BECKHOFF

TX1200

TwinCAT 2 | PLC Library: TcDMX

"_F—F:E PLC Libraries

2022-10-25 | Version: 1.2

BEGKHOFF Table of contents

Table of contents

1

a A~ O DN

L o] =3V o c S 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
1.2 SafEtY INSITUCHIONS ...ttt e e e e e e e e e e eeeaaeeeeesesannsanrnneeaeaeens 6
1.3 Notes on infOrmation SECUNITYcooi i 7
= 1o L= e e 1 U TPt 8
0] 9
Integration into TWINCAT (CX9020)ccoceirrrriimirnnrerinsnrrs s isssssss s ssssssss s sssssss s s s ssss s s sssssses s sssnssssssssanes 10
o oY 1= 13011 4V 14
5.1 Overview fUNCHON DIOCKScoiiiiiiiiiie et e e e e e e e e e e eeeeeaeeeens 14
5.2 FB_DIMXDISCOVEIY .. .iiititieeieeee e ettt et e e e e e e e e e ettt et e e ea e e e e e s e nn e beseeeeeeeaeeeeeeaannnnbnneeeeaaaaeeas 16
5.3 FB_DMXDISCOVEIYS T2utiiieiiiiiie e e e et ee ettt e e e e e e e e ettt e e e e e e e e s sa st aeeeeeaaeeeaesannssssnnseeeeaaaeens 17
54 FB_DMXSendRDMCOMMEANGccoiiiiiiiiiiiieiie e et e e e e e e e e e e et e e e e e e e e e e e e e annnnneeneeeeeeaaeens 19
55 FB_ELB851COMMUNICALIONooiiiiiiiiiteiee e e e e e e e e e e e e reeaaaae s 20
5.6 FB_ELG851COMMUNICAtIONEXcciiiiiiiiiiiiiiiiii ettt 22
5.7 FB_DMXGEIAENtifyDEVICEociiiiiiiiiiiiiiiii ettt 24
5.8 FB_DMXSEtAEN ifYDEVICE.ccciiiiiiiiie ettt e e e e e e e e aaaaaas 26
5.9 FB_DMXSERESEIDEVICEueieiiieiiiieie ettt as 27
5,10 FB_DMXDISCMULE.....cciutiiiieeiiieiee ettt e ettt e et e e e e ettt e e e e sttt e e e e ansas e e e e s ensseeeesassseeeesanssseeeeaannneneas 28
511 FB_DMXDIiSCUNIQUEBIANCNocciiiiii ettt e e e e e e e e e e e reeaaaaeeas 29
512 FB_DMXDISCUNMULEoeiiiiiiiiiii ittt ettt ettt e e ettt e e e e ettt e e e e s ease e e e s asaseeaesanssseeeeannsneeens 30
513 FB_DMXGEILAMPHOULSueeiiiiiiiieeeeeecee ettt e ettt e e e e e e e e e e et reeaaeaeeas 32
5.14 FB_DMXGEetLampPORNMOUEcoiiiiiiiiiiiiiiiiie ettt ettt e ettt e e e s e e e s anne e e e e e annneeeas 33
515 FB_DMXSEtLAmMPHOUIS ..o ettt e nnneeneeeeeaeaaans 34
5.16 FB_DMXSetLampPONMOUEcooiiiiiiiiieeiiiiiie ettt e ettt e e e st e e e s s e e e e s nnneteeeeannnneeeas 35
517 FB_DMXGEIDEVICEINTOeiiiiiiiiii ettt e e e e e nnneeees 36
518 FB_DMXGEIDEVICELADELccoooiiiieeee e e e e e e e e 37
5.19 FB_DMXGetDeviceModelDESCIPIIONuuuviiiiiiiee ittt e e e e e e e e reeaaaaee s 38
5.20 FB_DMXGetManufacturerLabelueeiiiiiiiie et 39
5.21 FB_DMXGetProductDetailldList..............uuiiiiiiiiiie i 40
5.22 FB_DMXGetSoftwareVersionLabel...........c.ueiiiiiiiiiieiie e 42
5.23 FB_DMXSEtDEVICELADEI ... it e e e e e aaaeeas 43
5.24 FB_DMXCIEArSTAtUSIAeuveiiiiiiiiii e e e e e e e e e e e e e e e e 44
5.25 FB_DMXGetStatusIdDeSCrPLONeiiiiiiiieii ettt e e ee e e e annneeens 45
5.26 FB_DMXGEtStatUSIMESSAGEScceiiiiiiiiiiiiieeie ettt e e e e e e e e et e e e e e e e e e e e e e e neeeeaaaaeeas 46
5.27 FB_DMXGetParameterDeSCIPLiONuuuiiiiiiieieeeeee ettt e e e e e e e e e e e eeeaaaaeeas 47
5.28 FB_DMXGetSupportedParameEters.........oocuueiiiiiiiiiee ittt 48
5.29 FB_DMXGetSensorDEfiNItiONoooiuiiiiiiiiiiee e 49
5.30 FB_DMXGEISENSOIVAIUEcooiiiiiieiiiicee ettt e e e e e e e e e e e e e eaee e e e e snnasbaaaeaaeaaaeens 50
5.31 FB_DMXGetDMX512PersonalityDesCriptioncooieiiiiiiiiiieee et 52
5.32 FB_DMXGEtDMX512STartAArESS .. .eeiieiiiiiiiee ittt ettt e et e st e e e s e e e s s e e e e annseeens 53
5.33 FB_DMXGetSIOtDESCIIPIIONeeiiiiiiiiiite ittt e et e e s e e e e s ee e e e s nneeeens 54
5.34 FB_DMXGELSIOtINTO.....itiiiieiiiiiiee ettt e e e et e e e s e e e e e e e e a e e e e e nnnneeeas 55
5.35 FB_DMXSetDMX512StartAAArESS . ..eeiieiiiiiiiee ittt ettt e e e st e e e s s e e e e e nneeeens 56

TX1200 Version: 1.2 3

Table of contents BEGKHOFF

LoTRC L T B = 1 e= T 4 =T TP 57
5.36.1 E_DMXCOMMANACIBSScciiutiiiieiiiiiiee ettt e e e e e e e 57
5.36.2 E_DIMXDAtATYPE . eeeieeieiiiiiitee ettt ettt e e e e e e et e e e e e e e e e eeeaaaaae s 57
5.36.3 E_DMXLamMPONMOGEcuuiiiiiiiiiiiei ettt e e e e e e e e e e e e e s reeaaaae s 58
5.36.4 E_DMXParameterDescriptionCommandClasscoooviiiiiiiiiiiiiiieeeeee e 58
5.36.5 E_DMXPArameterlduuuuuuiiiiiiiiiii it e e e e e e e e e e e e e e 58
5.36.6 E_DMXProducCtDetailccoiuiiiiiiiiiiie e 59
5.36.7 E_DMXRESEIDEVICETYPE ..uuuueeiiiiiiiiieeeee ettt e e e e et e e e e e e e e e e e e e eeeeeeeaaaaeens 61
5.36.8 E_DIMXSENSOITYPE .. oottt ettt e e e e e e et e e e e e e e e e e e e e ba e e e aaaaaeeas 61
5.36.9 E_DMXSENSOIUNIL ...ttt 61
5.36.10 E_DMXSENSOrUNIPIEfiX......uuuueeieiie e a e, 62
5.36.11 E_DMXSIOtDEfiNItION.eiiiiiiiiiiie et 63
5.36.12 E_DIMIXSIOtTY PO ..eiiieiiiiiiiee e ettt e ettt e e ettt e e e ettt e e e et e e e e e eabe e e e e enb e e e e e snsaeeeeeeassseeeeeennees 63
5.36.13 E_DIMX S atUS TYPE. .. iiiiiie ettt ettt ettt ettt e e e et e e e e e st e e e e e e bt e e e e e nnbeeaeeeennees 64
5.36.14 ST _DMX5T12PErSONalitycciuueiieeiiiiiie ettt e 64
5.36.15 ST_DMX512PersonalityDesCriptioncuuueiiiiiiieeee e e e e 64
5.36.16 ST_DMXCommMandBUTTELeeeiiiiiiiiiiiiie e 64
5.36.17 ST _DMXDEVICEINTO......uuiiii ittt e e e e e 65
5.36.18 ST _DIMXMAEC........uiiiiiiiiiiie et ett e e ettt e e e e sttt e e e e s st e e e e s saaeeeeeaasbaeaeeessseeeeeesnseeeeeaennees 65
5.36.19 ST_DMXMESSAGEQUEUEoueiieiiiiiiie ettt e ettt e ettt e e et e e e et e e e e e anbee e e e e e nbeeeeeennnees 65
5.36.20 ST_DMXMessageQUEUEITEMouiiiiiiiiiiii e 65
5.36.21 ST_DMXParameterDeSCriptioN...........cooiiiiiiiiiiiiiieee et 66
5.36.22 ST _DMXProduCtCAtEgOrY.......uuueiiiiiieeeeieiiiciiiiie ettt et e e e e e e e e et er e e e e e e e e e s e s s areeeeaaaaaeeas 66
5.36.23 ST_DMXRDMPIOtOCOIVEISIONceiiiieieeeiiiiieee et e e e e e e e e eeeaaeaee s 66
5.36.24 ST _DMXRESPONSETADIEuvviiiiiiiiiieii i eaaa e 66
5.36.25 ST_DMXReSponseTablelemc.cooiiiiiiiiiii e 67
5.36.26 ST_DMXSeNSOrDEfINItIONeeiiiiiiiiiiiii e e e e 67
5.36.27 ST _DMXSENSOIVAIUEcuuiiiiiiiiiiiie et e et e e e e e e e e e e eeaaaaae s 67
5.36.28 ST _DMXSIOINTO ...eiiiiiiiiiie et e e e e e e ae e e e e ennees 67
5.36.29 ST _DMXSHAtUSIMESSAGE uuviiieeiiiiiie ettt e ettt e e e e et ee e e e et e e e e e nbeeaeeeennees 68
5.36.30 ST _ELBBS5MINDALA. ... eeiieeiiiiiie et 68
5.36.31 ST _ELBBS5TINDAIAEXeeieeiiiiiiie ittt ettt e et e e e e et e e e e e ntaea e e e ennees 68
5.36.32 ST _ELBB5TOUIDALA.eiiieiiiiiiee ettt e e e e e 69

LR A Yy (o oo Yo [RSOSSN 69

LAY o o 1= Lo 71

6.1 Transmission of cyclic process data as DMX master (EL6851)..........coviiiiiiiiiiiiiiiiieiee e, 71

6.2 Receipt of 64 bytes data to two DMX slaves (EL6851-0010) in each caseccccoevveiiiiiiinnnenn. 75

6.3 Configuration of DMX slaves via Remote Device Management (RDM)............ccccoeeciviiveieeeeneeennn. 78

6.4 DMX-Master wWith BCOTIT-0100ooiiiiiiiiiie ettt e e e e e e e e st e e e s ennereeesensreeans 79

RIS (W o] oY) g aF= g o IS Y=Y oV o7 TSR 80

Version: 1.2 TX1200

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

——
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TX1200 Version: 1.2 5

Foreword BECKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

Version: 1.2 TX1200

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TX1200 Version: 1.2 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Target groups BEGKHOFF

2 Target groups

The user of this library requires basic knowledge of the following.
« TwinCAT PLC-Control
TwinCAT System Manager

* PCs and networks

» Structure and properties of the Beckhoff Embedded PC and its Bus Terminal system

» Technology of DMX devices

» Relevant safety regulations for building technical equipment
This software library is intended for building automation system partners of Beckhoff Automation GmbH. The
system partners operate in the field of building automation and are concerned with the installation,

commissioning, expansion, maintenance and service of measurement, control and regulating systems for the
technical equipment of buildings.

8 Version: 1.2 TX1200

BECKHOFF DMX

3 DMX

DMX is the standard protocol for controlling professional stage and effect lighting equipment, which is used,
for example, for the dynamic lighting of showrooms and salesrooms as well as for exclusive plays of light
and color in prestigious buildings, such as hotels and event centers. Color mixing and brightness values are
transmitted to DMX devices that are static light sources, whilst moving sources of light additionally receive
spatial coordinates. EtherCATA¢4,~4,¢s high data transfer rate enables light settings to be updated at a
higher rate, with the result that changes of light and color are perceived by the eye as being more
harmonious. The EL6851 [»_75] can be used to control DMX devices with three axes, such as scanners,
moving heads or spotlights; the implementation of the RDM protocol (Remote Device Management) for
DMX-internal diagnosis and parameterization is possible with TwinCAT function blocks.

The DMX master transmits new settings to the slaves cyclically at 250 kBaud to generate dynamic lighting
changes and plays of color. In the DMX protocol, a maximum of 32 slaves are allowed in one strand without
repeaters. The 512 byte long frame in the DMX protocol is termed a “Universe”. 512 channels are available
in it, each of which represents a device setting with 8-bit resolution, i.e. in 256 steps, e.g. for dimming, color,
focus etc. In the case of moving light sources, additional settings such as inclination, swiveling and speed
(with 8-bit or 16-bit resolution) occupy additional channels, so that the 512 channels are only indirectly
sufficient for 32 devices. Furthermore, if the universe is fully utilized a frame will require 22 ms for internal
DMX circulation, which means a refresh rate of 44 Hz. Light changes at this frequency are perceived to be
unharmonious; the transitions only appear to be harmonious from a frequency of >200 Hz. The circulation
period can be shortened by reducing the amount of user data; the optimum has proven to be a utilization of
64 bytes (frequency >300 Hz), with which 64 channels are available per universe.

EL6851

The integration of several universes in a controller becomes simple with the EL6851: EtherCAT can transfer
large amounts of data quickly, the EtherCAT protocol is retained until inside the terminal and the terminal
supports various mapping sizes (64 to 512 bytes). Hence, if several master terminals are connected, each as
its own universe, the time offset in transmitting from the controller to the master can be reduced significantly.

TX1200 Version: 1.2 9

Integration into TwinCAT (CX9020) BEGKHOFF

A Integration into TwinCAT (CX9020)

This example explains how to write a simple PLC program for DMX in TwinCAT and how to link it with the
hardware. Search for DMX devices.

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977737739/.zip https://
infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977737739/.zip

Hardware

Setting up the components

The following hardware is required:
+ 1x Embedded PC CX9020
* 1x DMX master terminal EL6851 [75]
* 1x end cap EL9111

Set up the hardware and the DMX components as described in the respective documents.
Software

Creation of the PLC program
Create a new PLC project for PC-based systems (ARM) and add the TecDMX.Iib library.

Next, generate the following global variables:

VAR GLOBAL
StEL6851InData AT %I* : ST EL6851InDataEx;
stEL68510utData AT %Q* : ST EL68510OutData;
stCommandBuffer : ST_DMXCommandBuffer;
END VAR

stEL6851InData : Input variable for the DMX terminal.
stEL68510utData : Output variable for the DMX terminal.

stCommandBuffer : required for communication with DMX.

Then create a program (CFC) for background communication with DMX. The FB EL6851CommunicationEx()

[»_22] block is called in this program. Make sure to link the communication block with stEL6857InData,
StEL68510utData and stCommandBuffer.

feELG851CommunicationEx

FB_EL6851CommunicationEx
—{wSourceManufacturerld bError— bErrar
—{dwSourceDeviceld udiErrarld— udiErrarld
FALSE bEnableSendingData bCycleModer—
bSetCycleMode byBufferDemandMeter—
—{bSendDefaultData byBufferMaximumDemandMeter—
| uiDatalength —uiDatalength uiBufferOverflowCounter—
—{dwOptions t}LinelsElle'_-,r
| stEL6851InData |——{stEL6B51InData = t stEL6851InData
stELEB510utData —stELEBS10utData = & stELBBS10utData
stCommandBuffer —stCommandBuffer & t stCommandBuffer
[arProcessData |—arProcessData & t arrfProcessData

Create a MAIN program (CFC) in which the block FB_DMXDiscovery() [»_16] is called up. Connect the input
stCommandBuffer of the block with the global variable stCommandBuffer.

