upper parameter iStartBlock depends on the iUserDataStartBlock. The used StartBlock is iS
tartBlock+iUserDataStartBlock. *)
    (* Different RFID Readers can differ in their interpretation of the first block. *)
    iReserved : UINT;
END_STRUCT
END_TYPE



PLC API

TF6600 51Version: 1.3.1

Name Description
pData The pointer pData points to the data to be written or to the free memory location for

the data to be read.
iDataSize Specifies the size of the data in bytes to be written/read.
iStartBlock Specifies the first block index from which data is to be read from or written to the

transponder memory. However, different RFID reader models sometimes interpret
this index differently.
Example: Upon a read command with start index 0, reader A returns the first block of
user data and reader B the serial number.

iBlockCount Specifies the number of blocks that are to be read or written.
iBlockSize The block size of the user data (in bytes) can be specified by the variable iBlockSize.

Depending on the transponder and the RFID reader model, only certain settings are
possible here (e.g. 8, 4 or 1 byte is common). This should be ascertained in advance
from the transponder information and tested. The variable iBlockSize is similarly to
be selected in correspondence with the setting in the RFID reader configuration.
Otherwise it is sometimes possible that access to the transponder or the evaluation
of the received data cannot take place.

iUserDataStartBlock With the variable iUserDataStartBlock the start block (as index of blocks) of the user
data can optionally be specified on the transponder. Note the block size (iBlockSize).
Depending on the transponder, its first blocks can be reserved for system data, such
as the serial number. The user data area can accordingly begin at index 0 or also at
a higher value. If this is the case, the variable iUserDataStartBlock can be used to
specify this additional parameter and to leave the actual index iStartBlock as it is.
Both values are added together internally.

Access by different RFID readers to the same transponder
If different RFID readers are to access the same transponder, then access to the transponder
memory must be tested in advance. It is possible that a reader model stores the data blocks on the
transponder in a rotated byte order compared to another reader model. Or a reader model sees the
entire memory area in reverse order compared to another reader model. The readable memory size
of the transponder can also vary slightly between different reader models. This depends additionally
on the transponder type. The TwinCAT RFID library has no influence on this. The user must select
the above input parameters accordingly.

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.8 Configuration data

6.2.1.8.1 ST_RFID_CfgStruct_BaltechMifVHLFile

The structure is suitable for writing with the eRFC_SetConfig command (see RFID command set [} 21]).

This is not the parameterization of the TwinCAT RFID library but the proprietary configuration of the
RFID reader.
TYPE ST_RFID_CfgStruct_BaltechMifVHLFile :
STRUCT
    iVHLFile        : USINT := 1;         (* nr. of VHL file to configure *)
    iNrOfKeys       : USINT(1..8) := 1;
    iNrOfSectors    : USINT(1..56) := 16;     (* default: 16 sectors -
> 1024 bytes mifare card with 752 bytes user data *)
    iRC500EEPOffset : USINT := 16#FF;
    arrKeyList      : ARRAY [0..7] OF T_RFID_MifareKey; (* up to 8 keys, 6 byte each *)
    arrSectorList   : ARRAY [0..55] OF BYTE        (* up to 56 sectors accessible *)
                := 0,1,2,3,4,5,6,7,8,9,10, (* default: 16 sectors -
> 1024 bytes mifare card with 752 bytes user data *)
                11,12,13,14,15,16,17,18,19,20,
                21,22,23,24,25,26,27,28,29,30,
                31,32,33,34,35,36,37,38,39,40,



PLC API

TF660052 Version: 1.3.1

                41,42,43,44,45,46,47,48,49,50,
                51,52,53,54,55;
    arrRdKeyAssign  : ARRAY [0..55] OF BYTE;        (* Key index for each sector *)
    arrWrKeyAssign  : ARRAY [0..55] OF BYTE;        (* Key index for each sector *)
    bMAD_Mode : BOOL := FALSE;         (* use MAD AID [default = FALSE] *)
    iMAD_AID  : USINT;
    iReserved : INT;
END_STRUCT
END_TYPE

Structure of a Mifare card (up to 2 kB memory):

A Mifare card with 1 kB memory has 16 sectors with 64 bytes each. Each sector has 4 blocks. Sector 0
consists of blocks 0-3, sector 1 consists of block 4-7, and the following sectors are formed accordingly. In the
diagram each column represents a sector, while a box represents a 16-byte block.

Only the blocks shown in white contain memory areas that can be used by the user. The maximum size of
the user data is therefore 752 bytes (47 x 16 byte) for a 1024-byte Mifare card.



PLC API

TF6600 53Version: 1.3.1

Name Description
iVHLFile iVHLFile is used to specify the number of the VHL file to be configured. The

configuration of the RFID device can contain several VHL files side by side.
iNrOfKeys iNrOfKeys is used to specify the required number of keys. 1 to 8 keys can be defined.
iNrOfSectors iNrOfSectors is used to specify the number of sectors to be used for user data. A 1 KB

Mifare card has 16 sectors [default: 16].
Example: If only sectors 4-6 are to be used, iNrOfSectors = 3 is specified.

iRC500EEPOffset This parameter refers to the internal transfer of the keys within the hardware of the
RFID device. The default setting [16#FF] offers enhanced security. It is recommended
to leave this setting unchanged.

arrKeyList All keys are stored in the array arrKeyList. A key is of type T_RFID_MifareKey and
consists of 6 bytes.
Example: If two keys are to be used, they are stored in arrKeyList[0] and arrLeyList[1].
TYPE T_RFID_MifareKey :
    ARRAY[0..5] OF BYTE;
END_TYPE

arrSectorList In array arrSectorList all sectors are stored that are to be used for user data.
Example: If only sectors 4-6 used, the following specification is used:
arrSectorList[0]=4, arrSectorList[1]=5, arrSectorList[2]=6.
The array is already initialized with consecutive numbering. In most cases no change
is required.

arrRdKeyAssign In the array arrRdKeyAssign the key index for each used sector is stored.
Example: For a 1 kB Mifare card all sectors should be used (iNrOfSectors = 16). Two
keys are used (iNrOfKeys = 2) The first half of the sectors on this card should be read
with the first key (arrKeyList[0]), the second half with the second key (arrKeyList[1]). In
the array arrRdKeyAssign the indices
stCfg : ST_RFID_CfgStruct_BaltechMifVHLFile := (arrRdKeyAssign:=0,0,0,0,0,0,0,0,1,
1,1,1,1,1,1,1); should therefore be stored.
If a single key is to be used for all sectors, the key index is 0 for all sectors. The array
is already initialized with 0. In this case no change is required.

arrWrKeyAssign In the array arrWrKeyAssign the key index for each used sector is stored.
Example: For a 1 kB Mifare card all sectors should be used (iNrOfSectors = 16). Two
keys are used (iNrOfKeys = 2) The first half of the sectors on this card should be
written with the first key (arrKeyList[0]), the second half with the second key
(arrKeyList[1]). In the array arrWrKeyAssign the indices
stCfg:ST_RFID_CfgStruct_BaltechMifVHLFile:=(arrWrKeyAssign:=0,0,0,0,0,0,0,0,1,1,
1,1,1,1,1,1); should therefore be stored.
If a single key is to be used for all sectors, the key index is 0 for all sectors. The array
is already initialized with 0. In this case no change is required.

bMAD_Mode If MAD (Mifare Application Directory) with AIDs (Application Identifiers) is to be used
instead of the sector allocation, bMAD_Mode must be set (TRUE). The sector
allocation is used as standard [default = FALSE].

iMAD_AID The input is only required if MAD (Mifare Application Directory) is used (bMAD_Mode
= TRUE). At the configuration input iMAD_AID the MAD AID (Application Identifier) for
the VHL file is specified.

