
Manual | EN

TF6281
TwinCAT 3 | Ethernet/IP™ Scanner

2025-04-30 | Version: 1.7.0

Table of contents

TF6281 3Version: 1.7.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 6
1.3 Notes on information security.. 7

2 Overview .. 8

3 Requirements .. 9

4 Licensing ... 10

5 Configuration... 13
5.1 EtherNet/IP™ .. 13
5.2 Sync Task ... 14
5.3 Settings dialog... 14

5.3.1 Firewall setting ... 16
5.3.2 IP Routing .. 17

5.4 Changing EtherNet/IP™ settings .. 17
5.4.1 Object description .. 18
5.4.2 ADS-Write command ... 18
5.4.3 ADS-Read command ... 19
5.4.4 Sample ... 20

5.5 Creating the EtherNet/IP™ adapter in other EtherNet/IP™ scanners .. 20
5.5.1 Sample for Rockwell CPUs .. 22

5.6 Diag History... 23
5.7 Connecting EtherNet/IP™ slaves.. 24
5.8 PLC to PLC communication .. 27

5.8.1 Allen-Bradley-CompactLogix.. 30
5.9 Data Table Read and Write... 35
5.10 Diagnostics.. 41
5.11 Acyclic communication via Explicit Messaging ... 43

5.11.1 Common Industrial Protocol (CIP) ... 43
5.11.2 Forward Message to AMS Port via Explicit Messaging.. 43

6 PLC API .. 51
6.1 Function blocks ... 51

6.1.1 FB_GET_ATTRIBUTE_SINGLE.. 51
6.1.2 FB_SET_ATTRIBUTE_SINGLE .. 53
6.1.3 FB_CUSTOM_SERVICE ... 54
6.1.4 FB_CIP_DATA_TABLE_RDWR .. 56
6.1.5 Error Codes function blocks ... 59

6.2 Functions... 60
6.2.1 RSL5KSTRING_TO_STRING.. 60
6.2.2 STRING_TO_RSL5KSTRING.. 60
6.2.3 F_GET_ETHERNETIP_ERROR_TEXT... 60

6.3 Data types ... 61
6.3.1 RSL5K_STRING .. 61

7 Appendix.. 62

Table of contents

TF62814 Version: 1.7.0

7.1 Prepare Wireshark® recording... 62
7.2 Error Codes TF6281 ... 63
7.3 Support and Service.. 64

Foreword

TF6281 5Version: 1.7.0

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
The documentation and the following notes and explanations must be complied with when installing and
commissioning the components.
The trained specialists must always use the current valid documentation.

The trained specialists must ensure that the application and use of the products described is in line with all
safety requirements, including all relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
Claims to modify products that have already been supplied may not be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS®, and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of the designations or trademarks contained in this publication for their own
purposes, this could infringe upon the rights of the owners of the said designations.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Third-party trademarks

Trademarks of third parties may be used in this documentation. You can find the trademark notices here:
https://www.beckhoff.com/trademarks.

https://www.beckhoff.com/trademarks

Foreword

TF62816 Version: 1.7.0

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF6281 7Version: 1.7.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TF62818 Version: 1.7.0

2 Overview
The function TF6281 is an EtherNet/IP™ scanner or master. Here you can connect EtherNet/IP™ slaves.
TF6281 is a software extension that turns an Ethernet interface with Intel® chipset into an EtherNet/IP™
scanner. The real-time driver for the Ethernet interface must be installed for this purpose. The driver is part of
the TwinCAT system. This driver is pre-installed on Beckhoff IPCs and can be used on almost all hardware
platforms with Intel® Ethernet chipset. If you are using a third-party PC, you may need to check or install it.

TC3 Function: EtherNet/IP™ Scanner TF6281

Technical data TF6281
Requires TC1200 from build 4022.14, without TC1200 it is not possible to use the full functionality

of the function
Target System Windows 10, Windows CE, TwinCAT/BSD
Performance class
(pp)

20 30 40 50 60 70 80 90
– – X X X X X X

Technical data of the EtherNet/IP™ scanner

TF6281 4022.0
Remote Nodes (Boxes) [Producer Object counts 1] 128
Client Connections 128
Server Connections 128
CIP Connections 256
Produced Tag 12
Consumed tag for each EtherNet/IP™ device 12

Ordering information
TF6281-00pp TwinCAT 3 EtherNet/IP™ Scanner

EtherNet/IP™

EtherNet/IP™ (Ethernet Industrial Protocol, EIP) is a real-time Ethernet protocol, which was disclosed and
standardized by the ODVA (Open DeviceNet Vendor Association). This protocol is based on TCP, UDP and
IPv4.

Further information can be found at www.odva.org or https://en.wikipedia.org/wiki/EtherNet/IP.

https://www.beckhoff.com/tc1200
http://www.odva.org/
https://en.wikipedia.org/wiki/EtherNet/IP

Requirements

TF6281 9Version: 1.7.0

3 Requirements
Software

The TF6281 requires TwinCAT Version 3.1from Build 4022.14. No further installation is required.

Hardware

To use the TF6281, a real-time driver for the Ethernet interface must be installed on the target system.
Beckhoff PC systems are usually preconfigured for the operation of EtherNet/IP™ devices.

Licensing

TF628110 Version: 1.7.0

4 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

Licensing

TF6281 11Version: 1.7.0

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.
7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.

Licensing

TF628112 Version: 1.7.0

10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Configuration

TF6281 13Version: 1.7.0

5 Configuration
The following settings are possible for the EtherNet/IP™ scanner:

General:
Name and TwinCAT ID of the device.

Adapter:
Settings for the Ethernet interface used.

EtherNet/IP:
Display of the software version and ADS address of the EtherNet/IP™ scanner.

Sync Task:
Setting which task triggers the EtherNet/IP™ scanner and with which cycle time it is operated.

Settings:
Settings for the IP address and other Ethernet-specific services.

Explicit Msg:
Only necessary for Data Table Read/Write (see chapter Data Table Read and Write [} 35])

Diag History:
All errors or notes relating to the EtherNet/IP™ scanner are logged.

DPRAM (online):
No function for the user.

5.1 EtherNet/IP™
SW Version: Display of the driver version used for the EtherNet/IP™ scanner.

NetId: AMSNETID of the EtherNet/IP™ scanner. This is necessary if the EtherNet/IP-specific function blocks
are required.

Info Data Support: If this option is activated, the AMSNETID is also available in the TwinCAT tree and can
then be linked accordingly.

Configuration

TF628114 Version: 1.7.0

5.2 Sync Task
The Sync Task starts the cyclic call of the EtherNet/IP™ driver. The Sync Time should be as short as
possible, if the processor power allows this. 1 ms is the smallest time base that can be set. It is
recommended to create the Sync Task via a Special Sync Task. If the Sync Task is performed via the
mapping of the PLC, a breakpoint in the PLC also causes the EtherNet/IP™ Task to be stopped, so that the
EtherNet/IP™ devices are no longer addressed. This results in a connection timeout.

Each slave can run with its own cycle time based on the Sync Task. The Cycle Time Multiplier setting is
available on each device for this purpose.See chapter Connection of EtherNet/IP™ slaves [} 24].

5.3 Settings dialog
The Settings dialog is required for settings such as the IP address and other basic settings. It is divided into
two basic settings, which are indicated by the index numbers.
The index 0xF800 contains all the settings that are used when the system is started.
The index 0xF900 contains the settings that are valid in the running system. The actual valid settings are
important if basic settings are not made via the Settings dialog but have been changed via the PLC.

The IP address is a virtual IP address and initially has nothing to do with the IP setting of the operating
system (OS). It is recommended to use a different network class than the one selected in the OS. If the IP
address of the EtherNet/IP™ scanner is still the same as that of the OS, set the value 255.255.255.255
under IP address (0xF800:21). (See also Firewall recommendation [} 16])

Configuration

TF6281 15Version: 1.7.0

Index 0xF800:0 Master Settings
Configuration parameters of the EtherNet/IP™ scanner

Index 0xF800:1 Number
Box Id

Index 0xF800:3 Product Name
Name of the device

Index 0xF800:4 Device Type
Device type

Index 0xF800:5 Vendor ID
Vendor number

Index 0xF800:6 Product Code
Product code

Index 0xF800:7 Revision
Version

Index 0xF800:8 Serial Number
Serial number (see object 0xF900)

Index 0xF800:20 MAC Address
MAC address (see object 0xF900)

Index 0xF800:21 IP Address
Possible values:

• 0: IP address is assigned dynamically by the DHCP service

Configuration

TF628116 Version: 1.7.0

• Otherwise: statically assigned IP address.

