
Manual | EN

TE1000
TwinCAT 3 | EAP

2025-06-23 | Version: 1.7.1

Table of contents

TE1000 3Version: 1.7.1

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7

2 Product description .. 8
2.1 Basic principles ... 8

2.1.1 Communication methods ... 10
2.1.2 Remote station monitoring via ARP ... 13
2.1.3 EAP send mechanism.. 13
2.1.4 EAP performance... 16
2.1.5 The EAP state machine ... 16

2.2 Technical concept ... 17
2.2.1 EAP telegram structure .. 17

3 Diagnosis of an EAP connection... 22
3.1 Subscriber ... 22
3.2 Publisher ... 25

4 Creation of an EAP configuration.. 26
4.1 Adding an EAP device .. 26
4.2 Addition of publisher variables .. 27
4.3 Addition of subscriber variables .. 31
4.4 Use of user-defined data types ... 36

5 Configuration of an EAP device... 41
5.1 The TwinCAT EAP device... 41
5.2 Publisher Box .. 44
5.3 Publisher Variable ... 46
5.4 Subscriber Box.. 47
5.5 Subscriber Variable... 48
5.6 EAP between TwinCAT 2 and 3.. 50

6 The CANopen object dictionary... 52
6.1 The EAP Object Dictionary (subprofile 1000) ... 52
6.2 The TwinCAT ADS interface to the EAP device ... 67
6.3 ADS over EtherCAT (AoE).. 69
6.4 Online configuration of the TwinCAT EAP device... 70
6.5 Configuration of Polled Data Exchange .. 74
6.6 Restoring the online configuration... 74

7 The EAP Device Configuration (EDC) File .. 76

8 Support and Service ... 77

Table of contents

TE10004 Version: 1.7.1

Foreword

TE1000 5Version: 1.7.1

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
The documentation and the following notes and explanations must be complied with when installing and
commissioning the components.
The trained specialists must always use the current valid documentation.

The trained specialists must ensure that the application and use of the products described is in line with all
safety requirements, including all relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been compiled with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
Claims to modify products that have already been supplied may not be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, ATRO® , EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over
EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar®, and XTS® are registered
and licensed trademarks of Beckhoff Automation GmbH.
If third parties make use of the designations or trademarks contained in this publication for their own
purposes, this could infringe upon the rights of the owners of the said designations.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Third-party trademarks

Trademarks of third parties may be used in this documentation. You can find the trademark notices here:
https://www.beckhoff.com/trademarks.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

https://www.beckhoff.com/trademarks

Foreword

TE10006 Version: 1.7.1

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TE1000 7Version: 1.7.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Product description

TE10008 Version: 1.7.1

2 Product description
The EtherCAT Automation Protocol (EAP) device enables the cyclic, highly deterministic exchange of any
desired variables between PCs that are connected by Ethernet. Communication between EAP devices takes
place according to the Publisher/Subscriber principle and is specified by the EtherCAT Technology Group
(ETG) (ETG 1005 – see webpage www.ethercat.org).

The real-time Ethernet driver for TwinCAT must be installed for the TwinCAT EAP device in order for highly
deterministic communication to take place.

Comparison with TwinCAT 2 network variables

The TwinCAT EAP device is based on the network variables (NWV) familiar from TwinCAT 2 and contains
some extensions. Among other things the EAP telegram also slightly expands the NWV telegram. However,
this expansion concerns only the contents of the telegram. The structure of the EAP telegram remains
identical to the NWV telegram. For this reason network variables are compatible with the EtherCAT
Automation Protocol and vice versa. Further details concerning EAP communication between TwinCAT 2
and 3 can be found in chapter EAP between TwinCAT 2 and 3 [} 50].

Requirements

The full functional scope of the TwinCAT EAP device as described in this documentation is available from
TwinCAT version 3.1 (build 4018.13) or higher.

2.1 Basic principles
The TwinCAT EAP device enables data transfer from any variables from a TwinCAT controller A to a
TwinCAT controller B via a network. These variables are typically used for controlling the processing
operation within a machine. They are therefore also referred to as process variables (PV). For a TwinCAT
EAP device, sending and receiving can take place via a standard network adapter, which is supported by the
TwinCAT real-time Ethernet driver.

The communication between EAP devices takes place based on the Publisher/Subscriber principle. The
senders, referred to as Publishers, send messages to all or several network devices; as a rule, a Publisher
does not know the receivers or whether a receiver exists at all. On the other side there are receivers,
referred to as Subscribers, which are interested in certain messages and receive these, without knowing
from which Publisher they originate or whether such a Publisher exists at all.

Structure of an EAP Publisher

An EAP Publisher consists of a number of nested elements, as illustrated in the following figure. The basic
element at the lowest level is a TxVariable. It defines an output variable, which is linked to a process variable
and has several further properties, such as a data type. The data type can be freely selected; it may be a
complex data type, with a size of several hundred bytes. It should be ensured that the maximum size of an
EAP frame is not exceeded (the size of an EAP frame corresponds to that of a standard Ethernet frame). If
the size of the standard Ethernet frame is exceeded, several packages are sent, which can also arrive at the
recipient in a different order.

In TwinCAT 3.1 Build 4024, splitting into several packages is not supported.
An error message appears during engineering.

During operation, the process variable provides the values to be sent by the Publisher.

https://www.ethercat.org/en/downloads/downloads_BB6D7FF18F2B47DDB3474168D50EE864.htm

Product description

TE1000 9Version: 1.7.1

At the next higher level, TxVariables are referenced in the TxPDO elements (TxPDO =
TxProcessDataObjects). A TxPDO can reference several TxVariables, thereby consolidating them in an
object. The TxPDO then defines an ordered set of TxVariables. The condition that the maximum size of an
EAP frame must not be exceeded also applies to a TxPDO.

The TxData element (TxProcessData = TxPD) is located at the next higher level. It represents a Publisher
variable and is understood as communication unit of the Publisher in EAP. The TxData element references a
certain TxPDO and defines a number of properties, such as the ID of the Publisher variable, their version
and the clock cycle, based on which the Publisher variable is sent in the first place. Based on these
properties, the Publisher variable defines an object on the sender side, for which a suitable Subscriber
variable must be defined on the receiver side, so that successful data exchange can take place.

The data transmission takes place network-based via the Ethernet protocol or via UDP/IP. Similarly, a
TxFrame is then assigned a list of TxData, which are to be sent to the same destination address. A TxFrame
is limited to a maximum data length per data packet. For sending a Publisher variable, at least the following
properties must be defined:

Destination address:
The destination address is usually a multicast address, so that the Publisher variable is automatically sent to
a group of receivers. It is also possible to enter the address of an individual receiver.

ID:
For each Publisher variable a number is defined, which must be unique across the network. Based on this
number, the Publisher variable can be identified by a Subscriber.

Clock cycle:
The clock cycle defines the interval at which the Publisher variable is sent. EAP cycle times generally range
between a few milliseconds up to several 100 milliseconds.

Link to a process variable:
Last but not least, a link between the Publisher variables and a process variable is required, to ensure that
process data are actually sent with the aid of the Publisher variable. Otherwise the value of the Publisher
variable would always remain zero.

Structure of an EAP Subscriber

The structure of an EAP Subscriber is analogous to that of a Publisher and is illustrated in the following
illustration. The basic element at the lowest level of a Subscriber is referred to as RxVariable. The
RxVariable defines an input variable, which is also linked to a process variable and contains several
properties, such as the data type. During operation, the process variable obtains the values, which the
Subscriber receives.

Accordingly, the elements at the level above are referred to as RxPDOs (RxProcessDataObjects). Each
element defines an ordered set of RxVariables.

The RxData element (RxProcessData = RxPD) is located at the next higher level. It represents a Subscriber
variable and is understood as communication unit of the Subscriber in EAP. The RxData element references
a certain RxPDO and defines the required properties (ID and version), which must match the Publisher
variable to be received. For a successful data exchange, the data types of the referenced RxVariable and its

Product description

TE100010 Version: 1.7.1

order in the RxPDO must be identical to the TxPDO of the Publisher variable. The Subscriber variable thus
defines an object on the receiving side, for which a matching Publisher variable must be defined on the
sender side, in order for data exchange to take place.

Due to the design of the EtherCAT Automation Protocol, for a Subscriber it is irrelevant from which sender
the received data originate. In particular, it is irrelevant which Publisher variables are sent within a frame. For
this reason the Subscriber has no frame element or similar, which would consolidate certain Subscriber
variables as a unit, so that they would only be received en bloc. Nevertheless, RxData offers an option to
define an AMS NetID as a filter address, in cases where a Subscriber should only receive the Publisher
variables of a certain sender. In this case, at least the following properties must be defined for a Subscriber
variable:

ID:
The ID of a Subscriber variable defines which Publisher variable should receive it. The ID is a number, which
should be unique for each Publisher variable across the whole network. It is used to identify the Publisher
variable at the receiving end.

Link to a process variable:
Finally, using a Subscriber variable only makes sense if it is linked to a process variable. Only then will the
received data actually be applied by the process variable and taken into account in the machine control.

In addition, the data length of the Subscriber variable must be identical to data length of the Publisher
variable. Otherwise the received Publisher variable is discarded.

2.1.1 Communication methods
The TwinCAT EAP device supports two communication types: cyclic process data communication (EtherCAT
type 4), and acyclic EtherCAT mailbox communication (EtherCAT type 5). For mailbox communication, the
TwinCAT EAP device only supports the AoE protocol (AoE – ADS over EtherCAT). The specification of the
AoE protocol is described in the EtherCAT Protocol Enhancements (ETG 1020). For process data
communication, a distinction is made between two communication modes:

Pushed Data Exchange mode, in which an EAP sender sends its process information to the network either
cyclically or when a change in status is detected, and an EAP receiver expects this process information and
receives it accordingly. This mode corresponds to the Publisher/Subscriber principle of the network variables
(NWV) of TwinCAT 2.
Polled Data Exchange mode, in which an EAP client sends a request telegram with its process information
to an EAP server, which then sends its process information back to the EAP client in a response telegram.

In addition, the TwinCAT EAP device supports different connection types and different addressing modes
during process data communication. The supported connection types are:

• Unicast: The EAP message is sent from one end point to another end point, in other words: the
message is addressed to precisely one PC.

• Multicast: The EAP message is sent from one end point to several other end points, in other words:
the message is addressed to a group of PCs.

• Broadcast: The EAP message is sent from one end point to all accessible end points, in other words:
the message is addressed to all devices.

Product description

TE1000 11Version: 1.7.1

MAC addresses, AMS NetIDs or IP addresses can be used. Depending on the configuration of the
connection type and the addressing mode, a particular network protocol is activated for the EAP process
data communication. The exact assignment is shown in the following table.

Table 1: Network protocols

Addressing mode
Connection type

MAC address AMS NetID IP Address

Unicast Ethernet protocol Ethernet protocol UDP/IP
Multicast Ethernet protocol Not possible UDP/IP
Broadcast Ethernet protocol Not possible UDP/IP

Depending on the different addressing modes (MAC, AMS NetID and IP), the connection types’ unicast,
multicast and broadcast are supported as follows:

MAC addressing:
The EAP message is transferred based on the Ethernet protocol. The MAC address of the network adapter
that is to receive the message is configured as destination address. With this addressing mode, the EAP
message cannot be relayed from a router to another subnet, since it operates based on IP addresses. The
message can therefore only be sent within a subnet via switches.

Broadcast and multicast
Special MAC addresses are reserved for a broadcast or multicast message:
Broadcast MAC: FF-FF-FF-FF-FF-FF
Multicast MAC: A multicast MAC address must meet the following conditions.
• The lowest-order bit (bit 1) of the first byte has the value 1 (group bit).
• The following bit 2 has the value 0, if the MAC address is globally unique;

or the value 1, if the address is only locally unique.
• The first 24 bits (bits 3 to 24) correspond to the manufacturer ID, referred to as Organizationally

Unique Identifier (OUI). The OUI for Beckhoff is "00-01-05".
• The remaining 24 bits (bits 25 to 48) can be specified individually for each interface. The

sequence "04-00-00" is defined for the EtherCAT Automation Protocol.
ð The resulting standard multicast MAC address for TwinCAT EAP devices is 01:01:05:04:00:00.

AMS NetID addressing:
The EAP message is transferred based on a type 4 EtherCAT protocol (EAP). The required target MAC
address is determined based on the Address Resolution Protocol (ARP) and the configured AMS NetID. As
with MAC addressing, the EAP message can only be sent within the subnet.

Communication via AMS NetID
Using an AMS NetID as destination address has the advantage that it is a logical address. The
MAC address of the target device is determined with the aid of a special ARP request, using the
configured AMS NetID.
The configuration of an EAP connection does not have to be adapted, even if a control computer or
a network adapter of a computer is replaced, resulting in a change of MAC address, for example.
The only condition is that the new control computer is assigned the original AMS NetID.
If the connection type Unicast is configured, the Subscriber Monitoring mechanism is also
configured by default (see Remote station monitoring via ARP [} 13]).

IP addressing:
For the EAP message, the Internet protocol (IP) is used in conjunction with the User Datagram Protocol
(UDP) for relaying and addressing of the recipient. The required destination MAC address is determined
based on the Address Resolution Protocol (ARP) and the configured IP address. With UDP/IP addressing, a
router can relay the EAP message to other subnets (including the internet, for example).

Special IP addresses are reserved for a broadcast or multicast message:

Broadcast IP: 255.255.255.255 is specified as broadcast IP address. The broadcast MAC address FF-FF-
FF-FF-FF-FF is derived directly from this IP address.

Product description

TE100012 Version: 1.7.1

Multicast IP: A multicast IP address must be in the range 224.0.0.0 to 239.255.255.255 (IPv4). In the EAP
device, TwinCAT generates a compliant multicast MAC address for each configured multicast IP address,
which is used when TwinCAT starts up (i.e. when the Run mode is activated).

Pushed Data Exchange (n:m connection)

The Pushed Data Exchange mode is based on the same model as the NWV transfer (Publisher/Subscriber
principle). It offers the option of an n:m connection in a network. Each EAP device can send one or several
EAP telegrams, together with its output process data (TxData). Each EAP device can “listen” to ascertain
whether the process data contained in a received EAP telegram match its input process data (RxData), so
that they can be processed, if applicable. One and the same EAP device can therefore send and receive
process data. In this way a bidirectional communication can be established.

With Pushed Data Exchange, the addressing mode (unicast, multicast or broadcast) for each configured
EAP telegram can be freely selected as required.

Polled Data Exchange (1:1 connection)

The Polled Data Exchange mode is subject to the client/server architecture principle. With the aid of this
architecture, it enables “soft” synchronization. An EAP device can act as client and server at the same time.

Connection type for Polled mode
For the Polled Data Exchange mode, only the connection type unicast is defined uniquely.

Unicast (1:1 connection)
A client sends an EAP telegram together with its output process data to a server, which then returns its input
process data to the client in a separate EAP telegram.

