
Manual | EN

TE1200
TwinCAT 3 | PLC Static Analysis

2025-06-30 | Version: 2.9.0

Table of contents

TE1200 3Version: 2.9.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7
1.4 Information on the security risk analysis ... 8

2 Overview .. 9

3 Installation ... 11
3.1 Functionality: Light vs. full ... 11
3.2 System Requirements... 13
3.3 Licensing ... 13

4 Configuration... 14
4.1 Settings ... 14
4.2 Rules ... 16

4.2.1 Rules - overview and description ... 17
4.3 Naming conventions.. 81

4.3.1 Naming conventions – overview and description ... 83
4.3.2 Options... 90
4.3.3 Placeholder {datatype} ... 93

4.4 Metrics... 94
4.4.1 Metrics - overview and description... 95

4.5 Forbidden symbols ... 110

5 Commands... 111
5.1 Command 'Run static analysis' ... 111

5.1.1 Syntax in the message window.. 112
5.2 Command 'Run static analysis [Check all objects]' ... 113
5.3 Command 'View Standard Metrics' ... 114

5.3.1 Commands in the context menu of the 'Standard Metrics' view..................................... 115
5.4 Command 'View Standard Metrics [Check all objects]' ... 116

5.4.1 Commands in the context menu of the 'Standard Metrics' view..................................... 117
5.5 'Show constant propagation values for current editor' command.. 118
5.6 Command 'Show cognitive complexity for current editor'.. 119

6 Pragmas and attributes .. 121

7 Constant propagation... 126

8 QuickFix/Precompile... 130

9 Automation Interface support .. 132

10 Examples ... 135
10.1 Static analysis ... 135
10.2 Standard metrics ... 136

11 Support and Service ... 138

Table of contents

TE12004 Version: 2.9.0

Foreword

TE1200 5Version: 2.9.0

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
The documentation and the following notes and explanations must be complied with when installing and
commissioning the components.
The trained specialists must always use the current valid documentation.

The trained specialists must ensure that the application and use of the products described is in line with all
safety requirements, including all relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
Claims to modify products that have already been supplied may not be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, ATRO® , EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over
EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar®, and XTS® are registered
and licensed trademarks of Beckhoff Automation GmbH.
If third parties make use of the designations or trademarks contained in this publication for their own
purposes, this could infringe upon the rights of the owners of the said designations.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Third-party trademarks

Trademarks of third parties may be used in this documentation. You can find the trademark notices here:
https://www.beckhoff.com/trademarks.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

https://www.beckhoff.com/trademarks

Foreword

TE12006 Version: 2.9.0

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TE1200 7Version: 2.9.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Foreword

TE12008 Version: 2.9.0

1.4 Information on the security risk analysis
If you have installed this product, Beckhoff will provide you with the following information for a security risk
analysis for your system.

Engineering

Workload: TwinCAT.Standard.XAE

To be able to use the TE1200 function, you only need to install the standard workload mentioned above.

See also:

• Information on the security risk analysis for the TwinCAT standard XAE workload

Runtime

No runtime components are installed or required.

Overview

TE1200 9Version: 2.9.0

2 Overview
With the integration of the static code analysis, a further programming tool is available in TwinCAT 3.1 that
supports the PLC software development process. The tool is integrated in TwinCAT 3 PLC and can be seen
as a supplement to the compiler.

Function overview

Static Analysis implements more than 100 coding rules, some of which can be parameterized and combined
to create individual rule sets. The rule sets defined in "PLCopen Coding Guidelines" are taken into account in
some rules. For example, it can report if a pointer variable has not been checked for nonzero before
dereferencing. As a result, the user's attention is drawn to possibly inadvertent and erroneous
implementations, so that these program points can be optimized at an early stage.

You can also define a naming convention for each possible data type, which is then checked for compliance.
In addition, over 20 metrics are available to analyze and characterize the underlying source code. When
calculated regularly, the metrics can indicate negative trends and deviations from quality targets. The key
figures therefore represent an indicator for assessing software quality. For example, the tabular output
contains metrics for the number of statements or the proportion of comments.

The Static Analysis can be triggered manually or performed automatically during the code generation.
TwinCAT outputs the result of the analysis, i.e. messages regarding deviations from the specifications and
rules, in the message window. In the PLC project properties you can define the parameters to be checked in
detail. When configuring the rules, you can also define whether a rule violation is to be output as an error or
a warning. You can use pragma statements to exclude particular parts of the code from the check. For errors
reported by Static Analysis based on precompile information, there is support in the ST Editor for immediate
troubleshooting (QuickFix/Precompile [} 130]).

Advantage

Static Analysis helps to write code that is easier to read and to identify potential sources of error during
programming. On the one hand, this increases code quality and, on the other, saves a lot of time when
developing applications and troubleshooting.

Failure to observe a coding rule generally indicates an implementation weakness; correcting it enables early
troubleshooting or error avoidance. The automatic control of the user-specific naming conventions also
ensures that the control programs can be developed in a standardized manner with regard to type and
variable names. This gives different PLC projects implemented on the basis of the same naming conventions
a uniform look and feel, which greatly improves the readability of programs. In addition, the metrics provide
an indication of the software quality.

Functionalities

An overview of the functionalities of "TwinCAT 3 PLC Static Analysis" is provided below:

• Static Analysis:
◦ Function: The Static Analysis checks the source code of a project for deviations from certain

coding rules and naming conventions, as well as for forbidden symbols. The result is output in the
message window.

◦ Configuration: The required coding rules, naming conventions and forbidden symbols can be
configured in the Rules [} 16], Naming conventions [} 81] and Forbidden symbols [} 110] tabs of
the PLC project properties.

• Standard metrics:
◦ Function: Certain metrics are applied to your source code, which express the software properties

in the form of key figures (e.g. the number of statements or the percentage of comments). They
provide an indication of the software quality. The results are output in the Standard Metrics view.

◦ Configuration: The required metrics can be configured in the Metrics [} 94] tab of the PLC project
properties.

Alternatively, there is an option to use a license-free version of Static Analysis that provides a very much
reduced range of functions. A detailed comparison of the functions of the license-free and the licensed
version of Static Analysis can be found in chapter Installation [} 11].

Overview

TE120010 Version: 2.9.0

Further information on installation, configuration and execution of the "Static Analysis" can be found on the
following pages:

• Installation [} 11]

• Configuration of the settings, rules, naming conventions, metrics and forbidden symbols [} 14]

• Command 'Run static analysis' [} 111]

• Command 'Run static analysis [Check all objects]' [} 113]

• Command 'View Standard Metrics' [} 114]

• Command 'View Standard Metrics [Check all objects]' [} 116]

• Pragmas and attributes [} 121]

• Examples [} 135]

• Automation Interface support [} 132]

Libraries
TwinCAT only analyzes the application code of the current PLC project; the referenced libraries are
ignored!
If you have opened the library project, however, you can check the elements it contains with the
help of the command Command 'Run static analysis [Check all objects]' [} 113].

Punctual disablement of checks
Pragmas and attributes [} 121] can be used to disable checks for certain parts of the code.

Static Analysis via the Automation Interface
Static Analysis can be operated via the Automation Interface (see Automation Interface support
[} 132]).

Installation

TE1200 11Version: 2.9.0

3 Installation
The TE1200 | TwinCAT 3 PLC Static Analysis function is installed when the TwinCAT 3 development
environment is installed. Accordingly, there is no separate TF1200 setup/package. The additional TE1200
engineering component only needs to be licensed. Information on a license-free test mode can be found
underLicensing [} 13].

TwinCAT Package Manager: Installation (TwinCAT 3.1 Build 4026)

Detailed instructions on installing products can be found in the chapter Installing workloads in the TwinCAT
3.1 Build 4026 installation instructions.

Install the following workload to be able to use the product:

• TwinCAT.Standard.XAE

TwinCAT setup: Installation (TwinCAT 3.1 Build 4024 and earlier)

Install the following setup in order to be able to use the product:

• TwinCAT 3.1 eXtended Automation Engineering (XAE) (full installation)

Detailed installation instructions can be found in the Installation TwinCAT 3.1 Build 4024 chapter.

3.1 Functionality: Light vs. full
If you do not have an Engineering license for TE1200 you can use the license-free version of Static Analysis
(Static Analysis Light), which has some restrictions (see table below). The free Light version enables you to
familiarize yourself with the basic handling of the product, for example, based on a heavily reduced set of
functions.

Static Analysis Light vs. Static Analysis Full

An overview of the different features of the license-free and license-managed variants of Static Analysis is
provided below.

https://infosys.beckhoff.com/content/1033/tc3_installation/15731787659.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id
https://infosys.beckhoff.com/content/1033/tc3_installation/15698617995.html?id

Installation

TE120012 Version: 2.9.0

Functional aspect Static Analysis Light
(without TE1200 license)

Static Analysis Full
(with TE1200 license)

License required No, usable free of charge Yes, TE1200 license required
Save/export and load/import (rule)
configuration

Not possible, coupled to PLC
project properties

Possible
(using the Load/Save buttons in
the Settings [} 14])

Execution is coupled to the
compilation process

Yes, not configurable Configurable
(using the Perform static analysis
automatically option in the
Settings [} 14];
Manual execution with the help of
the command Command 'Run static
analysis' [} 111])

Checking for unused objects (e.g.
within a library project)

Not possible Possible
(with the help of the command
Command 'Run static analysis
[Check all objects]' [} 113])

Maximum number of reported
errors

500 (not configurable)
(Further information on the
significance of 500 as the
maximum number of errors can be
found in the Settings [} 14])

Configurable
(using the setting Maximum
number of errors in the Settings
[} 14])

Maximum number of reported
warnings

Output of warnings not possible
(see following line)

Configurable
(using the setting Maximum
number of warnings in the
Settings [} 14])

Rules: Activation options [} 16] • Active and output as error
• Inactive

• Active and output as error
• Active and output as warning
• Inactive

Rules: scope [} 17] 7 coding rules
• SA0033: Unused variables
• SA0028: Overlapping memory

areas
• SA0006: Write access to

multiple tasks
• SA0004: Multiple writes access

on output
• SA0027: Multiple usage of name
• SA0167: Report temporary

FunctionBlock instances
• SA0175: Suspicious operation

on string

More than 100 coding rules

Rules: Precompile wavy underline,
QuickFix [} 130]

Not available Available

Naming conventions [} 81] Not available Available

Metrics [} 94] Not available Available

Forbidden symbols [} 110] Not available Available

Installation

TE1200 13Version: 2.9.0

Pragmas and attributes [} 121] for
temporary deactivation of rules

Yes, available in the Light scope:
• Pragma {analysis ...}
• Attribute {attribute 'no-analysis'}
• Attribute {attribute 'analysis' :=

'...'}

Yes, available in full scope:
• Pragma {analysis ...}
• Attribute {attribute 'no-analysis'}
• Attribute {attribute 'analysis' :=

'...'}
• Attribute {attribute 'naming' :=

'...'}
• Attribute {attribute

'nameprefix' := '...'}
• Attribute {attribute

'analysis:report-multiple-
instance-calls'}

3.2 System Requirements
Engineering (XAE)

Technical data Requirements
Operating system • Windows 10

• Windows 11
Target platform • x86

• x64
TwinCAT version TwinCAT 3.1 Build 4022 or higher
Required TwinCAT license TE1200 Engineering license

3.3 Licensing
For information on licensing the TE1200 engineering component, please read the documentation on
Licensing.

Close XAE before (de)activating the TE1200 license
Before activating or deactivating the TE1200 license via TwinCAT restart, please close all open
development environments.

Test mode

Please note that there is no 7-day trial license available for this product. If you do not have an Engineering
license for TE1200 you can use the license-free version of Static Analysis (Static Analysis Light), which has
some restrictions (see below). The free Light version enables you to familiarize yourself with the basic
handling of the product, for example, based on a heavily reduced set of functions.

See also: Functionality: Light vs. full [} 11]

Configuration

TE120014 Version: 2.9.0

4 Configuration
After the installation [} 11] and licensing of "TE1200 | TwinCAT 3 PLC Static Analysis", the category Static
Analysis in the properties of the PLC project is extended by the additional rules and configuration options.

In the project properties you will then find tabs for the basic configuration and for configuring the rules,
conventions, metrics and forbidden symbols, which have to be taken into account in the code analysis.

The properties of a PLC project can be opened via the context menu of PLC project object or via the Project
menu, if the focus is on a PLC project in the project tree.

The current settings or modifications are saved when you save the PLC project properties. The Save button,
which can be found in the Settings tab, can be used to save the current Static Analysis configuration
additionally in an external file. Such a configuration file can be loaded into the development environment via
the Load button.

The following pages contain further information on the individual tabs of the Static Analysis project
properties category.

• Settings [} 14]

• Rules [} 16]

• Naming conventions [} 81]

• Naming conventions (2) [} 90]

• Metrics [} 94]

• Forbidden symbols [} 110]

Scope of the "Static Analysis" configuration
The parameters you set in the category Static Analysis of the PLC project properties are referred
to as Solution options and therefore affect not only the PLC project whose properties you currently
edit. The configured settings, rules, naming conventions, metrics and forbidden symbols are applied
to all PLC projects in the development environment.

4.1 Settings
The Settings tab can be used to configure whether the static code analysis is automatically performed when
the code is generated. The current configuration of the Static Analysis can be saved in an external file, or a
configuration can be loaded from an external file.

Configuration

TE1200 15Version: 2.9.0

Perform Static Analysis
automatically after compilation

If this option is enabled, TwinCAT performs the Static Analysis whenever
code is generated without error (e.g. when the command Build Project is
executed). The analysis can be started manually via the command
Command 'Run static analysis' [} 111], irrespective of the configuration of
this option.

Load This button opens the standard dialog for a locating of a file. Select the
required configuration file *.csa for the Static Analysis, which may
previously have been created via Save (see below). Since the Static
Analysis properties are "solution options", the project properties for the
Static Analysis, as described in the csa file, are applied to all PLC projects
in the development environment.

Save This button is used to save the current project properties for the Static
Analysis in an xml file. The standard dialog for saving a file appears, and
the file type is preset to "Static analysis files" (*.csa). Such a file can later
be applied to the project via the Load button (see above).
Please note that the setting of the error limit "Maximum number of errors" is
not saved in this file.

Maximum number of errors Preset: 500
In this box you can enter the desired error limit, which is checked during the
execution of the Static Analysis. If either the error limit or the warning
limit (see below) is reached, execution of the Static Analysis is canceled
and the previous analysis result is output.

Performance vs. completeness:
Please note: The more objects are checked by the Static Analysis, the
longer the execution of the Static Analysis takes. And the more errors are
entered in the output window, the longer the results output of the Static
Analysis takes.
In the assumed case that there are more than 500 Static Analysis errors in
a PLC project, the following use cases arise.
• Use of a small error limit (e.g. 500):

You wish to gradually process the output errors by correcting the
respective program code and executing the Static Analysis again to
check the correction. In this case it wouldn't be necessary to check all
the objects at once and to display all the errors at once. Instead, it is
usually sufficient in this case to display a subset as the Static Analysis
result, wherein the Static Analysis is executed with a good performance.

• Use of a large error limit (e.g. 5000):
You wish to output a total report from the Static Analysis in order to be
able to roughly estimate the total work required for the correction of the
program code. You can attain this goal by increasing the error limit.
Please note that, depending on the project situation, the execution of the
Static Analysis takes (much) longer the higher the error limit is set.

Detailed explanation of the behavior:
If there are more than 500 Static Analysis errors in a project, then
configuring the error limit to 500 does not mean that the Static Analysis
outputs exactly 500 errors. In fact, the following happens during the
execution of the Static Analysis: Before checking a further POU, a check is
performed to see whether the Static Analysis errors found so far already
exceed the configured limit. If this is the case, the execution of the Static
Analysis is aborted and the analysis result so far is output. If on the other
hand the limit has not been reached, this POU is checked by the Static
Analysis and the errors found in this POU are added to the analysis result.
If this newly formed error total (e.g. 530) exceeds the configured error limit,
the execution of the Static Analysis is aborted before the checking of the
next POU and the errors found so far (e.g. 530) are output.

Configuration

TE120016 Version: 2.9.0

Maximum number of warnings Preset: 500
In this field, you can enter the desired warning limit, which is checked
during the execution of Static Analysis. If either the error limit (see above)
or the warning limit is reached, execution of the Static Analysis is
canceled and the previous analysis result is output.
Further information on the use cases can be found in the description of the
"Maximum number of errors" option (see above).

4.2 Rules
In the Rules tab you can configure the rules that are taken into account when the static analysis is performed
[} 111]. The rules are displayed as a tree structure in the project properties. Some rules are arranged below
organizational nodes.

The rules alert the user to possibly inadvertent and erroneous implementations so that these parts of the
programme can be optimized at an early stage.

Default settings

All rules are enabled by default, with the exception of SA0016, SA0024, SA0073, SA0101, SA0105-SA0107,
SA0111-SA0125, SA0133, SA0134, SA0145, SA0147, SA0148, SA0150, SA0162-SA0167 and the "strict"
IEC rules.

Configuring the rules

Individual rules can be enabled or disabled via the checkbox for the respective row. Ticking the checkbox for
a subnode affects all entries below this node. Ticking the checkbox for the top node affects all list entries.
The entries below a node can be collapsed or expanded by clicking on the minus or plus sign to the left of
the node name.

The number in brackets after each rule, for example "Unreachable code (1)", is the rule number that is
issued if the rule is not observed.

The following three settings are available, which can be accessed by repeated clicking on the checkbox:

• : The rule is not checked.

• : A rule violation results in an error being reported in the message window.

Configuration

TE1200 17Version: 2.9.0

• : A rule violation results in a warning being reported in the message window.

Syntax of rule violations in the message window

Each rule has a unique number (shown in parentheses after the rule in the rule configuration view). If a rule
violation is detected during the static analysis, the number together with an error or warning description is
issued in the message window, based on the following syntax. The abbreviation "SA" stands for "Static
Analysis".

Syntax: "SA<rule number>: <rule description>"

Sample for rule number 33 (unused variables): "SA0033: Not used: variable 'bSample'"

Temporary disabling of rules

Rules that are enabled in this dialog can be temporarily disabled in the project via a pragma. For further
information please refer to Pragmas and attributes [} 121].

Overview and description of the rules

An overview of the rules and a detailed description of the rules can be found at Rules - overview and
description [} 17].

4.2.1 Rules - overview and description
Check strict IEC rules
The checks under the node "Check strict IEC rules" determine functionalities and data types that
are allowed in TwinCAT, in extension of IEC61131-3.

Checking concurrent/competing access
The following rules exist on this topic:

SA0006: Write access from multiple tasks [} 24]
Determines variables that are written to by more than one task.

SA0103: Concurrent access on not atomic data [} 59]
Determines non-atomic variables (for example with data types STRING, WSTRING, ARRAY,
STRUCT, FB instances, 64-bit data types) that are used in more than one task.

Please note that only direct access can be recognized. Indirect access operations, for example via
pointer/reference, are not listed.

Please also refer to the documentation on the subject "Multi-task data access synchronization in the
PLC", which contains several notes on the necessity and options for data access synchronization.

Parameterizable rules

Parameterizability
Please note that some rules can be parameterized and, for example, limits can be set individually.
You can configure the parameters to be taken into account in the respective check by double-
clicking on the row of the corresponding rule in the rule configuration (PLC project properties >
"Static Analysis" category > "Rules" tab). You can set the control parameters in the dialog that
opens.

The following rules can be parameterized:

• SA0100: Variables greater than <n> bytes [} 57]

• SA0101: Names with invalid length [} 57]

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/9007203839198987.html
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/9007203839198987.html

Configuration

TE120018 Version: 2.9.0

• SA0166: Maximum number of input/output/VAR_IN_OUT variables [} 75]

• SA0178: Cognitive complexity [} 80]

• SA0179: Coupling between objects [} 80]

Overview

- SA0001: Unreachable code [} 22]

- SA0002: Empty objects [} 22]

- SA0003: Empty statements [} 22]

- SA0004: Multiple writes access on output [} 23]

- SA0006: Write access from several tasks [} 24]

- SA0007: Address operators on constants [} 24]

- SA0008: Check subrange types [} 25]

- SA0009: Unused return values [} 25]

- SA0010: Arrays with only one component [} 26]

- SA0011: Useless declarations with only one component [} 26]

- SA0012: Variables which could be declared as constants [} 26]

- SA0013: Declarations with the same variable name [} 27]

- SA0014: Assignments of instances [} 27]

- SA0015: Access to global data via FB_init [} 28]

- SA0016: Gaps in structures [} 28]

- SA0017: Non-regular assignments to pointer variables [} 29]

- SA0018: Unusual bit access [} 29]

- SA0020: Possibly assignment of truncated value to REAL variable [} 30]

- SA0021: Transporting the address of a temporary variable [} 30]

- SA0022: (Possibly) non-rejected return values [} 31]

- SA0023: Complex return values [} 31]

- SA0024: Untyped literals [} 31]

- SA0025: Unqualified enumeration constants [} 32]

- SA0026: Possible truncated strings [} 32]

- SA0027: Multiple usage of name [} 33]

- SA0028: Overlapping memory areas [} 33]

- SA0029: Notation in code different to declaration [} 34]

- List unused objects

 - SA0031: Unused signatures [} 34]

Configuration

TE1200 19Version: 2.9.0

 - SA0032: Unused enumeration constants [} 34]

 - SA0033: Unused variables [} 35]

 - SA0035: Unused input variables [} 35]

 - SA0036: Unused output variables [} 35]

- SA0034: Enumeration variables with incorrect assignment [} 36]

- SA0037: Write access to input variable [} 36]

- SA0038: Read access to output variable [} 37]

- SA0040: Possible division by zero [} 37]

- SA0041: Possibly loop-invariant code [} 37]

- SA0042: Usage of different access paths [} 38]

- SA0043: Use of a global variable in only one POU [} 39]

- SA0044: Declarations with reference to interface [} 39]

- Conversions

 - SA0019: Implicit pointer conversions [} 40]

 - SA0130: Implicit expanding conversions [} 40]

 - SA0133: Explicit narrowing conversions [} 41]

 - SA0134: Explicit signed/unsigned conversions [} 41]

- Usage of direct addresses

 - SA0005: Invalid addresses and data types [} 42]

 - SA0047: Access to direct addresses [} 42]

 - SA0048: AT declarations on direct addresses [} 43]

- Rules for operators

 - SA0051: Comparison operators on BOOL variables [} 43]

 - SA0052: Unusual shift operation [} 43]

 - SA0053: Too big bitwise shift [} 44]

 - SA0054: Comparisons of REAL/LREAL for equality/inequality [} 44]

 - SA0055: Unnecessary comparison operations of unsigned operands [} 45]

 - SA0056: Constant out of valid range [} 45]

 - SA0057: Possible loss of decimal points [} 46]

 - SA0058: Operations of enumeration variables [} 46]

 - SA0059: Comparison operations always returning TRUE or FALSE [} 47]

 - SA0060: Zero used as invalid operand [} 48]

 - SA0061: Unusual operation on pointer [} 48]

 - SA0062: Expression is constant [} 49]

Configuration

TE120020 Version: 2.9.0

 - SA0063: Possibly not 16-bit-compatible operations [} 49]

 - SA0064: Addition of pointer [} 49]

 - SA0065: Incorrect pointer addition to base size [} 50]

 - SA0066: Use of temporary results [} 51]

- Rules for statements

 - FOR statements

 - SA0072: Invalid uses of counter variable [} 52]

 - SA0073: Use of non-temporary counter variable [} 52]

 - SA0081: Upper border is not a constant [} 52]

 - CASE statements

 - SA0075: Missing ELSE [} 53]

 - SA0076: Missing enumeration constant [} 54]

 - SA0077: Type mismatches with CASE expression [} 54]

 - SA0078: Missing CASE branches [} 55]

 - SA0090: Return statement before end of function [} 55]

- SA0095: Assignments in conditions [} 56]

- SA0100: Variables greater than <n> bytes [} 57]

- SA0101: Names with invalid length [} 57]

- SA0102: Access to program/fb variables from the outside [} 58]

- SA0103: Concurrent access on not atomic data [} 59]

- SA0105: Multiple instance calls [} 60]

- SA0106: Virtual method calls in FB_init [} 60]

- SA0107: Missing formal parameters [} 62]

- Check strict IEC rules

 - SA0111: Pointer variables [} 62]

 - SA0112: Reference variables [} 62]

 - SA0113: Variables with data type WSTRING [} 62]

 - SA0114: Variables with data type LTIME [} 63]

 - SA0115: Declarations with data type UNION [} 63]

 - SA0117: Variables with data type BIT [} 63]

 - SA0119: Object-oriented features [} 64]

 - SA0120: Program calls [} 64]

 - SA0121: Missing VAR_EXTERNAL declarations [} 65]

 - SA0122: Array index defined as expression [} 65]

Configuration

TE1200 21Version: 2.9.0

 - SA0123: Usages of INI, ADR or BITADR [} 66]

 - SA0147: Unusual shift operation - strict [} 66]

 - SA0148: Unusual bit access - strict [} 66]

- Rules for initializations

 - SA0118: Initializations not using constants [} 67]

 - SA0124: Dereference access in initializations [} 67]

 - SA0125: References in initializations [} 68]

- SA0140: Statements commented out [} 71]

- Possible use of uninitialized variables

 - SA0039: Possible null pointer dereferences [} 69]

 - SA0046: Possible use of not initialized interface [} 70]

 - SA0145: Possible use of not initialized reference [} 70]

- SA0150: Violations of lower or upper limits of the metrics [} 71]

- SA0160: Recursive calls [} 72]

- SA0161: Unpacked structure in packed structure [} 73]

- SA0162: Missing comments [} 74]

- SA0163: Nested comments [} 74]

- SA0164: Multi-line comments [} 75]

- SA0166: Maximum number of input/output/VAR_IN_OUT variables [} 75]

- SA0167: Report temporary FunctionBlock instances [} 76]

- SA0168: Unnecessary assignments [} 77]

- SA0169: Ignored outputs [} 77]

- SA0170: Address of an output variable should not be used [} 77]

- SA0171: Enumerations should have the 'strict' attribute [} 78]

- SA0172: Possible attempt to access outside the array limits [} 79]

- SA0175: Suspicious operation on string [} 79]

- Metrics

 - SA0178: Cognitive complexity [} 80]

 - SA0179: Coupling between objects [} 80]

- SA0180: Index range does not cover the entire array [} 80]

Detailed description

Configuration

TE120022 Version: 2.9.0

SA0001: Unreachable code

Function Determines code that is not executed, for example due to a RETURN or CONTINUE
statement.

Reason Unreachable code should be avoided in any case. The check often indicates the
presence of test code, which should be removed.

Importance High
PLCopen rule CP2

Sample 1 – RETURN:
PROGRAM MAIN
VAR
 bReturnBeforeEnd : BOOL;
END_VAR

bReturnBeforeEnd := FALSE;
RETURN;
bReturnBeforeEnd := TRUE; // => SA0001

Sample 2 – CONTINUE:
FUNCTION F_ContinueInLoop : BOOL
VAR
 nCounter : INT;
END_VAR

F_ContinueInLoop := FALSE;

FOR nCounter := INT#0 TO INT#5 BY INT#1 DO
 CONTINUE;
 F_ContinueInLoop := FALSE; // => SA0001
END_FOR

SA0002: Empty objects

Function Determines POUs, GVLs or data type declarations that do not contain code.
Reason Empty objects should be avoided. They are often a sign that an object is not fully

implemented.
Exception: In some cases, the body of a function block will not assigned code if it is only
to be used via interfaces. In other cases, a method is only created because it is required
by an interface, without scope for meaningful implementation of the method. In any case,
a comment should be included in such a situation.

Importance Medium

SA0003: Empty statements

Function Determines lines of code containing a semicolon (;) but no statement.
Reason An empty statement can be an indication of missing code.
Exception Although there are meaningful uses for empty statements. For example, it may be useful

to explicitly program all cases in a CASE statement, including cases in which no action is
required. If such an empty CASE statement is commented, the statistical code analysis
does not generate an error message.

Importance Low

Samples:
; // => SA0003
(* comment *); // => SA0003
nVar; // => SA0003

The following sample generates the error "SA0003: Empty statement" for State 2.

