BECKHOFF

TX1200

TwinCAT 2 | PLC Library: TcMDP

"_F—F:E PLC Libraries

2022-11-02 | Version: 1.1

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
1.2 SafEtY INSITUCHIONS ...ttt e e e e e e e e e e eeeaaeeeeesesannsanrnneeaeaeens 6
1.3 Notes on infOrmation SECUNITYcooi i 7

7 © 1Y =Y T 8

3 NMDP element aCCeSS OPLIONS......cceeieeumummennisisssrsssssss s s s s s e s re s e e e esns s s s s nnsssssssssssssssssssssssssssssmmmmenemensnnnsnnnnnnnnnn 9

L S T 2 4o o TN o ' Yo N 1
4.1 FB_IMDP_REAUeeiiiiiiiiiiie ettt ettt e e e e et e e e et e e e et e e e e e e nbe e e e e ennraeeeeeanees 11
4.2 FB_MDP_REAAINAEX ...cccciiiiiieieiie ettt e e e e ettt e e e e e e e e e s e e st eeeeeeaaeeeeesannnnsennnees 12
4.3 FB_IMDP W .oeiieeeiiie ettt ettt e e et e e e ettt e e e et e e e e e s b e e e e e e st ee e e e e e nnbeeeeeennraeaeeeannres 13
44 FB_MDP_ReEAAEIEBMENT ...t e e e e e e e e e e e e e e e 13
45 FB_MDP_REAAMOUUIEcoceiiiiiieieiieiie ettt e et e et e e e e e e e e e e nbae e e e e ennres 15
4.6 FB_MDP_ReadModuleCoNntent..ot e e e e e e e 16
4.7 FB_MDP_ReadModUIEHEAENoveieiiiii i e e e e e e e e e e e e e e e enaanees 18
4.8 FB_MDP_SCANMOUUIEScoeiiiiiiiieeiiiie ettt ettt e e et e e e e e e e e e s e e e e e annees 18
4.9 FB_MDP_SPIEIOrCOUE ...ttt ettt ettt e e e e e e e e e e e e e e aeaaeeeeeeeeeeansaaens 20
4.10 FB_MDP_CPU_REAMueieiiieiiiiiiie ettt e e e et e e e et e e e e e nbbe e e e e enbeeeeeeannees 20
4.11 FB_MDP_Device Read DeVNAMEccoiiiiiiiiieiii et e e e e e e e e e 21
4.12 FB_MDP_IdentityOb] REA.........ooiiiiiiiiiiiiiiie ettt et e e e e ee e e e e ae e e e e e nbee e e e e nnnees 22
413 FB_MDP_INIC REAM......cuueiii ittt ettt e e e e e e et e e e e et e e e e e eb e e e e e e nabaeeeeeennres 23
414 FB_MDP_INIC _WIItE [Peeiiiiiiiiiiee ittt ettt et a e e e e e e e st e e e e e nnsneeeeeensaeeeeennnnes 24
4.15 FB_MDP_SiliCONDMVE _REAUcoviiiiiiiiiiiicieee et e e e e e e e e e 25
416 FB_MDP_SW_Read_MAPVEISIONueiiiiiiiiiiie ettt e et e e enbee e e e 26
4.17 FB_MDP_TWINCAT _REAMcciiiiiiieeiiiiieit ettt et e e e e et ee e e s et e e e e e ansneeeeeensaeaeeeannees 27

L 1T 4T 1 e o 1= PR 29
5.1 F_GetVersioNTCMDP ...ttt e e e e e e e e aaaaaaas 29

LT I T 1 T T/ 1= 30
LT I O V1B o [[=Y SRR 30
6.2 E_MDP_MOGUIETYPE ... ettt ettt e e e ettt e e e st e e e e st e e e s anne e e e e e annneeeas 30
B.3 ST _IMDP _ AN ... ettt ettt e et e e e et e e e e e e e e —— e e e e e e aar e e e e anaa—aeaeeanareeaeaanraaeas 30
6.4 ST _MDP_MOAUIEHEAAEBTcoieiieiieeeeeee ettt a e 31
B.5 ST IMDP_CPU ... et e e et e e et e e e et et e e e et st e e e e e e e e e e et e e e e s aaraaeas 31
6.6 ST _MDP_IAentityODJECE.ce ittt et e e s e e e st e e e s ae e e e e nnnneeees 32
6.7 ST _MDP_NIC PIOPEITEScceiiiieiei ittt e e e e e e e e e e e e e e e e e st ereeeaaaeens 32
6.8 ST _MDP_SIlICONDIIVE......eiiiiiiiiiie ettt e et e e e et e e e s e e e e e ssaaeeaesanssaeeaesnnnseeens 32
8.9 ST _IMDP _TWINCAT ..ttt e e ettt e e e ettt e e e sase e e e e e anssseeeeaassseeeeeassseeeesanssseeeesnnnnneeas 33

A = 4 e g e o Yo [P 34
% N = /3] = ¢ { €1 TU] o SO 34
7.2 E_MDP_EICOUESPLC ..ottt e e e e e e e e e e e e e ae e e e e e an st naeeeeaeaeens 35

S T- 1141 o [PR 36
TRt B = 1 0] o[RS 37
8.2 Reading IP Serial NUMDEISooiiiiiiii ettt e s es 43

TX1200 Version: 1.1 3

Table of contents BECKHOFF

4 Version: 1.1 TX1200

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

——
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TX1200 Version: 1.1 5

Foreword BECKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

Version: 1.1 TX1200

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TX1200 Version: 1.1 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview BEGKHOFF

2 Overview

MDP (Modular Device Profile) information can be accessed from the PLC using the PLC function block.

The Modular Device Profile for IPC (MDP) is based on the Modular Device Profile specification of the
EtherCAT Technology Group. All (software and hardware) components of the Industrial PC or Embedded PC
are subdivided into modules. The list of available modules is generated dynamically depending upon the
physically existing components.

The MDP standardises the method of accessing Beckhoff hardware and software, which up to now could be
different depending on the Windows operating system used.

This documentation refers to the TwinCAT PLC library TcMDP, with which MDP information can be queried
from the PLC. Further information on the general MDP and other interfaces is offered by the documentation
on Beckhoff Device Manager.

System requirements
* Programming environment:
o TwinCAT installation level: TwinCAT PLC or higher;

o TwinCAT system version 2.11.0 build 1553 or higher; alternative: TwinCAT system version 2.11.0
R2 build 2025 or higher

o TcMDP.Lib This PLC library must be integrated in the PLC project. All other libraries are added
automatically. (Standard.Lib; TcBase.Lib; TcSystem.Lib; TcUltilities.Lib are included
automatically)

» Target platform
o PC or CX (x86): XP, XPe, CE (image v3.21c or higher);
o CX (ARM): CE (image v3.21c or higher);
o CB9xx / CP62xx: CE (image v3.21f or higher);
o TwinCAT PLC runtime system version 2.11.0 build 1541 or higher;

o The system requirements of the Beckhoff Device Manager has to be attended too.

Further documentation

+ Documentation on Beckhoff Device Manager

8 Version: 1.1 TX1200

https://infosys.beckhoff.de/content/1033/devicemanager/index.html
https://infosys.beckhoff.de/content/1033/devicemanager/index.html
https://infosys.beckhoff.de/content/1033/devicemanager/index.html
https://infosys.beckhoff.de/content/1033/devicemanager/index.html

BEGKHOFF MDP element access options

3 MDP element access options

The TwinCAT PLC MDP library offers the most diverse function blocks, to enable extensive access to MDP
data.

There are two basic types of function blocks in the library.

On the one hand the general function blocks. They can be used to query and set arbitrary parameters in the
MDP themselves by means of discrete access.

Furthermore, specific function blocks offer the possibility of accessing certain data as well as groupings of
several data with one call. The function blocks available here offer fast access to the most important MDP
information.

The type of MDP access and the differences between the two types of function blocks will be described in
greater detail below. All function blocks have a uniform look & feel.

All function blocks are called by a rising edge on the bExecute input. Afterwards, cyclic calling of the function
block (bExecute = FALSE) returns the result of the query at the output as soon as the processing of the
query has been completed (bBusy = FALSE). The example [»_37] in this documentation supplies further
handling tips. Each function block must be called (bExecute = FALSE) for as long as it takes for the internal
processing (bBusy = FALSE) to be completed. During that time, all inputs of the function block must remain
unchanged.

In general, the MDP is a model that describes hardware and software components in the form of modules.
Information about these modules as well as about the device itself can be queried and changed.

A module consists of one or more tables. Each table consists of a fixed number of subindices. A subindex
corresponds to a concrete element that can be accessed.

More detailed information about the structure of the MDP can be found in the MDP Information Model.
Further options for accessing the MDP are also described there.

General function blocks

In order to be able to query or set an MDP parameter, the Dynamic Module ID of the module in which the
parameter is located must be known.

This is determined with the aid of the function block FB_ MDP_ScanModules [P _18].

Individual parameters can now be read or written by means of FB MDP Read [»_11] and FB MDP Write

[»_13]. In addition to the dynamic Module 1D, the number of the selected table (Table ID), the selected
subindex within the table as well as further information is thereby specified for the query.

Likewise, the complete header of a module (ST MDP_ModuleHeader [P _31]) can be queried with the
function block FB_ MDP ReadModuleHeader [»_18].

The complete contents of a selected table within a module can be queried with the function block
FB MDP ReadModuleContent [»_16].

The function block FB_ MDP_ReadModule [»_15] bundles the above queries. The function block implicitly
determines the Dynamic Module ID and queries both header and table.

The function block FB_ MDP ReadElement [P _13] also implicitly determines the Dynamic Module ID. Every
single MDP element can be selected and queried.

For these both function blocks is a previous call of FB_ MDP_ScanModules not necessary.

Specific function blocks

The function blocks available here offer fast access to the most important MDP information.

TX1200 Version: 1.1 9

https://infosys.beckhoff.com/content/1033/devicemanager/262978315.html

MDP element access options BEGKHOFF

For example, calling the function block FB_ MDP NIC Read [»_23] suffices in order to query all important
information about a network adapter (see MDP NIC module). The module header is also queried and output
in each case.