Index 0xF800:22 Network Mask
Possible values:

• 0: Subnet mask is assigned dynamically by the DHCP service
• Otherwise: statically assigned subnet mask.

Index 0xF800:23 Gateway Address
Possible values:

• 0: DHCP service is used,
• Otherwise: statically assigned gateway address.

Index 0xF800:24 DHCP Max Retries
Possible values;

• 0: Continuous repetition of DHCP addressing attempts.
• Currently only this mode is implemented, as of: 10-2017

Index 0xF800:25 TCP/IP TTL
"Time to live" value for Unicast TCP/UDP communication

Index 0xF800:26 TCP/IP UDP Checksum
Checksum function (Unicast)
Possible values:

• 0: UDP checksums disabled,
• 1: UDP checksums enabled

Index 0xF800:27 TCP/IP TCP Timeout
Timer for inactive TCP/IP connection in seconds

• 0: Timer disabled

Index 0xF800:28 MultiCast TTL
"Time to live" value for multicast UDP communication

Index 0xF800:29 MultiCast UDP Checksum
Checksum function (Multicast):

• 0: UDP checksums disabled
• 1: UDP checksums enabled

Index 0xF800:2A Forward Class3 to PLC
Message forwarding to the PLC
See Changing EtherNet/IP settings

Index 0xF800:2B Advanced Slave Options
"Store Category" parameter:

• Bit9=Cat2
• Bit8=Cat1

Index 0xF900 Scanner Info
The current valid settings are displayed here; these may differ from object 0xF800.

The object 0xF900 shows you the active parameters.

5.3.1 Firewall setting
The firewall must be enabled, if the EtherNet/IP™ address is to match the IP address of the operating
system (OS). It is advisable to enable the firewall if the IP address of the EtherNet/IP™ scanner deviates
from the IP setting of the operating system.

Configuration

TF6281 17Version: 1.7.0

5.3.2 IP Routing
f IP routing is used, the IP address of the OS must be in a different subnet than the IP address of the
Ethernet/IP adapter/scanner.
The Regkey can be different depending on the operating system and version, here only as an example,
default is "0".
HKEY_LOCAL_MACHINE\ System\ CurrentControlSet\ Services\ Tcpip\ Parameters "IPEnableRouter"

5.4 Changing EtherNet/IP™ settings
For the setting, the Store Category [} 18] must be specified in the TwinCAT system configuration. This is
entered in the object F800:2B "Advanced Options" in all EtherNet/IP™ devices.
If the corresponding bit is set, the IP address from the memory is used. If no value is entered, the bit is
ignored, and the parameters of the TwinCAT system are used.

In the following sample bit 8 (0x0100) is set, which means that Store Category 1 is selected, which affects
the IP settings (index 0xF800: 21…23).

If you want to use Store Category 1 and 2, enter 0x0300 in object F800:2B. Only bits 8 and 9 should be
used. All other bits are reserved and must not be used.

ADS blocks are used for reading or writing the settings from/to the PLC.

Configuration

TF628118 Version: 1.7.0

5.4.1 Object description
Offset Name Data Type SubIndex Store Category

1 2
0x00..0x01 ID UINT16 1
0x02..0x03 Reserved UINT16 -
0x04..0x23 Product Name BYTE[32],

STRING(31)
3 X

0x24..0x27 Device Type UINT32 4
0x28..0x2B Vendor ID UINT32 5
0x2C..0x2F Product Code UINT32 6 X
0x30..0x33 Revision UINT32 7
0x34..0x37 Serial Number UINT32 8
0x38..0x7D Reserved BYTE[70] -
0x7E..0x83 MAC Address BYTE[6] 32
0x84..0x87 IP Address UINT32 33 X
0x88..0x8B Network Mask UINT32 34 X
0x8C..0x8F Gateway Address UINT32 35 X
0x90..0x91 DHCP Max Retries UINT16 36
0x92..0x93 TCP/IP TTL UINT16 37
0x94..0x95 TCP/IP UDP Checksum UINT16 38
0x96..0x97 TCP/IP TCP Timeout UINT16 39
0x98..0x99 Multicast TTL UINT16 40
0x9A..0x9B Multicast Checksum UINT16 41
0x9C..0x9D Forward Class3 to PLC UINT16 42
0x9E..0x9F Flags UINT16 43
0xA0..0xFF Reserved Byte[96] -

Store Category

The “Store Category” determines which settings are overwritten with the values from the non-volatile
memory. Bits 9 - 8 have to be set accordingly in the project under “Flags”. In order to modify both, both bits
must be set.
(Bit9=Cat2, Bit8=Cat1)

5.4.2 ADS-Write command

AmsNetId

The AMSNetId can be found under the EtherNet/IP tab in the NetID field. When you select the option Info
Data Support it is linked directly.

The advantage of a direct link is that it always retrieves the current AMSNETID, even if controllers are used
that use different AMSNETIDs. The AMSNETID of the EtherNet/IP™ adapter therefore does not have to be
read manually.

Configuration

TF6281 19Version: 1.7.0

ADS port number

For the function “EtherNet/IP™ Adapter” set the ADS port number to a fixed value of 0xFFFF.

Slave

IDXGRP: 0x0001F480
IDXOFFS: 0x00000000

Setting for setting (4 bytes + object size (256 bytes))

Byte Offset 0: 0x45
Byte Offset 1: 0x23
Byte Offset 2: ObjIndex LoByte (e.g. 0x8000 for slave 1 and 0x8010 for slave 2)
Byte Offset 3: ObjIndex HiByte
Byte Offset 4-260: Data of the object (see object description below)

Setting for resetting (4 bytes)

Byte Offset 0: 0x00
Byte Offset 1: 0x00
Byte Offset 2: ObjIndex LoByte (e.g. 0x8000 for slave 1 and 0x8010 for slave 2)
Byte Offset 3: ObjIndex HiByte

Accept changes
After setting the properties restart TwinCAT for the TF6280, after which the new settings are applied
and valid. The settings remain stored and don't have to be loaded again, unless there are changes.

5.4.3 ADS-Read command

AmsNetId

The AMSNetId can be found under the EtherNet/IP tab in the NetID field. When you select the option Info
Data Support it is linked directly.

Configuration

TF628120 Version: 1.7.0

The advantage of a direct link is that it always retrieves the current AMSNETID, even if controllers are used
that use different AMSNETIDs. The AMSNETID of the EtherNet/IP™ adapter therefore does not have to be
read manually.

ADS port number

For the function “EtherNet/IP™ Adapter” set the ADS port number to a fixed value of 0xFFFF.

Slave

IDXGRP: 0x1F480
IDXOFFS: 0x8000 for the first slave
IDXOFFS: 0x8010 for the second slave
IDXOFFS: 0x8020 for the third slave
…
IDXOFFS: 0x8070 for the eights slave
LEN: 256

The data are stored in the data array, as described above -> see Object description [} 18].

5.4.4 Sample
A sample program can be downloaded: https://infosys.beckhoff.com/content/1033/
TF6281_Tc3_EtherNetIPScanner/Resources/3105211403.tszip

5.5 Creating the EtherNet/IP™ adapter in other EtherNet/
IP™ scanners

All the information you need is provided in the Settings tab:

https://infosys.beckhoff.com/content/1033/TF6281_Tc3_EtherNetIPScanner/Resources/3105211403.tszip
https://infosys.beckhoff.com/content/1033/TF6281_Tc3_EtherNetIPScanner/Resources/3105211403.tszip

Configuration

TF6281 21Version: 1.7.0

You need

• the IP address of the adapter (see Creating an EtherNet/IP™ adapter)
• the “Assembly Instance” numbers (see Settings tab)
• the number of data (see Settings tab)
• the “Configuration Instance” number 128 length 0
• the “Input Instance” number 129 length 12
• the “Output Instance” number 130 length 12

The instance numbers are always the same. An export of the EDS file contains the instance numbers. The
number of data still has to be entered.

The EtherNet/IP™ adapter can be integrated via a “Generic Node” structure or via the EDS file.

Configuration

TF628122 Version: 1.7.0

5.5.1 Sample for Rockwell CPUs
1. Under Ethernet, New Module…, select Generic Ethernet Module.

2. Enter the IP address from object 0x8000:21.
3. Enter 129dec for Input Instance.
4. Enter 130dec for Output Instance and
5. 128dec for Config Instance.

Configuration

TF6281 23Version: 1.7.0

ð The data length is dependent on the Comm format.

