BECKHOFF

TX1000

TwinCAT 2 | ADS OCX

TwinCAT 2 | Connectivity

48 ‘\‘ ;
) 11k 4 4
- 1, &l =42

2022-10-06 | Version: 1.1

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 7
1.1 Notes on the doCUMENTALION ... e e e e e 7
1.2 SafEtY INSITUCHIONS ...ttt e e e e e e e e e e eeeaaeeeeesesannsanrnneeaeaeens 8
1.3 Notes on infOrmation SECUNITYcooi i 9

2 ACCESS tO the ADS AEVICEScoiiiieeiieriieereereree e e ees e e e re s e e e e s ssm e e e e e s smn e e e e e s mn e e e e s smn e e e s s s nnn e e e s e nmnees 10

3 Manual installation of the ADS OCX.......ciiiicrirrirrrrrersssssreerssssssrerssssssreessssssseesssssssseesesssssseessssssssesaasas 12

Y SRS 13
g B o 1= =T = | PR UT S 13

411 Y oo 1011 =]) PRSP 13
4.1.2 AdSAMSDISCONNECT ...ttt e e e e e e et e e e e e e e e e e e e e e neeeeeeeaaaeens 13
4.1.3 AdSAMSPOMENADIEA ... 14
414 AdSCreateVarHaNAIEooiiiiiiii e e e e e e e e 14
415 AdsDeleteVarHandle.e e 15
4.1.6 AdSENableLogNOLfICAtioNcooiiiiiieeeee e 15
4.1.7 AdSENUMSYMDOIS ... 16
4.1.8 AdSSEtFIrstDYNSYMDOL ..o e 17
419 AdSGEtNEXIDYNSYMDOIoeiiiiiiiiiiii e e e e 18
4110 AdSLOGFEMESTIING ...t e e 19
4111 AdSREAASYMDOIDESCeeeiiiiiiiiiie ettt e e e sttt e e e e st e e e e e antee e e e e snraeeaeens 20
4.1.12 AdSReadSymMDbOIINTOveiiiie e 21
4113 AdSSYNCWIIECONTIOIREQ ...coiiiiiiiie it 22
4.1.14 AdSWIItECONIIOIRE[...ttt e e e e e e eaaa e 23
4.1.15 ShOWPTOPEIYPAGESceeeiiiiiiiiiii ettt e e et e e s snbeeee e 23
A <Y/ 2 T o T o RS U S 24
4.2.1 AdsSyncRead[Datatype]VarREq.........cccuuuuiiiiiiiiie et e e 24
422 AdSSYNCREAAREG ... i 26
4.2.3 AdsSyncRead[DatatypPeIREQcoouueiiieiiiiiie et 27
424 AdsSyncWrite[Datatype]VarReqccooiuiiiiiiiiiiie e 28
4.2.5 AASSYNCWIEEREQ ..ot 29
4.2.6 AdsSYNCWrite[DatatyPeIREG. .. .uueeiiiiee e 30
I - 1Y a1 o1 o o PRSP 31
431 AdsRead[Datatype]REq ... e e e 31
4.3.2 AdSWrite[DatatyPeIREQ.....cveieieeiitceeee et a e e e e e e e e 33
oo o 1= o 34
441 AdSREAAVArCONNECIEXcoiiiiiieie ittt e e nree e e e e 34
442 AdSREadVarCONNECIEX2ciiiiiiiiiie ettt e e e e e 35
443 AdsReadVarConVertCONNECT..........ouii it e e e e e e e e 36
444 AdsRead[Datatype]VarCONNECT...........cooiiiiiiiiiiiiee et e 38
445 AdSDISCONNECIEX ..ttt e et e e e e e e e e e e s e s st eeeaaeaeeeeaannnnns 40
446 AdSREAACONNECT ... ittt e e e e e e e e e e e eeeeeaaaaens 40
447 AdSREAADISCONNECT. ...ttt e e e e e et e e e e e e e e e e e aannes 42
448 AdsRead[Datatype]CONNECT........coouiiiii e 42
449 AdsRead[Datatype]DiSCONNECToiiiiiiii e 44

TX1000

Version: 1.1 3

Table of contents BEGKHOFF

4410 AdSWIItEDISCONNECT. ..ot eaaaees 44
4411 AdsWrite[Datatype]DiSCONNECTcuiiiiiiiiiiiie et e e 45
4412 AdSWIIteVarCONNECT.ooi ettt e e e e e e e e e eaaaae s 45
4413 AdsWrite[Datatype]VarCONNECTccoiiiiiciieeeee et a e e 47
s A0 EY VA4 1=T @ 0] o 1= o (SR 48
4415 AdsWrite[Datatype]CONNECT.........ooiiiiiiiiii ittt e enreeee e 49
T Y o | £ PURRRSRTP 51
451 AdSAMSCONNECTTIMEOUL ... e e e e e e e e e e e e aaaaeeas 51
45.2 AASAMSTIMEOUL ...ttt e e e e e e e s et e e e e e e e e e e e e e aannns 51
45.3 Yo £ @7 o 1= o £ =1 o USSR 51
454 AdSLOGNOLIfICAtION ...t e e e e 52
455 AdSReadCoNNECIUPAALEceiiiiiieiii i a e e e 53
4.5.6 AdsReadConneCtUPdateEXocuiiiiiii e 53
457 AdsReadConnecCtUPateEX2oooiiiiiiiiieeeeee e 54
45.8 AdsReadConvertConNeCtUPatecooueiiiiiiiiiiee e 55
459 AdsRead[Datatype]CONT e a s 55
4510 AdSROUIEIREMOVEcciiiiiii ettt e e e e e e e eeeeaaaae s 56
4511 AdSROULEISNUIAOWN ..ot e e e e e e e e s s eeeeeeaaeeeas 56
4512 AdSROULEISTAN.......eeeiiiiiee et e e e e e e e e e e e e e e e e as 57
4513 AdsServerStateChangedueeiiiiiiiiii i 57
4514 AdsServerSYMCNANGEd.......ccoiuiiiiiiiii e 58
ST o XA 1 (=107] o | PSPPSRSO 58
T 0T 01T o 1RSSR 58
4.6.1 AdSAMSCHENINELIA ... e e e e e e e ee e e e aaee s 58
46.2 AASAMSCIENTPOI ...t e e e e e e e e e ee e e e e s 59
4.6.3 AdSAMSCOMMTIMEOULuiiiiiiiiie e e e e e e e ee e e e e e e s s s snrnrareeeeeaeeeeesaaannnns 59
46.4 AdSAMSCONNECTEA ...ttt e e e e e e e e e e e e e e e eeaaaaens 59
4.6.5 AdSAMSSAVECTIENTPOI e 59
4.6.6 AdSAMSSEIVEINELI. ...t e e e e e e e e e ereeeaaaee s 60
46.7 AASAMSSEIVEIPOI. ... ettt e e e et e e e e s st e e e e s nae e e e e e nnraeeeeeennees 60
4.6.8 AdSCHENTAASSTALE ... e e e e e 61
4.6.9 F e [01T 11 = U] o PRSPPI 61
4.6.10 AdSCIENIREVISIONcoiiiiiiiiie ettt e e e e e s et e e e e sttt e e e s antreeeeesnnteeeaeens 61
G B T o 1 O 1 =Y o I o1 PO PSRPSRUPSR 61
4.6.12 AdSCHENIVEISION.....coiiiiiee ettt e e e e e e e e e e e eeaeaaaeens 62
4.6.13 AdSSEIVEIAASSIALE.....ci ittt nraaea e 62
4.6.14 AdSSEIVEIBUIIooiiiiiiiiie e e s baaaa e 62
4.6.15 AdSSEIVEIREVISION....ciiiii ittt e e e e e e e e e eaaaae s 62
4.8.16 AQSSEIVEITYPE woutiiiiiiiiiieeee e e ettt e e e e e e e e e et eeeeeaeeeesss s e st s aeeeeeaaeeeeesassssssssaeeeeeaaeens 63
4617 AASSEIVEIVEISION ...ooiiiiiee ittt e ettt et e e e e e e e e e et eeeeeaaeeeeeaaaannneneeneeeeaaeens 63
4.6.18 ENaAbIEErrorHaNAIINGooo oo 63
T S T [0T [GRS PPRR 63
2 O N N\ =T o = SRR 64
G I © | o =Y o PSPPSR 64
A = = o | S PR 64
G T - T PSPPSRSO 64

4 Version: 1.1 TX1000

BEGKHOFF Table of contents

A7 BENUIMS Lottt et e et e et e e e et e e e e e e 64
4.7.1 ADSDATATYPEID ...ttt ettt et e e et e e et e e e s e e eeeeeeeneeeennes 64

4.7.2 ADSLOGMSGTYPE......c ittt ettt e et e e et e e e s e e enbee e e eneeeennes 65

4.7.3 ADSOCXTRANSMODE ...ttt 65

474 F S 1 I I ST 65

4.7.5 ADSGETDYNSYMBOLTYPE ...ttt 66

L - 1141 o (=P 67
5.1 VisUal BASIC = SAMPIES ...ttt e e e e e e et aaaaaaaaes 67
5.1.1 LinkKing into ViISUAI BASICcciiiiiiiieiiiieiee e 67

51.2 Visual Basic 6.0 variable [eNgthsccuiiiiiiii e 69

51.3 Accessing an array inthe PLC ... 70

51.4 Transmitting structures t0 the PLC..........eiiiiii e 71

51.5 Event driven readingooooo i a e e 74

5.1.6 Read PLC variable declarationcccociiiiiiiiiiic e 76

51.7 Detect/alter state of the router and the PLC............ooooiiiiii e 79

5.1.8 Send/receive messages Via the FOULETcc.uviii i 81

51.9 Delete handle of @ PLC variablecoooiiiiiiii e 83
5.1.10 Event-driven reading (with conversion to another type)..........cccoviiiiiiiii i, 84

5.2 DEIPhi = SAMPIES ..o e et —— e aaaaaaaaes 89
5.2.1 Integration iN DeIPRieeie e 89

5.2.2 Accessing PLC variables in synchronous/asynchronous/connected modes 107

5.2.3 Read the List of an ADS Device's Declared Variables............ccccoviiiiiiiiiiiiiciiieiecs 112

524 Write array to PLC or read array from PLC ... 117

5.2.5 Call ADS-OCX PrOPEIY PAGEuvveeeeeiiiiiieeeaiiiieee e ettt e e s ettt e e e s anbeeaesasnsbeeaeseanneeeeeeaneees 118

5.2.6 Working with handles of PLC variables.............cccoooiiiiiiiiiiiiic e 119

5.2.7 Write string to PLC or read array from PLC ... 120

5.2.8 Read multiple boolean variables into an array with one accesscccccoeeeeiiiiinnnnn. 122

5.2.9 Transmitting structures to/from the PLC ... 123

5.3 TWINCAT ADS OCX .ttt ettt e ettt e et e e e te e e e aste e e aseeeeambeeeanseeeanbeeeaneaeanneeaaaneeaans 126
5.3.1 Integration in LabVIEW ™ e e e e e e e e e e e e e e e e eeeeenaneees 126

53.2 Samples uSing AdSOCX PrOPEITIESuuueiieiiiiiiiee ittt 127

5.3.3 synchron methods: Read via address.........ooooiiiiiiiiiiiiiiiii e 128

5.34 synchron methods: Read Via NAME..........coiiiiiiiiiii i a e 129

5.3.5 synchron methods: Write via @ddresscoouiiiiiiiiiiieii e 130

5.3.6 synchron methods: Write Via NAMEooiii e 131

5.3.7 Event driven reading, registering Callback-Vi.............ccooeiiiiiiiiiiiiiii e 132

5.3.8 Event driven reading, simple data types ... 134

5.3.9 Event driven reading, structure variables...............ooooiimiiiiiiiiic e 135
5.3.10 Event driven reading with data reference passing to Callback-vi............cccccccoviiieninnnns 137
5.3.11 General MEthOOS.c.uiiiiiieiie et e st e e 138

6 ADS RetUIN COESceiiiiiiiiiiiiie i e s e e e e a R e e e n R e e e e R e e e ann e 141

TX1000 Version: 1.1 5

Table of contents BECKHOFF

6 Version: 1.1 TX1000

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

——
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TX1000 Version: 1.1 7

Foreword BECKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

Version: 1.1 TX1000

0]

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TX1000 Version: 1.1 9

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Access to the ADS devices BEGKHOFF

2 Access to the ADS devices

There are several methods of accessing the data of an ADS device:

* synchron
» asynchron
 cyclical

Depending on the application environment (communication medium, quantity of data, data transmission
rate,...) each method has certain advantages, and these are explained in detail further below. There are two
further variations that can be used to identify a variable in an ADS device.

By address

An address is given. The address is composed of the index group and the index offset. The address
assignment is described in the corresponding documentation for the ADS device.

By variable name

As an alternative, the name of an ADS variable can be given when accessing an ADS device.

Synchron [P 11]

Once the write/read method has been called, the execution of the Visual Basic program is interrupted until
the requested data is available. In the following instructions it is possible to continue working with the data
immediately. The advantage of this access method is that very little programming effort has to be carried out
in the Visual Basic program.

This access method is recommended if the Visual Basic program and the ADS device are on the same
computer or are connected via a fast network so that the waiting time is very short.

Example: The operator is to enter various parameters in an input window. The data is to be written to the
PLC when a button is clicked. Since the writing of the values is not performed cyclically, but in a manner that
depends on the user's behavior, a synchronous write command should be used in this case.

Asynchron [» 11]

In the case of asynchronous access, the execution of the Visual Basic program is not interrupted, but
continues immediately with the next command. When the requested data arrive at the ADS-OCX, an event
function is triggered in the Visual Basic program, in which the value is passed as a parameter. By the fact
that the Visual Basic program can receive its data at any time, a larger programming effort is necessary there
than with the synchronous access method.

If the ADS server and the Visual Basic program are spatially separated from each other and the data
transmission medium is very slow, e.g. modem or ISDN, then the asynchronous mode of operation makes
sense.

Connect [» 11]

If values are to be transmitted continuously to a Visual Basic program, cyclical access, also known as 'by
connect', is the easiest and most effective method. Calling the method results in the data from the ADS
device being sent to the Visual Basic program cyclically or when there is a change, using an event function.

Example: The positions of multiple axes are to be shown in a display window, updated every 250 ms. Use
the AdsReadVarConnectEx() [»_34] method, so that every 250 ms the AdsReadConnectUpdateEx() [P 53]
event is triggered for each axis position. This principle can be further optimized, so that values are only
transferred if the position of the axis changes (server on change)! There is a simple sample of this under
'Event-driven reading' [P 74].

Return values

All these methods return a value indicating whether the operation was carried out successfully, or whether
an error occurred. It can generally be said that a return value of 0 indicates error-free execution. A detailed
list of the possible return values and their meanings can be found under ADS error codes.

10 Version: 1.1 TX1000

BEGKHOFF Access to the ADS devices

Alternatively the ADS-OCX can trigger an exception in case of an error. This requires the

EnableErrorHandling [P_63] property to be set to TRUE. The cause of the error can then be determined via
the Err object. The Err object is described in the Visual Basic documentation.

Method summary

by address by variable name

synchron Reading AdsSyncReadReq() [26] -
AdsSyncReadBoolReq() [P 27] AdsSyncReadBoolVarReq()
AdsSyncReadIntegerReq() [» 27] [»_24]AdsSyncReadIntegerVarReq()

[» 241AdsSyncReadlongVarReq()
[» 241AdsSyncReadSingleVarReq()
[» 241AdsSyncReadDoubleVarReq()
[» 241AdsSyncReadStringVarReq()

AdsSyncReadlLongReq() [P 27]
AdsSyncReadSingleReq() [» 27]
AdsSyncReadDoubleReq() [» 271
AdsSyncReadStringReq() [» 271

[»24]
Writing AdsSyncWriteReq() [P 29] -
AdsSyncWriteBoolReq() [» 30] AdsSyncWriteBoolVarReq() [» 28]
AdsSyncWritelntegerReq() [P 30] AdsSyncWritelntegerVarReq() [» 28]
AdsSyncWriteLongReg() [» 30] AdsSyncWriteLongVarReq() [P 28]
AdsSyncWriteSingleReq() [P 30] AdsSyncWriteSingleVarReq() [P 28]
AdsSyncWriteDoubleReq() [» 30] AdsSyncWriteDoubleVarReq()
AdsSyncWriteStringReq() [»_30] [» 28]AdsSyncWriteStringVarReq()
[»28]
asynchron Reading AdsReadlIntegerReq() [» 31] -

AdsReadlLongReq() [» 311
AdsReadSingleReq() [P 31]
AdsReadDoubleReq() [P 31]
AdsReadStringReq() [P 31]

Writing AdsWritelntegerReq() [P 33] -
AdsWriteLongReq() [» 33]
AdsWriteSingleReq() [» 33]
AdsWriteDoubleReq() [» 30]
AdsWriteStringReq() [» 33]

connect Reading AdsReadConnect() [» 40] AdsReadVarConnectEx() [» 34]
AdsReadBoolConnect() [» 42]
AdsReadIntegerConnect() [» 42]
AdsReadlongConnect() [P 42]
AdsReadSingleConnect() [» 42]
AdsReadDoubleConnect() [42]

AdsReadStringConnect() [» 42]

Writing AdsWriteConnect() [P 48] AdsWriteVarConnect() [> 45]
AdsWriteBoolConnect() [P 49] AdsWriteBoolVarConnect() [» 47]
AdsWritelntegerConnect() [P 49] AdsWritelntegerVarConnect() [P 47]
AdsWriteLongConnect() [» 49] AdsWriteLongVarConnect() [P 47]
AdsWriteSingleConnect() [P 49] AdsWriteSingleVarConnect() [P 47]

AdsWriteDoubleConnect() [» 49] AdsWriteDoubleVarConnect() [» 47]

TX1000 Version: 1.1 11

Manual installation of the ADS OCX

BECKHOFF

3 Manual installation of the ADS OCX

The ADS OCX can be installed with Regsvr32.
v The path to the file that is to be registered must be stated.
1. Select Start > Run
2. Enter Regsvr32 <path to AdsOcx file>\AdsOcs.ocx.
= ADS OCX has been inserted with Regsvr32.

@ Itis not necessary to reboot the computer.

1

12 Version: 1.1

TX1000

BECKHOFF API

/A API

4.1 general

411 AboutBox

Displays an information window with the current version number and the copyright declaration of the ADS-
OCX.

object.AboutBox ()

Parameter

Return value

Comments
Example
About AdsOcx Control
AdzOcy
% w2 5.0 (Build 47)

TwinCAT w2 6.0
Copyright BECKHOFF #1336, 1938

4.1.2 AdsAmsDisconnect

This method is used to disconnect the ADS-OCX from the TwinCAT Router.

object.AdsAmsDisconnect () As Long

Parameter

Return value

Comments

All applications are closed when the present user logs out from Windows NT/2000/XP. If the program
contains the ADS-OCX connected to the router, the program must disconnect from the TwinCAT Router. If
this is not done, the program cannot be completely unloaded, and will still be seen in the NT Task Manager
after a new login.

The disconnection from the TwinCAT Router is achieved through the AdsAmsDisconnect() method. This
should be called in the Form_Unload() event.

TX1000 Version: 1.1 13

API BECKHOFF

Example

Private Sub Form Unload(Cancel As Integer)
Call AdsOcxl.AdsAmsDisconnect
End Sub

41.3 AdsAmsPortEnabled

This method can be used to determine whether the AMS port is available for communication.

object.AdsAmsPortEnabled () As Boolean

Parameter

Return value

Comments

Example

The following sample illustrates a function in which messages are written to the Windows NT/2000/XP Event

Viewer. The method AdsLogFmtString() [»_19] is used for this. Since the access to the Event Viewer is
made via the TwinCAT Router, the method should only be used if the AMS port is active.

'Meldungen iUber ADS in die Ereignisanzeige schreiben
Public Function LogMsg (MsgType As ADSLOGMSGTYPE, MsgStr As String)
If (AdsOcx.AdsAmsPortEnabled = True) Then
MsgStr = Left (MsgStr, 250)
Call AdsOcx.AdsLogFmtString (MsgType, MsgStr, 0, 0, 0, 0)
End If
End Function

41.4 AdsCreateVarHandle

Generates a unique handle for an ADS variable.

object.AdsCreateVarHandle (
varName As String,
hVar As Long

) As Long

Parameter

varName

[in] Name of the ADS variable
hVar

[out] Handle of the ADS variable

Return value
See ADS error codes

Comments on the PLC:

14 Version: 1.1 TX1000

BECKHOFF API

® Enable Symbol download

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You
will find more detailed information in the PLC Control manual.

The method's first parameter is composed of the POE name and the PLC variable that is to be addressed. If,
for instance, the variable 'SPSVar1' from the function 'Funk1' is to be accessed, then 'Funk1.SPSVar1' must
be supplied as the first parameter. When global variables are being accessed, the POE name is omitted, as,
for instance, in .SPSGlobVar'. The parameter 'varName' does not distinguish between upper and lower case
letters. If only certain specific PLC variables are required in a form, the handle should only be created when
the form is loaded, and should be released again when the form is closed. See also the

AdsCreateVarHandle() [»_15] method.

Comments on the NC:

Enable Symbol download at each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialog for the axis under 'General'. The 'Create symbols' box must be checked. See System Man-
ager manual.

The symbolic names of the individual NC parameters have a fixed specification, and can be found in the NC
documentation.

Example

415 AdsDeleteVarHandle

Releases the handle of a PLC variable again.

object.AdsDeleteVarHandle (hVar As Long) As Long
Parameter

hVar
[in] Handle of the ADS variable

Return value

See ADS error codes

Comments

If the ADS variable that is referred to by a handle is no longer required, it should be released once more by
means of the AdsDeleteVarHandle() method. If only certain specific ADS variables are required in a form,
the handle should only be created when the form is loaded, and should be released again when the form is

closed. See also the AdsCreateVarHandle() [»_14] method.

Example

4.1.6 AdsEnableLogNotification

Sets the filter for the reception of messages via the TwinCAT Router.

TX1000 Version: 1.1 15

API BECKHOFF

object.AdsEnableLogNotification (
nBasePort As Long,
nPorts As Long,
dwCtrlMask As Long

) As Long

Parameter

nBasePort

[in] First port number for which the AdsLogNotification() [> _52] event is triggered

nPorts

[in] Number of ports starting from nBasePort for which the AdsLogNotification() [>_52] event is triggered

dwCtrIMask

[in] Filter mask for the kinds of messages that are to be reported (see ADSLOGMSGTYPE [»_65] data type)

Return value

See ADS error codes

Comments

ADS devices are able to send messages to other ADS devices via the TwinCAT Router. Before an ADS
device is able to receive messages with the aid of the ADS-OCX, the AdsEnableLogNotification() method
must be used to define a filter. This defines which messages are to be reported.

One of a filter's functions is to define a range of port numbers. All the messages from the ADS devices that
lie within this range of port numbers will be reported by the AdsLogNotification() [»_52] event.

The second parameter with which messages can be filtered is the message type. A distinction is made

between note, warning and error (see ADSLOGMSGTYPE [P 65]). Various other types of message can be
received by using a OR combination.

Example

Visual Basic sample: 'Send/receive messages via the TwinCAT Router [P 81]'

4.1.7 AdsEnumSymbols

The list of declared variables can be read from an ADS device with this method.

object.AdsEnumSymbols (
strSymbolName As String,
nSymbolType As Long,
cbSymbolSize As Long,
strComment As String,
nIndexGroup As Long,
nIndexOffset As Long,
bNextAs Boolean

) As Long

Parameter

strSymbolName

[out] Name of the ADS variable

nSymbolType

[out] Data type of the ADS variable (see the ADSDATATYPEID [»_64] data type)

cbSymbolSize

16 Version: 1.1 TX1000

BECKHOFF API

[out] Data length of the ADS variable in bytes

strComment

[out] Comment following the ADS variable declaration

nindexGroup

[out] Index group of the ADS variable

nindexOffset

[out] Index offset of the ADS variable

bNext

[in] TRUE for the first ADS variable, FALSE for all those which follow

Return value

See ADS error codes

Comments

When the AdsEnumSymbols() method is first called, you must set the bNext parameter to FALSE. This
causes all the information about the first variable to be read. Every time AdsEnumSymbols() is called after
this, the parameter must be TRUE. This causes the information about the following variable to be read.

NOTE

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

NOTE

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialog for the axis under 'General'. The '‘Create symbols' box must be checked. See System Man-
ager manual.

Example

Visual Basic sample: 'Read PLC variable declaration [P _76]'

4.1.8 AdsSetFirstDynSymbol

The list of declared variables can be read from an ADS device with this method.
object.AdsSetFirstDynSymbol (bForceReload As Boolean) As Long

Parameter

bForceReload

[in] TRUE if a (new) loading of the symbol information from the server is desired. If no symbol information is
available yet, it will be loaded independently from bForceReload.

Return value

See ADS error codes

TX1000 Version: 1.1 17

API BECKHOFF

Comments

On the method call of AdsSetFirstDynSymbol() the internal "pointer" to the current symbol, which can be
loaded with AdsGetNextDynSymbol [P_18](), is set back to the beginning.

NOTE

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

NOTE

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialog for the axis under 'General'. The '‘Create symbols' box must be checked. See System Man-
ager manual.

Example

Visual Basic sample: 'Read PLC variable declaration [P _76]'

41.9 AdsGetNextDynSymbol

The list of declared variables can be read from an ADS device with this method.

object.AdsGetNextDynSymbol (
navType As ADSGETDYNSYMBOLTYPE,
bstrName As String,
bstrFullName As String,
bstrType As String,
bstrComment As String,
adsType As Long,
symbolSize As Long,
nIndexGroup As Long,
nIndexOffset As Long

) As Long

Parameter
navType

[in] Navigation preset in the symbol tree (see data type ADSGETDYNSYMBOLTYPE [» 66])

bstrName

[out] Name of the symbol (short form without prefixed names of the parent)
bstrFullName

[out] Full name of the symbol

bstrType

[out] Name of the data type of the symbol

strComment

[out] Comment following the ADS variable declaration

adsType

[out] Data type of the ADS variable (see the ADSDATATYPEID [» 64] data type)

symbolSize

[out] byte length of the symbol

18 Version: 1.1 TX1000

BECKHOFF API

nindexGroup

[out] Index group of the ADS variable
nindexOffset
[out] Index offset of the ADS variable

Return value

See ADS error codes

Comments

At navType ADSDYNSYM_GET_NEXT the entire symbol tree is navigated. Hereby all symbols can be read
out in a simple way. The other three navTypes can be used for controlled navigation through the symbol
tree.

NOTE

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

NOTE

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialog for the axis under 'General'. The 'Create symbols' box must be checked. See System Man-
ager manual.

Example

Visual Basic sample: 'Read PLC variable declaration [»_76]'

4.1.10 AdsLogFmtString

Issues a message via the TwinCAT Router.

object.AdsLogFmtString (
nMsgType As ADSLOGMSGTYPE,
strFmt As String,
arg0 As Variant,
argl As Variant,
arg2 As Variant,
arg3 As Variant

) As Long

Parameter
nMsgType

[in] Type of message (see the ADSLOGMSGTYPE [»_65] data type)

strFmt

[in] The message text that is to be issued
arg0

[in] 1th parameter in the message text
arg1

[in] 2nd parameter in the message text

TX1000 Version: 1.1 19

API BECKHOFF

arg2

[in] 3rd parameter in the message text
arg3

[in] 4th parameter in the message text

Return value

See ADS error codes

Comments

The issued message is reported to all the ADS devices in which the filter conditions are satisfied. The issued
message is also written into the Windows NT/2000/XP Event Logger.

There are three types of messages: Note, Warning and Error. The message that is issued must belong to
one of these three types. Up to four numeric parameters can be specified in the message string. The
following letters can be used as placeholders:

Placeholder Meaning

%d Placeholder for a variable of type long/integer
%f Placeholder for a variable of type single/double
Yox Placeholder for a variable of type hexadecimal
%X Placeholder for a variable of type hexadecimal

The first placeholder is then occupied by the first parameter (arg0), the second placeholder with the second
parameter (arg1), and so on.

Too many messages in a short time

Make sure that not too many messages are transmitted in a short time, otherwise this could affect the over-
all system.

® Log messages

1 If you want to keep a log of messages in your program (e.g. malfunctions in a machine) you should
make use of the TwinCAT Event Logger. This is significantly more powerful than the Windows NT/
2000/XP Event Logger, and is adapted to the requirements of automation technology.

Example

Visual Basic sample: 'Send/receive messages via the TwinCAT Router [» 817’

4.1.11 AdsReadSymbolDesc

The AdsReadSymbolDesc() method can be used to obtain information about the individual symbols
(variables) in ADS devices.

object.AdsReadSymbolDesc (
strSymbolName As String,
nSymbolType As ADSDATATYPEID,
cbSymbolSize As Long,
strComment As String,
nIndexGroup As Long,
nIndexOffset As Long

) As Long

Parameter

strSymbolName

20 Version: 1.1 TX1000

BECKHOFF API

[in] Name of ADS variable from which the information is to be read

nSymbolType
[out] Data type of the ADS variable (see the ADSDATATYPID [»_64] data type)

cbSymbolSize

[out] Data length of the ADS variable in bytes
strComment

[out] Comment following the ADS variable declaration
nindexGroup

[out] Index group of the ADS variable

nindexOffset

[out] Index offset of the ADS variable

Return value

See ADS error codes

Comments

If you wish to read the information for all the ADS variables from an ADS device, you will find a relevant
sample under 'Read PLC variable declaration' [P _76].

NOTE

Enable the Symbol download at PLC Control

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

NOTE

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialog for the axis under 'General'. The '‘Create symbols' box must be checked. See System Man-
ager manual.

Example

4.1.12 AdsReadSymbolinfo

The AdsReadSymbolinfo() method can be used to obtain information about the symbols (variables) in ADS
devices.

object.AdsReadSymbolInfo (
pSymbolsAvailable As Long,
pBufSizeNeeded As Long

) As Long

Parameter
pSymbolsAvailable
[out] Number of symbols in the ADS device

pBufSizeNeeded

TX1000 Version: 1.1 21

API BECKHOFF

[out] Length of the data, in bytes, in which the symbol information is to be stored

Return value

See ADS error codes

Comments

Before the AdsEnumSymbols() [P_16] method can be used to read the symbol list, the method
AdsReadSymbolinfo() must be used to find the number of symbols and the size of the symbol list.

NOTE

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

NOTE

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialog for the axis under 'General'. The 'Create symbols' box must be checked. See System Man-
ager manual.

Example

Visual Basic sample: 'Read PLC variable declaration [»_76]'

41.13 AdsSyncWriteControlReq

Changes the state of an ADS device.

object.AdsSyncWriteControlReq (
ADSSTATE As Long,
deviceState As Long,
length As Long,
pData As Integer

) As Long

Parameter

ADSSTATE

[in] New state of the ADS device (see the ADSSTATE [»_65] data type)
deviceState

[in] Reserved

length

[in] Length of the data in bytes

pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return parameter

See ADS error codes

22 Version: 1.1 TX1000

BECKHOFF API

Comments

As well as changing the ADS state, it is also possible to send data to the ADS device. Whether such data is
evaluated, and how, depends on the individual ADS devices. The ADS devices supplied with TwinCAT (PLC,
NC/NCI, camshaft controller, ...) do not evaluate such information.

Example

Visual Basic sample: 'Detect/alter state change in TwinCAT Router and the PLC [P 797’

4.1.14 AdsWriteControlReq

Changes the ADS state and the device state of the ADS server.

object.AdsWriteControlReq (
nInvokeId As Long,
nAdsState As Long,
nDeviceState As Long,
cbLength As Long,
pData As Integer

) As Long

Parameter

ninvokeld

[in] Job number for identification of the response
nAdsState

[in] New ADS state (see the ADSSTATE [P 65] data type)
nDeviceState

[in] New device state

cbLength

[in] Length of the data in bytes

pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

In addition to changing the ADS state and the device state, it is also possible to send data to the ADS server
in order to transfer further information. For the current ADS devices (PLC, NC, ...) this data is not evaluated
further.

Each ADS device can communicate its current state to other ADS devices. A distinction is made between the
state of the device itself (DeviceState) and the state of the ADS interface of the ADS device (AdsState). The
states that the ADS interface can adopt are laid down in the ADS specification.

Example

4115 ShowPropertyPages

Displays the ADS-OCX properties window.