Further information on the RFID reader configuration process is summarized in section Configuration [} 39].

Detailed information on the VHL file and the configuration of Baltech RFID devices can also be found in the
manufacturer's documentation Mifare.pdf and ConfigurationValues.pdf in the Baltech SDK.

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID



PLC API

TF660054 Version: 1.3.1

6.2.1.8.2 ST_RFID_CfgStruct_DeisterRDL

The structure is suitable for writing with eRFC_SetConfig and reading with eRFC_GetConfig (see RFID
command set [} 21]).

This is not the parameterization of the TwinCAT RFID library but the proprietary configuration of the
RFID reader.
TYPE ST_RFID_CfgStruct_DeisterRDL :
STRUCT
    eOpMode      : E_RFID_OpMode := eRFOP_ReadData;
    eTriggerMode : E_RFID_TriggerMode := eRFTR_ImmediateRead;
    eReadMode    : E_RFID_ReadMode := eRFRD_SingleShot;
    eWriteMode   : E_RFID_WriteMode := eRFWR_ImmediateWrite;

    eNetworkMode : E_RFID_NetworkMode := eRFNM_StandAlone;
    bAFI : BOOL := FALSE;     (* not implemented; ready for future extention *)
    iAFI : BYTE;             (* not implemented; ready for future extention *)

    bSerialNumberMode : BOOL := FALSE;
    bMultiTranspMode  : BOOL := FALSE;
    bOutputAutomatic  : BOOL := TRUE;
    iBlockSize        : USINT := 8;

    tOutputPulseTime : TIME := T#300ms;

    eTranspType : E_RFID_TranspType := eRFTT_TagItHfi;

    iCountBlocksRead  : USINT := 1;
    iCountBlocksWrite : USINT := 1;

    iStartBlockRead  : UINT := 16#4000;
    iStartBlockWrite : UINT := 5;
    arrWriteData     : ARRAY [0..71] OF BYTE;
END_STRUCT
END_TYPE



PLC API

TF6600 55Version: 1.3.1

Name Description
eOpMode This operating mode defines which function is triggered by a trigger pulse. The

command eRFC_TriggerOn or a pulse at the optional trigger input triggers the action
set here.
If eRFOP_WriteData is set, a write access is executed.
If eRFOP_ReadData is set, a read access is executed [default].
The response telegram that follows is received by the function block of the RFID
library. There is no assignment of read transponder data in this case. The received
raw data can be taken from the function block interface for further processing.
TYPE E_RFID_OpMode : (
    eRFOP_WriteData,
    eRFOP_ReadData,
    eRFOP_ReadSerialNumber
);END_TYPE

eTriggerMode If eRFTR_ImmediateRead is set, the device is always ready to read. With this
setting, the trigger condition is always considered met [default].
if eRFTR_ReadWithTrigger is set, the device only reads if the trigger condition is
met. The eRFC_TriggerOn command can be used for this (see RFID command set
[} 21])
The subsequent response telegram is received by the function block of the TwinCAT
RFID library. There is no assignment of read transponder data in this case. The
received raw data can be taken from the function block interface for further
processing.
TYPE E_RFID_TriggerMode : (
    eRFTR_ImmediateRead,
    eRFTR_ReadWithTrigger
);END_TYPE

eReadMode If eRFRD_ContinuousRead is set, the device reads continuously and continuously
outputs read data. 
If eRFRD_SingleShot is set, the device reads precisely once [default].
TYPE E_RFID_ReadMode : (
    eRFRD_ContinuousRead,
    eRFRD_SingleShot
);END_TYPE

eWriteMode If eRFWR_ImmediateWrite is set, the transponder must be in the field in order to
execute a write or read command correctly [default].
If eRFWR_WriteToNextTag is set, the data from a write command is written to the
next transponder. ("Preload")
TYPE E_RFID_WriteMode : (
    eRFWR_ImmediateWrite,
    eRFWR_WriteToNextTag
);END_TYPE

eNetworkMode If eRFNM_Network is set, several devices can be integrated in an RS485 network.
If eRFNM_StandAlone is set, the device is in stand-alone mode [default].
The library does not support the operation of several devices within an RS485
network.
TYPE E_RFID_NetworkMode :(
    eRFNM_Network,
    eRFNM_StandAlone
);END_TYPE

bSerialNumberMode If bSerialNumberMode is TRUE, the serial number is transferred with write and read
commands.
By default, this corresponds to the last transponder serial number detected with the
GetInventory [} 23] command. Otherwise, the transponder serial number is specified
in ST_RFID_Control [} 44].

bMultiTranspMode If bMultiTranspMode is TRUE, anti-collision is active when several transponders are
in the field.

bOutputAutomatic If bOutputAutomatic is TRUE, the switching output is switched automatically.



PLC API

TF660056 Version: 1.3.1

Name Description
iBlockSize The block size can be set to 4 or 8 bytes. It must match the block size used for

reading and writing in ST_RFID_AccessData [} 50].
tOutputPulseTime tOutputPulseTime is used to configure the action time of the output. The pulse

duration of the optional output signal can be set between 30 ms and 9000 ms.
eTranspType If the RFID device is to detect only transponders of a certain type, this can be set

with eTranspType. The value 16#FE is used for unlimited options.

The following values are possible (E_RFID_TranspType [} 65]):
eRFTT_ICode
eRFTT_STmLRI512
eRFTT_TagIt
eRFTT_ICodeSli
eRFTT_InfineonSRF55
eRFTT_Inside
eRFTT_TagItHfi

iCountBlocksRead iCountBlocksRead is used to configure the number of blocks that are to be read
automatically. The product with iBlockSize provides the number of bytes. The
maximum number of blocks is between 4 and 9, depending on the block size and
other settings.

iCountBlocksWrite iCountBlocksWrite is used to configure the number of blocks that are to be written
automatically. The product with iBlockSize provides the number of bytes. The
maximum number of blocks is between 4 and 9, depending on the block size and
other settings.

iStartBlockRead iStartBlockRead is used to configure the start address for automatic reading.
iStartBlockWrite iStartBlockWrite is used to configure the start address for automatic writing.
arrWriteData Write data are limited to a maximum of 72 bytes.

Certain combinations of values are not permitted. The existing dependencies are defined in the proprietary
manufacturer's specification. An attempt to write an invalid configuration will result in error
eRFERR_InvalidCfg, or the RFID device receives an error code.

Further information on the RFID reader configuration process is summarized in section Configuration [} 39].

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.8.3 ST_RFID_CfgStruct_DeisterUDL

The structure is suitable for writing with eRFC_SetConfig and reading with eRFC_GetConfig (see RFID
command set [} 21]).

