
BECKHOFF New Automation Technology

Funktionsbeschreibung | DE

TF5262 | TwinCAT 3 CNC

Online Adaption

29.07.2025 | Version: 0.99 [Pre-Release]

Hinweise zur Dokumentation

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentliche Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH.

Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Allgemeine und Sicherheitshinweise

Verwendete Symbole und ihre Bedeutung

In der vorliegenden Dokumentation werden die folgenden Symbole mit nebenstehendem Sicherheitshinweis und Text verwendet. Die (Sicherheits-) Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

Symbole im Erklärtext

- 1. Gibt eine Aktion an.
- ⇒ Gibt eine Handlungsanweisung an.

▲ GEFAHR

Akute Verletzungsgefahr!

Wenn der Sicherheitshinweis neben diesem Symbol nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!

⚠ VORSICHT

Schädigung von Personen und Maschinen!

Wenn der Sicherheitshinweis neben diesem Symbol nicht beachtet wird, können Personen und Maschinen geschädigt werden!

HINWEIS

Einschränkung oder Fehler

Dieses Symbol beschreibt Einschränkungen oder warnt vor Fehlern.

Tipps und weitere Hinweise

Dieses Symbol kennzeichnet Informationen, die zum grundsätzlichen Verständnis beitragen oder zusätzliche Hinweise geben.

Allgemeines Beispiel

Beispiel zu einem erklärten Sachverhalt.

NC-Programmierbeispiel

Programmierbeispiel (komplettes NC-Programm oder Programmsequenz) der beschriebenen Funktionalität bzw. des entsprechenden NC-Befehls.

Spezifischer Versionshinweis

Optionale, ggf. auch eingeschränkte Funktionalität. Die Verfügbarkeit dieser Funktionalität ist von der Konfiguration und dem Versionsumfang abhängig.

Inhaltsverzeichnis

	Hinw	eise zur	Dokumentation	3
	Allge	emeine u	und Sicherheitshinweise	5
1	Über	sicht		10
2	Geoi	metrisch	e Vorschubanpassung	11
	2.1	Übersic	cht	11
	2.2	Beschre	eibung	12
		2.2.1	Integration in den NC-Kanal	12
	2.3	Anbind	ung einer geometrischen Vorschubanpassung via TcCOM	14
		2.3.1	Methoden der Schnittstelle	14
		2.3.2	Instanzdaten	14
		2.3.3	Konfigurieren und Anmelden des TcCOM-Objekts	15
	2.4	Prograr	mmierung	16
	2.5	Parame	eter	16
	2.6	Fehlern	neldungen	18
3	Dyna	amische	Konturvorsteuerung	19
	3.1	Übersic	cht	19
	3.2	Beschre	eibung	20
		3.2.1	Externe Berechnungsmodus	22
	3.3	Prograr	mmierung	23
	3.4	Anbind	ung einer dynamischen Konturvorsteuerung via TcCOM	24
		3.4.1	Methoden der Schnittstelle	24
		3.4.2	Instanzdaten	26
		3.4.3	Konfigurieren und Anmelden des TcCOM-Objekts	27
	3.5	Parame	eter	28
		3.5.1	Parametrierbeispiel	28
	3.6	Fehlern	neldungen	30
4	Onlii	ne Werkz	zeugradiuskompensation	31
	4.1	Übersic	cht	31
	4.2	Beschre	eibung	32
		4.2.1	Befehlsübersicht	36
		4.2.2	Eigenschaften der Werkzeugradiuskorrektur	37
	4.3	Anbind	ung einer Online-Werkzeugradiuskompensation via TcCOM	43
		4.3.1	Methoden der Schnittstelle	43
		4.3.2	Instanzdaten	43
		4.3.3	Konfigurieren und Anmelden des TcCOM-Objekts	45
	4.4	Progran	mmierung	46
		4.4.1	TRC Optionen für Online-TRC und 2-Pfad	46
		4.4.2	TRC Option GEN_CIR_BLOCK_IN_CORNER	50
		4.4.3	TRC Option G236_LIN	50
		4.4.4	TRC Option PERPENDICULAR_RADIUS_CHANGE	51
	4.5	Parame	eter	56
	4.6	Fehlern	neldungen	57
5	Erste	ellungsa	blauf eines TcCOM-Objekts	58
		-		

7	Stichwortverzeichnis
7	6 Support und Service
7	5.4.2 Objekt der Online-Werkzeugradiuskorrektur einbinden
า 7	5.4.1 Erstellen eines Objekts für Online-Werkzeugradiuskompensation
7	5.4 Online Werkzeugradiuskompensation
6	5.3.2 Objekt der dynamischen Konturvorsteuerung einbinden
6	5.3.1 Erstellen eines Objekts für dynamische Konturvorsteuerung
6	5.3 Dynamische Konturvorsteuerung
6	5.2.2 Objekt der geometrischen Vorschubanpassung einbinden
6	5.2.1 Erstellen eines Objekts für geometrische Vorschubanpassung
6	5.2 Geometrische Vorschubanpassung
5	5.1 Neues Projekt anlegen

Abbildungsverzeichnis

Abb. 1	Geometrische Vorschubanpassung im NC-Kanal	12
Abb. 2	Integration des Objekts im NC-Kanal	13
Abb. 3	Geometrische Wirkungsweise der programmierten und korrigierten Bahn	20
Abb. 4	Anordnung der dynamischen Konturvorsteuerung im System	21
Abb. 5	Dynamische Konturvorsteuerung mit impliziter Überlagerung	22
Abb. 6	Dynamische Konturvorsteuerung mit expliziter Offsetüberlagerung in erster Kinematikstufe	23
Abb. 7	Platzierung der Online-Werkzeugradiuskorrektur im NC-Kanal	32
Abb. 8	Prinzipieller Ablauf im NC-Kanal	33
Abb. 9	Ablauf 2-Pfadprogrammierung	34
Abb. 10	2-Pfad-Anwendung mit schräg stehendem Draht	35
Abb. 11	Werkstück mit statischer Werkzeugradiuskorrektur	37
Abb. 12	Tangentenverhalten am Außeneck einer Geometrie	38
Abb. 13	Schräg stehendes Werkzeug am Außeneck	39
Abb. 14	Änderung des Werkzeugradius am Außeneck	40
Abb. 15	Verhalten am Inneneck einer Geometrie an Satzübergängen mit Winkel 90°	41
Abb. 16	Änderung des Werkzeugradius am Inneneck einer Geometrie an Satzübergängen mit Winkel kleiner 180°	42
Abb. 17	Orthogonales Ausfahren der Änderung des Werkzeugradius	51
Abb. 18	Erstellung eines neuen Projekts	58
Abb. 19	Konfiguration des neuen Projekts	59
Abb. 20	Anlegen einer CNC-Konfiguration	59
Abb. 21	Anlegen eines Kanals	60
Abb. 22	Anlegen einer Achse	60
Abb. 23	Treiberprojekt für geometrische Vorschubanpassung	61
Abb. 24	Klasse festlegen	62
Abb. 25	Benennung der Klasse	62
Abb. 26	Treiber erstellen	63
Abb. 27	Integration des TcCOM-Objekts	64
Abb. 28	Eigenschaften des TcCOM-Objekts	64
Abb. 29	Treiberprojekt für dynamische Kontursteuerung anlegen	66
Abb. 30	Klasse festlegen	67
Abb. 31	Benennung der Klasse	67
Abb. 32	Treiber erstellen	68
Abb. 33	Integration des TcCOM-Objekts	69
Abb. 34	Eigenschaften des TcCOM-Objekts	69
Abb. 35	Treiberprojekt für Online-Werkzeugradiuskompensation	71
Abb. 36	Transformationsklasse festlegen	72
Abb. 37	Benennen der Transformationsklasse	72
Abb. 38	Treiber erstellen	73
Abb. 39	Integration des TcCOM-Objekts	74
Abb. 40	Eigenschaften des TcCOM-Objekts	75

1 Übersicht

Das Dokument stellt eine Zusammenfassung der folgenden drei Funktionalitäten dar:

- · Online Werkzeugradiuskompensation
- · Dynamische Konturvorsteuerung
- · Geometrische Vorschubanpassung

Aufgabe

Die Online Werkzeugradiuskompensation ermöglicht die Integration technologiespezifischer Werkzeugkorrekturen in Echtzeit, besonders geeignet für Drahterodieren mit schräg stehendem Draht in 2-Pfad-Anwendungen.

Die "Dynamische Konturvorsteuerung" (DCC) kompensiert Laufzeitabweichungen zwischen der programmierten Kontur und der realen Werkzeugkontur, die durch physikalische Verformungen des Werkzeugs entstehen können. Ziel ist es, die reale Istkontur an die Sollkontur anzupassen.

Die "Geometrische Vorschubanpassung" ermöglicht es dem Anwender, vom Interpolator eine konstante Schnittgeschwindigkeit anzufordern und diese aktiv zu beeinflussen. Dies dient insbesondere beim Drahterodieren dazu, einen konstanten Flächenabtrag sicherzustellen.

Eigenschaften

Online Werkzeugradiuskompensation: Wirksam nur bei aktiver Werkzeugradiuskorrektur (G41/G42). Erfordert eine C2-stetige Parallelbahn aus der statischen Werkzeugradiuskorrektur. Unterstützt 2-Pfad-Konfigurationen mit unabhängiger Dynamikplanung und synchronisierter Ausgabe.

Dynamische Konturvorsteuerung: Kann intern durch CNC-Funktionen oder extern durch ein kundenspezifisches TcCOM-Objekt realisiert werden. Modifiziert die interpolierte Werkzeugmittelbahn basierend auf aktuellen und vorherigen Konturelementen, Werkzeugparametern und SPS-Einfluss (z.B. Geschwindigkeitsabhängigkeit).

Geometrische Vorschubanpassung: Berechnung eines Faktors, der mit der aktuellen Sollgeschwindigkeit und dem Overridefaktor multipliziert wird. Die Berechnung erfolgt auf Basis einer zyklisch korrigierten Radiusmittelpunktbahn, wobei der Werkzeugradius aus dem effektiven Werkzeugradius und einem Spaltwert besteht.

Programmierung

Die genaue Programmierung bitte den jeweiligen Unterkapiteln entnehmen:

- Online Werkzeugradiuskompensation [▶ 46]
- Dynamische Konturvorsteuerung [▶ 23]
- Geometrische Vorschubanpassung [▶ 16]

Obligatorischer Hinweis zu Verweisen auf andere Dokumente

Zwecks Übersichtlichkeit wird eine verkürzte Darstellung der Verweise (Links) auf andere Dokumente bzw. Parameter gewählt, z.B. [PROG] für Programmieranleitung oder P-AXIS-00001 für einen Achsparameter.

Technisch bedingt funktionieren diese Verweise nur in der Online-Hilfe (HTML5, CHM), allerdings nicht in PDF-Dateien, da PDF keine dokumentenübergreifenden Verlinkungen unterstützt.

Geometrische Vorschubanpassung

Übersicht 2.1

Aufgabe

Mit der Funktionalität "Geometrische Vorschubanpassung" hat der Anwender die Möglichkeit, vom Interpolator eine konstante Schnittgeschwindigkeit anzufordern und diese zu beeinflussen.

Diese Funktionalität ist ab CNC-Version V3.1.3108 verfügbar.

Diese Funktionalität ist Bestandteil einer lizenzpflichtigen Zusatzoption.

Eigenschaften

Die Funktionalität kann durch ein anwenderspezifisches TcCOM-Objekt verwendet werden.

Mit der geometrischen Vorschubanpassung wird ein Faktor ermittelt, der mit der aktuellen Sollgeschwindigkeit und dem Overridefaktor multipliziert wird.

Programmierung/Parametrierung

Die Funktionalität kann über den NC-Befehl #GEO FEED ADAPT [▶ 16] und über die entsprechenden <u>Kanalparameter</u> [▶ 11] konfiguriert, aktiviert und deaktiviert werden.

Verweise auf andere Dokumente

Zwecks Übersichtlichkeit wird eine verkürzte Darstellung der Verweise (Links) auf andere Dokumente bzw. Parameter gewählt, z.B. [PROG] für Programmieranleitung oder P-AXIS-00001 für einen Achsparameter.

Technisch bedingt funktionieren diese Verweise nur in der Online-Hilfe (HTML5, CHM), allerdings nicht in PDF-Dateien, da PDF keine dokumentenübergreifende Verlinkungen unterstützt.

2.2 Beschreibung

Mit der geometrischen Vorschubanpassung kann bei der Drahterosion ein Faktor berechnet werden um einen konstanten Flächenabtrag zu gewährleisten.

Die Berechnungen der Funktionalität erfolgen auf Basis einer zyklisch korrigierten Radiusmittelpunktbahn. Der Werkzeugradius setzt sich dabei aus dem effektiven Werkzeugradius und einem zusätzlichen Parameter, dem Spaltwert, zusammen.

Die korrigierten Bahnpositionen werden dem TcCom-Objekt zyklisch bereitgestellt.

Die zusätzlichen benötigten Parameter können über die SPS übergeben werden. Eine Definition der Parameter im NC-Programm ist ebenfalls möglich.

Das Ergebnis der Berechnungen ist ein Faktor, der multiplikativ in den kommandierten Vorschub eingeht.

Nachfolgend ist die Anordnung der Vorschubanpassung im NC-Kanal dargestellt:

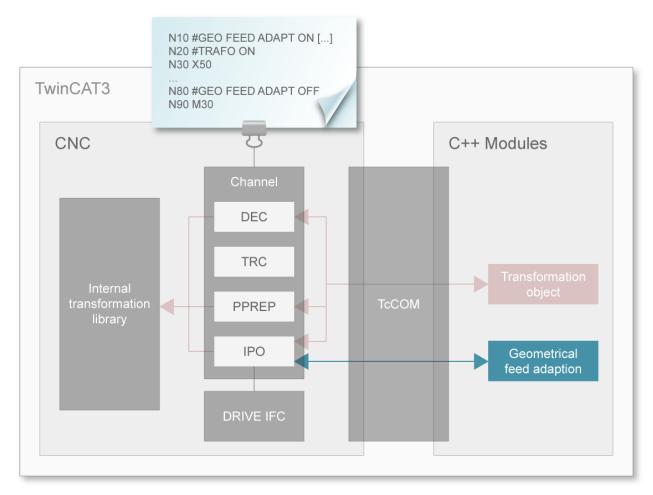


Abb. 1: Geometrische Vorschubanpassung im NC-Kanal

Bei einem TcCOM-Objekt mit instanzspezifischen Variablen muss das Objekt im jeweiligen CNC-Kanal konfiguriert werden.

2.2.1 Integration in den NC-Kanal

Die geometrische Vorschubanpassung besteht aus mehreren Elementen:

1. Aufruf der Online TRC mit Caller ID "geometric feed adaption". Der Spaltwert aus dem NC-Programm wird hierbei noch zum Drahtradius addiert.

- 2. Transformieren der Positionen von PCS- in MCS-Koordinaten. Die Positionen der zweiten Ebene werden relativ zum Referenzkoordinatensystem berechnet.
- 3. Aufruf des TcCOM-Objekts "Geometrische Vorschubanpassung". Berechnung des zusätzlichen Overridefaktors. Dieser wird noch mit dem Overridewert von der SPS multipliziert.

