
Manual | EN

TE1401
TwinCAT 3 | Target for MATLAB®

2025-08-05 | Version: 1.3.0

Table of contents

TE1401 3Version: 1.3.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7
1.4 Documentation issue status .. 8

2 Overview .. 9

3 Installation ... 10
3.1 Initial setup of the software ... 12

3.1.1 Set up default settings and set MATLAB® path.. 12
3.1.2 Setting up driver signing... 15

4 Licenses... 20

5 Quick start ... 21

6 Overview of automatically generated files ... 33

7 Settings of the TwinCAT module generator ... 35
7.1 Creating TMX archives.. 39

8 Application of modules in TwinCAT.. 41
8.1 Working with the TcCOM module ... 41

8.1.1 MATLAB code representation .. 43
8.2 Working with the PLC library ... 46

8.2.1 Online change of the PLC library ... 50
8.2.2 Calling a TcCOM object from the PLC... 51

8.3 Debugging... 52
8.4 Exception handling.. 55
8.5 Using Realtime Monitor time stamps .. 62

9 FAQ... 63
9.1 Build of a sample fails ... 63
9.2 Are there limitations with regard to executing modules in real-time?.. 63

10 Samples ... 65
10.1 TwinCAT Automation Interface: use in MATLAB®... 65

10.1.1 Sample: Tc3AutomationInterface... 66

Table of contents

TE14014 Version: 1.3.0

Foreword

TE1401 5Version: 1.3.0

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
The documentation and the following notes and explanations must be complied with when installing and
commissioning the components.
The trained specialists must always use the current valid documentation.

The trained specialists must ensure that the application and use of the products described is in line with all
safety requirements, including all relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
Claims to modify products that have already been supplied may not be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, ATRO® , EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over
EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar®, and XTS® are registered
and licensed trademarks of Beckhoff Automation GmbH.
If third parties make use of the designations or trademarks contained in this publication for their own
purposes, this could infringe upon the rights of the owners of the said designations.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Third-party trademarks

Trademarks of third parties may be used in this documentation. You can find the trademark notices here:
https://www.beckhoff.com/trademarks.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

https://www.beckhoff.com/trademarks

Foreword

TE14016 Version: 1.3.0

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TE1401 7Version: 1.3.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Foreword

TE14018 Version: 1.3.0

1.4 Documentation issue status
Version Changes
1.3.x TwinCAT 3.1 Build 4026

• Brief information on installation [} 10]
• Updated system requirements

Overview

TE1401 9Version: 1.3.0

2 Overview
TE1401 TwinCAT Target for MATLAB®

With the TwinCAT 3 Target for MATLAB®, it is possible to make use of the functions developed in the
MATLAB® script language in TwinCAT 3. The functions are automatically transcoded in C/C++ code with the
aid of the MATLAB® Coder™ and transformed into TwinCAT objects with the TwinCAT 3 Target for
MATLAB®. These objects can be used seamlessly in the TwinCAT 3 Engineering, e.g. extended with PLC
source code to make an overall project, debugged and linked with fieldbus devices. The automatically
generated modules can be integrated in the TwinCAT solution as TcCOM objects on the one hand and as
PLC function blocks on the other. The inserted modules are downloaded with the complete TwinCAT project
into the TwinCAT 3 runtime, where they are executed within the real-time environment like all other objects.
TwinCAT 3 Target for Simulink® supports targets with Windows 32-bit and 64-bit as well as TwinCAT/BSD.

Further Information

Technical short video

• TwinCAT Target for MATLAB

Product description

• https://www.beckhoff.com/TE1401

Web page for MATLAB® and Simulink® with TwinCAT 3

• https://www.beckhoff.com/matlab

https://vimeo.com/546348883
https://www.beckhoff.com/TE1401
https://www.beckhoff.com/matlab

Installation

TE140110 Version: 1.3.0

3 Installation
System requirements

In the following, a distinction is made between the engineering PC and the runtime PC. The following
definition applies: on the engineering PC, MATLAB® functions are converted to TwinCAT objects by using
the Target for MATLAB®. Similarly, a TwinCAT solution can be created on this PC, which uses the created
objects, but it does not have to be. The TwinCAT solution created is then loaded from the engineering PC
onto a runtime PC in the TwinCAT runtime environment for project execution.

On the engineering PC
• MATLAB® R2019a or higher

◦ MATLAB® and MATLAB® Coder™ Toolbox
• Visual Studio 2017 or higher (Professional, Ultimate or equivalent edition)

◦ During installation, the option Desktop development with C++ must be selected manually. The
option can also be installed later.

• TwinCAT 3.1.4024.7 or higher
◦ Install TwinCAT 3 XAE or Full Setup only after Visual Studio has been installed with Desktop

development with C++.
• TwinCAT Tools for MATLAB® and Simulink® setup

On the runtime PC
• Supported operating systems

◦ Windows 11, Windows 10, Windows Server (32-bit and 64-bit)
◦ TwinCAT/BSD

• TwinCAT XAR version 3.1.4024.7 or higher

Built objects can be easily forwarded
TwinCAT objects built on an engineering PC (or Build Server) can be easily forwarded to other
people. They only need the TwinCAT XAE development environment in order to use the created
objects (TcCOM or PLC function blocks) in a TwinCAT solution.

Installation (TwinCAT 3.1 Build 4026)

The TE1401 | TwinCAT 3 Target for MATLAB® workload installs all dependencies required to create
TwinCAT objects.

• Install one of the supported Visual Studio versions, if not already installed. Remember to install the
Desktop development with C++ option.

• Install the TwinCAT Package Manager.
• Install the following workload via the TwinCAT Package Manager:

Command line: tcpkg install TE1401.TargetForMATLAB.XAE

• Execute Integration in Visual Studio that you have installed with the Desktop development with C++
option.

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_installation/15698626059.html&id=
https://infosys.beckhoff.com/content/1033/tc3_installation/15698621451.html?id=8658116531104156966

Installation

TE1401 11Version: 1.3.0

• Start MATLAB® as administrator and execute
C:\Program Files (x86)\Beckhoff\TwinCAT\Functions\TE14xx-
ToolsForMatlabAndSimulink\SetupTE14xx.p in MATLAB®.

If you want to create a TwinCAT project and use TwinCAT objects that have already been built, install the
following workloads:

• TwinCAT Standard
tcpkg install TwinCAT.Standard.XAE

• TwinCAT Block Diagram Classic
tcpkg install TwinCAT.XAE.BlockDiagramClassic

• In some cases you will also need the following packages:
tcpkg install TwinCAT.XAE.TMX.MatSimUtilities
(for converting ITcVnImage to ARRAY)

Installation (TwinCAT 3.1 Build 4024)
ü Install one of the supported Visual Studio versions, if not already installed. Remember to install the

Desktop development with C++ option.
1. Start TwinCAT 3 XAE or Full Setup if these are not already installed.

If Visual Studio and TwinCAT are already installed, but the Visual Studio version does not meet the
above requirements (e.g. TwinCAT XAE Shell or Visual Studio without C++ option), you will need to
install a suitable version of Visual Studio version first (install the C++ option, if necessary). Then run
TwinCAT 3 setup to integrate TwinCAT 3 into the new (or modified) Visual Studio version.

2. If you have not yet installed MATLAB® on your system, install it. The order in which MATLAB® has been
installed is irrelevant.

3. Start TwinCAT Tools for MATLAB® and Simulink® Setup to install the TE1401 TwinCAT Target for
MATLAB®.
ð The TwinCAT Target for MATLAB® is installed within the TwinCAT folder structure, i.e. it is separate

from the MATLAB® installation.
4. Start MATLAB® as administrator and run

%TwinCAT3Dir%.. \Functions\TE14xx-ToolsForMatlabAndSimulink\SetupTE14xx.p in MATLAB®.
ð A setup window opens. See the following section.

Setting up the software

Version SetupTE14xx.p

After executing the p-file, a dialog opens in which you can save general default settings that will then apply to
the system. You can make the settings directly or make/change them at a later time.

If you want to execute the p-file without this dialog, you can use the following command:
SetupTE140x('Silent', true);

Setting options in the dialog are:

VendorName, GroupName (MATLAB®) and GroupName (Simulink®)

Installation

TE140112 Version: 1.3.0

These settings influence the hierarchy in which the generated TwinCAT objects are sorted. See diagram
below. Here the entries VendorName "TE140x Module Vendor" and GroupName "TE140x|MATLAB
Modules" are for MATLAB® and "TE140x|Simulink Modules" for Simulink®.

To change the default settings, you can access the dialog with
TwinCAT.ModuleGenerator.Settings.Edit in the MATLAB® Console. Here you are also offered
additional entries that you can store as default.

3.1 Initial setup of the software

3.1.1 Set up default settings and set MATLAB® path

Initial setup of the software

Setting MATLAB® paths

As described under Installation, the files SetupTE14xx.p must be executed after the software installation.
This script adds the necessary paths to your MATLAB® path. MATLAB® administrator rights are required to
save MATLAB® paths.

Run SetupTE14xx.p additionally after each product update
To ensure that all paths are set in the MATLAB® path, please also run the p-file after updating the
product.

Set default settings

The script also opens a dialog in which you can save general default settings for the TwinCAT target. These
settings then apply system-wide, i.e. for all installed MATLAB® versions.

If you want to execute the p-file without this dialog, you can use the following command:
SetupTE14xx('Silent', true);

The default values of the dialog are set.

