
AS2000

Blindtext Blindtext Blindtext

Manual | EN

TwinCAT 3
Q-Sys - QRC

2022-12-13 | Version: 1.3.2

Table of Contents

TwinCAT 3 3Version: 1.3.2

Table of Contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 Safety instructions... 6
1.3 Notes on information security.. 7

2 Overview .. 8
2.1 Update History .. 9

3 Installation ... 12

4 Programming... 13
4.1 Function Blocks... 13

4.1.1 FB_Connect ... 13
4.1.2 FB_QRC_ResExtract ... 16
4.1.3 QRC Commands.. 22

4.2 Structures, enumerations, GVL... 40
4.2.1 E_FileMode .. 40
4.2.2 ST_Control ... 40
4.2.3 ST_ControlEx... 40
4.2.4 Structure about Mixer... 41
4.2.5 ST_FileSpec... 41
4.2.6 ST_JobSpec... 41
4.2.7 Param... 42

4.3 Interfaces .. 42
4.3.1 I_Connect... 42
4.3.2 I_ResExtract... 43

5 Example: AutoPolling and writing controls.. 49

6 Appendix.. 50
6.1 Error Codes... 50
6.2 Buffer size ... 50
6.3 String function ... 50
6.4 Easy way to find control name, component name and name of Snapshot Bank 50
6.5 Control button "Load" of snapshot component.. 51
6.6 Snapshot state and related properties .. 52

Table of Contents

TwinCAT 34 Version: 1.3.2

Foreword

TwinCAT 3 5Version: 1.3.2

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TwinCAT 36 Version: 1.3.2

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

TwinCAT 3 7Version: 1.3.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TwinCAT 38 Version: 1.3.2

2 Overview

QSC is a professional audio/video system solutions provider. Its software-based platform is called Q-SYS. Q-
SYS is designed to allow third-party systems to control and/or monitor various aspects of the system by
writing your own code using different communication protocols.

The Q-SYS software supports following ways of external control:

• Named Controls – Controls that have been placed at Named Control pane. The names of the controls
must be different. [This is part of the Q-SYS control level.]

• Component Control – Control all controls within any component by customizing the name of
component to make it unique. [This is part of the Q-SYS component level.]

• Mixer Control – Specialized control of mixers using mixer concepts. [This is part of the Q-SYS
component level.]

Basically, there are two different protocols provided by QSC to access the three above mentioned external
controls for Q-SYS. They are called "Q-SYS External Control Protocol" and "Q-SYS Remote Control" (QRC
in the following).

• Q-SYS External Control Protocol:
Q-SYS External Control Protocol is based on ASCII and using TCP/IP connection on port 1702
and it requires the use of Named Controls for any control which should be externally controlled.
This means it only supports Q-SYS control level functions.

• QRC:
QRC is the latest and most advanced protocol provided by QSC to allow an external control
system (e.g. TwinCAT) to control various functions within Q-SYS. The QRC protocol is based on
JSON-RPC version 2.0 and is using TCP/IP connection on port 1710. QRC supports the use of all
three above mentioned controls: Named Controls, Component Control and Mixer Control. Based
on that it allows the external access at control level and component level.

https://www.jsonrpc.org/specification

Overview

TwinCAT 3 9Version: 1.3.2

The precondition of external access at control level, is that every control in Q-SYS you want to be
controlled, must be dragged into the Named Controls pane and the name of it must be unique.

In this document, how QRC can be used with Beckhoff controllers (TwinCAT software) will be explained. An
example code called Tc3_Qrc library will also be provided in attachment.

The Tc3_Qrc library enables the implementation of one or more QRC external clients in the TwinCAT PLC.
With its help, a Q-SYS Core can be controlled directly from a TwinCAT program.

QRC controls can be mapped to any data types in TwinCAT. This allows a large range of communication
possibilities for the system integrator.

The QRC specification can be found here.

The QRC specification and its features are designed and developed by QSC, specification may be
changed in the future.

QSC and Q-SYS are trademarks of QSC, LLC. The QRC specification and associated documentation is
copyright QSC, LLC.

Further information about the activities of Beckhoff in the market stage and show can be found on our
website at: PC-based Control for Stage and Show Technology

System Requirement:

Technical Data Requirement
TwinCAT version TwinCAT 3.1 build 4022.20 or higher
Visual Studio version Visual Studio 2013 or higher
Required TwinCAT license TF6310 licence

2.1 Update History
[Version 3.0.0.0] – 2020.12.15

Changed:

• Changed the major version number of this library to 3.x.x.x because of TwinCAT 3.
• Move this library file into the library category “Entertainment_Industry”.

https://q-syshelp.qsc.com/Index.htm#External_Control/Q-Sys_Remote_Control/QRC.htm
https://www.beckhoff.de/english.asp?applicat/stage.htm?id=709978217235739

Overview

TwinCAT 310 Version: 1.3.2

[Version 1.1.2.0] – 2020.11.12

Added:

• Added a method FB_exit [} 16] for online changing the input parameters of FB_init [} 14].

Changed:

• Bug fixed.

[Version 1.1.0.0] - 2020.03.10

Added:

• Added a new function block FB_QRC_Snapshot [} 38] for Snapshot Bank.

• Extended function block FB_QRC_ChangeGroup [} 28] with an additional method AddSnapshotControl
[} 31] for adding snapshot component in a change group.

• Added Support about extraction frame of snapshot control. Read the section Workflow about
extraction of snapshot properties [} 20] for more information.

• Extended function block FB_QRC_ResExtract [} 16] with an additional method Clear [} 18] for clearing
internal storage.

• Added modifier for each method. (Internal methods can't be accessed anymore starting from this
version.)

• Added a property sTxFrame to all QRC Command function block to read the QRC sending frame
easily without the connection function block.

Changed:

• Adjusted the input variable of function block FB_QRC_LoopPlayer [} 37].
• Adjusted the severity of some events.

Overview

TwinCAT 3 11Version: 1.3.2

• Adjusted the variable name and type of structure ST_FileSpec [} 41] and ST_JobSpec [} 41] for better
understanding.

• Adjusted the prefix of property name with the type ARRAY to fit TwinCAT 3 programming conventions.
• Bug fixed.

Removed:

• Removed the Get method from property sTxFrame of I_Connect [} 15].

Installation

TwinCAT 312 Version: 1.3.2

3 Installation
The Q-SYS Core is considered as the server and the TwinCAT automation platform is considered as the
client. The Q-SYS Core should load a Q-SYS design file and switch to Run to connect to TwinCAT
automation platform. (In Q-SYS Designer this process is called Run mode).

Alternatively, if there is no Q-SYS hardware available, a Q-SYS design file can be simulated (in Q-SYS
Designer the simulation process is called Emulate mode) on Q-SYS designer software without hardware.
More information can be found at website Q-SYS help portal.

Before using this tc3_Qrc library, target controls and components must be set up in Q-SYS Designer:

• For target controls, they must be dragged to the Named Controls pane.
• For target components, their names must be customized and unique.
• For mixer Control and snapshot control, they are also types of component control and they should be

prepared like target components.

In following paragraphs, the words Q-SYS device represents Q-SYS Core in Run mode or Q-SYS designer
software in Emulate mode.

https://q-syshelp.qsc.com/Index.htm

Programming

TwinCAT 3 13Version: 1.3.2

4 Programming
This sample project generally consists of three modules, an encode module, a communication module, and a
decode module. Additionally, two interfaces are designed. An interface is used to enable the data exchange
between encode module and communication module, and the other interface is used to enable the data
exchange between communication module and decode module.

4.1 Function Blocks
In this project, all function blocks are mainly divided into 3 parts. The function block FB_Connect [} 13],
which belongs to the communication module, is used for creating TCP connection; 7 function blocks [} 22],
which belong to the encode module, are used to encode QRC frame. Furthermore, a helper function block
FB_QRC_ResExtract [} 16], which belongs to decode module, is used for extract QRC response frame.

4.1.1 FB_Connect
This function block enables to establish or terminate a TCP connection.

Syntax
FUNCTION_BLOCK FB_Connect IMPLEMENTS I_Connect
VAR_OUTPUT
 bBusy : BOOL;
 bError : BOOL;
 eState : E_SocketConnectionState;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bBusy BOOL Is TRUE as long as the asynchronous request is still

active. Is FALSE if the request was completed or an error
occurs.

bBusy BOOL Is set if an error occurs during the execution of the
function block. Error details are located in the "Error List"
window.

eState E_SocketConnectionState Returns the current connection state.
• eSOCKET_DISCONNECTED: disconnected
• eSOCKET_SUSPENDED: state between connected

and disconnected
• eSOCKET_CONNECTED: connected

ipResult
Message

I_TcMessage Enables error handling with the Tc3_EventLogger.