This is not the parameterization of the TwinCAT RFID library but the proprietary configuration of the
RFID reader.
TYPE ST_RFID_CfgStruct_DeisterUDL :
STRUCT
    ePollingMode : E_RFID_PollingMode := eRFPO_PollingMode; (* CMD: 0x0A OR    Byte 32, Bit 5 *)
    eTriggerMode : E_RFID_TriggerMode := eRFTR_ImmediateRead; (* Byte 15, Bit 1 *)
    eOpMode      : E_RFID_OpMode := eRFOP_ReadSerialNumber; (* Byte 15, Bit 6,7 *)
    eTranspType  : E_RFID_TranspType := eRFTT_EPC1Gen2; (* Byte 33 *)

    tOutputPulseTime  : TIME := T#300ms; (* Byte 38 and 39 *)
    bOutputLevel      : BOOL;         (* TRUE = high; FALSE = low *)

    iReserved : USINT;

    iCountBlocksRead  : USINT := 1;     (* Byte 41 *)
    iCountBlocksWrite : USINT := 1;     (* Byte 43 *)

    iStartBlockRead   : UINT := 0;     (* Byte 40 *)
    iStartBlockWrite  : UINT := 0;     (* Byte 42 *)



PLC API

TF6600 57Version: 1.3.1

    arrWriteData      : ARRAY [0..31] OF BYTE; (* Byte 44 - 75 *)
END_STRUCT
END_TYPE

If applicable, the difference between polling and trigger must be taken into account. In addition it must be
considered in this context that the TriggerMode can nevertheless be present in addition to the PollingMode.



PLC API

TF660058 Version: 1.3.1

Name Description
ePollingMode If eRFPO_PollingMode is set, the RFID device sends data only on request [default].

If eRFPO_ReportMode is set, the RFID device can transfer data automatically at any
time.
TYPE E_RFID_PollingMode :(
    eRFPO_ReportMode,
    eRFPO_PollingMode
);END_TYPE

eTriggerMode If eRFTR_ImmediateRead is set, the device is always ready to read. With this setting,
the trigger condition is always considered met [default].
if eRFTR_ReadWithTrigger is set, the device only reads if the trigger condition is met.
The eRFC_TriggerOn command can be used for this (see RFID command set [} 21]).
The subsequent response telegram is received by the function block of the TwinCAT
RFID library. There is no assignment of read transponder data in this case. The
received raw data can be taken from the function block interface for further
processing.
TYPE E_RFID_TriggerMode : (
    eRFTR_ImmediateRead,
    eRFTR_ReadWithTrigger
);END_TYPE

eOpMode These operating modes are only available with certain transponder types.
If eRFOP_WriteData is set, a write access is executed as soon as a transponder is
detected.
If eRFOP_ReadData is set, a read access is executed as soon as a transponder is
detected.
If eRFOP_ReadSerialNumber is set, no action is executed. The Polling command
returns the serial number [default].
The subsequent response telegram is received by the function block of the TwinCAT
RFID library. There is no assignment of read transponder data in this case. The
received raw data can be taken from the function block interface for further
processing.
TYPE E_RFID_OpMode : (
    eRFOP_WriteData,
    eRFOP_ReadData,
    eRFOP_ReadSerialNumber
);END_TYPE

eTranspType If the RFID device is to detect only transponders of a certain type, this can be set with
eTranspType. The value 16#FE is used for unlimited options.

The following values are possible (E_RFID_TranspType [} 65]):
eRFTT_EPC1Gen1
eRFTT_EPC1Gen2

tOutputPulseTime tOutputPulseTime is used to configure the action time of the output. The pulse
duration of the optional output signal can be set between 30 ms and 9000 ms.

bOutputLevel bOutputLevel is used to influence the control of the optional digital output. After a
successful read operation the output can be set to HighLevel (bOutputLevel = TRUE)
or LowLevel (bOutputLevel = FALSE).

iCountBlocksRead iCountBlocksRead is used to configure the number of blocks that are to be read
automatically. The product with iBlockSize provides the number of bytes. The
maximum number of blocks is between 4 and 9, depending on the block size and
other settings. The block size depends on the transponder type.

iCountBlocksWrite iCountBlocksWrite is used to configure the number of blocks that are to be written
automatically. The product with iBlockSize provides the number of bytes. The
maximum number of blocks is between 4 and 9, depending on the block size and
other settings. The block size depends on the transponder type.

iStartBlockRead iStartBlockRead is used to configure the start address for automatic reading.
iStartBlockWrite iStartBlockWrite is used to configure the start address for automatic writing.
arrWriteData Write data are limited to a maximum of 32 bytes.



PLC API

TF6600 59Version: 1.3.1

Further information on the RFID reader configuration process is summarized in section Configuration [} 39].

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.8.4 ST_RFID_CfgStruct_LeuzeRFM

The structure is suitable for writing with eRFC_SetConfig and reading with eRFC_GetConfig (see RFID
command set [} 21]).

This is not the parameterization of the TwinCAT RFID library but the proprietary configuration of the
RFID reader.
TYPE ST_RFID_CfgStruct_LeuzeRFM :
STRUCT
    eOpMode      : E_RFID_OpMode := eRFOP_ReadData;
    eTriggerMode : E_RFID_TriggerMode := eRFTR_ImmediateRead;
    eReadMode    : E_RFID_ReadMode := eRFRD_SingleShot;
    eWriteMode   : E_RFID_WriteMode := eRFWR_ImmediateWrite;

    eNetworkMode : E_RFID_NetworkMode := eRFNM_Network;
    bAFI : BOOL := FALSE; (* not implemented; ready for future extention *)
    iAFI : BYTE;         (* not implemented; ready for future extention *)

    bSerialNumberMode : BOOL         := FALSE;
    bMultiTranspMode  : BOOL         := FALSE;
    bOutputAutomatic  : BOOL         := TRUE;
    iBlockSize        : USINT         := 8;

    tOutputPulseTime  : TIME         := T#300ms;

    eTranspType       : E_RFID_TranspType := eRFTT_TagItHfi;

    iCountBlocksRead  : USINT         := 1;
    iCountBlocksWrite : USINT         := 1;

    iStartBlockRead   : UINT         := 16#4000;
    iStartBlockWrite  : UINT         := 5;
    arrWriteData      : ARRAY [0..71] OF BYTE;
END_STRUCT
END_TYPE



PLC API

TF660060 Version: 1.3.1

Name Description
eOpMode This operating mode defines which function is triggered by a trigger pulse.

The command eRFC_TriggerOn or a pulse at the optional trigger input triggers the
action set here.
If eRFOP_WriteData is set, a write access is executed.
If eRFOP_ReadData is set, a read access is executed [default].
The subsequent response telegram is received by the function block of the TwinCAT
RFID library. There is no assignment of read transponder data in this case. The
received raw data can be taken from the function block interface for further
processing.
TYPE E_RFID_OpMode : (
    eRFOP_WriteData,
    eRFOP_ReadData,
    eRFOP_ReadSerialNumber
);END_TYPE

eTriggerMode If eRFTR_ImmediateRead is set, the device is always ready to read. With this
setting, the trigger condition is always considered met [default].
if eRFTR_ReadWithTrigger is set, the device only reads if the trigger condition is
met. The eRFC_TriggerOn command can be used for this (see RFID command set
[} 21]).
The subsequent response telegram is received by the function block of the TwinCAT
RFID library. There is no assignment of read transponder data in this case. The
received raw data can be taken from the function block interface for further
processing.
TYPE E_RFID_TriggerMode : (
    eRFTR_ImmediateRead,
    eRFTR_ReadWithTrigger
);END_TYPE

eReadMode If eRFRD_ContinuousRead is set, the device reads continuously and continuously
outputs read data.
If eRFRD_SingleShot is set, the device reads precisely once [default].
TYPE E_RFID_ReadMode : (
    eRFRD_ContinuousRead,
    eRFRD_SingleShot
);END_TYPE

eWriteMode If eRFWR_ImmediateWrite is set, the transponder must be in the field in order to
execute a write or read command correctly [default].
If eRFWR_WriteToNextTag is set, the data from a write command is written to the
next transponder. ("Preload")
TYPE E_RFID_WriteMode : (
    eRFWR_ImmediateWrite,
    eRFWR_WriteToNextTag
);END_TYPE

eNetworkMode If eRFNM_Network is set, several devices can be integrated in an RS485 network
[default].
If eRFNM_StandAlone is set, the device is in stand-alone mode.
The library does not support the operation of several devices within an RS485
network.
TYPE E_RFID_NetworkMode :(
    eRFNM_Network,
    eRFNM_StandAlone
);END_TYPE

bSerialNumberMode If bSerialNumberMode is TRUE, the serial number is transferred with write and read
commands.
By default this is the last transponder serial number detected with the command
GetInventory. Otherwise the transponder serial number is specified in
ST_RFID_Control [} 44].

bMultiTranspMode If bMultiTranspMode is TRUE, anti-collision is active when several transponders are
in the field.