Configuration

TE1200 23Version: 2.9.0

CASE nVar OF
 1: DoSomething();
 2: ;
 3: DoSomethingElse();
END_CASE

The following sample does not generate an SA0003 error.
CASE nVar OF
 1: DoSomething();
 2: ; // nothing to do
 3: DoSomethingElse();
END_CASE

SA0004: Multiple write access on output

Function Determines outputs that are written at more than one position.
Reason The maintainability suffers if an output is written in various places in the code. It is then

unclear which write access is actually affecting the process. It is good practice to perform
the calculation of the output variables in auxiliary variables and to assign the calculated
value to a point at the end of the cycle.

Exception No error is issued if an output variable is written in different branches of IF or CASE
statements.

Importance High
PLCopen rule CP12

This rule cannot be disabled via a pragma or attribute!
For more information on attributes, see Pragmas and attributes [} 121].

Sample:

Global variable list:
VAR_GLOBAL
 bVar AT%QX0.0 : BOOL;
 nSample AT%QW5 : INT;
END_VAR

MAIN program:
PROGRAM MAIN
VAR
 nCondition : INT;
END_VAR

IF nCondition < INT#0 THEN
 bVar := TRUE; // => SA0004
 nSample := INT#12; // => SA0004
END_IF

CASE nCondition OF
 INT#1:
 bVar := FALSE; // => SA0004

 INT#2:
 nSample := INT#11; // => SA0004

ELSE
 bVar := TRUE; // => SA0004
 nSample := INT#9; // => SA0004
END_CASE

Configuration

TE120024 Version: 2.9.0

SA0006: Write access from several tasks

Function Determines variables with write access from more than one task.
Reason A variable that is written in several tasks may change its value unexpectedly under

certain circumstances. This can lead to confusing situations. String variables and, on
some 32-bit systems, 64-bit integer variables also may even assume an inconsistent
state if the variable is written in two tasks at the same time.

Exception In certain cases it may be necessary for several tasks to write a variable. Make sure, for
example through the use of semaphores, that the access does not lead to an
inconsistent state.

Importance High
PLCopen rule CP10

See also rule SA0103 [} 59].

Call corresponds to write access
Please note that calls are interpreted as write access. For example, calling a method for a function
block instance is regarded as a write access to the function block instance. A more detailed analysis
of accesses and calls is not possible, e.g. due to virtual calls (pointers, interface).
To deactivate rule SA0006 for a variable (e.g. for a function block instance), the following attribute
can be inserted above the variable declaration: {attribute 'analysis' := '-6'}

Examples:

The two global variables nVar and bVar are written by two tasks.

Global variable list:
VAR_GLOBAL
 nVar : INT;
 bVar : BOOL;
END_VAR

Program MAIN_Fast, called from the task PlcTaskFast:
nVar := nVar + 1; // => SA0006
bVar := (nVar > 10); // => SA0006

Program MAIN_Slow, called from the task PlcTaskSlow:
nVar := nVar + 2; // => SA0006
bVar := (nVar < -50); // => SA0006

SA0007: Address operators on constants

Function Determines locations at which the ADR operator is used for a constant.
Reason A pointer to a constant variable cancels the CONSTANT property of the variable. The

variable can be changed via the pointer without the compiler reporting this.
Exception In rare cases, it may make sense for pointer to a constant to be passed to a function. If

this option is used, measures must be implemented to ensure that the function does not
change the value that was passed to it. In this case, use VAR_IN_OUT CONSTANT if
possible.

Importance High

If the option Replace constants is enabled in the compiler options of the PLC project properties,
the address operator for scalar constants (Integer, BOOL, REAL) is not allowed and a compilation
error is issued. (Constant strings, structures and arrays always have an address.)

Sample:

Configuration

TE1200 25Version: 2.9.0

PROGRAM MAIN
VAR CONSTANT
 cValue : INT := INT#15;
END_VAR
VAR
 pValue : POINTER TO INT;
END_VAR

pValue := ADR(cValue); // => SA0007

SA0008: Check subrange types

Function Determines range exceedances of subrange types. Assigned literals are checked at an
early stage by the compiler. If constants are assigned, the values must be within the
defined range. If variables are assigned, the data types must be identical.

Reason If subrange types are used, make sure that the function remains within the respective
subrange. The compiler checks such subrange violations only for assignments of
constants.

Importance Low

The check is not performed for CFC objects, because the code structure does not allow this.

Sample:
PROGRAM MAIN
VAR
 nSub1 : INT (INT#1..INT#10);
 nSub2 : INT (INT#1..INT#1000);
 nVar : INT;
END_VAR

nSub1 := nSub2; // => SA0008
nSub1 := nVar; // => SA0008

SA0009: Unused return values

Function Determines function, method and property calls for which the return value is not used.
Reason If a function or method returns a return value, the value should be evaluated. In many

cases the return value contains information to indicate whether the function was
executed successfully. If no evaluation is performed, it is subsequently not possible to
determine whether the return value was overlooked or whether it is in fact not required.

Exception If a return value is of no interest during a call, this should be documented and the
assignment can be omitted. Error returns should never be ignored!

Importance Medium
PLCopen rule CP7/CP17

Sample:

Function F_ReturnBOOL:
FUNCTION F_ReturnBOOL : BOOL

F_ReturnBOOL := TRUE;

MAIN program:
PROGRAM MAIN
VAR
 bVar : BOOL;
END_VAR

F_ReturnBOOL(); // => SA0009
bVar := F_ReturnBOOL();

Configuration

TE120026 Version: 2.9.0

SA0010: Arrays with only one component

Function Determines arrays containing only a single component.
Reason An array with a component can be replaced by a Base Type variable. Access to such a

variable is much faster than access to a variable via an index.
Exception The length of an array is often determined by a constant and used as a parameter for a

program. The program can then work with arrays of different lengths and does not have
to be changed if the length is only 1. Such a situation should be documented accordingly.

Importance Low

Samples:
PROGRAM MAIN
VAR
 aEmpty1 : ARRAY [0..0] OF INT; // => SA0010
 aEmpty2 : ARRAY [15..15] OF REAL; // => SA0010
END_VAR

SA0011: Useless declarations with only one component

Function Determines structures, unions, or enumerations with only one component.
Reason No structures, unions or enumerations with only one component should be declared.

Such declarations can be confusing for readers. A structure with only one element can
be replaced by an alias type. An enumeration with an element can be replaced by a
constant.

Importance Low
PLCopen rule CP22/CP24

Sample 1 – Structure:
TYPE ST_SingleStruct : // => SA0011
STRUCT
 nPart : INT;
END_STRUCT
END_TYPE

Sample 2 – Union:
TYPE U_SingleUnion : // => SA0011
UNION
 fVar : LREAL;
END_UNION
END_TYPE

Sample 3 – Enumeration:
TYPE E_SingleEnum : // => SA0011
(
 eOnlyOne := 1
);
END_TYPE

SA0012: Variables which could be declared as constants

Function Determines variables that are not subject to write access and therefore could not be
declared as constants.

Reason If a variable is only written at the declaration point and is otherwise only used in read
mode, the static analysis assumes that the variable is to remain unchanged. Declaration
as a constant means that the variable is checked for changes in the event of program
modifications. Plus, declaration as a constant may lead to faster code.

Importance Low

Sample:

Configuration

TE1200 27Version: 2.9.0

PROGRAM MAIN
VAR
 nSample : INT := INT#17;
 nVar : INT;
END_VAR

nVar := nVar + nSample; // => SA0012

SA0013: Declarations with the same variable name

Function Determines variables with the same name as other variables (example: global and local
variables with the same name), or the same name as functions, actions, methods or
properties within the same access range.

Reason Identical names can be confusing when the code is read and can lead to errors if the
wrong object is accessed accidentally. We therefore recommend using naming
conventions that avoid such situations.

Importance Medium
PLCopen rule N5/N9

Samples:

Global variable list GVL_App:
VAR_GLOBAL
 nVar : INT;
END_VAR

MAIN program, containing a method with the name Sample:
PROGRAM MAIN
VAR
 bVar : BOOL;
 nVar : INT; // => SA0013
 Sample : DWORD; // => SA0013
END_VAR

.nVar := 100; // Writing global variable "nVar"
nVar := 500; // Writing local variable "nVar"

METHOD Sample
VAR_INPUT
…

SA0014: Assignments of instances

Function Determines assignments to function block instances. For instances with pointer or
reference variables such assignments may be risky.

Reason This is a performance warning. When an instance is assigned to another instance, all
elements and subelements are copied from one instance to the other. Pointers to data
are also copied, but not their referenced data, so that the target instance and the source
instance contain the same data after the assignment. Depending on the size of the
instances, such an assignment may take a long time. If, for example, an instance is to be
passed to a function for processing, it is much better to pass a pointer to the instance.
A copy method can be useful for selectively copying values from one instance to another:
fb2.CopyFrom(fb1)

Importance Medium

Sample:
PROGRAM MAIN
VAR
 fb1 : FB_Sample;
 fb2 : FB_Sample;
END_VAR

fb1();
fb2 := fb1; // => SA0014

Configuration

TE120028 Version: 2.9.0

SA0015: Access to global data via FB_init

Function Determines access of a function block to global data via the FB_init method. The value of
this variables depends on the order of the initializations!

Reason Depending on the declaration location of the instance of a function block, a non-initialized
variable may be accessed if the rule is violated.

Importance High

Sample:

Global variable list GVL_App:
VAR_GLOBAL
 nVar : INT;
END_VAR

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR
 nLocal : INT;
END_VAR

Method FB_Sample.FB_init:
METHOD FB_init : BOOL
VAR_INPUT
 bInitRetains : BOOL; // if TRUE, the retain variables are initialized (warm start / cold
start)
 bInCopyCode : BOOL; // if TRUE, the instance afterwards gets moved into the copy code
(online change)
END_VAR

nLocal := 2*nVar; // => SA0015

Program MAIN:
PROGRAM MAIN
VAR
 fbSample : FB_Sample;
END_VAR

SA0016: Gaps in structures

Function Determines gaps in structures or function blocks, caused by the alignment requirements
of the currently selected target system. If possible, you should remove gaps by
rearranging the structure elements or by filling them with dummy elements. If this is not
possible, you can disable the rule for the affected structures using the attribute {attribute
'analysis' := '...'} [} 123].

Reason Due to different alignment requirements on different platforms, such structures may have
a different layout in the memory. The code may behave differently, depending on the
platform.

Importance Low

Samples:
TYPE ST_UnpaddedStructure1 :
STRUCT
 bBOOL : BOOL;
 nINT : INT; // => SA0016
 nBYTE : BYTE;
 nWORD : WORD;
END_STRUCT
END_TYPE

TYPE ST_UnpaddedStructure2 :
STRUCT
 bBOOL : WORD;
 nINT : INT;

Configuration

TE1200 29Version: 2.9.0

 nBYTE : BYTE;
 nWORD : WORD; // => SA0016
END_STRUCT
END_TYPE

SA0017: Non-regular assignments to pointer variables

Function Determines assignments to pointers, which are not an address (ADR operator, pointer
variables) or constant 0.

Reason If a pointer is assigned a value that is not a valid address, dereferencing the pointer
leads to an “Access Violation Exception”.

Importance High

Sample:
PROGRAM MAIN
VAR
 nVar : INT;
 pInt : POINTER TO INT;
 nAddress : XWORD;
END_VAR

nAddress := nAddress + 1;

pInt := ADR(nVar); // no error
pInt := 0; // no error
pInt := nAddress; // => SA0017

SA0018: Unusual bit access

Function Determines bit access to signed variables. However, the IEC 61131-3 standard only
permits bit access to bit fields. See also strict rule SA0148 [} 66].

Reason Signed data types should not be used as bit fields and vice versa. The IEC 61131-3
standard does not provide for such access. This rule must be observed if the code is to
be portable.

Exception Exception for flag enumerations: If an enumeration is declared as flag via the pragma
attribute {attribute 'flags'}, the error SA0018 is not issued for bit access with OR, AND or
NOT operations.

Importance Medium

Samples:
PROGRAM MAIN
VAR
 nINT : INT;
 nDINT : DINT;
 nULINT : ULINT;
 nSINT : SINT;
 nUSINT : USINT;
 nBYTE : BYTE;
END_VAR

nINT.3 := TRUE; // => SA0018
nDINT.4 := TRUE; // => SA0018
nULINT.18 := FALSE; // no error because this is an unsigned data type
nSINT.2 := FALSE; // => SA0018
nUSINT.3 := TRUE; // no error because this is an unsigned data type
nBYTE.5 := FALSE; // no error because BYTE is a bit field

Configuration

TE120030 Version: 2.9.0

SA0020: Possibly assignment of truncated value to REAL variable

Function Determines operations on integer variables, during which a truncated value may be
assigned to a variable of data type REAL.

Reason The static code analysis returns an error when the result of an integer calculation is
assigned to a REAL or LREAL variable. The programmer should be made aware of a
possibly incorrect interpretation of such an assignment:
fLEAL := nDINT1 * nDINT2.

Since the value range of LREAL is greater than that of DINT, it could be assumed that
the result of the calculation is always displayed in LREAL. But this is not the case. The
processor calculates the result of the multiplication as an integer and then casts the
result to LREAL. An overflow in the integer calculation would be lost. To avoid this
problem, the calculation should be performed as a REAL operation:
fLREAL := TO_LREAL(nDINT1) * TO_LREAL(nDINT2)

Importance High

Sample:
PROGRAM MAIN
VAR
 nVar1 : DWORD;
 nVar2 : DWORD;
 fVar : REAL;
END_VAR

nVar1 := nVar1 + DWORD#1;
nVar2 := nVar2 + DWORD#2;
fVar := nVar1 * nVar2; // => SA0020

SA0021: Transporting the address of a temporary variable

Function Determines assignments of addresses of temporary variables (variables on the stack) to
non-temporary variables.

Reason Local variables of a function or method are created on the stack and exist only while the
function or method is processed. If a pointer points to such a variable after processing
the method or function, then this pointer can be used to access undefined memory or an
incorrect variable in another function. This situation must be avoided in any case.

Importance High

Sample:

Method FB_Sample.SampleMethod:
METHOD SampleMethod : XWORD
VAR
 fVar : LREAL;
END_VAR

SampleMethod := ADR(fVar);

Program MAIN:
PROGRAM MAIN
VAR
 nReturn : XWORD;
 fbSample : FB_Sample;
END_VAR

nReturn := fbSample.SampleMethod(); // => SA0021

Configuration

TE1200 31Version: 2.9.0

SA0022: (Possibly) unassigned return value

Function Determines all functions and methods containing an execution thread without
assignment to the return value.

Reason An unassigned return value in a function or method indicates missing code. Even if the
return value always has a default value, it is useful to explicitly assign it again in any
case, in order to avoid ambiguities.

Importance Medium

Sample:
FUNCTION F_Sample : DWORD
VAR_INPUT
 nIn : UINT;
END_VAR
VAR
 nTemp : INT;
END_VAR

nIn := nIn + UINT#1;

IF (nIn > UINT#10) THEN
 nTemp := 1; // => SA0022
ELSE
 F_Sample := DWORD#100;
END_IF

SA0023: Complex return values

Function Determines complex return values that cannot be returned with a simple register copy of
the processor. These include structures and arrays as well as return values of the type
STRING (irrespective of the size of storage space occupied).

Reason This is a performance warning. If large values are returned as a result of a function,
method, or property, the processor copies them repeatedly when the code is executed.
This can lead to runtime problems and should be avoided if possible. Better performance
is achieved if a structured value is passed to a function or method as VAR_IN_OUT and
filled in the function or method.

Importance Medium

Sample:

Structure ST_sample:
TYPE ST_Sample :
STRUCT
 n1 : INT;
 n2 : BYTE;
END_STRUCT
END_TYPE

Example of functions with return value:
FUNCTION F_MyFunction1 : I_MyInterface // no error

FUNCTION F_MyFunction2 : ST_Sample // => SA0023

FUNCTION F_MyFunction3 : ARRAY[0..1] OF BOOL // => SA0023

SA0024: Untyped literals

Function Determines untyped literals that are part of an operation.
Reason Untyped literals are automatically typed depending on their use. In some cases, such as

nDWORD := ROL(DWORD#1, i);, this can lead to unexpected situations where it is
better to achieve clear clarification by using a typed literal.

Importance Low

Sample:

Configuration

TE120032 Version: 2.9.0

PROGRAM MAIN
VAR
 nINT : INT := 10; // no error as no part of operation
 nDINT : DINT;
 nLINT : LINT;
 fREAL : REAL;
 fLREAL : LREAL;
END_VAR

nINT := nINT + 34; // => SA0024
nINT := nINT + INT#34; // no error

nDINT := nDINT + 23; // => SA0024
nDINT := nDINT + DINT#23; // no error

nLINT := nLINT + 124; // => SA0024
fREAL := fREAL + 1.1; // => SA0024
fLREAL := fLREAL + 3.4; // => SA0024

SA0025: Unqualified enumeration constants

Function Determines enumeration constants that are not used with a qualified name, i.e. without
preceding enumeration name.

Reason Qualified access makes the code more readable and easier to maintain. Without forcing
qualified variable names, an additional enumeration could be inserted when the program
is extended. This enumeration contains a constant with the same name as an existing
enumeration (see the sample below: "eRed"). In this case there would be an ambiguous
access in this piece of code.
We recommend using only enumerations that have the {attribute 'qualified-only’}.

Importance Medium

Sample:

Enumeration E_Color:
TYPE E_Color :
(
 eRed,
 eGreen,
 eBlue
);
END_TYPE

MAIN program:
PROGRAM MAIN
VAR
 eColor : E_Color;
END_VAR

eColor := E_Color.eGreen; // no error
eColor := eGreen; // => SA0025

SA0026: Possible truncated strings

Function Determines string assignments and initializations that do not use an adequate string
length.

Reason If strings of different lengths are assigned, a string may be truncated. The result is then
not the expected one.

Importance Medium

Samples:
PROGRAM MAIN
VAR
 sVar1 : STRING[10];
 sVar2 : STRING[6];
 sVar3 : STRING[6] := 'abcdefghi'; // => SA0026
END_VAR

Configuration

TE1200 33Version: 2.9.0

sVar2 := sVar1; // => SA0026

SA0027: Multiple usage of name

Function Determines multiple use of a variable name/identifier or object name (POU) within the
scope of a project. The following cases are covered:
• The name of an enumeration constant is identical to the name in another enumeration

within the application or in an included library.
• The name of a variable is identical to the name of another object in the application or

in an included library.
• The name of a variable is identical to the name of an enumeration constant in an

enumeration in the application or in an included library.
• The name of an object is identical to the name of another object in the application or in

an included library.
Reason Identical names can be confusing when reading the code. They can lead to errors if the

wrong object is accessed inadvertently. Therefore, define and follow naming conventions
in order to avoid such situations.

Exception Enumerations declared with the 'qualified_only' attribute are exempt from SA0027
checking because their elements can only be accessed in a qualified manner.

Importance Medium

Sample:

The following sample generates error/warning SA0027, since the library Tc2_Standard is referenced in the
project, which provides the function block TON.
PROGRAM MAIN
VAR
 ton : INT; // => SA0027
END_VAR

SA0028: Overlapping memory areas

Function Determines the points due to which two or more variables occupy the same storage
space.

Reason If two variables occupy the same storage space, the code may behave very
unexpectedly. This must be avoided in all cases. If the use of a value in different
interpretations is unavoidable, for example once as DINT and once as REAL, you should
define a UNION. Also, via a pointer you can access a value typed otherwise without
converting the value.

Importance High

Sample:

In the following sample both variables use byte 21, i.e. the memory areas of the variables overlap.
PROGRAM MAIN
VAR
 nVar1 AT%QB21 : INT; // => SA0028
 nVar2 AT%QD5 : DWORD; // => SA0028
END_VAR

Configuration

TE120034 Version: 2.9.0

SA0029: Notation in code different to declaration

Function Determines the code positions (in the implementation) at which the notation of an
identifier differs from the notation in its declaration.

Reason The IEC 61131-3 standard defines identifiers as not case-sensitive. This means that a
variable declared as "varx" can also be used as "VaRx" in the code. However, this can
be confusing and misleading and should therefore be avoided.

Importance Medium

Samples:

Function F_TEST:
FUNCTION F_TEST : BOOL
…

Program MAIN:
PROGRAM MAIN
VAR
 nVar : INT;
 bReturn : BOOL;
END_VAR

nvar := nVar + 1; // => SA0029
bReturn := F_Test(); // => SA0029

SA0031: Unused signatures

Function Determines programs, function blocks, functions, data types, interfaces, methods,
properties, actions etc., which are not called within the compiled program code.

Reason Unused objects result in unnecessary project bloat and confusion when the code is read.
Importance low
PLCopen rule CP2

SA0032: Unused enumeration constants

Function Determines enumeration constants that are not used in the compiled program code.
Reason Unused enumeration constants result in unnecessary enumeration definition bloat and

confusion when the program is read.
Importance Low
PLCopen rule CP24

Sample:

Enumeration E_Sample:
TYPE E_Sample :
(
 eNull,
 eOne, // => SA0032
 eTwo
);
END_TYPE

Program MAIN:
PROGRAM MAIN
VAR
 eSample : E_Sample;
END_VAR

eSample := E_Sample.eNull;
eSample := E_Sample.eTwo;

Configuration

TE1200 35Version: 2.9.0

SA0033: Unused variables

Function Determines variables that are declared but not used within the compiled program code.
Reason Unused variables make a program less easy to read and maintain. Unused variables

occupy unnecessary memory space and take up unnecessary runtime during the
initialization.

Importance medium
PLCopen rule CP22/CP24

SA0035: Unused input variables

Function Determines input variables that are not assigned within the respective function block.
Reason Unused variables make a program less easy to read and maintain. Unused variables

occupy unnecessary memory space and take up unnecessary runtime during the
initialization.

Importance Medium
PLCopen rule CP24

Sample:

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR_INPUT
 bIn1 : BOOL;
 bIn2 : BOOL; // => SA0035
END_VAR
VAR_OUTPUT
 bOut1 : BOOL;
 bOut2 : BOOL; // => SA0036
END_VAR

bOut1 := bIn1;

SA0036: Unused output variables

Function Determines output variables that are not assigned within the respective function block.
Reason Unused variables make a program less easy to read and maintain. Unused variables

occupy unnecessary memory space and take up unnecessary runtime during the
initialization.

Importance Medium
PLCopen rule CP24

Sample:

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR_INPUT
 bIn1 : BOOL;
 bIn2 : BOOL; // => SA0035
END_VAR
VAR_OUTPUT
 bOut1 : BOOL;
 bOut2 : BOOL; // => SA0036
END_VAR

bOut1 := bIn1;

Configuration

TE120036 Version: 2.9.0

SA0034: Enumeration variables with incorrect assignment

Function Determines values that are assigned to an enumeration variable. Only defined
enumeration constants may be assigned to an enumeration variable.

Reason An enumeration type variable should only have the intended values, otherwise code that
uses that variable may not work correctly. We recommend using only enumerations that
have the {attribute 'strict'}. In this case the compiler checks the correct use of the
enumeration components.

Importance High

Sample:

Enumeration E_Color:
TYPE E_Color :
(
 eRed := 1,
 eBlue := 2,
 eGreen := 3
);
END_TYPE

Program MAIN:
PROGRAM MAIN
VAR
 eColor : E_Color;
END_VAR

eColor := E_Color.eRed;
eColor := eBlue;
eColor := 1; // => SA0034

SA0037: Write access to input variable

Function Determines input variables (VAR_INPUT) that are subject to write access within the
POU.

Reason According to the IEC 61131-3 standard, an input variable may not be changed within a
function block. Such access is also an error source and makes the code more difficult to
maintain. It indicates that a variable is used as an input and simultaneously as an
auxiliary variable. Such dual use should be avoided.

Importance Medium

Sample:

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR_INPUT
 bIn : BOOL := TRUE;
 nIn : INT := 100;
END_VAR
VAR_OUTPUT
 bOut : BOOL;
END_VAR

Method FB_Sample.SampleMethod:
IF bIn THEN
 nIn := 500; // => SA0037
 bOut := TRUE;
END_IF

Configuration

TE1200 37Version: 2.9.0

SA0038: Read access to output variable

Function Determines output variables (VAR_OUTPUT) that are subject to read access within the
POU.

Reason The IEC-61131-3 standard prohibits reading an output within a function block. It indicates
that the output is not only used as an output but also as a temporary variable for
intermediate results. Such dual use should be avoided.

Importance Low

Sample:

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR_OUTPUT
 bOut : BOOL;
 nOut : INT;
END_VAR
VAR
 bLocal : BOOL;
 nLocal : INT;
END_VAR

Method FB_Sample.SampleMethod:
IF bOut THEN // => SA0038
 bLocal := (nOut > 100); // => SA0038
 nLocal := nOut; // => SA0038
 nLocal := 2*nOut; // => SA0038
END_IF

SA0040: Possible division by zero

Function Determines code positions at which division by zero may occur.
Reason Division by 0 is not allowed. A variable that is used as a divisor should always be

checked for 0 first. Otherwise, a "Divide by Zero" exception may occur at runtime.
Importance High

Sample:
PROGRAM MAIN
VAR CONSTANT
 cSample : INT := 100;
END_VAR
VAR
 nQuotient1 : INT;
 nDividend1 : INT;
 nDivisor1 : INT;

 nQuotient2 : INT;
 nDividend2 : INT;
 nDivisor2 : INT;
END_VAR

nDivisor1 := cSample;
nQuotient1 := nDividend1/nDivisor1; // no error

nQuotient2 := nDividend2/nDivisor2; // => SA0040

SA0041: Possibly loop-invariant code

Function Determines assignments in (FOR, WHILE, REPEAT) loops that calculate the same value
for each loop pass. Such lines of code could be inserted outside the loop.

Reason This is a performance warning. Code that is executed in a loop, but does the same thing
in every loop pass, can be executed outside the loop.

Importance Medium

Configuration

TE120038 Version: 2.9.0

Sample:

In the following sample SA0041 is output as error/warning, since the variables nTest1 and nTest2 are not
used in the loop.
PROGRAM MAIN
VAR CONSTANT
 cMax : INT := 3;
END_VAR
VAR
 nTest1 : INT := 5;
 nTest2 : INT := nTest1;
 nTest3 : INT;
 nTest4 : INT;
 nTest5 : INT;
 nTest6 : INT;
 nIndex : INT;
 nCounter : INT;
END_VAR

FOR nCounter := 1 TO 100 DO
 nTest3 := nTest1 + nTest2; // => SA0041
 nTest4 := nTest3 + nCounter; // no loop-invariant code, because nTest3 and nCounter are used
within loop
 nTest6 := nTest5; // simple assignments are not regarded
END_FOR

FOR nIndex := 1 TO cMax-1 DO // => SA0041 for "cMax-1"
 nCounter := nCounter + 1;
END_FOR

SA0042: Usage of different access paths

Function Determines the usage of different access paths for the same variable.
Reason Different access to the same element reduces the readability and maintainability of a

program. We recommend consistent use of {attribute 'qualified-only'} for libraries, global
variable lists and enumerations. This forces fully qualified access.

Importance Low

Samples:

In the following sample SA0042 is output as error/warning, because the global variable nGlobal is accessed
directly and via the GVL namespace, and because the function CONCAT is accessed directly and via the
library namespace.

Global variables:
VAR_GLOBAL
 nGlobal : INT;
END_VAR

Program MAIN:
PROGRAM MAIN
VAR
 sVar : STRING;
END_VAR

nGlobal := INT#2; // => SA0042
GVL.nGlobal := INT#3; // => SA0042

sVar := CONCAT('ab', 'cd'); // => SA0042
sVar := Tc2_Standard.CONCAT('ab', 'cd'); // => SA0042

Configuration

TE1200 39Version: 2.9.0

SA0043: Use of a global variable in only one POU

Function Determines global variables that are only used in one POU.
Reason A global variable that is only used at one point should also be declared at this point.
Importance Medium
PLCopen rule CP26

Sample:

The global variable nGlobal1 is only used in the MAIN program.

Global variables:
VAR_GLOBAL
 nGlobal1 : INT; // => SA0043
 nGlobal2 : INT;
END_VAR

Program SubProgram:
nGlobal2 := 123;

MAIN program:
SubProgram();

nGlobal1 := nGlobal2;

SA0044: Declarations with reference to interface

Function Determines declarations with REFERENCE TO <interface> and declarations of
VAR_IN_OUT variables with the type of an interface (realized implicitly via REFERENCE
TO).

Reason An interface type is always implicitly a reference to an instance of a function block that
implements this interface. A reference to an interface is therefore a reference to a
reference and can lead to unwanted behavior.

Importance High

Samples:

I_Sample is an interface defined in the project.