Programming

TwinCAT 314 Version: 1.3.2

 Methods

Name Description
FB_init Initialization method
Connect Establish a TCP connection.
Disconnect Terminate a TCP connection.
Send Send the QRC frame.
Receive Receive the QRC frame.
FB_exit Online Change method

Because all methods are asynchronous and they need more than one cycle to finish working, only
one method could be invoked at the same time. Therefore, check the output parameter bBusy
when one of these methods is being called.

 Properties

Properties Type Access Description
aRxFrame ARRAY[0..QRC_NUMBE

R_OF_CONTROL] OF
T_MaxString

Get As soon as the falling
edge of bBusy occurs
and bError is FALSE,
the received QRC
response frame can be
get with this property.

sTxFrame STRING(QRC_BUFFER_
SIZE)

Set As soon as the falling
edge of bBusy occurs
and bError is FALSE,
the QRC frame to be sent
can be set with this
property.

 Interface

Name Description
I_Connect The interface that defines communication related methods.

4.1.1.1 FB_init

Syntax
Method FB_init : BOOL
VAR_INPUT
 sSrvNetID : T_AmsNetID := ‘’;
 sRemoteHost : T_IPv4Addr := ‘127.0.0.1’;
 tReconnect : TIME := T#30s;
 iResExtract : I_ResExtract;
END_VAR

VAR_INPUT

sSrvNetID: AMS Net Id. For the local computer (default) an empty string may be specified.

sRemoteHost: Target IPv4 address.

tReconnect: Cooldown time for recreating a TCP connection after a TCP connection has been terminated.

iResExtract: The function block that implements the interface I_ResExtract [} 18].

Example:

Programming

TwinCAT 3 15Version: 1.3.2

Declaration of the function block FB_Connect:
PROGRAM MAIN
VAR
 fbConnect : FB_Connect(‘’, ‘192.168.1.101’, T#15S, fbResExtract);
 fbResExtract : FB_QRC_ResExtract;
END_VAR

4.1.1.2 I_Connect

METHODS

Connect: Create a TCP connection.

Disconnect: Terminate a TCP connection.

Send: Send QRC frames.

M_Receive: Receive QRC frames.

PROPERTIES

Properties Type Access Description
aRxFrame ARRAY[0..QRC_NUMBE

R_OF_CONTROL] OF
T_MaxString

Get As soon as the falling
edge of bBusy occurs
and bError is FALSE,
the received QRC
response frame can be
queried with this property.

sTxFrame STRING(QRC_BUFFER_
SIZE)

Set As soon as the falling
edge of bBusy occurs
and bError is FALSE,
the QRC frame to be sent
can be set.

Connect

This method enables creating a TCP connection.
Method Connect : BOOL

This process is finished as soon as the return value is TRUE.

Disonnect

This method enables terminating a TCP connection.
Method Disonnect : BOOL

This process is finished as soon as the return value is TRUE.

Send

This method enables sending a QRC frame and to get the response frame from Q-SYS device automatically
after sending.
Method Send : I_ResExtract

This method is finished as soon as the falling edge of bBusy occurs and property aRxFrame is not empty.
The response frame can be fetched at property aRxFrame.

Receive

This method enables receiving a QRC frame.

Programming

TwinCAT 316 Version: 1.3.2

Method Receive : I_ResExtract

This method is finished as soon as the falling trigger of bBusy is triggered and property. aRxFrame is not
empty. The response frame can be fetched at property aRxFrame.

aRxFrame

List of received QRC response frames.
PROPERTY aRxFrame : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF T_MaxString

sTxFrame

A QRC frame which is ready to send to Q-SYS device.
PROPERTY sTxFrame : STRING(QRC_BUFFER_SIZE)

4.1.1.3 FB_exit

Syntax
Method FB_exit : BOOL

Variables, which are given at the input of FB_init, could be online changed after this method has been
called. Normally this method can be used to dynamically make connections to multiple Q-SYS cores.

Example:

Switch the target server from “192.168.0.110” to “192.168.0.100”:
PROGRAM MAIN
VAR
 fbConnect : FB_Connect(‘’, ‘192.168.1.110’, T#15S, fbResExtract);
 fbResExtract : FB_QRC_ResExtract;
 nStep : INT;
 bChangeTarget : BOOL;
END_VAR

CASE nStep OF
 0:
 fbConnect.Connect();
 IF NOT fbConnect.bBusy AND NOT fbConnect.bError THEN
 nStep := nStep + 1;
 END_IF
 1:
 IF bChangeTarget THEN
 bChangeTarget := FALSE;
 nStep := nStep + 1;
 ELSE
 nStep := 3;
 END_IF
 2:
 fbConnect.FB_exit(FALSE);
 fbConnect.FB_init(FALSE, FALSE, '', '192.168.0.100', T#15S, fbResExtract);
 nStep := 0;
 3:
 (*Rest of Codes*)
END_CASE

4.1.2 FB_QRC_ResExtract

This function block enables the extraction of the received QRC frames.

This extraction function block is only designed for QRC response frames of the following QRC commands:

Programming

TwinCAT 3 17Version: 1.3.2

• Command Status.Get [} 24]

• Control-related commands (Control.Set [} 25] & Control.Get [} 25])

• Component-related commands (Component.Set [} 27] & Component.Get [} 27])

• "Change Control"-related commands (All methods of FB_QRC_ChangeGroup [} 28])

• Snapshot component (More information can be found at section Control button ‘Load’ of snapshot
component [} 51] and Snapshot state and related properties [} 52])

The response frames of other QRC commands can be directly fetched with the property aRxFrame.

Syntax
FUNCTION_BLOCK FB_QRC_ResExtract IMPLEMENTS I_ResExtract
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Is set if an error occurs during the execution of the function block.

Error details are located in the "Error List" window.
ipResult
Message

I_TcMessage Enables error handling with the Tc3_EventLogger.

 Methods

Name Description
ResExtract Extract received QRC response frames.
Clear Clear the internal memory.

 Properties

Properties Type Access Description
aCtrlProp ARRAY[0..QRC_NUMBE

R_OF_CONTROL] OF
ST_ControlEx

Get Extracted control
properties can be get with
this property.

aRxFrame ARRAY[0..QRC_NUMBE
R_OF_CONTROL] OF
T_MaxString

Set, Get Extracting QRC frames
can be set or get with this
property.

sEngineStatus T_MaxString Get Q-SYS device information
can be get with this
property.

 Interface

Name Description
I_ResExtract The interface that defines the extraction method.

Also see about this
2 The attribute bSavOldRes [} 19]

Programming

TwinCAT 318 Version: 1.3.2

4.1.2.1 sEngineStatus

This property enables to query the status information of the Q-SYS device.

Syntax
PROPERTY sEngineStatus : T_MaxString

4.1.2.2 Clear

This method enables clearing all saved snapshot properties that were queried via Poll [} 30] or AutoPoll
[} 31].

Syntax
METHOD Clear : BOOL

This method is meaningful, if the used snapshot is obsolete. Read the section Workflow about extraction of
snapshot properties [} 20] for more information.

4.1.2.3 I_ResExtract

METHODS

ResExtract: Extract received QRC response frames from Q-SYS device.

PROPERTIES

Properties Type Access Description
aCtrlProp ARRAY[0..QRC_NUMBE

R_OF_CONTROL] OF
ST_ControlEx

Get Get the extracted control
properties with this
property.

aRxFrame ARRAY[0..QRC_NUMBE
R_OF_CONTROL] OF
T_MaxString

Set, Get QRC frames to be
extracted can be set or
get with this property.

aCtrlProp

List of control properties that has been extracted by ResExtract.
PROPERTY aCtrlProp : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF ST_ControlEx

arrRxFrame

QRC response frame that is ready to be extracted can be set or get with this property.

As mentioned [} 16] before, this function block can extract limited types of QRC response frames. The
response frame that cannot be extracted by function block can be fetched with "getter" function before
extraction. Furthermore, users can also write down their own QRC frame at “setter” function, in order to
extract information from their own QRC frame.
PROPERTY aRxFrame : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF T_MaxString

4.1.2.3.1 ResExtract

ResExtract

This method enables to extract control properties from a QRC response frame.

Syntax

Programming

TwinCAT 3 19Version: 1.3.2

METHOD ResExtract : BOOL
VAR_INPUT
 bSavOldRes : BOOL;
END_VAR

VAR_INPUT

bSavOldRes: This variable determines whether the referenced function block will save past control
properties that has been extracted from previous QRC frames. More information can be found at section
“The attribute bSavOldRes [} 19]”.

The attribute bSavOldRes

The input variable bSavOldRes of method ResExtract has been implemented to enable a configuration of
received controls' information. The array aCtrlProp is able to store QRC_NUMBER_OF_CONTROL
number of controls' information. This attribute can be changed in parameter list [} 42].

• By setting the attribute bSavOldRes to TRUE, all past controls' information will be stored. If upcoming
controls' information which is already stored, the old controls' information will be overwritten by the
new's.

