BECKHOFF

TF3685

TwinCAT 3 | Weighing Library

File Edit viey

Project Build Depyg

BB - 2|
" Build 40244 (Loaded)

TWinCAT TuinSArg PLC Team Scope oo Window Help
~ | TwinCATRT (x6)

98 | TuinCAT Project E

* Q| [Release
P Attach.. +
<Local>
New Project
b Re
et Sort by: [Default

— 4 Installed =
2] Solution TwinCAT Project' (1 project) e

4] TwinCAT Project TwinCAT Controller
4 (] SYSTEM b TwinCAT Measurement
¥ License TwinCAT CAD Interface Beta Ve
b @ Real-Time TwinCAT Projects
& Tasks TwinCAT PLC
Sie Routes TcXaeShell Solution
¥n Type System
[] TccOM Objects
[MoTION

Qj PLC

SAFETY

inCAT XAE Project (XML format) TuinCAT Prjects

Not finding what you arelooking for

QOpen Visual Studio Installer

« | Bowe
TwinCAT Project '
| [7] Crese diece’
] Addto Source Cor

Name: josbin

| |
Location:
[Create new solution

olution:
. TwinCAT Project

Solution name:

Team Explore”

BEGKHOFF Table of contents

Table of contents

1

L o] =3V o c S 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
L o Yo TN T =Y |V USRS POPPPP 5
1.3 Notes on infOrmation SECUNITYcooi i 7
L0 Y= T PR 8
L 1= =11 1T o 9
R Tt B I (oY o I3 o o PRSPPSO 10
Technical INtrOAUCTION......... e mmn e 13
o B |V (=T T U 4 g o [o] o Yot =Yo LU] - RS 13
I O PSR 17
LS00 B o 0] Tox 17 I o] [o o3 (= RS PRPPR 17

5.1.1 FB_ WG _COMDBOFIIETeiiiiiiiiiie ettt e e et e e e e nnbee e e e e ennees 19

51.2 = Ao 11T PP PRT 21

51.3 FB_ WG _WEIGNING ..ottt et e e et e e e eabae e e e e enees 27
IV B - | r- I Y] o= TSP PUP PRSPPI 31

5.21 Configuration STTUCIUIEScooiiii e e 31

5.2.2 E_WG_CalibDrateooueiieeeei e 35

523 e R UL (o X =T (=Y 1Y/ o 1= J PRSP RRR 36
8T 1 4 o =P 37
2t B B)V o = g (o V7= (o T o [P PRSPPI 37
o 1= T PR 40
A0 B (= (8 g oo o = U RSO 40
7.2 FAQ - frequently asked qUESHIONS @Nd GNSWETScccuuiiiiiiiiiiiie e 42
A T W o] oY) =T o IS T=T Vo SO 43

TF3685 Version: 1.0.1 3

Table of contents BECKHOFF

4 Version: 1.0.1 TF3685

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.

If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

and similar applications and registrations in several other countries.

——
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

TF3685 Version: 1.0.1 5

Foreword BECKHOFF

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:

recommendations for action, assistance or further information on the product.

Version: 1.0.1 TF3685

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TF3685 Version: 1.0.1 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview BEGKHOFF

2 Overview

The TwinCAT 3 Weighing PLC Library allows a scale for weight measurement to be integrated into the PC-
based machine control system — particularly in conjunction with the I/Os of the ELM35xx and EL3356-0010
EtherCAT Terminals. The focus is primarily on the dynamic weighing process. Signal filtering is particularly
demanding here, as the weighing time has a significant influence on the overall processing time of the
machine. Rapid signal filtering with the same level of precision produces a faster weight result, which
ultimately makes for faster machines.

Since a load cell and a measured value acquisition via the corresponding EtherCAT Terminals do not yet
constitute a scale, this is exactly where the PLC library comes in. It takes over the scaling of the measured
values, while the new PLC function blocks cover functions such as zeroing and taring. In addition to manual
triggering of the weight measurement, automatic measurement is also possible. The production material is
detected and the measurement is taken directly. The main advantage is that, depending on the application,
even external triggers such as photoelectric sensors and initiators can be omitted.

The license of the TF3680 | TwinCAT 3 filter library is also included in this product.

Components
» TwinCAT Weighing PLC library: Tc3_Weighing.compiled-library
» TwinCAT Filter PLC library: Tc3_Filter.compiled-library
» Versioned driver: TcWeighing.tmx
» Description file: TcWeighing.tmc

8 Version: 1.0.1 TF3685

BEGKHOFF Installation

3 Installation

System requirements

Technical data Description

Operating system Windows 10, TwinCAT/BSD
Target platform PC architecture (x86, x64)
TwinCAT version 3.1.4024.50

Required TwinCAT license TF3685 TwinCAT 3 Weighing

TwinCAT Package Manager: Installation (TwinCAT 3.1 Build 4026)

Detailed instructions on installing products can be found in the chapter Installing workloads in the TwinCAT
3.1 Build 4026 installation instructions.

Install the following workload to be able to use the product:
* TF3685 | TwinCAT 3 Weighing

TwinCAT setup: Installation (TwinCAT 3.1 build 4024 and earlier)

If you are using TwinCAT 3.1 Build 4024 on the Microsoft Windows operating system, you can install this
function via a setup package, which you can download from the Beckhoff website at https://
www.beckhoff.com/download.

Depending on the system on which you need the function, the installation can be done on either the
engineering or runtime side. The following screenshot shows the Setup interface.

12 Beckhoff TF X

Welcome to the Beckhoff Setup for Beckhoff
TF

Beckhoff Setup will allow you to modify, repair, or remove
Beckhoff TF To continue, dick Next.

To complete the installation process, follow the instructions in the Setup dialog.

Unprepared TwinCAT restart can cause data loss

The installation of this function may result in a TwinCAT restart.
Make sure that no critical TwinCAT applications are running on the system or shut them down in an orderly
manner first.

TF3685 Version: 1.0.1 9

https://infosys.beckhoff.com/content/1033/tc3_installation/15731787659.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id
https://www.beckhoff.com/download
https://www.beckhoff.com/download

Installation BEGKHOFF

3.1 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

(
1 A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.

= The licensing settings always refer to the selected target system. When the project is activated on
the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

Solution Explorer * 0 X

@ o-a|s =

Search Solution Explorer (Ctrl+0) P~

m Solution TwinCAT SampleProject’ (1 project)
4 lia TwinCAT SampleProject

4 || SYSTEM
¥ License
b @) Real-Time
b B Tasks
gfs Routes

215 Type System
|88 TcCOM Objects

= The TwinCAT 3 license manager opens.

10 Version: 1.0.1 TF3685

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

BEGKHOFF Installation

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

Order Information (Rurtime) Manage Licenses Project Licenses Online Licenses

] Disable automatic detection of required licenses for project

Order Mo License "Add License

TF3601 TC3 Condition Menitoring Level 2 | cpulicense
TF3650 TC3 Power Monitoring | cpulicense
TF3680 TC3 Filter | cpulicense
TF3200 TC3 Machine Learning Inference Engine [cpu license
TF3210 TC3 Meural Metwork Inference Engine [cpu license
TF3500 TC3 Selar-Position-Algorithm | cpulicense
TF4100 TC3 Controller Toolbox cpu license
TR0 TC3 Temperature-Controller [cpu license
TR4500 TC3 Speech [cpu license

6. Open the Order Information (Runtime) tab.
= In the tabular overview of licenses, the previously selected license is displayed with the status
“missing”.
7. Click 7-Day Trial License... to activate the 7-day trial license.

Order Information (Rurtime) Manage Licenses Project Licenses Online Licenses

License Device Target (Hardware Id) o Add...
System Id: Platfom:
20B25408-B4CD-81DF-52483-6A3D9B43EF19 | other (31)

License Request

Provider: Beckhoff Automation - Generate File...
License Id: | Customer Id: |
Comment: | |
License Activation

7 Days Tral License... I License Response File...

= A dialog box opens, prompting you to enter the security code displayed in the dialog.

Enter Security Code >

Fleaze type the following 5 characters: k.

| Ke8T4 |

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

= In the tabular overview of licenses, the license status now indicates the expiry date of the license.

TF3685 Version: 1.0.1 11

Installation BEGKHOFF

10. Restart the TwWinCAT system.
= The 7-day trial version is enabled.

12 Version: 1.0.1 TF3685

BEGKHOFF Technical introduction

4 Technical introduction

4.1 Measuring procedure

A typical measuring procedure for determining the mass of a body consists of three main steps: filtering,
scaling and evaluation.

aELM35xx/aEL3356 []
(cOversamples = 20) / D

PLC Task

1. Filtering FB_WG_ComboFilter
2. Scaling FB_WG_Scaling
3. Evaluation FB_WG_Weighing

1. Filtering

The signal from the EtherCAT Terminals of the ELM35xx and EL3356 series typically has a level of noise
that requires filtering to ensure valid measurement results. The function block FB WG CombofFilter

[»_19] offers an effective solution for this by switching a combination of PTn, Moving Average and Notch
filters in series. If these filter options are not sufficient, a selection of further filters from the TwinCAT 3 filter
library is available.