10 Version: 1.2 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977737739.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977737739.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977737739.zip

BEGKHOFF Integration into TwinCAT (CX9020)

fbDMXDiscovery
FB DMXDiscovery
bStart —bStart bBusyl— bBusy
dwOptions —dwOptions bError— bError
| stCommandBuffer —stCommandBuffer & udiErrorld— udiErrorld
uliLowerBoundSearchUID—
uliUpperBoundSearchUID—
arrDMXDevicelnfoList—{ arDMXDevicelnfolist]
uiMNextDMX5125tartAddress—

iFoundedDevices—] iFoundedDevices |
t stCommandBuffer

Under Task Configuration create a new task for the background communication. Add the communication
program to this task. Assign a higher priority (lower number) and shorter interval time to this task than for the
standard task. More precise information on this can be found in the description of the

FB EL6851CommunicationEx() [P 22] function block.

& @8 Task configuration al |
: askattributes
SR Standard
""" MAIM): | Mame: |BackgroundEDmmunicatiDn
B (& BackgroundCommunication |
e Communication(): Prionitw[0..3]: |D
Type
* coclic
~
~
~
Properties
Interval [e.g. tE200ms); |T3¢2|""$ |'T'SJ

Load the project to the CX as the boot project and save it.

Configuration in the System Manager

Create a new TwinCAT System Manager project, select the CX as the target system, and search for the
associated hardware.

Make the DMX inputs 1 to 64 available by opening the Process data tab of the EL6851 and selecting the
option 0x7A071 under Inputs.

TX1200 Version: 1.2 11

Integration into TwinCAT (CX9020)

BECKHOFF

-l SYSTEM - Configuration

! PLC - Configuration

ﬁ Carn - Configuration

=i 1/0 - Configuration

- B8 /O Devices

5% Devicel (EtherCAT)

-.=f= Device1-Image

-.=¥= Device 1-Image-Info

- %1 Inputs

Eﬂ""l Outputs

-8 InfoData

=18 Term 1 (EK1200)
w8 Term 2 (ELG8S1)

-85 Mappings

| General | EtherCAT | Process Data | g

Sync Manager:

S5M Size Type

0 128 MbscOut
1 128 Mbzein

Flags

2 ha Ciutputs
3 70 [nputs

4 m |
PDO Assignment ((1C13):

| (1 ADD

(] Q< 1ADT

Add the PLC program created above under PLC configuration. The two tasks are listed when the PLC
project is expanded in the tree view. Expand the tasks — the global input and output variables
StEL6851InData and stEL68510utData should be allocated to the background communication task since the
variables are to be processed faster. Move them via drag & drop.

12

Version: 1.2

TX1200

BECKHOFF

Integration into TwinCAT (CX9020)

Gl _|SVS

=48 PLC - Configuration

..... + DX

EI - Back

-1 1EE DMX_Sample_CX9020

_Sample_CX0020-Image

El - Standard

greundCommunication

- g Inputs
=%l stEL6851InData
¢l bTransmithccepted

-#p] bReceiveToggle

@l bCyclicTxDDisabled

¢l bDefaultDataSent

¢l bFrameSentToggle

—dpl BTxPDOToggle
¢l wChannelLength
gl byStartCode

..... &7 byDummyl
-yl arrData

gl bWeState

-l blnputToggle
-ipl uiState

H

41 stAdsAddr

- ‘l Outputs
- stELA&510utData

-l bTransmitRequest
Pl bDisableCyclicTxD
-] bSendDefaultData
..... &/ byDummyl

-l wChannelLlength
-—gpl byStartCode

..... & byDummy2

H

I':'Il /0 - Config

-l arrData

ﬁ Carn - Configuration

uration

- B8 VO Devices
-8 Mappings

Now link the global variables of the PLC program with the Bus Terminal inputs and outputs, create the
allocations, and activate the configuration. Then start the device in run mode.
Your CX is now ready for use.

Start the search of DMX devices by switching the variable bStart to TRUE. The number of found devices is
stored in variable iFoundedDevices and additional information in arrDMXDevicelnfoList.

Also see about this
ST _EL6851InDataEx [68]
ST_EL68510utData [69]
ST _DMXCommandBuffer [64]

TX1200

Version: 1.2

13

Programming BEGKHOFF

5 Programming

@® Installation

1 Beginning with TwinCAT 2.11 Build 2229 (R3 and x64 Engineering), the library "TcDMX.lib" will be
installed automatically.

® Name of the library
1 This library replaces the "TcEL6851.lib".

Hardware documentation in Beckhoff Information System: EL6851 - DMX Master/Slave Terminal [P _75]

Further libraries are required

For PC systems (x86) and Embedded-PCs (CXxxxx):
« Standard.lib
» TcBase.lib
* TcSystem.lib
+ TcUftilities.lib
For Bus Terminal Controller of BCxx00, BCxx50, BCxx20, BC9191 and BXxx00 series:

¢ not available

® Memory usage

By linking the library PLC program memory is already consumed. Depending on the application pro-
gram the remaining memory cannot be sufficient.

The use of the TwinCAT libraries is recommended both for the RDM protocol and also for the transmission of
the cyclic process data to the DMX slaves. Examples of both variants can be found in the appendix.

Description of the Library

Only one block is required for basic communication. The FB_EL6851CommunicationEx takes over
communication with the EL6851. This block can be used to switch between the RDM and the DMX protocols.
If the DMX protocol is in use, then no RDM communication can take place and vice versa.

5.1 Overview function blocks

High Level

Name Description

FB _DMXDiscovery [» 16] Searches for up to 50 DMX devices and optionally sets the start
address automatically.

FB_DMXDiscovery512 [» 17] Searches for up to 512 DMX devices and optionally sets the start
address automatically.

Low Level

Base

Name Description

FB_ DMXSendRDMCommand [P 19] Sends a single RDM-command defined by the command-number.
FB EL6851Communication [P 20] Access to the EL6851 [P 75].

FB EL6851CommunicationEx [22] Access to the EL6851 [P 75].

14 Version: 1.2 TX1200

BECKHOFF

Programming

Device Control Parameter Messages

Name

Description

FB_DMXGetldentifyDevice [P 24]

Queries whether or not the identification of a DMX device is active.

FB _DMXSetldentifyDevice [P 26]

Activates or deactivates the identification of a DMX device.

FB DMXSetResetDevice [P 27]

Activates a reset in a DMX device.

Discovery Messages

Name

Description

FB DMXDiscMute [P 28]

Sets the mute flag of a DMX device.

FB DMXDiscUnigueBranch [» 29]

Queries whether DMX devices are located within a certain address
range.

FB_DMXDiscUnMute [P 30]

Resets the mute flag of a DMX device.

Power/Lamp Setting Parameter Messages

Name

Description

FB DMXGetlLampHours [»_32]

Reads the number of hours in which the lamp was on.

FB DMXGetlampOnMode [P 33]

Reads the parameter that defines the switch-on characteristics of
the DMX device

FB DMXSetLampHours [P 34]

Sets the operating hours counter for the lamp.

FB DMXSetLampOnMode [P _35]

Defines the switch-on characteristics of the DMX device.

Product Information Messages

Name

Description

FB DMXGetDevicelnfo [» 36]

Queries all relevant information from a DMX device.

FB DMXGetDevicelabel [» 37]

Reads a text from the DMX device, which contains a more
detailed description of the device.

FB DMXGetDeviceModelDescription [» 38]

Queries the description of the device type.

FB DMXGetManufacturerLabel [» 39]

Queries the description of the DMX device manufacturer.

FB DMXGetProductDetailldList [» 40]

Queries the categories to which the DMX device belongs.

FB DMXGetSoftwareVersionLabel [» 42]

Queries the description of the software version of the DMX
device.

FB_DMXSetDevicelLabel [» 43]

Writes a description text into the DMX device.

Queued and Status Messages

Name

Description

FB_DMXClearStatusld [» 44]

Clears the message buffer in the DMX device.

FB DMXGetStatusldDescription [» 45]

Reads the text of a certain status ID from the DMX device.

FB DMXGetStatusMessages [P 46]

Collects status or error information from a DMX device.

RDM Information Messages

Name

Description

FB DMXGetParameterDescription [P 47]

Retrieves the definition of manufacturer-specific PIDs.

FB DMXGetSupportedParameters [48]

Queries all supported parameters from a DMX device.

TX1200

Version: 1.2 15

BECKHOFF

Programming

Sensor Parameter Messages

Name
FB_DMXGetSensorDefinition [» 49]
FB DMXGetSensorValue [P 50]

Description
Queries the definition of a specific sensor.

Queries the current value of a sensor.

Setup Messages

Name Description

FB_ DMXGetDMX512PersonalityDescription [» 52]

Reads further Personality information from the DMX
device.

FB DMXGetDMX512StartAddress [P 53]

Queries the DMX512 start address.

FB_ DMXGetSlotDescription [» 54]

Queries the text description for slot offsets.

FB DMXGetSlotInfo [»_55]

Queries basic information about the functionality of
the DMX512 slots from a DMX device.

FB DMXSetDMX512StartAddress [P 56]

Sets the DMX512 start address.

5.2 FB_DMXDiscovery

FB DMXDiscovery
—bStart bBusyl—
—dwOptions bError—
—stCommandBuffer = udiErrorldf—

uliLowerBoundSearchUID—
uliUpperBoundSearchUIDH—
arrDMXDevicelnfolist—
uiMextDMX5125tartAddress—
iFoundedDevices—

t stCommandBuffer

This function block searches for up to 50 DMX devices and optionally sets the start address automatically.
The most important information for the devices found is displayed in a structure.

VAR_INPUT
bStart : BOOL;
dwOptions : DWORD;

bStart: The block is activated by a positive edge at this input.

dwOptions: Options (see table). The individual constants must be linked with OR operators.

Constant

Description

DMX_OPTION_COMPLETE_NEW_DISCOVERY

All DMX devices are taken into account.

DMX_OPTION_SET_START_ADDRESS

The start address is set for all DMX devices found
consecutively, starting from 1.

DMX_OPTION_OPTICAL_FEEDBACK

After a DMX device has been found, the
IDENTIFY_DEVICE function is called for two
seconds.

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

uliLowerBoundSearchUID
uliUpperBoundSearchUID

: T ULARGE INTEGER;
: T ULARGE INTEGER;

16 Version: 1.2

TX1200

BECKHOFF Programming

arrDMXDeviceInfolist : ARRAY[1..50] OF ST DMXDeviceInfo;
uiNextDMX512StartAddress : UINT;
iFoundedDevices : INT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

uliLowerBoundSearchUID: During the search, the lower search address is sent to this output.
uliUpperBoundSearchUID: During the search, the upper search address is sent to this output.
arrDMXDevicelnfoList: Array with the most important information of the DMX devices found.

uiNextDMX512StartAddress: If the DMX_OPTION_SET_START_ADDRESS option is activated, then the
start address that will be assigned to the next DMX device will be displayed at this output.

iFoundedDevices: During the search, the current number of devices found will be sent to this output.
VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Also see about this
ST_DMXDevicelnfo [65]
ST_DMXCommandBuffer [64]

5.3 FB_DMXDiscovery512
FB_DM¥Discovery512

—bStart bBusy

—dwOptions bError—

—stCommandBuffer = udiErrorldf—

uliLowerBoundSearchUID—
ulilpperBoundSearchUIDH—
arrDMXDevicelnfolist—
uiMextOMX5125tartAddress|—
iFoundedDevices—

t stCommandBuffer

This function block searches for up to 512 DMX devices and optionally sets the start address automatically.
The most important information for the devices found is displayed in a structure.

VAR_INPUT
bStart : BOOL;
dwOptions : DWORD;

bStart: The block is activated by a positive edge at this input.

dwOptions: Options (see table). The individual constants must be linked with OR operators.

Constant Description
DMX_OPTION_COMPLETE_NEW_DISCOVERY All DMX devices are taken into account.

TX1200 Version: 1.2 17

Programming BEGKHOFF

Constant Description

DMX _OPTION_SET_START_ADDRESS The start address is set for all DMX devices found
consecutively, starting from 1.

DMX_OPTION_OPTICAL_FEEDBACK After a DMX device has been found, the
IDENTIFY_DEVICE function is called for two
seconds.

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;

ulilLowerBoundSearchUID : T_ULARGE_ INTEGER;

uliUpperBoundSearchUID : T_ULARGE_INTEGER;

arrDMXDeviceInfolist : ARRAY[1..512] OF ST DMXDeviceInfo;

uiNextDMX512StartAddress : UINT;

iFoundedDevices : INT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

uliLowerBoundSearchUID: During the search, the lower search address is sent to this output.
uliUpperBoundSearchUID: During the search, the upper search address is sent to this output.
arrDMXDevicelnfoList: Array with the most important information of the DMX devices found.

uiNextDMX512StartAddress: If the DMX_OPTION_SET_START_ADDRESS option is activated, then the
start address that will be assigned to the next DMX device will be displayed at this output.

iFoundedDevices: During the search, the current number of devices found will be sent to this output.
VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.1.0
Build 2240

Also see about this
ST_DMXDevicelnfo [65]
ST_DMXCommandBuffer [64]

18 Version: 1.2 TX1200

BECKHOFF Programming

54 FB_DMXSendRDMCommand

FB_DMXSendRDMCommand
—{bStart bBusy—
—wDestinationManufacturerld bErrar—
—dwDestinationDeviceld udiErrarldi—
—byPortld byResponseMessageCount—
—wSubDevice byResponseDatalengthi—
—{eCommandClass arrfResponseDatal—
—eParameterld t stCommandBuffer
—{byParameterDatal ength
—{arrParameterData
—{dwOptions
—stCommandBuffer =

This function-block sends a single RDM-command defined by the command-number and, if applicable, by a
parameter-value.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;

byPortId : BYTE;

wSubDevice : WORD;
eCommandClass : E_DMXCommandClass;
eParameterId : E DMXParameterId;
byParameterDatalength : BYTE;
arrParameterData : ARRAY[0..255] OF BYTE;
dwOptions : DWORD := 0;

bStart: The block is activated by a rising edge at this input.
wDestinationManufacturerld: Unique manufacturer Id of the DMX device.
dwDestinationDeviceld: Unique device Id of the DMX device.

byPortld: The port Id field shall be set in the range of 1-255 identifying the controller port being used, such
that the combination of source UID and port Id will uniquely identify the controller and port where the
message originated.

wSubDevice: Sub-devices should be used in devices containing a repetitive number of similar modules,
such as a dimmer rack. The Sub-Device field allows parameter messages to be addressed to a specific
module within the device to set or get properties of that module.

eCommandClass: The command class (CC) specifies the action of the message.
eParameterld: The parameter Id is a 16-bit number that identifies a specific type of parameter data.

byParameterDatalLength: The parameter data length (PDL) is the number of slots included in the parameter
data area that it precedes. When this field is set to 0x00 it indicates that there is no parameter data following.

arrParameterData: The parameter data is of variable length. The content format is PID dependent.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;
byResponseMessageCount . BYTE;
byResponseDatalength : BYTE;

arrResponseData : ARRAY[0..255] OF BYTE;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

TX1200 Version: 1.2 19

Programming BEGKHOFF

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

byResponseMessageCount: The message count is used by the DMX slave to indicate that additional
messages are available. Messages can be read by the RDM command Get: QUEUED MESSAGE.

byResponseDatalength: Contains the number of bytes returned by the RDM command.

arrResponseData: This output contains the response data of the RDM command. The length is variable and
the content format is RDM command dependent.

VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
E_DMXCommandClass [57]
E_DMXParameterld [58]

ST _DMXCommandBuffer [64]

5.5 FB_EL6851Communication
FB_ELG851Communication
—wSourcelManufacturerld bError—
—dwSourceDeviceld udiErrorldi—
—{bEnableSendingData bCycleModer—
—{bSetCycleMode byBufferDemandMeter—
—{bSendDefaultData byBufferMaximumDemandMeter—
—{uiDatalLength uiBufferOverflowCounter—
—dwOptions bLinelsBusy—
—stELBBA1InData & & stELBBSInData
—stELBBA10utData = & stELBBS10utData
—stCommandBuffer & t stCommandBuffer
—arrProcessData & t arrProcessData

@® This function block is obsolete. Instead, use FB_EL6851CommunicationEx() [» 22].

1

The EL6851 [P _75] should always be accessed via this block. This applies both to the transmission of the
cyclic DMX data and to the transmission of the RDM commands.

If data is to be transmitted cyclically to the DMX devices, then set the bEnableSendingData input to TRUE,
the bSetCycleMode input to TRUE, the bSendDefaultData input to FALSE and the uiDatalength input to the
corresponding length (in bytes). The data to be transmitted can be specified via the arrProcessData variable.

20 Version: 1.2 TX1200

BEGKHOFF Programming

If RDM commands are to be transmitted, then set the bEnableSendingData input to FALSE and the
bSetCycleMode input to FALSE. The blocks for the DMX/RDM commands do not directly access the EL6851
process image, but store the individual DMX/RDM commands in a buffer instead. The
FB_EL6851Communication() block reads the commands sequentially from this buffer and forwards them to
the EL6851. This prevents multiple blocks accessing the EL6851 process image at the same time. The
buffer in which the DMX/RDM commands are stored is contained in a variable of type
ST_DMXCommandBuffer. There is one instance of the FB_EL6851Communication() block and one variable
of type ST_DMXCommandBuffer per EL6851.

The extent to which the buffer is utilized can be determined from the outputs of the block. If the buffer is
regularly overflowing, you should analyse the level of utilisation of the PLC task with the aid of the TwinCAT
System Manager.

The FB_EL6851Communication() block can be called in a separate, faster task if necessary. In this case, the
faster task in which the FB_EL6851Communication() block is called should have a higher priority than the
TASK in which the block for the RDM commands is called.

You will find examples of both modes of operation in the appendix.

® Remarks concerning the IDs of DMX devices

1 Each DMX device has a unique, fixed, 48-bit long address, also called Unique ID or UID for short.
This address is composed of the manufacturer ID (16-bit) and the device ID (32-bit). The manufac-
turer ID identifies the manufacturer of the device and is issued by the ESTA (Entertainment Services
and Technology Association). A list of all known manufacturer IDs can be found at http://
www.esta.org/tsp/working groups/CP/mfctrlDs.php. The device ID is freely specified by the manu-
facturer. This is intended to ensure that each UID exists only once worldwide. The UID cannot nor-
mally be changed. The ESTA has given Beckhoff Automation the manufacturer ID 0x4241. Since
the DMX master also has a UID, this should be specified in accordance with the ESTA (wSource-
Manufacturerld input).

VAR_INPUT

wSourceManufacturerId : WORD := 16#42 41;
dwSourceDeviceld : DWORD := 16#12 13 14 15;
bEnableSendingData : BOOL := TRUE;
bSetCycleMode : BOOL := TRUE;
bSendDefaultData : BOOL;

uiDatalLength : UINT;

dwOptions : DWORD;

wSourceManufacturerld: Unique manufacturer ID of the DMX device. Should be 0x4241 according to the
ESTA.

dwSourceDeviceld: Unique device ID of the DMX device. Can be freely assigned.

bEnableSendingData: If the terminal is in cycle mode (bCycleMode output = TRUE), then transmission can
be activated (TRUE) or blocked (FALSE) with this block.

bSetCycleMode: Activates the cycle mode. The cyclic process data can be transmitted to the DMX devices
in cycle mode. Cycle mode must be deactivated to transmit the RDM/DMX commands.

bSendDefaultData: The standard values will be transmitted in cycle mode if this input is active (TRUE).

uiDataLength: This input is only relevant if cycle mode is active. It indicates the length of the DMX512 frame
in bytes.

dwOptions: Options (currently not used).

VAR_OUTPUT

bError : BOOL;
udiErrorId : UDINT;
bCycleMode : BOOL;
byBufferDemandMeter : BYTE;
byBufferMaximumDemandMeter : BYTE;
uiBufferOverflowCounter : UINT;
bLineIsBusy : BOOL;

TX1200 Version: 1.2 21

http://www.esta.org
http://www.esta.org
http://www.esta.org/tsp/working_groups/CP/mfctrIDs.php
http://www.esta.org/tsp/working_groups/CP/mfctrIDs.php

Programming BEGKHOFF

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

bCycleMode: Is TRUE if cycle mode is active (see also bSetCycleMode input).
byBufferDemandMeter: Buffer utilization (0 - 100%).

byBufferMaximumDemandMeter: Previous maximum utilization of the respective buffer (0 A¢a,~a€ce
100%).

uiBufferOverflowCounter: Number of buffer overflows to date.

bLinelsBusy: This output is set as long as the FB_EL6851Communication() block is processing DMX/RDM
commands.

VAR_IN_OUT

stEL6851InData : ST _EL6851InData;
stEL68510utData : ST EL68510utData;
stCommandBuffer : ST DMXCommandBuffer;
arrProcessData : ARRAY[1..512] OF BYTE;

stEL6851InData: Structure in the EL6851 input process image. It is used for communication from the EL6851
[»_75] to the PLC.

stEL68510utData: Structure in the EL6851 output process image. It is used for communication from the
PLC to the EL6851 [»_75].

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB_EL6851Communication()-block.

arrProcessData: The data that are to be transmitted cyclically to the DMX devices are transferred to the
block via this variable. Cycle mode must be active for this to take place (see also bSetCycleMode input).

Also see about this
ST_EL6851InData [68]
ST_EL68510utData [+ 69]
ST_DMXCommandBuffer [64]

5.6 FB_EL6851CommunicationEx
FB_ELG6851CommunicationEx
—{wSourceManufacturerld bError—
—dwSourceleviceld udiErrorldi—
—bEnableSendingData bCycleMode—
—bSetCycleMode byBufferDlemandMeter—
—{bSendDefaultData byBufferfaximumDemandMeter—
—{uiDatal ength uiBufferOverflowCounter—
—{dwOptions bLinelsBusy—
—{stEL6E51InData & t stELG851InData
—{stEL6S510utData = t stELGES10utData
—stCommandBuffer = & stCommandBuffer
—arrProcessData & & arrProcessData

The EL6851 [P _75] should always be accessed via this block. This applies both to the transmission of the
cyclic DMX data and to the transmission of the RDM commands.

22 Version: 1.2 TX1200

BEGKHOFF Programming

If data is to be transmitted cyclically to the DMX devices, then set the bEnableSendingData input to TRUE,
the bSetCycleMode input to TRUE, the bSendDefaultData input to FALSE and the uiDatalength input to the
corresponding length (in bytes). The data to be transmitted can be specified via the arrProcessData variable.

If RDM commands are to be transmitted, then set the bEnableSendingData input to FALSE and the
bSetCycleMode input to FALSE. The blocks for the DMX/RDM commands do not directly access the EL6851
process image, but store the individual DMX/RDM commands in a buffer instead. The
FB_EL6851Communication() block reads the commands sequentially from this buffer and forwards them to
the EL6851. This prevents multiple blocks accessing the EL6851 process image at the same time. The
buffer in which the DMX/RDM commands are stored is contained in a variable of type
ST_DMXCommandBuffer. There is one instance of the FB_EL6851Communication() block and one variable
of type ST_DMXCommandBuffer per EL6851.

The extent to which the buffer is utilized can be determined from the outputs of the block. If the buffer is
regularly overflowing, you should analyse the level of utilisation of the PLC task with the aid of the TwinCAT
System Manager.

The FB_EL6851Communication() block can be called in a separate, faster task if necessary. In this case, the
faster task in which the FB_EL6851Communication() block is called should have a higher priority than the
TASK in which the block for the RDM commands is called.

You will find examples of both modes of operation in the appendix.

® Remarks concerning the IDs of DMX devices

1 Each DMX device has a unique, fixed, 48-bit long address, also called Unique ID or UID for short.
This address is composed of the manufacturer ID (16-bit) and the device ID (32-bit). The manufac-

turer ID identifies the manufacturer of the device and is issued by the ESTA (Entertainment Services
and Technology Association). A list of all known manufacturer IDs can be found at http://
www.esta.org/tsp/working groups/CP/mfctrlDs.php. The device ID is freely specified by the manu-
facturer. This is intended to ensure that each UID exists only once worldwide. The UID cannot nor-
mally be changed. The ESTA has given Beckhoff Automation the manufacturer ID 0x4241. Since
the DMX master also has a UID, this should be specified in accordance with the ESTA (wSource-
Manufacturerld input).

VAR_INPUT

wSourceManufacturerId : WORD := 16#42 41;
dwSourceDeviceId : DWORD := 16#12_13_14_15;
bEnableSendingData : BOOL := TRUE;
bSetCycleMode : BOOL := TRUE;
bSendDefaultData : BOOL;

uiDatalength : UINT;

dwOptions : DWORD;

wSourceManufacturerld: Unique manufacturer ID of the DMX device. Should be 0x4241 according to the
ESTA.

dwSourceDeviceld: Unique device ID of the DMX device. Can be freely assigned.

bEnableSendingData: If the terminal is in cycle mode (bCycleMode output = TRUE), then transmission can
be activated (TRUE) or blocked (FALSE) with this block.

bSetCycleMode: Activates the cycle mode. The cyclic process data can be transmitted to the DMX devices
in cycle mode. Cycle mode must be deactivated to transmit the RDM/DMX commands.

bSendDefaultData: The standard values will be transmitted in cycle mode if this input is active (TRUE).

uiDataLength: This input is only relevant if cycle mode is active. It indicates the length of the DMX512 frame
in bytes.

dwOptions: Options (currently not used).

VAR_OUTPUT

bError : BOOL;
udiErrorId : UDINT;
bCycleMode : BOOL;
byBufferDemandMeter : BYTE;

TX1200 Version: 1.2 23

http://www.esta.org
http://www.esta.org
http://www.esta.org/tsp/working_groups/CP/mfctrIDs.php
http://www.esta.org/tsp/working_groups/CP/mfctrIDs.php

Programming BEGKHOFF

byBufferMaximumDemandMeter : BYTE;
uiBufferOverflowCounter : UINT;
bLineIsBusy : BOOL;

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

bCycleMode: Is TRUE if cycle mode is active (see also bSetCycleMode input).
byBufferDemandMeter: Buffer utilisation (0 — 100%).

byBufferMaximumDemandMeter: Previous maximum utilisation of the respective buffer (0 — 100%).
uiBufferOverflowCounter: Number of buffer overflows to date.

bLinelsBusy: This output is set as long as the FB_EL6851Communication() block is processing DMX/RDM
commands.

VAR_IN_OUT

stEL6851InData : ST EL6851InDataEx;
StEL68510utData : ST _EL68510utData;
stCommandBuffer : ST _DMXCommandBuffer;
arrProcessData : ARRAY[1..512] OF BYTE;

stEL6851InData: Structure in the EL6851 input process image. It is used for communication from the EL6851
[»_75] to the PLC.

stEL68510utData: Structure in the EL6851 output process image. It is used for communication from the
PLC to the EL6851 [»_75].

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB_EL6851Communication()-block.

arrProcessData: The data that are to be transmitted cyclically to the DMX devices are transferred to the
block via this variable. Cycle mode must be active for this to take place (see also bSetCycleMode input).

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
ST_EL6851InDataEx [68]
ST_EL68510utData [69]
ST_DMXCommandBuffer [64]

5.7 FB_DMXGetldentifyDevice
FB_DMXGetldentifyDevice

—{bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarldf—
—byFortld bldentifyActivel—
—{dwOptions t stCommandBuffer
—stCommandBuffer &

This function block queries whether or not the identification of a DMX device is active.

24 Version: 1.2 TX1200

BEGKHOFF Programming

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError, udiErrorld and bldentifyActive outputs can now be
processed. Further positive edges at the bStart input will be ignored as long as the block is active (bBusy is
TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
bIdentifyActive : BOOL;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

bldentifyActive: If the execution of the command has been completed (bBusy is FALSE), then the state of
identification of the DMX device is displayed at this output.
VAR_IN_OUT

stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Also see about this
ST_DMXCommandBuffer [64]

TX1200 Version: 1.2 25

Programming

—bStart
wDestinationManufacturerld

5.8 FB_DMXSetldentifyDevice
FB_DMXSetldentifyDevice

bBusy—

bErrar—

udiErrorldi—

dwDestinationDeviceld

BECKHOFF

byPortld

= stCommandBuffer

bldentify
dwOptions
stCommandBuffer t-

This function block activates or deactivates the identification of a DMX device.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,

the bBusy output goes back to FALSE. The bError and udiErrorld outputs can now be processed. Further
positive edges at the bStart input will be ignored as long as the block is active (bBusy is TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
bIdentify : BOOL := FALSE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

bldentify: This specifies whether the identification is to be activated (TRUE) or deactivated (FALSE).

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorid. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

VAR_IN_OUT

stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Also see about this
ST _DMXCommandBuffer [64]

26 Version: 1.2 TX1200

BEGKHOFF Programming

5.9 FB_DMXSetResetDevice

FB_DMXSetResetDevice
—{bStart bBusy—
—whDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorld—
—byPortld & stCommandBuffer
—eResetDeviceType
—dwOptions
—stCommandBuffer =

This function block activates a reset in a DMX device.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError and udiErrorld outputs can now be processed. Further
positive edges at the bStart input will be ignored as long as the block is active (bBusy is TRUE).

VAR_INPUT

bStart : BOOL;

wDestinationManufacturerId : WORD;

dwDestinationDeviceId : DWORD;

byPortId : BYTE;

eResetDeviceType : E_DMXResetDeviceType := eDMXResetDeviceTypeWarm;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

eResetDeviceType: This specifies whether a warm start (eDMXResetDeviceTypeWarm) or a cold start
(eDMXResetDeviceTypeCold) is to be performed. No other values are possible for this input.

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

VAR_IN_OUT

stCommandBuffer : ST _DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Also see about this
E_DMXResetDeviceType [61]

TX1200 Version: 1.2 27

Programming BEGKHOFF

ST_DMXCommandBuffer [64]

5.10 FB_DMXDiscMute

FB DMxDiscMute
—bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarld—
—{byPortld wControlField—
—{dwOptions t stCommandBuffer
—stCommandBuffer =

This function block sets the mute flag of a DMX device. The mute flag specifies whether a DMX device
reacts to the FB_DMXDiscUniqueBranch() [> 29] command (mute flag is not set) or not (mute flag is set).

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError, udiErrorld and wControlField outputs can now be
processed. Further positive edges at the bStart input will be ignored as long as the block is active (bBusy is
TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDevicelId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
wControlField : WORD;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

wControlField: If the execution of the command has been completed (bBusy is FALSE), then further
information about the DMX device will be output at this output. The meaning of the individual bits is defined
as follows:

Bit Description
0 - Managed Proxy Flag This bit is set if the DMX device is a proxy device.
1 - Sub-Device Flag This bit is set if the DMX device supports sub-devices.

28 Version: 1.2 TX1200

BECKHOFF Programming

Bit Description

2 - Boot-Loader Flag This bit is set if the DMX device cannot receive any commands (e.g. whilst
the firmware is being loaded).

3 - Proxied Device Flag This bit is set if the response was transmitted by a proxy device.

4-15 Reserve (always 0).