• By setting the attribute bSavOldRes to FALSE, all past controls' information which were stored in the
array aCtrlProp will be cleared. Only the latest controls' information will be stored.

To get a better understanding of the behavior, there is an example shown underneath.

1st. Step: Control information of "Channel1Mute" received.

At Step 1, a QRC frame was received at aRxFrame and the control information are extracted by
FB_QRC_RecExtract [} 16].

The array aCtrlProp is empty. Because of this, control Channel1Mute is saved at element
aCtrlProp[0] whether bSavOldRes is TRUE or not.

2nd Step: Control information of "Channel2Gain" (different control) received.

Programming

TwinCAT 320 Version: 1.3.2

At Step 2, second QRC frame was received. After extraction of the new control information, it is stored
depending on the value of bSavOldRes.

• If bSavOldRes is TRUE, the control Channel2Gain is stored at element aRecProp[1] because
aCtrlProp[0] has stored another control Channel1Mute.

• If bSavOldRes is FALSE, the control Channel2Gain is stored at element aCtrlProp[0]. The control
information of Channel1Mute which was stored at the same element will be overwritten.

3rd Step: Control information of "Channel1Mute" (An update of already received control) received.

At step 3, third QRC frame was received. After extraction, it recognized that the control name has been
already stored at aCtrlProp[0]:

• If bSavOldRes is TRUE, the new-coming information of Channel1Mute will be stored at element
aRecProp[0]. As a result of this, the stored control information of Channel1Mute gets updated and
control information which stored at aCtrlProp[1] is kept.

• If bSavOldRes is FALSE, the new-coming control information of Channel1Mute will be stored at
element aCtrlProp[0]. Other stored information will be cleared.

All past controls' properties will be saved only when the bSavOldRes is TRUE. In the case
bSavOldRes is FALSE, all past control information will be cleared.

Workflow about extraction of snapshot properties

There are two ways to query a snapshot state, manually querying with method GetSnapshotState [} 40], or
joining a change group and polling its changes. Based on the working principle of a change group, the
polling function will only report to the changed control within a polling cycle. In some cases, it is impossible to
determine a snapshot state. (e.g. a snapshot changes from "loaded" to "changed", then the Q-SYS device
will only report that the control "match" changed from "true" to "false". The other related control "last"
remains "true".) However, each time the method GetSnapshotState [} 40] is used, every related control of a
requested snapshot will be queried. With the complete information the snapshot state can always be
determined.

Because of the fact that each snapshot property which is queried by a polling function(Poll [} 30] or
AutoPoll [} 31]), is stored internally, the Clear [} 30] method of the function block FB_QRC_ResExtract [} 16]
can be used to release this storage.

After a response frame by a Q-SYS device arrived, all of snapshot controls' properties, which are queried by
polling method, will be stored internally. (The attribute bSavOldRes has NO impact on this.) The snapshot
control properties will be updated. With the help of the Clear method these properties can be deleted.

Programming

TwinCAT 3 21Version: 1.3.2

This logic has no impact to the bSavOldRes logic, which was described in the section Attribute
bSavOldRes. However users can also set bSavOldRes to TRUE to save control properties at aC-
trlProp.

To get a better understanding of this behavior, there is an example shown underneath.

Step 1: After snapshot 1 and 3 (Name of Snapshot Bank is "Bank1", name of snapshot component is
"Snapshot1".) has joined in the change group ("ChangeGroup 1"), the response frame was received:

All related informations will be stored internally in an array. Snapshots' states are determined.

Step 2: In case some snapshot contained controls were changed within a polling cycle, a polling frame is
arrived:

The property "match.1" will be updated in the internal array and the snapshot "Snapshot 1" changes its
state from "loaded" to "changed". (aCtrlProp[0])

Step 3: Snapshot 3 is triggered.

Programming

TwinCAT 322 Version: 1.3.2

The "Snapshot 3" was just triggered and the polling frame was received. Related control properties will be
updated.

Step 4: Clear the internal array.

If users want to poll another snapshots' state and the stored properties are no longer useful, the method
Clear [} 30] should be used to reset the internal array.

After the clear operation the internal array and the array aCtrlProp are both empty.

4.1.3 QRC Commands
In following paragraphs, 6 function blocks, which are located in the folder "QRC_Application" of library
Tc3_Qrc, are designed based on the QRC specification. Each function block has a same method FB_init
[} 23], and each method that implemented QRC specification has the same return type I_Connect [} 15].

4.1.3.1 FB_QRC_BasicCommand

This function block enables the coding of a QRC basic command.

Programming

TwinCAT 3 23Version: 1.3.2

Syntax
FUNCTION_BLOCK FB_QRC_BasicCommand
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Set when an error has occurred. Error details are located

in the Error List window.
ipResultMessage I_TcMessage Enables error handling with the Tc3_EventLogger.

 Methods

Name Description
FB_init Initialization method
Logon Log on Q-SYS device.
NoOp Maintain TCP connection.
StatusGet Get current status of the Q-SYS device.

4.1.3.1.1 FB_init

Syntax
Method FB_init : BOOL
VAR_INPUT
 iConnect : I_Connect;
END_VAR

VAR_INPUT

iConnect: The function block that implemented the interface I_Connect [} 15].

Example:

Declaration of the function block FB_QRC_Control:
PROGRAM MAIN
VAR
 fbResExtract : FB_QRC_ResExtract;
 fbConnect : FB_Connect(‘’, ‘192.168.1.101’, T#15S, fbResExtract);
 fbQrcControl : FB_QRC_Control(fbConnect);
END_VAR

4.1.3.1.2 LogOn

This method enables to log on the Q-SYS device.

Syntax
METHOD LogOn : I_Connect
VAR_INPUT
 sUserName : STRING;
 nPassword : UDINT;
END_VAR

VAR_INPUT

sUserName: User name.

nPassword: Password.

Programming

TwinCAT 324 Version: 1.3.2

4.1.3.1.3 NoOp

This method enables to keep a TCP connection alive.

Syntax
METHOD NoOp : I_Connect

In FB_Connect, this method is internally used to keep TCP connection alive. The keep-alive cycle
time is 45 second.

4.1.3.1.4 StatusGet

This method enables to query status information of the Q-SYS device.

Syntax
METHOD StatusGet : I_Connect

This method is automatically deployed by the Q-SYS device to return its status information when-
ever a client has been connected to the Q-SYS device or the state of the Q-SYS device changed.
This status information can be easily extracted and fetched by the function block FB_QRC_ResEx-
tract.

4.1.3.2 FB_QRC_Control

This function block enables the coding of QRC frames that are used to set or get control properties via
Named Controls.

Syntax
FUNCTION_BLOCK FB_QRC_Control
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Set when an error has occurred. Error details are located

in the Error List window.
ipResultMessage I_TcMessage Enables error handling with the Tc3_EventLogger.

 Methods

Name Description
FB_init Initialization method
Get Get control properties via Named Control.
Set Set properties of a control via Named Control.

Programming

TwinCAT 3 25Version: 1.3.2

4.1.3.2.1 FB_init

Syntax
Method FB_init : BOOL
VAR_INPUT
 iConnect : I_Connect;
END_VAR

VAR_INPUT

iConnect: The function block that implemented the interface I_Connect [} 15].

Example:

Declaration of the function block FB_QRC_Control:
PROGRAM MAIN
VAR
 fbResExtract : FB_QRC_ResExtract;
 fbConnect : FB_Connect(‘’, ‘192.168.1.101’, T#15S, fbResExtract);
 fbQrcControl : FB_QRC_Control(fbConnect);
END_VAR

4.1.3.2.2 Get

This method enables encoding of the QRC frames which are used for getting controls' properties via Named
Controls.

Syntax
METHOD Get : I_Connect
VAR_INPUT
aControlName : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF STRING;
END_VAR

VAR_INPUT

aControlName: List of target Named Controls that will be queried.

Named Controls should be listed starting from the first element of the array aControlName.

4.1.3.2.3 Set

This method enables encoding of the QRC frames which are used for setting control properties via Named
Control.

Syntax
METHOD Set : I_Connect
VAR_INPUT
 stControlValue : ST_Control;
END_VAR

VAR_INPUT

stControlValue: Properties of the target Named Control

Programming

TwinCAT 326 Version: 1.3.2

4.1.3.3 FB_QRC_Component

This function block enables the coding of the QRC frames that are used to set/get control properties via
Named Component. It is also used to list all existing components via Named Component.

Definition of Named Component: Named Component is a component control with a unique name
property.

Syntax
FUNCTION_BLOCK FB_QRC_Component
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Set when an error has occurred. Error details are located

in the Error List window.
ipResultMessage I_TcMessage Enables error handling with the Tc3_EventLogger.

 Methods

Name Description
FB_init Initialization method
Set Set control properties via a Named Component.
Get Get control properties via a Named Component.
GetComponent Get control properties of all existing Named Components in a Q-SYS design.