Note the properties of the selected Comm format

In the above sample the Comm format INT was selected, which means the number of data from objects
0x8001:05 and 0x8001:07 have to be divided by 2, since in TwinCAT they are specified in bytes and in
the RSLogix in word length (INT).

An odd number of bytes must be rounded up. This also applies even if the Comm format is set to DINT, in
which case you must round up to the next whole number.

System limitations
In the case of Multicast, pay attention to the high network loads that this causes, especially in
systems with many or short cycle times. A high network load may possibly impair communication.

5.6 Diag History
The diagnostic history (Diag History) is a tool for monitoring the status of the EtherNet/IP™ interface and
displaying the diagnosis messages with timestamp in plain text.

In addition, information / errors that occurred in the past are logged, in order to enable precise
troubleshooting at a later stage. This also applies for errors that only occurred for such a short time that any
corresponding messages were not visible.

The diagnostic history is part of the TwinCAT system, where it can be found under Devices EtherNet/IP™ in
the Diag History tab:

Configuration

TF628124 Version: 1.7.0

5.7 Connecting EtherNet/IP™ slaves
An EtherNet/IP™ slave can be integrated as a Generic Node with EDS (Electronic Data Sheet), or without
an EDS file. Not all EtherNet/IP™ slaves currently available on the market are supported. It should be
possible to integrate EtherNet/IP™ devices that are delivered with an EDS file via the EDS import, provided
they are supported by the TF6281. If this is not the case, you can send the EDS file to Beckhoff Support for
verification.

If the EDS file can be integrated without errors, communication to the slave should be possible. If you use a
slave that can only be integrated via the Generic Node (i.e. without an EDS file), it is to be assumed that it
should also be usable.

The following slaves cannot be used:

• Slaves that use CIP Sync, CIP Motion or CIP Safety
• Slaves with modular EDS file

Integrating EtherNet/IP™ slave without EDS file

Slaves that do not use an EDS file, or for which the manufacturer does not provide an EDS file, are
integrated via a Generic Node. The following manufacturer information is required for this purpose:

• IP address of the slave
• Maximum RPI time, i.e. the maximum or minimum time with which the slave can work
• The Assembly Instance Number for Config, Input and Output data and their length
• Description of the data

Add a Generic Node under the EtherNet/IP™ scanner. As long as you have not specified an IP address, the

symbol is identified by a warning and question mark . Enter the IP address under Settings.

Configuration

TF6281 25Version: 1.7.0

An "IO Connection" must first be created under the node. This IO Connection contains the inputs and
outputs, which can now be created. The variable type is freely selectable, only the size has to match.

Furthermore, the EtherNet/IP™ specific entries have to be made now.

It is sufficient to specify the values for Config Instance and Config Size. The Connection Points must be
created for the inputs and outputs.
The data length results from the length you created earlier, which you can check again in this dialog.

Cycle Time Multiplier

With EtherNet/IP™ it is allowed to operate the adapters (slaves) with a different cycle time. You can set this
individually with the Cycle Time Multiplier.

Configuration

TF628126 Version: 1.7.0

The created Sync Task (-> see Sync Task [} 14]) specifies the basic cycle time, with which the EtherNet/IP™
Master is operated.

The Cycle Time Multiplier is in this case a multiplier of the cycle time in accordance with the inputs or
outputs.

The Timeout Multiplier is in turn based on the multiplier of the Cycle Time Multiplier.

Example: If the Sync Task is set to 2 ms and the Cycle Time Multiplier is set to 10, the slave is operated
with 20 ms. If the connection is interrupted here and the Timeout Multiplier is set to 4, the system detects
this after 80 ms (20 ms * 4 = 80 ms).

Integration of EtherNet/IP™ slave with EDS file

TwinCAT offers the option of integrating EDS files. The Import EDS File dialog is used for this purpose.

The files are checked and copied to the directory \TwinCAT\3.1\Config\Io\EtherNetIP after successful import.

Configuration

TF6281 27Version: 1.7.0

EDS files must have an IO Connection, otherwise this error message appears:

These types of devices are not supported by the TF6871 EtherNet/IP™ scanner.

For EDS files that support symbols, the symbolism is ignored. The symbolism is therefore not available:

After you have created the slave, the Connection must be added. Only the Connections described in the
EDS file are displayed. Only one Connection is allowed.

5.8 PLC to PLC communication
Consumed and Produced tags

This type of communication is used for PLC – PLC communication. Data is exchanged in real-time between
the two controllers. The data exchange takes place via the so-called Consumed and Produced tags. Tag
stands for a variable name. The Consumed tag receives the data. The Produced tag provides the data. This

Configuration

TF628128 Version: 1.7.0

means that a Produced tag is created on one controller first, the opposite side that is supposed to receive
the data "consumes" the data, hence Consumed tag. This type of communication always requires two
EtherNet/IP™ scanners.
In the following paragraph this is explained by means of a TwinCAT 3 controller (CX2020 in this case) with
the function EtherNet/IP™ Scanner TF6281 and an Allen-Bradley CompactLogix from Rockwell
(RSLogix5000 V20.03.00).

Both sides are described here to set up a communication as described above.

TwinCAT 3.1 Build 4022.x

ProduceTag in TwinCAT
ü First, the EtherNet/IP™ scanner is created in TwinCAT (IP address and further settings can be found in

the previous chapter Settings dialog [} 14]).
1. Right-click on the EtherNet/IP™ scanner to open a dialog, select Add New Item....

Next, select Producer Object List:

Configuration

TF6281 29Version: 1.7.0

2. A Producer Object List is then created under the scanner. This is only available once, even if the data
is sent to more than one controller. Right-click on Producer Object List and select Append Producer
Connection.

3. Now specify the name of the Connection Tag. This must be identical to the name of the consumer.
4. Then define the number and type of data. It is only possible to use DINT or larger variables.
5. For the further steps, the name TwinCAT_IN_0 and a variable of type DINT were selected. To do this,

navigate to the outputs of the Producer Object and insert a variable of type DINT.

6. Set the Transport Trigger to Cyclic. Other operation modes are currently not supported.

Consumer Tag in TwinCAT

Next, create a Consumer Tag.

1. To do this, create a Generic EtherNet/IP™ Slave in the EtherNet/IP™ scanner. It requires the IP
address of the Allen-Bradley CPU. Enter the address and add an Append Consumer Connection
Consumer tag under the newly created slave. The name is important because it must later be specified

Configuration

TF628130 Version: 1.7.0

as a Produced variable in the Allen-Bradley CPU.
The Port is the CPU port on which the variable will be used later. Usually this is 1.

ð Now you have created a producer in the TwinCAT tree and a consumer for the other EtherNet/IP™
controller.

5.8.1 Allen-Bradley-CompactLogix
In order to enable PLC – PLC communication using the Consume and Produce tags, an EtherNet/IP™
controller must be installed at Allen-Bradley (AB). It is not possible to use a Beckhoff controller with AB,
therefore an Allen-Bradley controller must be created in the configuration tool.

Configuration

TF6281 31Version: 1.7.0

1. Click Ethernet; you can create a new module with the right mouse button. Select New Module…

2. Then select a controller, for example 1756-EN2T.

Configuration

TF628132 Version: 1.7.0

3. Now enter the IP address of the Beckhoff controller or the IP address of the Beckhoff EtherNet/IP™
Scanner. In addition, the controller requires a name.

Configuration

TF6281 33Version: 1.7.0

4. Select Disable Keying under Module Definition. In addition, select the value “None” for both Rack
Connection and Time Sync Connection.

5. Now you have to create a PLC. Select 1756-L61, for example, and click Create:

6. Enter a name for the controller, e.g., CPU_2; this name is still needed later when you create the
ConsumedTags.

Configuration

TF628134 Version: 1.7.0

7. Insert a new DINT variable under Controller Tags. Create it as type Consumed.

8. Click Connection. Select the controller from which you want to receive the data. This requires the name
that was assigned during configuration (in this example CPU_2). Furthermore, the tag name that was
also assigned to the TwinCAT controller (here: TwinCAT_IN_0) and the RPI time. The RPI time should
always be greater than or equal to the SyncTask of the EtherNet/IP™ scanner in TwinCAT.

Configuration

TF6281 35Version: 1.7.0

9. Now insert another DINT variable and configure it as Produced. It is only important to use the same
name as in TwinCAT for the Consumed Connection (here TwinCAT_Out_0).

5.9 Data Table Read and Write
Please note the system requirements
Data Table Read and Write can only be used with the TC1200.