2. Scaling

The filtered input signal must then be scaled in order to specify the weight in the desired unit (e.g. grams [g]).

Scaling is performed by the function block FB° WG Scaling [» 21]. Accurate measurement also requires
calibration of the PLC function block, which can be carried out using a two-point calibration, for example.

3. Evaluation

In the final step, the scaled signal is analyzed using the function block FB WG Weighing [P 27]. It is
necessary to provide the configuration structure ST WG Weighing [P_32] with the appropriate parameters. A
key parameter in this structure is ST WG Weighing.nWindowLength, which defines the number of
samples used to calculate the moving average - a variable also known as the window size. This parameter
determines how many past values are used to calculate the outputs fWeight, fStd, fMin and fMax of
the function block FB WG Weighing [P 27]. Here, fileight represents the average, fstd the standard
deviation and fMin/fMax the minimum or maximum value of the last nwindowLength input values. A
supplementary figure can illustrate these relationships.

TF3685 Version: 1.0.1 13

https://infosys.beckhoff.com/content/1033/tf3680_tc3_filter/5855749643.html
https://infosys.beckhoff.com/content/1033/tf3680_tc3_filter/5855741963.html
https://infosys.beckhoff.com/content/1033/tf3680_tc3_filter/11004515595.html
https://infosys.beckhoff.com/english.php?content=../content/1033/tf3680_tc3_filter/index.html&id=7631144946606782773
https://infosys.beckhoff.com/english.php?content=../content/1033/tf3680_tc3_filter/index.html&id=7631144946606782773

Technical introduction BEGKHOFF

ST_WG_Weighing.nWindowLength
current input value = ® |nput
fWeight
fStd
fMin
fMax
sliding window

—/
Q current fweight
o
o

nWindowLength = N

>>fWeight (average over N a
input values) —

>>fMin (min value in window)
>>fMax (max value in window)
current fStd
current fMin
current fMax

To obtain additional results from the function block, such as bvalidMeasurement, bNewResult,
tLastResult, fLastWeight and fLastsStd, itis necessary to configure the substructure

ST WG Weighing Validation [»_33] accordingly.

Within ST WG Weighing Validation [P_33], the parameters fThresholdWeight,
fMaxWeightDeviation and fMaxStd define the criteria for a valid measurement. For a measurement to
be considered valid, the following conditions must be met:

* FB WG Weighing.fWeight must be greater than or equal to fThresholdWeight.

* The difference FB_ WG _Weighing.fMax - FB WG Weighing.fMin must not exceed
fMaxWeightDeviation.

* FB_WG Weighing.fStd must be less than or equal to fMaxStd.

These conditions must be met over the number of consecutive samples defined in nvalidationSamples
in order to set FB_ WG_Weighing.bValidMeasurement to TRUE .

The measurement is initiated as soon as FB_WG_Weighing.fWeight exceeds the value of

ST WG Weighing Validation.fThresholdWeight for the first time. As long as

FB WG Weighing.bValidMeasurement has the value TRUE , the weight (fWeight) with the smallest
standard deviation (£5td) is searched for and continuously updated in FB. WG Weighing.fLastWeight
and in FB_ WG Weighing.fLastsStd. If the parameter

ST WG Weighing Validation.fRelativeWeightLimit is defined, the measurement ends as soon
as FB_ WG Weighing.fWeight falls below the value of fThresholdWeight *
fRelativeWeightLimit . If this parameter is not set, the measurement ends when fweight falls below
fThresholdWeight .

At the end of the measurement, the timestamp is saved in FB. WG Weighing.tLastResult and

FB_ WG Weighing.bNewResult is setto TRUE for exactly one cycle. If FB. WG Weighing.fWeight
exceeds the value fThresholdWeight again, FB WG Weighing.fLastWeight is resetand a new
measurement begins.

The following figure illustrates the process described above and shows the relationship between the
parameters and the conditions for a valid measurement:

14 Version: 1.0.1 TF3685

BECKHOFF Technical introduction

ST_WG_Weighing_Validation :
- - - — fWeight

fStd

)

r
1 ¢ —— flLastWeight
W / ’ —- bValidMeasurement
’Y final fLastWeight FESLE 2 val!d fThresholdWeight
4 / 7 —~ valid fMaxStd
,//(rst fLastWeight result / y [valid condition band
. - |after nvalidationSamples| / flLastWeight = fWeight with
\fIF\}e'IaE:Le' it z s Z 4 (> smallest fStd in window
eightLimi /
fThreshold /
Weight R T 7
Update fLastWeight in valid condition //
band, the first time after nVvalidation- «

~l|Samples and is updated as long as fStd|} -
is less than before.

/
/

/
/

Moiigne 4 ////
Deviation=0 YA ! LB s 2

(>>ignore)

%! N~

Start new measurment End measurment
fLastWeight = 0 bNewResult=TRUE

Update tLastResult

ST WG Weighing AutoTare [P_34] can be configured in the same way as ST WG Weighing Validation
[»_33] to receive results such as fAutoTareOffset and bNewAutoTareResult from the function block.
These are essential for automatically taring the function block FB WG Scaling [»_21], for example by calling
AutoTare [P_30](fbScaling,E WG AutoTareType [P _36].eEnd).

The parameters fThresholdWeight, fMaxWeightDeviation and fMaxStdin

ST WG Weighing AutoTare [»_34] define the criteria for the validation of a measurement. A measurement is
considered valid if:

* FB WG Weighing.fWeight does not exceed the value £ThresholdWeight.

* The difference FB. WG Weighing.fMax - FB WG Weighing.fMin does not exceed the specified
fMaxWeightDeviation.

* FB WG Weighing.fStd is less than or equal to the defined fMaxStd.

The update of fAutoTareOffset begins as soon as fileight falls below fThresholdwWeight for the first
time and the stated conditions are met over a series of consecutive samples defined in
nValidationSamples . The system searches for the weight with the lowest standard deviation and
updates continuously fAutoTareOffset.

The measurement ends as soon as FB_ WG Weighing.fWeight exceeds fThresholdWeight.

FB WG Weighing.bNewAutoTareResult is then setonce to TRUE , which signals the end of the
measurement. If FB. WG Weighing.fWeight falls below the threshold value fThresholdWeight,,
FB WG Weighing.fAutoTareOffset isresetand a new measurement is initiated.

The figure below illustrates the process and clarifies the relationship between the parameters and the criteria
for a valid measurement.

TF3685 Version: 1.0.1 15

Technical introduction BEGKHOFF

ST_WG_Weighing_AutoTare

— fWeight

= fAutoTareOffset

—— fStd

— fMax-fMin

72 valid fThresholdWeight
valid fMaxStd

27 valid fMaxWeightDeviation

[valid condition band

~ fAutoTareoffset = fWeight with
f2 smallest fStd in window

fMaxWeight

Deviation ! i
D ()

fThreshold 1) o4

Weight 75N |

Update fAutoTareOffset in valid condition band, the first
time after nVvalidationSamples and is updated as long as
fWeight is valid and fStd is less than before.

J0000 0000¢
0000 00000,
0000 00000,
fMaxStd L OO

50000\ 0000
..\ final fAutoTareOffset result /=«
000 ‘0000,

[e]e]e 000,

(e]e) l 0Q,

L

first fAutoTa re_Offset result
New measurment ~ after nvalidationSamples End measurment
fAutoTareOffset=0 bNewAutoTareResult=TRUE

16 Version: 1.0.1 TF3685

BECKHOFF PLC API
5 PLC API

5.1 Function blocks

Basic structure of the function blocks

All function blocks in the TwinCAT Weighing PLC Library are based on the same basic structure. This
simplifies the engineering process when changing from one Weighing type to another.

Syntax
FUNCTION BLOCK FB WG_<type>
VAR INPUT
stConfig : ST WG _<type>;
END VAR
VAR OUTPUT
bError : BOOL;
bConfigured : BOOL;
ipResultMessage : I TCMessage;
END VAR
! Inputs

To configure the Weighing function block, a configuration structure of type ST _WG_ <type> is transferred to
the function blocks during instantiation. The configuration structure can be assigned in the declaration or via
the method Configure () at runtime.

See also: Data types [»_31] > Configuration structures [P 31]

Sample of configuration in the declaration:

(* define configure structure - exemplary for ComboFilter ¥*)
stParams : ST WG ComboFilter := (

nOrder := nOrder,

fCutoff := fCutoff,

fSamplingRate := fSampleRate,

nSamplesToFilter := nSamplesToFilter);

(* create filter instance with configure structure *)
fbFilter : FB_WG_ComboFilter := (stConfig := stParams);

& QOutputs

All function blocks have an error flag bError and a flag bConfigured of type BOOL as output parameters.
These indicate whether an error has occurred and whether the corresponding function block instance has
been successfully configured. The output ipResultMessage oftype I TcMessage provides various
properties for explaining the cause of an event and methods for processing the message (event list).

See also: | TcEventBase und | TcMessage

‘w Methods

All function blocks in the Tc3_Weighing library have three methods. They return a positive value if they were
executed without errors.

Configure()
The method can be used at runtime to initially configure the instance of a Weighing function block (if not

already done in the declaration) or to reconfigure it.