4.1.3.3.1 FB_init

Syntax
Method FB_init : BOOL
VAR_INPUT
 iConnect : I_Connect;
END_VAR

VAR_INPUT

iConnect: The function block that implemented the interface I_Connect [} 15].

Example:

Declaration of the function block FB_QRC_Control:
PROGRAM MAIN
VAR
 fbResExtract : FB_QRC_ResExtract;
 fbConnect : FB_Connect(‘’, ‘192.168.1.101’, T#15S, fbResExtract);
 fbQrcControl : FB_QRC_Control(fbConnect);
END_VAR

Programming

TwinCAT 3 27Version: 1.3.2

4.1.3.3.2 Set

This method enables encoding a QRC frame that is used for setting one or more controls' properties of a
Named Component.

Syntax
METHOD Set : I_Connect
VAR_INPUT
 sComponentName : STRING;
 aControlValue : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF ST_Control;
END_VAR

VAR_INPUT

sComponentName: Name property of target Named Component.

aControlValue: Target controls' properties of the Named Component.

Controls' properties should be listed starting from the first element of the array aControlValue.

4.1.3.3.3 Get

This method enables encoding a QRC frame that is used for getting one or more controls' properties on a
Named Component.

Syntax
METHOD Get : I_Connect
VAR_INPUT
 sComponentName : STRING;
 aControlName : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF STRING;
END_VAR

VAR_INPUT

sComponentName: Name property of target Named Component.

aControlName: Target controls' name of the Named Component.

Controls' name should be listed starting from the first element of the array aControlName.

4.1.3.3.4 GetComponent

This method enables encoding a QRC frame that is used to get controls’ properties of all available Named
Components.

Syntax
METHOD GetComponent : I_Connect

1. The response frame of this command cannot be extracted by FB_QRC_ResExtract [} 16].
2. Normally, the response frame of this command is extremely long (because each control of each
Named component will be presented), please be aware of the buffer size QRC_BUFFER_SIZE [} 42].

Programming

TwinCAT 328 Version: 1.3.2

4.1.3.4 FB_QRC_ChangeGroup

This function block enables the coding of the QRC frames that are used to edit or poll a change group.

Syntax
FUNCTION_BLOCK FB_QRC_ChangeGroup
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Set when an error has occurred. Error details are located

in the Error List window.
ipResultMessage I_TcMessage Enables error handling with the Tc3_EventLogger.

 Methods

Name Description
FB_init Initialization method
AddControl Add one or more controls to a change group via Named Controls.
AddComponent
Control

Add one or more controls to a change group via Named Component.

Remove Remove one or more controls from a change group.
Poll Poll a change group to get its changes.
Destroy Delete a change group.
Clear Delete all controls from a change group.
Invalidate Specify to all controllers to report their properties in the next polling round.
AutoPoll Set up automatic polling.
AddSnapshot
Control

Add one or more snapshots to a change group via Named Snapshot Component.

1. A change group is a grouping of Named Controls or Named Components. This function block is
used to get more control properties with only one QRC frame.
2. If there is no target change group, it will be created automatically after the first AddControl, Ad-
dComponentControl or AddSnapshotControl command is received from the Q-SYS device.

4.1.3.4.1 FB_init

Syntax
Method FB_init : BOOL
VAR_INPUT
 iConnect : I_Connect;
END_VAR

VAR_INPUT

iConnect: The function block that implemented the interface I_Connect [} 15].

Programming

TwinCAT 3 29Version: 1.3.2

Example:

Declaration of the function block FB_QRC_Control:
PROGRAM MAIN
VAR
 fbResExtract : FB_QRC_ResExtract;
 fbConnect : FB_Connect(‘’, ‘192.168.1.101’, T#15S, fbResExtract);
 fbQrcControl : FB_QRC_Control(fbConnect);
END_VAR

4.1.3.4.2 AddControl

This method enables encoding a QRC frame that is used to add one or more controls via Named Control in a
change group.

Syntax
METHOD AddControl : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
 aControlName : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF STRING;
END_VAR

VAR_INPUT

sChangeGroupId: Change group ID.

aControlName: List of target Named Controls.

Controls' names should be listed starting from the first element of the array aControlName.

4.1.3.4.3 AddComponentControl

This method enables encoding a QRC frame that is used to add one or more controls within a Named
Component in a change group.

Syntax
METHOD AddComponentControl : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
 sComponentName : STRING;
 aControlName : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF STRING;
END_VAR

VAR_INPUT

sChangeGroupId: Change group ID.

sComponentName: Name property of target Named Component.

aControlName: Target controls' names of the Named Component.

Controls' name should be listed starting from the first element of the array aControlName.

4.1.3.4.4 Remove

This method enables encoding a QRC frame that is used to remove one or more Named Controls from a
change group.

Syntax

Programming

TwinCAT 330 Version: 1.3.2

METHOD Remove : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
 aControlName : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF STRING;
END_VAR

VAR_INPUT

sChangeGroupId: Change group ID.

aControlName: Target controls' names.

Controls' name should be listed starting from the first element of the array aControlName.

4.1.3.4.5 Poll

This method enables encoding a QRC frame that is used to poll a change group.

Syntax
METHOD Poll : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
END_VAR

VAR_INPUT

sChangeGroupId: Change group ID.

4.1.3.4.6 Destroy

This method enables encoding a QRC frame that is used to destroy a change group. This change group will
no longer exist.

Syntax
METHOD Destroy : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
END_VAR

VAR_INPUT

sChangeGroupId: Change group ID.

Difference between Destroy method and Clear method:
Clear is used to delete all Named Controls / Name Components from a change group. This
change group is still existed but empty.
Destroy is used to delete a change group. This change group will no longer exist after this opera-
tion.

4.1.3.4.7 Clear

This method enables encoding a QRC frame that is used to delete all Named Controls / Name Components
from a change group. This change group is still existing.

Syntax
METHOD Clear : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
END_VAR

VAR_INPUT

Programming

TwinCAT 3 31Version: 1.3.2

sChangeGroupId: Change group ID.

Difference between Destroy method and Clear method:
Clear is used to delete all Named Controls / Name Components from a change group. This
change group is still existed but empty.
Destroy is used to delete a change group. This change group will no longer exist after this opera-
tion.

4.1.3.4.8 Invalidate

This method enables encoding a QRC frame that is used to set all Named Controls / Name Components to
"Dirty" state.

Syntax
METHOD Invalidate : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
END_VAR

VAR_INPUT

sChangeGroupId: Change group ID.

How the change group works internally in Q-SYS
After a new control has been added to a change group, this control is marked as a “Dirty” state,
which means that its current properties are not reported. Once its current properties are reported by
Poll [} 30] or AutoPoll [} 31] methods, its state will change to “Clean”. Only the control which has
the "Dirty" state will be reported by polling method, and the control that has the “Clean” state will not
be reported. The control state will be switched from “Clean” to “Dirty” only if the properties of this
control are changed.
This method enables to set each control within a change group into “Dirty” state. It forces all con-
trols to report their current state information by next Poll [} 30] or AutoPoll [} 31] method.

4.1.3.4.9 AutoPoll

This method enables encoding a QRC frame that is used to set all Named Controls / Name Components to
the "Dirty" state.

Syntax
METHOD Poll : I_Connect
VAR_INPUT
 sChangeGroupId : STRING;
 fRate : REAL;
END_VAR

VAR_INPUT

sChangeGroupId: Change group ID.

fRate: Polling interval in seconds. The minimum value of it is 0.1s.

4.1.3.4.10 AddSnapshotControl

This method enables the encoding of a QRC frame that is used for joining multiple snapshots in a change
control.

The snapshot control can not be joined in a change group via Named Control. In this version the
snapshot related sub-controls are joined in a change group via Named Component.

Programming

TwinCAT 332 Version: 1.3.2

Syntax
METHOD AddSnapshotControl : I_ResExtract
VAR_INPUT
 sChangeGroupId : STRING;
 sComponentName : STRING;
 aSnapshotNr : ARRAY [0..23] OF USINT;
END_VAR

sChangeGroupId: Change Group Id.

sComponentName: Name of the snapshot component.

aSnapshotNr: Array of target snapshot sequence number.

4.1.3.5 FB_QRC_Mixer

This function block allows several different values to be set on a named mixer.

Definition of a named mixer: a mixer component with a unique name.

Syntax
FUNCTION_BLOCK FB_QRC_ChangeGroup
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Set when an error has occurred. Error details are located

in the Error List window.
ipResultMessage I_TcMessage Enables error handling with the Tc3_EventLogger.