Like the Consumed and Produced tag, this function is used for communication between two EtherNet/IP™
controllers, with the difference that it is an acyclic communication. This enables data to be exchanged
between two controllers which do not have to be transmitted cyclically, such as parameters, recipes or any
other data. The data can be structures, arrays or a combination of both. TwinCAT enables data to be read
from and written to a controller, and it is also possible to read or write data from TwinCAT using remote
control. This is explained below by way of example:

Data that is to be sent or received via this service must be made known in the TwinCAT system. This data
must be stored as a global variable in a folder ETHIP and in the flag area. The library Tc2_EthernetIP must
also be included. It contains a function block for the DataTable read/write.
The data types must match in both PLCs.

Creating the variables:

Create a global variable list with the name ETHIP. Now add two variables as shown in the image below. The
variables must have a fixed address and lie within the flag area (%MBx, x address). For non-located
variables, the internal address could change during an online change; such variables are currently not
supported.

Configuration

TF628136 Version: 1.7.0

1. Now compile the project and switch to the EtherNet/IP™ scanner.

2. Open the Explicit MSG tab:

3. Move the mouse over the empty box, right-click and select Add to add the data:

Configuration

TF6281 37Version: 1.7.0

4. The Add Symbols ... dialog appears. Tick the data that you want to use later:

ð The data are now available in the dialog.

ð Next, recompile and restart the TwinCAT project. This is necessary if you change the data, e.g. the
name, flag, address, type of variable, etc.

Read a TwinCAT variable from the Allen-Bradley controller

First, enter the TwinCAT controller in the configuration, as for the Consumed and Produced tags; proceed in
the same way.

Configuration

TF628138 Version: 1.7.0

1. Under Controller Tags enter variables Test and iTest, both as DINT. Now a little code must be written
for the Allen-Bradley (AB) controller.
msg(msgTest); (* Program language: Structured Text *)
"msgTest" must be of type MESSAGE.

2. Then click on the msgTest variable and configure the function block.

Configuration

TF6281 39Version: 1.7.0

3. Set the message type to CIP Data Table Read. Under Source Element enter the name that you used in
the TwinCAT project.

4. Then open the Communication tab. Here you set the controller from which you want to read the variable
Test.

ð Everything is now prepared for reading the variable.
ð The variable Test is read (on the Beckhoff side) and copied (on the AB side) to the variable iTest.

Configuration

TF628140 Version: 1.7.0

Writing a TwinCAT variable from the Allen-Bradley controller

A similar procedure must be followed when writing. In this case, the MSG command must describe the Data
Table Write. The source element is the variable in the Allen-Bradley controller. The Destination Element is
the TwinCAT variable. Again, select the TwinCAT controller under Communication.

The variable Test (on the AB side) is copied to the variable Test2 (on the Beckhoff side).

Transferring STRING variables

A STRING has a different data format on the Rockwell controller than on the TwinCAT controller. The library
Tc2_EthernetIP features a data structure called RSL5K_STRING, which facilitates the use of STRING. You
must use this in order to be able to use STRING. The corresponding conversions are also available in the
library. Only STRING with 82 characters or less may be used.

Data Table READ/WRITE from the Beckhoff controller

The PLC function block FB_CIP_DATA_TABLERDWR [} 56] is used for DataTableRead/Write from the library
Tc2_EthernetIP (see DataTableRDWR). The usage is very similar to that of the AB controller and is shown
here as an example:

Configuration

TF6281 41Version: 1.7.0

As shown in the image above, a [*] placeholder can also be used with an ARRAY on the TwinCAT side. To
this end, the ARRAY value is entered with an * in the variable name. The advantage is that only parts or just
one element of an ARRAY is read or written. In other words, it is not necessary to read or write the complete
ARRAY.
If you use an ARRAY in an ARRAY with * in each case, the index is entered for all [*] values. Example
DataARRAY[*].ValueArray[*]: the index is entered for both.

5.10 Diagnostics
There are several diagnostic options for EtherNet/IP™. The diagnosis is divided into two areas, i.e. diagnosis
for the scanner (master), and diagnosis for the adapters (slaves) that are connected to the scanner. These
are cyclic diagnostic data which can be linked to the PLC. A further diagnosis is available via DiagHistory.
Errors in the EtherNet/IP™ system are logged and can be evaluated for diagnostic purposes.

Diagnosis of the master (scanner)

The scanner diagnosis contains information about the status of the EtherNet/IP™ scanner. If the value is
0x0000, everything is OK and there is no error.

Values that the DevState can take:

0x0001 = Link error
0x0010 = Out of send resources (I/O reset required)
0x0020 = Watchdog triggered
0x8000 = reserved
0x4000 = Master has no valid IP Addr - pending DHCP request
0x2000 = TCP server: unable to listen on local EtherNet/IP™ Port (44818)
0x1000 = UDP server: unable to listen on local EtherNet/IP™ Port (44818)

Configuration

TF628142 Version: 1.7.0

Diagnosis of the slave (adapter)

Each slave has a state and a Ctrl word.

The Ctrl word currently has no purpose. In an error-free state, the value of the state is 0xXX00. Bits 16...31
are for information only. The state has the following meaning:

0x8000 = Remote Node has no connections
0x4000 = Remote Node is not reachable
0x2000)1 = TCP Client: initialization failed
0x1000 = UDP Client: initialization failed
0x0X00 = reserved
0x0001 = 1st Connection disconnected
0x0002 = 2nd Connection disconnected
0x0004 = 3rd Connection disconnected
...
0x0080 = 8th Connection disconnected

)1 This note may appear periodically. This is because the TCP connection can and may be closed by the
slave when not in use. However, the Beckhoff EtherNet/IP™ Scanner rebuilds this automatically as soon as
possible, so that the note 0x2000 disappears from the state again.

The note for interrupting the TCP/IP connection is only relevant if the I/O communication does not start up
successfully.

Producer State

0x8000 = Producer has no valid Producer Objects configured
0x4000 = Producer has no valid IP Addr - pending DHCP request
0x2000 = TCP server: unable to listen on local EtherNet/IP™ Port (44818)
0x1000 = UDP server: unable to listen on local EtherNet/IP™ Port (44818)
0x0001 = 1st Connection disconnected
0x0002 = 2nd Connection disconnected
0x0004 = 3rd Connection disconnected
...
0x0800 = 12th Connection disconnected

Consumer State

0x0X00 = reserved
0x0001 = 1st Connection disconnected
0x0002 = 2nd Connection disconnected
0x0004 = 3rd Connection disconnected
...
0x0800 = 12th Connection disconnected

Configuration

TF6281 43Version: 1.7.0

5.11 Acyclic communication via Explicit Messaging

5.11.1 Common Industrial Protocol (CIP)
The Common Industrial Protocol (CIP) is an object-oriented peer-to-peer protocol that enables connections
between industrial devices (sensors, actuators) and higher-level devices (controllers). CIP is independent of
physical media and the data link layer. CIP has two main purposes: transport of control-oriented data
connected to I/O devices, and transport of information relating to the system to be controlled, such as
configuration parameters or diagnostics.

CIP uses abstract objects to describe a device. A CIP device consists of a group of objects. Objects describe
the available communication services, the externally visible behavior of the device, and a way in which
information can be retrieved and exchanged. CIP objects are divided into classes, instances and attributes.
A class is a set of objects that all represent the same component. An instance is the current representation
of a particular object. Each instance has the same attributes, but possibly with different attribute values. The
individual objects are addressed via a node address, which for EtherNet/IP is the IP address, plus a class,
instance and attributes.

• Object
◦ An abstract representation of a particular component within a product.

• Class
◦ A set of objects that all represent the same type of system component. A class is a generalization

of an object. All objects in a class are identical in form and behavior, but can contain different
attribute values.

• Instance
◦ A specific and real specimen of an object.

Example: Berlin is an instance of the Capital object class.
• Attribute

◦ A description of a property or characteristic of an object. Typically, attributes provide status
information or control the operation of an object.

(Source: The CIP Networks Library Volume 1: Common Industrial Protocol, Edition 3.22)

The following objects are used internally by Beckhoff and are therefore reserved:

1. Identity Object → Class 0x1
2. Message Router Object → Class 0x2
3. Assembly Object → Class 0x4
4. Connection Manager Object → Class 0x6
5. TCP/IP Interface Object → Class 0xF5
6. Ethernet Link Object → Class 0xF6

5.11.2 Forward Message to AMS Port via Explicit Messaging
"Explicit Messaging" is used to send information and data that does not require continuous updates. "Explicit
Messaging" allows you to configure and monitor the parameters of a slave device in the Ethernet/IP network.

The feature "FwdMsgToAmsPort" allows the processing of acyclic requests from Ethernet/IP scanners via
Explicit Messaging.