Network protocols

Ethernet protocol
The Ethernet protocol is responsible for switching the data packets in the network. It handles the tasks of
OSI layers 1 and 2 (physical layer and data link layer). The Ethernet protocol header should contain a sender
address, a receiver address and an Ethernet type, which specifies which protocol is used for the next higher
OSI layer. The sender and receiver addresses are entered in the form of a MAC address. MAC stands for
media access control and in this case refers to the unique hardware address assigned to each Ethernet
device during production. The Ethernet port of a Beckhoff PC could be assigned the MAC address
00:01:05:34:05:84, for example; "00:01:05" is the Beckhoff ID, and the second part is specified during
production. The sender and receiver MAC addresses determine the route of each Ethernet telegram
between two PCs in the network. An Ethernet telegram can be processed further via a switch, but usually not
via a router.

User Datagram Protocol / Internet Protocol (UDP/IP)
The receiver is identified via an additional IP header in the Ethernet telegram, so that it can be processed
further by a router. The telegram has the Ether type 0x0800, which specifies that it is an IP telegram. In the
subsequent UDP header, the port number 0x88A4 is used for the source port as well as the destination port.
Based on this port number, the TwinCAT system detects that the telegram is a real-time based user
datagram.

TwinCAT identifies an EAP telegram either on the basis of Ether type 0x88A4 (if the Ethernet protocol is
used) or on the basis of the destination port 0x88A4 (for UDP/IP). Accordingly, the TwinCAT Ethernet driver
makes a received EAP telegram bypass the NDIS stack of the operating system, so that TwinCAT treats it
preferentially as a Beckhoff real-time Ethernet telegram. When an EAP telegram is sent, the NDIS stack of
the operating system is also bypassed.
Once an EAP telegram has been received by a TwinCAT PC and identified as such, during further
processing of the telegram the process data (PD) transported in the telegram are assigned to the RxData
configured in the EAP device. This assignment is based on the PD ID. The received PD is discarded, if no
RxData with matching PD ID were configured at the receiver.

Finally, the values of the individual process variables (PV) of a PD are only applied if, in addition, the data
length and the version number of the received PD match the expected data length and version number.

Product description

TE1000 13Version: 1.7.1

2.1.2 Remote station monitoring via ARP
The EAP is based on the connection-less protocols (Ethernet protocol and UDP/IP). These protocols do not
return acknowledgements for messages. The TwinCAT EAP device uses the Address Resolution Protocol
(ARP) for remote terminal monitoring, in order to enable the sender of an EAP telegram to detect that the
receiver is no longer available. The ARP Retry Interval can be used in an EAP Publisher to configure the
time frame for checking whether the receiver is still accessible. Remote terminal monitoring (Subscriber
Monitoring) can only be enabled if a unicast connection is configured.

If Subscriber Monitoring is enabled, the Publisher sends an ARP Request telegram to the configured target
device, based on the configured time interval. If the receiver still operates as expected, it responds with an
ARP reply telegram. Otherwise there is no response. In the diagnostic variable FrameState (see Publisher),
the third bit (0x0004) is set in the event of an error.

ARP handling
The ARP handling for assigning MAC addresses to network addresses (IP addresses) is treated by
the operating system (Windows). The ARP handling for assigning MAC addresses to AMS NetIDs is
handled by the TwinCAT system.

2.1.3 EAP send mechanism
Sending of an EAP telegram is triggered based on a trigger mechanism. The configuration of an EAP device
is used to determine how this trigger mechanism works. For each TxData a trigger condition is defined. If this
trigger condition is met, TxData are sent via an EAP telegram. In other words: In each EAP device, trigger
conditions are used for each TxData to configure the operation of the trigger mechanism.

There are 5 different types of trigger conditions, which are described here.

Superposition of trigger conditions
The explanations of the individual trigger conditions indicate which other trigger conditions need to
be deactivated. In other words, which conditions are not allowed in combination. The example
further below shows that several active trigger conditions mutually overlap. How they overlap is not
clearly defined. It is therefore advisable to disable all trigger conditions that are not permitted.

1. Poll Request Rx PD
The trigger condition Poll Request Rx PD controls the sending of a response telegram in Polled Data
Exchange mode (see section Communication methods [} 10]). Once a TxData has a valid entry for
the trigger condition Poll Request Rx PD, the respective TxData operates in this mode. A valid entry is
present, if it matches the object index of an RxData configured in the EAP device. This RxData then
defines the expected request for returning the TxData as response. When the EAP device receives an
EAP telegram containing the expected process data, in the next cycle the TxData is returned in a new
EAP telegram to the sender of the request telegram. Consequently, the EAP device serves as Polled
Data Exchange server for this TxData, when the trigger condition Poll Request RxData is enabled.
All other conditions (2 to 5) have to be disabled, if the Poll Request Rx PD condition is enabled.

2. Divider/Modulo
A Divider/Modulo condition is used to specify the frequency with which a TxFrame or a TxData is sent
(see illustration below). The frequency is always a multiple of the task cycle time driving the EAP
device. The divider value defines the multiple. The Modulo value specifies the start cycle at which the
TxFrame or the TxData is sent for the first time. If the Divider has the value 0, this condition is
disabled.
Conditions 3, 4 and 5 are not relevant if the Divider/Modulo condition is enabled; they should

Product description

TE100014 Version: 1.7.1

nevertheless be disabled. Condition 1 must be disabled.

3. Cycle Time
The TxData is sent at particular intervals, as defined by the cycle time value (unit: µs) (see illustration
below). The cycle time should be an integer multiple of the task cycle time. If a value is configured that
is not an integer multiple of the task cycle time, the next smaller multiple is set automatically, down to
0, if necessary. If the value is 0 µs, this condition is disabled.
Trigger conditions 1, 2, 4 and 5 should be disabled, if the cycle time trigger condition is enabled.

Relationship between cycle time and task cycle time
Assuming the task cycle time is 5 ms (5000 µs), the cycle time of process data A is 10000 µs, and
the cycle time of process data B is 20000 µs. The task cycle time is now slowed down from 5 ms to
15 ms (15000 µs). Neither the cycle time of process data A nor that of process data B is a multiple
of the task cycle time; the cycle time is therefore not divisible by the task cycle time without
remainder.
As a result, process data A is only sent every 15 ms (15000 µs), process data B only every 30 ms
(30000 µs).

4. Change of State (CoS): On Change Timeout
The TxData is only sent when the value of one of its variables has changed compared with the
previous value. A maximum time interval is defined as timeout time (unit: µs). If the value of a variable
does not change within this interval, the TxData is sent regardless, after the time interval has elapsed
(see illustration below). The value for the time interval must be an integer multiple of the task cycle
time. If the time interval is set to 0 µs, the trigger condition CoS On Change Timeout is disabled.

Product description

TE1000 15Version: 1.7.1

Trigger conditions 1, 2 and 3 must be disabled, if the trigger condition CoS On Change Timeout is
enabled.

5. Change of State (CoS): Inhibit Time
The Inhibit Time specifies a minimum time interval, so that the TxData is not sent before this time
interval has elapsed after it was last sent.
The Inhibit Time therefore specifies a minimum time interval in µs, after which the TxData is sent -
even if one value of the included Tx variable has changed (see illustration below). The value for this
time interval can only be an integer multiple of the task cycle time, and it must be less than the value
of CoS On Change Timeout. If the time interval is set to 0 µs, the trigger condition Inhibit Time is
disabled.
Trigger conditions 1, 2 and 3 should be disabled, if the inhibit condition Inhibit Time is enabled.

Configuration options for the trigger conditions
The trigger conditions 1, 3 and 5 (Poll Request RxData, Cycle Time and Inhibit Time) can be
configured via the EAP object dictionary (see chapter CANopen object dictionary [} 52] in the
documentation for the TwinCAT EAP device).

Special features of the trigger conditions
For all trigger conditions that define a time interval, this interval cannot be smaller than the task
cycle time of the task driving the EAP device.

A combination of the conditions is not recommended because they are not clearly defined. The following
gives a good example of the complexity:

Product description

TE100016 Version: 1.7.1

The last line clearly shows that the transmission at 160 ms and 240 ms does not take place because it is
prevented by the additional divider/modulo conditions.

2.1.4 EAP performance
If the TwinCAT EAP device is used, the temporal boundary conditions of the network architecture used must
be taken into account:

• In a network architecture, in which telegrams are exclusively sent via switches (e.g. per Ethernet
protocol), communication cycles of around 10 ms or below can be achieved.

• In a network architecture, in which telegrams can also be sent via a router (i.e. via UDP/IP), a
communication cycle time of around 100 ms can be achieved.

In a network, in which other communication takes place in parallel, the performance of the EAP
communication can be impaired.

2.1.5 The EAP state machine
The EAP state machine (EAP SM) controls the state of the EAP device. Depending on the state, different
functions are accessible or executable in the EAP device. A distinction is made between the following states:

• Init
• Pre-Operational
• Safe-Operational and
• Operational

The regular state of each EAP device after it started is the OP state. Until the OP state is reached, the EAP
device is switched once to each state in turn. During each state transition the EAP device performs certain
actions. If an error occurs during one of the transitions, the device cannot be switched to the corresponding
subsequent state and therefore remains in the state that was reached last. A readable error code can be
used to diagnose the reason for the error.

Init

As a rule, the Init state of an EAP device is a temporary state. That is, the EAP device cannot be set to the
Init state explicitly. Nevertheless, there are cases in which the SM resets the EAP device to the Init state. In
this state neither mailbox communication nor process data communication with the EAP device is possible.

Product description

TE1000 17Version: 1.7.1

Pre-Operational (Pre-Op)

During the transition from Init to Pre-Op, the EAP device checks whether the mailbox was initialized
correctly. In Pre-Op state, mailbox communication is possible, but not process data communication.

Safe-Operational (Safe-Op)

During the transition from Pre-Op to Safe-Op, the EAP device checks the internal object references and
updates:

• the cycle time-based configuration parameters,
• the reference pointers to the input and output variables of the process image, and
• the mapping of each Publisher/Subscriber variables to its process variables from the PLC.

In Safe-Op state, mailbox communication and sending of Publisher variables takes place. No EAP telegrams
are received yet.

Operational (Op)

During the transition from Safe-Op to Op, the EAP device checks once again whether an error has occurred
during startup.

In Op state the EAP device receives incoming EAP telegrams and copies the received process data to the
input variables, if required. Mailbox communication takes place, Publisher variables are sent, and Subscriber
variables are received.

If an error occurs in one of the state transitions, the EAP device remains either in the last reached state, or it
is reset to Safe-Op state. At the same time, the error bit and a corresponding error code are set (cf. section
The CANopen object dictionary [} 52] in the documentation for the TwinCAT EAP device). Typical errors
occur due to inconsistencies in the CANopen object dictionary, for example, so that the configuration is
invalid.

2.2 Technical concept

2.2.1 EAP telegram structure
An EAP telegram can be transmitted by Ethernet (Ethertype = 0x88A4, corresponds to the EtherCAT
protocol) or by UDP/IP (UDP port 0x88A4). If EAP is based on the EtherCAT protocol, the EAP-specific
telegram parts are embedded in the user data of the EtherCAT protocol.

The EAP telegram consists of a Process Data Frame Header and one or more ProcessData (PD). A PD is
the main unit in the exchange of data via EAP. A PD is composed of the so-called PDO Header and at least
one Process Variable (PV). On the whole, the Process Variables of a PD form the ProcessDataObject
(PDO). See the following illustration.

Product description

TE100018 Version: 1.7.1

The Process Data Frame Header

The Process Data Frame Header consists of five fields (see lines 2 and 3 in the illustration above). The latter
field (EAP SM) extends the NWV telegram of twincat 2 with regard to contents.This field contains among
other things information about the current state of the EAP device.

Publisher ID
The sender of a telegram is identified on the basis of the Publisher ID. It contains the AMS NetID of the
sender. If a receiver is configured so that it only processes telegrams from a certain sender, a check is
carried out on the basis of the Publisher ID field as to whether the EAP telegram originated from this sender.

Cnt PDO
This field contains the number of ProcessData contained in the telegram, so that the receiver can fully
process the telegram.

Cycle
The value of this field is incremented with each task cycle of the sender. On the receiving side the contents
of this field can be used as a sequential number in order, for example, to check whether a telegram has been
lost. This field should be monitored on the server side in Polled Data Exchange mode.

Res
reserved for future extensions.

EAP SM
This field is composed of 4 subentries.

• Res: reserved for future extensions.
• Toggle: This bit is toggled for each new EAP telegram.
• Err: This field indicates whether an error has occurred with the EAP State Machine.
• State: This field contains the value for the current state of the EAP State Machine.

1 : Init
2 : Pre-Operational
4 : Safe-Operational
8 : Operational

Values other than these are not allowed

The PDO Header

The PDO Header consists of 4 fields, each of which has a data length of 2 bytes (see lines 3 and 4 in the
illustration above).

PD ID
The PD ID (16-bit) serves as the global identification of the EAP variables and should be unique in the
network.

Selection of the ProcessData Identifier (PD ID)
In order to achieve unambiguous allocation we recommend using different IDs for each data
communication between connected PCs.
Reason: In the following illustration, PC 2 in Box 2 (Subscriber) receives not only the intended
variables as Box 2 (Publisher) with the ID 8 from PC 1, but also, since they are sent as a
broadcast(!), the variables from Box 2 (Publisher) from PC 3. It is then no longer possible to make a
distinction in PC 2!

Product description

TE1000 19Version: 1.7.1

Version
A version number can be entered for the PD in this field. The influence that the version has on the EAP
communication is explained in the Network protocols section of the chapter Communication methods [} 10].
The version number should be consistently increased if at least one of the following changes is made to
ProcessData.

• The data length of the ProcessData is changed.
• The data type of a variable of the ProcessData is changed.
• The order of the variables in a PDO is changed.

Length
This field contains the length of the ProcessData in bytes. The length of the Process Data Header itself is not
included.

Quality
The value of this field shows the age of the ProcessData in the unit [100 µs] if the value lies between 0x0
and 0xEFFF. A value greater than or equal to 0xF000 means that the ProcessData is invalid.

The Process Variable (PV)

The Process Variable contains the actual data to be transmitted (see Process Var in line 4 of the first
illustration above). The data length of a PV may only be so large that the entire EAP telegram is not larger
than 1514 bytes.

Calculation of the size of an EAP telegram
The sum of the lengths of all headers and all publisher variables may not exceed the limit of 1514
bytes. The EAP telegram shown (see following illustration) has a total size of
14 + 28 + 2 + 12 + 8 +120 + 72 + 12 + 8 + 100 = 376 bytes.

Product description

TE100020 Version: 1.7.1

(This calculation includes 28 bytes for the UDP/IP Hdr. The 28 bytes are available for data in pure Ethernet
communication.)