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Also see about this
ST_DMXCommandBuffer [64]

5.11 FB_DMXDiscUniqueBranch
FB DMXDiscUnigueBranch

—{bStart bBusy—

—{byPortld bErrar—

—{wLowerBoundManufacturerld udiErrorld—

—{dwLowerBoundDeviceld wReceivedManufacturerld—

—wlpperBoundManufacturerld dwReceivedDeviceld—

—{dwlpperBoundDeviceld & stCommandBuffer

—{dwOptions

—stCommandBuffer &=

This function block queries whether DMX devices are located within a certain address range. This command
is used for the discovery of the connected DMX devices.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wLowerBoundManufacturerld, dwLowerBoundDeviceld, wUpperBoundManufacturerld and
dwUpperBoundDeviceld inputs define the address range which is searched for DMX devices. The byPortld
input defines the channel within the addressed DMX device. If the execution of the command has been
completed, the bBusy output goes back to FALSE. The bError, udiErrorld, wReceivedManufacturerld and
dwReceivedDeviceld outputs can now be evaluated. Further positive edges at the bStart input will be
ignored as long as the block is active (bBusy is TRUE).

If there is only one DMX device in the defined address range, then the 48-bit UID of the DMX device will be
returned via the wReceivedManufacturerld and dwReceivedDeviceld outputs. If there are no DMX devices in
this range, then the bError output is TRUE and udiErrorld is 0x8002 (no reply from the DMX device). If there
are two or more DMX devices in the address range, then bError is TRUE and udiErrorld contains a 0x8006
(checksum error).

VAR_INPUT

bStart : BOOL;
byPortId g IBYIE 2
wLowerBoundManufacturerId : WORD;
dwLowerBoundDeviceId : DWORD;
wUpperBoundManufacturerId : WORD;
dwUpperBoundDeviceId : DWORD;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

wLowerBoundManufacturerld: Unique manufacturer ID from the lower address range.

TX1200 Version: 1.2 29

Programming BEGKHOFF

dwLowerBoundDeviceld: Unique device ID from the lower address range.
wUpperBoundManufacturerld: Unique manufacturer ID from the upper address range.
dwUpperBoundDeviceld: Unique device ID from the upper address range.

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
wReceivedManufacturerId : WORD;
dwReceivedDeviceId : DWORD;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

wReceivedManufacturerld: If the execution of the command has been completed (bBusy is FALSE), then
the state of identification of the DMX device is displayed at this output.

dwReceivedDeviceld: If the execution of the command has been completed (bBusy is FALSE), then the
state of identification of the DMX device is displayed at this output.
VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Also see about this
ST _DMXCommandBuffer [64]

5.12 FB_DMXDiscUnMute

FB_DMXDiscUnMute
—{bStart bBusy—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorld—
—{byPortld wControlField—
—dwOptions & stCommandBuffer
—stCommandBuffer =

This function block resets the mute flag of a DMX device. The mute flag specifies whether a DMX device
reacts to the FB DMXDiscUniqueBranch() [P 29] command (mute flag is not set) or not (mute flag is set).

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError, udiErrorld and wControlField outputs can now be
processed. Further positive edges at the bStart input will be ignored as long as the block is active (bBusy is
TRUE).

30 Version: 1.2 TX1200

BEGKHOFF Programming

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
wControlField : WORD;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

wControlField: If the execution of the command has been completed (bBusy is FALSE), then further
information about the DMX device will be output at this output. The meaning of the individual bits is defined
as follows:

Bit Description

0 - Managed Proxy Flag This bit is set if the DMX device is a proxy device.

1 - Sub-Device Flag This bit is set if the DMX device supports sub-devices.

2 - Boot-Loader Flag This bit is set if the DMX device cannot receive any commands (e.g. whilst
the firmware is being loaded).

3 - Proxied Device Flag This bit is set if the response was transmitted by a proxy device.

4-15 Reserve (always 0).

VAR_IN_OUT

stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Also see about this
ST_DMXCommandBuffer [64]

TX1200 Version: 1.2 31

Programming BEGKHOFF

5.13 FB_DMXGetLampHours

FB DMXGetLampHours
—{bStart bBusy—
—whDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorld—
—byPortld udiLampHoursf—
—dwOptions t stCommandBuffer
—stCommandBuffer =

This function block reads the number of hours in which the lamp was on. The block FB_DMXSetLampHours()
[»_34] can be used to edit the hour counter.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
udiLampHours : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

udiLampHours: Number of hours in which the lamp was switched on.
VAR_IN_OUT
stCommandBuffer : ST _DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P_22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this
ST_DMXCommandBuffer [64]

32 Version: 1.2 TX1200

BECKHOFF Programming

5.14 FB_DMXGetLampOnMode

FB DMXGetLampOnMode
—{bStart bBusy—
—whDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorld—
—byPortld eLampOnModef—
—dwOptions t stCommandBuffer
—stCommandBuffer =

This function block reads the parameter that defines the switch-on characteristics of the DMX device. The
block FB_ DMXSetLampOnMode() [»_35] can be used to edit the value.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;
eLampOnMode : E_DMXLampOnMode;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

eLampOnMode: Contains the current parameter that defines the switch-on characteristics of the DMX
device.
VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this

TX1200 Version: 1.2 33

Programming BEGKHOFF

E_DMXLampOnMode [58]
ST_DMXCommandBuffer [64]

5.15 FB_DMXSetLampHours

FB_DOMXSetLampHours
—bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarld—
—{byPortld t stCommandBuffer
—{udiLampHours
—{dwOptions
—stCommandBuffer =

This function block sets the operating hours counter for the lamp. The block FB_ DMXGetLampHours() [»_32]
can be used to read the counter.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
udiLampHours : UDINT := 0;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

udiLampHours: New value for the operating hours counter.

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

34 Version: 1.2 TX1200

BECKHOFF Programming

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this
ST_DMXCommandBuffer [64]

5.16 FB_DMXSetLampOnMode

FB_DMXSetLampOnMode
—{bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarld—
—{byPortld t stCommandBuffer
—{eLampOnMode
—dwOptions
—stCommandBuffer =

This function block defines the switch-on characteristics of the DMX device. The block
FB DMXGetLampOnMode() [» 33] can be used to read the set value.

VAR_INPUT

bStart : BOOL;

wDestinationManufacturerId : WORD;

dwDestinationDeviceId : DWORD;

byPortId : BYTE;

eLampOnMode : E DMXLampOnMode := eDMXLampOnModeOff;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

eLampOnMode: This parameter defines the switch-on characteristics of the DMX device.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorid. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [» 69].

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

TX1200 Version: 1.2 35

Programming BEGKHOFF

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P_22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this
E_DMXLampOnMode [58]
ST_DMXCommandBuffer [64]

5.17 FB_DMXGetDevicelnfo

FB DMXGetDevicelnfo
—{bStart bBusy—
—whDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorld—
—byPortld stOMXDevicelnfol—
—dwOptions t stCommandBuffer
—stCommandBuffer =

This function block queries all relevant information from a DMX device.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError, udiErrorld and stDMXDevicelnfo outputs can now be
processed. Further positive edges at the bStart input will be ignored if the block is active (bBusy is TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;
stDMXDeviceInfo : ST DMXDeviceInfo;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

36 Version: 1.2 TX1200

BECKHOFF Programming

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

stDMXDevicelnfo: If the execution of the command has been completed (bBusy is FALSE), then all relevant
information for the DMX device is sent to this output in a structure. See also the description of the
ST DMXDevicelnfo [P 65] structure.

uliUID: Unique 48-bit address of the DMX device. The lower 32 bits define the device ID and the upper 16
bits the manufacturer ID.

tRDMProtocolVersion: Version number of the supported RDM standard.

uiDeviceModelld: The device model ID is defined by the device manufacturer.

stProductCategory: Device type of the DMX device. The device types are defined in the RDM standard.
udiSoftwareVersionld: Version number of the software (firmware) in the DMX device.

uiDMX512Footprint: Number of DMX512 slots occupied by the device. Each sub-device and the root device
occupy their own DMX512 slots.

stDMX512Personality: DMX devices can possess various personalities. Personalities are comparable with
profiles. The current profile and the number of profiles are displayed in this element.

uiDMX512StartAddress: The DMX512 start address. This lies within the range from 1 — 512. If the
uiDMX512Footprint parameter is 0, then the DMX start address is OxFFFF (65535). Each sub-device and the
root device occupy different DMX512 start addresses.

uiSubDeviceCount: Number of sub-devices.

bySensorCount: The number of sensors contained in the sub-device or the root device.
VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Also see about this
ST_DMXCommandBuffer [64]

5.18 FB_DMXGetDevicelLabel

FB DMXGetDevicelLabel
—{bStart bBusyl—
—whDestinationManufacturerld bErraor—
—dwDestinationDeviceld udiErrarld—
—byFortld sDevicelabell—
—dwOptions & stCommandBuffer
—stCommandBuffer =

This function block reads a text from the DMX device, which contains a more detailed description of the
device. The block FB_ DMXSetDevicelLabel() [» 43] can be used to edit the text.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId 3 BTG 2
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.

TX1200 Version: 1.2 37

Programming BEGKHOFF

wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
sDeviceLabel : STRING;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

sDeviceLabel: Description text for the DMX device.
VAR_IN_OUT
stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this
ST_DMXCommandBuffer [64]

5.19 FB_DMXGetDeviceModelDescription

FB DMXGetDeviceModelDescription
—{bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarldf—
—byFortld sDeviceModelDescription—
—{dwOptions t stCommandBuffer
—stCommandBuffer &

This function block queries the description of the device type.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError, udiErrorld and sDeviceModelDescription outputs can
now be processed. Further positive edges at the bStart input will be ignored as long as the block is active
(bBusy is TRUE).

38 Version: 1.2 TX1200

BECKHOFF Programming

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
sDeviceModelDescription : STRING;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

sDeviceModelDescription: If the execution of the command has been completed (bBusy is FALSE), then a
description (maximum 32 characters) of the device type will be sent to this output. The contents are specified
by the DMX device manufacturer.

VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Also see about this
ST_DMXCommandBuffer [64]

5.20 FB_DMXGetManufacturerLabel

FB DMXGetManufacturerLabel
—bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarld—
—{byPortld sManufacturerLabel—
—{dwOptions t stCommandBuffer
—stCommandBuffer

This function block queries the description of the DMX device manufacturer.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,

TX1200 Version: 1.2 39

Programming BEGKHOFF

the bBusy output goes back to FALSE. The bError, udiErrorld and sManufacturerLabel outputs can now be
processed. Further positive edges at the bStart input will be ignored as long as the block is active (bBusy is
TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId 3 IBYIIE 2
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
sManufacturerLabel : STRING;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorid. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

sManufacturerLabel: If the execution of the command has been completed (bBusy is FALSE), then a
description (maximum 32 characters) of the DMX device type will be sent to this output. The contents are
specified by the DMX device manufacturer.

VAR_IN_OUT
stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Also see about this
ST_DMXCommandBuffer [64]

5.21 FB_DMXGetProductDetailldList

FB DMXGetProductDetailldList
—{bStart bBusyl—
—whDestinationManufacturerld bErraor—
—dwDestinationDeviceld udiErrarld—
—byFortld arrProductDetails—
—dwOptions & stCommandBuffer
—stCommandBuffer =

This function block queries the categories to which the DMX device belongs.

40 Version: 1.2 TX1200

BEGKHOFF Programming

RDM defines different device categories. Each DMX device can be assigned to up to 6 categories. The
assignment is done by the device manufacturer and cannot be changed via RDM.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;

arrProductDetails : ARRAY[1..6] OF E DMXProductDetail;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

arrProductDetails: Contains the list with up to 6 device categories.
VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this
E_DMXProductDetail [59]
ST _DMXCommandBuffer [64]

TX1200 Version: 1.2 41

Programming BEGKHOFF

5.22 FB_DMXGetSoftwareVersionLabel

FB DMXGetSoftwareWersionLabel
—{bStart bBusy—
—wDestinationManufacturerld bErrar—
—{dwDestinationDeviceld udiErrorld—
—byPortld sSoftwareVersionLabel—
—dwOptions t stCommandBuffer
—stCommandBuffer =

This function block queries the description of the software version of the DMX device.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError, udiErrorld and sSoftwareVersionLabel outputs can now
be processed. Further positive edges at the bStart input will be ignored as long as the block is active (bBusy
is TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
sSoftwareVersionLabel : STRING;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

sSoftwareVersionLabel: If the execution of the command has been completed (bBusy is FALSE), then a
description (maximum 32 characters) of the software version of the DMX device will be output at this output.
The contents are specified by the DMX device manufacturer.

VAR_IN_OUT
stCommandBuffer : ST _DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

Also see about this

42 Version: 1.2 TX1200

BECKHOFF

ST_DMXCommandBuffer [64]

Programming

5.23 FB_DMXSetDevicelLabel

FB DMXSetDevicelLabel

—bStart bBusyl—
—wDestinationManufacturerld bErrar—
—dwDestinationDeviceld udiErrarldf—

byPortld
sDeviceLabel
dwOptions
stCommandBuffer =

t stCommandBuffer

This function block writes a description text into the DMX device. The block FB_ DMXGetDevicelabel() [» 371

can be used to read the text.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
sDeviceLabel : STRING := '';
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

sDeviceLabel: New description text for the DMX device.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorid. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [» 69].

VAR_IN_OUT

stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

TX1200 Version: 1.2 43

Programming BEGKHOFF

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this
ST_DMXCommandBuffer [64]

5.24 FB_DMXClearStatuslid

FB_DMXClearStatusld
—{bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarld—
—{byPortld t stCommandBuffer
—{dwOptions
—stCommandBuffer =

This function block clears the message buffer in the DMX device.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [» 22] block.

44 Version: 1.2 TX1200

BECKHOFF

Programming

Requirements
Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0

Build 2251

Also see about this

ST_DMXCommandBuffer [64]

5.25 FB_DMXGetStatusldDescription

FB_DMXGetStatusldDescription
—{bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorldf—
—{byPortld sStatusMessage—
—{uiStatusMessageld t stCommandBuffer
—dwOptions
—stCommandBuffer =

This function block reads the text of a certain status ID from the DMX device.

RDM defines some standard messages. Each of these messages has a unique status ID. This block can be
used to read the corresponding text from the DMX device.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
uiStatusMessageId : UINT := 1;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

uiStatusMessageld: Status ID for which the text is to be read.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
sStatusMessage : STRING;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

sStatusMessage: Status message.

TX1200 Version: 1.2 45

Programming BEGKHOFF

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

Also see about this
ST_DMXCommandBuffer [64]

5.26 FB_DMXGetStatusMessages

FB DMXGetStatusMessages
—bStart bBusy—
—whDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarldi—
—{byPortld arrStatusMessages—
—{eStatusType t stCommandBuffer
—{dwOptions
—{stCommandBuffer =

This function block collects status or error information from a DMX device.

VAR_INPUT

bStart : BOOL;

wDestinationManufacturerId : WORD;

dwDestinationDeviceId : DWORD;

byPortId : BYTE;

eStatusType : E DMXStatusType := eDMXStatusTypeNone;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer Id of the DMX device.
dwDestinationDeviceld: Unique device Id of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the port Id. The
root device always has the port Id 0.

eStatusType: Status type.

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;

arrStatusMessages : ARRAY[0..24] OF ST DMXStatusMessage;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

46 Version: 1.2 TX1200

BECKHOFF Programming

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

arrStatusMessages: If the execution of the command has been completed (bBusy is FALSE), then all
status/error information are sent to this output in a array.
VAR_IN_OUT

stCommandBuffer : ST _DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P_22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
E_DMXStatusType [64]
ST_DMXStatusMessage [68]
ST _DMXCommandBuffer [64]

5.27 FB_DMXGetParameterDescription

FB DMXGetParameterDescription
—{bStart bBusy—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorld—
—byPortld stParameterDescription—
—eParameterld t stCommandBuffer
—dwOptions
—stCommandBuffer =

This function block retrieves the definition of manufacturer-specific PIDs.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;

byPortId : BYTE;
eParameterId : E DMXParameterId;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer Id of the DMX device.
dwDestinationDeviceld: Unique device Id of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the port Id. The
root device always has the port Id 0.

eParameterld: The requested manufacturer specific PID.

dwOptions: Options (currently not used).