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR_INPUT
 iInput : I_Sample;
END_VAR
VAR_OUTPUT
 iOutput : I_Sample;
END_VAR
VAR_IN_OUT
 iInOut1 : I_Sample; // => SA0044

 {attribute 'analysis' := '-44'}
 iInOut2 : I_Sample; // no error SA0044 because rule is deactivated via
attribute
END_VAR

Program MAIN:
PROGRAM MAIN
VAR
 fbSample : FB_Sample;
 iSample : I_Sample;
 refItf : REFERENCE TO I_Sample; // => SA0044
END_VAR

Configuration

TE120040 Version: 2.9.0

SA0019: Implicit pointer conversions

Function Determines implicitly generated pointer data type conversions.
Reason Pointers are not strictly typed in TwinCAT and can be assigned to each other as

required. This is a commonly used option and therefore not reported by the compiler.
However, it can also unintentionally lead to unexpected access. If a POINTER TO BYTE
is assigned to a POINTER TO DWORD, it is possible that the last pointer will
unintentionally overwrite memory. Therefore, always check this rule and suppress the
message only in cases where you deliberately want to access a value with a different
type.
Implicit data type conversions are reported with a different message.

Exception BOOL ↔ BIT
Importance High
PLCopen rule CP25

Samples:
PROGRAM MAIN
VAR
 nInt : INT;
 nByte : BYTE;

 pInt : POINTER TO INT;
 pByte : POINTER TO BYTE;
END_VAR

pInt := ADR(nInt);
pByte := ADR(nByte);

pInt := ADR(nByte); // => SA0019
pByte := ADR(nInt); // => SA0019

pInt := pByte; // => SA0019
pByte := pInt; // => SA0019

SA0130: Implicit expanding conversions

Function Determines code positions where conversions from smaller to larger data types are
implicitly carried out during arithmetic operations.

Reason The compiler allows any assignment of different types if the range of the source type is
fully within the range of the target type. However, the compiler will build a conversion into
the code as late as possible. For an assignment of the following type:
nLINT := nDINT * nDINT;

the compiler performs the implicit conversion only after the multiplication:
nLINT := TO_LINT(nDINT * nDINT);

An overflow is therefore truncated. If you want to prevent this, you can have the
conversion performed earlier for the elements:
nLINT := TO_LINT(nDINT) * TO_LINT(nDINT);

Therefore, it may be useful to report points where the compiler implements implicit
conversions in order to check whether these are exactly what is intended. In addition,
explicit conversions can serve to improve portability to other systems if they have more
restrictive type checks.

Exception BOOL ↔ BIT
Importance Low

Samples:
PROGRAM MAIN
VAR
 nDINT : DINT;
 nLINT : LINT;
 nUSINT : USINT;
 nUINT : UINT;

Configuration

TE1200 41Version: 2.9.0

 nUDINT : UDINT;
 nULINT : ULINT;
 nLWORD : LWORD;
 fLREAL : LREAL;
 nBYTE : BYTE;
END_VAR

nDINT := UINT_TO_DINT(nUINT) * UINT_TO_DINT(nUINT); // no error
nDINT := nUINT * nUINT; // => SA0130

nLINT := nDINT * nDINT; // => SA0130
nULINT := nUSINT * nUSINT; // => SA0130
nLWORD := nUDINT * nUDINT; // => SA0130
fLREAL := nBYTE * nBYTE; // => SA0130

SA0133: Explicit narrowing conversions

Function Determines explicitly performed conversions from a larger to a smaller data type.
Reason A large number of type conversions can mean that incorrect data types have been

selected for variables. There are therefore programming guidelines that require an
explicit justification for data type conversions.

Importance Low

Samples:
PROGRAM MAIN
VAR
 nSINT : SINT;
 nDINT : DINT;
 nLINT : LINT;
 nBYTE : BYTE;
 nUINT : UINT;
 nDWORD : DWORD;
 nLWORD : LWORD;
 fREAL : REAL;
 fLREAL : LREAL;
END_VAR

nSINT := LINT_TO_SINT(nLINT); // => SA0133
nBYTE := DINT_TO_BYTE(nDINT); // => SA0133
nSINT := DWORD_TO_SINT(nDWORD); // => SA0133
nUINT := LREAL_TO_UINT(fLREAL); // => SA0133
fREAL := LWORD_TO_REAL(nLWORD); // => SA0133

SA0134: Explicit signed/unsigned conversions

Function Determines explicitly performed conversions from signed to unsigned data types or vice
versa.

Reason Excessive use of type conversions may mean that incorrect data types have been
selected for variables. There are therefore programming guidelines that require an
explicit justification for data type conversions.

Importance Low

Samples:
PROGRAM MAIN
VAR
 nBYTE : BYTE;
 nUDINT : UDINT;
 nULINT : ULINT;
 nWORD : WORD;
 nLWORD : LWORD;
 nSINT : SINT;
 nINT : INT;
 nDINT : DINT;
 nLINT : LINT;
END_VAR

Configuration

TE120042 Version: 2.9.0

nLINT := ULINT_TO_LINT(nULINT); // => SA0134
nUDINT := DINT_TO_UDINT(nDINT); // => SA0134
nSINT := BYTE_TO_SINT(nBYTE); // => SA0134
nWORD := INT_TO_WORD(nINT); // => SA0134
nLWORD := SINT_TO_LWORD(nSINT); // => SA0134

SA0005: Invalid addresses and data types

Function Determines invalid address and data type specifications.
The following size prefixes are valid for addresses. Deviations from this lead to an invalid
address specification.
• X for BOOL
• B for 1-byte data types
• W for 2-byte data types
• D for 4-byte data types

Reason Variables that lie on direct addresses should, if possible, be associated with an address
that corresponds to their data type width. It can be confusing for the reader of the code if,
for example, a DWORD is placed on a BYTE address.

Importance Low

If the recommended placeholders %I* or %Q* are used, TwinCAT automatically performs flexible
and optimized addressing.

Samples:
PROGRAM MAIN
VAR
 nOK AT%QW0 : INT;
 bOK AT%QX5.0 : BOOL;

 nNOK AT%QD10 : INT; // => SA0005
 bNOK AT%QB15 : BOOL; // => SA0005
END_VAR

SA0047: Access to direct addresses

Function Determines direct address access operations in the implementation code.
Reason Symbolic programming is always preferred: A variable has a name that can also have a

meaning. An address does not provide an indication of what it is used for.
Importance High
PLCopen rule N1/CP1

Samples:
PROGRAM MAIN
VAR
 bBOOL : BOOL;
 nBYTE : BYTE;
 nWORD : WORD;
 nDWORD : DWORD;
END_VAR

bBOOL := %IX0.0; // => SA0047
%QX0.0 := bBOOL; // => SA0047
%QW2 := nWORD; // => SA0047
%QD4 := nDWORD; // => SA0047
%MX0.1 := bBOOL; // => SA0047
%MB1 := nBYTE; // => SA0047
%MD4 := nDWORD; // => SA0047

Configuration

TE1200 43Version: 2.9.0

SA0048: AT declarations on direct addresses

Function Determines AT declarations on direct addresses.
Reason The use of direct addresses in the code is an error source and leads to poorer readability

and maintainability of the code.
We therefore recommend using the placeholders %I* or %Q*, for which TwinCAT
automatically carries out flexible and optimized addressing.

Importance High
PLCopen rule N1/CP1

Samples:
PROGRAMM MAIN
VAR
 b1 AT%IX0.0 : BOOL; // => SA0048
 b2 AT%I* : BOOL; // no error
END_VAR

SA0051: Comparison operations on BOOL variables

Function Determines comparison operations on variables of type BOOL.
Reason TwinCAT allows such comparisons, but they are rather unusual and can be confusing.

The IEC-61131-3 standard does not provide for these comparisons, so you should avoid
them.

Importance Medium

Sample:
PROGRAM MAIN
VAR
 b1 : BOOL;
 b2 : BOOL;
 bResult : BOOL;
END_VAR

bResult := (b1 > b2); // => SA0051
bResult := NOT b1 AND b2;
bResult := b1 XOR b2;

SA0052: Unusual shift operation

Function Determines shift operation (bit shift) on signed variables. However, the IEC 61131-3
standard only permits shift operations to bit fields. See also strict rule SA0147 [} 66].

Reason TwinCAT allows shift operations on signed data types. However, such operations are
unusual and can be confusing. The IEC-61131-3 standard does not provide for such
operations, so you should avoid them.

Exception Shift operation on bit array data types (byte, DWORD, LWORD, WORD) do not result in
a SA0052 error.

Importance Medium

Samples:
PROGRAM MAIN
VAR
 nINT : INT;
 nDINT : DINT;
 nULINT : ULINT;
 nSINT : SINT;
 nUSINT : USINT;
 nLINT : LINT;

 nDWORD : DWORD;
 nBYTE : BYTE;
END_VAR

Configuration

TE120044 Version: 2.9.0

nINT := SHL(nINT, BYTE#2); // => SA0052
nDINT := SHR(nDINT, BYTE#4); // => SA0052
nULINT := ROL(nULINT, BYTE#1); // no error because this is an unsigned data type
nSINT := ROL(nSINT, BYTE#2); // => SA0052
nUSINT := ROR(nUSINT, BYTE#3); // no error because this is an unsigned data type
nLINT := ROR(nLINT, BYTE#2); // => SA0052

nDWORD := SHL(nDWORD, BYTE#3); // no error because DWORD is a bit field data type
nBYTE := SHR(nBYTE, BYTE#1); // no error because BYTE is a bit field data type

SA0053: Too big bitwise shift

Function Determines whether the data type width was exceeded in bitwise shift of operands.
Reason If a shift operation exceeds the data type width, a constant 0 is generated. If a rotation

shift exceeds the data type width, it is difficult to read and the rotation value should
therefore be shortened.

Importance High

Samples:
PROGRAM MAIN
VAR
 nBYTE : BYTE;
 nWORD : WORD;
 nDWORD : DWORD;
 nLWORD : LWORD;
END_VAR

nBYTE := SHR(nBYTE, BYTE#8); // => SA0053
nWORD := SHL(nWORD, BYTE#45); // => SA0053
nDWORD := ROR(nDWORD, BYTE#78); // => SA0053
nLWORD := ROL(nLWORD, BYTE#111); // => SA0053

nBYTE := SHR(nBYTE, BYTE#7); // no error
nWORD := SHL(nWORD, BYTE#15); // no error

SA0054: Comparisons of REAL/LREAL for equality/inequality

Function Determines where the comparison operators = (equality) and <> (inequality) compare
operands of type REAL or LREAL.

Reason REAL/LREAL values are implemented as floating point numbers in accordance with the
IEEE 754 standard. This standard implies that certain seemingly simple decimal
numbers cannot be represented exactly. As a result, the same decimal number may
have different LREAL representations.
Sample:
fLREAL_11 := 1.1;
fLREAL_33 := 3.3;
fLREAL_a := fLREAL_11 + fLREAL_11;
fLREAL_b := fLREAL_33 – fLREAL_11;
bTest := fLREAL_a = fLREAL_b;

bTest will return FALSE in this case, even if the variables fLREAL_a and fLREAL_b both
return the monitoring value "2.2". This is not a compiler error, but a property of the
floating point units of all common processors. You can avoid this by specifying a
minimum value by which the values may differ:
bTest := ABS(fLREAL_a – fLREAL_b) < 0.1;

Exception A comparison with 0.0 is not reported by this analysis. For 0 there is an exact
representation in the IEEE 754 standard and therefore the comparison normally works as
expected. For better performance, it therefore makes sense to allow a direct comparison
here.

Importance High
PLCopen rule CP54

Configuration

TE1200 45Version: 2.9.0

Samples:
PROGRAM MAIN
VAR
 fREAL1 : REAL;
 fREAL2 : REAL;
 fLREAL1 : LREAL;
 fLREAL2 : LREAL;
 bResult : BOOL;
END_VAR

bResult := (fREAL1 = fREAL1); // => SA0054
bResult := (fREAL1 = fREAL2); // => SA0054
bResult := (fREAL1 <> fREAL2); // => SA0054
bResult := (fLREAL1 = fLREAL1); // => SA0054
bResult := (fLREAL1 = fLREAL2); // => SA0054
bResult := (fLREAL2 <> fLREAL2); // => SA0054

bResult := (fREAL1 > fREAL2); // no error
bResult := (fLREAL1 < fLREAL2); // no error

SA0055: Unnecessary comparison operations of unsigned operands

Function Determines unnecessary comparisons with unsigned operands. An unsigned data type is
never less than zero.

Reason A comparison revealed by this check provides a constant result and indicates an error in
the code.

Importance High

Samples:
PROGRAM MAIN
VAR
 nBYTE : BYTE;
 nWORD : WORD;
 nDWORD : DWORD;
 nLWORD : LWORD;
 nUSINT : USINT;
 nUINT : UINT;
 nUDINT : UDINT;
 nULINT : ULINT;

 nSINT : SINT;
 nINT : INT;
 nDINT : DINT;
 nLINT : LINT;

 bResult : BOOL;
END_VAR

bResult := (nBYTE >= BYTE#0); // => SA0055
bResult := (nWORD < WORD#0); // => SA0055
bResult := (nDWORD >= DWORD#0); // => SA0055
bResult := (nLWORD < LWORD#0); // => SA0055
bResult := (nUSINT >= USINT#0); // => SA0055
bResult := (nUINT < UINT#0); // => SA0055
bResult := (nUDINT >= UDINT#0); // => SA0055
bResult := (nULINT < ULINT#0); // => SA0055

bResult := (nSINT < SINT#0); // no error
bResult := (nINT < INT#0); // no error
bResult := (nDINT < DINT#0); // no error
bResult := (nLINT < LINT#0); // no error

SA0056: Constant out of valid range

Function Determines literals (constants) outside the valid operator range.
Reason The message is output in cases where a variable is compared with a constant that lies

outside the value range of this variable. The comparison then returns a constant TRUE
or FALSE. This indicates a programming error.

Importance High

Configuration

TE120046 Version: 2.9.0

Samples:
PROGRAM MAIN
VAR
 nBYTE : BYTE;
 nWORD : WORD;
 nDWORD : DWORD;
 nUSINT : USINT;
 nUINT : UINT;
 nUDINT : UDINT;

 bResult : BOOL;
END_VAR

bResult := nBYTE >= 355; // => SA0056
bResult := nWORD > UDINT#70000; // => SA0056
bResult := nDWORD >= ULINT#4294967300; // => SA0056
bResult := nUSINT > UINT#355; // => SA0056
bResult := nUINT >= UDINT#70000; // => SA0056
bResult := nUDINT > ULINT#4294967300; // => SA0056

SA0057: Possible loss of decimal points

Function Determines statements with possible loss of decimal points.
Reason A piece of code of the following type:

nDINT := 1;
fREAL := TO_REAL(nDINT / DINT#2);

can lead to misinterpretation. This line of code can lead to the assumption that the
division would be performed as a REAL operation and the result in this case would be
REAL#0.5. However, this is not the case, i.e. the operation is performed as an integer
operation, the result is cast to REAL, and fREAL is assigned the value REAL#0. To avoid
this, you should use a cast to ensure that the operation is performed as a REAL
operation:
fREAL := TO_REAL(nDINT) / REAL#2;

Importance Medium

Samples:
PROGRAM MAIN
VAR
 fREAL : REAL;
 nDINT : DINT;
 nLINT : LINT;
END_VAR

nDINT := nDINT + DINT#11;
fREAL := DINT_TO_REAL(nDINT / DINT#3); // => SA0057
fREAL := DINT_TO_REAL(nDINT) / 3.0; // no error
fREAL := DINT_TO_REAL(nDINT) / REAL#3.0; // no error

nLINT := nLINT + LINT#13;
fREAL := LINT_TO_REAL(nLINT / LINT#7); // => SA0057
fREAL := LINT_TO_REAL(nLINT) / 7.0; // no error
fREAL := LINT_TO_REAL(nLINT) / REAL#7.0; // no error

SA0058: Operations of enumeration variables

Function Determines operations on variables of type enumeration. Assignments are permitted.
Reason Enumerations should not be used as normal integer values. Alternatively, an alias data

type can be defined or a subrange type can be used.
Exception If an enumeration is marked with the attribute {attribute 'strict'}, the compiler reports such

an operation.
If an enumeration is declared as a flag via the pragma attribute {attribute 'flags'}, no
SA0058 error is issued for operations with AND, OR, NOT, XOR.

Importance Medium

Configuration

TE1200 47Version: 2.9.0

Sample 1:

Enumeration E_Color:
TYPE E_Color :
(
 eRed := 1,
 eBlue := 2,
 eGreen := 3
);
END_TYPE

MAIN program:
PROGRAM MAIN
VAR
 nVar : INT;
 eColor : E_Color;
END_VAR

eColor := E_Color.eGreen; // no error
eColor := E_Color.eGreen + 1; // => SA0058
nVar := E_Color.eBlue / 2; // => SA0058
nVar := E_Color.eGreen + E_Color.eRed; // => SA0058

Sample 2:

Enumeration E_State with attribute 'flags':
{attribute 'flags'}
TYPE E_State :
(
 eUnknown := 16#00000001,
 eStopped := 16#00000002,
 eRunning := 16#00000004
) DWORD;
END_TYPE

MAIN program:
PROGRAM MAIN
VAR
 nFlags : DWORD;
 nState : DWORD;
END_VAR

IF (nFlags AND E_State.eUnknown) <> DWORD#0 THEN // no error
 nState := nState AND E_State.eUnknown; // no error

ELSIF (nFlags OR E_State.eStopped) <> DWORD#0 THEN // no error
 nState := nState OR E_State.eRunning; // no error
END_IF

SA0059: Comparison operations always returning TRUE or FALSE

Function Determines comparisons with literals whose result is always TRUE or FALSE and which
can already be evaluated during compilation.

Reason An operation that consistently returns TRUE or FALSE is an indication of a programming
error.

Importance High

Samples:
PROGRAM MAIN
VAR
 nBYTE : BYTE;
 nWORD : WORD;
 nDWORD : DWORD;
 nLWORD : LWORD;
 nUSINT : USINT;
 nUINT : UINT;
 nUDINT : UDINT;
 nULINT : ULINT;
 nSINT : SINT;
 nINT : INT;
 nDINT : DINT;

Configuration

TE120048 Version: 2.9.0

 nLINT : LINT;
 bResult : BOOL;
END_VAR

bResult := nBYTE <= 255; // => SA0059
bResult := nBYTE <= BYTE#255; // => SA0059
bResult := nWORD <= WORD#65535; // => SA0059
bResult := nDWORD <= DWORD#4294967295; // => SA0059
bResult := nLWORD <= LWORD#18446744073709551615; // => SA0059
bResult := nUSINT <= USINT#255; // => SA0059
bResult := nUINT <= UINT#65535; // => SA0059
bResult := nUDINT <= UDINT#4294967295; // => SA0059
bResult := nULINT <= ULINT#18446744073709551615; // => SA0059
bResult := nSINT >= -128; // => SA0059
bResult := nSINT >= SINT#-128; // => SA0059
bResult := nINT >= INT#-32768; // => SA0059
bResult := nDINT >= DINT#-2147483648; // => SA0059
bResult := nLINT >= LINT#-9223372036854775808; // => SA0059

SA0060: Zero used as invalid operand

Function Determines operations in which an operand with value 0 results in an invalid or
meaningless operation.

Reason Such an expression may indicate a programming error. In any case, it causes
unnecessary runtime.

Importance Medium

Samples:
PROGRAM MAIN
VAR
 nBYTE : BYTE;
 nWORD : WORD;
 nDWORD : DWORD;
 nLWORD : LWORD;
END_VAR

nBYTE := nBYTE + 0; // => SA0060
nWORD := nWORD - WORD#0; // => SA0060
nDWORD := nDWORD * DWORD#0; // => SA0060
nLWORD := nLWORD / 0; // Compile error: Division by zero

SA0061: Unusual operation on pointer

Function Determines operations on variables of type POINTER TO, which are not = (equality), <>
(inequality), + (addition) or ADR.

Reason Pointer arithmetic is generally permitted in TwinCAT and can be used in a meaningful
way. The addition of a pointer with an integer value is therefore classified as a common
operation on pointers. This makes it possible to process an array of variable length using
a pointer. All other (unusual) operations with pointers are reported with SA0061.

Importance High
PLCopen rule E2/E3

Samples:
PROGRAM MAIN
VAR
 pINT : POINTER TO INT;
 nVar : INT;
END_VAR

pINT := ADR(nVar); // no error
pINT := pINT * DWORD#5; // => SA0061
pINT := pINT / DWORD#2; // => SA0061
pINT := pINT MOD DWORD#3; // => SA0061
pINT := pINT + DWORD#1; // no error
pINT := pINT - DWORD#1; // => SA0061

Configuration

TE1200 49Version: 2.9.0

SA0062: Expression is constant

Function Determines constant expressions that always return TRUE or FALSE, regardless of the
values of any variables used.

Reason Such an expression is obviously unnecessary and may indicate an error. In any case, the
expression unnecessarily affects the readability and possibly also the runtime.

Importance Medium

Samples:
PROGRAM MAIN
VAR
 bVar1 : BOOL;
 bVar2 : BOOL;
 nVar : INT;
END_VAR

IF MAX(nVar,1) >= 1 THEN // => SA0062
 ;
END_IF

bVar1 := bVar1 AND NOT TRUE; // => SA0062
bVar2 := bVar1 OR TRUE; // => SA0062
bVar2 := bVar1 OR NOT FALSE; // => SA0062
bVar2 := bVar1 AND FALSE; // => SA0062

IF (bVar1 = FALSE) THEN // => SA0062
 ;
END_IF

IF NOT bVar1 THEN // => no error
 ;
END_IF

nVar := 0;
IF nVar <> 0 THEN // => SA0062
 ;
END_IF

SA0063: Possibly not 16-bit-compatible operations

Function Determines 16-bit operations with intermediate results. Background: On 16-bit systems,
32-bit temporary results can be truncated.

Reason This message is intended to protect against problems in the very rare case when code is
written that is intended to run on both a 16-bit processor and a 32-bit processor.

Importance Low

Sample:

(nVar+10) can exceed 16 bits.
PROGRAM MAIN
VAR
 nVar : INT;
END_VAR

nVar := (nVar + 10) / 2; // => SA0063

SA0064: Addition of pointer

Function Determines all pointer additions.
Reason In TwinCAT, pointer arithmetic is generally permitted and can be used sensibly.

However, this also represents a source of error. Therefore, there are programming rules
that prohibit pointer arithmetic. Such a requirement can be verified with this test.

Importance Medium

Samples:

Configuration

TE120050 Version: 2.9.0

PROGRAM MAIN
VAR
 aTest : ARRAY[0..10] OF INT;
 pINT : POINTER TO INT;
 nIdx : INT;
END_VAR

pINT := ADR(aTest[0]);
pINT^ := 0;
pINT := ADR(aTest) + SIZEOF(INT); // => SA0064
pINT^ := 1;
pINT := ADR(aTest) + 6; // => SA0064
pINT := ADR(aTest[10]);

FOR nIdx := 0 TO 10 DO
 pINT^ := nIdx;
 pINT := pINT + 2; // => SA0064
END_FOR

SA0065: Incorrect pointer addition to base size

Function Determines pointer additions in which the value to be added does not match the basic
data size of the pointer. Only literals of the base data size and multiples thereof can be
added without error.

Reason In TwinCAT (in contrast to C and C++), when a pointer with an integer value is added,
only this integer value is added as the number of bytes, not the integer value multiplied
by the base size.
pINT := ADR(array_of_int[0]);
pINT := pINT + 2 ; // in TwinCAT zeigt pINT anschließend auf
array_of_int[1]

This code would work differently in C:
short* pShort
pShort = &(array_of_short[0])
pShort = pShort + 2; // in C zeigt pShort anschließend auf
array_of_short[2]

In TwinCAT, a multiple of the basic size of the pointer should therefore always be added
to a pointer. Otherwise, the pointer may point to a not aligned memory, which (depending
on the processor) can lead to an alignment exception on access.

Importance High

Samples:
PROGRAM MAIN
VAR
 pUDINT : POINTER TO UDINT;
 nVar : UDINT;
 pREAL : POINTER TO REAL;
 fVar : REAL;
END_VAR

pUDINT := ADR(nVar) + 4;
pUDINT := ADR(nVar) + (2 + 2);
pUDINT := ADR(nVar) + SIZEOF(UDINT);
pUDINT := ADR(nVar) + 3; // => SA0065
pUDINT := ADR(nVar) + 2*SIZEOF(UDINT); // => SA0065
pUDINT := ADR(nVar) + (3 + 2); // => SA0065

pREAL := ADR(fVar);
pREAL := pREAL + 4;
pREAL := pREAL + (2 + 2);
pREAL := pREAL + SIZEOF(REAL);
pREAL := pREAL + 1; // => SA0065
pREAL := pREAL + 2; // => SA0065
pREAL := pREAL + 3; // => SA0065
pREAL := pREAL + (SIZEOF(REAL) - 1); // => SA0065
pREAL := pREAL + (1 + 4); // => SA0065

Configuration

TE1200 51Version: 2.9.0

SA0066: Use of temporary results

Function Determines applications of intermediate results in statements with a data type that is
smaller than the register size. In this case, the implicit cast may lead to undesirable
results.

Reason For performance reasons, TwinCAT carries out operations across the register width of
the processor. Intermediate results are not truncated. This can lead to misinterpretations,
as in the following case:
usintTest := 0;
bError := usintTest - 1 <> 255;

In TwinCAT, bError is TRUE in this case, because the operation usintTest - 1 is typically
executed as a 32-bit operation and the result is not cast to the size of bytes. In the
register the value 16#ffffffff is then displayed and this is not equal to 255. To avoid this,
you have to explicitly cast the intermediate result:
bError := TO_USINT(usintTest - 1) <> 255;

Importance Low

If this message is enabled, a large number of rather unproblematic situations in the code will be
reported. Although a problem can only arise if the operation produces an overflow or underflow in
the data type, the Static Analysis cannot differentiate between the individual situations.

If you include an explicit typecast in all reported situations, the code will be much slower and less
readable!

Sample:
PROGRAM MAIN
VAR
 nBYTE : BYTE;
 nDINT : DINT;
 nLINT : LINT;
 bResult : BOOL;
END_VAR

//
==
=
// type size smaller than register size
// use of temporary result + implicit casting => SA0066
bResult := ((nBYTE - 1) <> 255); // => SA0066

// correcting this code by explicit cast so that the type size is equal to or bigger than register
size
bResult := ((BYTE_TO_LINT(nBYTE) - 1) <> 255); // no error
bResult := ((BYTE_TO_LINT(nBYTE) - LINT#1) <> LINT#255); // no error

//
==
=
// result depends on solution platform
bResult := ((nDINT - 1) <> 255); // no error on x86 solution platform
 // => SA0066 on x64 solution platform

// correcting this code by explicit cast so that the type size is equal to or bigger than register
size
bResult := ((DINT_TO_LINT(nDINT) - LINT#1) <> LINT#255); // no error

//
==
=
// type size equal to or bigger than register size
// use of temporary result and no implicit casting => no error
bResult := ((nLINT - 1) <> 255); // no error

//
==

Configuration

TE120052 Version: 2.9.0

SA0072: Invalid uses of counter variable

Function Determines write access operations to a counter variable within a FOR loop.
Reason Manipulating the counter variable in a FOR loop can easily lead to an infinite loop. To

prevent the execution of the loop for certain values of the counter variables, use
CONTINUE or simply IF.

Importance High
PLCopen rule L12

Sample:
PROGRAM MAIN
VAR_TEMP
 nIndex : INT;
END_VAR
VAR
 aSample : ARRAY[1..10] OF INT;
 nLocal : INT;
END_VAR

FOR nIndex := 1 TO 10 BY 1 DO
 aSample[nIndex] := nIndex; // no error
 nLocal := nIndex; // no error

 nIndex := nIndex - 1; // => SA0072
 nIndex := nIndex + 1; // => SA0072
 nIndex := nLocal; // => SA0072
END_FOR

SA0073: Use of non-temporary counter variable

Function Determines the use of non-temporary variables in FOR loops.
Reason This is a performance warning. A counter variable is always initialized each time a

programming block is called. You can create such a variable as a temporary variable
(VAR_TEMP). This may result in faster access, and the variable does not occupy
permanent storage space.

Importance Medium
PLCopen rule CP21/L13

Sample:
PROGRAM MAIN
VAR
 nIndex : INT;
 nSum : INT;
END_VAR

FOR nIndex := 1 TO 10 BY 1 DO // => SA0073
 nSum := nSum + nIndex;
END_FOR

SA0081: Upper border is not a constant

Function Determines FOR statements in which the upper limit is not defined with a constant value.
Reason If the upper limit of a loop is a variable value, it is no longer possible to see how often a

loop is executed. This can lead to serious problems at runtime, in the worst case to an
infinite loop.