Data representation on different platforms

Note that both simple and complex data (WORD, ARRAYs, REAL, STRING, user-defined structures) are
represented internally in a different manner on different platforms. x86 platforms use byte-alignment, others
(Arm®) 2-byte or 4-byte alignment.
This means that if a complex structure is created in both an x86/PC PLC project and an Arm® PLC project,
they can each have a different effective size and a different internal structure.

In the example (see illustration above) the structure in PC2 is larger than in PC1. Not only that, the word and
real variables don't match, since a variable can begin at any byte position in PC1 but only at any even-
numbered byte position in PC2.

It is recommended to observe the following rules when assembling structures so that no size differences are
caused by the alignment:

• firstly, all 4-byte variables (must lie at an address that is divisible by 4)
• then all 2-byte variables (must lie at an address that is divisible by 2)
• then all 1-byte variables

Further recommendation:

• If the data type STRING(x) is used in a PLC, the null termination of the string also belongs to the string
itself, so that x+1 must be divisible by 4. Otherwise there is no 4-byte alignment.

• The above rules also apply to substructures.

Other information can be found in the Beckhoff information system under structures or alignment.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529481355.html
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/3539428491.html

Product description

TE1000 21Version: 1.7.1

Use of Bus Terminal Controllers (BCxxxx, BXxxxx)
Floating point numbers (data type REAL) cannot be transmitted to Bus Terminal controllers
(BCxxxx, BXxxxx), since the representation of a floating point number on a Bus Terminal controller
differs from that on an x86 platform.
The data type SINT, for example, can be used for signed values.

Diagnosis of an EAP connection

TE100022 Version: 1.7.1

3 Diagnosis of an EAP connection
The TwinCAT EAP device provides different variables with whose help the quality or failure of an EAP
communication can be diagnosed. Such diagnostic variables can be found in both the publisher and the
subscriber. They can be programmatically evaluated in order to react to possible malfunctions.

3.1 Subscriber
In the case of the subscriber there are the diagnostic variables Quality, CycleIndex and VarState.

• Quality:
The Quality indicates the age of the data received.

• CycleIndex:
Transmission failures can be detected with the help of CycleIndex.

• VarState:
The VarState variable indicates whether there are discrepancies between the configured RxData and
the incoming ProcessData that are preventing the reception of the data.

Quality

The Quality variable contains the length of time in [100 µs] by which this ProcessData arrived too late at the
receiver. It is incremented in each cycle by the cycle time immediately before the input process image of the
TwinCAT EAP device is updated. The updating of the input process image takes place during the processing
of the received EAP telegrams. During this processing, several values of each telegram are allocated to the
corresponding variables of the input process image.

Diagnosis of an EAP connection

TE1000 23Version: 1.7.1

As shown in the illustration above, the received Quality value from the telegram, for example, is allocated to
the corresponding Quality variable of the input process image.
If the Quality in an EAP telegram has the value 0, then the Quality of the input process image is reset to the
value 0 as soon as the telegram has been received.

Diagnosis of an EAP connection

TE100024 Version: 1.7.1

The above illustration shows how the delayed arrival of an EAP telegram influences the Quality value: at the
start, the EAP telegram is received in good time prior to the start of the 1st cycle. Likewise in the 2nd cycle.
After that, the telegram doesn't reach the receiver until after the 3rd cycle has already begun. The
consequence of this is that the telegram cannot be processed until the 4th cycle. Accordingly, the value of the
Quality variable is incremented by the cycle time during the 3rd cycle, but not reset to the value 0. The Quality
variable is only reset to the value 0 in the 4th cycle by allocating the Quality value of the delayed telegram.

Diagnostic variable quality
Assuming the task cycle of the subscriber is ten times as fast as that of the publisher, then an EAP telegram
is received only every tenth cycle. Consequently, no telegram arrives at the subscriber for nine cycles, which
also means that the Quality variable of the input process image cannot be reset for nine cycles. The Quality
variable will thus be incremented by the cycle time for nine cycles. It thus increases up to nine times the
cycle time.

The result: A "slow" sender (e.g. 100 ms transmission clock in the publisher) leads with a "fast" receiver (e.g.
10 ms receiving clock in the subscriber) to a correspondingly increasing value of the diagnostic variable
Quality.

It is therefore important to consider different cycle times for the transmission and reception of EAP
telegrams. In this respect it is particularly important to pay attention to the Trigger conditions (see EAP send
mechanism [} 13]) that are configured in the sender.

EL6601/EL6614
When using the EL66xx, the time of arrival of a ProcessData is precisely when the data are present
in the input process image of the EAP device, not when they arrive at the EL66xx or in the input
image of the EtherCAT device.

CycleIndex
The CycleIndex (size: 16 bits) is a counter that is transmitted by the publisher with the ProcessData. It is
usually incremented on the sender side with each new cycle before the EAP telegram is sent, thus allowing
an inference to transmission interruptions. It can be read on the receiver side (in the subscriber) as
CycleIndex (cf. uppermost illustration in this chapter).

VarState
The VarState (size: 16 bits) supplies information about the current status of the RxData.
The following values are possible for VarState:

Short description Bit Description
Invalid Hash/Version VS.0 The bit is set to 1 if a ProcessData couldn't be received because the

version of the received ProcessData didn't correspond to the
configured version of this RxProcessData. The bit is otherwise set to
0.

Invalid Variable Length
Received

VS.1 The bit is set to 1 if a ProcessData couldn't be received because the
data length of the received variable didn't correspond to the
configured RxVariable. The bit is otherwise set to 0.

Diagnosis of an EAP connection

TE1000 25Version: 1.7.1

EL6601/EL6614
The VarState is not created when using the EL66xx terminals.

3.2 Publisher
The diagnostic variables VarState and FrameState are available in the publisher. Detailed properties for the
transmission of an EAP telegram are clarified by means of these diagnostic variables.

VarState
VarState (size: 16 bits) provides information about the current state of the TxData.
The following values are possible for VarState:

Short description Bit Description
Not Sent (variable
skipped)

VS.0 The TxProcessData is transmitted as long as the value is 0. The
transmission of the TxProcessData is otherwise suspended.

EL6601/EL6614
This variable is not created when using the EL66xx terminals.

FrameState
FrameState (size: 16 bits) provides information about the current state of the TxFrame. The following values
are possible for the FrameState:

Short description Bit Description
Not Sent (frame
skipped)

FS.0 The Ethernet frame is transmitted as long as the value is 0. The
transmission of the frame is otherwise suspended.

Error (frame oversized) FS.1 If the value is 1, the maximum size of an Ethernet frame has been
exceeded. The linked variable should be smaller.

Subscriber Missing
(Unicast only)

FS.2 This bit is only set if the Subscriber Monitoring is activated (see
chapter Publisher Box [} 44]). The value is set as soon as the
Subscriber Monitoring mechanism detects that the EAP device to
which the Ethernet frame is sent is no longer reachable. The bit is
reset to 0 as soon as the reachability is restored.

EL6601/EL6614
This variable is not created when using the EL66xx terminals.

Creation of an EAP configuration

TE100026 Version: 1.7.1

4 Creation of an EAP configuration
A communication connection between TwinCAT controllers via EAP is created with the aid of TwinCAT 3.

4.1 Adding an EAP device
An EtherCAT Automation Protocol device is added in TwinCAT 3 via the path [I/O] → [Devices] (see
following illustration).

1. In the context menu of the [Devices] node, click on the command [Add New Item...]
ð The Insert Device dialog opens.

2. Select the EtherCAT Automation Protocol (Network Variables) below the EtherCAT node and confirm
your selection with [OK].

If the PC has several more unused realtime-capable network adapters at its disposal, a dialog appears in
which the network adapter can be selected (see following illustration).

1. Select the desired adapter and confirm with [OK].
ð Subsequently, the EAP device is visible with the designation Device 1 (EtherCAT Automation Protocol)

underneath the Devices node.

Creation of an EAP configuration

TE1000 27Version: 1.7.1

In the next step the Publisher or Subscriber Variables can be configured.

4.2 Addition of publisher variables
If the EAP device is to send variables, Publisher Variables must be added in order to complete its
configuration (see following illustration).

1. In the context menu of the EAP device node (Device 1), click on the entry [Add New Item...].
ð The Insert Box dialog opens.

2. Select the Network Variable Publisher and click on [OK].

Addition of several publishers
If several Publishers are to be created, the number can be set using the Multiple input field.

Creation of an EAP configuration

TE100028 Version: 1.7.1

The Publisher Variables (TxData) are subsequently appended to the created Publisher (see following
illustration).

1. In the context menu of the Publisher, click on the menu item [Add new Item...].
ð The dialog Insert Network Variable appears.

2. Select a data type for the Publisher Variable, enter a designation in Name, define an ID and then click on
[OK].

ð The node for this Publisher Variable appears under the Publisher (see next illustration).

Assignment of an ID
The selected ID for a Publisher Variable should be unique in the network.

Creation of an EAP configuration

TE1000 29Version: 1.7.1

In the course of the configuration of publisher variables, input and output variables are generated that belong
to the various nodes and sub-nodes of the EAP device (see following illustration). In addition to the
unconditional input/output variables there are also conditional ones that are only generated if certain
configuration settings are made.

All of the input/output variables together ultimately form the process image of the EAP device. If they are
linked with the variables of an application (e.g. a PLC program) in TwinCAT, then the latter can read these
contents from the process image or write values into the process image. The purpose of the output variables
is to write values that, for example, control the behavior of the EAP device. The purpose of input variables is
to read their values in order, for example, to evaluate status information in the PLC program and to react to
it. In this way the behavior of the EAP device can be directly influenced from a PLC.

Creation of an EAP configuration

TE100030 Version: 1.7.1

Appearance of the input and output variables
The structure of the process image varies, depending on which port (network adapter of the PLC or
an EL66xx Switch Port Terminal) the EAP device uses for communication.

Description of the unconditional input/output variables

FrameState
The FrameState input variable below the Publisher node indicates the current state of the TxFrame. A
detailed description can be found in the Publisher [} 25] section.

FrameCtrl
The FrameCtrl output variable below the Publisher can be used to control the transmission of the EAP
telegram. The following values are possible for FrameCtrl:

Short description Bit Description
Disable sending FC.0 The transmission of the frame is interrupted if the bit is set to 1. The

transmission of the frame only restarts when the value falls back to 0.
Remove destination
MAC from ARP cache

FC.1 This control box only has an effect if the EAP telegram is sent by IP or
AMSNetID. The destination MAC address entered in the ARP cache is
deleted if the bit is set. A new entry can only be made when the bit is
reset to 0, provided the EAP device can determine the destination MAC
address by ARP. (see also Remote station monitoring via ARP [} 13])

Appearance of the output variable FrameCtrl
This variable does not exist in the case of EAP communication via the EL66xx terminal! Instead, the
output variable CycleIdx (size: 16 bits) is created, which is to be used for a diagnosis of the
communication connection (see Diagnosis of an EAP connection [} 22]).

VarState
The input variable VarState below the Publisher Variable indicates the current state of TxData. A detailed
description can be found in the Publisher [} 25] section.

VarCtrl
The output variable VarCtrl below the Publisher Variable can be used to control the transmission of the
Publisher Variable. The following values are possible for VarCtrl:

Short description Bit Description
Disable publishing VC.0 The transmission of the Publisher Variable is interrupted. The

transmission of the Publisher Variable restarts only when the value of the
bit has returned to 0.

Appearance of the output variable VarCtrl
This variable does not exist in the case of EAP communication via the EL66xx terminal!

CycleIndex
The output variable CycleIndex below the TxProcessData should be linked with an application variable that
is cyclically incremented, since the CycleIndex on the receiving side can be evaluated for diagnostic
purposes (see Diagnosis of an EAP connection [} 22]).

Appearance of the output variable CycleIndex
The output variable CycleIndex only exists if the EAP communication takes place via the EL66xx
terminal!
This variable does not exist if the EAP communication takes place via a PC network adapter. The
CycleIndex in the EAP telegram is then automatically incremented with each task cycle.

VarData
The output variable VarData of the Publisher Variable can be linked with any desired variable of a suitable
data type (e.g. with the variables of a PLC program).

Creation of an EAP configuration

TE1000 31Version: 1.7.1

Description of the conditional output variables

MAC / NetID / IP
The output variable MAC / NetID / IP below the Publisher Box node only exists if the option Target Address
Online Changeable is activated. In this case the destination address of the EAP telegram can be changed
dynamically (e.g. with the help of a PLC program).
Depending on the type of addressing configured for TxFrame (MAC Address, AMS NetID or IP), the data
type of the variables is a MAC, a NetID or an IP.

VarId
The output variable VarId below the Publisher Variable only exists if the option Online Changeable is
activated for the variable ID. In this case the ID for the TxData can be changed dynamically (e.g. with the
help of a PLC program).

4.3 Addition of subscriber variables
If the EAP device is to receive variables, subscriber variables need to be added in order to complete its
configuration (see next illustration).

1. In the context menu of the EAP device node (Device 1),
click on the entry [Add New Item...].
ð The Insert Box dialog opens.

2. Select the Network Variable Subscriber and click on [OK].

Addition of several subscribers
If several Subscribers are to be created, the number can be set using the Multiple input field.

The Subscriber Variables (RxData) are finally appended to the Subscriber generated (see following
illustration).

Creation of an EAP configuration

TE100032 Version: 1.7.1

1. In the context menu of the subscriber, click on the menu item [Add new Item...].
ð It opens the Import Network Variable dialog, with whose help a Subscriber Variable can be imported

or defined. There is a choice of three possibilities.

Browse for Computer
The connection to a Publisher Variable of another controller in the network can be established automatically.

ü The other controller must be located in the list of known target systems.
1. Click on [Browse for Computer…].

ð The Choose Target System dialog opens.
2. Select the desired control computer from the list and click on [OK].

ð All Publisher Variables offered by this computer are listed.
3. Select the desired Publisher Variable and confirm with [OK].
ð The Subscriber Variable is created to suit the selected Publisher Variable.

Browse for File
As an alternative to Browse for Computer, the connection to a variable of another control computer can be
automatically established by browsing for the project file that is or will be activated on the control computer.

1. Click on [Browse for File…].
ð A dialog opens for browsing the file system.

2. Browse the file system for the desired project file and confirm your selection with [OK].
ð All Publisher Variables offered by this computer are listed.

3. Select the desired Publisher Variable and confirm with [OK].
ð The Subscriber Variable is created to suit the selected Publisher Variable.

Create new Variable
The last option is to manually configure the Subscriber Variable (see following illustration).

Creation of an EAP configuration

TE1000 33Version: 1.7.1

1. Click on [Create new Variable].
ð The dialog Insert Network Variable appears.

2. Select a data type for the Subscriber Variable, enter a designation in Name, define an ID and then click
on [OK].

ð The node for this Subscriber Variable appears below the Subscriber (see following illustration).

Assignment of an ID
The selected ID for a Subscriber Variable must be identical to the Publisher Variable ID that is to be
received.