Programming

TwinCAT 3 33Version: 1.3.2

 Methods

Name Description
FB_init Initialization method
SetCrossPointGain Set crosspoint gain value for mixer inputs and outputs.
SetCrossPointDelay Set crosspoint delay for mixer inputs and outputs.
SetCrossPointMute Mute or unmute crosspoint for mixer inputs and outputs.
SetCrossPointSolo Enable or disable crosspoint solo for mixer inputs and outputs.
SetInputGain Set gain for mixer inputs.
SetInputMute Mute or unmute mixer inputs.
SetInputSolo Enable or disable solo for mixer inputs.
SetOutputGain Set gain for mixer outputs.
SetOutputMute Mute or unmute mixer outputs.
SetCueMute Mute or unmute mixer cues.
SetCueGain Set gain for mixer cues.
SetInputCueEnable Enable or disable cues for mixer inputs.
SetInputCueAfi Enable or disable Cue-AFL (After Fader Level) for mixer inputs.

Example

The syntax supports either numbers separated by spaces or commas, ranges of numbers, or all numbers (*).
It supports negation of the selection with the "!" operator.

Here are a few examples:

Input/output Description
* All
1 2 3 Channels 1, 2, 3
1-6 Channels 1 to 6
1-6 9 Channel 1 to 6 and 9
1-3 5-9 Channel 1 to 3 and 5 to 9
1-8 !3 Channel 1 to 8 except 3
* !3-5 All except channels 3 to 5

4.1.3.5.1 FB_init

Syntax
Method FB_init : BOOL
VAR_INPUT
 iConnect : I_Connect;
END_VAR

VAR_INPUT

iConnect: The function block that implemented the interface I_Connect [} 15].

Example:

Declaration of the function block FB_QRC_Control:
PROGRAM MAIN
VAR
 fbResExtract : FB_QRC_ResExtract;
 fbConnect : FB_Connect(‘’, ‘192.168.1.101’, T#15S, fbResExtract);
 fbQrcControl : FB_QRC_Control(fbConnect);
END_VAR

Programming

TwinCAT 334 Version: 1.3.2

4.1.3.5.2 SetCrossPointGain

This method enables encoding a QRC frame that is used to set the crosspoint gain value for the inputs and
outputs of a named mixer.

Syntax
METHOD SetCrossPointGain : I_Connect
VAR_INPUT
 stCrossSpec : ST_CrossSpec;
END_VAR

VAR_INPUT

stCrossSpec: Crosspoint gain properties.

4.1.3.5.3 SetCrossPointDelay

This method enables encoding a QRC frame that is used to set the crosspoint delay value for inputs and
outputs of a named mixer.

Syntax
METHOD SetCrossPointDelay : I_Connect
VAR_INPUT
 stCrossSpec : ST_CrossSpec;
END_VAR

VAR_INPUT

stCrossSpec: Crosspoint delay properties.

4.1.3.5.4 SetCrossPointMute

This method enables encoding a QRC frame that is used to set the crosspoint muted or unmuted for inputs
and outputs of a named mixer.

Syntax
METHOD SetCrossPointMute : I_Connect
VAR_INPUT
 stCrossSpec : ST_CrossSpec;
END_VAR

VAR_INPUT

stCrossSpec: Crosspoint mute properties.

4.1.3.5.5 SetCrossPointSolo

This method enables encoding a QRC frame that is used to enable or disable crosspoint solo for inputs and
outputs of a named mixer.

Syntax
METHOD SetCrossPointSolo : I_Connect
VAR_INPUT
 stCrossSpec : ST_CrossSpec;
END_VAR

VAR_INPUT

stCrossSpec: Crosspoint solo properties.

4.1.3.5.6 SetInputGain

This method enables encoding a QRC frame that is used to set gain value for inputs of a named mixer.

Programming

TwinCAT 3 35Version: 1.3.2

Syntax
METHOD SetInputGain : I_Connect
VAR_INPUT
 stInputSpec : ST_InputSpec;
END_VAR

VAR_INPUT

stInputSpec: Input gain properties.

4.1.3.5.7 SetInputMute

This method enables encoding a QRC frame that is used to set inputs muted or unmuted of a named mixer.

Syntax
METHOD SetInputMute : I_Connect
VAR_INPUT
 stInputSpec : ST_InputSpec;
END_VAR

VAR_INPUT

stInputSpec: Input mute properties.

4.1.3.5.8 SetInputSolo

This method enables encoding a QRC frame that is used to enable or disable solo for inputs of a named
mixer.

Syntax
METHOD SetInputSolo : I_Connect
VAR_INPUT
 stInputSpec : ST_InputSpec;
END_VAR

VAR_INPUT

stInputSpec: Input solo properties.

4.1.3.5.9 SetOutputGain

This method enables encoding a QRC frame that is used to set gain value for outputs of a named mixer.

Syntax
METHOD SetOutputGain : I_Connect
VAR_INPUT
 stOutputSpec : ST_OutputSpec;
END_VAR

VAR_INPUT

stOutputSpec: Output gain properties.

4.1.3.5.10 SetOutputMute

This method enables encoding a QRC frame that is used to mute or unmute for outputs of a named mixer.

Syntax
METHOD SetOutputMute : I_Connect
VAR_INPUT
 stOutputSpec : ST_OutputSpec;
END_VAR

Programming

TwinCAT 336 Version: 1.3.2

VAR_INPUT

stOutputSpec: Output mute properties.

4.1.3.5.11 SetCueMute

This method enables encoding a QRC frame that is used to mute or unmute for mixer cues.

Syntax
METHOD SetCueMute : I_Connect
VAR_INPUT
 stCueSpec : ST_CueSpec;
END_VAR

VAR_INPUT

stCueSpec: Cue mute properties.

4.1.3.5.12 SetCueGain

This method enables encoding a QRC frame that is used to set gain value for mixer cues.

Syntax
METHOD SetCueGain : I_Connect
VAR_INPUT
 stCueSpec : ST_CueSpec;
END_VAR

VAR_INPUT

stCueSpec: Cue gain properties.

4.1.3.5.13 SetInputCueEnable

This method enables encoding a QRC frame that is used to enable or disable cues and inputs of named
mixer.

Syntax
METHOD SetInputCueGain : I_Connect
VAR_INPUT
 stInputCueSpec : ST_InputCueSpec;
END_VAR

VAR_INPUT

stInputCueSpec: Input and cue properties.

4.1.3.5.14 SetInputCueAfi

This method enables encoding a QRC frame that is used to enable or disable cue AFL (After Fader Level)
for mixer inputs.

Syntax
METHOD SetInputCueAfi : I_Connect
VAR_INPUT
 stInputCueSpec : ST_InputCueSpec;
END_VAR

VAR_INPUT

stInputCueSpec:Cue AFL properties.

Programming

TwinCAT 3 37Version: 1.3.2

4.1.3.6 FB_QRC_LoopPlayer

This function block enables the query of a file playback on a named loop player.

Definition of a named loop player: a named loop player is a loop player component with a unique
name.

Syntax
FUNCTION_BLOCK FB_QRC_LoopPlayer
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Set when an error has occurred. Error details are located

in the Error List window.
ipResultMessage I_TcMessage Enables error handling with the Tc3_EventLogger.

 Methods

Name Description
FB_init Initialization method
Start Start playback.
Stop Stop playback.
Cancel Cancel playback.

4.1.3.6.1 FB_init

Syntax
Method FB_init : BOOL
VAR_INPUT
 iConnect : I_Connect;
END_VAR

VAR_INPUT

iConnect: The function block that implemented the interface I_Connect [} 15].

Example:

Declaration of the function block FB_QRC_Control:
PROGRAM MAIN
VAR
 fbResExtract : FB_QRC_ResExtract;
 fbConnect : FB_Connect(‘’, ‘192.168.1.101’, T#15S, fbResExtract);
 fbQrcControl : FB_QRC_Control(fbConnect);
END_VAR

Programming

TwinCAT 338 Version: 1.3.2

4.1.3.6.2 Start

This method enables to start playing on a named loop player.

Syntax
METHOD Start : I_Connect
VAR_INPUT
 stJobSpec : ST_JobSpec;
END_VAR

VAR_INPUT

stJobSpec: Properties of the job that will be played back on a named loop player.

4.1.3.6.3 Stop

This method enables to stop playback on a named loop player.

Syntax
METHOD Stop : I_Connect
VAR_INPUT
 sName : STRING;
 aOutput : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF USINT;
 bLog : BOOL := FALSE;
END_VAR

VAR_INPUT

sName: The name of the loop player.

aOutput: Array of output channels.

bLog: Optional attribute for event message, FALSE in default.

4.1.3.6.4 Cancel

This method enables to cancel a job on a named loop player.

Syntax
METHOD Cancel : I_Connect
VAR_INPUT
 sName : STRING;
 aOutput : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF USINT;
 bLog : BOOL := FALSE;
END_VAR

VAR_INPUT

sName: The name of the loop player.

aOutput: Array of output channels.

bLog: Optional attribute for event message, FALSE in default.

4.1.3.7 FB_QRC_Snapshot

This function block enables the encoding of QRC frames that are used to load/save snapshots. In addition, it
can be used to get multiple snapshot states.