Importance High

Samples:
PROGRAM MAIN
VAR CONSTANT
 cMax : INT := 10;
END_VAR
VAR
 nIndex : INT;

Configuration

TE1200 53Version: 2.9.0

 nVar : INT;
 nMax1 : INT := 10;
 nMax2 : INT := 10;
END_VAR

FOR nIndex := 0 TO 10 DO // no error
 nVar := nIndex;
END_FOR

FOR nIndex := 0 TO cMax DO // no error
 nVar := nIndex;
END_FOR

FOR nIndex := 0 TO nMax1 DO // => SA0081
 nVar := nIndex;
END_FOR

FOR nIndex := 0 TO nMax2 DO // => SA0081
 nVar := nIndex;

 IF nVar = 10 THEN
 nMax2 := 50;
 END_IF
END_FOR

SA0075: Missing ELSE

Function Determines CASE statements without ELSE branch.
Reason Defensive programming requires the presence of an ELSE in every CASE statement. If

no action is required in the ELSE case, you should indicate this with a comment. The
reader of the code is then aware that the case was not simply overlooked.

Exception A missing ELSE branch is not reported as missing if an enumeration declared with the
'strict' attribute is used in the CASE statement, and if all enumeration constants are listed
in that CASE statement.

Importance Low
PLCopen rule L17

Sample:
{attribute 'qualified_only'}
{attribute 'strict'}
{attribute 'to_string'}
TYPE E_Sample :
(
 eNull,
 eOne,
 eTwo
);
END_TYPE

PROGRAM MAIN
VAR
 eSample : E_Sample;
 nVar : INT;
END_VAR

CASE eSample OF
 E_Sample.eNull: nVar := 0;
 E_Sample.eOne: nVar := 1;
 E_Sample.eTwo: nVar := 2;
END_CASE

CASE eSample OF // => SA0075
 E_Sample.eNull: nVar := 0;
 E_Sample.eTwo: nVar := 2;
END_CASE

Configuration

TE120054 Version: 2.9.0

SA0076: Missing enumeration constant

Function Determines whether each enumeration constant is used as a condition in CASE
statements and queried in a CASE branch.

Reason Defensive programming requires the processing of all possible values of an enumeration.
If no action is required for a particular enumeration value, you should indicate this
explicitly with a comment. This makes it clear that the value was not simply overlooked.

Importance Low

Sample:

In the following sample the enumeration value eYellow is not treated as a CASE branch.

Enumeration E_Color:
TYPE E_Color :
(
 eRed,
 eGreen,
 eBlue,
 eYellow
);
END_TYPE

MAIN program:
PROGRAM MAIN
VAR
 eColor : E_Color;
 bVar : BOOL;
END_VAR

eColor := E_Color.eYellow;

CASE eColor OF // => SA0076
 E_Color.eRed:
 bVar := FALSE;

 E_Color.eGreen,
 E_Color.eBlue:
 bVar := TRUE;

ELSE
 bVar := NOT bVar;
END_CASE

SA0077: Type mismatches with CASE expression

Function Determines code positions where the data type of a condition does not match that of the
CASE branch.

Reason If the data types between the CASE variable and the CASE case do not match, this
could indicate an error.

Importance Low

Sample:

Enumeration E_Sample:
TYPE E_Sample :
(
 eNull,
 eOne,
 eTwo
) DWORD;
END_TYPE

Program MAIN:

Configuration

TE1200 55Version: 2.9.0

PROGRAM MAIN
VAR
 nDINT : DINT;
 bVar : BOOL;
END_VAR

nDINT := nDINT + DINT#1;

CASE nDINT OF
 DINT#1:
 bVar := FALSE;

 E_Sample.eTwo, // => SA0077
 DINT#3:
 bVar := TRUE;

ELSE
 bVar := NOT bVar;
END_CASE

SA0078: Missing CASE branches

Function Determines CASE statements without cases, i.e. with only a single ELSE statement.
Reason A CASE statement without cases wastes execution time and is difficult to read.
Importance Medium

Sample:
PROGRAM MAIN
VAR
 nVar : DINT;
 bVar : BOOL;
END_VAR

nVar := nVar + INT#1;

CASE nVar OF // => SA0078
ELSE
 bVar := NOT bVar;
END_CASE

SA0090: POUs should have a only one exit point

Function Detects code positions where the RETURN statement is not the last statement in a
function, method, property or program. It also recognizes places where there is a
RETURN within an IF branch.

Reason A RETURN in the code leads to poorer maintainability, testability and readability of the
code. A RETURN in the code is easily overlooked. You must insert code, which should
be executed in any case when a function exits, before each RETURN. This is often
overlooked.

Importance Medium
PLCopen rule CP14

Sample:
FUNCTION F_TestFunction : DINT
VAR_INPUT
 bTest : BOOL;
END_VAR

IF bTest THEN
 RETURN; // => SA0090
END_IF

F_TestFunction := 99;

Configuration

TE120056 Version: 2.9.0

SA0095: Assignments in conditions

Function Determines assignments in conditions of IF, CASE, WHILE or REPEAT constructs.
Reason An assignment (:=) and a comparison (=) can easily be confused. An assignment in a

condition can therefore easily be unintentional and is therefore reported. This can also
confuse readers of the code.

Importance High

Samples:
PROGRAM MAIN
VAR
 bTest : BOOL;
 bResult : BOOL;
 bValue : BOOL;

 b1 : BOOL;
 n1 : INT;
 n2 : INT;

 nCond1 : INT := INT#1;
 nCond2 : INT := INT#2;
 bCond : BOOL := FALSE;
 nVar : INT;
 eSample : E_Sample;
END_VAR

// IF constructs
IF (bTest := TRUE) THEN // => SA0095
 DoSomething();
END_IF

IF (bResult := F_Sample(bInput := bValue)) THEN // => SA0095
 DoSomething();
END_IF

b1 := ((n1 := n2) = 99); // => SA0095

IF INT_TO_BOOL(nCond1 := nCond2) THEN // => SA0095
 DoSomething();
ELSIF (nCond1 := 11) = 11 THEN // => SA0095
 DoSomething();
END_IF

IF bCond := TRUE THEN // => SA0095
 DoSomething();
END_IF

IF (bCond := FALSE) OR (nCond1 := nCond2) = 12 THEN // => SA0095
 DoSomething();
END_IF

IF (nVar := nVar + 1) = 120 THEN // => SA0095
 DoSomething();
END_IF

// CASE construct
CASE (eSample := E_Sample.eMember0) OF // => SA0095
 E_Sample.eMember0:
 DoSomething();

 E_Sample.eMember1:
 DoSomething();
END_CASE

// WHILE construct
WHILE (bCond = TRUE) OR (nCond1 := nCond2) = 12 DO // => SA0095
 DoSomething();
END_WHILE

// REPEAT construct
REPEAT
 DoSomething();
UNTIL
 (bCond = TRUE) OR ((nCond1 := nCond2) = 12) // => SA0095
END_REPEAT

Configuration

TE1200 57Version: 2.9.0

SA0100: Variables greater than <n> bytes

Function Determines variables that use more than n bytes; n is defined by the current
configuration.
You can configure the parameter that is taken into account in the check by double-
clicking on the row for rule 100 in the rule configuration (PLC Project Properties >
category "Static Analysis" > "Rules" tab > Rule 100). You can make the following settings
in the dialog that appears:
• Upper limit in bytes (default value: 1024)

Reason Some programming guidelines specify a maximum size for a single variable. This
function facilitates a corresponding check.

Importance Low

Sample:

In the following sample the variable aSample is greater than 1024 bytes.
PROGRAM MAIN
VAR
 aSample : ARRAY [0..1024] OF BYTE; // => SA0100
END_VAR

SA0101: Names with invalid length

Function Determines names with invalid length. The object names must have a defined length.
You can configure the parameters that are taken into account in the check by double-
clicking on the row for rule 101 in the rule configuration (PLC Project Properties >
category "Static Analysis" > "Rules" tab > Rule 101). You can make the following settings
in the dialog that appears:
• Minimum number of characters (default value: 5)
• Maximum number of characters (default value: 30)
• Exceptions

Reason Some programming guidelines specify a minimum length for variable names.
Compliance can be verified with this analysis.

Importance Low
PLCopen rule N6

Samples:

Rule 101 is configured with the following parameters:

• Minimum number of characters: 5
• Maximum number of characters: 30
• Exceptions: MAIN, i

Program PRG1:
PROGRAM PRG1 // => SA0101
VAR
END_VAR

Program MAIN:
PROGRAM MAIN // no error due to configured exceptions
VAR
 i : INT; // no error due to configured exceptions
 b : BOOL; // => SA0101
 nVar1 : INT;
END_VAR

PRG1();

Configuration

TE120058 Version: 2.9.0

SA0102: Access to program/fb variables from the outside

Function Determines read accesses from outside to local variables of programs or function blocks.
Reason TwinCAT determines external write access operations to local variables of programs or

function blocks as compilation errors. Since read access operations to local variables are
not intercepted by the compiler and this violates the basic principle of data encapsulation
(concealing of data) and contravenes the IEC 61131-3 standard, this rule can be used to
determine read access to local variables.

Importance Medium

Samples:

Function block FB_Base:
FUNCTION_BLOCK FB_Base
VAR
 nLocal : INT;
END_VAR

Method FB_Base.SampleMethod:
METHOD SampleMethod : INT
VAR_INPUT
END_VAR

nLocal := nLocal + 1;

Function block FB_Sub:
FUNCTION_BLOCK FB_Sub EXTENDS FB_Base

Method FB_Sub.SampleMethod:
METHOD SampleMethod : INT
VAR_INPUT
END_VAR

nLocal := nLocal + 5;

Program PRG_1:
PROGRAM PRG_1
VAR
 bLocal : BOOL;
END_VAR

bLocal := NOT bLocal;

MAIN program:
PROGRAM MAIN
VAR
 bRead : BOOL;
 nReadBase : INT;
 nReadSub : INT;
 fbBase : FB_Base;
 fbSub : FB_Sub;
END_VAR

bRead := PRG_1.bLocal; // => SA0102
nReadBase := fbBase.nLocal; // => SA0102
nReadSub := fbSub.nLocal; // => SA0102

Configuration

TE1200 59Version: 2.9.0

SA0103: Concurrent access on not atomic data

Function Determines non-atomic variables (for example with data types STRING, WSTRING,
ARRAY, STRUCT, FB instances, 64-bit data types) that are used in more than one task.

Reason If no synchronization occurs during access, inconsistent values may be read when
reading in one task and writing in another task at the same time.

Exception This rule does not apply in the following cases:
• If the target system has an FPU (floating point unit), the access of several tasks to

LREAL variables is not determined and reported.
• If the target system is a 64-bit processor or "TwinCAT RT (x64)" is selected as the

solution platform, the rule does not apply for 64-bit data types.
Importance Medium

See also rule SA0006 [} 24].

Samples:

Structure ST_sample:
TYPE ST_Sample :
STRUCT
 bMember : BOOL;
 nTest : INT;
END_STRUCT
END_TYPE

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR_INPUT
 fInput : LREAL;
END_VAR

GVL:
{attribute 'qualified_only'}
VAR_GLOBAL
 fTest : LREAL; // => no error SA0103: Since the target system has a FPU, SA0103
does not apply.
 nTest : LINT; // => error reporting depends on the solution platform:
 // - SA0103 error if solution platform is set to "TwinCAT
RT(x86)"
 // - no error SA0103 if solution platform is set to "TwinCAT
(x64)"
 sTest : STRING; // => SA0103
 wsTest : WSTRING; // => SA0103
 aTest : ARRAY[0..2] OF INT; // => SA0103
 aTest2 : ARRAY[0..2] OF INT; // => SA0103
 fbTest : FB_Sample; // => SA0103
 stTest : ST_Sample; // => SA0103
END_VAR

Program MAIN1, called by task PlcTask1:
PROGRAM MAIN1
VAR
END_VAR

GVL.fTest := 5.0;
GVL.nTest := 123;
GVL.sTest := 'sample text';
GVL.wsTest := "sample text";
GVL.aTest := GVL.aTest2;
GVL.fbTest.fInput := 3;
GVL.stTest.nTest := GVL.stTest.nTest + 1;

Program MAIN2, called by task PlcTask2:
PROGRAM MAIN2
VAR
 fLocal : LREAL;
 nLocal : LINT;

Configuration

TE120060 Version: 2.9.0

 sLocal : STRING;
 wsLocal : WSTRING;
 aLocal : ARRAY[0..2] OF INT;
 aLocal2 : ARRAY[0..2] OF INT;
 fLocal2 : LREAL;
 nLocal2 : INT;
END_VAR

fLocal := GVL.fTest + 1.5;
nLocal := GVL.nTest + 10;
sLocal := GVL.sTest;
wsLocal := GVL.wsTest;
aLocal := GVL.aTest;
aLocal2 := GVL.aTest2;
fLocal2 := GVL.fbTest.fInput;
nLocal2 := GVL.stTest.nTest;

SA0105: Multiple instance calls

Function Determines and reports instances of function blocks that are called more than once. To
ensure that an error message for a repeatedly called function block instance is
generated, the attribute {attribute 'analysis:report-multiple-instance-call'} [} 125] must be
added in the declaration part of the function block.

Reason Some function blocks are designed such that they can only be called once in a cycle.
This test checks whether a call is made at several points.

Importance Low
PLCopen rule CP16/CP20

Sample:

In the following sample the Static Analysis will issue an error for fb2, since the instance is called more than
once, and the function block is declared with the required attribute.

Function block FB_Test1 without attribute:
FUNCTION_BLOCK FB_Test1

Function block FB_Test2 with attribute:
{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION_BLOCK FB_Test2

MAIN program:
PROGRAM MAIN
VAR
 fb1 : FB_Test1;
 fb2 : FB_Test2;
END_VAR

fb1();
fb1();
fb2(); // => SA0105
fb2(); // => SA0105

SA0106: Virtual method calls in FB_init

Function Determines method calls in the method FB_init of a basic function block, which are
overwritten by a function block derived from the basic FB.

Reason In such cases it may happen that the variables in overwritten methods are not initialized
in the base FB.

Importance High

Sample:
• Function block FB_Base has the methods FB_init and MyInit. FB_init calls MyInit for initialization.
• Function block FB_Sub is derived from FB_Base.

Configuration

TE1200 61Version: 2.9.0

• FB_Sub.MyInit overwrites or extends FB_Base.MyInit.
• MAIN instantiates FB_Sub. During this process it uses the instance variable nSub before it was

initialized, due to the call sequence during the initialization.

Function block FB_Base:
FUNCTION_BLOCK FB_Base
VAR
 nBase : DINT;
END_VAR

Method FB_Base.FB_init:
METHOD FB_init : BOOL
VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
END_VAR
VAR
 nLocal : DINT;
END_VAR

nLocal := MyInit(); // => SA0106

Method FB_Base.MyInit:
METHOD MyInit : DINT

nBase := 123; // access to member of FB_Base
MyInit := nBase;

Function block FB_Sub:
FUNCTION_BLOCK FB_Sub EXTENDS FB_Base
VAR
 nSub : DINT;
END_VAR

Method FB_Sub.MyInit:
METHOD MyInit : DINT

nSub := 456; // access to member of FB_Sub
SUPER^.MyInit(); // call of base implementation
MyInit := nSub;

MAIN program:
PROGRAM MAIN
VAR
 fbBase : FB_Base;
 fbSub : FB_Sub;
END_VAR

The instance MAIN.fbBase has the following variable values after the initialization:

• nBase is 123

The instance MAIN.fbSub has the following variable values after the initialization:

• nBase is 123
• nSub is 0

The variable MAIN.fbSub.nSub is 0 after the initialization, because the following call sequence is used during
the initialization of fbSub:

• Initialization of the basic function block:
◦ implicit initialization
◦ explicit initialization: FB_Base.FB_init
◦ FB_Base.FB_init calls FB_Sub.MyInit → SA0106
◦ FB_Sub.MyInit calls FB_Base.MyInit (via SUPER pointer)

• Initialization of the derived function block:
◦ implicit initialization

Configuration

TE120062 Version: 2.9.0

SA0107: Missing formal parameters

Function Determines where formal parameters are missing.
Reason Code becomes more readable if the formal parameters are specified when it is called.
Importance Low

Sample:

Function F_Sample:
FUNCTION F_Sample : BOOL
VAR_INPUT
 bIn1 : BOOL;
 bIn2 : BOOL;
END_VAR

F_Sample := bIn1 AND bIn2;

MAIN program:
PROGRAM MAIN
VAR
 bReturn : BOOL;
END_VAR

bReturn := F_Sample(TRUE, FALSE); // => SA0107
bReturn := F_Sample(TRUE, bIn2 := FALSE); // => SA0107
bReturn := F_Sample(bIn1 := TRUE, bIn2 := FALSE); // no error

SA0111: Pointer variables

Function Determines variables of type POINTER TO.
Reason The IEC 61131-3 standard does not allow pointers.
Importance Low

Sample:
PROGRAM MAIN
VAR
 pINT : POINTER TO INT; // => SA0111
END_VAR

SA0112: Reference variables

Function Determines variables of type REFERENCE TO.
Reason The IEC 61131-3 standard does not allow references.
Importance Low

Sample:
PROGRAM MAIN
VAR
 refInt : REFERENCE TO INT; // => SA0112
END_VAR

SA0113: Variables with data type WSTRING

Function Determines variables of type WSTRING.
Reason Not all systems support WSTRING. The code becomes easier to port if WSTRING is not

used.
Importance Low

Configuration

TE1200 63Version: 2.9.0

Sample:
PROGRAM MAIN
VAR
 wsVar : WSTRING; // => SA0113
END_VAR

SA0114: Variables with data type LTIME

Function Determines variables of type LTIME.
Reason Not all systems support LTIME. The code becomes more portable if LTIME is not used.
Importance Low

Sample:
PROGRAM MAIN
VAR
 tVar : LTIME; // => SA0114
END_VAR

// no error SA0114 for the following code line:
tVar := tVar + LTIME#1000D15H23M12S34MS2US44NS;

SA0115: Declarations with data type UNION

Function Determines declarations of a UNION data type and declarations of variables of the type
of a UNION.

Reason The IEC-61131-3 standard has no provision for unions. The code becomes easier to port
if there are no unions.

Importance Low

Samples:

Union U_Sample:
TYPE U_Sample : // => SA0115
UNION
 fVar : LREAL;
 nVar : LINT;
END_UNION
END_TYPE

MAIN program:
PROGRAM MAIN
VAR
 uSample : U_Sample; // => SA0115
END_VAR

SA0117: Variables with data type BIT

Function Determines declarations of variables of type BIT (possible within structure and function
block definitions).

Reason The IEC-61131-3 has no provision for data type BIT. The code becomes easier to port if
BIT is not used.

Importance Low

Samples:

Structure ST_sample:
TYPE ST_Sample :
STRUCT
 bBIT : BIT; // => SA0117

Configuration

TE120064 Version: 2.9.0

 bBOOL : BOOL;
END_STRUCT
END_TYPE

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR
 bBIT : BIT; // => SA0117
 bBOOL : BOOL;
END_VAR

SA0119: Object-oriented features

Function Determines the use of object-oriented features such as:
• Function block declarations with EXTENDS or IMPLEMENTS
• Property and interface declarations
• Use of the THIS or SUPER pointer

Reason Not all systems support object-oriented programming. The code becomes easier to port if
object orientation is not used.

Importance Low

Samples:

Interface I_Sample:
INTERFACE I_Sample // => SA0119

Function block FB_Base:
FUNCTION_BLOCK FB_Base IMPLEMENTS I_Sample // => SA0119

Function block FB_Sub:
FUNCTION_BLOCK FB_Sub EXTENDS FB_Base // => SA0119

Method FB_Sub.SampleMethod:
METHOD SampleMethod : BOOL // no error

Get function of the property FB_Sub.SampleProperty:
VAR // => SA0119
END_VAR

Set function of the property FB_Sub.SampleProperty:
VAR // => SA0119
END_VAR

SA0120: Program calls

Function Determines program calls.
Reason According to the IEC 61131-3 standard, programs can only be called in the task

configuration. The code becomes easier to port if program calls elsewhere are avoided.
Importance Low

Sample:

Program SubProgram:
PROGRAM SubProgram

Program MAIN:
PROGRAM MAIN

SubProgram(); // => SA0120

Configuration

TE1200 65Version: 2.9.0

SA0121: Missing VAR_EXTERNAL declarations

Function Determines the use of a global variable in the function block, without it being declared as
VAR_EXTERNAL (required according to the standard).

Reason According to the IEC 61131-3 standard, access to global variables is only permitted via
an explicit import through a VAR_EXTERNAL declaration.

Importance Low
PLCopen rule CP18

In TwinCAT 3 PLC it is not necessary for variables to be declared as external. The keyword exists
in order to maintain compatibility with IEC 61131-3.

Sample:

Global variables:
VAR_GLOBAL
 nGlobal : INT;
END_VAR

Program Prog1:
PROGRAM Prog1
VAR
 nVar : INT;
END_VAR

nVar := nGlobal; // => SA0121

Program Prog2:
PROGRAM Prog2
VAR
 nVar : INT;
END_VAR
VAR_EXTERNAL
 nGlobal : INT;
END_VAR

nVar := nGlobal; // no error

SA0122: Array index defined as expression

Function Determines the use of expressions in the declaration of array boundaries.
Reason Not all systems allow expressions as array boundaries.
Importance Low

Sample:
PROGRAM MAIN
VAR CONSTANT
 cSample : INT := INT#15;
END_VAR
VAR
 aSample1 : ARRAY[0..10] OF INT;
 aSample2 : ARRAY[0..10+5] OF INT; // => SA0122
 aSample3 : ARRAY[0..cSample] OF INT;
 aSample4 : ARRAY[0..cSample + 1] OF INT; // => SA0122
END_VAR

Configuration

TE120066 Version: 2.9.0

SA0123: Usages of INI, ADR or BITADR

Function Determines the use of the (TwinCAT-specific) operators INI, ADR, BITADR.
Reason TwinCAT-specific operators prevent portability of the code.
Importance Low

Sample:
PROGRAM MAIN
VAR
 nVar : INT;
 pINT : POINTER TO INT;
END_VAR

pINT := ADR(nVar); // => SA0123

SA0147: Unusual shift operation - strict

Function Determines bit shift operations that are not performed on bit field data types (BYTE,
WORD, DWORD, LWORD).

Reason The IEC 61131-3 standard only allows bit access to bit field data types. However, the
TwinCAT 3 compiler also allows bit shift operations with unsigned data types.

Importance Low

See also non-strict rule SA0052 [} 43].

Samples:
PROGRAM MAIN
VAR
 nBYTE : BYTE := 16#45;
 nWORD : WORD := 16#0045;
 nUINT : UINT;
 nDINT : DINT;
 nResBYTE : BYTE;
 nResWORD : WORD;
 nResUINT : UINT;
 nResDINT : DINT;
 nShift : BYTE := 2;
END_VAR

nResBYTE := SHL(nByte,nShift); // no error because BYTE is a bit field
nResWORD := SHL(nWORD,nShift); // no error because WORD is a bit field
nResUINT := SHL(nUINT,nShift); // => SA0147
nResDINT := SHL(nDINT,nShift); // => SA0147

SA0148: Unusual bit access - strict

Function Determines bit access operations that are not performed on bit field data types (BYTE,
WORD, DWORD, LWORD).

Reason The IEC 61131-3 standard only allows bit access to bit field data types. However, the
TwinCAT 3 compiler also allows bit access to unsigned data types.

Importance Low

See also non-strict rule SA0018 [} 29].

Samples:
PROGRAM MAIN
VAR
 nINT : INT;

Configuration

TE1200 67Version: 2.9.0

 nDINT : DINT;
 nULINT : ULINT;
 nSINT : SINT;
 nUSINT : USINT;
 nBYTE : BYTE;
END_VAR

nINT.3 := TRUE; // => SA0148
nDINT.4 := TRUE; // => SA0148
nULINT.18 := FALSE; // => SA0148
nSINT.2 := FALSE; // => SA0148
nUSINT.3 := TRUE; // => SA0148
nBYTE.5 := FALSE; // no error because BYTE is a bitfield

SA0118: Initializations not using constants

Function Determines initializations that do not assign constants.
Reason Initializations should be as consistent as possible and should not refer to other variables.

In particular, you should avoid function calls during initialization, since this can lead to
access to uninitialized data.

Importance Medium

Samples:

Function F_ReturnDWORD:
FUNCTION F_ReturnDWORD : DWORD

Program MAIN:
PROGRAM MAIN
VAR CONSTANT
 c1 : DWORD := 100;
END_VAR
VAR
 n1 : DWORD := c1;
 n2 : DWORD := F_ReturnDWORD(); // => SA0118
 n3 : DWORD := 150;
 n4 : DWORD := n3; // => SA0118
END_VAR

SA0124: Dereference access in initializations

Function Determines all code positions where dereferenced pointers are used in the declaration
part of POUs.

Reason Pointers and references should not be used for initialization because this can lead to
access violations at runtime if the pointer has not been initialized.

Importance Medium

Samples:
FUNCTION_BLOCK FB_Test
VAR_INPUT
 pStruct : POINTER TO ST_Test;
 refStruct : REFERENCE TO ST_Test;
END_VAR
VAR
 bPointer : BOOL := pStruct^.bTest; // => SA0124: Dereference access in initialization
 bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END_VAR

bPointer := pStruct^.bTest; // => SA0039: Possible null pointer dereference 'pStruct^'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct'

IF pStruct <> 0 THEN
 bPointer := pStruct^.bTest; // no error SA0039 as the pointer is checked for unequal 0
END_IF

IF __ISVALIDREF(refStruct) THEN

Configuration

TE120068 Version: 2.9.0

 bRef := refStruct.bTest; // no error SA0145 as the reference is checked via
__ISVALIDREF
END_IF

Overview of the rules on "dereferencing".

Pointers:

• Dereferencing of pointers in the declaration part => SA0124 [} 67]

• Possible null pointer dereferences in the implementation part => SA0039 [} 69]

References:

• Use of references in the declaration part => SA0125 [} 68]

• Possible use of not initialized reference in the implementation part => SA0145 [} 70]

Interfaces:

• Possible use of not initialized interface in the implementation part => SA0046 [} 70]

SA0125: References in initializations

Function Determines all reference variables used for initialization in the declaration part of POUs.
Reason Pointers and references should not be used for initialization because this can lead to

access violations at runtime if the pointer has not been initialized.
Importance Medium

Samples:
FUNCTION_BLOCK FB_Test
VAR_INPUT
 pStruct : POINTER TO ST_Test;
 refStruct : REFERENCE TO ST_Test;
END_VAR
VAR
 bPointer : BOOL := pStruct^.bTest; // => SA0124: Dereference access in initialization
 bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END_VAR

bPointer := pStruct^.bTest; // => SA0039: Possible null pointer dereference 'pStruct^'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct'

IF pStruct <> 0 THEN
 bPointer := pStruct^.bTest; // no error SA0039 as the pointer is checked for unequal 0
END_IF

IF __ISVALIDREF(refStruct) THEN
 bRef := refStruct.bTest; // no error SA0145 as the reference is checked via
__ISVALIDREF
END_IF

Overview of the rules on "dereferencing".

Pointers:

• Dereferencing of pointers in the declaration part => SA0124 [} 67]

• Possible null pointer dereferences in the implementation part => SA0039 [} 69]

References:

• Use of references in the declaration part => SA0125 [} 68]

• Possible use of not initialized reference in the implementation part => SA0145 [} 70]

Interfaces:

• Possible use of not initialized interface in the implementation part => SA0046 [} 70]

Configuration

TE1200 69Version: 2.9.0

SA0039: Possible null pointer dereferences

Function Determines code positions at which a NULL-pointer may be dereferenced.
Reason A pointer should be checked before each dereferencing to see if it is not equal to 0.