METHOD Configure : BOOL
VAR INPUT

stConfig : ST WG <type>;
END_ VAR

call()

TF3685 Version: 1.0.1 17

https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5003696395.html?id=6802977975132782117
https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5003696395.html?id=6802977975132782117

PLC AP BECKHOFF

The method calculates a manipulated output signal from an input signal that is transferred in the form of a
pointer.

METHOD Call : BOOL

VAR INPUT
pIn : POINTER TO LREAL; (*address of input array*)
nSizeln : UDINT; (*size of input array*)
pOut : POINTER TO LREAL; (*address of output array*)
nSizeOut : UDINT; (*size of output array¥*)

END VAR

Reset()

The method resets the internal status of a Weighing function block. The influence of the past values on the
current output value is eliminated.

METHOD Reset : BOOL

g Properties

The Tc3_Weighing library references the TwinCAT 3 EventLogger and thus ensures that information (events)
is provided via the standardized interface | TcMessage.

Each function block has the properties eTracelLevel of type TcEventSeverity and
eTracelLevelDefault of type BOOL.

The trace level determines the severity of an event (Verbose, Info, Warning, Error, Critical) and is set via the
property eTraceLevel.

(* Sample of setting fbFilter to trace level info *)
fbFilter.eTracelevel := TcEventSeverity.Info;

The property eTraceLevelDefault can be used to set the trace level back to the default value
(TcEventSeverity.Warning). The property can be read and written, i.e. the property
eTraceLevelDefault can be used to query whether the default value is set.

The properties can also be set in Online View.

= ¢ fbFilter FB_WG_ComboFiter
"% bError BOOL FALSE
"% bConfigured BOOL TRUE
+ "9 ipResultMessage I_TcMessage 16#FFFFAB8595E85F88
% bTracelevelDefault BOOL
eTracelevel TCEVENTSEVERITY Warning
+ * stConfig ST_WG_ComboFiter
+ & stParamsScale ST_WG_Scaling
+ ¢ fbScale FB_WG_Scaling
@ nl astWindowl enath LIDINT 100

Dealing with oversampling

All function blocks are oversampling-capable, whereby different types of use are possible. The declaration of
the Weighing function block instance tbFilter is always the same here.

1-channel application with oversamples

The input and output arrays can be declared as one-dimensional variables.
VAR CONSTANT

cOversamples : UINT := 10;
END VAR
VAR
alnput : ARRAY [l..cOversamples] OF LREAL;
aOutput : ARRAY [l..cOversamples] OF LREAL;
END VAR
bSucceed := fbFilter.Call (ADR(alInput), SIZEOF (aInput), ADR(aOutput), SIZEOF (aOutput));

1-channel application without oversamples

18 Version: 1.0.1 TF3685

https://infosys.beckhoff.com/content/1033/tc3_eventlogger/index.html?id=8504177607767980219
https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5003786635.html?id=1982739904931787201

BECKHOFF PLC API

If no oversampling is used, the input and output variables can also be declared as LREAL.

VAR CONSTANT

cOversamples : UINT := 1;
END VAR
VAR

fInput : LREAL;

fOutput : LREAL;
END VAR
bSucceed := fbFilter.Call(ADR(fInput), SIZEOF (fInput), ADR(fOutput), SIZEOF (fOutput));
5.1.1 FB_WG_CombofFilter

FB_WG_ComboFilter

—{=stConfig bErrork—

bConfiguredf—
ipResultMessagef—

The function block FB_WG_ComboFilter implements a PTn, Moving Average and Notch filter connected in
series.

The filter specification is transferred with the structure ST WG CombofFilter [P 31].

Syntax

Declaration:

fbFilter : FB_WG_ComboFilter (stConfig := ...)

Definition:
FUNCTION BLOCK FB WG ComboFilter
VAR INPUT
stConfig : ST _WG_ComboFilter;
END VAR
VAR OUTPUT
bError : BOOL;
bConfigured : BOOL;
ipResultMessage : I TCMessage;
END VAR
% Inputs
Name Type Description
stConfig ST WG ComboFilter Structure for configuring the filter behavior
»31
E- Qutputs
Name Type Description
bError BOOL TRUE, if an error occurs.
bConfigured BOOL TRUE if the configuration was successful.
ipResultMessage | TCMessage Interface that provides properties and methods for
message handling.
‘w Methods
Name Definition location Description
Configure() Local Loads a new (or initial) configuration structure.
Call() Local Calculates the output signal for a given input signal and
configuration of the function block.
Reset() Local Resets internal states.

TF3685 Version: 1.0.1 19

https://infosys.beckhoff.com/content/1033/tf3680_tc3_filter/5855749643.html
https://infosys.beckhoff.com/content/1033/tf3680_tc3_filter/5855741963.html
https://infosys.beckhoff.com/content/1033/tf3680_tc3_filter/11004515595.html
https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5003786635.html

PLC AP BECKHOFF

= Properties
Name Type Access Definition lo- |Initial value Description

cation
bTraceLevelDefault |BOOL Get, Set |Local TRUE TRUE, if

eTracelLevel = Warning.

eTracelLevel TcEventSeverity Get, Set |Local Critical Severity of an event
Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.50 PC or CX (x64, x86) Tc3_Weighing

5111 Configure

This method can be used at runtime to initially configure the instance of a filter (if it was not already
configured in the declaration) or to reconfigure it.

If a filter instance is not configured, the methods Call () and Reset () cannot be used.

Syntax
METHOD Configure : BOOL
VAR INPUT
stConfig : ST_WG_ComboFilter;
END_ VAR
Inputs
Name Type Description
stConfig ST WG ComboFilter Structure for configuring the filter behavior
»31
Sample

(*Declaration without configuration*)
fbFilter : FB_WG ComboFilter();

(* initial configuration of fbFilter ¥*)
IF bInit THEN

bSucceed := fbFilter.Configure (stConfig := stParams);
bInit = FALSE
END IF

(* reconfigure fbFilter on bReconfigure = TRUE *)
IF bReconfigure THEN

stParams.nSamplesToFilter := 11; (*change filter order¥*)
bSucceed := fbFilter.Configure (stConfig := stParams);
bReconfigure = FALSE;

END IF

E- Return value

Name Type Description

Configure BOOL TRUE if the weighing instance was configured
successfully.

51.1.2 Call

The method calculates a manipulated output signal from an input signal that is transferred in the form of a
pointer.

20 Version: 1.0.1 TF3685

https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5286329611.html

BECKHOFF PLC API
Syntax
METHOD Call : BOOL
VAR INPUT
plIn : POINTER TO LREAL;
nSizeln : UDINT;
pOut : POINTER TO LREAL;
nSizeOut : UDINT;
END VAR
Inputs
Name Type Description
pin POINTER TO LREAL Address of the input array
nSizeln UDINT Size of the input array
pOut POINTER TO LREAL Address of the output array
nSizeOut UDINT Size of the output array
& Return value
Name Type Description
Call BOOL Returns TRUE if a manipulated output signal has been
calculated.
Sample
aInput := ARRAY [l..cOversamples] OF LREAL;
aOutput := ARRAY [1l..cOversamples] OF LREAL;
bSucceed : fbWeighing.Call (ADR (alInput), SIZEOF (aInput), ADR (aOutput), SIZEOF (aOutput));
5.1.1.3 Reset

The method resets the internal status of the weighing instance. By resetting the function block, the weighing
instance is reset to its original state, i.e. without any influence from the past. The weighing instance is

therefore reset to the last configuration status.

Syntax

METHOD Reset :

BOOL

E- Return value

Name

Type

Description

Reset

BOOL

Returns TRUE if the internal status of the weighing

instance has been successfully reset.

5.1.2

FB_WG_Scaling

—stConfig

FB_WG_Scaling

bErrorf—
bConfiguredf—
ipResultMessage—
eCalibratestatef—
tlastTaref—
fCurrentTareOffsetf—

The function block FB_WG_Scaling is used for scaling raw values. The raw values can be scaled individually
or as an array, for example as oversampling values.

The configuration structure is transferred with ST WG Scaling [P_32].

TF3685

Version: 1.0.1 21

PLC API BECKHOFF
Syntax
Declaration:
fbScaling : FB WG Scaling(stConfig := ...
Definition:
FUNCTION BLOCK FB WG Scaling
VAR INPUT
stConfig : ST_WG_Scaling;
END_ VAR
VAR OUTPUT
bError : BOOL;
bConfigured : BOOL;
ipResultMessage : I _TCMessage;
eCalibrateState : ULINT;
tLastTare : ULINT;
fCurrentTareOffset : LREAL;
END_ VAR
Inputs
Name Type Description
stConfig ST WG Scaling [P 32] Function block-specific configuration structure
& QOutputs
Name Type Description
bError BOOL TRUE, if an error occurs.
bConfigured BOOL TRUE if the configuration was successful.
ipResultMessage | TCMessage Interface that provides properties and methods for

message handling.

eCalibrateState

E WG Calibrate [» 35]

Current calibrate/tare state.

tLastTare ULINT Timestamp of the last Tare()/ [»_26]UpdateTareOffset()
[»_27]1 method call.

fCurrentTareOffset |LREAL Updates itself with every Tare()/ [»_26]UpdateTareOffset()
[»_27] method call.

