**BECKHOFF** New Automation Technology

Manual | EN TS5065 TwinCAT 2 | Motion Control XFC/XFC NC I



# Table of contents

| 1 | 1 Foreword               |           |                                   |      |  |  |  |
|---|--------------------------|-----------|-----------------------------------|------|--|--|--|
|   | 1.1                      | Notes on  | the documentation                 | 5    |  |  |  |
|   | 1.2                      | Safety in | structions                        | 6    |  |  |  |
| 2 | Over                     | view      |                                   | 7    |  |  |  |
| 3 | 3 Dead time compensation |           |                                   |      |  |  |  |
| 4 | PLC                      | API       |                                   | . 13 |  |  |  |
|   | 4.1                      | TcMC2     | XFC                               | . 13 |  |  |  |
|   |                          | 4.1.1     | CAMSWITCH_REF                     | 13   |  |  |  |
|   |                          | 4.1.2     | MC_CamSwitch                      | 13   |  |  |  |
|   |                          | 4.1.3     | MC_DigitalCamSwitch               | 14   |  |  |  |
|   |                          | 4.1.4     | MC_DigitalCamSwitch_MultiEdge     | 17   |  |  |  |
|   |                          | 4.1.5     | OUTPUT_REF                        | 18   |  |  |  |
|   |                          | 4.1.6     | OUTPUT_REF_MULTIEDGE              | 18   |  |  |  |
|   |                          | 4.1.7     | ST_EL2258_Diagnostics             | 19   |  |  |  |
|   |                          | 4.1.8     | ST_EL2262_Diagnostics             | 20   |  |  |  |
|   |                          | 4.1.9     | TRACK_REF                         | 20   |  |  |  |
|   |                          | 4.1.10    | XFC_BreakCam                      | 21   |  |  |  |
|   |                          | 4.1.11    | XFC_EL1259_MultiEdge              | 23   |  |  |  |
|   |                          | 4.1.12    | XFC_EL2212_MultiEdge              | 24   |  |  |  |
|   |                          | 4.1.13    | XFC_EL2212_V2                     | 25   |  |  |  |
|   |                          | 4.1.14    | XFC_EL2252_V2                     | 26   |  |  |  |
|   |                          | 4.1.15    | XFC_EL2258_Multiedge              | 27   |  |  |  |
|   |                          | 4.1.16    | XFC_EL2262                        | 28   |  |  |  |
|   |                          | 4.1.17    | XFC_EL2262_MultiEdge              | 29   |  |  |  |
|   |                          | 4.1.18    | XFC_ExtendDcTime                  | 31   |  |  |  |
|   |                          | 4.1.19    | XFC_GetCurDcTaskTime              | 31   |  |  |  |
|   |                          | 4.1.20    | XFC_PositionAtTime                | 31   |  |  |  |
|   |                          | 4.1.21    | XFC_PositionCam                   | 33   |  |  |  |
|   |                          | 4.1.22    | XFC_TimeCam                       | 34   |  |  |  |
|   |                          | 4.1.23    | XFC_TimeOfPosition                | 36   |  |  |  |
|   |                          | 4.1.24    | XFC_TimeToModuloPosition          | 37   |  |  |  |
|   |                          | 4.1.25    | XFC_TimeToPosition                | 38   |  |  |  |
|   |                          | 4.1.26    | XFC_TouchProbe                    | 40   |  |  |  |
|   |                          | 4.1.27    | XFC_TRIGGER_REF                   | 42   |  |  |  |
|   | 4.2                      | TcNci_X   | FC                                | 43   |  |  |  |
|   |                          | 4.2.1     | MC_PathCamSwitch                  | 43   |  |  |  |
|   |                          | 4.2.2     | MC_PathDigitalCamSwitch_MultiEdge | 44   |  |  |  |
|   |                          | 4.2.3     | PATH_CAMSWITCH_REF                | 45   |  |  |  |
|   |                          | 4.2.4     | XFC_PathPositionAtTime            | 45   |  |  |  |
|   |                          | 4.2.5     | XFC_PathPositionCam               | 47   |  |  |  |
|   |                          | 4.2.6     | XFC_TimeOfPathPosition            | 48   |  |  |  |
|   |                          | 4.2.7     | XFC_TimeToPathPosition            | 49   |  |  |  |

# 1 Foreword

# 1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

#### Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

#### Trademarks

Beckhoff<sup>®</sup>, TwinCAT<sup>®</sup>, TwinCAT/BSD<sup>®</sup>, TC/BSD<sup>®</sup>, EtherCAT<sup>®</sup>, EtherCAT G<sup>®</sup>, EtherCAT G10<sup>®</sup>, EtherCAT P<sup>®</sup>, Safety over EtherCAT<sup>®</sup>, TwinSAFE<sup>®</sup>, XFC<sup>®</sup>, XTS<sup>®</sup> and XPlanar<sup>®</sup> are registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

#### **Patent Pending**

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

# Ether**CAT**

EtherCAT<sup>®</sup> is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

#### Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

# 1.2 Safety instructions

#### **Safety regulations**

Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

#### **Exclusion of liability**

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

#### **Personnel qualification**

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

#### **Description of symbols**

In this documentation the following symbols are used with an accompanying safety instruction or note. The safety instructions must be read carefully and followed without fail!

▲ DANGER

#### Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of persons.

**A WARNING** 

#### Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of persons.

#### Personal injuries!

Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

#### Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or equipment.



#### Tip or pointer

This symbol indicates information that contributes to better understanding.

# 2 Overview

A prerequisite is high-precision dead time compensation of the axes, which is available from TwinCAT 2.11 for EtherCAT and Sercos drives.

A precise correlation between time and position can thus be established at any time.

The library TcMC2 XFC facilitates precisely timed acquisition of axis positions and output of digital signals at precise positions in conjunction with EtherCAT XFC terminals (time stamp terminals and oversampling terminals).

Important applications include the acquisition of latch positions (touch probe or measuring probe function) and the realization of digital cam controllers. The library provides various function blocks for this.

The TcNci\_XFC library facilitates the precisely timed recording of relative path distances and the pathprecise output of digital signals in connection with the EtherCAT XFC terminals. The required output function blocks are included in the TcMC2\_XFC library.

The library provides various function blocks for the calculation of the timestamps or positions.

To use the library in a project, the following additional libraries have to be included:

TcNci.lib (enthält die Struktur des zyklischen Kanal-Interface)

<u>TcMc2\_XFC.lib [> 13]</u> (enthält die benötigten Ausgabebausteine für die Ansteuerung der XFC-Ausgangsklemmen, sowie weitere wiederverwendete Strukturen)

TcMC2.lib (Wiederverwendete Strukturen)

# 3 Dead time compensation

A prerequisite for high-precision conversion of positions into times and vice versa is precise dead time compensation of the axes. From TwinCAT 2.11 such a dead time compensation function is available for EtherCAT and Sercos axes. It operates largely automatically. Nevertheless, a manual configuration can be necessary, for example to compensate the drive's internal dead times.

#### Support of distributed clocks

Support for distributed clocks must initially be activated in EtherCAT drives as follows:

1. Call the drive's Ether CAT "Advanced Settings" dialog.



2. Activate the switch "Include DC Shift Times"

⇒ The time information is made available in the info data ("InfoData") of the drive and later linked with the NC axis.

| 🗾 TcMC2 XFC.tsm - TwinCAT System Manager |     |                  |   |         |           |           |           |      |
|------------------------------------------|-----|------------------|---|---------|-----------|-----------|-----------|------|
| <u>File Edit Actions View Options H</u>  | elp |                  |   |         |           |           |           |      |
| 🛓 🗅 🚅 📽 🔛   🍜 🖪   🐇 🛍 💼                  | æ   | 🗚 ð 🔜 🕋 🗸        | đ | Y 👧 🙍 💱 | ; 🔨 🗭     | 🍫   🖹     | Q (P      | 60   |
| 🗮 Gerät 1 (EtherCAT)                     | *   | Name             |   | Туре    | Size      | >Addr     | In/Out    | User |
| 💠 Gerät 1-Prozessabbild                  |     | \$1 State        |   | UINT    | 2.0       | 3103.0    | Input     | 0    |
| 💠 Gerät 1-Prozessabbild-2                |     | AdsAddr          |   | AMSADDR | 8.0       | 3105.0    | Input     | 0    |
| 💠 Gerät 1-Prozessabbild-Info             |     | \$↑ Chn0         |   | USINT   | 10        | 3113.0    | Input     | 0    |
| 😂 Eingänge                               | -   | AT DcOutputShift | Y | DINT    | 4.0       | 3114.0    | Input     | 0    |
| 🜲 Ausgänge                               |     | At DelegentShift | Ŷ | DINT    | 4.0       | 2119.0    | Input     | 0    |
| 😫 InfoData                               |     | By Deinputsnin   | ^ | DINI    | 4.0       | 5110.0    | input     | 0    |
| ■ Drive 1 (IndraDrive MPH06)             |     |                  |   |         |           |           |           |      |
| ➡ Drive 3 (AX5106-0000-0011)             |     |                  |   |         |           |           |           |      |
| AT                                       |     |                  |   |         |           |           |           |      |
| ↓ MDT                                    | Ξ   |                  |   |         |           |           |           |      |
| WcState                                  |     |                  |   |         |           |           |           |      |
| 😫 InfoData                               |     |                  |   |         |           |           |           |      |
| ♦↑ State                                 |     |                  |   |         |           |           |           |      |
| 🔊 AdsAddr                                |     |                  |   |         |           |           |           |      |
| ♦↑ Chn0                                  |     |                  |   |         |           |           |           |      |
|                                          |     |                  |   |         |           |           |           |      |
|                                          |     |                  |   |         |           |           |           |      |
| ➡ Drive 4 (AX5106-0000-0011)             | -   | •                |   | III     |           |           |           | - F  |
| Ready                                    |     |                  |   | Local   | (172.16.2 | .135.1.1) | Config Mo | de 🔐 |

"DcInputShift" is the time required to transmit status information, such as the actual position of a drive, to the controller. In other words, it is the time between the acquisition and the evaluation of these data.

"DcOutputShift" is the time for the output of the process data to the drive, i.e. for the time delay between the calculation and the effect of these data.

The time information is provided dynamically by the system and is used by the NC for dead time compensation of an axis.

For Sercos axes the times DcInputShift and DcOutputShift are provided by the Sercos card and do not have to be configured. If a drive is linked to an NC axis these times are also linked.

| 📴 Unbenannt - TwinCAT System Manager 📃 🖃 🔜 |                                             |                                                 |  |  |  |  |
|--------------------------------------------|---------------------------------------------|-------------------------------------------------|--|--|--|--|
| <u>File Edit Actions View Options He</u>   | <u>File Edit Actions View Options H</u> elp |                                                 |  |  |  |  |
| i 🗅 📽 📽 🖬 🎒 🗟   X 🖻 💼                      | 🗟   🎮 👌   🔜   🖴 🗸 💣 👧   :                   | 👧 💱 🔨 🎯   🏶   🖹 🔍 🔐                             |  |  |  |  |
| i I/O - Configuration ▲                    | Number Device                               | Туре                                            |  |  |  |  |
| Devices                                    | ///1 Device 1 (FC75xx)                      | SERCOS Master/Slave FC75xx, PCI                 |  |  |  |  |
| Device 1-Image                             |                                             |                                                 |  |  |  |  |
| 🖃 😂 Înputs                                 |                                             |                                                 |  |  |  |  |
|                                            |                                             |                                                 |  |  |  |  |
| ← \$ RequestedPhase                        |                                             |                                                 |  |  |  |  |
| SystemState                                |                                             |                                                 |  |  |  |  |
| ↓ CycleTime                                |                                             |                                                 |  |  |  |  |
|                                            |                                             |                                                 |  |  |  |  |
|                                            |                                             |                                                 |  |  |  |  |
|                                            |                                             |                                                 |  |  |  |  |
|                                            |                                             |                                                 |  |  |  |  |
| ↓ MstLateErrorCnt                          |                                             |                                                 |  |  |  |  |
|                                            |                                             |                                                 |  |  |  |  |
| \$↑ CycleCnt                               |                                             |                                                 |  |  |  |  |
|                                            |                                             |                                                 |  |  |  |  |
| → DcOutputShift                            |                                             |                                                 |  |  |  |  |
|                                            | <                                           | - F                                             |  |  |  |  |
| Ready                                      | L                                           | ocal (172.16.2.135.1.1) Config Mod <sub>f</sub> |  |  |  |  |

#### Compensation of the encoder dead time

The dead time compensation for the data acquisition side is activated on the "Time Compensation" tab of the axis encoder. The dead time from DcInputShift provided by the system is used for calculating the compensation.

| 📕 TcMC2 XFC.tsm - TwinCAT Sy                | m Manager                        |                   |              |           |  |  |  |
|---------------------------------------------|----------------------------------|-------------------|--------------|-----------|--|--|--|
| <u>File Edit Actions View Options H</u> elp |                                  |                   |              |           |  |  |  |
| 📔 🗅 🚅 📽 🖬   🍜 🖪   👗                         | a 🖻 👼 🗚 👌 🔜 🕋 🗸 g                | 💣 🙆 💁 🗞 🖄         | 🔹 🔕 🌶        | 🖹 🔍 🖟     |  |  |  |
| NC - Configuration                          | General NC-Encoder Parameter Ser | cos Time Compensa | tion Online  |           |  |  |  |
| NC-Task 1 SVB                               | Parameter                        | Value             | Туре         | Unit      |  |  |  |
| Tables                                      | - Time Compensation Mode         | 'ON' <            | E            | E         |  |  |  |
| Axes                                        | IO Time is absolute              | FALSE 💌           | в            |           |  |  |  |
| 🕂 🛶 VirtualMaster                           | Encoder Delay in Cycles          | 0                 | D            |           |  |  |  |
| ⊨ • • • AX1                                 | Additional Encoder Delay         | 0                 | D            | μs        |  |  |  |
| AX1_Enc                                     |                                  |                   | 1            |           |  |  |  |
| AX1_Drive                                   |                                  |                   |              |           |  |  |  |
|                                             |                                  |                   |              |           |  |  |  |
| 🕀 🍬 Outputs 🚽                               |                                  |                   |              | -         |  |  |  |
|                                             |                                  |                   |              | +         |  |  |  |
| Ready                                       |                                  | Local (172.1      | 6.2.135.1.1) | onfig Mog |  |  |  |

In special cases, for example in the event of additional dead times due to the hardware used, it may be necessary to configure further times.