Creation of an EAP configuration

TE100034 Version: 1.7.1

Description of the unconditional input and output variables

FrameState/FrameCtrl
The input variable FrameState and the output variable FrameCtrl below the Subscriber node are reserved
and are not used at present.

VarState
The input variable VarState below the Subscriber Variable indicates the current state of RxData. A detailed
description can be found in the Subscriber [} 22] section.

VarCtrl
The output variable VarCtrl below the Subscriber Variable can be used to control the receiving. The following
values are possible for VarCtrl:

Short description Bit Description
Ignore Hash/Version VC.0 If the bit is set to the value 1, the checking of the version on receiving a

Process Data is deactivated.

Appearance of the output variable VarCtrl
This variable does not exist in the case of EAP communication via the EL66xx terminal!

VarData
The input variable VarData of the Subscriber Variable can be linked with any desired variable of a suitable
data type in TwinCAT (e.g. with a variable of a PLC program).

The reception of a variable is diagnosed on the receiving side. The two input variables Quality and
CycleIndex below the Subscriber Variables are available for this.

Quality
The Quality variable supplies a counter with a resolution of 100 µs. The counter value indicates the length of
time since the last data was received for this Subscriber Variable. The example in the next illustration shows
the online value of the Quality variable after disconnecting the network plug (count increases) and
reconnection (counter value 0).

Creation of an EAP configuration

TE1000 35Version: 1.7.1

CycleIndex
The CycleIndex variable is incremented in each Publisher cycle. The example in the next illustration shows
the typical procedure when viewing the online value of the CycleIndex variables.

Creation of an EAP configuration

TE100036 Version: 1.7.1

Description of the conditional output variables

VarId
The output variable VarId below the Subscriber Variable only exists if the option Online Changeable is
activated for the Variable ID. In this case the ID for the Subscriber Variable can be changed dynamically (e.
g. with the help of a PLC program).

4.4 Use of user-defined data types
Creation of an EAP variable

There are two common methods in TwinCAT to create user-defined data types. On the one hand a data type
of your own can be created via the System node of the project tree on the Data Types tab (see next but one
illustration). Such a data type is then available to all modules of the TwinCAT project. It is thus a global data
type.
On the other hand, users often create a data type of their own inside a PLC project by defining a DUT (Data
Unit Type). Such a data type is initially only locally available to the PLC project. This data type is hidden to
other modules such as the I/O configuration (and thus also the EAP device).

In the following illustration you can see that the data type MyType is defined in the PLC. This data type has
additionally been used for an output variable of the PLC program. Nevertheless, the user-defined data type
does not appear in the list of available data types if a variable of this data type is to be created in the
Publisher Box of the EAP device.

A corresponding note that a data type is used only locally can be found on the basis of the data type list on
the Data Types tab via the System node. In the following illustration the data type with the name MyType
appears in the list. However, there is a remark under the Type property that the data type concerned is a
temporary one (Tmp). This means that the data type concerned is one that is not global.

Creation of an EAP configuration

TE1000 37Version: 1.7.1

If it should be necessary to use a local data type from the PLC in a global context, the corresponding DUT
can be converted into a global data type (see following illustration).

1. Click on the command [Convert to Global Data Type] in the context menu of the DUT.
ð The node of the DUT is automatically removed from the PLC project and a global declaration of the type

is created (see following illustration).

The description for one and the same data type must be unique in TwinCAT. For this reason the definition of
the data type (the original DUT) is removed from the PLC. Instead of that, the definition of the data type can
be found in the XML-based TwinCAT project file following the conversion, and in this way the data type is
globally available to the entire TwinCAT project.

Creation of an EAP configuration

TE100038 Version: 1.7.1

A data type occurs as a local and global variant
Following the conversion of a data type into a global data type, the latter appears twice in the list of
data types: as a local data type and also as a global data type. The local data type is only removed
from the list if it is no longer referenced. It is usually necessary to compile the PLC project again
after the conversion. As a result, the reference from the PLC program to the local data types is
deleted and only the global type is referenced. Accordingly, the data type should only appear once
in the list as in the following illustration.

Once the user-defined data type has been converted to a global data type, it can be selected from the list of
available data types during the creation of a Publisher or Subscriber Variable in the EAP device (see
following illustration).

Creation of an EAP configuration

TE1000 39Version: 1.7.1

Changing a global data type

Once a data type has been converted to a global data type, its definition is no longer under the control of the
PLC project. The definition of the data type is located in the XML-based TwinCAT project file. This data type
must now be changed in the TwinCAT project via the Data Types tab of the System node (see following
illustration).

1. Select the data type that you wish to change from the list.
2. Right-click on it and select the command [Edit] in the context menu.

ð The TMC Editor opens (TMC = TwinCAT Module Configuration).

1. With the help of the TMC Editors you can change the data type as desired and subsequently save it.
ð The change is accepted in the TwinCAT project by creating a new version of the data type following the

saving procedure and marking the original version in the TwinCAT project as Hidden.

Creation of an EAP configuration

TE100040 Version: 1.7.1

A PLC program that uses the data types concerned automatically uses the latest version of the data types.
So that the change of the data type is also accepted in the machine code, the PLC project must be
recompiled following the change.

If a PLC variable of this data type exists and it is linked with a corresponding Publisher or Subscriber
Variable of an EAP device, the latest version of the data type is also used with the Publisher/Subscriber
Variable as soon as the PLC project is recompiled.
If no linking of EAP variables to PLC variables exists, the EAP device continues to use the original old
version of the data type for its variables. If the new version is to be used instead, the EAP variable
concerned must initially be deleted and a new EAP variable of the desired data type added again. The old
version of the data type is retained in the TwinCAT project until no further reference to this old version exists.

Configuration of an EAP device

TE1000 41Version: 1.7.1

5 Configuration of an EAP device
An EAP device created using TwinCAT as described in chapter Creation of an EAP configuration [} 26] is
initially configured with standard settings. The standard settings are selected such that the user only needs
to ensure that the order of the data variables on the receiver side is identical to that on the sender side and
that the same data type is selected for the data variables to be transmitted on both the sender and receiver
side. An EAP connection configured in this way always communicates in Pushed Data Exchange Mode (see
Communication methods [} 10]).

The EAP communication can be freely configured with the help of the configuration options of the EAP
device and the subordinated boxes (Publisher/Subscriber, Publisher/Subscriber Variable – see following
illustration). Furthermore it is possible to read out information about the current configuration of an activated
EAP device.

5.1 The TwinCAT EAP device
The Network Interface Card (NIC) via which the EAP telegrams are to be sent and the AMS NetID with which
the EAP device is to be reachable by ADS/AMS are specified with the help of the EAP device's configuration
options. By selecting the Network Interface Card, the IP address (in the case of UDP/IP communication) via
which the EAP device can be reached is then automatically specified. In addition, there is a possibility to
access the object dictionary of the EAP device.

General
The standard dialog on the General tab exists for all TwinCAT devices and boxes. A descriptive name and a
useful comment on the description of the device or box can be entered in this dialog.

Adapter
The dialog on the Adapter tab shows the selected Network Interface Card or enables an adapter to be
assigned.

Protocol
The dialog on the Protocol tab (see next illustration) enables the assignment of a special AMS NetID via
which the EAP device can be addressed by ADS/AMS during operation.
Furthermore there is an option by means of the [Export Configuration File…] button to export the current
EAP configuration revision of the loaded project to an XML file. This XML file has a defined scheme and is
also called the EAP Device Configuration (EDC).

Configuration of an EAP device

TE100042 Version: 1.7.1

CoE – Online
The dialog on the CoE - Online tab shows the EAP object dictionary (OD). Compare here the chapter The
CANopen object dictionary [} 52] and the following illustration.The object dictionary is automatically created
as soon as a TwinCAT EAP device is configured with the help of TwinCAT. It includes all configuration
information and is automatically extended or reduced by entries as soon as elements are added to or
removed from the current configuration.

The control elements of the CoE - Online dialog have the following meanings:

Status
The status of the displayed object dictionary is output in a text field (with a yellow background in the
illustration above). The status Offline Data is always displayed if TwinCAT has no connection to an activated
EAP device. For example, a connection is not established if the configured AMS NetID differs from the actual
AMS NetID of the activated EAP device. Otherwise the status Online Data is displayed:

In the online directory In the offline directory
the real current directory of the EAP device is read
out. This may take several seconds, depending on the
size and cycle time

the offline directory of the EAP device is displayed.
In this case modifications are not meaningful or
possible.

a green Online can be seen in the TwinCAT dialog
CoE - Online

a red Offline can be seen in the TwinCAT dialog
CoE - Online

Reading the online data of another EAP device instance
There is an option to set the AMS NetID on the Protocol tab to the AMS NetID of any desired EAP
device within the network in order to read out the online data by TwinCAT via the CoE – Online tab.
To do this the EAP device must be activated and an ADS/AMS Route must exist to the device.

Configuration of an EAP device

TE1000 43Version: 1.7.1

Show Offline Data
With the aid of the Show Offline Data option you can set whether the contents of the object dictionary are to
be displayed online or offline. Online means that the OD contents of the activated configuration are read
from the EAP device and displayed. Offline means that the OD contents of the configuration that was
configured with the help of TwinCAT in the currently loaded TwinCAT project are displayed.

Single Update
If the option Single Update is marked, the OD contents are always read from the EAP device precisely when
an object is expanded (click on the "+" symbol) in order to display its sub-entries, or if you scroll within the
window.

Auto Update
If the Auto Update option is marked, the OD contents for all visible sub-entries are read cyclically from the
EAP device and the display is updated.

Update List
The purpose of the Update List button is to read the current OD contents of all visible object entries from the
EAP device and to display them.

Advanced
The Advanced Settings dialog is opened by a click on the Advanced button (see following illustration). With
the aid of this dialog the entire OD description or part of it can be read from the EAP device. This option is
advantageous in particular when objects are added to or removed from the object dictionary during
operation, because the displayed OD description in TwinCAT is then no longer consistent with the current
OD of the EAP device.

Startup
From the object dictionary, TwinCAT generates a data stream consisting of a series of Startup commands
that are transmitted to the EAP device. The transmission takes place as soon as the existing configuration is
activated. The generated startup commands are displayed in the dialog on the Startup tab.

Configuration of an EAP device

TE100044 Version: 1.7.1

5.2 Publisher Box
The basic protocol to be used for sending the EAP telegram is set on the configuration page of the Publisher
Box (see following illustration) in the Sending Options. The two possible basic protocols Ethernet Protocol
und User Datagram Protocol are introduced in the section Network Protocols of the chapter Communication
methods [} 10] in the chapter Basic principles [} 8]. In each of the two protocols there is a possibility to
configure the three different connection methods Broadcast, Multicast or Unicast. In the case of the
connection methods Multicast and Unicast, a destination address must also be defined with whose help the
addressee(s) can be reached in the network.

Broadcast
A Broadcast telegram is transmitted by one network device to all other devices in the network. Every
recipient of a Broadcast message decides for itself whether to process the message or not. A Broadcast at
Ethernet Protocol level is sent to the destination MAC address FF:FF:FF:FF:FF:FF and at UDP/IP level to
the IP address 255.255.255.255.

Multicast
A Multicast telegram is transmitted by one network device to a selected group of devices in the network. A
recipient of a Multicast message must know the Multicast address to which the message was sent and must
report it to its network interface card. The network interface card will otherwise discard the Multicast
message.
Depending on the basic protocol used, either a Multicast MAC address will be directly configured as the
destination address, or a Multicast IP address converted by TwinCAT into a Multicast MAC address will be
configured as the destination address. A Multicast IP address must be in the range 224.0.0.0 to
239,255,255,255 (IPv4).

Unicast
A Unicast telegram is transmitted by a network device to precisely one other network device. If the
addressing takes place on the basis of the Ethernet Protocol, the MAC address of the receiver is configured
as the destination address. Alternatively, the AMS NetID of the receiver can also be configured. If the
telegram is sent on the basis of UDP/IP, the IP address of the receiver is configured as the destination
address (see following illustration).

Configuration of an EAP device

TE1000 45Version: 1.7.1

NOTICE
Use of broadcast and multicast
EAP telegrams sent as Broadcast or Multicast at MAC or IP level cause a higher network load, depending
on the cycle time, since they are sent to all network devices! This may cause simple network devices such
as printers to crash. With short cycle times all network traffic may become blocked.
In order to avoid a network overload or the overloading of simple, non-realtime-capable network devices, it
is recommended
• on the one hand to use Unicast addressing and
• on the other to set the cycle time only as small as is absolutely necessary. An explanation regarding the

setting of the cycle time can be found further below.
ð If the connection type Unicast is configured, the Subscriber Monitoring mechanism is also configured by

default (see Remote station monitoring via ARP [} 13]).

Disable Subscriber Monitoring
The Subscriber Monitoring mechanism can be deactivated with the help of the option Disable Subscriber
Monitoring.

ARP Retry Interval
The time set in the input field ARP Retry Interval specifies the time interval in milliseconds (ms) at which a
request is sent to the receiver in order to check its availability.

Configuration of an EAP device

TE100046 Version: 1.7.1

Target Address Online Changeable
The Target Address Online Changeable option is also only usable with a Unicast. If this function is activated,
a further output variable exists for the Publisher in the process image of the EAP device. Depending on
which basic protocol is configured, this variable defines an IP address, a MAC address or an AMS NetID.
The output variable can be changed with the help of a PLC program. This method can be used to
dynamically change the destination address of the configured Publisher (refer also to the conditional outputs
in the section Addition of publisher variables [} 27]).

Data Exchange
The rhythm with which the EAP telegram is sent can be changed with the help of the Data Exchange
property (see EAP send mechanism [} 13]).

Data Exchange
The Data Exchange property cannot be used if an EL66xx is in use.

VLAN Support
A fixed route through the VLAN (Virtual Local Area Network) can be specified for the EAP telegram with the
help of the VLAN Support property in connection with Managed Switches. If VLAN is enabled, the EAP
message is furnished with a VLAN Header. Accordingly, there are two properties for determining the
required VLAN and for specifying a priority for the processing of the message within a virtual network:

• VLAN Info ID: defines the ID of the VLAN (range between 0 and 4095),
in which the message is to be sent, and

• VLAN Info Priority: defines a priority for the message in the VLAN
(high priority = 7, low priority = 0).

Initial State

With the help of the property “Disable Initially”, you can prevent the publisher from sending packets after
starting the system. Sending can subsequently be enabled by setting the FrameState to the value 0.
Box Idx:

Sequential number for the different publishers and subscribers, read-only.

5.3 Publisher Variable
Each Publisher Variable additionally has its own special properties that can be parameterized with the help
of its own configuration page (see following illustration).