‘w Methods

Name Definition location Description

Configure() Local Loads a new (or initial) configuration structure.

Call() Local Calculates the output signal for a given input signal and
configuration of the function block.

Reset() Local Resets internal states.

ApplyCalibration() |Local Ends the calibration process.

CalibrateRefHigh() |Local Triggers the fReferenceHigh calibration.

CalibrateRefLow() |Local Triggers the fReferenceLow calibration.

Tare() Local Triggers the tare calibration.

UpdateTareOffset() |Local Sets the tare offset value manually and updates the
tLastTare/fCurrentTareOffset output.

22 Version: 1.0.1 TF3685

https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5003786635.html

BECKHOFF PLC API

e Properties
Name Type Access Definition lo- |Initial value Description
cation
bTraceLevelDefault |BOOL Get, Set |Local TRUE TRUE, if
eTracelLevel = Warning
eTraceLevel TcEventSeverity |Get, Set |Local Warning Severity of an event
nTimeStamp ULINT Get, Set |Local 0 Timestamp of the oldest
input value of the next
Call().
Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.50 PC or CX (x64, x86) Tc3_Weighing

5.1.21 Configure

This method can be used at runtime to initially configure the instance of a filter (if it was not already
configured in the declaration) or to reconfigure it.

If a weighing instance is not configured, the methods Call () and Reset () cannot be used.

Syntax

METHOD Configure : BOOL
VAR _INPUT

stConfig : ST WG Scaling;
END VAR

Inputs

Name Type Description
stConfig ST WG Scaling [» 32] Structure for configuring the filter behavior

Sample

(*Declaration without configuration*)
fbScaling : FB WG Scaling();

(* initial configuration of fbScaling *)
IF bInit THEN

bSucceed := fbScaling.Configure(stConfig := stParams) ;
bInit = FALSE
END IF

(* reconfigure fbScaling on bReconfigure = TRUE *)
IF bReconfigure THEN

stParams.fRawHigh:= 10; (*change fRawHigh¥*)

bSucceed = fbScaling.Configure (stConfig := stParams);
bReconfigure = FALSE;
END_IF
E- Return value
Name Type Description
Configure BOOL TRUE if the weighing instance was configured
successfully.

TF3685 Version: 1.0.1 23

https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5286329611.html

BECKHOFF

PLC API

5.1.2.2 Call

The method calculates a manipulated output signal from an input signal that is transferred in the form of a
pointer.

Syntax
METHOD Call : BOOL
VAR INPUT
plIn : POINTER TO LREAL;
nSizeln : UDINT;
pOut : POINTER TO LREAL;
nSizeOut : UDINT;
END VAR
Inputs
Name Type Description
pin POINTER TO LREAL Address of the input array
nSizeln UDINT Size of the input array
pOut POINTER TO LREAL Address of the output array
nSizeOut UDINT Size of the output array

E- Return value

Name Type Description

Call BOOL Returns TRUE if a manipulated output signal has been
calculated.

Sample

aInput := ARRAY [1l..cOversamples] OF LREAL;

aOutput := ARRAY [l..cOversamples] OF LREAL;

bSucceed := fbWeighing.Call (ADR (aInput), SIZEOF (alInput), ADR(aOutput), SIZEOF (aOutput));

5.1.2.3 Reset

The method resets the internal status of the weighing instance. By resetting the function block, the weighing
instance is reset to its original state, i.e. without any influence from the past. The weighing instance is
therefore reset to the last configuration status.

Syntax

METHOD Reset : BOOL

E- Return value

Name Type Description

Reset BOOL Returns TRUE if the internal status of the weighing
instance has been successfully reset.

5.1.2.4 ApplyCalibration

The method can be used at runtime to complete or cancel the triggered calibration process
(CalibrateRefHigh() [P _25]/CalibrateRefLow() [P 25]).

Syntax
METHOD ApplyCalibration : BOOL
VAR INPUT
bAccept : BOOL;
END_VAR

24 Version: 1.0.1 TF3685

BECKHOFF PLC AP

% Inputs

Name Type Description

bAccept BOOL If TRUE, the CalibrateRefHigh()/CalibrateRefLow() results
are accepted. Otherwise discarded.

Sample

(*Declaration without configuration*)
fbScaling : FB WG Scaling();

(* accept calibration *)

IF bAcceptCalibration THEN
fbScaling.ApplyCalibration (bAccept
bAcceptCalibration := FALSE;

END IF

TRUE) ;

(* discard calibration *)

IF bDiscardCalibration THEN
fbScaling.ApplyCalibration (bAccept := FALSE);
bDiscardCalibration:= FALSE;

END IF

E- Return value

Name Type Description
ApplyCalibration BOOL TRUE if the method was executed successfully.

5.1.25 CalibrateRefHigh

The method can be used at runtime to trigger the fReferenceHigh calibration.

Syntax
METHOD CalibrateRefHigh : BOOL
VAR INPUT
nDurationInSamples : UDINT;
fRefHigh : LREAL;
END_ VAR
Inputs
Name Type Description
nDurationinSamples |UDINT Number of samples to be averaged.
fRefHigh LREAL New fReferenceHigh value.
Sample
stParamsScale: T WG Scaling := (fRawLow := 0, fRawHigh := 1, fReferenceHigh := 1,
fReferencelLow := 0);

fbScaling :FB WG Scaling:=(stConfig:=stParamsScale);
IF bCalibrateReferenceHigh THEN

fbScaling.CalibrateRefHigh (nDurationInSamples := 10, fRefHigh := 1.1);
bCalibrateReferenceHigh := FALSE;
END IF

E- Return value

Name Type Description
CalibrateRefHigh BOOL TRUE if the method was executed successfully.
5.1.2.6 CalibrateRefLow

The method can be used at runtime to trigger the fReferencelLow calibration.

TF3685 Version: 1.0.1 25

PLC AP BECKHOFF

Syntax
METHOD CalibrateRefLow : BOOL
VAR INPUT
nDurationInSamples : UDINT;
fRefLow : LREAL;
END VAR
! Inputs
Name Type Description
nDurationinSamples |UDINT Number of samples to be averaged.
fRefLow LREAL New fReferencelLow value.
Sample
stParamsScale: ST WG Scaling := (fRawLow := 0, fRawHigh := 1, fReferenceHigh := 1,
fReferencelLow := 0);

fbScaling :FB WG Scaling:=(stConfig:=stParamsScale);
IF bCalibrateReferenceLow THEN

fbScaling.CalibrateReflLow (nDurationInSamples := 10, fReflow := 0.1);
bCalibrateReferencelow := FALSE;
END IF

E- Return value

Name Type Description
CalibrateRefLow BOOL TRUE if the method was executed successfully.
5.1.2.7 Tare

The method can be used at runtime to tare the function block. The average is calculated via
nDurationlnSamples - output values. Finally, the result is passed to the method UpdateTareOffset [P 27]().

Syntax

METHOD Tare : BOOL
VAR INPUT

nDurationInSamples : UDINT;
END_VAR

! Inputs

Name Type Description
nDurationinSamples |UDINT Number of samples to be averaged.

Sample

stParamsScale: ST WG Scaling := (fRawLow := 0, fRawHigh := 1, fReferenceHigh := 1, fReferenceLow :=
0) 7

fbScaling :FB WG Scaling:=(stConfig:=stParamsScale);

IF bTare THEN

fbScaling.Tare (nDurationInSamples := 10);
bTare := FALSE;
END IF

E- Return value

Name Type Description
Tare BOOL TRUE if the method was executed successfully.

26 Version: 1.0.1 TF3685

BECKHOFF PLC API

5.1.2.8 UpdateTareOffset

The method can be used at runtime to perform manual taring. This means that the fOffset value (weight) is
subtracted from the calculated output values. In addition, the function block outputs tLastTare and
fCurrentTareOffset (= fCurrentTareOffset- fOffset) are updated.

Syntax

METHOD UpdateTareOffset := BOOL
VAR INPUT

fOffset := LREAL; (* It corresponds to tare weight.*)
END VAR

| Inputs

Name Type Description
fOffset LREAL The new tare weight.

Sample

stParamsScale: ST WG Scaling := (fRawLow := 0, fRawHigh := 1, fReferenceHigh := 1,
fReferencelLow := 0);

fbScaling :FB WG Scaling:=(stConfig:=stParamsScale);

IF bUpdateTareOffset THEN

fbScaling.UpdateTareOffset (fOffset := 5.0);
bUpdateTareOffset := FALSE;
END IF

E- Return value

Name Type Description
UpdateTareOffset |BOOL TRUE if the method was executed successfully.

5.1.3 FB_WG_Weighing

FB_WG_Weighing
—stConfig bErrorg—
bConfigured—
ipResultMessage—
bvalidMeasurementf—
bMewResultk—
tLastResult—
fLastWeight}—
fLastStdf—

fveightf—

fotd—

fMinf—

fMaxf—
fautoTareOffsetf—
bNewhAutoTareResultf—

The function block FB_WG_Weighing is used to determine a measured weight.