Installation

TE1401 13Version: 1.3.0

You can make the settings at this time or make/change them at a later time.

In the dialog under the Build tab, you can store a default certificate for driver signing. The setup options for
driver signing are explained in full in the chapter Setting up driver signing [} 15].

The hierarchy of the generated TwinCAT objects can also be influenced in the dialog.

The following setting options are available in the dialog:

• VendorName
• GroupName (MATLAB®) and
• GroupName (Simulink®)

The hierarchy is shown in TwinCAT using the following example:

• VendorName “TE140x Module Vendor”
• GroupName “TE140x”

◦ “MATLAB Modules” for MATLAB® and
◦ “Simulink Modules” for Simulink®

Installation

TE140114 Version: 1.3.0

Change the software setup

To change the default settings of the TwinCAT target, you can access a dialog in the MATLAB® Console as
follows:
TwinCAT.ModuleGenerator.Settings.Edit

Here you are offered various entries that you can store as default values.

Installation

TE1401 15Version: 1.3.0

Accept changes
1. Enter the new default settings in the dialog box.
2. Confirm with the Save button.
3. Restart MATLAB®.
ð The changes have been adopted.

3.1.2 Setting up driver signing

Create an OEM certificate level 2

TwinCAT objects generated from MATLAB® or Simulink® are based on a tmx driver (TwinCAT Module
Executable), as are TwinCAT C++ objects. These drivers must be signed with a OEM certificate level 2 so
that the driver can be loaded on the runtime PC during the TwinCAT runtime.

See the following links for detailed documentation on how to create an OEM certificate for driver signing:

• General documentation on OEM certificates

• Application-related documentation for tmx driver signing

https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_security_management/2408886027.html&id=
https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_c/6778770443.html&id=

Installation

TE140116 Version: 1.3.0

The most important facts in brief:
• You can create your own certificate. To do this, go to Visual Studio at:

Menu bar > TwinCAT > Software Protection...
◦ You need an OEM certificate Crypto Version 2 (option: Sign TwinCAT C++ executables (*.tmx)).
◦ You will be prompted to create a password for your certificate.

• Drivers can also be created without signing and signed afterwards.
• For testing purposes in the development phase, a non-countersigned certificate is sufficient.

• Countersigned certificates can be ordered free of charge from Beckhoff (TC0008).

Set up OEM certificate level 2 under Software Protection

TwinCAT Build 4026: Requirement for the setup dialog
The following information on Software Protection only applies to TwinCAT 3.1 Build 4026. At least
the TwinCAT Standard 4026.14 workload is required. If you are working with older versions, please
continue reading “Setting up OEM certificate level 2 for driver signing without the Software
Protection dialog” in the section below.

In the Software Protection interface (Menu bar > TwinCAT > Software Protection...) you can both create
certificates (Create New...) and:

• Set a certificate as the system-wide default certificate for signing tmx files (optional).
• For each certificate, store the corresponding password for the logged-in Windows user (required).

The overview above contains two certificates as examples.

The first certificate "TestSign123" is not countersigned by Beckhoff, therefore it is classified as invalid in the
status. Certificates that are not countersigned can still be used for signing. The target system must then be
set into the test mode - see section Behavior of the TwinCAT runtime [} 18]. The "TmxSignCertFaxxxBx"
certificate, on the other hand, is countersigned and therefore classified as valid. Both certificates are suitable

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_security_management/2408886027.html&id=

Installation

TE1401 17Version: 1.3.0

for signing tmx files, as can be seen under Permissions. In the "TMX Signing" column, "Default" indicates
whether a certificate is set as the system-wide default certificate. The note "PW Stored" indicates that the
password of the certificate is available/stored for the Windows user logged in.

Set certificate as system-wide default certificate (optional)

You can set a default certificate on an engineering PC, which is always used for TwinCAT C++, Target for
MATLAB®, Target for Simulink®, etc., unless you explicitly specify a different certificate.

Select the certificate you want to use as the default certificate from the list in the Software Protection dialog
and select the "Set as System Default" checkbox.

An environment variable with the name TcSignTwinCatCertName is then created. In Windows, environment
variables are made known when a process is started. Therefore, restart MATLAB® if you are already running
the process.

Further options for using certificates can be found later in this chapter.

Store password for a certificate (required)

For security reasons, the password of a certificate must not be entered in the project or source code in the
Simulink® model or in the MATLAB® code. With "Store Password for Current User" you store the
corresponding passwords for your certificates on your system.

The passwords are stored obfuscated in the registry of the Windows operating system. This means that the
password for a specific certificate is known in the operating system (for the Current User) and is used
automatically.

Select the certificate for which you want to store the corresponding password in the Software Protection
dialog. Select "Store Password for Current User". You will be asked to enter your password. If it has been
successfully checked and entered, the note "PW Stored" appears under "TMX Signing".

An alternative variant for storing a password is the command prompt with the TcSignTool (C:\Program Files
(x86)\Beckhoff\TwinCAT\3.1\SDK\Bin).

The password is stored with the following call:
tcsigntool grant /f "C:\TwinCAT\3.1\CustomConfig\Certificates\MyCertificate.tccert" /p MyPassword

The obfuscated password is stored in the registry under:
HKEY_CURRENT_USER\SOFTWARE\Beckhoff\TcSignTool\

The password is deleted with the following call:
tcsigntool grant /f "C:\TwinCAT\3.1\CustomConfig\Certificates\MyCertificate.tccert" /r

Set up OEM certificate level 2 for driver signing without the Software Protection dialog

To sign tmx files, you need a certificate and a password associated with the certificate.

Available certificates can be found at:

Build 4026: C:\ProgramData\Beckhoff\TwinCAT\3.1\CustomConfig\Certificates
Build 4024: C:\TwinCAT\3.1\CustomConfig\Certificates

Handling of the certificate

There are four possible variants for signing tmx drivers.

Variant 1: System-wide default certificate for TwinCAT C++ and TE14xx

This variant is identical to the path via "Software Protection" > "Set as System Default".

Alternatively, you can also create a Windows environment variable manually for this variant. Create a new
environment variable at User > Variables with:

Variable: TcSignTwinCatCertName

Installation

TE140118 Version: 1.3.0

Value: Full path of the certificate

Variant 2: System-wide default certificate for MATLAB®

You can set a default certificate in your MATLAB® environment, which is always used for Target for
MATLAB® and Target for Simulink® (not TwinCAT C++), unless you explicitly specify a different certificate.

Open the Common Settings dialog with TwinCAT.ModuleGenerator.Settings.Edit (MATLAB® Command line)
and enter the desired default certificate under Build > Certificate name for TwinCAT signing. This
certificate is stored in your user directory as default and is used by all MATLAB® versions on your system as
default.

Variant 3: Certificate in the configuration of the Simulink® model

You can explicitly name a certificate for each build operation. For Variant 3 you do not have to make any
further settings in advance. Before each build process, you can define a certificate of your choice for
precisely this build process.

Target for Simulink®: TC Build > Certificate for TwinCAT signing

Target for MATLAB®: Property SignTwinCatCertName

Variant 4: Build without certificate and sign later with TcSignTool

You can build without a certificate and sign afterwards with the TcSignTool.

The TcSignTool is a command line program. For example, open the command prompt and execute
tcsigntool sign /? to display the help. The program can be found here:

Build 4026: C:\Program Files (x86)\Beckhoff\TwinCAT\3.1\SDK\Bin

Build 4024: C:\TwinCAT\3.1\SDK\Bin

Operating TcSignTool from MATLAB®

From MATLAB®, the tool can be started with the command system() or with !.

Sample call for signing a tmx driver for TwinCAT:
TcSignTool sign /f "C:\TwinCAT\3.1\CustomConfig\Certificates\ MyCertificate.tccert" /p MyPassword
"C:\TwinCAT\3.1\Repository\TE140x Module Vendor\ModulName\0.0.0.1\TwinCAT RT (x64)\MyDriver.tmx"

Behavior of the TwinCAT runtime

If a TwinCAT object created from MATLAB® or Simulink® with a signed driver is used in a TwinCAT Solution
and loaded onto a target system with Activate Configuration, the following must be observed:

Test mode for non-countersigned certificates

If you use a non-countersigned OEM certificate for signing, you must set your target system into test mode.
To do this, run the following command as an administrator on the target system:
bcdedit /set testsigning yes

If you are using a countersigned OEM certificate, this step is not necessary.

Whitelist for certificates on target systems

Each TwinCAT runtime (XAR) has its own whitelist of trusted certificates.

Behavior with TwinCAT Build 4026

The TwinCAT-XAE checks whether all certificates required to activate the configuration are in the whitelist on
the runtime system. If this is not the case, a pop-up window appears. You can set the whitelist entries there.

Behavior with TwinCAT Build 4024

If the certificate used for signing is not included in this whitelist, the driver will not be loaded. A corresponding
error message is output in TwinCAT Engineering (XAE).

Installation

TE1401 19Version: 1.3.0

The error message contains the instruction to execute a registry file, which was automatically created on the
target system, on the target system as administrator. This process adds the used certificate to the whitelist.

Registry file is only dependent on the OEM certificate
The registry file can also be used on other target systems. It only contains information about the
OEM certificate used and is not target system dependent.