Otherwise, access violations may occur at runtime.
Importance High

Sample 1:
PROGRAM MAIN
VAR
 pInt1 : POINTER TO INT;
 pInt2 : POINTER TO INT;
 pInt3 : POINTER TO INT;
 nVar1 : INT;
 nCounter : INT;
END_VAR

nCounter := nCounter + INT#1;

pInt1 := ADR(nVar1);
pInt1^ := nCounter; // no error

pInt2^ := nCounter; // => SA0039
nVar1 := pInt3^; // => SA0039

Sample 2:
FUNCTION_BLOCK FB_Test
VAR_INPUT
 pStruct : POINTER TO ST_Test;
 refStruct : REFERENCE TO ST_Test;
END_VAR
VAR
 bPointer : BOOL := pStruct^.bTest; // => SA0124: Dereference access in initialization
 bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END_VAR

bPointer := pStruct^.bTest; // => SA0039: Possible null pointer dereference 'pStruct^'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct'

IF pStruct <> 0 THEN
 bPointer := pStruct^.bTest; // no error SA0039 as the pointer is checked for unequal 0
END_IF

IF __ISVALIDREF(refStruct) THEN
 bRef := refStruct.bTest; // no error SA0145 as the reference is checked via
__ISVALIDREF
END_IF

Overview of the rules on "dereferencing".

Pointers:

• Dereferencing of pointers in the declaration part => SA0124 [} 67]

• Possible null pointer dereferences in the implementation part => SA0039 [} 69]

References:

• Use of references in the declaration part => SA0125 [} 68]

• Possible use of not initialized reference in the implementation part => SA0145 [} 70]

Interfaces:

• Possible use of not initialized interface in the implementation part => SA0046 [} 70]

Configuration

TE120070 Version: 2.9.0

SA0046: Possible use of not initialized interfaces

Function Determines the use of interfaces that may not have been initialized before the use.
Reason An interface reference should be checked for <> 0 before it is used, otherwise an access

violation may occur at runtime.
Importance High

Samples:

Interface I_Sample:
INTERFACE I_Sample

METHOD SampleMethod : BOOL
VAR_INPUT
 nInput : INT;
END_VAR

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample IMPLEMENTS I_Sample

METHOD SampleMethod : BOOL
VAR_INPUT
 nInput : INT;
END_VAR

Program MAIN:
PROGRAM MAIN
VAR
 fbSample : FB_Sample;
 iSample : I_Sample;
 iSampleNotSet : I_Sample;
 nParam : INT;
 bReturn : BOOL;
END_VAR

iSample := fbSample;
bReturn := iSample.SampleMethod(nInput := nParam); // no error

bReturn := iSampleNotSet.SampleMethod(nInput := nParam); // => SA0046

Overview of the rules on "dereferencing".

Pointers:

• Dereferencing of pointers in the declaration part => SA0124 [} 67]

• Possible null pointer dereferences in the implementation part => SA0039 [} 69]

References:

• Use of references in the declaration part => SA0125 [} 68]

• Possible use of not initialized reference in the implementation part => SA0145 [} 70]

Interfaces:

• Possible use of not initialized interface in the implementation part => SA0046 [} 70]

SA0145: Possible use of not initialized references

Function Determines all reference variables that may not be initialized before they are used and
were not checked by the __ISVALIDREF operator. This rule is applied in the
implementation part of POUs.

Reason A reference should be checked for validity before it is accessed, otherwise an access
violation may occur at runtime.

Importance High

Samples:

Configuration

TE1200 71Version: 2.9.0

FUNCTION_BLOCK FB_Test
VAR_INPUT
 pStruct : POINTER TO ST_Test;
 refStruct : REFERENCE TO ST_Test;
END_VAR
VAR
 bPointer : BOOL := pStruct^.bTest; // => SA0124: Dereference access in initialization
 bRef : BOOL := refStruct.bTest; // => SA0125: Reference used in initialization
END_VAR

bPointer := pStruct^.bTest; // => SA0039: Possible null pointer dereference 'pStruct^'
bRef := refStruct.bTest; // => SA0145: Possible use of not initialized reference
'refStruct'

IF pStruct <> 0 THEN
 bPointer := pStruct^.bTest; // no error SA0039 as the pointer is checked for unequal 0
END_IF

IF __ISVALIDREF(refStruct) THEN
 bRef := refStruct.bTest; // no error SA0145 as the reference is checked via
__ISVALIDREF
END_IF

Overview of the rules on "dereferencing".

Pointers:

• Dereferencing of pointers in the declaration part => SA0124 [} 67]

• Possible null pointer dereferences in the implementation part => SA0039 [} 69]

References:

• Use of references in the declaration part => SA0125 [} 68]

• Possible use of not initialized reference in the implementation part => SA0145 [} 70]

Interfaces:

• Possible use of not initialized interface in the implementation part => SA0046 [} 70]

SA0140: Statements commented out

Function Determines statements that are commented out.
Reason Code is often commented out for debugging purposes. When such a comment is

enabled, it is not clear at a later point in time whether the code should be deleted or
whether it was only commented out for debugging purposes and was inadvertently not
commented in again.

Importance High
PLCopen rule C4

Sample:
//bStart := TRUE; // => SA0140

SA0150: Violations of lower or upper limits of the metrics

Function Determines function blocks that violate the enabled metrics at the lower or upper limit.
Reason Code that adheres to certain metrics is easier to read, easier to maintain and easier to

test.
Importance High
PLCopen rule CP9

Sample:

The metric "Number of calls" is enabled and configured in the metrics configuration enabled (PLC Project
Properties > category "Static Analysis" > "Metrics" tab).

Configuration

TE120072 Version: 2.9.0

• Lower limit: 0
• Upper limit: 3
• Function block Prog1 is called 5 times

During the execution of the Static Analysis the violation of SA0150 is issued as an error or warning in the
message window.
// => SA0150: Metric violation for 'Prog1'. Result for metric 'Calls' (5) > 3"

SA0160: Recursive calls

Function Determines recursive calls of programs, actions, methods and properties. Determines
possible recursions through virtual function calls and interface calls.

Reason Recursions lead to non-deterministic behavior and are therefore a source of errors.
Importance Medium
PLCopen rule CP13

Sample 1:

Method FB_Sample.SampleMethod1:
METHOD SampleMethod1
VAR_INPUT
END_VAR

SampleMethod1(); (* => SA0160: Recursive call:
 'MAIN -> FB_Sample.SampleMethod1 -> FB_Sample.SampleMethod1' *)

Method FB_Sample.SampleMethod2:
METHOD SampleMethod2 : BOOL
VAR_INPUT
END_VAR

SampleMethod2 := THIS^.SampleMethod2();(* => SA0160: Recursive call:
 'MAIN -> FB_Sample.SampleMethod2 ->
FB_Sample.SampleMethod2' *)

Program MAIN:
PROGRAM MAIN
VAR
 fbSample : FB_Sample;
 bReturn : BOOL;
END_VAR

fbSample.SampleMethod1();
bReturn := fbSample.SampleMethod2();

Sample 2:

Please note regarding properties:

For a property, a local input variable is implicitly created with the name of the property. The following Set
function of a property thus assigns the value of the implicit local input variables to the property of an FB
variable.

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR
 nParameter : INT;
END_VAR

Set function of the property SampleProperty:
nParameter := SampleProperty;

Configuration

TE1200 73Version: 2.9.0

In the following Set function, the implicit input variable of the property is assigned to itself. The assignment of
a variable to itself does not constitute a recursion, so that this Set function does not generate an SA0160
error.

Set function of the property SampleProperty:
SampleProperty := SampleProperty; // no error SA0160

However, access to a property using the THIS pointer is qualified. By using the THIS pointer, the instance
and thus the property is accessed, rather than the implicit local input variable. This means that the shading of
implicit local input variables and the property itself is lifted. In the following Set function, a new call to the
property is generated, which leads to a recursion and thus to error SA0160.

Set function of the property SampleProperty:
THIS^.SampleProperty := SampleProperty; // => SA0160

SA0161: Unpacked structure in packed structure

Function Determines unpacked structures that are used in packed structures.
Reason The compiler normally places an unpacked structure on an address that allows aligned

access to all elements within the structure. If you create this structure in a packed
structure, aligned access is no longer possible, and access to an element in the
unpacked structure can lead to a misalignment exception at runtime.

Importance High

Sample:

The structure ST_SingleDataRecord is packed but contains instances of the unpacked structures ST_4Byte
and ST_9Byte. This results in a SA0161 error message.
{attribute 'pack_mode' := '1'}
TYPE ST_SingleDataRecord :
STRUCT
 st9Byte : ST_9Byte; // => SA0161
 st4Byte : ST_4Byte; // => SA0161
 n1 : UDINT;
 n2 : UDINT;
 n3 : UDINT;
 n4 : UDINT;
END_STRUCT
END_TYPE

Structure ST_9Byte:
TYPE ST_9Byte :
STRUCT
 nRotorSlots : USINT;
 nMaxCurrent : UINT;
 nVelocity : USINT;
 nAcceleration : UINT;
 nDeceleration : UINT;
 nDirectionChange : USINT;
END_STRUCT
END_TYPE

Structure ST_4Byte:
TYPE ST_4Byte :
STRUCT
 fDummy : REAL;
END_STRUCT
END_TYPE

Configuration

TE120074 Version: 2.9.0

SA0162: Missing comments

Function Detects uncommented locations in the program. Comments are required for:
• the declaration of variables. The comments are shown above or to the right.
• the declaration of POUs, DUTs, GVLs or interfaces. The comments are shown above

the declaration (in the first row).
Reason Full commentary is required by many programming guidelines. It increases the

readability and maintainability of the code.
Importance Low
PLCopen rule C2

Samples:

The following sample generates the error "SA0162: Missing comment for 'b1'" for variable b1.
// Comment for MAIN program
PROGRAM MAIN
VAR
 b1 : BOOL;
 // Comment for variable b2
 b2 : BOOL;
 b3 : BOOL; // Comment for variable b3
END_VAR

SA0163: Nested comments

Function Determines code positions with nested comments.
Reason Nested comments are difficult to read and should be avoided.
Importance Low
PLCopen rule C3

Samples:

The four nested comments identified accordingly in the following sample each result in the error: "SA0163:
Nested comment '<…>'".
(* That is
(* nested comment number 1 *)
*)
PROGRAM MAIN
VAR
 (* That is
 // nested comment
 number 2 *)
 a : DINT;
 b : DINT;

 (* That is
 (* nested comment number 3 *) *)
 c : BOOL;
 nCounter : INT;
END_VAR

(* That is // nested comment number 4 *)

nCounter := nCounter + 1;

(* This is not a nested comment *)

Configuration

TE1200 75Version: 2.9.0

SA0164: Multi-line comments

Function Determines code positions at which the multi-line comment operator (* *) is used. Only
the two single-line comment operators are allowed: // for standard comments, /// for
documentation comments.

Reason Some programming guidelines prohibit multi-line comments in the code, because the
beginning and end of a comment could get out of sight and the closing comment bracket
could be deleted by mistake.

Importance Low
PLCopen rule C5

You can disable this check with the pragma {analysis ...} [} 122], including for comments in the
declaration part.

Samples:
(*
This comment leads to error:
"SA0164 …"
*)
PROGRAM MAIN
VAR
 /// Documentation comment not reported by SA0164
 nCounter1: DINT;
 nCounter2: DINT; // Standard single-line comment not reported by SA0164
END_VAR

(* This comment leads to error: "SA0164 …" *)
nCounter1 := nCounter1 + 1;
nCounter2 := nCounter2 + 1;

SA0166: Maximum number of input/output/VAR_IN_OUT variables

Function The check determines whether a defined number of input variables (VAR_INPUT),
output variables (VAR_OUTPUT) or VAR_IN_OUT variables is exceeded in a function
block.
You can configure the parameters that are taken into account in the check by double-
clicking on the row for rule 166 in the rule configuration (PLC Project Properties >
category "Static Analysis" > "Rules" tab > Rule 166). You can make the following settings
in the dialog that appears:
• Maximum number of inputs (default value: 10)
• Maximum number of outputs (default value: 10)
• Maximum number of inputs/outputs (default value: 10)

Reason This is about checking individual programming guidelines. Many programming guidelines
stipulate a maximum number of parameters for function blocks. Too many parameters
make the code unreadable and the function blocks difficult to test.

Importance Medium
PLCopen rule CP23

Corresponding metrics available
The following metrics are available for calculating the input and output variables as part of the
metrics table:

Number of input variables [} 98]

Number of output variables [} 98]

Sample:

Rule 166 is configured with the following parameters:

Configuration

TE120076 Version: 2.9.0

• Maximum number of inputs: 0
• Maximum number of outputs: 10
• Maximum number of inputs/outputs: 1

The following function block therefore reports two SA0166 errors, since too many inputs (> 0) and too many
inputs/outputs (> 1) are declared.

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample // => SA0166
VAR_INPUT
 bIn : BOOL;
END_VAR
VAR_OUTPUT
 bOut : BOOL;
END_VAR
VAR_IN_OUT
 bInOut1 : BOOL;
 bInOut2 : BOOL;
END_VAR

SA0167: Report temporary FunctionBlock instances

Function Determines function block instances that are declared as temporary variables. This
applies to instances that are declared in a method, in a function or as VAR_TEMP, and
which are reinitialized in each processing cycle or each function block call.

Reason • Function blocks have a state that is usually retained over several PLC cycles. An
instance on the stack exists only for the duration of the function call. It is therefore only
rarely useful to create an instance as a temporary variable.

• Secondly, function block instances are frequently large and require a great deal of
space on the stack (which is usually limited on controllers).

• Thirdly, the initialization and often also the scheduling of the function block can take up
quite a lot of time.

Importance Medium

Examples:

Method FB_Sample.SampleMethod:
METHOD SampleMethod : INT
VAR_INPUT
END_VAR
VAR
 fbTrigger : R_TRIG; // => SA0167
END_VAR

Function F_Sample:
FUNCTION F_Sample : INT
VAR_INPUT
END_VAR
VAR
 fbSample : FB_Sample; // => SA0167
END_VAR

MAIN program:
PROGRAM MAIN
VAR_TEMP
 fbSample : FB_Sample; // => SA0167
 nReturn : INT;
END_VAR

nReturn := F_Sample();

Configuration

TE1200 77Version: 2.9.0

SA0168: Unnecessary assignments

Function Determines assignments to variables that have no effects in the code.
Reason If several values are assigned to a variable without the variable being evaluated between

the assignments, the first assignments do not have any effect on the program.
Importance Low

Sample:
PROGRAM MAIN
VAR
 nVar1 : DWORD;
 nVar2 : DWORD;
END_VAR

nVar1 := 1;

IF nVar2 > 100 THEN
 nVar2 := 0;
 nVar2 := nVar2 + 1;
END_IF

nVar1 := 2; // => SA0168

SA0169: Ignored outputs

Function Determines the outputs of methods and functions that are not specified when calling the
method or function.

Reason Ignored outputs can be an indication of unhandled errors or nonsensical function calls,
as the results are not used.

Importance Medium

Sample:

Function F_Sample:
FUNCTION F_Sample : BOOL
VAR_INPUT
 bIn : BOOL;
END_VAR
VAR_OUTPUT
 bOut : BOOL;
END_VAR

Program MAIN:
PROGRAM MAIN
VAR
 bReturn : BOOL;
 bFunOut : BOOL;
END_VAR

bReturn := F_Sample(bIn := TRUE , bOut => bFunOut);
bReturn := F_Sample(bIn := TRUE); // => SA0169

SA0170: Address of an output variable should not be used

Function Determines code positions where the address of an output variable (VAR_OUTPUT,
VAR_IN_OUT) of a function block is used.

Reason It is not allowed to use the address of a function block output in the following way:
• By means of the ADR operator
• By means of REF=

Exception No error is reported if the output variable is used within the same function block.
Importance Medium

Sample:

Configuration

TE120078 Version: 2.9.0

Function block FB_Sample:
FUNCTION_BLOCK FB_Sample
VAR_INPUT
 nIn : INT;
END_VAR
VAR_OUTPUT
 nOut : INT;
END_VAR
VAR
 pFB : POINTER TO FB_Sample;
 pINT : POINTER TO INT;
END_VAR

IF pFB <> 0 THEN
 pINT := ADR(pFB^.nOut); // => SA0170
END_IF

nOut := nIn;
pINT := ADR(THIS^.nOut); // no error due to internal usage
pINT := ADR(nOut); // no error due to internal usage

Accesses within another function block, in this case in the MAIN program:
PROGRAM MAIN
VAR
 fbSample : FB_Sample;
 pExternal : POINTER TO INT;
 refExternal : REFERENCE TO INT;
END_VAR

pExternal := ADR(fbSample.nOut); // => SA0170
refExternal REF= fbSample.nOut; // => SA0170

SA0171: Enumerations should have the 'strict' attribute

Function Detects declarations of enumerations which are not provided with the {attribute 'strict'}
attribute.

Reason The {attribute 'strict'} attribute causes compiler errors to be issued if the code violates
strict programming rules for enumerations. By default, when a new enumeration is
created, the declaration is automatically assigned the 'strict' attribute.

Importance High

For more information see: PLC > Reference programming > Pragmas > Attribute pragmas > Attribute 'strict'

Sample:
{attribute 'qualified_only'}
{attribute 'strict'}
TYPE E_TrafficLight :
(
 eRed := 0,
 eYellow,
 eGreen
);
END_TYPE

{attribute 'qualified_only'}
TYPE E_MachineStates : // => SA0171
(
 eStopped := 0,
 eRunning,
 eError
);
END_TYPE

Configuration

TE1200 79Version: 2.9.0

SA0172: Possible attempt to access outside the array limits

Function Determines possible accesses to an array index outside the array limits.
Reason The range of the array index is often exceeded in FOR loops in which the index variable

is used to access an array index.
Importance High

Sample:
PROGRAM MAIN
VAR_TEMP
 nIndex : INT;
END_VAR
VAR
 aSample : ARRAY[0..10] OF INT;
END_VAR

FOR nIndex := INT#0 TO INT#50 DO
 aSample[nIndex] := 0; // => SA0172
END_FOR

SA0175: Suspicious operation on string

Function Determines code positions that are suspicious for UTF-8 encoding.
Captured
constructs

1. Index access to a single-byte string

◦ Example: sVar[2]
◦ Message: Suspicious operation on string: index access '<expression>'

2. Address access to a single-byte string

◦ Example: ADR(sVar)
◦ Message: Suspicious operation on string: Possible index access '<expression>'

3. Call of a string function of the Tc2_Standard library except CONCAT and LEN

◦ Example: FIND(sVar, 'a');
◦ Message: Suspicious operation on string: Possible index access '<expression>'

4. Single byte literal containing non-ASCII characters

◦ Examples:
sVar := '99€';
sVar := 'Ä';

◦ Message: Suspicious operation on string: literal '<literal>' contains non-ASCII
characters

Importance Medium

Examples:
VAR
 sVar : STRING;
 pVar : POINTER TO STRING;
 nVar : INT;
END_VAR

// 1) SA0175: Suspicious operation on string: Index access
sVar[2]; // => SA0175

// 2) SA0175: Suspicious operation on string: Possible index access
pVar := ADR(sVar); // => SA0175

// 3) SA0175: Suspicious operation on string: Possible index access
nVar := FIND(sVar, 'a'); // => SA0175

// 4) SA0175: Suspicious operation on string: Literal '<...>' contains Non-ASCII character
sVar := '99€'; // => SA0175
sVar := 'Ä'; // => SA0175

Configuration

TE120080 Version: 2.9.0

SA0178: Cognitive complexity

Function The check determines whether a defined limit of cognitive complexity is exceeded in a
function block.
You can configure the parameter that is taken into account in the check by double-
clicking on the row for rule 178 in the rule configuration (PLC Project Properties >
category "Static Analysis" > "Rules" tab > Rule 178). You can make the following settings
in the dialog that appears:
• Complexity limit (default value: 20)

Reason This is about checking individual programming guidelines. Some programming guidelines
stipulate a maximum value for the cognitive complexity of function blocks. Excessive
cognitive complexity makes the code difficult to read and maintain.

Importance Medium

Corresponding metric available
The following metric is available for calculating cognitive complexity as part of the metrics table:

Cognitive complexity [} 101]

Sample:

See metric: Cognitive complexity [} 101]

SA0179: Coupling between objects

Function The check determines whether a defined limit of the coupling between objects in a
function block is exceeded.
You can configure the parameter that is taken into account in the check by double-
clicking on the row for rule 179 in the rule configuration (PLC Project Properties >
category "Static Analysis" > "Rules" tab > Rule 179). You can make the following settings
in the dialog that appears:
• Coupling limit (default value: 30)

Reason This is about checking individual programming guidelines. Some programming guidelines
stipulate a maximum value for the coupling between objects for function blocks. Too
much coupling between objects makes the code difficult to maintain.

Importance Medium
Synonym CBO: Coupling Between Objects

Corresponding metric available
The following metric is available for calculating cognitive complexity as part of the metrics table:

Coupling Between Objects (CBO) [} 105]

Sample:

See metric: Coupling Between Objects (CBO) [} 105]

SA0180: Index range does not cover the entire array

Function Determines arrays with an index range that is not completely covered.
Reason Arrays are often handled in loops, with the loop index indexing the array in such a way

that all components of the array are accessed without gaps. This is the case if the loop
index and the array index are the same in all dimensions. If the index range does not
completely cover the array, this indicates components in the array that have not been
processed.

Importance Medium

Configuration

TE1200 81Version: 2.9.0

Sample:
PROGRAM MAIN
VAR_TEMP
 nIndex : INT;
END_VAR
VAR
 aSample : ARRAY[0..10] OF INT;
END_VAR

FOR nIndex := INT#1 TO INT#10 DO
 aSample[nIndex] := 0; // => SA0180
END_FOR

4.3 Naming conventions
In the Naming Conventions tab you can define naming conventions. Their compliance is accounted for in
the Static Analysis execution [} 111]. You define mandatory prefixes for the different data types of variables
as well as for different scopes, function block types, and data type declarations. The names of all objects for
which a convention can be specified are displayed in the project properties as a tree structure. The objects
are arranged below organizational nodes.

In the Naming Conventions tab, you will also find options [} 90] that extend the configuration of the
prefixes. You can use these options to configure how the expected overall prefix for variables/declarations
should be composed.

Configuration

TE120082 Version: 2.9.0

Configuration of the naming conventions

Names Nodes and elements for which a prefix can be defined
The number in brackets after each element, for example "PROGRAM (102)", is the
prefix convention number that is output if the naming convention is not followed.

Prefix You can define the naming conventions by entering the required prefix in this
column.
Please note the following notes and options:
• Several possible prefixes per line

◦ Multiple prefixes can be entered separated by commas.
◦ Example: "x, b" as prefixes for variables of data type BOOL. "x" and "b" may

be used as prefix for Boolean variables.
• Regular expressions

◦ You can also use regular expressions (RegEx) for the prefix. In this case you
have to use @ as additional prefix.

◦ Example: "@b[a-dA-D]" as prefix for variables of data type BOOL. The name
of the boolean variable must start with "b", and may be followed by a
character in the range "a-dA-D".

• Data type placeholder
◦ For variables of the Alias data type and for properties you can use the data

type placeholder "{datatype}" as prefix.
◦ Example: Prefix for the variable data type Alias (33) = "{datatype}"

Prefixes for variables Organizational node for all variables for which a prefix dependent on their data
type or scope can be defined

Prefixes for POUs Organizational node for all POU types and method validity ranges for which a
prefix can be defined

Prefixes for DUTs Organizational node for the DUT data types Structure, Enumeration, Alias or Union
for which a prefix can be defined

Prefixes for user-
defined types (NC0160)

Available from TC3.1 Build 4026
Organizational node for special user-defined types, especially those from libraries
or for read-only types (e.g. PVOID, HRESULT)
• You can expand the list with conventions: click the blank line below. Then enter

the name of a user-defined type or select a user-defined type in the "Input
Assistant" dialog.

• You can delete a convention by selecting it and choosing the [Del] key.
Note: These conventions take priority over the prefixes defined with the {attribute
'nameprefix' := '<prefix>'} attribute.
Sample:
• In the "Name" column, enter the read-only system data type "PVOID" in an

empty line below the prefixes for user-defined types. In the same line in the
"Prefix" column, enter the desired prefix, e.g. "p". Variables of type PVOID are
checked for this prefix when running Static Analysis.

• More examples of user-defined types whose desired prefix you can configure at
this point:
◦ System data type HRESULT
◦ TON function block from the Tc2_System library

Configuration

TE1200 83Version: 2.9.0

Formation of the expected prefix
The prefix expected for the different declarations is formed depending on the configuration of the
options found in the Options [} 90] dialog.

On the Options [} 90] page you will also find explanations on how the expected prefix is formed,
as well as some samples.

Placeholder {datatype} with alias variables and properties
Please also note the possibilities of the placeholder {datatype} [} 93], which you can use for the
prefix definition of alias variables and properties.

Local prefix definition for structured types
For variables of structured types, you can specify a prefix locally in the data type declaration using
the 'nameprefix' attribute [} 124].

Syntax of convention violations in the message window

Each naming convention has a unique number (shown in parentheses after the convention in the naming
convention configuration view). If a violation of a convention or a preset is detected during the static analysis,
the number is output in the error list together with an error description based on the following syntax. The
abbreviation "NC" stands for "Naming Convention".

Syntax: "NC<prefix convention number>: <convention description>"

Sample for convention number 151 (DUTs of type Structure): "NC0151: Invalid type name 'STR_Sample'.
Expected prefix 'ST_'"

Temporary deactivation of naming conventions

Individual conventions can be disabled temporarily, i.e. for particular code lines. To this end you can add a
pragma or an attribute in the declaration or implementation part of the code. For variables of structured types
you may specify a prefix locally via an attribute in the data type declaration. For more information see:
Pragmas and attributes [} 121].

Overview of naming conventions

For an overview of naming conventions, see Naming conventions – overview and description [} 83].

4.3.1 Naming conventions – overview and description

Overview

- Prefixes for variables

 - Prefixes for types

 - NC0003: BOOL [} 86]

 - NC0004: BIT [} 86]

 - NC0005: BYTE [} 86]

 - NC0006: WORD [} 86]

 - NC0007: DWORD [} 86]

 - NC0008: LWORD [} 86]

 - NC0013: SINT [} 86]

Configuration

TE120084 Version: 2.9.0

 - NC0014: INT [} 86]

 - NC0015: DINT [} 86]

 - NC0016: LINT [} 86]

 - NC0009: USINT [} 86]

 - NC0010: UINT [} 86]

 - NC0011: UDINT [} 86]

 - NC0012: ULINT [} 86]

 - NC0017: REAL [} 86]

 - NC0018: LREAL [} 86]

 - NC0019: STRING [} 86]

 - NC0020: WSTRING [} 86]

 - NC0021: TIME [} 86]

 - NC0022: LTIME [} 86]

 - NC0023: DATE [} 86]

 - NC0024: DATE_AND_TIME [} 86]

 - NC0025: TIME_OF_DAY [} 86]

 - NC0026: POINTER [} 86]

 - NC0027: REFERENCE [} 86]

 - NC0028: SUBRANGE [} 87]

 - NC0030: ARRAY [} 87]

 - NC0031: Function block instance [} 87]

 - NC0036: Interface [} 87]

 - NC0032: Structure [} 88]

 - NC0029: ENUM [} 88]

 - NC0033: Alias [} 88]

 - NC0034: Union [} 88]

 - NC0035: __XWORD [} 86]

 - NC0037: __UXINT [} 86]

 - NC0038: __XINT [} 86]

 - Prefixes for scopes

 - NC0051: VAR_GLOBAL [} 89]

 - NC0070: VAR_GLOBAL CONSTANT [} 89]

 - NC0071: VAR_GLOBAL RETAIN [} 89]

Configuration

TE1200 85Version: 2.9.0

 - NC0072: VAR_GLOBAL PERSISTENT [} 89]

 - NC0073: VAR_GLOBAL RETAIN PERSISTENT [} 89]

 - VAR

 - NC0053: Program variables [} 89]

 - NC0054: Function block variables [} 89]

 - NC0055: Function/method variables [} 89]

 - NC0056: VAR_INPUT [} 89]

 - NC0057: VAR_OUTPUT [} 89]

 - NC0058: VAR_IN_OUT [} 89]

 - NC0059: VAR_STAT [} 89]

 - NC0061: VAR_TEMP [} 89]

 - NC0062: VAR CONSTANT [} 89]

 - NC0063: VAR PERSISTENT [} 89]

 - NC0064: VAR RETAIN [} 89]

 - NC0065: I/O variables [} 89]

- Prefixes for POUs

 - Prefixes for POU type

 - NC0102: PROGRAM [} 89]

 - NC0103: FUNCTIONBLOCK [} 89]

 - NC0104: FUNCTION [} 89]

 - NC0105: METHOD [} 89]

 - NC0106: ACTION [} 89]

 - NC0107: PROPERTY [} 89]

 - NC0108: INTERFACE [} 89]

 - Method/property scope

 - NC0121: PRIVATE [} 90]

 - NC0122: PROTECTED [} 90]

 - NC0123: INTERNAL [} 90]

 - NC0124: PUBLIC [} 90]

- Prefixes for DUTs

 - NC0151: Structure [} 90]

 - NC0152: Enumeration [} 90]

 - NC0153: Union [} 90]

 - NC0154: Alias [} 90]

Configuration

TE120086 Version: 2.9.0

- Prefixes for user-defined types

 - NC0160: User-defined type [} 90]

Detailed description

The following sections contain explanations and examples of which declarations (i.e. at which point in the
project) use the individual naming conventions. The declarations samples illustrate cases for which the
corresponding prefix would be expected if a prefix was defined with the corresponding naming convention. It
should become clear where and how a type or variable can be declared so that the naming convention
NC<xxxx> is checked at this point. However, the samples do not show which concrete prefix is defined for
the individual naming conventions and would therefore be expected in the sample declarations. There is
therefore no OK/NOK comparison.