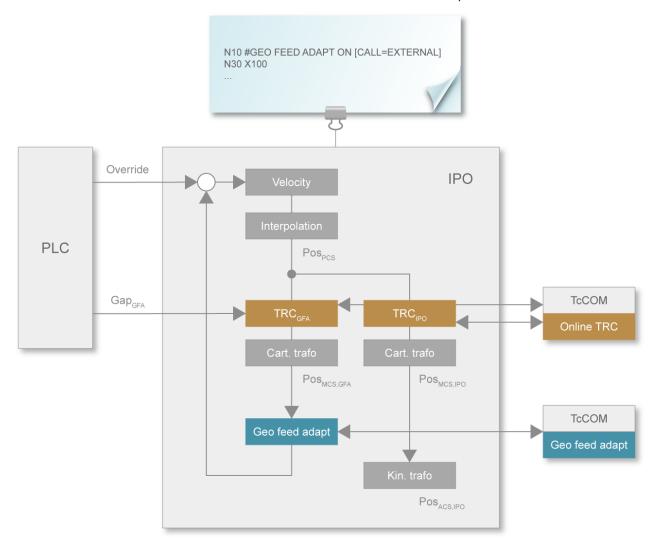


Abb. 2: Integration des Objekts im NC-Kanal

2.3 Anbindung einer geometrischen Vorschubanpassung via TcCOM

2.3.1 Methoden der Schnittstelle

Zu implementierende Methode

Folgende Methode sind für eine geometrische Vorschubanpassung zu implementieren (TcCncGeoFeedAdaptInterfaces.h):

virtual HRESULT TCOMAPI CalculateFeedAdaption(PTcGeoFeedAdaptParam gfa)=0;

CalculateFeedAdaption	In aktivem Zustand der Funktionalität erfolgt die Berechnung in jedem Interpolationstakt.
	Abhängig vom Flächenverhältnis berechnet die Methode einen Übersteuerungsfaktor (Overridefaktor).
	Input: Aktuellen Parameter der geometrische Vorschubanpassung

2.3.2 Instanzdaten

Arbeitsdaten - PTcGeoFeedAdaptParam

Parameter der Methoden:

Die Parameter für die einzelnen Methoden werden in gekapselter Form über die Struktur PTcGeoFeedAdaptParam (TcCncGeoFeedAdaptInterfaces.h) übergeben.

```
struct PTcGeoFeedAdaptParam
  // config: EcGeoFeedAdapt ParamStandard
 EcGeoFeedAdapt type;
 // config: dimension of path : 1 or 2
             dim_path;
 // config: dimension of tool parameters
                   dim tool param;
 // tool parameters
const double     * i_tool_param;
  // feed adaption factor
 double * o_feed_adaption;
 struct TcGeoFeedAdaptPath path[2]; //
```

Pfadspezifische Parameter:

```
struct TcGeoFeedAdaptPath
 // input: 3-dim GFA position X,Y,Z
 const double * i position gfa;
 // Input: 3-dim display position X,Y,Z
```


2.3.3 Konfigurieren und Anmelden des TcCOM-Objekts

Registrieren in TwinCAT

Zum Anmelden eines TcCOM-Objekts werden folgende Daten verwendet (TcCncServices.h):

- Type 5 (TCCNC_REGISTEROBJECT_TYPE_GEO_FEED_ADAPT) fest vorgegeben.
- Verwendet das TcCOM-Objekt keine instanzspezifischen Variablen, so wird der Eintrag Group auf 0 gesetzt.
- Verwendet das TcCOM-Objekt instanzspezifische Variablen, so wird der Eintrag Group auf die jeweilige Kanalnummer [1;12] gesetzt, dem das Objekt zugeordnet ist. Maximal ein Objekt pro Kanal.
- · Index wird nicht verwendet.

Die Anmeldung des Objekts der geometrischen Vorsteuerung erfolgt über nachfolgendes TcCOM-Interface, welches in der Datei TcCncInterfaces.h definiert ist:

- virtual HRESULT TCOMAPI RegisterObject(TcCncRegisterObject& id, ITcUnknown* ipUnk)=0;
- virtual HRESULT TCOMAPI UnregisterObject(TcCncRegisterObject& id)=0;

Bereitstellung des TcCOM-Objekts

Nach der Generierung der geometrischen Vorschubanpassung müssen 2 Dateien vorhanden sein:

- 1. TMC-Datei
- 2. Treiberdatei

Die Beschreibung der geometrischen Vorschubanpassung ist in der TMC-Datei enthalten, z.B. TcCncMyGeoFeedAdapt.tmc.

Diese ist im Arbeitsverzeichnis der Solution.

Das Verzeichnis der Treiberdatei ist abhängig von Release oder Debug:

- <TwinCAT> \3.1\sdk_products\TwinCAT RT (x64)\Release bzw.
- <TwinCAT > \3.1\sdk_products\TwinCAT RT (x64)\Debug

Mit der Aktivierung der Konfiguration wird die jeweilige Treiberdatei automatisch in das Verzeichnis <TwinCAT>\3.1\Driver\AutoInstall kopiert.

Anhand des obigen Beispielnamens: TcCncMyGeoFeedAdapt.sys

Der Anwender muss nur die Generierung (Debug/Release) auslösen und die entsprechende Konfiguration aktivieren.

Die Vorgehensweise zum Debuggen der erstellten geometrischen Vorschubanpassung ist analog zum Debuggen einer McCOM-Transformation. Diese Vorgehensweise wird in [McCOM-Trafo, Kapitel: Transformation debuggen] geschildert.

Laden des Objekts

2.4 **Programmierung**

#GEO FEED ADAPT [ON/OFF] [CALL=.. [I<i>=..] [F<j>=..] { I<i>=..}{ F<j>=..}]

ON Geometrische Vorschubanpassung aktivieren, analog zu P-CHAN-00386 [▶ 16].

OFF Geometrische Vorschubanpassung deaktivieren, analog zu P-CHAN-00386 [10].

CALL=.. Typ der verwendeten Methode der geometrischen Vorschubanpassung.

Zulässige Kennungen:

DEFAULT - es wird die Methode aus P-CHAN-00387 [▶ 17] verwendet (Standard)

• EXTERNAL - Verwenden der kundenspezifischen Methode

|<**i>=**.. SGN32 Wert, analog zum Parameter P-CHAN-00391 [▶ 17].

Mit i=0 - 3.

Das Gleichheitszeichen ist zwingend erforderlich.

z.B. I2=17

F<j>=.. REAL64 Wert, analog zum Parameter P-CHAN-00390 [▶ 17].

> Mit j=0 - 3. Achtung:

F0=<Spaltwert> [0.1 µm] ist fest vergeben.

Das Gleichheitszeichen ist zwingend erforderlich,

z.B. F2=3.45

Im NC-Programm kann auf die folgenden V.G.-Variablen zugegriffen werden:

Variable	Bedeutung	Datentyp	Einheit der Ein/- Ausgabe	Erlaubter Zugriff: Lesen/ Schreiben
V.G.GEO_FEED_ADA PT.ACTIVE	Zeigt an, ob die geometrischen Vorschubanpassung aktiv ist.	Boolean	0 / 1	L
V.G.GEO_FEED_ADA PT.CALL	Zeigt an, welche Methode der geometrischen Vorschubanpassung verwendet wird.	SGN32	0 / 1	L
	0: EXTERN			

Externe geometrische Vorschubanpassung in 2-Pfad-Anwendung

```
N180 #GEO FEED ADAPT ON [CALL=EXTERNAL F0=12.3]
N260 G141
N270 G139 G26
N270 G01 G42 : X10 Y0 : U12 V2
N400 G40 : X0 Y0 : U0 V0
N410 #GEO FEED ADAPT OFF
N420 M30
```

2.5 **Parameter**

P-CHAN-00386	An-/Abwahl der Funktion konstanter Flächenvorschub
Beschreibung	Mit diesem Parameter wird der konstante Flächenvorschub angewählt / abgewählt.
Parameter	geo_feed_adapt.active
Datentyp	BOOLEAN
Datenbereich	0/1
Dimension	
Standardwert	0

Anmerkungen	Verfügbar ab V3.1.3108

P-CHAN-00387	Auswahl der Berechnungsmethode (Flächenvorschub)
Beschreibung	Mit diesem Parameter wird ausgewählt, ob der konstante Flächenvorschub in einem COM-Objekt berechnet wird oder den in der CNC integrierten Algorithmus verwendet.
Parameter	geo_feed_adapt.call
Datentyp	STRING
Datenbereich	EXTERNAL, BUILTIN
Dimension	
Standardwert	EXTERNAL
Anmerkungen	Verfügbar ab V3.1.3108
	BUILTIN ist nur für interne Tests

P-CHAN-00390	REAL64 Input-Parameter für den Flächenvorschub
Beschreibung	Es können insgesamt vier REAL64 Input-Parameter für den Flächenvorschub definiert werden.
	Achtung: f[0]= <spaltwert> in [0.1 μm] Dieser Eintrag ist fest vergeben.</spaltwert>
Parameter	geo_feed_adapt.param.f[i] mit i = 03
Datentyp	REAL64
Datenbereich	$MIN(REAL64) \le f[i] \le MAX(REAL64)$
Dimension	
Standardwert	0.0
Anmerkungen	Verfügbar ab V3.1.3108

P-CHAN-00391	SGN32 Input-Parameter für den Flächenvorschub
Beschreibung	Es können insgesamt vier SGN32 Input-Parameter für den Flächenvorschub definiert werden.
Parameter	geo_feed_adapt.param.i[i] mit i = 03
Datentyp	SGN32
Datenbereich	$MIN(SGN32) \le i[i] \le MAX(SGN32)$
Dimension	
Standardwert	0
Anmerkungen	Verfügbar ab V3.1.3108

Fehlermeldungen 2.6

Fehler-ID	Beschreibung
ID 50752	Bei Aktivierung der geometrischen Vorschubanpassung ist ein Fehler aufgetreten.
ID 293100	Angeforderte Werkzeugradius-Kompensation ist nicht konfiguriert.
ID 293101	Ungenügend Speicher für Verwaltung des COM-Interfaces.
ID 293102	Verzeichnis der COM-Schnittstellenobjekte ist nicht vorhanden.
ID 293103	ISGCtrl ist noch nicht initialisiert.
ID 293104	Angegebenes COM-Interface ID ist nicht konfiguriert.
ID 293105	Angegebenes COM-Interface kann intern nicht gespeichert werden.

3 Dynamische Konturvorsteuerung

3.1 Übersicht

Aufgabe

Durch physikalische Verformung des Werkzeugs können Unterschiede zur programmierten Kontur entstehen. Mithilfe der dynamischen Konturvorsteuerung können diese Differenzen zur Laufzeit kompensiert werden.

Diese Funktionalität ist ab CNC-Version V3.1.3108 verfügbar.

Diese Funktionalität ist Bestandteil einer lizenzpflichtigen Zusatzoption.

Eigenschaft

Die Funktionalität kann abhängig vom verwendeten Berechnungsmodus

- · intern mit CNC-Funktionen oder
- · extern durch ein anwenderspezifisches TcCOM-Objekt

verwendet werden.

Programmierung / Parametrierung

Die Funktionalität kann über den NC-Befehl <u>#DCC [▶ 23]</u> und über die entsprechenden <u>Kanalparameter [▶ 28]</u> konfiguriert, aktiviert und deaktiviert werden.

Verweise auf andere Dokumente

Zwecks Übersichtlichkeit wird eine verkürzte Darstellung der Verweise (Links) auf andere Dokumente bzw. Parameter gewählt, z.B. [PROG] für Programmieranleitung oder P-AXIS-00001 für einen Achsparameter.

Technisch bedingt funktionieren diese Verweise nur in der Online-Hilfe (HTML5, CHM), allerdings nicht in PDF-Dateien, da PDF keine dokumentenübergreifende Verlinkungen unterstützt.

3.2 Beschreibung

Aufgrund einer physikalischen Verformung des Werkzeugs kann die resultierende von der programmierten Kontur abweichen. Um diesen Fehler zu kompensieren, modifiziert die dynamische Kontursteuerung (engl. Dynamic Contour Control = DCC) die interpolierte Werkzeugmittelbahn in Abhängigkeit vom aktuellen und vorherigen Konturelement, den Werkzeugparametern und einem Online-Einfluss der SPS (z.B. der Geschwindigkeitsabhängigkeit).

Nachfolgend ist die Wirkungsweise der dynamischen Konturvorsteuerung veranschaulicht: Die Aufgabe der Konturvorsteuerung ist es, durch entsprechende Modifikation die Sollkontur so zu beeinflussen, dass die reale Istkontur der programmierten Sollkontur entspricht.

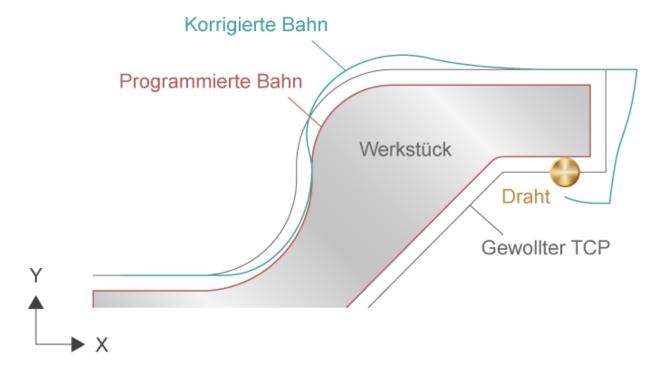


Abb. 3: Geometrische Wirkungsweise der programmierten und korrigierten Bahn

Abb. 4: Anordnung der dynamischen Konturvorsteuerung im System

Bei einem TcCOM-Objekt mit instanzspezifischen Variablen muss das Objekt im jeweiligen CNC-Kanal konfiguriert werden.

Die Festlegung des Berechnungsmodus erfolgt entweder über P-CHAN-00385 [\triangleright 28] oder im NC-Befehl #DCC [\triangleright 23][CALL=..]

- EXTERNAL, externe Vorgabe
- BUILTIN, CNC-interner Algorithmus

3.2.1 Externe Berechnungsmodus

#DCC[CALL=EXTERNAL]

Die Berechnung der Versätze und die Überlagerung mit den Achspositionen können in den Methoden des TcCOM-Objekts durchgeführt werden.