The configuration structure is transferred with ST WG Weighing [>_32].

Syntax

Declaration:

fbWeighing := FB WG Weighing(stConfig := ...)

Definition:

FUNCTION BLOCK FB WG Weighing
VAR INPUT

stConfig := ST WG Weighing; (*The input parameters of this function block represent
initialization parameters and must already be assigned in the declaration of the FB instance!

TF3685 Version: 1.0.1 27

PLC API BECKHOFF
(Alternative: Configure () method) *)
END VAR
VAR OUTPUT
bvalidMeasurement : BOOL := FALSE; // TRUE if ST WG Weighing Validation-conditions are valid
(only if nWindowLength is full).
bNewResult : BOOL := FALSE; // TRUE if a new result has been occured (at the end of
the Validation measurement) .
tLastResult : ULINT := 0; // Timestamp of new occured result.
fLastWeight : LREAL := 0.0; // Last weighing result.
fLastStd : LREAL := 0.0; // Last standard deviation result.
fWeight : LREAL := 0.0; // Moving average of nWindowLength input values.
fsStd : LREAL := 0.0; // Moving standard deviation of nWindowLength input
values.
fMin : LREAL := 0.0; // Minimum value of moving nWindowLength input values.
fMax : LREAL := 0.0; // Maximum value of moving nWindowLength input values.
fAutoTareOffset : LREAL := 0.0; // Last auto tare offset result.
bNewAutoTareResult : BOOL := FALSE; // TRUE if a new result has been occured (at the end of
the AutoTare measurement) .
END VAR
VAR
Inputs
Name Type Description
stConfig ST WG Weighing [» 32] |Function block-specific configuration structure
& Qutputs
Name Type Description
bError BOOL TRUE, if an error occurs.
bConfigured BOOL TRUE if the configuration was successful.
ipResultMessage | TCMessage Interface that provides properties and methods for

message handling

bValidMeasurement

BOOL

TRUE if the ST WG Weighing Validation [»_33] conditions
are met.

bNewResult BOOL TRUE, if a new result was calculated.
tLastResult ULINT The timestamp of the last calculated result.
fLastWeight LREAL The weight (moving average) of the last result.
fLastHour LREAL The standard deviation of the last result.
fWeight LREAL The current weight (moving average) of the last result.
fStd LREAL The current moving standard deviation.
fMin LREAL Minimum fWeight weight in the sliding window.
fMax LREAL Maximum fWeight weight in the sliding window.
fAutoTareOffset LREAL The tare weight of the last result.
bNewAutoTareResul | BOOL TRUE if a new tare weight has been calculated.
t
‘w Methods
Name Definition location Description
Configure() Local Loads a new (or initial) configuration structure.
Call() Local Calculates the output signal for a given input signal and
configuration of the function block.
Reset() Local Resets internal states.

28

Version: 1.0.1

TF3685

https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5003786635.html

BECKHOFF PLC API

e Properties
Name Type Access Definition lo- |Initial value Description
cation
bTraceLevelDefault |BOOL Get, Set |Local TRUE TRUE, if
eTracelLevel = Warning.
eTraceLevel TcEventSeverity |Get, Set |Local Warning Severity of an event
nTimeStamp ULINT Get, Set |Local 0 Timestamp of the oldest
input value of the next
Call().
Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.50 PC or CX (x64, x86) Tc3_Weighing

Also see about this
ST_WG_Weighing_AutoTare [34]

5.1.31 Configure

The method can be used at runtime to initially configure the weighing instance (if not already done in the
declaration) or to reconfigure it.

If a weighing instance is not configured, the methods Call () and Reset () cannot be used.

Syntax

METHOD Configure := BOOL
VAR _INPUT

stConfig := ST WG Weighing;
END VAR

Inputs

Name Type Description
stConfig ST WG Weighing [» 32] |Configuration structure

Sample

(*Declaration without configuration*)
fbWeighing : FB WG Weighing();

(* initial configuration of fbWeighing *)
IF bInit THEN

bSucceed := bWeighing.Configure (stConfig := stParams) ;
bInit = FALSE
END IF
(* reconfigure fbWeighing on bReconfigure := TRUE ¥*)
IF bReconfigure THEN
stParams.nWindowLength := 50; (*change window length*)
bSucceed = fbWeighing.Configure (stConfig := stParams) ;
bReconfigure = FALSE;
END IF

E- Return value

Name Type Description

Configure BOOL TRUE if the weighing instance was configured
successfully.

TF3685 Version: 1.0.1 29

https://infosys.beckhoff.com/content/1033/tc3_eventlogger/5286329611.html

PLC AP BECKHOFF

5.1.3.2 Call

The method calculates a manipulated output signal from an input signal that is transferred in the form of a
pointer. If oversampling is used, not all information is displayed. The results of the function block outputs
refer to the oldest input value of Call().

Syntax
METHOD Call : BOOL
VAR INPUT
plIn : POINTER TO LREAL;
nSizeln : UDINT;
END_ VAR
Inputs
Name Type Description
pin POINTER TO LREAL Address of the input array
nSizeln UDINT Size of the input array

E- Return value

Name Type Description

Call BOOL Returns TRUE if a manipulated output signal has been
calculated.

Sample

alnput := ARRAY [l..cOversamples] OF LREAL;

bSucceed := fbWeighing.Call (ADR (alInput), SIZEOF (alnput)):;

5.1.3.3 Reset

The method resets the internal status of the weighing instance. By resetting the function block, the weighing
instance is reset to its original state, i.e. without any influence from the past. The weighing instance is
therefore reset to the last configuration status.

Syntax
METHOD Reset : BOOL

E- Return value

Name Type Description

Reset BOOL Returns TRUE if the internal status of the weighing
instance has been successfully reset.

5.1.34 AutoTare

The method can be used at runtime to automatically tare a FB WG Scaling [P _21] instance.

Syntax

//This method tares the function block with the interface I WG Scaling with the current
fAutoTareOffset-value automaticly if fAutoTareOffset is not zero.

//It calls I WG Scaling.UpdateTareOffset (fOffset := fAutoTareOffset) and FB WG Weighing.Reset () .
//A new FB WG Weighing.fAutoTareOffset value will be updated after ST WG Weighing.nWindowLength +
ST WG_Weighing AutoTare.nValidationSamples at the earliest.

METHOD AutoTare := BOOL

VAR INPUT
IScaling : I WG _Scaling; //function block with the interface I_WG_Scaling
eAutoTareType : E WG_AutoTareType; // AutoTare behaviour (end or continously)

END VAR

30 Version: 1.0.1 TF3685

BECKHOFF PLC API

% Inputs
Name Type Description
IScaling |_WG_Scaling Function block with the interface |_WG_Scaling
eAutoTareType E WG AutoTareType Behavior for automatic taring
[»_36]
Sample
// Scaling

stParamsScaling : ST WG Scaling := (
fRawLow:=0.0,
fReferencelLow:=0.0,
fRawHigh:=1000.0,
fReferenceHigh:=100.0) ;

fbScaling : FB WG Scaling:=(stConfig:=stParamsScale);

// Weighing
stParamsWeighing : ST WG Weighing := (

nWindowLength:=100,

Validation:=(nValidationSamples:=100, fThresholdWeight:=20.0, fMaxStd:=5.0, fMaxWeightDeviat
ion:=0.0),

AutoTare:=(nValidationSamples:=100, fThresholdWeight:=10.0, fMaxStd:=1.0, fMaxWeightDeviatio
n:=0.0)

)i

fbWeighing : FB WG Weighing:=(stConfig:=stParamsWeighing);
eAutoTareType : E WG AutoTareType : E WG AutoTareType.eContinously;

fbWeighing.AutoTare (fbScaling, eAutoTareType)

E- Return value

Name Type Description

AutoTare BOOL TRUE if the method call was executed successfully.

5.2 Data types

5.21 Configuration structures

General description

There is an individual configuration structure ST_WG_ <type> for each function block FB_WG_<type>. In the
configuration structure all parameters are defined that are required for the calculation of the transfer function,
the input and output variables (size and form of the arrays) as well as the internal states.

5.211 ST_WG_CombofFilter

Configuration structure for the function block FB_ WG ComboFilter [»_19].

(* Optional parameters are ignored if they are zero.¥*)
TYPE ST WG _ComboFilter

STRUCT

nOrder : UDINT = 6 (* Order has to be between one and ten. *)

fCutoff : LREAL := 10.0; (* Cutoff frequency [Hz] has to be greater than zero and
smaller or equal than fSamplingrate/2. *)

fSamplingRate : LREAL := 1000.0; (* Sampling rate [Hz] has to be greater than zero. ¥*)

nSamplesToFilter : UDINT := 200; (* Number of samples must be greater than zero. It
corresponds to the window size of the moving average filter (optional). *)

fNotchFrequency : LREAL := 0.0; (* Notch frequency [Hz] has to be greater than zero and

smaller or equal than fSamplingrate/2. The quality factor Q has a default value of 30.0 (optional).
*)
bReset : BOOL := TRUE; (* Reset memory, if bReset = TRUE *)
END_STRUCT
END TYPE

TF3685 Version: 1.0.1 31

PLC AP BECKHOFF

* nOrder is the filter order (1-10).
* fCutoff is the cut-off frequency in Hz (greater than 0 and less than £SamplingRate /2)
* fSamplingRate is the sampling rate f, in Hz.