PLC API

TF6600 61Version: 1.3.1

Name Description
bOutputAutomatic If bOutputAutomatic is TRUE, the switching output is switched automatically.
iBlockSize The block size can be set to 4 or 8 bytes.

It must match the block size set for reading and writing in ST_RFID_AccessData [} 50].
tOutputPulseTime tOutputPulseTime is used to configure the action time of the output. The pulse

duration of the optional output signal can be set between 30 ms and 9000 ms.
eTranspType If the RFID device is to detect only transponders of a certain type, this can be set

with eTranspType. The value 16#FE is used for unlimited options.

The following values are possible (E_RFID_TranspType [} 65]):
eRFTT_ICode
eRFTT_STmLRI512
eRFTT_TagIt
eRFTT_ICodeSli
eRFTT_InfineonSRF55
eRFTT_Inside
eRFTT_TagItHfi

iCountBlocksRead iCountBlocksRead is used to configure the number of blocks that are to be read
automatically. The product with iBlockSize provides the number of bytes. The
maximum number of blocks is between 4 and 9, depending on the block size and
other settings.

iCountBlocksWrite iCountBlocksWrite is used to configure the number of blocks that are to be written
automatically. The product with iBlockSize provides the number of bytes. The
maximum number of blocks is between 4 and 9, depending on the block size and
other settings.

iStartBlockRead iStartBlockRead is used to configure the start address for automatic reading.
iStartBlockWrite iStartBlockWrite is used to configure the start address for automatic writing.
arrWriteData Write data are limited to a maximum of 72 bytes.

Certain combinations of values are not permitted. The existing dependencies are defined in the proprietary
manufacturer's specification. An attempt to write an invalid configuration will result in error
eRFERR_InvalidCfg, or the RFID device receives an error code.

Further information on the RFID reader configuration process is summarized in section Configuration [} 39].

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.1.8.5 ST_RFID_CfgStruct_PepperlFuchsIDENT

The structure is suitable for reading with eRFC_GetConfig (see RFID command set [} 21]). This is not the
parameterization of the TwinCAT RFID library but the proprietary configuration of the RFID reader.
TYPE ST_RFID_CfgStruct_PepperlFuchsIDENT :
STRUCT
    tTimeout       :TIME;
    iBaudrate      :UINT;
    iIdentChannel  :USINT;
    bMultiplexMode :BOOL;
    arrHeadCfg     :ARRAY [0..3] OF ST_RFID_HeadCfg;
    arrTriggerCfg  :ARRAY [0..1] OF ST_RFID_TriggerCfg;
END_STRUCT
END_TYPE

The Ident Control Compact device from Pepper+Fuchs consists of a central unit and 1-4 write/read heads.
Each of these five elements has an ID channel (Ident Channel) that can be used for assigning commands to
individual elements. In the standard case the central unit is assigned channel 0 and the write/read heads
channels 1-4.



PLC API

TF660062 Version: 1.3.1

The command eRFC_GetConfig together with the data at output stReaderCfg can be used to check the
settings for all ID channels.

Name Description
tTimeout tTimeOut specifies the duration for which the RFID device waits for further telegram

data. An error message is issued if the device has not detected a comprehensible
command after this time. (The default is 0 ms)

iBaudrate iBaudrate is used to display the current baud rate of the RFID device. The supported
RFID devices have a maximum transfer rate of 38400 baud.

iIdentChannel ID channel of the central unit
bMultiplexMode In multiplex mode interference between the write/read heads is minimized, since only

one head is active at any time.
arrHeadCfg Devices with up to four write/read heads are available. Each head has a status and a

DataCarrierType. For each head this information is stored in a structure of type
ST_RFID_HeadCfg.
The status of the central unit is output in iErrCodeRcv directly at the output of
FB_RFIDReader [} 34].

Possible values for iDCType are explained in ST_RFID_Control [} 44].
TYPE ST_RFID_HeadCfg :
STRUCT
    eStatus :E_RFID_ErrCodeRcv_PepperlFuchs;
    iDCType :USINT; (* not equal to E_RFID_TranspType enumeration *)
     iReserved :USINT;
END_STRUCT
END_TYPE

arrTriggerCfg Devices with up to four write/read heads are available. Each head has an iIdentChannel
and a bTriggerMode. For each trigger sensor this information is stored in a structure of
type ST_RFID_TriggerCfg. iIdentChannel indicates the write/read head for which the
trigger sensor is configured.
If iTriggerMode is TRUE, the trigger mode is active for a trigger sensor.
If bInverted is TRUE, it is an inverted trigger signal.

For more information on the trigger mode, see section Pepperl-Fuchs [} 31]
TYPE ST_RFID_TriggerCfg :
STRUCT
    iIdentChannel :USINT;
    bTriggerMode :BOOL;
    bInverted :BOOL;
    bReserved :BOOL;
END_STRUCT
END_TYPE

Further information on the RFID reader configuration process is summarized in section Configuration [} 39].

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.2 Enumerations

6.2.2.1 E_RFID_Command
TYPE E_RFID_Command : (
    eRFC_Unknown     := 0,
    eRFC_GetReaderVersion,
    eRFC_GetConfig,
    eRFC_SetConfig,
    eRFC_GetInventory,
    eRFC_Polling,
    eRFC_TriggerOn,
    eRFC_TriggerOff,
    eRFC_AbortCommand,



PLC API

TF6600 63Version: 1.3.1

    eRFC_ResetReader,
    eRFC_ReadBlock,
    eRFC_WriteBlock,
    eRFC_OutputOn,
    eRFC_OutputOff,
    eRFC_FieldOn,
    eRFC_FieldOff,
    eRFC_SendRawData,
    eRFC_ChangeDCType,
END_TYPE

The function block FB_RFIDReader [} 34] of the TwinCAT PLC RFID library offers the enumeration values
displayed in the code area at the eCommand input. This is a selection of commands, such as writing to or
reading a transponder. See section RFID command set [} 21] for a detailed explanation of the commands.

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.2.2 E_RFID_Response
TYPE E_RFID_Response : (
    eRFR_NoRsp,
    eRFR_Unknown,
    eRFR_Ready,
    eRFR_CmdConfirmation,
    eRFR_CfgChangeExecuted,
    eRFR_WriteCmdSucceded,
    eRFR_NoTransponder,
    eRFR_Error,
    eRFR_Data_ReaderVersion,
    eRFR_Data_Config,
    eRFR_Data_Inventory,
    eRFR_Data_ReadData,
);
END_TYPE

The function block FB_RFIDReader [} 34] of the TwinCAT PLC RFID library offers the enumeration values
displayed in the code area at the eResponse output. These are partly analogous to the telegram response
types of the manufacturer-specific protocols. Which manufacturer-specific MessageID corresponds to the
response listed here is indicated in italics in the following description. Due to the complexity of the
evaluation, not all equivalents are listed. Detailed information is given if necessary by the raw data
representation ST_RFID_RawData [} 43] at the output of the function block.