Configuration of an EAP device

TE1000 47Version: 1.7.1

On Change Only
If the On Change Only option is activated, the TxProcessData is only sent with the TxFrame if the value of
the Publisher Variable has changed. The value in the Timeout field specifies the number of milliseconds (ms)
that should elapse after a Publisher Variable was last sent before sending it again, even if the value of the
Publisher Variable should not have changed in the meantime (further details in EAP send mechanism [} 13]).

On Change Only
The On Change Only property cannot be used if an EL66xx is in use.

Variable Id
The Variable Id (=ProcessData ID) is the identification number of the Publisher Variable. It can be changed
online with the help of a PLC program if the option Online Changeable is marked.

DataType Version
A version number can be specified here. The same version number must be configured on the subscriber
side, if both version numbers are checked for equality when the variable is received (this comparison takes
place by default). The version number is used to ensure that the data type of the publisher variable matches
the corresponding subscriber variable. If the data type is only changed on the publisher or subscriber side,
the version number must be increased to prevent the variable from being received and its values then being
interpreted with the wrong data type.

Data Exchange
The rhythm with which the Publisher Variable is sent can be changed with the help of the Data Exchange
property (further details in EAP send mechanism [} 13]).

Data Exchange
The Data Exchange property cannot be used if an EL66xx is in use.

5.4 Subscriber Box
The properties that generally relate to the reception of an EAP telegram are defined on the configuration
page of a Subscriber (see next illustration). These properties include:

Configuration of an EAP device

TE100048 Version: 1.7.1

Receiving Options
With the help of the Receiving Options selection you can configure whether all incoming EAP telegrams –
i.e. irrespective of the sender – should be received or whether only EAP telegrams from a certain sender
should be received. In the latter case the AMS NetID of the desired sender should be entered in the input
field behind Publisher NetId.

Multicast Configuration
With the help of the Multicast Configuration option you can specify whether the Multicast address entered
should be reported to the configured network interface card. The Multicast address parameterized here must
be identical to the Multicast address configured for the sender if the latter's EAP telegrams are to be received
(see Multicast in chapter Publisher Box [} 44]).

Standard Multicast MAC
The Beckhoff standard Multicast address 01:01:05:04:00:00 is always reported to the network
interface card for a TwinCAT EAP device, even if the Multicast option is not selected.

5.5 Subscriber Variable
The properties that relate especially to a Subscriber Variable are defined on the configuration page of the
Subscriber Variable (see next illustration). These properties include:

Configuration of an EAP device

TE1000 49Version: 1.7.1

Variable Id
The Variable Id (=ProcessData ID) is the identification number of the Subscriber Variable. It can be changed
online with the help of a PLC program if the option Online Changeable is marked.

DataType
Each Subscriber Variable has a version number (see version in chapter EAP telegram structure [} 17]). The
version number can be configured in “DataType Version”. It is verified before a Subscriber Variable is
received (cf. network protocols section in Communication methods [} 10]). The incoming ProcessData is
discarded if the version numbers don't match. This verification is omitted if the option Ignore Version (once
DataType Hash) is enabled.

Configuration settings for successful data exchange

In order to effect the exchange of data from a Publisher Variable to a Subscriber Variable, the configurations
of the control computers involved must match each other. The section Network Protocol of the chapter
Communication methods [} 10] contains a description of the sequence of the reception of an EAP telegram
or a Publisher Variable. In connection with the following aspects, it becomes clear how a data exchange is to
be guaranteed:

• The destination address of the Publisher must be selected so that the EAP telegram reaches the
addressee. Telegrams with Broadcast or Multicast addressing reach every network device. The exact
destination address of the addressee must be configured for a Unicast telegram.

• As soon as the Any Publisher option has been selected in the Receiving Options of the receiver
(Subscriber), each incoming EAP telegram is received and processed further, irrespective of its sender.
An exception only occurs if

◦ a Multicast address is configured on the sender side that differs from the TwinCAT EAP Multicast
MAC (01:01:04:05:00:00) and

◦ the destination address on the sender side (Publisher) does not match the configured Multicast
MAC address on the Subscriber side.

• If a Publisher NetId is specified in the Receiving Options of the receiver (Subscriber), then only EAP
telegrams coming from the specified sender (Publisher) are received and processed further.

• The ID of the Publisher Variable and that of the Subscriber Variable must be identical and unique in the
network. If the ID of a sent Publisher Variable does not match the ID of a Subscriber Variable, the
variable is discarded when it is received.

Configuration of an EAP device

TE100050 Version: 1.7.1

• The version (the hash) of the Publisher Variable and the associated Subscriber Variable must match. A
sent PublisherVariable whose Version does not match the Version of a Subscriber Variable is
discarded during reception unless the Ignore Data Type Hash option is activated in the receiver
(Subscriber).

• The raw data length of a Publisher Variable must match the expected raw data length of the Subscriber
Variable. The Publisher Variable will otherwise be discarded during the reception.

5.6 EAP between TwinCAT 2 and 3
The EtherCAT Automation Protocol is compatible with the conventional network variables (NWV) from
TwinCAT 2. However, there are some extensions to the network variables with EAP under TwinCAT 3 that
require increased attention if communication between TwinCAT 2 NWV and TwinCAT 3 EAP is to be
established.

Observance of the Publisher NetID

If TwinCAT2 uses a NWV Publisher, the AmsNetID of the overall system is used as AmsNetID. This can be
entered accordingly at the receiver.

In contrast, TwinCAT 3 uses for EAP the AmsNetID of the EAP device as Publisher.

"Ignore Data Type Hash" option

A further point that needs to be borne in mind results from the extension of the data type system between the
TwinCAT versions 2 and 3:

When using a complex (i.e. non-native) data type, TwinCAT 2 calculates a 16-bit hash value that
unambiguously identifies this data type. This data type hash is always 0 for native data types. The data type
hash is sent along as a version number when sending a Publisher Variable. This version number is then
compared on the receiver side with the data hash type of the configured Subscriber Variable. If the
comparison reports correlation, the data are accepted by the subscriber.

In TwinCAT 3 each data type is assigned a Global Unique Identifier (GUID). This has a data length of 128
bits. Accordingly, the value 0 is always used as the version number when configuring a Publisher or
Subscriber Variable.

Due to this difference between TwinCAT 2 and 3, you must proceed as follows when using complex data
types:

ü Let's assume that variables of a complex, non-native data type are to be sent between TwinCAT 2 and
TwinCAT 3.

1. In this case the "Ignore Data Type Hash" must be activated for the Subscriber Variable.
ð This setting suppresses the comparison operation on the receiver side and the data are accepted by the

subscriber without a comparison of the versions.

Creating a Subscriber Variable by "Browse for Computer" or "Browse for File".

Due to the change of the file format of a TwinCAT 2 project to a TwinCAT 3 project, the two variants "Browse
for Computer" or "Browse for File" for creating a Subscriber Variable to match an existing Publisher Variable
are currently only downwardly compatible. This means that it is currently only possible to use these two

Configuration of an EAP device

TE1000 51Version: 1.7.1

variants from a TwinCAT 3 system in order to have a Subscriber Variable automatically created from a
TwinCAT 2 project on the basis of a Publisher Variable. In the reverse case a Subscriber Variable must be
manually created (variant "Create new variable").

The CANopen object dictionary

TE100052 Version: 1.7.1

6 The CANopen object dictionary
The CiA organization (CAN in Automation) pursues among other things the goal of creating order and
exchangeability between devices of the same type by the standardization of device descriptions. For this
purpose so-called CANopen profiles are defined, which conclusively describe the changeable and
unchangeable parameters of a device. Such a parameter encompasses at least the following characteristics:

• An index number – for the unambiguous identification of all parameters.
The index number is divided into a main index and a subindex in order to mark and arrange associated
parameters. The subindex is separated by a colon ":".
This achieves an arrangement in two levels (logical segments). The main index is always used
hexadecimally in the value range 0…65535 (0x0…0xFFFF). The subindex is generally used decimally
in the value range 0…255 (0x0…0xFF).

• An official name - in the form of an understandable, self-descriptive text
• The access possibility – e.g. whether the parameter can only be read or also written
• A data type – depending on the parameter this can be of the type Text (string), Number (integer, real),

Bool or Byte Field.

The assignment of the index numbers to the parameters is defined in a CANopen profile. In this way all
parameters are organized hierarchically as in a table. This table then contains all of the device-specific
parameters. It is called the CANopen Object Dictionary (OD).

All the parameters of the TwinCAT EAP device are similarly organized with the help of an object dictionary.
In terms of the concept its structure is identical to that of the CANopen OD. The profile for the OD of an EAP
device was specified by the EtherCAT Technology Group (ETG) in the specification for the EtherCAT
Automation Protocol (ETG 1005, see webpage www.ethercat.org).
This profile is identified by the profile number 5002. It defines the profile type (main profile) and is saved in
the Low Word (bits 0-15) of the OD parameter Device Type. The High-Word (bits 16-31) contains the number
1000. It defines the module profile (subprofile). This produces a value of 0x03e8138a (65541002dec) for the
Device Type parameter, which is also saved under the Product Code in the Identity Object (index
0x1018:02).

Example of an object in the OD:
The profile of a TwinCAT EAP device is unambiguously identified on the basis of four parameters. These are
summarized in a logical segment called Identity, which has the main index 4120 (0x1018). The Vendor ID
parameter has the index number 4120:01 (0x1018:01) and the entered value 2 as the identifier of a Beckhoff
device.
The logical segment Identity is also designated as object and is represented from the point of view of the
user as follows:

All the parameters of the Identity object have the property RO (read only), because the parameters should
not be changed by the user.

Quite different properties can be described with the aid of the parameters of an Object Dictionary . Examples
of such parameters are vendor identifier, version number, process data settings, device name, calibration
values, etc. The contents of the OD are required for the commissioning as well as the diagnosis of the EAP
device and can be very extensive.

6.1 The EAP Object Dictionary (subprofile 1000)
The EAP Object Dictionary is divided into standard and profile-specific objects. Standard objects have the
same meaning for all modules. The profile-specific objects have the same meaning for all modules that
support the profile type 5002. Beyond that, objects can be static or dynamic. A static object exists as long as
the instance of an EAP device itself. A dynamic object can be generated and also deleted again during the
runtime of the EAP device.

https://www.ethercat.org/en/downloads/downloads_BB6D7FF18F2B47DDB3474168D50EE864.htm

The CANopen object dictionary

TE1000 53Version: 1.7.1

The division of the object dictionary

The Object Dictionary of the EAP device is divided into the following ranges:

• Index 0x1000 – 0x1FFF: Range that describes the communication profile.
General information on the identity of the device such as name, vendor, serial number, etc. are saved
in the range 0x1000 – 0x1018.
Furthermore, PDO Mapping objects (PDO = ProcessDataObject) are defined in the ranges 0x1600 –
0x17FF and 0x1A00 – 0x1BFF. A PDO Mapping defines which contents of other objects of the OD are
summarized to form a PDO. A PDO then describes the contents of the user data, which is cyclically
transmitted in real-time.

• Index 0x6000 – 0x9FFF: Range that describes functionally relevant parameters.
The functionally relevant parameters are specified in the ETG standard 1005. The parameters
including their structure are defined under the device profile number 5002, module profile 1000. This
definition forms the basis for effecting an exchange of data via the EtherCAT Automation Protocol. The
following section deals with the individual object types of the profile as well as their structural
relationships.

• Index 0xF000 – 0xFFFF: Range that describes the device-specific properties.
In this range there are objects with whose help diagnostic and control functions can be carried out with
the TwinCAT EAP device.

The CANopen object dictionary

TE100054 Version: 1.7.1

The object types of the standardized profile range and their structure

In the following, the dynamic objects are listed and their relationship with one another is explained. The
illustration above shows the relationships:

Objects for parameterizing a Subscriber:

• RxVariable [0x7000+n … 0x7FFF]:
An RxVariable defines a variable of any type that can be linked with a corresponding input variable of a
control application (e.g. PLC).

• RxProcessDataObject (RxPDO) [0x1600+n … 0x17FF]:
An RxPDO defines an ordered quantity of RxVariables that represent an item of process data as a unit.

• RxProcessData (RxPD) [0xE000+4*n … 0xEFFC]:
An RxPD defines the properties for the reception of a PDO (see Subscriber Box [} 47] and Subscriber
Variable [} 48]). The RxPD thus represents the main reception unit of the EAP communication.

• RxProcessDataInfo [0xE002+4*n … 0xEFFE]:
An RxPDInfo object expands the RxPD object by individual properties that are not found in the EAP
specification and especially belong to a TwinCAT EAP device.

Objects for parameterizing a Publisher:

• TxVariable [0x6000+n … 0x6FFF]:
A TxVariable object defines a variable of any type that can be linked with a corresponding output
variable of a control application (e.g. PLC).

• TxProcessDataObject (TxPDO) [0x1A00+n … 0x1BFF]:
A TxPDO defines an ordered quantity of TxVariables that represent an item of process data as a unit.

• TxProcessData (TxPD) [0xD000+4*n … 0xDFFC]:
A TxPD object defines the properties for transmitting a PDO (see Publisher Variable [} 46]). The TxPD
thus represents the main transmission unit of the EAP communication.

• TxProcessDataInfo [0xD002+4*n … 0xDFFE]:
A TxPDInfo object expands the TxPD object by individual properties that are not found in the EAP
specification and especially belong to a TwinCAT EAP device.

• TxFrame [0x8000+n*8 ... 0x8FF8]:
A TxFrame object defines the transport properties with which one or more TxPDs are transmitted within
the network (see Publisher Box [} 44]).

• TxPD Assignment [0x8001+n*8 … 0x8FF9]:
A TxPDAssignment object is assigned to each TxFrame object. The TxPDAssignment object has the
index one higher than that of the TxFrame object. The assignment object specifies which TxPDs are
sent together in the corresponding TxFrame.

• TxFrameInfo [0x8002+n*8 … 0x8FFA]:
A TxFrameInfo object expands the TxFrame object by individual properties that are not found in the
EAP specification and especially belong to a TwinCAT EAP device.

The standard objects (0x1000-0x1FFF)

Static objects

Index 1000 Device Type

Index Name Meaning Data type Flags Default
1000:0 Device Type EAP device type:

The Lo-Word contains the CoE profile used
(5002).
The Hi-Word contains the CoE profile used
(1000).