For concrete examples with a defined prefix, please refer to the page Options [} 90].

Basic data types:

NC0003: BOOL

Configuration of a prefix for a variable declaration of type BOOL.

Sample declarations:

For the following variable declarations the prefix configured for NC0003 is used for the formation of the
overall prefix, compliance with which is checked during execution of the static analysis [} 111].
bStatus : BOOL;
abVar : ARRAY[1..2] OF BOOL;
IbInput AT%I* : BOOL;

The description of "NC0003: BOOL" is transferrable to the other basic data types:

- NC0004: BIT, NC0005: BYTE

- NC0006: WORD, NC0007: DWORD, NC0008: LWORD

- NC0013: SINT, NC0014: INT, NC0015: DINT, NC0016: LINT, NC0009: USINT, NC0010: UINT, NC0011:
UDINT, NC0012: ULINT

- NC0017: REAL, NC0018: LREAL

- NC0019: STRING, NC0020: WSTRING

- NC0021: TIME, NC0022: LTIME, NC0023: DATE, NC0024: DATE_AND_TIME, NC0025: TIME_OF_DAY

- NC0035: __XWORD, NC0037: __UXINT, NC0038: __XINT

Nested data types:

NC0026: POINTER

Configuration of a prefix for a variable declaration of type POINTER TO.

Sample declaration:

For the following variable declaration the prefix configured for NC0026 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
pnID : POINTER TO INT;

NC0027: REFERENCE

Configuration of a prefix for a variable declaration of type REFERENCE TO.

Configuration

TE1200 87Version: 2.9.0

Sample declaration:

For the following variable declaration the prefix configured for NC0027 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
reffCurrentPosition : REFERENCE TO REAL;

NC0028: SUBRANGE

Configuration of a prefix for a variable declaration of a subrange type. A subrange type is a data type whose
value range only covers a subset of a base type.

Possible basic data types for a subrange type: SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD,
DWORD, LINT, ULINT, LWORD.

Sample declarations:

For the following variable declaration the prefix configured for NC0028 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
subiRange : INT(3..5);
sublwRange : LWORD(100..150);

NC0030: ARRAY

Configuration of a prefix for a variable declaration of type ARRAY[…] OF.

Sample declaration:

For the following variable declaration the prefix configured for NC0030 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
anTargetPositions : ARRAY[1..10] OF INT;

Instance-based data types:

NC0031: Function block instance

Configuration of a prefix for a variable declaration of a function block type.

Sample declaration:

Declaration of a function block:
FUNCTION_BLOCK FB_Sample
…

For the following variable declaration the prefix configured for NC0031 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
fbSample : FB_Sample;

NC0036: Interface

Configuration of a prefix for a variable declaration of an interface type.

Sample declaration:

Interface declaration:
INTERFACE I_Sample

For the following variable declaration the prefix configured for NC0036 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
iSample : I_Sample;

Configuration

TE120088 Version: 2.9.0

NC0032: Structure

Configuration of a prefix for a variable declaration of a structure type.

Sample declaration:

Declaration of a structure:
TYPE ST_Sample :
STRUCT
 bVar : BOOL;
 sVar : STRING;
END_STRUCT
END_TYPE

For the following variable declaration the prefix configured for NC0032 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
stSample : ST_Sample;

NC0029: ENUM

Configuration of a prefix for a variable declaration of an enumeration type.

Sample declaration:

Declaration of an enumeration:
TYPE E_Sample :
(
 eMember1 := 1,
 eMember2
);
END_TYPE

For the following variable declaration the prefix configured for NC0029 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
eSample : E_Sample;

NC0033: Alias

Configuration of a prefix for a variable declaration of an alias type.

Sample declaration:

Declaration of an alias:
TYPE T_Message : STRING; END_TYPE

For the following variable declaration the prefix configured for NC0033 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
tMessage : T_Message;

NC0034: Union

Configuration of a prefix for a variable declaration of a union type.

Sample declaration:

Declaration of a union:
TYPE U_Sample :
UNION
 n1 : WORD;
 n2 : INT;
END_UNION
END_TYPE

For the following variable declaration the prefix configured for NC0034 is used for the formation of the overall
prefix, compliance with which is checked during execution of the static analysis [} 111].
uSample : U_Sample;

Configuration

TE1200 89Version: 2.9.0

Scopes of variable declarations:

NC0051: VAR_GLOBAL

Configuration of a prefix for a variable declaration between the keywords VAR_GLOBAL and END_VAR.

Sample declaration:

For the following declaration of a global variable, the prefix configured for NC0051 is used for the formation
of the overall prefix, compliance with which is checked during execution of the static analysis [} 111].
VAR_GLOBAL
 gbErrorAcknowledge : BOOL;
END_VAR

The description of "NC0051: VAR_GLOBAL" is transferrable to other scopes of variable declarations:

- NC0070: VAR_GLOBAL CONSTANT

- NC0071: VAR_GLOBAL RETAIN

- NC0072: VAR_GLOBAL PERSISTENT

- NC0073: VAR_GLOBAL RETAIN PERSISTENT

- NC0053: Program variables (VAR within a program)

- NC0054: Function block variables (VAR within a function block)

- NC0055: Function/method variables (VAR within a function/method)

- NC0056: VAR_INPUT

- NC0057: VAR_OUTPUT

- NC0058: VAR_IN_OUT

- NC0059: VAR_STAT

- NC0061: VAR_TEMP

- NC0062: VAR CONSTANT

- NC0063: VAR PERSISTENT

- NC0064: VAR RETAIN

NC0065: I/O variables

Configuration of a prefix for a variable declaration with AT declaration.

Sample declarations:

For the following variable declarations with AT declaration, the prefix configured for NC0065 is used for the
formation of the overall prefix, compliance with which is checked during execution of the static analysis
[} 111].
ioVar1 AT%I* : INT;
ioVar2 AT%IX1.0 : BOOL;
ioVar3 AT%Q* : INT;
ioVar4 AT%QX2.0 : BOOL;

POU types:

NC0102: PROGRAM

Configuration of a prefix for the declaration of a program (name of the program in the project tree).

Configuration

TE120090 Version: 2.9.0

The description of "NC0102: PROGRAM" is transferrable to the other POU types:

- NC0103: FUNCTIONBLOCK

- NC0104: FUNCTION

- NC0105: METHOD

- NC0106: ACTION

- NC0107: PROPERTY

- NC0108: INTERFACE

Scopes of methods and properties:

NC0121: PRIVATE

Configuration of a prefix for the declaration of a method or a property (name of the method/property in the
project tree), whose access modifier is PRIVATE.

The description of "NC121: PRIVATE" is transferrable to the other scopes of methods and properties:

- NC0122: PROTECTED

- NC0123: INTERNAL

- NC0124: PUBLIC

DUTs:

NC0151: Structure

Configuration of a prefix for the declaration of a structure (name of the structure in the project tree).

The description of "NC0151: Structure" is transferrable to the other DUT types:

- NC0152: Enumeration

- NC0153: Union

- NC0154: Alias

User-defined types:

NC0160: User defined type

Configuration of a prefix for a user-defined type, e.g. for variables of type PVOID or for instances of the
library function block Tc2_System.TON.

For more information on the input options in this area, visit Naming conventions [} 81].

4.3.2 Options
In the Naming Conventions tab, you will find options that extend the configuration of the prefixes. You can
use these options to configure how the expected overall prefix for variables/declarations should be
composed.

1) First character after prefix should be an upper case letter
• If enabled: The static code analysis reports an error for a variable if the first character of the variable

name after the defined prefix is not an upper case letter.

Configuration

TE1200 91Version: 2.9.0

• If disabled: Upper case/lower case spelling is not checked.
• Default setting: disabled

Samples:
• Variable "bvar" with the expected prefix "b"
• Function block "FB_sample" with the expected prefix "FB_"

Option State Result of the static analysis
First character after
prefix should be an
upper case letter

Enabled For the definitions mentioned above, an error will be reported in each
case that the first letter after the prefix must be an upper case letter.
Correct identifiers would be "bVar" and "FB_Sample".

Disabled The identifiers "bvar" and "FB_sample" are permissible. No upper/
lower case error is output.

2) Recursive prefixes for combinable data types
• If enabled: Variables of combinable data types (POINTER, REFRENCE, ARRAY, SUBRANGE) must

have a composite data type prefix. The composite prefix is formed from the individual prefixes
configured for the individual components of the combined data type.

• If disabled: Only the prefix of the outermost data type is expected as the date type prefix.
• Default setting: enabled
• Examples: see below

3) Combine scope prefix with data type prefix

(namespace = scope)

• If enabled: A variable must have the prefix for its scope defined in the naming conventions, followed
by its data type prefix.

• If disabled: The expected overall prefix depends on whether or not a scope prefix is defined for a
variable.

◦ If the associated scope prefix is defined for a variable, the variable must have only the prefix
for its scope defined in the naming conventions. The data type prefix is not expected after the
scope prefix.

◦ If the associated scope prefix is not defined for a variable, the variable must have only the data
type prefix defined for it.

• Default setting: enabled
• Examples: see below

Samples
• Prefix configuration for data types:

◦ POINTER (26) = "p"
◦ ARRAY (30) = "a"
◦ INT (14) = "n"
◦ BOOL (3) = "b"

• Prefix configuration for scope
◦ Case 1: Function block variables (54) = "_local_"
◦ Case 2: Function block variables (54) = empty field/not configured
◦ INFO: Further examples of a scope include VAR_GLOBAL (51), VAR_INPUT (56) and VAR

CONSTANT (62).
• Declaration:

FUNCTION_BLOCK FB_Sample
VAR
 var1 : POINTER TO ARRAY[1..3] OF INT;
 var2 : ARRAY[10..20] OF ARRAY[3..5] OF BOOL;
END_VAR

Configuration

TE120092 Version: 2.9.0

Option scenario 1:

Option State Expected overall prefix for
case 1
(NC0054 = "_local_")

Expected overall prefix for
case 2
(NC0054 = empty)

Recursive prefixes for
combinable data types

Enabled For var1: '_local_pan'
For var2: '_local_aab'

For var1: 'pan'
For var2: 'aab'

Combine scope prefix with
data type prefix

Enabled

Explanation:

• As the option "Recursive prefixes for combinable data types" is enabled, the prefix composed of the
individual prefixes is expected as the data type prefix. Consequently, the sub-prefixes "p" for
POINTER, "a" for ARRAY and "n" for INT are combined to form the data type prefix "pan", or the sub-
prefixes "a" for ARRAY, "a" for ARRAY again and "b" for BOOL are combined to form the data type
prefix "aab".

• As the option "Combine scope prefix with data type prefix" is also enabled, the combination of scope
prefix and data type prefix is expected as the overall prefix.

◦ Case 1: _local_ + pan = _local_pan
◦ Case 2: <empty> + pan = pan

Option scenario 2:

Option State Expected overall prefix for
case 1
(NC0054 = "_local_")

Expected overall prefix for
case 2
(NC0054 = empty)

Recursive prefixes for
combinable data types

Disabled For var1: '_local_p'
For var2: '_local_a'

For var1: 'p'
For var2: 'a'

Combine scope prefix with
data type prefix

Enabled

Explanation:

• As the option "Recursive prefixes for combinable data types" is disabled, only the prefix of the
outermost data type is expected as the data type prefix. The expected data type prefix is therefore "p"
or "a".

• As the option "Combine scope prefix with data type prefix" is enabled, the combination of scope prefix
and data type prefix is expected as the overall prefix for variables.

◦ Case 1: _local_ + p = _local_p
◦ Case 2: <empty> + p = p

Option scenario 3:

Option State Expected overall prefix for
case 1
(NC0054 = "_local_")

Expected overall prefix for
case 2
(NC0054 = empty)

Recursive prefixes for
combinable data types

Enabled For var1: '_local_'
For var2: '_local_'

For var1: 'pan'
For var2: 'aab'

Combine scope prefix with
data type prefix

Disabled

Explanation:

• See option scenario 1: As the option "Recursive prefixes for combinable data types" is enabled, the
prefix composed of the individual prefixes is expected as the data type prefix. This results in "pan" or
"aab" as the data type prefix.

• As the option "Combine scope prefix with data type prefix" is disabled, the expected overall prefix
depends on whether or not a scope prefix is defined for a variable.

Configuration

TE1200 93Version: 2.9.0

◦ If scope prefix is defined (case 1): The variable must only have the scope prefix. The data type
prefix is not expected after the scope prefix. This results for both variables in "_local_" as the
expected overall prefix.

◦ If scope prefix is not defined (case 2): The variable must only have the data type prefix. This
results in "pan" or "aab" as the expected overall prefix.

Option scenario 4:

Option State Expected overall prefix for
case 1
(NC0054 = "_local_")

Expected overall prefix for
case 2
(NC0054 = empty)

Recursive prefixes for
combinable data types

Disabled For var1: '_local_'
For var2: '_local_'

For var1: 'p'
For var2: 'a'

Combine scope prefix with
data type prefix

Disabled

Explanation:

• See option scenario 2: As the option "Recursive prefixes for combinable data types" is disabled, only
the prefix of the outermost data type is expected as the data type prefix. This results in "p" or "a" as
the data type prefix.

• As the option "Combine scope prefix with data type prefix" is disabled, the expected overall prefix
depends on whether or not a scope prefix is defined for a variable.

◦ If scope prefix is defined (case 1): The variable must only have the scope prefix. The data type
prefix is not expected after the scope prefix. This results for both variables in "_local_" as the
expected overall prefix.

◦ If scope prefix is not defined (case 2): The variable must only have the data type prefix. This
results in "p" or "a" as the expected overall prefix.

Further notes/examples:

For POUs with an access modifier (methods or properties), the combination of the prefix for the scope
(NC0121-NC0124: PRIVATE/PROTECTED/INTERNAL/PUBLIC) and the prefix for the POU type (NC0105
for method, NC0107 for property) is expected as the overall prefix. Samples:

• If the prefix "priv_" has been configured for PRIVATE (121) and the prefix "M_" for METHOD (105), the
overall prefix "priv_M_" is expected for a PRIVATE method.

• If the prefix "M_" is still configured for METHOD (105), but no prefix has been configured for PRIVATE
(121), that is, if the field is empty in the naming conventions, the overall prefix "M_" is expected for a
PRIVATE method.

4.3.3 Placeholder {datatype}
For variables of type Alias and for properties, the placeholder "{datatype}" can be defined as a prefix in the
"Naming Conventions" tab. The placeholder {datatype} is thereby replaced by the prefix that is defined for
the data type of the alias or for the data type of the property. The static analysis thus reports errors for all
alias variables that do not possess the prefix for the data type of the alias or for all properties that do not
possess the prefix for the data type of the property.

The placeholder "{datatype}" can also be combined with further prefixes in the prefix definition, e.g. to
"P_{datatype}_".

Example 1 for an alias variable:
• In the project there is an alias "TYPE MyMessageType : STRING; END_TYPE" as well as a variable of

this type (var : MyMessageType;).
• Prefix definitions

◦ Prefix for the variable data type alias (33) = "{datatype}"
◦ Prefix for the variable data type STRING (19) = "s"

Configuration

TE120094 Version: 2.9.0

• In the prefix definitions mentioned the data type prefix "s" is expected for a variable of the alias type
"MyMessageType" (e.g. for the variable "var").

Example 2 for an alias variable:
• Same situation as in example 1 for an alias variable, the only difference being:

◦ Prefix for the variable data type alias (33) = "al_{datatype}"
• In this case the data type prefix "al_s" is expected for a variable of the alias type "MyMessageType".

Example of a property:
• Prefix definitions

◦ Prefix for the method/property scope PRIVATE (121) = "priv_"
◦ Prefix for the POU type PROPERTY (107) = "P_{datatype}"
◦ Prefix for the variable data type LREAL (18) = "f"

• Note: For POUs with an access modifier (methods or properties), the combination of the prefix for the
scope (NC0121-NC0124: PRIVATE/PROTECTED/INTERNAL/PUBLIC) and the prefix for the POU
type (NC0105 for method, NC0107 for property) is expected as the overall prefix.

• With the prefix definitions mentioned the overall prefix "priv_P_f" is thus expected for a property with
the access modifier PRIVATE and the data type LREAL.

4.4 Metrics
In the Metrics tab you can select and configure the metrics to be displayed for each function block in the
Standard Metrics view when the command 'View Standard Metrics' [} 114] is executed.

You have over 20 metrics at your disposal to analyze and characterize the underlying source code. When
calculated regularly, the metrics can indicate negative trends and deviations from quality targets. The key
figures therefore represent an indicator for assessing software quality. For example, the tabular output
contains metrics for the number of statements or the proportion of comments.

Analysis of libraries
The following metrics are also output for the libraries integrated in the project: code size, variable
size, stack size and number of calls.

Compilation errors for violations of upper/lower limits
You can use rule SA0150 of the static code analysis to output violations of the upper and lower
limits of the activated metrics as compilation errors.

Configuration of the metrics

Active You can enable or disable the individual metrics using the checkbox for the respective row.
When command 'View Standard Metrics' [} 114] is executed, the metrics that are enabled in
the respective configuration are shown for each programming block in the Standard Metrics
view.

• : The metric is disabled and is not displayed in the Standard Metrics view when the
command View Standard Metrics is executed.

• : The metric is enabled and is displayed in the Standard Metrics view when the
command View Standard Metrics is executed.

Lower limit For each metric you can define an individual upper and lower limit by entering the required
number in the respective metric row.
If a metric is only limited in one direction, you can leave the configuration for the other
direction blank. In other words, you may specify either only the lower limit or only the upper
limit.

Upper limit

Configuration

TE1200 95Version: 2.9.0

Evaluation of the upper and lower limits

The set upper and lower limits you can be evaluated in two ways.

• Standard Metrics view:
◦ Enable the metric whose configured upper and lower limits you want to evaluate.

◦ Execute the Command 'View Standard Metrics' [} 114].
◦ TwinCAT shows the enabled metrics for each programming block in the tabular Standard Metrics

view.
◦ If a value is outside the range defined by an upper and/or lower limit in the configuration, the table

cell is shown in red.
• Static Analysis:

◦ Enable rule 150 as error or warning in the Rules [} 16] tab.

◦ Run the Static Analysis (see: Command 'Run static analysis' [} 111]).
◦ Violations of the upper and/or lower limits are issued as error or warning in the message window.

Overview and description of the metrics

An overview of the metrics and a detailed description of the rules can be found in the next chapter.

4.4.1 Metrics - overview and description
Title in the “Standard metrics” view Description
Code size Code size [number of bytes] [} 96]
Variables size Variables size [number of bytes] [} 96]
Stack size Stack size [number of bytes] [} 96]
Calls Number of calls [} 97]
Tasks Called in tasks [} 97]
Globals Number of global variables used [} 98]
IOs Number of address accesses [} 98]
Locals Number of local variables [} 98]
Inputs Number of input variables [} 98]
Outputs Number of output variables [} 98]
NOS Number Of Statements (NOS) [} 99]
Comments Percentage of comment [} 100]
McCabe Complexity (McCabe) [} 100]
Complexity Cognitive complexity [} 101]
DIT Depth of Inheritance Tree (DIT) [} 103]
NOC Number Of Children (NOC) [} 103]
RFC Response For Class (RFC) [} 104]
CBO Coupling Between Objects (CBO) [} 105]
Elshof Complexity of reference (Elshof) [} 105]
LCOM Lack of Cohesion Of Methods - LCOM [} 106]
SFC branches Number of SFC branches [} 107]
SFC steps Number of SFC steps [} 107]

Detailed description

Configuration

TE120096 Version: 2.9.0

Code size [number of bytes]

Title short form Code size
Categories Informative, efficiency
Definition Number of bytes that a function block contributes to the application code
Further
information

The number also depends on the code generator. For example, the code generator for
Arm® processors generally generates more bytes than the code generator for x86
processors.

Variables size [number of bytes]

Title short form Variables size
Categories Informative, efficiency
Definition Size of the static memory used by the object
Further
information

For function blocks, this is the size used for an instance of this function block (which may
also contain memory gaps depending on the memory alignment). For programs,
functions and global variable lists, this is the sum of the size of all static variables.

Sample:
FUNCTION F_Sample : INT
VAR_INPUT
 a,b : INT;
END_VAR
VAR
 c,d : INT;
END_VAR
VAR_STAT
 f,g,h : INT;
END_VAR

The function has three static variables of type INT (f, g, h), each of which requires 2 bytes of memory.
F_Sample therefore has a variable size of 6 bytes.

Stack size [number of bytes]

Title short form Stack size
Categories Informative, efficient, reliable
Definition Number of bytes required to call a function or function block
Further
information

Input variables and output variables are aligned with the memory. This can create a gap
between these variables and the local variables. This gap is counted.
Return values from called functions that do not fit into a register are pushed onto the
stack. The largest of these values determines the additionally allocated memory, which is
also counted. Functions or function blocks that are called within the POUs under
consideration have their own stack frame. Therefore, the memory for such calls does not
count.
Depending on the code generator used, intermediate results of calculations also use the
stack. These results are not counted.

Sample:
FUNCTION F_Sample : INT
VAR_INPUT
 a,b : INT;
END_VAR
VAR
 c,d,e : INT;
END_VAR
VAR_STAT
 f,g,h : INT;
END_VAR

Configuration

TE1200 97Version: 2.9.0

c := b;
d := a;
e := a + b;

Assumption: The "TwinCAT RT (x86)" solution platform is used for the calculation. The device has a stack
alignment of 4 bytes, which can result in gaps between the variables.

The total stack size of F_Sample is 16 bytes and consists of:

• 2 input variables with 2 bytes each = 4 bytes
• No padding bytes

• Return value INT = 2 bytes
• Padding bytes for the stack alignment = 2 bytes

• 3 local variables with 2 bytes each = 6 bytes
• Padding bytes for the stack alignment = 2 bytes

VAR_STAT is not stored on the stack and therefore does not increase the stack size of a POU.

Number of calls

Title short form Calls
Categories Informative
Definition Number of calls to the program organization unit (POU) within the application
Further
information

If a program is called in a task, this call is also counted.

Called in tasks

Title short form Tasks
Categories Maintainability, reliability
Definition Number of tasks in which the program organization unit (POU) is called up
Further
information

For function blocks, the number of tasks in which the function block itself or any function
block in the function block's inheritance tree is called is counted.
For methods and actions, the number of tasks in which the (higher-level) function block is
called is displayed.

Sample:
FUNCTION_BLOCK FB1

FUNCTION_BLOCK FB2 EXTENDS FB1

FUNCTION_BLOCK FB3 EXTENDS FB2

Each function block is instantiated and called in a separate program. In addition, each program is called in a
separate task.

The metric Called in tasks therefore results:

• For FB3: 1
• For FB2: 2, as the calls from FB2 and FB3 (EXTENDS FB2) are counted
• For FB1: 3, as the calls from FB1, FB2 and FB3 are counted

Configuration

TE120098 Version: 2.9.0

Number of global variables used

Title short form Globals
Categories Maintainability, reusability
Definition Number of different global variables used in the program organization unit (POU)

Number of address accesses

Title short form IOs
Categories Reusability, maintainability
Definition Number of address accesses in the implementation of the object

Sample:
PROGRAM MAIN
VAR
 bVar : BOOL;
 bIn AT%I* : BOOL;
 bOut AT%Q* : BOOL;
END_VAR

bVar := TRUE;
bOut := bIn;
bOut := NOT bOut AND bIn;

The number of address accesses for the program MAIN is 5 and is made up of 2 write and 3 read accesses.

Number of local variables

Title short form Locals
Categories Informative, efficiency
Definition Number of variables declared in the VAR area of the program organization unit (POU)
Further
information

Inherited local variables are not counted.

Number of input variables

Number of input variables of the function block (VAR_INPUT).

Title short form Inputs
Categories Maintainability, reusability
Definition Number of variables declared in the VAR_INPUT area of the program organization unit

(POU)
Further
information

Inherited input variables are not counted.

Standard upper
limit for the
associated rule
SA0166 [} 75]

10

Number of output variables

Number of output variables of the function block (VAR_OUTPUT).

Configuration

TE1200 99Version: 2.9.0

Title short form Outputs
Categories Maintainability, reusability
Definition Number of variables declared in the VAR_OUTPUT area of the program organization

unit (POU)
Further
information

For function blocks, this is the number of user-defined output variables (VAR_OUTPUT).
For methods and functions, this is the number of user-defined output variables
(VAR_OUTPUT) plus one if they have a return value. The return value is also counted.
Inherited output variables are not counted.
A high number of output variables is a sign of a violation of the principle of clear
responsibility.

Standard upper
limit for the
associated rule
SA0166 [} 75]

10

Sample:
METHOD METH : BOOL
VAR_OUTPUT
 a : INT;
 b : LREAL;
END_VAR

The method METH has three outputs:

• Return value METH
• a

• b
METHOD METH1
VAR_OUTPUT
 a : ARRAY[0..10] OF INT;
 b : LREAL;
END_VAR

The method METH1 has two outputs:

• a

• b

Number Of Statements (NOS)

Title short form NOS
Categories Informative
Definition Number of executable statements in the implementation of a function block, function or

method
Further
information

NOS = Number Of executable Statements
Statements in the declaration, empty statements or pragmas are not counted.

Sample:
FUNCTION_BLOCK FB_Sample
VAR_OUTPUT
 nTest : INT;
 i : INT;
END_VAR
VAR
 bVar : BOOL;
 c : INT := 100; // statements in the declaration are not counted
END_VAR

IF bVar THEN //if statement: +1
 nTest := 0; // +1
END_IF

Configuration

TE1200100 Version: 2.9.0

WHILE nTest = 1 DO //while statement: +1
 ; // empty statements do not add to the statement count
END_WHILE

FOR c := 0 TO 10 BY 2 DO //for statement: +1
 i := i+i; // +1
END_FOR

{text 'simple text pragma'} //pragmas are not counted
nTest := 2; //+1

The sample has six statements.

Percentage of comment

Title short form Comments
Categories Maintainability
Definition Percentage of comments in the source code

This number is calculated using the following formula:
Percentage = 100 * <letters in comments> / <letters in source code and comments
together>

Further
information

Multiple consecutive spaces in the source code are counted as one space, which
prevents a high weighting of indented source code. A percentage of 0 is returned for
empty objects (no source code and no comments).
The statements also include declaration statements, for example.

Complexity (McCabe)

Title short form McCabe
Categories Testability
Definition Number of binary branches in the control flow of the POU

(for example, the number of branches for IF and CASE statements and loops)
Further
information

McCabe's cyclomatic complexity is a measure of the readability and testability of source
code. It is calculated by counting the number of binary branches in the control flow of the
POU. Cyclomatic complexity penalizes high branching because high branching increases
the number of test cases required for high test coverage.

Recommended
upper limit

10

The following samples show how complexity is calculated according to McCabe.

Sample: IF statement
// every POU has an initial cyclomatic complexity of 1, since it has at least 1 branch
IF b1 THEN // +1 for the THEN branch
 ;
ELSIF b2 THEN // +1 for the THEN branch of the IF inside the ELSE
 ;
ELSE
 IF b3 OR b4 THEN // +1 for the THEN branch
 ;
 END_IF
END_IF

The code snippet has a cyclomatic complexity of 4.

Sample: CASE statement
// every POU has an initial cyclomatic complexity of 1, since it has at least 1 branch
CASE a OF
 1: ; // +1
 2: ; // +1

Configuration

TE1200 101Version: 2.9.0

 3,4,5: ; // +1
ELSE // the ELSE statement does not increase the cyclomatic complexity
 ;
END_CASE

The code snippet has a cyclomatic complexity of 4.