The value Encoder Delay in Cycles indicates additional delays (whole I/O cycles). This time is therefore not a fixed value, but changes with the cycle time.

The value "Additional Drive Delay" is a fixed time value in µs caused by the hardware used.

#### Compensation of the drive dead time

The dead time compensation in the output direction is activated on the "Time Compensation" tab of the NC axis drive. As a result the time from DcOutputShift provided by the system is used for calculating the compensation.

| 📝 TcMC2 XFC.tsm - TwinCAT System Manager    |                                                           |                     |  |  |  |  |
|---------------------------------------------|-----------------------------------------------------------|---------------------|--|--|--|--|
| <u>File Edit Actions View Options H</u> elp |                                                           |                     |  |  |  |  |
| 🖥 🗅 🚅 📽 🖬 🏼 🍜 🗟 🛛 👗                         | j 🗅 🚅 📽 🖬   🍜 🔃   🌡 🛍 🛍 📾 🛤 👌   🔜 🐽 🗸 🌋 🤬   💁 🎨 🌭   😫 🔍 🖓 |                     |  |  |  |  |
| NC - Configuration                          | General NC-Drive Parameter Time Compensation Sercos       |                     |  |  |  |  |
| NC-Task1 SVB                                | Parameter Value Ty                                        | /pe Unit            |  |  |  |  |
| Tables                                      | - Time Compensation Mode 'ON' 💌 E                         | E                   |  |  |  |  |
| Axes                                        | IO Time is absolute FALSE 🔽 B                             |                     |  |  |  |  |
|                                             | Task Delay in Cycles 1 D                                  |                     |  |  |  |  |
|                                             | Drive Delay in Cycles 1 D                                 |                     |  |  |  |  |
| AX1_Enc                                     | Additional Drive Delay 0 D                                | μs                  |  |  |  |  |
| AX1_Ctrl<br>                                |                                                           | ÷                   |  |  |  |  |
|                                             | e [m                                                      | •                   |  |  |  |  |
| Ready                                       | Local (172.16.2.1                                         | 35.1.1) Config Mode |  |  |  |  |

In special cases further times can be configured.

The value Task Delay in Cycles is based on the setting in the task configuration. Depending on the set task timing the dead time may be extended by one cycle.

The value "Drive Delay in Cycles" indicates additional delays by whole I/O cycles caused by the drive.

The value "Additional Drive Delay" is a fixed time value in µs caused by the hardware used.

#### Effect of dead time compensation

Dead time compensation is used for conversion of all NC data that are cyclically exchanged with the PLC (NcToPlc) to the current time. The actual position, set position and following error of the axis in particular refer to the current time and reflect the physical axis position at this time. The PLC can use these values for further high-precision time and position calculations. (See basic functions <u>XFC\_GetCurDcTaskTime [} 31]</u>, <u>XFC\_TimeOfPosition [} 36]</u> and <u>XFC\_PositionAtTime [} 31]</u>.)

# 4 PLC API

# 4.1 TcMC2\_XFC

# 4.1.1 CAMSWITCH\_REF

The data type *CAMSWITCH\_REF* refers to a data structure with cam parameters for a digital cam controller *MC\_DigitalCamSwitch*.

```
TYPE CAMSWITCH_REF :

STRUCT

NumberOfSwitches : UDINT;

pSwitches : POINTER TO MC_CamSwitch;

SizeOfSwitches : UDINT;

END_STRUCT

END_TYPE
```

The actual data structure for parameterization of a digital cam controller is usually an ARRAY OF <u>MC CamSwitch [13]</u>. *CAMSWITCH\_REF* refers to this structure via a pointer and clearly defines the size of the structure and the number of actual cams.

A variable of type CAMSWITCH\_REF is initialized as illustrated in the following example:

```
VAR
CamSwitchArray : ARRAY[1..3] OF MC_CamSwitch;
CamSwitchRef : CAMSWITCH_REF;
END VAR
```

#### MC\_CamSwitch [ 13]

```
(* real number of defined digital cams *)
CamSwitchRef.NumberOfSwitches := 1; (* 1..3 *)
(* pointer to the digital cam data array *)
CamSwitchRef.pSwitches := ADR(CamSwitchArray);
(* maximum size of the digital cam data array *)
CamSwitchRef.SizeOfSwitches := SIZEOF(CamSwitchArray);
```

#### Example with two cam tracks

| CamSwitchRefTrack1 | : CAMSWITCH_REF              |               |                     |                                                  |          |          |  |          |  |  |  |
|--------------------|------------------------------|---------------|---------------------|--------------------------------------------------|----------|----------|--|----------|--|--|--|
|                    | Value                        |               | CamSwitchArrayTrack | amSwitchArrayTrack1 : Array [1n] OF MC_CamSwitch |          |          |  |          |  |  |  |
| NumberOfSwitches   | 3                            |               |                     |                                                  |          |          |  |          |  |  |  |
| pSwitches          | ADR(CamSwitchArrayTrack1) =  | $\rightarrow$ |                     | Switch 1                                         | Switch 2 | Switch 3 |  | Switch n |  |  |  |
| SizeOfSwitches     | SIZEOF(CamSwitchArrayTrack1) |               | FirstOnPosition     | 2000                                             | 2500     | 4000     |  |          |  |  |  |
|                    |                              | _             | LastOnPosition      | 3000                                             | 3000     | 1000     |  |          |  |  |  |
|                    |                              |               | AxisDirection       | POSITIVE                                         | NEGATIVE | BOTH     |  |          |  |  |  |
|                    |                              |               | CamSwitchMode       | POSITION                                         | POSITION | POSITION |  |          |  |  |  |

Duration [s]

Duration [s]

1,350

| CamSwitchRefTrack2 | : CAMSWITCH_REF              |               |                                                   |      |          |  |  |  |  |  |
|--------------------|------------------------------|---------------|---------------------------------------------------|------|----------|--|--|--|--|--|
|                    | Value                        |               | CamSwitchArrayTrack2 : Array [1m] OF MC_CamSwitch |      |          |  |  |  |  |  |
| NumberOfSwitches   | 1                            |               |                                                   |      |          |  |  |  |  |  |
| pSwitches          | ADR(CamSwitchArrayTrack2) -  | $\rightarrow$ | Switch 1 Sw                                       |      | Switch m |  |  |  |  |  |
| SizeOfSwitches     | SIZEOF(CamSwitchArrayTrack2) |               | FirstOnPosition                                   | 3000 |          |  |  |  |  |  |
|                    |                              | _             | LastOnPosition                                    | _    |          |  |  |  |  |  |
|                    |                              |               | AxisDirection                                     | BOTH |          |  |  |  |  |  |
|                    |                              |               | CamSwitchMode                                     | TIME |          |  |  |  |  |  |

# 4.1.2 MC\_CamSwitch

The data type *MC\_CamSwitch* contains all parameters of a digital cam for a digital cam controller *MC\_DigitalCamSwitch*.

```
TYPE MC_CamSwitch :

STRUCT

FirstOnPosition : LREAL;

LastOnPosition : LREAL;

AxisDirection : E_CamSwitchDirection;

CamSwitchMode : E_CamSwitchMode;

Duration : LREAL;

END_STRUCT

END_TYPE
```

The data structure for parameterization of a digital cam controller is usually an ARRAY OF *MC\_CamSwitch*. A further structure <u>CAMSWITCH REF [13]</u> refers to this structure.

| FirstOnPosition | First position from which the cam is switched on.                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LastOnPosition  | Last position up to which the cam is switched on. The cam function is inverted, if <i>LastOnPosition &lt; FirstOnPosition. LastOnPosition</i> is not used for time cams. |
| AxisDirection   | AxisDirection defines in which axis travel direction the digital cam is active (positive, negative or both directions).                                                  |
| CamSwitchMode   | Digital cam type (position cam, time cam or brake cam).                                                                                                                  |
| Duration        | Duration defines the switch-on time of the cam in [s] and is only used for time cams.                                                                                    |

```
TYPE E CamSwitchDirection :
```

```
(
    CAMSWITCHDIRECTION_BOTH, (* digital cam will work in both directions *)
    CAMSWITCHDIRECTION_POSITIVE, (* digital cam is just working in positive direction *)
    CAMSWITCHDIRECTION_NEGATIVE (* digital cam is just working in negative direction *)
);
END_TYPE
TYPE E_CamSwitchMode :
(
    CAMSWITCHMODE_POSITION, (* position cam *)
    CAMSWITCHMODE_POSITION, (* time cam *)
    CAMSWITCHMODE_BREAK (* time cam *)
);
END_TYPE
```

## 4.1.3 MC\_DigitalCamSwitch



MC\_DigitalCamSwitch is a digital cam controller with one or several cams on a digital output track.

Position, time and brake cams can be realized through suitable parameterization. Further output tracks can be realized with independent instances of the function block.

In addition to the switching state of the digital output the output data structure contains precise time information for the next switching operations. This information is used for the actual output at an XFC output terminal with a downstream function block (XFC\_EL2252 or <u>XFC\_EL2262 [} 28]</u>).

#### Inputs

Enable

```
VAR_INPUT
Enable : BOOL;
Options : ST_CamSwitchOptions;
END_VAR
```

The cam controller is activated via the *Enable* input. The initial state remains unchanged, as long as *Enable=FALSE*.

| Options  | Optional parameters |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Options. | EncoderIndex        | If more than one encoder is<br>connected to the axis, the encode<br>index $[0 - 9]$ can be defined here.<br>The first encoder has the index 0.                                                                                                                                                                                                                                             |  |  |
| Options. | UseAcceleration     | UseAcceleration can be set to TRUE<br>in order to incorporate the<br>acceleration of the axis into the<br>position calculation. UseAcceleration<br>can be advantageous if the setpoint<br>values of the acceleration can be<br>used. UseAcceleration may be<br>disadvantageous with encoder axes<br>that supply a noisy position signal,<br>because the acceleration is also<br>erroneous. |  |  |

#### Outputs

| VAR  | OUTPUT      |   |        |
|------|-------------|---|--------|
| _    | InOperation | : | BOOL;  |
|      | Busy        | : | BOOL;  |
|      | Error       | : | BOOL;  |
|      | ErrorID     | : | UDINT; |
| END_ | VAR         |   |        |

| InOperation | <i>InOperation</i> is TRUE, as long as the cam controller is active and the cam track is calculated according to the cam parameterization. |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Busy        | <i>Busy</i> is TRUE as long as the block function is not completed.                                                                        |  |  |  |  |
| Error       | Becomes TRUE if an error occurs.                                                                                                           |  |  |  |  |
| ErrorID     | If the error output is set, this parameter supplies the error number                                                                       |  |  |  |  |

#### Inputs/outputs

| VAR | IN OUT       |   |                           |
|-----|--------------|---|---------------------------|
|     | Axis         | : | AXIS_REF;                 |
|     | Switches     | : | CAMSWITCH_REF [ 13]       |
|     | Output       | : | <u>OUTPUT_REF [} 18];</u> |
|     | TrackOptions | : | <u>TRACK_REF [ 20];</u>   |
| END | 177 D        |   |                           |

END\_VAR

| Axis         | Axis data structure                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switches     | The data structure <i>Switches</i> contains a reference to the parameterization of all cams on the cam track.                                                            |
| Output       | The data structure <i>Output</i> contains the calculated state of the digital output<br>and the associated time stamp for the output at a digital XFC output<br>terminal |
| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track.                                                                                  |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

#### Example for two digital cam tracks

| CamSwitchRefTrack1                          | : CAMSWITCH_REF           |               |                     |                                                 |          |          |  |          |
|---------------------------------------------|---------------------------|---------------|---------------------|-------------------------------------------------|----------|----------|--|----------|
| Value                                       |                           |               | CamSwitchArrayTrack | nSwitchArrayTrack1 : Array [1n] OF MC_CamSwitch |          |          |  |          |
| NumberOfSwitches                            | 3                         |               |                     |                                                 |          |          |  |          |
| pSwitches                                   | ADR(CamSwitchArrayTrack1) | $\rightarrow$ | •                   | Switch 1                                        | Switch 2 | Switch 3 |  | Switch n |
| SizeOfSwitches SIZEOF(CamSwitchArrayTrack1) |                           |               | FirstOnPosition     | 2000                                            | 2500     | 4000     |  |          |
|                                             |                           |               | LastOnPosition      | 3000                                            | 3000     | 1000     |  |          |
|                                             |                           |               | AxisDirection       | POSITIVE                                        | NEGATIVE | BOTH     |  |          |
|                                             |                           |               | CamSwitchMode       | POSITION                                        | POSITION | POSITION |  |          |
|                                             |                           |               | Duration [s]        | -                                               | -        | -        |  |          |

| CamSwitchRefTrack2 | : CAMSWITCH_REF              |               |                     |              |             |          |
|--------------------|------------------------------|---------------|---------------------|--------------|-------------|----------|
| Value              |                              |               | CamSwitchArrayTrack | 2 : Array [1 | m] OF MC_Ca | mSwitch  |
| NumberOfSwitches   | 1                            |               |                     |              |             |          |
| pSwitches          | ADR(CamSwitchArrayTrack2)    | $\rightarrow$ | •                   | Switch 1     |             | Switch m |
| SizeOfSwitches     | SIZEOF(CamSwitchArrayTrack2) |               | FirstOnPosition     | 3000         |             |          |
|                    |                              |               | LastOnPosition      | _            |             |          |
|                    |                              |               | AxisDirection       | BOTH         |             |          |
|                    |                              |               | CamSwitchMode       | TIME         |             |          |
|                    |                              |               | Duration [s]        | 1,350        |             |          |

The following switching diagrams result from the cam data. The switching sequence is represented without any time compensation and hysteresis and varies for both directions of travel due to the cam data.