Nachfolgend ist die Anordnung im System einer 2-Pfad-Konfiguration dargestellt. Die Überlagerung der Offsets wird implizit im TcCOM-Objekt durchgeführt:

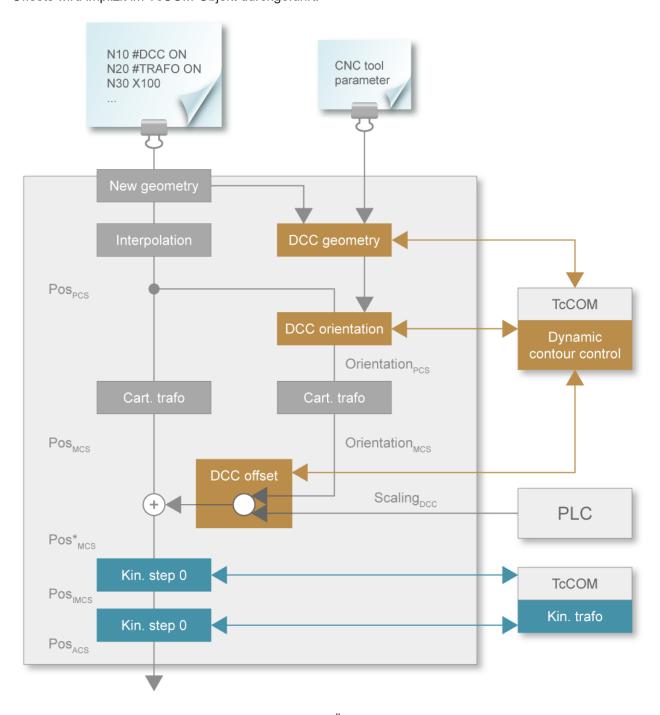


Abb. 5: Dynamische Konturvorsteuerung mit impliziter Überlagerung

Die Berechnung der Bewegung im ACS System erfolgt durch die kinematische Transformation. Zusätzlich zu den Standardparametern wird der kinematischen Rückwärtstransformation die Orientierung der korrigierten Geometrie im MCS mitgegeben.

Der Skalierungsfaktor kann dem TcCOM-Objekt durch die SPS über den zyklischen Input bereitgestellt werden.

Nachfolgend ist die Anordnung im System dargestellt mit der Überlagerung von Offsets eines TcCOM-Objekts der kinematischen Transformation:

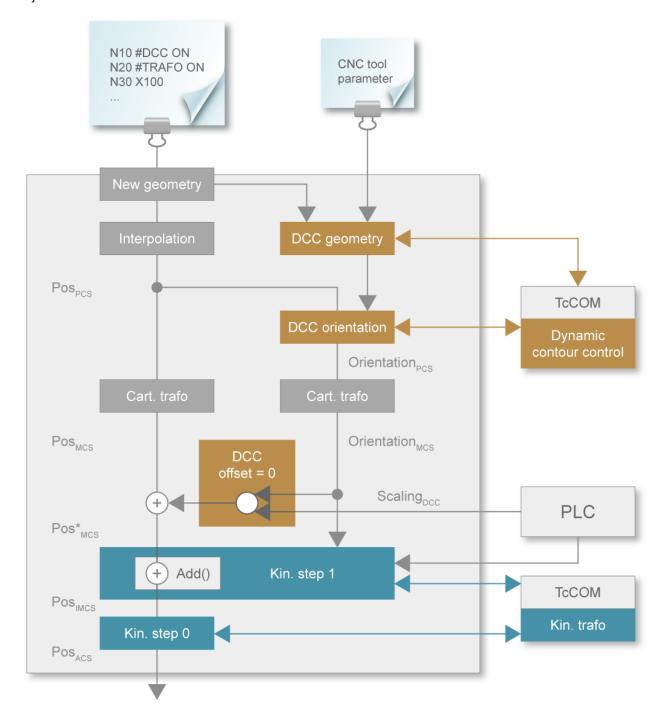


Abb. 6: Dynamische Konturvorsteuerung mit expliziter Offsetüberlagerung in erster Kinematikstufe

Sollen die Offsets der dynamische Konturvorsteuerung nicht implizit von der CNC überlagert werden, so muss die Funktion "CalculateOffset()" Offsets mit dem Wert 0 zurückgeben.

Der Anwender kann die Berechnung und Überlagerung der Offsets in einem TcCOM-Objekt vom Typ "Kinematische Transformation" durchführen.

3.3 Programmierung

Syntax:

#DCC [ON/OFF] [CALL=.. [I<i>=..] [F<j>=..] { I<i>=..}{ F<j>=..}]

ON Dynamischen Konturvorsteuerung aktivieren, analog zu <u>P-CHAN-00384 [▶ 28]</u>.

OFF Dynamischen Konturvorsteuerung deaktivieren, analog zu <u>P-CHAN-00384</u> [▶ 28].

CALL=.. Typ der verwendeten Methode der dynamischen Konturvorsteuerung.

Zulässige Kennungen:

DEFAULT - es wird die Methode aus P-CHAN-00385 [▶ 28] verwendet (Standard)

• EXTERNAL - Verwenden der kundenspezifischen Methode

I<i>=.. SGN32 Wert, analog zum Parameter P-CHAN-00389 [▶ 28].

Mit i=0-3.

Das Gleichheitszeichen ist zwingend erforderlich,

z.B. I2=17

F<j>=.. REAL64 Wert, analog zum Parameter <u>P-CHAN-00388</u> [▶ 28].

Mit j=0 - 3.

Das Gleichheitszeichen ist zwingend erforderlich,

z.B. F2=3.45

Im NC-Programm kann auf die folgenden V.G.-Variablen zugegriffen werden:

Variable	Bedeutung	Datentyp	Einheit der Ein/- Ausgabe	Erlaubter Zugriff: Lesen/ Schreiben
V.G.DCC.ACTIVE	Zeigt an ob die dynamische Konturvorsteuerung aktiv ist.	Boolean	0 / 1	L
V.G.DCC.CALL	Zeigt an welche Methode der dynamischen Konturvorsteuerung verwendet wird.	SGN32	0 / 1	L
	0: EXTERN			

#DCC-Varianten der Konturvorsteuerung

```
; Verwenden der Standardeinstellungen
N10 #DCC ON ; Aktivierung
N15 #DCC OFF ; Abwahl DCC

; Verwenden der externen Methode
N20 #DCC ON [CALL=EXTERNAL] ; Aktivierung
N30 #DCC [CALL=DEFAULT] ; Rücksetzen auf Standard
N40 #DCC ON ; Aktivierung mit aktueller Methode

; Externe Methode mit Parametern
N50 #DCC ON [CALL=EXTERNAL IO=1 FO=2.2 I1=7]
```

3.4 Anbindung einer dynamischen Konturvorsteuerung via TcCOM

3.4.1 Methoden der Schnittstelle

Zu implementierende Methoden

Folgende Methoden sind für eine dynamische Konturüberwachung zu implementieren (TcCncDynContourControlInterface.h):

- virtual HRESULT TCOMAPI CalculateOnNewGeometry(PTcDynContourCtrlParam dcc)=0;
- virtual HRESULT TCOMAPI CalculateOrientation(PTcDynContourCtrlParam dcc)=0;

• virtual HRESULT TCOMAPI CalculateOffset(PTcDynContourCtrlParam dcc)=0;

CalculateOnNewGeometry	Berechnung erfolgt mit jedem neuen Geometrieelement.
	Abhängig vom aktuellen Geometrieübergang (nachfolgende Tabelle) und den Werkzeugparametern berechnet die Methode einen Normalisierungsfaktor.
	Input: Aktuelle Parameter der dynamischen Konturvorsteuerung.
CalculateOrientation	Berechnung erfolgt mit jeder neuen Position.
	Abhängig von der aktuellen Position berechnet die Methode die neue Orientierung der Kompensation.
	Input: Aktuelle Parameter der dynamischen Konturvorsteuerung.
CalculateOffset	Berechnung erfolgt mit jeder neuen Position.
	Berechnung der Achsoffsets im MCS, abhängig von der zuvor ermittelten Orientierung der Kompensation. Die Achsoffsets werden den Achspositionen überlagert.
	Input: Aktuelle Parameter der dynamischen Konturvorsteuerung.
	Hinweis:
	Werden die Offsets in der kinematischen Transformation überlagert, so müssen die Offsets dieser Funktion den Wert 0 haben.

Wert-Geometrieübergang	Bedeutung
0	Positionswechsel
1	Stillstand in Linearbewegung
2	Stillstand in Zirkularbewegung
3	Übergang von Linearbewegung zu Linearbewegung
4	Übergang von Zirkularbewegung zu Linearbewegung
5	Übergang von Linearbewegung zu Zirkularbewegung
6	Übergang von Zirkularbewegung zu Zirkularbewegung

3.4.2 Instanzdaten

Arbeitsdaten - TcCncDynContourCtrlParameter

Parameter der Methoden

Die Parameter für die einzelnen Methoden werden in gekapselter Form über die Struktur TcCncDynContourCtrlParam (TcCncDynContourCtrlInterfaces.h) übergeben:

```
struct TcDynContourCtrlParam
 // config: EcDynContourCtrl ParamStandard
 EcDynContourCtrl type;
 // config: dimension of path : 1 or 2
 int
                   dim_path;
 // config: dimension of tool parameter
                   dim_tool_param;
 // input : <n>-dimensional actual parameter of tool
 const double     * i tool param;
 // input : path velocity [m/s]
 double
              i velocity;
 struct TcDynContourCtrlPath path[2];
```

Pfadspezifische Parameter

```
struct TcDynContourCtrlPath
 // calculation on new block: CalculateOnNewGeometry()
 // input: type of element, see enum EtDynContourCtrl
            i_element_type;
 // input: radius of circle
 double
                    i circle radius;
 // input : actual tangent change
 //(== 0 for C2-continuous contour elements), in radiant
         i tangent variation;
 // output: normalization factor, dependent on geometry and technology (tool parameters): X0
                    * o norm factor;
 // calculation orientation on new sample
 // position: CalculateOrientation()
 // input : normalization factor: X0
                   i norm factor;
 // input : 3-dim actual position of path: X,Y,Z
 const double * i_position;
 // in-/output : 3-dim normalized orientation
                  * o_orientation_pcs;
 // calculation offset: CalculateOffset()
 // input : 3-dim normalized orientation
              * i orientation mcs;
 // output: 3-dim offset of path
 double
                 * o_offset;
```


3.4.3 Konfigurieren und Anmelden des TcCOM-Objekts

Registrieren in TwinCAT

Zum Anmelden eines TcCOM-Objekts werden folgende Daten verwendet (TcCncServices.h):

- Type 4 (TCCNC_REGISTEROBJECT_TYPE_DYN_CONTOUR_CTRL) fest vorgegeben.
- Verwendet das TcCOM-Objekt keine instanzspezifischen Variablen, so wird der Eintrag Group auf 0 gesetzt.
- Verwendet das TcCOM-Objekt instanzspezifischen Variablen, so wird der Eintrag Group auf die jeweilige Kananlnummer [1;12] gesetzt, zu dem das Objekt zugeordnet ist.
 Maximal ein Objekt pro Kanal.
- · Index wird nicht verwendet.

Die Anmeldung des Objekts der dynamischen Konturvorsteuerung erfolgt über nachfolgendes TcCOM-Interface, welches in der Datei TcCncInterfaces.h definiert ist:

- virtual HRESULT TCOMAPI RegisterObject(TcCncRegisterObject& id, ITcUnknown* ipUnk)=0;
- virtual HRESULT TCOMAPI UnregisterObject(TcCncRegisterObject& id)=0;

Bereitstellung des TcCOM-Objekts

Nach der Generierung der dynamischen Konturvorsteuerung müssen 2 Dateien vorhanden sein:

- 1. TMC-Datei
- 2. Treiberdatei

Die Beschreibung der dynamischen Konturvorsteuerung ist in der TMC-Datei enthalten, z.B. TcCncMyDynContCtrl.tmc.

Diese ist im Arbeitsverzeichnis der Solution.

Das Verzeichnis der Treiberdatei ist abhängig von Release oder Debug:

- <TwinCAT> \3.1\sdk\ products\TwinCAT RT (x64)\Release bzw.
- <TwinCAT> \3.1\sdk\ products\TwinCAT RT (x64)\Debug

Mit der Aktivierung der Konfiguration wird die jeweilige Treiberdatei automatisch in das Verzeichnis <TwinCAT>\3.1\Driver\AutoInstall kopiert.

Anhand des obigen Beispielnamens: TcCncMyDynContCtrl.sys

Der Anwender muss nur die Generierung (Debug/Release) auslösen und die entsprechende Konfiguration aktivieren.

Die Vorgehensweise zum Debuggen der erstellten dynamischen Konturvorsteuerung ist analog zum Debuggen einer McCOM-Transformation. Diese Vorgehensweise wird in [McCOM-Trafo//Transformation debuggen] geschildert.

Laden des Objekts

Das Laden des Objekts für die dynamische Konturvorsteuerung ist in "Objekt der dynamischen Konturvorsteuerung einbinden [▶ 69]" veranschaulicht.

3.5 Parameter

P-CHAN-00384	An-/Abwahl der Funktion dynamische Konturvorsteuerung (Dynamic Contour Control)
Beschreibung	Mit diesem Parameter wird die Funktion 'Dynamische Konturvorsteuerung' an-/ abgewählt.
Parameter	dcc.active
Datentyp	BOOLEAN
Datenbereich	0/1
Dimension	
Standardwert	0
Anmerkungen	Verfügbar ab V3.1.3108

P-CHAN-00385	Auswahl der Berechnungsmethode (Konturvorsteuerung)	
Beschreibung	Dieser Parameter legt fest, dass die Funktion dynamische Konturvorsteuerung mit einem TcCOM-Objekt berechnet wird.	
Parameter	dcc.call	
Datentyp	STRING	
Datenbereich	EXTERNAL, BUILTIN	
Dimension		
Standardwert	EXTERNAL	
Anmerkungen	Verfügbar ab V3.1.3108	
	BUILTIN ist nur für interne Tests	

P-CHAN-00388	REAL64 Input-Parameter der Konturvorsteuerung (Dynamic Contour Control)
Beschreibung	Es können insgesamt vier REAL64 Input-Parameter für die dynamische Konturvorsteuerung definiert werden.
Parameter	dcc.param.f[i] mit i = 03
Datentyp	REAL64
Datenbereich	$MIN(REAL64) \le f[i] \le MAX(REAL64)$
Dimension	
Standardwert	0.0
Anmerkungen	Verfügbar ab V3.1.3108

P-CHAN-00389	SGN32 Input-Parameter der Konturvorsteuerung (Dynamic Contour Control)	
Beschreibung	Es können insgesamt vier SGN32 Input-Parameter für die dynamische Konturvorsteuerung definiert werden.	
Parameter	dcc.param.i[i] mit i = 03	
Datentyp	SGN32	
Datenbereich	$MIN(SGN32) \le i[i] \le MAX(SGN32)$	
Dimension		
Standardwert	0	
Anmerkungen	Verfügbar ab V3.1.3108	

3.5.1 Parametrierbeispiel

Alle Einstellungen der dynamischen Konturvorsteuerung können in den Kanalparametern durchgeführt werden. Diese sind bei jedem Programmstart gültig und können im NC-Programm über den <u>#DCC-Befehl</u> [<u>▶ 23]</u> modifiziert werden.