The specific function blocks likewise implicitly determine the dynamic Module ID, so that a prior call of
FB MDP ScanModules [P_18] is superfluous.

10 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/263013131.html

BECKHOFF

Function blocks

4 Function blocks

4.1

FB_MDP_Read

FE_HMDF_Read
—bExecute bEBu=v—
—=tHMDF_DynAddr BEError—
—pD=tBuf nErrId~
—chD=tBuf Len nCountf—
—tTimeout
—=An=NetId

The function block enables an element of an MDP module to be queried.

VAR_INPUT

VAR _INPUT
bExecute
this input.¥*)

StMDP_DynAddr
pDstBuf
ceived data. *)
cbDstBufLen
tTimeout
led. *)
sAmsNetId
END VAR

bExecute

stMDP_DynAddr

: BOOL;

: UDINT;
: TIME

: T AmsNetId;

(* Function block execution is triggered by a rising edge at

: ST _MDP Addr;
: POINTER TO BYTE;

(* Contains the address of the buffer for the re

(* Contains the max. number of bytes to be received. *)
:= DEFAULT ADS TIMEOUT; (* States the time before the function is cancel

(* keep empty '' for the local device *)

The function block is called by a rising edge on the input bExecute, if the block is
not already active.
The MDP addressing belonging to the selected network module is specified at this

input. The structure is of the type ST MDP_Addr [»_30]. The dynamic Module ID
must already be specified with it.

pDstBuf The memory address of the data buffer is specified at this input. The received
data are stored there if the query is successful.
cbDstBufLen The length of the data buffer in bytes is specified at this input.
tTimeout Specifies a maximum length of time for the execution of the function block.
sAmsNetld For local access don't specify this input or allocate an empty string. For remote
access to another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
nCount : UDINT;
END VAR
bBusy This output is TRUE as long as the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [P_34] if the bError output is set.
nCount This output indicates the number of bytes read.
TX1200 Version: 1.1 11

Function blocks BEGKHOFF

Requirements
Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

4.2 FB_MDP_Readindex

The function block enables an element of the IPC diagnosis data to be queried. This can be part of the
configuration area as well as the device area.

VAR_INPUT
VAR _INPUT
bExecute : BOOL; (* Function block execution is triggered by a rising edge at
this input.¥*)
nIndex : WORD;
nSubIndex : BYTE;
pDstBuf : POINTER TO BYTE; (* Contains the address of the buffer for the receiv
ed data. *)
cbDstBuflen : UDINT; (* Contains the max. number of bytes to be received. *)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancel
led. *)
sAmsNetId : T _AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
nindex The first part of the addressing belonging to the selected element is specified at this input.
nSublndex The second part of the addressing belonging to the selected element is specified at this
input.
pDstBuf The memory address of the data buffer is specified at this input. The received data are

stored there if the query is successful.
cbDstBufLen The length of the data buffer in bytes is specified at this input.
tTimeout Specifies a maximum length of time for the execution of the function block.

sAmsNetld For local access don't specify this input or allocate an empty string. For remote access to
another computer specify its AMS Net Id.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
nCount : UDINT;

END VAR

bBusy This output is TRUE as long as the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
nCount This output indicates the number of bytes read.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib [version 1.4.0 or higher]

12 Version: 1.1 TX1200

BECKHOFF Function blocks

4.3 FB_MDP_Write

FE_MDF Write
—bExzecute bBuswv—
—=tHDF_DynAddr BError—
—pSrcBuf nErrId—
—-cbSrcBuflen
—tTimecout
—=AnsHetId

The function block enables the MDP TwinCAT module to be queried.

VAR_INPUT
VAR INPUT
bExecute : BOOL; (* Function block execution is triggered by a rising edge at
this input.¥*)
StMDP_DynAddr : ST _MDP_ Addr;
pSrcBuf : POINTER TO BYTE; (* Contains the address of the buffer for the sent d
ata. *)
cbSrcBuflen : UDINT; (* Contains the max. number of bytes to be sent. *)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancel
led. *)
sAmsNetId : T _AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is

not already active.

stMDP_DynAddr The MDP addressing belonging to the selected network module is specified at this

input. The structure is of the type ST MDP_Addr [»_30]. The dynamic Module ID

must already be specified with it.

pSrcBuf The memory address of the data buffer is specified at this input. The data to be
transmitted must be stored there.

cbSrcBufLen The length of the data buffer in bytes is specified at this input.

tTimeout Specifies a maximum length of time for the execution of the function block.

sAmsNetld For local access don't specify this input or allocate an empty string. For remote

access to another computer specify its AMS Net Id.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

bBusy This output is TRUE if the function block is active.
bError Becomes TRUE as soon as an error situation occurs.

nErriD Returns an error code [»_34] if the bError output is set.

Requirements
Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

4.4 FB_MDP_ReadElement

TX1200 Version: 1.1

13

Function blocks

BECKHOFF

FE_MDF_READELEMENT
bBEx=cute : BOOL bBBu=vw BOOL—
=tMDF_Addr ST_HMDF_Addr EError : BOOL—
eModuleTyps : E_MDP_HoduleType nErrID TDIHTH—
iHodId= USIHT nCount : UDIHTH—
rD=tBuf : DWORD =tHDP Dvniddr ST_MDP_ Addr—
chD=tBuflen : TDIHT iModuleTypeCount TSIHTH—
tTimeout TIHE iModuleCount TSINT—
—=An=HetId T _Am=HetId

The function block enables an individual MDP element to be queried. Every element out of every module of
the Configuration Area can be read!
The device is scanned internally for the selected module and the element information are queried with the

dynamic Module ID.

VAR_INPUT

VAR _INPUT
bExecute
StMDP_Addr

Module Id *)
eModuleType
iModIdx

second NIC(idx 1) of three found NICs. *)

pDstBuf
ceived data. *)

cbDstBufLen

tTimeout
led. *)

sAmsNetId
END VAR

bExecute

stMDP_Addr

eModuleType

: BOOL;

: ST _MDP Addr; (* includes all address parameters without the Dynamic
: E_MDP ModuleType;
: USINT;

(* chosen module type out of the module type list *)
(* chosen index(0..n) of the demanded module type. E.g.
: POINTER TO BYTE; (* Contains the address of the buffer for the re

: UDINT;
: TIME

(* Contains the max. number of bytes to be received. *)
:= DEFAULT ADS TIMEOUT; (* States the time before the function is cancel

: T AmsNetId; (* keep empty '' for the local device *)

The function block is called by a rising edge on the input bExecute, if the block is not
already active.
The MDP addressing belonging to the selected module is specified at this input. The

structure is of the type ST MDP_Addr [»_30].
The area has to be the configuration area.

The dynamic Module ID is only added internally and must not be allocated.
The MDP module type is specified at this input. The possible types are listed in the
enumeration E MDP_ModuleType [» 30]. (General information on the module type list

iModldx If several instances of an MDP module exist, a selection can be made by means of the
input iModlIdx (O0,...,n).
pDstBuf The memory address of the data buffer is specified at this input. The received data are
stored there if the query is successful.
cbDstBufLen The length of the data buffer in bytes is specified at this input.
tTimeout Specifies a maximum length of time for the execution of the function block.
sAmsNetld For local access don't specify this input or allocate an empty string. For remote access
to another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL; (* indicates if Read was successfull or not *)
nErrID : UDINT;
nCount : UDINT;
stMDP_DynAddr : ST_MDP_Addr; (* includes the new dynamic module type id. *)
iModuleTypeCount: USINT; (* returns the number of found modules equal the demanded mo
dule type. *)
iModuleCount : USINT; (* returns the number of all detected MDP modules. ¥*)
END_ VAR

14

Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/263037707.html

BECKHOFF Function blocks

bBusy This output is TRUE as long as the function block is active.

bError Becomes TRUE as soon as an error situation occurs.

nErriD Returns an error code [»_34] if the bError output is set.

nCount This output indicates the number of bytes read.

stMDP_DynAddr The MDP addressing belonging to the selected MDP module is specified at this

output. The structure is of the type ST MDP_Addr [P 30]. The dynamic Module
ID was added by the function block.

iModuleTypeCount The output iModule TypeCount indicates the number of modules that correspond
to the specified type.

iModuleCount The output iModuleCount indicates the entire number of modules on the device.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib [version 1.2.0 or higher]

4.5 FB_MDP_ReadModule

FB_MDP ReadModule
—bEzecute bBu=svy—
—=tMDF_Addr bBError—
—eModuleType nErrID-—
—iHodId= iErrPos—
—15ubld=aCount =tMDP DynAddr—
—pl=tBuf 1HoduleTypeCount—
—cbD=tBuflen iModuleCount{—
—tTimeout =t HDP_ModuleHeader—
—=AnsNetId arrStart Id=z—

The function block enables an MDP module to be queried.
The device is scanned internally for the selected module and the module header, and the module information
are queried with the dynamic Module ID.

VAR_INPUT
VAR INPUT
bExecute : BOOL;
stMDP_Addr : ST_MDP_Addr; (* includes all address parameters without the Dynamic
Module Id *)
eModuleType : E_MDP ModuleType; (* chosen module type out of the module type list *)
iModIdx : USINT; (* chosen index(0..n) of the demanded module type. E.g.
second NIC(idx 1) of three found NICs. *)
iSubIdxCount : USINT;
pDstBuf : POINTER TO BYTE; (* Contains the address of the buffer for the re
ceived data. *)
cbDstBuflen : UDINT; (* Contains the max. number of bytes to be received. *)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancel
led. *)
sAmsNetId : T _AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
stMDP_Addr The MDP addressing belonging to the selected module is specified at this input. The
structure is of the type ST MDP_Addr [»_30]. The dynamic Module ID is only added
internally.
eModuleType The MDP module type is specified at this input. The possible types are listed in the
enumeration E MDP_ModuleType [P 30]. (General information on the module type list
iModldx If several instances of an MDP module exist, a selection can be made by means of the

input iModldx (0,...,n).