#### Switching sequence for positive direction of travel



#### Switching sequence for negative direction of travel



# 4.1.4 MC\_DigitalCamSwitch\_MultiEdge

|   | MC_DigitalCamSw | /itch_MultiEdge |  |
|---|-----------------|-----------------|--|
| _ | Enable          | InOperation     |  |
| _ | Options         | Busy            |  |
| _ | Axis ⊳          | Error           |  |
| _ | Switches ⊳      | ErrorID         |  |
| _ | Output ⊳        |                 |  |
| _ | TrackOptions ⊳  |                 |  |

*MC\_DigitalCamSwitch\_MultiEdge* is a digital cam controller with one or several cams on a digital output track. The function block supplements the function block *MC\_DigitalCamSwitch* by the capability of being able to perform multiple switching operations during a PLC cycle. The switching operations are defined by position cams. Further output tracks can be realized with independent instances of the function block.

In addition to the switching state of the digital output the output data structure contains precise time information for the next switching operations. With this information the actual output can take place on an XFC multi-timestamp output terminal with a downstream function block (XFC\_EL1259\_MultiEdge, XFC\_EL2212\_MultiEdge, XFC\_EL2258\_MultiEdge or XFC\_EL2262\_MultiEdge).

# *Note* Time cams and brake cams cannot be used with the function block MC\_DigitalCamSwitch\_MultiEdge. Terminals without multi-timestamp functionality are not suitable for use with this function block.

#### Inputs

```
VAR_INPUT
Enable : BOOL;
Options : ST_CamSwitchOptions;
END VAR
```

| Enable   | The cam controller is activated via the <i>Enable</i> input. The initial state remains unchanged, as long as <i>Enable</i> =FALSE. |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Options  | Optional parameters                                                                                                                | Optional parameters                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Options. | EncoderIndex                                                                                                                       | If more than one encoder is<br>connected to the axis, the encoder<br>index $[0 - 9]$ can be defined here.<br>The first encoder has the index 0.                                                                                                                                                                                                                                            |  |  |
| Options. | UseAcceleration                                                                                                                    | UseAcceleration can be set to TRUE<br>in order to incorporate the<br>acceleration of the axis into the<br>position calculation. UseAcceleration<br>can be advantageous if the setpoint<br>values of the acceleration can be<br>used. UseAcceleration may be<br>disadvantageous with encoder axes<br>that supply a noisy position signal,<br>because the acceleration is also<br>erroneous. |  |  |

#### Outputs

| VAR | OUTPUT      |   |        |
|-----|-------------|---|--------|
|     | InOperation | : | BOOL;  |
|     | Busy        | : | BOOL;  |
|     | Error       | : | BOOL;  |
|     | ErrorID     | : | UDINT; |
| END | VAR         |   |        |

| InOperation | <i>InOperation</i> is TRUE, as long as the cam controller is active and the cam track is calculated according to the cam parameterization. |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Busy        | Busy is TRUE as long as the block function is not completed.                                                                               |

| Error Becomes TRUE if an error occurs. |                                                                      |  |  |
|----------------------------------------|----------------------------------------------------------------------|--|--|
| ErrorID                                | If the error output is set, this parameter supplies the error number |  |  |

#### Inputs/outputs

| VAR | IN OUT       |   |                              |
|-----|--------------|---|------------------------------|
| -   |              |   |                              |
|     | Axis         | : | AXIS REF;                    |
|     |              |   |                              |
|     | Switches     | : | CAMSWITCH_REF [ ] 13];       |
|     |              |   |                              |
|     | Output       | : | OUTPUT REF MULTIEDGE [] 18]; |
|     | 1            |   |                              |
|     | TrackOptions | : | TRACK REF () 20);            |
|     |              |   |                              |
| END | VAR          |   |                              |
|     |              |   |                              |

| Axis         | Axis data structure                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switches     | The data structure <i>Switches</i> contains a reference to the parameterization of all cams on the cam track.                                                            |
| Output       | The data structure <i>Output</i> contains the calculated state of the digital output<br>and the associated time stamp for the output at a digital XFC output<br>terminal |
| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track.                                                                                  |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

# 4.1.5 OUTPUT\_REF

The data type *OUTPUT\_REF* contains data describing the state of a digital output. In addition to the switching state it contains time stamps for state changes.

```
TYPE OUTPUT REF :
STRUCT
   Level
                        : BOOL;
                                      (* current level of the digital output *)
   NextStateChangeValid : BOOL;
                                      (* time value NextStateChange is valid *)
   NextStateChange : T_DCTIME32; (* time of next state change -
 current level will be inverted *)
    NextOnTimeValid
                        : BOOL;
                                      (* time value NextOnTime is valid *)
                        : T_DCTIME32; (* time when the digital output is turned ON next time *)
   NextOnTime
    NextOffTimeValid
                        : BOOL;
                                      (* time value NextOffTime is valid *)
                        : T DCTIME32; (* time when the digital output is turned OFF next time *)
   NextOffTime
END STRUCT
END TYPE
```

| Level                                                                                                            | Current switching state of the digital output                          |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| <b>NextStateChangeValid</b> <i>NextStateChangeValid</i> is TRUE, if the time stamp <i>NextStateChange</i> valid. |                                                                        |  |  |
| NextStateChange                                                                                                  | Time of the next change of state (distributed clock TimeStamp)         |  |  |
| NextOnTimeValid NextOnTimeValid is TRUE, if the time stamp NextOnTime is valid.                                  |                                                                        |  |  |
| NextOnTime Time of the next positive switching edge (distributed clock TimeStam                                  |                                                                        |  |  |
| <b>NextOffTimeValid</b> NextOffTimeValid is TRUE, if the time stamp NextOffTime is valid.                        |                                                                        |  |  |
| NextOffTime                                                                                                      | Time of the next negative switching edge (distributed clock TimeStamp) |  |  |

## 4.1.6 OUTPUT\_REF\_MULTIEDGE

The data type *OUTPUT\_REF\_MULTIEDGE* contains data describing the state of a digital output. In addition to the switching state it contains time stamps for state changes. The data type is used in conjunction with terminals that allow multiple switching operations per PLC cycle by means of multi-timestamp.

```
TYPE OUTPUT_REF_MULTIEDGE :
STRUCT
SwitchEvent : ARRAY [0..TCMC2_XFC_MAXINDEXOFMULTIEDGEOUTPUTEVENTS] OF ST_SwitchEvent;
END_STRUCT
END_TYPE
TYPE ST_SwitchEvent :
STRUCT
ID : UDINT;
Valid : BOOL; (* time value is valid *)
Level : BOOL; (* time value is valid *)
Position : LREAL;
DcTime : T_DCTIME32; (* time when the digital output changes *)
Duration : DINT;
```

END\_STRUCT

| END | TYPE |
|-----|------|
|     |      |

| ID       | Internal ID of the switching edge                              |  |
|----------|----------------------------------------------------------------|--|
| Valid    | Valid is TRUE if the <i>DcTime</i> timestamp is valid.         |  |
| Level    | Current switching state of the digital output                  |  |
| Position | Switching position of the switching operation                  |  |
| DcTime   | Time of the next change of state (distributed clock TimeStamp) |  |
| Duration | Not used                                                       |  |

## 4.1.7 ST\_EL2258\_Diagnostics

The data type ST\_EL2258\_Diagnostics contains diagnostic data that can be used for error analysis.

TYPE ST\_EL2258\_Diagnostics : STRUCT ErrorOnOutputMissed : BOOL; ErrorOffOutputMissed : BOOL; ErrorNoOfEventsExceeded : BOOL; ErrorBufferOverflow : BOOL; ErrorEventDistance : BOOL;

| OnPrecisionReduced  | : | BOOL; |
|---------------------|---|-------|
| OffPrecisionReduced | : | BOOL; |
| LastOutputLevel     | : | BOOL; |
| ActivatedOnValues   | : | INT;  |
| ActivatedOffValues  | : | INT;  |
|                     |   |       |

```
END_STRUCT
```

END\_TYPE

| ErrorOnOutputMissed     | Indicates that a rising switching edge could not be determined to an exact cycle and therefore could not be output. The <i>ForceWhenLate</i> input can be set in order to output the switching edge as well as possible.  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErrorOffOutputMissed    | Indicates that a falling switching edge could not be determined to an exact cycle and therefore could not be output. The <i>ForceWhenLate</i> input can be set in order to output the switching edge as well as possible. |
| ErrorNoOfEventsExceeded | Indicates that too many edges were delivered for a cycle and that therefore not all of them can be output.                                                                                                                |
| ErrorBufferOverflow     | Indicates that the output buffer of the EL2258 is full.                                                                                                                                                                   |
| ErrorEventDistance      | Indicates that the distance between two consecutive edges is too small.                                                                                                                                                   |
| OnPrecisionReduced      | Indicates that a rising switching edge could not be determined to an exact cycle. However, the switching edge was output as well as possible.                                                                             |
| OffPrecisionReduced     | Indicates that a falling switching edge could not be determined to an exact cycle. However, the switching edge was output as well as possible.                                                                            |
| LastOutputLevel         | indicates which signal state the channel of the EL2262 will have after the following update.                                                                                                                              |
| ActivatedOnValues       | Number of rising edges activated in this cycle                                                                                                                                                                            |
| ActivatedOffValues      | Number of falling edges activated in this cycle                                                                                                                                                                           |

# 4.1.8 ST\_EL2262\_Diagnostics

The data type ST\_EL2262\_Diagnostics contains diagnostic data that can be used for error analysis.

TYPE ST\_EL2262\_Diagnostics : STRUCT

|     | ErrorOnOutputMissed  | : | BOOL; |
|-----|----------------------|---|-------|
|     | ErrorOffOutputMissed | : | BOOL; |
|     | OnPrecisionReduced   | : | BOOL; |
|     | OffPrecisionReduced  | : | BOOL; |
|     | LastOutputLevel      | : | BOOL; |
|     | ActivatedOnValues    | : | INT;  |
|     | ActivatedOffValues   | : | INT;  |
| END | STRUCT               |   |       |
|     |                      |   |       |

END TYPE

| ErrorOnOutputMissed  | Indicates that a rising switching edge could not be determined to an exact cycle and therefore could not be output. The <i>ForceWhenLate</i> input can be set in order to output the switching edge as well as possible.  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErrorOffOutputMissed | Indicates that a falling switching edge could not be determined to an exact cycle and therefore could not be output. The <i>ForceWhenLate</i> input can be set in order to output the switching edge as well as possible. |
| OnPrecisionReduced   | Indicates that a rising switching edge could not be determined to an exact cycle. However, the switching edge was output as well as possible.                                                                             |
| OffPrecisionReduced  | Indicates that a falling switching edge could not be determined to an exact cycle. However, the switching edge was output as well as possible.                                                                            |
| LastOutputLevel      | Indicates which signal state the channel of the EL2262 will have after the following update.                                                                                                                              |
| ActivatedOnValues    | Number of rising edges activated in this cycle                                                                                                                                                                            |
| ActivatedOffValues   | Number of falling edges activated in this cycle                                                                                                                                                                           |

# 4.1.9 TRACK\_REF

The data type *TRACK\_REF* contains the parameters of a digital cam track for a digital cam controller *MC\_DigitalCamSwitch*.

```
TYPE TRACK_REF :
STRUCT
    ModuloPositions : BOOL := TRUE; (* all cam positions are interpreted as modulo positions when TR
UE *)
    ModuloFactor : LREAL := 360; (* e. g. 360 degrees *)
OnCompensation : LREAL; (* compensation time [s] *)
OffCompensation : LREAL; (* compensation time [s] *)
                                         (* compensation time [s] *)
    OffCompensation : LREAL;
                    : LREAL;
    Hysteresis
                                         (* distance from last switch position (+ or -) *)
                      : BOOL;
                                        (* allow break to be released when TRUE, break cams will be acti
    BreakRelease
vated when FALSE *)
                                         (* override all digital cams and set track ON *)
    Force
               : BOOL;
                      : BOOL;
                                         (* override all digital cams and set track OFF -
    Disable
 overrides Force as well *)
END STRUCT
END_TYPE
```

| ModuloPositions | If <i>Modulo</i> TRUE, all positions are interpreted as modulo. The cam function is repeated cyclically. The parameter <i>ModuloFactor</i> is used for calculating the modulo cycle. |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ModuloFactor    | <i>ModuloFactor</i> indicates the length of a modulo cycle in the positioning unit of the axis and is only used if <i>Modulo</i> TRUE.                                               |
| OnCompensation  | Compensation time for the rising edge of the cam in [s]. For negative values of <i>OnCompensation</i> the switching time is brought forward, otherwise it is delayed.                |
| OffCompensation | Compensation time for the falling edge of the cam in [s]. For negative values of <i>OffCompensation</i> the switching time is brought forward, otherwise it is delayed.              |

| Hysteresis   | not implemented.<br>Hysteresis of the switching operations for reversing the rotation direction.<br>The hysteresis is specified in the position unit of the axis. |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BreakRelease | Brake enable for brake cams on this cam track                                                                                                                     |
| Force        | The digital output is activated independent of the cams on this track. <i>Disable</i> has priority over <i>Force</i> .                                            |
| Disable      | The digital output is deactivated independent of the cams on this track. <i>Disable</i> has priority over <i>Force</i> .                                          |

#### Method of function of the time compensation



## 4.1.10 XFC\_BreakCam



*XFC\_BreakCam* realizes a brake cam, which deactivates a digital output depending on the position as soon as *BreakRelease* is withdrawn.