The following example shows implementation of acyclic communication between a TwinCAT 3 controller and
an RS Logix controller.

TwinCAT 3 implementation:
ü Requirement: Ethernet/IP driver version, min. V1.23
1. To enable the FwdMsgToAmsPort feature, enter the AmsPort of the PLC (in the example 851) in the

slave/master settings (0x8000:2A/0xF800:2A) in TwinCAT.

Configuration

TF628144 Version: 1.7.0

2. ADSRDWRT requests from the EtherNet/IP™ driver (IDGRP: 0x848180E9 IOFFS: SlaveId (Adapter)) to
the PLC task are registered as indications and enable their processing. The ADSRDWRTIND function
block is used for this purpose.
ð The first entry in the indication registered by the EtherNet/IP™ driver is a 32-byte (8xULONG)

header:
TYPE DUT_MsgToAmsPortHeader:
STRUCT
 nServiceCode:UDINT;
 nClassId:UDINT;
 nInstanceId:UDINT;
 nAttributeId:UDINT;
 nReservedId:UDINT;
 nGeneralStatus:UDINT;
 nAdditionalStatus:UDINT;
 nDataLen:UDINT;
END_STRUCT
END_TYPE

Configuration

TF6281 45Version: 1.7.0

TYPE DUT_IncomingMsgRequest:
STRUCT
 reqHdr:DUT_MsgtoAmsPortHeader;
 reqData:ARRAY [0…991] OF BYTE;
END_STRUCT
END_TYPE

TYPE DUT_OutgoingMsgResponse:
STRUCT
 resHdr:DUT_magToAmsPortHeader;
 resData:ARRAY [0…991] OF BYTE;
End_Struct
END_TYPE

The same header is also used for the response.

3. The actual read/write data follows directly after the header (nDataLen <> 0 should be set according to
the data length). The maximum supported data length is 992 bytes (+ 32-byte header =
1024 bytes).Potential classes/instances/attribute values

Min Max
Class 1 0xFFFF
Instance 1 0xFFFF
Attribute 1 0xFFFF

4. After an indication has been processed, a response must be sent to the source device via the
ADSRDWRTRES function block.
PROGRAM MAIN
VAR
 i : INT;
 IdxGroup : UDINT; //Ethernet/IP-Treiber -> 16#848180E9
 IdxOffset : UDINT; //SlaveId (Adapter) bzw. 0xFFFF (Scanner)
 fbADSRDWRTINDEX : ADSRDWRTINDEX;
 fbAdsRdWrRes : ADSRDWRTRES;
 request : DUT_IncomingMsgRequest;
 response : DUT_OutgoingMsgResponse;
 nResponseLen : UINT;
 nAdsResult : UDINT:=0;
 nAdsResponsesSent : UDINT;
 Attributes : ARRAY [1..4] OF STRING :=['TestReadOnlyAttribute1','TestReadOnlyAttrib
ute2','TestReadOnlyAttribute3','TestReadWriteAttribute4'];
END_VAR

CASE i OF
0: //check for ADSReadWrite-Requests
fbADSRDWRTINDEX (
CLEAR:=FALSE ,
MINIDXGRP:= 16#84000000,
VALID=> ,
NETID=> ,
PORT=> ,
INVOKEID=> ,
IDXGRP=> ,
IDXOFFS=> ,
);

IF fbADSRDWRTINDEX.VALID THEN
IdxGroup:= fbADSRDWRTINDEX.IDXGRP;
IdxOffset:= fbADSRDWRTINDEX.IDXOFFS ;
 MEMSET(ADR(request), 0, SIZEOF(request));
 MEMSET(ADR(response), 0, SIZEOF(response));
 nResponseLen:=0;
 //check for Indication Request = Ethernet/IP-driver -> 16#848180E9
 IF IdxGroup = 16#848180E9 THEN
 //check for Indication.datalength >= DUT_MsgToAmsPortHeader
 IF fbADSRDWRTINDEX.WRTLENGTH >= SIZEOF(request.reqHdr) THEN
 MEMCPY(ADR(request.reqHdr), fbADSRDWRTINDEX.DATAADDR, SIZEOF(request.reqHdr));
 END_IF
 //check for Indication.datalength > DUT_MsgToAmsPortHeader >>> save additional data
 IF fbADSRDWRTINDEX.WRTLENGTH > SIZEOF(request.reqHdr) THEN
 MEMCPY(ADR(request.reqData), fbADSRDWRTINDEX.DATAADDR+SIZEOF(request.reqHdr), fbADSRDW
RTINDEX.WRTLENGTH-SIZEOF(request.reqHdr));
 END_IF
 i:=10;
 ELSE
 i:=20;

Configuration

TF628146 Version: 1.7.0

 END_IF
END_IF

10: //new Ind from EthIp-Drv received
 response.resHdr.nServiceCode := request.reqHdr.nServiceCode OR CONST.CN_SC_REPLY_MASK;
 response.resHdr.nGeneralStatus := 0;
 response.resHdr.nAdditionalStatus := 0;
 response.resHdr.nDataLen := 0;
 IF request.reqHdr.nServiceCode = CONST.CN_SC_GET_ATTR_SINGLE OR request.reqHdr.nServiceCode = CONS
T.CN_SC_SET_ATTR_SINGLE THEN
 i:=11;
 ELSE
 response.resHdr.nGeneralStatus := CONST.CN_GRC_BAD_SERVICE;
 nResponseLen := SIZEOF(response.resHdr);
 i:=20;
 END_IF

11: //case decision for request
 CASE request.reqHdr.nClassId OF
 16#1000: //erlaubte Beispiel Class 0x10000
 CASE request.reqHdr.nInstanceId OF
 16#1: //erlaubte Beispiel Instance 0x1
 CASE request.reqHdr.nAttributeId OF //
Attributes 1-4 erlaubt; only attr 4 is settable
 1,2,3: IF request.reqHdr.nServiceCode = CONST.CN_SC_SET_ATTR_SINGLE THEN
 response.resHdr.nGeneralStatus := CONST.CN_GRC_ATTR_NOT_SETTABLE;
 nResponseLen := SIZEOF(response.resHdr);
 i:=20;
 ELSE
 i:=12;
 END_IF
 4: IF request.reqHdr.nServiceCode = CONST.CN_SC_SET_ATTR_SINGLE THEN
 i:=14;
 ELSE
 i:=12;
 END_IF
 ELSE
 response.resHdr.nGeneralStatus := CONST.CN_GRC_UNDEFINED_ATTR;
 nResponseLen := SIZEOF(response.resHdr);
 i:=20;
 END_CASE
 ELSE
 response.resHdr.nGeneralStatus := CONST.CN_GRC_BAD_CLASS_INSTANCE;
 nResponseLen := SIZEOF(response.resHdr);
 i:=20;
 END_CASE
 ELSE
 response.resHdr.nGeneralStatus := CONST.CN_GRC_BAD_CLASS_INSTANCE;
 nResponseLen := SIZEOF(response.resHdr);
 i:=20;
 END_CASE

12: //GetAttribute
 response.resHdr.nGeneralStatus := CONST.CN_GRC_SUCCESS;
 MEMCPY(ADR(response.resData), ADR(Attributes[request.reqHdr.nAttributeId]), SIZEOF(Attributes[requ
est.reqHdr.nAttributeId]));
 response.resHdr.nDataLen := INT_TO_UINT(LEN(Attributes[request.reqHdr.nAttributeId]));
 nResponseLen := UDINT_TO_UINT(response.resHdr.nDataLen) + SIZEOF(response.resHdr);
 i:=20;

14: //SetAttribute
 response.resHdr.nGeneralStatus := CONST.CN_GRC_SUCCESS;
 IF request.reqHdr.nDataLen <= SIZEOF(STRING)-1 THEN
 MEMCPY(ADR(Attributes[request.reqHdr.nAttributeId]), ADR(request.reqData), request.reqHdr.nDat
aLen);
 ELSE
 response.resHdr.nGeneralStatus := CONST.CN_GRC_BAD_DATA;
 END_IF
 nResponseLen := SIZEOF(response.resHdr);
 i:=20;

20: //response to Ethernet/IP-driver
 fbAdsRdWrRes(
NETID:= fbADSRDWRTINDEX.NETID ,
PORT:= fbADSRDWRTINDEX.PORT ,
INVOKEID:= fbADSRDWRTINDEX.INVOKEID ,
RESULT:=nAdsResult ,
LEN:=nResponseLen,
DATAADDR:=ADR(Response) ,
RESPOND:=TRUE);

Configuration

TF6281 47Version: 1.7.0

i:=21;
 nAdsResponsesSent:=nAdsResponsesSent+1;
fbADSRDWRTINDEX (CLEAR:=TRUE);
21: i:=0;
fbAdsRdWrRes(RESPOND:=FALSE);
END_CASE

Implementation RS Logix 5000:
1. At the beginning you have to create a new module, either a "Generic Ethernet Module" or an EDS file

exported from TwinCAT.
The advantage of the imported EDS file is that it already contains the size of the process data created in
the TwinCAT configuration.