This function block is available from version 1.1.0.0.
This command is not listed in the QRC specification.

• Before using this function block or related methods, first read the section Snapshot state and re-
lated properties [} 19].

Programming

TwinCAT 3 39Version: 1.3.2

Syntax
FUNCTION_BLOCK FB_QRC_Snapshot
VAR_OUTPUT
 bError : BOOL;
 ipResultMessage : I_TcMessage;
END_VAR

 Outputs

Name Type Description
bError BOOL Set when an error has occurred. Error details are located

in the Error List window.
ipResultMessage I_TcMessage Enables error handling with the Tc3_EventLogger.

 Methods

Name Description
FB_init Initialization method
Load Trigger a snapshot.
Save Save a snapshot. (Overwrite old snapshot.)
GetSnapshotState Get multiple snapshot states in one snapshot bank.

4.1.3.7.1 Load

This method enables the encoding of a QRC frame that is used for triggering a snapshot.

Syntax
METHOD Load : I_Connect
VAR_INPUT
 sBankName : STRING;
 nSnapshotNr : USINT;
 fRamp : REAL := 0; (*Optional*)
END_VAR

sBankName: Name of the Snapshot Bank.

nSnapshotNr: Sequence number of the target snapshot.

fRamp: Optional ramp time.

The Name of a Snapshot Bank is totally different to the name of the snapshot component. How
to find the name of a Snapshot Bank is described in the section Easy way to find control name,
component name and snapshot bank name [} 50].

4.1.3.7.2 Save

This method enables the encoding of a QRC frame that is used for saving a snapshot.

Syntax
METHOD Save : I_Connect
VAR_INPUT
 sBankName : STRING;
 nSnapshotNr : USINT;
 fRamp : REAL := 0; (*Optional*)
END_VAR

sBankName: Name of the Snapshot Bank.

nSnapshotNr: Sequence number of the target snapshot.

fRamp: Optional ramp time.

Programming

TwinCAT 340 Version: 1.3.2

The Name of a Snapshot Bank is totally different to the name of the snapshot component. How
to find the name of a Snapshot Bank is described in the section Easy way to find control name,
component name and snapshot bank name [} 50].

4.1.3.7.3 GetSnapshotState

Each snapshot state can be determined by two related controls within the snapshot component. This method
enables the encoding of a QRC frame that is used for querying multiple snapshot states.

Syntax
METHOD GetSnapshotState : I_Connect
VAR_INPUT
 sComponentName : STRING;
 aSnapshotNr : ARRAY[0..23] OF USINT;
END_VAR

sComponentName: Name of the snapshot component.

aSnapshotNr: Array of requested snapshot sequence number.

1. The name of the snapshot component is totally different to the name of a Snapshot Bank.
How to find the name of the snapshot component is described in the section Easy way to find con-
trol name, component name and snapshot bank name [} 50].
2. Set the attribute bSavOldRes to TRUE of function block FB_QRC_RecExtract to save the past
snapshot states at property aCtrlProp.

4.2 Structures, enumerations, GVL

4.2.1 E_FileMode
Type E_FileMode
{
 mono,
 stereo
} USINT;
END_TYPE

4.2.2 ST_Control
TYPE ST_CONTROL
STRUCT
 sName : STRING := ‘’; (*Name of Named Control*)
 sValue : STRING := ‘’; (*Value of Named Control*)
 sString : STRING := ‘’; (*String of Named Control*)
 fRamp : REAL := 0; (*Optional ramp time of Named Control*)
END_STRUCT
END_TYPE

4.2.3 ST_ControlEx
This structure extends St_Control [} 40] and it is designed only for the property arrCtrlProp of function
block FB_QRC_ResExtract [} 16].
TYPE ST_ControlEx EXTENDS ST_Control
STRUCT
 sComponent : STRING := ‘’; (*Component name*)
 fPosition : STRING := ‘’; (*Control position*)
END_STRUCT
END_TYPE

Programming

TwinCAT 3 41Version: 1.3.2

4.2.4 Structure about Mixer

ST_CrossSpec
TYPE ST_CrossSpec:
STRUCT
 sName : STRING := ‘’; (*Name of named mixer*)
 sInputs : STRING := ‘’; (*Input channel of named mixer*)
 sOutputs : STRING := ‘’; (*Output channel of named mixer*)
 sValue : STRING := ‘’; (*value of named mixer*)
 fRamp : REAL := 0; (*Optional ramp time of named mixer*)
END_STRUCT
END_TYPE

ST_InputSpec
TYPE ST_InputSpec:
STRUCT
 sName : STRING := ‘’; (*Name of named mixer*)
 sInputs : STRING := ‘’; (*Input channel of named mixer*)
 sValue : STRING := ‘’; (*value of named mixer*)
 fRamp : REAL := 0; (*Optional ramp time of named mixer*)
END_STRUCT
END_TYPE

ST_OutputSpec
TYPE ST_OutputSpec:
STRUCT
 sName : STRING := ‘’; (*Name of named mixer*)
 sOutputs : STRING := ‘’; (*Output channel of named mixer*)
 sValue : STRING := ‘’; (*value of named mixer*)
 fRamp : REAL := 0; (*Optional ramp time of named mixer*)
END_STRUCT
END_TYPE

ST_CueSpec
TYPE ST_CueSpec:
STRUCT
 sName : STRING := ‘’; (*Name of named mixer*)
 sCues : STRING := ‘’; (*Cue of named mixer*)
 sValue : STRING := ‘’; (*value of named mixer*)
 fRamp : REAL := 0; (*Optional ramp time of named mixer*)
END_STRUCT
END_TYPE

ST_InputCueSpec
TYPE ST_InputCueSpec EXTENDS ST_CueSpec:
STRUCT
 sInputs : STRING := ‘’;(*Input channel of named mixer*)
END_STRUCT
END_TYPE

4.2.5 ST_FileSpec
TYPE ST_FileSpec:
STRUCT
 sFileName : T_MaxString;
 eMode : E_FileMode;
 nOutput : USINT; (*Output Channel*)
END_STRUCT
END_TYPE

4.2.6 ST_JobSpec
TYPE ST_JobSpec:
STRUCT
 sName : STRING :=‘’;
 nStartTime : UDINT := 0;
 aFiles : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF ST_FileSpec;

Programming

TwinCAT 342 Version: 1.3.2

 bLoop : BOOL;
 nSeek : UDINT := 0;
 bLog : BOOL;
END_STRUCT
END_TYPE

4.2.7 Param
Name Default value Description
QRC_RECEIVE_POLLING_TIME 100ms Polling time for the TCP connection
QRC_RECEIVE_TIMEOUT 10s Time for receiver timeout
QRC_BUFFER_SIZE 2500 QRC frame buffer size in byte
QRC_NUMBER_OF_CONTROL 50 The maximum number of controls that are

allowed to send, to receive and to extract.

1. QRC_BUFFER_SIZE defined the length of sending buffer sTxFrame. Before each QRC frame is
transmitted, this QRC frame was measured and checked whether the length of this frame is greater
than QRC_BUFFER_SIZE. In some cases (e.g. Hundreds of controls are transmitted via Con-
trol.Set [} 25] or Component.Set [} 27]) the buffer is easily overloaded. If the buffer has been over-
flowed, an error "Buffer overflowed" will occur before transmitting this QRC frame. This QRC frame
will be ignored until the value of QRC_BUFFER_SIZE has been increased.
2. QRC_BUFFER_SIZE is considered to be highly relevant to QRC_NUMBER_OF_CONTROL. In
consequence, the value of QRC_BUFFER_SIZE has to be changed accordingly. (The Proportion
1:50 (1 control - 50 Byte) is recommended).

4.3 Interfaces

4.3.1 I_Connect
METHODS

Connect: Create a TCP connection.

Disconnect: Terminate a TCP connection.

Send: Send QRC frames.

M_Receive: Receive QRC frames.

PROPERTIES

Properties Type Access Description
aRxFrame ARRAY[0..QRC_NUMBE

R_OF_CONTROL] OF
T_MaxString

Get As soon as the falling
edge of bBusy occurs
and bError is FALSE,
the received QRC
response frame can be
queried with this property.

sTxFrame STRING(QRC_BUFFER_
SIZE)

Set As soon as the falling
edge of bBusy occurs
and bError is FALSE,
the QRC frame to be sent
can be set.

Connect

This method enables creating a TCP connection.

Programming

TwinCAT 3 43Version: 1.3.2

Method Connect : BOOL

This process is finished as soon as the return value is TRUE.

Disonnect

This method enables terminating a TCP connection.
Method Disonnect : BOOL

This process is finished as soon as the return value is TRUE.

Send

This method enables sending a QRC frame and to get the response frame from Q-SYS device automatically
after sending.
Method Send : I_ResExtract

This method is finished as soon as the falling edge of bBusy occurs and property aRxFrame is not empty.
The response frame can be fetched at property aRxFrame.