Licenses

TE140120 Version: 1.3.0

4 Licenses
Two licenses are required to use the full functionality of the TE1401 TwinCAT Target for MATLAB®. On the
one hand, the TE1401 engineering license for creating TwinCAT objects from MATLAB® functions and, on
the other hand, a runtime license for executing these objects during the TwinCAT runtime.

Engineering license

The license TE1401 Target for MATLAB® is required for the engineering system to create TcCOM and PLC
function blocks from MATLAB®. For testing purposes, the product can be used in demo mode without a
license as a demo version.

A 7-day trial license with full functionality is not available for this product.

Restrictions in the demo version

Without a valid TE1401 license, the following restrictions must be observed:

• All cpp and header files from MATLAB® Coder™ must not exceed 50 kB in total.
• Function inputs and function outputs are limited to 5 variables.
• You cannot merge multiple MATLAB® functions into one PLC library.

Modules created with a demo license may only be used for non-commercial purposes!

Runtime license

The TC1320 or TC1220 licenses with included PLC license are required to start a TwinCAT configuration
with a TwinCAT object generated from MATLAB®. Without activated license, the module and consequently
the TwinCAT system cannot be started.

TC1320 contains the license for executing TwinCAT C++ objects as well as objects created via the Target
for Simulink® and via the Target for MATLAB®.

TC1220 adds a PLC license to the above list of TC1320.

It is possible to create a 7-day trial license for the runtime licenses, which allows initial tests without
purchasing the license.

Quick start

TE1401 21Version: 1.3.0

5 Quick start
Starting with a simple MATLAB® function
ü Feel free to use our built-in samples for first steps with the TwinCAT Target for MATLAB®. The MATLAB®

Command Window provides a list of available samples via
TwinCAT.ModuleGenerator.Samples.List

1. First select simple samples, e.g. BaseStatistics - can also be called directly with
TwinCAT.ModuleGenerator.Samples.Start('BaseStatistics').

Beginner video
The following video (only available in English) can also be used as an introduction: TwinCAT Target
for MATLAB®.

Getting started with the Base Statistics Sample
ü Opening the Base Statistics Sample opens a MATLAB Live Script, which contains documentation parts

as well as sections with code for execution.
1. Execute the Code Sections by clicking on the respective Run buttons.
2. Work your way through the sample step by step.
ð The sample shows how you can use the Target for MATLAB® to convert two MATLAB® functions into two

TcCOM objects and two function blocks, bundling the function blocks in a common PLC library.

If you do not have a valid TE1401 license, you can activate the TrialLicense checkbox in the sample. This
converts only one MATLAB® function into a TcCOM and a function block. The sample is then compliant with
the demo terms [} 20] of the product.

Selection of components and paths

The General Preparation section of the sample states:

What should be the name of the created TwinCAT driver (tmx-file)?

Here Tc3_BaseStatistics is selected.
This name is then used in the following places:

https://vimeo.com/546348883
https://vimeo.com/546348883

Quick start

TE140122 Version: 1.3.0

• File path in the Engineering Repository:
%TwinCATInstallDir% \3.1\Repository\<TE140x Module Vendor>\Tc3_BaseStatistics\<Version>\

• Name of the created files *.tmx, *.tml, *.tmc and *.library
• Name of the created PLC library in TwinCAT, which then contains the two function blocks

Where should all source files be stored?

buildDir specifies where the MATLAB® Coder™ and also the TwinCAT Target for MATLAB® should store
all source files, log files and other meta information files. This folder contains all the information required to
create the TwinCAT objects from here. In this case, a new folder _ buildDir is created in the current
MATLAB® path.

Which MATLAB® functions should be made available in TwinCAT?

The MATLAB® functions are named here with the variables module1 and module2; the two MATLAB®

functions BaseStatistics and BaseStatisticsIteravtive (stored in subfolder M) are to be transferred to
TwinCAT objects accordingly.

Each of these modules gets its own subfolder in buildDir which is named cppDir1 and cppDir2. The
C++ code is later generated into these subfolders by the MATLAB® Coder™.

Creating a MATLAB® Coder™ configuration

In the further course of the MATLAB® Live Script, a MATLAB® Coder™ configuration is created. This section
does not contain any TwinCAT-specific components, i.e. only the MATLAB® Coder™ is used. For detailed
MATLAB® Coder™ documentation, see the MATLAB® documentation.

https://de.mathworks.com/help/coder/ref/coder.config.html

Quick start

TE1401 23Version: 1.3.0

When creating the Coder configuration cfg, please note:

• The Embedded Coder is not supported.
• Only the generated code is needed.

The codegen command then receives the Coder configuration and the corresponding MATLAB® function to
be translated. The argument "-d", cppDir1 instructs the MATLAB® Coder™ to place the C++ code in the
cppDir1 path.

Accordingly, after this step the generated C++ code of the function BaseStatistic.m and
BaseStatisticIterarive.m are located in the folders _BuildDir/ BaseStatistic and _BuildDir\
BaseStatisticIterative.

Creating a Target for MATLAB® project export configuration

The following code segments in the MATLAB® Live Script apply only to the Target for MATLAB® and are
independent of the MATLAB® Coder™ in that only C++ code already created by the MATLAB® Coder™ will
be used.

Optionally, you can extract the MATLAB® code description from the m-file and display it later in TwinCAT
XAE, see MATLAB Code in TcCOM [} 43].
TwinCAT.ModuleGenerator.Matlab.ExportMCodeRepresentation('MFile',module1,'BuildDir',cppDir1);

The m-file with the module1 function, i.e. BaseStatistics, must be located in the MATLAB® workspace. The
information is then extracted from the BaseStatistics.m file and stored in the cppDir1 folder.

In the next step, a project export configuration is created by the TwinCAT module generator with
TwinCAT.ModuleGenerator.ProjectExportConfig('FullPath',FullPathToVcxproj);

Quick start

TE140124 Version: 1.3.0

The full path to the new Visual Studio project to be created is specified as the argument. In this case, it is ...
_BuildDir\Tc3_BaseStatistics.vcxproj. After building, the naming of the Visual Studio project also defines the
naming of the created files *.tmx, *.tmc, *.tml and *.library. See General settings BaseStatistics [} 21].

Fig. 1:

For each MATLAB® function, an export configuration must be created with
TwinCAT.ModuleGenerator.Matlab.FunctionExportConfig(). AddClassExportConfig adds this
export configuration to the project export configuration as a module.
exportConfig.AddClassExportConfig(TwinCAT.ModuleGenerator.Matlab.FunctionExportConfig('MFile',module
1,'BuildDir',cppDir1));

The path to the C++ code generated by MATLAB® Coder™ and the name of the m-file with the corresponding
MATLAB® function are passed as arguments to FunctionExportConfig(). For example, module1 is then used
to set that the TcCOM object to be created and the function block in the PLC library are called BaseStatistics
or FB_BaseStatistics.

The project export configuration will be further adapted in the following. This defines the platforms for which
a driver is to be built (here for Windows 32-bit, Windows 64-bit and TwinCAT/BSD 64-bit). A PLC library is
also configured to be created and installed on the local TwinCAT XAE.

For each module added to the project export configuration, properties can be set individually. It is explicitly
set here that, for the first added module, both a PLC function block and a TcCOM are to be generated.

You can use disp(exportConfiguration) to display an overview of the entire configuration.

Quick start

TE1401 25Version: 1.3.0

This provides an overview of the values set (Value), the data type used (DataType), suggested values
(Options), and a short description (Displayname).

With TwinCAT.ModuleGenerator.ProjectExporter(exportConfig), the build process of the
configured platforms is triggered. This creates a folder on the local file system in the repository and stores
the created drivers and description files.

The path description is:

%TwinCATInstallDir% \3.1\Repository\< VendorName >\<ProjectName>\<Version>\

You can copy the folder to any number of TwinCAT XAE systems to make the modules available on those
systems. Only the *.library must be installed in TwinCAT via the PLC library repository. Please note that the
folder structure will not be changed during copying.

Use PLC library in TwinCAT 3
ü Starting from a new TwinCAT solution, create a PLC project:
1. Perform the following menu steps.

Quick start

TE140126 Version: 1.3.0

Quick start

TE1401 27Version: 1.3.0

2. Then add the newly created (and already installed) PLC library:

Quick start

TE140128 Version: 1.3.0

Quick start

TE1401 29Version: 1.3.0

3. Get an overview of the data types and function blocks:

Quick start

TE140130 Version: 1.3.0

4. Insert instances of the function blocks into your PLC and use them in your application:

Using TcCOM objects in TwinCAT 3
1. Insert a new TcCOM object.

Quick start

TE1401 31Version: 1.3.0

2. Select the corresponding TcCOM object:

3. Create a new cyclic task of type TwinCAT Task.

Quick start

TE140132 Version: 1.3.0

4. Assign the newly created task to the newly created TcCOM object. To do this, go to the instance of the
TcCOM object and select the Context tab.

ð You can now activate the configuration. In order to connect the TcCOM object with other modules in
your TwinCAT solution beforehand, you can use the process image to create mappings.

You can view the MATLAB® code on the Block Diagram tab and observe and scope values on the fly. See
MATLAB code representation [} 43].

Overview of automatically generated files

TE1401 33Version: 1.3.0

6 Overview of automatically generated files
If a build process is triggered via the TwinCAT module generator, some files and folders are created
automatically. Where the files are located, what can be done with them and what the files mean - this is
described below.

What are the categories of automatically generated files?