Standardeinstellungen:

dcc.active FALSE
dcc.call EXTERNAL

Parametrierbeispiel mit zusätzlichen Werten:

dcc.active TRUE dcc.call EXTERNAL dcc.i0 1 dcc.f0 2.3 dcc.i1 2 dcc.f1 17.3

Fehlermeldungen 3.6

Fehler-ID	Beschreibung
ID 50732	Reservierter Speicher für TwinCAT3 TcCOM-Interface der dynamischen Konturvorsteuerung zu klein.
ID 50733	Bei Aktivierung der dynamischen Konturvorsteuerung ist ein Fehler aufgetreten.
ID 50734	Die Option zur dynamischen Konturvorsteuerung ist in der aktuellen Softwareversion nicht enthalten.
ID 50735	Die Berechnung CalculateOnNewGeometry() der dynamischen Konturvorsteuerung hat einen Fehler gemeldet.
ID 50736	Die Berechnung CalculateOrientation() der dynamischen Konturvorsteuerung hat einen Fehler gemeldet.
ID 50737	Die Berechnung CalculateOffset() der dynamischen Konturvorsteuerung hat einen Fehler gemeldet.
ID 293100	Angeforderte Werkzeugradius-Kompensation ist nicht konfiguriert.
ID 293101	Ungenügend Speicher für Verwaltung des COM-Interfaces.
ID 293102	Verzeichnis der COM-Schnittstellenobjekte ist nicht vorhanden.
ID 293103	ISGCtrl ist noch nicht initialisiert.
ID 293104	Angegebenes COM-Interface ID ist nicht konfiguriert.
ID 293105	Angegebenes COM-Interface kann intern nicht gespeichert werden.

4 Online Werkzeugradiuskompensation

4.1 Übersicht

Aufgabe

Mit der Funktionalität Online-Werkzeugradiuskompensation hat der Anwender die Möglichkeit, technologiespezifische Werkzeugkorrekturen zu integrieren.

Speziell im Bereich Drahterodieren bei schräg stehendem Draht in 2-Pfadanwendungen ist diese Funktionalität geeignet.

Diese Funktionalität ist ab CNC-Version V3.1.3108 verfügbar.

Diese Funktionalität ist Bestandteil einer lizenzpflichtigen Zusatzoption.

Eigenschaft

Die Online-TRC (TRC = Tool Radius Compensation) ist nur wirksam bei aktiver Werkzeugradiuskorrektur. Die Aktivierung erfolgt mit G41 oder G42, die Deaktivierung mit G40.

Parameter

Der Parameter P-CHAN-00550 [▶ 56] muss bei Verwendung einer 2-Pfadanwendung gesetzt werden.

Programmierung

Die Aktivierung und Deaktivierung der Funktionalität erfolgt mit den Standardbefehlen der Werkzeugradiuskorrektur (G40/G41/G42). Die entsprechende Definition der Online-Werkzeugradiuskorrektur erfolgt mit dem <u>#TRC-Befehl</u> [• 46].

Verweise auf andere Dokumente

Zwecks Übersichtlichkeit wird eine verkürzte Darstellung der Verweise (Links) auf andere Dokumente bzw. Parameter gewählt, z.B. [PROG] für Programmieranleitung oder P-AXIS-00001 für einen Achsparameter.

Technisch bedingt funktionieren diese Verweise nur in der Online-Hilfe (HTML5, CHM), allerdings nicht in PDF-Dateien, da PDF keine dokumentenübergreifende Verlinkungen unterstützt.

4.2 Beschreibung

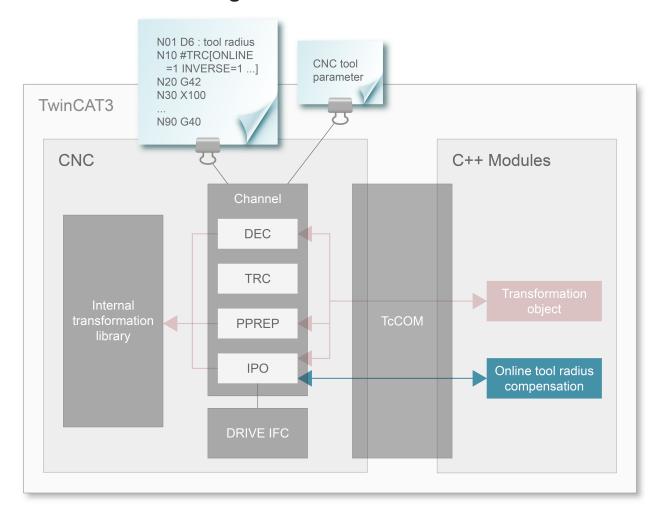


Abb. 7: Platzierung der Online-Werkzeugradiuskorrektur im NC-Kanal

Voraussetzung:

Für die Nutzung der Online-Werkzeugradiuskorrektur muss die erzeugte Parallelbahn der statischen Werkzeugradiuskorrektur im Nicht-Echtzeitteil der CNC eine C2-stetige Kontur (d.h. krümmungsstetig) zur Verfügung stellen. Aus diesem Grund ist die Befehlsauswahl im Bereich der statischen Werkzeugradiuskorrektur eingeschränkt.

Die Auflistung verfügbarer und nicht zulässiger Befehle für die Werkzeugradiuskorrektur ist im Unterkapitel Befehlsübersicht [▶_36] zu finden.

Ablauf im NC-Kanal

Anhand der nachfolgenden Abbildungen wird der prinzipielle Ablauf erläutert.

Über das erstellte NC-Programm wird im Nicht-Echtzeitteil der CNC eine Parallelbahn bestimmt, für diese wird eine Dynamikplanung durchgeführt.

Im Echtzeitteil der CNC wird, ausgehend von dieser dynamisch geplanten Bahn, erneut auf die programmierte Bahn zurückgerechnet. Auf diese folgt dann die Online-Werkzeugradiuskorrektur, die in jedem Takt die Korrekturen berechnet.

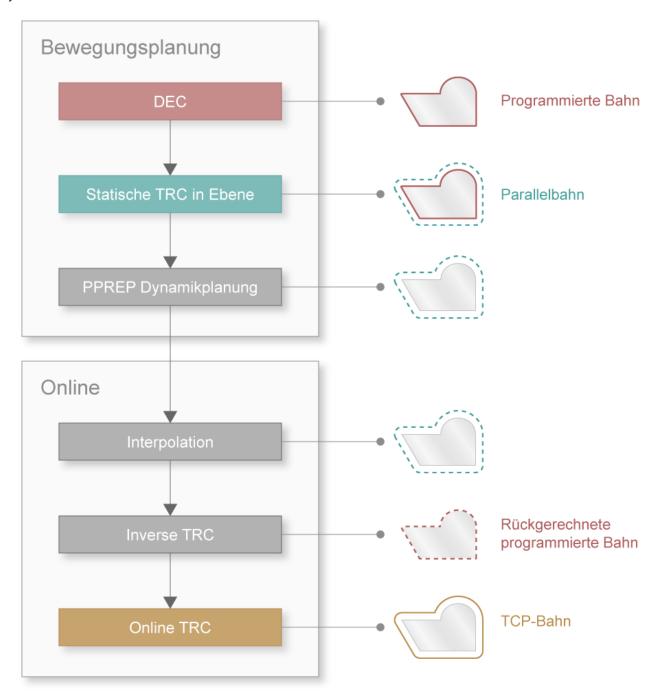


Abb. 8: Prinzipieller Ablauf im NC-Kanal

Mehrpfad-Konfiguration und Werkzeugradiuskorrektur

Die Werkzeugradiuskorrektur erlaubt die Programmierung von 2 Pfaden in einer NC-Zeile, siehe PROG Kapitel: 2-Pfadprogrammierung. In jedem Pfad werden die Parallelbahn und die Dynamikplanung unabhängig vom jeweils anderen Pfad durchgeführt. Zum Zeitpunkt der Interpolation werden beide Pfade wieder synchronisiert ausgegeben.

Voraussetzung dafür ist der gesetzte Parameter P-CHAN-00550 [▶ 56]:

configuration.tool_radius_comp.function MULTI_PATH

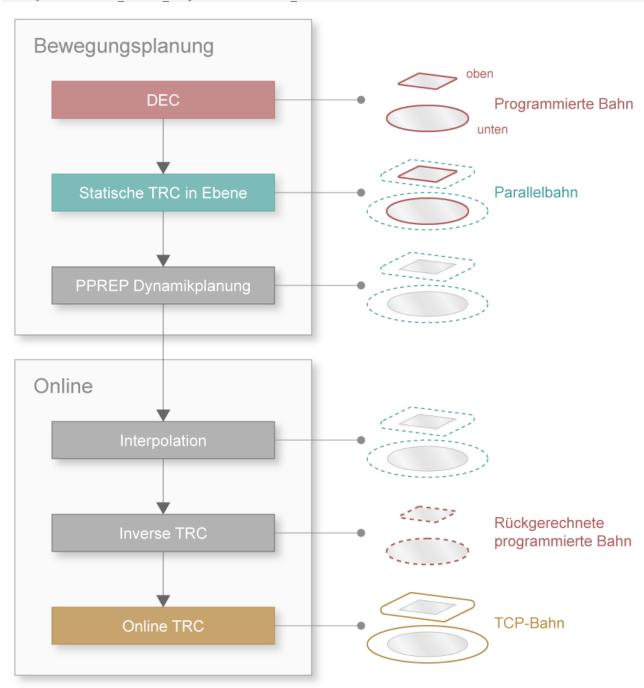


Abb. 9: Ablauf 2-Pfadprogrammierung

Basierend auf der "Rückgerechneten programmierten Bahn" kann der Anwender die eigene Online-Werkzeugradiuskorrektur einbringen.

Anwendungsbeispiel

Die Nutzung des TcCOM-Objekts in Verbindung mit einer 2-Pfad-Anwendung ist eine Einsatzmöglichkeit. Bei schräg stehendem Werkzeug (Draht) wird dabei in der Ebene aus dem Werkzeugradius eine Ellipse.

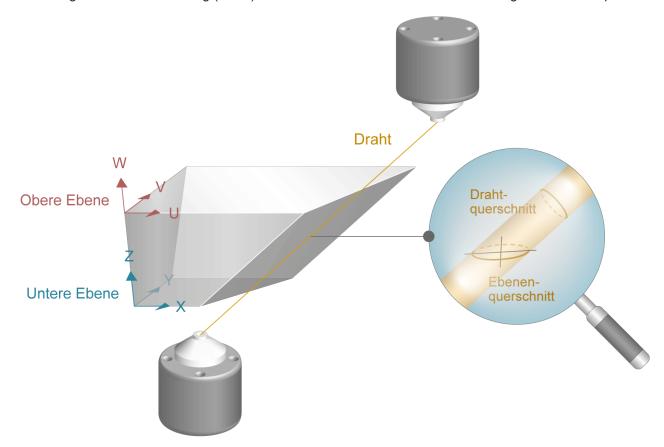


Abb. 10: 2-Pfad-Anwendung mit schräg stehendem Draht

4.2.1 Befehlsübersicht

Nachfolgend sind die G-Befehle, die die Werkzeugradiuskorrektur im NC-Programm betreffen, in zulässige und unzulässige Befehle aufgelistet:

Zulässige Befehle

NC-Befehl	Bedeutung
G26	Einfügen zirkularer Übergangssätze
G40	Abwahl Werkzeugradiuskorrektur
G41	Anwahl Werkzeugradiuskorrektur links der Kontur
G42	Anwahl Werkzeugradiuskorrektur rechts der Kontur
G138	Modus: Direkte Anwahl
G139	Modus: Indirekte Anwahl
G140	Abwahl der Konturausblendung
G141	Anwahl der Konturausblendung
G236	Modus: Direkte An-/Abwahl auf die Bahn
G237	Modus: Lotrechte An-/Abwahl
G239	Modus: Direkte An-/Abwahl ohne Satz

Unzulässige Befehle

NC-Befehl	Bedeutung
G05	Tangentiale An-/ Abwahl der Werkzeugradiuskorrektur
G25	Einfügen linearer Übergangssätze
G238	Modus: Inneneckanwahl der Werkzeugradiuskorrektur
#TRC [REMOVE_MASKED_BLOCKS]	Löschen von Konturschleifen

Version: 0.99 [Pre-Release]

Bei Verwenden eines unzulässigen Befehls wird der Fehler mit ID 90166 ausgegeben.

4.2.2 Eigenschaften der Werkzeugradiuskorrektur

Dem McCOM-Objekt der Online-Werkzeugradiuskorrektur wird immer folgendes übergeben:

- · Der aktuelle Werkzeugradius,
- · die Position,
- · der Bahntangentenvektor und der
- · Werkzeugrichtungsvektor

Das Verhalten bei Satzübergängen und An- und Abwahl der statischen Werkzeugradiuskorrektur dient nur dem Verständnis.

Ausgangslage für die Online-Werkzeugradiuskorrektur ist die Berechnung der statischen Werkzeugradiuskorrektur.

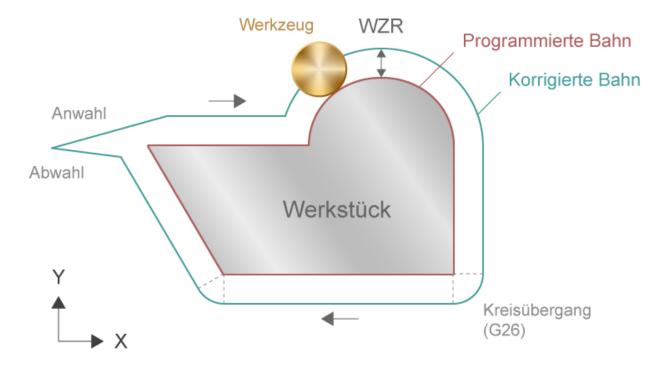


Abb. 11: Werkstück mit statischer Werkzeugradiuskorrektur

4.2.2.1 Verhalten an Satzübergängen mit Winkeln größer 180°

Bei Satzübergängen mit Übergangswinkeln größer als 180° fügt die statische Werkzeugradiuskorrektur, um die Kontur zu schließen, Kreiselemente ein. Mit diesem eingefügten Kreiselement ist die Parallelbahn tangentenstetig.

Die Konturtangente ändert sich kontinuierlich in diesem Kreiselement.

Die Zeit für Änderung der Konturtangente ist näherungsweise der zurückgelegte Kreisfahrweg geteilt durch die erreichte Geschwindigkeit.

Die inverse TRC wird auf einen Punkt reduziert während der Interpolation eines eingefügten Kreiselements.

Auf Basis der inversen TRC-Bahn kann die Online-Werkzeugradiuskorrektur den realen TRC-Weg berechnen.

Senkrecht stehendes Werkzeug

Bei senkrecht stehendem Werkzeug ist die resultierende TRC-Bahn identisch mit der geplanten interpolierten Bahn.