PLC API

TF660064 Version: 1.3.1

Value Description
eRFR_NoRsp This value indicates that no response has arrived recently.
eRFR_Unknown This value indicates that the telegram that arrived could not be assigned

to a certain type and was therefore also not evaluated. This is usually
accompanied by an error message (bError = TRUE).

eRFR_Ready Some RFID reader models indicate their operational readiness, e.g. after
a reset, with an extra telegram. In this case eResponse assumes the
value eRFR_Ready.
Equivalent in proprietary protocol:
Leuze: 'S'
Pepperl+Fuchs: Status='2'

eRFR_CmdConfirmation The sent command is confirmed with this response. This can occur with
many commands.
Exceptions are the commands "Changing the configuration" and "Writing
data", because these two commands are followed by special
confirmations, which are represented by the following two enumeration
values.
Equivalent in proprietary protocol:
Leuze: 'Q2', 'Q4'

eRFR_CfgChangeExecuted If the RFID reader configuration has been changed, the RFID reader
sends this telegram in order to confirm the action.
Equivalent in proprietary protocol:
Leuze: 'Q1'

eRFR_WriteCmdSucceded The RFID reader sends this confirmation as soon as data has been
written to the transponder.
Equivalent in proprietary protocol:
Leuze: 'Q5'

eRFR_NoTransponder This response is given if no transponder is in the reading field. This is not
necessarily evaluated as an error, so that the output bError is also not
set.
Equivalent in proprietary protocol:
Leuze: '$18'
Pepperl+Fuchs: Status='5'

eRFR_Error If a telegram has been received that transferred an error code, then
eRFR_Error is output at the eResponse output. The transmitted error
code is specified in the output variable iErrCodeRcv (see RFID error
codes [} 75]).
If eResponse takes the value eRFR_Error, an error is also signaled at
the output of the function block with bError = TRUE.
Equivalent in proprietary protocol: 
Balluff: <NAK>+Failurenumber
Deister: MessageErrorCode>=16#20
Leuze: 'Exx', 'Q0'

eRFR_Data_ReaderVersion An RFID reader is requested by a version query to send model
information. This kind of received data is designated with the value
eRFR_Data_ReaderVersion at the eResponse output.

eRFR_Data_Config A read-out RFID reader configuration is indicated by means of the
enumeration value eRFR_Data_Config.
Equivalent in proprietary protocol:
Leuze: 'G'

eRFR_Data_Inventory This type of telegram is indicated if a transponder has been detected or if
the serial number of a transponder has been read out.

eRFR_Data_ReadData The receipt of read-out data from the transponder memory is indicated
by the value eRFR_Data_ReadData.
Equivalent in proprietary protocol:
Deister: MessageID=16#40 or 16#41



PLC API

TF6600 65Version: 1.3.1

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.2.3 E_RFID_ReaderGroup
TYPE E_RFID_ReaderGroup : (
    eRFRG_Unknown,
    eRFRG_BalluffBIS,
    eRFRG_DeisterBasic,
    eRFRG_DeisterRDL,
    eRFRG_DeisterUDL,
    eRFRG_DeisterVReader,
    eRFRG_LeuzeRFM,
    eRFRG_PepperlFuchsIDENT,
    eRFRG_BaltechIDE
);
END_TYPE

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.2.4 E_RFID_ReaderManufacturer
TYPE E_RFID_ReaderManufacturer : (
    eRFRM_Unknown,
    eRFRM_Balluff,
    eRFRM_Deister,
    eRFRM_Leuze,
    eRFRM_PepperlFuchs,
    eRFRM_Baltech
);
END_TYPE

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.2.5 E_RFID_TranspType
TYPE E_RFID_TranspType : (
    eRFTT_NoTag,
    eRFTT_TypeUnknown,
    eRFTT_ATA5590,
    eRFTT_ATA5590UID,
    eRFTT_EM4022_4222,
    eRFTT_EM4135,
    eRFTT_EPC1Gen1,
    eRFTT_EPC1Gen2,
    eRFTT_FujitsuMB89R118,
    eRFTT_ICode,
    eRFTT_ICodeSli,
    eRFTT_InfineonSLE55,
    eRFTT_InfineonSRF55,     (* also known as Infineon my-d vicinity *)
    eRFTT_Inside,
    eRFTT_ISO180006TypB,
    eRFTT_LegicPrime,
    eRFTT_LegicAdvant,
    eRFTT_MifareClassic,     (* Philips *)
    eRFTT_MifareUltraLight,
    eRFTT_MifareDESFire,
    eRFTT_STmLRI512,
    eRFTT_TagIt,
    eRFTT_TagItHfi,         (* TI *)
    eRFTT_UCodeEPC119,         (* Philips *)



PLC API

TF660066 Version: 1.3.1

    eRFTT_PICOPASS,         (* INSIDE Contactless *)
);
END_TYPE

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.2.3 T_RFID_TranspSRN
(* serial number shown as hex coded string(ascii) *)
TYPE T_RFID_TranspSRN : STRING(iRFID_MAXSRNLENGTH);
END_TYPE

The data type contains an RFID transponder serial number. The serial number of the transponder (often 8
bytes) is specified as a string in hexadecimal format. (iRFID_MAXSRNLENGTH = 51)

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

6.3 Global Constants

6.3.1 Global_version
All libraries have a specific version. This version is shown in the PLC library repository too. A global constant
contains the library version information:
VAR_GLOBAL CONSTANT
    stLibVersion_Tc2_RFID : ST_LibVersion;
END_VAR

To compare the existing version to a required version the function F_CmpLibVersion (defined in Tc2_System
library) is offered.

All other possibilities known from TwinCAT 2 libraries to query a library version are obsolete.



Examples

TF6600 67Version: 1.3.1

7 Examples
The following examples have been developed using different RFID reader models.

Since there are basically hardly any differences in the handling of the RFID reader with the TwinCAT RFID
library, an example developed with another model can also be used for familiarization.

Tutorial

The Tutorial describes how an RFID reader is put into operation. It is a step-by-step procedure, from the
integration of the TwinCAT library through to the detection of the presence of RFID transponders. (See
Tutorial [} 67])

Example 1

This example can be used for different RFID readers (Balluff, Baltech, Deister, Leuze, Pepper+Fuchs).

The example has been tested with the Balluff BIS M 401 and Leuze electronic RFM32 models. In the project,
an RFID reader was connected to a single-channel serial EL6001 (on an EK1100). Other serial terminals can
also be used.

The project can similarly be used for two RFID readers. The sample program is already prepared for two
RFID readers. Only the second linking in the TwinCAT System Manager needs to be carried out. (See
Sample 1 [} 71])

Example 2

This example was developed with a Baltech RFID reader, which is optionally installed in the Beckhoff Control
Panels and Panel PCs. The device is connected to a serial Com port or a USB port.

It can be used for convenient commissioning and testing of the device. The example features a simple
visualization. (See Sample 2 [} 72])

Example 3

This example corresponds to a small application. The application includes detection, reading and writing of a
transponder in an automatic sequence.

The example was created with a Pepperl+Fuchs RFID reader. Both the 2-channel and the 4-channel model
can be used. (See Sample 3 [} 73])

7.1 Tutorial
This tutorial shows how you can commission an RFID reader using the TwinCAT PLC. The tutorial is
conducted with the RFID reader model Balluff BIS M 401. In principle, however, the same procedure can be
adopted for other models.