TX1200 Version: 1.2 47

Programming BEGKHOFF

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;
stParameterDescription : ST DMXParameterDescription;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

stParameterDescription: If the execution of the command has been completed (bBusy is FALSE), then
information about the PID is sent to this output.
VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
E_DMXParameterld [58]
ST_DMXParameterDescription [66]
ST_DMXCommandBuffer [64]

5.28 FB_DMXGetSupportedParameters

FB DMXGetSupportedParameters
—{bStart bBusy—
—wDestinationManufacturerld bErrar—
—dwDestinationDeviceld udiErrorldf—
—byPortld arrParameters—
—dwOptions & stCommandBuffer
—stCommandBuffer =

This function block queries all supported parameters from a DMX device.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer Id of the DMX device.

dwDestinationDeviceld: Unique device Id of the DMX device.

48 Version: 1.2 TX1200

BECKHOFF Programming

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the port Id. The
root device always has the port Id 0.

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;

arrParameters : ARRAY[0..114] OF E_DMXParameterId;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

arrParameters: If the execution of the command has been completed (bBusy is FALSE), then all supported

parameters for the DMX device is sent to this output.

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
E_DMXParameterld [58]
ST_DMXCommandBuffer [64]

5.29 FB_DMXGetSensorDefinition

FB DMXGetSensorDefinition
—bStart bBusy—
—whDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarldi—
—{byPortld stSensorDefinition|—
—{bySensarumber t stCommandBuffer
—{dwOptions
—{stCommandBuffer =

This function block queries the definition of a specific sensor.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
bySensorNumber : BYTE := 0;
dwOptions : DWORD := 0;

TX1200 Version: 1.2 49

Programming BEGKHOFF

bStart: The command is started by a positive edge at this input.

wDestinationManufacturerld: Unique manufacturer Id of the DMX device.
dwDestinationDeviceld: Unique device Id of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the port Id. The
root device always has the port Id 0.

bySensorNumber: DMX512 sensor number (0 - 254).

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

stSensorDefinition: ST DMXSensorDefinition;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

stSensorDefinition: If the execution of the command has been completed (bBusy is FALSE), then the
definition of the sensor will be sent to this output.

VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
ST_DMXSensorDefinition [67]
ST _DMXCommandBuffer [64]

5.30 FB_DMXGetSensorValue

FB_DMXGetSensorValue
—bStart bBusyl—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrorldf—
—{byPortld stOMXSensorValue—
—{bySensorMumber t stCommandBuffer
—{dwOptions
—stCommandBuffer =

This function block queries the current value of a sensor.

50 Version: 1.2 TX1200

BECKHOFF

Programming

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
bySensorNumber : BYTE := 0;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

bySensorNumber: Number of the sensor whose values are queried.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;
stDMXSensorValue : ST DMXSensorValue;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

stDMXSensorValue: Structure with information about the current state of the sensor.

VAR_IN_OUT

stCommandBuffer : ST _DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P_22] block.

Requirements

PLC libraries to include
TcDMX-library higher than V1.2.0

Development environment

TwinCAT 2.11 R3/x64 higher than
Build 2251

Target system type
PC/CX

Also see about this
ST_DMXSensorValue [67]
ST _DMXCommandBuffer [64]

TX1200 Version: 1.2 51

Programming

BECKHOFF

5.31

—bStart
wDestinationManufacturerld
dwDestinationDeviceld
byPortld

byPersonality

dwOptions
stCommandBuffer =

FB DMXGetDMX512PersonalityDescription

bBusy

bErrar

udiErrorld
stOMX512PersonalityDescription
t stCommandBuffer

FB_DMXGetDMX512PersonalityDescription

This function block reads further Personality information from the DMX device. Some DMX devices support
so-called Personalities . Changing the Personality can influence certain RDM parameters.

VAR_INPUT

bStart
wDestinationManufacturerId
dwDestinationDeviceId
byPortId

byPersonality

dwOptions

: BOOL;

: WORD;

: DWORD;

¢ BYTE;

: BYTE := 0
: DWORD :=

0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

byPersonality: The Personality for which information is queried.

dwOptions: Options (currently not used).

VAR _OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

stDMX512PersonalityDescription :

ST DMX512PersonalityDescription;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

stDMX512PersonalityDescription: Structure with information about the Personality .

VAR_IN_OUT

stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Requirements

Development environment Target system type PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.2.0
Build 2251

52 Version: 1.2 TX1200

BECKHOFF Programming

Also see about this
ST_DMX512PersonalityDescription [64]
ST_DMXCommandBuffer [64]

5.32 FB_DMXGetDMX512StartAddress

FB DMXGetDMX5125tatAddress
—{bStart bBusyl—
—whDestinationManufacturerld bErraor—
—dwDestinationDeviceld udiErrarld—
—byFortld iDMX5125tartAddress—
—dwOptions & stCommandBuffer
—stCommandBuffer =

This function block queries the DMX512 start address. This lies within the range from 1 — 512. If the DMX
device does not occupy any DMX slot, then the DMX512 start address is OXFFFF (65535). Each sub-device
and the root device occupy different DMX512 start addresses.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError, udiErrorld and iDMX512StartAddress outputs can now
be processed. Further positive edges at the bStart input will be ignored as long as the block is active (bBusy
is TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
iDMX512StartAddress : INT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

iDMX512StartAddress: If the execution of the command has been completed (bBusy is FALSE), then the
DMX512 start address of the DMX device will be sent to this output.

TX1200 Version: 1.2 53

Programming BEGKHOFF

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Also see about this
ST_DMXCommandBuffer [64]

5.33 FB_DMXGetSlotDescription

FB DMXGetSlotDescription
—{bStart bBusy—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarld—
—byPortld sSlotDescription—
—iDMX5125l0t Offs et e stCommandBuffer
—{dwOptions
—stCommandBuffer &=

This function block queries the text description for slot offsets.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
iDMX512SlotOffset : INT := 0;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer Id of the DMX device.
dwDestinationDeviceld: Unique device Id of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the port Id. The
root device always has the port Id 0.

iDMX512SlotOffset: DMX512 slot offset (0 - 511).

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
sSlotDescription : STRING;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorid. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

sSlotDescription: If the execution of the command has been completed (bBusy is FALSE), then the
description (maximum 32 characters) of the slot will be sent to this output.

54 Version: 1.2 TX1200

BECKHOFF Programming

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
ST_DMXCommandBuffer [64]

5.34 FB_DMXGetSlotInfo

FB DMXGetSlotinfo
—bStart bBusy—
—wDestinationManufacturerld bError—
—dwDestinationDeviceld udiErrarld—
—{byPortld arrSlotinfos—
—{dwOptions t stCommandBuffer
—stCommandBuffer =

This function block queries basic information about the functionality of the DMX512 slots from a DMX device.

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer Id of the DMX device.
dwDestinationDeviceld: Unique device Id of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the port Id. The
root device always has the port Id 0.

dwOptions: Options (currently not used).

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;

arrSlotInfos : ARRAY[0..45] OF ST DMXSlotInfo;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorild. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

TX1200 Version: 1.2 55

Programming BEGKHOFF

arrSlotinfos: If the execution of the command has been completed (bBusy is FALSE), then all relevant
information for the DMX512 slots is sent to this output in a array.

VAR_IN_OUT
stCommandBuffer : ST_DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this
ST_DMXSIlotIinfo [67]
ST_DMXCommandBuffer [64]

5.35 FB_DMXSetDMX512StartAddress

FB DMXSetDMX5125tartAddress
—{bStart bBusyl—
—whDestinationManufacturerld bErraor—
—dwDestinationDeviceld udiErrarld—
—byFortld t stCommandBuffer
—iDMX5125tartAddress
—{dwOptions
—stCommandBuffer &

This function block sets the DMX512 start address. This lies within the range from 1 — 512. Each sub-device
and the root device occupy different DMX512 start addresses.

Applying a positive edge to the bStart input starts the block, and the bBusy output goes TRUE. The
wDestinationManufacturerld and dwDestinationDeviceld inputs address the DMX device. The byPortld input
defines the channel within the addressed DMX device. If the execution of the command has been completed,
the bBusy output goes back to FALSE. The bError and udiErrorld outputs can now be processed. Further
positive edges at the bStart input will be ignored if the block is active (bBusy is TRUE).

VAR_INPUT

bStart : BOOL;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
byPortId : BYTE;
iDMX512Startadresse : INT := 1;
dwOptions : DWORD := 0;

bStart: The command is started by a positive edge at this input.
wDestinationManufacturerld: Unique manufacturer ID of the DMX device.
dwDestinationDeviceld: Unique device ID of the DMX device.

byPortld: Channel within the addressed DMX device. Sub-devices are addressed through the Port ID. The
root device always has the Port ID 0.

iDMX512StartAddress: DMX512 start address (1 to 152)

dwOptions: Options (currently not used).

56 Version: 1.2 TX1200

BEGKHOFF Programming

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorld. Only valid if bBusy is FALSE.

udiErrorld: Contains the command-specific error code of the most recently executed command. Only valid if
bBusy is FALSE. See Error codes [P 69].

VAR_IN_OUT

stCommandBuffer : ST DMXCommandBuffer;

stCommandBuffer: A reference to the structure for communication (the buffer) with the
FB EL6851CommunicationEx() [P 22] block.

Also see about this
ST _DMXCommandBuffer [64]

5.36 Data types

5.36.1 E_DMXCommandClass

TYPE E_DMXCommandClass : (* Table A-1 *)
(
eDMXCommandClassNotDefined := 16#0000, (* command class is not defined *)
eDMXCommandClassDiscoveryCommand := 16#0010,
eDMXCommandClassDiscoveryCommandResponse := 16#0011,
eDMXCommandClassGetCommand := 16#0020,
eDMXCommandClassGetCommandResponse := 16#0021,
eDMXCommandClassSetCommand := 16#0030,
eDMXCommandClassSetCommandResponse := 16#0031
)
END TYPE
Requirements
Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

5.36.2 E_DMXDataType

TYPE E DMXDataType : (* Table A-15 *)

(
eDMXDataTypeNotDefined := 16#0000, (* Data type is not defined ¥*)
eDMXDataTypeBitField := 16#0001, (* Data is bit packed *)
eDMXDataTypeASCIT = 164#0002, (* Data is a string *)
eDMXDataTypeUnsignedByte := 16#0003, (* Data is an array of unsigned bytes *)
eDMXDataTypeSignedByte := 16#0004, (* Data is an array of signed bytes *)
eDMXDataTypeUnsignedWord := 16#0005, (* Data is an array of unsigned 16-bit words *)
eDMXDataTypeSignedWord := 16#0006, (* Data is an array of signed 16-bit words *)
eDMXDataTypeUnsignedDWord := 16#0007, (* Data is an array of unsigned 32-bit words *)
eDMXDataTypeSignedDWord := 16#0008 (* Data is an array of signed 32-bit words *)

) i

END_TYPE

TX1200 Version: 1.2 57

Programming

BECKHOFF

Requirements
Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0

Build 2256

5.36.3

TYPE E DMXLampOnMode
(

eDMXLampOnModeOf £ := 0,
eDMXLampOnModeDMX =1,
eDMXLampOnModeOn = 2,
eDMXLampOnModeAfterCal = 3
)i
END_TYPE

5.36.4

TYPE E_DMXParameterDescriptionCommandClass

(

E_DMXLampOnMode

(* Lamp stays off until directly instructed to strike *)
(* Lamp strikes upon receiving a DMX512 signal *)
(* Lamp strikes automatically at power-up *)

(* Lamp strikes after calibration or homing procedure *)

(* Table A-16 *)

E_DMXParameterDescriptionCommandClass

eDMXParameterDescriptionCommandClassGet = 16#0001, (* PID supports GET only *)
eDMXParameterDescriptionCommandClassSet = 1640002, (* PID supports SET only *)
eDMXParameterDescriptionCommandClassGetSet := 16#0003 (* PID supports GET & SET *)
)i
END TYPE
Requirements
Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256
5.36.5 E_DMXParameterid
TYPE E DMXParameterId (* Table A-3 *)
(
eDMXParameterIdNone := 16#0000,
(* Network Management ¥*)
eDMXParameterIdDiscUniqueBranch := 16#0001,
eDMXParameterIdDiscMute := 16#0002,
eDMXParameterIdDiscUnMute := 16#0003,
eDMXParameterIdProxiedDevices := 16#0010,
eDMXParameterIdProxiedDeviceCount := 16#0011,
eDMXParameterIdCommsStatus := 16#0015,
(* Status Collection *)
eDMXParameterIdQueuedMessage := 16#0020,
eDMXParameterIdStatusMessages := 16#0030,
eDMXParameterIdStatusIdDescription := 16#0031,
eDMXParameterIdClearStatusId := 16#0032,
eDMXParameterIdSubDeviceStatusReportThreshold := 16#0033,
(* RDM Information *)
eDMXParameterIdSupportedParamaters = 1640050,
eDMXParameterIdParameterDescription = 16#0051,
(* Product Information *)
eDMXParameterIdDeviceInfo = 16#0060,
eDMXParameterIdProductDetailIdList := 16#0070,
eDMXParameterIdDeviceModelDescription := 16#0080,
eDMXParameterIdManufacturerLabel := 16#0081,
eDMXParameterIdDeviceLabel := 16#0082,
eDMXParameterIdFactoryDefaults := 16#0090,
eDMXParameterIdLanguageCapabilities := 16#00A0,
eDMXParameterIdLanguage = 16#00BO,
eDMXParameterIdSoftwareVersionLabel = 16#00CO0,
eDMXParameterIdBootSoftwareVersionId := 16#00C1,
58 Version: 1.2 TX1200

BECKHOFF

Programming

eDMXParameterIdBootSoftwareVersionLabel := 16#00C2,

(* DMX512 Setup ¥*)

eDMXParameterIdDMXPersonality = 16#00EO,
eDMXParameterIdDMXPersonalityDescription := 16#00E1,
eDMXParameterIdDMXStartAddress := 16#00F0,
eDMXParameterIdSlotInfo := 16#0120,
eDMXParameterIdSlotDescription := 16#0121,
eDMXParameterIdDefaultSlotValue = 1640122,
(* Sensors *)
eDMXParameterIdSensorDefinition := 16#0200,
eDMXParameterIdSensorValue 1= 16#0201,
eDMXParameterIdRecordSensors := 16#0202,
(* Power/Lamp Settings *)
eDMXParameterIdDeviceHours := 16#0400,
eDMXParameterIdLampHours := 16#0401,
eDMXParameterIdLampStrikes := 16#0402,
eDMXParameterIdLampState := 16#0403,
eDMXParameterIdLampOnMode := 16#0404,
eDMXParameterIdDevicePowerCycles := 16#0405,
(* Display Settings *)
eDMXParameterIdDisplayInvert := 16#0500,
eDMXParameterIdDisplayLevel := 16#0501,
(* Configuration *)
eDMXParameterIdPanInvert := 16#0600,
eDMXParameterIdTiltInvert := 16#0601,
eDMXParameterIdPanTiltSwap := 16#0602,
eDMXParameterIdRealTimeClock := 16#0603,
(* Control *)
eDMXParameterIdIdentifyDevice := 16#1000,
eDMXParameterIdResetDevice := 16#1001,
eDMXParameterIdPowerState := 16#1010,
eDMXParameterIdPerformSelftest := 16#1020,
eDMXParameterIdSelfTestDescription := 16#1021,
eDMXParameterIdCapturePreset := 16#1030,
eDMXParameterIdPresetPlayBack := 16#1031

) ;