• Source code is generated.
• Log files are generated.
• The TwinCAT objects, drivers (*.tmx) and description files (*.tmc, *.library, ...), are created.

Generated source code

All source files required for the build, i.e. for creating the TwinCAT objects, are stored in the folder specified
during initialization of the TwinCAT module generator. The location and name of the Visual Studio project to
be generated are specified precisely here.
TwinCAT.ModuleGenerator.ProjectExportConfig('FullPath',FullPathToVcxproj);

For example, the following graphic shows the FullPath as ..._BuildDir\Tc3_BaseStatistics.

The central file for the source code is <ProjectName>.vcxproj. This file can be used to create all TwinCAT
objects. From MATLAB® you can, for example, trigger code generation only without a build process and run
the build process on another system such as a build server. To do this, set Project.Publish = false in
the TwinCAT module generator.

Generated log files

The generated log files are also collected in the folder mentioned above.

The log files created are the first place to look when debugging. If you request help from our support, please
always send the following file with your request:

<ModelName>_ModuleGenerationLog.txt

Created TwinCAT objects

After a successful build, the binary files and description files created, which can be re-used in TwinCAT XAE,
are stored in the so-called Engineering Repository, i.e. on the engineering PC at:

Overview of automatically generated files

TE140134 Version: 1.3.0

%TwinCATInstallDir% \3.1\Repository\<Module Vendor>\<ProjectName>\<Version>\

This folder contains the tmc description file, the PLC library and the tmx drivers for the configured platforms
as well as other description files.

If the order is copied to other PCs with TwinCAT XAE in the local engineering repositories, their users can
use the created TwinCAT objects in their TwinCAT solutions.

Please note

Description of the generated C++ files and binary files

Versioned C++ projects

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/831432715.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/6777687691.html&id=

Settings of the TwinCAT module generator

TE1401 35Version: 1.3.0

7 Settings of the TwinCAT module generator
Adds a project export configuration
exportConfig = TwinCAT.ModuleGenerator.ProjectExportConfig('FullPath',FullPathToVSproj);

The full path and name of the Visual Studio project to be created is passed to the 'FullPath' property.

Returns an object of the class TwinCAT.ModuleGenerator.ProjectExportConfig.

Sample call:
FullPathToVSproj = 'C:\BuildDir\MyMATLABFcn';
exportConfig = TwinCAT.ModuleGenerator.ProjectExportConfig('FullPath',FullPathToVSproj);

Methods of the class TwinCAT.ModuleGenerator.ProjectExportConfig

AddClassExportConfig Adds an export configuration to the project. To create an export
configuration, see section Creating an export configuration
[} 39]. The export configuration is appended under Properties in
the cell array ClassExportCfg.

For an example call, see Module generator quick start [} 23].

Save This creates a mat file and stores the project export configuration
in it. The transfer argument is a path where the mat file is to be
stored.
Example call:
exportConfig.Save(pwd)

This saves the project export configuration in the current path.

Load This loads a saved project export configuration. The transfer
argument specifies the path of the mat file containing the saved
configuration.
Example call:
exportConfig.Load(pwd)

Loads the project export configuration from the current path.
Edit Opens a graphical configuration interface for setting up the project

export configuration.

disp Gives an overview of the current project export configuration in the
MATLAB® Command Window. See Module generator quick start
[} 23].
Example call:
exportConfig.disp alternatively disp(exportConfig)

Settings of the TwinCAT module generator

TE140136 Version: 1.3.0

Properties of the class TwinCAT.ModuleGenerator.ProjectExportConfig

Project

Structure with entries for configuring the build properties, the PLC library and the possible callbacks.

Project.FullPath

FullPath to the TwinCAT C++ project to be created.

Project.VendorName

Name of the Vendor. The Vendor Name is used to structure the TwinCAT objects. The vendor is created as
a folder within the repository’s path and becomes visible in the structure once the PLC library and the
TcCOM object have been inserted.

Project.IncrementVersion

Possible values: “None”, “Revision”, “Build”, “Minor”, “Major”

Default value: “Revision”

This setting determines which of the four digits of the version number are incremented. The basis is the most
recent version available on the engineering system (see DrvFileVersion).

Project.DrvFileVersion

Default: Search for the most recent version on the engineering system. If no existing version is found, it
starts at 0.0.0.0.

Direct setting of a version: Can be set directly as a string, e.g. “1.52.32.0”. IncrementVersion will then not
be executed.

Project.Publish

If TRUE, the created TwinCAT C++ project is built for the configured platforms.

Project.PublishPlatformtoolset

This configures the Visual Studio version to use. This can be specified precisely or set to Auto (default).

Project.PublishTcRTx86

If TRUE, XAR is built on a Windows 32-bit platform.

Project.PublishTcRTx64

If TRUE, XAR is built on a Windows 64-bit platform.

Settings of the TwinCAT module generator

TE1401 37Version: 1.3.0

Project.PublishTcOSx64

If TRUE, XAR is built on a TwinCAT/BSD platform.

Project.SignTwinCatCertName

A TwinCAT OEM certificate for driver signing can be specified here (not mandatory). The password is to be
entered into the Windows Registry of the user with the TcSignTool. Detail see Initial setup of the software
[} 12].

Project.TmxArchive

Enter a path and file name here as a string in order to create a TMX archive [} 39]. Example:
Project.TmxArchive = “c:\archives\[Date]-[Time]-[LibName][LibVersion].exe” creates a self-extracting TMX
archive under c:\archies. The placeholders are resolved in the module generator before the file is written.

Project.GeneratePlcLibrary

If TRUE, a PLC library (*.library) is created in the repository folder for the project.

Project.InstallPlcLibrary

If TRUE, the created PLC library is installed on the local TwinCAT XAE.

Project.PreCodeGenerationCallbackFcn

Here, a function can be called as a string to be called before code generation, i.e., before the TwinCAT C++
project is created.

For example, an m-file MyCallback.m can be created in the workspace with the following content:
function MyCallback(obj)
…
return

The PreCodeGenerationCallbackFcn property is then set to “MyCallback”. By default, the ProjectExporter
object [} 39] is passed to the function, so that you have access to all data of the current project in the
callback function.

Project.PostCodeGenerationCallbackFcn

Here, a function can be called as a string to be called after code generation, i.e., after the TwinCAT C++
project is created.

For example, an m-file MyCallback.m can be created in the workspace with the following content:
function MyCallback(obj)
…
return

The PostCodeGenerationCallbackFcn property is then set to “MyCallback”. By default, the ProjectExporter
object [} 39] is passed to the function, so that you have access to all data of the current project in the
callback function.

Project.PostPublishCallbackFcn

Here, a function can be called as a string to be called after the compilation, i.e., after the TwinCAT objects
are created.

For example, an m-file MyCallback.m can be created in the workspace with the following content:
function MyCallback(obj)
…
return

The PostPublishCallbackFcn property is then set to “MyCallback”. By default, the ProjectExporter object
[} 39] is passed to the function, so that you have access to all data of the current project in the callback
function.

Project.OemId and Project.OemLicenses

Settings of the TwinCAT module generator

TE140138 Version: 1.3.0

Optionally, a generated TcCOM or a function block can be linked to an OEM license. This OEM license is
checked when starting the object (in addition to the Beckhoff runtime license TC1220 or TC1320) in
TwinCAT 3. If no valid license is available, the module does not start up and an error message appears.

Instructions for creating and managing OEM certificates can be found under TwinCAT3 > TE1000 XAE >
Technologies > Security Management.

You can insert your OEM License Check by naming your OEM ID and your license ID or multiple license IDs
to be queried. You can find your OEM ID in the Security Management Console (Extended Info activated).
The license ID can be viewed by double-clicking on the corresponding license entry in TwinCAT under
System > License. Both IDs are also included in the generated License Request File when a Request File is
generated with your OEM license.

Example entry:

exportConfig.Project.OemId = '{ABBAABBA-AFFE-AFFE-AFFE-ABBABBAABBAA}';

exportConfig.Project.OemLicenses = '{11111111-0000-FEFE-CCCC-BBBBBBBBBBBB}';

ClassExportCfg

Cell array of the added export configurations. Each export configuration, i.e. each converted MATLAB®

function or each converted Simulink® model, can be configured individually.

TcCom.Generate

If TRUE, a TcCOM object is created that can be used in the TwinCAT XAE.

TcCom.FpExceptionsForInit

Options: CallerExceptions, ThrowExceptions, SuppressExceptions, LogExceptions, LogAndHold,
LogAndCatch, LogAndDump, LogHoldAndDump, LogCatchAndDump

More in Exception handling [} 55].

TcCom.FpExceptionsForUpdate

Options: CallerExceptions, ThrowExceptions, SuppressExceptions, LogExceptions, LogAndHold,
LogAndCatch, LogAndDump, LogHoldAndDump, LogCatchAndDump

More in Exception handling [} 55].

CallerExceptions: The settings of the caller are adopted, e.g. the task, another TcCOM, or the PLC.

TcCom.ExecutionInfoOutput

If TRUE, another output is created at the TcCOM with information in case of occurring exceptions. More in
Exception handling [} 55].

TcCom.OnlineChange

If TRUE, the TcCOM can be replaced by Online Change while TwinCAT XAR is in Run mode. See also
Online Change for Target for Simulink®.

TcCom.TcComWrapperFb

If TRUE, a TcCOM-Wrapper-FB is created in the generated PLC library.