* nSamplesToFilter is the number of samples (greater than 0) to form the moving average (often
referred to as the window size).

« fNotchFrequency is the notch frequency in Hz (greater than 0 and less than fSamplingRate /2)

* bReset is a Boolean parameter that specifies whether the internal past values should be reset on
reconfiguration.

5.2.1.2 ST_WG_Scaling

Configuration structure for the function block FB_ WG Scaling [»_21].

TYPE ST WG Scaling :

STRUCT
fRawLow : LREAL := 0.0; (* fRawLow must be smaller than fRawHigh. *)
fRawHigh : LREAL = 1000.0; (* fRawHigh must be greater than fRawLow. *)
fReferencelLow : LREAL := 0; (* fReferencelow must be smaller than fReferenceHigh. *)
fReferenceHigh : LREAL := 100.0; (* fReferenceHigh must be greater than fReferencelow. *)
END_ STRUCT
END TYPE

¢ fRawLow must be smaller than fRawH1igh.
* fRawHigh must be greater than fRawLow.
* fReferenceLow must be smaller than fReferenceHigh.

* fReferenceHigh must be greater than fReferencelow.

5.2.1.3 ST_WG_Weighing

Configuration structure for the function block FB WG Weighing [P _27].

TYPE ST WG _Weighing :
STRUCT

nWindowLength : UDINT := 100; (* Size in samples of a sliding window and must be greater than
zero. It specifies over how many values the function block outputs fWeight, £fStd, fMin and fMax
should be calculated. If the amount of existing input values is smaller than nWindowLength the
calculation will be done with the already existing values. *)

Validation : ST WG _Weighing Validation;
AutoTare : ST WG Weighing AutoTare;
END STRUCT
END_ TYPE

* nWindowLength is the number of samples used to form the moving average (often referred to as the
window size). The parameter specifies how many values are to be used to calculate the function block
outputs fiWeight, £Std, fMin and fMax. If the number of existing input values is less than
nWindowLength, the calculation is carried out using the existing input values.

* Validation is an optional substructure that influences the function block outputs
bValidMeasurment, bNewResult, tLastResult and fLastWeight.

* AutoTare is an optional substructure that influences the function block outputs fAutoTareOffset
and bNewAutoTareResult.

32 Version: 1.0.1 TF3685

BECKHOFF PLC API

ST_WG_Weighing.nWindowLength

current input value = ® |nput
nWindowLength = N fWeight
>>fWeight (average over N [} fSt.d
input values) — fMin
fMax
>>fMin (min value in window) sliding window

>>fMax (max value in window)
current fStd
current fMin
current fMax

—/
Q current fweight
o
o

5.21.31 ST_WG_Weighing_Validation

Substructure for the configuration structure ST WG Weighing [P_32]. Set parameters affect the function block
outputs bValidMeasurement, bNewResult, tLastResult, fLastWeight and flLastStd [»_28].

(*This configure struct helps to find the actual weight during one measuring cycle.

A measuring cycle starts when FB WG Weighing.fWeight exceeds fThresholdWeight and ends when it falls
below fRelativeWeightLimit*FB WG Weighing.fLastWeight or fThresholdWeight (if fRelativeWeightLimit
is not set).

The actual weight will be displayed in FB WG Weighing.fLastWeight (FB WG Weighing.fWeight with
smallest FB WG Weighing.fStd) .

Optional parameters are ignored if they are zero. None of the parameters can be less than zero.*)
TYPE ST WG Weighing Validation

STRUCT
fThresholdWeight : LREAL := 50.0; (* Minimum value for the measured weight. This
condition is fulfilled if FB WG Weighing.fWeight is greater than or equal to fThresholdWeight. *)
nValidationSamples : UDINT := 10; (* Number of input values for which the other

ST WG Weighing Validation parameter conditions (fThresholdWeight, fMaxStd, fMaxWeightDeviation) must
be fulfilled so that FB WG Weighing.bValidMeasurement=TRUE (optional, recommended). *)

fMaxStd : LREAL = 5.0; (* Upper limit for the standard deviation. This
condition is fulfilled if FB WG Weighing.fStd is less than or equal to fMaxStd (optional,
recommended) . *)

fMaxWeightDeviation : LREAL = 0.0; (* Upper limit for the maximum weight deviation.
This condition is fulfilled if FB WG Weighing.fMax - FB WG Weighing.fMin is less than or equal to
fMaxWeightDeviation (optional, recommended). ¥*)

fRelativeWeightLimit : LREAL := 0.0; (* fRelativeWeightLimit (> 0 and < 1) specifies
that FB WG Weighing.bNewResult and FB WG Weighing.tLastResult are updated if FB WG Weighing.fWeight
falls below the fRelativeWeightLimit * FB WG Weighing.fLastWeight limit value (optional). *)
END STRUCT
END TYPE

¢ fThresholdWeight is the minimum value for the measured weight. This condition is met if
FB WG Weighing.fWeight is greater than or equal to fThresholdWeight.

* nValidationSamples is the number of input values for which the other
ST WG Weighing Validation parameter conditions (fThresholdWeight, fMaxStd,
fMaxWeightDeviation) must be fulfilled so that FB WG Weighing.bValidMeasurement=TRUE
(optional, recommended).

+ fMaxStd is the upper limit for the standard deviation. This condition is met if
FB WG Weighing.fStdis less than or equal to tMaxStd (optional, recommended).

* fMaxWeightDeviation is the upper limit for the maximum weight deviation. This condition is met if
FB WG Weighing.fMax - FB_WG Weighing.fMin is less than or equal to
fMaxWeightDeviation (optional, recommended).

TF3685 Version: 1.0.1 33

PLC AP BECKHOFF

* fRelativeWeightLimit (>0 and <1) specifies that FB WG Weighing.bNewResult and
FB WG Weighing.tLastResult are updated if FB WG Weighing. fWeight falls below the limit
value fRelativeWeightLimit-FB WG Weighing.fLastWeight (optional).

ST_WG_Weighing_Validation .
—— fWeight

T fStd
i —t5— — flastWeight

/ / / / —- bValidMeasurement
/

/ /1 final fLastWeight result EEE valld fThresholdWelght
/ / | 9 uit] valid fMaxStd
first fLastWeight result 1 valid condition band
. after nValidationSamples / fLastWeight = fWeight with
fRelative / : 2 / [llest fStd in window
WeightLimit % / 7
/ 4 /
// //) j /
// / / /
fThreshold 4 / AN/
Weight "/ /
// Update fLastWeight in valid condition
% band, the first time after nValidation-

Samples and is updated as long as fStd
is less than before.

/ /

o, A

(>>ignore)

\
N

Start new measurment End measurment
fLastWeight = 0 bNewResult=TRUE
Update tLastResult

If FBE WG Weighing.fWeight rises above £ThresholdWeight, the weight with the lowest

FB WG Weighing.fStd is searched for until FB WG Weighing.fWeight leaves the
fThresholdiWeight limit again. If fRelativeWeightLimit is set, the measurement ends when

FB_ WG Weighing.fWeight falls below fThresholdWeight*fRelativeWeightLimit. The weight
determined is displayed for the first time on a rising edge of FB_ WG_Weighing.bValidMeasurement in
FB_WG Weighing.fLastWeight and is updated until the measurement is complete. At the end of the
measurement, the timestamp is set in FB_ WG_Weighing.tLastResult and

FB WG Weighing.bNewResult is set to TRUE for one cycle. If FB. WG Weighing.fWeight rises above
fThresholdWeight again, FB WG Weighing.fLastWeight is setto zero and a new measurement
begins.

5.2.1.3.2 ST_WG_Weighing_AutoTare

Substructure for the configuration structure ST WG Weighing [P 32]. If parameters are set, this only affects
FB_WG_Weighing.fAutoTareOffset and FB_WG_Weighing.bNewAutoTareResult. An instance of fbScaling
from FB_ WG Scaling [P 21] can be automatically tared, e.g. by calling AutoTare [»_30](fbScaling,

E WG AutoTareType [P 36].eEnd).

(* This configure struct helps to find the tare weight during one measuring cycle. A measuring cycle
starts when the FB WG Weighing.fWeight falls below fThresholdWeight and ends when it exceeds
fThresholdWeight.

The tare weight will be updated (FB WG Weighing.fWeight with smallest FB WG Weighing.fStd) in

FB WG Weighing.fAutoTareOffset until the measuring cycle ends. FB WG Scaling can be automatically
tared by calling fbWeighing.AutoTare (fbScale, E WG _AutoTareType.eEnd) .