UINT32 RO 0x03E8138A
(65541002dec)

Index 1008 Device Name

The CANopen object dictionary

TE1000 55Version: 1.7.1

Index Name Meaning Data type Flags Default
1008:0 Device Name Name of the EAP device STRING[256] RO EtherCAT

Automation
Protocol

Index 100A Software Version

Index Name Meaning Data type Flags Default
100A:0 Software

version
Software version of the EAP device UINT32 RO 0x00000000

(0dec)

Index 1018 Identity

Index Name Meaning Data type Flags Default
1018:0 Identity Information for the identification of the

EAP device
UINT8 RO 0x04 (4dec)

1018:01 Vendor ID Vendor ID of the EAP device UINT32 RO 0x00000002
(2dec)

1018:02 Product Code Product code of the EAP device UINT32 RO 0x03E8138A
(65541002dec)

1018:03 Product
Revision

Revision number of the EAP device UINT32 RO 0x00030000
(196608dec)

1018:04 Serial Number Serial number of the EAP device.
0 means not used

UINT32 RO 0x0
(0dec)

Dynamic objects

Index 1600-17FF RxPDO Mappings

Index Name Meaning Data type Flags Default
1600+n:0 Number of used

Elements
Number of entries in the RxPDO
mapping object

UINT8 RW #(Subindices)

1600+n:01-25
5

RxVariable m Bit 0-7: bit length of the object entered
(in the case of a gap in the PDO,
corresponds to the bit length of the
gap)
Bit 8-15: subindex of the object entered
(0 in case of a gap in the PDO)
Bit 16-31: index of the object entered (0
in case of a gap in the PDO)

UINT32 RW -

Index 1A00-1BFF TxPDO Mappings

Index Name Meaning Data type Flags Default
1A00+n:0 Number of used

Elements
Number of entries in the TxPDO
mapping object

UINT8 RW #(Subindices)

1A00+n:01-2
55

TxVariable m Bit 0-7: bit length of the object entered
(in the case of a gap in the PDO,
corresponds to the bit length of the
gap)
Bit 8-15: subindex of the object entered
(0 in case of a gap in the PDO)
Bit 16-31: index of the object entered (0
in case of a gap in the PDO)

UINT32 RW -

Profile-specific objects (0x6000-0xFFFF)

Static objects

The CANopen object dictionary

TE100056 Version: 1.7.1

Index F100 EAP Status Info

Index Name Meaning Data type Flags Default
F100:0 EAP Status Status information for the EAP device UINT8 RO 0x02 (2dec)
F100:01 Status word The low byte codes the current state of the

EAP device:
0 = Invalid
1 = Init
2 = PreOperational
4 = SafeOperational
8 = Operational
The high byte codes whether an error has
occurred:
0 = no error
1 = error

UINT16 RO 0x0008 (8dec)

F100:02 Status Error
Code

An error number that identifies the error that
has occurred. 0 means that no error has
been identified.

UINT32 RO 0x03E8138A
(65541002dec)

Index F200 EAP Control Info

Index Name Meaning Data type Flags Default
F200:0 EAP Control Parameter for checking the state of the EAP

device
UINT8 RO 0x01 (2dec)

F200:01 Control Word Codes the request to place the EAP device
in a desired state:
1 = Init
2 = PreOperational
4 = SafeOperational
8 = Operational

UINT16 RO 0x0008 (8dec)

Index F020-F022 Frame List

Index Name Meaning Data type Flags Default
F020+n:0 Number of

used
Elements

Number of configured TxFrames UINT8 RW #(Subindices)

F020+n:01-2
54

Box 1
(Publisher)

Value 0x0000 0000 = first TxFrame
object (index 8000) doesn't exist

Value 0x0000 03E8 (= 1000): first
TxFrame object (index 8000) exists

Other values are not permissible.
This object can be used to generate/
delete TxFrames

UINT32 RW 0x000003E8
(1000 dec)

Index F800 EAP Info

The CANopen object dictionary

TE1000 57Version: 1.7.1

Index Name Meaning Data type Flags Default
F800:0 Number of

used
Elements

Number of entries in the EAP Info object UINT8 RW 0x08 (8dec)

F800:01 Available Tx
Var

Indicates the maximum number of
configured TxVariable objects (0x6nnn).

UINT16 RW -

F800:02 Available Rx
Var

Indicates the maximum number of
configured RxVariable objects (0x7nnn).

UINT16 RW -

F800:03 Available Tx
Process Data

Indicates the maximum number of
configured Transmit ProcessData objects
(0xDnnn).

UINT16 RW -

F800:04 Available Rx
Process Data

Indicates the maximum number of
configured RxProcessData objects
(0xEnnn).

UINT16 RW -

F800:05 Available Tx
PDOs

Indicates the maximum number of
configured TxPDO objects (0x1Ann).

UINT16 RW -

F800:06 Available Rx
PDOs

Indicates the maximum number of
configured RxPDO objects (0x16nn).

UINT16 RW -

F800:07 Available Tx
Frames

Indicates the maximum number of
configured TxFrame objects (0x8nnn).

UINT16 RO -

F800:08 Device Cycle
Time

Indicates the cycle time with which the
EAP device is operated.
ProcessData Cycle times (e.g.
0xDnnn:07) can only assume whole-
number multiples of this value.

UINT32 RO -

Index F801 Bitmap

The CANopen object dictionary

TE100058 Version: 1.7.1

Index Name Meaning Data type Flags Default
F801:0 Number of

used
Elements

Number of entries in the Bitmap object UINT8 RW 0x06 (6dec)

F801:01 Index-Bitmap
Tx Var

Bit-coded mapping of existing TxVariable
objects.
If bit n is set, then index 0x 6000 + n
exists.

OCTETE-
STRING
[512]

RW -

F801:02 Index-Bitmap
Rx Var

Bit-coded mapping of existing RxVariable
objects.
If bit n is set, then index 0x 7000 + n
exists.

OCTETE-
STRING
[512]

RW -

F801:03 Index-Bitmap
Tx Process
Data

Bit-coded mapping of existing
TxProcessData objects.
If bit n is set, then index 0x D000 + 4*n
exists.

OCTETE-
STRING
[128]

RW -

F801:04 Index-Bitmap
RxProcess
Data

Bit-coded mapping of existing
RxProcessData objects.
If bit n is set, then index 0x E000 + 4*n
exists.

OCTETE-
STRING
[128]

RW -

F801:05 Index-Bitmap
Tx PDOs

Bit-coded mapping of existing TxPDO
objects.
If bit n is set, then index 0x1A00 + n
exists.

OCTETE-
STRING
[64]

RW -

F801:06 Index-Bitmap
Rx PDOs

Bit-coded mapping of existing RxPDO
objects.
If bit n is set, then index 0x1600 + n
exists.

OCTETE-
STRING
[64]

RW -

Index F920 AoE Settings

Index Name Meaning Data type Flags Default
F920:0 Number of

used
Elements

Number of entries in the AoE Settings
object

UINT8 RW 0x05 (5dec)

F920:01 Local AoE
NetID

Local AoE NetID of the EAP device OCTET-
STRING
[6]

RW -

F920:02 Router NetID AoE NetID of the associated AoE router OCTET-
STRING
[6]

RO -

F920:03 Local MAC
Address

Local MAC address of the network card
used by this EAP device.

OCTET-
STRING
[6]

RO -

F920:04 Local IP
Address

Local IP address of the corresponding
network card used by this EAP device.

UINT32 RW -

F920:05 Local Port
Name

Name under which the EAP device
together with its AoE port is registered
with the TwinCAT ADS router.

STRING
[31]

RW EtherCAT
Automation
Protocol

Dynamic objects

Index 6000-6FFF TxVariables

The CANopen object dictionary

TE1000 59Version: 1.7.1

Index Name Meaning Data type Flags Default
6000+n:0 Number of used

Elements
Number of entries in the TxVariable
object

UINT8 RW 0x22 (34dec)

6000+n:01 Size Length of data (subindex 2) in bits UINT16 RW -
6000+n:02 Data The current data of the variable OCTET-

STRING
[Size/8]

RO -

6000+n:03 Name Name of the variable STRING
[256]

RW VarData

6000+n:04 Type Data type of the object as a GUID GUID RW -
6000+n:05 Reserved - UINT32 RW -
6000+n:29 Symbol Name Symbol name of the linked variable

from the application (e.g. PLC-Task -
PLC-Projectname.MAIN.iCounter)

STRING
[256]

RW -

6000+n:30 AoE Address Octet 7..2: AoE NetID
Octet 1..0: AoE Port
Of the object dictionary that contains
the current process variable

OCTET-
STRING
[8]

RW -

6000+n:32 Image Config Coding indicating which input/output
variables of the process image belong
to this object

UINT32 RO -

6000+n:33 Data Offset Byte offset within the output process
image

UINT32 RO -

6000+n:34 Reserved - UINT32 RO -

Index 7000-7FFF Rx Variables

Index Name Meaning Data type Flags Default
7000+n:0 Number of used

Elements
Number of entries in the RxVariable
object

UINT8 RW 0x22 (34dec)

7000+n:01 Size Length of data (subindex 2) in bits UINT16 RW -
7000+n:02 Data The current data of the variable OCTET-

STRING
[Size/8]

RW -

7000+n:03 Name Name of the variable STRING
[256]

RW VarData

7000+n:04 Type Data type of the object as a GUID GUID RW -
7000+n:05 Reserved UINT32 RW -
7000+n:29 Symbol Name Symbol name of the linked variable

from the application (e.g. PLC-Task -
PLC-Projectname.MAIN.iCounter)

STRING
[256]

RW -

7000+n:30 AoE Address Octet 7..2: AoE NetID
Octet 1..0: AoE Port
Of the object dictionary that contains
the current process variable

OCTET-
STRING
[8]

RW -

7000+n:32 Image Config Coding indicating which input/output
variables of the process image belong
to this object

UINT32 RO -

7000+n:33 Reserved - UINT32 RO -
7000+n:34 Data Offset Byte offset within the output process

image
UINT32 RO -

Index 8000-8FF8 TxFrame

The CANopen object dictionary

TE100060 Version: 1.7.1

Index Name Meaning Data type Flags Default
8000+n*8:0 Number of used

Elements
Number of entries in the TxFrame
object

UINT8 RW 0x32 (50dec)

8000+n*8:03 Name Name of the frame STRING
[256]

RW -

8000+n*8:04 Device type Subprofile type (identical to the
corresponding entry in the object
0xF020-0xF022)

UINT32 RO 0x03E8
(1000dec)

8000+n*8:05 Destination
Vendor ID

For peer-to-peer communication;
0 = not used

Polled Connection:
Vendor ID of the communication
partner

Pushed Connection:
not used

UINT32 RW -

8000+n*8:06 Destination
Product Code

For peer-to-peer communication;
0 = not used

UINT32 RW -

8000+n*8:07 Destination
Revision
Number

For peer-to-peer communication;
0 = not used

UINT32 RW -

8000+n*8:08 Destination
Serial Number

For peer-to-peer communication;
0 = not used

UINT32 RW -

8000+n*8:30 Target AMS
NetID

AoE NetID (Subscriber Net ID)
If the value is not 0, the destination
addresses SI 32 and SI 33 must have
the value 0.

OCTET-
STRING
[6]

RW -

8000+n*8:31 Gateway IP
Address

The standard gateway IP address
must then be set if SI 33 does not
have the value 0.

UINT32 RW -

8000+n*8:32 Target MAC
Address

MAC address
If the value is not 0, the destination
addresses SI 30 and SI 33 must have
the value 0.
The MAC address can be a Unicast,
Multicast or Broadcast address.

OCTET-
STRING
[6]

RW 01 01 05 04 00
00

8000+n*8:33 Target IP
Address

IP Address
If the value is not 0, the destination
addresses SI 30 and SI 32 must have
the value 0.
The IP address can be a Unicast,
Multicast or Broadcast address.

UINT32 RW -

8000+n*8:34 VLAN Info The VLAN Info is made up of the
following fields:
Bit 0-15: VLan Type (81 00)
Bit 16-18: Priority
Bit 19: Reserved
Bit 20-31: VLan ID
No VLAN header is used if the value
is 0

UINT32 RW 0x00000000
(0dec)

The CANopen object dictionary

TE1000 61Version: 1.7.1

Index Name Meaning Data type Flags Default
8000+n*8:35 Subscriber

Monitoring
If the value is 1, an ARP request is
sent regularly to the configured
destination address in order to ensure
that the addressee is still replying.
Sending of the TxFrame is ceased if
this is not the case.
The Subscriber Monitoring can only
be used with a Unicast
communication.

UINT8 RW 0x00 (0dec)

8000+n*8:36 Target
Changeable

If Target Changeable has the value 0,
no variable is shown for the
destination address in the process
image. Otherwise the following
mapping applies when showing the
destination address:
1 : Target MAC address
2 : Target AMS NetID
3 : Target IP address

UINT8 RO 0x00 (0dec)

8000+n*8:37 Monitoring
Retry Cycles

obsolete UINT32 RO -

8000+n*8:38 Monitoring
Retry Cycle
Time

Waiting time in µs after which a new
ARP request is sent if SI 35 = 0x01.

UINT32 RW 0xF4240
(1000000dec)

8000+n*8:39 Frame Control Bit 0 = 1: the sending of the TxFrame
is ceased
Bit 1 = 1: destination MAC address is
deleted from the ARP cache

UINT16 RW 0x0000 (0dec)

8000+n*8:40 Frame State Bit 0 = 1: the TxFrame wasn't sent
Bit 1 = 1: error (the frame is too large)
Bit 2 = 1: the subscriber is no longer
answering (only if SI 35 = 0x01)

UINT16 RO 0x0000 (0dec)

8000+n*8:48 Control Symbol
Name

Symbol name of the linked variable
from the application (e.g. PLC-Task)

STRING
[256]

RW -

8000+n*8:49 State Symbol
Name

Symbol name of the linked variable
from the application (e.g. PLC-Task)

STRING
[256]

RW -

8000+n*8:50 Target Address
Symbol Name

Symbol name of the linked variable
from the application (e.g. PLC-Task)
If a symbol name is set, the
configured destination address is
shown in the process image and SI
36 is set accordingly.

STRING
[256]

RW -

Index 8001-8FF9 TxProcessData Assignment Objects

Index Name Meaning Data type Flags Default
8001+n*8:0 Number of used

Elements
Number of entries in the TxPD
assignment object

UINT8 RW #(Subindices)

8001+n*8
:01-255

Entry n 1. -255. TxProcessData of the
TxFrame

UINT16 RW -

Index 8002-8FFA TxFrame Info

The CANopen object dictionary

TE100062 Version: 1.7.1

Index Name Meaning Data type Flags Default
8002+n*8:0 Number of

used
Elements

Number of entries in the TxFrameInfo
object

UINT8 RW 0x21 (33dec)

8002+n*8:01 Image
Config

Coding indicating which input/output
variables of the process image belong to
this object
Lo-Word = Input process image
Bit 0 = 1: State
Hi-Word = output Process image
Bit 0 = 1: Control
Bit 1 = 1: Target MAC Address
Bit 2 = 1: Target AMS NetID
Bit 3 = 1: Target IP Address

UINT32 RO 0x00010001
(65537dec)

8002+n*8:02 Control
Offset

Byte offset within the output process
image

UINT32 RO -

8002+n*8:03 State Offset Byte offset within the input process
image

UINT32 RO -

8002+n*8:04 NetID Offset Byte offset within the output process
image

UINT32 RO -

8002+n*8:32 IoDivMod The divider/modulo value defines the
waiting time in cycles until the next
TxFrame is sent.