In addition to the switching state of the digital output the output data structure contains precise time information for the next switching operations. This information is used for the actual output at an XFC output terminal with a downstream function block (XFC\_EL2252 or <u>XFC\_EL2262 [} 28]</u>).

#### Inputs

```
VAR_INPUT
BreakRelease : LREAL;
LastOnPosition : LREAL;
Modulo : BOOL;
ModuloFactor : LREAL := 360;
OffCompensation : LREAL;
Options : ST_CamSwitchOptions;
END VAR
```

## BreakRelease

Brake enable. The cam remains active as long as *BreakRelease* is TRUE. When *BreakRelease* becomes FALSE, the cam is switched off at position *LastOnPosition*.

| LastOnPosition  | Last position up to which the cam is switched on.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Modulo          | If <i>Modulo</i> TRUE, all positions are interpreted as modulo. The cam function is repeated cyclically. The parameter <i>ModuloFactor</i> is used for calculating the modulo cycle.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| ModuloFactor    | ModuloFactor indicates the of the axis and is only used                                                                                                                                                                                                    | ModuloFactor indicates the length of a modulo cycle in the positioning unit of the axis and is only used if <i>Modulo</i> =TRUE.                                                                                                                                                                                                                                                           |  |  |
| OffCompensation | Compensation time for the falling edge of the cam in [s]. For negative values of <i>OnCompensation</i> the switching time is brought forward, otherwise it is delayed.<br>The value OffCompensation parameterized here has priority over TRACK REF [> 20]. |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Options         | Optional parameters                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Options.        | EncoderIndex                                                                                                                                                                                                                                               | If more than one encoder is connected to the axis, the encoder index can be defined here.                                                                                                                                                                                                                                                                                                  |  |  |
| Options.        | UseAcceleration                                                                                                                                                                                                                                            | UseAcceleration can be set to TRUE<br>in order to incorporate the<br>acceleration of the axis into the<br>position calculation. UseAcceleration<br>can be advantageous if the setpoint<br>values of the acceleration can be<br>used. UseAcceleration may be<br>disadvantageous with encoder axes<br>that supply a noisy position signal,<br>because the acceleration is also<br>erroneous. |  |  |

#### Inputs/outputs

Axis

```
      VAR_IN_OUT
      Output : OUTPUT REF [▶ 18];
Axis : AXIS_REF;

      END_VAR
      The data structure Output contains the calculated state of the digital output and the associated time stamp for the output at a digital XFC output terminal.
```

Axis data structure

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

#### Method of function of the time compensation



# 4.1.11 XFC\_EL1259\_MultiEdge

|   | XFC_EL221;     | 2_MultiEdge       |  |
|---|----------------|-------------------|--|
| _ | ForceWhenLate  | Error             |  |
| _ | Reset          | ErrorID           |  |
| _ | Output ⊳       | ErrorOutputMissed |  |
| _ | TrackOptions > | PrecisionReduced  |  |
| _ | EL2212 >       | Diagnostics       |  |

*XFC\_EL1259\_Multiedge* handles the output of a multi-edge cam controller MC\_DigitalCamSwitch\_MultiEdge EL1259 XFC timestamp terminal.

| Inp | uts |
|-----|-----|
|-----|-----|

```
VAR_INPUT
ForceWhenLate : BOOL;
Reset : BOOL;
END_VAR
```

| ForceWhenLate | If <i>ForceWhenLate</i> is TRUE, the output is activated even if the time stamp is already exceeded.<br>It is recommended to set <i>ForceWhenLate</i> to prevent the loss of a switching edge in case of fluctuations of the time signal. |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset         | Reset initiates a reset of the terminal                                                                                                                                                                                                   |

#### Outputs

| VAR | OUTPUT            |   |                        |
|-----|-------------------|---|------------------------|
|     | Error             | : | BOOL;                  |
|     | ErrorID           | : | UDINT;                 |
|     | ErrorOutputMissed | : | BOOL;                  |
|     | PrecisionReduced  | : | BOOL;                  |
|     | Diagnostics       | : | ST EL2258 Diagnostics; |
| END | VAR               |   |                        |

| Error             | Becomes TRUE if an error occurs.                                                                                                                                                                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErrorID           | If an error output is set, this parameter supplies an error number.                                                                                                                                                                                  |
| ErrorOutputMissed | The exact switching point defined by <i>TimeStamp</i> could not be adhered to and the initial state remains unchanged.<br>If <i>ForceWhenLate</i> is TRUE, the initial state is always output and <i>ErrorOutputMissed</i> does not become TRUE.     |
| PrecisionReduced  | The exact switching point defined by <i>TimeStamp</i> could not be adhered to;<br>the initial state was output with a delay.<br><i>PrecisionReduced</i> should be regarded as a warning. It can only become<br>TRUE if <i>ForceWhenLate</i> is TRUE. |

#### Inputs/outputs

| VAR | IN OUT       |   |                          |
|-----|--------------|---|--------------------------|
|     | Output       | : | OUTPUT_REF_MULTIEDGE;    |
|     | TrackOptions | : | <u>TRACK_REF [] 20];</u> |
|     | EL1259       | : | EL1259 IoInterface;      |
|     |              |   |                          |

END\_VAR

| Output       | Output state for a channel of the Terminal. The data structure <i>Output</i> contains the next calculated states of the digital output and the associated timestamp for output on a digital XFC output terminal. |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track.                                                                                                                          |  |  |
| EL1259       | Process image of the terminal                                                                                                                                                                                    |  |  |

# 4.1.12 XFC\_EL2212\_MultiEdge

|   | XFC_EL221      | 2_MultiEdge       |          |
|---|----------------|-------------------|----------|
| - | ForceWhenLate  | Error             |          |
| - | Reset          | ErrorID           |          |
| - | Output ⊳       | ErrorOutputMissed |          |
| - | TrackOptions Þ | PrecisionReduced  |          |
| - | EL2212 🕨       | Diagnostics       | <u> </u> |

*XFC\_EL2212\_MultiEdge* handles the output of a multi-edge cam controller MC\_DigitalCamSwitch\_MultiEdge EL2212 XFC timestamp terminal.

| Inputs |  |
|--------|--|
|--------|--|

```
VAR_INPUT
ForceWhenLate : BOOL;
Reset : BOOL;
END_VAR
```

| ForceWhenLate | If <i>ForceWhenLate</i> is TRUE, the output is activated even if the time stamp is already exceeded.<br>It is recommended to set <i>ForceWhenLate</i> to prevent the loss of a switching edge in case of fluctuations of the time signal. |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset         | Reset initiates a reset of the terminal                                                                                                                                                                                                   |

#### Outputs

| VAR | OUTPUT            |   |                        |
|-----|-------------------|---|------------------------|
|     | Error             | : | BOOL;                  |
|     | ErrorID           | : | UDINT;                 |
|     | ErrorOutputMissed | : | BOOL;                  |
|     | PrecisionReduced  | : | BOOL;                  |
|     | Diagnostics       | : | ST EL2258 Diagnostics; |
| END | VAR               |   |                        |

| Error             | Becomes TRUE if an error occurs.                                                                                                                                                                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErrorID           | If an error output is set, this parameter supplies an error number.                                                                                                                                                                                  |
| ErrorOutputMissed | The exact switching point defined by <i>TimeStamp</i> could not be adhered to and the initial state remains unchanged.<br>If <i>ForceWhenLate</i> is TRUE, the initial state is always output and <i>ErrorOutputMissed</i> does not become TRUE.     |
| PrecisionReduced  | The exact switching point defined by <i>TimeStamp</i> could not be adhered to;<br>the initial state was output with a delay.<br><i>PrecisionReduced</i> should be regarded as a warning. It can only become<br>TRUE if <i>ForceWhenLate</i> is TRUE. |

#### Inputs/outputs

| VAR | IN OUT       |   |                          |
|-----|--------------|---|--------------------------|
|     | Output       | : | OUTPUT_REF_MULTIEDGE;    |
|     | TrackOptions | : | <u>TRACK_REF [] 20];</u> |
|     | EL2212       | : | EL2212 IoInterface;      |
|     | T77 D        |   |                          |

END\_VAR

| Output       | Output state for a channel of the Terminal. The data structure <i>Output</i> contains the next calculated states of the digital output and the associated timestamp for output on a digital XFC output terminal. |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track.                                                                                                                          |  |  |
| EL2212       | Process image of the terminal                                                                                                                                                                                    |  |  |

#### **Process image**

The terminal is inserted in the process image with up to 10 timestamps for operation with this function block in the multi-timestamp mode and the DC mode must be activated.

## 4.1.13 XFC\_EL2212\_V2



*XFC\_EL2212\_V2* handles the output of a digital cam with the XFC time stamp terminal EL2212.

# Note The function block XFC\_EL2212\_V2 replaces the function block XFC\_EL2212, which is still included in the library for compatibility reasons.

The output of the data to the terminal takes place only shortly before reaching the timestamp of one of the outputs. Four PLC cycles are required for activation and acknowledgement of the outputs. Only then can a further edge change take place. The minimum time between two edge changes of the output signal is therefore four PLC cycles, in order to prevent errors or loss of precision. If the output signal is generated by a cam controller, a minimum cam width can be calculated from the maximum velocity and the PLC cycle time.

The outputs Output1 and Output2 cannot be used completely independently of each other since the activation takes place with only one timestamp. As a prerequisite, the switching edges of both channels must be sufficiently far apart. In this case, the respectively nearest timestamp is applied to the block.

#### Inputs

```
VAR_INPUT
ForceWhenLate : BOOL;
END_VAR
```

| ForceWhenLate | If <i>ForceWhenLate</i> is TRUE, the output is activated even if the time stamp is                                                                        |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | already exceeded.<br>It is recommended to set <i>ForceWhenLate</i> to prevent the loss of a switching<br>edge in case of fluctuations of the time signal. |

#### Outputs

```
VAR_OUTPUT
Error : BOOL;
ErrorID : UDINT;
ErrorOutputMissed : BOOL;
PrecisionReduced : BOOL;
```

end\_var

| Error             | Becomes TRUE if an error occurs.                                                                                                                                                                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErrorID           | If an error output is set, this parameter supplies an error number.                                                                                                                                                                                  |
| ErrorOutputMissed | The exact switching point defined by <i>TimeStamp</i> could not be adhered to and the initial state remains unchanged.<br>If <i>ForceWhenLate</i> is TRUE, the initial state is always output and <i>ErrorOutputMissed</i> does not become TRUE.     |
| PrecisionReduced  | The exact switching point defined by <i>TimeStamp</i> could not be adhered to;<br>the initial state was output with a delay.<br><i>PrecisionReduced</i> should be regarded as a warning. It can only become<br>TRUE if <i>ForceWhenLate</i> is TRUE. |

#### Inputs/outputs

| VAR_ | IN_OUT        |   |                             |
|------|---------------|---|-----------------------------|
|      | Output1       | : | OUTPUT_REF [ 18];           |
|      | Output2       | : | OUTPUT_REF;                 |
|      | TrackOptions1 | : | <u>TRACK_REF [&gt; 20];</u> |
|      | TrackOptions2 | : | TRACK REF;                  |
|      | EL2212        | : | EL2212 IoInterface;         |
| END_ | VAR           |   |                             |

| Output1       | Output state for channel 1 of the Terminal. The data structure <i>Output</i> contains the calculated state of the digital output and the associated time stamp for the output at a digital XFC output terminal  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output2       | Output state for channel 2 of the Terminal. The data structure <i>Output</i> contains the calculated state of the digital output and the associated time stamp for the output at a digital XFC output terminal. |
| TrackOptions1 | The <i>TrackOptions1</i> data structure contains the parameterization of Cam Track 1 for Output1.                                                                                                               |
| TrackOptions2 | The <i>TrackOptions2</i> data structure contains the parameterization of Cam Track 2 for Output2.                                                                                                               |
| EL2212        | Process image of the terminal                                                                                                                                                                                   |

## 4.1.14 XFC\_EL2252\_V2

|   | XFC_EL          | .2252_V2          |  |
|---|-----------------|-------------------|--|
| - | ForceWhenLate   | Error             |  |
| - | Output1 ⊳       | ErrorID           |  |
| _ | Output2 ⊳       | ErrorOutputMissed |  |
| - | TrackOptions1 Þ | PrecisionReduced  |  |
| _ | TrackOptions2 Þ |                   |  |
| - | EL2252 >        |                   |  |

XFC\_EL2252 handles the output of a digital cam with the XFC time stamp terminal EL2252.