TX1200 Version: 1.1 15

https://infosys.beckhoff.com/content/1033/devicemanager/263037707.html

Function blocks

BECKHOFF

iSubldxCount

The input iSubldxCount is used to specify how many subindices of the selected Table

ID are to be queried.

pDstBuf

The memory address of the data buffer is specified at this input. The received data are

stored there if the query is successful.

cbDstBufLen
tTimeout
sAmsNetid

The length of the data buffer in bytes is specified at this input.
Specifies a maximum length of time for the execution of the function block.
For local access don't specify this input or allocate an empty string. For remote access

to another computer specify its AMS Net Id.

VAR_OUTPUT

VAR _OUTPUT
bBusy
bError
nErrID
iErrPos
StMDP_ DynAddr
iModuleTypeCount
d module type. ¥*)
iModuleCount
StMDP_ModuleHeader
arrStartIdx
& =)
END VAR

bBusy
bError
nErriD

iErrPos

stMDP_DynAddr

iModuleTypeCount

iModuleCount
stMDP_ModuleHeader

arrStartldx

Requirements

: BOOL;

: BOOL; (* indicates if Read was successfull or not *)

: UDINT;

: USINT;

: ST _MDP_Addr; (* includes the new dynamic module type id. *)

: USINT; (* returns the number of found modules equal the demande
: USINT; (* returns the number of all detected MDP modules. *)

: ST_MDP_ModuleHeader;
: ARRAY[0..255] OF UINT;

(* startindexes in bytes of each subindex elemen

This output is TRUE as long as the function block is active.
Becomes TRUE as soon as an error situation occurs.

Returns an error code [P _34] if the bError output is set.

If an error occurred and this refers to an individual element, then this output
indicates the position (subindex of the element) at which an error first occurred.
The MDP addressing belonging to the selected MDP module is specified at this
output. The structure is of the type ST MDP_Addr [P 30]. The dynamic Module
ID was added by the function block.

The output iModule TypeCount indicates the number of modules that
corresponds to the specified type.

The output iModuleCount indicates the entire number of modules on the device.
The header information from the read MDP module is displayed at this output in
the form of the structure ST MDP_ModuleHeader [» 31].

This array describes how the individually queried subindices have been stored in
the buffer.

The array index zero indicates the position in bytes at which the data of subindex
zero begins in the buffer. Subsequent subindices are handled analogously.

Development environment

Target platform

PLC libraries to be linked

TwinCAT v2.11.0 Build >= 1541

PC or CX (x86, ARM)

TcMDP.Lib

4.6

FB_MDP_ReadModuleContent

FBE MDF ReadModuleContent
—bExzecute bBusw—
—=tHDF_DynAddr BError—
—iSubld=Count nErrID—
—pD=tBuf 1iErrPos—
—chD=tEBufLen arrStartId=—
—tTimeout
—=AnsNetId

16

Version: 1.1 TX1200

BECKHOFF

Function blocks

The function block enables the contents of an MDP module to be queried.

VAR_INPUT

VAR INPUT
bExecute

StMDP DynAddr

: BOOL;
: ST_MDP_Addr;

(* includes the dynamic module type for which the modu

le content is requested. All subindexes of the chosen table are requested. *)

iSubIdxCount

pDstBuf
ceived data. *)

cbDstBufLen

tTimeout
led. *)

sAmsNetId
END VAR

bExecute

stMDP_DynAddr

iSubldxCount
pDstBuf

cbDstBufLen
tTimeout
sAmsNetid

VAR _OUTPUT

VAR OUTPUT
bBusy
bError
nErrID
iErrPos
arrStartIdx

END VAR

bBusy
bError
nErriD

iErrPos

: USINT;
: POINTER TO BYTE;

: UDINT;
: TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancel

: T AmsNetId;

(* the number of SubIndexes to be requested *)
(* Contains the address of the buffer for the re

(* Contains the max. number of bytes to be received. *)

(* keep empty '' for the local device ¥*)

The function block is called by a rising edge on the input bExecute, if the block is
not already active.

The MDP addressing belonging to the selected module is specified at this input.

The structure is of the type ST MDP_Addr [30]. The dynamic Module ID must
already be transferred with it.

The input iSubldxCount is used to specify how many subindices of the selected
Table ID are to be queried.

The memory address of the data buffer is specified at this input. The received data
are stored there if the query is successful.

The length of the data buffer in bytes is specified at this input.
Specifies a maximum length of time for the execution of the function block.

For local access don't specify this input or allocate an empty string. For remote
access to another computer specify its AMS Net Id.

: BOOL;
: BOOL; (* indicates if Read was successfull or not *)
: UDINT;
: USINT;
: ARRAY[0..255] OF UINT;

(* startindexes in bytes of each subindex element ¥*)

This output is TRUE as long as the function block is active.

Becomes TRUE as soon as an error situation occurs.

Returns an error code [P _34] if the bError output is set.

If an error occurred and this refers to an individual element, then this output indicates the

position (subindex of the element) at which an error first occurred.

arrStartldx

This array describes how the individually queried subindices have been stored in the buffer.

The array index zero indicates the position in bytes at which the data of subindex zero
begins in the buffer. Subsequent subindices are handled analogously.

Requirements

Development environment

Target platform PLC libraries to be linked

TwinCAT v2.11.0 Build >= 1541

PC or CX (x86, ARM) TcMDP.Lib

TX1200

Version: 1.1 17

Function blocks

BECKHOFF

4.7 FB_MDP_ReadModuleHeader

bEzecute

tTimeout
=hns=NetId

FBE HDP FeaddoduleHeader

nlynModuleId

bBusw—
bErrorf
nErrIDH-
=t HDP_ ModHeader—

The function block enables the header of an MDP module to be queried.

VAR_INPUT

VAR _INPUT
bExecute
nDynModuleId

ested *)
tTimeout

led. *)
sAmsNetId

END VAR

bExecute
stMDP_DynAddr

tTimeout
sAmsNetid

VAR _OUTPUT

VAR OUTPUT
bBusy
bError
nErrID

END_ VAR
bBusy

bError
nErriD

stMDP_ModuleHeader

Requirements

: T AmsNetId;

: BOOL;
: BYTE; (* the dynamic module id for which the module header is requ
: TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancel

(* keep empty '' for the local device *)

The function block is called by a rising edge on the input bExecute, if the block is
not already active.

The MDP addressing belonging to the selected network module is specified at this
input. The dynamic Module ID must already be specified with it.

Specifies a maximum length of time for the execution of the function block.

For local access don't specify this input or allocate an empty string. For remote
access to another computer specify its AMS Net Id.

: BOOL;
: BOOL; (* indicates if Read was successfull or not *)
: UDINT;
StMDP_ModHeader :

ST MDP ModuleHeader;

This output is TRUE as long as the function block is active.
Becomes TRUE as soon as an error situation occurs.
Returns an error code [»_34] if the bError output is set.

The header information from the read MDP module is displayed at this
output in the form of the structure ST MDP_ModuleHeader [P 31].

Development environment

Target platform PLC libraries to be linked

TwinCAT v2.11.0 Build >= 1541

PC or CX (x86, ARM) TcMDP.Lib

4.8 FB_MDP_ScanModules

FB_MDF ScanModule=s
—bEzecute bBu=vH—
—nModuleType bBErrort—
—iModId= nErrID-
—tTimeout nDvnModuleId-
—=Amn=NetId 1HoduleTypeCount—
1ModuleCount—
18 Version: 1.1 TX1200

BEGKHOFF Function blocks

The function block enables a device to be scanned for a certain MDP module.

Selection can be made if several instances of the module type are present. The dynamic Module ID for the
selected module type is determined by the function block.

This is an important component of the MDP addressing, which is represented in the structure ST MDP_Addr

[»_30].

VAR_INPUT
VAR _INPUT
bExecute : BOOL;
nModuleType : WORD; (* chosen module type out of the module type list *)
iModIdx : USINT; (* chosen index (0..n) of the demanded module type. E.g.
second NIC (idx 1) of three found NICs. *)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancel
led. *)
sAmsNetId : T AmsNetId; (* keep empty '' for the local device ¥*)
END_ VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
nModuleType The MDP module type is specified at this input. The possible types are listed in the
enumeration E MDP_ModuleType [»_30]. (General information on the module type list
iModldx If several instances of an MDP module exist, a selection can be made by means of the
input iModldx (0,...,n).
In the case of uncertainty concerning the selection: information about which module is
explicitly concerned can be queried via the function block FB_ MDP ReadModuleHeader
[»_18] after scanning.
tTimeout Specifies a maximum length of time for the execution of the function block.
sAmsNetld For local access don't specify this input or allocate an empty string. For remote access
to another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL; (* indicates if Scan was successfull or not *)
nErrID : UDINT;
nDynModuleId : BYTE; (* Dynamic Module Id *)
iModuleTypeCount : USINT; (* returns the number of found modules equal the demanded modu
le type. *)
iModuleCount : USINT; (* returns the number of all detected MDP modules. ¥*)
END_ VAR
bBusy This output is TRUE as long as the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
nDynModuleld This output indicates the dynamic Module ID determined for the selected module.

iModuleTypeCount The output iModule TypeCount indicates the number of modules that correspond to the
specified type.

iModuleCount The output iModuleCount indicates the entire number of modules on the device.
Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

TX1200 Version: 1.1 19

https://infosys.beckhoff.com/content/1033/devicemanager/263037707.html

Function blocks

BECKHOFF

4.9

FB_MDP_SplitErrorCode

nExrrID

FB_MDF SplitErrorID

eErrGroupp
nErrCode—

The function block enables the nErrID to be split into an error group [P_34] and a specific error code.
Accordingly, this function block can be referred to for the simplified evaluation of nErriD.

VAR_INPUT
VAR_INPUT
nErrID :UDINT;
END VAR
nErriD nErrID is specified as an input on the function block. This 4-byte variable corresponds to the

output nErrID on an MDP function block.