Optional parameters are ignored if they are zero. None of the parameters can be less than zero.*)
TYPE ST WG Weighing AutoTare

STRUCT
fThresholdWeight : LREAL := 20.0; (* Maximum value for the measured weight. This condition
is fulfilled if FB WG Weighing.fWeight is smaller than or equal to fThresholdWeight. *)
nValidationSamples : UDINT := 50; (* Number of input values for which the other

ST WG _Weighing AutoTare parameter conditions (fThresholdWeight, fMaxStd, fMaxWeightDeviation) must
be fulfilled in order for FB WG Weighing.fAutoTareOffset to be updated. (optional, recommended). *)

fMaxStd : LREAL := 0.0; (* Upper limit for the standard deviation. This condition
is fulfilled if FB WG Weighing.fStd is less than or equal to fMaxStd (optional, recommended). ¥*)
fMaxWeightDeviation : LREAL := 0.0; (* Upper limit for the maximum weight deviation. This

condition is fulfilled if FB WG Weighing.fMax - FB WG Weighing.fMin is less than or equal to

34 Version: 1.0.1 TF3685

BECKHOFF PLC API

fMaxWeightDeviation (optional, recommended). *)
END_STRUCT
END_TYPE

* fThresholdWeight is the maximum value for the measured weight. This condition is met if
FB WG Weighing.fWeight is less than or equal to fThresholdWeight.

* nValidationSamples is the number of input values for which the other
ST WG _Weighing AutoTare parameter conditions (fThresholdWeight, fMaxStd,
fMaxWeightDeviation) must be fulfilled so that FB WG Weighing.fAutoTareOffset
(optional, recommended).

+ fMaxStd is the upper limit for the standard deviation. This condition is met if
FB WG Weighing.£fStdis less than or equal to tMaxStd (optional, recommended).

* fMaxWeightDeviation is the upper limit for the maximum weight deviation. This condition is met if
FB WG Weighing.fMax - FB_WG Weighing.fMin is less than or equal to
fMaxWeightDeviation (optional, recommended).

ST_WG_Weighing_AutoTare

— fWeight

= fAutoTareOffset

fStd

fMax-fMin

valid fThresholdWeight
valid fMaxStd

valid fMaxWeightDeviation

z

|

[valid condition band
~ fAutoTareoffset = fWeight with
tJ smallest fStd in window
fMaxWeight
Deviation
fThreshold
Weight

Update fAutoTareOffset in valid condition band, the first
time after nValidationSamples and is updated as long as
fWeight is valid and fStd is less than before.

A\ £ L

4 Y. 0

e final fAutoTareOffset result

OSTAN Q%zo

e l £050808d

VLG SO S 1S !m
Y004 000000 >

<
7

first fAutoTa re_Offset result
New measurment after nValidationSamples End measurment
fAutoTareOffset=0 bNewAutoTareResult=TRUE

If FB. WG _Weighing.fWeight falls below fThresholdWeight, the tare weight with the lowest

FB WG Weighing.fStd is searched for until FB_ WG Weighing.fWeight leaves the
fThresholdWeight limit again. The tare weight is displayed at the earliest after nvalidationSamples
values in FB. WG Weighing.fWeight.

5.2.2 E_WG_Calibrate

ENUM for the calibration output of FB WG Scaling [P 21] .

Syntax
Definition:
TYPE E WG Calibrate : (
eldle :=1, (* eIdle represents no calibration. *)
eCalibratelLow :=2, (* eCalibratelow represents that the CalibrateReflLow () process is still
running. *)
eCalibrateHigh :=3, (* eCalibrateHigh that the CalibrateRefHigh () process is still running. ¥*)
eCalibrateIdle :=4, (* eCalibrateIldle represents the temporary completed CalibrateRefLow () /
CalibrateRefHigh () process. ApplyCalibration() completes or discards the process. *)
eTare :=5 (* eTare represents the current Tare() process. *)
) UDINT
END_TYPE

TF3685 Version: 1.0.1 35

PLC AP BECKHOFF

5.2.3 E_WG_AutoTareType

ENUM for the method input of FB WG Weighing.AutoTare() [»_30].

Syntax

Definition:

TYPE E WG AutoTareType : (
eEnd := 0, // Tares at the end of the AutoTare measurement (if

FB WG _Weighing.bNewAutoTareResult = TRUE) .
eContinously, // Tares continiously, if FB WG Weighing.fAutoTareOffset is not O.
eldle // Do nothing

)
END TYPE

36 Version: 1.0.1 TF3685

BEGKHOFF Samples

6 Samples

6.1 Dynamic weighing
This sample shows how the dynamic weighing process works with the Weighing PLC library.

Download: https://infosys.beckhoff.com/content/1033/TF3685 TC3_ Weighing_Library/Resources/
16127833867/.zip (*.tnzip)

Description

The input signal, a noisy trapezoidal signal, is generated in the MAIN program using the method
GeneratelInputs () with a signal generator. The simulated signal is transferred to the function block
FB_DynamicWeighing (fbDynamicWeighing), which forwards it internally to other function blocks. This
includes filtering with the function block FB WG CombofFilter [_19] (fbComboFilter), scaling with the
function block FB WG Scaling [P 21] (fbScale) and evaluation with the function block FB WG Weighing
> 27] (fbWeighing).

Program parameters

The table below shows a list of important parameters for configuring the function blocks used.

Variable Description Default value

fRawAmplitudeSigna|Amplitude of the trapezoidal signal 1000.0

I

fAbsoluteNoise Absolute noise amount 200.0

fFrequency Base frequency of the trapezoidal signal 1.0 Hz

bActivateSlope A drifting test signal is activated/deactivated FALSE

bAddWeight Adds an offset value to the test signal once FALSE

eAutoTareType Selection for automatic taring E_WG_AutoTareTyp
e.eContinously

The following global constants are defined.

Variable Description Default value
cOversamples Number of oversamples of the input channel 10
cSamplingRate Sample rate of the input channel in Hz 1000

Implementation:

First, the corresponding structures and function blocks are declared and initialized:

// Filter
stParamsComboFilter : ST WG ComboFilter :=
(

nOrder : =6,
fCutoff : =10.0,
fSamplingRate : =TO_LREAL (cSamplingRate),
nSamplesToFilter : =200,
bReset := FALSE
);
fbComboFilter := FB WG ComboFilter:=(stConfig := stParamsComboFilter);
// Scaling

stParamsScale : ST WG Scaling : =
(
fRawLow : =0.0,
fReferencelow : =0.0,
fRawHigh : =1000.0,
fReferenceHigh : =100.0
)i

fbScale : FB WG Scaling : =(stConfig : =stParamsScale, eTracelevel : =TcEventSeverity.Info);

TF3685 Version: 1.0.1 37

https://infosys.beckhoff.com/content/1033/TF3685_TC3_Weighing_Library/Resources/16127833867.zip
https://infosys.beckhoff.com/content/1033/TF3685_TC3_Weighing_Library/Resources/16127833867.zip

Samples BEGKHOFF

// Weighing
stParamsWeighing : ST WG Weighing : =
(

nWindowLength : =100,
Validation:=(nValidationSamples : =100, fThresholdWeight : =20.0, fMaxStd : =5.0,
fMaxWeightDeviation : =0.0),
AutoTare : =(nValidationSamples : =100, fThresholdWeight : =10.0, fMaxStd:=1.0,
fMaxWeightDeviation : =0.0)
)
fbWeighing : FB WG Weighing : =(stConfig : =stParamsWeighing);

In the implementation part, the function block instances are executed using the corresponding cal1l ()
methods.

// Execute weighing

IF NOT fbComboFilter.Call (ADR (aInput), SIZEOF (aInput), ADR(aOutFilter), SIZEOF (aOutFilter)) THEN
SetError (fbComboFilter) ;

END IF

IF NOT fbScale.Call (ADR (aOutFilter), SIZEOF (aOutFilter), ADR(aOutScaling), SIZEOF (aOutScaling)) THEN
SetError (fbScale) ;
END IF

IF NOT fbWeighing.Call (ADR (aOutScaling), SIZEOF (aOutScaling)) THEN
SetError (fbWeighing) ;
END_TF

Automatic taring:

The instance fbScale can be automatically tared via the fbiWeighing instance as follows:

// Execute AutoTare

IF NOT fbWeighing.AutoTare (fbScale, eAutoTareType) THEN
SetError (fbWeighing) ;

END IF

Depending on the eAutoTareType initialization value, there is the following case distinction:

38 Version: 1.0.1 TF3685

BEGKHOFF Samples
120.0 4
ﬂ TwlnCATMeasur-ement Project1 00.0.] e s Py
4 @Y‘I’Scopeproject \ 7 \
I = DataPool 50.0 \\ ,‘7 ‘\\ // \ / k
CEr \ /L \ /L \ / |\
4§y Axis Group (1) 30.04 \ \ \
E alutScaling 0 \"& \\E \E\& \
[fweight -
4 Iz:\rz, Axis Group (2) -30.04
fAutoTareOffset eAutoTareType := E_WG_AutoTareType.eEnd; —
1
E bMNewAutoTareResult 4.5
3.0 P,
1.5 "_l
0.0 I _l l l
L
-3.04
U.DIEIDS D.3|405 D.EIBDS 1.DI205 1.3‘605 1.?‘005 2.0:1-05 2.3‘805 2.?‘205 3.DIEDS 3.4‘005
& 100.0- .
TwinCAT Measurement Projecti ,:? X
4 Eﬂ YT Scope Project 75.0 / % ’//
P & DataPool T \\ // \\ // \\ /}
e N \ /L \ /B Vi
4 &y Axis Group (1) 25.0 /
E aOutScaling \ j \ jy !‘\ 7
B fweight Liq —
4 By Axis Group (2) aEad
Bl fAutoTareOffset eAutoTareType := E_WG_AutoTareType.eContinously; —
E bMewAutoTareResult 1.8
1.2
0.6+
0.0 = A
-0.6
-1.24
U.DIEIDS D.BIEIDS D.EIIJDS D.S:JDS 1.2‘005 1.5‘005 1.8‘005 2.1‘005 2.4‘005 2.?:305 3.DIDDS

E WG AutoTareType.eEnd (above): fbScale is tared with the value fAutoTareOffset if

bNewAutoTareResult is equal to TRUE. E WG AutoTareType.eContinously (below): fbScale is

tared with the value fAutoTareOffset if fAutoTareOffset is not equal to 0. After taring, a

fbWleighing.Reset () is automatically executed each time.