TX1000 Version: 1.1 23

API

BECKHOFF

object.ShowPropertyPages() As Long

Parameter

Return value

See ADS error codes

Comments

Example

AdsOcy Control Properties [x| |

"] DS Client | ADS Server |

— Server
Netld [17216.3.29.1.1 Timeout; | ROOD | ma
Part; IEI
— Client
Metld: |1?2,15,3,29,1,1 Connected: [#
Part: |32?33 [T zave port
] 4 I Cancel SEply
4.2 synchron
4.2.1 AdsSyncRead[Datatype]VarReq
AdsSyncReadBoolVarReq

AdsSyncReadIntegerVarReq

AdsSyncReadlLongVarReq

AdsSyncReadSingleVarReq

AdsSyncReadDoubleVarReq

AdsSyncReadStringVarReq

Reads data synchronously from an ADS device, and writes it into a Visual Basic variable of type boolean,
integer, long, single, double or string.

object.AdsSyncRead[Datatype]VarReq(

hVvar As Long,

cbLength As Long,
pData As [Datatypel

) As Long

Parameter

hVar

24

Version: 1.1

TX1000

BECKHOFF API

[in] Handle of the ADS variable (see the AdsCreateVarHandle() [>_14] method)
cbLength

[in] Length of the data in bytes (see VB variable lengths [» 69])
pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

VB variable is set to "0

In case of an error the VB variable (pData), whose value should be written, is set to "0".

Comments

The execution of the Visual Basic program is stopped until the data from the ADS device is available or until
the time in the property AdsAmsCommTimeout [» 59] is exceeded.

Note on the String data type: When specifying the length of the data, note that it refers to the length of the
variable in the Visual Basic program. Since Visual Basic represents a character with 2 bytes, the length of
the variable must be determined with LenB(), not with Len().

VB sample

Dim hVar As Long

Dim VBVar As Single

'Handle der SPS-Variable holen

Call AdsOcxl.AdsCreateVarHandle ("MAIN.PLCVar", hVar)
'Variable auslesen

Call AdsOcxl.AdsSyncReadSingleVarReq (hVar, 4&, VBVar)
'Variablen anzeigen

Labell.Caption = VBVar

'Handle wieder freigeben

Call AdsOcxl.AdsDeleteVarHandle (hVar)

Dim hVar As Long

Dim VBVar As String

'Handle der SPS-Variable holen

Call AdsOcxl.AdsCreateVarHandle ("MAIN.PLCVar", hVar)
'Visual Basic initialisieren

VBVar = Space (10)

'Variable auslesen

Call AdsOcxl.AdsSyncReadStringVarReq(hVar, LenB(VBVar), VBVar)
'Variablen anzeigen

Labell.Caption = VBVar

'Handle wieder freigeben

Call AdsOcxl.AdsDeleteVarHandle (hvVar)

Delphi sample

procedure TForml.ButtonlClick (Sender: TObject) ;
var resl, res2, res3 :integer;

//handles

hBoolean, hSmallint, hLongint, hSingle, hDouble, hString : integer;

//read buffer

viWordBool : WordBool;

vSmallint : Smallint;

vLongint : Longint;

vSingle : Single;

vDouble : Double;

vString : WideString;

begin
resl := AdsOcxl.AdsCreateVarHandle('MAIN.vBOOL', hBoolean);
res?2 := AdsOcxl.AdsSyncReadBoolVarReqg(hBoolean, sizeof (vWordBool), vWordBool);
res3 := AdsOcxl.AdsDeleteVarHandle (hBoolean);
Labell.Caption := Format('resl: %d, res2: %d, res3: %d, Value: %s', [resl, res2, res3, BoolToSt

r (viWordBool, TRUE)]);

TX1000 Version: 1.1 25

API BECKHOFF

resl := AdsOcxl.AdsCreateVarHandle('MAIN.vINT', hSmallint);

res?2 := AdsOcxl.AdsSyncReadIntegerVarReqg(hSmallint, sizeof(vSmallint), vSmallint);

res3 := AdsOcxl.AdsDeleteVarHandle(hSmallint);

Label2.Caption := Format('resl: %d, res2: %d, res3: %d, Value: %d', [resl, res2, res3, vSmallin
t]) s

resl := AdsOcxl.AdsCreateVarHandle('MAIN.vDINT', hLongint);

res2 := AdsOcxl.AdsSyncReadLongVarReq(hLongint, sizeof (vLongint), vLongint);

res3 := AdsOcxl.AdsDeleteVarHandle(hLongint);

Label3.Caption := Format('resl: %d, res2: %d, res3: %d, Value: %d', [resl, res2, res3, vLongint
1) 7

resl := AdsOcxl.AdsCreateVarHandle('MAIN.VvREAL', hSingle);

res2 := AdsOcxl.AdsSyncReadSingleVarReq(hSingle, sizeof (vSingle), vSingle);

res3 := AdsOcxl.AdsDeleteVarHandle (hSingle);

Label4.Caption := Format('resl: %d, res2: %d, res3: %d, Value: %f', [resl, res2, res3, vSingle]
)i

resl := AdsOcxl.AdsCreateVarHandle('MAIN.vLREAL', hDouble);

res2 := AdsOcxl.AdsSyncReadDoubleVarReq(hDouble, sizeof (vDouble), vDouble);

res3 := AdsOcxl.AdsDeleteVarHandle (hDouble);

Label5.Caption := Format ('resl: %d, res2: %d, res3: %d, Value: %$f', [resl, res2, res3, vDouble]
)i

resl := AdsOcxl.AdsCreateVarHandle('MAIN.vSTRING', hString);

SetLength (vString, 80{standard length of the PLC string variable});

res?2 := AdsOcxl.AdsSyncReadStringVarReq(hString, Length(vString)*2{byte length!}, vString);

res3 := AdsOcxl.AdsDeleteVarHandle(hString);

Label6.Caption := Format('resl: %d, res2: %d, res3: %d, Length: %d, Value: %s', [resl, res2, re
s3, Length(vString), vString]):;
end;

4.2.2 AdsSyncReadReq

Reads data of any type synchronously from an ADS device.

object.AdsSyncReadReq (
nIndexGroup As Long,
nIndexOffset As Long,
cbLength As Long,
pData As YY

) As Long

Parameter

nindexGroup

[in] Index group of the ADS variable
nindexOffset

[in] Index offset of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [»_69])
pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

VB variable is set to "0

In case of an error the VB variable (pData), whose value should be written, is set to "0".

26 Version: 1.1 TX1000

BECKHOFF

API

Comment

The execution of the Visual Basic program is stopped until the data from the ADS device is available or until

the time in the property AdsAmsCommTimeout [» 59] is exceeded.
The Visual Basic variable must be declared as an array. The entire array is passed to the method.

The variable type string is not supported.

Example

Dim VBVarInteger (0) As Integer
Dim VBVarLong (0) As Long

Dim VBVarSingle (0) As Single
Dim VBVarDouble (0) As Double
Dim VBVarByte (0) As Byte

Dim VBVarBool (0) As Boolean

'Variablen auslesen

Call AdsOcxl.AdsSyncReadReq(&H4020&, 0&, 2&, VBVarlInteger)
Call AdsOcxl.AdsSyncReadReq (&H4020&, 2&, 4&, VBVarLong)
Call AdsOcxl.AdsSyncReadReq (&H4020&, 6&, 4&, VBVarSingle)
Call AdsOcxl.AdsSyncReadReq (&H4020&, 10&, 8&, VBVarDouble)
Call AdsOcxl.AdsSyncReadReq(&H4020&, 18&, 1&, VBVarByte)
Call AdsOcxl.AdsSyncReadReq (&H4021&, 152&, 2&, VBVarBool)

'Variablen anzeigen
lblInteger.Caption = VBVarInteger (0)
1blLong.Caption = VBVarLong (0)
1blSingle.Caption = VBVarSingle (0)
1blDouble.Caption = VBVarDouble (0)
1blByte.Caption = VBVarByte (0)
1blBool.Caption = VBVarBool (0)

4.2.3 AdsSyncRead[Datatype]Req

AdsSyncReadBoolReq
AdsSyncReadIntegerReq
AdsSyncReadlLongReq
AdsSyncReadSingleReq
AdsSyncReadDoubleReq
AdsSyncReadStringReq

Reads data synchronously from an ADS device, and writes it into a Visual Basic variable of type boolean,

integer, long, single, double or string.

object.AdsSyncRead[Datatype]Req (
nIndexGroup As Long,
nIndexOffset As Long,
cbLength As Long,
pData As [Datatypel

) As Long

Parameter

nindexGroup

[in] Index group of the ADS variable
nindexOffset

[in] Index offset of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [»_69])

pData

TX1000 Version: 1.1

27

API BECKHOFF

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

VB variable is set to "0

In case of an error the VB variable (pData), whose value should be written, is set to "0".

Comments

The execution of the Visual Basic program is stopped until the data from the ADS device is available or until
the time in the property AdsAmsCommTimeout [P 59] is exceeded.

Note on the String data type: When specifying the length of the data, note that it refers to the length of the
variable in the Visual Basic program. Since Visual Basic represents a character with 2 bytes, the length of
the variable must be determined with LenB(), not with Len().

VB sample

Dim VBVar As Long

'Wert auslesen

Call AdsOcxl.AdsSyncReadLongReq (&H4020&, 0&, 8&, VBVar)
'Variablen anzeigen

Labell.Caption = VBVar

Dim VBVar As String

'Visual Basic Variable initialisieren

VBVar = Space (10)

"Wert aus Variable auslesen

Call AdsOcxl.AdsSyncReadStringReq(&H4020&, 0&, LenB(VBVar), VBVar)
'Variablen in Form anzeigen

Labell.Caption = VBVar

Delphi sample

procedure TForml.Button2Click (Sender: TObject) ;
var res :integer;

//read buffer

vWordBool : WordBool;

vSmallint : Smallint;

vLongint : Longint;

vSingle : Single;

vDouble : Double;

vString : WideString;

begin
res := AdsOcxl.AdsSyncReadBoolReqg($4020, 0, sizeof (vWordBool), vWordBool);
Labell.Caption := Format('res: %d, Value: %s', [res, BoolToStr (vWordBool, TRUE)]);
res := AdsOcxl.AdsSyncReadIntegerReq($4020, 2, sizeof(vSmallint), vSmallint);
Label2.Caption := Format('res: %d, Value: %d', [res, vSmallint]);
res := AdsOcxl.AdsSyncReadLongReq($4020, 4, sizeof (vLongint), vLongint);
Label3.Caption := Format('res: %d, Value: %d', [res, vLongint]);
res := AdsOcxl.AdsSyncReadSingleReqg($4020, 16, sizeof (vSingle), vSingle);
Label4.Caption := Format('res: %d, Value: %f', [res, vSingle]);
res := AdsOcxl.AdsSyncReadDoubleReqg($4020, 32, sizeof (vDouble), vDouble);
Label5.Caption := Format('res: %d, Value: %f', [res, vDouble]);

SetLength (vString, 80{standard length of the PLC string variable});

res := AdsOcxl.AdsSyncReadStringReqg($4020, 64, Length(vString)*2{byte length!}, vString);
Label6.Caption := Format('res: %d, Length: %d, Value: %s', [res, Length(vString), vStringl);
end;
4.2.4 AdsSyncWrite[Datatype]VarReq
AdsSyncWriteBoolVarReq

28 Version: 1.1 TX1000

BECKHOFF API

AdsSyncWritelntegerVarReq

AdsSyncWriteLongVarReq
AdsSyncWriteSingleVarReq
AdsSyncWriteDoubleVarReq
AdsSyncWriteStringVarReq

Requests data synchronously from an ADS device, and writes it into a Visual Basic variable of type boolean,
integer, long, single, double or string.

object.AdsSyncWrite [Datatype]VarReq (
hvar As Long,
length As Long,
pData As [Datatypel

) As Long

Parameter

hVar

[in] Handle of the ADS variable (see the AdsCreateVarHandle() [P_14] method)

length

[in] Length of the data in bytes (see VB variable lengths [»_69])

pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

The execution of the Visual Basic program is stopped until the data from the ADS device is available or until
the time in the property AdsAmsCommTimeout [» 59] is exceeded.

Note on the String data type: When specifying the length of the data, note that it refers to the length of the
variable in the Visual Basic program. Since Visual Basic represents a character with 2 bytes, the length of
the variable must be determined with LenB(), not with Len().

Example

Dim hVar As Long

Dim VBVar As Double

Call AdsOcxl.AdsCreateVarHandle ("MAIN.PLCVar", hVar)
VBVar = 3,1415

Call AdsOcxl.AdsSyncWriteDoubleVarReq (hvVar, 8&, VBVar)
Call AdsOcxl.AdsDeleteVarHandle (hVar)

Dim hVar As Long

Dim VBVar As String

'Handle holen

Call AdsOcxl.AdsCreateVarHandle ("MAIN.PLCVar", hvVar)

VBVar = "TwinCAT"

Call AdsOcxl.AdsSyncWriteStringVarReq (hVar, LenB(VBVar), VBVar)
'Handle freigeben

Call AdsOcxl.AdsDeleteVarHandle (hVar)

4.2.5 AdsSyncWriteReq

Writes data of any type synchronously to an ADS device.

TX1000 Version: 1.1 29

API

BECKHOFF

object.AdsSyncWriteReq (nIndexGroup As Long,

nIndexOffset As Long,
cbLength As Long,
pData As YY

) As Long

Parameter

nindexGroup

[in] Index group of the ADS variable
nindexOffset

[in] Index offset of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [»_69])

pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

The execution of the Visual Basic program is stopped until the ADS device has received the data or until the
time in the AdsAmsCommTimeout [»_59] property is exceeded.

The Visual Basic variable must be declared as an array. The entire array is passed to the method.

The variable type string is not supported.

Example

Dim VBVarInteger (0) As Integer
Dim VBVarLong (0) As Long

Dim VBVarSingle (0) As Single
Dim VBVarDouble (0) As Double
Dim VBVarByte (0) As Byte

Dim VBVarBoolean (0) As Boolean

VBVarInteger (0) = 123
VBVarLong (0) = 456
VBVarSingle (0) = 3,1415
VBVarDouble (0) = 2,876
VBVarByte (0) = 7
VBVarBoolean (0) = False

'Werte in SPS schreiben

Call AdsOcxl.AdsSyncWriteReq(&H4020&, 0&, 2&, VBVarInteger)
Call AdsOcxl.AdsSyncWriteReq (&H4020&, 2&, 4&, VBVarLong)

Call AdsOcxl.AdsSyncWriteReqg(&H4020&, 6&, 4&, VBVarSingle)
Call AdsOcxl.AdsSyncWriteReq(&H4020&, 10&, 8&, VBVarDouble)
Call AdsOcxl.AdsSyncWriteReq(&H4020&, 18&, 1l&, VBVarByte)
Call AdsOcxl.AdsSyncWriteReq (&H4021&, 152&, 2&, VBVarBoolean)
4.2.6 AdsSyncWrite[Datatype]Req
AdsSyncWriteBoolReq

AdsSyncWritelntegerReq

AdsSyncWriteLongReq

AdsSyncWriteSingleReq

30 Version: 1.1 TX1000

BECKHOFF API

AdsSyncWriteDoubleReq
AdsSyncWriteStringReq

Writes data synchronously from a Visual Basic variable of type boolean, integer, long, single, double or string
into a data item of an ADS device.

object.AdsSyncWrite [Datatype]Req(indexGroup As Long,
indexOffset As Long,
length As Long,
pData As [Datatypel

) As Long

Parameter

indexGroup

[in] Index group of the ADS variable
indexOffset

[in] Index offset of the ADS variable
length

[in] Length of the data in bytes (see VB variable lengths [F_69])

pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

The execution of the Visual Basic program is stopped until the ADS device has received the data or until the
time in the property AdsAmsCommTimeout [P 59] is exceeded.

Note on the String data type: When considering the length of the data, note that it refers to the length of
the variable in the Visual Basic program. Since Visual Basic represents a character with 2 bytes, the length
of the variable must be determined with LenB(), not with Len().

Example

Dim VBVar As Boolean
VBVar = True
Call AdsOcxl.AdsSyncWriteBoolReq(&H4021&, 0&, 2&, VBVar)

Dim VBVar As String
VBVar = "TwinCAT"
Call AdsOcxl.AdsSyncWriteStringReqg(&H4020&, 0&, LenB(VBVar), VBVar)

4.3 asynchron

4.3.1 AdsRead[Datatype]Req

AdsReadIntegerReq
AdsReadlLongReq
AdsReadSingleReq
AdsReadDoubleReq
AdsReadStringReq

TX1000 Version: 1.1 31

API BECKHOFF

Issues a read request for a data item of type integer, long, single, double or string.

object.AdsRead[Datatype]Req (
nInvokeId As Long,
nIndexGroup As Long,
nIndexOffset As Long,
cbLength As Long

) As Long

Parameter

ninvokeld

[in] Job number for identification of the response
nindexGroup

[in] Index group of the ADS variable

nindexOffset

[in] Index offset of the ADS variable

cbLength

[in] Length of the data in bytes (see VB variable lengths [»_69])

Return value

See ADS error codes

Comments

Once a read request has been sent to the ADS device, execution of the Visual Basic program continues. As
soon as the data is available, the ADS-OCX triggers the event function AdsRead[Datatype]Conf() [»_55] with
which the requested data is transmitted.

When the read request is sent, an identification number must be specified, which is later returned when the
event function is called. This allows an assignment between Read-Request and the event function.

Note on the data type String: It should be noted that the length of the data refers to the length of the
variable in the Visual Basic program. Since Visual Basic represents a character with 2 bytes, the length of
the variable must be determined with LenB(), not with Len().

Example

Dim nInvokeId As Long

nInvokeId = 1

'Lesen von MWO aus der SPS

Call AdsOcxl.AdsReadIntegerReqg(nInvokeId, &H4020&, 0&, 4&)

Private Sub AdsOcxl AdsReadIntegerConf (ByVal nInvokeId As Long, ByVal nResult As Long, ByVal cbLengt
h As Long, pData As Integer)

If (nInvokeId = 1) And (nResult = 0) Then

'Daten anzeigen

Labell.Caption = pData

End If
End Sub

Dim nInvokeId As Long

nInvokeId = 1

'Lesen aus SPS

Call AdsOcxl.AdsReadStringReq(nInvokeId, &H4020&, 0&, 20&)

Private Sub AdsOcxl AdsReadStringConf (ByVal nInvokeId As Long, ByVal nResult As Long, ByVal cbLength
As Long, ByVal pData As String)

If (nInvokeId = 1) And (nResult = 0) Then

'Daten anzeigen

Labell.Caption = pData

End If
End Sub

32 Version: 1.1 TX1000

BECKHOFF API

4.3.2 AdsWrite[Datatype]Req

AdsWritelntegerReq
AdsWriteLongReq
AdsWriteSingleReq
AdsWriteDoubleReq
AdsWriteStringReq

Issues a read request for a data item of type integer, long, single, double or string.

object.AdsWrite[Datatype]Req/(
nInvokeId As Long,
nIndexGroup As Long,
nIndexOffset As Long,
cbLength As Long,
pData As [Datatypel

) As Long

Parameter

ninvokeld

[in] Job number for identification of the response
nindexGroup

[in] Index group of the ADS variable
nindexOffset

[in] Index offset of the ADS variable

cbLength

[in] Length of the data in bytes (see VB variable lengths [P 69])

pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

Once the write request has been sent to the ADS device, execution of the Visual Basic program continues.
As soon as the data has been written, the ADS-OCX triggers the AdsWriteConf() [»_58] event function.

When a write request is issued, an identification number, which is later returned when the event function is
called, must also be provided. This makes it possible to assign the event function to the appropriate write
request.

Note on the string data type: When specifying the length of the data, note that it refers to the length of the
variable in the Visual Basic program. Since Visual Basic represents a character with 2 bytes, the length of
the variable must be determined with LenB(), not with Len().

Example

Dim VBVar As Integer

Dim nInvokeId As Long

VBVar = 100

nInvokeId = 1

Call AdsOcxl.AdsWriteIntegerReq(nInvokeId, &H4020&, 0&, 2&, VBVar)

TX1000 Version: 1.1 33

API BECKHOFF

Private Sub AdsOcxl AdsWriteConf (ByVal nInvokeId As Long, ByVal nResult As Long)
If (nResult <> 0) Then MsgBox ("Error AdsWriteConf " & nResult)
End Sub

Dim VBVar As String

Dim InvokeId As Long

VBVar = "TwinCAT"

InvokeId = 1

Call AdsOcxl.AdsWriteStringReqg(InvokeId, &H4020&, 0&, LenB(VBVar), VBVar)

Private Sub AdsOcxl AdsWriteConf (ByVal nInvokeId As Long, ByVal nResult As Long)

If (nResult <> 0) Then MsgBox ("Error AdsWriteConf " & nResult)
End Sub

4.4 connect

441 AdsReadVarConnectEx

Creates a fixed connection between a Visual Basic variable and a data item from an ADS device.

object.AdsReadVarConnectEx (nIndexOffset As String,
nRefreshType As ADSOCXTRANSMODE,
nCycleTime As Long,

phConnect As Long
hUser As Variant
) As Long
Parameter
adsVarName

[in] Name of the ADS variable
nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [» 65]
data type)

nCycleTime
[in] Read cycle in ms
phConnect

[out] Contains a unique handle for the connection that has been established (this is not the handle of the
ADS variable!).

hUser

[in] Optional: This value is passed when the AdsReadConnectUpdateEx() [> 53] event is called.

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be released using the AdsDisconnectEx()

[»_40] method. If only certain specific values are required in a form, the connection should only be created
when the form is loaded, and should be released again when the form is closed.

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

34 Version: 1.1 TX1000

BECKHOFF API

The method's first parameter is composed of the POE name and the PLC variable that is to be addressed. If,
for instance, the variable 'SPSVar1' from the function 'Funk1'is to be accessed, then 'Funk1.SPSVar1' must
be supplied as the first parameter. When global variables are being accessed, the POE name is omitted, as,
for instance, in "SPSGlobVar'. The parameter adsVarName does not distinguish between upper and lower
case letters.

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialogue for the axis under General. The 'Create symbols' box must be checked. See System
Manager manual.

The symbolic names of the individual NC parameters have a fixed specification, and can be found in the NC
documentation.

NOTE

Parameters not passed correctly under Borland Delphi

When calling the corresponding event function AdsReadConnectUpdateEx(), the OleVariant parameters
are not passed to the Delphi application correctly. The method AdsReadVarConnectEx2() with its associ-
ated event function AdsReadConnectUpdateEx2() provides the same functionality as the method AdsRead-
VarConnectEx/AdsReadConnectUpdateEx. Please use this method/event in Delphi applications. In Visual
Basic applications both methods can be used.

Example

Visual Basic sample: 'Event-driven reading' [P _74]

Also see about this
AdsReadVarConnectEx2 [35]
AdsReadConnectUpdateEx2 [54]
AdsReadConnectUpdateEx [53]

442 AdsReadVarConnectEx2

Creates a fixed connection between a Visual Basic variable and a data item from an ADS device.

object.AdsReadVarConnectEx2 (nIndexOffset As String,
nRefreshType As ADSOCXTRANSMODE,
nCycleTime As Long,

phConnect As Long
hUser As Variant
) As Long
Parameter
adsVarName

[in] Name of the ADS variable

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [» 65]
data type)

nCycleTime
[in] Read cycle in ms
phConnect

[out] Contains a unique handle for the connection that has been established (this is not the handle of the
ADS variable!).

TX1000 Version: 1.1 35

API BECKHOFF

hUser

[in] Optional: This value is passed when the AdsReadConnectUpdateEx2() [P 54] event is called.

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be released using the AdsDisconnectEx()
[»_40] method. If only certain specific values are required in a form, the connection should only be created
when the form is loaded, and should be released again when the form is closed.

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

The method's first parameter is composed of the POE name and the PLC variable that is to be addressed. If,
for instance, the variable 'SPSVar1' from the function 'Funk1'is to be accessed, then 'Funk1.SPSVar1' must
be supplied as the first parameter. When global variables are being accessed, the POE name is omitted, as,
for instance, in *SPSGlobVar'. The parameter adsVarName does not distinguish between upper and lower
case letters.

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialogue for the axis under General. The Create symbols box must be checked. See System
Manager manual.

The symbolic names of the individual NC parameters have a fixed specification, and can be found in the NC
documentation.

Parameters not passed correctly under Borland Delphi

When calling the AdsReadConnectUpdateEx() event function, the OleVariant parameters are not passed to
the Delphi application correctly. Please use the method AdsReadVarConnectEx2 and the corresponding
event in Delphi applications. In Visual Basic applications both methods/events can be used.

Example

Visual Basic: 'Event-driven reading' [>_74]

443 AdsReadVarConvertConnect

From TwinCAT 2.8 Build > 743 and above.

This method creates a fixed connection to a variable in an ADS device. The 'usrConvertType' parameter can
be used to specify which data type (format) the incoming variable data should have in the event function.
The 'usrConvertType' parameter is passed by value, which means that the data type passed is only used as
a "template" for the conversion. During the conversion, the appropriate quantity of data bytes is copied into
the data type specified by the user.
object.AdsReadVarConvertConnect (nIndexOffset As String,

nRefreshType As ADSOCXTRANSMODE,

nCycleTime As Long,
phConnectAs Long,

36 Version: 1.1 TX1000

BECKHOFF API

usrConvertType As Variant,
hUser As Variant
) As Long

Parameter

adsVarName

[in] Name of the ADS variable
nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [» 65]
data type)

nCycleTime
[in] Read cycle in ms
phConnect

[out] Contains a unique handle for the connection that has been established (this is not the handle of the
ADS variable!).

usrConverType

[in] Data type into which the event data is to be converted. The following table contains a list of the supported
VB data types that can be passed as parameters.

Visual Basic data type Equal to C++ VARTYPE Equal to PLC data type (memory
use)

Byte VT_UN BYTE (1 byte)

Integer VT 12 INT (2 bytes) and enums

Long VT_l4 DINT (4 bytes)

Single VT_R4 REAL (4 bytes)

Double VT_R8 LREAL (8 bytes)

String* VT _BSTR STRING (declared string length +
null termination)

Boolean** VT_BOOL BOOL (1 byte)

Date*** VT_DATE DT; DATE_AND_TIME (4 bytes)

not supported in VB VT_UI2 WORD; UINT (2 bytes)

not supported in VB VT_Ul4 DWORD; UDINT (4 bytes)

not supported in VB VT_I1 SINT (1 byte)

Variant**** VT_VARIANT -

Dim varArray() As <anything of VT_ARRAY | <anything of above |-

above types> types>

* The string length must be set to the maximum number of characters (including the closing NULL) that the
string variable can adopt. (VB string length + 1 byte (for null termination)) bytes are then copied from the
event data into a string variable. After this, the length of the string is then shortened to the actual length. In
other words, the string is truncated at the first null character. With appropriately set string length, string
arrays can also be read from the PLC. E.g.:

VAR GLOBAL
plcStringArr : ARRAY[1..2] OF STRING(30);
END_VAR
in VB:
Dim vbStringArr(1 To 2) As String
vbStringArr(l) = String(31, "#")
vbStringArr (2) = String(31, "#")

call AdsOcxl.AdsReadVarConvertConnect (".plcStringArr", ADSTRANS SERVERONCHA, 300, hConnect, vbString
Arr)

TX1000 Version: 1.1 37

API BECKHOFF

** During the conversion, one byte of event data at a time is converted to a 2-byte OleVariant data type. The
following applies: TRUE when data <> 0 and FALSE when data = 0;

*** The OLE variant data type Date can only be used, for instance, to read PLC variables of type
DATE_AND_TIME into a VB application. The local settings of the PC are taken into account during the
conversion. Other PLC data types such as TIME or TOD are not supported, because they cannot be
appropriately converted.

**** The variant variable must be initialized with a data type. VT_EMPTY or VT_NULL, for instance, are not
allowed.

hUser

[in] Optional: This value is passed when the AdsReadConvertConnectUpdate() [P 55] event is called.

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be released using the AdsDisconnectEx()

[»_40] method. If only certain specific values are required in a form, the connection should only be created
when the form is loaded, and should be released again when the form is closed.

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

The method's first parameter is composed of the POE name and the PLC variable that is to be addressed. If,
for instance, the variable 'SPSVar1' from the function 'Funk1'is to be accessed, then 'Funk1.SPSVar1' must
be supplied as the first parameter. When global variables are being accessed, the POE name is omitted, as,
for instance, in "SPSGlobVar'. The parameter adsVarName does not distinguish between upper and lower
case letters.

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialogue for the axis under General. The 'Create symbols' box must be checked. See System
Manager manual.

The symbolic names of the individual NC parameters have a fixed specification, and can be found in the NC
documentation.

Example

Visual Basic sample: Event-driven reading (with conversion to another type) [> 84

444 AdsRead[Datatype]VarConnect

AdsReadBoolVarConnect

AdsReadIntegerVarConnect

38 Version: 1.1 TX1000

BECKHOFF API

AdsReadlLongVarConnect

AdsReadSingleVarConnect
AdsReadDoubleVarConnect
AdsReadStringVarConnect

Creates a fixed connection between a Visual Basic variable of type boolean, integer, long, single, double or
string and a data item from an ADS device.

object.AdsRead[Datatype]VarConnect (
nIndexOffset As String,
cbLength As Long,
nRefreshType As Integer,
nCycleTime As Integer,
pData As [Datatypel

) As Long

Parameter

adsVarName

[in] Name of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [» 69])

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [P 65]
data type)

nCycleTime
[in] Read cycle in ms
pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

Comment

When the PLC variable is changed, the event AdsReadConnectUpdate() [» 53] is triggered.

If the connection to an ADS variable is no longer required, it should be released using the
AdsRead[DataType]Disconnect() [» 44] method. If only certain specific values are required in a form, the
connection should only be created when the form is loaded, and should be released again when the form is
closed.

Only one handle is created per PLC variable, i.e. when connecting several variables to a PLC variable, the

event AdsReadConnectUpdate() [P 53] is called accordingly several times with the same handle when
changes are made.

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

TX1000 Version: 1.1 39

API BECKHOFF

The method's first parameter is composed of the POE name and the PLC variable that is to be addressed. If,
for instance, the variable 'SPSVar1' from the function 'Funk1' is to be accessed, then 'Funk1.SPSVar1' must
be supplied as the first parameter. When global variables are being accessed, the POE name is omitted, as,
for instance, in .SPSGlobVar'. The parameter 'adsVarName' does not distinguish between upper and lower
case letters.

If a variable from the PLC is linked to a Visual Basic variable you must enter 2 for the length, since Visual
Basic manages boolean variables internally using 2 bytes.

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialog for the axis under 'General'. The 'Create symbols' box must be checked. See System Man-
ager manual.

The symbolic names of the individual NC parameters have a fixed specification, and can be found in the NC
documentation.

This method has been replaced by AdsReadVarConnectEx() [P 34]. In future, use AdsReadVarConnectEx(),
since AdsReadBoolVarConnect() will no longer be maintained, and will only be included for reasons of
compatibility.

Example

445 AdsDisconnectEx

Closes a fixed connection between a Visual Basic variable and a data item from an ADS device.
object.AdsDisconnectEx (hConnectAs Long) As Long

Parameter

hConnect

[in] Handle of the connection between the Visual Basic variable and the ADS variable

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be closed using the AdsDisconnectEx()
method. If only certain specific values are required in a form, the connection should only be created when
the form is loaded, and should be released again when the form is closed. See also the

AdsReadVarConnectEx() [» 34] method.

Example

Visual Basic sample: 'Event-driven reading [» 741’

446 AdsReadConnect

Creates a fixed connection between a Visual Basic variable and a data item from an ADS device.

object.AdsReadConnect (
nIndexGroupAs Long,
nIndexOffset As Long,
cbLength As Long,

40 Version: 1.1 TX1000

BECKHOFF API

nRefreshType As ADSOCXTRANSMODE,
nCycleTime As Integer,
pData As Variant

) As Long

Parameter

nindexGroup

[in] Index group of the ADS variable

nindexOffset

[in] Index offset of the ADS variable

cbLength

[in] Length of the data in bytes (see VB variable lengths [F_69])

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [P 65]
data type)

nCycleTime
[in] Read cycle in ms
pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be released using the
AdsReadDisconnect() [»_42] method. If only certain specific values are required in a form, the connection
should only be created when the form is loaded, and should be released again when the form is closed. The
variable type string is not supported by the AdsReadConnect() method.