VAR_OUTPUT

VAR OUTPUT
eErrGroup
nErrCode

END_VAR

eErrGroup

nErrCode

Requirements

(* type of transmitted error code *)
[see specific error type table] ¥*)

:E MDP ErrGroup;
:UINT; (* error code

The output eErrGroup corresponds to a value of the enumeration E MDP_ErrGroup [P 34].
It is possible with the aid of the error group to distinguish the type of error or the source of
error concerned.

The error code is specific for each error group.

Development environment

Target platform PLC libraries to be linked

TwinCAT v2.11.0 Build >= 1541

PC or CX (x86, ARM) TcMDP.Lib

410

FB_MDP_CPU_Read

bExecute
tTimeout
1ModId=
=hn=NetId

FE_MDF_ CFU_Fead
bBusvl—

bError—

nErrID—

iErrPos—

=t HDP_ModuleHeader—

=tHDP _ModuleContenti—

The function block enables the MDP CPU module to be queried. (General information on the MDP CPU

module)

VAR_INPUT

VAR _INPUT
bExecute

his input.*)
tTimeout

@l ™)
iModIdx

sAmsNetId :

END VAR

bExecute

: BOOL; (* Function block execution is triggered by a rising edge at t
: TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancelle
: USINT := 0; (* Index number of chosen MDP module *)

T AmsNetId; (* keep empty '' for the local device *)

The function block is called by a rising edge on the input bExecute, if the block is not
already active.

20

Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/262984459.html
https://infosys.beckhoff.com/content/1033/devicemanager/262984459.html

BECKHOFF Function blocks

tTimeout Specifies a maximum length of time for the execution of the function block.

iModldx If several instances of an MDP module exist, a selection can be made by means of the
input iModldx (0,...,n).

sAmsNetld For local access don't specify this input or allocate an empty string. For remote access to

another computer specify its AMS Net Id.

VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
iErrPos : USINT;
StMDP ModuleHeader : ST MDP ModuleHeader;
StMDP ModuleContent : ST MDP CPU;
END_VAR
bBusy This output is TRUE if the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErrlD Returns an error code [»_34] if the bError output is set.
iErrPos If an error occurred and this refers to an individual element, then this output
indicates the position (subindex of the element) at which an error first
occurred.
stMDP_ModuleHeader The header information from the read MDP module is displayed at this output
in the form of the structure ST MDP ModuleHeader [» 31].
stMDP_ModuleContent The information from TablelD 1 of the read MDP module is displayed at this

output in the form of the structure ST MDP CPU [» 31].

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

4.11 FB_MDP_Device_Read_DevName

FBE MDF Device_ Read_DevHanes
—bEzecute bBusvl
—tTimeout BEError—
—=An=NetId nErrID—

sDevHamne—

The function block enables the device name to be queried. This information is in the General Area of the
MDP. (General information on the MDP information model)

VAR_INPUT
VAR _INPUT
bExecute : BOOL; (* Function block execution is triggered by a rising edge at
this input.¥*)
tTimeout : TIME := DEFAULT ADS_TIMEOUT; (* States the time before the function is cancel
led. *)
sAmsNetId : T _AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
tTimeout Specifies a maximum length of time for the execution of the function block.

sAmsNetld For local access don't specify this input or allocate an empty string. For remote access to
another computer specify its AMS Net Id.

TX1200 Version: 1.1 21

https://infosys.beckhoff.com/content/1033/devicemanager/262978315.html

Function blocks

BECKHOFF

VAR _OUTPUT

VAR OUTPUT
bBusy
bError
nErrID
sDevName

END VAR

bBusy
bError
nErriD

sDevName

Requirements

: BOOL;

: BOOL;

: UDINT;

: T MaxString;

This output is TRUE as long as the function block is active.
Becomes TRUE as soon as an error situation occurs.
Returns an error code [P_34] if the bError output is set.
The queried name is output as a string at this output.

Development environment

Target platform PLC libraries to be linked

TwinCAT v2.11.

0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

412

FB_MDP_ldentityObj Read

bEzecute
tTimeout
=hn=NetId

FE_MDE_TIdentitv0bj_Read

bBBu=v

bError

nkErrID
1ErrPo=
=tHDP_Content

The function block enables the IdentityObject table to be queried. (General information on the MDP
IdentityObject module from the General Area)

VAR_INPUT
VAR INPUT
bExecute : BOOL; (* Function block execution is triggered by a rising edge at t
his input.*)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancelle
d. *)
sAmsNetId : T AmsNetId; (* keep empty '' for the local device ¥*)
END_VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
tTimeout Specifies a maximum length of time for the execution of the function block.
sAmsNetld For local access don't specify this input or allocate an empty string. For remote access to
another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
iErrPos : USINT;
StMDP ModuleContent : ST MDP IdentityObject;
END_VAR
bBusy This output is TRUE if the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
22 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/262981387.html
https://infosys.beckhoff.com/content/1033/devicemanager/262981387.html

BECKHOFF Function blocks

iErrPos If an error occurred and this refers to an individual element, then this
output indicates the position (subindex of the element) at which an error
first occurred.

stMDP_ModuleContent The information from the table is displayed at this output in the form of the
structure ST MDP_IdentityObject [» 32].

Requirements
Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

413 FB_MDP_NIC_Read

FE_MDP_NIC Read

—bEzecute bBu=svy—
—tTimeout bErrort—
—iModId= nErrID—
—=AnsHetId 1ErrPos—

=tMDP ModuleHeader|—
=tMDP ModuleContent|—

The function block enables the MDP NIC (Network Interface Card) module to be queried. (General
information on the MDP NIC module)

VAR_INPUT
VAR INPUT
bExecute : BOOL; (* Function block execution is triggered by a rising edge at t
his input.*)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancelle
d. *)
iModIdx : USINT := 0; (* Index number of chosen MDP module *)
sAmsNetId : T AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
tTimeout Specifies a maximum length of time for the execution of the function block.
iModldx If several instances of an MDP module exist, a selection can be made by means of the

input iModldx (0,...,n).

sAmsNetld For local access don't specify this input or allocate an empty string. For remote access to
another computer specify its AMS Net Id.

VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
iErrPos : USINT;
StMDP ModuleHeader : ST MDP ModuleHeader;
StMDP ModuleContent : ST MDP NIC Properties;
END_ VAR
bBusy This output is TRUE as long as the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
iErrPos If an error occurred and this refers to an individual element, then this output
indicates the position (subindex of the element) at which an error first
occurred.

TX1200 Version: 1.1 23

https://infosys.beckhoff.com/content/1033/devicemanager/263013131.html
https://infosys.beckhoff.com/content/1033/devicemanager/263013131.html

BECKHOFF

Function blocks

stMDP_ModuleHeader The header information from the read MDP module is displayed at this
output in the form of the structure ST MDP_ModuleHeader [P 31].
The information from TablelD 1 of the read MDP module is displayed at this

output in the form of the structure ST MDP NIC [P 32].

stMDP_ModuleContent

Requirements

Development environment

Target platform

PLC libraries to be linked

TwinCAT v2.11.0 Build >= 1541

PC or CX (x86, ARM)

TcMDP.Lib

414

FB_MDP_NIC_Write_IP

FBE MDP HIC Write IP
—bExzecute bBusvyH—
—nlynModuleId bError—
—=IFiddre== nEr+IDH—
—tTimeout
—=in=NetId

The function block enables a new IP address to be set. This element is part of the MDP NIC module.
(General information on the MDP NIC module)

@ Please note that changes of this kind affect an existing network connection to the computer.

1

VAR_INPUT
VAR _INPUT
bExecute : BOOL;
nDynModuleId : BYTE; (* the dynamic module id *)
sIPAddress : T MaxString; (* IP Address *)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancel
led. *)
sAmsNetId : T _AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not

nDynModuleld

already active.

The dynamic Module ID belonging to the selected network module is specified at this
input.

sIPAddress The IP address specified at this input in the form of a string is transmitted.
tTimeout Specifies a maximum length of time for the execution of the function block.
sAmsNetld For local access don't specify this input or allocate an empty string. For remote
access to another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
END VAR
bBusy This output is TRUE if the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
24 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/263013131.html

BECKHOFF Function blocks

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

415 FB_MDP_SiliconDrive _Read

FBE MDP SiliconlDrive_ Read

—“bEx=cute BBu=v—
—tTimeout bBError—
—iModIdx nErrID—
—=An=NetId 1iErrPos—

=tHDP_ModuleHeader
=tMDP ModuleContent

The function block enables the MDP SiliconDrive module to be queried. (General information on the MDP
SiliconDrive module)

VAR_INPUT
VAR INPUT
bExecute : BOOL; (* Function block execution is triggered by a rising edge at t
his input.*)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancelle
d. *)
iModIdx : USINT := 0; (* Index number of chosen MDP module *)
sAmsNetId : T AmsNetId; (* keep empty '' for the local device ¥*)
END_VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
tTimeout Specifies a maximum length of time for the execution of the function block.
iModldx If several instances of an MDP module exist, a selection can be made by means of the
input iModldx (0,...,n).
sAmsNetld For local access don't specify this input or allocate an empty string. For remote access
to another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
iErrPos : USINT;
StMDP_ModuleHeader : ST MDP_ ModuleHeader;
stMDP ModuleContent : ST MDP SiliconDrive;
END VAR
bBusy This output is TRUE as long as the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
iErrPos If an error occurred and this refers to an individual element, then this
output indicates the position (subindex of the element) at which an error
first occurred.
stMDP_ModuleHeader The header information from the read MDP module is displayed at this
output in the form of the structure ST MDP _ModuleHeader [»_31].
stMDP_ModuleContent The information from TablelD 1 of the read MDP module is displayed at

this output in the form of the structure ST MDP SiliconDrive [P_32].

TX1200 Version: 1.1 25

BECKHOFF

Function blocks

Timeout possible

The querying of the MDP Silicon Drive module is one of the more time-consuming processes. Hence, the
Standard ADS Timeout can be exceeded. This can be remedied by increasing the period tTimeout applied
to the input of the function block.