The following steps are thereby performed:

1. Glossary
2. Installation/libraries
3. Serial connection
4. Function block declaration
5. Function block usage
6. Test

Assumptions:

• You have planned your RFID application in detail and already modeled your application.
• You have determined that a reader supported by the Tc2_RFID library basically meets your

requirements and you can implement your application with the commands offered.



Examples

TF660068 Version: 1.3.1

• You decide to use the TwinCAT RFID library to facilitate communication with your RFID reader.

Download: https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/234213899/.zip

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

7.1.1 Glossary
Term Explanation
CT Carrier type, data carrier type, transponder type
DC Data carrier - RFID transponder (data memory)
HF High Frequency
Label RFID Transponder
LF Low Frequency
RF Radio Frequency
RFID Radio Frequency Identifícation
RFID Reader A RFID reader can be both a purely readable device and a read/

write device.
Smart Label RFID Transponder
SRN Serial Number
Tag RFID Transponder
UHF Ultra High Frequency

See: Installation/libraries [} 68]

7.1.2 Installation/libraries
1. Start the TwinCAT XAE.
2. Create a new TwinCAT project (menu File > command New).
3. Create a new PLC project (context menu of the PLC object in the TwinCAT project tree > command Add

New Item).
4. Select your target platform PC and CX (x86, x64).
5. Add the libraries Tc2_RFID and Tc2_SerialCom to the PLC project (context menu of the Reference

object > command Add library)
ð All required PLC modules for RFID reader communication are available.

See: Serial connection [} 68]

7.1.3 Serial connection
In this example the RFID reader is connected via an EL 6001 serial EtherCAT Terminal.

1. Create a send buffer and a receive buffer (gEL6ComTxBuffer, gEL6ComRxBuffer) of type "ComBuffer".
In addition, you should create two data structures as they are used for serial communication in the
TwinCAT System Manager.
gEL6ComRxBuffer         :ComBuffer;
gEL6ComTxBuffer         :ComBuffer;
EL6ComInData     AT %I* : EL6ComInData;
EL6ComOutData    AT %Q* : EL6ComOutData;

2. Link the structures in the TwinCAT System Manager to the channels of the serial port.
3. For serial communication, create an instance of the SerialLineControl. Call this cyclically in a fast task.

(Mode: Enter the EtherCAT Terminal with 22 bytes of user data as handle.)

https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/234213899.zip


Examples

TF6600 69Version: 1.3.1

LineControl(
    Mode      := SERIALLINEMODE_EL6_22B,
    pComIn    := ADR(EL6ComInData),
    pComOut   := ADR(EL6ComOutData),
    SizeComIn := SIZEOF(EL6ComInData),
    TxBuffer  := gEL6ComTxBuffer,
    RxBuffer  := gEL6ComRxBuffer
);

See: RFID reader connection [} 19] and Function block declaration [} 69]

7.1.4 Function block declaration
The function block FB_RFIDReader is the core of the entire RFID reader communication. The declaration
and initialization of the function block is described below.

1. Create an instance of the function block FB_RFIDReader.
2. Hand over the manufacturer of your RFID model to the instance at the eManufacturer input.

fbRFIDReader : FB_RFIDReader := (eManufacturer := eRFRM_Balluff);
sTranspSerialNumber : STRING;

FB_RFIDReader has 7 inputs (6 in the case of the specific FBs due to the missing manufacturer data), 2
inputs/outputs and 10 outputs. In order to receive messages sent by the RFID reader to the controller, it is
sufficient to call the function block cyclically. The bExecute input must thereby remain FALSE. This is used in
this example in order to implement simple presence detection for the time being.

3. Call the function block as follows:
fbRFIDReader(
    bExecute    := FALSE,

    RxBuffer    := RxBuffer,
    TxBuffer    := TxBuffer,

    bBusy       => ,
    bError      => ,
    iErrorID    => ,
    iErrCodeRcv => 
);
sTranspSerialNumber := fbRFIDReader.stTranspinfo.sSerialNumber;

Now the last read serial number of an RFID transponder is shown in your string variable. For error analysis
the outputs bError and iErrorID etc. should also be evaluated.

See: Using the function block [} 69]

7.1.5 Using the function block
You can achieve a more effective evaluation of the received data with the following instructions:

Declarations:
fbRFIDReader        : FB_RFIDReader := (eManufacturer := eRFRM_Balluff);
sTranspSerialNumber : STRING;

bBusy       : BOOL;
bError      : BOOL;



Examples

TF660070 Version: 1.3.1

iErrorID    : UINT;
iErrCodeRcv : UINT;

stTranspInfo : ST_RFID_TranspInfo;

eErrorID    : E_RFID_ErrID;
eErrCodeRcv : E_RFID_ErrCodeRcv_Balluff;

fbTriggerResponse : R_TRIG;
arrRspRcv         : ARRAY[0..99] OF BYTE;

Program sequence:
fbRFIDReader(
    bExecute    := FALSE,

    RxBuffer    := RxBuffer,
    TxBuffer    := TxBuffer,

    bBusy       => bBusy,
    bError      => bError,
    iErrorID    => iErrorID,
    iErrCodeRcv => iErrCodeRcv
);
(* convert Error Codes *)
eErrorID := UINT_TO_INT(iErrorID);
eErrCodeRcv := UINT_TO_INT(iErrCodeRcv);

fbTriggerResponse(CLK := fbRFIDReader.bResponseRcv);
IF (fbTriggerResponse.Q) THEN
    stTranspInfo := fbRFIDReader.stTranspInfo;
    sTranspSerialNumber := stTranspInfo.sSerialNumber;     (* detected RFID Tag Serial Number *)

    MEMSET(ADR(arrRspRcv), 0 , SIZEOF(arrRspRcv) );
    MEMCPY(ADR(arrRspRcv), fbRFIDReader.stRawData.pReceivedRsp, MIN(fbRFIDReader.stRawData.iReceived
RspLen, SIZEOF(arrRspRcv)) );
END_IF

Received error codes can be represented online as enumeration values by directly assigning the integer
variables iErrorID and iErrCodeRcv.

Using a trigger, additional data is only evaluated when a new message is received.

The string variable sTranspSerialNumber now always returns the serial number of the last detected
transponder. In this case this can also be seen at the function block output
fbRFIDReader.stTranspInfo.sSerialNumber.

Depending on the application, further information can be taken from the outputs of the function block.

In order to display a received message as a complete byte sequence, use the MEMCPY function, for
example, and copy the raw data into your declared byte array.

Each message from your RFID reader is now received and evaluated in the above manner.

See: Test [} 70]

7.1.6 Test
As soon as you have created the program according to the procedure described, activate the current
configuration with the linked variables in the TwinCAT System Manager and set TwinCAT to Run mode. Log
into the controller and start the application.

If you move a transponder in front of your RFID reader, this is detected and the received message as well as
the serial number are adopted in the program code. The values are represented online in the program code
or in an additional visualization.

Device configuration
The Balluff RFID reader must be configured in a way that is suitable for this functionality. The option
Type and serial number with CT pres. must be activated. These and other configuration
parameters are described in more detail in the section Balluff > RFID reader settings [} 26]. Not
every RFID reader supports this setting.



Examples

TF6600 71Version: 1.3.1

Download: https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/234213899/.zip

7.2 Sample 1
This example can be used for different RFID readers (Balluff, Baltech, Deister, Leuze, Pepper+Fuchs).

The example has been tested with the Balluff BIS M 401 and Leuze electronic RFM32 models.