TcCom.TcComWrapperFbProperties

If TRUE, properties for module parameters are created at TcCOM-Wrapper-FB.

TcCom.TcComWrapperFbPropertyMonitoring

Options: NoMonitoring, CyclicUpdate, ExecutionUpdate

Specifies the monitoring attribute of the properties. In the default case, “No Monitoring” is set, i.e. no
attribute is set.

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_matlab/10955641483.html?id=5581355563080181120
https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_plc_intro/2529692299.html&id=4605893368754947126

Settings of the TwinCAT module generator

TE1401 39Version: 1.3.0

Setting in MATLAB Attribute on property
ExecutionUpdate {attribute 'monitoring' := 'variable'}
CyclicUpdate {attribute 'monitoring' := 'call'}

PlcFb.Generate

If TRUE, a function block is created in the PLC library that can be used in the TwinCAT XAE.

PlcFb. FpExceptionsForInit

Floating Point Exceptions within the function block during the init stage can be set.

Options: CallerExceptions, ThrowExceptions, SuppressExceptions, LogExceptions, LogAndHold,
LogAndCatch, LogAndDump, LogHoldAndDump, LogCatchAndDump

More in Exception handling [} 55].

PlcFb. FpExceptionsForUpdate

Floating Point Exceptions within the function block during the update stage can be set.

Options: CallerExceptions, ThrowExceptions, SuppressExceptions, LogExceptions, LogAndHold,
LogAndCatch, LogAndDump, LogHoldAndDump, LogCatchAndDump

More in Exception handling [} 55].

Creating and loading an export configuration

When using the TwinCAT Target for MATLAB®, the MATLAB® Coder™ is first used to generate C++ sources.
These C++ sources can then be combined into an export configuration in the TwinCAT module generator by:
TwinCAT.ModuleGenerator.Matlab.FunctionExportConfig('MFile',Name,'BuildDir',cppDir)

The path to the C++ sources created by the MATLAB® Coder™ is passed as properties with 'BuildDir'
and the name of the MATLAB® function is passed with 'MFile'. If, for example, BaseStatistics is selected
as the name, the TcCOM object will have this name and the function block in the PLC will be given the name
FB_BaseStatistics.

If the TwinCAT Target for Simulink® is used, the approach is somewhat different. Start the build process from
Simulink® with the "Run the publish step after project generation" option disabled. Then load the created
<modelname>_tcgrt folder as follows in order to add the C++ sources of the Simulink® model to the project
export configuration.
TwinCAT.ModuleGenerator.ProjectExportConfig.Load(<modelname>_tcgrt);

Creating TwinCAT objects with the Module Generator
TwinCAT.ModuleGenerator.ProjectExporter()

TwinCAT.ModuleGenerator.ProjectExporter() triggers the build process for the platforms set in the
Project property. The object of the class TwinCAT.ModuleGenerator.ProjectExportConfig is passed as
argument. This creates a folder on the local file system in the repository and stores the created drivers and
description files.

Example call:
projExporter = TwinCAT.ModuleGenerator.ProjectExporter(exportConfig);

7.1 Creating TMX archives
In order to be able to work with the created TwinCAT objects (TcCOM and PLC library) in TwinCAT XAE,
they must be available in the repository folder on the local engineering PC and the PLC library must be
installed in the local PLC Library Repository

For example the SimpleTempCtrl in version 0.0.0.2 is located here:

Settings of the TwinCAT module generator

TE140140 Version: 1.3.0

Manual copying to engineering PCs is error-prone. It is therefore easier to create a so-called TMX archive.
The TMX archive is an archive of a newly created project, for example the SimpleTempCtrl in version
0.0.0.2. Only the archive has to be copied to an engineering PC and executed. It is a self-extracting archive,
which then automatically copies all files to the correct location.

You can specify the path and name of the TMX archive under TC Build to have it created with the next build.

To do this, use the Project property of the module generator:
Project.TmxArchive = "c:\archives\[Date]-[Time]-[LibName][LibVersion].exe"

You can also use placeholders for the path and name as shown in the sample above. Result of this setting is
e.g. a TMX archive 2021-11-04-172921-SimpleTempCtrl0.0.0.3.exe (new build, therefore revision
incremented).

You can then copy the TMX archive to any path on an engineering PC and execute it. This will copy the files
in the archive to the correct location in your repository.

You can also use the Command prompt, for example, and use other options:

For example, the <tmxarchive>.exe /plclib:install command creates (from the *.tml file) and installs the PLC
library on your local engineering PC.

Application of modules in TwinCAT

TE1401 41Version: 1.3.0

8 Application of modules in TwinCAT

8.1 Working with the TcCOM module
Using TcCOM objects in TwinCAT 3
1. Insert a new TcCOM object.

2. Select the corresponding TcCOM object:

3. Create a new cyclic task of type TwinCAT Task.

Application of modules in TwinCAT

TE140142 Version: 1.3.0

4. Assign the newly created task to the newly created TcCOM object. To do this, go to the instance of the
TcCOM object and select the Context tab.

ð You can now activate the configuration. In order to connect the TcCOM object with other modules in
your TwinCAT solution beforehand, you can use the process image to create mappings.

You can view the MATLAB® code on the Block Diagram tab and observe and scope values on the fly. See
MATLAB code representation [} 43].

You can also call the TcCOM object from the PLC via the TcCOM wrapper FB or even instantiate it
dynamically. For more, see: Calling a TcCOM object from the PLC [} 51].

Besides working with a TcCOM object, you can also use the functions created in MATLAB® directly as a PLC
function block (PLC-FB) without having to worry about a TcCOM object. See: Working with the PLC library
[} 46].

Application of modules in TwinCAT

TE1401 43Version: 1.3.0

8.1.1 MATLAB code representation

8.1.1.1 MATLAB®-TcCOM
If a TwinCAT object was created with the TwinCAT Target for MATLAB® and the MATLAB® code export was
executed, the MATLAB® code of the MATLAB® function can be displayed as a control in TwinCAT XAE.

8.1.1.1.1 Operation of the block diagram window
The export of the MATLAB® code can be configured during generation of a TcCOM module from MATLAB®.
If the export was enabled, the code can be found in the TwinCAT development environment under the Block
Diagram tab of the module instance.

On the top level you will find the created module in block representation. Select the gray arrow in the block to
display the content.

Application of modules in TwinCAT

TE140144 Version: 1.3.0

Shortcut functions:

Shortcut Function
Space Zoom to current size of the block diagram tab
Backspace Switch to the next higher hierarchical level
ESC Switch to the next higher hierarchical level
CTRL + "+" Zoom in
CTRL + "-" Zoom out
F5 Attach Debugger

(System- > Real-Time -> C++ Debugger -> Enable
C++ Debugger must be activated)

Context menu functions:

8.1.1.1.2 Display of signal curves
Selected variables can be retrieved in TwinCAT XAE via ADS. It is therefore possible to display them in a
mini-scope within the block diagram, or with the TwinCAT Scope within a measurement project.

Variables that can be displayed in scope have a trailing black frame in the code display. In this frame, the
values are displayed in blue during operation.

Drag&Drop a "blue variable" onto the block diagram window to open a Mini.Scope.

Application of modules in TwinCAT

TE1401 45Version: 1.3.0

By dragging and dropping a "blue variable" onto the Axis Group of a chart in the TwinCAT Measurement
project, the variables are added to the TwinCAT Scope.

Which variables are visible as "blue variables" in TwinCAT XAE?

• The input variables
• The output variables
• Persistent variables (MATLAB definition persistent var1 … varN)

Application of modules in TwinCAT

TE140146 Version: 1.3.0

8.2 Working with the PLC library
Use PLC library in TwinCAT 3
ü Starting from a new TwinCAT solution, create a PLC project:
1. Perform the following menu steps.

Application of modules in TwinCAT

TE1401 47Version: 1.3.0

2. Then add the newly created (and already installed) PLC library:

Application of modules in TwinCAT

TE140148 Version: 1.3.0

Application of modules in TwinCAT

TE1401 49Version: 1.3.0

3. Get an overview of the data types and function blocks:

Application of modules in TwinCAT

TE140150 Version: 1.3.0

4. Insert instances of the function blocks into your PLC and use them in your application:

8.2.1 Online change of the PLC library
While TwinCAT is in run mode, you can exchange the PLC library version in TwinCAT XAE and load it into
the running application via Online Change. This means that all function blocks in a PLC library can be
updated without a TwinCAT restart.

Step-by-step procedure:

Application of modules in TwinCAT

TE1401 51Version: 1.3.0

1. Create a first PLC library version with the TwinCAT Target for MATLAB®.
2. Include this PLC library version in a PLC project.
3. Activate your TwinCAT configuration with the first PLC library version (e.g. version 0.0.0.1).
4. Adapt your MATLAB function(s) and create a PLC library version (0.0.0.2) from it.
5. Select the newly created PLC library version in TwinCAT - PLC - References (you may have to install

the new library on the XAE system).
6. Select Build > Build Solution to rebuild the project.

7. Select Login > Login with online change (more information in the PLC documentation).

8.2.2 Calling a TcCOM object from the PLC

Creating a TcCOM wrapper FB

Set in the export configuration:
TcCom.TcComWrapperFb = 'true';

TcCom.TcComWrapperFbProperties = 'true'; % optional

Create instance of the TcCOM Wrapper function block
1. Create a PLC project.
2. Add the desired library under References.