Requirements

PLC libraries to be linked
TcMDP.Lib

Development environment
TwinCAT v2.11.0 Build >= 1541

Target platform
PC or CX (x86, ARM)

4.16 FB_MDP_SW_Read_MdpVersion

FB MDP SW_READ HDPVERSIOH
—bExecute BOOL bBusvy BOOLH—
—tTimeocut : TIME bError : BOOL—
—=An=Het Id T _Am=HetId nErrID : UDINTH
=HdpVer=sion STRIHNG{ 23—
iMajorHbr TINTH
iMinorNbr TIHTH
iRevHbr TIHTH

The function block enables the MDP version to be queried. This information is located in the module
software in the configuration area of the MDP. (General information on the MDP information model)

The MDP version is independent of the PLC library version. The PLC library version is provided by the
function F_GetVersionTcMDP [P 29].

VAR_INPUT
VAR INPUT
bExecute :BOOL; (* Function block execution is triggered by a rising edge at
this input.¥*)
tTimeout :TIME :=DEFAULT ADS TIMEOUT; (* States the time before the function is cancel
led. *)
sAmsNetId :T_AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
tTimeout Specifies a maximum length of time for the execution of the function block.
sAmsNetld For local access don't specify this input or allocate an empty string. For remote access to
another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy :BOOL;
bError :BOOL;
nErrID :UDINT;
sMdpVersion :STRING (23); (* complete MDP version as string [e.g.: 'l, 0, 4, 47'] *)
iMajorNbr :UINT; (* major number [e.g.: 1] *)
iMinorNbr :UINT; (* minor number [e.g.: 4] *)
iRevNbr :UINT; (* revision number [e.g.: 47] *)
END_ VAR
bBusy This output is TRUE if the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
26 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/262978315.html

BECKHOFF Function blocks

sMdpVersion

The queried MDP version is output as a string at this output.

iMajorNbr The first position of the MDP version is output as a number at this output.

iMinorNbr The second position of the MDP version is output as a number at this output.

iRevNbr The third position of the MDP version is output as a number at this output.
Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib [version 1.2.0 or higher]

417

FB_MDP_TwinCAT_Read

bEzecute
tTimeout
iModId=
sAnsHet Id

FBE MDP TwinCAT Read
bBusvy—

bError—

nErrID—

iErrPos—

=tMDP ModuleHeader|—

=tMDP ModuleContent|—

The function block enables the MDP TwinCAT module to be queried. (General information on the MDP

TwinCAT module)
VAR_INPUT
VAR INPUT
bExecute : BOOL; (* Function block execution is triggered by a rising edge at t
his input.*)
tTimeout : TIME := DEFAULT ADS TIMEOUT; (* States the time before the function is cancelle
d. *)
iModIdx : USINT := 0; (* Index number of chosen MDP module *)
sAmsNetId : T AmsNetId; (* keep empty '' for the local device *)
END VAR
bExecute The function block is called by a rising edge on the input bExecute, if the block is not
already active.
tTimeout Specifies a maximum length of time for the execution of the function block.
iModldx If several instances of an MDP module exist, a selection can be made by means of the
input iModldx (0,...,n).
sAmsNetld For local access don't specify this input or allocate an empty string. For remote access to
another computer specify its AMS Net Id.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
iErrPos : USINT;
StMDP ModuleHeader : ST MDP ModuleHeader;
stMDP_ModuleContent : ST MDP_ TwinCAT;
END_ VAR
bBusy This output is TRUE if the function block is active.
bError Becomes TRUE as soon as an error situation occurs.
nErriD Returns an error code [»_34] if the bError output is set.
iErrPos If an error occurred and this refers to an individual element, then this
output indicates the position (subindex of the element) at which an error
first occurred.
TX1200 Version: 1.1 27

https://infosys.beckhoff.com/content/1033/devicemanager/263030539.html
https://infosys.beckhoff.com/content/1033/devicemanager/263030539.html

Function blocks BEGKHOFF

stMDP_ModuleHeader The header information from the read MDP module is displayed at this
output in the form of the structure ST MDP ModuleHeader [P 31].
stMDP_ModuleContent The information from TablelD 1 of the read MDP module is displayed at

this output in the form of the structure ST MDP_TwinCAT [P 33].

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1551 PC or CX (x86, ARM) TcMDP.Lib

28 Version: 1.1 TX1200

BEGKHOFF Functions

5 Functions

5.1 F_GetVersionTcMDP

F_GetVersionTcHMDP
nVersionElenent

This function can be used to read PLC library version information.

The MDP version is independent of the PLC library version. The MDP version is provided by the function
block FB_ MDP SW Read MdpVersion [P 26].

FUNCTION F_GetVersionTcMDP: UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element to be read. Possible parameters:
* 1 : major number;
e 2 :minor number;
¢ 3 : revision number;

Requirements
Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

TX1200 Version: 1.1 29

Data types BEGKHOFF

6 Data types

6.1 E_MDP_AddrArea

TYPE E MDP AddrArea : (
eMDP Area ConfigArea 1= 1648,
eMDP_Area ServiceArea := 16#B,
eMDP Area DeviceArea 16#F

) ;
END TYPE

The enumeration E_ MDP_AddrArea defines constant values for the different areas in the MDP.

A general description can be found in the Information Model.

6.2 E_MDP_ModuleType

TYPE E MDP ModuleType : (

eMDP_ModT NIC := 16#0002,
eMDP ModT Time := 16#0003,
eMDP ModT UserManagement := 16#0004,
eMDP_ModT RAS := 16#0005,
eMDP_ModT FTP := 16#0006,
eMDP_ModT SMB := 1640007,
eMDP_ModT TwinCAT := 1640008,
eMDP_ModT Datastore := 1640009,
eMDP_ModT Software := 16#0004,
eMDP_ModT_CPU := 16#000B,
eMDP_ModT Memory := 1le6#000C,
eMDP_ModT Firewall := 16#000E,
eMDP_ModT FileSystemObject := 16#0010,
eMDP_ModT PLC := 1640012,
eMDP ModT DisplayDevice := 16#0013,
eMDP ModT EWF 1= 16#0014,
eMDP_ModT FBWF := 1640015,
eMDP_ModT_SiliconDrive := 16#0017,
eMDP_ModT_ OS := 1640018,
eMDP_ModT Raid := 16#0019,
eMDP_ModT Fan := 16#001B,
eMDP ModT Mainboard := 16#001C,
eMDP ModT " DiskManagement := 16#001D,
eMDP_ModT_ UPS := 16#001E,
eMDP_ModT Misc := 16#0100
)i
END TYPE

The enumeration E_MDP_Module Type defines constant values for the different module types in the MDP.
A module type can occur several times per device. Hence, a device with two Ethernet interfaces also has
two MDP NIC modules.

Detailed information about the modules can be found in the documentation IPC Diagnostic - Module Types.

@ This module type is not to be equated with the dynamic Module ID !

1

6.3 ST_MDP_Addr

30 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/262978315.html
https://infosys.beckhoff.com/content/1033/devicemanager/263037707.html

BEGKHOFF Data types

TYPE ST MDP Addr :

STRUCT
nArea : BYTE; (* Area [range: 0x0-0xF] *)
nModuleId 3 BYIIm3 (* Dynamic Module Id [range: O0x00-0xFF] *)
nTableId : BYTE; (* Table Id [range: 0x0-0xF] ¥*)
nFlag : BYTE; (* Flags [range: 0x00-0xFF] *)
nSubIdx : BYTE; (* SubIndex [range: 0x00-0xFF] ¥*)
arrReserved : ARRAY[0..2] OF BYTE;

END STRUCT

END TYPE

The structure contains information that is required for the MDP addressing.

nArea Possible MDP areas are listed in E MDP_AddrArea [» 30].
nModuleld The Module ID is assigned dynamically. It does not correspond to the module types listed in

E_MDP_ModuleType. The function block FB_ MDP_ScanModules [»_18] can be used in order
to determine a dynamic Module ID for a special type of module.

nTableld This value specifies the number of the selected table of the selected module.
nFlag This parameter is used internally only. It remains at the default value of 0x00.
nSubldx The Subindex parameter corresponds to the subindex in a table in an MDP module.

Detailed information on MDP addressing can be found in the documentaion IPC Diagnostic - Ads Overview.

6.4 ST_MDP_ModuleHeader

TYPE ST _MDP_ModuleHeader :

STRUCT
iLen :UINT;
nAddr : DWORD;
sType :T_MaxString;
sName :T MaxString;
nDevType :DWORD;
END_STRUCT
END_TYPE

The structure contains device information. This information always corresponds to the Table ID 0 of an MDP
module. Each module possesses this module header.

iLen : Specifies the number of parameters in the Table ID, in this case the module header.
nAddr : Specifies the address of the module.

sType : Specifies the type of module. Possible types are listed in the MDP module list.
sName : Specifies the name of this MDP module.

nDevType : Specifies the type of MDP module as code.

6.5 ST_MDP_CPU

TYPE ST MDP CPU :

STRUCT
iLen :UINT; (* Length *)
iCPUfrequency :UDINT; (* CPU Frequency ¥*)
iCPUusage :UINT; (* Current CPU Usage [%] *)
END_STRUCT
END TYPE

The structure contains information on the MDP CPU module.

This complete information can be queried by means of the function block FB_ MDP_CPU Read [»_20].

TX1200 Version: 1.1 31

https://infosys.beckhoff.com/content/1033/devicemanager/263037707.html

Data types BEGKHOFF

The parameters existing in this structure correspond to the subindices of the first table (Table ID 1) within the
MDP CPU module.

6.6 ST_MDP_IdentityObject

TYPE ST MDP_IdentityObject :

STRUCT
iLen : UINT; (* Length *)
iVendor : UDINT; (* Vendor *)
iProductCode : UDINT; (* Product Code *) (* not yet supported *)
iRevNumber : UDINT; (* Revision Number *) (* not yet supported *)
iSerialNumber : UDINT; (* Serial Number *)

END STRUCT

END TYPE

The structure contains information on the IdentityObject table, which is in the MDP General Area.

This complete information can be queried by means of the function block FB_MDP_IdentityObj Read [P 22].

The parameters existing in this structure correspond to the subindices of the 'ldentity Object' table within the
MDP IdentityObject module in the General Area.