Example

Dim VBVarInteger (0) As Integer
Dim VBVarSingle (0) As Single
Dim VBVarBoolean (0) As Boolean

'wird beim Starten des Programms aufgerufen
Private Sub Form Load()
'Verbindung zu den Variablen in der SPS herstellen
Call AdsOcxl.AdsReadConnect (&H4020&, 0&, 2&, ADSTRANS SERVERONCHA, 55, VBVarInteger)
Call AdsOcxl.AdsReadConnect (&H4020&, 2&, 4&, ADSTRANS SERVERONCHA, 55, VBVarSingle)
Call AdsOcxl.AdsReadConnect (&H4021&, 48&, 2&, ADSTRANS SERVERONCHA, 55, VBVarBoolean)
End Sub

'wird beim Beenden des Programms aufgerufen

Private Sub Form Unload(Cancel As Integer)
'Verbindungen zu den Variablen in der SPS beenden
Call AdsOcxl.AdsReadDisconnect (VBVarInteger)
Call AdsOcxl.AdsReadDisconnect (VBVarSingle)
Call AdsOcxl.AdsReadDisconnect (VBVarBoolean)

End Sub

'wird nach Anderung einer SPS-Variablen vom ADS-OCX aufgerufen
Private Sub AdsOcxl AdsReadConnectUpdate (ByVal nIndexGroup As Long, ByVal nIndexOffset As Long)
If (nIndexGroup = &H4020&) Then
Select Case nIndexOffset
Case 0: lblInteger.Caption = VBVarInteger (0)
Case 2: 1lblSingle.Caption = VBVarSingle (0)
End Select

TX1000 Version: 1.1 41

API BECKHOFF

End If
If (nIndexGroup = &H4021&) Then
Select Case nIndexOffset

Case 48: Shapel.BackColor = IIf(VBVarBoolean(0) = True, &HFF00&, &H8000&)
End Select
End If
End Sub
4.4.7 AdsReadDisconnect

Closes a fixed connection between a Visual Basic variable and a data item from an ADS device.
object.AdsReadDisconnect (pData As Variant) As Long

Parameter

pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be closed using the
AdsReadDisconnect() method. If only certain specific values are required in a form, the connection should
only be created when the form is loaded, and should be released again when the form is closed. See also

the AdsReadConnect() [40] method.

Example
4.4.8 AdsRead[Datatype]Connect
AdsReadBoolConnect

AdsReadIntegerConnect
AdsReadlLongConnect
AdsReadSingleConnect
AdsReadDoubleConnect
AdsReadStringConnect

Creates a cyclic connection between a Visual Basic variable of type boolean, integer, long, single, double or
string and a data item from an ADS device.

object.AdsRead[Datatype]Connect (
nIndexGroupAs Long,
nIndexOffset As Long,
cbLength As Long,
nRefreshType As Integer,
nCycleTime As Integer,
pData As [Datatypel

) As Long

Parameter
nindexGroup

[in] Index group of the ADS variable

42 Version: 1.1 TX1000

BECKHOFF API

nindexOffset
[in] Index offset of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [» 69])

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [» 65]
data type)

nCycleTime
[in] Read cycle in ms
pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

Comments

If the connection to the ADS variable is no longer required, it should be released using the

AdsRead[Datatype]Disconnect() [»_44] method. If only certain values are required in a form, the connection
should only be created when the form is loaded and released again when the form is closed.

Note on the data type String: It should be noted that the length of the data refers to the length of the
variable in the Visual Basic program. Since Visual Basic represents a character with 2 bytes, the length of
the variable must be determined with LenB(), not with Len().

Example
Dim VBVar As Integer

'wird beim Starten des Programms aufgerufen
Private Sub Form Load()
'Verbindung zwischen Merkerwort 0 der SPS und VBVar herstellen
Call AdsOcxl.AdsReadIntegerConnect (&H4020&, 0&, 2&, 1, 110, VBVar)
End Sub

'wird beim Beenden des Programms aufgerufen
Private Sub Form Unload(Cancel As Integer)
'Verbindung zwischen den Variablen trennen
Call AdsOcxl.AdsReadIntegerDisconnect (VBVar)
End Sub

'wird nach jedem Lesen vom ADS-OCX aufgerufen

Private Sub AdsOcxl AdsReadConnectUpdate (ByVal nIndexGroup As Long, ByVal nIndexOffset As Long)
'Variablen am Bildschirm anzeigen
Labell.Caption = VBVar

End Sub

Dim VBVar As String

'wird beim Starten des Programms aufgerufen
Private Sub Form Load()

'Visual Basic Variable initialisieren

VBVar = Space (10)

'Verbindung zur Variable in der SPS herstellen

Call AdsOcxl.AdsReadStringConnect (&H4020&, 0&, LenB(VBVar), 4, 110, VBVar)
End Sub

'wird beim Beenden des Programms aufgerufen
Private Sub Form Unload(Cancel As Integer)
'Verbindung zur Variable in SPS beenden
Call AdsOcxl.AdsReadStringDisconnect (VBVar)
End Sub

'wird bei Verdnderung der SPS-Variablen vom ADS-OCX aufgerufen

TX1000 Version: 1.1 43

API BECKHOFF

Private Sub AdsOcxl AdsReadConnectUpdate (ByVal nIndexGroup As Long, ByVal nIndexOffset As Long)
If (nIndexGroup = &H4020) And (nIndexOffset = 0) Then
'Variablen in Form anzeigen
Labell.Caption = VBVar
End If
End Sub

449 AdsRead[Datatype]Disconnect

AdsReadBoolDisconnect
AdsReadIntegerDisconnect
AdsReadlLongDisconnect
AdsReadSingleDisconnect
AdsReadDoubleDisconnect
AdsReadStringDisconnect

Ends a fixed connection between a Visual Basic variable of type boolean, integer, long, single, double or
string and a data item from an ADS device.

object.AdsRead[Datatype]Disconnect (
pData As [Datatypel
) As Long

Parameter
pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

Comments

If the value of an ADS variable is no longer required, the connection should be closed using the
AdsReadBoolDisconnect() method. If only certain specific values are required in a form, the connection
should only be created when the form is loaded, and should be released again when the form is closed. See

also the AdsRead[Datatype]VarConnect() [»_38] and AdsRead[Datatype]Connect() [» 42] method.

Example

4410 AdsWriteDisconnect

Closes a fixed connection between a Visual Basic variable and the data item in an ADS device.
object.AdsWriteDisconnect (pData As Variant) As Long

Parameter

pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

44 Version: 1.1 TX1000

BECKHOFF API

Comments

If the connection to the ADS variable is no longer required, it should be released using the
AdsWriteDisconnect() method. If only certain specific values are required in a form, the connection should
only be created when the form is loaded, and should be released again when the form is closed.

Example

4.4.11 AdsWrite[Datatype]Disconnect

AdsWriteBoolDisconnect
AdsWritelntegerDisconnect
AdsWriteLongDisconnect
AdsWriteSingleDisconnect
AdsWriteDoubleDisconnect

Ends a fixed connection between a Visual Basic variable of type boolean, integer, long, single or double and
a data item from an ADS device.

object.AdsWrite[Datatype]Disconnect (pData As [Datatype]) As Long
Parameter
pData

[in] Visual Basic variable into which the data is written from the ADS variable

Return value

See ADS error codes

Comments

If the connection to the ADS variable is no longer required, it should be released using the
AdsWrite[Datatype]Disconnect() method. If only certain specific values are required in a form, the connection
should only be created when the form is loaded, and should be released again when the form is closed.

Example

4412 AdsWriteVarConnect

Creates a fixed connection of a Visual Basic variable and a variable from an ADS device.

object.AdsWriteVarConnect (
adsVarName As String,
cbLength As Long,
nRefreshType As ADSOCXTRANSMODE,
nCycleTime As Integer,
pData As Variant

) As Long

Parameter
adsVarName

[in] Name of the ADS variable

TX1000 Version: 1.1 45

API BECKHOFF

cbLength

[in] Length of the data in bytes (see VB variable lengths [» 69])

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [» 65]
data type). The method AdsWriteVarConnect supports (sensibly) only the ADSTRANS_CLIENTCYCLE
mode. The value of the Visual Basic variable is written cyclically to the ADS device.

nCycleTime
[in] Write cycle in ms
pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be released using the
AdsWriteDisconnect() [»_44] method. If only certain specific values are required in a form, the connection
should only be created when the form is loaded, and should be released again when the form is closed.
The string variable type is not supported.

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

The method's first parameter is composed of the POE name and the PLC variable that is to be addressed. If,
for instance, the variable 'SPSVar1' from the function 'Funk1'is to be accessed, then 'Funk1.SPSVar1' must
be supplied as the first parameter. When global variables are being accessed, the POE name is omitted, as,
for instance, in "SPSGlobVar'. The parameter adsVarName does not distinguish between upper and lower
case letters.

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialogue for the axis under General. The 'Create symbols' box must be checked. See System
Manager manual.

The symbolic names of the individual NC parameters have a fixed specification, and can be found in the NC
documentation.

Example

Dim VBVarInteger (0) As Integer
Dim VBVarSingle (0) As Single
Dim VBVarBoolean (0) As Boolean

'wird beim Starten des Programms aufgerufen
Private Sub Form Load()
'Verbindung zu den Variablen in der SPS herstellen
Call AdsOcxl.AdsWriteVarConnect ("MAIN.PLCVarInteger", 2&, 1, 110, VBVarlInteger)
Call AdsOcxl.AdsWriteVarConnect ("MAIN.PLCVarSingle", 4&, 1, 110, VBVarSingle)
Call AdsOcxl.AdsWriteVarConnect ("MAIN.PLCVarBoolean", 2&, 1, 110, VBVarBoolean)
End Sub

'wird beim Beenden des Programms aufgerufen
Private Sub Form Unload(Cancel As Integer)
'Verbindung zu den Variablen in der SPS beenden

46 Version: 1.1 TX1000

BECKHOFF API

Call AdsOcxl.AdsWriteDisconnect (VBVarInteger)

Call AdsOcxl.AdsWriteDisconnect (VBVarSingle)

Call AdsOcxl.AdsWriteDisconnect (VBVarBoolean)
End Sub

'wird vom Bediener aufgerufen
Private Sub cmd write Click()

VBVarInteger (0) = CInt (txt int.Text)

VBVarSingle (0) = CSng(txt single.Text)

VBVarBoolean (0) = IIf(chk boolean.Value = 1, True, False)
End Sub

4413 AdsWrite[Datatype]VarConnect

AdsWriteBoolVarConnect
AdsWritelntegerVarConnect
AdsWriteLongVarConnect
AdsWriteSingleVarConnect
AdsWriteDoubleVarConnect

Creates a fixed connection between a Visual Basic variable of type boolean, integer, long, single or double
and an ADS device.

object.AdsWrite[Datatype]VarConnect (
adsVarName As String,
cbLength As Long,
nRefreshType As Integer,
nCycleTime As Integer,
pData As [Datatype]

) As Long

Parameter

adsVarName

[in] Name of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [F_69])

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [P 65]
data type)

nCycleTime
[in] Write cycle in ms
pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

If the connection to an ADS variable is no longer required, it should be released using the
AdsWrite[Datatype]Disconnect() [» 45] method. If only certain specific values are required in a form, the
connection should only be created when the form is loaded, and should be released again when the form is
closed.

TX1000 Version: 1.1 47

API BECKHOFF

Enable the Symbol download at the PLC

Ensure that 'Symbol download' is enabled in PLC Control under Project / Options / TwinCAT. You will find
more detailed information in the PLC Control manual.

The method's first parameter is composed of the POE name and the PLC variable that is to be addressed. If,
for instance, the variable 'SPSVar1' from the function 'Funk1'is to be accessed, then 'Funk1.SPSVar1' must
be supplied as the first parameter. When global variables are being accessed, the POE name is omitted, as,
for instance, in "SPSGlobVar'. The parameter adsVarName does not distinguish between upper and lower
case letters.

In the NC, enable the Symbol download for each axis

Symbol download must be enabled for each axis in the System Manager. This can be specified in the con-
figuration dialogue for the axis under General. The 'Create symbols' box must be checked. See System
Manager manual.

The symbolic names of the individual NC parameters have a fixed specification, and can be found in the NC
documentation.

Example
Dim VBVar As Integer

'wird beim Starten des Programms aufgerufen
Private Sub Form Load()

'Verbindung zur Variable in der SPS herstellen

Call AdsOcxl.AdsWriteIntegerVarConnect ("MAIN.PLCVar", 2&, 1, 110, VBVar)
End Sub

'wird beim Beenden des Programms aufgerufen
Private Sub Form Unload(Cancel As Integer)
'Verbindung zur Variable in SPS beenden
Call AdsOcxl.AdsWriteIntegerDisconnect (VBVar)
End Sub

'wird vom Bediener aufgerufen
Private Sub cmd write Click()

VBVar = CInt (Textl.Text)
End Sub

4.414 AdsWriteConnect

Creates a fixed connection of a Visual Basic variable and an ADS device.

object.AdsWriteConnect (
nIndexGroup As Long,
nIndexOffset As Long,
cbLength As Long,
nRefreshType As ADSOCXTRANSMODE,
nCycleTime As Integer,
pData As Variant

) As Long

Parameter

nindexGroup

[in] Index group of the ADS variable
nindexOffset

[in] Index offset of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [» 69])

48 Version: 1.1 TX1000

BECKHOFF API

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [P 65]
data type)

nCycleTime
[in] Write cycle in ms
pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

If the connection to the ADS variable is no longer required, it should be released using the
AdsWriteDisconnect() [»_44] method. If only certain specific values are required in a form, the connection
should only be created when the form is loaded, and should be released again when the form is closed.
The string variable type is not supported.

Example

Dim VBVarInteger (0) As Integer
Dim VBVarSingle (0) As Single
Dim VBVarBoolean (0) As Boolean

'wird beim Starten des Programms aufgerufen
Private Sub Form Load()
'Verbindung zu den Variablen in der SPS herstellen
Call AdsOcxl.AdsWriteConnect (§H4020&, 0&, 2&, ADSTRANS CLIENTCYCLE, 55, VBVarInteger)
Call AdsOcxl.AdsWriteConnect (&H4020&, 2&, 4&, ADSTRANS CLIENTCYCLE, 55, VBVarSingle)
Call AdsOcxl.AdsWriteConnect (&H4021&, 48&, 2&, ADSTRANS CLIENTCYCLE, 55, VBVarBoolean)
End Sub

'wird beim Beenden des Programms aufgerufen
Private Sub Form Unload(Cancel As Integer)
'Verbindung zu den Variablen in der SPS beenden
Call AdsOcxl.AdsWriteDisconnect (VBVarInteger)
Call AdsOcxl.AdsWriteDisconnect (VBVarSingle)
Call AdsOcxl.AdsWriteDisconnect (VBVarBoolean)
End Sub

'wird vom Bediener aufgerufen
Private Sub cmd write Click()

VBVarInteger (0) = CInt(txt int.Text)

VBVarSingle (0) = CSng(txt single.Text)

VBVarBoolean (0) = IIf(chk boolean.Value = 1, True, False)
End Sub

4.4.15 AdsWrite[Datatype]Connect

AdsWriteBoolConnect
AdsWritelntegerConnect
AdsWriteLongConnect
AdsWriteSingleConnect
AdsWriteDoubleConnect

Creates a fixed connection between a Visual Basic variable of type boolean, integer, long, single or double
and a data item from an ADS device.

TX1000 Version: 1.1 49

API BECKHOFF

object.AdsWrite[Datatype]Connect (
nIndexGroupAs Long,
nIndexOffset As Long,
cbLength As Long,
nRefreshType As Integer,
nCycleTime As Integer,
pData As [Datatypel

) As Long

Parameter

nindexGroup

[in] Index group of the ADS variable
nindexOffset

[in] Index offset of the ADS variable
cbLength

[in] Length of the data in bytes (see VB variable lengths [P 69])

nRefreshType

[in] Type of data exchange between VB variable and ADS variable (see the ADSOCXTRANSMODE [P 65]
data type)

nCycleTime
[in] Write cycle in ms
pData

[in] Visual Basic variable from which the data is written into the ADS variable

Return value

See ADS error codes

Comments

If the connection to the ADS variable is no longer required, it should be released using the
AdsWrite[Datatype]Disconnect() [P 45] method. If only certain specific values are required in a form, the
connection should only be created when the form is loaded, and should be released again when the form is
closed.

Example
Dim VBVar As Integer

'wird beim Starten des Programms aufgerufen ---
Private Sub Form Load()

'Verbindung zur Variable herstellen

Call AdsOcxl.AdsWriteIntegerConnect (&H4020&, 0&, 2&, 1, 110, VBVar)
End Sub

'wird beim Beenden des Programms aufgerufen
Private Sub Form Unload(Cancel As Integer)
'Verbindung zu den Variablen in SPS beenden
Call AdsOcxl.AdsWriteIntegerDisconnect (VBVar)
End Sub

'wird durch den Bediener aufgerufen
Private Sub Cmd write Click()

VBVar = CInt (Textl.Text)
End Sub

50 Version: 1.1 TX1000

BECKHOFF API

4.5 Events

451 AdsAmsConnectTimeout

This event is called as soon as a timeout occurs for a variable connected "per Connect".

object AdsAmsConnectTimeout (
nIndexGroup As Long,
nIndexOffset As Long

)

Parameter

nindexGroup

[out] Index group of the ADS variable where the timeout occurred.
nindexOffset

[out] Index offset of the ADS variable where the timeout occurred.

Comments

The AdsAmsConnectTimeout event is called only if the type of data exchange between VB variable and ADS
variable is controlled by the client (ADSTRANS CLIENTCYCLE [» 65]).

Example

4.5.2 AdsAmsTimeout

This event is called as soon as a timeout occurs during an asynchronous read/write request.

object AdsAmsTimeout (nInvokeId As Long)

Parameter
ninvokeld

[out] Identification number of the request where the timeout occurred.

Comments

Example

4.5.3 AdsConnectError

If an error occurs in the server on a variable connected "by connect", this event is called.

TX1000 Version: 1.1 51

API BECKHOFF

object AdsAmsConnectTimeout (
nIndexGroup As Long,
nIndexOffset As Long,
errorCode As Long

)

Parameter

nindexGroup

[out] Index group of the ADS variable where the error occurred.
nindexOffset

[out] Index offset of the ADS variable where the error occurred.
errorCode

[out] Error state; see ADS error codes

Comments

Example

4.5.4 AdsLogNotification

This event is called as soon as an ADS device has issued a message and the previously defined filter
conditions are satisfied.

object AdsLogNotification (
dateTime As Date,
nMs As Long,
dwMsgCtrl As Long,
nServerPort As Long,
szDeviceName As String,
szLogMsgAs String

Parameter

dateTime

[out] Date and time at which the message was issued by the ADS device
nMs

[out] Milliseconds as the message was issued by the ADS device

dwMsgCitrl

[out] Filter mask for the kinds of messages that are to be reported (see ADSLOGMSGTYPE [P _65] data type)

nServerPort

[out] Port number of the ADS device that issued the message
szDeviceName

[out] Name of the ADS device that issued the message
szLogMsg

[out] Message that was issued by the ADS device

52 Version: 1.1 TX1000

BECKHOFF API

Comments

As soon as an ADS device has issued a message, and the filter conditions defined by the
AdsEnableLogNotificaion() [>_15] method are met, the AdsLogNoatification() event is triggered. The message
can be further evaluated by means of the parameters that are passed.

Example

Visual Basic sample: 'Send/receive messages via the TwinCAT Router [P 817’

4.5.5 AdsReadConnectUpdate

This event is called if the AdsReadYY(Var)Connect() method has been called, and the value from the ADS
device has been read or has changed.
object AdsReadConnectUpdate (

nIndexGroup As Long,

nIndexOffset As Long
)

Parameter

nindexGroup

[out] Date and time at which the message was issued by the ADS device
nindexOffset

[out] Milliseconds as the message was issued by the ADS device

Comments

With the AdsReadConnectUpdate() event, it is not necessary that the value is transmitted at the same time,
since the ADS-OCX will be updating the Visual Basic variable in the background. To optimize write accesses
to display objects on the form, the event function should query which variable has changed and update only
the element on the form that displays the value. If a VB variable was connected to an ADS variable via
VarConnect, the handle of the variable is passed in the parameter nindexOffset in the event
AdsReadConnectUpdate(). The constant value &HF005 is transferred to the parameter nindexGroup in this
case. In order to be able to evaluate the nindexOffset, you must first use the AdsCreateVarHandle() [»_14]
method to fetch the handle of the ADS variable. This can be done, for instance, in the form's load event. In
the event AdsReadConnectUpdate() it is then queried which variable handle was transferred in the
parameter nindexOffset.

If the connection was not created with the variable name, but with the variable address, then in the
parameters nindexGroup and nindexOffset the address of the variable is transferred, which has changed.

If the connection between VB variable and ADS variable is terminated, also the handle should be released
again with the method AdsDeleteVarHandle() [>_15].

Example

4.5.6 AdsReadConnectUpdateEx

This event is called if the AdsReadVarConnectEx() [»_34] method has been called, and the value from the
ADS device has been read or has changed.

object AdsReadConnectUpdateEx (
ByVal dateTime As Date,
ByVal nMs As Long,
ByVal hConnect As Long,
ByVal data As Variant,
Optional ByVal hUser As Variant

TX1000 Version: 1.1 53

API BECKHOFF

Parameter

dateTime

[out] Timestamp

nHs

[out] Milliseconds of timestamp

hConnect

[out] Handle of the connection; is created by the AdsReadVarConnectEx() [»_34] method

data
[out] Value from the ADS device
hUser

[out] General purpose value; is passed when the AdsReadVarConnectEx() [»_34] method is called

Comments

Example

Visual Basic sample: 'Event-driven reading [» 74]'

4.5.7 AdsReadConnectUpdateEx2

This event is called if the AdsReadVarConnectEx2() [»_35] method has been called, and the value from the
ADS device has been read or has changed.

object AdsReadConnectUpdateEx2 (
ByVal dateTime As Date,
ByVal nMs As Long,
ByVal hConnect As Long,
ByRef data As Variant,
Optional ByRef hUser As Variant

Parameter

dateTime

[out] Timestamp

nHs

[out] Milliseconds of timestamp

hConnect

[out] Handle of the connection; is created by the AdsReadVarConnectEx2() [»_35] method

data
[out] Value from the ADS device
hUser

[out] General purpose value; is passed when the AdsReadVarConnectEx2() [»_35] method is called

54 Version: 1.1 TX1000

BECKHOFF API

Comments

The parameters data and hUser must be passed ByRef (necessary for use under Borland Delphi).

Example

Visual Basic: 'Event-driven reading' [P 74]

4.5.8 AdsReadConvertConnectUpdate

From TwinCAT 2.8 Build > 743 and above.

This event is called if the AdsReadVarConvertConnect() [»_36] method has been called, and the value from
the ADS device has been read or has changed.

object AdsReadConvertConnectUpdate (
ByVal dateTime As Date,
ByVal nMs As Long,
ByVal hConnect As Long,
ByRef data As Variant,
Optional ByRef hUser As Variant

Parameter

dateTime

[out] Timestamp.

nHs

[out] Milliseconds of timestamp.

hConnect

[out] Handle of the connection; is created by the AdsReadVarConvertConnect() [»_36] method.

data

[out] Value from the ADS device. The data type of the variant variable is specified as a parameter when
AdsReadVarConvertConnect() [» 36] is called.

hUser

[out] General purpose value; is passed when the AdsReadVarConvertConnect() [>_36] method is called.

Example

Visual Basic: Event-driven reading (with conversion to another type) [84]

4.5.9 AdsRead[Datatype]Conf

AdsReadIntegerConf

AdsReadLongConf

AdsReadSingleConf

AdsReadDoubleConf

AdsReadStringConf

Returns the result after the AdsRead[Datatype]Req() method has been called.

TX1000 Version: 1.1 55

API BECKHOFF

object AdsRead[Datatype]Conf (
nInvokeId As Long,
nResult As Long,
cbLength As Long,
pData As [Datatype]
)

Parameter

ninvokeld

[out] Job number for identification of the response
nResult

[out] Error state; see ADS error codes

cbLength

[out] Length of the data in bytes

pData

[out] Data being read from the ADS device

Comments

Once a read request has been sent to the ADS device, execution of the Visual Basic program continues. As
soon as the data is available, the ADS-OCX triggers the event function AdsRead[Datatype]Conf() with which
the requested data is transmitted.

When the read request is sent, an identification number must be specified, which is later returned when the
event function is called. This makes it possible to assign the event function to the appropriate read request.

See also AdsRead[DatatypelReq() [» 31].

Example

4510 AdsRouterRemove

This event is triggered if the TwinCAT Router is completely removed from the operating system in the
Windows NT/2000 Control Panel.

object AdsRouterRemove ()

Parameter

Comments

Example

Visual Basic: 'Detect/alter state change in TwinCAT Router and the PLC [» 79]'

4.5.11 AdsRouterShutdown

This event is triggered when the TwinCAT Router is stopped.

object AdsRouterShutdown ()

56 Version: 1.1 TX1000

BECKHOFF

API

Parameter

Comments

Example

Visual Basic: 'Detect/alter state change in TwinCAT Router and the PLC [» 791’

4512 AdsRouterStart

This event is triggered when the TwinCAT Router is started.

object AdsRouterStart ()

Parameter

Comments

Example

Visual Basic: 'Detect/alter state change in TwinCAT Router and the PLC [P 79]'

4513 AdsServerStateChanged

This event function is called when the state of the ADS device has changed.

object AdsServerStateChanged(
nAdsState As ADSSTATE,
nDeviceState As Long

)

Parameter

nAdsState

[out] New state of the ADS device (see the ADSSTATE [»_65] data type)
nDeviceState

[out] (not presently supported)

Comments

Example

Visual Basic: 'Detect/alter state change in TwinCAT Router and the PLC [» 791’

Also see about this
ADSSTATE [F 65]

TX1000 Version: 1.1

57

API BECKHOFF

4.5.14 AdsServerSymChanged

This event function is triggered when the symbol table in the ADS device has changed.

object AdsServerSymChanged ()

Parameter

Comments

Every ADS device stores its symbol names in an internal table. Each symbol is assigned a handle that can

be read with the AdsCreateVarHandle() [»_14] method. This event is triggered if the symbol table changes, for
instance because the number of variables has changed.

Example

Visual Basic: 'Detect/alter state change in TwinCAT Router and the PLC [» 791’

4515 AdsWriteConf

Confirms a write request.

object AdsWriteConf (
nInvokeId As Long,
nResult As Long

)

Parameter

ninvokeld

[out] Job number for identification of the response
nResult

[out] Error state; see ADS error codes

Comments

Once a write request has been sent to the ADS device, execution of the Visual Basic program continues. As
soon as the data has been written to the device, the ADS-OCX triggers the event function AdsWriteConf().
When the write request is issued, an identification number must be specified, which is later returned when
the event function is called. This makes it possible to assign the event function to the appropriate write

request. See also AdsWrite[DatatypelReq() [»_33].

Example
4.6 Properties
4.6.1 AdsAmsClientNetld

This property stores the Netld of the computer in which the Visual Basic program with the ADS-OCX is
executing.

object.AdsAmsClientNetId As String

58 Version: 1.1 TX1000

BECKHOFF API

Comment

This is a read-only property, and can be changed neither within the Visual Basic development environment
nor during the program's runtime.

The NetID can be set using the TwinCAT system control.

4.6.2 AdsAmsClientPort

The client port number is the port number with which other ADS devices can address the Visual Basic
program.

object.AdsAmsClientPort As Long

Comment

If you do not prescribe a port number yourself, the ADS-OCX will automatically assign a port number. This
will always be greater than 32767. Note that this port number is different after each start.

If your Visual Basic program is to receive a fixed port number, you must set the desired port number in the
program using the AdsAmsClientPort property. In that case the value must be between 16000 and 32000.

You can also set the AdsAmsClientPort property by means of the ADS-OCX properties window during the
development phase. SavePort must then be set to TRUE. This will cause the ADS-OCX not to change the
port number.

See also the AdsAmsSaveClientPort [P 59] property.

4.6.3 AdsAmsCommTimeout

AdsAmsCommTimeOut provides a time in milliseconds within which the communication partner is expected
to respond.

object.AdsAmsCommTimeout As Long
Comment

Allowed values: 1 to 2147483647 milliseconds. Negative values and the value zero are not accepted during
an assignment. Default: 5000 milliseconds.

4.6.4 AdsAmsConnected

AdsAmsConnected can be used to determine the state of the connection between ADS-OCX and TwinCAT
ADS routers

object.AdsAmsConnected As Boolean

Comments

If the connection to the TwinCAT ADS router exists, the value of the property is "TRUE", otherwise the value
is "FALSE".

This property can only be read.

4.6.5 AdsAmsSaveClientPort

Prevents the ADS-OCX from assigning the client's port dynamically.

TX1000 Version: 1.1 59

API BECKHOFF

object.AdsAmsSaveClientPort As Boolean

Comment

If you do not prescribe a port number yourself, the ADS-OCX will automatically assign a port number. This
will always be greater than 32767. Note that this port number is different after each start.

If your Visual Basic program is to receive a fixed port number, you must set the desired port number in the
program using the AdsAmsClientPort property. In that case the value must be between 16000 and 32000.

You can also set the AdsAmsClientPort property by means of the ADS-OCX properties window during the
development phase. SavePort must then be set to TRUE. This will cause the ADS-OCX not to change the
port number.

See also the AdsAmsClientPort [P _59] property.

4.6.6 AdsAmsServerNetld

This property stores the Netld of the computer that the Visual Basic program with the ADS-OCX is to access.

object.AdsAmsServerNetId As String

Comment

ADS devices can be located on various computers within a network. Each computer must have a unique
Netld within that network.

Enter the Netld of the computer in which the ADS device with which you want to communicate is located into
this property. If this property contains an empty string, the ADS devices of the local computer are addressed.
If, for instance, your Visual Basic program is always located on the same computer as the PLC, leave this
property empty. This makes it easier for the Visual Basic program to be used on other computers, even
when those computers have different Netlds.

The TwinCAT system control can be used to determine what NetlD has been set.

4.6.7 AdsAmsServerPort

Contains the port number of the ADS device that is to be addressed with the ADS-OCX.
object.AdsAmsServerPort As Long
Comment

The port numbers of the individual ADS devices can be found in the corresponding documentation. The
following table lists the most important ADS devices:

ADS device Port number
NC / NCI 501
PLC runtime system 1 801
PLC runtime system 2 811
PLC runtime system 3 821
PLC runtime system 4 831
Cam controller 901

60 Version: 1.1 TX1000

BECKHOFF API

4.6.8 AdsClientAdsState

This property can be used to tell other communication partners what state the ADS device is in at the
moment.

object.AdsClientAdsState As String
Comment

The states that are supported by an ADS device can be found in the documentation for the ADS device.

4.6.9 AdsClientBuild

Contains the build level of the ADS device.
object.AdsClientBuild As Integer
Comment

Every ADS device has properties from which the ADS device's version number and type identification can be
read. The version number consists of:

Version (see the AdsClientVersion [P_62] property)

Revision (see the AdsClientRevision [P 61] property)

Build (see the AdsClientBuild [»_61] property)

Whenever ADS devices are created you should ensure that these properties are set, so that the ADS device
can be identified by other participating devices.

4.6.10 AdsClientRevision

Contains the revision level of the ADS device.
object.AdsClientRevision As Integer
Comment

Every ADS device has properties from which the ADS device's version number and type identification can be
read. The version number consists of:

Version (see the AdsClientVersion [P _62] property)

Revision (see the AdsClientRevision [P _61] property)

Build (see the AdsClientBuild [»_61] property)

Whenever ADS devices are created you should ensure that these properties are set, so that the ADS device
can be identified by other participating devices.

4.6.11 AdsClientType

Contains the type identification of the ADS device.

object.AdsClientType As String

Comment

The type identification consists of a character string of indeterminate length. Whenever ADS devices are
created you should ensure that these properties are set, so that this ADS device can be identified by other
participating devices.

TX1000 Version: 1.1 61

API BECKHOFF

4.6.12 AdsClientVersion

Contains the version number of the ADS device.

object.AdsClientVersion As Integer

Comment

Every ADS device has properties from which the ADS device's version number and type identification can be
read. The version number consists of:

» Version (see the AdsClientVersion [P_62] property)
* Revision (see the AdsClientRevision [P 61] property)
» Build (see the AdsClientBuild [P 61] property)

Whenever ADS devices are created you should ensure that these properties are set, so that the ADS device
can be identified by other participating devices.

4.6.13 AdsServerAdsState

These properties can be used in order to query the state of the ADS device that is currently being
addressed.

object.AdsServerAdsState As String
Comment

The states that are indicated by an ADS device through this property can be found in the documentation for
the ADS device.
This property is read-only.