ð Under Pous/TcCOM Wrapper you get a function block that you can instantiate in the PLC. In addition,
necessary data types are created in the Duts folder.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/25280357234359665547.html?id=2368606987045525316

Application of modules in TwinCAT

TE140152 Version: 1.3.0

Version 1: referencing a static module instance

The function block can be used to access module instances previously created in the XAE, e.g. under
System > TcCOM Objects. For this static case, the object ID of the corresponding module instance must be
transferred during declaration of the function block instance.

• The instance of the TcCOM object and the calling PLC must run in the same task.
• On the instance of the TcCOM object, make sure that under Parameter (Init) the entry

ModuleCaller is set to Module and not to CyclicTask.
• In this case, the required memory for the TcCOM is obtained from the non paged pool of the

system.

Declaration
// link wrapper with a static instance
InitStrStatic : ST_FB_TempCtrl_TcCOM_InitStruct := (noid := 16#01010010); // OID from object1
 in System > TcCOM Objects
fbTempCtrStatic : FB_TempCtrl_TcCOM_InitStruct(InitStrStatic);
Inputs : ST_TempCtrl_U_T; // data type defined in TempCtrl library
Outputs : ST_TempCtrl_Y_T;

Execution code
fbTempCtrStatic(stTempCtrl_U := Inputs, stTempCtrl_Y => Outputs);

Version 2: dynamic instantiation and referencing from the PLC

The function block can also be used in such a way that a TcCOM object is generated from the PLC and
linked to the wrapper.

• The TaskOid of the PLC task must be used to specify the real-time task in which the wrapper is
called.

• The ModuleCaller must also be set to Module here (via the Init structure).
• In this case, the required memory for the TcCOM is obtained from the router memory.

Declaration
// dynamic instance: create TcCOM from PLC
InitStrDyn : ST_FB_TempCtrl_TcCOM_InitStruct := (
 nTaskOid := 16#02010030, // take TaskOID of PlcTask
 eModuleCaller := E_ModuleCaller.Module); // set module caller to "ca
ll by module"
fbTempCtrDyn : FB_TempCtrl_TcCOM_InitStruct(InitStrDyn);
OutputsDyn : ST_TempCtrl_Y_T;

Execution code
fbTempCtrDyn(stTempCtrl_U := Inputs, stTempCtrl_Y => OutputsDyn);

The source code for the graph shown above is available in MATLAB® via the
Command Window
TwinCAT.ModuleGenerator.Samples.Start("TcCOM Wrapper Function Blocks")

8.3 Debugging
The following step-by-step instructions apply to the use of both TcCOM objects and function blocks created
using the Target for MATLAB®. The following shows the debugging for a PLC function block.

ü Step-by-step procedure:
1. Make sure that your TwinCAT application has been activated with the C++ debugger enabled.

Application of modules in TwinCAT

TE1401 53Version: 1.3.0

2. Open the TwinCAT C++ project created during code generation that belongs to the module you want to
debug.

ð You specified the project location when initializing the project export configuration, see Generated
Code TE1401 [} 33].

ð You can open the Visual Studio project directly or add it to your TwinCAT solution under C++ with
“Add existing Item”.

3. In the MATLAB® folder in the Visual Studio solution, view the subfolders that bear the name of the
MATLAB® function created.
ð In the Sources sub-folder, you can find the executed code generated by MATLAB® Coder™.

Application of modules in TwinCAT

TE140154 Version: 1.3.0

4. Select Debug > Attach to Process in the menu bar, select “TwinCAT XAE” as the Connection Type,
and the desired target system under Connection target. Then select Attach.

Application of modules in TwinCAT

TE1401 55Version: 1.3.0

5. Set breakpoints in your C++ code and step through your code as usual.

8.4 Exception handling
When processing the C++ code autogenerated from MATLAB® or Simulink® in TwinCAT, floating point
exceptions can occur at runtime, for example if an unexpected value is passed into a function during
programming. The handling of such exceptions is described below.

What is a floating point exception?

A floating point exception occurs when an arithmetically not exactly executable operation is instructed in the
floating point unit of the CPU. IEEE 754 defines these cases: inexact, underflow, overflow, divide-by-zero,
invalid-operation. If one of these cases occurs, a status flag is set, which indicates that the arithmetic
operation cannot be executed exactly. It is further defined that each arithmetic operation must return a result
– one that in the majority of cases leads to the possibility of ignoring the exception.

For example, a division by zero results in +inf or -inf. If a value is divided by inf in the further code, this
results in zero, so that no consequential problems are to be expected. However, if inf is multiplied or other
arithmetic operations are performed with inf, these are invalid operations, whose result is represented as a
Not-a-Number (NaN).

How does the TwinCAT Runtime react in case of exceptions?

TwinCAT C++ Debugger not active
The following explanations only apply if the C++ debugger is not activated on the TwinCAT runtime
system. When the C++ debugger is enabled, exceptions are caught by the debugger and can be
handled, see Debugging.

Default behavior

Default setting in TwinCAT is that at "divide-by-zero" and "invalid-operation" the execution of the program is
stopped and TwinCAT issues an error message.

Application of modules in TwinCAT

TE140156 Version: 1.3.0

Task setting: Floating Point Exceptions

This default setting can be changed on the level of each TwinCAT task. If the checkbox "Floating Point
Exception" is unchecked, an exception does not lead to a TwinCAT stop and no error message is issued.
This setting is then valid for all objects that are called by this task. As a consequence, care must be taken in
the application that NaN and inf values are handled accordingly in the program code.

Check for NaN and Inf

If, for example, a NaN is passed on via mapping to a TwinCAT object that has activated floating point
exceptions, an arithmetic operation with NaN naturally leads to an exception in this object and subsequently
to a TwinCAT stop. Therefore, NaN or inf must be checked directly after mapping. In the PLC, corresponding
functions are available in the Tc2_Utilities library, e.g. LrealIsNaN.

Try-Catch statement

Another way to handle exceptions is to embed them in a try-catch statement. In the PLC the instructions
__TRY, __CATCH, __FINALLY, __ENDTRY are available for this purpose. If floating point exceptions are enabled
on the calling task and an exception occurs within the Try-Catch, it is caught in the Catch branch and can be
handled. Accordingly, no variables are set to inf or NaN in this approach. However, it is also important to
note that the code in the Try branch is run through only up to the point of the exception and then a jump is
made to the Catch branch. In the application code, it should be noted that internal states in the Try branch
may not be consistent.

Dump Files

From TwinCAT 3.1.4024.22 (XAR), dump files can be created at runtime in case of exceptions in the TcCOM
object.

Specification of the behavior in case of exceptions on object level

In addition to the possibility of influencing the behavior in the event of exceptions at task level, the behavior
can also be specified at the level of a TwinCAT object, i.e. the generated TcCOM or the generated PLC
function block.

On the object level, a wealth of possibilities can be realized with the TwinCAT Target for Simulink®. Basically,
however, all the options presented below are based on the above principles.

Optional ExecutionInfo Output

If exceptions are handled at object level, it makes sense to make corresponding information about occurred
exceptions accessible at the object output. This output can be used to query whether an exception has
occurred, what kind of exception it was, whether a dump file has been written, etc.

For the TcCOM object you can activate an additional output "ExecutionInfo [} 36]":
exportConfig.ClassExportCfg{nModuleCount}.TcCom.ExecutionInfoOutput = true;

ExecutionInfo Output for PLC-FB
Currently the ExecutionInfo is only available for the TcCOM object. If you want to call the code from
the PLC, use the TcCOM-Wrapper-FB.

The ExecutionInfo output is a structure with the following entries:

ExcecutionInfo structure

Entry Data type Meaning
CycleCount ULINT Current cycle count (independent

of an exception)
ExceptionCount ULINT Number of exceptions that have

occurred so far
ActException TcMgSdk.ExceptionInfo More detailed explanation of the

current exception (only first
exception in the current cycle)

https://infosys.beckhoff.com/content/1033/tcplclib_tc2_utilities/index.html
https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_plc_intro/2529187211.html&id=
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529187211.html?id=168247378739040458

Application of modules in TwinCAT

TE1401 57Version: 1.3.0

TcMgSdk.ExceptionInfo

ExceptionCode DINT Code of the exception, cf. Micro-
soft Help

TmxName STRING(127) Name of the tmx driver that threw
the exception.

TmxVersion ARRAY[0..3] OF UDINT Version of the tmx driver that threw
the exception.

InstructionAddr UDINT Relative address in memory;
location where the exception
occurred.

ReturnAddr ARRAY[0..3] OF UDINT Return addresses
DumpCreated BOOLEAN TRUE if a dump file was created

for the exception.

With the InstructionAddr it is possible to judge if the exception with the given ExceptionCode always occurs
at the same place in the source code. If the InstructionAddr is the same for repeating exceptions, it always
occurs at the same point in the code. Via ReturnAddr you can see where the calls came from that led to the
location of the exception. So you can judge if the call that leads to the exception always takes the same call
path. If the code is called from outside the Tmx driver, there is a 0 in the ReturnAddr.