Bit 0-7 (Divider): number of cycles to be
waited
Bit 8-15 (Modulo): specifies the start
cycle from which counting starts

UINT16 RW 0x0000 (0dec)

8002+n*8:33 CoE Index For future purposes UINT16 RW -

Index D000-DFFC TxProcessData

The CANopen object dictionary

TE1000 63Version: 1.7.1

Index Name Meaning Data type Flags Default
D000+n*4:0 Number of

used
Elements

Number of entries in the TxPD object UINT8 RW 0x22 (34dec)

D000+n*4:01 Name Name of the frame STRING
[256]

RW -

D000+n*4:02 PDO
Number

The PDO number defines the object
index of the assigned TxPDO

UINT16 RW -

D000+n*4:03 Process
Data ID

The PD ID defines a value in the range
0…65535 that must clearly be within the
communication network.
The ID is part of the Process Data Frame
header.

UINT16 RW -

D000+n*4:04 Version The version is a value in the range 0…
65535 and should be consistently
incremented as soon as changes are
made to this TxPD (e.g. the reference to
another TxPDO).
The version is part of the Process Data
Frame header.

UINT 16 RW -

D000+n*4:05 CoS On
Change
Cycles

Obsolete, see subindex 8. UINT16 RO -

D000+n*4:06 CoS Inhibit
Time

The Inhibit Time specifies the time span
in µs during which the TxPD is not sent
again, not even if the value of a process
variable of the assigned PDO has
changed.
The transmission of the TxPD is not
suppressed if the value is 0.
If the value is > 0, then the value of
subindex 8 (CoS On Change Timeout)
must also be > 0; however, the values of
the subindices 7 and 10 must be 0.

UINT32 RW -

D000+n*4:07 Cycle Time The Cycle Time defines the time interval
in µs at which the TxPD is cyclically
transmitted. If the value of Cycle Time is
larger than 0, the subindices 6, 8 and 10
must be 0.
The TxPD is not transmitted at all if the
value is 0.

UINT 32 RW -

D000+n*4:08 CoS On
Change
Timeout

On Change Timeout specifies the
maximum duration of the time interval in
µs during which no TxPD is transmitted,
unless the value of a process variable of
the assigned PDO changes during that
time.
If the value is 0, the process variables
are not sent in the case of a change of
state.
If the value is > 0, the values of
subindices 7 and 10 must be 0.

UINT32 RW -

The CANopen object dictionary

TE100064 Version: 1.7.1

Index Name Meaning Data type Flags Default
D000+n*4:10 Poll

Request Rx
PD

Poll Request RxPD defines the object
index of an RxProcessData, which
triggers the transmission of this TxPD as
soon as the defined RxPD has received a
new value. The TxPD then functions as a
server in Polled Data Exchange mode.
The Polled Data Exchange mode is
inactive if the value is 0.
If the value is > 0, the values of
subindices 6, 7 and 8 must be 0.

UINT16 RW -

D000+n*4:11 Process
Data Control

Bit 0 = 1: deactivate the transmission of
the TxPD

UINT16 RW 0x0000 (0dec)

D000+n*4:12 Process
Data State

Bit 0 = 1: the TxPD was not transmitted UINT16 RO -

D000+n*4:32 Control
Symbol
Name

Symbol name of the linked variable from
the application (e.g. PLC-Task)

STRING
[256]

RW -

D000+n*4:33 State
Symbol
Name

Symbol name of the linked variable from
the application (e.g. PLC-Task)

STRING
[256]

RW -

D000+n*4:34 ID Symbol
Name

Symbol name of the linked variable from
the application (e.g. PLC-Task)

STRING
[256]

RW -

Index D002-DFFE TxProcessData Info

Index Name Meaning Data type Flags Default
D002+n*4:0 Number of

used
Elements

Number of entries in the TxPDInfo object UINT8 RW 0x20 (32dec)

D002+n*4:01 Image
Config

Coding indicating which input/output
variables of the process image belong to
this object
Lo-Word = Input process image
Bit 0 = 1: State
Hi-Word = output Process image
Bit 0 = 1: Control
Bit 1 = 1: ProcessData ID

UINT32 RO 0x00010001
(65537dec)

D002+n*4:02 Control
Offset

Byte offset within the output process
image

UINT32 RO -

D002+n*4:03 State Offset Byte offset within the input process
image

UINT32 RO -

D002+n*4:04 ID Offset Byte offset within the output process
image

UINT32 RO -

D002+n*4:32 IoDivMod The divider/modulo value defines the
waiting time in cycles until the TxPD is
sent again.

Bit 0-7 (Divider): number of cycles to be
waited
Bit 8-15 (Modulo): specifies the start
cycle from which counting starts

UINT16 RW 0x0000 (0dec)

Index E000-EFFC RxProcessData

The CANopen object dictionary

TE1000 65Version: 1.7.1

Index Name Meaning Data type Flags Default
E000+n*4:0 Number of

used
Elements

Number of entries in the RxPD object UINT8 RW 0x25 (37dec)

E000+n*4:01 Name Name of the frame STRING
[256]

RW -

E000+n*4:02 PDO
Number

The PDO number defines the object
index of the assigned RxPDO

UINT16 RW -

E000+n*4:03 Process
Data ID

The PD ID defines a value in the range
0…65535 that matches the ID of the
Process Data received.

UINT16 RW -

E000+n*4:04 Version The version is a value in the range 0…
65535 and should be consistently
incremented as soon as changes are
made to this RxPD (e.g. the reference to
another RxPDO).

UINT 16 RW -

E000+n*4:05 Ignore
Version

If this is 0, then the version (hash value)
of the Process Data received is checked
on the basis of the version from subindex
4.
If it is 1, then the version check is
deactivated.

UINT8 RW 0x00 (0dec)

E000+n*4:06 Publisher
NetID

Definition of a Publisher NetID. An EAP
telegram is only processed if it was sent
from a sender with this NetID.
This filter is deactivated if the Publisher
NetID has the value 0.

OCTET-
STRING
[6]

RW 00 00 00 00 00
00

E000+n*4:07 MAC
Address

A Multicast MAC address can be defined
that uses the NIC (Network Interface
Card) as a filter for the reception of
Multicast packets.
The filter function is deactivated if the
value is 0.

OCTET-
STRING
[6]

RW 01 01 05 04 00
00

E000+n*4:08 IP Address A Multicast IP address can be defined
that uses the NIC (Network Interface
Card) as a filter for the reception of
Multicast packets.
The filter function is deactivated if the
value is 0.

UINT32 RW 0x00000000
(0dec)

E000+n*4:09 Update
Time

The Update Time is used to specify the
time interval in µs within which a new
ProcessData must be received.
This mechanism is deactivated if the
value is 0.

UINT32 RW 0x00000000
(0dec)

E000+n*4:10 Poll
Request
TxPD

Poll Request TxPD defines the object
index of a TxProcessData, which is sent
as a request in order to receive an EAP
telegram with the suitable ProcessData.
The TxPD then functions as a server in
Polled Data Exchange mode.
The Polled Data Exchange mode is
inactive if the value is 0.

UINT16 RW 0x0000
(0dec)

E000+n*4:11 Process
Data Control

Bit 0 = 1: The checking of the version
number or the hash value is deactivated.

UINT16 RW 0x0000 (0dec)

The CANopen object dictionary

TE100066 Version: 1.7.1

Index Name Meaning Data type Flags Default
E000+n*4:12 Process

Data State
Bit 0 = 1: A ProcessData with an invalid
version number (hash value) was
received
Bit 1 = 1: A ProcessData with an invalid
length was received
Bit 2 = 1: The Timeout Poll Response
was exceeded

UINT16 RO -

E000+n*4:13 Process
Data Quality

The quality indicates the time in 100 µs
since this RxProcessData was last
updated (i.e. since data was last
received)

UINT16 RO -

E000+n*4:14 Process
Data Cycle
Index

On receiving a valid ProcessData, the
Cycle Index is assigned the transmitted
Cycle Index from the EAP telegram (see
Process Data Frame Header)

UINT16 RO -

E000+n*4:32 Control
Symbol
Name

Symbol name of the linked variable from
an application (e.g. PLC Task)

STRING
[256]

RW -

E000+n*4:33 State
Symbol
Name

Symbol name of the linked variable from
an application (e.g. PLC Task)

STRING
[256]

RW -

E000+n*4:34 ID Symbol
Name

Symbol name of the linked variable from
an application (e.g. PLC Task)

STRING
[256]

RW -

E000+n*4:35 Quality
Symbol
Name

Symbol name of the linked variable from
the application (e.g. PLC-Task)

STRING
[256]

RW -

E000+n*4:36 Cycle Index
Symbol
Name

Symbol name of the linked variable from
the application (e.g. PLC-Task)

STRING
[256]

RW -

E000+n*4:37 Timeout Poll
Response

Specifies the maximum time span in µs
within which the response to the Polled
Request must be received.
If the Value > 0 and the timeout has
expired following the sending of the
Polled Request, then bit 2 is set in PD
State (subindex 12).
If the value is 0, then this monitoring is
deactivated.

UINT32 RW 0x00000000
(0dec)

Index E002-EFFE RxProcessDataInfo

The CANopen object dictionary

TE1000 67Version: 1.7.1

Index Name Meaning Data type Flags Default
E002+n*4:0 Number of

used
Elements

Number of entries in the RxPD Info
object

UINT8 RW 0x06 (6dec)

E002+n*4:01 Image
Config

Coding indicating which input/output
variables of the process image belong to
this object
Lo-Word = Input process image
Bit 0 = 1: State
Hi-Word = output Process image
Bit 0 = 1: Control / Cycle Index
Bit 1 = 1: ProcessData ID

UINT32 RO 0x00010001
(65537dec)

E000+n*4:02 Control
Offset

Byte offset within the output process
image

UINT32 RO -

E002+n*4:03 State Offset Byte offset within the input process
image

UINT32 RO -

E002+n*4:04 ID Offset Byte offset within the output process
image

UINT32 RO -

E002+n*4:05 Quality
Offset

Byte offset within the input process
image

UINT32 RO -

E002+n*4:06 Cycle Index
Offset

Byte offset within the input process
image

UINT32 RO -

6.2 The TwinCAT ADS interface to the EAP device
The TwinCAT EAP device provides a TwinCAT ADS/AMS interface for other communication partners (e.g.
virtual field devices or Windows programs) and acts as an ADS/AMS server. ADS stands for Automation
Device Specification. It describes a device- and fieldbus-independent interface. AMS stands for Automation
MessageSpecification and enables central and decentral systems to be addressed, such as PCs or bus
controllers. ADS/AMS was specified by Beckhoff and is supported by the TwinCAT router. Messages that are
sent in a network beyond the computer boundaries are transferred via TCP/IP.

The CANopen communication channel SDO (Service Data Object) can also be used via this interface. The
primary purpose of the SDOs is to read and write the parameters of the CANopen Object Dictionary (OD).
The transmission of the SDOs takes place as a confirmed data transfer in the form of a point-to-point
connection between two communication partners and is embedded in ADS:

Using the ADS Read or ADS Write commands on the port 0xFFFF and the NetID of the EAP device
("Protocol" tab), the parameters, or the SDO description of the CANopen OD respectively, are read or
written. As listed in the table, the communication channel CANopen SDO is embedded in the ADS protocol
as follows:

The CANopen object dictionary

TE100068 Version: 1.7.1

CANopen SDO
communication

ADS Com-
mand

Index
group

Index offset Meaning

SDO Upload Read 0xF302 Index and subindex of an SDO.
Bit 16-31: Index
Bit 8: Complete Access
Bit 0-7: Subindex
Sample:
0x16010001:
Index = 0x1601
Complete Access = 0
Subindex = 1
The subindex has no meaning if
Complete Access = 1

Data Type: UINT8[n]

SDO Upload Request:
The object is addressed on
the basis of the Index Offset
and its contents can be read
with the help of an ADS
Read.

SDO Download Write 0xF302 Index and subindex of an SDO.
Bit 16-31: Index
Bit 8: Complete Access
Bit 0-7: Subindex
Sample:
0x16010001:
Index = 0x1601
Complete Access = 0
Subindex = 1
The subindex has no meaning if
Complete Access = 1

Data Type: UINT8[n]

SDO Download Request:
The object is addressed on
the basis of the Index Offset
and its contents can be
written with the help of an
ADS Write.

SDO Information
Get Object List

Read 0xF3FC Bit 16-31: List types

Samples:
0x00000000: Returns the number
of all objects existing for each list
type

0x00010000: Returns the indices
of all objects for the specified list
type

Returns the indices of the
objects that belong to the list
type specified in the Index
Offset.
Possible list types are:
ALL_OBJECTS = 1
RXPD_OBJECTS = 2
TXPD_OBJECTS = 3
BACKUP_OBJECTS = 4
SETTING_OBJECTS = 5
Data Type: UINT16[6]
If list type = 0000:
Element = 0 : number of list
types
Element > 0 : number of
existing objects belonging to
the nth list type
Data Type: UINT16[n]
If list type > 0000:
Element n=0 : number of
existing objects belonging to
this list type plus one.
Element n>0: the nth object
index belonging to this list
type

SDO Information
Get Object
Description

Read 0xF3FD Bit 16-31: Index Read the SDO description of
the complete object with the
specified index.

SDO Information
Get Entry
Description

Read 0xF3FE Bit 16-31: Index
Bit 0-7: Subindex

Read the SDO description of
the individual entry with the
specified subindex belonging
to the object with the
specified index.

The CANopen object dictionary

TE1000 69Version: 1.7.1

6.3 ADS over EtherCAT (AoE)
The TwinCAT EAP device also supports the AoE protocol. The specification of the AoE protocol can be
found in the EtherCAT Protocol Enhancements (ETG 1020). The difference between ADS/AMS
communication and AoE communication is that, in contrast to ADS/AMS communication, AoE
communication requires no TwinCAT router. The AoE protocol is one of the protocols that are classified in
TwinCAT under the category Mailbox Communication. An EtherCAT telegram of type 5 (mailbox
communication) is used for the communication of AoE. A mailbox telegram can be transmitted from or to the
TwinCAT EAP device:

via Ethernet (EtherType = 0x88A4) or

via UDP/IP (UDP Port = 0x88A4)

It is possible to transport (tunnel) various protocols by mailbox communication. The protocol to be tunneled is
defined on the basis of the field type in the Mailbox Header. The AoE protocol is specified by the value 1
(see Mailbox Header in the following illustration). The Mailbox Header is directly followed by the AoE Header
and then by the AoE data. Its structure is identical to the ADS/AMS protocol (refer also to the TwinCAT ADS/
AMS specification in the Beckhoff information system). This gives rise to the possibility to also use the
CANopen SDO communication via the mailbox protocol. Analogous to the ADS/AMS protocol, the
CANopen OD of the TwinCAT EAP device can be accessed as described in the chapter The TwinCAT ADS
interface to the EAP device [} 67].