Configuration

TF628148 Version: 1.7.0

2. In the settings of the attached module you may have to adjust the IP and the process data settings.

3. To be able to send and receive messages acyclically, structures of the type "Messages" are necessary.
In the sample, one structure is used for sending and one for receiving. You must configure both
structures accordingly for sending and for receiving.

4. Right-click on the tag SetMsg-Configure SetMsg to open the configuration settings. These are to be
taken over as indicated in the screenshot.
The specifications Class, Instance and Attribute are freely selectable. At Service Type set Set
Attributes Single. At Source Element, create an array whose contents are to be sent. Select the
Source Length so that it does not exceed the length of the target variable created in TwinCAT.

5. Right-click on the tag GetMsg - Configure GetMsg to open the configuration settings. These are to be
taken over as indicated in the screenshot.
The specifications Class, Instance and Attribute are freely selectable. At Service Type set Get

Configuration

TF6281 49Version: 1.7.0

Attribute Single. Create an array at Destination Element that receives the acyclic messages. The size
of the array is to be chosen according to the receiving messages.

ð The following sample code sends requests to the EtherNet/IP™ driver of the TF6280, which forwards
them to the TwinCAT PLC for further processing.

A single attribute value is read from the TwinCAT PLC with a positive edge at "bGet". In this sample the
values "TestReadOnlyAttribute1, TestReadOnlyAttribute2 and TestReadOnlyAttribute3" can be read.
A single attribute value is written to the TwinCAT PLC with a positive edge at "bSet". In this sample the fourth
attribute in the TwinCAT PLC can be described with the content "123Beckhoff567" and "HelloBeckhoff".
//GetAttribute
IF bGet THEN
 bGet:=0;
 iCase:=20+iGet;
END_IF;

//SetAttribute
IF bSet AND iOldCase=5 THEN
 bSet:=0;
 iCase:=6;
ELSIF bSet AND iOldCase=6 THEN
 bSet:=0;
 iCase:=5;
END_IF;

CASE iCase OF
5: //HelloBeckhoff --> (ASCII)
 iOldCase:=iCase;

 TxData[0]:=72; //H
 TxData[1]:=101; //e
 TxData[2]:=108; //l
 TxData[3]:=108; //l
 TxData[4]:=111; //o
 TxData[5]:=66; //B
 TxData[6]:=101; //e
 TxData[7]:=99; //c
 TxData[8]:=107; //k
 TxData[9]:=104; //h
 TxData[10]:=111; //o
 TxData[11]:=102; //f
 TxData[12]:=102; //f
 iCase:=10;

6: //123Beckhoff567 --> (ASCII)
 iOldCase:=iCase;

Configuration

TF628150 Version: 1.7.0

 TxData[0]:=49; //1
 TxData[1]:=50; //2
 TxData[2]:=51; //3
 TxData[3]:=66; //B
 TxData[4]:=101; //e
 TxData[5]:=99; //c
 TxData[6]:=107; //k
 TxData[7]:=104; //h
 TxData[8]:=111; //o
 TxData[9]:=102; //f
 TxData[10]:=102; //f
 TxData[11]:=52; //4
 TxData[12]:=53; //5
 TxData[13]:=54; //6
 iCase:=10;

10: //SetAttribute
 msg(SetMsg);
 IF SetMsg.DN OR SetMsg.ER THEN
 FOR iLoop:=0 TO 80 DO
 TxData[iLoop]:=0;
 end_FOR;
 iCase:=0;
 END_IF;

20: //TestReadOnlyAttribute1
 GetMsg.Class:=16#1000;
 GetMsg.Instance:=16#01;
 GetMsg.Attribute:=16#01;
 iCase:=30;

21: //TestReadOnlyAttribute2
 GetMsg.Class:=16#1000;
 GetMsg.Instance:=16#01;
 GetMsg.Attribute:=16#02;
 iCase:=30;

22: //TestReadOnlyAttribute3
 GetMsg.Class:=16#1000;
 GetMsg.Instance:=16#01;
 GetMsg.Attribute:=16#03;
 iCase:=30;

30: //GetAttribue
 msg(GetMsg);
 IF GetMsg.DN OR GetMsg.ER then
 iGet:=iGet+1;
 IF iGet >= 3 THEN
 iGet:=0;
 END_IF;
 iCase:=0;
 END_IF;

END_CASE;

You can find the documented example as a TwinCAT project here: https://infosys.beckhoff.com/content/
1033/TF6281_Tc3_EtherNetIPScanner/Resources/14758092427.zip.

https://infosys.beckhoff.com/content/1033/TF6281_Tc3_EtherNetIPScanner/Resources/14758092427.zip
https://infosys.beckhoff.com/content/1033/TF6281_Tc3_EtherNetIPScanner/Resources/14758092427.zip

PLC API

TF6281 51Version: 1.7.0

6 PLC API
The TwinCAT function blocks can only be used in conjunction with the TC1200. The library Tc2_EthernetIP
can be found under Communication. It is part of the TC1200 TwinCAT installation.

6.1 Function blocks

6.1.1 FB_GET_ATTRIBUTE_SINGLE

The function block FB_GET_ATTRIBUTE_SINGLE enables reading of parameters from an EtherNet/IP
device.

Service Code: 0x0E

 Inputs
VAR_INPUT
 sNetId : T_AmsNetID;
 sIPv4Addr : T_IPv4Addr;
 bExecute : BOOL;
 nClass : WORD;
 nInstance : WORD;
 nAttribute : WORD;
 pDst : POINTER TO BYTE;
 nMaxLen : WORD;
 nSessionTimeoutMSec : DWORD;
 nCmdTimeoutMSec : DWORD;
 bRackComm : BOOL;
 nPort : BYTE;
 nSlot : BYTE;
END_VAR

PLC API

TF628152 Version: 1.7.0

Name Type Description
sNetId T_AmsNetID AMSNetId of the TwinCAT EtherNet/IP™ scanner via

which the command is to run
sIPv4Addr T_IPv4Addr IP address of the target device.
bExecute BOOL A positive edge starts the command.
nClass WORD Class number of the CIP service
nInstance WORD Instance number of the CIP service
nAttribute WORD Attribute number of CIP service
pDst POINTER OF BYTE Pointer to the variable into which the value is to be copied

(get the pointer with ADR)
nMaxLen WORD Size of the variable to which the pointer pDst points (get

with SizeOf)
nSessionTimeoutMS
ec

DWORD Timeout for the session; the default is 30 seconds

nCmdTimeoutMSec DWORD Timeout for the command; the default is 7.5 seconds
bRackComm BOOL TRUE if the CPU is modular, i.e. a CPU with a rack design,

for example a CompactLogix
nPort BYTE Port number of the CPU (the TF6281 currently only

supports port 1)
nSlot BYTE Slot number if the CPU is not plugged into slot 0

 Outputs
VAR_OUTPUT
 bBusy : BOOL;
 bError : BOOL;
 nErrId : UDINT;
 nDataLen : WORD;
END_VAR

Name Type Description
bBusy BOOL When the function block is enabled, this output is set and

remains set until a feedback is received. While Busy =
TRUE, no new command will be accepted at the inputs.

bError BOOL If an error occurs during the transfer of the command, then
this output is set once the bBusy output was reset.

nErrId UDINT If an bError output is set, this parameter supplies an error
number.

nDataLen WORD Returns the number of valid data (number of bytes).

PLC API

TF6281 53Version: 1.7.0

6.1.2 FB_SET_ATTRIBUTE_SINGLE

The function block FB_SET_ATTRIBUTE_SINGLE enables writing of parameters in an EtherNet/IP device.