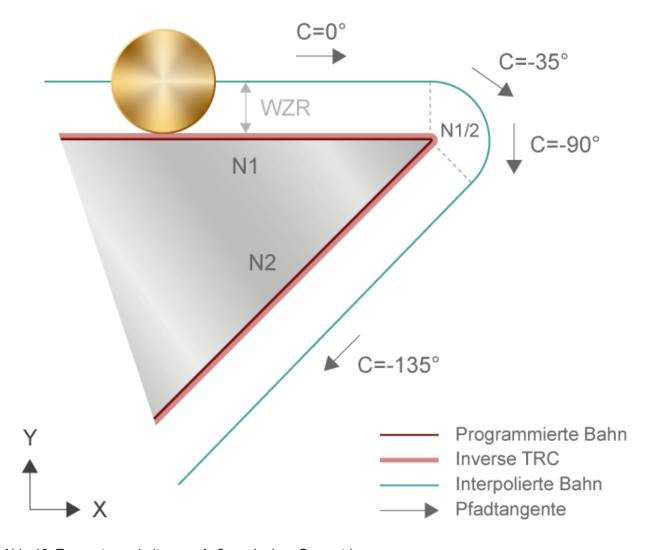


Abb. 12: Tangentenverhalten am Außeneck einer Geometrie

Verhalten bei schräg stehendem Werkzeug

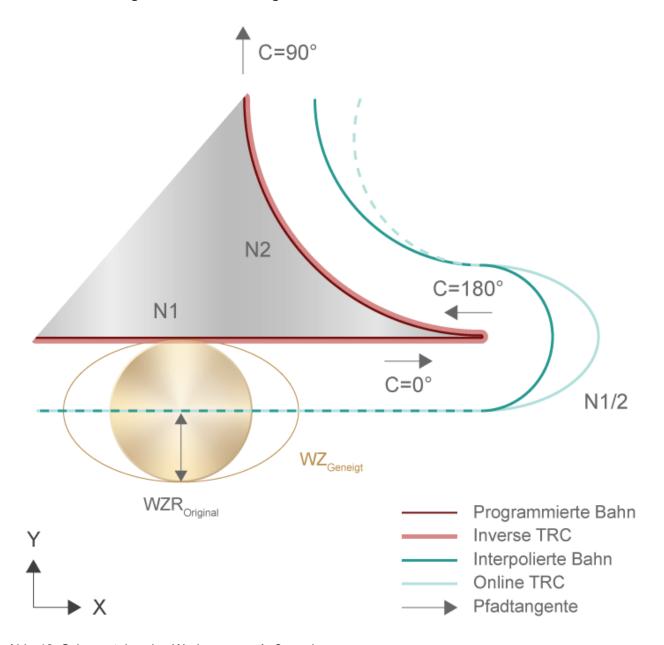


Abb. 13: Schräg stehendes Werkzeug am Außeneck

Weitere Satzübergänge sind unter [PROG, Kapitel: Generierung von Korrektursätzen] zu finden.

Änderung des Werkzeugradius

Wird der Werkzeugradius bei aktiver Werkzeugradiuskorrektur geändert, so kann dies über die <u>TRC-Option</u> <u>"PERPENDICULAR RADIUS CHANGE" [▶ 51]</u> beeinflusst werden.

Im Standardfall, bei inaktiver Option, wird der geänderte Werkzeugradius im nachfolgenden Bewegungssatz ausgefahren (siehe Verhalten bei Änderung des Werkzeugradius).

Anschließend wird der Werkzeugradius mit gesetzter Option am Außeneck geändert.

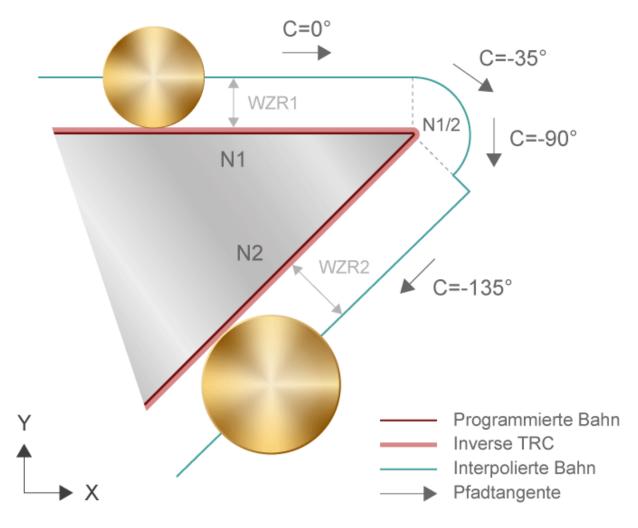


Abb. 14: Änderung des Werkzeugradius am Außeneck

4.2.2.2 Verhalten an Satzübergängen mit Winkeln kleiner 180°

Bei Satzübergängen mit Übergangswinkeln kleiner als 180° werden die beiden Satzelemente verkürzt.

Die inverse TRC verschiebt die beiden beteiligten Sätze zurück auf die programmierte Kontur. Der Verlauf der inversen TRC ist an dieser Stelle weder C0- noch C1-stetig. Während der Interpolation springt der Verlauf der inversen TRC-Bahn vom Satzende des ersten Satzes zum Satzanfang des zweiten Satzes.

Auf Basis der inversen TRC-Bahn kann die Online-Werkzeugradiuskorrektur den realen TRC-Weg berechnen.

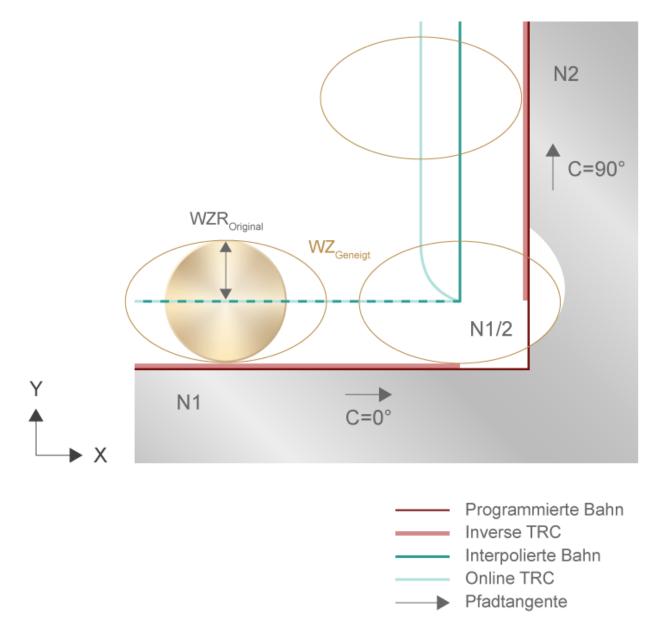


Abb. 15: Verhalten am Inneneck einer Geometrie an Satzübergängen mit Winkel 90°

Weitere Satzübergänge sind unter [PROG, Kapitel: Generierung von Korrektursätzen] zu finden.

Änderung des Werkzeugradius

Wird der Werkzeugradius bei aktiver Werkzeugradiuskorrektur geändert, so kann dies über die <u>TRC-Option</u> <u>"PERPENDICULAR RADIUS CHANGE" [▶ 51]</u> beeinflusst werden.

Im Standardfall, bei inaktiver Option, wird der geänderte Werkzeugradius im nachfolgenden Bewegungssatz ausgefahren (siehe Verhalten bei Änderung des Werkzeugradius).

Ist die Option gesetzt, so ergibt sich folgender Verlauf am Inneneck.

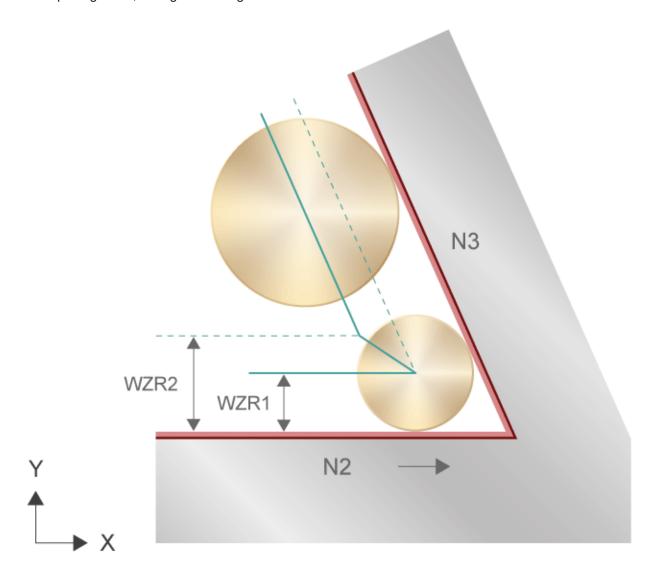


Abb. 16: Änderung des Werkzeugradius am Inneneck einer Geometrie an Satzübergängen mit Winkel kleiner 180°

4.3 Anbindung einer Online-Werkzeugradiuskompensation via TcCOM

4.3.1 Methoden der Schnittstelle

Zu implementierende Methoden

Folgende Methode ist für eine Online-Werkzeugradiuskompensation zu implementieren (TcCncToolRadiusCompInterfaces.h):

• virtual HRESULT TCOMAPI CalculateTrcPath (PTcToolRadiusCompParam trc)=0;

Berechnung der kompensierten Bahn anhand des gegebenen Werkzeugradius im Programmierkoordinatensystem.
Input:
Aktuellen Parameter der Werkzeugradiuskompensation.

Die Member-Variablen im Konstruktor der Klasse müssen für die Dimensionierung der Ein- und Ausgangskoordinaten initialisiert werden.

4.3.2 Instanzdaten

Arbeitsdaten - TcToolRadiusCompParam

Parameter der Methoden

Die Parameter für die einzelnen Methoden werden in gekapselter Form über die Struktur TcCncDynContourCtrlParam (TcCncDynContourCtrlInterfaces.h) übergeben:

```
struct TcToolRadiusCompParam
{
    EcToolRadiusComp type;
    int dimension; // dimension of positions, 3 or 6 for 2 pathes
    int dim_radius; // dimension of radius, 1 or 2 for 2 pathes

    const double * i_path; // input: position of path, see dimension
    const double * i_tangent; // input: tangent of path, see dimension
    const double * i_tool_direction; // input: direction of tool, see dimension
    const double * i_radius; // input: actual tool radius, see dim_radius

    double * o_path; // output: position of compensated path
}
```


Struktur TcCncParam

Die folgenden Parameter werden im Allgemeinen in jeder TcCOM-Schnittstelle verwendet:

Identifikation der Aufrufer (Caller-ID)

Die online Werkzeugradiuskompensation wird an unterschiedlichen Stellen im Interpolationsmodul aufgerufen. Zur Identifikation sind die folgenden Kennungen verfügbar:

Identifikationsnummer	Caller-ID
1000	EcCncTrcCallerID_Display
1001	EcCncTrcCallerID_Interpolation
1002	EcCncTrcCallerID_GeometricFeedAdaption
1003	EcCncTrcCallerID_TargetPos

Das TcCOM-Objekt kann die Caller-IDs verwenden, um unterschiedliche Algorithmen für die Interpolation und für die Anzeigefunktionalität zu implementieren, z.B.:

- · Bei der Interpolation wird in beiden Pfaden der individuelle Radius verwendet.
- Für die Anzeige in beiden Pfaden wird der gleiche (z.B. sekundäre) Radius verwendet.

4.3.3 Konfigurieren und Anmelden des TcCOM-Objekts

Registrieren in TwinCAT

Zum Anmelden eines TcCOM-Objekts der Online-Werkzeugradiuskompensation werden die folgenden Daten verwendet (TcCncServices.h):

- Type 3 (CCNC_REGISTEROBJECT_TYPE_TOOL_RADIUS_COMP) fest vorgegeben.
- Verwendet das TcCOM-Objekt keine instanzspezifischen Variablen, so wird der Eintrag Group auf 0 gesetzt.
- Verwendet das TcCOM-Objekt instanzspezifischen Variablen, so wird der Eintrag Group auf die jeweilige Kananlnummer [1;12] gesetzt, zu dem das Objekt zugeordnet ist.
 Maximal ein Objekt pro Kanal.
- · Index wird nicht verwendet.

Die Anmeldung des Objekts der online Werkzeugradiuskompensation erfolgt über nachfolgendes TcCOM-Interface, welches in der Datei TcCncInterfaces.h definiert ist:

- virtual HRESULT TCOMAPI RegisterObject(TcCncRegisterObject& id, ITcUnknown* ipUnk)=0;
- virtual HRESULT TCOMAPI UnregisterObject(TcCncRegisterObject& id)=0;

Bereitstellung des TcCOM-Objekts

Nach der Generierung der Online-Werkzeugradiuskompensation müssen 2 Dateien vorhanden sein:

- 1. TMC-Datei
- 2. Treiberdatei

Die Beschreibung der Online-Werkzeugradiuskompensation ist in der TMC-Datei enthalten, z.B. TcCncMyOnlineToolRadiusComp.tmc.

Diese ist im Arbeitsverzeichnis der Solution.

Das Verzeichnis der Treiberdatei ist abhängig von Release oder Debug:

- <TwinCAT> \3.1\sdk_products\TwinCAT RT (x64)\Release bzw.
- <TwinCAT > \3.1\sdk_products\TwinCAT RT (x64)\Debug

Mit der Aktivierung der Konfiguration wird die jeweilige Treiberdatei automatisch in das Verzeichnis <TwinCAT>\3.1\Driver\AutoInstall kopiert.

Anhand des obigen Beispielnamens: TcCncMyOnlineToolRadiusComp.sys

Der Anwender muss nur die Generierung (Debug/Release) auslösen und die entsprechende Konfiguration aktivieren.

Die Vorgehensweise zum Debuggen der erstellten Online-Werkzeugradiuskompensation ist analog zum Debuggen einer McCOM-Transformation. Diese Vorgehensweise wird in [McCOM-Trafo, Kapitel: Transformation debuggen] geschildert.

Laden des Objekts

Das Laden des Objekts für die Online-Werkzeugradiuskompensation ist in "Objekt der Online-Werkzeugradiuskorrektur einbinden [• 74]" veranschaulicht.

4.4 Programmierung

Die Nutzung der Online-Werkzeugradiuskompensation (auch Online-TRC) wird über die Programmierung der Optionen INVERSE und ONLINE [▶ 46] festgelegt. Wirksam wird die gewählte Einstellung mit der Aktivierung der Werkzeugradiuskorrektur (WRK) mit G41 oder G42. Die Abwahl der Online-TRC erfolgt mit der Abwahl der WRK mit G40.

HINWEIS

Für die Nutzung der Online-TRC müssen beide Optionen #TRC [INVERSE=1 ONLINE=1] gesetzt sein.

Es wird sonst die Fehlermeldung mit der ID 22125 ausgegeben.

WRK-Anwahl mit gesetzten Optionen

```
N10 V.G.WZ_AKT.R = 0.3
N20 G26
N30 G138
; ...
N70 #TRC [INVERSE=1 ONLINE=1] ( Setzen der Optionen)
N100 G0 X0 Y0 U0 V0
N280 G41 ( Anwahl WRK)
( Kontur)
; ...
N500 G40 ( Abwahl WRK)
; ...
N550 M30
```

Programmierung des Werkzeugradius

Gleicher Werkzeugradius in beiden Pfaden

```
N.. V.G.WZR=0.15
```

alternativ

```
N.. V.G.WZR=0.15 : X100 Y20: U100 V20
```

Unterschiedliche Werkzeugradien in beiden Pfaden

```
N..: V.G.WZR=0.139 : V.G.WZR=0.15
alternativ
N..: V.G.WZR=0.139 X100 Y20 : V.G.WZR=0.15 U100 V20
```

Festlegen des Werkzeugradius im Referenzpfad

```
N.. : V.G.WZR=0.134 :
```

Festlegen des Werkzeugradius im zweiten Pfad

```
N..: : V.G.WZR=0.151
```

4.4.1 TRC Optionen für Online-TRC und 2-Pfad

Online-TRC

Mit den nachfolgenden Parametern kann Einfluss auf die Online-Werkzeugradiuskorrektur genommen werden. Diese kann nur gesetzt werden mit aktiver Werkzeugradiuskorrektur (G41/G42).