4.6.14 AdsServerBuild

This property can be used in order to query the version of the ADS device that is addressed.
object.AdsServerBuild As Integer
Comment

Every ADS device has properties from which the ADS device's version number and type identification can be
read. The version number consists of:

Version (see the AdsServerVersion [P 63] property)

Revision (see the AdsServerRevision [P_62] property)

Build (see the AdsServerBuild [P _62] property)

4.6.15 AdsServerRevision

This property can be used in order to query the revision level of the ADS device that is addressed.
object.AdsServerRevision As Integer
Comment

Every ADS device has properties from which the ADS device's version number and type identification can be
read. The version number consists of:

Version (see the AdsServerVersion [P _63] property)

62 Version: 1.1 TX1000

BECKHOFF API

Revision (see the AdsServerRevision [P _62] property)

Build (see the AdsServerBuild [»_62] property)

4.6.16 AdsServerType

This property can be used in order to query the type of the ADS device that is addressed.

object.AdsServerType As String

Comment

The table below lists the type identifications of the most important ADS devices:

ADS device Name

1/0 I/0 server

PLC PLC server

NC / NCI NC-ADS server

4.6.17 AdsServerVersion

This property can be used in order to query the version number of the ADS device that is addressed.

object.AdsServerVersion As Integer

Comment

Every ADS device has properties from which the ADS device's version number and type identification can be
read. The version number consists of:

» Version (see the AdsServerVersion [P _63] property)

* Revision (see the AdsServerRevision [P _62] property)
* Build (see the AdsServerBuild [»_62] property)

4.6.18 EnableErrorHandling

Switches on the exception handling.

object.EnableErrorHandling As Boolean

Comment

If this property is TRUE, and an error occurs within a method, an exception is triggered. Using the On Error
Goto instruction it is possible to trap the exception at a defined label, and to examine the Err object to
determine the cause.

4.6.19 Index

Index within a control array.

object.Index As Integer

Comment

It is possible to create an array of more than one ADS-OCX. For this purpose, each ADS-OCX that is to
belong to the array is given the same name. The individual ADS-OCX devices are distinguished by their
index property. The index normally begins with 0. The individual objects are addressed by the array name
followed by the index in parenthesis, e.g. AdsOcxName(1).

TX1000 Version: 1.1 63

API BECKHOFF

4.6.20 Name

Unique name of the controller.
object.Name As String
Comment

The standard name for newly added ADS-OCX devices is the object type (AdsOcx) plus a unique integer.
For example, the first ADS-OCX has the name AdsOcx1, the second AdsOcx2 and the third AdsOcx3.

The name must start with a letter and can be a maximum of 40 characters long. Underscore characters ()
and numbers are permitted within the name. The names of global system objects (Clipboard, Screen or App)
should not be used, as it would then no longer be possible to address them.

4.6.21 Object

With the aid of the object property of an OLE container you can also utilize the properties and methods of the
linked or embedded object.

object.Object As Object
Comment

This property is used in association with OLE (Object Linking and Embedding). See the Visual Basic
programming manual for further information.

4.6.22 Parent

Returns a form, object or a collection in which the ADS-OCX is contained.
object.Parent As Object
Comment

In order, for instance, to find the name of the container, you must enter the following instruction:
AdsOcx1.Parent.Name

4.6.23 Tag

Contains a string for general purpose use.
object.Tag As String
Comment

Any data you wish may be stored in this property. Such data is neither evaluated by Visual Basic nor by the
ADS-OCX.

4.7 Enums

4.7.1 ADSDATATYPEID
ADSTiBIT = 33 (&H21)

ADST_INTS = 16 (&H10)

ADST INT16 = 2

ADSTilNT32 = 3

64 Version: 1.1 TX1000

BECKHOFF API

ADST INT64 = 20 (&H14)
ADST UINTS8 = 17 (&H11)
ADST UINT16 = 18 (&H12)
ADST UINT32 = 19 (&H13)
ADST UINT64 = 21 (&H15)
ADST REAL32 = 4

ADST REAL64 =5

ADST REALS0 = 32 (&H20)
ADST BIGTYPE = 65 (&H41)
ADST VOID =0

4.7.2 ADSLOGMSGTYPE

ADSLOG MSGTYPE HINT
ADSLOG_MSGTYPE WARN
ADSLOG_MSGTYPE ERROR

1
2
4

4.7.3 ADSOCXTRANSMODE

ADSTRANS CLIENTCYCLE =1

ADSTRANS SERVERCYCLE =3

ADSTRANS SERVERONCHA =4

Description

Parameter Description

ADSTRANS_CLIENTCYCLE The ADS-OCX executes a write / read command
cyclically. The cycle time is rounded up to a multiple
of 55. The shortest time is 55 ms. The timer that
initiates the read / write runs in Windows NT/2000/XP
user mode, which means that the time behavior
strongly depends on the loading of the system.

ADSTRANS_SERVERCYCLE The ADS that has been addressed writes the data

(only when reading) cyclically to the ADS-OCX. The smallest possible
time is the cycle time of the ADS device; for the PLC,
this is the task cycle time. The cycle time can be
handled in 1 ms steps. If you enter 0 ms as the cycle
time, then the data is sent to the ADS-OCX with
every cycle of the ADS device task.

ADSTRANS_ SERVERONCHA The ADS device that has been addressed then only

(only when reading) writes the data to the ADS-OCX if they have
changed. The ADS device is sampled at the rate
given by the cycle time. The cycle time can be
handled in 1 ms steps. If you enter a cycle time of 0
ms, every change in the variables will be sent to the
ADS-OCX. A longer cycle time can be used to reduce
the number of data transmissions to the ADS-OCX.

The largest cycle time is 32767 ms.

NOTE

Too many write / read operations

Too many write / read operations can load the system so heavily that the user interface becomes much
slower.

» Set the cycle time to the most appropriate values, and always close connections when they are no
longer required.

4.7.4 ADSSTATE

ADSSTATE_ INVALID
ADSSTATE IDLE
ADSSTATE RESET

o
i

TX1000 Version: 1.1 65

API BECKHOFF

ADSSTATE INIT =3

ADSSTATE START =4

ADSSTATE_RUN = 5

ADSSTATE_STOP =6

ADSSTATE SAVECFG =7

ADSSTATE LOADCFEG =8

ADSSTATE POWERFAILURE =9

ADSSTATE_POWERGOOD = 10 (&HOA)

ADSSTATE ERROR = 11 (&HOB)

ADSSTATE SHUTDOWN = 12 (&HOC)

ADSSTATE_SUSPEND = 13 (&HOD)

ADSSTATE_RESUME = 14 (&HOE)

ADSSTATE CONFIG = 15 (&HOF) 'system is in config mode
ADSSTATE_RECONFIG = 16 (&H10) 'system should restart in config mode
ADSSTATE MAXSTATES = 17 (&HI11)

4.7.5 ADSGETDYNSYMBOLTYPE

ADSDYNSYM GET NEXT = 1 ' liefert nachstes Symbol (versucht erst ADSDYNSYM GET CHILD, dann
ADSDYNSYM GET_ SIBLING, dann ADSDYNSYM GET_PARENT)

ADSDYNSYM GET_SIBLING = 2 ' liefert nachstes Symbol auf derselben Ebene

ADSDYNSYM GET CHILD =3 ' liefert Child Symbol

ADSDYNSYM GET_ PARENT = 4l ' liefert das néchste Symbol auf der Ebene des Parents

66 Version: 1.1 TX1000

BECKHOFF

Samples

5 Samples

5.1 Visual Basic - samples

5.1.1 Linking into Visual Basic

Select the ADS-OCX

In order to select the ADS-OCX you must choose the command Components... under the Project menu item

in Visual Basic, and mark the AdsOcx OLE Control module entry.

Components

Cantrols |Designers I Insertable Objects I

[Apex True DBGrid Data Bound Grid
[Crystal Report Conkral 4.6
CIEWINNT|System3zirefedit, di
[1IngES Enumerationen

[[115kudio Active Designer Contrals
[[IMarguee Contral Library
[CIMCIWndy Contral

[Mediaview 1.41 Conkral
[IMicrosoft Ackivels Layvouk 1.0

[Microsoft Ackives Plugin

[Microsaft Calendar Contral 8.0
[IMicrasaft Chart Cantral

Browse, ..

]|

[IMicrosoft Comm Contral 5.0

hd [T Selected Items Only

—adsOcx OLE Control module

Location: E:\WINMTswskem32\AdsOox. ocx

o]

Cancel |

£nnly |

The ADS-OCX then appears in the Visual Basic toolbox (bottom right).

=

Define properties

Before you can use the ADS-OCX you must drag it onto a form and adjust the properties. The general
properties can be configured or read using either the properties pages of the ADS-OCX or the Visual Basic
properties list. The representation displayed on the properties page is particularly clear, since the properties
are sorted here into groups. In order to make the Visual Basic program more readable, the names of

(almost) all of the properties, methods and events begin with Ads.

TX1000 Version: 1.1

67

Samples BEGKHOFF

AMS Properties

This page describes the communication channel between the ADS-OCX and the ADS device that is to be
addressed. The terms ADS client and ADS server are also used here. The ADS client is the program that
requests information or services from the ADS server. In our case, the Visual Basic program with the ADS-
OCX is the ADS client. In most of the samples the TwinCAT PLC server is the ADS server.

Property Pages E |

"] 4D3 Clent | ADS Server |

— Server

M etld: I Timeout; I 5000 me
Part; IBEH

— Client
M etld: |1?2_15_3_29_1_1 Connected: [#

Puort: |33229 [T =ave port

O, I Cancel Apply

Each ADS device within TwinCAT has a unique address. This address is composed of a Netld and the port
number. The Netld must be unique for each TwinCAT system within a network. The Netld of a computer can
be read through the system control in the TwinCAT system properties dialog on the AMS router page. The
Netld consists of 6 digits, separated from one another by a point. Do not provide a Netld when you want to
address local ADS devices. In addition to the Netld, each ADS device is also addressed by a port number.
Each port number may only exist once on a TwinCAT computer. Further information is to be found under
TwinCAT ADS.

If, for instance, you want to address runtime system 1 in the PLC in the local computer, you should leave the
server's Netld field empty, and enter port number 801 as the server port. The fields under Client can have
different values in your case from those illustrated above.

If you want to address a number of ADS devices with the ADS-OCX (e.g. PLC and NC), you should use an
ADS-OCX for each of these ADS devices. You should not alter the port number of the Netld while the
system is running.

ADS Client Properties

This page shows the type and version of the ADS device with the ADS-OCX, as well as the current state of
the ADS interface within the ADS-OCX.

68 Version: 1.1 TX1000

BEGKH“FF Samples

Property Pages E |

AMS | DS Server |
— ldentification — Caontral/State
Type: | Ads State;
Yersion: |E| Device State: |0
Hevisinn:ln &dz Contral: I—
Buid: |0 Device Enntrnlln—

Ik I Zancel)

The Identification properties group shows the type, version, revision and build of the ADS-OCX. The other

communication partner is able to interrogate these values in order to obtain more information about the ADS
device. These fields can be released by the application.
In the property group Control/State the current state of the ADS interface within the ADS-OCX is displayed.

ADS Server Properties

This page shows the type and version of the ADS device that is to be addressed by the ADS-OCX. The
current state of the ADS device is also displayed.

Property Pages E |

— ldentification — Control#State
Tope: {PLC Server Ads State: RN
Wergion: |2 Device State; |0
Hevisiun:lﬁ Ads Contral: I
Build: ||:| Device Eu:untru::lin

— Refreszh
Type: I vI Timer: IEI [~ wiatchdog

0k, I Cancel | [

The Identification properties group shows the type, version, revision and build of the ADS device that is
addressed by the ADS-OCX. These properties are read-only.

The property group Control/State displays the current state of the ADS interface within the ADS device.
The property group Refresh is reserved and not yet supported.

The PLC is addressed by the ADS-OCX in the dialog shown above. This is in the RUN state, and is of
version 2.6.0.

The ADS-OCX is now configured in such a way that it can address the PLC.

5.1.2 Visual Basic 6.0 variable lengths

VB variable type

Variable length in byte

Boolean

2

TX1000

Version: 1.1

69

Samples BEGKHOFF

VB variable type Variable length in byte
Integer 2

Long 4

Single 4

Double 8

String Number of characters * 2
Byte 1

Array sizes

The length of an array is calculated from the number of individual array elements multiplied by the length of
the variable type.

Example
If an array of 5 Long elements is to be read, the length is 20 bytes (5 elements * 4 bytes).

For a string with 25 characters, the length is 50 bytes (25 characters * 2 bytes).

51.3 Accessing an array in the PLC

Task

The PLC contains an array that is to be read by Visual Basic using a read command.

Description

The PLC contains an array of 100 elements of type integer (2 bytes). The array is filled in the PLC with the
values 3500 to 3599.

In the load event function of the Visual Basic program, the handle of the PLC variable is fetched first. When
the program is terminated, this is released again in the Unload event function.

If the user presses the button on the form, the method AdsSyncRead[Datatype]VarReq() [P 24] reads the
complete array from the PLC into the Visual Basic variable Data.

The variable Data must have the same structure as the corresponding variable in the PLC; 100 elements of
type integer (2 bytes). The length specification in the method call is 200, because the length of the requested
data is 200 bytes (100 elements with 2 bytes each).

In the following FOR loop, the array from the PLC is displayed in a list box control.

= Aps-00x - amplen 3|

[ndex: Walue
1] 3500 -
1 350
2 3h02
3 3h03
4 3h04
5 3505
G 3R06
7 3h07
3 3R08
9 JR09
10 3510
11 A1
12 Im12
13 3513
14 514
15 315
16 1 hd

70 Version: 1.1 TX1000

BEGKHOFF Samples

Visual Basic 6 program

Dim hVar As Long
Dim Data(100) As Integer

'--— wird beim Starten aufgerufen ---

Private Sub Form Load()
'-—- Exception freigeben --- AdsOcxl.EnableErrorHandling = True
Call AdsOcxl.AdsCreateVarHandle ("Main.PLCVar", hVar)

End Sub

'--- wird beim Beenden aufgerufen ---
Private Sub Form Unload(Cancel As Integer)
Call AdsOcxl.AdsDeleteVarHandle (hVar)

End Sub

'-—— wird vom Bediener aufgerufen ---
Private Sub cmd read Click()
Dim intIndex As Integer
'-—- Array komplett auslesen ---
Call AdsOcxl.AdsSyncReadIntegerVarReq (hVar, 200, Data(0))
'--- Array Elemente in Form anzeigen ---
lstArray.Clear
For intIndex = 0 To 99
lstArray.AddItem (CStr(intIndex) & Chr(vbKeyTab) & CStr(Data(intIndex)))
Next
End Sub

PLC program

PROGRAM MAIN

VAR
PLCVar : ARRAY [0..99] OF INT;
Index: BYTE;

END_ VAR
FOR Index := 0 TO 99 DO
PLCVar[Index] := 3500 + INDEX;
END_FOR
Language / IDE Unpack sample program
Visual Basic 6 https://infosys.beckhoff.com/content/1033/tcadsocx/
Resources/12463158027/.exe
5.1.4 Transmitting structures to the PLC
Task

A structure is to be written into the PLC by Visual Basic. The elements in the structure have different data
types.

Description

In order for the CPU running under Windows NT/2000 to be able to access the variables more quickly, Visual
Basic (as well as other programming languages) arranges them in the main memory according to certain
rules. This arrangement of variables is called alignment. This can mean that 'memory gaps' occur within a
structure. Since Visual Basic and IEC1131-3 have different guidelines for the alignment, these must be filled
by dummy variables.

Unfortunately, no general rule for the alignment can be defined under Visual Basic. There are however two
Visual Basic functions which allow the memory assignments of a structure to be analyzed. They are the
functions VarPtr() and LenB).

VarPtr() returns the address of a variable, LenB() the length in bytes that a variable (or a whole structure)
occupies. The sample below illustrates the memory map of the structure in a form. This information can be

TX1000 Version: 1.1 71

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463158027.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463158027.exe

Samples BEGKHOFF

used to determine where the structure has 'memory gaps'. In the sample program these are filled by the
variables VarDummyX.
The function VarPtr() is only available from Visual Basic 5.

W, ADS-0CX - Sample02 |
W alue: Adress
PLCY ar [Integer); ||1 oan |1 324216
PLCWar [Long): |1 o000 |1 324220 Length
FPLCW ar [Byte]: I'I 1] |1 3247224 24 Butes
PLCVar (Doublel: [31415 [azazz8
PLCY ar [Single): |3§1 4 |1 324236
write |

The following sketch shows the memory allocation graphically once more:

varrteger (1324216 | | | = ==
varLong [1324220 | | | | | | |

VarByte e =l =

varDouble [1324228 | | | | | | |

1324232 | | | | | | |

varsingle 1324236 | | | | R |

A rectangle means that the variable occupies one byte at this location. A cross represents the location of a
byte that is not used by any variables. In the sample program the crosses are filled by dummy variables.

Structure declaration in Visual Basic

Type VBStruct
VarInteger As Integer

VarDummyl As Integer
VarLong As Long
VarByte As Byte
VarDummy2 As Byte
VarDummy3 As Byte
VarDummy4 As Byte
VarDouble As Double
VarSingle As Single
End Type

Structure declaration in the PLC

After the structure in the Visual Basic program has been adapted to the alignment, the structure in the PLC
program must also be supplemented:

TYPE PLCStruct

STRUCT
PLCVarInteger : INT;
PLCVarDummyl : INT;
PLCVarLong : DINT;
PLCVarByte : SINT;
PLCVarDummy2 : SINT;
PLCVarDummy3 : SINT;
PLCVarDummy4 : SINT;
PLCVarDouble : LREAL;
PLCVarSingle : REAL;

END STRUCT

END TYPE

72 Version: 1.1 TX1000

BECKHOFF

Samples

2= TwinCAT PLC Control - Sample02.pro - [MAIN (PRG-5T)]
9W Fle Edit Project Insert Exfras

Online Window Help

=] 3
=8| x|

2=H e

Lo Bl|Sa|S] % [Ba[|||

00071E &E-PLCY ar S
3 POUs oooz - PLCVarinteger = 1000
e poos PLCVarDummy1 = 0
ooog PLCYarLong = 100000
ooos PLCYarByte =100
0O0R[f FLCWarDummyE = 0
noo7 - FPLCWarDummy3 = 0
poogf e FLCWarDummyd = 0
ooog PLCYarDouble = 31415
oot e PLCYarSingle = 3.14
ER R =
s 1 ... s) :
an vl | o

Visual Basic 6 program

Dim hVar As Long
Dim VBVar As VBStruct

'-—— wird beim Starten aufgerufen ---

Private Sub Form Load()

Call AdsOcxl.AdsCreateVarHandle ("Main.PLCVar", hVar)
'-—- Adressen der Variablen anzeigen ---
lblInteger.Caption = VarPtr (VBVar.VarlInteger)

lblLong.Caption = VarPtr (VBVar.VarLong)

1blByte.Caption

= VarPtr (VBVar.VarByte)

1blDouble.Caption = VarPtr (VBVar.VarDouble)

1blSingle.Caption

VarPtr (VBVar.VarSingle)

'--- La&nge der Struktur anzeigen ---
1blVarLength.Caption = LenB (VBVar)

End Sub

'-—- wird beim Beenden aufgerufen ---
Private Sub Form Unload(Cancel As Integer)
Call AdsOcxl.AdsDeleteVarHandle (hVar)

End Sub

--- wird vom Bediener aufgerufen ---

Private Sub cmd write Click()

Dim intIndex As
'-—- Struktur

Integer
auffillen ---

VBVar.VarInteger = CInt (txtInteger.Text)

VBVar.VarLong =
VBVar.VarByte =

VBVar.VarDouble =

VBVar.VarSingle
'-—- Struktur

CLng (txtLong.Text)
CByte (txtByte.Text)
CDbl (txtDouble.Text)
= CSng(txtSingle.Text)
in SPS schreiben ---

Call AdsOcxl.AdsSyncWriteIntegerVarReq (hVar,

End Sub

PLC program
PROGRAM MAIN

VAR

PLCVar PLCStruct;
END_VAR
Optimizations

LenB (VBVar),

--— Exception freigeben --- AdsOcxl.EnableErrorHandling =

True

VBVar.VarInteger)

By a clever arrangement of the VBStruct member variables in the VB application the adding of the dummy
bytes can be avoided. The following rule must be observed:

TX1000

Version: 1.1

73

Samples BEGKHOFF

» Arrange the member variables in the VB structure according to the occupied memory size: first the
largest and finally the smallest data types.

« The last bytes can (but do not have to) be padded to a full 4 bytes.

Optimized structure declaration in Visual Basic

Type VBStruct
VarDouble As Double ' 8 bytes
VarSingle As Single '+4 bytes
VarLong As Long '+4 byte
VarInteger As Integer '+2 bytes
VarByte As Byte '+l byte '+l hidden padding byte in memory
'=20 bytes (LenB result)
End Type

Optimized structure declaration in the PLC

TYPE PLCStruct

STRUCT
PLCVarDouble : LREAL;
PLCVarSingle : REAL;
PLCVarLong : DINT;
PLCVarInteger : INT;
PLCVarByte : SINT;

END STRUCT

END TYPE

Our optimized VB structure now starts with a double, accordingly the VB program must be changed:

'-—— wird vom Bediener aufgerufen ---
Private Sub cmd write Click()

'--— Struktur in SPS schreiben ---
call AdsOcxl.AdsSyncWriteDoubleVarReq (hVar, Len (VBVar), VBVar.VarDouble)
End Sub

In addition to the changed method name, the data length to be written must be determined with the Len
function and not with LenB. If you use LenB, the data will not be written to the PLC. The reason is that LenB
returns a length = 20 bytes (including a padding byte in VB memory), but our structure in the PLC is only 19
bytes long.

Len vs. LenB
» With user-defined types, Len returns the size as it will be written to the file.
» With user-defined types, LenB returns the in-memory size, including any padding between elements.

Language / IDE Unpack sample program

Visual Basic 6 https://infosys.beckhoff.com/content/1033/tcadsocx/
Resources/12463159435/.exe

5.1.5 Event driven reading

Task

There are 7 global variables in the PLC. Each of these PLC variables is of a different data type. The values
of the variables should be read in the most effective manner, and the value with its timestamp is to be
displayed on a form in Visual Basic.

Description

In the form's load event, a connection to each of the PLC variables is created with the
AdsReadVarConnectEx() [»_34] method. The handle of this connection is stored in a global array.

The second parameter of the AdsReadVarConnectEx() method specifies the type of data exchange.
ADSTRANS_SERVERONCHA has been selected here. This means that the value of the PLC variable is

74 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463159435.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463159435.exe

BECKHOFF

Samples

only transmitted if its value within the PLC has changed (see the ADSOCXTRANSMODE [» 65] data type).
The third parameter indicates that the PLC is to check whether the corresponding variable has changed

every 100 ms.
w. ADS-OCX Sample 03 ﬁl
Boolean |Date Time: 11/25/2005 2:55:07 P.101 Data; True
Integer |Date Tirne: 11,/25/2005 £:55:07 Ph.10T Data: 1
Long |Date Tirme: 17 /25,/2005 2:55:07 PM.111 Data; 2
Double |Date Time: 11/25/2005 2:55:07 Phi, 121 Data: 3.3
Single |Date Time: 11/25/2005 2.55:07 PM.121 Data: 4.4
String |Date Time: 11/25/2005 2.55:07 PM.131 Data: TwinCAT
Byte |Date Time: 171 /25,/2005 2:55:07 Ph.131 Data; 7

When the PLC variable changes, the AdsReadConnectUpdateEx() [» 53] event is called. The timestamp, the
handle, the value and a reference to the control in which the value is to be displayed are passed as

parameters.

In the Unload event, the connections are released again with the method AdsDisconnectEx() [» 40]. You
should pay attention to this, because every connection made with AdsReadVarConnectEx() consumes

resources.

Also, set the CycleTime to reasonable values, since too many read/write operations can load the system so
much that the user interface slows down considerably.

w. ADS-0OCK Sample 03 il
Boolean |Date Time: 171/25/2005 2:50:19 PM.221 Data: False

Integer |Date Time: 11/25/2005 2:50:19 Pt.221 Data: 0

Long [Date Time: 11/25/2005 2:50:19 Ph.231 Data: 0

Double |Date Time: 11/25/2005 2:50:19 PM.231 Data: 0

Single |Date Time: 11/25/2005 2:50:19 P.241 Data: 0

String [Date Time: 11/256/2005 2.50:19 PM.251 Data:

Byte [Date Time: 11/25/2005 2:50:19 PM.251 Data: 255

Visual Basic 6 program
Option Explicit

Dim hConnect (0 to 6) As

Private Sub Form Load()
Dim nErr As Long

Long

nErr = AdsOcxl.AdsReadVarConnectEx (".PLCVarBoolean", ADSTRANS SERVERONCHA, 100, hConnect(0), 1bl
Boolean)

If (nErr > 0) Then Call MsgBox ("Error AdsReadVarConnectEx -> .PLCVarBoolean: " & nErr)

nErr = AdsOcxl.AdsReadVarConnectEx (".PLCVarInteger", ADSTRANS SERVERONCHA, 100, hConnect(l), 1bl

Integer)

If (nErr > 0) Then Call MsgBox ("Error AdsReadVarConnectEx ->

.PLCVarInteger: " & nErr)

TX1000

Version: 1.1

75

Samples BEGKHOFF

nErr = AdsOcxl.AdsReadVarConnectEx (".PLCVarLong", ADSTRANS SERVERONCHA, 100, hConnect(2), lblLon

9)
If (nErr > 0) Then Call MsgBox ("Error AdsReadVarConnectEx -> .PLCVarLong: " & nErr)

nErr = AdsOcxl.AdsReadVarConnectEx (".PLCVarDouble", ADSTRANS SERVERONCHA, 100, hConnect(3), 1lblD
ouble)
If (nErr > 0) Then Call MsgBox ("Error AdsReadVarConnectEx -> .PLCVarDouble: " & nErr)

nErr = AdsOcxl.AdsReadVarConnectEx (".PLCVarSingle", ADSTRANS SERVERONCHA, 100, hConnect (4), 1blsS
ingle)
If (nErr > 0) Then Call MsgBox ("Error AdsReadVarConnectEx -> .PLCVarSingle: " & nErr)

nErr = AdsOcxl.AdsReadVarConnectEx (".PLCVarString", ADSTRANS SERVERONCHA, 100, hConnect(5), 1bls
tring)
If (nErr > 0) Then Call MsgBox ("Error AdsReadVarConnectEx -> .PLCVarString: " & nErr)

nErr = AdsOcxl.AdsReadVarConnectEx (".PLCVarByte", ADSTRANS SERVERONCHA, 100, hConnect (6), 1lblByt
e)

If (nErr > 0) Then Call MsgBox ("Error AdsReadVarConnectEx -> .PLCVarByte: " & nErr)
End Sub

Private Sub AdsOcxl AdsReadConnectUpdateEx (ByVal dateTime As Date,
ByVal nMs As Long,
ByVal hConnect As Long,
ByVal data As Variant,
Optional ByVal hUser As Variant)
hUser.Caption = ("Date Time: " & dateTime & "," & nMs & " Data: " & data)
End Sub

Private Sub Form Unload(Cancel As Integer)
Dim nIndex As Long
For nIndex = 0 To 6
Call AdsOcxl.AdsDisconnectEx (hConnect (nIndex))
Next
End Sub

PLC program

VAR _GLOBAL
PLCVarBoolean : BOOL;
PLCVarInteger : INT;
PLCVarLong : DINT;
PLCVarDouble : LREAL;
PLCVarSingle : REAL;
PLCVarString : STRING(10);
PLCVarByte : BYTE;

END VAR

PROGRAM MAIN

VAR

END_&AR

Language / IDE Unpack sample program

Visual Basic 6 https://infosys.beckhoff.com/content/1033/tcadsocx/
Resources/12463160843/.exe

5.1.6 Read PLC variable declaration

Task

All the information about the variables is to be read from the PLC (symbol upload).

Description

The cmdReadSymbols_Click() event function is called by clicking the button on the form. The

AdsReadSymbolinfo() [P 21] method supplies the number of variables (symbols) and the length of the data in
which the symbols are stored. The parameter bNext must be set to FALSE the first time the

76 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463160843.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463160843.exe

BECKHOFF

Samples

AdsEnumSymbols() [»_16] method is called. This results in all the information about the first symbol being
read. For every subsequent call, bNext is set to TRUE. In the FOR loop, AdsEnumSymbols() is called as

many times as there are symbols in the PLC.

W, ADS-0CY - Samplend
Mo M ame Type Size Comment Group Offzet
30 MAIN.LRRAY 1 INTS 10 46 0x4030 Ox0 |
31 MAIN.ARRAY 1[10] INTS 1 0x4030 Ox9
3z MAIN.ARRAY 1[1] INTS 1 0x4030 0Ox0
33 MAIN.LRRLY 1[2] INTS 1 0x4030 Ox1
34 MAIN.LRRLY 1[3] INTS 1 0x4030 Ox2
35 MALIN.LRRLY 1[4] INTS 1 0x4030 0Ox3
36 MAIN.ARRAY 1[5] INTS 1 0x4030 Ox4
37 MAIN.ARRALY 1[6] INTS 1 0x4030 0Ox5
35 MAIN.ARRALY 1[7] INTS 1 0x4030 Ox6
3o MAIN.ARRLY 1[8] INTS 1 0x4030 Ox7
40 MALIN.ARRALY 1[9] INTS 1 0x4030 0Ox5
41 MLIN.ARRALY 2 INT16 20 47 0x4030 OxA
4z MAIN.ARRAY 2[10] INT16 2 0x4030 0Ox1C
43 MAIN.LRRLY 2[1] INT16 2 0x4030 Oxi
44 MAIN.LRRLY 2[2] INT16 2 0x4030 OxC
45 MALIN.LRRLY 2[3] INT16 2 0x4030 OxE
15 MAIN.LRRALY Z[4] INT16 2 0x4030 0Ox10
47 MAIN.ARRALY Z[5] INT16 2 0x4030 0Ox12
15 MAIN.ARRLY Z[6] INT16 2 0x4030 0Ox14 hd|
Sumbols: 130
i’ . Riead Symbols
Visual Basic 6 program

Opti

Priv

End

Priv

@e@ea

@eEea

on Explicit

wird beim Starten des Programms aufgerufen ---
ate Sub Form Load()

'-—- Exception freigeben ---
AdsOcxl.EnableErrorHandling = True

'--- Anzeigeliste- und Felder léschen ---
lstSymbols.Clear

1blSymbols.Caption = "Symbols: "

Sub

wird durch den Bediener aufgerufen ---
ate Sub cmdReadSymbols_Click()
Dim nSymbolsAvailable As Long
Dim cbBufSizeNeeded As Long
Dim strSymbolName As String
Dim strComment As String

Dim nSymbolType As Long

Dim cbSymbolSize As Long

Dim nIndexOffset As Long

Dim nIndexGroup As Long

Dim intIndex As Long

'-—- Anzeigeliste 1l8schen ---
lstSymbols.Clear

Call AdsOcxl.AdsReadSymbolInfo (nSymbolsAvailable, cbBufSizeNeeded)
1blSymbols.Caption = "Symbols: " & nSymbolsAvailable

'-—- erstes Symbol laden und anzeigen ---

Call AdsOcxl.AdsEnumSymbols (strSymbolName, nSymbolType, cbSymbolSize,
strComment, nIndexGroup, nIndexOffset, False)

lstSymbols.AddItem ("O" & vbTab & Format (strSymbolName, "!