6.7 ST_MDP_NIC_Properties

TYPE ST MDP NIC Properties :

STRUCT
iLen : UINT; (* Length *)
SMACAddress : T MaxString; (* MAC Address *)
sIPAddress : T _MaxString; (* IP Address *)
sSubnetMask : T MaxString; (* Subnet Mask *)
bDHCP : BOOL; (* DHCP *)

END_STRUCT

END_TYPE

The structure contains information on the MDP NIC (Network Interface Card) module.

This complete information can be queried by means of the function block FB_ MDP NIC Read [»_23].

The parameters existing in this structure correspond to the subindices of the first table (Table ID 1) within the
MDP NIC module.

6.8 ST_MDP_SiliconDrive

TYPE ST MDP_SiliconDrive :

STRUCT
iLen : UINT; (* Length *)
iTotalEraseCounts : UDINT; (* Total EraseCounts (lower 4 bytes) ¥*)
iDriveUsage : UINT; (* Drive Usage (%) *)
iNbrSpares : UINT; (* Number of Spares *)
iNbrUsedSpares : UINT; (* Spares Used ¥*)
iTotalEraseCountsHigh : UDINT; (* Total EraseCounts (higher 4 bytes) *)
END_ STRUCT
END_ TYPE

The structure contains information on the MDP SiliconDrive module.

This complete information can be queried by means of the function block FB_ MDP SiliconDrive Read [P 25].

iLen iLen defines the number of MDP elements in the table of the MDP module.

iTotalEraseCounts The entire sum of write/erase cycles of all blocks on a Silicon Drive. This
element is defined as 64 Bit value.iTotalEraseCounts contains the lower
32 Bit.

iTotalEraseCountsHigh The entire sum of write/erase cycles of all blocks on a Silicon Drive. This
element is defined as 64 Bit value.iTotalEraseCountsHigh contains the
higher 32 Bit.

32 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/262984459.html
https://infosys.beckhoff.com/content/1033/devicemanager/262981387.html
https://infosys.beckhoff.com/content/1033/devicemanager/263013131.html

BEGKHOFF Data types

iDriveUsage The calculated usage of the silicon drive. It's based on maximal two million
write/erase cycles per Block.

iNbrSpares Spare Blocks replaces Blocks who had been wear out. iNbrSpares is the
total number of Spare Blocks available.

iNbrUsedSpares The number of spares already used on the Silicon Drive.

The parameters existing in this structure correspond to the subindices of the first table (Table ID 1) within the
MDP SiliconDrive module.

6.9 ST_MDP_TwinCAT

TYPE ST MDP TwinCAT

STRUCT
iLen : UINT; (* Length ¥*)
iMajorVersion : UINT; (* Major Version *)
iMinorVersion : UINT; (* Minor Version *)
iBuild : UINT; (* Build ¥*)
sAmsNETid : T MaxString; (* Ams NET ID *)
iRegLevel : UDINT; (* TwinCAT registration level *)
iStatus : UINT; (* TwinCAT status *)
iRunAsDev : UINT; (* Run As Device *) (* available for WindowsCE *)
iShowTargetVisu : UINT; (* show target visualization *) (* available for WindowsCE ¥*)
iLogFileSize : UDINT; (* log file size *) (* available for WindowsCE *)
sLogFilePath : T MaxString; (* log file path *) (* available for WindowsCE *)
END_STRUCT
END_TYPE

The structure contains information on the MDP TwinCAT module.

This complete information can be queried by means of the function block FB MDP TwinCAT Read [P 27].

The parameters existing in this structure correspond to the subindices of the first table (Table ID 1) within the
MDP TwinCAT module.

TX1200 Version: 1.1 33

https://infosys.beckhoff.com/content/1033/devicemanager/263030539.html

Error codes BEGKHOFF

7 Error codes

The function blocks of the TcPIcLibMDP.Lib possess an output nErrID. This value is 4 bytes in size and
returns the error code in the event of an error. nErrID consists of two parts:

(MSB) 2 bytes 2 bytes (LSB)
Error Group Error Code
Ox EC80 E MDP ErrCodesPLC [» 35]
0x ECA6 MDP general error
Ox ECA7 MDP API error
Ox ECA8 ADS error
0x ECAF MDP module specific error

Error Group

The Error Group describes the type of error that has occurred. The different groups are listed in the

enumeration E MDP_ErrGroup [» 34].
All errors generated within the PLC library have the error group OXEC80.

Error Code

The Error Code describes the concrete error.
For errors internal to the PLC library with the error group OXEC80, the identifiers are listed in the enumeration

E MDP ErrCodesPLC [P _35]. A description of the further error codes can be found in the Documentation of
the IPC Diagnostics in the chapter MDP Error Codes.

@ General MDP-dependent errors are output in the error group 16#ECAG “General error codes”.
These errors sometimes indicate that an element from the module element list is not available. Ex-

1 ample: 16#ECA60105 "No data available" If, in the case of a general or specific function block (see
access options [»_9]), several elements are queried at the same time and one of these elements is
not available or exhibits an error, then the output variable iErrPos indicates the index position (0..n)
at which the error occurred for the first time. All elements below this index were queried successfully
and are indicated despite the generation of an error at the output.

FB_MDP_SplitErroriD

The function block FB_MDP_SplitErrorlD [»_20] enables the automatic separation of the variable nErrID into
error group and error code.

Example:
nErriD = 0x ECA8 0745

The Error Group is 0x ECAS, therefore it is an Ads error.
The Error Code is Ox 0745, therefore it is a timeout error.

7.1 E_MDP_ErrGroup

TYPE E MDP ErrGroup : (

eMDP_Err NoError = 16#0000, (* Success - No Error *)

eMDP Err PLC = 16#EC80, (* PLC library internal error codes ¥*)
eMDP_Err_GenErr = 16#ECAG, (* General error codes *)

eMDP_Err API = 16#ECA7, (* API error codes *)

eMDP_Err ADS = 16#ECAS, (* ADS error codes *)

eMDP _Err ModuleSpecific := 16#ECAF (* Module specific error codes ¥*)

);
END TYPE

34 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/devicemanager/index.html
https://infosys.beckhoff.com/content/1033/devicemanager/index.html
https://infosys.beckhoff.com/content/1033/devicemanager/263043211.html

BEGKHOFF Error codes

The enumeration E_MDP_ErrGroup defines constant values for the different error groups in the MDP. These
indicate the type of error.

The values appear in the error codes [P 34], which are output by a PLC MDP function block in the event of an
error.

A general description can be found in the MDP Information Model in the chapter Return Values. Individual
error codes from the error groups 16#ECAG - 16#ECAF are described there.

The error codes from group 16#EC80 are generated by the PLC MDP library and are described in chapter
E MDP ErrCodesPLC [» 35].

7.2 E_MDP_ErrCodesPLC

Timeout possible

The length of the processing time can vary depending on the MDP query. Due to the internal processes,
the processing time can sometimes exceed the Standard ADS Timeout. This can be remedied by increas-
ing the time period tTimeout applied to the input of the function block.

TYPE E MDP_ErrCodesPLC : (
(* list of PLC library internal error codes *)

eMDP_ErrPLC_NoError := 1640000,
eMDP_ErrPLC TimeOut = 16#0001,
eMDP ErrPLC ModuleNotFound := 16#0002,
eMDP_ErrPLC BufferTooSmall = 16#0003,
eMDP_ErrPLC_ElementNotFound := 16#0004

)i
END_TYPE

The enumeration E_MDP_ErrCodesPLC defines constant values for the different errors that can be
generated internally in the library.

These values appear in the error codes [P _34], which are output by a PLC MDP function block in the event of
an error.

eMDP_ErrPLC_TimeOut The error eMDP_ErrPLC _TimeOQut is generated if the time
tTimeout applied to the input of the function block has
expired.

eMDP_ErrPLC_ModuleNotFound A list of active modules exists in the MDP. The function

blocks in the PLC MDP library search this list for the queried
module. If the list does not contain the module, then the
error eMDP_ErrPLC_ModuleNotFound is output. This is the
case when the module/device is not installed on the system
or does not even exist.

eMDP_ErrPLC_BufferTooSmall If a buffer has been specified at the input of the function
block by means of pointers, then it is possible that this is not
large enough for the existing data. In this case the error
eMDP_ErrPLC_BufferTooSmall is output.

eMDP_ErrPLC_ElementNotFound The request for a specific element was not successful. The
element wasn't found. Maybe the specific module or element
does not even exist on the system.

A general description can be found in the Information Model.

TX1200 Version: 1.1 35

https://infosys.beckhoff.com/content/1033/devicemanager/262978315.html
https://infosys.beckhoff.com/content/1033/devicemanager/263043211.html
https://infosys.beckhoff.com/content/1033/devicemanager/262978315.html

Samples BEGKHOFF

8 Samples

The following samples are available for the TwinCAT PLC Library Modular Device Profile.

Sample - Read access to MDP elements

This example offers an introduction to the handling of the function blocks that are available with the
TcPIcMDP library.

This example is dedicated to the goal of determining the state of the Compact Flash card in the Embedded
PC.

This can be found out via a parameter in the MDP Model. The querying of other parameters takes place
analogously to this example.

Hence, this example can also be considered to be a guide to querying any MDP parameter from an MDP
module.

Step-By-Step description of this example [P 37]

Download:
https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941226379/.zip

Sample2 - Write access to MDP elements

This example shows that the write access to MDP elements can be implemented similarly.
In this sample a new IP address is configured. First the DHCP is deactivated and then a new IP address is
set.

Download:
https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941227787/.zip

Sample3 - Query of a module via two ways
This example shows two different ways to get information out of the MDP module CPU.

1. Request of the MDP module CPU with the specific function block.
2. Special request of single MDP elements out of the MDP module CPU with the general function block
FB_MDP_ReadElement.

Request of any possible element out of the MDP modules is possible in the same manner. Adaptation to
another element is very easy! All available elements can be requested with this function block.

@ For Sample3 the PLC library version 1.2.0 or higher is required.

1

@ The CPU temperature is only available since MDP version 1.5.0. Also this parameter is not sup-
1 ported by every hardware.