Receive

This method enables receiving a QRC frame.
Method Receive : I_ResExtract

This method is finished as soon as the falling trigger of bBusy is triggered and property. aRxFrame is not
empty. The response frame can be fetched at property aRxFrame.

aRxFrame

List of received QRC response frames.
PROPERTY aRxFrame : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF T_MaxString

sTxFrame

A QRC frame which is ready to send to Q-SYS device.
PROPERTY sTxFrame : STRING(QRC_BUFFER_SIZE)

4.3.2 I_ResExtract
METHODS

ResExtract: Extract received QRC response frames from Q-SYS device.

PROPERTIES

Properties Type Access Description
aCtrlProp ARRAY[0..QRC_NUMBE

R_OF_CONTROL] OF
ST_ControlEx

Get Get the extracted control
properties with this
property.

aRxFrame ARRAY[0..QRC_NUMBE
R_OF_CONTROL] OF
T_MaxString

Set, Get QRC frames to be
extracted can be set or
get with this property.

aCtrlProp

List of control properties that has been extracted by ResExtract.
PROPERTY aCtrlProp : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF ST_ControlEx

arrRxFrame

Programming

TwinCAT 344 Version: 1.3.2

QRC response frame that is ready to be extracted can be set or get with this property.

As mentioned [} 16] before, this function block can extract limited types of QRC response frames. The
response frame that cannot be extracted by function block can be fetched with "getter" function before
extraction. Furthermore, users can also write down their own QRC frame at “setter” function, in order to
extract information from their own QRC frame.
PROPERTY aRxFrame : ARRAY[0..QRC_NUMBER_OF_CONTROL] OF T_MaxString

4.3.2.1 ResExtract

ResExtract

This method enables to extract control properties from a QRC response frame.

Syntax
METHOD ResExtract : BOOL
VAR_INPUT
 bSavOldRes : BOOL;
END_VAR

VAR_INPUT

bSavOldRes: This variable determines whether the referenced function block will save past control
properties that has been extracted from previous QRC frames. More information can be found at section
“The attribute bSavOldRes [} 44]”.

4.3.2.1.1 The attribute bSavOldRes

The input variable bSavOldRes of method ResExtract has been implemented to enable a configuration of
received controls' information. The array aCtrlProp is able to store QRC_NUMBER_OF_CONTROL
number of controls' information. This attribute can be changed in parameter list [} 42].

• By setting the attribute bSavOldRes to TRUE, all past controls' information will be stored. If upcoming
controls' information which is already stored, the old controls' information will be overwritten by the
new's.

• By setting the attribute bSavOldRes to FALSE, all past controls' information which were stored in the
array aCtrlProp will be cleared. Only the latest controls' information will be stored.

To get a better understanding of the behavior, there is an example shown underneath.

1st. Step: Control information of "Channel1Mute" received.

At Step 1, a QRC frame was received at aRxFrame and the control information are extracted by
FB_QRC_RecExtract [} 16].

The array aCtrlProp is empty. Because of this, control Channel1Mute is saved at element
aCtrlProp[0] whether bSavOldRes is TRUE or not.

2nd Step: Control information of "Channel2Gain" (different control) received.

Programming

TwinCAT 3 45Version: 1.3.2

At Step 2, second QRC frame was received. After extraction of the new control information, it is stored
depending on the value of bSavOldRes.

• If bSavOldRes is TRUE, the control Channel2Gain is stored at element aRecProp[1] because
aCtrlProp[0] has stored another control Channel1Mute.

• If bSavOldRes is FALSE, the control Channel2Gain is stored at element aCtrlProp[0]. The control
information of Channel1Mute which was stored at the same element will be overwritten.

3rd Step: Control information of "Channel1Mute" (An update of already received control) received.

At step 3, third QRC frame was received. After extraction, it recognized that the control name has been
already stored at aCtrlProp[0]:

• If bSavOldRes is TRUE, the new-coming information of Channel1Mute will be stored at element
aRecProp[0]. As a result of this, the stored control information of Channel1Mute gets updated and
control information which stored at aCtrlProp[1] is kept.

• If bSavOldRes is FALSE, the new-coming control information of Channel1Mute will be stored at
element aCtrlProp[0]. Other stored information will be cleared.

All past controls' properties will be saved only when the bSavOldRes is TRUE. In the case
bSavOldRes is FALSE, all past control information will be cleared.

Programming

TwinCAT 346 Version: 1.3.2

4.3.2.1.2 Workflow about extraction of snapshot properties

There are two ways to query a snapshot state, manually querying with method GetSnapshotState [} 40], or
joining a change group and polling its changes. Based on the working principle of a change group, the
polling function will only report to the changed control within a polling cycle. In some cases, it is impossible to
determine a snapshot state. (e.g. a snapshot changes from "loaded" to "changed", then the Q-SYS device
will only report that the control "match" changed from "true" to "false". The other related control "last"
remains "true".) However, each time the method GetSnapshotState [} 40] is used, every related control of a
requested snapshot will be queried. With the complete information the snapshot state can always be
determined.

Because of the fact that each snapshot property which is queried by a polling function(Poll [} 30] or AutoPoll
[} 31]), is stored internally, the Clear [} 30] method of the function block FB_QRC_ResExtract [} 16] can be
used to release this storage.

After a response frame by a Q-SYS device arrived, all of snapshot controls' properties, which are queried by
polling method, will be stored internally. (The attribute bSavOldRes has NO impact on this.) The snapshot
control properties will be updated. With the help of the Clear method these properties can be deleted.

This logic has no impact to the bSavOldRes logic, which was described in the section Attribute
bSavOldRes. However users can also set bSavOldRes to TRUE to save control properties at aC-
trlProp.

To get a better understanding of this behavior, there is an example shown underneath.

Step 1: After snapshot 1 and 3 (Name of Snapshot Bank is "Bank1", name of snapshot component is
"Snapshot1".) has joined in the change group ("ChangeGroup 1"), the response frame was received:

All related informations will be stored internally in an array. Snapshots' states are determined.

Step 2: In case some snapshot contained controls were changed within a polling cycle, a polling frame is
arrived:

Programming

TwinCAT 3 47Version: 1.3.2

The property "match.1" will be updated in the internal array and the snapshot "Snapshot 1" changes its
state from "loaded" to "changed". (aCtrlProp[0])

Step 3: Snapshot 3 is triggered.

The "Snapshot 3" was just triggered and the polling frame was received. Related control properties will be
updated.

Step 4: Clear the internal array.

If users want to poll another snapshots' state and the stored properties are no longer useful, the method
Clear [} 30] should be used to reset the internal array.

Programming

TwinCAT 348 Version: 1.3.2

After the clear operation the internal array and the array aCtrlProp are both empty.

Example: AutoPolling and writing controls

TwinCAT 3 49Version: 1.3.2

5 Example: AutoPolling and writing controls
The https://infosys.beckhoff.com/content/1033/TF6310_QRC/Resources/13204173963/.zip shows
exemplarily the functionality of the QRC integration in TwinCAT. It consists of two TwinCAT programs and a
Q-Sys design file. Additionally, two videos are included that show the basic functionality of both programs.

Named Controls can be selected from the Q-Sys Designer in the program "Named_Controls". The status of
the controls is then get at any interval (AutoPoll) and values can be set for any controls.

In the "Snapshot" program you can select predefined snapshots from the Q-Sys Designer. The state of the
snapshots is then get at any interval (AutoPoll) and the individual snapshots, snapshot 1-3 in this example,
can be triggered.

https://infosys.beckhoff.com/content/1033/TF6310_QRC/Resources/13204173963.zip

Appendix

TwinCAT 350 Version: 1.3.2

6 Appendix

6.1 Error Codes
The following error codes can be returned. These error codes are defined by QSC.

Code(dec) Description
-32700 Parse error. Invalid JSON was received by the server.
-32600 Invalid request. The JSON sent is not a valid Request object.
-32601 Method not found.
-32602 Invalid params.
-32603 Server error
2 Invalid Page Request ID.
3 Bad Page Request / could not create the request Page Request.
4 Missing file
5 Change Groups exhausted
6 Unknown change group
7 Unknown component name
8 Unknown control
9 Illgal mixer channel index
10 Logon required

You can also find related information in the "Error List" window.

6.2 Buffer size
During the sending process or the receiving process, a long TCP frame (length > QRC_BUFFER_SIZE) will
be divided into more segments. After each receiving process the function block FB_Connect [} 13] will check
received frame whether it is an independent QRC frame, or it is one segment of a long QRC frame. The
function block will keep receiving until all segments are arrived or a receiving timeout occurs.

The size of the receiving buffer is 255 byte*QRC_NUMBER_OF_CONTROL. If the buffer gets overflowed, an
error will occur and further error details can be found in the "Error List" window.

6.3 String function
The STRING functions (LEN, MID, LEFT, etc.) are only valid for normal string type (String length <= 255).
For long string type (length > 255, in this project sTxFrame is a long string), memory functions (MEMSET,
MEMCPY, MEMMOVE) can be used instead.