Mit dem Parameter INVERSE kann die durch die Werkzeugradiuskorrektur entstandene verschobene Parallelbahn auf die ursprünglich programmierte Bahn zurückgerechnet werden.

Der Parameter ONLINE ermöglicht bei gesetztem Parameter INVERSE Einstellungen für die Online-Werkzeugradiuskompensation. Diese Online-Werkzeugradiuskompensation kann über ein TcCOM-Objekt realisiert werden.

HINWEIS

Der Parameter ONLINE darf nur auf einen Wert ungleich 0 gesetzt werden, wenn der Parameter INVERSE aktiv ist. Bei inaktivem INVERSE wird der Fehler ID 22125 ausgegeben.

Syntax:

#TRC [[INVERSE=..] [ONLINE=..] [ONLINE_BY_VECTOR=..]]

INVERSE=.. Rückrechnen der durch die Werkzeugradiuskorrektur entstandenen Parallelbahn.

0: kein Rückrechnen (Standard).1: Rückrechnen der Parallelbahn.

ONLINE=.. Einstellung der Online-Werkzeugradiuskompensation:

 $\hbox{0: Keine Berechnung der Online-Werkzeugradius kompensation.}\\$

1: Berechnung der kompensierten Bahn via TcCOM-Schnittstelle.

2: Einfache Berechnung der Parallelbahn für jede Ebene.

3: Berechnung der Parallelbahn unter Berücksichtigung der

Werkzeugorientierung.

ONLINE_BY_VECTOR=.. Dieser Parameter bestimmt die Methode, mit der eine 3D-TRC online korrigierte

Position auf die Koordinatensystemebene zurücktransformiert wird.

0: Die Verschiebung entlang der Drahtrichtung ist in der kinematischen

Transformation implementiert.

1: Die Verschiebung entlang der Drahtrichtung wird direkt nach der 3D-TRC-

Korrektur ausgeführt.

2: Kombinationslösung; die zyklische Sollwerterzeugung verwendet die Implementierung in der kinematischen Transformation, die Anzeige nutzt die

Berechnung direkt nach der 3D-TRC-Korrektur.

Basisradius für Werkzeugradiuskorrektur

Mit dieser Option kann festgelegt werden, ob die Werkzeugradiuskorrektur für die einzelnen Pfade mit dem individuell für diesen Pfad festgelegten Werkzeugradius die Parallelbahn berechnen soll. Alternativ mit dem Werkzeugradius des Pfades, der über diese Option bestimmt werden kann.

Syntax:

#TRC [[MULTI_PATH_RADIUS=..]]

MULTI_PATH_RADIUS=. Mit diesem Parameter kann festgelegt werden, mit welchem Werkzeugradius die

statische Werkzeugradiuskorrektur die Parallelbahn berechnen soll.

INDIVIDUAL/ Die Werkzeugradien, die in dem jeweiligen Pfad DEFAULT programmiert sind, werden verwendet (Standard).

REFERENCE Der Werkzeugradius des Referenzpfads wird verwendet. SECONDARY Der Werkzeugradius des zweiten Pfads wird verwendet.

Dynamische Offsetüberlagerung

Die dynamische Offsetüberlagerung ist eine anwenderspezifische Überlagerung der TCP Bahn, die in der Online-TRC wirkt.

Die überlagerten Achsbewegungen können deshalb nur eingeschränkt bei der Planung der maximalen Geschwindigkeit und Beschleunigung in der CNC berücksichtigt werden.

Speziell an Innenecken können die Überlagerungen zu Beschleunigungsüberschreitungen führen. Um dies zu verhindern, analysiert die CNC die Tangentendrehung an Innenecken und bestimmt daraus die maximal zulässige Dynamik.

Die An/Abwahl der Funktionalität in der Online-TRC wird über die SPS geschaltet. Die Berechnung der zulässigen Dynamik bei der Offsetüberlagerung an Innenecken wird mit nachfolgendem Programmierbefehl aktiviert:

Version: 0.99 [Pre-Release]

Syntax:

#TRC [[DYNAMIC_VARIATION_MAX_OFFSET=..]]

DYNAMIC_VARIATION_MAX_OFF Definition des maximalen dynamischen Offsets in [0,1μm]] **SET =...**

0: Abwahl Dynamische Offsetüberlagerung (Standard).

> 0: Anwahl, maximaler Offset wird für Dynamikberechnung verwendet.

TAPERLINK

Die Option TAPERLINK ermöglicht bei einer 2-Pfadkonfiguration die Synchronisation zwischen dem Referenzpfad und dem 2. Pfad um die programmierte Drahtneigung zu erhalten. Siehe [FCT-C49, Kapitel: Beschreibung].

Voraussetzung für die Funktionalität ist eine 2-Pfadkonfiguration und die Anwahl der Werkzeugradiuskorrektur mit G41 oder G42.

Syntax:

#TRC [[TAPERLINK=..]]

TAPERLINK Modus für Funktionalität Taper-Link festlegen.

=

- 0: Taper-Link Funktionalität inaktiv (Standard).
- 1: Taper-Link aktiv: Kompensation ist auf beiden Pfaden aktiv, automatische Erkennung.

- 2: Taper-Link aktiv: Referenzpfad kompensiert den 2. Pfad.
- 3: Taper-Link aktiv: 2. Pfad kompensiert den Referenzpfad.

4.4.2 TRC Option GEN_CIR_BLOCK_IN_CORNER

Mit dieser Option kann bei aktiver Werkzeugradiuskorrektur in sogenannten Innenecken ein virtueller Kreis (Radius 0) integriert werden. Innenecken sind Übergänge zwischen Bewegungssätzen, deren Übergangswinkel kleiner als 180° ist.

Nur möglich mit einem Werkzeugradius ungleich 0.

Syntax:

#TRC [[GEN_CIR_BLOCK_IN_CORNER=..]]

GEN_CIR_BLOCK_I Einfügen von virtuellen Kreissätzen mit Radius 0 bei Innenecken der **N_CORNER=..** Werkzeugradiuskorrektur.

0: Kein Einfügen von virtuellen Kreissätzen (Standard)

1: Einfügen von virtuellen Kreissätzen

4.4.3 TRC Option G236_LIN

Diese Option ist nur wirksam bei Verwendung des Anwahlmodus G236 und einem Übergangswinkel im Anoder Abwahlbereich der Werkzeugradiuskorrektur zwischen 90° und 180°.

Version: 0.99 [Pre-Release]

Syntax:

#TRC [[G236_LIN =..]]

G236_LIN=.. Festlegung, ob im beschriebenen Winkelbereich 90° bis 180° ein Kreis- oder

Linearsatz eingefügt wird.

0: Einfügen eines Kreissatzes (Standard)

1: Einfügen eines Linearsatz

4.4.4 TRC Option PERPENDICULAR_RADIUS_CHANGE

Mit dieser Option wird eine programmierte Änderung des Werkzeugradius unmittelbar durch Einfügen einer Bewegung orthogonal zur programmierten Kontur ausgefahren.

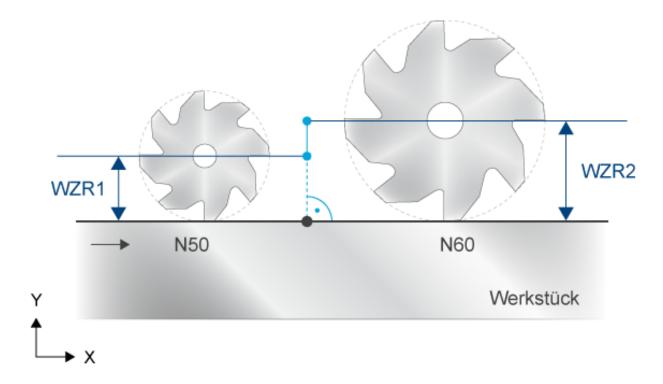


Abb. 17: Orthogonales Ausfahren der Änderung des Werkzeugradius

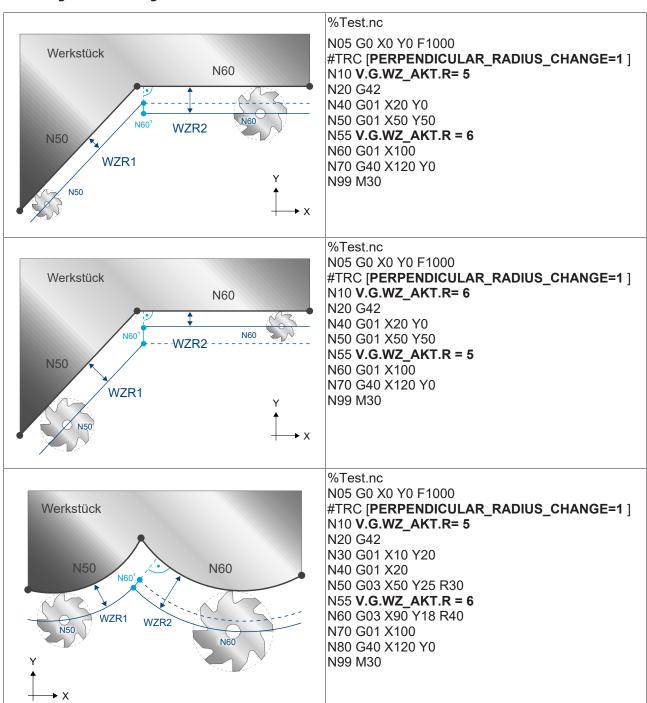
Syntax:

#TRC [[PERPENDICULAR_RADIUS_CHANGE=..]]

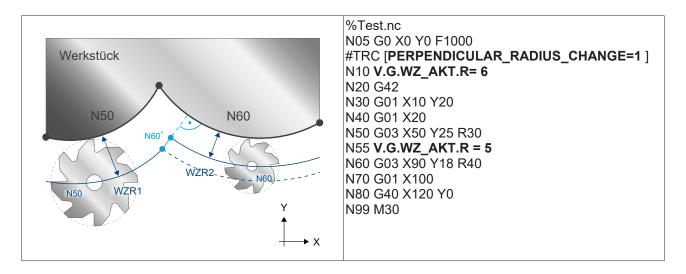
PERPENDICULARMit diesem Parameter kann die Änderung des Werkzeugradius senkrecht zur **RADIUS_CHANGE=...**Kontur ausgefahren werden.

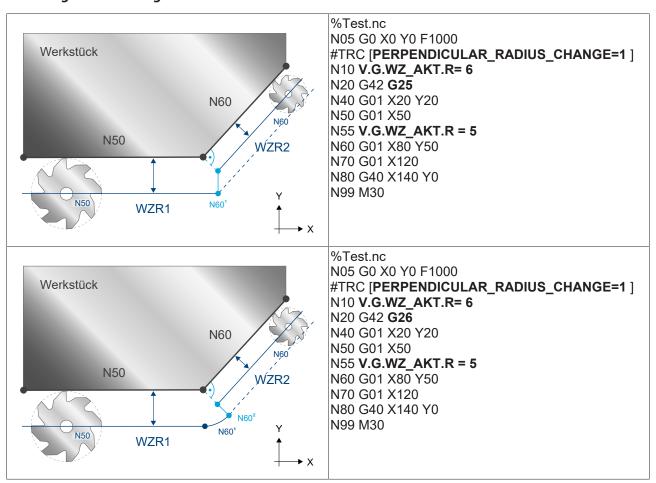
0: Kein senkrechtes Ausfahren der Änderung des neuen Werkzeugradius (Standard)

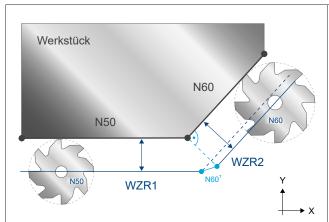
1: Senkrechtes Ausfahren der Änderung des neuen Werkzeugradius


In den Programmbeispielen soll zwischen den programmierten Bewegungssätzen N50 und N60 der Werkzeugradius geändert werden.

Um das Verhalten besser zu veranschaulichen, ist die Änderung des Werkzeugradius sehr groß gewählt. Üblicherweise handelt es sich bei der Änderung des Werkzeugradius um sehr kleine Korrekturen.


In den nachfolgenden Beispielen werden einige Satzübergänge exemplarisch dargestellt. Es sind alle Kombinationen aus Linear- und Zirkularsätzen zulässig.


Änderung des Werkzeugradius im Inneneck



Änderung des Werkzeugradius am Außeneck

%Test.nc

N05 G0 X0 Y0 F1000

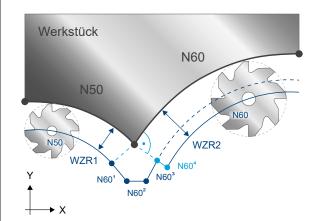
#TRC [PERPENDICULAR_RADIUS_CHANGE=1]

N10 V.G.WZ_AKT.R= 5

N20 G42 G25

N40 G01 X20 Y20

N50 G01 X50


N55 **V.G.WZ_AKT.R = 6**

N60 G01 X80 Y50

N70 G01 X120

N80 G40 X140 Y0

N99 M30

%Test.nc

N05 G0 X0 Y0 F1000

#TRC [PERPENDICULAR_RADIUS_CHANGE=1]

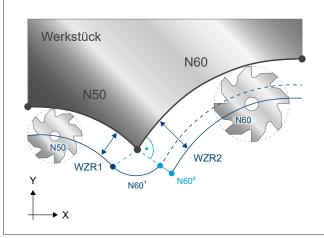
N10 **V.G.WZ_AKT.R= 5**

N20 G25

N30 G42 X10 Y10

N40 G01 X20

N50 G02 X60 Y0 R30


N55 **V.G.WZ_AKT.R = 6**

N60 G02 X90 Y12 R50

N70 G01 X100

N80 G40 X120 Y0

N99 M30

%Test.nc

N05 G0 X0 Y0 F1000

#TRC [PERPENDICULAR_RADIUS_CHANGE=1]

N10 V.G.WZ_AKT.R= 5

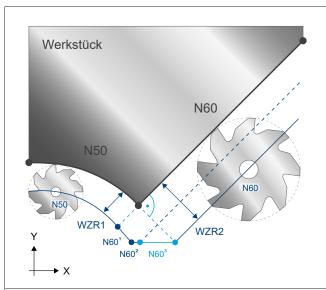
N20 G26

N30 G42 X10 Y10

N40 G01 X20

N50 G02 X60 Y0 R30

N55 **V.G.WZ_AKT.R = 6**


N60 G02 X90 Y12 R50

N70 G01 X100

N80 G40 X120 Y0

N99 M30

%Test.nc

N05 G0 X0 Y0 F1000

#TRC [PERPENDICULAR_RADIUS_CHANGE=1]

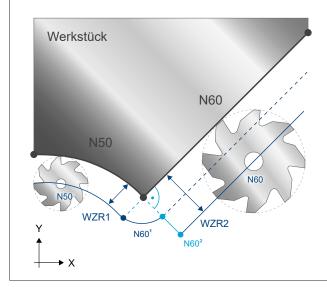
N10 V.G.WZ_AKT.R= 5

N20 G25

N30 G42 X10 Y10

N40 G01 X20

N50 G02 X60 Y0 R30


N55 **V.G.WZ_AKT.R = 6**

N60 G01X80 Y40

N70 G01 X100

N80 G40 X120 Y0

N99 M30

%Test.nc

N05 G0 X0 Y0 F1000

#TRC [PERPENDICULAR_RADIUS_CHANGE=1]

N10 **V.G.WZ_AKT.R= 5**

N20 G26

N30 G42 X10 Y10

N40 G01 X20

N50 G02 X60 Y0 R30

N55 **V.G.WZ_AKT.R = 6**

N60 G01X80 Y40

N70 G01 X100

N80 G40 X120 Y0

N99 M30

Parameter 4.5

P-CHAN-00550	Festlegung der Funktionalitäten für die Werkzeugradiuskorrektur			
Beschreibung	Der Parameter legt einzelne Funktionalitäten für die Werkzeugradiuskorrektur fest.			
Parameter	configuration.tool_radius_comp.function			
Datentyp	STRING			
Datenbereich	MULTI_PATH: 2-Pfadkonfiguration und 2-Pfadprogrammierung aktiv			
	-: Keine Funktionalitäten festgelegt.			
Dimension				
Standardwert	*			
Anmerkungen	Parameter ist ab folgenden Versionen verfügbar V2.11.2040.04 ; V2.11.2810.02 ; V3.1.3079.17 ; V3.1.3107.10			
	* Hinweis: Der Standardwert der Variablen ist ein Leerstring.			
	Über P-CHAN-00555 und P-CHAN-00556 besteht die Möglichkeit abhängig vom Bearbeitungsmodus Funktionen festzulegen.			