END_TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0

Build 2256

5.36.6 E_DMXProductDetail

TYPE E DMXProductDetail

(
eDMXProductDetailNotDeclared := 16#0000,
(* Generally applied to fixtures / 0x00xx *)
eDMXProductDetailArc := 16#0001,
eDMXProductDetailMetalHalide := 16#0002,
eDMXProductDetailIncandescent := 16#0003,
eDMXProductDetailLED = 1640004,
eDMXProductDetailFluroescent := 16#0005,
eDMXProductDetailColdcathode = 16#0006,
eDMXProductDetailElectroluminescent := 16#0007,
eDMXProductDetailLaser = 1640008,
eDMXProductDetailFlashtube = 16#0009,

(* Generally applied to fixture accessories / 0x0lxx *)

eDMXProductDetailColorscroller := 16#0100,
eDMXProductDetailColorwheel := 16#0101,
eDMXProductDetailColorchange := 16#0102,
eDMXProductDetailIrisDouser = 1640103,
eDMXProductDetailDimmingShutter := 16#0104,
eDMXProductDetailProfileShutter = 16#0105,
TX1200 Version: 1.2 59

Programming BEGKHOFF

eDMXProductDetailBarndoorShutter := 16#0106,
eDMXProductDetailEffectsDisc := 16#0107,
eDMXProductDetailGoboRotator := 16#0108,

(* Generally applied to projectors / 0x02xx *)

eDMXProductDetailVideo := 16#0200,
eDMXProductDetailSlide := 16#0201,
eDMXProductDetailFilm := 16#0202,
eDMXProductDetailOilwheel := 16#0203,
eDMXProductDetailLCDGate := 16#0204,

(* Generally applied to atmospheric effects / 0x03xx *)

eDMXProductDetailFoggerGlycol := 16#0300,
eDMXProductDetailFoggerMineraloil := 16#0301,
eDMXProductDetailFoggerWater := 16#0302,
eDMXProductDetailCO2 := 16#0303,
eDMXProductDetailLN2 := 16#0304,
eDMXProductDetailBubble := 16#0305,
eDMXProductDetailFlamePropane := 16#0306,
eDMXProductDetailFlameOther := 16#0307,
eDMXProductDetailOlefactoryStimulator := 16#0308,
eDMXProductDetailSnow := 16#0309,
eDMXProductDetailWaterJet := 16#030A,
eDMXProductDetailWind := 16#030B,
eDMXProductDetailConfetti := 16#030C,
eDMXProductDetailHazard := 16#030D,

(* Generally applied to dimmers/power controllers / 0x04xx *)

eDMXProductDetailPhaseControl := 16#0400,
eDMXProductDetailReversePhaseControl 1= 16#0401,
eDMXProductDetailSine := 16#0402,
eDMXProductDetailPWM = 16#0403,
eDMXProductDetailDC = 1640404,
eDMXProductDetailHfballast := 16#0405,
eDMXProductDetailHfhvNeonballast := 16#0406,
eDMXProductDetailHfhvEL := 16#0407,
eDMXProductDetailMhrBallast := 16#0408,
eDMXProductDetailBitangleModulation := 16#0409,
eDMXProductDetailFrequencyModulation := 16#0404,
eDMXProductDetailHighfrequencyl2v := 16#040B,
eDMXProductDetailRelayMechanical := 16#040C,
eDMXProductDetailRelayElectronic := 16#040D,
eDMXProductDetailSwitchElectronic := 16#040E,
eDMXProductDetailContactor i= 16#O4OF

(* Generally applied to scenic drive / 0x05xx *)

eDMXProductDetailMirrorballRotator := 16#0500,
eDMXProductDetailOtherRotator := 16#0501,
eDMXProductDetailKabukiDrop := 16#0502,
eDMXProductDetailCurtain := 16#0503,
eDMXProductDetailLineset := 16#0504,
eDMXProductDetailMotorControl := 16#0505,
eDMXProductDetailDamperControl := 16#0506,

(* Generally applied to data distribution / 0x06xx *)

eDMXProductDetailSplitter := 16#0600,
eDMXProductDetailEthernetNode := 16#0601,
eDMXProductDetailMerge = 16#0602,
eDMXProductDetailDatapatch = 16#0603,
eDMXProductDetailWirelessLink := 16#0604,

(* Generally applied to data conversion and interfaces / 0x07xx *)

eDMXProductDetailProtocolConvertor = 16#0701,
eDMXProductDetailAnalogDemultiplex = 1640702,
eDMXProductDetailAnalogMultiplex = 1640703,
eDMXProductDetailSwitchPanel i= 16#0704

(* Generally applied to audio or video (AV) devices / 0x08xx *)

eDMXProductDetailRouter := 16#0800,
eDMXProductDetailFader := 16#0801,
eDMXProductDetailMixer := 16#0802,

(* Generally applied to controllers, backup devices and test equipment / 0x09xx *)
eDMXProductDetailChangeoverManual := 16#0900,
eDMXProductDetailChangeoverAuto := 16#0901,

eDMXProductDetailTest 16#0902,

(* Generally applied to any category / 0x0Axx *)
eDMXProductDetailGfiRcd 16#0A00,
eDMXProductDetailBattery := 16#0A01,

60 Version: 1.2 TX1200

BEGKHOFF Programming

eDMXProductDetailControllableBreaker := 16#0A02,

(* Manufacturer Specific Types / 0x8000 - OxDFFF *)

eDMXProductDetailOther := 16#7FFF (* for use where the Manufacturer believes that no
ne of the defined details apply *)
)i
END_TYPE

5.36.7 E_DMXResetDeviceType

TYPE E_DMXResetDeviceType
(

eDMXResetDeviceTypeWarm =1,
eDMXResetDeviceTypeCold := 255
)
END TYPE

5.36.8 E_DMXSensorType

TYPE E DMXSensorType : (* Table A-12 *)

(
eDMXSensorTypeTemperature := 16#00,
eDMXSensorTypeVoltage := 16#01,
eDMXSensorTypeCurrent := 16#02,
eDMXSensorTypeFrequency := 16#03,
eDMXSensorTypeResistance := 16#04,
eDMXSensorTypePower := 164#05,
eDMXSensorTypeMass := 16#06,
eDMXSensorTypelLength := 16#07,
eDMXSensorTypeArea := 16#08,
eDMXSensorTypeVolume := 16#09,
eDMXSensorTypeDensity := 16#0A,
eDMXSensorTypeVelocity := 16#0B,
eDMXSensorTypeAcceleration := 164#0C,
eDMXSensorTypeForce := 16#0D,
eDMXSensorTypeEnergy := 16#0E,
eDMXSensorTypePressure := 16#0F,
eDMXSensorTypeTime := 16#10,
eDMXSensorTypeAngle := 16#11,
eDMXSensorTypePositionX = 16#12,
eDMXSensorTypePositionY 1= 16#13,
eDMXSensorTypePositionZ = 16#14,
eDMXSensorTypeAngularVelocity := 164#15,
eDMXSensorTypeLuminousIntensity := 16#16,
eDMXSensorTypeLuminousFlux = 16#17,
eDMXSensorTypeIlluminance := 16#18,
eDMXSensorTypeChrominanceRed := 16#19,
eDMXSensorTypeChrominanceGreen := 16#1A,
eDMXSensorTypeChrominanceBlue := 16#1B,
eDMXSensorTypeContacts := 1l6#1C,
eDMXSensorTypeMemory := 16#1D,
eDMXSensorTypeltems := 16#1E,
eDMXSensorTypeHumidity := 1l6#1F,
eDMXSensorTypeCounterl6Bit := 16#20,
eDMXSensorTypeOther := 16#7F

)7

END TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0

Build 2256

5.36.9 E_DMXSensorUnit

TYPE E_DMXSensorUnit : (* Table A-13 *)

(
eDMXSensorUnitNone := 16#00, (* CONTACTS *)
eDMXSensorUnitCentigrade = 16#01, (* TEMPERATURE *)
eDMXSensorUnitVoltsDC := 16#02, (* VOLTAGE ¥*)

TX1200 Version: 1.2 61

Programming

BECKHOFF

eDMXSensorUnitVoltsACPeak := 16#03, (* VOLTAGE *)
eDMXSensorUnitVoltsACRms = 16#04, (* VOLTAGE ¥*)
eDMXSensorUnitAmpereDC = 16#05, (* CURRENT ¥*)
eDMXSensorUnitAmpereACPeak := 16#06, (* CURRENT *)
eDMXSensorUnitAmpereACRms := 1l6#07, (* CURRENT *)
eDMXSensorUnitHertz = 16#08, (* FREQUENCY / ANG VEL *)
eDMXSensorUnitOhm = 16#09, (* RESISTANCE ¥*)
eDMXSensorUnitWatt = 16#0A, (* POWER *)
eDMXSensorUnitKilogram = 16#0B, (* MASS *)
eDMXSensorUnitMeters = 16#0C, (* LENGTH / POSITION *)
eDMXSensorUnitMetersSquared := 16#0D, (* AREA *)
eDMXSensorUnitMetersCubed := 16#0E, (* VOLUME *)
eDMXSensorUnitKilogrammesPerMeterCubed := 16#0F, (* DENSITY *)
eDMXSensorUnitMetersPerSecond := 16#10, (* VELOCITY *)
eDMXSensorUnitMetersPerSecondSquared = 1lo#11, (* ACCELERATION *)
eDMXSensorUnitNewton := 16#12, (* FORCE *)
eDMXSensorUnitJoule = 16#13, (* ENERGY *)
eDMXSensorUnitPascal = lo#14, (* PRESSURE *)
eDMXSensorUnitSecond = 1l6#15, (* TIME ¥*)
eDMXSensorUnitDegree = lo#le6, (* ANGLE *)
eDMXSensorUnitSteradian = 1lo6#17, (* ANGLE *)
eDMXSensorUnitCandela = 16#18, (* LUMINOUS INTENSITY *)
eDMXSensorUnitLumen = 16#19, (* LUMINOUS FLUX *)
eDMXSensorUnitLux = lo#1A, (* ILLUMINANCE *)
eDMXSensorUnitIre = 16#1B, (* CHROMINANCE *)
eDMXSensorUnitByte = 16#1C (* MEMORY *)

)i

END_TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT 2.11 R3/x64 higher than
Build 2256

PC/CX

TcDMX-library higher than V1.3.0

5.36.10

TYPE E DMXSensorUnitPrefix
(

E_DMXSensorUnitPrefix

(* Table A-14 ¥*)

eDMXSensorUnitPrefixNone := 16#00, (* Multiply by 1 *)
eDMXSensorUnitPrefixDeci := 16#01, (* Multiply by 107-1 *)
eDMXSensorUnitPrefixCenti = 16402, (* Multiply by 107-2 *)
eDMXSensorUnitPrefixMilli = 16#03, (* Multiply by 107-3 *)
eDMXSensorUnitPrefixMicro := 16#04, (* Multiply by 107%-6 *)
eDMXSensorUnitPrefixNano := 16#05, (* Multiply by 107-9 *)
eDMXSensorUnitPrefixPico = 16406, (* Multiply by 107-12 ¥*)
eDMXSensorUnitPrefixFempto = 16407, (* Multiply by 107-15 %)
eDMXSensorUnitPrefixAtto = 16#08, (* Multiply by 107-18 *)
eDMXSensorUnitPrefixZepto := 16#09, (* Multiply by 107-21 *)
eDMXSensorUnitPrefixYocto := 16#0A, (* Multiply by 107-24 ¥*)
eDMXSensorUnitPrefixDeca = lo#11, (* Multiply by 1071 *)
eDMXSensorUnitPrefixHecto = le#l12, (* Multiply by 1072 *)
eDMXSensorUnitPrefixKilo := 16#13, (* Multiply by 1073 *)
eDMXSensorUnitPrefixMega = 16#14, (* Multiply by 1076 *)
eDMXSensorUnitPrefixGiga = 1l6#15, (* Multiply by 1079 *)
eDMXSensorUnitPrefixTerra = le#le6, (* Multiply by 10712 *)
eDMXSensorUnitPrefixPeta = 16#17, (* Multiply by 10715 *)
eDMXSensorUnitPrefixExa := 16#18, (* Multiply by 10718 *)
eDMXSensorUnitPrefixZetta = 16#19, (* Multiply by 10721 *)
eDMXSensorUnitPrefixYotta = 1l6#1A (* Multiply by 10724 *)

)

END TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0

Build 2256

62

Version: 1.2

TX1200

BECKHOFF

Programming

5.36.11

TYPE E DMXSlotDefinition
(
(* Intensity Functions / 0x00xx *)

E_DMXSIlotDefinition

(* Table C-2 *)

eDMXSlotDefinitionIntensity := 16#0001, (* Intensity *)
eDMXSlotDefinitionIntensityMaster := 16#0002, (* Intensity Master *)
(* Movement Functions / 0x0lxx *)
eDMXSlotDefinitionPan := 16#0101, (* Pan *)
eDMXSlotDefinitionTilt = 16#0102, (* Tilt *)
(* Color Functions / 0x02xx *)
eDMXSlotDefinitionColorWheel := 16#0201, (* Color Wheel ¥*)
eDMXSlotDefinitionColorSubCyan := 16#0202, (* Subtractive Color Mixer - Cyan/Blue ¥*)
eDMXSlotDefinitionColorSubYellow := 16#0203, (* Subtractive Color Mixer - Yellow/Amber *)
eDMXSlotDefinitionColorSubMagenta := 16#0204, (* Subtractive Color Mixer - Magenta *)
eDMXSlotDefinitionColorAddRed := 16#0205, (* Additive Color Mixer - Red *)
eDMXSlotDefinitionColorAddGreen := 16#0206, (* Additive Color Mixer - Green *)
eDMXSlotDefinitionColorAddBlue := 16#0207, (* Additive Color Mixer - Blue *)
eDMXSlotDefinitionColorCorrection := 16#0208, (* Color Temperature Correction *)
eDMXSlotDefinitionColorScroll := 16#0209, (* Color Scroll *)
eDMXSlotDefinitionColorSemaphore := 16#0210, (* Color Semaphore *)
(* Image Functions / 0x03xx *)
eDMXSlotDefinitionStaticGoboWheel := 16#0301, (* Static gobo wheel *)
eDMXSlotDefinitionRotoGoboWheel := 16#0302, (* Rotating gobo wheel ¥*)
eDMXSlotDefinitionPrismWheel := 16#0303, (* Prism wheel *)
eDMXSlotDefinitionEffectsWheel := 16#0304, (* Effects wheel *)
(* Beam Functions / 0x04xx *)
eDMXSlotDefinitionBeamSizeIris := 16#0401, (* Beam size iris *)
eDMXSlotDefinitionEdge := 16#0402, (* Edge/Lens focus *)
eDMXSlotDefinitionFrost := 16#0403, (* Frost/Diffusion *)
eDMXSlotDefinitionStrobe := 16#0404, (* Strobe/Shutter *)
eDMXSlotDefinitionZoom := 16#0405, (* Zoom lens *)
eDMXSlotDefinitionFramingShutter := 16#0406, (* Framing shutter *)
eDMXSlotDefinitionShutterRotate := 16#0407, (* Framing shutter rotation *)
eDMXSlotDefinitionDouser := 16#0408, (* Douser *)
eDMXSlotDefinitionBarnDoor := 16#0409, (* Barn Door ¥*)
(* Control Functions / 0x05xx *)
eDMXSlotDefinitionLampControl := 16#0501, (* Lamp control functions *)
eDMXSlotDefinitionFixtureControl = 16#0502, (* Fixture control channel *)
eDMXSlotDefinitionFixtureSpeed = 1640503, (* Overall speed setting applied to multiple or a

11 parameters ¥*)
eDMXSlotDefinitionMacro := 16#0504, (* Macro control *)
eDMXSlotDefinitionUndefined := 16#FFFF (* No definition *)

)i

END TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT 2.11 R3/x64 higher than
Build 2256