Definition of the object behavior in case of occurring exceptions

The behavior of a TcCOM object in case of exceptions can be set separately for the initialization phase and
for the update phase under the properties of the class TwinCAT.ModuleGenerator.ProjectExportConfig:
exportConfig.ClassExportCfg{ nModuleCount }.TcCom.UpdateExceptionHandling = 'CallerExceptions';

exportConfig.ClassExportCfg{ nModuleCount }.TcCom.InitExceptionHandling = 'CallerExceptions';

Options are: CallerExceptions, ThrowExceptions, SuppressExceptions, LogExceptions,
LogAndHold, LogAndCatch, LogAndDump, LogHoldAndDump, LogCatchAndDump.

If you are working with an already compiled TcCOM in TwinCAT, you can also change the settings on the
object instance afterwards. To do this, use the tab Parameters (Init) and select Show hidden Parameters.

The settings for the PLC-FB FB_<ModelName> in the PLC library are independent of the settings for the
TcCOM object.

exportConfig.ClassExportCfg{nModuleCount}.PlcFb.UpdateExceptionHandling

exportConfig.ClassExportCfg{nModuleCount}.PlcFb.InitExceptionHandling

Note that the other PLC function block (FB_<ModelName>_TcCOM) is a wrapper for a TcCOM object [} 51]
and therefore the exception settings from the TcCOM section are valid when it is used.

A total of 9 different settings are available.

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_matlab/10825694987.html?id=5735634961503816348
https://infosys.beckhoff.com/content/1033/te1400_tc3_target_matlab/10825694987.html?id=5735634961503816348

Application of modules in TwinCAT

TE140158 Version: 1.3.0

A total of 9 different settings are available.

• CallerExceptions (default): Exceptions are thrown as configured at the calling task.
• ThrowExceptions: Exceptions in the TwinCAT object are thrown in any case, regardless of how the

task is configured.
◦ An exception causes a TwinCAT error message and a TwinCAT stop

• SuppressExceptions: Exceptions are not thrown, regardless of how the task is configured.
◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states can be NaN or inf.

• LogExceptions: Exceptions are thrown, but do not lead to a TwinCAT stop.
◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states can be NaN or inf.
◦ The ExecutionInfo output is filled with information about an exception in the current cycle. If

several exceptions occur in one cycle, only the first exception is displayed at the output. When the
TwinCAT object is called again, the information is reset.

• LogAndHold: Exceptions are thrown. The execution of the TwinCAT object is stopped.
◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states can be NaN or inf.
◦ The ExecutionInfo output is filled with information about an exception in the current cycle. If

several exceptions occur in one cycle, only the first exception is displayed at the output. When the
TwinCAT object is called again, the information is reset.

◦ The execution of the TwinCAT object is stopped after an exception occurs. TwinCAT itself remains
in run mode. Restart execution: .

• LogAndCatch: Exceptions are caught with try-catch in the TwinCAT object. The execution of the
TwinCAT object is stopped.

◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states cannot contain NaN or inf.
◦ The ExecutionInfo output is filled with information about an exception in the current cycle.
◦ The execution of the code ends at the point of the exception. From there, the program jumps to the

catch junction, i.e. internal states can be inconsistent.
◦ The execution of the TwinCAT object is stopped after an exception occurs. TwinCAT itself remains

in run mode. Restart execution: .
• LogAndDump, LogHoldAndDump and LogCatchAndDump

◦ Behavior like LogExceptions
◦ Additionally a dump file is stored on the runtime system in the TwinCAT folder Boot. For more on

dump files, see here [} 61].

Handle execution stop of a TwinCAT object

LogAndHold and LogHoldAndDump

In the event of an exception, execution of the code in the TcCOM object concerned is stopped by setting the
Execute parameter to FALSE. The parameter can be read or written from the XAE and via ADS.

In the XAE, you can display and change the online values of the TcCOM object under Parameters (Init).

Application of modules in TwinCAT

TE1401 59Version: 1.3.0

In the block diagram the parameter is offered to you under Module parameters.

Application of modules in TwinCAT

TE140160 Version: 1.3.0

If you move the mouse over the Execute name in the change dialog, you will be shown the ADS address of
the parameter, as with all other parameters. This allows you to set the parameter also by ADS.

By right-clicking on the name Execute you can also save the ADS symbol information to the clipboard. This
also applies to all other parameters.

Application of modules in TwinCAT

TE1401 61Version: 1.3.0

LogAndCatch and LogCatchAndDump

In addition to the parameter Execute, the online parameter Initialized also changes to FALSE in the case of
LogAndCatch and LogCatchAndDump. The module must be reinitialized before the module can perform a
calculation again. This is necessary because internal states can no longer be consistent. Reinitialization can
only be performed by returning the TcCOM object to the "Init" state and moving it to OP again.

At runtime, only TcCOM objects that have no mappings can be shut down, otherwise active mappings would
block the shutdown. A new initialization is only possible by restarting the entire TwinCAT Runtime.

A more flexible alternative is to use the TcCOM-Wrapper-FB [} 51] in the PLC. This can be used to call the
TcCOM from the PLC and does not require any mappings to access its inputs and outputs. Accordingly, the
TcCOM object can also be reinitialized during runtime.
PROGRAM MAIN
VAR
 stInitTemp : ST_FB_SimpleTempCtrl_TcCOM_InitStruct := (nOid := 16#01010010);
 fbTempCtr : FB_SimpleTempCtrl_TcCOM_InitStruct(stInitTemp);
 Inputs : ST_ExtU_SimpleTempCtrl_T;
 Outputs : ST_ExtY_SimpleTempCtrl_T;
 ExecutionOut : ST_ExecutionInfo2;
END_VAR

// check if TcCOM is in OP mode and all set
IF fbTempCtr.bExecute = TRUE AND fbTempCtr.bInitialized = TRUE AND fbTempCtr.nObjectState = TCOM_STA
TE.TCOM_STATE_OP THEN

 // call the module
 fbTempCtr(stSimpleTempCtrl_U := Inputs, stSimpleTempCtrl_Y => Outputs, stExecutionInfo => Execut
ionOut);

 // handle exceptions
 IF ExecutionOut.ActException.ExceptionCode <> 0 THEN
 // collect exception information
 (* *)

 // reinit TcCOM
 fbTempCtr.Reinit(stReInit := stInitTemp);
 END_IF

 END_IF

Note that the ReInit method is executed synchronously, i.e. depending on the cycle time and the time
required to reinitialize, cycle overruns may occur.

Dump files

Writing the dump file may take a few cycles. It is best to use a separate task for the TcCOM object or the
PLC-FB in question that does not block any important tasks.

Dump files are only written with a TwinCAT XAR version >= 3.1.4024.22, otherwise you get a corresponding
warning.

In the case of LogAndDump the execution of the code is continued cyclically after the occurrence of an
exception, accordingly exceptions can occur cyclically which could lead to persistent cycle timeouts.
Therefore, the online value of the parameter UpdateExceptionHandling is set to LogExceptions after the
dump file has been written, i.e. the writing of dump files is deactivated, but can subsequently be switched on
again, e.g. by ADS or intervention via the XAE under parameter (Init).

Application of modules in TwinCAT

TE140162 Version: 1.3.0

The created dump file is stored on the runtime PC in the boot folder and can be copied from there to another
PC for analysis. If you use a TwinCAT version lower than 3.1.4024.x you can open the dump files with
WinDbg and start your analysis.

8.5 Using Realtime Monitor time stamps
MATLAB® commands, such as tic and toc, are popular ways to analyze the performance of code sections in
MATLAB®. These commands are not usable in this form during TwinCAT runtime.

For this purpose, TwinCAT provides the TwinCAT Realtime Monitor, which evaluates time stamps in the
source code and displays them for analysis. Setting Realtime Monitor time stamps is supported in MATLAB®

code, i.e. the time stamps are set in MATLAB® and can be evaluated by the Realtime Monitor after code
generation and instantiation in TwinCAT. Running time stamps in MATLAB® results in output to the
MATLAB® console.

Class: TwinCAT.ModuleGenerator.Realtime.LogMark

Methods: Start, Stop and Mark

MATLAB® documentation: doc("TwinCAT.ModuleGenerator.Realtime.LogMark")

Example in MATLAB®

TwinCAT.ModuleGenerator.Samples.Start("BaseStatisticsLogMark")

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

FAQ

TE1401 63Version: 1.3.0

9 FAQ

9.1 Build of a sample fails
All samples supplied (list by TwinCAT.ModuleGenerator.Samples.List in the MATLAB® Command
Window) have been checked by tests at Beckhoff Automation. If a build of a sample still does not run
successfully, it is likely that something needs to be adjusted during setup on your engineering PC.

ü To test the platform toolset without the influence of MATLAB® please create a TwinCAT Versioned C++
project in TwinCAT (open TwinCAT in Visual Studio) .

1. Right-click Add New Item on C++ Tree Item.
2. Then select TwinCAT Module Class with Cyclic Caller.

ð A C++ project appears in the TwinCAT Tree under C++.
3. Build the C++ project and view the Output Window in TwinCAT.

ð The output window should return "1 succeeded" for the build process. If this is not the case, check
whether you have installed the Desktop development with C++ option in Visual Studio.

9.2 Are there limitations with regard to executing modules
in real-time?

Not all access operations possible in MATLAB® under non-real-time conditions can be performed in the
TwinCAT real-time environment. Known limitations are described below.

• Direct file access:: Access to the IPC file system is restricted within the TwinCAT runtime. To read
and write files from TwinCAT, use: fopen, fclose, fread and fwrite. See the example:
TwinCAT.ModuleGenerator.Samples.Show('FileAccess').