In the project, an RFID reader was connected to a single-channel serial EL6001 (on an EK1100). Other
serial terminals can also be used. When using KL terminals, the call of the Serial Line Control in the program
code must be adapted. (See RFID reader connection [} 19])

The project can similarly be used for two RFID readers. The sample program is already prepared for two
RFID readers. Only the second linking in the TwinCAT System Manager needs to be carried out.

The example project contains the call of the RFID function block with different commands. The most
important commands were implemented in this example. This includes reading from and writing to the RFID
transponder memory.

After starting the program, a suitable RFID reader manufacturer must be selected via the local enumeration
eManufacturer.

The command type can be selected using the local eCommand enumeration. In order to start the call, the
local variable bExecute must be set once to TRUE. After that, the results of the query are shown at the
outputs of the RFID function block. Alternatively, the operation can be take place with the visualization
integrated in the example:

Depending on the RFID reader model, the GetReaderVersion [} 22] and GetConfig [} 22] (if necessary also
SetConfig [} 23]) commands must be executed first, in order to make correct communication with the RFID
reader possible.

https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/234213899.zip


Examples

TF660072 Version: 1.3.1

For further information on the RFID reader communication process, refer to the section Function block
FB_RFIDReader > Handling instructions [} 38].

Download: https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/5252190859/.zip

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

7.3 Sample 2
This example was developed with a Baltech RFID reader, which is optionally installed in the Beckhoff Control
Panels and Panel PCs. The device is connected to a serial Com port or a USB port. It can be used for
convenient commissioning and testing of the device.

If a Baltech RFID reader is used that is connected to a serial Beckhoff terminal instead of to the Com port,
the serial background communication in the PLC code must be changed and reconfigured in the TwinCAT
System Manager. (See RFID reader interfacing [} 19])

The example project contains the call of the RFID function block with different commands. The commands
can be executed using the built-in visualization. The commands GetReaderVersion [} 22], GetInventory
[} 23], ReadBlock [} 24] and WriteBlock [} 24] are implemented. Thus, an RFID transponder can also be
tested and data can be written to and read from it in the form of an ASCII string.

https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/5252190859.zip


Examples

TF6600 73Version: 1.3.1

The RFID reader must first be initialized to enable correct communication with the RFID reader. The button
Init Rfid Reader executes the command GetReaderVersion.

For further information on the RFID reader communication process, refer to the section Function block
FB_RFIDReader > Handling instructions [} 38].

Activating LogView output displays the complete serial transmission in the TwinCAT System Manager
LoggerView.

Download: https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/227370251/.zip or https://
infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/949454859/.zip

Requirements

Development environment Target platform PLC libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID v3.3.6.0

7.4 Sample 3
This example corresponds to a small application. The application includes detection, reading and writing of a
transponder in an automatic sequence.

https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/227370251.zip
https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/949454859.zip
https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/949454859.zip


Examples

TF660074 Version: 1.3.1

The example was created with a Pepperl+Fuchs RFID reader. Both the 2-channel and the 4-channel model
can be used.

In the example, the device is connected directly to the Com port. If a Pepperl+Fuchs RFID reader is used
that is connected to a serial Beckhoff terminal instead of to the Com port, the serial background
communication in the PLC code must be changed and reconfigured in the TwinCAT System Manager. (See
RFID reader interfacing [} 19])

Sequence of the implemented application:

Two read/write heads are connected to the RFID device. Both detect transponders arriving in the field fully
automatically. After detection, a memory block is read out from the transponder's data memory. The 4-byte
value in it is incremented by one by the first read head or decremented by one by the second read head. The
new value is immediately written back to the transponder. This process of detection, reading and writing
takes about half a second in total. There must be an interval of at least three seconds between two such
processes on the same read head in order to avoid unwanted multiple execution. (This can also be solved by
checking the tag serial number.)

The program essentially contains a state machine with 6 states:

0: Initialization - running GetReaderVersion, GetConfig etc.
1: Tag detection on read head 1 - buffered GetInventory
2: Tag detection on read head 2 - buffered GetInventory
3: Waiting for tag detection
4: Action at read head 1 - ReadBlock and WriteBlock
5: Action at read head 2 - ReadBlock and WriteBlock

The data carrier type (iUSEDDCTYPE) should be adapted to the transponder types used.

The example project contains the call of the RFID function block with different commands.

For further information on the RFID reader communication process, refer to the section Function block
FB_RFIDReader > Handling instructions [} 38].

Download: https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/5252195339/.zip

Requirements

Development Environment Target Platform PLC Libraries to include
TC3.1.4013 PC or CX (x86, x64) Tc2_RFID

https://infosys.beckhoff.com/content/1033/tf6600_tc3_rfid/Resources/5252195339.zip


Appendix

TF6600 75Version: 1.3.1

8 Appendix

8.1 RFID error codes
Error outputs are provided at two outputs of the RFID PLC function block. The two output variables iErrorID
[} 75] and iErrCodeRcv [} 77] are described below.

iErrorID

If there is an error, the output variable iErrorID shows the type of error. The following list shows the possible
values.
TYPE E_RFID_ErrID :(
    eRFERR_NoError             := 0,

    (* general errors *)
    eRFERR_TimeOutElapsed     := 16#4001,

    (* invalid input parameters *)
    eRFERR_InvalidCommand        := 16#4101,
    eRFERR_IncompatibleCfg       := 16#4102,
    eRFERR_InvalidManufacturer   := 16#4103,
    eRFERR_InvalidTimeOutParam   := 16#4104,
    eRFERR_InvalidRawDataParam   := 16#4105,
    eRFERR_InvalidAccessData     := 16#4106,
    eRFERR_InvalidCfg            := 16#4107,
    eRFERR_InvalidCfgParam       := 16#4108,
    eRFERR_InvalidCtrlHeadNumber := 16#4109,

    (* error at receive of response *)
    eRFERR_InvalidResponse  := 16#4201,
    eRFERR_InvalidRspLen    := 16#4202,
    eRFERR_InvalidBlocksize := 16#4203,
    eRFERR_ErrorRcv         := 16#4204,
    eRFERR_ChecksumError    := 16#4205,

    (* internal errors *)
    eRFERR_UnknownReaderGroup    := 16#4401,
    eRFERR_CreatedTelegramTooBig := 16#4402,
);
END_TYPE

If iErrorID has the value eRFERR_ErrorRcv, an error code was received from the RFID reader. This received
error code is indicated in the output variable iErrCodeRcv.

If iErrorID has a different value it may nevertheless be the case that an error has additionally been received
from the RFID reader, which is also indicated on iErrCodeRcv.



Appendix

TF660076 Version: 1.3.1

Value ID
(hex)

ID
(dec)

Description

eRFERR_TimeOutElapsed 0x4001 16385 This error occurs if the time period specified as timeout at the
input (default = 5 s) has elapsed. Any action still being
processed will hence be aborted.
A timeout error also occurs if serial background communication
does not work. This may be the case, for example, if an
incorrect baud rate is set or if the task cycle time is not
sufficient to process the data.