CERREQERQARRLALRLRLCRLRLRRLRRERRERRR") & VbTab &

GetSymbolType (nSymbolType) & vbTab & cbSymbolSize & vbTab & strComment & vbTab &

"0x" & Hex(nIndexGroup) & vbTab & "0x" & Hex(nIndexOffset))

'--- die restlichen Symbole laden und anzeigen ---
For intIndex = 1 To nSymbolsAvailable - 1
Call AdsOcxl.AdsEnumSymbols (strSymbolName, nSymbolType, cbSymbolSize,
strComment, nIndexGroup, nIndexOffset, True)
lstSymbols.AddItem (intIndex & vbTab & Format (strSymbolName, "!
@EREEQARERREQARRLRREQRELQAREQRERERRERR") & VDbTab &
GetSymbolType (nSymbolType) & vbTab & cbSymbolSize & vbTab & strComment & vbTab

TX1000 Version: 1.1

77

Samples

BECKHOFF

Next intI
End Sub

"0x" & Hex (nIndexGroup)

ndex

& vbTab & "Ox" & Hex (nIndexOffset))

Private Function GetSymbolType (VarType As ADSDATATYPEID) As String

Select Case VarType

Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
Case ADST
End Selec
End Function

PLC program

PROGRAM MAIN
VAR
REAL32 1
REAL32 2
REAL32 3
REAL32 4
REAL32 5

REAL64 1
REAL64 2
REAL64 3
REALG4 4
REAL64 5

INT32 1 AT
INT32 2 AT
INT32 3 AT
INT32 4 AT
INT32 5 AT

UINT32 1
UINT32 2
UINT32 3
UINT32 4
UINT32 5

INT16 1 AT
INT16 2 AT
INT16 3 AT
INT16 4 AT
INT16 5 AT

UINT16 1
UINT16 2
UINT16 3
UINT16 4
UINT16 5

INT8 1 AT
INT8 2 AT
INT8 3 AT
INT8 4 AT
INT8 5 AT

' BIT:

' INTS8:
INT16:
' INT32:
INT64:
 UINTS:
_UINT16:
_UINT32:
UINT64:
_REAL32:
REAL64:
_REAL80:
BIGTYPE:
' VOID:

t

AT $MBO
AT %MB4
AT %MB8
AT %MBl2:
AT %MB16:

AT %MB20
AT %MB28
AT %MB36
AT %MB44
AT %MB52

oo

MB60
MB64
MB68
MB72
MB76

o0 oo oo

oo

AT $MB8O
AT %MB84
AT %MB88
AT $MB92
AT $MB96

oo

MB100
MB102
MB104
MB106
MB108

o oo oo

oo

AT $MB110
AT %MB112
AT %MB114
AT %MBl1l6
AT $MB118

$MB120
$MB121
$MB122
$MB123
%MB124

UINT8 1 AT 3%MB125
UINT8 2 AT %MB126
UINT8 3 AT %MB128
UINT8 4 AT %MB129
UINT8 5 AT 3%MB130

BOOL 1 AT
BOOL 2 AT
BOOL 3 AT
BOOL_4 AT

$MX131.
$MX131.
$MX131.
SMX131.

w N = o

GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType
GetSymbolType

REAL; (* 1
REAL; (* 2
REAL; (* 3 *)
REAL; (* 4
REAL; (* 5

LREAL; (* 6
LREAL; (*x 7
LREAL; (* 8
LREAL; (= 9
LREAL; (* 1

DINT; (* 11 =
DINT; (* 12 *
DINT; (= 13 =
DINT; (* 14 =
DINT; (* 15 *

UDINT; (* 16
UDINT; (* 17
UDINT; (* 18
UDINT; (* 19
UDINT; (* 20

INT; (* 21 *
INT; (* 22 *
INT; (* 23 *
INT; (* 24 *
INT; (* 25 *

UINT; (* 26
UINT; (*x 27
UINT; (* 28
UINT; (* 29
UINT; (* 30

SINT; (* 31 *
SINT; (* 32 *
SINT; (= 33 =
SINT; (* 34 *
SINT; (* 35 *

USINT; (* 36
USINT; (* 37
USINT; (* 38

USINT; (* 39
USINT; (* 40
BOOL; (* 41
BOOL; (* 42
BOOL; (* 43

BOOL; (* 44

= "BIT"

= "INT8"

= "INT1l6"
= "INT32"
= "INT64"
= "UINT8"
= "UINT16"
= "UINT32"
= "UINT64"
= "REAL32"
= "REALG64"
= "REALSO"
= "BIGTYPE"
= "VOID"

78

Version: 1.1

TX1000

BECKHOFF Samples

BOOL 5 AT %MX131.4 : BOOL; (* 45 *)

ARRAY 1 : ARRAY[1 .. 10] OF SINT; (* 46 *)

ARRAY72 : ARRAY[1 .. 10] OF INT; (* 47 *)

ARRAY73 : ARRAY[1 .. 10] OF DINT; (* 48 *)

ARRAY_4 : ARRAY[1 .. 10] OF LREAL; (* 49 ¥*)

ARRAY 5 : ARRAY[1 .. 10] OF BOOL; (* 50 *)
END VAR
Language / IDE Unpack sample program
Visual Basic 6 https://infosys.beckhoff.com/content/1033/tcadsocx/

Resources/12463802251/.exe

5.1.7 Detect/alter state of the router and the PLC
Task

ADS-OCX provides methods for trapping state changes in the TwinCAT Router and the ADS devices. The
events AdsRouterRemove() [56], AdsRouterShutdown() [» 56], AdsRouterStart() [» 57],
AdsServerStateChanged() [»_57] and AdsServerSymChanged() [»_58] are available for this.

Description

If the AdsRouterShutdown() event is called when the TwinCAT Router is stopped, the affected program can
react appropriately. When the TwinCAT Router is started, the AdsRouterStart() event is called, in which, for
example, the AdsReadVarConnectEx() [»_34] method can be used to re-establish the connections to the ADS
variables. If the TwinCAT router is completely removed from the operating system in the Windows NT/2000/
XP control panel, the AdsRouterRemove() event is called.

In addition to state changes of the TwinCAT router, state changes in ADS devices can also be intercepted.
This is particularly significant to the PLC. The AdsServerStateChanged() event can be used to establish
whether the PLC has been started or stopped. Changes of the symbol table are reported by the
AdsServerSymChanged() event. This happens, for instance, when the PLC program is recompiled and then
transferred to the PLC.

Just as the state of an ADS device can be queried, it can also be changed. The AdsSyncWriteControlReq()

[»_22] method makes this possible. The PLC can adopt the ADS states STOP and RUN. Using the check
button in the sample program below, the user can switch between these two states.

Each change of state in the TwinCAT Router results in an appropriate entry in the listbox.

. ADS-0CX - Sample05 |

PLC ztop

PLC symbal changed

PLC run

PLC ztop

PLC run

PLC stop

TwinCAT-Raouter zhutdaown
TwinCAT-Router start

PLCStart /Slop - [T

TX1000 Version: 1.1 79

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463802251.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463802251.exe

Samples BECKHOFF

Change of the symbol table

If a change in the symbol table is detected, it can be that a variable that was addressed by AdsReadVar-
ConnectEx() has been deleted or renamed. When the AdsServerSymChanged() event occurs, all connects
and handles should be deleted and then recreated.

Visual Basic 6 program
Option Explicit

'--- wird beim Starten aufgerufen ---
Private Sub Form Load ()
Call lstEvent.Clear
AdsOcxl.EnableErrorHandling = True
End Sub

'--- wird aufgerufen, wenn sich der Status des ADS-Gerédtes andert ---
Private Sub AdsOcxl AdsServerStateChanged(ByVal nAdsState As ADSOCXLib.ADSSTATE, ByVal nDeviceState

As Long)
Select Case nAdsState
Case ADSSTATE INVALID: lstEvent.AddItem ("PLC invalid")
Case ADSSTATE IDLE: lstEvent.AddItem ("PLC idle")
Case ADSSTATE_ RESET: lstEvent.AddItem ("PLC reset")
Case ADSSTATE INIT: lstEvent.AddItem ("PLC init")
Case ADSSTATE START: lstEvent.AddItem ("PLC start")
Case ADSSTATE RUN: lstEvent.AddItem ("PLC run")
chkRunStop.Value = 1
Case ADSSTATE STOP: lstEvent.AddItem ("PLC stop")
chkRunStop.Value = 0
Case ADSSTATE_SAVECFG: lstEvent.AddItem ("PLC savecfg")
Case ADSSTATE LOADCFG: lstEvent.AddItem ("PLC loadcfg")
Case ADSSTATE POWERFAILURE: lstEvent.AddItem ("PLC powerfailure")
Case ADSSTATE POWERGOOD: lstEvent.AddItem ("PLC powergood")
Case ADSSTATE ERROR: lstEvent.AddItem ("PLC error")
End Select
End Sub

'-—- wird bei Anderung der Symboltabelle aufgerufen ---

Private Sub AdsOcxl AdsServerSymChanged ()
lstEvent.AddItem ("PLC symbol changed")

End Sub

'--— wird beim Entfernen des TwinCAT-Routers aufgerufen ---
Private Sub AdsOcxl AdsRouterRemove ()

lstEvent.AddItem ("TwinCAT-Router remove")
End Sub

'--— wird beim Stoppen des TwinCAT-Routers aufgerufen ---
Private Sub AdsOcxl AdsRouterShutdown ()

lstEvent.AddItem ("TwinCAT-Router shutdown")
End Sub

'--— wird beim Starten des TwinCAT-Routers aufgerufen ---
Private Sub AdsOcxl AdsRouterStart ()

lstEvent.AddItem ("TwinCAT-Router start")
End Sub

'--- wird vom Bediener aufgerufen ---
Private Sub chkRunStop Click()
Dim nState As ADSOCXLib.ADSSTATE
Dim nRet As Integer
nState = IIf(chkRunStop.Value = 0, ADSSTATE STOP, ADSSTATE RUN)
Call AdsOcxl.AdsSyncWriteControlReqg(nState, 0&, 0&, nRet)

End Sub

Language / IDE Unpack sample program

Visual Basic 6 https://infosys.beckhoff.com/content/1033/tcadsocx/
Resources/12463803659/.exe

80 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463803659.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463803659.exe

BEGKHOFF Samples

5.1.8 Send/receive messages via the router

Task

ADS devices can send messages to other ADS devices via the TwinCAT Router. They can be received and
evaluated there. It is also possible to write messages to the Windows NT/2000/XP Event Logger.

The following Visual Basic program receives messages from the PLC and displays them on the screen. It is
also possible for messages to be written to the Windows NT/2000/XP Event Logger from the Visual Basic
program.

Description

In order to be able to receive messages, a filter must first be defined using the AdsEnableLogNotification()
[»_15] method. Here the range of port numbers from which ADS device messages are to be received is
given. A second parameter additionally states the type of message (error, note or warning). The OR operator
can also be used to combine several message types.

Each time a message is sent from an ADS device and the filter conditions are met, the AdsLogNotification()
[»_52] event is called. Via the parameters the source, the type, the time and the message itself can be
determined.

If a message is to be sent with the help of the ADS-OCX, the method AdsLogFmtString() [»_19] is used for
this. The first parameter contains the message type (error, note or warning). The message text can contain
up to four placeholders for numerical values. This allows, for instance, values that only become known at
runtime to be transmitted. All messages that are sent with ADS-OCX are automatically written in the
Windows NT/2000/XP Event Logger.

The Windows NT/2000/XP Event Viewer can be called from the Visual Basic program. This allows all the
messages that are in the Event Logger to be examined. The Event Logger and the Event Viewer are
standard elements in the Windows NT/2000/XP suites. You will find more details in the Windows NT/2000/
XP documentation.

O |

— zend meszages

Messagetype: [ADSLOG_MSGTYPE_HINT |
Messagetert |hiessage from the ADS-DCK %d 5F 3w 3

1. Parameter: |1 2. Parameter: Ig—
3. Parameter. |3 4. Parameter: |4 Ewent Wiewer |

— Ieceive Mezzages

Drate Time mz Device Port Mezzage

1413400 357204M 570 TCPLC 00801 Message from the PLC: 1
11300 357264 000 TCPLC 00801 Message from the PLC: 2
11300 36727 4M 823 AdsOck 32814 Message from the AD5-0C41 2000000 3 4
11300 357314M 033 TCPLC 0081 Message from the PLC: 3
111300 35736AM 485 AdsOcx 32814 Message from the ADS-0C< 1 2.000000 3 4
1413400 367364M 064 TCPLC 0081 Messzage from the PLC: 4

clear |

The PLC program sends a note cyclically every 5 seconds. This note is also written into the Windows NT/
2000/XP Event Logger. The ADSLOGDINT() PLC function is described in the PLC documentation.

TX1000 Version: 1.1 81

Samples BEGKHOFF

® Monitor messages online

All messages that are sent via the TwinCAT Router can be monitored online in the System Man-
ager. This requires Logger output to be enabled in the View menu.

T Unbenannt - TwinCAT System Manager !IEI E

File Edit Actions Wew Options Help
N@edEklrEes % (B QR [er

ﬂ Real-Time - Configuration

- FE MC - Caonfiguration
. PLC - Canfiguration
.- TR Cam - Configuration

. I} - Configuration

ga v o &

Server (Port) | Tirmeskarnp | Message

ﬂTCPLC (801} 1113000 9:57:36 AM 64 ms Messane from the PLC: 4

ﬂ.ﬁ.dsch (328140 1713000 9:57:36 AM 435 ms Message From the ADS-0CK 1 2,000000 3 4
ﬂTCF‘LC (301 11300 2:57:31 AM 33 ms Message From the PLC: 3

'ﬂ'ﬁ.ds@cx (32814) 171300 9:57:27 AM 823 ms Message From the ADS-OCX 1 2,000000 3 4
'ﬂ'TCF‘LC (3010 1/13/00 2:57:26 &M 1 ms Message from the PLC; 2

'ﬂ'TCF‘LC (801} 1013000 935720 &AM 270 ms Message From the PLC: 1

1] |]

Ready LM R Time 1%
o

Windows NT/2000/XP contains API functions with which the messages that have been saved in the Event
Logger can be read again. Unfortunately, Visual Basic does not (yet) have any components with which the
messages saved in the Event Logger can be accessed. On pp. 56 ff of issue 6/98 of the basicopro
magazine, published by Steingraberverlag (http://www.basicpro.de), there is an article that illustrates the
utilization of the API functions under Visual Basic.

Application

This technique has been found very useful in the development and debugging of applications. A PLC
program, for example, or a Visual Basic program can indicate certain internal program states (in the System
Manager) and save them (in the Windows NT/2000 Event Logger). For this kind of program tracking it is not
necessary to install the development environment (e.g. on a machine computer).

Too many messages in a short time

Make sure that not too many messages are transmitted in a short time, otherwise this could affect the over-
all system.

® Log messages

1 If you want to keep a log of messages in your program (e.g. malfunctions in a machine) you should
make use of the TwinCAT Event Logger. This is significantly more powerful than the Windows NT/
2000/XP Event Logger, and is adapted to the requirements of automation technology.

Visual Basic 6 program
Option Explicit

'-—— wird beim Starten des Programms aufgerufen ---
Private Sub Form Load()
cboMessageType.ListIndex = 0
AdsOcxl.EnableErrorHandling = True
'-—- Meldungen abfangen ---

82 Version: 1.1 TX1000

http://www.basicpro.de/

BECKHOFF

Samples

Call AdsOcxl.AdsEnableLogNotification(1l,
DSLOG_MSGTYPE WARN)
End Sub

65535, ADSLOG MSGTYPE HINT Or ADSLOG MSGTYPE ERROR Or A

'-—— wird beim eintreffen einer Nachricht vom AdsOCX aufgreufen ---
Private Sub AdsOcxl AdsLogNotification(ByVal dateTime As Date, ByVal nMs As Long,

ByVal dwMsgCtrl As Long,

ByVal nServerPort As Long,

ByVal szDeviceName As String, ByVal szLogMsg As Strng)

'--- Meldung anzeigen ---

lstMessages.AddItem Format (DateValue (dateTime),

leeeeeeeeee") & _

Format (TimeValue (dateTime), "!CRREREREREEEREREEEEE") &

Format (nMs, "000 ") &

Format (szDeviceName, "!@RRRRRRRERR") &

Format (nServerPort, "00000 ")
szLogMsg
End Sub

'-—- Meldung absetzen ---
Private Sub cmdSend Click()
Dim Paral As Long
Dim Para2 As Double
Dim Para3 As Integer
Dim Para4 As Integer
'-—- Parameter setzen —---
Paral = CLng(txtlPara.Text)
Para2 = CDbl (txt2Para.Text)
Para3 = CInt (txt3Para.Text)
Parad4 = CInt (txtd4Para.Text)
'-—- Meldung absetzen ---

Call AdsOcxl.AdsLogFmtString (cboMessageType.ItemData (cboMessageType.ListIndex),

txtMessage.Text, Paral, Para2,

End Sub

Para3, Para4)

'-—- Ereignisanzeige von Windows NT/2000 anzeigen ---

Private Sub cmdEventViewer Click()
Call Shell ("eventvwr.exe", vbNormalFocus)
End Sub

'-—— List loschen ---

Private Sub cmdClearList Click()
Call lstMessages.Clear

End Sub

PLC program

PROGRAM MAIN
VAR
PLCVarInteger AT SMWO : INT;
TP_1 : TP,
TOGGEL : BOOL;
AdsLogResult : DINT;
END_VAR

TOGGEL := NOT TOGGEL;
TP_1(IN := TOGGEL, PT := t#5s);
IF (TP_1.Q = 0) THEN

IF (TOGGEL = 0) THEN

PLCVarInteger := PLCVarInteger + 1;

AdsLogResult := ADSLOGDINT (ADSLOG MSGTYPE HINT OR ADSLOG MSGTYPE LOG , 'Message from the PLC: %d
', PLCVarInteger);

END IF
END IF

Language / IDE

Unpack sample program

Visual Basic 6

https://infosys.beckhoff.com/content/1033/tcadsocx/
Resources/12463805067/.exe

51.9 Delete handle of a PLC variable

This sample shows how to delete the handle of a PLC variable:

TX1000

Version: 1.1 83

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463805067.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463805067.exe

Samples BEGKHOFF

Visual Basic 6 program
Dim handle As Long

'-—— Is called at the start ---
Private Sub Form Load ()

txtHandle.Text = handle
End Sub

' -—- Is called when "Get Handle" is pressed ---

Private Sub btnGetHandle Click()
Call AdsOcxl.AdsCreateVarHandle ("MAIN.PLCVar", handle)
txtHandle.Text = handle

End Sub

' ——- Is called when "Release Handle" is pressed ---
Private Sub btnReleaseHandle Click()
Call AdsOcxl.AdsDeleteVarHandle (handle)

handle = 0
txtHandle.Text = handle
End Sub
Language / IDE Unpack sample program
Visual Basic 6 https://infosys.beckhoff.com/content/1033/tcadsocx/
Resources/12463806475/.exe
5.1.10 Event-driven reading (with conversion to another type)

From TwinCAT 2.8 Build > 743 and above

Task

There are 4 variables of different types in the PLC. The variables are to be read out in the most effective way
and the values are to be displayed on a Visual Basic form. A checkbox can be used to switch between two
different connection modes (ADSTRANS_SERVERCYCLE or ADSTRANS_SERVERONCHA). Two buttons
can be used to establish or break the connection to the PLC variables.

The PLC variables are structured data types. The PLC sends these as a data block, for instance, to the
AdsOcx client. However, the AdsOcx can pass to the VB event routine only variables of the specific data
type as parameters, including the variant type. With the method AdsReadVarConvertConnect [P_36] the type
of the variant variable in the VB event routine can be set by the user beforehand. The event data is then
copied into the variant variable by AdsOcx, and so passed to the VB event routine. A variant array can also
represent a complex structure in the PLC. How much data can be copied into the individual variant elements
depends on the type of the individual elements. A few exceptions need to be considered, such as occur with
strings (the string length must be appropriately set beforehand) and boolean variables (where a 2-byte VB
boolean is formed from 1 byte of data).

The following PLC variables are to be displayed on the form:

» The value of an enumeration type (enum) is to be read into a long variable and displayed in the label.

» The value of a structured data type (a structure containing four booleans) is to be read into a long
variable and displayed in a checkbox. The checkbox is to be selected if one of the boolean variables in
the PLC is TRUE.

« The value of a string array is to be displayed in a listbox.
» The value of a structured data type is to be read into a variant array and displayed in a further listbox.

84 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463806475.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463806475.exe

BECKHOFF

Samples

i, AdsOcx Sample09

SdzHeadyaConvertConnest

AdsDlizoonnectE |

=100 x|

[~ #DSTRAMS SERVERCYCLE:

= PLE data:

eCaolors: 1

¥ At least OME enabled

Type: String Walue: First
Type: Sting Yalue: Second
Type: String Walue: Third

Type: Single “alue: 0

Type: Long “alue: 0

Type: Boolean “alue: True
Type: Boolean “alue: True
Type: Boolean Walue: Falze
Type: Boolean “alue: True
Type: Integer Yalue: 0

Type: Double Walue: O

Type: String Yalue: Unknown
Type: Long “alue: 0

Type: Date Walue: 152052003 312:44 P

The PLC application

VAR GLOBAL
eColors : E Colors := cWhite;
std4Switches : ST 4Switches;
arr3Strings : ARRAY[1..3] OF STRING
stBigStruct : ST BigStruct;

END_ VAR

Online display of the PLC data:

:=1('First"),

1('Second'),1('Third") ;

TX1000

Version: 1.1

85

Samples

BECKHOFF

eColors = cWhite
E--stdSwitches
------- blLevell - RS
------- blewvel? =
------- blewveld =
------- blewveld =
E--arrdStrings
------- arraStrings[1]="17'
------- arraStrings[2] = 'Second'
------- arraStrings[3] = Third'

E _HﬂEgEF=1E#DDDD
- double = 0
Fe gtring20 = 'Unknown'
------- .counter = 164000000711
----- Hatetime = DT#2003-01-20-15:12:44

The definition of the enumeration type:

TYPE E_Colors :

(
cUnknown,
cWhite := 1,
cBlue := 2,
cRed := 3,
cBlack

)i

END TYPE

The definition of the structure with four boolean variables:

TYPE ST 4Switches :
STRUCT
blLevell : BOOL;
bLevel2 : BOOL;
bLevel3 : BOOL;
bLevel4 : BOOL;
END_STRUCT
END TYPE

The definition of the structured data type:

TYPE STiBiqStruCt :
STRUCT
single : REAL;
long : DINT;
boolean : BOOL;
stSubl : ST Subl;
counter : DINT;
datetime : DT := DT#2003-01-20-15:12:44;
END_STRUCT
END_TYPE

This, in turn, has two substructures:

TYPE ST Subl :

STRUCT
bFirst : BOOL;
bSecond : BOOL;
bThird : BOOL;
stSub2 : ST Sub2;

END STRUCT

END TYPE

86 Version: 1.1

TX1000

BEGKHOFF Samples

TYPE ST Sub2
STRUCT
integer : INT;
double : LREAL;
string20 : STRING(20) := 'Unknown';
END_STRUCT
END_TYPE

Visual Basic 6 program

Option Explicit

Dim adsErr As Long

Dim hConnect EnumVar As Long

Dim hConnect_ 4Switches As Long
Dim hConnect StringArray As Long
Dim hConnect BigStruct As Long

The connection to the first PLC runtime system is established as the form is loaded:

Private Sub Form Load()
AdsOcxl.AdsAmsServerNetId = AdsOcxl.AdsAmsClientNetId
AdsOcxl.AdsAmsServerPort = 801
AdsOcxl.EnableErrorHandling = True

End Sub

A mouse click on the AdsReadVarConvertConnect button establishes a connection to the PLC variables.
When successful, the AdsReadVarConvertConnect method returns a handle. Only via this handle the
connection is identified and can be terminated later.

1. The enumeration type in the PLC only occupies 2 bytes of memory. These two bytes are read into a long
variable (four bytes) and are returned in the event function. Using the VB integer data type would be just as
effective.

2. The 4 boolean values in the structure variable occupy 4 individual bytes of PLC memory in the PLC.
These are read into a long variable, and returned as a long variable in the event function.

3. The strings in the array occupy a total of 243 bytes of memory in the PLC (defined string length + 1 byte
for the null termination) *3. The length of the individual VB strings must correspond to the length of the PLC
strings in order to be able to separate the individual strings. If the string has zero length, no event data is
copied into a string variable.

4. The structure variable can be read into a one-dimensional variant array. The individual array elements can
be of different types. Before establishing the connection, however, the individual array elements must be
initialized with the appropriate type.

Private Sub cmdConnect Click()
Dim adsTransMode As ADSOCXTRANSMODE
adsTransMode = IIf (chkTransMode.Value = vbChecked, ADSTRANS SERVERCYCLE, ADSTRANS SERVERONCHA)

'Connects to enum var

Dim convertedEnumVar As Long

adsErr = AdsOcxl.AdsReadVarConvertConnect (".eColors", adsTransMode, 300, hConnect EnumVar, conve
rtedEnumVar, lblEnum)

'Connects to struct with 4 boolean variables

Dim converted4Switches As Long

adsErr = AdsOcxl.AdsReadVarConvertConnect (".st4Switches", adsTransMode, 300, hConnect 4Switches,
converted4Switches, chk4Switches)

'Connects to array of strings

Dim convertedStringArray(l To 3) As String

Dim i As Integer

For i = LBound(convertedStringArray) To UBound (convertedStringArray)

convertedStringArray (i) = String (81, "#")

Next 1

adsErr = AdsOcxl.AdsReadVarConvertConnect (".arr3Strings", adsTransMode, 300, hConnect StringArra
y, convertedStringArray, lstStringArray)

'Connects to struct variable
Dim convertedBigStruct (1l To 11) As Variant

convertedBigStruct (1) = CSng(0) 'stBigStruct.single
convertedBigStruct (2) = CLng(0) 'stBigStruct.long
convertedBigStruct (3) = CBool (False) 'stBigStruct.boolean

TX1000 Version: 1.1 87

Samples BEGKHOFF

convertedBigStruct (4) = CBool (False) 'stBigStruct.stSubl.bFirst
convertedBigStruct (5) = CBool (False) 'stBigStruct.stSubl.bSecond
convertedBigStruct (6) = CBool (False) 'stBigStruct.stSubl.bThird
convertedBigStruct (7) = CInt (0) 'stBigStruct.stSubl.stSub2.integer
convertedBigStruct (8) = CDbl (0) 'stBigStruct.stSubl.stSub2.double
convertedBigStruct (9) = CStr(String (21, "*")) 'stBigStruct.stSubl.stSub2.string20
convertedBigStruct (10) = CLng(0) 'stBigStruct.counter
convertedBigStruct (11) = CDate (0) 'stBigStruct.datetime

adsErr = AdsOcxl.AdsReadVarConvertConnect (".stBigStruct", adsTransMode, 300, hConnect BigStruct,
convertedBigStruct, lstBigStruct)
cmdConnect.Enabled = False
cmdDisconnect.Enabled = True
End Sub

A mouse click on the AdsDisconnectEx [» 40] button will break the connections to the PLC variables:

Private Sub cmdDisconnect Click()
adsErr = AdsOcxl.AdsDisconnectEx (hConnect EnumVar)
adsErr = AdsOcxl.AdsDisconnectEx (hConnect 4Switches)
adsErr = AdsOcxl.AdsDisconnectEx (hConnect StringArray)
adsErr = AdsOcxl.AdsDisconnectEx (hConnect BigStruct)

cmdConnect.Enabled True
cmdDisconnect.Enabled = False
End Sub

The AdsReadConvertConnectUpdate [P 55] event routine. This event routine is called cyclically (if
ADSTRANS_SERVERCYCLE is selected) or is only called when the value of the PLC variable has changed
(if ADSTRANS_SERVERONCHA is selected). The hUser parameter can be used to be able to assign the
event data to the appropriate control (label, checkbox, listbox).

Private Sub AdsOcxl AdsReadConvertConnectUpdate (ByVal dateTime As Date, ByVal nMs As Long, ByVal hCo
nnect As Long, data As Variant, Optional hUser As Variant)

Dim i As Integer

If TypeOf hUser Is CheckBox Then

chk4Switches.Value = IIf(data = 0, vbUnchecked, vbChecked)
chk4Switches.Caption = IIf(data = 0, "ALL disbled", "At least ONE enabled")

ElseIf TypeOf hUser Is ListBox Then

If hUser Is lstStringArray Then
Call lstStringArray.Clear
For i = LBound(data) To UBound(data)
Call lstStringArray.AddItem("Type: " & TypeName (data(i)) & " Value: " & data(i))
Next i
ElseIf hUser Is lstBigStruct Then
Call 1lstBigStruct.Clear
For i = LBound(data) To UBound(data)
Call 1lstBigStruct.AddItem("Type: " & TypeName (data(i)) & " Value: " & data(i))
Next 1
End If

Else 'lblEnum
Dim objLabel As Label
Set objLabel = hUser

objLabel.Caption = "eColors: " & data
End If
End Sub
Language / IDE Unpack sample program
Visual Basic 6 https://infosys.beckhoff.com/content/1033/tcadsocx/
Resources/12463807883/.exe

88 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463807883.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12463807883.exe

BEGKHOFF Samples

5.2 Delphi - samples
5.21 Integration in Delphi
5.21.1 Linking to Borland Developer Studio 2006 (VCL for Delphi Win32)

These instructions can also be used for linking ADS-OCX in Borland Delphi 2005. The differences
compared with "Borland Delphi 2006" or "Delphi XE2" are only marginal.

Step 1

First a Delphi unit has to be derived from the ActiveX Control. Select "Import component..." under
"Component"

4 Borland Developer Studio 2006

File Edit Search Wiew Refactor Project Run Q:-mp-:unenti Tools StarTeam Window
ﬁ ’ ||Selected Emulatar jl Installed \MET Components. .,
sl Mew WCL Component, . Ed
;EB\ Structure q . P
Create Component Templake, ..
@ Inskall Packages. ..
| Import Component. ..
[
Step 2

The Component Wizard opens. Select "VCL for Delphi Win32" and confirm with "Next>>".

A Import Component E

Personality, Framework and Platform

Select a personality, framework and platform for the component wou would like toimpoart,

£ WL For C++ Wing2
f* XL For Delphi Wins2

== Back | Mext == Finish Zancel Help

TX1000 Version: 1.1 89

Samples

BECKHOFF

Step 3

In next dialog select "Import ActiveX Control" and click on "Next>>".

& Import Component

Type of Component
Select the byvpe of campanent ko impork,

" Import a Type Library
* Irmport Ackivel Control
" Import \MET Assembly

<< Back, Mexk == Fimish Zancel Help

Step 4

Select the required component from the list of registered ActiveX Controls (AdsOcx OLE Control Module). If
the component does not appear in the list of registered elements, it has to be registered and integrated via

the "Add" button. Then click on “Next".

90 Version: 1.1

TX1000

BECKHOFF Samples

& Import Component

Registered ActiveX Controls
Select an Ackiver Contral that is registered on wour syskem ba import.

Description | Wetsion | Filenarne | -
Active Setup Conk,.. Wersion 1.0 CHWIRDOWSS,
CLE Conk,.. Wersion 2.3 i VWIRD SISy,
Beckhaoff TcEvent,., Wersion 1.0 CATwinCATIEveE, ..
Beckhoff TcEvent... Wersion 1.0 A TwinC AT Eve. ..
cic 1.0 Type Library Wersion 1.0 CHWIRDOWSS, oy
CompatlJl 1.0 Typ,.. Wersion 1.0 CWTIRDOWSS,
ComSnap 1.0 Typ.., Version 1.0 CWIRDOWSS,
cky OLE Control ... Wersion 1.0 C IMDOWSAS, L,
DHTML Edit Cantr,.. Wersion 1.0 C:\Program Files, ..
Directnimation Li.,, Wersion 1.0 CWTIRDOWSS,
HHCkrl 4.0 Type Liv,, Wersion 4.0 CWIRDOWSS,
LM Library Wersion 1.0 C IMDOWSAS, L,
Microsoft Ackive ... Wersion 1.0 CHWIRDOWSS,
Microsoft Agent ... Wersion 2.0 C W TIRDOWS . j
Add
<< Back | Mext == Finish Cancel Help

Step 5

In next Wizard window specify the VCL pallete page and the directory for the newly created unit (Default: C:
\program files\borland\bds\4.0\Imports\).
Confirm with "Next".

& Import Component

Component
Specify the palette page For the component and the directary For the generated impart file,

w
J Class Mameis): IT.ﬁ.dsch

Palette Page:

LInit Dir Mame: Iu::'l,pru:ugram files\barlandibds) 4. 0 Imparts), J

Seatch path: I$(EDS]I'|,IiI:|;$(BDS]|'|,Im|:u:urts;$I{BDS]I'|,LiI:|'|,In|:I3-'1IZI;u::'l,c

¥ 5enerate Component Wrappers

Fimish Cancel Help

TX1000 Version: 1.1 91

Samples BEGKHOFF

Step 6

In the next step a unit for the ActiveX Component is generated. Confirm with "Finish".

& Import Component

Create Unit

Choose ko creake a unik or add the created unit ko an active package, after the unit is
added to a package it can be installed through the Install Packages dialog,

% Create Unit

<< Back, | Mexk == | Finish | Zancel | Help |

The generated unit is opened automatically for verification:

& Borland Developer Studio 2006

File Edit Search Wiew Refactor Project Run Component Tools StarTeam ‘Window Help 'ﬂ I efault Layout | 53 ﬂ
| % b |[selected Emustor =i “l B P e b -E] s
S structure 2 X [§japsocuib_Tie|
-] Classes jnit ADSOCHLib TLE;

[:l Interfaces
[:l Procedures

I/Jf ok b o o o o o ob o oF o o of o o oF o o b o oF o o o oE o o b oF o o o o o o ok o oF o o o

a0 Types A/ WARNING
[:l Variables/Constants Al mmmmmes . . .
D Lses A4 The tvpes declared in this file were generate
A4 Type Library. If this tyvpe library is explici
Step 7

In the next step a new package has to be generated. Click on "File -> New -> Package" in the main menu.