Sample:
In order to read the Vendor ID of the identity object from the EAP Object Dictionary, the ADS command is
defined in the AoE Header on the basis of the Command ID.

AoE command Command ID Description
ADS Read 2 ADS Read command for reading data
ADS Write 3 ADS Write command for writing data

A distinction is made between Request = 0 and Response = 1 on the basis of the 0th bit in the State Flag of
the AoE Header. The AoE Data field is subsequently populated with the following contents (see following
illustration):

At the beginning there is an ADS Read Request Header with

• Index Group = 0x0000F302 for reading the contents of the parameter,
• Index Offset = 0x10180001 for addressing the Vendor ID parameter and
• Read Length = 4 to inform about the size of the available data buffer.

These are followed by the data buffer for the data to be read.

The CANopen object dictionary

TE100070 Version: 1.7.1

6.4 Online configuration of the TwinCAT EAP device
The CANopen OD offers the great advantage of allowing the virtually unlimited online configuration of a
TwinCAT EAP device via a standardized interface. Carrying out an online configuration means that the
TwinCAT EAP device is already active and needs to be switched to a safe state before changing the
configuration. No process data communication takes place in the safe state.

The configuration is done by setting parameters and takes place

• via TwinCAT:
the values are then changed directly in the online Object Dictionary.
This is useful for commissioning of the system. The new value is set in the respective parameter by
clicking on the corresponding row of the index to be parameterized and entering an appropriate value
in the Set Value dialog.

• or from an application via ADS or AoE:
This is recommended for changes when the system is running or if no TwinCAT or operator is
available.

On the one hand, a change can exclusively concern the entries in existing objects of the OD. On the other, a
change can result in the generation of new objects or the deletion of existing ones.

Changing existing objects

A change that concerns only existing objects serves the adaptation of the current operating behavior (e.g.
transmission cycle, destination address, etc.) or to assign purpose-related names to individual objects for a
better understanding. The steps that are necessary for such a change can best be illustrated with an
example:

Changing the time interval with which a Publisher Variable is transmitted.

Let's assume that the EAP device is configured with a TxPD (0xD000) in which an interval of 10000 µs is
configured as the Cycle Time and this interval is now to be enlarged to 30000 µs. In this case the following
steps have to be carried out:

1. Place the EAP device in a safe state.
Set the object entry 0xF200:01 (Control Word) to the value 2 (=PreOperational)
Check object entry 0xF100:01 to ascertain whether the state is 2 (=PreOperational)
Carry out this check several times (polling) with a timeout of, for example, 200 ms.

2. Change the time interval of the TxPD to the new value
Set the object entry Cycle Time of the TxPD (0xD000:07) to the value 30000

The CANopen object dictionary

TE1000 71Version: 1.7.1

3. Place the EAP device in its operative state again.
Set the object entry 0xF200:01 (Control Word) to the value 4 (=SafeOperational)
Check object entry 0xF100:01 to ascertain whether the state is 4 (=SafeOperational)
Carry out this check several times (polling) with a timeout of, for example, 200 ms.
Set the object entry 0xF200:01 (Control Word) to the value 8 (=Operational)
Check object entry 0xF100:01 to ascertain whether the state is 8 (=Operational)
Carry out this check several times (polling) with a timeout of, for example, 200 ms.

Generation and deletion of objects

The generation of new objects serves the extension of existing communication connections or the addition of
new communication connections. This function makes it possible, for example, to establish a temporary
communication connection between two controllers. Only the transmission and reception of the EAP device
are briefly interrupted during the configuration phase. The processes of other components and modules of
the controller are unaffected by this and can remain active throughout.

Objects are generated or deleted with the help of the objects Frame List (index 0xF020 – 0xF022) and
Bitmap (index 0xF801)
There are a total of 512 entries in the Frame List objects – exactly as many as the maximum possible
number of TxFrame objects (see index 0xF020 in The EAP Object Dictionary (subprofile 1000) [} 52]). Each
entry is thus assigned precisely one TxFrame object. The value 1000 (sub-profile number) is then saved in
the corresponding entry for each existing TxFrame object. All other entries have the value 0. Let's assume
that there are three TxFrames with the indices 0x8000, 0x8008 and 0x87F0. The assignment is then to be
understood as follows:

No. Frame List entries Value Assigned TxFrame object
1 0xF020:01 1000 0x8000
2 0xF020:02 1000 0x8008
… … 0 …
254 0xF020:254 0 0x87E8
255 0xF021:01 1000 0x87F0
… … 0 …
512 0xF022:04 0 0x8FF8

The corresponding TxFrame objects are generated as soon as the value of an entry is set to 1000. The
object is deleted again when the value is reset to 0.

With the exception of TxFrames a separate entry exists for each dynamic object type in the object Bitmap.
Accordingly, six entries are to be found (excluding the entry 0 – see index 0xF801 in The EAP Object
Dictionary (subprofile 1000) [} 52]). An entry contains a bit field of a sufficient length to be able to save the
maximum number of objects of the corresponding object type in unary notation.

Let's assume that there are three TxPD objects with the indices 0xD000, 0xD00C and 0xD014. Then the bit
sequence 10010100000000…0 with the total length of 1024 bits is saved in the entry 0xF801:03. The
sequence is to be interpreted as follows:

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 1024
1 0 0 1 0 1 0 0 … 0
0xD000 0x D004 0x D008 0x D00C 0x D010 0x D014 0x D018 0x D01C … 0x DFFC

The corresponding object is generated as soon as a bit is set to 1. The object is deleted again on resetting.

The CANopen object dictionary

TE100072 Version: 1.7.1

NOTICE
Deletion of objects configured offline.
It is also possible to delete objects that were configured before commissioning by means of TwinCAT
(offline configuration) and as a result are already generated on activating the controller. The following must
be considered in this case:
Some objects manage variables (e.g. CycleIndex, Quality, Status Word, Control Word etc.) that are located
in the process image of the EAP device. TwinCAT accesses the process image by ADS when displaying
online values. The addresses of the respective variables in the process image that were generated and
activated with the help of TwinCAT are calculated after the configuration.
If an object that was configured offline is now deleted during an online configuration, this change remains
hidden from TwinCAT. It therefore still accesses the calculated addresses in order to display their contents
in the online view. It should be clear at this point that the online values displayed no longer match the
configuration generated in TwinCAT.
In this case, therefore, the online view, or the addresses of the process image respectively, are no longer a
valid reference source for monitoring or even evaluating the values of the process image.
It is recommended that objects configured offline be deactivated and not deleted.

If objects are deleted or added with the help of TwinCAT, new objects are not directly displayed in the Object
Dictionary. Deleted objects remain in the OD and no values are displayed for their entries any longer. So that
new objects are displayed and deleted objects are no longer displayed, the structure of the OD must be read
again in TwinCAT. This can be done with the help of the Advanced Settings dialog (see fig. CoEOnline in
chapter The TwinCAT EAP device [} 41]).

Activation/deactivation of objects

In case certain Process Data/PDOs or complete Frames are only to be temporarily removed from the
existing EAP communication, it is advisable to deactivate the objects concerned instead of deleting them.

The objects TxFrame (0x8000), TxPD Assignment (0x8001), TxPD (0xD000), TxPDO (0x1A00), RxPD
(0xE000) and RxPDO (0x1600) can be deactivated and reactivated by setting their subindex 0 to the value 0.
The activation then takes place by setting the original value or any other value greater than 0.

List-based objects
Note with the list-based objects TxPD Assignment and Rx/TxPDOs that their entries always contain
references to other objects. Any change made to subindex 0 will therefore affect which and how
many other objects are actually referenced.

Linking of a variable from the EAP process image with a PLC variable.

The linking of variables from the TwinCAT I/O level with variables from a PLC program takes place as
standard in TwinCAT. If an Input/Output Variable from a PLC program is linked with a Publisher or
Subscriber Variable of the EAP device, the symbol name of this variable is entered in the corresponding
CANopen object of the EAP device (see next illustration).

The CANopen object dictionary

TE1000 73Version: 1.7.1

As the previous illustration shows, the symbol name is made up of the Object ID (OID) of the PLC instance
and the unique name of the PLC program variable, separated by a colon. Using the same syntax a symbol
name can also be entered for an EAP object during the online configuration. The PLC variable is then linked
accordingly with the Rx/TxVariable.

Online configuration of offline links
Links that had already been generated during the offline configuration can neither be changed nor
deleted during the online configuration. These symbol names are thus marked with the Read-Only
(RO) flag.
Reason:
The linking of these variables is defined by TwinCAT with the help of a mapping object when
creating a configuration. However, this mapping object cannot be changed during operation.

Access to the CANopen Object Dictionary by Single Access/Complete Access

With the support of the communication channel CANopen SDO (see The TwinCAT ADS interface to the EAP
device [} 67]), the ADS interface allows both the values of individual object entries and the data of a
complete object to be read or written respectively. Access to the individual object entry (Single Access) is
explained in the section Changing existing objects in the chapter Online configuration of the TwinCAT EAP
device [} 70].
Complete Access means access to the complete object. In this case the values of all object entries are
transmitted in succession in binary in a block. For safety in the case of a write access, the correlation of the
block length with the size of the object is checked before the access is enabled. To determine the necessary
block length the documentation for the Object Dictionary can be consulted or an offline configuration can be

The CANopen object dictionary

TE100074 Version: 1.7.1

exported to an EAP Device Configuration (EDC) file (see section Protocol in chapter The TwinCAT EAP
device [} 41]). The latter is a file in XML format containing the full Object Dictionary of the current
configuration (see chapter The EAP Device Configuration (EDC) File [} 76]).

6.5 Configuration of Polled Data Exchange
The Polled Data Exchange mode is configured with the help of the EAP Object Dictionary. To do this the
RxPD which, as a client, is to receive the response of the server must be configured in one EAP device,
while the TxPD which, as a server, defines the response to the client's request must be configured in another
EAP device.

As shown in the following illustration, a TxPD is configured on the client side for the request and is cyclically
transmitted as in Pushed Data Exchange mode. For receiving the server response, two RxPDs are
configured on the client side in this sample. With both RxPDs the index of the TxPD that serves as the
request is entered in the Poll Request TxPD property . On the basis of the transmission time of the request,
an RxPD can determine a quality value on whose basis the time difference between request and response
can be read.

On the server side, an RxPD is configured for the reception of the request that works as in Pushed Data
Exchange mode. In this example two TxPDs are configured for the transmission of the response to the client
request. With both TxPDs the index of the RxPD that serves as the recipient of the request is entered in the
Poll Request RxPD property. In each processing cycle a TxPD checks with its configured Poll Request RxPD
whether a request has been received. If so, the TxPD is sent back in this cycle as the response.

6.6 Restoring the online configuration
If parameters of the CANopen OD are changed online for the EAP device, the current state of the CANopen
OD is archived on the hard drive as soon as TwinCAT is switched back to the Stop/Config mode. When
restarting TwinCAT in Run mode, the created archive is usually irrelevant, because the configuration made
offline is simply restarted. All changes configured online are discarded.

If the online configuration is to be restored on restarting TwinCAT, then the option Recover Online
Configuration must be switched on for this EAP device in TwinCAT (see following illustration) and the project
must then be reactivated. In this case, when starting the controller, the offline configuration is initially loaded
followed by the archive from the hard disk, so that the online configuration is active at the end of the start
procedure.

The CANopen object dictionary

TE1000 75Version: 1.7.1

It is not possible to change the configuration of the TwinCAT EAP device in TwinCAT if the option Recover
Online Configuration is set. To do this the option must first be deactivated again. The sole purpose of this
blocking mechanism is to protect the offline configuration against being changed by the user, even though
this change would have no effect when activating the controller since the online configuration is restored.

Recover online configuration
The archived CANopen Object Dictionary is coupled to the instance of the EAP device in TwinCAT.
As soon as this instance is deleted in TwinCAT and a new instance is created instead, the
previously archived OD can no longer be restored for this instance.

The EAP Device Configuration (EDC) File

TE100076 Version: 1.7.1

7 The EAP Device Configuration (EDC) File
The EAP Device Configuration (EDC) takes place with the help of TwinCAT. At least the EAP device itself
has to be created via TwinCAT so that an instance of the EAP device is generated accordingly when starting
TwinCAT. The creation of TxFrames, Tx/RxProcessData, Tx/RxPDOs and Tx/RxVariables can then also be
carried out subsequently by an ADS-Client application. TwinCAT must be in Run mode for this. In most
cases, however, a TwinCAT EAP device is completely configured via TwinCAT and started as described in
chapter Creation of an EAP configuration [} 26] and Configuration of an EAP device [} 41].

A configurator with a graphical user interface (GUI) – the TwinCAT EAP Configurator (Product description
TE1610) – has been developed for the online configuration of an EAP device or an entire network of EAP
devices. This configurator enables the graphical representation of all EAP devices in the network and their
communication connections with one another. Also, each EAP device can be configured via the GUI.
A configuration that has been created in TwinCAT and to which an EDC file has been exported contains all
the information required when importing into the configurator in order to display the current configuration of
the EAP device. Documentation on the TwinCAT EAP configurator can be found in the Beckhoff Information
System.

https://infosys.beckhoff.com/content/1033/te1610/index.html
https://infosys.beckhoff.com/content/1033/te1610/index.html

Support and Service

TE1000 77Version: 1.7.1

8 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Trademark statements

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Third-party trademark statements

Arm, Arm9 and Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/te1000

mailto:info@beckhoff.com?subject=TE1000
https://www.beckhoff.com
https://www.beckhoff.com/te1000

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Product description
	2.1 Basic principles
	2.1.1 Communication methods
	2.1.2 Remote station monitoring via ARP
	2.1.3 EAP send mechanism
	2.1.4 EAP performance
	2.1.5 The EAP state machine

	2.2 Technical concept
	2.2.1 EAP telegram structure

	3 Diagnosis of an EAP connection
	3.1 Subscriber
	3.2 Publisher

	4 Creation of an EAP configuration
	4.1 Adding an EAP device
	4.2 Addition of publisher variables
	4.3 Addition of subscriber variables
	4.4 Use of user-defined data types

	5 Configuration of an EAP device
	5.1 The TwinCAT EAP device
	5.2 Publisher Box
	5.3 Publisher Variable
	5.4 Subscriber Box
	5.5 Subscriber Variable
	5.6 EAP between TwinCAT 2 and 3

	6 The CANopen object dictionary
	6.1 The EAP Object Dictionary (subprofile 1000)
	6.2 The TwinCAT ADS interface to the EAP device
	6.3 ADS over EtherCAT (AoE)
	6.4 Online configuration of the TwinCAT EAP device
	6.5 Configuration of Polled Data Exchange
	6.6 Restoring the online configuration

	7 The EAP Device Configuration (EDC) File
	8 Support and Service

		documentation@beckhoff.com
	2025-06-23T14:10:24+0200
	Beckhoff Automation, Verl
	Documentation Publishing