See also: RFID reader connection [} 19] and Documentation of
the PLC library serial communication.

eRFERR_InvalidCommand 0x4101 16641 The command has not been executed. The selected command
cannot be executed with this RFID reader model. The available
commands are listed in the instruction set [} 21].
To ensure that the function block knows the existing RFID
reader model, the GetReaderVersion command must be
executed first, if possible.

eRFERR_IncompatibleCfg 0x4102 16642 The command has not been executed. The current RFID
reader configuration (see output structure ST_RFID_Config
[} 49]) is not compatible with the selected command (and the
associated input parameters).
Ensure that the configuration has been read once before.
Otherwise this error code may also occur.

eRFERR_InvalidManufacturer 0x4103 16643 The RFID manufacturer of the RFID reader model must be
specified with the variable eManufacturer at the input of the
generic function block FB_RFIDReader. The error
eRFERR_InvalidManufacturer indicates invalid data.

eRFERR_InvalidTimeOutParam 0x4104 16644 This error is output if the input variable "tTimeOut" is invalid.
The condition tTimeOut > tPreSendDelay + tPostSendDelay
applies.

eRFERR_InvalidRawDataParam 0x4105 16645 If raw data is to be sent, it must be specified at the inbound
channel of the function block. The error
eRFERR_InvalidRawDataParam is output if the specification of
the input variable pRawDataCommand or
iRawDataCommandLen is invalid.

See also: Low-level communication [} 40].
eRFERR_InvalidAccessData 0x4106 16646 The command was not executed because the parameters

specified at the input in the structure ST_RFID_AccessData
[} 50] are invalid.

eRFERR_InvalidCfg 0x4107 16647 The command "Changing the configuration" was not executed
because the specified configuration data are invalid. The
configuration data are present as a configuration structure
(bUseCfgReg = FALSE). In the case of doubt, the exact valid
ranges of values for the data are given in the manufacturer’s
proprietary protocol specification.
If the last read configuration is used for parameters that are not
available in the configuration structure (bUseCfgDefault =
FALSE in ST_RFID_ConfigIn [} 48]), make sure that the
configuration was read first. Otherwise this error code may also
occur.

eRFERR_InvalidCfgParam 0x4108 16648 The command "Changing the configuration" was not executed
because the specified input parameters of the configuration
data are invalid. The configuration data should be present as a
configuration register or a configuration structure. Its length or
another parameter in ST_RFID_ConfigIn [} 48] is invalid.

eRFERR_InvalidCtrlHeadNumber 0x4109 16649 If an RFID reader with several read heads is addressed, the
read head is specified in the input structure ST_RFID_Control
[} 44]. If no read head is available for the specified value, this
error value is output.

eRFERR_InvalidResponse 0x4201 16897 This error is output if the byte sequence of the received
response does not correspond to any known message type or
if the individual bytes do not exhibit the necessary values. The
received data can be analyzed as a raw data block at the
output ST_RFID_RawData [} 43].

eRFERR_InvalidRspLen 0x4202 16898 This error message is generated if the byte sequence
theoretically corresponds to a known message type, but the
length is not as expected. The received data can be analyzed
as a raw data block at the output ST_RFID_RawData [} 43].



Appendix

TF6600 77Version: 1.3.1

Value ID
(hex)

ID
(dec)

Description

eRFERR_InvalidBlocksize 0x4203 16899 If this error value occurs, then the received data read out from
the transponder could not be evaluated. The number of
received bytes indicates that the configured block size does
not correspond to the input at the command call.

eRFERR_ErrorRcv 0x4204 16900 An error code was sent with the received message. The error
displayed by the RFID reader is likewise output and
represented by the output variable iErrCodeRcv (description at
the end of this section).

eRFERR_ChecksumError 0x4205 16901 Depending on the protocol specification a checksum, for
example a CRC checksum, is sent with the telegram. If a
telegram with an incorrect checksum is received by the
controller, then this error is output.

eRFERR_UnknownReaderGroup 0x4401 17409 The RFID library assigns the RFID reader models internally to
groups. The error eRFERR_UnknownReaderGroup can occur
if the RFID reader is not yet assigned to a group. Therefore,
depending on the RFID reader model, the "GetReaderVersion"
command must be executed as the first query when the
program starts.

eRFERR_CreatedTelegramTooBig 0x4402 17410 An attempt was made to send a telegram that exceeded the
maximum size of 300 bytes. Only telegrams with up to 300
bytes can be sent.

In a few cases, the RFID device sends several telegrams directly one after the other. It is therefore
important to always detect and correct the first error that occurred.

iErrCodeRcv

If an error code is sent along by the RFID reader, it is output at the output variable iErrCodeRcv. Sometimes
status messages are sent by the RFID reader and then sent to iErrCodeRcv, which do not lead to an error
(bError remains FALSE and iErrorID shows no error).

A list of possible values can either be found in the data type declarations (E_RFID_ErrCodeRcv_Balluff,
E_RFID_ErrCodeRcv_Deister, E_RFID_ErrCodeRcv_Leuze etc.) of the PLC RFID library via the TwinCAT
XAE library details or directly in the protocol specification.

For further error analysis, reference is made to the logging option. To this end, the input parameter bLogging
is set. See the Parameter description in API [} 44] for details.

8.2 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/


Appendix

TF660078 Version: 1.3.1

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/




Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information: 
www.beckhoff.com/tf6600

mailto:info@beckhoff.de?subject=TF6600
https://www.beckhoff.com
https://www.beckhoff.com/tf6600

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System requirements
	3.2 Installation
	3.3 Licensing

	4 Technical introduction
	4.1 RFID reader hardware
	4.2 RFID reader connection
	4.3 RFID command set

	5 Configuration
	5.1 RFID reader settings and handling
	5.1.1 Balluff
	5.1.2 Baltech
	5.1.3 Deister electronic
	5.1.4 Leuze electronic
	5.1.5 Pepperl-Fuchs


	6 PLC API
	6.1 Function block
	6.1.1 FB_RFIDReader
	6.1.2 Handling instructions
	6.1.3 Configuration
	6.1.4 Low level communication

	6.2 Data types
	6.2.1 Structures
	6.2.1.1 ST_RFID_TranspInfo
	6.2.1.2 ST_RFID_ReaderInfo
	6.2.1.3 ST_RFID_RawData
	6.2.1.4 ST_RFID_Control
	6.2.1.5 ST_RFID_ConfigIn
	6.2.1.6 ST_RFID_Config
	6.2.1.7 ST_RFID_AccessData
	6.2.1.8 Configuration data
	6.2.1.8.1 ST_RFID_CfgStruct_BaltechMifVHLFile
	6.2.1.8.2 ST_RFID_CfgStruct_DeisterRDL
	6.2.1.8.3 ST_RFID_CfgStruct_DeisterUDL
	6.2.1.8.4 ST_RFID_CfgStruct_LeuzeRFM
	6.2.1.8.5 ST_RFID_CfgStruct_PepperlFuchsIDENT


	6.2.2 Enumerations
	6.2.2.1 E_RFID_Command
	6.2.2.2 E_RFID_Response
	6.2.2.3 E_RFID_ReaderGroup
	6.2.2.4 E_RFID_ReaderManufacturer
	6.2.2.5 E_RFID_TranspType

	6.2.3 T_RFID_TranspSRN

	6.3 Global Constants
	6.3.1 Global_version


	7 Examples
	7.1 Tutorial
	7.1.1 Glossary
	7.1.2 Installation/libraries
	7.1.3 Serial connection
	7.1.4 Function block declaration
	7.1.5 Using the function block
	7.1.6 Test

	7.2 Sample 1
	7.3 Sample 2
	7.4 Sample 3

	8 Appendix
	8.1 RFID error codes
	8.2 Support and Service


		documentation@beckhoff.com
	2023-11-22T15:42:39+0100
	Beckhoff Automation, Verl
	Documentation Publishing