92 Version: 1.1 TX1000

BECKHOFF

Samples

#& Borland Developer Studio 2006

File | Edit Search Wew FRefackor Project Bum Component Tools StarTeam Window Help B
.__l = W0 = YCL Forms Application - C++Builder h ’ ﬁ ‘ ¢ -
| L Dpen... ik Package - C++Builder
| #=) Open Project... Cri+F11 it - i
15 pen Projec r =] Unit - C++Buider "XLib_TLB;
d Reopen 1 Form - C++Euilder
iE save Chl+S | @ ASPNET Web Application - C#Builder EEAAAL AR A S
| = Save fAs... = Windows Forms Application - C#Builder i
|| ; ; } B
E Lem Jave Project As.., 0L Control Library - C#Builder bes declared i
@ Saveal SHFHCHIHS | G ssp NET web Application - Delphi for NET [ibrary. If thic
l% Close ’E WL Forms Application - Delphi for JMET © type library
r
G Closz Al m wWindows Forms Application - Delphi For .NET SH command oF
- = phrary, the cor
M Use Unit... Alt+F11 M= V(L Farms Application - Delphi far Wing2 modifications
g=p Prink.., |[m Package - Delphi for Win3z EEAEAS AR S S
+ Exit Farm - Delphi For Win3z2
- [e TR ;1.2
=] Unit - Delphi For Win32 enerated on 13.
“-’_, other. ..
EEEEEEEEE LKL LK
Cuskamize. .. .
=HEemiEE pr C:\WINDOWS

Step 8

A5 TTRTI:

SANNNAEAN-2R4T

The previously generated unit must now be inserted into the newly created package.
Click the right mouse button in the project manager and select the entry "Package1.bpl" and in the context
menu that opens "Add".

| £ &

|

-0 -NE e t5-805 58

E}m Packagel.bdsproj - Project Manager

Eﬁ Activabe - @M&w @Remuve

d

File:

S8 ProjectGroupl

=% ¥packagel.bp

[Contains add. ..
--E Requires Add Mew »

Add Reference, ..
Remove File...
Save
Save As...
Fename

Rermaove Project

Install
Compile

Build

TX1000

Version: 1.1

93

Samples BEGKHOFF

Step 9

In the "Add" window enter the storage location for the unit previously generated for the ActiveX Component
(Default: C:\program files\borland\bds\4.0\Imports\ADSOCXLib_TLB.pas).

Add =]
Aidd Uit |
— - Ok

LInit File name: |5'|,4.D'I,Impnrts'l,.ﬁ.DSOCXLll:u_TLB.pasl Browse, .. |

- - Zancel
Search path: |$I:BD5:I'I,|I|:IJ$I:BD5:I'I,II‘I'||:IDI’|:5;$I:BD5:I'I,LI|:I'I,II'II:|':.-'1|:IJE:'I,Ijl:ltl

Help

Step 10

For compiling the package right-click on "Package1.bpl" and select "Compile"” in the context menu.

94 Version: 1.1 TX1000

BEGKHOFF Samples
-l 6 e TR HE ST,
E}m Packagel.bdsproj - Project Manager i 4

Eﬂ fctivate @ﬂew == Remave
File
8 ProjectGroupl
E}a Packagel.bp
= Contains Add...
=00 Add Mew
EHD__' Pro Add Reference. ..
E}F——l Remove File. ..
E...
Save
Save Bs...
Renarme ¥
Remove Project 5
=-[£ 7] Requires
: X Install
rtl.decp :
v-:l.u:lu:p| Compile
Build
Build Soorner ChrlHUp
Build Laker CtrH-Crovn
Compile All From Here
Build All Fram Here
Activate
Yiew Source ChrlHY
F | Dependencies, ., _pl
Step 11
After the new package has been compiled select "Install” in the context menu.
TX1000 Version: 1.1 95

Samples BEGKHOFF

ko Packagel.bdsproj - Project Manager Loy
) activate ~ EZHew [Remove
File

E@ ProjectGroupl

- &

=7 Contains add...
BT Ak addew :
£ Prog
Er-E3
=

Add Reference...

Remove File, ..

Save
Save A5,

Renarne

Remove Project
=-[£7] Requires

tH.dcp Inskall
b o] welodep Compile
Build

Build Sooner Chrl+-Up
Build Later Ckrl+Dawn
Compile &ll From Here

Build All From Here

Activate

Wiew Source ChrlY

1 | Dependencies. ., _*I

The installation is now complete. The following message appears:

Information E1 |

= Package C:\Documents and Settingsichristophciiy DocumentsiBorland Studio Projects\BpliPackagel bpl has been installed.
\lj) The Following new component(s) have been registered: TAdsOcx, TADSOCKPPGCLIEMT,

After the installation

The ActiveX Component appears in the specified category when a new "VCL Forms Application - Delphi for
Win32" is created, for example.

96 Version: 1.1 TX1000

BECKHOFF

Samples

#& Borland Developer Studio 2006

W =

File | Edit Search Wew FRefackor Project Bun Component Tools StarTeam
| = L4 | B WL Farms Application - C++Builder
54 open... Package - C++Builder
[
L Al
— = OpenProject... Chrl+F11 .@ Unit - C++Euilder
Reopen * [[] Eorm - C++4Builder
. Save k5 &7 BSPUMET Web application - C#Builder
M Save fis... = Windows Forms Application - C#Builder
B Save Project As... % Coptrol Library - C#Builder
@ Saueal SHFHCHHS | asp NET web Application - Delphi for [ET
%Irl Close ’E WL Forms Application - Delphi for JMET
e Close Al m wWindows Forms Application - Delphi For .NET
M Use Unit... Alt+F11 |ﬁ YL Forms Application - Delphi Far Win3z
o Frit... il Package - Delphi for Win3z
- Exit [] Form - Delphi for Win32
=] Unit - Delphi For Win32
Qs
™ Qther, ..
Cuskomize. ..
T
HI| Tool Palette o X
A4
Standard =
Additional
Win32
System
Win 3.1
Dialogs o
Data Access
Data Controls
dbExpress
Datasnap
BDE
= ActiveX
L Tadsocy
h TADSOCAPPGCLIENT
dbGo
T Fe
5.21.2 Implement in Delphi 3,4,5,6,7, ... (classic)

Please note the information about restrictions and limitations [»_104] when using AdsOcx in Delphi

applications.

ActiveX controls can be integrated into Delphi in two ways:

1. Implementing via the import of the ActiveX control [» 98]

2. Implementing via the import of the type library of the ActiveX control [>_100]

With the older versions of Delphi you still have to

TX1000

Version: 1.1

97

Samples BEGKHOFF

3. Install AdsOcx via the generated type library in the component palette [» 102]

1. Implementing via the import of the ActiveX control

1.1 Use the menu command Component->Import ActiveX Control to open the Import ActiveX dialog box.

5% Delphi 5 - AdsOcxTestingApp

File Edit Search “iew Project Bun | Component Database Toolz Help

@ = @ 1 “ OD=-& | |ﬂew Compaonet...

@ Inztall Compaonent. .
ﬁ Impart Actives Contral...

Object |nspectar

o

Froperties | Evants |

[Ereate Eompenent llemplate...

@ Inztall Packages. ..
LConfigure Palette. ..

1.2 In the dialog box, select the AdsOcx OLE Control module from the list of ActiveX controls and confirm
with a mouse click on Install..... If the AdsOcx control is not in the list, you can add it using the Add...
command. By default, the AdsOcx is located in the .../WinNT/System32 folder.

Import ActiveX |
[mpart Actives I

1WideoSaft vweFlend Controls [Version 3.0] il
Acrobat Control for Actives Mersion 1.3]

Active Setup Control Librany [Wersion 1.0]

Activer Conference Control MYersion 1.0
itdzlcw OLE Control module [Yersion 2 3]
AlwGrd 1.0 Tope Libran [Vergion 1.0]
AmzDeviceZ0M Activex Control module MYersion 1.0] j

| C:AWIRM T Seystern32sddz0 on ooy

Clazz names: | TAdsOcx ﬂ

Palette page: I.-'l'-.n::tivex j

IIrit dir narme: Ie:'\prngram filezhDrelphit mport s, J

Search path: |$[DELP'HI]"'.Lib;$[DELF'HI]"~Bin;$[DELF'HI]HImpu::r J

Inztall...

Create Unit Cancel | Help

1.3 In the Install dialog box, confirm with OK.

98 Version: 1.1 TX1000

BECKH“FF Samples

Install |

|nto existing package I Into new package I

File name: :wprogram fileshdelphiStLibdelusrS0. dpk) Browse...

Deszcrption: |Borland Uzer Components

k. Caricel Help

1.4 The package with user-defined components must be rebuilt. Confirm with Yes.

Package - dclusrs0.dpk

s - @ SRR
Cornpile Add Remove Install Optionz [

Files | Path S

ED Contane e

- FE] ADSOCKLB_TLE.. eprogram flesidelphiSymports—— f oo o000

- FE] ADSOCKLb_TLE.. eprogram flesidelphiSymparts—— f oo oo oo

ED Requirez - :
e i |

@ Package delusiS0 bpl will be rebuilt. Continue?

1.5 If successful, the AdsOcx component is registered. Confirm with OK.
Information

The component palette has been updated a2 a result of rebuilding installed package e:hprogram filessdelphishProjectz\Bpldclusr50.bpl.
The following new component(s] have been registerad: TAdsOcs,

1.6 Close the Package Editor and save the changes with Yes.

Confirm |

@ 5ave changes to project Delusrs0?

Mo | Cancel |

From now on you can use the AdsOcx component from the ActiveX components palette in a new project.

TX1000 Version: 1.1 99

Samples BEGKHOFF

i |
Standard | Additional | in32 | Svstem | D:

]E jn@ﬁ”tﬂ

zx_Setup_Delphi.htm Ad:0cs

H

2. Implementing via the import of the type library of the ActiveX control

2.1 In order to be able to link the AdsOcx into Delphi's component palette, it is first necessary to generate a
type library (with the prototypes for the functions, procedures and data type definitions of the ActiveX
control).

The type library can be generated via Project -> Import Type Library.

S5 Delphi 5 - AdsOcxTestingApp

File Edit Search “iew | Project Bun Component Databaze Tools
& T “ 0 (2 #dd to Project.. Shift+F11 |1
[E; Bemove from Project...

E [rmpart Type Library. .

| |:|iE:|::t |r'|:5:|:|E|::t|:|r B &dd E':' HEFIDSitD[_','...

I Wigw Source

2.2 In the dialog box that opens, select the AdsOcx OLE Control module from the list of ActiveX controls and
confirm with Install.....

If the AdsOcx is not in the selection list, you can add it using the Add... command. The AdsOcx is normally
located in the .../WinNT/System32 folder, to which it is copied during the installation of TwinCAT.

100 Version: 1.1 TX1000

BECKHOFF Samples

Import Type Library |

[mpart Twpe Library |

Active Setup Control Library [Version 1.0] ﬂ
Activebovie control type lbram [Werzion 1.0)

Activer Conference Contral [Wersion 1.0]

Activess DLL bo perform Migration of M5 Repogitory W1 to W2 Wers
AdsOex OLE Contral module [Version 2.3]

AlwGrd 1.0 Tope Libram Version 1.0]
ArmnzDevicelC0M Active Control module [Yersion 1.0]

APE Databasze Setup Wizard [Wersion 2.0 ;l

C:AWARM T Saystern32uddz0 on. ooy

Add.. | Bemove |

Clazz names: | TAdsOcx ﬂ
TADSOCKPPGCLIEMT

Palette page: I.ﬁ.ctivex j

IIrit dir narme: Ie:'\prngram filezhDrelphi mpaort s, J

Search path: |$[DELP'HI]"'.Li|:|;$[DELF'HI]"~Bin;$[DELF'HI]HImpDr J

Create Unit Cancel | Help

¥ Generate Component ‘\Wrapper

2.3 In the newer versions of Delphi (e.g. Delphi 5.0), the imported type library is immediately added to the
component palette. For the older versions only the type library (e.g. in the folder .../Delphi 3/Imports) is
generated and you have to install the AdsOcx via the generated type library into the component palette
[»_102]. If you have a newer version, confirm in the following dialog with OK.

Install |

|nto existing package I Inta new package |

File name: :wprogram fileshdelphiStLibdelusrS0. dpk) Browse...

Deszcrption: |Borland Uzer Components

k. Caricel Help

2.4 The package with user-defined components must be rebuilt. Confirm with Yes.

Confirm |

@ Package dclusrS0.bpl will be rebuilt. Continue?

TX1000 Version: 1.1 101

Samples BECKHOFF

2.5 On success, the AdsOcx component is registered. Confirm with OK.

Infarmation E

The component palette has been updated az a result of rebuilding instaled package e:h\program fileshdelphiayProjectshBpldclusrs0.bpl.
The fallowing new component(z] have been registered: TAdsOck, TADSOCXPPGCLIEMT.

2.6 Close the Package Editor and save the changes with Yes.

Confirm |

@ Save changes to project Dolusrb0?

Mo | Cancel |

From now on you can use the AdsOcx component from the ActiveX components palette in a new project.

|
t ||| Standard | Additional | *in32 | Sustem | D:

N A Em Y

=_Setup_Delphihtm AdsOew

3. Install AdsOcx via the generated type library in the component palette

3.1 After the type library has been generated, the AdsOcx can be added as a new component to the
component palette from the Pascal file generated in the process (by default, the ADSOCXLib_TLB.pas file is
generated). For this purpose you must select the menu command: Component -> Install Component....

Hel

H |mpart Activess Contral...

3.2 The Browse... command must be used in the dialog box to select the type library that was created
beforehand. The type libraries that are generated are usually located in the .../Delphi 3/Imports/ folder.
Select the type library, and confirm with Open.

102 Version: 1.1 TX1000

BECKHOFF Samples

Inztall Component

|nto exizting package | It new package I

Uit file: narme: I Browse...

Search path: Ie:\newinstalledprugramms"nﬂ orlandsDelphi 3\Libze: \newinztalledprogrammsh

Unitflename (PR
Look jn: |B Imports j gl —

File name: I.-’-‘-.D SOCELIb_TLE. pas Open

Files af type: IDeIphi unit [*. pas] j Cancel |

3.3 After this the component palette must be rebuilt. Confirm with Yes.

\?ﬁ Package - e:\newinstalledprogramms\Borla.. Adclusr30. dpk B3

TS = EE Ly
Compile &dd Fediove Opbon: (ostal Update

Containe | HequirESI

Unit | Path |
ADSOCHLIb_TLE YnewinztalledprogrammzBorlandsDelphi 24 mportzh,

Confirm |

@ Package dclusr30.dpk will be rebuilt. Continue?

No | Hep |

\Modified [Installed A

3.4 The ActiveX control is registered after successful rebuilding. Confirm with OK.

Information |

e:hnewinstalledprogrammeBorlandiDelphi 34Lib4delusr30.dpl.

@ The component palette has been updated as a rezult of rebuilding installed package
The fallowing new component(z] have been registered: TAdsOow,

TX1000 Version: 1.1 103

Samples BEGKHOFF

3.5 The changes to the component package must be saved when closing. The AdsOcx ActiveX Control can
now be dragged onto the form from the component palette and used similarly to all the other Delphi
components.

Toolz Help

2| Svstem | Data dcces: |

by L *

5.21.3 ADS-OCX limitations in Delphi applications

Delphi's Memory Manager

In the AdsOcx application you have to make sure that the system variable: IsMultiThread is set to True in
any case. The Memory Manager is "thread-safe" only if this variable is set. Only then will access to shared
resources be locked. Often the Memory Manager of Delphi does not set this variable if an included DLL or
control starts own threads.

Add the following line to the initialization section of your application:

Initialization
IsMultiThread := True;// Setting this system variable makes Delphi's memory manager thread-safe

Methods/properties

The following properties, methods and events cause errors in Delphi applications, and must not be used. As
can be seen in the table, either the latest version of Delphi should be used, or certain functionalities must be
omitted. There are a variety of a updates for the Delphi versions listed, and these may correct certain errors.

Error description Workaround Delphi version
Properties 3.0 4.0 5.0 6.0
AdsClientTyp | There is a memory n/a Bug ? Fixed
e leak when accessing
this property.
Memory for the

returned string is not
returned correctly.

AdsClientAds |There is a memory |n/a Bug ? Fixed
State leak when accessing

this property.

Memory for the

returned string is not
returned correctly.

AdsClientAds |There is a memory |n/a Bug ? Fixed
Control leak when accessing

this property.

Memory for the

returned string is not
returned correctly.

AdsServerAd |There is a memory n/a Bug ? Fixed
sControl leak when accessing

this property.

Memory for the

returned string is not
returned correctly.

104 Version: 1.1 TX1000

BECKHOFF

Samples

Error description

Workaround

Delphi version

AdsServerAd
sState

There is a memory
leak when accessing
this property.
Memory for the
returned string is not
returned correctly.

n/a

Bug

? Fixed

AdsServerTy
pe

There is a memory
leak when accessing
this property.
Memory for the
returned string is not
returned correctly.

n/a

Bug

? Fixed

AdsServerlLa
stMessage

There is a memory
leak when accessing
this property.
Memory for the
returned string is not
returned correctly.

n/a

Bug

? Fixed

AdsAmsClien
tNetld

There is a memory
leak when accessing
this property.
Memory for the
returned string is not
returned correctly.

n/a

Bug

? Fixed

AdsAmsServ
erNetld

There is a memory
leak when accessing
this property.
Memory for the
returned string is not
returned correctly.

n/a

Bug

? Fixed

Methods

All methods

The functions of the
generated type
library
ADSOCXLib_TLB
return undefined
return parameters.

Please install the
Delphi 6 Update Pack
2 and rebind the
ADSOCX.

- no bug

Bug

TX1000

Version: 1.1

105

Samples

BECKHOFF

Error description

Workaround

Delphi version

AdsSyncRea
dReq

AdsSyncWrit
eReq

These methods
allow variables of
any type to be
transferred to the
PLC or to be read
from the PLC. The
OleVariant
parameters,
however, are passed
by value and not by
reference by the
AdsSyncReadReq
method. This means
that the method
cannot alter the
value of the data
parameter during the
call. Although it is
true that the PLC
variables are copied
into a corresponding
OleVariant variable
during the call, that
variable is only a
copy of the actual
variable from the
current parameter
list. The method
prototypes for the
ADS-OCX are
generated
automatically by the
Delphi development
environment when
the ADS-OCX is
linked, and cannot
be modified.

Use the "released”
methods to have
synchronous access
the PLC variables (e.g.

AdsSyncReadIntegerR
eq() etc.).

Bug

?

Bug

AdsReadVar
ConnectEx

Similarly to the
process for the
AdsSync methods,
the OleVariant
parameters in the
event functions are
passed by value and
not by reference.

Use the
AdsReadVarConnect
Ex2 method

Bug

Bug

Events

AdsReadCon
nectUpdateE
X

An access violation
is generated when
the event function is
called.

Use the
AdsReadConnectUpd
ateEx2 event function

Bug

Bug

5.2.1.4

Reset ADS-OCX application

After a program error, it is often not possible to terminate the application via the operating function "Start ->
Program Reset", as is usually the case. The following message of the debugger is the consequence:

106

Version: 1.1

TX1000

BEGKHOFF Samples

Error |

Q Timed out waiting for process ko terminate.

Betry | lgnare |

The cause of this is that using the ADS-OCX generates a client-server connection to the TwinCAT router,
and this must be closed when the application stops. The Delphi application cannot be closed using the
"Program Reset" menu command, because at this point there is a connection to the TwinCAT router. Their
connection is generated in the application through the assignment of the AdsAmsNetld and the port number.

The following methods may be used to close the application without having to restart the computer:

 First confirm the runtime error with OK, then stop the TwinCAT system via the taskbar, and then reset
the Delphi application. This causes existing connections to the clients to be closed. The disadvantage
is that the TwinCAT system and the PLC must then be restarted;

« First confirm the runtime error with OK, then call the Router Cleanup via the taskbar, and then reset the
Delphi application;

* Make use of exception handling. The AdsAmsDisconnect() can be used to explicitly close the
connection to the router;

try n:=8; Switch[n].Tag:=0; // This index is invalid except on EAccessViolation do begin
AdsOcxSPS.AdsAmsDisconnect(); Application. Terminate(); end; end;

5.2.2 Accessing PLC variables in synchronous/asynchronous/
connected modes

System requirements:
* Delphi 5.0 or higher;
e TwinCAT v2.9 or higher

Task

The sample program shows how AdsOcx methods and events can be used in a Delphi application. The
various access types (synchronous/asynchronous/connected) are applied to the PLC variables. The PLC
program defines an integer variable at address 100 in the process data flags area. The PLC variable is to be
accessed for reading or writing from the Delphi application, using the various access modes.

TX1000 Version: 1.1 107

Samples BEGKHOFF

Description

,)"" Delphi Adz0cx Sample =] E3
File AdsOcx

AdzCreatefarHandle adzFesult0 vard ame:MalN VARINTIE Handle 16777246

—SYMCHROMNOUS
Synchronous read by address Synchronous write by address
Synchronous read by variable name Synchronous write by wariable name
adzResult:0 “Yalue: 300

~ASYNCHROMOUS

Agynchronous read by address Agynchronous write by address

adzRezul:0
nlnvokeld:33 nResult0 chblength:? phata:300

~COMMECTED

Connected read by address Digconnect connected read

Connected read by variable name

adzRezul:0
nindexGroup: 16416 nindexOffzet: 100 % alue: 300

ConectEx DizconnectEx

adsResulb0 hConnect: 48
Date/Time:11:27: 39 4M nkzE626 hConnect 48 data:300 hlzer ¥

Synchronous, asynchronous or connected access to the PLC variables is possible by means of the AdsOcx.
In a synchronous access the application is stopped until the requested data has arrived. In an asynchronous
access, a request is sent to the PLC, after which execution of the Windows application continues. A callback
function is then activated in the Windows application when the requested data has arrived. Under the
connected access mode, an event function is called in the Windows application whenever the value of the
PLC variable has changed.

Delphi 5 program

In the event function OnFormCreate, the AdsCreateVarHandle [_14] method requests a handle for the
symbol name of the PLC variable. The handle is then used in the sample application for read or write access
to the PLC variable. The OnDestroy event function releases the handle once more using the

AdsDeleteVarHandle [»_15] method when the application is closed.

var

Forml : TForml;
varName :WideString; {PLC variable symbol name}
varValue :Smallint; {PLC variable value}
varHandle :integer; {PLC variable handle}
hConnect rinteger; {PLC variable connection handle}
adsResult :integer; {Ads result}

implementation

{SR *.DFM}

procedure TForml.OnFormCreate (Sender: TObject) ;

108 Version: 1.1 TX1000

BEGKHOFF Samples

begin
AdsOcx1l.AdsAmsServerNetId := AdsOcxl.AdsAmsClientNetId; {Sets PLC server network adress}
AdsOcx1.AdsAmsServerPort := 801; {Sets the PLC run time system}
varName := 'MAIN.VARINT16';
varValue := 0;
varHandle := 0;
hConnect := 0;
adsResult := AdsOcxl.AdsCreateVarHandle(varName, varHandle); {creates variable handle}

if adsResult = 0 then

LabelVarHandle.Font.Color := clBlue

else

LabelVarHandle.Font.Color := clRed;

LabelVarHandle.Caption := Format ('AdsCreateVarHandle adsResult:%d varName:$s Handle:%d',
[adsResult, varName, varHandle]);
end;

procedure TForml.OnFormDestroy (Sender: TObject) ;
begin

adsResult := AdsOcxl.AdsDeleteVarHandle(varHandle);
end;

Synchronous access

A mouse click on one of the buttons in the SYNCHRONOUS group will cause the value of the PLC variable
to be read or written synchronously, and to be displayed as text on the form. The PLC variable can be
accessed in two ways: via the variable name or via the variable address.

Access by means of the variable address

procedure TForml.OnSyncReadByAddrClick (Sender: TObject);
begin
adsResult := AdsOcxl.AdsSyncReadIntegerReqg($00004020, 100, 2, varValue);
LabelSyncRetData.Caption:=Format ('adsResult:%d Value:%d', [adsResult, varValue]);
end;

procedure TForml.OnSyncWriteByAddrClick (Sender: TObject) ;

begin
varValue := 100;
adsResult := AdsOcxl.AdsSyncWriteIntegerReqg($00004020, 100, 2, varValue);
LabelSyncRetData.Caption:=Format ('adsResult:%d', [adsResult]);

end;

Access by means of the variable name

In the case of access using the variable name, the corresponding handle of the PLC variable is used as a

parameter in the AdsSyncReadIntegerVarReq [P 24] or AdsSyncWritelntegerVarReq [» 28] methods. The
handle of the PLC variable is requested in the OnCreate event function when the application starts.

procedure TForml.OnSyncReadByNameClick (Sender: TObject) ;
begin
adsResult := AdsOcxl.AdsSyncReadIntegerVarReq(varHandle, 2, varValue);
LabelSyncRetData.Caption:=Format ('adsResult:%d Value:%d', [adsResult, wvarValue]);
end;

procedure TForml.OnSyncWriteByNameClick (Sender: TObject) ;

begin
varValue := 200;
adsResult := AdsOcxl.AdsSyncWriteIntegerVarReg(varHandle, 2, varValue);
LabelSyncRetData.Caption:=Format ('adsResult:%d', [adsResult]);

end;

Asynchronous access

The PLC variable can be accessed asynchronously by means of the AdsReadIntegerReq [» 31] and
AdsWritelntegerReq [P_33] methods.

procedure TForml.OnAsyncReadByAddrClick (Sender: TObject) ;

var varlInvokeld :integer;
begin
varInvokelId := 33;
adsResult := AdsOcxl.AdsReadIntegerReqg(varInvokeId, $00004020, 100, 2);

LabelAsyncRetData.Caption:=Format ('adsResult:%d', [adsResult]);

TX1000 Version: 1.1 109

Samples BEGKHOFF

end;

procedure TForml.OnAsyncWriteByAddrClick (Sender: TObject);

var varInvokeId rinteger;
begin
varInvokeId := 44;
varValue := 300;
adsResult := AdsOcxl.AdsWriteIntegerReq(varInvokeId, $00004020, 100, 2, varValue);
LabelAsyncRetData.Caption:=Format ('adsResult:%d', [adsResult]);
end;

After an asynchronous access the execution of the Delphi application is continued, and an event function is
called in the Windows application once the return parameter is available. In our sample, the event function

AdsReadlIntegerConf [P _55] is called when reading the PLC variable, while for writing the PLC variable the
event function called is AdsWriteConf [» 58].

procedure TForml.AdsOcxlAdsReadIntegerConf (Sender: TObject; nInvokeld,
nResult, cbLength: Integer; var pData: Smallint);
begin
LabelAsyncEventData.Caption :=Format ('nInvokeId:%d nResult:%d cbLength:%d pData:%d’',
[nInvokeId, nResult, cbLength, pDatal]);

end;

procedure TForml.AdsOcxlAdsWriteConf (Sender: TObject; nInvokeld,
nResult: Integer);
begin
LabelAsyncEventData.Caption :=Format ('nInvokeId:%d nResult:%d', [nInvokeId, nResult]);
end;

Connected access

In the connected access mode, a "connection" to the PLC variable is established. Depending on the
parameters (ADSTRANS_SERVERCYCLE or ADSTRANS_SERVERONCHA), the event functions are called
either cyclically or when the PLC variable changes.

In the sample application, clicking on the Connected read by address button calls the
AdsReadIntegerConnect [P 42] method, while a click on the Connected read by variable name button calls
the AdsReadIntegerVarConnect [»_38] method.

procedure TForml.OnConReadByAddrClick (Sender: TObject) ;
begin
adsResult := AdsOcxl.AdsReadIntegerConnect($00004020, 100, 2, ADSTRANS SERVERCYCLE, 220, varVa
lue);
LabelConRetData.Caption:=Format ('adsResult:%d', [adsResult]);
end;

procedure TForml.OnConReadByNameClick (Sender: TObject);
begin
adsResult := AdsOcxl.AdsReadIntegerVarConnect(varName, 2, ADSTRANS SERVERCYCLE, 220, varValue
) i
LabelConRetData.Caption:=Format ('adsResult:%d', [adsResult]);
end;

When successful, the AdsReadConnectUpdate [P 53] event function is called in the Delphi application,
regardless of which of the two methods is used to establish the connection.

procedure TForml.AdsOcxlAdsReadConnectUpdate (Sender: TObject; nIndexGroup,
nIndexOffset: Integer);
begin
LabelConEventData.Caption := Format ('nIndexGroup:%d nIndexOffset:%d Value:%d',
[nIndexGroup, nIndexOffset, varValue]);
end;

The AdsReadIntegerDisconnect [» 44] method can be used to remove the connection to the PLC variable.

procedure TForml.OnDisconnectReadClick(Sender: TObject);
begin
adsResult := AdsOcxl.AdsReadIntegerDisconnect (varValue);
LabelConRetData.Caption:=Format ('adsResult:%d', [adsResult]);
end;

110 Version: 1.1 TX1000

BEGKHOFF Samples

ConnectEx methods (connected access with a user handle)

The ConnectEx methods can be used, in a manner similar to that of the Connect methods, to establish
connected access to the PLC variables. The ConnectEx methods have the advantage that a user-defined
handle can be passed as a parameter in the connect method when the connection is established. This
handle can then be evaluated in the event function, and used to identify the PLC variable for which the event
function has been called.

Clicking on the ConnectEx button will call the AdsReadVarConnectEx2 [»_35] method in the
OnConnectExClick routine.

procedure TForml.OnConectExClick (Sender: TObject) ;
var hUser :integer;
begin

{disconnect old connection}

if hConnect <> 0 then

begin
adsResult := AdsOcxl.AdsDisconnectEx(hConnect);
if adsResult = 0 then
hConnect := 0;
end;
hUser := 7; {create user handle}
adsResult := AdsOcxl.AdsReadVarConnectEx2(varName, ADSTRANS SERVERCYCLE, 220, hConnect, hUser

)
LabelConExRetData.Caption:=Format ('adsResult:%d hConnect:%d', [adsResult, hConnect]);
end;

If the connection is successfully established, then the parameters will be displayed as text on the form in the
event function AdsReadConnectUpdateEx2 [P 54].

procedure TForml.AdsOcxlAdsReadConnectUpdateEx2 (Sender: TObject;
dateTime: TDateTime; nMs, hConnect: Integer; var data,
hUser: OleVariant);
begin
LabelConExEventData.Caption :=Format ('Date/Time:%s nMs: %d hConnect:%d data:%d hUser:

[TimeToStr (dateTime), nMs, hConnect, integer (data), integer (hUser)]):;

Clicking with the mouse on the DisconnectEx button will call the AdsDisconnectEx [» 40] method, and the
connection to the PLC variable will be removed.

procedure TForml.OnDisconnectExClick (Sender: TObject);

begin
adsResult := AdsOcxl.AdsDisconnectEx(hConnect);
if adsResult = 0 then
hConnect := 0;

LabelConExRetData.Caption:=Format ('adsResult:%d', [adsResult]);
end;

Comment

In the course of linking the ADS-OCX into Delphi applications it has been found that the Delphi development
environment generates faulty prototypes (more precisely: faulty parameter passing of OleVariant types) for
the AdsReadConnectUpdateEx [P 53] event function. For this reason, the ADS-OCX has been supplemented
with a new AdsReadVarConnectEx2 method and associated AdsReadConnectUpdateEx2 event function. In
the new event function the OleVariant parameter is passed by reference instead of by value.

Other
procedure TForml.ExitlClick (Sender: TObject);
begin
Close() ;
end;

procedure TForml.PropertieslClick (Sender: TObject);
begin
AdsOcxl.BrowseProperties () ;

TX1000 Version: 1.1 111

Samples BECKHOFF

end;

procedure TForml.AboutlClick(Sender: TObject);

begin
AdsOcxl.AboutBox () ;
end;
Initialization
IsMultiThread := True;// Setting this system variable makes Delphi's memory manager thread-safe

PLC program
PROGRAM MAIN

VAR
VARINT16 ATSMB100:INT;
END VAR
Language / IDE Unpack sample program
Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/
Delphi 5 or higher (classic) Resources/12466730763/.exe
5.2.3 Read the List of an ADS Device's Declared Variables

System requirements:
» Delphi 5.0 or higher;
» TwinCAT v2.9 or higher

Task

The sample program illustrates how the AdsReadSymbolinfo [P 21] and AdsEnumSymbols [P_16] methods
can be used to read the list of declared variables of an ADS device. By clicking on the Read Symbol Info
button, the symbol information of the first PLC runtime system (port 801), or of an additional task in the
TwinCAT System Manager (port 301), is read and displayed in a table.