Download:
https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941229195/.zip

Sample4 - Query of complete modules with the specific function blocks

This example shows the easiest access to several MDP modules. Therefor the specific function blocks are
used.

@ For Sample4 the PLC library version 1.3.0 or higher is recommended.

1

36 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941226379.zip
https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941227787.zip
https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941229195.zip

BECKH“FF Samples
Netld: |
Read MWIC
Head CF Read TwinCAT
Read 2. MIC
Busy Errar Busy Error | Busy Error
Module Header Module Header Module Header
Addr. 0 Addr: 0 Addr: 0
Type: Type: Type:
Marme: Marmne: Marme:

DeviceType: O

DeviceType: O

DeviceType: O

Module Info Module Info Module Info

WAL Drivel)Jsage: O bajorversion: O

IP: Spares: O Minorversion: O

Subnet: UsedSpares: 0 Build: O

OHCP: FALSE TotalEraseCounts: O Metld:
TotalEraseCounts: O RegistrationLevel; 0
(higher 32bit of the B4 bit value) TwinCAT Status: O

Download:

https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941230603/.zip

8.1 Example

This example offers an introduction to the handling of the function blocks that are available with the

TcPIcMDP library.

This example is dedicated to the goal of determining the state of the Compact Flash card in the Embedded

PC.

This can be found out via a parameter in the MDP Model. The querying of other parameters takes place

analogously to this example.

Hence, this example can also be a guide to querying any MDP parameter from an MDP module.

If you wish to go through the example on a PC that does not use a silicon Compact Flash card as memory,
you can query the CPU utilization instead, for example. To do this, execute this example in the same way,
adapting just a few points accordingly. Necessary values for this can be found in the general module

description of the MDP CPU module.

Overview

The following steps are now performed:

1. Installation of the PLC library

2. Program structure

3. Determination of the dynamic Module 1D
4. Querying of the MDP parameter

5. Test

1. Installation of the PLC library
Start TwinCAT PLC Control.

TX1200 Version: 1.1

37

https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941230603.zip
https://infosys.beckhoff.com/content/1033/devicemanager/262984459.html

Samples BEGKHOFF

Create a new PLC project with 'File > New'.

Select your target platform PC and CX (x86) or CX (ARM).
Your first POU is a program called MAIN and in the programming language ST (Structured Text).

Open the Resources tab and the library manager.

Insert the library TcMDP.lib as shown in the picture below via 'Insert > Further library'.

- TwinCAT PLC Control - [Untitled)*

File Edit Project Insett Extras Online Window | Help
|| 8| 2| D] ool BSe|SA] » |56 ||

E’ Resources -.'!.'_.-.*.*._-.M'A'IH (PRG-ST)
-] Global Yariables
B[] library STANDARD.LIB 5.6
Alarm configuration

""" m] Library kM anager
..... m LI:IQ || [
..... FLC E.anlguratlc'n Lok in i O Lib j - 5 i
""" Sampling Trace _
..... T ask configuration TcFloatBx. b *ﬂ TcMiC2_Camming.lib '?rﬂ TcMouseEvents. lib
----- &, Watch and Recipe Man; g TeFloatPC lib YA TMcz Flyingsawlb % TeNC.lib
..... a2 otk space TeloFunctions, lib "ﬁ TcMcZDrive.lib “‘Z& TeMeCamming. lib
TelpUtilitiesBC. Ibé “d TeMClib % TeheCPa. I
¥ TeMath.ib E TeMop %4 TeeDrive.lib
2 TeMczlib TcModbusTepBC. b6 % TeNeFlvingSaw.lib
i i1} |

E]
File name: | TcMDPib Open I
Files of type: | TwinCAT PLE Control Library (. ib) =l Cancel |

Library directon: IE:'\TWIND‘-‘-.T"-.F'LE'\LIEH __T_! I
e — I e s — e e

All PLC blocks of the TwinCAT PLC MDP library are now available to you. All further implicitly required
libraries have been automatically integrated with the TcMDP.lib.

2. Program structure

The state of the Compact Flash card is represented by a parameter in the MDP. To query this individual
parameter, the dynamic Module ID of the module in which the parameter is located must be known.

This dynamic Module ID must be determined using the function block FB_MDP_ScanModules.
The parameters can then be queried with the function block FB_MDP_Read.

Generate a state machine in the MAIN program for this sequence.

38 Version: 1.1 TX1200

BEGKHOFF Samples

.- MAIN (PRG-ST)

FPROGRAM MATIN
VAR

iState . TUIHT
bStartRequest . BOOL
END VAR

0:
TRUE;

0: (*® Idle =)

IF b5tartReque=st THEN
bStartRegquest
iState

END_IF

1: (# Szan for mnodule =)

FALSE:
1:

2 (; Get received dvnanic moduls 1d =)
3 (; Request HDF Elemsnt #*)
4 (; Get received Information =)

END_CASE

3. Determination of the dynamic Module ID

Insert the MDP function block FB_ MDP_ScanModules [P 18] (press F2).

ST Operators 9 Standard Function Blocks | Ok, I

Input assistant

ST Kewwords e : i
Standard Funcions m CATWINCATAWPLCALIEBNT cB aze lib

|Jzer defined Functions m] CATWINCATAWPLCALIEST cSyztem lib

Standard Function Blocks =) ;
Ulser defiried Furtion Blog m CATWINCATYPLESLIBAT cMDP ik

Cancel

Local Vanables Ea TcDP
Global W ariables B3 Generic
Standard Programs | & i i .
Uzer defined Programs FB_MDF_Read [FE)
SystemVariables | ¢ 17 FB_MDP_Readtoduls [FE)
ED”VE@'?” Operators | {1 - FE_MDP_ReadModuleContent [FE]
A FB_MDP_ReadModuleHeader [FB]
----- A

----- FE_MDF_‘wiite [FE]
-2 Specific

----- FE_MDP_SpitErmarD [FB)

B i C:ATwINCAT\PLCALIBNS TANDARD LIB

In state 1, start the function block by setting the input bExecute to TRUE.

The enumeration value eMDP_ModT SiliconDrive [P_30], which allows accesses to information from Compact
Flash cards, is specified at nModule Type. Further information on this module: General information on the
MDP SiliconDrive moduleThere does no need to be any input on iModldx. This way you can call the first
found module of the selected module type automatically (default: iModIdx := 0).

Likewise, there does no need to be any input on tTimeout; instead, you can work with the default
(DEFAULT_ADS_TIMEOUT).

1: (* Scan for module *)
FB_MDP_ScanModules (
bExecute:= TRUE,
nModuleType:= eMDP ModT SiliconDrive,
iModIdx:= ,
tTimeout:= ,

TX1200 Version: 1.1 39

Samples BEGKHOFF

bBusy=> ,
bError=> ,
nErrID=> ,
nDynModuleId=> ,
iModuleTypeCount=> ,
iModuleCount=>

)

In state 2, call this function block cyclically by setting the input bExecute to FALSE. In this state, the function

block is called if it is busy with the processing of the query.
The transition to the next state can be accomplished as soon as the output bBusy goes FALSE.

Your program should now look as follows:

'~ MAIN (PRG-ST)

15tate UINT

: 0:
EStartRequest . BOCL

= TRUE;
f bScanMDF . FBE_HDP ScanModules:
FHTT WAR

(# Scan for module #)
fbScanMDF(
bEzecute:= TRUE,
nModuleType:= eMDP_HModT SiliconlDriwve,
1ModIdx=: =
tTimeout: =

bBusvy=:
bBError=:
nErrID=: |
nDynModuleld=:
iHoduleTvpeCount=1>
1ModuleCount=:
|
iState = 2:
(#® Get received dvnamic module id =)
ftbScanMDP(
bEzecute:= FALSE,
nModuleType: = eMDP _ModT _SiliconDrive.
iModId=: =

tTimeout : =

BBu=vy=:

bError=:

nkErrID=: .
nDynModuleld=:
iModuleTypeCount =1
iHoduleCount=1>

1
IF HOT fbScanMDF.bBusy THEN
IF HOT fhScanMDF. bError THEH

1State = 3:
ELSE

iState = 0;
END_IF

EHD_IF
(# Reque=t HDF Element #)

4. Querying of the MDP parameter

The MDP parameter that you would like to query is in a certain table.
This is in turn located in a certain module, which belongs to an area.
Take these values from the MDP description:

40 Version: 1.1

TX1200

BEGKHOFF Samples

TwinCAT ADS Modufar Device Profile - Configuration Area

SiliconDrive
0x8nn0
Subindex Type Name Value Type
oo WAR Len UMSIGHE
01 WAR Address 0x0017 00nn UMNSIGHE
nz WAR Type SiliconDrive Wis-String
03 VAR Mame SilicanDrive Vis-String
04 WAR Dev Type 0x0017 2710 UMSIGHE
0x8nn1
Sublndex Type Hame Type
oo YAR Len UMSIGHEDS
N WAR Total EraseCounts UMSIGHEDG4
nz YAR Drive Usage (%) UMSIGHEDE
03 VAR Mumber of Spares UMSIGHEDE
04 YAR Spares Used UMSIGHEDE

Excerpt from the general information on the MDP SiliconDrive module.

In order to query an MDP element, declare an instance of the function block FB_ MDP Read [»_11].
Likewise define a variable iDriveUsage, whereby this is an Unsigned16 variable.

fbReadMDP : FB_MDP Read;
iDriveUsage : UINT;

Transfer the determined values for the sought MDP parameter to the function block. To do this, select the

input variable stMDP_DynAddr of the type ST MDP_Addr [P_30] of the function block and assign the values.

3: (* Request MDP Element ¥*)

fbReadMDP.stMDP_ DynAddr.nArea := eMDP_Area ConfigArea;
fbReadMDP.stMDP DynAddr.nModuleId := fbScanMDP.nDynModuleId;
fbReadMDP.stMDP DynAddr.nTablelId s= g

fbReadMDP.stMDP DynAddr.nSubIdx 1= 2;

Further, in state 3, call the function block and start it by setting the input bExecute to TRUE.

You have already explicitly assigned the input stMDP_DynAdadr.