• Direct hardware access: Direct access to devices/interfaces requires a corresponding driver, e.g.
RS232, USB, network interface card, etc. It is not possible to access the device drivers of the operating
system from the real-time context. However, TwinCAT offers a wide range of communication options
for linking external devices, see TwinCAT 3 Connectivity TF6xxx.

• Access to the operating system API: The operating system’s API cannot be used directly from within
the TwinCAT runtime. An example is the integration of windows.h in C/C++ code.

• Precompiled libraries: During code generation by the MATLAB® Coder™, it is possible that no
platform-independent C/C++ code is generated, but precompiled libraries are included. Real-time
execution in TwinCAT is not possible in these cases. The coder.HardwareImplementation setting helps
determine if generic C/C++ code can be generated. For example

https://www.beckhoff.com/en-en/products/automation/twincat/tfxxxx-twincat-3-functions/tf6xxx-connectivity/
https://www.mathworks.com/help/coder/ref/coder.hardwareimplementation.html

FAQ

TE140164 Version: 1.3.0

coder.HardwareImplementation.ProdHWDeviceType = 'Generic->32-bit x86
compatible'; and coder.HardwareImplementation.TargetHWDeviceType = 'Generic-
>32-bit x86 compatible';

Samples

TE1401 65Version: 1.3.0

10 Samples
Samples provided by Beckhoff Automation are installed on your system with the TwinCAT Tools for MATLAB
and Simulink setup.

You can use the following command to display all available samples:
TwinCAT.ModuleGenerator.Samples.List

You can access the samples by clicking on the blue Start link. To do this, the sample code is copied to your
user directory so that you do not change the original sample. You can work with the copy of the sample
accordingly and try it out.

Also available are
TwinCAT.ModuleGenerator.Samples.Show(SampleName)

TwinCAT.ModuleGenerator.Samples.Start(SampleName)

For displaying and starting individual samples. The argument SampleName is to be passed as a string, e.g.
TwinCAT.ModuleGenerator.Samples.Start('BaseStatistics')

10.1 TwinCAT Automation Interface: use in MATLAB®

Short description of the Automation Interface

TwinCAT XAE configurations can be automatically generated and edited via programming/script codes using
the TwinCAT Automation Interface. The automation of a TwinCAT configuration is available thanks to so-
called Automation Interfaces, which can be accessed via all COM-capable programming languages (e.g. C+
+ or .NET) and also via dynamic script languages such as Windows PowerShell, IronPython or even the
(obsolete) Vbscript. Use from the MATLAB® environment is also possible.

Detailed documentation of the product can be found here: TwinCAT Automation Interface

Use in MATLAB®

https://infosys.beckhoff.com/content/1033/tc3_automationinterface/45035996516387723.html?id=7264759537875803520

Samples

TE140166 Version: 1.3.0

The Automation Interface can be made visible in MATLAB® through the command NET.addAssembly. This
will enable you to use the interfaces (Automation Interface API) described in the product documentation. You
can also find many programming samples for use from C# and PowerShell (Automation Interface
Configuration).

In order to simplify the entry from MATLAB® for you, you can find below a sample implementation for
MATLAB® on the basis of a MATLAB® class, which you can use, modify and expand.

10.1.1 Sample: Tc3AutomationInterface

Overview

The sample code consists of two m-files:

• Tc3AutomationInterface.m: MATLAB® class that implements several frequently used methods.
• Tc3AutomationInterfaceGuide.mlx: MATLAB live script that calls the MATLAB® class as an example.

Call sample with MATLAB®

The TwinCAT Tool for MATLAB® and Simulink® Setup installs the sample on your system. Call the
sample with the MATLAB® Command Window:
TwinCAT.ModuleGenerator.Samples.Start('AutomationInterface').

The MATLAB® script

The MATLAB® script provides a sample of how you can generate a TwinCAT solution, scan the EtherCAT
master for I/Os, instantiate two TcCOM modules, link them and activate the project on a target.

In order to be able to run the script, the two TcCOMs used must be present in your publish directory
%TwinCATDir%\\CustomConfig\Modules\. For this, download the Temperature Controller sample from the
TE1400 | Target for MATLAB®/Simulink®. Then copy the file folder from the directory .
\TE1400Sample_TemperatureController_PrecompiledTcComModules\Actual TwinCAT versions\ into the
publish directory.

Run the m-file Tc3AutomationInterface_Testbench.m. The latest Visual Studio instance available on your
system is opened in the background and the TwinCAT solution is configured, saved and activated.

The MATLAB® class

The properties

All variables and interfaces belonging to the instance of the class are contained in the properties of the
Tc3AutomationInterface class. Hence, several TwinCAT solutions can be built up in a MATLAB® script by
generating an instance of the class for each solution. There are then no overlaps.

The constructor

function this = Tc3AutomationInterface

The constructor loads all necessary assemblies and, if successful, sets the AssembliesLoaded property to
TRUE. The loaded assemblies are:

• EnvDTE and EnvDTE80: libraries for the Visual Studio Core Automation. Necessary for the
configuration of Visual Studio.

• TCatSysManagerLib: TwinCAT Automation Interface library for the configuration of a TwinCAT solution
in Visual Studio.

• TwinCAT.Ads: ADS library, e.g. for reading and changing the XAR state.
• System.Xml: library for parsing XML files.

Selected methods of the class

function TcComObject = CreateTcCOM(this, Modelname)

Use the MATLAB® help functions in order to view the function and the parameters of the method.

https://infosys.beckhoff.com/content/1033/tc3_automationinterface/63050395025936267.html?id=4055881424125395371
https://infosys.beckhoff.com/content/1033/tc3_automationinterface/243194380120724235.html?id=4247991296720270509
https://infosys.beckhoff.com/content/1033/tc3_automationinterface/243194380120724235.html?id=4247991296720270509
https://infosys.beckhoff.com/content/1033/te1400_tc3_target_matlab/45035996367654923.html?id=4700106595671081860

Samples

TE1401 67Version: 1.3.0

A link to the Beckhoff Infosys is also offered with some methods. These refer to documentation examples
from the TwinCAT Automation Interface documentation, so that you can directly view a comparison of the
implementation in MATLAB®, C# and PowerShell. You can also find a link to the Beckhoff Infosys in the
comment in some sections, allowing you to view the source of the information.

The CreateTcCOM method initially begins with the parsing of the <modelname>.tmc file, from which the
ClassID, the task cycle time and the task priority are extracted with System.Xml. A corresponding TcCOM is
then instantiated and one (or more) associated tasks generated with the Automation Interface. Finally, the
task is/tasks are assigned to the TcCOM.

function ActivateOnDevice(this, AmsNetId)

TwinCAT ADS is used in order to query or change the current status of a TwinCAT runtime, e.g. config or
run. In the ActivateOnDevice method the XAR is initially switched to the config mode with the specified
AmsNetId and the current TwinCAT configuration is then activated and the system started. Pauses are
entered between the individual steps, as this procedure may need a little time.

Static methods

Static methods are also available even without an instance of the class.

function vsVersions = GetInstalledVisualStudios

A function that detects and lists the Visual Studio installations available on the system via the Register Key
entries is prepared here. The implementation is limited to VS 2010 to VS 2017.

Documents about this
2 https://infosys.beckhoff.com/content/1033/te1401_tc3_target_Matlab/Resources/5776206091.zip

https://infosys.beckhoff.com/content/1033/te1401_tc3_target_Matlab/Resources/5776206091.zip

Trademark statements

Beckhoff®, ATRO® , EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®,
TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar® and XTS® are registered and licensed trademarks of Beckhoff Automation GmbH.

Third-party trademark statements

DSP System Toolbox, Embedded Coder, MATLAB, MATLAB Coder, MATLAB Compiler, MathWorks, Predictive Maintenance Toolbox,
Simscape, Simscape™ Multibody™, Simulink, Simulink Coder, Stateflow and ThingSpeak are registered trademarks of The MathWorks, Inc.

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/te1401

mailto:info@beckhoff.com?subject=TE1401
https://www.beckhoff.com
https://www.beckhoff.com/te1401

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security
	1.4 Documentation issue status

	2 Overview
	3 Installation
	3.1 Initial setup of the software
	3.1.1 Set up default settings and set MATLAB® path
	3.1.2 Setting up driver signing

	4 Licenses
	5 Quick start
	6 Overview of automatically generated files
	7 Settings of the TwinCAT module generator
	7.1 Creating TMX archives

	8 Application of modules in TwinCAT
	8.1 Working with the TcCOM module
	8.1.1 MATLAB code representation
	8.1.1.1 MATLAB®-TcCOM
	8.1.1.1.1 Operation of the block diagram window
	8.1.1.1.2 Display of signal curves

	8.2 Working with the PLC library
	8.2.1 Online change of the PLC library
	8.2.2 Calling a TcCOM object from the PLC

	8.3 Debugging
	8.4 Exception handling
	8.5 Using Realtime Monitor time stamps

	9 FAQ
	9.1 Build of a sample fails
	9.2 Are there limitations with regard to executing modules in real-time?

	10 Samples
	10.1 TwinCAT Automation Interface: use in MATLAB®
	10.1.1 Sample: Tc3AutomationInterface

		documentation@beckhoff.com
	2025-08-05T14:06:20+0200
	Beckhoff Automation, Verl
	Documentation Publishing