Sample: Loop statement
// every POU has an initial cyclomatic complexity of 1, since it has at least 1 branch
WHILE b1 DO // +1 for the WHILE loop
 ;
END_WHILE

REPEAT // +1 for the REPEAT loop
 ;
UNTIL b2
END_REPEAT

FOR a := 0 TO 100 BY 2 DO // +1 for the REPEAT loop
 ;
END_FOR

The code snippet has a cyclomatic complexity of 4.

Sample: Other statements

The following statements also lead to an increase in cyclomatic complexity:
FUNCTION FUN : STRING
VAR_INPUT
 bReturn : BOOL;
 bJump : BOOL;
END_VAR

// every POU has an initial cyclomatic complexity of 1, since it has at least 1 branch
JMP(bJump) lbl; //Conditional jumps increase the cyclomatic complexity by 1

FUN := 'u';
RETURN(condition_return); //Conditional returns increase the cyclomatic complexity by 1, too

lbl:
 FUN := 't';

The code snippet has a cyclomatic complexity of 3.

Cognitive complexity

Title short form Cognitive complexity
Categories Maintainability
Definition Sum of partial complexities resulting, for example, from branches in the control flow of

the POU and from sophisticated Boolean expressions
Further
information

Cognitive complexity is a measure of the readability and comprehensibility of source
code introduced by Sonarsource™ in 2016. It penalizes a strong nesting of the control
flow and sophisticated Boolean expressions. The cognitive complexity is only calculated
for structured text implementations.

Standard upper
limit for the
associated rule
SA0178 [} 80]

20

Tip
You can also use Command 'Show cognitive complexity for current editor' [} 119] to display the
increments for Structured Text directly in the editor.

The following samples show how cognitive complexity is calculated.

Sample: Control flow

Configuration

TE1200102 Version: 2.9.0

Statements that manipulate the control flow increase the cognitive complexity by 1.
IF TRUE THEN //+1 cognitive complexity
 ;
END_IF

WHILE TRUE DO //+1 cognitive complexity
 ;
END_WHILE

FOR i := 0 TO 10 BY 1 DO //+1 cognitive complexity
 ;
END_FOR

REPEAT //+1 cognitive complexity
 ;
UNTIL TRUE
END_REPEAT

The code snippet has a cognitive complexity of 4.

Sample: Nesting of the control flow

When nesting the control flow, an increment of 1 is added for each level of nesting.
IF TRUE THEN //+1 cognitive complexity
 WHILE TRUE DO //+2 (+1 for the loop itself, +1 for the nesting inside the IF)
 FOR i := 0 TO 10 BY 1 DO //+3 (+1 for the FOR loop itself, +2 for the nesting inside the
WHILE and the IF)
 ;
 END_FOR
 END_WHILE

 REPEAT //+2 (+1 for the loop itself, +1 for the nesting inside the IF)
 ;
 UNTIL TRUE
 END_REPEAT
END_IF

The code snippet has a cognitive complexity of 8.

Sample: Boolean expression

Since Boolean expressions play a major role in understanding source code, they are also taken into account
when calculating cognitive complexity.

Understanding Boolean expressions that are connected with the same Boolean operator is not as difficult as
understanding a Boolean expression that contains alternating Boolean operators. Therefore, each chain of
equal Boolean operators in an expression increases the cognitive complexity.
b := b1; //+0: a simple expression, containing no operators, has no
increment

The simple expression without operator has an increment of 0.

b := b1 AND b2; //+1: one chain of AND operators

The expression with an AND operation has an increment of 1.

b := b1 AND b2 AND b3; //+1: one more AND, but the number of chains of operators does
not change

The expression has an AND more. But since it is the same operator, the number of chains formed with
identical operators does not change.

b := b1 AND b2 OR b3; //+2: one chain of AND operators and one chain of OR operators

Configuration

TE1200 103Version: 2.9.0

The expression has a chain of AND operators and a chain of OR operators. This results in an increment of 2.

b := b1 AND b2 OR b3 AND b4 AND b5; //+3: one chain of AND operators, one chain of OR operators and
another chain of AND operators

The code snippet has an increment of 3.

b := b1 AND NOT b2 AND b3; //+1: the unary NOT operator is not considered in the cognitive
complexity

The unary operator NOT is not taken into account in the cognitive complexity.

Sample: Further statements with increment

Structured Text has additional statements and expressions that change the control flow.

The following statements are penalized with an increment in cognitive complexity:
aNewLabel:
 x := MUX(i, a,b,c); //+1 for MUX operator
 y := SEL(b, i,j); //+1 for SEL operator
JMP aNewLabel; //+1 for JMP to label

EXIT and RETURN statements do not increase cognitive complexity.

Depth of Inheritance Tree (DIT)

Title short form DIT
Categories Maintainability
Definition Number of inheritances until a function block is reached that does not extend any other

function block
Further
information

DIT = Depth of Inheritance Tree

Sample:
FUNCTION_BLOCK FB_Base

FUNCTION_BLOCK FB_Sub EXTENDS FB_Base

FUNCTION_BLOCK FB_SubSub EXTENDS FB_Sub

The metric Depth of Inheritance Tree is:

• For FB_Base: 0, as it is itself a function block that does not extend any other function block.
• For FB_Sub: 1, as one step is required to get to FB_Base.
• For FB_SubSub: 2, as one step to FB_Sub and another to FB_Base is required.

Number Of Children (NOC)

Title short form NOC
Categories Reusability, maintainability
Definition Number of function blocks that extend the given basic function block. Function blocks

that indirectly extend a basic function block are not counted.
Further
information

NOC = Number Of Children

Sample:
FUNCTION_BLOCK FB_Base

Configuration

TE1200104 Version: 2.9.0

FUNCTION_BLOCK FB_Sub EXTENDS FB_Base

FUNCTION_BLOCK FB_SubSub1 EXTENDS FB_Sub

FUNCTION_BLOCK FB_SubSub2 EXTENDS FB_Sub

The metric Number Of Children is:

• For FB_Base: 1 child (FB_Sub)
• For FB_Sub: 2 children (FB_SubSub1, FB_SubSub2)
• For FB_SubSub1: 0 children
• For FB_SubSub2: 0 children

Response For Class (RFC)

Title short form RFC
Categories Maintainability, reusability
Definition Number of different POUs, methods or actions that can be called by a POU
Further
information

RFC = Response For Class
The value is used for measuring the complexity (in terms of testability and
maintainability). All possible direct and indirect method calls can be reached via
associations are taken into account. These can be used to respond to an incoming
message or to respond to an event that has occurred.

Sample:

Function block FB1:
FUNCTION_BLOCK FB1
VAR
 d,x,y : INT;
END_VAR

x := METH(d+10);
y := FUN(42, 0.815);

Method FB1.METH:
METHOD METH : INT
VAR_INPUT
 i : INT;
END_VAR

METH := FUN(CUBE(i), 3.1415);

Function Cube:
FUNCTION CUBE : INT
VAR_INPUT
 i : INT;
END_VAR

CUBE := i*i*i;

Function FUN:
FUNCTION FUN : INT
VAR_INPUT
 a : INT;
 f : LREAL;
END_VAR

FUN := LREAL_TO_INT(f*10)*a;

• FUN, CUBE: These functions have an RFC of 0, as neither function calls other functions, function blocks
or methods for their calculations.

• FB1.METH: The method uses FUN and CUBE, which results in an RFC of 2.
• FB1:

◦ The function block FB1 calls METH and FUN, which increases its RFC by 2.

Configuration

TE1200 105Version: 2.9.0

◦ For FB1, its method METH must also be taken into account. METH uses FUN and CUBE. FUN has
already been added to the RFC of FB1 (see previous point). Thus, only the use of CUBE in METH
increases the RFC for FB1 to 3.

Coupling Between Objects (CBO)

Title short form CBO
Categories Maintainability, reusability
Definition Number of additional function blocks that are instantiated and used in a function block
Further
information

CBO = Coupling Between Objects
A function block with a high level of coupling between objects is likely to be involved in
many different tasks and therefore violates the principle of clear responsibility.

Standard upper
limit for the
associated rule
SA0179 [} 80]

30

Sample:
FUNCTION_BLOCK FB_Base
VAR
 fb3 : FB3; // +1 instantiated here
END_VAR

FUNCTION_BLOCK FB_Sub EXTENDS FB_Base // +0 for EXTENDS
VAR
 fb1 : FB1; // +1: instantiated here
 fb2 : FB2; // +1: instantiated here
END_VAR

fb3(); // +0: instantiated in FB_Base, no increment for call

• The extension of a function block does not increase the coupling between objects.
• fb3 is instantiated in the implementation of FB_Base and inherited by FB_Sub. The call in FB_Sub

does not increase the coupling between the objects.
• The metric Coupling Between Objects for FB_Sub is therefore : 2

Complexity of reference (Elshof)

Complexity of reference = referenced data (number of variables) / number of data references

Title short form Elshof
Categories Efficiency, maintainability, reusability
Definition Complexity of the data flow of a POU

The complexity of reference is calculated using the following formula:
<Number of variables used> / <Number of variable accesses>

Further
information

Only variable accesses in the implementation part of the POU are taken into account.

Sample:
PROGRAM MAIN
VAR
 i, j : INT;
 k : INT := GVL.m;
 b, c : BOOL;
 fb : FB_Sample;
END_VAR

fb(paramA := b); // +3 accesses (fb, paramA and b)
i := j; // +2 accesses (i and j)
j := GVL.d; // +2 accesses (j and GVL.d)

Configuration

TE1200106 Version: 2.9.0

For the metric Complexity of reference (Elshof), MAIN:

• Number of variables used = 6
• Number of variable accesses = 7
• Complexity of reference (Elshof) = number of variables used/number of variable accesses = 6/7 = 0.85

Attention:
• c and k are not used and therefore do not count as "variables used".
• The assignment k : INT := GVL.m; is not counted as it is part of the declaration of the program.

Lack of Cohesion Of Methods - LCOM

Title short form LCOM
Categories Maintainability, reusability
Definition Cohesion = pairs of methods without common instance variables minus pairs of methods

with common instance variables
The metric is calculated using the following formula:
MAX(0, <number of object pairs without cohesion> - <number of object pairs with
cohesion>)

Further
information

LCOM: Lack of Cohesion of Methods
The cohesion between function blocks, their actions, transitions and methods describes
whether they access the same variables.
The lack of cohesion of methods describes how strongly the objects of a function block
are connected to each other. The lower the lack of cohesion, the stronger the connection
between the objects.
Function blocks with a high lack of cohesion are likely to be involved in many different
tasks and therefore violate the principle of unambiguous responsibility.

Sample:

Function block FB:
FUNCTION_BLOCK FB
VAR_INPUT
 a : BOOL;
END_VAR
VAR
 i,b : BOOL;
END_VAR

Action FB.ACT:
i := FALSE;

Method FB.METH:
METHOD METH : BOOL
VAR_INPUT
 c : BOOL;
END_VAR

METH := c;
i := TRUE;

Method FB.METH2:
METHOD METH2 : INT
VAR_INPUT
END_VAR

METH2 := SEL(b,3,4);

For the metric Lack of Cohesion Of Methods (LCOM) , the result for FB:

• Object pairs without cohesion (5 pairs):
◦ FB, FB.ACT

Configuration

TE1200 107Version: 2.9.0

◦ FB, FB.METH
◦ FB, FB.METH2
◦ FB.ACT, FB.METH2
◦ FB.METH, FB.METH2

• Object pairs with cohesion (1 pair):
◦ FB.ACT, FB.METH (both use i)

• LCOM = number of object pairs without cohesion - number of object pairs with cohesion = 5 - 1 = 4

Number of SFC branches

Title short form SFC branches
Categories Testability, maintainability
Definition Number of alternative and parallel branches of a POU of the implementation language

SFC (Sequential Function Chart)

Sample:

The above code snippet in SFC has 4 branches: 3 alternative and 1 parallel branch.

Number of SFC steps

If the function block is implemented in Sequential Function Chart (SFC), this code metric indicates the
number of steps in the function block.

Title short form SFC steps
Categories Maintainability
Definition Number of steps in a POU of the implementation language SFC (Sequential Function

Chart)
Further
information

Only the steps contained in the POU programmed in SFC are counted. Steps in the
implementations of actions or transitions called in POUs are not counted.

Configuration

TE1200108 Version: 2.9.0

Sample:

The above code snippet in SFC has 10 steps.

Metrics that are available in TwinCAT versions < 3.1.4026.14:

Column abbreviation in Standard Metrics view Description
Prather Complexity of nesting (Prather) [} 108]
n1 (Halstead) Halstead – number of different used operators (n1)

[} 108]
N1 (Halstead) Halstead – number of operators (N1) [} 108]
n2 (Halstead) Halstead – number of different used operands (n2)

[} 108]
N2 (Halstead) Halstead – number of operands (N2) [} 108]
HL (Halstead) Halstead – length (HL) [} 108]
HV (Halstead) Halstead – volume (HV) [} 108]
D (Halstead) Halstead – difficulty (D) [} 108]

Complexity of nesting (Prather)

Nesting weight = statements * nesting depth

Complexity of nesting = nesting weight / number statements

Nesting through IF/ELSEIF or CASE/ELSE statements, for example.

Halstead (n1, N1, n2, N2, HL, HV, D)

The following metrics are part of the "Halstead" range:

Configuration

TE1200 109Version: 2.9.0

- Number of different used operators - Halstead (n1)

- Number of operators - Halstead (N1)

- Number of different used operands - Halstead (n2)

- Number of operands - Halstead (N2)

- Length - Halstead (HL)

- Volume - Halstead (HV)

- Difficulty - Halstead (D)

Background information:

• Relationship between operators and operands (number, complexity, test effort)
• Based on the assumption that executable programs consist of operators and operands.
• Operands in TwinCAT: variables, constants, components, literals and IEC addresses.
• Operators in TwinCAT: keywords, logical and comparison operators, assignments, IF, FOR, BY, ^,

ELSE, CASE, Caselabel, BREAK, RETURN, SIN, +, labels, calls, pragmas, conversions, SUPER,
THIS, index access, component access, etc.

For each program the following basic parameters are formed:

• Number of different operators used - Halstead (n1),
Number of different operands used - Halstead (n2):

◦ Number of different used operators (h1) and operands (h2); together they form the vocabulary size
h.

• Number of operators - Halstead (N1),
Number of operands - Halstead (N2):

◦ Number of total used operators (N1) and operands (N2); together they form the implementation
class N.

• (Language complexity = operators/operator occurrences * operands/operand occurrences)

These parameters are used to calculate the Halstead length (HL) and Halstead volume (HV):

• Length - Halstead (HL),
Volume - Halstead (HV):

◦ HL = h1* log2h1 + h2* log2h2

◦ HV = N* log2h

Various key figures are calculated from the basic parameters:

• Difficulty - Halstead (D):
◦ Describes the difficulty to write or understand a program (during a code review, for example)
◦ D = h1/2 *N2/h2

• Effort:
◦ E = D*V

The key figures usually match the actual measured values very well. The disadvantage is that the method
only applies to individual functions and only measures lexical/textual complexity.

Configuration

TE1200110 Version: 2.9.0

4.5 Forbidden symbols
In the Forbidden symbols tab, you can specify the keywords, symbols and identifiers that must not be used
in the project code. The forbidden symbols are checked during the static analysis [} 111].

Configuration of forbidden symbols

You can enter these symbols directly in the row or select them via the input assistant. During the static
analysis the code is checked for the presence of these terms. Any hits result in an error being issued in the
message window.

Syntax of symbol violations in the message window

If a symbol is used in the code that is configured as a forbidden symbol, an error is issued in the message
window after the static analysis has been performed.

Syntax: "Forbidden symbol '<symbol>'“

Sample for the symbol XOR: "Forbidden symbol 'XOR'“

Commands

TE1200 111Version: 2.9.0

5 Commands

5.1 Command 'Run static analysis'

Symbol:

Function: The command starts the static code analysis for the currently active PLC project and outputs the
results in the message window.

Call: Build menu or context menu of the PLC project object

During execution of the static analysis, compliance with the coding rules, naming conventions and forbidden
symbols is checked. This command can be used to trigger a static analysis manually (explicit execution), or
the analysis can be performed automatically during code generation (implicit execution, see below for more
information).

TwinCAT issues the result of the static analysis, i.e. messages relating to rule violations, in the message
window. The rules [} 16], naming conventions [} 81] and forbidden symbols [} 110] to be taken into account
in the static analysis can be configured [} 14] in the PLC project properties. You can also define whether the
violation of a coding rule should appear as an error or a warning in the message window (see: Rules [} 16]).

See also: Syntax in the message window [} 112]

Please note that the selected PLC project is created before this command is executed. Checking
via the static analysis is only started if the code generation was successful, i.e. if the compiler did
not detect any compilation errors.

Please also note the Command 'Run static analysis [Check all objects]' [} 113] and the differences between
the two commands described in the following table.

Commands

TE1200112 Version: 2.9.0

Differences 'Run static analysis' command 'Run static analysis [Check all objects]'
command

Scope of application/
mode of operation

Objects used:
The activated rules are applied to the
objects that are used in the PLC project.
Unused objects:
Unused objects are not checked with this
command.

Objects used:
The activated rules are applied to the
objects that are used in the PLC project.
Unused objects:
The rules that are activated and that can
be checked in the precompile are applied
to the unused objects.
See also:

QuickFix/Precompile [} 130]
Note If you also wish to have the unused

objects checked by the static analysis, you
can use the 'Run static analysis [check
all objects]' command.

The command is primarily useful when
creating libraries or when processing
library projects.

Execution options
for the command

Static analysis can be performed either
explicitly using the command or implicitly.
Implicit execution of the static analysis
during each code generation can be
enabled or disabled in the PLC project
properties (Settings [} 14] tab). If the
Perform static analysis automatically
option is enabled, TwinCAT performs the
static analysis after each successful code
generation (with the Build project
command, for example).
The command can also be called up via
the Automation Interface. See also:
Automation Interface support [} 132]

The "Check all objects" variant cannot be
executed implicitly. It can only be executed
explicitly via the command.
The command can also be called up via
the Automation Interface. See also:
Automation Interface support [} 132]

5.1.1 Syntax in the message window

Syntax of rule violations in the message window

Each rule has a unique number (shown in parentheses after the rule in the rule configuration view). If a rule
violation is detected during the static analysis, the number together with an error or warning description is
issued in the message window, based on the following syntax. The abbreviation "SA" stands for "Static
Analysis".

Syntax: "SA<rule number>: <rule description>"

Sample for rule number 33 (unused variables): "SA0033: Not used: variable 'bSample'"

Syntax of convention violations in the message window

Each naming convention has a unique number (shown in parentheses after the convention in the naming
convention configuration view). If a violation of a convention or a preset is detected during the static analysis,
the number is output in the error list together with an error description based on the following syntax. The
abbreviation "NC" stands for "Naming Convention".

Syntax: "NC<prefix convention number>: <convention description>"

Sample for convention number 151 (DUTs of type Structure): "NC0151: Invalid type name 'STR_Sample'.
Expected prefix 'ST_'"

Syntax of symbol violations in the message window

If a symbol is used in the code that is configured as a forbidden symbol, an error is issued in the message
window after the static analysis has been performed.

Commands

TE1200 113Version: 2.9.0

Syntax: "Forbidden symbol '<symbol>'“

Sample for the symbol XOR: "Forbidden symbol 'XOR'“

5.2 Command 'Run static analysis [Check all objects]'

Symbol:

Function: The command starts the static code analysis for all objects of the currently active PLC project and
outputs the results in the message window.

Call: Build menu or context menu of the PLC project object

During execution of the static analysis, compliance with the coding rules, naming conventions and forbidden
symbols is checked. This command can be used to trigger the static analysis manually (explicit execution).

TwinCAT issues the result of the static analysis, i.e. messages relating to rule violations, in the message
window. The rules [} 16], naming conventions [} 81] and forbidden symbols [} 110] to be taken into account
in the static analysis can be configured [} 14] in the PLC project properties. You can also define whether the
violation of a coding rule should appear as an error or a warning in the message window (see: Rules [} 16]).

See also: Syntax in the message window [} 112]

Please note that the selected PLC project is created before this command is executed. Checking
via the static analysis is only started if the code generation was successful, i.e. if the compiler did
not detect any compilation errors.

Please also note the Command 'Run static analysis' [} 111] and the differences between the two commands
described in the following table.

Commands

TE1200114 Version: 2.9.0

Differences 'Run static analysis' command 'Run static analysis [Check all objects]'
command

Scope of application/
mode of operation

Objects used:
The activated rules are applied to the
objects that are used in the PLC project.
Unused objects:
Unused objects are not checked with this
command.

Objects used:
The activated rules are applied to the
objects that are used in the PLC project.
Unused objects:
The rules that are activated and that can
be checked in the precompile are applied
to the unused objects.
See also:

QuickFix/Precompile [} 130]
Note If you also wish to have the unused

objects checked by the static analysis, you
can use the 'Run static analysis [check
all objects]' command.

The command is primarily useful when
creating libraries or when processing
library projects.

Execution options
for the command

Static analysis can be performed either
explicitly using the command or implicitly.
Implicit execution of the static analysis
during each code generation can be
enabled or disabled in the PLC project
properties (Settings [} 14] tab). If the
Perform static analysis automatically
option is enabled, TwinCAT performs the
static analysis after each successful code
generation (with the Build project
command, for example).
The command can also be called up via
the Automation Interface. See also:
Automation Interface support [} 132]

The "Check all objects" variant cannot be
executed implicitly. It can only be executed
explicitly via the command.
The command can also be called up via
the Automation Interface. See also:
Automation Interface support [} 132]

5.3 Command 'View Standard Metrics'

Symbol:

Function: The command starts the static metric code analysis for the currently active PLC project and
represents the metrics for the programming blocks used in a table.

Call: Build menu or context menu of the PLC project object

The command starts the code generation for the selected PLC project (with the command Build project, for
example). In a tabular view, Standard Metrics, TwinCAT then displays the desired metrics (parameters) for
each programming block used. The metrics to be displayed are activated in the project properties (see
Configuration of the metrics [} 94]).

If a value is outside the range defined by a lower and/or upper limit in the configuration, the table cell is
shown in red.

The table can be sorted by columns by clicking on the respective column header.

Please note that the selected PLC project is created before this command is executed. Creation of
the standard metrics is only started if the code generation was successful, i.e. if the compiler did not
detect any compilation errors.

Please also note the Command 'View Standard Metrics [Check all objects]' [} 116] and the differences
between the two commands are described in the following table.

Commands

TE1200 115Version: 2.9.0

Differences Command 'View Standard
Metrics'

Command 'View Standard
Metrics [Check all objects]'

Scope The standard metrics are created
for the objects used in the PLC
project. Objects that are not used
are not considered with this
command.
The scope of this command thus
corresponds to the build
commands Build Project/Solution
or Rebuild Project/Solution
respectively.
If you want to create default
metrics for unused objects, which
is useful when editing library
projects, you can use the
command 'View Standard
Metrics [Check all objects]'.

The standard metrics are created
for all objects located in the project
tree of the PLC project.
This is primarily useful when
creating libraries or when
processing library projects.
The scope of this command thus
corresponds to the build command
Check all objects.

5.3.1 Commands in the context menu of the 'Standard Metrics'
view

Right-click in the Standard Metrics view to open a context menu that offers several commands.

The context menu offers options for updating, printing or exporting the metrics table, or to copy to the
clipboard. Via the context menu you can also navigate to a view for configuring the metrics – just like in the
PLC project properties. In addition, you can generate a Kiviat diagram for the selected function blocks or
open the block in the corresponding editor. A prerequisite for generating a Kiviat diagram is that at least
three metrics are configured with a defined value range (lower and upper limit).

The following commands are available:

• Calculate: The values are updated.
• Print table: The standard dialog for setting up the print job appears.
• Copy table: The data are copied to the clipboard, separated by tabs. From there you can paste the

table directly in a spreadsheet or a word processor.
• Export table: The data are exported into a text file (*.csv), separated by semicolons.
• Kiviat diagram: A radar chart is created for the selected function block. This is a graphical

representation of the function blocks, for which the metrics define a lower and upper limit. It is used to
visualize how well the code for the programming unit matches a particular standard.
Each metric is shown as an axis in a circle, which starts in the center (value 0) and runs through three
ring zones. The inner ring zone represents the range below the lower limit defined for the metric, the
outer ring zone represents the range above the upper limit. The axes for the respective metrics are
distributed evenly around the circle.
The current values for the individual metrics on their axes are linked with lines. Ideally, the whole line
should be within the central ring zone.

Prerequisite for using a Kiviat diagram
At least three metrics with a define value range must be configured.

The following diagram shows an example for 3 metrics with defined ranges (the name of the metric is shown
at the end of each axis, the name of the function block at the top right):

Commands

TE1200116 Version: 2.9.0

• Configure: A table opens in which the metrics can be configured. The view, functionality and settings
correspond to the metrics configuration [} 94] in the PLC project properties. If you make a change in
this table, it is automatically applied to the PLC project properties.

• Open POU: The programming block opens in the corresponding editor.

5.4 Command 'View Standard Metrics [Check all objects]'

Symbol:

Function: The command starts the static metric code analysis for the currently active PLC project and
displays the metrics for all programming blocks in a table.

Call: Menu Build or context menu of the PLC project object

The command starts the code generation for the selected PLC project (with the command Build project, for
example). TwinCAT shows the selected metrics for each programming block in the tabular Standard Metrics
view. The metrics to be displayed are activated in the project properties (see Configuration of the metrics
[} 94]).

If a value is outside the range defined by a lower and/or upper limit in the configuration, the table cell is
shown in red.

The table can be sorted by columns by clicking on the respective column header.

Please note that the selected PLC project is built before this command is executed. Creation of the
standard metrics is only started if the code generation was successful, i.e. if the compiler did not
detect any compilation errors.

Calculation of the "Code size" metric not possible using this command
The calculation of the Code size [number of bytes] [} 96] metric is only possible via the 'View
Standard Metrics' command [} 114]. When executing the View Standard Metrics [Check all
objects] command, the Code size field remains empty.

Commands

TE1200 117Version: 2.9.0

Please also note the command 'View Standard Metrics' [} 114] and the differences between the two
commands, which are described in the following table.

Differences Command 'View Standard
Metrics'

Command 'View Standard
Metrics [Check all objects]'

Scope The standard metrics are created
for the objects used in the PLC
project. Objects that are not used
are not considered with this
command.
The scope of this command thus
corresponds to the build
commands Build Project/Solution
or Rebuild Project/Solution
respectively.
If you want to create default
metrics for unused objects, which
is useful when editing library
projects, you can use the
command 'View Standard
Metrics [Check all objects]'.

The standard metrics are created
for all objects located in the project
tree of the PLC project.
This is primarily useful when
creating libraries or when
processing library projects.
The scope of this command thus
corresponds to the build command
Check all objects.

5.4.1 Commands in the context menu of the 'Standard Metrics'
view

Right-click in the Standard Metrics view to open a context menu that offers several commands.

The context menu offers options for updating, printing or exporting the metrics table, or to copy to the
clipboard. Via the context menu you can also navigate to a view for configuring the metrics – just like in the
PLC project properties. In addition, you can generate a Kiviat diagram for the selected function blocks or
open the block in the corresponding editor. A prerequisite for generating a Kiviat diagram is that at least
three metrics are configured with a defined value range (lower and upper limit).

The following commands are available:

• Calculate: The values are updated.
• Print table: The standard dialog for setting up the print job appears.
• Copy table: The data are copied to the clipboard, separated by tabs. From there you can paste the

table directly in a spreadsheet or a word processor.
• Export table: The data are exported into a text file (*.csv), separated by semicolons.
• Kiviat diagram: A radar chart is created for the selected function block. This is a graphical

representation of the function blocks, for which the metrics define a lower and upper limit. It is used to
visualize how well the code for the programming unit matches a particular standard.
Each metric is shown as an axis in a circle, which starts in the center (value 0) and runs through three
ring zones. The inner ring zone represents the range below the lower limit defined for the metric, the
outer ring zone represents the range above the upper limit. The axes for the respective metrics are
distributed evenly around the circle.
The current values for the individual metrics on their axes are linked with lines. Ideally, the whole line
should be within the central ring zone.

Prerequisite for using a Kiviat diagram
At least three metrics with a define value range must be configured.