# Note The function block XFC\_EL2252\_V2 replaces the function block XFC\_EL2252, which is still included in the library for compatibility reasons.

The output of the data to the terminal takes place only shortly before reaching the timestamp of one of the outputs. Four PLC cycles are required for activation and acknowledgement of the outputs. Only then can a further edge change take place. The minimum time between two edge changes of the output signal is therefore four PLC cycles, in order to prevent errors or loss of precision. If the output signal is generated by a cam controller, a minimum cam width can be calculated from the maximum velocity and the PLC cycle time.

The outputs Output1 and Output2 cannot be used completely independently of each other since the activation takes place with only one timestamp. As a prerequisite, the switching edges of both channels must be sufficiently far apart. In this case, the respectively nearest timestamp is applied to the block.

#### Inputs

```
VAR_INPUT
ForceWhenLate : BOOL;
END_VAR
```

| ForceWhenLate | If <i>ForceWhenLate</i> is TRUE, the output is activated even if the time stamp is |
|---------------|------------------------------------------------------------------------------------|
|               | already exceeded.                                                                  |
|               | It is recommended to set <i>ForceWhenLate</i> to prevent the loss of a switching   |
|               | edge in case of fluctuations of the time signal.                                   |

#### Outputs

| VAR | OUTPUT  |   |        |
|-----|---------|---|--------|
|     | Error   | : | BOOL;  |
|     | ErrorID | : | UDINT; |

| Error             | Becomes TRUE if an error occurs.                                                                                                                                                                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErrorID           | If an error output is set, this parameter supplies an error number.                                                                                                                                                                                  |
| ErrorOutputMissed | The exact switching point defined by <i>TimeStamp</i> could not be adhered to and the initial state remains unchanged.<br>If <i>ForceWhenLate</i> is TRUE, the initial state is always output and <i>ErrorOutputMissed</i> does not become TRUE.     |
| PrecisionReduced  | The exact switching point defined by <i>TimeStamp</i> could not be adhered to;<br>the initial state was output with a delay.<br><i>PrecisionReduced</i> should be regarded as a warning. It can only become<br>TRUE if <i>ForceWhenLate</i> is TRUE. |

#### Inputs/outputs

| VAR_ | IN_OUT        |   |                                  |
|------|---------------|---|----------------------------------|
|      | Output1       | : | <u>OUTPUT_REF [] 18];</u>        |
|      | Output2       | : | OUTPUT_REF;                      |
|      | TrackOptions1 | : | <u>TRACK_REF</u> [▶ <u>20]</u> ; |
|      | TrackOptions2 | : | TRACK REF;                       |
|      | EL2252        | : | EL2252 IoInterface;              |
| END  | VAR           |   |                                  |

| Output1       | Output state for channel 1 of the Terminal. The data structure <i>Output</i> contains the calculated state of the digital output and the associated time stamp for the output at a digital XFC output terminal. |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output2       | Output state for channel 2 of the Terminal. The data structure <i>Output</i> contains the calculated state of the digital output and the associated time stamp for the output at a digital XFC output terminal. |
| TrackOptions1 | The <i>TrackOptions1</i> data structure contains the parameterization of Cam Track 1 for Output1.                                                                                                               |
| TrackOptions2 | The <i>TrackOptions2</i> data structure contains the parameterization of Cam Track 2 for Output2.                                                                                                               |
| EL2252        | Process image of the terminal                                                                                                                                                                                   |

## 4.1.15 XFC\_EL2258\_Multiedge

|   | XFC_EL2258_MultiEdge |                   |          |
|---|----------------------|-------------------|----------|
| - | ForceWhenLate        | Error             | <u> </u> |
| - | Reset                | ErrorID           | <u> </u> |
| _ | Output ⊳             | ErrorOutputMissed |          |
| _ | TrackOptions ▷       | PrecisionReduced  |          |
| _ | EL2258 🖻             | Diagnostics       | <u> </u> |

*XFC\_EL2258\_Multiedge* handles the output of a multi-edge cam controller MC\_DigitalCamSwitch\_MultiEdge EL2258 XFC timestamp terminal.

#### Inputs

```
VAR_INPUT
ForceWhenLate : BOOL;
Reset : BOOL;
END_VAR
```

| ForceWhenLate | If <i>ForceWhenLate</i> is TRUE, the output is activated even if the time stamp is already exceeded.<br>It is recommended to set <i>ForceWhenLate</i> to prevent the loss of a switching edge in case of fluctuations of the time signal. |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset         | Reset initiates a reset of the terminal                                                                                                                                                                                                   |

#### Outputs

| /AR | OUTPUT            |   |                        |
|-----|-------------------|---|------------------------|
|     | Error             | : | BOOL;                  |
|     | ErrorID           | : | UDINT;                 |
|     | ErrorOutputMissed | : | BOOL;                  |
|     | PrecisionReduced  | : | BOOL;                  |
|     | Diagnostics       | : | ST EL2258 Diagnostics; |
| IND | VAR               |   |                        |

| Error             | Becomes TRUE if an error occurs.                                                                                                                                                                                                                     |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ErrorID           | If an error output is set, this parameter supplies an error number.                                                                                                                                                                                  |  |  |
| ErrorOutputMissed | The exact switching point defined by <i>TimeStamp</i> could not be adhered to and the initial state remains unchanged.<br>If <i>ForceWhenLate</i> is TRUE, the initial state is always output and <i>ErrorOutputMissed</i> does not become TRUE.     |  |  |
| PrecisionReduced  | The exact switching point defined by <i>TimeStamp</i> could not be adhered to;<br>the initial state was output with a delay.<br><i>PrecisionReduced</i> should be regarded as a warning. It can only become<br>TRUE if <i>ForceWhenLate</i> is TRUE. |  |  |
| Diagnostics       | <u>Data structure [▶ 19]</u> containing diagnostic data that can be used for error analysis.                                                                                                                                                         |  |  |

#### Inputs/outputs

| Out  | tnut         |   | Output state for a channel of |
|------|--------------|---|-------------------------------|
|      |              |   |                               |
| END_ | VAR          |   |                               |
|      | EL2258       | : | EL2258_IoInterface;           |
|      | TrackOptions | : | <u>TRACK_REF [ 20];</u>       |
|      | Output       | : | OUTPUT_REF_MULTIEDGE;         |
| VAR  | _IN_OUT      |   |                               |

| Output       | Output state for a channel of the Terminal. The data structure <i>Output</i> contains the next calculated states of the digital output and the associated timestamp for output on a digital XFC output terminal. |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track.                                                                                                                          |
| EL2258       | Process image of the terminal                                                                                                                                                                                    |

## 4.1.16 XFC\_EL2262

|   | XFC_EL2262            |                   |   |
|---|-----------------------|-------------------|---|
| - | OversamplingFactor    | Error             |   |
| - | OutputOneCycleDelayed | ErrorID           |   |
| - | ForceWhenLate         | ErrorOutputMissed | - |
| - | Channel               | PrecisionReduced  |   |
| - | Output ⊳              |                   |   |
| - | TrackOptions ⊳        |                   |   |
| - | EL2262 >              |                   |   |

XFC\_EL2262 handles the output of a digital cam with the EL2262 XFC oversampling terminal.

The maximum frequency depends on the cycle time. The minimum distance between two rising signal edges is two PLC cycles. The minimum distance between rising and falling edges can be smaller than a PLC cycle. The switching accuracy is determined by the set oversampling factor of the terminal.

The two channels of the terminal are independent of each other and are served by two instances of the *XFC\_EL2262* function block.

#### Inputs

```
VAR_INPUT
OversamplingFactor : UINT;
OutputOneCycleDelayed : BOOL; (* TRUE if EL2262 is updated with the NC SAF task at the beginning
of the next cycle *)
```

| OversamplingFactor    | Oversampling factor for the EL2262 terminal                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| OutputOneCycleDelayed | OutputOneCycleDelayed is TRUE, if the output of the process image is delayed by a cycle due to the set timing.<br>OutputOneCycleDelayed depends on the timing of the output task to which the EL2262 is linked.                                                                                                                                                                                                                                       |  |  |
| ForceWhenLate         | If the time information changes slightly from cycle to cycle, it might not be possible for a switching edge to be output. In such a situation <i>ForceWhenLate</i> forces the best possible switching. In this case the <i>PrecisionReduced</i> output goes TRUE and can be used for diagnosis. (Can be used in the case of increased jitter in an axis position where the output of a switching edge cannot be determined to an exact output cycle). |  |  |
| Channel               | Channel number 0 or 1 of the EL2262 Terminal                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

#### Outputs

```
VAR_OUTPUT
Error : BOOL;
ErrorID : UDINT;
ErrorOutputMissed : BOOL;
END_VAR
```

| Error             | Becomes TRUE if an error occurs.                                                                                                                                                                            |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ErrorID           | If an error output is set, this parameter supplies an error number.                                                                                                                                         |  |  |
| ErrorOutputMissed | indicates that a switching edge cannot be determined to an exact cycle and therefore cannot be output. The <i>ForceWhenLate</i> input can be set in order to output the switching edge as well as possible. |  |  |
| PrecisionReduced  | indicates that a switching edge cannot be determined to an exact cycle.<br>However, the switching edge was output as well as possible.                                                                      |  |  |

#### Inputs/outputs

VAR\_IN\_OUT

| _   | ^ ^ ^        |   |                     |
|-----|--------------|---|---------------------|
|     | Output       | : | OUTPUT_REF [ ]3];   |
|     | TrackOptions | : | TRACK_REF [ 20];    |
|     | EL2262       | : | EL2262_IoInterface; |
| END | VAR          |   |                     |
|     |              |   |                     |

| Output       | The data structure <i>Output</i> contains the calculated state of the digital output<br>and the associated time stamp for the output at a digital XFC output<br>terminal |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track.                                                                                  |  |
| EL2262       | Process image of the terminal                                                                                                                                            |  |

# 4.1.17 XFC\_EL2262\_MultiEdge

|   | XFC_EL226             | 2_MultiEdge       |  |
|---|-----------------------|-------------------|--|
| _ | Reset                 | Error             |  |
| - | Preset                | ErrorID           |  |
| - | OversamplingFactor    | ErrorOutputMissed |  |
| - | OutputOneCycleDelayed | PrecisionReduced  |  |
| - | ForceWhenLate         | Diagnostics       |  |
| - | Channel               |                   |  |
| _ | Output ⊳              |                   |  |
| _ | TrackOptions ⊳        |                   |  |
| _ | EL2262 Þ              |                   |  |

\_XFC\_EL2262\_MultiEdge handles the output of digital cams with the EL2262 XFC oversampling terminal.

29

The maximum frequency depends on the cycle time. The minimum distance between two rising signal edges = (2\*PLC cycle time) / oversampling factor. The minimum distance between rising and falling edges = PLC cycle time / oversampling factor. The switching accuracy is determined by the set oversampling factor of the terminal.

#### Inputs

| VAR_INPUT                  |                                                                       |
|----------------------------|-----------------------------------------------------------------------|
| Reset                      | : BOOL;                                                               |
| Preset                     | : BOOL;                                                               |
| OversamplingFactor         | : UINT;                                                               |
| OutputOneCycleDelayed      | : BOOL; (* TRUE if EL2262 is updated with the NC SAF task at the begi |
| nning of the next cycle *) |                                                                       |
| ForceWhenLate              | : BOOL; (* forces the output even when the timestamp is missed *)     |
| Channel                    | : INT; (* select 0 or 1 for Output0 or Output1 *)                     |
| END_VAR                    |                                                                       |

| Reset                 | The terminal output is deactivated.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preset                | The terminal output is activated.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OversamplingFactor    | Oversampling factor for the EL2262 terminal                                                                                                                                                                                                                                                                                                                                                                                                           |
| OutputOneCycleDelayed | <i>OutputOneCycleDelayed</i> is TRUE, if the output of the process image is delayed by a cycle due to the set timing.<br><i>OutputOneCycleDelayed</i> depends on the timing of the output task to which the EL2262 is linked.                                                                                                                                                                                                                         |
| ForceWhenLate         | If the time information changes slightly from cycle to cycle, it might not be possible for a switching edge to be output. In such a situation <i>ForceWhenLate</i> forces the best possible switching. In this case the <i>PrecisionReduced</i> output goes TRUE and can be used for diagnosis. (Can be used in the case of increased jitter in an axis position where the output of a switching edge cannot be determined to an exact output cycle). |
| Channel               | Defines the output channel of the EL2262, where 0 = Output0 and 1 = Output1.                                                                                                                                                                                                                                                                                                                                                                          |

#### Outputs

| VAR | OUTPUT            |   |                        |
|-----|-------------------|---|------------------------|
|     | Error             | : | BOOL;                  |
|     | ErrorID           | : | UDINT;                 |
|     | ErrorOutputMissed | : | BOOL;                  |
|     | PrecisionReduced  | : | BOOL;                  |
|     | Diagnostics       | : | ST EL2262 Diagnostics; |
| END | VAR               |   |                        |

| Error             | Becomes TRUE if an error occurs.                                                                                                                                                                           |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ErrorID           | If an error output is set, this parameter supplies an error number.                                                                                                                                        |
| ErrorOutputMissed | indicates that a switching edge could be determined to an exact cycle and therefore cannot be output. The <i>ForceWhenLate</i> input can be set in order to output the switching edge as well as possible. |
| PrecisionReduced  | indicates that a switching edge could be determined to an exact cycle.<br>However, the switching edge was output as well as possible.                                                                      |
| Diagnostics       | Data structure [> 20] containing diagnostic data that can be used for error analysis                                                                                                                       |

#### Inputs/outputs

| VAR | IN_OUT       |   |                           |
|-----|--------------|---|---------------------------|
|     | Output       | : | OUTPUT_REF_MULTIEDGE;     |
|     | TrackOptions | : | <u>TRACK_REF [▶ 20]</u> ; |
|     | EL2262       | : | EL2262 IoInterface;       |
| END | VAR          |   |                           |

#### Output

The <u>data structure [} 18]</u> Output contains an array of calculated states of the digital output and the associated timestamp for output on a digital XFC output terminal

| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track. |
|--------------|-----------------------------------------------------------------------------------------|
| EL2262       | Process image of the terminal                                                           |

## 4.1.18 XFC\_ExtendDcTime

| XFC_ExtendDcTime |  |
|------------------|--|
| -TimeStamp32     |  |

The function *XFC\_ExtendDcTime* extends a 32-bit time stamp to 64 bit.