PC/CX

TcDMX-library higher than V1.3.0

5.36.12

TYPE E DMXSlotType
(

(* Table C-1 *)

eDMXSlotTypePrinary =0, (=
bit parameters) *)
eDMXSlotTypeSecFine =1, (*
eDMXSlotTypeSecTiming = 2,
eDMXSlotTypeSecSpeed = 3, (&
eDMXSlotTypeSecControl = 4,
eDMXSlotTypeSecIndex s= 5, (=
eDMXSlotTypeSecRotation 1= 6,
eDMXSlotTypeSecIndexRotate =17,
eDMXSlotTypeSecUndefined = 255

);
END_ TYPE

E_DMXSIlotType

Slot directly controls parameter

Fine,

for 16-

(represents Coarse for 16-

bit parameters *)

(* Slot sets timing value for associated parameter *)
Slot sets speed/velocity for associated parameter *)

(* Slot provides control/mode info for parameter *)
Slot sets index position for associated parameter *)

(* Slot sets rotation speed for associated parameter *)

(* Combined index/rotation control *)

(* Undefined secondary type *)

TX1200

Version: 1.2 63

Programming

BECKHOFF

Requirements

Development environment Target system type

PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX
Build 2256

TcDMX-library higher than V1.3.0

5.36.13 E_DMXStatusType

TYPE E_DMXStatusType : (* Table A-4 ¥*)

(
eDMXStatusTypeNone = 16400,
eDMXStatusTypeGetLastMessage := 16#01,
eDMXStatusTypeAdvisory = 16402,
eDMXStatusTypeWarning = 16403,
eDMXStatusTypeError = 1lo6#04,
eDMXStatusTypeAdv1soryCleared = le#12,
eDMXSensorTypeWarningCleared = 1l6#13,
eDMXSensorTypeErrorCleared = 16#14

)i

END_ TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX
Build 2256

TcDMX-library higher than V1.3.0

5.36.14 ST_DMX512Personality

TYPE ST DMX512Personality :

STRUCT
byCurrentPersonality : BYTE;
byTotalPersonalities 3 BTG 2
END_STRUCT
END_TYPE

5.36.15 ST_DMX512PersonalityDescription

TYPE ST DMX512PersonalityDescription :

STRUCT
iDMX512SlotsRequired : INT;
sDescription : STRING;
END_STRUCT
END_TYPE

5.36.16 ST_DMXCommandBuffer

TYPE ST DMXCommandBuffer :

STRUCT
arrMessageQueue : ST DMXMessageQueue;
stResponseTable : ST_DMXResponseTable;
byTransactionNumber : BYTE;

END_STRUCT

END TYPE

Also see about this
ST_DMXMessageQueue [65]
ST _DMXResponseTable [66]

64 Version: 1.2

TX1200

BECKHOFF

Programming

5.36.17 ST_DMXDevicelnfo

TYPE ST DMXDevicelInfo

STRUCT
uliUID
stRDMProtocolVersion
uiDeviceModelId
stProductCategory
udiSoftwareVersionId
uiDMX512Footprint
stDMX512Personality
uiDMX512StartAddress
uiSubDeviceCount
bySensorCount

END_STRUCT

END_TYPE

Also see about this
ST _DMXMac [65]

[y [y [

ST DMXMac;

ST DMXRDMProtocolVersion;
UINT;
ST_DMXProductCategory;
UDINT;

UINT;

ST DMX512Personality;
UINT;

UINT;

BYTE;

ST_DMXRDMProtocolVersion [66]
ST_DMXProductCategory [66]
ST _DMX512Personality [64]

5.36.18 ST_DMXMac

TYPE ST DMXMac

STRUCT
wHighPart : WORD;
dwLowPart : DWORD;
END STRUCT
END TYPE

(* Manufacturer ID / Higher word ¥*)
(* Device ID / Lower double word *)

5.36.19 ST_DMXMessageQueue

TYPE ST DMXMessageQueue

STRUCT
arrBuffer
byBufferReadPointer
byBufferWritePointer
byBufferDemandCounter
byBufferMaximumDemandCo
uiBufferOverflowCounter
bLockSemaphore

END_STRUCT

END TYPE

Also see about this

ARRAY [1..20] OF ST DMXMessageQueueltem;

BYTE;

BYTE;

: BYTE;

unter : BYTE;
: UINT;

BOOL;

ST_DMXMessageQueueltem [65]

5.36.20 ST_DMXMessageQueueltem

TYPE ST DMXMessageQueuelt

STRUCT
bEntryIsEngaged
byMessageLength
wDestinationManufacture
dwDestinationDevicelId
byTransactionNumber
byPortId
byMessageCount
wSubDevice
byCommandClass
wParameterId
byParameterDatalength
arrParameterData
bWaitingForDMXSlaveResp

END_STRUCT

END TYPE

em

BOOL;

: BYTE;
rId : WORD;
: DWORD;
BYTE;
BYTE;
BYTE;
WORD;
BYTE;
WORD;
BYTE;

ARRAY [0..255] OF BYTE;

onse : BOOL;

TX1200

Version: 1.2

65

Programming BEGKHOFF

5.36.21 ST_DMXParameterDescription

TYPE ST DMXParameterDescription

STRUCT
byParameterDatalength : BYTE;
eDataType : E DMXDataType;
ePDCommandClass : E DMXParameterDescriptionCommandClass;
eType : E_DMXSensorType;
eUnit : E DMXSensorUnit;
eUnitPrefix : E DMXSensorUnitPrefix;
dwMinvValidvValue : DWORD;
dwMaxValidValue : DWORD;
dwDefaultValue : DWORD;
sDescription : STRING;

END_STRUCT

END TYPE

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

Also see about this

E_DMXDataType [57]
E_DMXParameterDescriptionCommandClass [58]
E_DMXSensorType [61]

E_DMXSensorUnit [61]
E_DMXSensorUnitPrefix [62]

5.36.22 ST_DMXProductCategory

TYPE ST DMXProductCategory :

STRUCT
byCoarse : BYTE;
byFine : BYTE;
END STRUCT
END TYPE

5.36.23 ST_DMXRDMProtocolVersion

TYPE ST DMXRDMProtocolVersion

STRUCT
byMajorVersion : BYTE;
byMinorVersion : BYTE;
END_ STRUCT
END_TYPE

5.36.24 ST_DMXResponseTable

TYPE ST DMXResponseTable

STRUCT
arrResponseTable : ARRAY [1..20] OF ST_DMXResponseTableItem;
byResponseTableCounter : BYTE;
byResponseTableMaxCounter : BYTE;
uiResponseTableOverflowCounter : UINT;
bLockSemaphore : BOOL;
END_STRUCT
END_TYPE

Also see about this
ST_DMXResponseTableltem [67]

66 Version: 1.2 TX1200

BECKHOFF

Programming

5.36.25 ST_DMXResponseTableltem

TYPE ST DMXResponseTableItem

STRUCT
bEntryIsEngaged : BOOL;
uiErrorId : UINT;
iErrorParameter . INT;
byMessageLength : BYTE;
wDestinationManufacturerId : WORD;
dwDestinationDeviceId : DWORD;
wSourceManufacturerId : WORD;
dwSourceDeviceId : DWORD;
byTransactionNumber : BYTE;
byResponseType : BYTE;
byMessageCount : BYTE;
wSubDevice : WORD;
byCommandClass 3 BTG 2
wParameterId : WORD;
byParameterDataLength : BYTE;
arrParameterData : ARRAY [0..255] OF BYTE;

END STRUCT

END TYPE

5.36.26 ST_DMXSensorDefinition

TYPE ST DMXSensorDefinition

STRUCT
eSensorType E_DMXSensorType;
eSensorUnit E DMXSensorUnit;
eSensorUnitPrefix E_DMXSensorUnitPrefix;
iRangeMinimumValue : INT;
iRangeMaximumValue : INT;
iNormalMinimumValue : INT;
iNormalMaximumValue : INT;
byRecordValueSupport : BYTE;
sDescription : STRING;

END STRUCT

END TYPE

Requirements

Development environment Target system type

PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX
Build 2256

TcDMX-library higher than V1.3.0

Also see about this
E_DMXSensorType [61]
E_DMXSensorUnit [61]
E_DMXSensorUnitPrefix [62]

5.36.27 ST_DMXSensorValue

TYPE ST DMXSensorValue

STRUCT
iPresentValue : INT;
iLowestDetectedValue : INT;
iHighestDetectedValue : INT;
iRecordedValue : INT;

END_STRUCT

END TYPE

5.36.28 ST_DMXSIotInfo

TYPE ST DMXSlotInfo

STRUCT
bEntryIsvalid : BOOL;
eSlotType : E_DMXSlotType;

TX1200 Version: 1.2

67

Programming

BECKHOFF

eSlotDefinition : E_DMXSlotDefinition;
END_STRUCT
END_TYPE

Requirements

Development environment Target system type

PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX
Build 2256

TcDMX-library higher than V1.3.0

Also see about this
E_DMXSlotType [63]
E_DMXSlotDefinition [63]

5.36.29 ST_DMXStatusMessage

TYPE ST DMXStatusMessage

STRUCT
bEntryIsvValid : BOOL;
iSubDeviceld : INT;
eStatusType : E_DMXStatusType;
iStatusMessageId : INT;
iDatavValueO1l : INT;
iDataValue02 : INT;

END_STRUCT

END_TYPE

Requirements

Development environment Target system type

PLC libraries to include

TwinCAT 2.11 R3/x64 higher than |PC/CX
Build 2256

TcDMX-library higher than V1.3.0

Also see about this
E_DMXStatusType [64]

5.36.30 ST_EL6851InData

TYPE ST EL6851InData

STRUCT
bTransmitAccepted : BOOL;
bReceiveToggle : BOOL;
bCyclicTxDDisabled : BOOL;
bDefaultDataSent : BOOL;
bFrameSentToggle : BOOL;
bTxPDOToggle : BOOL;
wChannelLength : WORD;
byStartCode : BYTE;
byDummy : BYTE;
arrData : ARRAY [1..64] OF BYTE;

END_STRUCT

END_TYPE

5.36.31 ST_EL6851InDataEx

TYPE ST EL6851InDataEx :

STRUCT
bTransmitAccepted : BOOL;
bReceiveToggle : BOOL;
bCyclicTxDDisabled : BOOL;
bDefaultDataSent : BOOL;
bFrameSentToggle : BOOL;
bTxPDOToggle : BOOL;
wChannellLength : WORD;
byStartCode : BYTE;
68 Version: 1.2 TX1200

BECKHOFF

Programming

byDummyl : BYTE;

arrData : ARRAY [1..64] OF BYTE;

bWcState : BOOL;

bInputToggle : BOOL;

uiState : UINT;

stAdsAddr : ST_EL6851AdsAddr;
END_STRUCT
END TYPE

Requirements

Development environment Target system type PLC libraries to include
TwinCAT 2.11 R3/x64 higher than |PC/CX TcDMX-library higher than V1.3.0
Build 2256

5.36.32 ST_EL68510utData

TYPE ST EL68510OutData :

STRUCT
bTransmitRequest : BOOL;
bDisableCyclicTxD : BOOL;
bSendDefaultData : BOOL;
byDummyl : BYTE;
wChannelLength : WORD;
byStartCode : BYTE;
byDummy2 : BYTE;
arrData : ARRAY [1..512] OF BYTE;

END STRUCT

END TYPE

5.37

Error codes

Error codes of TwinCAT PLC Library TcDMX

Value Value Description

(hex) (dec)

0x0000 0 No error.

0x8001 32769 No answer from the DMX terminal.

0x8002 32770 No answer from the DMX device.

0x8003 32771 Communication buffer overflow.

0x8004 32772 No answer from the communication block.

0x8005 32773 The byPortld parameter is outside the valid range.

0x8006 32774 Checksum error.

0x8007 32775 The eResetDeviceType parameter is outside the valid range.

0x8008 32776 Timeout.

0x8009 32777 The uliLowerBoundUID parameter is larger than the uliUpperBoundUID parameter.

0x800A 32778 No RDM commands can be transmitted because the terminal is in cycle mode.

0x800B 32779 The iDMX512StartAddress parameter is outside the valid range (1 - 512).

0x800C 32780 Error in setting the DMX512 start address.

0x800D 32781 No process data can be transmitted because the terminal is not in cycle mode.

0x800E 32782 It is a RDM telegram received with the data length 0.

0x800F 32783 RDM response: Reply of the RDM telegram is invalid.

0x8010 32784 RDM response: The DMX slave cannot comply with request because the message is
not implemented in responder.

0x8011 32785 RDM response: The DMX slave cannot interpret request as controller data was not
formatted correctly.

0x8012 32786 RDM response: The DMX slave cannot comply due to an internal hardware fault.

0x8013 32787 RDM response: Proxy is not the RDM line master and cannot comply with message.

TX1200 Version: 1.2 69

Programming BEGKHOFF

Value Value Description
(hex) (dec)

0x8014 32788 RDM response: SET Command normally allowed but being blocked currently.

0x8015 32789 RDM response: Not valid for Command Class attempted. May be used where GET
allowed but SET is not supported.

0x8016 32790 RDM response: Value for given Parameter out of allowable range or not supported.
0x8017 32791 RDM response: Buffer or Queue space currently has no free space to store data.
0x8018 32792 RDM response: Incoming message exceeds buffer capacity.

0x8019 32793 RDM response: Sub-Device is out of range or unknown.

0x801A 32794 The iDMX512SlotOffset parameter is outside the valid range (0-511).

0x801B 32795 The bySensorNumber parameter is outside the valid range (0-254).

0x801C 32796 RDM-Response: The field Parameter Data (PD) is too long. It was not possible to
receive all the data of the reply. For this purpose, the function block

FB EL6851CommunicationEx() [»_22] must be used.

0x801D 32797 The ADS address to access the PDOs is invalid. Was the structure AdsAddr of the
KL6851 mapped to the corresponding variable?

0x801E 32798 During read access to the PDOs an ADS error has occurred.

70 Version: 1.2 TX1200

BEGKHOFF Appendix

6 Appendix

6.1 Transmission of cyclic process data as DMX master
(EL6851)

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147/.zip https://
infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147/.zip

Starting the example program

The application examples have been tested with a test configuration and are described accordingly. Certain
deviations when setting up actual applications are possible.

The following hardware and software was used for the test configuration:

* TwinCAT master PC with TwinCAT version 2.11 (Build 2229) or newer and INTEL PRO/100 VE
Ethernet adapter

» Beckhoff EtherCAT Coupler EK1100, EL6851 [P 75] and EL9011 Terminals
+ RGB-LED DMX slave with 3 channels (one for each colour). One slot is occupied per channel.

The DMX slave is to be wired in accordance with the connection diagram [»_75].

Procedure for starting the program

+ Save the https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147/.zip for the
TwinCAT System Manager and the PRO file for TwinCAT PLC Control https://infosys.beckhoff.com/
content/1033/tcplclibdmx/Resources/11977739147/.zip

locally on your hard drive.

« Start the *.TSM file and the *.PRO file; the TwinCAT System Manager and TwinCAT PLC Control
open.

» Connect the hardware in accordance with fig. 1 and connect the Ethernet adapter of your PC to the
EtherCAT coupler (further information on this can be found in the corresponding coupler manuals)

» Select the local Ethernet adapter (with real-time driver, if one) under System configuration, /O
configuration, 1/0 devices, Device (EtherCAT); on the "Adapter" tab choose "Search...", select the
appropriate adapter and confirm (see Fig. 2a + 2b)

TX1200 Version: 1.2 71

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977739147.zip

Appendix

BECKHOFF

T Exampletsm - TwinCAT System Manager !El E

File Edit Actions Wiew Options Help

I I

v # B ABELE| B BQ2 w0 e €D

- Bl S¥STEM - Configuration
| MC - Configuration
PLC - Configuration
2 Cam - Configuration
- I} - Configuration
£ B8 1/0 Devices
(-5 Device 5 (EtherCAT)
: -I- Device 5-Image
=$= Device S-Image-Info
@T Inputs
‘l Oukputs
% InfoData
E-[H Term 4 (EK1100)
% InfoData
£ Terms [ELEES1)
=M Term 7 [ELS01T)
E-§8 Mappings

General Adapter IEthelE.ﬁ.T I Dnlinel CcE - Dnlinel

D ezcription: IFCSDEI4_4 (Intel(R] PROA00 S Desktop Adapter #13 - Paketplaner-td
Device Name: |\DEVI CE%{ED124EDA-299C-4E D B-BCH1-03E CBI0CBE 25}

MALC Address: IEIEI 01 0501 05 &1 Search...