The following diagram shows an example for 3 metrics with defined ranges (the name of the metric is shown
at the end of each axis, the name of the function block at the top right):

Commands

TE1200118 Version: 2.9.0

• Configure: A table opens in which the metrics can be configured. The view, functionality and settings
correspond to the metrics configuration [} 94] in the PLC project properties. If you make a change in
this table, it is automatically applied to the PLC project properties.

• Open POU: The programming block opens in the corresponding editor.

5.5 'Show constant propagation values for current editor'
command

Available from TwinCAT 3.1.4026.14

Symbol:

Function: The command starts the static code analysis and calculates a measured value for the constant
propagation of the code in the current editor. The dialog that opens visualizes the result. The analyzed code
is listed and the determined measured values are displayed.

Call: Build menu or context menu of the ST editor

Requirement: A programming object in the ST implementation language is open in the editor.

For more information, see: Constant propagation [} 126]

Dialog: Results of constant propagation

Sample:

Commands

TE1200 119Version: 2.9.0

5.6 Command 'Show cognitive complexity for current
editor'

Available from TwinCAT 3.1.4026.14

Symbol:

Function: The command starts the static code analysis and calculates an increment for the cognitive
complexity of the code in the current editor. The dialog that opens visualizes the result and specifies the
measured value sum in the title. The analyzed code is listed and displayed with the detected complexities.

Call: Build menu or context menu of the ST editor

Requirement: A programming object in the ST implementation language is open in the editor.

For more information, see also the documentation of the Cognitive Complexity [} 101] metric.

Dialog: Cognitive complexity

Sample:

"Cognitive complexity of FB_Sample: 3"

Commands

TE1200120 Version: 2.9.0

Pragmas and attributes

TE1200 121Version: 2.9.0

6 Pragmas and attributes
A pragma and various attributes are available to temporarily disable individual rules or naming conventions
for the static analysis, i.e. to exclude certain code lines or program units from the evaluation.

Requirement: The rules or conventions are enabled or defined in the PLC-project properties. See also:

• Rules [} 16]

• Naming conventions [} 81]

Attributes are inserted in the declaration part of a programming block in order to deactivate certain rules for a
complete programming object.

Pragmas are used in the implementation part of a programming block in order to deactivate certain rules for
individual code lines. The exception to this is rule SA0164, which can also be deactivated in the declaration
part by a pragma.

Rules that are disabled in the project properties cannot be activated by a pragma or attribute.

Rule SA0004 cannot be disabled by a pragma or an attribute.

Pragmas in the implementation editor
If you want to use a pragma in the implementation editor, this is currently possible in the ST and
FBD/LD/IL editors.
In FBD/LD/IL the desired pragma must be entered in a label.

The following section provides an overview and a detailed description of the available pragmas and
attributes.

Overview

• Pragma {analysis ...} [} 122]
◦ for disabling coding rules in the implementation part
◦ can be used for individual code lines

• Attribute {attribute 'no-analysis'} [} 122]
◦ for excluding programming objects (e.g. POU, GVL, DUT) from the static analysis (coding rules,

naming conventions, forbidden symbols)
◦ can only be used for whole programming objects

• Attribute {attribute 'analysis' := '...'} [} 123]
◦ for disabling coding rules in the declaration part
◦ can be used for individual declarations or for whole programming objects

• Attribute {attribute 'naming' := '...'} [} 123]
◦ for disabling naming conventions in the declaration part
◦ can be used for individual declarations or for whole programming objects

• Attribute {attribute 'nameprefix' := '...'} [} 124]
◦ for defining prefixes for instances of a structured data type
◦ can be used in the declaration part of a structured data type

• Attribute {attribute 'analysis:report-multiple-instance-calls'} [} 125]
◦ for specifying that a function block instance should only be called once

Pragmas and attributes

TE1200122 Version: 2.9.0

◦ can be used in the declaration part of a function block

Detailed description

Pragma {analysis ...}

You can use the pragma {analysis -/+<rule number>} in the implementation part of a programming block in
order to disregard individual coding rules for the following code lines. Coding rules are deactivated by
specifying the rule numbers preceded by a minus sign ("-"). For activation they are preceded by a plus sign
("+"). You can specify any number of rules in the pragma with the help of comma separation.

Insertion location:
• Deactivation of rules: In the implementation part of the first code line from which the code analysis is

disabled with {analysis - ...}.
• Activation of rules: After the last line of the deactivation with {analysis + ...}.
• For rule SA0164, the pragma can also be inserted in the declaration part before a comment.

Syntax:
• Deactivation of rules:

◦ one rule: {analysis -<rule number>}
◦ several rules: {analysis -<rule number>, -<further rule number>, -<further rule number>}

• Activation of rules:
◦ one rule: {analysis +<rule number>}
◦ several rules: {analysis +<rule number>, +<further rule number>, +<further rule number>}

Samples:

Rule 24 (only typed literals permitted) is to be disabled for one line (i.e. in these lines it is not necessary to
write "nTest := DINT#99") and then enabled again:
{analysis -24}
nTest := 99;
{analysis +24}
nVar := INT#2;

Specification of several rules:
{analysis -10, -24, -18}

Attribute {attribute 'no-analysis'}

You can use the {attribute 'no-analysis'} attribute to exclude an entire programming object from the static
analysis check. For this programming object no checks are carried out for the coding rules, naming
conventions and forbidden symbols.

Insertion location:

above the declaration of a programming object

Syntax:

{attribute 'no-analysis'}

Samples:
{attribute 'qualified_only'}
{attribute 'no-analysis'}
VAR_GLOBAL
 …
END_VAR

{attribute 'no-analysis'}
PROGRAM MAIN
VAR
 …
END_VAR

Pragmas and attributes

TE1200 123Version: 2.9.0

Attribute {attribute 'analysis' := '...'}

You can use the attribute {attribute 'analysis' := '-<rule number>'} to switch off certain rules for individual
declarations or for a complete programming object. The code rule is deactivated by specifying the rule
number(s) with a minus sign in front. You can specify any number of rules in the attribute.

Insertion location:

above the declaration of a programming object or in the line above a variable declaration

Syntax:
• one rule: {attribute 'analysis' := '-<rule number>'}
• several rules: {attribute 'analysis' := '-<rule number>, -<further rule number>, -<further rule number>'}

Samples:

Rule 33 (unused variables) is to be disabled for all variables of the structure.
{attribute 'analysis' := '-33'}
TYPE ST_Sample :
STRUCT
 bMember : BOOL;
 nMember : INT;
END_STRUCT
END_TYPE

Checking of rules 28 (overlapping memory areas) and 33 (unused variables) is to be disabled for variable
nVar1.
PROGRAM MAIN
VAR
 {attribute 'analysis' := '-28, -33'}
 nVar1 AT%QB21 : INT;
 nVar2 AT%QD5 : DWORD;

 nVar3 AT%QB41 : INT;
 nVar4 AT%QD10 : DWORD;
END_VAR

Rule 6 (concurrent access) is to be disabled for a global variable, so that no error message is generated if
write access to the variable occurs from more than one task.
VAR_GLOBAL
 {attribute 'analysis' := '-6'}
 nVar : INT;
 bVar : BOOL;
END_VAR

Attribute {attribute 'naming' := '...'}

The attribute {attribute 'naming' := '...'} can be used in the declaration part in order to exclude individual
declaration lines from the check for compliance with the current naming conventions.

Insertion location:
• Deactivation: in the declaration part above the relevant lines
• Activation: after the last line of the deactivation

Syntax:

{attribute 'naming' := '<off|on|omit>'}

• off, on: the check is disabled for all rows between the "off" and "on" statements
• omit: only the next row is excluded from the check

Sample:

It is assumed that the following naming conventions are defined:

Pragmas and attributes

TE1200124 Version: 2.9.0

• The identifiers of INT variables must have a prefix "n" (naming convention NC0014), e.g. "nVar1".
• Function block names must start with "FB_" (naming convention NC0103), e.g. "FB_Sample".

For the code shown below, the static analysis then only issues messages for the following variables: cVar,
aVariable, bVariable.
PROGRAM MAIN
VAR
 {attribute 'naming' := 'off'}
 aVar : INT;
 bVar : INT;
 {attribute 'naming' := 'on'}

 cVar : INT;

 {attribute 'naming' := 'omit'}
 dVar : INT;

 fb1 : SampleFB;
 fb2 : FB;
END_VAR

{attribute 'naming' := 'omit'}
FUNCTION_BLOCK SampleFB
…

{attribute 'naming' := 'off'}
FUNCTION_BLOCK FB
VAR
 {attribute 'naming' := 'on'}
 aVariable : INT;
 bVariable : INT;
 …

Attribute {attribute 'nameprefix' := '...'}

The attribute {attribute 'nameprefix' := '...'} defines a prefix for variables of a structured data type. A naming
convention then applies to the effect that identifiers for instances of this type must have this prefix.

Insertion location:

above the declaration of a structured data type

Syntax:

{attribute ‘nameprefix’ := '<prefix>'}

Example:

The following naming conventions are defined in the category Naming conventions [} 81] in the PLC project
properties:

• Variables of the type of a structure (NC0032): st
• Structures (NC0151): ST_

Conversely, variables of the type "ST_Point" should not begin with the prefix "st", but with the prefix "pt".

In the following sample, the statistic analysis will output a message for "a1" and "st1" of the type "ST_Point"
because the variable names do not begin with "pt". For variables of the type "ST_Test", conversely, the
prefix "st" is expected.
TYPE ST_Test :
STRUCT
 …
END_STRUCT
END_TYPE

{attribute 'nameprefix' := 'pt'}
TYPE ST_Point :
STRUCT
 x : INT;
 y : INT;
END_STRUCT
END_TYPE

Pragmas and attributes

TE1200 125Version: 2.9.0

PROGRAM MAIN
VAR
 a1 : ST_Point; // => Invalid variable name 'a1'. Expect prefix 'pt'
 st1 : ST_Point; // => Invalid variable name 'st1'. Expect prefix 'pt'
 pt1 : ST_Point;

 a2 : ST_Test; // => Invalid variable name 'a2'. Expect prefix 'st'
 st2 : ST_Test;
 pt2 : ST_Test; // => Invalid variable name 'st2'. Expect prefix 'st'
END_VAR

Attribute {attribute 'analysis:report-multiple-instance-calls'}

The attribute {attribute 'analysis:report-multiple-instance-calls'} identifies a function block for a check for rule
105: Only function blocks with this attribute are checked to ascertain whether the instances of the function
block are called several times. The attribute has no effect if rule 105 is disabled in the Rules [} 16] category
in the PLC project properties.

Insertion location:

above the declaration of a function block

Syntax:

{attribute 'analysis:report-multiple-instance-calls'}

Sample:

In the following sample the static analysis will issue an error for fb2, since the instance is called more than
once.

Function block FB_Test1 without attribute:
FUNCTION_BLOCK FB_Test1
…

Function block FB_Test2 with attribute:
{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION_BLOCK FB_Test2
…

Program MAIN:
PROGRAM MAIN
VAR
 fb1 : FB_Test1;
 fb2 : FB_Test2;
END_VAR

fb1();
fb1();
fb2(); // => SA0105: Instance 'fb2' called more than once
fb2(); // => SA0105: Instance 'fb2' called more than once

Constant propagation

TE1200126 Version: 2.9.0

7 Constant propagation

Available from TwinCAT 3.1.4026.14

Static code analysis is based on constant propagation, the results of which are used for various checks. For
example, it checks whether pointers are not equal to 0 or whether array indices are outside the valid range.

They can effectively support static analysis if they know how this analysis works and where its limits lie.

See also: 'Show constant propagation values for current editor' command [} 118]

Constant propagation

Static analysis attempts to determine the value of a variable based on its use.

Sample:
PROGRAM MAIN
VAR
 x : INT;
 bTest : BOOL;
END_VAR

x := 99;

IF x < 100 THEN
 bTest := TRUE;
END_IF

In the implementation in line 1, the constant propagation sets the value 99 for the variable x in order to use
this value for further analyses. The analysis then recognizes that the expression in the subsequent IF
statement is constantly TRUE.

Locally performed constant propagation

A value is only determined locally in the function block. It is irrelevant how an input is transferred. The results
of function calls are also irrelevant.

Sample:
FUNCTION Func : BOOL
VAR_INPUT
 bTest : BOOL;
END_VAR

IF bTest THEN
 Func := OtherFunc(TRUE);
END_IF

If the parameter bTest is set to TRUE for each call, this has no effect on the constant propagation. Even if
OtherFunc(TRUE) always returns TRUE, this has no effect on the constant propagation.

Only temporary variables have initial values

Static local variables in programs and function blocks do not have an assumed initial value. The variables
retain their values from the last call and can therefore be "anything" in principle.

Local variables in functions and temporary variables have an initial value each time they are called. The
constant propagation calculates with this initial value.

Sample:
PROGRAM MAIN
VAR
 x : INT := 6;
 bTest : BOOL;
END_VAR
VAR_TEMP
 y : INT := 8;
END_VAR

Constant propagation

TE1200 127Version: 2.9.0

bTest := x < y;

The variable y will have the value 8 each time MAIN is executed. However, the variable x will not
necessarily. Therefore, the constant propagation will only assume a value for y, but not for x.

It is advisable to declare variables that are always written first and then read as temporary variables.

Constant propagation determines value ranges for numerical data types

To reduce complexity, a value range with upper and lower limits is determined for each variable.

Sample:
PROGRAM MAIN
VAR
 x : INT := 6;
 bTest : BOOL;
 y : INT;
END_VAR

IF bTest THEN
 x := 1;
ELSE
 x := 100;
END_IF

IF x = 77 THEN
 y := 13;
END_IF

The value range [1..100] is determined here for the variable x. As a result, the comparison x = 77 is not
recognized as a constant expression in line 7, as 77 is within the value range.

Recurring sophisticated expressions are not recognized as the same variable

Sophisticated expressions may not have a value assigned. If such expressions occur more than once, it is
helpful to introduce an auxiliary variable.

Sample:
PROGRAM MAIN
VAR
 x : DINT;
 py : POINTER TO INT;
 y : INT;
 testArray : ARRAY [0..4] OF DINT;
END_VAR

IF py <> 0 THEN
 IF py^ >= 0 AND py^<= 4 THEN
 x := testArray[py^];
 END_IF

 y := py^;

 IF y <= 0 AND y <=4 THEN
 x := testArray[y];
 END_IF
END_IF

In line 3, an error is output for a possible access to a value via pointer, although the area to which the pointer
points is checked. If the value is first copied into a local variable and its range is checked, then the constant
propagation can determine the value range for this variable and allows access to the array in line 9.

Branches

For branches, individual branches are calculated separately. Value ranges from the individual ranges are
then combined to form a new value range.

Sample:
IF func(TRUE) THEN
 x := 1;
ELSE
 x := 10;
END_IF

Constant propagation

TE1200128 Version: 2.9.0

IF func(FALSE) THEN
 y := x;
ELSE
 y := 2*x;
END_IF

In line 6, x has the range [1..10]. After line 11, y has the value range [1..20]. This results from the
union of the two value ranges [1..10] and [2..20].

Conditions

Sample:

Conditions can restrict the value range of a variable in a code block. Several conditions can be combined.
Mutually exclusive conditions can also result in an empty value range.
IF y > 0 AND y < 10 THEN
 x := y;
ELSE
 x:= 0;
END_IF

IF x < 0 THEN
 i := 99;
END_IF

y has the value range [1..9] in line 2. This results in the value range [0..9] for x in line 6. Combined with
the condition x < 0, this results in an empty set of possible values in line 9 for x. The code is not
accessible. The static analysis will report that the condition x < 0 always results in FALSE at this point.

Loops

The constant propagation will execute loops in the code until the values of the variables in the loop no longer
change. It is assumed that a loop can be run through as often as required. The values determined so far are
combined with the previous values. Variables that are changed within the loop have a successively growing
range. The constant propagation does not assume all possible values for ranges, but only uses limits that
occur in the code and also the values 0, 1, 2, 3 and 10, as these often play a role.

The easiest way to illustrate the procedure is with an example.

Sample:
PROGRAM MAIN
VAR
 x : DINT;
 i : DINT;
 y : DINT;
END_VAR

x := 0;
y := 0;

FOR i := 0 TO 5 DO
 x := x + 1;
 y := i;
END_FOR

The constant propagation knows the following about the loop:

i, x, and y are 0 at the beginning of the first execution of the loop. The condition i <= 5 applies to the code
in the loop. The condition i > 5 applies to the code after the loop.

The constant propagation determines the following values for the variables in the loop:

i x y
[0..5] [0..MAXDINT] [0..5]

The following intermediate steps are carried out in detail:

Constant propagation

TE1200 129Version: 2.9.0

Run i x y
1 0 [0..1] 0 i was initialized with

0, y always gets the
same values as i

2 [0..1] [0..2] [0..1]

6 [0..5] [0..6] [0..5] First, the range
[0..6] is actually
calculated for i.
However, it is known
that i < 5 is a
condition. Therefore,
the value for the
code in the loop is
limited to this value.

7 [0..5] [0..7] [0..5]

10 [0..5] [0..10] [0..5] x is always
incremented. From
10, however, the
value is "rounded
up" to MAXDINT.

11 [0..5] [0..MAXDINT] [0..5] MAXDINT + 1
results in MAXDINT

from 11 From the 11th run,
the values in the
loop will no longer
change. The
propagation is
finished.

In addition, the following applies to the code after this loop: i = 6. The range [0..6] is determined in the loop
and this is combined with the condition i > 5, which results in the exact value 6.

QuickFix/Precompile

TE1200130 Version: 2.9.0

8 QuickFix/Precompile

Available from TwinCAT 3.1 Build 4026

Some rules from Static Analysis can already be checked during precompilation. For the detection of such
rule violations no explicit execution of the Static Analysis is necessary, but the check already takes place on
the basis of the precompile information during editing. The checking of a rule during precompilation takes
place only if the rule is enabled in the Static Analysis settings.

Precompile: Wavy underline and display in the message window

When a rule violation occurs, it is immediately indicated by wavy underline in the declaration editor or in the
ST editor. Additionally - as long as the editor is open - error messages or warnings appear in the message
window in the category "IntelliSense". These contain the note “(precompile)” before the rule number.

QuickFix commands

In addition, for some rules that can be checked during precompilation, there is the possibility of a QuickFix in
the declaration editor and the ST editor. You can perform automatic, immediate error handling directly at the
affected code positions. For quick error handling, click on the wavy underlined code in the editor and then
click on the light bulb icon.

Depending on the error, the following QuickFix commands are offered:

• Ignore error message/warning:
The command causes pragmas or attributes to be automatically inserted into the code that exclude
checking the associated rule for that line of code.

• Ignore error message/warning globally for the POU:
The command causes an attribute to be automatically inserted at the beginning of the declaration part
of the programming object. Then a check of the associated rule for this programming object is
excluded.

• Disable checking:
The command causes the checking of the associated rule to be disabled in the settings.

• Fix error by suggesting to change ST code:
Example for "SA0033: Unused variables": The declaration of the unused variables is removed from the
declaration editor.

Available rules

Not available:

Please note that the following rules cannot be checked during precompilation.

• SA0004
• SA0006
• SA0013
• SA0016
• SA0027
• SA0028
• SA0042
• SA0100
• SA0103
• SA0105
• SA0150
• SA0160
• SA0161

QuickFix/Precompile

TE1200 131Version: 2.9.0

• SA0175

Available:

All other rules are checked on the basis of the precompile information.

Automation Interface support

TE1200132 Version: 2.9.0

9 Automation Interface support
The Static Analysis can partly be operated via the Automation Interface (AI). AI support includes the
following commands/actions:

• Explicit execution of Static Analysis via the Automation Interface [} 132]

• Implicit execution of Static Analysis via the Automation Interface [} 132]

• Save settings/configuration via Automation Interface [} 132]

• Load settings/configuration via Automation Interface [} 133]

• Export metrics [} 133]

Please also refer to the Automation Interface documentation:
Product description

Explicit execution of Static Analysis via the Automation Interface

The two following commands can be called explicitly via the Automation Interface:

• Command 'Run static analysis' [} 111]

• Command 'Run static analysis [Check all objects]' [} 113]

bCheckAll can be specified as optional parameter for the method RunStaticAnalysis(). However, the
method can also be called without parameters.

Parameter Call
RunStaticAnalysis() Execution of the Run static analysis [Check all

objects] commandRunStaticAnalysis(bCheckAll = TRUE)
RunStaticAnalysis(bCheckAll = FALSE) Execution of the Run static analysis command

PowerShell sample:
$p = $sysMan.LookupTreeItem("TIPC^MyPlcProject^MyPlcProject Project")
$p.RunStaticAnalysis()

C# sample for TC3.1 version >= Build 4024:
ITcPlcIECProject3 plcIec3 = sysMan.LookupTreeItem("TIPC^Untitled1^Untitled1
Project") as ITcPlcIECProject3;
plcIec3.RunStaticAnalysis();

C# sample for TC3.1 version >= Build 4026:
ITcPlcIECProject4 plcIec4 = sysMan.LookupTreeItem("TIPC^Untitled1^Untitled1
Project") as ITcPlcIECProject4;
plcIec4.RunStaticAnalysis();

Implicit execution of Static Analysis via the Automation Interface

Alternatively, the setting [} 14] Perform static analysis automatically can be enabled, and the project can
be created via the Automation Interface, so that the Static Analysis is implicitly performed during the project
creation process.

Save settings/configuration via Automation Interface

Available from TwinCAT 3.1 Build 4026

The settings [} 14] from Static Analysis can be saved or exported to a *.csa file via Automation Interface.

For the method SaveStaticAnalysisSettings(string bstrFilename) the destination path of the
file must be specified as a transfer parameter.

https://infosys.beckhoff.com/content/1031/tc3_automationinterface/242682763.html

Automation Interface support

TE1200 133Version: 2.9.0

The RunStaticAnalysis method is available from the ITcPlcIECProject3 interface. The
methods SaveStaticAnalysisSettings and LoadStaticAnalysisSettings are offered
from the interface ITcPlcIECProject4.

C# sample for TC3.1 version >= Build 4026:
// Path to the location to export the SAN configuration
string saveCsaPath = @"C:\Users\UserName\Desktop\SaveTest.csa";
[…]
// Navigate to PLC project
ITcPlcIECProject4 plcIec4 = sysMan.LookupTreeItem("TIPC^Untitled1^Untitled1
Project") as ITcPlcIECProject4;
// Save SAN configuration
plcIec4.SaveStaticAnalysisSettings(saveCsaPath);

Load settings/configuration via Automation Interface

Available from TwinCAT 3.1 Build 4026

A ready-made Static Analysis configuration (*.csa file) can be loaded into the PLC project via Automation
Interface. The settings [} 14] loaded by this can then be checked by AI by running the Static Analysis (see
above).

For the method LoadStaticAnalysisSettings(string bstrFilename) the path of the file to be
loaded must be specified as a transfer parameter.

The RunStaticAnalysis method is available from the ITcPlcIECProject3 interface. The
methods SaveStaticAnalysisSettings and LoadStaticAnalysisSettings are offered
from the interface ITcPlcIECProject4.

C# sample for TC3.1 version >= Build 4026:
// Path to load a SAN configuration
string loadCsaPath = @"C:\Users\UserName\Desktop\LoadTest.csa";
[…]
// Navigate to PLC project
ITcPlcIECProject4 plcIec4 = sysMan.LookupTreeItem("TIPC^Untitled1^Untitled1
Project") as ITcPlcIECProject4;
// Load SAN configuration
plcIec4.LoadStaticAnalysisSettings(loadCsaPath);
// Optionally run SAN afterwards
plcIec4.RunStaticAnalysis();

Export metrics

Available from TwinCAT 3.1 Build 4026.4

The standard metrics can be exported to a text file (*.csv) via the Automation Interface. A current calculation
of the metrics is performed implicitly. If this process was executed manually, it would include the following
two commands:

• Command 'View Standard Metrics' [} 114]

• Export table command, see Commands in the context menu of the 'Standard Metrics' view [} 115]

For the ExportStandardMetrics(string bstrFilename) method, the path that the export file is
saved on must be specified as a parameter value.

The ExportStandardMetrics method is available from the ITcPlcIECProject5 interface.

C# sample for TC3.1 version >= Build 4026.4:

Automation Interface support

TE1200134 Version: 2.9.0

// Path to save the csv file
string savePath = @"C:\Users\UserName\Desktop\Metrics.csv";
[…]
// Navigate to PLC project
ITcPlcIECProject5 plcIec5 = sysMan.LookupTreeItem("TIPC^Untitled1^Untitled1
Project") as ITcPlcIECProject5;
// Export standard metrics
plcIec5.ExportStandardMetrics(savePath);

Examples

TE1200 135Version: 2.9.0

10 Examples

10.1 Static analysis
During execution of the static analysis [} 111], compliance with the coding rules [} 16], naming conventions
[} 81] and forbidden symbols [} 110] is checked. The following section provides a sample for each of these
aspects.

1) Coding rules

In this sample some coding rules are configured as error. The violations of this coding rules are therefore
reported as an error after the static analysis has been performed. Further information is shown in the
following diagram.

2) Naming conventions

The following naming conventions are configured:

• Prefix "b" for variables of type BOOL (NC0003)
• Prefix "fb" for function block instances (NC0031)
• Prefix "FB_" for function blocks (NC0103)
• Prefix "I_" for interfaces (NC0108)

This naming conventions are not adhered to in the declaration of Boolean variables ("x"), the instantiation of
function block ("f") and the declaration of the interface type ("ITF_"). These code positions are reported as an
error after the static analysis has been performed.

Examples

TE1200136 Version: 2.9.0

 3) Forbidden symbols

The bit string operator XOR and the bit shift-operators SHL, SHR, ROL and ROR are configured as
forbidden symbols. These operators should not be used in the code.
Accordingly, any use of these operators is reported as an error after the static analysis has been performed.

10.2 Standard metrics
A sample for dealing with the standard metrics is provided below.

In this sample "650" (= 650 bytes) is defined as upper limit for the metric "code size" and "5" as upper limit
for the metric "number of input variables" (see: Configuration of the metrics [} 94]). In addition, rule 150
(SA0150: Violation of lower or upper metrics limits) is enabled and configured as warning.

When the command 'View Standard Metrics' [} 114] is issued, the metric view opens and the indicators that
were determined are displayed in tabular form. Since the size of the MAIN program is 688 bytes and the
program SampleProgram has 7 input variables, these indicators exceed the defined upper limit in each case,
so that the corresponding table cells are shown in red.

In this sample, the fact that the defined upper limits are exceeded is not only apparent in the metric view.
Since rule 150 is configured as warning, the static analysis checks for violations of lower and upper metric
limits. After the static analysis [} 111] has been performed, the violation of the two upper limits is therefore
reported as a warning in the message window.

Examples

TE1200 137Version: 2.9.0

Support and Service

TE1200138 Version: 2.9.0

11 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Trademark statements

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Third-party trademark statements

Arm, Arm9 and Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere.

Intel, the Intel logo, Intel Core, Xeon, Intel Atom, Celeron and Pentium are trademarks of Intel Corporation or its subsidiaries.

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/te1200

mailto:info@beckhoff.com?subject=TE1200
https://www.beckhoff.com
https://www.beckhoff.com/te1200

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security
	1.4 Information on the security risk analysis

	2 Overview
	3 Installation
	3.1 Functionality: Light vs. full
	3.2 System Requirements
	3.3 Licensing

	4 Configuration
	4.1 Settings
	4.2 Rules
	4.2.1 Rules - overview and description

	4.3 Naming conventions
	4.3.1 Naming conventions – overview and description
	4.3.2 Options
	4.3.3 Placeholder {datatype}

	4.4 Metrics
	4.4.1 Metrics - overview and description

	4.5 Forbidden symbols

	5 Commands
	5.1 Command 'Run static analysis'
	5.1.1 Syntax in the message window

	5.2 Command 'Run static analysis [Check all objects]'
	5.3 Command 'View Standard Metrics'
	5.3.1 Commands in the context menu of the 'Standard Metrics' view

	5.4 Command 'View Standard Metrics [Check all objects]'
	5.4.1 Commands in the context menu of the 'Standard Metrics' view

	5.5 'Show constant propagation values for current editor' command
	5.6 Command 'Show cognitive complexity for current editor'

	6 Pragmas and attributes
	7 Constant propagation
	8 QuickFix/Precompile
	9 Automation Interface support
	10 Examples
	10.1 Static analysis
	10.2 Standard metrics

	11 Support and Service

		documentation@beckhoff.com
	2025-06-30T10:57:42+0200
	Beckhoff Automation, Verl
	Documentation Publishing