A prerequisite for the extension to a complete time stamp is that the 32-bit time stamp is valid for the current time range. It is not possible to guarantee error-free extension of a time stamp that applies more than approx. +/- 2 seconds before or after the current time.

#### Inputs

```
VAR_INPUT

TimeStamp32 : T_DCTIME32;

END_VAR

TimeStamp32 Distributed clock system time.
```

Distributed clock system time. *TimeStamp32* contains the lower 32 bits of the complete *DcTime* and covers a time range of +/- 2 seconds around the current time.

#### Return value

```
FUNCTION XFCF_ExtendDcTime : T_DCTIME
```

| Return value of the function | Complete 64-bit distributed clock system time. |
|------------------------------|------------------------------------------------|
|                              |                                                |

## 4.1.19 XFC\_GetCurDcTaskTime

```
XFC_GetCurDcTaskTime
```

The function XFC\_GetCurDcTaskTime determines the start time of the current PLC cycle.

The function optimizes the calls of the system function F\_GetCurDcTaskTime by answering several queries within a PLC task cycle with the same time, without calling the system function repeatedly.

#### **Return value**

```
FUNCTION XFCF_GetCurDcTaskTime : T_DCTIME
```

| Return value of the function | Complete 64-bit distributed clock system time. Start time of the current PLC |
|------------------------------|------------------------------------------------------------------------------|
|                              | cycle (cycle of the task that calls this function.)                          |

## 4.1.20 XFC\_PositionAtTime

| XFC_Posit | ionAtTime  |  |
|-----------|------------|--|
| -DcTime   | Position – |  |
| -Options  | Error-     |  |
| –Axis ⊳   | ErrorID -  |  |

*XFC\_PositionAtTime* calculates an axis position, which will be or was valid at a given time.

The function extrapolates the position in relation to the current position and dynamics. Precise extrapolation is only possible over a short interval, since the axis dynamics may change.

The function block requires precisely one call in order to provide the result. It can therefore be used similar to a function, although as well as the position it may also return an error. This error must be analyzed in order to ensure that the calculated position is valid.

#### Inputs

```
VAR_INPUT
DcTime : T_DCTIME32;
Options : ST_NcTimeConversionOptions;
END VAR
```

| DcTime   | Distributed clock system tim<br><i>DcTime</i> contains the lower 3<br>time range of +/- 2 seconds<br>the calculation of the position<br>time, i.e. only a few PLC or I | e.<br>32 bits of the complete <i>DcTime</i> and covers a<br>around the current time. In order to optimise<br>n value, the time should be close to the current<br>NC cycles in the future or the past.                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Options  | Data structure with options f                                                                                                                                          | or position extrapolation.                                                                                                                                                                                                     |
| Options. | SubIndex                                                                                                                                                               | For axes with more than one encoder<br>the index (09) of the encoder to<br>which the position refers can be<br>specified in <i>SubIndex</i> .                                                                                  |
| Options. | InterpolationOptions                                                                                                                                                   | <ul> <li>0: The position extrapolation is carried out with the current velocity, without taking into account the current acceleration.</li> <li>1: The axis acceleration is included in the position extrapolation.</li> </ul> |
| Options. | CompensationTime                                                                                                                                                       | additional compensation time.                                                                                                                                                                                                  |

#### Outputs

```
VAR_OUTPUT
Position : LREAL;
Error : BOOL;
ErrorID : UDINT;
```

```
END_VAR
```

| Position         Extrapolated position that will be or was reached at the specifie           DcTime.         DcTime. |                                                                      |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Error                                                                                                                | Becomes TRUE if an error occurs.                                     |
| ErrorID                                                                                                              | If the error output is set, this parameter supplies the error number |

#### Inputs/outputs

```
VAR_IN_OUT
Axis : AXIS_REF;
END_VAR
```

```
Axis
```

```
Axis data structure
```

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

## 4.1.21 XFC\_PositionCam

|   | XFC_PositionCam |
|---|-----------------|
| - | FirstOnPosition |
| - | LastOnPosition  |
| - | Modulo          |
| _ | ModuloFactor    |
| - | OnCompensation  |
| - | OffCompensation |
| - | Options         |
| _ | Output Þ        |
|   |                 |

- Axis ⊳

*XFC\_PositionCam* realizes a position cam that switches a digital output on or off, depending on the position.

In contrast to the digital cam controller <u>MC DigitalCamSwitch [> 14]</u>, the function block switches precisely one cam on a digital output track. This facilitates parameterization of the block, although it cannot be used if several cams are required on an output track.

In addition to the switching state of the digital output the output data structure contains precise time information for the next switching operations. This information is used for the actual output at an XFC output terminal with a downstream function block (XFC\_EL2252 or <u>XFC\_EL2262 [} 28]</u>).

Inputs

| VAR  | INPUT           |   |                      |
|------|-----------------|---|----------------------|
|      | FirstOnPosition | : | LREAL;               |
|      | LastOnPosition  | : | LREAL;               |
|      | Modulo          | : | BOOL;                |
|      | ModuloFactor    | : | LREAL := 360;        |
|      | OnCompensation  | : | LREAL;               |
|      | OffCompensation | : | LREAL;               |
|      | Options         | : | ST_CamSwitchOptions; |
| END_ | VAR             |   |                      |
|      |                 |   |                      |

| FirstOnPosition | First position from which the cam is switched on.                                                                                                                                                                                                          |                                                                                                                                                 |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LastOnPosition  | Last position up to which the cam is switched on. The cam function is inverted, if <i>LastOnPosition &lt; FirstOnPosition</i>                                                                                                                              |                                                                                                                                                 |  |
| Modulo          | If <i>Modulo</i> TRUE, all positions are interpreted as modulo. The cam function is repeated cyclically. The parameter <i>ModuloFactor</i> is used for calculating the modulo cycle.                                                                       |                                                                                                                                                 |  |
| ModuloFactor    | ModuloFactor indicates the length of a of the axis and is only used if <i>Modulo</i>                                                                                                                                                                       | a modulo cycle in the positioning unit TRUE.                                                                                                    |  |
| OnCompensation  | Compensation time for the rising edge of the cam in [s]. For negative values of <i>OnCompensation</i> the switching time is brought forward, otherwise it is delayed.<br>The value OnCompensation parameterized here has priority over TRACK REF [> 20]    |                                                                                                                                                 |  |
| OffCompensation | Compensation time for the falling edge of the cam in [s]. For negative values of <i>OnCompensation</i> the switching time is brought forward, otherwise it is delayed.<br>The value OffCompensation parameterized here has priority over TRACK REF [> 20]. |                                                                                                                                                 |  |
| Options         | Optional parameters                                                                                                                                                                                                                                        |                                                                                                                                                 |  |
| Options.        | EncoderIndex                                                                                                                                                                                                                                               | If more than one encoder is<br>connected to the axis, the encoder<br>index $[0 - 9]$ can be defined here.<br>The first encoder has the index 0. |  |
| Options.        | UseAcceleration UseAcceleration can be set to TRUE in order to incorporate the acceleration of the axis into the                                                                                                                                           |                                                                                                                                                 |  |

| position calculation. UseAcceleration<br>can be advantageous if the setpoint<br>values of the acceleration can be<br>used. UseAcceleration may be<br>disadvantageous with encoder axes<br>that supply a noisy position signal,<br>because the acceleration is also |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| erroneous.                                                                                                                                                                                                                                                         |

#### Inputs/outputs

| VAR | IN_OUT         |   |                                 |
|-----|----------------|---|---------------------------------|
|     | Output<br>Axis | : | OUTPUT REF [▶ 18];<br>AXIS REF; |
| END | VAR            |   | _ `                             |

| Output | The data structure <i>Output</i> contains the calculated state of the digital output and the associated time stamp for the output at a digital XFC output terminal |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axis   | Axis data structure                                                                                                                                                |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

#### Method of function of the time compensation



## 4.1.22 XFC\_TimeCam

| XFC_TimeCam      |
|------------------|
| -FirstOnPosition |
| -Duration        |
| -Modulo          |
| -ModuloFactor    |
| -OnCompensation  |
| -OffCompensation |
| Options          |
| –Output ⊳        |
| HAxis ⊳          |

*XFC\_TimeCam* realizes a time cam that activates a digital output depending on the position and switches it off after a certain time.

In contrast to the digital cam controller <u>MC DigitalCamSwitch [> 14]</u>, the function block switches precisely one cam on a digital output track. This facilitates parameterization of the block, although it cannot be used if several cams are required on an output track.

In addition to the switching state of the digital output the output data structure contains precise time information for the next switching operations. This information is used for the actual output at an XFC output terminal with a downstream function block (XFC\_EL2252 or <u>XFC\_EL2262 [} 28]</u>).

#### Inputs

| VAR | INPUT           |   |                      |
|-----|-----------------|---|----------------------|
| _   | FirstOnPosition | : | LREAL;               |
|     | Duration        | : | LREAL;               |
|     | Modulo          | : | BOOL;                |
|     | ModuloFactor    | : | LREAL := 360;        |
|     | OnCompensation  | : | LREAL;               |
|     | OffCompensation | : | LREAL;               |
|     | Options         | : | ST_CamSwitchOptions; |
| END | VAR             |   |                      |

| FirstOnPosition | First position from which the                                                                                                               | First position from which the cam is switched on.                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Duration        | Switch-on duration of the ca                                                                                                                | Switch-on duration of the cam in [s].                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Modulo          | If <i>Modulo</i> TRUE, all position is repeated cyclically. The p the modulo cycle.                                                         | If <i>Modulo</i> TRUE, all positions are interpreted as modulo. The cam function is repeated cyclically. The parameter <i>ModuloFactor</i> is used for calculating the modulo cycle.                                                                                                                                                                                                       |  |  |
| ModuloFactor    | <i>ModuloFactor</i> indicates the of the axis and is only used                                                                              | <i>ModuloFactor</i> indicates the length of a modulo cycle in the positioning unit of the axis and is only used if <i>Modulo</i> TRUE.                                                                                                                                                                                                                                                     |  |  |
| OnCompensation  | Compensation time for the r<br>values of <i>OnCompensation</i><br>it is delayed.<br>The value OnCompensation<br><u>TRACK_REF [▶ 20]</u>     | Compensation time for the rising edge of the cam in [s]. For negative values of <i>OnCompensation</i> the switching time is brought forward, otherwise it is delayed.<br>The value OnCompensation parameterized here has priority over <u>TRACK REF [&gt; 20]</u>                                                                                                                          |  |  |
| OffCompensation | Compensation time for the f<br>values of <i>OffCompensation</i><br>it is delayed.<br>The value OffCompensation<br><u>TRACK_REF [▶ 20]</u> . | Compensation time for the falling edge of the cam in [s]. For negative values of <i>OffCompensation</i> the switching time is brought forward, otherwise it is delayed.<br>The value OffCompensation parameterized here has priority over TRACK REF [> 20].                                                                                                                                |  |  |
| Options         | Optional parameters                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Options.        | EncoderIndex                                                                                                                                | If more than one encoder is<br>connected to the axis, the encoder<br>index $[0 - 9]$ can be defined here.<br>The first encoder has the index 0.                                                                                                                                                                                                                                            |  |  |
| Options.        | UseAcceleration                                                                                                                             | UseAcceleration can be set to TRUE<br>in order to incorporate the<br>acceleration of the axis into the<br>position calculation. UseAcceleration<br>can be advantageous if the setpoint<br>values of the acceleration can be<br>used. UseAcceleration may be<br>disadvantageous with encoder axes<br>that supply a noisy position signal,<br>because the acceleration is also<br>erroneous. |  |  |

#### Inputs/outputs

```
VAR_IN_OUT
Output : <u>OUTPUT_REF[▶18];</u>
Axis : AXIS_REF;
END VAR
```

| Output | The data structure <i>Output</i> contains the calculated state of the digital output<br>and the associated time stamp for the output at a digital XFC output<br>terminal |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axis   | Axis data structure                                                                                                                                                      |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

#### Method of function of the time compensation



## 4.1.23 XFC\_TimeOfPosition

|   | XFC_Time | OfPosition |          |
|---|----------|------------|----------|
| _ | Position | DcTime     |          |
| - | Options  | Error      | <u> </u> |
| - | Axis ⊵   | ErrorID    |          |

XFC\_TimeOfPosition calculates the time at which the axis will be or was at a specified position.