 Delphi AdsOcx Sample M= E3
File AdsOcx

Mo | Symbol name | Type | Size | Carnment | Index Group | Index Offzet | ;l
74 MAIN ARRAY_4[9] ADST_REALG4 08 8] 04040 [16448) (=86 [134)

7a MalN ARRLY_5 ADST_BIT O, [10) A0 04040 [16448) 0=96 [150)

Th MaIN ARRAY_5[10] ADST_BIT 01 (1) 04040 [16448) 0=9F [153)

77 MAIN ARRAY_5[1] ADST_BIT 0x1 (1) 04040 [15448) (=96 [150)

Ta MalN ARR&Y_5[2] ADST_BIT 01 (1) 04040 [16448) 0=97 [151)

FE| MaIN ARRAY_5[3] ADST_BIT 01 (1) 04040 [16448) 0=98 [152)

an MalN ARR&Y_5[4] SDST_BIT 0x1 (1) 04040 [15448) 0233 [153)

i MalN ARR&Y_5[5] ADST_BIT 01 (1) 04040 [16448) 0x9a [154]

a2 MaIN ARRAY_5[E] ADST_BIT 0x1 (1) 04040 [16448) (=98 [155]

a3 MalN ARRAY_5[7] aDST_BIT 01 (1) 04040 [15448) 0=49C [156]

a4 MalN ARR&Y_G[8] ADST_BIT 01 (1) 04040 [16448) (=90 [157]

a5 MAIN ARRAY_5[9] ADST_BIT 0x1 (1) 04040 [16448) 0=9E [158]

513 MalN BO0L_1 aDST_BIT 01 (1) 41 04021 [16417) 0x418 [1048)

a7 MalN BO0OL_2 ADST_BIT 01 (1) 42 04021 [16417) 0x413 [1043)

aa MalN BOOL_3 ADST_BIT 0x1 (1) 43 04021 [16417) Ox414 [1050)

a9 MalN BO0L_4 ADST_BIT 01 (1) 44 04021 [16417) 0=41E [1051)

a0 MalN BOOL_5 ADST_BIT 01 (1) 45 04021 [16417) 0=41C [1052)

9 MAIN INTIE_1 ADST_INT1E 0x2 (2] bl 04020 [1641E) (0=E64 [100)

92 MaIN INT1E_2 ADST_IMT1E 0x2 (2] 22 04020 [16418) 0=EE [102) ;I
|.-’-'«dsF|eadSymboIInfn result:0, nSebols: 130, nSymByteSize: 7033 i

112 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466730763.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466730763.exe

BEGKHOFF Samples

Description

Symbol Configuration for the PLC Runtime System

To be able to access the symbol information for a PLC runtime system, it is necessary to activate the symbol
generation for the PLC variables or structures, and for the symbol information to be loaded into the PLC
runtime system during the project download. The settings necessary for the symbol download can be made
in the option dialog for the TwinCAT category in TwinCAT PLC Control. The first PLC runtime system is
addressed via port number 801.

Symbol Configuration of the Additional Task in the TwinCAT System Manager

An additional task can be inserted and configured in the TwinCAT System Manager. The variables of the
additional task can be linked to other variables (e.g. with the PLC variables, or the I/O variables of a Bus
Terminal Controller). To be able to access the additional task's symbol information, the checkbox for symbol
generation must be activated in the Task settings configuration dialog. The additional task is addressed via
port number 301.

Delphi 5 program

The connection to the first runtime system of the PLC (port 801) on the local PC is established in the
OnFormCreate event function. At the same time the ListView component and the necessary variables are
initialized. The ReadSymIinfoButtonClick method is called by clicking the Read Symbol Info button. In this
method, the AdsReadSymbolinfo method is first called to determine the number of available symbols, after
which a for-loop is used to read the symbol information for each individual symbol variable. The values are
then added to the ListView component by means of the supplementary AddListViewltem procedure. The
AdsEnumSymbols method possesses a boolean flag, bNext. If this flag is set to FALSE, the symbol
information of the first symbol is read, but if bNext=TRUE then all the other symbols are read. In order to be
able to read the symbol information of the additional task in the TwinCAT System Manager, the
AdsAmsServerPort property of the AdsOcx component must be set to 301. The port number can be set at
runtime using the AdsOcx component's properties page. The properties page can be called in the sample
application via the AdsOcx->Properties menu.

unit SampleUnit;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, OleCtrls, ADSOCXLib TLB, ExtCtrls, ComCtrls, Menus;

type

TForml = class (TForm)
AdsOcxl: TAdsOcx;
MainMenul: TMainMenu;
Filel: TMenultem;
Exitl: TMenultem;
AdsOcx2: TMenultem;
Propertiesl: TMenultem;
Aboutl: TMenultem;
ReadSymInfoButton: TButton;
ListViewl: TListView;
StatusBarl: TStatusBar;
procedure OnFormCreate (Sender: TObject) ;
procedure ExitlClick(Sender: TObject);
procedure PropertieslClick(Sender: TObject);
procedure AboutlClick (Sender: TObject);
procedure ReadSymInfoButtonClick (Sender: TObject) ;

private
{ Private declarations }
procedure CreateColumns (Sender: TObject);
procedure AddListViewItem(Sender: TObject; strSymbolName, strComment :WideString; nSymbolType, c

bSymbolSize , nIndexGroup, nIndexOffset : integer);

public
{ Public declarations }
end;
var
Forml : TForml;
adsResult : integer; {Ads result}
nSymbols : integer;

TX1000 Version: 1.1 113

https://infosys.beckhoff.com/content/1033/tcplccontrol/925285131.html
https://infosys.beckhoff.com/content/1033/tcsystemmanager/1086650507.html

Samples BEGKHOFF

nSymByteSize : integer;

implementation
{SR *.DFM}

procedure TForml.CreateColumns (Sender: TObject) ;
var ListColumn :TListColumn;
begin
ListViewl.ViewStyle := vsReport;
ListViewl.Align := alBottom;
ListColumn := ListViewl.Columns.Add() ;
ListColumn.Width := 50;
ListColumn.Caption := 'No';
ListColumn.Alignment := talLeftJustify;

ListColumn := ListViewl.Columns.Add() ;
ListColumn.Width := 200;
ListColumn.Caption := 'Symbol name';
ListColumn.Alignment := taLeftJustify;

ListColumn := ListViewl.Columns.Add() ;
ListColumn.Width := 100;
ListColumn.Caption := 'Type';
ListColumn.Alignment := taLeftJustify;

ListColumn := ListViewl.Columns.Add () ;
ListColumn.Width := 100;
ListColumn.Caption := 'Size';
ListColumn.Alignment := taleftJustify;

ListColumn := ListViewl.Columns.Add () ;
ListColumn.Width := 100;
ListColumn.Caption := 'Comment';
ListColumn.Alignment := taLeftJustify;

ListColumn := ListViewl.Columns.Add() ;
ListColumn.Width := 100;
ListColumn.Caption := 'Index Group';
ListColumn.Alignment := talLeftJustify;

ListColumn := ListViewl.Columns.Add();

ListColumn.Width := 100;

ListColumn.Caption := 'Index Offset';

ListColumn.Alignment := taLeftJustify;
end;

procedure TForml.OnFormCreate (Sender: TObject);

begin
nSymbols := 0;
nSymByteSize := 0;
StatusBarl.SimplePanel := true;
AdsOcxl.AdsAmsServerNetId := AdsOcxl.AdsAmsClientNetId; {Sets PLC server network adress}
AdsOcx1 .AdsAmsServerPort := 801; {Sets the PLC run time system}
StatusBarl.SimpleText := AdsOcxl.AdsServerAdsState;

CreateColumns (Sender) ;
end;

procedure TForml.ReadSymInfoButtonClick (Sender: TObject) ;
var

strSymbolName : WideString;

nSymbolType : Integer;

cbSymbolSize : Integer;

strComment : WideString;

nIndexGroup : Integer;

nIndexOffset : Integer;

bNext : WordBool;

nSymNo :Integer;
begin
ListViewl.Items.Clear(); {clear old items}
adsResult := AdsOcxl.AdsReadSymbolInfo(nSymbols, nSymByteSize);
StatusBarl.SimpleText := Format ('AdsReadSymbolInfo result:%d, nSymbols:%d, nSymByteSize:

[

%d', [adsResult, nSymbols, nSymByteSize]);

114 Version: 1.1 TX1000

BEGKHOFF Samples

if ((adsResult = 0) And (nSymbols > 0)) then
begin

bNext := false; {read first symbol info}

adsResult := AdsOcxl.AdsEnumSymbols(strSymbolName, nSymbolType, cbSymbolSize, strComment, nIn

dexGroup, nIndexOffset, DbNext);
AddListViewItem(Sender, strSymbolName, strComment, nSymbolType, cbSymbolSize, nIndexGroup, nIn
dexOffset) ;

if adsResult > 0 then

StatusBarl.SimpleText := Format ('AdsEnumSymbols result:%d', [adsResult]);
for nSymNo := 1 to nSymbols-1 do
begin
bNext := true;
adsResult := AdsOcxl.AdsEnumSymbols(strSymbolName, nSymbolType, cbSymbolSize, strComment

, nIndexGroup, nIndexOffset, DbNext);
AddListViewItem(Sender, strSymbolName, strComment, nSymbolType, cbSymbolSize, nIndexGroup
, nIndexOffset);

if (adsResult > 0) then
StatusBarl.SimpleText := Format ('AdsEnumSymbols result:%d', [adsResult]):;
end;
end;
end;

procedure TForml.AddListViewItem(Sender: TObject; strSymbolName, strComment :WideString; nSymbolType
, cbSymbolSize , nIndexGroup, nIndexOffset : integer);

var ListItem :TListItem;
strAdsType :String;
begin
ListItem := ListViewl.Items.Add();
ListItem.Caption := Format ('$d', [ListViewl.Items.Count])

ListItem.SubItems.Add (strSymbolName) ;

case nSymbolType of

0: strAdsType := 'ADST VOID';
16: strAdsType := 'ADST INT8';
17: strAdsType := 'ADST UINTS8';
2: strAdsType := 'ADST INT16';
18: strAdsType := 'ADST UINT16';
3: strAdsType := 'ADST INT32';
19: strAdsType := 'ADST UINT32';
20: strAdsType := 'ADST INT64';
21: strAdsType := 'ADST UINT64';
4: strAdsType := 'ADST REAL32';
5: strAdsType := 'ADST REAL64';
65: strAdsType := 'ADST BIGTYPE';
30: strAdsType := 'ADST STRING';
31: strAdsType := 'ADST WSTRING';
32: strAdsType := 'ADST REALS8O';
33: strAdsType := 'ADST BIT';
34: strAdsType := 'ADST MAXTYPES';
end;

ListItem.SubItems.Add (Format ('%$s', [strAdsTypel));

ListItem.SubItems.Add (Format ('Ox%x (%d)', [cbSymbolSize, cbSymbolSize]));
ListItem.SubItems.Add (strComment) ;
ListItem.SubItems.Add (Format ('0x%$x

(%d) ', [nIndexGroup, nIndexGroupl]))
ListItem.SubItems.Add (Format ('0x%x (%

) ', [nIndexOffset, nIndexOffset]));
end;

procedure TForml.ExitlClick (Sender: TObject);
begin

Close();
end;

procedure TForml.PropertieslClick (Sender: TObject);

begin

AdsOcxl.BrowseProperties () ;

StatusBarl.SimpleText := AdsOcxl.AdsServerAdsState;
end;

procedure TForml.AboutlClick (Sender: TObject) ;
begin

AdsOcx1l.AboutBox () ;
end;

TX1000 Version: 1.1 115

Samples BEGKHOFF

Initialization
IsMultiThread := True;// Setting this system variable makes Delphi's memory manager thread-safe

end.

PLC program

PROGRAM MAIN

VAR
REAL32 1 AT %MBO : REAL; (= i
REAL32 2 AT %MB4 : REAL; (* 2
REAL32 3 AT %MB8 : REAL; (* 3 *)
REAL32 4 AT %MB12: REAL; (* 4
REAL32 5 AT %MB16: REAL; (* 5

REAL64_1 AT %MB20 : LREAL; (* 6 *)
REAL64 2 AT %MB28 : LREAL; (* 7 *)
REAL64_3 AT $MB36 : LREAL; (* 8 *)
REAL64_4 AT $MB44 : LREAL; (* 9 *)
REAL64_5 AT %MB52 : LREAL; (* 10 *)

INT32_1 AT %MB60 : DINT; (= i =)
INT32 2 AT %MB64 : DINT; (* 12 *)
INT32 3 AT %MB68 : DINT; (* 13 *)
INT32_4 AT %MB72 : DINT; (* 14 =)
INT32_5 AT %MB76 : DINT; (* 15 *)

UINT32 1 AT %MB80 : UDINT; (* 16 *)
UINT32 2 AT %MB84 : UDINT; (* 17 *)
UINT32 3 AT %MB88 : UDINT; (= 18 =)
UINT32 4 AT %MB92 : UDINT; (= 19 =)
UINT32 5 AT %MB96 : UDINT; (= 20 *)

INT16_1 AT %MB100 : INT; (* 21 *)
INT16_ 2 AT %MB102 : INT; (= 22 *)
INT16_ 3 AT 3%MB104 : INT; (== 23 *)
INT16_4 AT 3%MB106 : INT; (* 24 =)
INT16_5 AT %MB108 : INT; (* 25 *)

UINT16_ 1 AT %MB110 : UINT; (= 26 *)
UINT16 2 AT %MB112 : UINT; (* 27 *)
UINT16_3 AT %MB114 : UINT; (* 28 *)
UINT16_4 AT %MB116 : UINT; (== 29 =)
UINT16_ 5 AT %MB118 : UINT; (= 30 *)

INT8 1 AT %MB120 : SINT; (* 31 *)
INT8 2 AT %MB121 : SINT; (= 32 =)
INT8 3 AT %MB122 : SINT; (= 33 *)
INT8 4 AT %MB123 : SINT; (* 34 *)
INT8 5 AT %MB124 : SINT; (* 35 *)

UINT8 1 AT %MB125 : USINT; (= 36 =)
UINT8 2 AT %MB126 : USINT; (* 37 *)
UINT8 3 AT %MB128 : USINT; (* 38 *)
UINT8 4 AT %MB129 : USINT; (= 39 =)
UINT8 5 AT %MB130 : USINT; (* 40 *)

BOOL_1 AT %MX131.0 BOOL; (* 41 *)

BOOL_2 AT %$MX131.1 BOOL; (* 42 *)

BOOL_ 3 AT $MX131.2 BOOL; (* 43 *)

BOOL 4 AT %$MX131.3 BOOL; (* 44 ~*)

BOOL_5 AT %MX131.4 BOOL; (* 45 *)

ARRAY 1 : ARRAY[1 .. 10] OF SINT; (* 46 *)

ARRAY 2 : ARRAY[1 .. 10] OF INT; (* 47 *)

ARRAY 3 : ARRAY[1 .. 10] OF DINT; (* 48 *)

ARRAY 4 : ARRAY[1 .. 10] OF LREAL; (* 49 *)

ARRAY 5 : ARRAY[1 .. 10] OF BOOL; (* 50 *)
END VAR
Language / IDE Unpack sample program
Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/
Delphi 5 or higher (classic) Resources/12466732171/.exe

116 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466732171.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466732171.exe

BECKHOFF

Samples

5.24 Write array to PLC or read array from PLC

System requirements:
» Delphi 6.0 or higher;
* TwinCAT v2.10 or higher

Use the "released" methods for particular data types. If you want, for example, to read an array in the PLC of

type INT, then the following methods may be used, depending on the access type:

AdsSyncReadIntegerVarReq(hVar : Integer, length : Integer, var pData : Smallint)

AdsSyncReadIntegerReq(indexGroup : Integer, indexOffset : Integer, length : Integer, var pData :

AdsSyncWritelntegerVarReq(hVar : Integer, length : Integer, var pData : Smallint)

AdsSyncWritelntegerReq(indexGroup : Integer, indexOffset : Integer, length : Integer, var pData :

Smallint)

Smallint ')
AdsReadIntegerReq(ninvokeld : Integer, nindexGroup : Integer, nindexOffset : Integer, cbLength : Integer)
AdsWritelntegerReq(ninvokeld : Integer, nindexGroup : Integer, nindexOffset : Integer, cbLength : Integer,
var pData : Smallint)
'_?r-; TwinCAT ADSOCK Delphi sample 2 |I:I |i|
AdsSyncReadintegerReq AdsSyncReadRen
AdsSyncReadlongReqg
AdsSyncWritelntegerBeq AdsSyncihiriteReg
AdssyncWriteLongReg
ploArray0]: Oxz ploArray(1]: Oxz
ploArray(1]: Oxz ploArray2]: 0x3
ploArray2]: Oz ploArray3]: Oxd
ploArray3]: Oxz ploArrayd]: Oxb
ploArrayd]: Oz ploArrayh]: Oxb
ploArrayh]: Oxz ploArray(B]: Ox?
ploArray(B]: Oxz ploArray]7]: 0xb
ploArray]7]: Oz ploArraya): I]xEI
ploArray(a]: Oz ploarray[9]: 0
ploArray(9]: Oxz ploarray10]: IIIin
AmshetlD: 1.2.3.4.1.1, Port: 801, status: RN 4
TX1000 Version: 1.1 117

Samples BEGKHOFF

String arrays cannot be accessed in this way. The length of the data to be read or written is determined by

the number of elements to be read or written multiplied by the byte size of an element. This length must be
passed in the length or cbLength parameters. The parameter pData is used to pass the first element of the
Delphi array.

Sample:

PROGRAM MAIN
VAR

varIntArray :ARRAY[1..9] OF INT:=9(1);
END VAR

Delphi 6 program:
Reading an array from the PLC:

procedure TForml.SyncReadArrayVarButtonClick (Sender: TObject) ;
var i, hVar, AdsResult:integer;

varIntArray : ARRAY[1..9] OF Smallint;
begin
AdsResult := AdsOcxl.AdsCreateVarHandle('MAIN.VARINTARRAY', hVar);
if AdsResult = 0 then
begin
AdsResult := AdsOcxl.AdsSyncReadIntegerVarReg(hVar, sizeof (varIntArray), varIntArray[l]);
if AdsResult = 0 then
begin

ListBoxl.Clear () ;
for i:=1 to 9 do

ListBoxl.Items.Add(Format ('varIntArray[%d] = %d', [i, varIntArray[i]])):
end
else Labell.Caption := Format ('AdsSyncReadIntegerVarReq error:%d', [AdsResult]);
AdsOcx1.AdsDeleteVarHandle (hvar);
end
else Labell.Caption := Format ('AdsCreateVarHandle error:%d', [AdsResult]);

end;

Writing an array into the PLC:

procedure TForml.SyncWriteArrayVarButtonClick (Sender: TObject) ;
var i, hvVar, AdsResult:integer;

varIntArray : ARRAY[1..9] OF Smallint;
begin
for i:=1 to 9 do
varIntArray[i] := 1i;
AdsResult := AdsOcxl.AdsCreateVarHandle('MAIN.VARINTARRAY', hVar);
if AdsResult = 0 then
begin
AdsResult := AdsOcxl.AdsSyncWriteIntegerVarReq(hVar, sizeof (varIntArray), varIntArray([l]);
if AdsResult > 0 then
Labell.Caption := Format ('AdsSyncWriteIntegerVarReq error:%d', [AdsResult]);
AdsOcx1.AdsDeleteVarHandle (hVar);
end
else Labell.Caption := Format ('AdsCreateVarHandle error:%d', [AdsResult]);
end;
Language / IDE Unpack sample program
Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/

5.2.5 Call ADS-OCX property page

System requirements:
 Delphi 7.0 or higher;
* TwinCAT v2.9 or higher

118 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466733579.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466733579.exe

BEGKHOFF Samples

Description

The ADS-OCX properties page is opened under Delphi as follows:

procedure TForml.btnShowPropertyPageClick (Sender: TObject);

begin
AdsOcxl.BrowseProperties () ;
end;
Language / IDE Unpack sample program
Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/
Delphi 7 or higher (classic) Resources/12466734987/.exe
5.2.6 Working with handles of PLC variables

System requirements:
» Delphi 7.0 or higher;
* TwinCAT v2.9 or higher

7 ADS-0CX sample - O] x|

All the required handles can be fetched once at the start of the application, and released again when the
application is closed. Continuously requesting and releasing handles places unnecessary loading on the
system.

Handles that have already been requested become invalid when TwinCAT is restarted, and must be
requested again. The same applies after 'Rebuild All' in the PLC. 'Rebuild All' causes a complete new
program to be loaded into the runtime system, so that any handles that have already been requested are
invalid, and are automatically released by TwinCAT. The handles that are no longer required must always be
released. This can, however, only be done if the TwinCAT system is still running. If the TwinCAT system has
already stopped, then all the handles are automatically released.

Connect with the first runtime system on the local PC and fetch the handle of the PLC variables:

procedure TForml.FormCreate (Sender: TObject);

var adsResult : Integer;
begin

AdsOcxl.AdsAmsServerNetId := AdsOcxl.AdsAmsClientNetId;

AdsOcxl.AdsAmsServerPort := 801;

adsResult := AdsOcxl.AdsCreateVarHandle('MAIN.VARINTARRAY', hVar);

if adsResult <> 0 then

ShowMessage (Format ('AdsCreateVarHandle () error:%d', [adsResult]));

end;

Release the handle when the application is closed:

procedure TForml.FormDestroy(Sender: TObject);
var adsResult : Integer;

begin
adsResult := AdsOcxl.AdsDeleteVarHandle(hVar);
if AdsResult <> 0 then
ShowMessage (Format ('AdsDeleteVarHandle () error:%d', [adsResult]));
hvar := 0;
end;

TX1000 Version: 1.1 119

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466734987.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466734987.exe

Samples BEGKHOFF

Language / IDE Unpack sample program
Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/
5.2.7 Write string to PLC or read array from PLC

System requirements:
» Delphi 7.0 or higher;
e TwinCAT v2.11 Build 2034 or higher;

Task

A string is to be written to or read from the PLC.

Description
7 ADS-0OCX sample _ o] x|

MAIN stvessage: | T WINGAT

Wifrite |

So that a string can be written to or read from the PLC, you need the length of the PLC string. The actual
length of a PLC string can be determined using the PLC operator SIZEOF. In the PLC, the strings are
terminated with a null and the actual string length is calculated from the defined length plus 1. If no length
was specified during the string definition, then the string has an actual length of 81 characters including the
terminating null.

PLC program
PROGRAM MAIN

VAR

strColor :STRING(10) :="'Blue';

strState :STRING (20) :="'STOP';

strMessage :STRING :="TwinCAT ADS-0OCX';
END_VAR

strColor has a length of 11 characters;
strState has a length of 21 characters;

strMessage has a length of 81 characters;

Delphi 7 program

unit Unitl;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, OleCtrls, ADSOCXLib TLB, Grids, ValEdit, ComCtrls;

type

TForml = class (TForm)
btnWrite: TButton;
AdsOcxl: TAdsOcx;
Labell: TLabel;
Editl: TEdit;
btnRead: TButton;
procedure btnReadClick (Sender: TObject) ;
procedure btnWriteClick (Sender: TObject) ;
procedure FormCreate (Sender: TObject);

120 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466736395.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466736395.exe

BEGKHOFF Samples

procedure FormDestroy (Sender: TObject) ;

private
{ Private declarations }
adsResult : Integer;// Ads return code
hVar : Integer;// PLC variable handle
varString : WideString;// PLC variable value
public
{ Public declarations }
end;
var

Forml: TForml;
implementation

{$R *.dfm}

Reading a string from the PLC
procedure TForml.btnReadClick(Sender: TObject);

begin
SetlLength (varString, 7);//Realocate string space to a given length// Read string from PLC
adsResult := AdsOcxl.AdsSyncReadStringVarReqg(hVar, Length(varString) * 2, varString);
if adsResult = 0 then
editl.Text := varString
else ShowMessage (Format ('AdsSyncReadStringVarReq() error:%d', [adsResult]));
end;

In the sample above, seven characters of a PLC string were read in Delphi. The dynamic string types have a
length of zero immediately after initialization. The Delphi string variable must first be allocated the correct
length if the ADS-OCX is to be able to copy the PLC string into the Delphi string variable. In Delphi, a
WideString variable requires two bytes for each character. The Length function returns the localized number
of characters in the string. However, the Length parameter in the method call requires the byte length, so the
length determined with Length function is doubled.

Writing a string into the PLC

procedure TForml.btnWriteClick (Sender: TObject);
begin
varString := Editl.Text;
// Write string to the PLC
adsResult := AdsOcxl.AdsSyncWriteStringVarReg(hVar, Length(varString)*2, varString);
if adsResult <> 0 then
ShowMessage (Format ('AdsSyncWriteStringVarReqg() error:%d', [adsResult]));
end;

Establish connection to PLC, fetch variable handle

procedure TForml.FormCreate (Sender: TObject);

begin
// Connection Setup
AdsOcx1l.AdsAmsServerNetId := AdsOcxl.AdsAmsServerNetId;
AdsOcxl.AdsAmsServerPort := 801;

// Create variable handle
adsResult := AdsOcxl.AdsCreateVarHandle('MAIN.STRMESSAGE', hVar);
if adsResult <> 0 then
ShowMessage (Format ('AdsCreateVarHandle () error:%d', [adsResult]));
end;

Release resources (variable handle)

procedure TForml.FormDestroy(Sender: TObject);
var adsResult : Integer;

begin

// Delete variable handle

adsResult := AdsOcxl.AdsDeleteVarHandle(hVvar);

if AdsResult <> 0 then

ShowMessage (Format ('AdsDeleteVarHandle () error:%d', [adsResult]));

hvar := 0;
end;
Initialization

IsMultiThread := True;// Setting this system variable makes Delphi's memory manager thread-safe
end.

TX1000 Version: 1.1 121

Samples BEGKHOFF

Language / IDE Unpack sample program

Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/

Documents about this
ads-ocxsample06.exe (Resources/exe/12466737803.exe)

5.2.8 Read multiple boolean variables into an array with one
access

System requirements:
» Delphi 7.0 or higher;
e TwinCAT v2.11 Build 2034 or higher;

Task

Multiple boolean PLC variables can be read into Delphi applications with one access, provided the variables
are stored at addresses that are sequentially located in the memory. It is, however, important that the first
variable is located at a byte address.

Description

7/ ADs-0cX sampl

varBoolArray1] = False
varBoolArray[?] = False
varBoolArray[3] = False
varBoolArray[4] = Falze

PLC program

PROGRAM MAIN
VAR

varBoolean AT%MB6 : ARRAY[1..4] OF BOOL;
END VAR

Delphi 7 program

unit Unitl;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, OleCtrls, ADSOCXLib TLB, StdCtrls;

type
TForml = class (TForm)
btnRead: TButton;
AdsOcxl: TAdsOcx;
ListBoxl: TListBox;
procedure btnReadClick(Sender: TObject);

122 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466737803.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466737803.exe

BEGKHOFF Samples

procedure FormCreate (Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;
varBoolArray : ARRAY[1l..4] OF WordBool;

implementation
{SR *.dfm}

procedure TForml.btnReadClick(Sender: TObject);

var i, hVar, AdsResult:integer;
begin
// Create variable handle
AdsResult := AdsOcxl.AdsCreateVarHandle('MAIN.VARBOOLEAN', hVar);
if AdsResult = 0 then
begin
// Read data
AdsResult := AdsOcxl.AdsSyncReadBoolVarReq(hVar, sizeof (varBoolArray), varBoolArray([l]);
if AdsResult = 0 then
begin

// Clear list view and show data
ListBoxl.Clear () ;
for i:=1 to 4 do
ListBoxl.Items.Add(Format ('varBoolArray[%d] = %s', [i, BoolToStr (varBoolArray[i], t
rue) 1));
end
else ShowMessage (Format ('AdsSyncReadBooleanVarReqg() error:%d', [AdsResult]));

// Release variable handle

AdsResult := AdsOcxl.AdsDeleteVarHandle(hVar);
if AdsResult <> 0 then
ShowMessage (Format ('AdsDeleteVarHandle () error:%d', [AdsResult]));
end
else ShowMessage (Format ('AdsCreateVarHandle () error:%d', [AdsResult])):;

end;

procedure TForml.FormCreate (Sender: TObject);

begin
// Connection Setup
AdsOcxl.AdsAmsServerNetId := AdsOcxl.AdsAmsServerNetId;
AdsOcx1.AdsAmsServerPort := 801;
end;
Initialization
IsMultiThread := True;// Setting this system variable makes Delphi's memory manager thread-safe
end.
Language / IDE Unpack sample program
Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/
Delphi 7 or higher (classic) Resources/12466739211/.exe

5.2.9 Transmitting structures to/from the PLC

System requirements:
» Delphi 7.0 or higher;
« TwinCAT v2.11 Build 2034 or higher;

Task

A structure is to be written to or read from the PLC by the Delphi application. The elements in the structure
have different data types.

TX1000 Version: 1.1 123

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466739211.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466739211.exe

Samples BEGKHOFF
Description
—PLCStruct
valSmallint
vallongint: I1 aooon
valByte: I1 oo
valDouble: |3141500000000000
valSingle: 314000010
Wtite | Fead
Structure declaration in the PLC
TYPE PLCStruct
STRUCT
valSmallint INT;
valLongint DINT;
valByte BYTE;
valDouble LREAL;
valSingle REAL;
END_STRUCT
END TYPE
PLC program
PROGRAM MAIN
VAR
PLCVar PLCStruct;
END VAR
Structure declaration in Delphi
Type VBStruct
TPLCStruct = packed record // packed == force 1 byte alignment
valSmallint : Smallint; // 2 bytes
vallongint Longint; // 4 bytes
valByte Byte; // 1 byte
valDouble Double; // 8 bytes
valSingle Single; // 4 bytes// = 19 bytes in memory
End;
Delphi 7 program
unit Unitl;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, OleCtrls, ADSOCXLib TLB, StdCtrls;
type
TForml = class (TForm)
GroupBoxl: TGroupBox;
AdsOcxl: TAdsOcx;
btnWrite: TButton;
btnRead: TButton;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Labeld: TLabel;
124 Version: 1.1 TX1000

BECKHOFF

Samples

Label5: TLabel;
editSmallint: TEdit;
editLongint: TEdit;
editByte: TEdit;
editDouble: TEdit;
editSingle: TEdit;
procedure FormCreate (Sender: TObject);
procedure FormDestroy (Sender: TObject);
procedure btnWriteClick(Sender: TObject);
procedure btnReadClick (Sender: TObject) ;
private
{ Private declarations }
public
{ Public declarations }
end;

TPLCStruct = packed record // packed == force 1 byte alignment
valSmallint : Smallint; // 2 bytes
vallongint : Longint; // 4 bytes
valByte : Byte; // 1 byte
valDouble : Double; // 8 bytes
valSingle : Single; // 4 bytes// = 19 bytes in memory

End;

var
Forml: TForml;
hvar : Integer;

// Create instance and initialize delphi structure members
PLCStruct : TPLCStruct = (valSmallint : 1000;
valLongint : 100000;
valByte : 100;
valDouble : 3.1415;
valSingle : 3.14);
implementation
{$R *.dfm}

//-—-- Is called a the start ---

procedure TForml.FormCreate (Sender: TObject);

var text : String;

begin
//--- Enable exception ---
AdsOcxl.EnableErrorHandling := True;
//--- Set connection ---
AdsOcxl.AdsAmsServerPort := 801;
AdsOcxl.AdsAmsServerNetId := AdsOcxl.AdsAmsClientNetId;
//--- Get PLC variable handle by variable name
AdsOcx1.AdsCreateVarHandle ('Main.PLCVar', hvVar);
//--- View init values ---
Str(PLCStruct.valSmallint, text);
editSmallint.Text := text;
Str(PLCStruct.vallongint, text);
editLongint.Text := text;
Str(PLCStruct.valByte, text);
editByte.Text := text;
Str(PLCStruct.valDouble : 0 : 15, text);
editDouble.Text := text;
Str(PLCStruct.valSingle : 0 : 8, text);
editSingle.Text := text;

end;

//-—-- Is called at the end ---
procedure TForml.FormDestroy(Sender: TObject);
begin
//--- Release PLC variable handle ---
AdsOcx1.AdsDeleteVarHandle (hVar) ;
end;

//--- Is called by the user ---

procedure TForml.btnWriteClick (Sender: TObject);

var code : Integer;

begin
//--- Fill structure ---
Val(editSmallint.Text, PLCStruct.valSmallint, code);
Val (editLongint.Text, PLCStruct.vallLongint, code);
Val(editByte.Text, PLCStruct.valByte, code);
Val (editDouble.Text, PLCStruct.valDouble, code);
Val(editSingle.Text, PLCStruct.valSingle, code);
//--- Write structure to the PLC --—-

AdsOcx1.AdsSyncWriteIntegerVarReg(hVar, sizeof (PLCStruct), PLCStruct

end;

.valSmallint);

TX1000 Version: 1.1

125

Samples BEGKHOFF

//--- Is called by the user ---
procedure TForml.btnReadClick(Sender: TObject);
var text : String;
begin
//--- Read structure from the PLC ---
AdsOcxl.AdsSyncReadIntegerVarReg(hVar, sizeof (PLCStruct), PLCStruct.valSmallint);
//--- View read structure data ---
Str(PLCStruct.valSmallint, text);
editSmallint.Text := text;
Str(PLCStruct.vallongint, text);
editLongint.Text := text;
Str(PLCStruct.valByte, text);
editByte.Text := text;
Str(PLCStruct.valDouble : 0 : 15, text);
editDouble.Text := text;
Str(PLCStruct.valSingle : 0 : 8, text);
editSingle.Text := text;
end;

Initialization
IsMultiThread := True;// Setting this system variable makes Delphi's memory manager thread-safe

end.