4.6 Fehlermeldungen

Anwenderspezifische Kompensationsfehler

Neben den standardmäßigen Transformationsfehler kann der Anwender bei einigen Methoden (Bsp. Fehler ID 123) individuelle Fehler über den Rückgabewert der Funktion absetzen (0 = OK).

HRESULT CToolRadiusComp::CalculationTrcPath(PTcCncToolRadiusCompParam trc){

```
if (...)
  return 123; // raise error
...
  return S_OK;
}
```

Fehlertexte in TcCncUsersEvents.xml

Im Fehlerfall wird der individuelle Rückgabewert der Methode an die Fehlermeldungsauswertung über die SPS oder den TwinCAT-Eventlogger weitergereicht, siehe auch FCT-M7, Kapitel: Fehlerausgabe TwinCAT3. Die Fehlertexte müssen in der XML-Fehlertextdatei in der entsprechenden Sprache ergänzt werden. (C: \TwinCAT\3.1\Target\Resource):

Version: 0.99 [Pre-Release]

```
<Event>
<Id>123</Id>
<Message LcId="1033">Online tool radius compensation: error 123</Message>
<Message LcId="1031">Online-Werkzeugradiuskorrektur: Fehler 123</Message>
</Event>
```

Die Ausgabe des Fehlers erfolgt über den Eventlogger.

5 Erstellungsablauf eines TcCOM-Objekts

Mindestanforderung für die Nutzung der McCOM-Assistenten

- TwinCAT3 Version 4024
- Microsoft Visual Studio 2019 Professional/Enterprise, bei der Installation muss die Option "Desktop development with C++" zusätzlich selektiert sein.

5.1 Neues Projekt anlegen

Der nachfolgende exemplarische Ablauf zur Erstellung einer eigenen kinematischen Transformation mittels TcCOM-Objekt wurde mit Visual Studio 2019 durchgeführt.

TwinCAT3 XAE Projekt mit CNC-Konfiguration

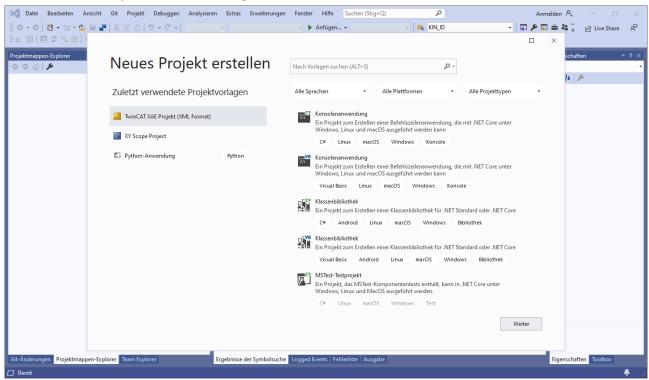


Abb. 18: Erstellung eines neuen Projekts

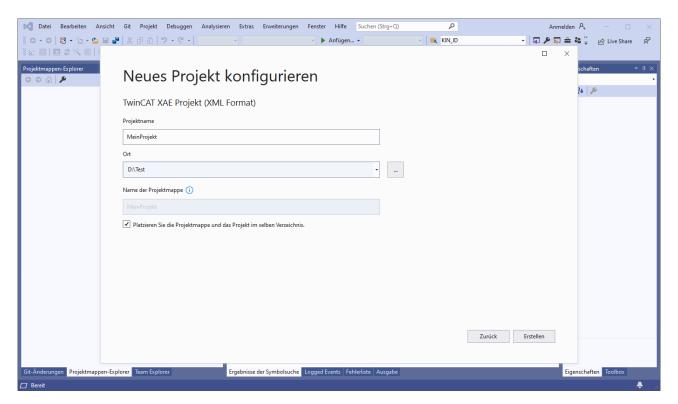


Abb. 19: Konfiguration des neuen Projekts

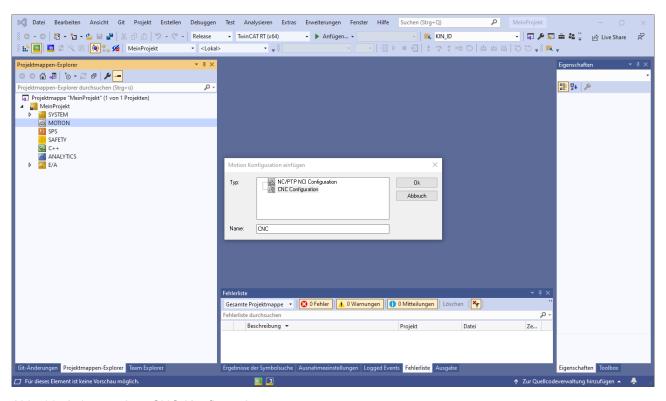


Abb. 20: Anlegen einer CNC-Konfiguration

Abb. 21: Anlegen eines Kanals

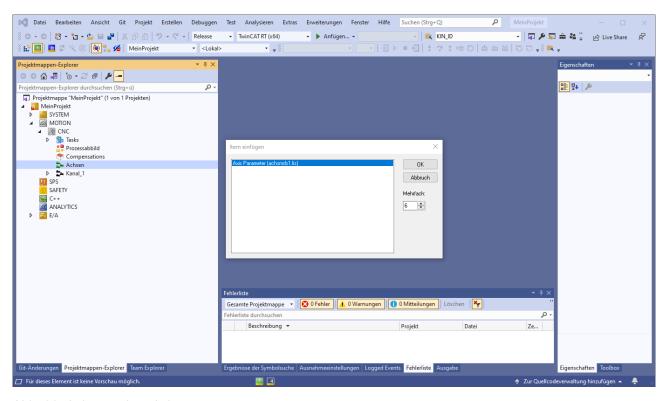


Abb. 22: Anlegen einer Achse

5.2 Geometrische Vorschubanpassung

5.2.1 Erstellen eines Objekts für geometrische Vorschubanpassung

Der nachfolgende exemplarische Ablauf zur Erstellung eines eigenen Objekts der geometrische Vorschubanpassung wurde mit Visual Studio 2019 durchgeführt.

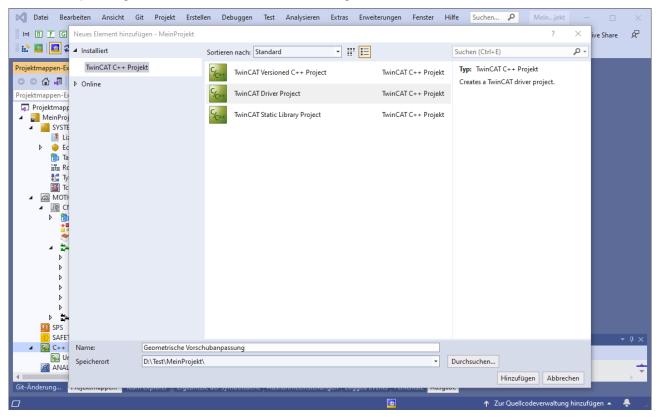


Abb. 23: Treiberprojekt für geometrische Vorschubanpassung

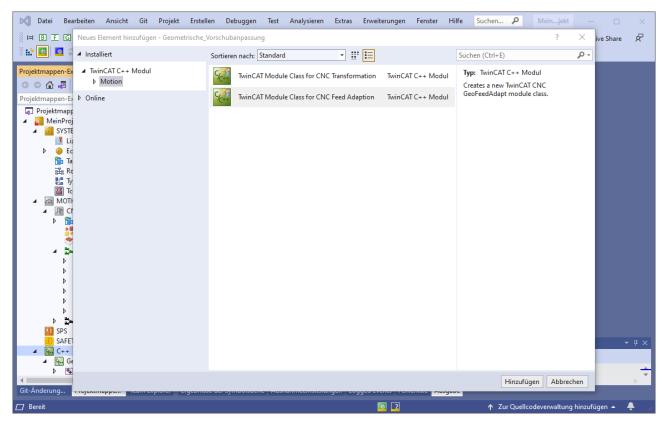


Abb. 24: Klasse festlegen

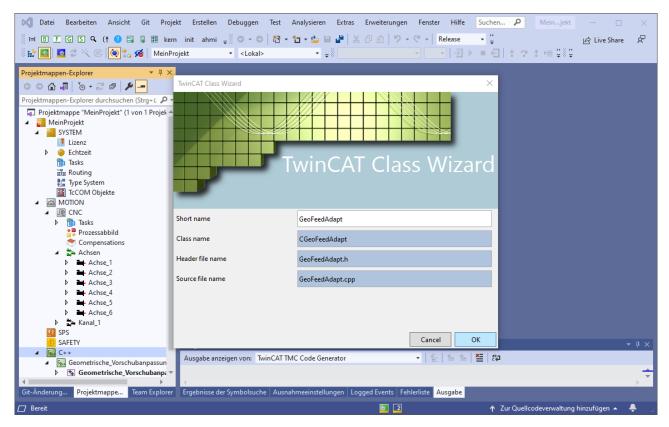
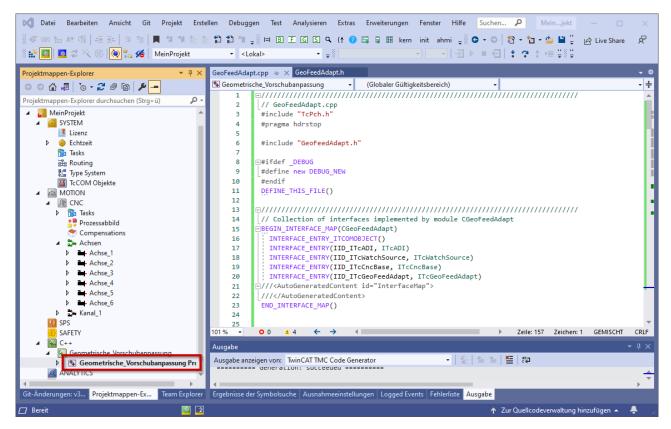



Abb. 25: Benennung der Klasse

Über einen Rechtsklick auf das Projekt kann mit "Erstellen" der Treiber erstellt werden.

Version: 0.99 [Pre-Release]

Abb. 26: Treiber erstellen

63

5.2.2 Objekt der geometrischen Vorschubanpassung einbinden

Das erstellte Objekt der geometrischen Vorschubanpassung muss in die vorhandene CNC-Konfiguration wie folgt integriert werden:

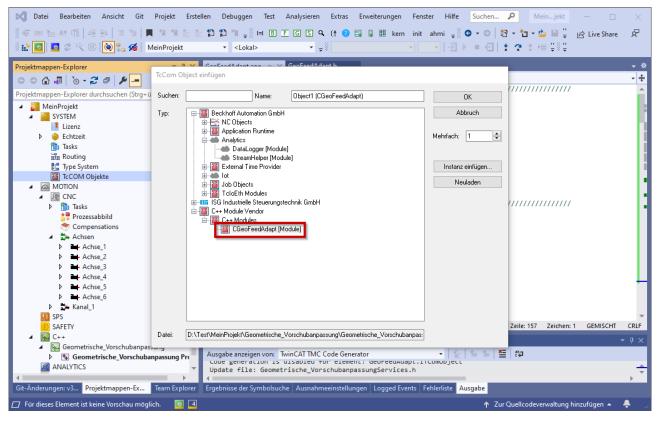


Abb. 27: Integration des TcCOM-Objekts

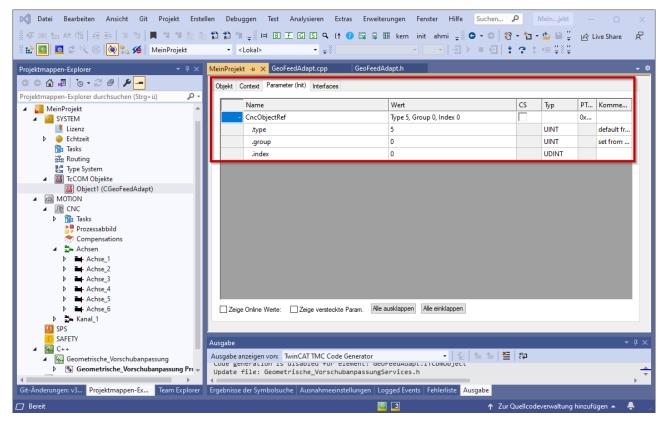


Abb. 28: Eigenschaften des TcCOM-Objekts

Der Typ für das Objekts der geometrischen Vorschubanpassung ist 5.

Die Angabe des Kanals ist abhängig davon, ob instanzspezifische Variablen im TcCOM-Objekt verwendet werden.

Version: 0.99 [Pre-Release]

- Mit instanzspezifischen Daten entspricht die Gruppe der Kanalnummer [1;12].
- Ohne instanzspezifischen Daten ist die Gruppe mit 0 zu belegen.

Der Index des jeweiligen Objekts wird nicht verwendet.

5.3 Dynamische Konturvorsteuerung

5.3.1 Erstellen eines Objekts für dynamische Konturvorsteuerung

Der nachfolgende exemplarische Ablauf zur Erstellung eines eigenen Objekts der dynamischen Konturvorsteuerung wurde mit Visual Studio 2019 durchgeführt.