The function extrapolates the time in relation to the current position and dynamics. Precise extrapolation is only possible over a short interval, since the axis dynamics may change.

The function block requires precisely one call in order to provide the result. It can therefore be used similar to a function, although as well as the time it may also return an error. This error must be analyzed in order to ensure that the calculated time *DcTime* is valid.

#### Inputs

```
VAR_INPUT

Position : LREAL;

Options : ST_NcTimeConversionOptions;

END VAR
```

| Position | Absolute axis position          | Absolute axis position                                                                                                                        |  |
|----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Options  | Data structure with options for | Data structure with options for position extrapolation.                                                                                       |  |
| Options. | SubIndex                        | For axes with more than one encoder<br>the index (09) of the encoder to<br>which the position refers can be<br>specified in <i>SubIndex</i> . |  |
| Options. | InterpolationOptions            | 0: The position extrapolation is<br>carried out with the current velocity,<br>without taking into account the                                 |  |

|          |                  | current acceleration.<br>1: The axis acceleration is included<br>in the position extrapolation. |
|----------|------------------|-------------------------------------------------------------------------------------------------|
| Options. | CompensationTime | additional compensation time                                                                    |

#### Outputs

```
VAR_OUTPUT
DcTime : T_DCTIME32;
Error : BOOL;
ErrorID : UDINT;
END VAR
```

| DcTime  | Distributed clock system time at which the <i>position</i> will be reached or was reached.<br><i>DcTime</i> contains the lower 32 bits of the complete <i>DcTime</i> and covers a time range of +/- 2 seconds around the current time. |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Error   | Becomes TRUE if an error occurs.                                                                                                                                                                                                       |  |
| ErrorID | If the error output is set, this parameter supplies the error number                                                                                                                                                                   |  |

#### Inputs/outputs

```
VAR_IN_OUT
Axis : AXIS_REF;
END VAR
```

| Axis | Axis data structure |
|------|---------------------|
|      |                     |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

## 4.1.24 XFC\_TimeToModuloPosition

|   | XFC_TimeToModuloPosition |                  |  |
|---|--------------------------|------------------|--|
| - | Position                 | Duration         |  |
| _ | ModuloFactor             | AbsolutePosition |  |
| _ | Options                  | TimeOfPosition   |  |
| _ | Axis ⊳                   | Error            |  |
|   |                          | ErrorID          |  |

*XFC\_TimeToModuloPosition* calculates the time period within which an axis will reach a position, or the time that has elapsed since the axis passed this position. In this case the position is the nearest modulo position in the direction of travel.

The function extrapolates the time in relation to the current position and dynamics. Precise extrapolation is only possible over a short interval, since the axis dynamics may change.

The function block requires precisely one call in order to provide the result. It can therefore be used similar to a function, although as well as the time it may also return an error. This error must be analyzed in order to ensure that the calculated time duration is valid.

Inputs

```
VAR_INPUT

Position : LREAL;

ModuloFactor : LREAL;

Options : ST_NcTimeConversionOptions;

END_VAR
```

| Position     | Absolute axis position                                                                                                                                                                  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ModuloFactor | Modulo divider to be used for the calculation. <i>ModuloFactor</i> can be identical to the modulo factor of the axis, e.g. 360. However, a factor deviating from that can also be used. |

| Options  | Data structure with options for position extrapolation. |                                                                                                                                                                                                                                |  |
|----------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Options. | SubIndex                                                | For axes with more than one encoder<br>the index (09) of the encoder to<br>which the position refers can be<br>specified in <i>SubIndex</i> .                                                                                  |  |
| Options. | InterpolationOptions                                    | <ul> <li>0: The position extrapolation is carried out with the current velocity, without taking into account the current acceleration.</li> <li>1: The axis acceleration is included in the position extrapolation.</li> </ul> |  |
| Options. | CompensationTime                                        | additional compensation time                                                                                                                                                                                                   |  |

#### Outputs

| VAR | OUTPUT           |   |            |
|-----|------------------|---|------------|
| _   | Duration         | : | DINT;      |
|     | AbsolutePosition | : | LREAL;     |
|     | TimeOfPosition   | : | T DCTIME32 |
|     | Error            | : | BOOL;      |
|     | ErrorID          | : | UDINT;     |
| END | VAR              |   |            |

| f                |                                                                                                                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Duration         | Time duration in nanoseconds after which the position will be reached.<br>Duration is a differential value from two variables of the type T_DCTIME32<br>Distributed Clock System Time.                                                 |
| AbsolutePosition | Absolute position (not modulo) corresponding to the modulo position and the determined time.                                                                                                                                           |
| TimeOfPosition   | Distributed clock system time at which the <i>Position</i> will be reached or was reached.<br><i>DcTime</i> contains the lower 32 bits of the complete <i>DcTime</i> and covers a time range of +/- 2 seconds around the current time. |
| Error            | Becomes TRUE if an error occurs.                                                                                                                                                                                                       |
| ErrorID          | If the error output is set, this parameter supplies the error number                                                                                                                                                                   |

#### Inputs/outputs

```
VAR_IN_OUT
Axis : AXIS_REF;
END_VAR
```

| Axis Axis data structure | Axis | Axis data structure |
|--------------------------|------|---------------------|
|                          |      |                     |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

## 4.1.25 XFC\_TimeToPosition

|   | XFC_Time   | ToPosition     |  |
|---|------------|----------------|--|
| _ | Position _ | Duration       |  |
| _ | Options    | TimeOfPosition |  |
| _ | Axis ⊳     | Error          |  |
|   |            | ErrorID        |  |

*XFC\_TimeToPosition* calculates the time period within which an axis will reach a position, or the time that has elapsed since the axis passed this position.

The function extrapolates the time in relation to the current position and dynamics. Precise extrapolation is only possible over a short interval, since the axis dynamics may change.

The function block requires precisely one call in order to provide the result. It can therefore be used similar to a function, although as well as the time it may also return an error. This error must be analyzed in order to ensure that the calculated time duration is valid.

#### Inputs

| VAR | INPUT    |   |                             |
|-----|----------|---|-----------------------------|
| -   | Position | : | LREAL;                      |
|     | Options  | : | ST NcTimeConversionOptions; |
| END | VAR      |   | —                           |

| Position | Absolute axis position          | Absolute axis position                                                                                                                                                                                                         |  |  |
|----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Options  | Data structure with options for | or position extrapolation.                                                                                                                                                                                                     |  |  |
| Options. | SubIndex                        | For axes with more than one encoder<br>the index (09) of the encoder to<br>which the position refers can be<br>specified in <i>SubIndex</i> .                                                                                  |  |  |
| Options. | InterpolationOptions            | <ul> <li>0: The position extrapolation is carried out with the current velocity, without taking into account the current acceleration.</li> <li>1: The axis acceleration is included in the position extrapolation.</li> </ul> |  |  |
| Options. | CompensationTime                | additional compensation time                                                                                                                                                                                                   |  |  |

#### Outputs

```
VAR_OUTPUT

Duration : DINT;

TimeOfPosition : T_DCTIME32;

Error : BOOL;

ErrorID : UDINT;

END_VAR
```

| Duration       | Time duration in nanoseconds after which the position will be reached (> 0) or since the position was passed (< 0).<br>Duration is a differential value from two variables of the type T_DCTIME32 Distributed Clock System Time.       |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TimeOfPosition | Distributed clock system time at which the <i>position</i> will be reached or was reached.<br><i>DcTime</i> contains the lower 32 bits of the complete <i>DcTime</i> and covers a time range of +/- 2 seconds around the current time. |
| Error          | Becomes TRUE if an error occurs.                                                                                                                                                                                                       |
| ErrorID        | If the error output is set, this parameter supplies the error number                                                                                                                                                                   |

#### Inputs/outputs

| VAR | IN OUT |             |
|-----|--------|-------------|
|     | Axis   | : AXIS_REF; |
| END | VAR    |             |

| Axis    | Axis data structure |
|---------|---------------------|
| <u></u> | ·                   |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

# 4.1.26 XFC\_TouchProbe



The *XFC\_TouchProbe* function block records an axis position at the time of the edge of a digital input signal (measuring probe function).

The digital input signal is recorded with an XFC input terminal (e.g. EL1252) with time stamps for the falling and rising signal edge. The function block determines the axis position at which the edge change occurred and issues it as *RecordedPosition*.

In contrast to the conventional TouchProbe function MC\_TouchProbe the digital input is not directly linked to the drive hardware. The position of each EtherCAT or Sercos axis in the system can be recorded via the time stamp of the input. This axis is exactly synchronized via <u>Dead time compensation [] 8]</u>.

The function block can be used in free-running or single-shot mode. In free-running mode each edge of the input signal is recorded (maximum one edge per PLC cycle). In single-shot mode the next edge is only recorded once until the function block is triggered again.

The optional window function can be used to ignore signal edges outside the defined position filter.

#### Signal curve



Timing example TouchProbe

### Inputs

| VAR | INPUT         |   |                          |
|-----|---------------|---|--------------------------|
| -   | Execute       | : | BOOL;                    |
|     | WindowOnly    | : | BOOL;                    |
|     | FirstPosition | : | LREAL;                   |
|     | LastPosition  | : | LREAL;                   |
|     | Options       | : | ST XfcTouchProbeOptions; |
| END | VAR           |   |                          |

| If <i>Execute</i> is active, the axis p<br>of the input signal. A falling e<br>immediately.                                              | position is recorded at the defined signal edge dge at <i>Execute</i> terminates the process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depending on the configurati<br>edge is recorded and evaluat<br>value is recorded continuous<br>while <i>Execute</i> remains TRUE        | on in <i>TriggerInput.FreeRun</i> the next signal<br>ed once. If FreeRun is TRUE, a new position<br>ly with each defined edge of the input signal,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| If this option is active, only or<br><i>FirstPosition</i> and LastPosition<br>are discarded. Only if the rec<br><i>Done</i> become TRUE. | ne position inside the window between<br>n is recorded. Positions outside the window<br>orded position lies inside the window does                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I he recording window can be                                                                                                             | e interpreted in terms of absolute or modulo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| values. In this connection the                                                                                                           | flag ModuloPositions [ 42] in the structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>Iriggerinput</u>   <u>42</u> is to be se                                                                                              | et accordingly. In the case of absolute value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| positions the window repeats                                                                                                             | itself within the modulo cycle defined in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| axis parameters (e.g. 0 to 36                                                                                                            | 0 degrees).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Initial position of the recording                                                                                                        | g window, if WindowOnly is TRUE. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| position can be interpreted as                                                                                                           | s an absolute or modulo value. In this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| connection the flag <u>ModuloPe</u><br>structure <i>TriggerInput</i> (see be                                                             | ositions $[\blacktriangleright 42]$ is to be set appropriately in the elow).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Final position of the recording position can be interpreted as                                                                           | g window, if <i>WindowOnly</i> is TRUE. This<br>s an absolute or modulo value. In this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| connection the flag ModuloPe                                                                                                             | ositions [▶ 42] is to be set appropriately in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| structure <i>TriggerInput</i> (see be                                                                                                    | elow).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Optional parameters                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UseAcceleration                                                                                                                          | UseAcceleration can be set to TRUE<br>in order to incorporate the<br>acceleration of the axis into the<br>position calculation. UseAcceleration<br>can be advantageous if the setpoint<br>values of the acceleration can be<br>used. UseAcceleration may be<br>disadvantageous with encoder axes<br>that supply a noisy position signal,<br>because the acceleration is also                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                          | If Execute is active, the axis pof the input signal. A falling execute immediately.         Depending on the configuratied ge is recorded and evaluativalue is recorded continuous while Execute remains TRUE         If this option is active, only or FirstPosition and LastPosition are discarded. Only if the recording window can be values. In this connection the TriggerInput [▶ 42] is to be seepositions there is exactly one positions the window repeats axis parameters (e.g. 0 to 36         Initial position of the recording position can be interpreted as connection the flag ModuloP structure TriggerInput (see be Final position of the recording position can be interpreted as connection the flag ModuloP structure TriggerInput (see be Optional parameters         UseAcceleration |

#### Outputs

VAR\_OUTPUT Done : BOOL; Busy : BOOL; Error : BOOL; ErrorID : UDINT; RecordedPosition : LREAL; END\_VAR

#### Done

| The value <i>RecordedPosition</i> is valid.                                        |
|------------------------------------------------------------------------------------|
| If <i>TriggerInput.FreeRun</i> is TRUE, <i>Done</i> only remains TRUE only for one |
| PLC cycle and is then reset automatically, since <i>TouchProbe</i> is              |
| automatically reactivated.                                                         |

| Busy             | Becomes TRUE as soon as the function block is active, and becomes<br>FALSE when it has returned to its initial state.<br>If <i>TriggerInput.FreeRun</i> is TRUE, <i>Busy</i> remains TRUE continuously, even if<br><i>Done</i> or <i>Error</i> become TRUE, since <i>TouchProbe</i> is automatically<br>reactivated.     |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Error            | Becomes TRUE, as soon as an error occurs.                                                                                                                                                                                                                                                                                |  |
| ErrorID          | If the error output is set, this parameter supplies the error number                                                                                                                                                                                                                                                     |  |
| RecordedPosition | Axis position recorded at the point in time of the trigger signal.<br>If <i>TriggerInput.FreeRun</i> is TRUE, the function block operates in free-<br>running mode, so that each valid change in the input signal leads to a new<br><i>RecordedPosition</i> . The position can be analyzed, if <i>Done</i> becomes TRUE. |  |

#### Inputs/outputs

```
VAR_IN_OUT
    Axis : AXIS_REF;
    TriggerInput : XFC TRIGGER REF [▶ 42];
END_VAR
```

| Axis         | Axis data structure                                                                                                                                                                                                            |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TriggerInput | <u>TriggerInput [<math>\blacktriangleright</math> 42]</u> is a data structure for describing the trigger source and for feeding the state and time stamp of a digital input signal. This data structure is filled by the user. |  |

The axis data structure of type AXIS\_REF addresses an axis uniquely within the system. Among other parameters it contains the current axis status, including position, velocity or error status.