IF &ddress: |‘I 72.16.8.10(255.255.255.0) Compatible Devices... I
Freerun Cycle (msl. |4 =

[~ Promiscuous Mode [uze with Metmon/E thereal only]

[Wirtual Device Mames [TwinGAT +2.10 b1260 required)

Local (172.16.6,49,1,1) [sEgiegglea

4

Fig. 2a: Searching the Ethernet adapter

Device Found At

f-werbindung 2 (Intel[R] PROA00 S-kMobiladapter - Paketplaner-tin
LaM-Aerthindung 7 [T eamviewer VPM Adapter #2 - Paketplaner-tinipar Cancel
TeamYiewer WPH [Teamiiewer YPH Adapter - Paketplaner-tiniport]

Fig. 2b: Selection and confirmation of the Ethernet adapter

 Activation of the configuration and confirmation (Fig. 3a +3b)

72

Version: 1.2

TX1200

BEGKHOFF Appendix

e
u LE

|Jﬁ@;

| EtherCAT | Oriine | CoE -

IFEEIEIEI#_# (Intel(R] PRO/

[\ MFIPE S F M PAF Ma e

Fig. 3a: Activation of the configuration

TwinCAT System Manager

\;:/ Activate Configuration

10ld Configurations will be overwritten!)

K i | Cancel |

Fig. 3b: Confirming the activation of the configuration

» Confirming new variable mapping, restart in RUN mode (Fig. 4a + 4b)

TwinCAT System Manager E |

4 Document is modified!
"-."/ Generake mapping before ackivate configuration?

Yes Mo | Cancel |

Fig. 4a: Generating variable mapping

TwinCAT System Manager |

? J Restart TwinCAT System in Run Mode
.

ok il Cancel |

Fig. 4b: Restarting TwinCAT in RUN mode

e In TwinCAT PLC Control, under the ‘Project’ menu, select ‘Compile all' to compile the project (Fig. 5)

TX1200 Version: 1.2 73

Appendix BEGKHOFF

~ = TwinCAT PLC Control - [MAIN (PRG-ST)]

File Edit | Project Insett Extras Online ‘Window Help

o |z| _ Buid Chrl+Fg

=rrm Clean all Il

Load download information. . .

Chject 3
Project database 3

options. ..

Translate inko other languages r

Document. ..
Export...

Fig. 5: Compile project

* In TwinCAT PLC Control: log in with the "F11" button, confirm loading the program (Fig. 6), run the
program with the "F5" button

TwinCAT PLC Control |

\.‘i) Mo program on the controller! Download the new program?

Yes Mo | Cancel |

Fig. 6: Confirming program start

74 Version: 1.2 TX1200

BEGKHOFF Appendix

Visualization

DMX 512 Light Control

108 220 186

N D | e

Speed: 143

< Ld

Fig. 7: Specification of the setting variables for the three colours of the DMX slave in TwinCAT PLC Control

The example transmits the DMX data cyclically to a DMX slave. The DMX device used here occupies three
slots (bytes) in the DMX 512 frame. Each slot addresses one of the three colours. If the ‘Start/Stop’ button is
pressed, then automatically generated data is transmitted to the DMX device. The speed of the changes can
be altered using the horizontal slide control. If the 'Start/Stop’ button is not pressed, you can change the
values manually using the three vertical slide controls.

6.2 Receipt of 64 bytes data to two DMX slaves
(EL6851-0010) in each case

Unpacking the example files [P _75] https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/
11977740555/.zip

TX1200 Version: 1.2 75

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977740555.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977740555.zip

Appendix

BECKHOFF

=5 DM Slave 2 (ELESS1-0010)
- 83T DM Skatus

&1 DM Channel 1-64
&1 DM Channel £5-128
&1 DM Channel 129-192
-~ &7 DM Channel 193-256
-~ &1 DM Channel 257-320
&7 DM Channel 321-354
&7 DM Channel 385-448
&1 DM Channel 449-512
-8 Westate

-8 IrfoData

o
o N e R e e S R e

Fig. 3: 8 arrays each with 64 bytes, full range (all PDO activated)

The EL6851-0010 [P _75] is able to read max. 512 bytes (64 bytes in eight arrays in each case, see fig. 3). The

arrays can assigned via PDO 0x1C13 in the TwinCAT System Manger (tab "process data").

Example:

DMX Channel 1 - 64 - > Index 0x1A01
DMX Channel 65 - 128 -> Index 0x1A02

DMX Channel 449 - 512 -> Index Ox1A08

= Term 1 ({EK1100)
- § InfoData
-EH DM Master (ELEES1)
SR WO Slave 1 (EL63S1-0010)
|- T DM Status

- 4T DMx Channel 1-64

[Wwratate
-8 InfoData

DM Slave 2 (EL6851-0010)
- &7 DM Status
- &1 DM Channel 65-123
- Westate
- & InfoData

Term 15 (EL9011)

o
ks

[_:l..

[+

[+

[+

[y

[+ | »]
PDO Aszignment (01121 3):

Ox1A00 -
Ox1A07

[0=1402

[0=1A03

] 0=1A04

[0=1A05 LI

Dowwnload
|7 ¥ PDO Assignment
[PDO Configuration

Fig. 4: DMX Channel 1 - 64 (default), select PDO 0x1A01

76

Version: 1.2

TX1200

BEGKHOFF Appendix

= Term 1 (EK1100) |
-8 Infolata L] |+

&M DMy Master (EL6ES1) _ _
-5 DM Slave 1 (ELE851-0010) Red esonment Mk |

- &g DM Skatus D A0 7
G- 8T DMy Channel 1-64 [0x1401
- Westate] Ol 12
‘ InfoDatka [0x1403
=Rl O Slave 2 (EL6851-0010)] 01404
[+ 4T DM Status [01405 |
| -8 DM Channel 65-128
- § Wwootate Download
-8 InfoData V¥ FDO Aszsignmert
~H| Term 15 (EL9011) [PDO Configuration

Fig. 5: DMX Channel 65 - 128, select PDO 0x1A02

In the sample program the first DMX slave receives the first sent 64 bytes and the second one the next 64
bytes (fig. 4+ 5, it is possible to receive all 128 bytes with one EL6851-0010, the segmentation in the
example is deliberately selected).

- 4T DM Skatus

¢l Receive toggle
----- %1 Framing error
----- T overrun error
----- %1 TxPDO State
----- &1 TxPDO Toggle
¢l Channel length
----- w1 start code

Abb. 6: DMX status object

In the DMX status object (Index 0x6000, "DMX-Status", fig. 6) a copy counter is established with Index
0x6000:11 ("Channel length").

Example: If the PDO 0x1A01 is activated, the value of "Channel length" is 64,... If the PDO 0x1A02 is
activated, the value is 128,,. If both PDOs are activated (0x1A01 and 0x1A02) the value is also 128,,.

TX1200 Version: 1.2 77

Appendix

BECKHOFF

2 TwinCAT PLC Control - EL6581-0010.pro™ - [EL6&51_0010]
Datei Eearbeiten Projekk Einflgen Extras Online Fenster Hilfe

2=8| B|@ledlS S5

=4 Baustsine
B3 Fes

(2] DMX_Master [PREG)

: IM_Slave_1 [PRG)
-[E] DMA_Slave_2 [PRE)
*-[E] MAIN [PRG]

l

F[Z] th_Moritor_ToggleBit (FE

Q Watchdog Dhix Slave 1

Dhd_Slawve_1.DkA_DATA[INDES]

16471

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

| »

16400

He [*=2o @V [5R]

R R T T T T
Hmm_hwm_.‘:mmwmmkmm—l

16400

L

Q Watchdog Dhx Slave 2

Dhdx_Slawve_2.0Okx_DATAINDEX] ﬂ

16#71

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

16400

e e P B B B iy
Hmm_hwm_.‘:mmwmm.hmm—ﬂ

16400

T

[Target: Local (172 16.6.49.1.1), Laufzeit 1 [OMLINE: [5in [BENEN [EF [FORCE [(E

Fig. 6: Visualization example 3 in the TwinCAT PLC

DMX Slave 1 receives 64 bytes data on channel 1 of the first array ("DMX Channel 1 - 64")

DMX Slave 1 receives 64 bytes data on channel 1 of the second array ("DMX Channel 65 - 128")

The "Receive toggle" Bit (Index 0x6000:02) is evaluated with the FB "fb_Monitor_ToggleBit" and displayed in
the PLC visualization (Watchdog DMX Slave).

6.3 Configuration of DMX slaves via Remote Device

Management (RDM)

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977741963/.zip https://
infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977741963/.zip

78

Version: 1.2

TX1200

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977741963.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977741963.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977741963.zip

BEGKHOFF Appendix

Device UID & DMX Discovery
00506810B73033 (without Addressing)
00506810BC8026 |]
00506810BC8035 DMX Discovery

(with Addressing)

Founded Dk Devices: 3
Search UID Lower Bound: 0x506810BC3035
search UID Upper Bound: OxFFFFFFFFFFFF

|dentify OFF

Change Start Address

Slave Number: 2
Start Address: 4

IS e N e I BTN

« Size:3 EtherCAT OK - ()

Fig. 2: Visualization example 2 in the TwinCAT PLC

® EtherCAT functionality

The dialogue is only functioning when the ‘EtherCAT OK’ LED lights up green. A red LED indicates
a fault in the EtherCAT communication.

DMX slaves are sought on the DMX line with the 'DMX Discovery (without Addressing)' button. All DMX
slaves found are displayed in the list on the left. An entry is selected by clicking it. After confirming 'ldentify’,
the RDM command is sent to identify the respective DMX device. The start address can be entered in the
input field adjacent to the 'Change Start Address' button. After pressing the button, the new start address will
be transmitted to the selected DMX device. The number of the DMX device, the start address in the DMX512
frame and the slot size (number of bytes in the DMX frame) for the selected device are displayed in the lower
area.

6.4 DMX-Master with BC9191-0100

This example describes an simple PLC program how to communicate with DMX devices.
The three analog values of the BC9191-0100 analog inputs are read and then output to the DMX channels
1-3 with the DMX interface of terminal strip X1.

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977743371/.zip https://
infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977743371/.zip

Hardware

Setting up the components

The following hardware is required:

TX1200 Version: 1.2 79

https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977743371.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977743371.zip
https://infosys.beckhoff.com/content/1033/tcplclibdmx/Resources/11977743371.zip

Appendix BEGKHOFF

e 1x Bus Terminal Controller BC9191 with RS485
* 1x end terminal KL9010
¢ 1x DMX device

DMX assignment
Terminal strip X1 3-pol. XLR socket 5-pol. XLR socket
X1 /15 (ground/screen) Pin 1 Pin 1
X1/17 (DMX +) Pin 3 Pin 3
X1/18 (DMX -) Pin 2 Pin 2
DMX-Lampea
- DMX
| S)
4.6 '
3210 kD Poli

Set up the DMX devices as described in the associated documentation.

Software

Explanations concerning the PLC program can be found as comments in the source code.

6.5 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

80 Version: 1.2 TX1200

https://www.beckhoff.com/support
https://www.beckhoff.com

BEGKHOFF Appendix

e support
+ design, programming and commissioning of complex automation systems
 and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com
Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
* spare parts service
* hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20

33415 Verl

Germany

Phone: +49 5246 963 0

Fax: +49 5246 963 198

e-mail: info@beckhoff.com

web: https://www.beckhoff.com

TX1200 Version: 1.2 81

https://www.beckhoff.com

More Information:
www.beckhoff.com/tx1200

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TX1200
https://www.beckhoff.com
https://www.beckhoff.com/tx1200

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Target groups
	3 DMX
	4 Integration into TwinCAT (CX9020)
	5 Programming
	5.1 Overview function blocks
	5.2 FB_DMXDiscovery
	5.3 FB_DMXDiscovery512
	5.4 FB_DMXSendRDMCommand
	5.5 FB_EL6851Communication
	5.6 FB_EL6851CommunicationEx
	5.7 FB_DMXGetIdentifyDevice
	5.8 FB_DMXSetIdentifyDevice
	5.9 FB_DMXSetResetDevice
	5.10 FB_DMXDiscMute
	5.11 FB_DMXDiscUniqueBranch
	5.12 FB_DMXDiscUnMute
	5.13 FB_DMXGetLampHours
	5.14 FB_DMXGetLampOnMode
	5.15 FB_DMXSetLampHours
	5.16 FB_DMXSetLampOnMode
	5.17 FB_DMXGetDeviceInfo
	5.18 FB_DMXGetDeviceLabel
	5.19 FB_DMXGetDeviceModelDescription
	5.20 FB_DMXGetManufacturerLabel
	5.21 FB_DMXGetProductDetailIdList
	5.22 FB_DMXGetSoftwareVersionLabel
	5.23 FB_DMXSetDeviceLabel
	5.24 FB_DMXClearStatusId
	5.25 FB_DMXGetStatusIdDescription
	5.26 FB_DMXGetStatusMessages
	5.27 FB_DMXGetParameterDescription
	5.28 FB_DMXGetSupportedParameters
	5.29 FB_DMXGetSensorDefinition
	5.30 FB_DMXGetSensorValue
	5.31 FB_DMXGetDMX512PersonalityDescription
	5.32 FB_DMXGetDMX512StartAddress
	5.33 FB_DMXGetSlotDescription
	5.34 FB_DMXGetSlotInfo
	5.35 FB_DMXSetDMX512StartAddress
	5.36 Data types
	5.36.1 E_DMXCommandClass
	5.36.2 E_DMXDataType
	5.36.3 E_DMXLampOnMode
	5.36.4 E_DMXParameterDescriptionCommandClass
	5.36.5 E_DMXParameterId
	5.36.6 E_DMXProductDetail
	5.36.7 E_DMXResetDeviceType
	5.36.8 E_DMXSensorType
	5.36.9 E_DMXSensorUnit
	5.36.10 E_DMXSensorUnitPrefix
	5.36.11 E_DMXSlotDefinition
	5.36.12 E_DMXSlotType
	5.36.13 E_DMXStatusType
	5.36.14 ST_DMX512Personality
	5.36.15 ST_DMX512PersonalityDescription
	5.36.16 ST_DMXCommandBuffer
	5.36.17 ST_DMXDeviceInfo
	5.36.18 ST_DMXMac
	5.36.19 ST_DMXMessageQueue
	5.36.20 ST_DMXMessageQueueItem
	5.36.21 ST_DMXParameterDescription
	5.36.22 ST_DMXProductCategory
	5.36.23 ST_DMXRDMProtocolVersion
	5.36.24 ST_DMXResponseTable
	5.36.25 ST_DMXResponseTableItem
	5.36.26 ST_DMXSensorDefinition
	5.36.27 ST_DMXSensorValue
	5.36.28 ST_DMXSlotInfo
	5.36.29 ST_DMXStatusMessage
	5.36.30 ST_EL6851InData
	5.36.31 ST_EL6851InDataEx
	5.36.32 ST_EL6851OutData

	5.37 Error codes

	6 Appendix
	6.1 Transmission of cyclic process data as DMX master (EL6851)
	6.2 Receipt of 64 bytes data to two DMX slaves (EL6851-0010) in each case
	6.3 Configuration of DMX slaves via Remote Device Management (RDM)
	6.4 DMX-Master with BC9191-0100
	6.5 Support and Service

		documentation@beckhoff.com
	2022-10-25T14:33:01+0200
	Beckhoff Automation, Verl
	Documentation Publishing