Service Code: 0x10

 Inputs
VAR_INPUT
 sNetId : T_AmsNetID;
 sIPv4Addr : T_IPv4Addr;
 bExecute : BOOL;
 nClass : WORD;
 nInstance : WORD;
 nAttribute : WORD;
 pSrc : POINTER TO BYTE;
 nSrcDataLen : WORD;
 nSessionTimeoutMSec : DWORD;
 nCmdTimeoutMSec : DWORD;
 bRackComm : BOOL;
 nPort : BYTE;
 nSlot : BYTE;
END_VAR

Name Type Description
sNetId T_AmsNetID AMSNetId of the TwinCAT EtherNet/IP™ scanner via

which the command is to run
sIPv4Addr T_IPv4Addr IP address of the target device.
bExecute BOOL A positive edge starts the command.
nClass WORD Class number of the CIP service
nInstance WORD Instance number of the CIP service
nAttribute WORD Attribute number of CIP service
pSrc POINTER TO BYTE Pointer to the variable that contains the value for sending

the service (get the pointer with ADR)
nSrcDataLen WORD Size of the variable to which the pointer pSrc points (get

with SizeOf)
nSessionTimeoutMS
ec

DWORD Timeout for the session; the default is 30 seconds

nCmdTimeoutMSec DWORD Timeout for the command; the default is 7.5 seconds
bRackComm BOOL TRUE if the CPU is modular, i.e. a CPU with a rack design,

for example a CompactLogix
nPort BYTE Port number of the CPU (the TF6281 currently only

supports port 1)
nSlot BYTE Slot number if the CPU is not plugged into slot 0

PLC API

TF628154 Version: 1.7.0

 Outputs
VAR_OUTPUT
 bBusy : BOOL;
 bError : BOOL;
 nErrId : UDINT;
END_VAR

Name Type Description
bBusy BOOL When the function block is enabled, this output is set and

remains set until a feedback is received. While Busy =
TRUE, no new command will be accepted at the inputs.

bError BOOL If an error occurs during the transfer of the command, then
this output is set once the bBusy output was reset.

nErrId UDINT If an bError output is set, this parameter supplies an error
number.

6.1.3 FB_CUSTOM_SERVICE

You can create almost any CIP service using the FB_CUSTOM_SERVICE function block.

 Inputs
VAR_INPUT
 sNetId : T_AmsNetID;
 sIPv4Addr : T_IPv4Addr;
 bExecute : BOOL;
 nServiceCode : BYTE;
 nClass : WORD;
 nInstance : WORD;
 nAttribute : WORD;
 pDst : POINTER TO BYTE;
 nMaxLen : WORD;
 pSrc : POINTER TO BYTE;
 nSrcDataLen : WORD;
 nSessionTimeoutMSec : DWORD;
 nCmdTimeoutMSec : DWORD;
 bRackComm : BOOL;
 nPort : BYTE;
 nSlot : BYTE;
END_VAR

PLC API

TF6281 55Version: 1.7.0

Name Type Description
sNetId T_AmsNetID AMSNetId of the TwinCAT EtherNet/IP™ scanner via

which the command is to run
sIPv4Addr T_IPv4Addr IP address of the target CPU.
bExecute BOOL A positive edge starts the command.
nServiceCode BYTE Service code of the CIP service.
nClasss WORD Class number of the CIP service.
nInstance WORD Instance number of the CIP service.
nAttribute WORD Attribute number of CIP service.
pDst POINTER TO BYTE Pointer to the variable into which the value is to be copied

(get the pointer with ADR).
nMaxLen WORD Size of the variable to which the pointer pDst points (get

with SizeOf).
pSrc POINTER TO BYTE Pointer to the variable containing the value for sending the

service (get the pointer with ADR).
nSrcDataLen WORD Size of the variable to which the pointer pSrc points (get

with SizeOf), or number of bytes to be sent. This is usually
the size of the variable.

nSessionTimeoutMS
ec

DWORD Timeout for the session; the default is 30 seconds.

nCmdTimeoutMSec DWORD Timeout for the command; the default is 7.5 seconds.
bRackComm BOOL TRUE if the CPU is modular, i.e. a CPU with a rack design,

for example a CompactLogix.
nPort BYTE Port number of the CPU (the TF6281 currently only

supports port 1).
nSlot BYTE Slot number if the CPU is not plugged into slot 0.

 Outputs
VAR_OUTPUT
 bBusy : BOOL;
 bError : BOOL;
 nErrId : UDINT;
 nDataLen : WORD;
END_VAR

Name Type Description
bBusy BOOL When the function block is enabled, this output is set and

remains set until a feedback is received. While Busy =
TRUE, no new command will be accepted at the inputs.

bError BOOL If an error occurs during the transfer of the command, then
this output is set once the bBusy output was reset.

nErrId UDINT If an bError output is set, this parameter supplies an error
number.

nDataLen WORD Returns the number of valid data (number of bytes).

PLC API

TF628156 Version: 1.7.0

6.1.4 FB_CIP_DATA_TABLE_RDWR

Variables are read and written from TwinCAT via a function block that is part of the Tc2_EthernetIP.

The function block FB_CIP_DATA_TABLE_RDWR can be used for reading and writing.

 Inputs
VAR_INPUT
 sNetId : T_AmsNetID;
 sIPv4Addr : T_IPv4Addr;
 bExecute : BOOL;
 bDataTableWrite : BOOL;
 sSrcElementName : WORD;
 sDstElementName : WORD;
 nNumberOfElements : POINTER TO BYTE;
 nLocalIndex : WORD;
 nRemoteIndex : DWORD;
 nSessionTimeoutMSec : DWORD;
 nCmdTimeoutMSec : DWORD;
 bRackComm : BOOL;
 nPort : BYTE;
 nSlot : BYTE;
END_VAR

PLC API

TF6281 57Version: 1.7.0

Name Type Description
sNetId T_AmsNetID AMSNetId of the TwinCAT EtherNet/IP™ scanner via

which the command is to run
sIPv4Addr T_IPv4Addr IP address of the target CPU.
bExecute BOOL A positive edge starts the command.
bDataTableWrite BOOL FALSE triggers a DataTableRead, TRUE a

DataTableWrite.
sSrcElementName WORD String for the source name.
sDstElementName WORD String for the target name.
nNumberOfElement
s

POINTER OF BYTE Number of elements

nLocalIndex WORD For ARRAYs the start index has to be set to indicate from
which ARRAY index the data should be taken (local
system).

nRemoteIndex DWORD For ARRAYs the start index has to be set to indicate from
which ARRAY index the data should be taken (remote
system).

nSessionTimeoutMS
ec

DWORD Timeout for the session; the default is 30 seconds.

nCmdTimeoutMSec DWORD Timeout for the command; the default is 7.5 seconds.
bRackComm BOOL TRUE if the CPU is modular, i.e. a CPU with a rack design,

for example a CompactLogix.
nPort BYTE Port number of the CPU (usually 1).
nSlot BYTE Slot number if the CPU is not plugged into slot 0.

 Outputs
VAR_OUTPUT
 bBusy : BOOL;
 bError : BOOL;
 nErrId : UDINT;
END_VAR

Name Type Description
bBusy BOOL When the function block is enabled, this output is set and

remains set until a feedback is received. While Busy =
TRUE, no new command will be accepted at the inputs.

bError BOOL If an error occurs during the transfer of the command, then
this output is set once the bBusy output was reset.

nErrId UDINT If an bError output is set, this parameter supplies an error
number.

Sample

Removing test code
If you have already tested the communication from AB to Beckhoff, you should remove the function
calls to DataTable Read/Write from the AB project.

VAR
 FB_CIP_DATA_TABLE_RDWR: FB_CIP_DATA_TABLE_RDWR;
 SourceName: STRING := 'Test';
 DestName: STRING := 'ETHIP.Test';
 Error: STRING;
END_VAR

FB_CIP_DATA_TABLE_RDWR(
 sNetId:='5.18.71.214.4.1' ,
 sIPv4Addr:='192.168.1.220' ,
 bExecute:=TRUE ,
 bDataTableWrite:= ,
 sSrcElementName:=(SourceName) ,
 sDstElementName:=(DestName) ,

PLC API

TF628158 Version: 1.7.0

 nNumberOfElements:=1 ,
 nLocalIndex:= ,
 nRemoteIndex:= ,
 nSessionTimeoutMSec:= ,
 nCmdTimeoutMSec:= ,
 bRackComm:=TRUE ,
 nPort:= ,
 nSlot:= ,
 bBusy=> ,
 bError=> ,
 nErrId=>);
IF NOT FB_CIP_DATA_TABLE_RDWR.bBusy THEN
 FB_CIP_DATA_TABLE_RDWR(bExecute:=FALSE);
 Error:=F_GET_ETHERNETIP_ERROR_TEXT (FB_CIP_DATA_TABLE_RDWR.nErrId);
END_IF

PLC API

TF6281 59Version: 1.7.0

6.1.5 Error Codes function blocks
Error Code (hex) Description
no error 0x00000000 No error
communication timeout: not able to
establish session to remote node