As a data buffer, enter the address and length of your variable iDriveUsage for pDstBuf and cbDstBufLen.
As with the above function block, there does not need to be any input on tTimeout; instead, you can work
with the default (DEFAULT_ADS_TIMEOUT).

The program section should now look as follows:

TX1200 Version: 1.1

41

Samples BEGKHOFF

04313 : (* Hequsest HDF Elemsnt =)

o044 fbFeadMDF . =tHDP_DvnAddr niArea = IHT_TO _BYTE(eMDF_Area Confighrea):
nnas fbReadMDP . =tHDF_DynAddr nModuleId = fbScanMDP . nDynModuleId;
node fbReadHDP . =tHDP_Dyniddr nTableld =1;
noaz fbReadHdDP . =tHDFP Dyvniddr nSubldx = 2;
no4s

no49 fbReadHDF

oasn EEzecute: = TRIE,

oos1 =tHMDF_Dyniddr:= .

Q052 pD=tBuf : = ADE{iDriwvel=zages).

Q053 chD=tBuflen:= SIZEQF{iDrivel=zages).
nn54 tTimeout : =

Q055

D056 bBusy=: .

nns? EError=: .

nosa nErrId=: .

nnsa nCount=:

Q0e0 T

oosl iState = 4:

ORG24 : (* GCet received Information #*)

0oe3 fbReadHDF

Noed EEzecute: = FALSE,

N0es =tHMDF_Dyniddr:= .

Q0GR pD=tBuf : = ADE{iDriwvel=zages).

n0eE7 chD=stBuflen:= SIZECF{1Drivel=zages).
noeg tTimeout ;=

noe9

oozo bBu=sy=: .

ool bError=: .

noza nErrId=: .

o33 nCount=>:

o4 1

nozs IF HOT f{bReadMDF.bBu=y THENH

no7e iState = 0;

ooz EHD IF

Q078 [END_CASE

5. Test

Compile the created PLC program. Make sure that TwinCAT is in the Run mode on the desired system.

Login to the desired run-time system from TwinCAT PLC Control. Start the PLC program.

Upon the initialisation of bStartRequest with TRUE (see 2. Program structure) all conditions of the state
machine are implemented once immediately at the program start.

If executed without error, the queried value is now stored in your variable iDriveUsage. In this example, this
value indicates the percentage of the statistically possible number of writing cycles already performed by the
Compact Flash card and thus provides useful information on the service life of your CF card.

If you have performed this example with the goal of querying the CPU utilization, then the utilization of the
CPU in % will now be in your variable.

To start the complete query again, set your variable bStartRequest to TRUE again (for example by Online
Write).

This example can also serve as a general guide. Each MDP parameter can be queried from an MDP module
in the same way.

Click here to save this example program:
https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941226379/.zip.

Requirements

Development environment Target platform PLC libraries to be linked
TwinCAT v2.11.0 Build >= 1541 PC or CX (x86, ARM) TcMDP.Lib

42 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibmdp/Resources/11941226379.zip

BEGKHOFF Samples

8.2 Reading IP Serial numbers

This sample illustrates access to the serial number of the IPCs and the serial number of the IPC's
mainboard.

» The serial number of the mainboard can be read via a subindex in module Mainboard in the
Configuration Area of the IPC diagnostics. The general function block FB_MDP_ReadElement is used
for this purpose

» The serial number of the IPC can be read via index 0xFOFO in the Device Area of the IPC diagnostics.
The general function block FB_ MDP_ReadlIndex is used for this purpose.

Sample: querying the serial number of a Beckhoff IPC

Enumeration definition

(* central definition of state machine states *)
TYPE E_State
(
Idle,
ReadSnoMainboardInit,
ReadSnoMainboardProcess,
ReadSnoIPCInit,
ReadSnoIPCProcess
)i
END TYPE

Variable declaration

PROGRAM MAIN

VAR
sAmsNetId : STRING := '"'; (* ADS Net ID (local = "'') *)
eState : E_State; (* Enum with index for state machine *)
bStart : BOOL := TRUE; (* flag to trigger restart of statemachine *)
sData : STRING; (* data storage for string variable ¥*)
stMDP_ Addr : ST MDP Addr; (* structure which will include all address parameters *)
(* FB instances *)
fbReadMDPElement : FB_MDP_ReadElement;
fbReadMDPIndex : FB_MDP ReadIndex;
(* results of execution *)
bError : BOOL; (* error flag *)
nErrID : UDINT; (* last error ID *)
sSerialNoMainboard : STRING; (* buffer for serial number of mainboard *)
sSerialNoIPC : STRING; (* buffer for serial number of IPC *)

END_ VAR

Program code

CASE eState OF

Idle:
IF bStart THEN
bStart := FALSE;
eState := ReadSnoMainboardInit; (* initiate first state *
END IF

(* read Serial number Of mainboard R R R I I I R I b E S I R R I E I S b E R h h h E h b dE E b I b h b h b b b b h b E b h b b b
* *)

ReadSnoMainboardInit:

sData := ''; (* clear data buffer *)

sSerialNoMainboard := ''; (* clear buffer for serial number of mainboard *)

StMDP_Addr.nArea := INT_TO BYTE (eMDP_ Area ConfigArea); (* set area address to "Config Area"
*)

stMDP Addr.nTableId := 1; (* table ID in index for "mainboard information" *)

StMDP_Addr.nSubIdx := 2; (* subindex in table ID for "serial number" *)

fbReadMDPElement (

bExecute := TRUE,

TX1200 Version: 1.1 43

Samples BEGKHOFF

eModuleType := eMDP ModT Mainboard,

stMDP_Addr := stMDP_Addr, (* MDP address structure. Dynamic module ID will be adde
d internally. *)

iModIdx := 0, (* Instance of desired module type (default: 0 = first instance) *)

pDstBuf := ADR (sData),

cbDstBuflLen := SIZEOF (sData),

sAmsNetId := sAmsNetId,

)

eState := ReadSnoMainboardProcess;

ReadSnoMainboardProcess:
fbReadMDPElement (bExecute := FALSE) ;

IF NOT fbReadMDPElement.bBusy THEN
IF fbReadMDPElement.bError THEN

bError := TRUE; (* set error flag *)
nErrID := fbReadMDPElement.nErrID; (* store error id (16#ECA60105 = BIOS or HW does
not support this data (here: mainboard data)) *)
eState := Idle;
ELSE (* set parameters for next steps *)
bError := FALSE; (* turn off error flag ¥*)
sSerialNoMainboard := sData; (* store serial number of mainboard in dedicated
variable *)
eState := ReadSnoIPCInit;
END IF

END IF

(* read Serial number Of IPC KKK KA AR AR AR A XK KK *)

ReadSnoIPCInit:
sData := ''; (* clear data buffer *)
sSerialNoIPC := ''; (* clear buffer for serial number of IPC *)
fbReadMDPIndex (
bExecute := TRUE,
nIndex := 16#F9FO0, (* index: read serial number IPC (-
> see docu 'MDP device area') *)
nSubIndex := 0, (* first subdindex (there is only one available for index 16#F9F0
) *)
pDstBuf := ADR(sData), cbDstBuflen := SIZEOF (sData),
sAmsNetId := sAmsNetId,
)i
eState := ReadSnoIPCProcess;

ReadSnoIPCProcess:
fbReadMDPIndex (bExecute := FALSE) ;

IF NOT fbReadMDPIndex.bBusy THEN
IF fbReadMDPIndex.bError THEN

bError := TRUE; (* set error flag *)
nErrID := fbReadMDPIndex.nErrID; (* store error id (16#ECA60105 = BIOS or HW does
not support this data (here: IPC serial number)) *)

eState := Idle;

ELSE (* set parameters for next steps *)
bError := FALSE; (* turn off error flag ¥*)
sSerialNoIPC := sData; (* store serial number of mainboard *)
eState := Idle;

END IF

END IF
END_CASE

Returning of the mainboard serial number instead of the IPC serial number

In older BIOS version (before Q4/2013) the serial number was not stored in the IPC BIOS. In these cases
the return value is the serial number of the IPC mainboard. With older Beckhoff Automation Device Driver
versions, the return value is also the serial number of the IPC mainboard. The serial number of the IPC
mainboard can always be read via the mainboard module.

44 Version: 1.1 TX1200

More Information:
www.beckhoff.com/tx1200

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TX1200
https://www.beckhoff.com
https://www.beckhoff.com/tx1200

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Overview
	3 MDP element access options
	4 Function blocks
	4.1 FB_MDP_Read
	4.2 FB_MDP_ReadIndex
	4.3 FB_MDP_Write
	4.4 FB_MDP_ReadElement
	4.5 FB_MDP_ReadModule
	4.6 FB_MDP_ReadModuleContent
	4.7 FB_MDP_ReadModuleHeader
	4.8 FB_MDP_ScanModules
	4.9 FB_MDP_SplitErrorCode
	4.10 FB_MDP_CPU_Read
	4.11 FB_MDP_Device_Read_DevName
	4.12 FB_MDP_IdentityObj_Read
	4.13 FB_MDP_NIC_Read
	4.14 FB_MDP_NIC_Write_IP
	4.15 FB_MDP_SiliconDrive_Read
	4.16 FB_MDP_SW_Read_MdpVersion
	4.17 FB_MDP_TwinCAT_Read

	5 Functions
	5.1 F_GetVersionTcMDP

	6 Data types
	6.1 E_MDP_AddrArea
	6.2 E_MDP_ModuleType
	6.3 ST_MDP_Addr
	6.4 ST_MDP_ModuleHeader
	6.5 ST_MDP_CPU
	6.6 ST_MDP_IdentityObject
	6.7 ST_MDP_NIC_Properties
	6.8 ST_MDP_SiliconDrive
	6.9 ST_MDP_TwinCAT

	7 Error codes
	7.1 E_MDP_ErrGroup
	7.2 E_MDP_ErrCodesPLC

	8 Samples
	8.1 Example
	8.2 Reading IP Serial numbers

		documentation@beckhoff.com
	2022-11-02T15:06:24+0100
	Beckhoff Automation, Verl
	Documentation Publishing