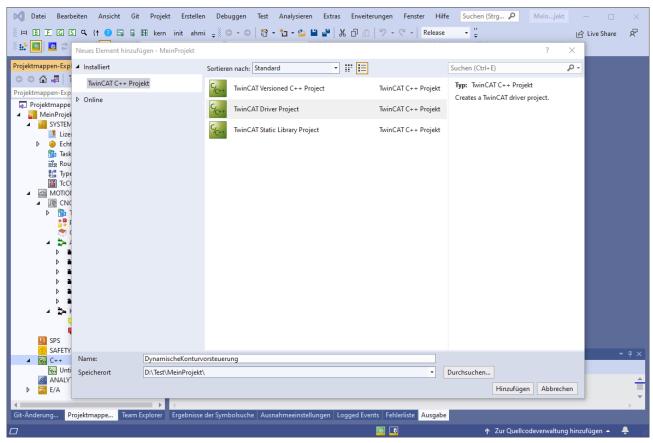


Abb. 29: Treiberprojekt für dynamische Kontursteuerung anlegen

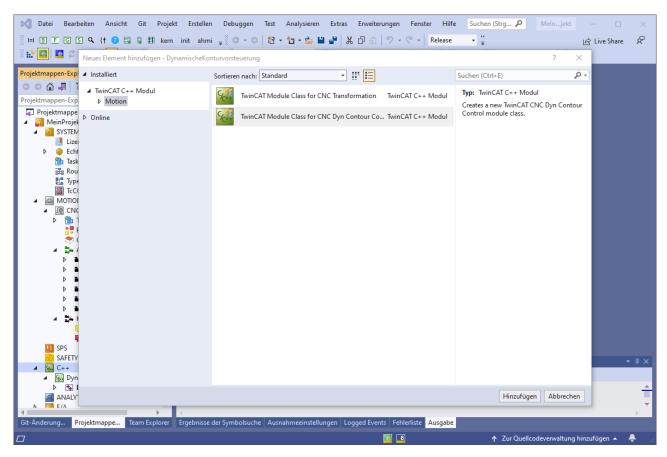


Abb. 30: Klasse festlegen

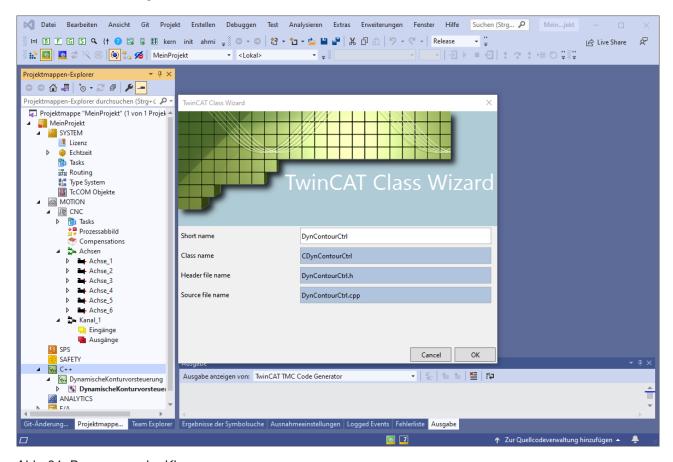


Abb. 31: Benennung der Klasse

Über einen Rechtsklick auf das Projekt kann mit "Erstellen" der Treiber erstellt werden

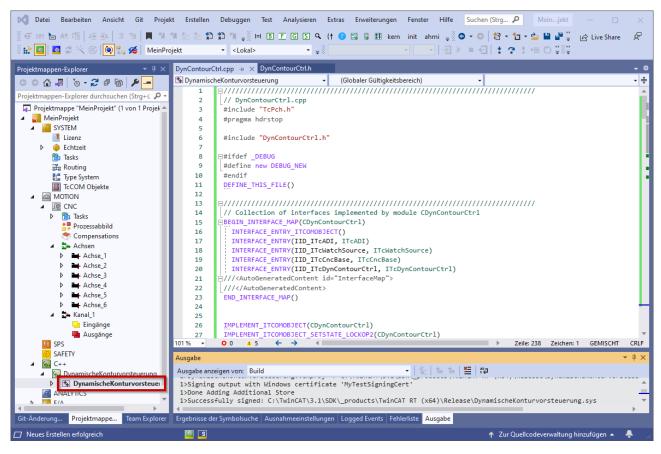


Abb. 32: Treiber erstellen

5.3.2 Objekt der dynamischen Konturvorsteuerung einbinden

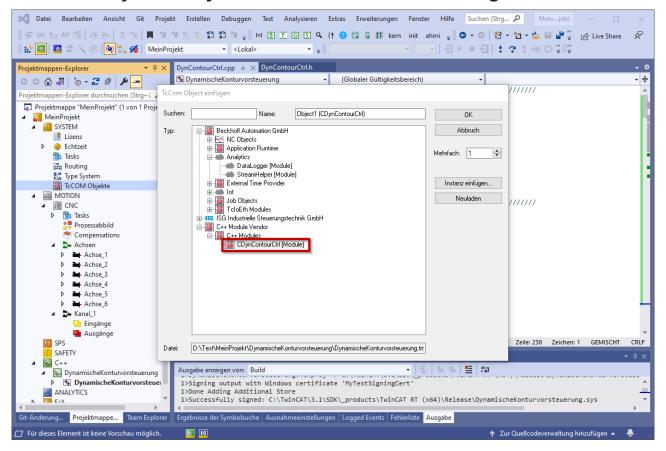


Abb. 33: Integration des TcCOM-Objekts

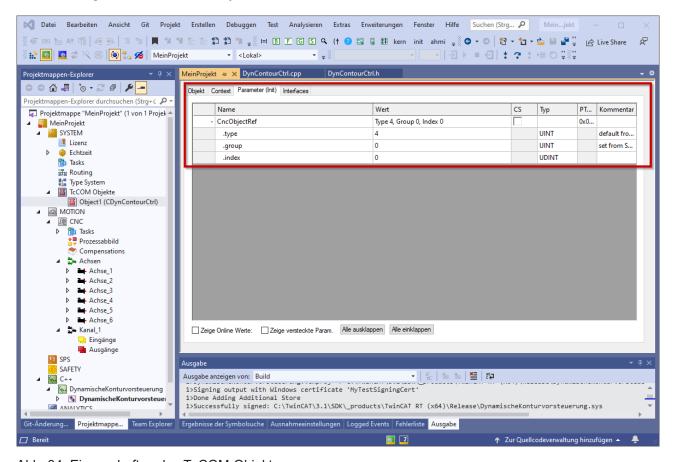


Abb. 34: Eigenschaften des TcCOM-Objekts

Der Typ für das Objekts der dynamischen Konturvorsteuerung ist 4.

Die Angabe des Kanals ist abhängig davon, ob instanzspezifische Variablen im TcCOM-Objekt verwendet werden.

- Mit instanzspezifischen Daten entspricht die Gruppe der Kanalnummer [1;12].
- Ohne instanzspezifischen Daten ist die Gruppe mit 0 zu belegen.

Der Index des jeweiligen Objekts wird nicht verwendet.

Das TcCOM-Objekt muss digital signiert sein, ansonsten kann dieses nicht geladen werden. Weitere Informationen zu TcCOM-Objekten und wie ein Objekt digital signiert werden kann, finden Sie im Beckhoff Information System.

Es kann für jeden Kanal nur ein Dynamikmodell verwendet werden.

5.4 Online Werkzeugradiuskompensation

5.4.1 Erstellen eines Objekts für Online-Werkzeugradiuskompensation

Der nachfolgende exemplarische Ablauf zur Erstellung eines eigenen Objekts der Online-Werkzeugradiuskompensation wurde mit Visual Studio 2019 durchgeführt.

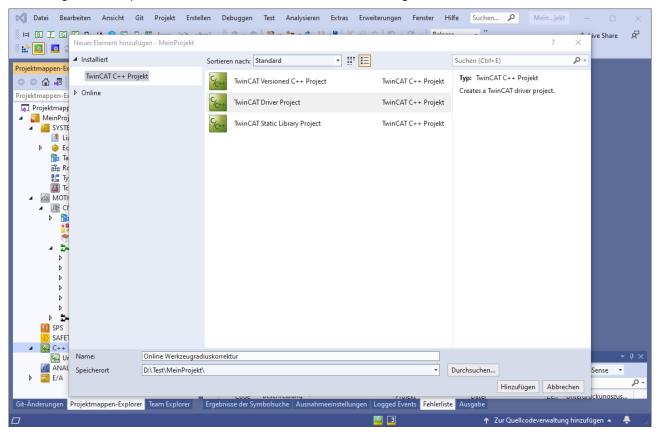


Abb. 35: Treiberprojekt für Online-Werkzeugradiuskompensation

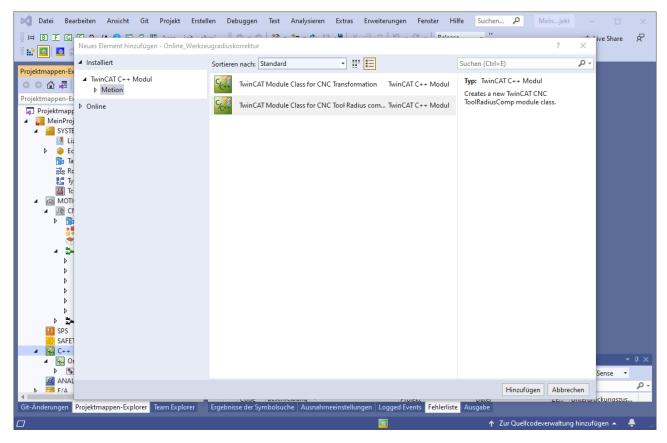


Abb. 36: Transformationsklasse festlegen

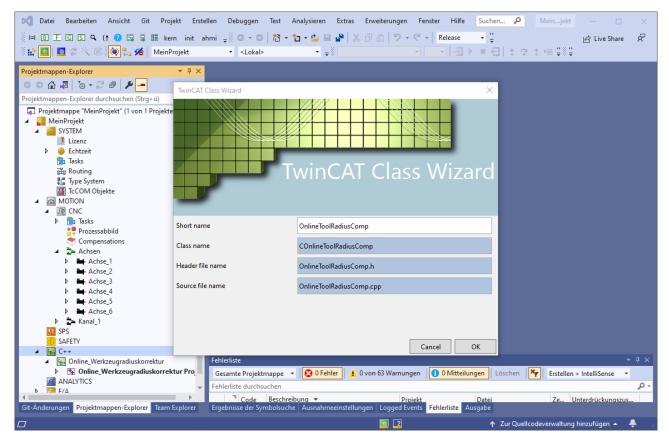


Abb. 37: Benennen der Transformationsklasse

Über einen Rechtsklick auf das Projekt kann mit "Erstellen" der Treiber erstellt werden.



Abb. 38: Treiber erstellen

5.4.2 Objekt der Online-Werkzeugradiuskorrektur einbinden

Das erstellte Objekt der Online-Werkzeugradiuskorrektur muss in die vorhandene CNC-Konfiguration wie folgt integriert werden:

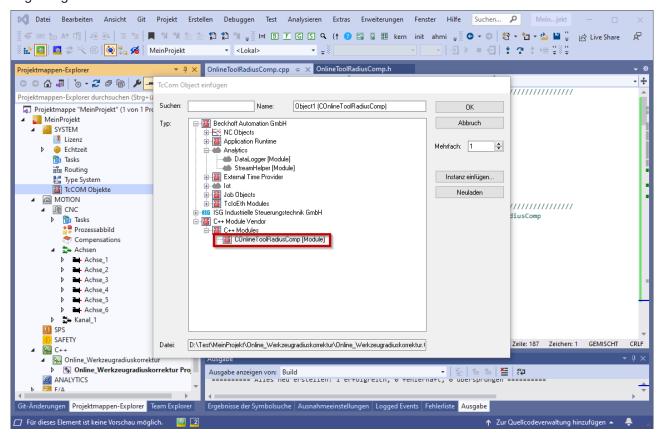


Abb. 39: Integration des TcCOM-Objekts

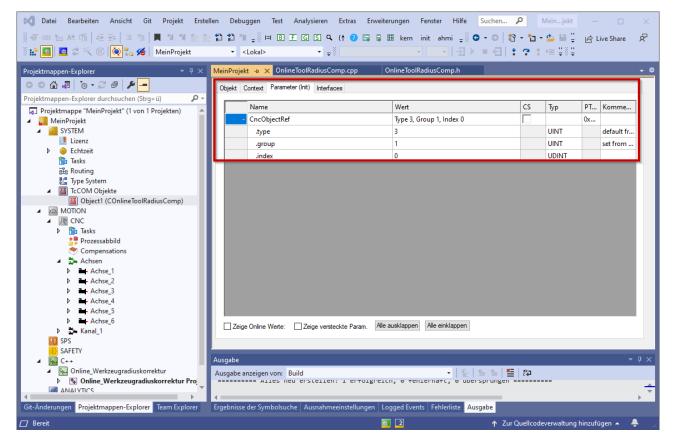


Abb. 40: Eigenschaften des TcCOM-Objekts

Der Typ für das Objekts der Online-Werkzeugradiuskompensation ist 3.

Die Angabe des Kanals ist abhängig davon, ob instanzspezifische Variablen im TcCOM-Objekt verwendet werden.

- Mit instanzspezifischen Daten entspricht die Gruppe der Kanalnummer [1;12].
- · Ohne instanzspezifischen Daten ist die Gruppe mit 0 zu belegen.

Der Index des jeweiligen Objekts wird nicht verwendet.

Das TcCOM-Objekt muss digital signiert sein, ansonsten kann dieses nicht geladen werden. Weitere Informationen zu TcCOM-Objekten und wie ein Objekt digital signiert werden kann, finden Sie im <u>Beckhoff Information System</u>.

Für jeden Kanal kann nur ein Objekt der Online-Werkzeugradiuskompensation verwendet werden.

6 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Downloadfinder

Unser <u>Downloadfinder</u> beinhaltet alle Dateien, die wir Ihnen zum Herunterladen anbieten. Sie finden dort Applikationsberichte, technische Dokumentationen, technische Zeichnungen, Konfigurationsdateien und vieles mehr.

Die Downloads sind in verschiedenen Formaten erhältlich.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den <u>lokalen Support und</u> Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unserer Internetseite: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

Version: 0.99 [Pre-Release]

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963-157 E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- · Hotline-Service

Hotline: +49 5246 963-460
E-Mail: service@beckhoff.com

Beckhoff Unternehmenszentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963-0

E-Mail: info@beckhoff.com

Internet: www.beckhoff.com

Stichwortverzeichnis

P

P-CHAN-00384	28
P-CHAN-00385	28
P-CHAN-00386	16
P-CHAN-00387	17
P-CHAN-00388	28
P-CHAN-00389	28
P-CHAN-00390	17
P-CHAN-00391	17
P-CHAN-00550	56

Mehr Informationen: www.beckhoff.de/TF5262

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