0xEE000001 Timeout - connection to the
"remote node" cannot be
established

communication timeout - no
response from remote node

0xEE000002 Timeout - no response from
"remote node"

invalid parameter size in ads
request

0xEE000003 Invalid parameter size in ADS
request

communication driver: not ready 0xEE000004 Driver is not ready
communication driver: out of
memory

0xEE000005 Driver out of memory

invalid syntax in ads request (f.e.
symbolname too long or invalid
syntax

0xEE000006 Invalid syntax in the ADS request
(e.g. symbol name too long or
invalid syntax)

local tag name not found 0xEE000007 Local tag name not found
local tag array index does not exist 0xEE000008 Local tag array index does not exist
number of elements extends local
tag

0xEE000009 Number of elements exceeds the
local tag

local tag datatype does not match 0xEE00000A Data type of the local tag does not
match

number elements extends remote
tag

0xEE00000B Number of elements exceeds the
remote tag

remote tag datatype does not
match

0xEE00000C Data type of the remote tag does
not match

remote node reports: link address
not valid (invalid slot)

0xEE00000D "Remote node" reports: link
address not valid (invalid slot)

path segment error (CIP Data
Table RW: remote tag name not
found)

0xEE00000E Error in path segment (in case of
CIP data table RW: remote tag
name not found

path destination error (CIP Data
Table RW: remote tag array index
invalid)

0xEE00000F Error in destination path (in case of
CIP data table RW: remote tag
array index invalid)

In FB internally generated error:
timeout

0xEEFF0001 In function block internally
generated error: timeout

in FB internally generated error:
destination data buffer to small

0xEEFF0002 In function block internally
generated error: destination data
buffer too small

in FB internally generated error:
source data buffer to large

0xEEFF0003 In function block internally
generated error: source data buffer
too large

unsuccessful statuscode from
remote node

0xEEFE0000 unsuccessful status code from
"remote node

in FB internally generated error,
undefined

0xEEFF0000 In function block internally
generated error, undefined

PLC API

TF628160 Version: 1.7.0

6.2 Functions

6.2.1 RSL5KSTRING_TO_STRING

The function converts an RSL5KString value [} 61] to a string value.

FUNCTION RSL5KSTRING_TO_STRING : STRING(82)

 Inputs
VAR_INPUT
 in : RSL5K_STRING;
END_VAR

6.2.2 STRING_TO_RSL5KSTRING

This function converts an RSL5KString value [} 61] to a string value

FUNCTION STRING_TO_RSL5KSTRING: RSL5K_STRING

 Inputs
VAR_INPUT
 in : STRING(82);
END_VAR

6.2.3 F_GET_ETHERNETIP_ERROR_TEXT

This function returns a descriptive text based on an error number.

See list of TF6281 error codes [} 63]

FUNCTION F_GET_ETHERNETIP_ERROR_TEXT: STRING(80)

 Inputs
VAR_INPUT
 nErrorId : UDINT;
END_VAR

PLC API

TF6281 61Version: 1.7.0

6.3 Data types

6.3.1 RSL5K_STRING
TYPE RSL5K_STRING
 STRUCT
 LENGTH : DINT;
 DATA : ARRAY [0..81] OF SINT
 END_STRUCT
END_TYPE

Name Type Description
Length DINT Length of the Char characters contained in the data (max.

82).
Data ARRAY OF SINT Char character

Appendix

TF628162 Version: 1.7.0

7 Appendix

7.1 Prepare Wireshark® recording
The Wireshark® recording can be created with a network hub, a network switch with port mirroring, e.g. the
Beckhoff ET2000, or with the Promiscuous Mode of the TwinCAT system. In Promiscuous Mode, it can
happen that the telegrams are not recorded in the correct order, depending on the system performance and
traffic. It is recommended to use an ET2000 for the recording.

https://www.beckhoff.com/et2000

Appendix

TF6281 63Version: 1.7.0

7.2 Error Codes TF6281
Error Code

hex /
(deci-
mal)

Description Remedy/meaning

CN_ORC_ALREADY_USED 0x100 /
(256)

Connection already
in use

The connection is already established;
use another connection or close this
one.

CN_ORC_BAD_TRANSPORT 0x103 /
(259)

Transport type not
supported

The transport type is not supported

CN_ORC_OWNER_CONFLICT 0x106 /
(262)

More than one guy
configuring

A connection already exists; a further
connection cannot be established

CN_ORC_BAD_CONNECTION 0x107 /
(263)

Trying to close
inactive connection

 Faulty connection

CN_ORC_BAD_CONN_TYPE 0x108 /
(264)

Unsupported
connection type

The connection type is not supported;
check your setting.

CN_ORC_BAD_CONN_SIZE 0x109 /
(265)

Connection size
mismatch

The connection size does not fit; check
your setting.

CN_ORC_CONN_UNCONFIGURE
D

0x110 /
(272)

Connection
unconfigured

Connection was not configured

CN_ORC_BAD_RPI 0x111 /
(273)

Unsupportable RPI The task time usually doesn't match;
make sure that the EL6652 operates
internally with 1 ms and that you can
adjust this with the Cycle Time
Multiplier. Otherwise, adjust the task
time.

CN_ORC_NO_CM_RESOURCES 0x113 /
(275)

Conn Mgr out of
connections

No further resources are available

CN_ORC_BAD_VENDOR_PRODU
CT

0x114 /
(276)

Mismatch in
electronic key

Incorrect manufacturer number

CN_ORC_BAD_DEVICE_TYPE 0x115 /
(277)

Mismatch in
electronic key

Incorrect device type

CN_ORC_BAD_REVISION 0x116 /
(278)

Mismatch in
electronic key

Incorrect revision number

CN_ORC_BAD_CONN_POINT 0x117 /
(279)

Non-existent
instance number

Incorrect connection number

CN_ORC_BAD_CONFIGURATION 0x118 /
(280)

Bad config instance
number

Faulty configuration

CN_ORC_CONN_REQ_FAILS 0x119 /
(281)

No controlling
connection open

The connection could not be
established

CN_ORC_NO_APP_RESOURCES 0x11A /
(282)

App out of
connections

No further free connections available.

If you cannot fix this error yourself, Support will require the following information:

• TwinCAT version and build number and a
• Wireshark® recording

Appendix

TF628164 Version: 1.7.0

7.3 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Trademark statements

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Third-party trademark statements

DeviceNet and EtherNet/IP are trademarks of ODVA, Inc.

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Wireshark is a registered trademark of Sysdig, Inc.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf6281

mailto:info@beckhoff.com?subject=TF6281
https://www.beckhoff.com
https://www.beckhoff.com/tf6281

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Requirements
	4 Licensing
	5 Configuration
	5.1 EtherNet/IP™
	5.2 Sync Task
	5.3 Settings dialog
	5.3.1 Firewall setting
	5.3.2 IP Routing

	5.4 Changing EtherNet/IP™ settings
	5.4.1 Object description
	5.4.2 ADS-Write command
	5.4.3 ADS-Read command
	5.4.4 Sample

	5.5 Creating the EtherNet/IP™ adapter in other EtherNet/IP™ scanners
	5.5.1 Sample for Rockwell CPUs

	5.6 Diag History
	5.7 Connecting EtherNet/IP™ slaves
	5.8 PLC to PLC communication
	5.8.1 Allen-Bradley-CompactLogix

	5.9 Data Table Read and Write
	5.10 Diagnostics
	5.11 Acyclic communication via Explicit Messaging
	5.11.1 Common Industrial Protocol (CIP)
	5.11.2 Forward Message to AMS Port via Explicit Messaging

	6 PLC API
	6.1 Function blocks
	6.1.1 FB_GET_ATTRIBUTE_SINGLE
	6.1.2 FB_SET_ATTRIBUTE_SINGLE
	6.1.3 FB_CUSTOM_SERVICE
	6.1.4 FB_CIP_DATA_TABLE_RDWR
	6.1.5 Error Codes function blocks

	6.2 Functions
	6.2.1 RSL5KSTRING_TO_STRING
	6.2.2 STRING_TO_RSL5KSTRING
	6.2.3 F_GET_ETHERNETIP_ERROR_TEXT

	6.3 Data types
	6.3.1 RSL5K_STRING

	7 Appendix
	7.1 Prepare Wireshark® recording
	7.2 Error Codes TF6281
	7.3 Support and Service

		documentation@beckhoff.com
	2025-04-30T14:52:05+0200
	Beckhoff Automation, Verl
	Documentation Publishing