Language / IDE Unpack sample program

Delphi XE2 https://infosys.beckhoff.com/content/1033/tcadsocx/

5.3 TwinCAT ADS OCX

5.3.1 Integration in LabVIEW™

Use the TwinCAT 3 Interface for LabVIEW™

o

1 If you want to establish an ADS communication between LabVIEW™ and the TwinCAT 3 runtime,
use in any case the extensively supported and documented product TwinCAT 3 Interface for Lab-
VIEW™ see TF3710. The manual integration of free ADS components presented in the following
are only application examples. These are not subject to Beckhoff support.

1. Create ActiveX Container

it»! Contrals |
ity Q] S:]
7 r r abc| 7
Jiﬁ (‘ﬂ [Fath
S |
Bl . I Activex X
[Fina=]* — Cankainer
] il AR R

=
32

ot
Q0

2. Insert ActiveX Object

126 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466740619.exe
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/12466740619.exe
https://infosys.beckhoff.com/content/1033/tf3710_tc3_interface_for_labview/index.html?id=7806673528905672225

BECKHOFF

Samples

5.3.2

Conkainer

F 7
Yisible Items b

Find Terminal
Change to Indicator

Description and Tip...

Create

Replace

Data Operations
Advanced

e . . .

J Bubosizing

Insert Ackived Object ..,

Froperty Browser,

3. AdsOcx element in LabVIEW™

Panel:

ADSOCALBb, AdsCox

A0 SOCHLib, AdsOcx

Diagram:

1. Set EnableErrorHandling true.

Do ALib, AdsOc:

lk»! Select ActiveX Object

| (_reate Control j

¥ Validate Servers

ATLFHIOR] Class
ActionByr Class
ActarBur Class
fidobe POF Reader
AdsCcx Conkrol
AlicesmsHolder Class
Appivizards, Subtizard
fBrowse, dxBrowser
fis Contral

fxis Control 2.0

oK.

]

E =L AdsOcx S

*EnableErrorHandling

Samples using AdsOcx properties

TX1000

Version: 1.1

127

Samples BEGKHOFF

2. Set AdsAmsServerNetld and AdsAmsServerPort to fix values.

DSy Lib, Ads O
[C] E-E AdsCcx O

1
l12z2.165.1.2.1. 1 FradsamsServeriletd
EEII —* AdsAmsServerPort

3. Access to local PLC by reading and setting the AmsNetld

ADSOCKLb, AdsOc

Bt AdsOcx D o= AdsOcx §
AdsamsClienthetld radsamsServerietld
E01Hr AdsamsserverPort

4. Monitoring the status of the ADS device (https://infosys.beckhoff.com/content/1033/tcadsocx/Re-
sources/11967690891/.zip)

ADSOCHLIb. AdsOcx

k
S = AdsOic E E = AdsOcx E E%?.:—IDU
g pomeeeere] | osreatt pasmad
0 4
5.3.3 synchron methods: Read via address

AdsSyncReadBoolReq,
AdsSyncReadIntegerReq,
AdsSyncReadlLongReq,
AdsSyncReadSingleReq,
AdsSyncReadDoubleReq,

AdsSyncReadStringReq

Sample: AdsSyncReadBoolReq

PLC declaration:

TCtoLV_boolVal AT%MX0.0: BOOL;

LabVIEW™ (see https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967692299/.zip):

128 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967690891.zip
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967690891.zip
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967692299.zip

BEGKHOFF Samples

ACSoCkLib, AdsOc

o= AdsDocx D Db opdsOcx
| |~{radsamsservartetid IndexiGrou Ads3yvncReadBoolReq v
501 AdsamsserverPort 021 nlndexiaroup Y

Indexoffset v nlndexCffset ¥
é -| ' cblength '

blLenath 2EE1E] i
i1

pDaka_placeholder

[

Fig. 1: TcAdsO35

5.3.4 synchron methods: Read via name

AdsSyncReadBoolVarReq
AdsSyncReadIntegerVarReq
AdsSyncReadlLongVarReq
AdsSyncReadSingleVarReq
AdsSyncReadDoubleVarReq
AdsSyncReadStringVarReq

Sample: AdsSyncReadBoolVarReq
PLC declaration:

TCtoLV_boolVal AT$MX0.0: BOOL;

LabVIEW™: (see https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967693707/.zip)

TX1000 Version: 1.1 129

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967693707.zip

Samples BEGKHOFF

a0a0CxELib, AdsOox

B = AdsOcx S

| }JradsamsServerietld

501 AdsamsServerPort

oo AdsOcx §

beartlanme AdsiCreateVarHandle s

I.TCtu:uL'u' booly &l frrmf» wearhlarne i

hitar ¥

E'u'ar Flaceholder J_ J

'!1; nep AdsOcx E E n AdsOcx S

AdsSvncReadBoolMarReq » AdsDeletetarHandle »

" hvar [v RYar L

, chLenagth v

| pData B
=/

Fig. 2: TcAdsO36
5.3.5 synchron methods: Write via address
AdsSyncWriteBoolReq

AdsSyncWritelntegerReq

AdsSyncWriteLongReq

AdsSyncWriteSingleReq

AdsSyncWriteDou

bleReq

AdsSyncWriteStringReq

Sample: AdsSyncWriteBoolReq

PLC declaration:

LVtoTC boolVal AT%MX500.0: BOOL;

LabVIEW™: (see https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967695115/.zip)

130

Version: 1.1

TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967695115.zip

BEGKHOFF Samples

ALSOCKLib, AdsOe:
p= AdsOoc B fdsOcx g

| }~{radsamsserverietld IndexiGrau AdsSyvnchriteBoolReq
501 AdsamsServerPort 021 nlndexGroup »

IndexOffset v nlndexOffset ¥
I?TEIIZIEI _| v cbLength ¥

blLength X SRELE]
1

aka

LTE]

Fig. 3: TcAdsO37

5.3.6 synchron methods: Write via name

AdsSyncWriteBoolVarReq
AdsSyncWritelntegerVarReq
AdsSyncWriteLongVarReq
AdsSyncWriteSingleVarReq
AdsSyncWriteDoubleVarReq
AdsSyncWriteStringVarReq

Sample: AdsSyncWriteBoolVarReq
PLC declaration:

LVtoTC boolVal AT$MX500.0: BOOL;

LabVIEW™: (see https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967696523/.zip)

TX1000 Version: 1.1 131

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967696523.zip

Samples BECKHOFF
A0S0 xLib, AdsOoy
E =L AdsOcx E
| }—JradsamsServerietd
501 | AdsamnsServerPort
E"-} AdsOcy E
feartlame AdsCreatevarHandle
I.L'u'tu:uTC boolyal f-{» varklame ¥

hiar ¥

E'u'ar Flaceholder J_

Fig. 4: TcAdsO38

s AdsOc

[]

AdsSvncwriteBoolvarReq »

kvar

chLength

pData

Documents about this

sample_dll_005_adsinforead.zip (Resources/zip/11967685259.zip)

5.3.7

o AdsOck D

AdsDeletevarHandle »

Riar ¥

Event driven reading, registering Callback-vi

Sample files: https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967697931/.zip,

1. To use an asynchronous method, a callback VI is registered that is called by the AdsOcx.

132

Version: 1.1

TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967697931.zip

BEGKH“FF Samples

Q Search l s WIEW I =

|* Comnectivity

L Al ﬂ 7 RegEvent Callback ﬁ
chive
n= AdsOcc EVE”; M
e @i I MidsimsServerhetld s ;
“@ c [¥ AdshmsServerPort S

Autamation ... Clase Refere..,

ToYariant “ariant To Data

=] [1o]
¥ l

Propetty Node Inw

2. The event element is linked to the AdsOcx reference and the event to be called is selected.

AdsDelDeviMotificationConk

BdsDelDevMotificationInd
ﬂ 4 Req Event Callback E BdsDeviceiokificationInd
BdsLoghatificati
Bz pdsticy D i Event - sLoghatification
badetmeservertiatid i YT Ref fdsReadConnectUpdate
I a1 Hr AdsamsServerPort P user paramster AdsReadConneckpdateE:

AdsReadConvertConnectUpdate
AdsReadDevicelnfoConf

3. The callback VI must have a very specific parameter structure. You can have LabVIEW™ create the
callback VI.

ﬁ‘i Reqg Event Callback, ﬂ

Bt adsocx D FAdsR eadConnectUpdateEx -
¥ YW1 Ref
¥ user parameker

Wisible Ikems 3
Help For Register Event Callback
Examples

Description and Tip...

Sek Breakpoink

radsAmsSeryertletld
¥ AdsAmsServerPork

[=3]

fas

=
|

Create Callback I

.MET Palette

Application Control Palette
Create

Replace

v v v v

Mame Farmak 3

TX1000 Version: 1.1 133

Samples BEGKHOFF

4. The event callback VI should then be saved under a unique name.

%@ RegEvent Calback }

[P *AdsReadConnectUpdateEx *

- 2 P VI Ref

ko dsAmsServeriekId : E

a0l [AdsamsServerPort LSBT parameter
Sample 006 AdsReadConnectpdateEs: Event Callback, vil
* [
1
5.3.8 Event driven reading, simple data types

Method: AdsReadVarConnectEx
Sample:
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967699339/.zip

PLC declaration:
TCtoLV_boolVal AT%MX0.0: BOOL;

A callback VI is registered for the event AdsReadConnectUpdateEx.

A %% RegEvent Calback 1§
& & sReadConnectUpdateEx =
[R — b AdsReadConnectUpdateE
a a "
Pk s amsServerietId : useruIaT::ﬁeter
201 H* AdsamsServerPort P

sample 007 AdsReadConnectpdateEs: Event Callback, vil
* [

Fig. 5: TcAdsO44

The method AdsReadVarConnectEx establishes a fixed connection between LabVIEW™ and a PLC
variable. The returned handle identifies the connection. When the connection is no longer needed, it is
disconnected using AdsDisconnectEx.

ﬂ v AdsiOo !,:';
AdsDisconnectEx »
v hConnect ¥

ﬂ el AdsDo ﬂ

AdsReadiarConneckEx »
adsvarMame ¥
nRefreshTvpe

L]
L] Ll

’ n_yvcleTime i Tctaly_boalvall
»__ phConnect ’ | @TCroly_boolval |-

L] Ll

hilser

I.7CtoLy boaolval -

|laDsSTRANS SERVERGOMCHE +H
100

|:| -

| @] A

Fig. 6: TcAdsO45

134 Version: 1.1 TX1000

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967699339.zip

BECKHOFF Samples

The data is transferred as a variant when the callback VI is called. Using the handle, the variables can be
converted to the correct type and assigned to the correct LabVIEW™ global variable.

[TCholy_bookval ||

Event Dakal dateTime ||
nils
------ =+ | hiConnect
data
hllser

Fig. 7: TcAdsO46

5.3.9 Event driven reading, structure variables

Method: AdsReadVarConvertConnect
Sample : https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967700747/.zip

TwinCAT declaration:

TYPE ST DataExchange :
STRUCT arrBool:
ARRAY[0..63] OF BOOL;

arrInt : ARRAY[0..63] OF INT;
arrReal : ARRAY[0..63] OF REAL;
END STRUCT
END_TYPE

StTCtoLV AT%MB1000: ST DataExchange;

1. Registrate Callback-Vi fotr the event method AdsReadConvertConnectUpdate.

AdsOc i RegEvent Calback 5
[Ci B B —¢—* AdsReadConvertConnectUpdate =
= AdsCc
i n L
Rk dsfirnsServerhletTd ’ W1 Ref ;
501 Hy sdsamsServerPort Wil PRIl

Sample 008 AdsReadConvertConnectUpdate Event Callback, vil
*x [

2

2. Global variables:
- create cluster variable as illustration of the TwinCAT structure.
- create global handle variable for the determination of the events.

TX1000 Version: 1.1 135

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967700747.zip

Samples

BECKHOFF

Py

cample 008 Global.vi Front Panel

3. Initialise the data structure as illustration of the TwinCAT structure

n(n
u

B B

@]

Rl

4. Create data connection and store the connection handle

ﬂ g AdsOcy ﬂ]
adsReadyarCorvertConnect
I.stTCoLy 1 ads\arkame ¥
lapsTRANS SERVERGONCHA v nRefreshType ;
100 — nZycleTime v

0 phonnect +— | ®hstTCkoLy |

usronvertType b
v hillser 0

5. Cyclic access to global data and disconnect the connection

136

Version: 1.1

TX1000

BEGKHOFF Samples

So¥ AdsOck
AdsDisconneckEsx: y
v hConnect o+

st T oLy

fooH 1 | e

[

6. Event handling in the Callback-Vi

With the passed handle hConnect the Callback-Vi decides for which variable the event has been
called. It assigns the in data passed value to the right variable.

@hstTCkoLY

@stTCoLy [f st TChoLY

datﬁr:qﬂme
nvls
------- =+ |hZonnect
daka
hlzer
5.3.10 Event driven reading with data reference passing to
Callback-vi

If only one variable is read via connect, the reference to the variable can be passed to the callback VI. This
eliminates the need to use global variables. The callback VI writes directly to the variable of the calling VI by
reference.

Sample files: https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967702155/.zip

1. A LabVIEW™ display element of the correct type is created and initialized

— EETCEoLY
%4 : FE‘- o

2. Creating the reference to the element

TX1000 Version: 1.1 137

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967702155.zip

Samples BEGKHOFF

Wisible Ikems 3
Fird 3
Hide Indicatar

Zhange to Control
Zhange to Constant
Description and Tip...

Clusker & Wariant Palette »

3 Constant
Daka Cperations 3 Control
advanced 2 Indicator
Wiew Az Icon Local Wariable
Propetties :
Property Node »
Irvoke Mode w

3. Passing the reference to the callback VI

L Req Event Callback n

* idzRead”onvertConnectlpdate
e WI Ref
¥ user parameker

SETCRoLY
H& Clusker
4. Accessing the reference variable in the callback VI

The typeless variant variable must be converted to the correct data type, and then passed to the refer-
ence variable.

T,

& =% Clust (strict) &
[S=uf e+ [data} b Yalue

5.3.11 General Methods

1. Methods AdsCreateVarHandle and AdsDeleteVarHandle are used to access PLC variables by
name
PLC declaration:

138 Version: 1.1 TX1000

BECKHOFF

Samples

TCtoLV_boolVal AT%MX0.0: BOOL,;

LabVIEW™
E"-} Ads0cx E E"-} Ads0cx E
Earl"dame AdsCreateyarHandle ¥ AdsDeletetarHandle »
I.TCtu:uL'u' bl al ’ varklame r_l—r har ’
hitar Placeholder |_' htar '

2. Methods AdsAmsConnect and AdsAmsDisconnect

Are called in the start and end phase respectively to connect and disconnect the AdsOcx to/from the
router.

-DDDDDDDDHEDE FOoooooon

_S'"} AdsOcx ﬁ 2

S w AdsOox
AdsamsZonneck ¥ AdsamsDisconneck »

[+]
o000 o0o000000000000000amn

If the AdsOcx was disconnected from the router via AdsAmsDisconnect, AdsAmsConnect must be
called or LabVIEW™ must be restarted before the next call of an AdsOcx method.
3. The method AdsReadSymbolDesc

The method AdsReadSymbolDesc can be used to read information about a named PLC variable at
runtime. For example, the address data nindexGroup and nindexOffset can be read to then access

the variable by address (possibly also with the TcAdsDII). (see https://infosys.beckhoff.com/content/
1033/tcadsocx/Resources/11967703563/.zip)

TX1000 Version: 1.1 139

https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967703563.zip
https://infosys.beckhoff.com/content/1033/tcadsocx/Resources/11967703563.zip

Samples BEGKHOFF

ADSOCHLIb. AdsOcx

b=t AdsDcx P
|
i1

n
radsimsseryertletId
* AdsAmsServerPork

S Trus b

o AdsOcx B
AdsRead3ymbolDesc
L strSymbaltame
DST_voID ~ nymbolType
chaymbolgize
skrCammient

nIndexOffset

E nlnde:xGroup

F.eadSymbolDesc __

140 Version: 1.1 TX1000

BECKHOFF

ADS Return Codes

6

ADS Return Codes

Grouping of error codes:

Global error codes: ADS Return Codes [P_141]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [P _141]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [P _142]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [P_143]... (0x9811_1000 ...)

Global error codes

Hex Dec HRESULT Name Description

0x0 0 0x98110000 ERR_NOERROR No error.

0x1 1 0x98110001 ERR_INTERNAL Internal error.

0x2 2 0x98110002 |ERR_NORTIME No real time.

0x3 3 0x98110003 ERR_ALLOCLOCKEDMEM Allocation locked — memory error.

0x4 4 0x98110004 ERR_INSERTMAILBOX Mailbox full — the ADS message could not be sent. Re-
ducing the number of ADS messages per cycle will help.

0x5 5 0x98110005 |ERR_WRONGRECEIVEHMSG Wrong HMSG.

0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found — ADS server is not started or is
not reachable.

0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found — AMS route was not found.

0x8 8 0x98110008 ERR_UNKNOWNCMDID Unknown command ID.

0x9 9 0x98110009 |ERR_BADTASKID Invalid task ID.

0xA 10 0x9811000A |ERR_NOIO No 10.

0xB 11 0x9811000B |ERR_UNKNOWNAMSCMD Unknown AMS command.

0xC 12 0x9811000C |ERR_WIN32ERROR Win32 error.

0xD 13 0x9811000D |ERR_PORTNOTCONNECTED Port not connected.

OxE 14 0x9811000E |ERR_INVALIDAMSLENGTH Invalid AMS length.

OxF 15 0x9811000F |ERR_INVALIDAMSNETID Invalid AMS Net ID.

0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low —TwinCAT 2 license error.

0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.

0x12 18 0x98110012 ERR_PORTDISABLED Port disabled — TwinCAT system service not started.

0x13 19 0x98110013 ERR_PORTALREADYCONNECTED Port already connected.

0x14 20 0x98110014 |ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.

0x15 |21 0x98110015 |ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.

0x16 22 0x98110016 |ERR_AMSSYNC_AMSERROR AMS Sync error.

0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.

0x18 24 0x98110018 |ERR_INVALIDAMSPORT Invalid AMS port.

0x19 25 0x98110019 |ERR_NOMEMORY No memory.

Ox1A |26 0x9811001A |ERR_TCPSEND TCP send error.

0x1B |27 0x9811001B |ERR_HOSTUNREACHABLE Host unreachable.

0x1C |28 0x9811001C |ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.

0x1D |29 0x9811001D |ERR_TLSSEND TLS send error — secure ADS connection failed.

Ox1E |30 0x9811001E |ERR_ACCESSDENIED Access denied — secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description

0x500 |1280 |0x98110500 |ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 |1281 |0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 {1282 |0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 |1283 |0x98110503 |ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum num-
ber of possible messages.

0x504 |1284 |0x98110504 |ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.

0x505 |1285 |0x98110505 |ROUTERERR_NOTINITIALIZED The router is not initialized.

0x506 [1286 |0x98110506 |ROUTERERR_PORTALREADYINUSE The port number is already assigned.

TX1000 Version: 1.1 141

ADS Return Codes

BECKHOFF

Hex Dec HRESULT Name Description
0x507 |1287 |0x98110507 |ROUTERERR_NOTREGISTERED The port is not registered.
0x508 (1288 |0x98110508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 (1289 |0x98110509 |ROUTERERR_INVALIDPORT The port is invalid.
0x50A |1290 |0x9811050A |ROUTERERR_NOTACTIVATED The router is not active.
0x50B {1291 |0x9811050B |ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for
fragmented messages.
0x50C |1292 |0x9811050C |ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D |1293 |0x9811050D |ROUTERERR_TOBEREMOVED The port is removed.
General ADS error codes
Hex Dec HRESULT Name Description
0x700 [1792 |0x98110700 |ADSERR_DEVICE_ERROR General device error.
0x701 |1793 |0x98110701 |ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 |1794 |0x98110702 |ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 |1795 |0x98110703 |ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 |1796 |0x98110704 |ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 |1797 |0x98110705 |ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 |1798 |0x98110706 |ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 |1799 |0x98110707 |ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 |1800 |0x98110708 |ADSERR_DEVICE_BUSY Device is busy.
0x709 |1801 |0x98110709 |ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result
from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking syn-
chronization in the PLC.
0x70A |1802 |0x9811070A |ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B |1803 |0x9811070B |ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C |1804 |0x9811070C |ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D |1805 |0x9811070D |ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E |1806 |0x9811070E |ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F |1807 |0x9811070F |ADSERR_DEVICE_EXISTS Object already exists.
0x710 |1808 |0x98110710 |ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 |1809 |0x98110711 |ADSERR_DEVICE_SYMBOLVERSIONINVALID |Invalid symbol version. This can occur due to an
online change. Create a new handle.
0x712 |1810 |0x98110712 |ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 |1811 |0x98110713 |ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 |1812 |0x98110714 |ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 |1813 |0x98110715 |ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 |1814 |0x98110716 |ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 |1815 |0x98110717 |ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 |1816 |0x98110718 |ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 |1817 |0x98110719 |ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 |0x9811071A |ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B |1819 |0x9811071B |ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C |1820 |0x9811071C |ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D |1821 |0x9811071D |ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E |1822 |0x9811071E |ADSERR_DEVICE_PENDING Request pending.
0x71F |1823 |0x9811071F |ADSERR_DEVICE_ABORTED Request is aborted.
0x720 |1824 |0x98110720 |ADSERR_DEVICE_WARNING Signal warning.
0x721 (1825 |0x98110721 |ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 |1826 |0x98110722 |ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 |1827 |0x98110723 |ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 (1828 |0x98110724 |ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 |1829 |0x98110725 |ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 |1830 |0x98110726 |ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 |1831 |0x98110727 |ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 |1832 |0x98110728 |ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 |1833 |0x98110729 |ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A |1834 |0x9811072A |ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B |1835 |0x9811072B |ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
142 Version: 1.1 TX1000

BECKHOFF

ADS Return Codes

Hex Dec HRESULT Name Description

0x72C |1836 |0x9811072C |ADSERR_DEVICE_EXCEPTION Exception at system startup.

0x72D |1837 |0x9811072D |ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.

0x72E |1838 |0x9811072E |ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.

0x72F |1839 |0x9811072F |ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.

0x730 |1840 |0x98110730 |ADSERR_DEVICE_LICENSEOEMNOTFOUND |Public key not known from OEM.

0x731 |1841 |0x98110731 |ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.

0x732 |1842 |0x98110732 |ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.

0x733 |1843 |0x98110733 |ADSERR_DEVICE_INVALIDFNCID Invalid function ID.

0x734 |1844 |0x98110734 |ADSERR_DEVICE_OUTOFRANGE Outside the valid range.

0x735 |1845 |0x98110735 |ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

0x736 |1846 |0x98110736 |ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

0x737 |1847 |0x98110737 |ADSERR_DEVICE_FORWARD_PL Context — forward to passive level.

0x738 |1848 |0x98110738 |ADSERR_DEVICE_FORWARD_DL Context — forward to dispatch level.

0x739 |1849 |0x98110739 |ADSERR_DEVICE_FORWARD_RT Context — forward to real time.

0x740 |1856 |0x98110740 |ADSERR_CLIENT_ERROR Client error.

0x741 |1857 |0x98110741 |ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.

0x742 |1858 |0x98110742 |ADSERR_CLIENT_LISTEMPTY Polling list is empty.

0x743 |1859 |0x98110743 |ADSERR_CLIENT_VARUSED Var connection already in use.

0x744 |1860 |0x98110744 |ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.

0x745 |1861 |0x98110745 |ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred — the remote terminal is not
responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 |1862 |0x98110746 |ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.

0x747 |1863 |0x98110747 |ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.

0x748 |1864 |0x98110748 |ADSERR_CLIENT_PORTNOTOPEN Port not open.

0x749 |1865 |0x98110749 |ADSERR_CLIENT_NOAMSADDR No AMS address.

0x750 |1872 |0x98110750 |ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.

0x751 |1873 |0x98110751 |ADSERR_CLIENT_ADDHASH Hash table overflow.

0x752 |1874 |0x98110752 |ADSERR_CLIENT_REMOVEHASH Key not found in the table.

0x753 |1875 |0x98110753 |ADSERR_CLIENT_NOMORESYM No symbols in the cache.

0x754 |1876 |0x98110754 |ADSERR_CLIENT_SYNCRESINVALID Invalid response received.

0x755 |1877 |0x98110755 |ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

RTime error codes

Hex Dec HRESULT Name Description

0x1000 4096 |0x98111000 |RTERR_INTERNAL Internal error in the real-time system.

0x1001 |4097 |0x98111001 |RTERR_BADTIMERPERIODS Timer value is not valid.

0x1002 (4098 |0x98111002 |RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).

0x1003 4099 |0x98111003 |RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).

0x1004 4100 |0x98111004 |RTERR_PRIOEXISTS The request task priority is already assigned.

0x1005 |4101 |0x98111005 |RTERR_NOMORETCB No free TCB (Task Control Block) available. The maxi-
mum number of TCBs is 64.

0x1006 4102 |0x98111006 |RTERR_NOMORESEMAS No free semaphores available. The maximum number of
semaphores is 64.

0x1007 |4103 |0x98111007 |RTERR_NOMOREQUEUES No free space available in the queue. The maximum
number of positions in the queue is 64.

0x100D (4109 |0x9811100D |RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.

0x100E |4110 |0x9811100E |RTERR_EXTIRQNOTDEF No external sync interrupt applied.

0x100F |4111 |0x9811100F |RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has
failed.

0x1010 4112 |0x98111010 |RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context

0x1017 (4119 |0x98111017 |RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.

0x1018 (4120 |0x98111018 |RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.

0x1019 4121 |0x98111019 |RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.

0x101A |4122 |0x9811101A |RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

TX1000

Version: 1.1

143

ADS Return Codes

BECKHOFF

HRESULT Name Description

0x0000_0000 S OK No error.

0x0000_0001 S FALSE No error.
Example: successful processing, but with a negative or in-
complete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.

Example: successful processing, but a timeout occurred.

TCP Winsock error codes

Hex Dec

Name

Description

0x274C 10060

WSAETIMEDOUT

A connection timeout has occurred - error while establishing the connec-
tion, because the remote terminal did not respond properly after a certain
period of time, or the established connection could not be maintained be-
cause the connected host did not respond.

0x274D 10061

WSAECONNREFUSED

Connection refused - no connection could be established because the tar-
get computer has explicitly rejected it. This error usually results from an at-
tempt to connect to a service that is inactive on the external host, that is, a
service for which no server application is running.

0x2751 10065

WSAEHOSTUNREACH

No route to host - a socket operation referred to an unavailable host.

More Winsock error codes: Win32 error codes

144

Version: 1.1 TX1000

More Information:
www.beckhoff.com/automation

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TX1000
https://www.beckhoff.com
https://www.beckhoff.com/automation

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Access to the ADS devices
	3 Manual installation of the ADS OCX
	4 API
	4.1 general
	4.1.1 AboutBox
	4.1.2 AdsAmsDisconnect
	4.1.3 AdsAmsPortEnabled
	4.1.4 AdsCreateVarHandle
	4.1.5 AdsDeleteVarHandle
	4.1.6 AdsEnableLogNotification
	4.1.7 AdsEnumSymbols
	4.1.8 AdsSetFirstDynSymbol
	4.1.9 AdsGetNextDynSymbol
	4.1.10 AdsLogFmtString
	4.1.11 AdsReadSymbolDesc
	4.1.12 AdsReadSymbolInfo
	4.1.13 AdsSyncWriteControlReq
	4.1.14 AdsWriteControlReq
	4.1.15 ShowPropertyPages

	4.2 synchron
	4.2.1 AdsSyncRead[Datatype]VarReq
	4.2.2 AdsSyncReadReq
	4.2.3 AdsSyncRead[Datatype]Req
	4.2.4 AdsSyncWrite[Datatype]VarReq
	4.2.5 AdsSyncWriteReq
	4.2.6 AdsSyncWrite[Datatype]Req

	4.3 asynchron
	4.3.1 AdsRead[Datatype]Req
	4.3.2 AdsWrite[Datatype]Req

	4.4 connect
	4.4.1 AdsReadVarConnectEx
	4.4.2 AdsReadVarConnectEx2
	4.4.3 AdsReadVarConvertConnect
	4.4.4 AdsRead[Datatype]VarConnect
	4.4.5 AdsDisconnectEx
	4.4.6 AdsReadConnect
	4.4.7 AdsReadDisconnect
	4.4.8 AdsRead[Datatype]Connect
	4.4.9 AdsRead[Datatype]Disconnect
	4.4.10 AdsWriteDisconnect
	4.4.11 AdsWrite[Datatype]Disconnect
	4.4.12 AdsWriteVarConnect
	4.4.13 AdsWrite[Datatype]VarConnect
	4.4.14 AdsWriteConnect
	4.4.15 AdsWrite[Datatype]Connect

	4.5 Events
	4.5.1 AdsAmsConnectTimeout
	4.5.2 AdsAmsTimeout
	4.5.3 AdsConnectError
	4.5.4 AdsLogNotification
	4.5.5 AdsReadConnectUpdate
	4.5.6 AdsReadConnectUpdateEx
	4.5.7 AdsReadConnectUpdateEx2
	4.5.8 AdsReadConvertConnectUpdate
	4.5.9 AdsRead[Datatype]Conf
	4.5.10 AdsRouterRemove
	4.5.11 AdsRouterShutdown
	4.5.12 AdsRouterStart
	4.5.13 AdsServerStateChanged
	4.5.14 AdsServerSymChanged
	4.5.15 AdsWriteConf

	4.6 Properties
	4.6.1 AdsAmsClientNetId
	4.6.2 AdsAmsClientPort
	4.6.3 AdsAmsCommTimeout
	4.6.4 AdsAmsConnected
	4.6.5 AdsAmsSaveClientPort
	4.6.6 AdsAmsServerNetId
	4.6.7 AdsAmsServerPort
	4.6.8 AdsClientAdsState
	4.6.9 AdsClientBuild
	4.6.10 AdsClientRevision
	4.6.11 AdsClientType
	4.6.12 AdsClientVersion
	4.6.13 AdsServerAdsState
	4.6.14 AdsServerBuild
	4.6.15 AdsServerRevision
	4.6.16 AdsServerType
	4.6.17 AdsServerVersion
	4.6.18 EnableErrorHandling
	4.6.19 Index
	4.6.20 Name
	4.6.21 Object
	4.6.22 Parent
	4.6.23 Tag

	4.7 Enums
	4.7.1 ADSDATATYPEID
	4.7.2 ADSLOGMSGTYPE
	4.7.3 ADSOCXTRANSMODE
	4.7.4 ADSSTATE
	4.7.5 ADSGETDYNSYMBOLTYPE

	5 Samples
	5.1 Visual Basic - samples
	5.1.1 Linking into Visual Basic
	5.1.2 Visual Basic 6.0 variable lengths
	5.1.3 Accessing an array in the PLC
	5.1.4 Transmitting structures to the PLC
	5.1.5 Event driven reading
	5.1.6 Read PLC variable declaration
	5.1.7 Detect/alter state of the router and the PLC
	5.1.8 Send/receive messages via the router
	5.1.9 Delete handle of a PLC variable
	5.1.10 Event-driven reading (with conversion to another type)

	5.2 Delphi - samples
	5.2.1 Integration in Delphi
	5.2.1.1 Linking to Borland Developer Studio 2006 (VCL for Delphi Win32)
	5.2.1.2 Implement in Delphi 3,4,5,6,7, ... (classic)
	5.2.1.3 ADS-OCX limitations in Delphi applications
	5.2.1.4 Reset ADS-OCX application

	5.2.2 Accessing PLC variables in synchronous/asynchronous/connected modes
	5.2.3 Read the List of an ADS Device's Declared Variables
	5.2.4 Write array to PLC or read array from PLC
	5.2.5 Call ADS-OCX property page
	5.2.6 Working with handles of PLC variables
	5.2.7 Write string to PLC or read array from PLC
	5.2.8 Read multiple boolean variables into an array with one access
	5.2.9 Transmitting structures to/from the PLC

	5.3 TwinCAT ADS OCX
	5.3.1 Integration in LabVIEW™
	5.3.2 Samples using AdsOcx properties
	5.3.3 synchron methods: Read via address
	5.3.4 synchron methods: Read via name
	5.3.5 synchron methods: Write via address
	5.3.6 synchron methods: Write via name
	5.3.7 Event driven reading, registering Callback-vi
	5.3.8 Event driven reading, simple data types
	5.3.9 Event driven reading, structure variables
	5.3.10 Event driven reading with data reference passing to Callback-vi
	5.3.11 General Methods

	6 ADS Return Codes

		documentation@beckhoff.com
	2022-10-06T15:27:28+0200
	Beckhoff Automation, Verl
	Documentation Publishing