6.4 Easy way to find control name, component name and
name of Snapshot Bank

Update:

Since the version 1.1.0.0, name of a Snapshot Bank is needed when function block FB_QRC_Snapshot is
used. Name of a Snapshot bank can be found and configured at the snapshot pane or the snapshot property
window.

Appendix

TwinCAT 3 51Version: 1.3.2

In contest to the TwinCAT program, it is also possible to instantiate controls and components without naming
in Q-SYS Designer. However, control's names and component's names are the key to remote control. Each
control or component cannot be accessed or controlled without a unique name. It is important to check
whether each target control or component has a valid name or not before operation.

Therefore:

• For controls, the best way is to check whether its name has already been placed in the “Named
Control” pane or not.

• For components, the easiest way is to check the font style on this component. Its font style is normal,
means this component is not named yet. A named component’s text is in italic style.

Here is an example for component:

(normal = “not named”, italic = named)

On the left side, the font of text "Crossover" is in normal type. It means "Crossover" is the component type
and it is not named. At the right side, the font of text “Delay Center” is in italic style. The type of this control is
"Standard Delay" and its name of is "Delay Center". It has a valid name.

Here is an example for snapshot bank:

(Green Rect = Name of a Snapshot Bank)

6.5 Control button "Load" of snapshot component
Update:

Appendix

TwinCAT 352 Version: 1.3.2

Since the version 1.1.0.0, you can use the method Load [} 39] and Save [} 39] of function block
FB_QRC_Snapshot [} 38] to trigger / save snapshots without using the Named Control concept. Method
GetSnapshotState [} 40] can be used as querying the snapshots' state manually, or the method
AddSnapshotControl [} 31] of FB_QRC_ChangeGroup [} 28] can be used to join in a change group and then.
The function block FB_QRC_ResExtract [} 16] is now supported to extract the response frame of snapshot.
Read the section Snapshot state and related properties [} 52] for more information.

Foreword

There isn’t any related information about controlling snapshot components in the QRC specification. The
button "Load" (a control of snapshot component) is a "trigger" type. So there is no way of getting a status
back, nor of adding them to a Change Group. The following solution is a functional workaround to get the
feedback via the snapshot buttons' "color" property. Otherwise we can't ensure whether the "Load" process
was executed successfully.

Using the "color” property it is possible to recognize status changes of buttons within a snapshot component.
With the help of the “Control.Get [} 25]" command, the "color" property can be queried. Due to the behavior
of "Save" buttons (No status change), they are excluded from this solution.

Table 1: Color property and its corresponding snapshot state

Color State
‘@7F19’ ‘unloaded’
‘@7F7F’ ‘loaded’
‘@7F4C’ ‘changed’

The 'changed' state means, relative controls have been changed after the snapshot was loaded. In this state,
"Save" buttons are usable to overwrite a snapshot.

This logic has already been implemented in the function block FB_QRC_ResExtract [} 16].

1. This solution only works with the default button colors. DO NOT change the snapshot button
color. Otherwise its status cannot be recognized by function block FB_QRC_ResExtract.
2. This method is specially developed for snapshot buttons, it doesn’t work for other controls with
trigger type.
3. The "Load Prev" and "Load Next" buttons are excluded from this solution because the "color"
property of them can't be queried from Q-SYS device.

6.6 Snapshot state and related properties
The previous version of the QRC demo project, the "Color" property of the Load button was used to
recognize the snapshot state. This is an unofficial "workaround" but it is still working well. Now, a new way
has been implemented. The "Color" functionality still remaines.

Since the version 1.1.0.0, the function block FB_QRC_Snapshot [} 38] can now be used to load or save a
snapshot directly, and to query multiple snapshots manually. With the help of method AddSnapshotControl
[} 31] of the function block FB_QRC_ChangeGroup [} 28] multiple snapshots can be joined in a change group.
Afterwards their states can be polled cyclically. The function block FB_QRC_ResExtract [} 16] has also been
updated in order to extract the response frame of a snapshot.

A Snapshot Bank consists of a Snapshot Controller, and all the controls and components you add to it. This
Snapshot Controller is also a component control and is called "snapshot component" in the following
documentation for a better understanding.

Within a snapshot component, each snapshot has two related properties/component controls, which are
listed below:

• last.x: It describes whether the snapshot is loaded or not.
• match.x: It describes whether Controls within the snapshot have been changed after this snapshot

was loaded.

Appendix

TwinCAT 3 53Version: 1.3.2

These two property names can be found using the menu "View Component Control Info..." in Q-SYS
Designer. With the help of these two properties, the snapshot state can be determined.

"last" and "match" property value and their corresponding snapshot state are listed below.

last = false last = true
match = false unloaded changed
match = true - loaded

This logic has been implemented in the function block FB_QRC_ResExtract [} 16] and the method
AddSnapshotControl [} 31] and GetSnapshotState [} 40].

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/entertainment-industry

mailto:info@beckhoff.de?subject=TwinCAT%203
https://www.beckhoff.com
https://www.beckhoff.com/entertainment-industry

	 Table of Contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Overview
	2.1 Update History

	3 Installation
	4 Programming
	4.1 Function Blocks
	4.1.1 FB_Connect
	4.1.1.1 FB_init
	4.1.1.2 I_Connect
	4.1.1.3 FB_exit

	4.1.2 FB_QRC_ResExtract
	4.1.2.1 sEngineStatus
	4.1.2.2 Clear
	4.1.2.3 I_ResExtract
	4.1.2.3.1 ResExtract
	4.1.2.3.1.1 The attribute bSavOldRes
	4.1.2.3.1.2 Workflow about extraction of snapshot properties

	4.1.3 QRC Commands
	4.1.3.1 FB_QRC_BasicCommand
	4.1.3.1.1 FB_init
	4.1.3.1.2 LogOn
	4.1.3.1.3 NoOp
	4.1.3.1.4 StatusGet

	4.1.3.2 FB_QRC_Control
	4.1.3.2.1 FB_init
	4.1.3.2.2 Get
	4.1.3.2.3 Set

	4.1.3.3 FB_QRC_Component
	4.1.3.3.1 FB_init
	4.1.3.3.2 Set
	4.1.3.3.3 Get
	4.1.3.3.4 GetComponent

	4.1.3.4 FB_QRC_ChangeGroup
	4.1.3.4.1 FB_init
	4.1.3.4.2 AddControl
	4.1.3.4.3 AddComponentControl
	4.1.3.4.4 Remove
	4.1.3.4.5 Poll
	4.1.3.4.6 Destroy
	4.1.3.4.7 Clear
	4.1.3.4.8 Invalidate
	4.1.3.4.9 AutoPoll
	4.1.3.4.10 AddSnapshotControl

	4.1.3.5 FB_QRC_Mixer
	4.1.3.5.1 FB_init
	4.1.3.5.2 SetCrossPointGain
	4.1.3.5.3 SetCrossPointDelay
	4.1.3.5.4 SetCrossPointMute
	4.1.3.5.5 SetCrossPointSolo
	4.1.3.5.6 SetInputGain
	4.1.3.5.7 SetInputMute
	4.1.3.5.8 SetInputSolo
	4.1.3.5.9 SetOutputGain
	4.1.3.5.10 SetOutputMute
	4.1.3.5.11 SetCueMute
	4.1.3.5.12 SetCueGain
	4.1.3.5.13 SetInputCueEnable
	4.1.3.5.14 SetInputCueAfi

	4.1.3.6 FB_QRC_LoopPlayer
	4.1.3.6.1 FB_init
	4.1.3.6.2 Start
	4.1.3.6.3 Stop
	4.1.3.6.4 Cancel

	4.1.3.7 FB_QRC_Snapshot
	4.1.3.7.1 Load
	4.1.3.7.2 Save
	4.1.3.7.3 GetSnapshotState

	4.2 Structures, enumerations, GVL
	4.2.1 E_FileMode
	4.2.2 ST_Control
	4.2.3 ST_ControlEx
	4.2.4 Structure about Mixer
	4.2.5 ST_FileSpec
	4.2.6 ST_JobSpec
	4.2.7 Param

	4.3 Interfaces
	4.3.1 I_Connect
	4.3.2 I_ResExtract
	4.3.2.1 ResExtract
	4.3.2.1.1 The attribute bSavOldRes
	4.3.2.1.2 Workflow about extraction of snapshot properties

	5 Example: AutoPolling and writing controls
	6 Appendix
	6.1 Error Codes
	6.2 Buffer size
	6.3 String function
	6.4 Easy way to find control name, component name and name of Snapshot Bank
	6.5 Control button "Load" of snapshot component
	6.6 Snapshot state and related properties

		documentation@beckhoff.com
	2022-12-13T14:07:01+0100
	Beckhoff Automation, Verl
	Documentation Publishing