TF3685

Version: 1.0.1

39

Appendix

BECKHOFF

7 Appendix

71 Return codes

Return codes of the ipResultMessage.

Online Watch:
= & fbWeighing FB_WG_Weighing
"% bError BOOL
"% bConfigured BOOL
= " ipResultMessage 1_TcMessage
@ eSeverity TCEVENTSEVERITY
+ ¢ ipSourcelnfo I_TcSourcelnfo
nEventld UDINT
sEventClassName STRING(255)
% sEventText STRING(255)

Defined events:

16#FFFFCAO1FOES6638

Error

16#FFFFCA01F9E86480

12297

"TcWeighingEventClass'

'‘WindowLength must be greater than zero.'

40 Version: 1.0.1

TF3685

BECKHOFF Appendix
nEventld |Name sEventText
(hex)
16#0001 DbgMessage Dbg: {0}.
16#1001 |TcCom_Transition_PS_Failed|Error in Transition PREOP->SAFEOP.
16#1002 |TcCom_Transition_SO_Faile |Error in Transition SAFEOP->OP.
d
16#1003 |TcCom_Transition_SO_Faile |Error in Transition SAFEOP->OP: No Task assigned. Module
d_NoTask will not be executed cyclically.
16#1004 |TcCom_Transition_OS_Faile |Error in Transition OP->SAFEOP.
d
16#1005 |TcCom_Transition_SP_Failed|Error in Transition SAFEOP->PREOP.
16#1006 |TcCom_CyclicCallerAssigned |Cyclic caller is assigned. Methods can not be called.
16#1007 |TcCom_lInvalidObjectState |Invalid object state.
16#1008 |TcCom_lInvalidSymbolSize |Invalid symbol size.
16#1009 |TcCom_InvalidDataAreaNo |Invalid data area number.
16#2001 Init_NoRouterMemory Memory could not be allocated dynamically. Check size of rotuer
memory.
16#3001 Config_InvalidPointer Null pointer was allocated.
16#3002 |Config_NoRouterMemory Memory could not be allocated dynamically. Check size of rotuer
memory.
16#3003 |Config_InvalidCutOff Cutoff must be greater than zero and smaller than Samplingrate/
2.
16#3004 |Config_InvalidSamplingRate |Sampling rate must be greater than zero.
16#3005 |Config_InvalidSamplesToFilte SamplesToFilter must be greater than zero.
r
16#3008 |Config_InvalidOrder Order must be greater than zero and smaller than eleven.
16#3009 |Config_InvalidWindowlLength \WindowLength must be greater than zero.
16#3010 |Config_InvalidThreshold Threshold must be equal or greater than zero.
16#3011 Config_InvalidMaxStd MaxStd must be equal or greater than zero.
16#3012 |Config_InvalidMaxWeightDevi MaxWeightDeviation must be equal or greater than zero.
ation
16#3013 |Config_InvalidReferenceValu |ReferenceHigh must be greater than ReferencelLow.
e
16#3014 |Config_InvalidRawValue RawHigh must be greater than RawLow.
16#3015 |Config_InvalidCalibrationValu |RawHigh must be greater than RawLow. ReferenceHigh must
es be greater than ReferencelLow.
16#3016 |Config_InvalidRelativeWeight |RelativeWeightLimit must be greater or equal than zero and
Limit smaller than one.
16#3017 |Config_InvalidNotchFrequenc |NotchFrequency must be greater than zero and smaller than
y fSamplingrate/2.
16#4001 Run_MissingConfiguration Missing configuration.
16#4002 |Run_InvalidPointer Null pointer was allocated.
16#4003 |Run_InvalidinputSize Invalid input size.
16#4004 |Run_InvalidOutputSize Output size array cant be smaller than input array size.
16#6001 Warning_CalibrationProcessF |Calibration has not been processed successfully. RawHigh must

ailed

be greater than RawLow. ReferenceHigh must be greater than
ReferencelLow.

TF3685

Version: 1.0.1 41

Appendix BEGKHOFF

nEventld |Name sEventText

(hex)

16#6002 |Warning_CouldNotTriggerTar | The tare process could not be triggered because the calibration
e process had not yet been completed.

16#6003 |Warning_InvalidState Invalid state.

16#7003 |Warning_InvalidCutOff Cutoff must be greater than zero and smaller than Samplingrate/

2.

16#7004 |Warning_InvalidSamplingRat |Sampling rate must be greater than zero.
e

16#7005 |Warning_InvalidSamplesToFil SamplesToFilter must be greater than zero.
ter

16#7008 |Warning_InvalidOrder Order must be greater than zero and smaller than eleven.

16#7009 |Warning_InvalidWindowLengt WindowLength must be greater than zero.
h

16#7010 |Warning_InvalidThreshold Threshold must be equal or greater than zero.

16#7011 |Warning_InvalidMaxStd MaxStd must be equal or greater than zero.

16#7012 |Warning_InvalidMaxWeightD |MaxWeightDeviation must be equal or greater than zero.
eviation

16#7013 |Warning_InvalidReferenceVal |ReferenceHigh must be greater than ReferencelLow.
ue

16#7014 |Warning_InvalidRawValue RawHigh must be greater than RawLow.

16#7015 |Warning_InvalidCalibrationVa |RawHigh must be greater than RawLow. ReferenceHigh must
lues be greater than ReferencelLow.

16#7016 |Warning_InvalidNotchFreque |NotchFrequency must be greater than zero and smaller than
ncy fSamplingrate/2.

7.2 FAQ - frequently asked questions and answers

Frequently asked questions are answered in this section to make it easier for you to work with the TwinCAT
3 Weighing Library.
If you have further questions, please contact our support (-157).

1. Can | extend the filters of FB WG ComboFilter for more sophisticated applications? [» 42]

Can | extend the filters of FB_WG_ComboFilter for more sophisticated applications?

The FB_WG_CombofFilter already contains three different filter types that you can add depending on the
application. If this is not enough, additional filters can be added using the TF3680 TwinCAT 3 filter library.
For this application, the license for the TF3680 is already included in the license for the TF3685 TwinCAT 3
Weighing. An additional license is therefore not required.

42

Version: 1.0.1 TF3685

BEGKHOFF Appendix

7.3 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:
* support
» design, programming and commissioning of complex automation systems
» and extensive training program for Beckhoff system components
Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
 spare parts service
* hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20

33415 Verl

Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

TF3685 Version: 1.0.1 43

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

More Information:
www.beckhoff.com/tf3685

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TF3685
https://www.beckhoff.com
https://www.beckhoff.com/tf3685

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 Licensing

	4 Technical introduction
	4.1 Measuring procedure

	5 PLC API
	5.1 Function blocks
	5.1.1 FB_WG_ComboFilter
	5.1.1.1 Configure
	5.1.1.2 Call
	5.1.1.3 Reset

	5.1.2 FB_WG_Scaling
	5.1.2.1 Configure
	5.1.2.2 Call
	5.1.2.3 Reset
	5.1.2.4 ApplyCalibration
	5.1.2.5 CalibrateRefHigh
	5.1.2.6 CalibrateRefLow
	5.1.2.7 Tare
	5.1.2.8 UpdateTareOffset

	5.1.3 FB_WG_Weighing
	5.1.3.1 Configure
	5.1.3.2 Call
	5.1.3.3 Reset
	5.1.3.4 AutoTare

	5.2 Data types
	5.2.1 Configuration structures
	5.2.1.1 ST_WG_ComboFilter
	5.2.1.2 ST_WG_Scaling
	5.2.1.3 ST_WG_Weighing
	5.2.1.3.1 ST_WG_Weighing_Validation
	5.2.1.3.2 ST_WG_Weighing_AutoTare

	5.2.2 E_WG_Calibrate
	5.2.3 E_WG_AutoTareType

	6 Samples
	6.1 Dynamic weighing

	7 Appendix
	7.1 Return codes
	7.2 FAQ - frequently asked questions and answers
	7.3 Support and Service

		documentation@beckhoff.com
	2024-04-09T10:23:15+0200
	Beckhoff Automation, Verl
	Documentation Publishing