## 4.1.27 XFC\_TRIGGER\_REF

The data type *XFC\_TRIGGER\_REF* contains the state and parameters of a digital input that is used for the function <u>XFC\_TouchProbe [ $\blacktriangleright$ \_40].</u>

```
TYPE XFC_TRIGGER_REF :

STRUCT

Signal : BOOL;

TimestampRisingEdge : T_DCTIME32;

TimestampFallingEdge : T_DCTIME32;

Edge : E_SignalEdge;

FreeRun : BOOL;

EncoderIndex : UINT;

ModuloPositions : BOOL;

ModuloFactor : LREAL := 360.0;

END_STRUCT

END_TYPE
```

| Signal               | Current state of the digital input signal.<br>The current state must be supplied here.                                                                                                                                                                                                                                                                                    |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TimestampRisingEdge  | Time stamp of the last rising edge of the digital input signal.<br>Only the time stamp of the edge defined via <i>Edge</i> has to be supplied.<br>If the input signal supplies a 64-bit time stamp $T_DCTIME$ , only the lower<br>32 bits are supplied. It is therefore important to ensure that the value at the<br>time of the evaluation is not older than 2 seconds.  |
| TimestampFallingEdge | Time stamp of the last falling edge of the digital input signal.<br>Only the time stamp of the edge defined via <i>Edge</i> has to be supplied.<br>If the input signal supplies a 64-bit time stamp $T_DCTIME$ , only the lower<br>32 bits are supplied. It is therefore important to ensure that the value at the<br>time of the evaluation is not older than 2 seconds. |
| Edge                 | <i>Edge</i> defines the signal edge to be used for the evaluation of the axis position.<br>TYPE E_SignalEdge : ( RisingEdge, FallingEdge ); END_TYPE                                                                                                                                                                                                                      |

| FreeRun         | If <i>FreeRun</i> is TRUE, the input is latched continuously.<br>In this case the input <i>Execute</i> must remain TRUE in function block<br><u>XFC_TouchProbe [▶ 40]</u> . No edge at Execute is required in order to record<br>the next new position value. |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EncoderIndex    | If more than one encoder is connected to the axis, the encoder index [0 – 9] can be defined here. The first encoder has the index 0.                                                                                                                          |
| ModuloPositions | If <i>Modulo</i> TRUE, all positions are interpreted as modulo. The parameter <i>ModuloFactor</i> is used for calculating the modulo cycle.                                                                                                                   |
| ModuloFactor    | <i>ModuloFactor</i> indicates the length of a modulo cycle in the positioning unit of the axis and is only used if <i>Modulo</i> TRUE.                                                                                                                        |

# 4.2 TcNci\_XFC

## 4.2.1 MC\_PathCamSwitch

The data type *MC\_PathCamSwitch* contains all parameters of a digital cam for a digital cam controller *MC\_PathDigitalCamSwitch\_MultiEdge*.

| TYPE | MC PathCamSwitc | ch | :                |
|------|-----------------|----|------------------|
| STRU | JCT -           |    |                  |
|      | FirstOnPosition | :  | LREAL;           |
|      | LastOnPosition  | :  | LREAL;           |
|      | FirstPathId     | :  | UDINT;           |
|      | LastPathId      | :  | UDINT;           |
|      | CamSwitchMode   | :  | E CamSwitchMode; |
|      | Duration        | :  | LREAL;           |
| END  | STRUCT          |    |                  |
| end  | TYPE            |    |                  |

The data structure for parameterization of a digital cam controller is usually an ARRAY OF MC\_PathCamSwitch. A further structure <u>PATH\_CAMSWITCH\_REF [] 45]</u> refers to this structure.

| FirstOnPosition | First position from which the cam is switched on.                                                                                                                        |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LastOnPosition  | Last position up to which the cam is switched on. The cam function is inverted, if <i>LastOnPosition &lt; FirstOnPosition. LastOnPosition</i> is not used for time cams. |  |
| FirstPathId     | Unique ID that continually increases over the path and belongs to the relative path until the cam switches on.                                                           |  |
| LastPathId      | Unique ID that continually increases over the path and belongs to the relative path until the cam switches off.                                                          |  |
| CamSwitchMode   | hMode Digital cam type (position cam, time cam or brake cam).                                                                                                            |  |
| Duration        | <i>Duration</i> defines the switch-on time of the cam in [s] and is only used for time cams.                                                                             |  |

TYPE E\_CamSwitchMode :

```
(
    CAMSWITCHMODE_POSITION, (* position cam *)
    CAMSWITCHMODE_TIME, (* time cam *)
    CAMSWITCHMODE_BREAK (* break cam *)
);
```

```
END TYPE
```

# 4.2.2 MC\_PathDigitalCamSwitch\_MultiEdge

|   | MC_PathDigitalCamSwitch | _MultiEdge  |  |
|---|-------------------------|-------------|--|
| _ | Enable                  | InOperation |  |
| _ | HParam                  | Busy        |  |
| _ | Options                 | Error       |  |
| _ | NciToPlc ⊳              | ErrorID     |  |
| _ | Switches Þ              |             |  |
| _ | Output ⊳                |             |  |
| _ | TrackOptions ▷          |             |  |

*MC\_PathDigitalCamSwitch\_MultiEdge* is a digital cam controller with one or several cams on a digital output track. The function block is capable of performing several switching operations during a PLC cycle. The switching operations are defined by position cams. Further output tracks can be realized with independent instances of the function block.

In addition to the switching states of the digital output the output data structure contains precise time information for the next switching operations. With this information the actual output can take place on an XFC multi-timestamp output terminal with a downstream function block (XFC\_EL1259\_MultiEdge, XFC\_EL2212\_MultiEdge, XFC\_EL2262\_MultiEdge or XFC\_EL2258\_MultiEdge).

#### *Note* Time cams and brake cams cannot be used with the function block MC\_PathDigitalCamSwitch\_MultiEdge. Terminals without multi-timestamp functionality are not suitable for use with this function block.

#### Inputs

```
VAR_INPUT
Enable : BOOL;
HParam : DINT;
Options : ST_CamSwitchOptions;
END VAR
```

| Enable   | The cam controller is activated via the <i>Enable</i> input. The initial state remains unchanged, as long as <i>Enable=FALSE</i> . |                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| HParam   | H-parameter value that corr                                                                                                        | H-parameter value that corresponds to the switching state TRUE.                                                                                                                                                                                                                                                                                                                                          |  |  |
| Options  | Optional parameters                                                                                                                | Optional parameters                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Options. | EncoderIndex                                                                                                                       | If more than one encoder is connected to the axis, the encoder index $[0 - 9]$ can be defined here.                                                                                                                                                                                                                                                                                                      |  |  |
|          |                                                                                                                                    | The first encoder has the index 0.                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Options. | UseAcceleration                                                                                                                    | UseAcceleration can be set to TRUE<br>in order to incorporate the<br>acceleration of the axis into the<br>position calculation. <i>UseAcceleration</i><br>can be advantageous if the setpoint<br>values of the acceleration can be<br>used. <i>UseAcceleration</i> may be<br>disadvantageous with encoder axes<br>that supply a noisy position signal,<br>because the acceleration is also<br>erroneous. |  |  |

#### Outputs

VAR\_OUTPUT InOperation : BOOL; Busy : BOOL; Error : BOOL; ErrorID : UDINT; END VAR

| InOperation InOperation is TRUE, as long as the cam controller is active and track is calculated according to the cam parameterization. |                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Busy Busy is TRUE as long as the block function is not completed.                                                                       |                                                                      |
| Error Becomes TRUE if an error occurs.                                                                                                  |                                                                      |
| ErrorID                                                                                                                                 | If the error output is set, this parameter supplies the error number |

#### Inputs/outputs

| VAR | IN OUT       |   |                           |
|-----|--------------|---|---------------------------|
| _   | NciToPlc     | : | NciChannelToPlc           |
|     | Switches     | : | PATH_CAMSWITCH_REF;       |
|     | Output       | : | OUTPUT_REF_MULTIEDGE [ ]; |
|     | TrackOptions | : | <u>TRACK_REF [ 20];</u>   |
| END | VAR          |   |                           |

| NciToPlc     | The structure of the cyclic channel interface from the NCI to the PLC. This structure is only accessed for reading.                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switches     | The data structure <i>Switches</i> contains a reference to the parameterization of all cams on the cam track.                                                         |
| Output       | The data structure <i>Output</i> contains the calculated states of the digital output and the associated time stamps for the output at a digital XFC output terminal. |
| TrackOptions | The data structure <i>TrackOptions</i> contains the parameterization for the cam track.                                                                               |

## 4.2.3 PATH\_CAMSWITCH\_REF

The data type *PATH\_CAMSWITCH\_REF* refers to a data structure with cam parameters for a digital cam controller *MC\_PathDigitalCamSwitch\_MultiEdge*.

```
TYPE PATH_CAMSWITCH_REF :

STRUCT

NumberOfSwitches : UDINT;

pSwitches : POINTER TO MC_PathCamSwitch;

SizeOfSwitches : UDINT;

END_STRUCT

END TYPE
```

The actual data structure for parameterization of a digital cam controller is usually an ARRAY OF <u>MC\_PathCamSwitch [] 43]</u>. PATH\_CAMSWITCH\_REF refers to this structure via a POINTER and clearly defines the size of the structure and the number of cams that were actually used.

A variable of type PATH\_CAMSWITCH\_REF is initialized as illustrated in the following example:

```
VAR
    CamSwitchArray : ARRAY[1..3] OF MC_PathCamSwitch;
    CamSwitchRef : PATH_CAMSWITCH_REF;
END_VAR
(* real number of defined digital cams *)
CamSwitchRef.NumberOfSwitches := 1; (* 1..3 *)
(* pointer to the digital cam data array *)
CamSwitchRef.pSwitches := ADR(CamSwitchArray);
(* maximum size of the digital cam data array *)
CamSwitchRef.SizeOfSwitches := SIZEOF(CamSwitchArray);
```

## 4.2.4 XFC\_PathPositionAtTime

|   | XFC_Pa  | thPositionAtTime |  |
|---|---------|------------------|--|
| _ | Grpld   | PathPosition     |  |
| - | DcTime  | Error            |  |
| _ | Options | ErrorID          |  |

*XFC\_PathPositionAtTime* calculates a relative path distance at a given time in relation to the current path position.

The function extrapolates the path distance in relation to the current dynamics. Precise extrapolation is only possible over a short interval, since the group dynamics may change.

The function block requires precisely one call in order to provide the result. Therefore it can be used in a similar way to a function, but may return an error in addition to the relative path distance. This error must be evaluated to ensure that the calculated path distance is valid.

#### Inputs

```
VAR_INPUT
GrpId : UDINT;
DcTime : T_DCTIME32;
Options : ST_NcTimeConversionOptions;
END VAR
```

| GrpId    | Group ID of the Nci group. This clearly identifies the requested Nci group in the system.                                                                                  |                                                                                                                                                                                                                                                                                                                                                       |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DcTime   | Distributed clock system time<br><i>DcTime</i> contains the lower 32<br>time range of +/- 2 seconds a<br>the calculation of the path val<br>time, i.e. only a few PLC or N | Distributed clock system time.<br><i>DcTime</i> contains the lower 32 bits of the complete <i>DcTime</i> and covers a<br>time range of +/- 2 seconds around the current time. In order to optimize<br>the calculation of the path value, the time should be close to the current<br>time, i.e. only a few PLC or NC cycles in the future or the past. |  |
| Options  | Data structure with options fo                                                                                                                                             | or the extrapolation of the relative path.                                                                                                                                                                                                                                                                                                            |  |
| Options. | SubIndex                                                                                                                                                                   | not implemented                                                                                                                                                                                                                                                                                                                                       |  |
| Options. | InterpolationOptions                                                                                                                                                       | <ul> <li>0: The extrapolation of the relative path is carried out at the current path velocity without taking into account the current path acceleration.</li> <li>1: The path acceleration of the axis is incorporated into the extrapolation of the relative path.</li> </ul>                                                                       |  |
| Options. | CompensationTime                                                                                                                                                           | additional compensation time.                                                                                                                                                                                                                                                                                                                         |  |

#### Outputs

```
VAR_OUTPUT
PathPosition : LREAL;
Error : BOOL;
ErrorID : UDINT;
END VAR
```

| PathPosition | Extrapolated relative path up to the preset time <i>DcTime</i> .     |  |
|--------------|----------------------------------------------------------------------|--|
| Error        | Becomes TRUE if an error occurs.                                     |  |
| ErrorID      | If the error output is set, this parameter supplies the error number |  |

# 4.2.5 XFC\_PathPositionCam

|   | XFC_PathPositionCam |
|---|---------------------|
| _ | HParam              |
| _ | FirstPathId         |
| _ | LastPathId          |
| _ | FirstOnPathPosition |
| _ | LastOnPathPosition  |
| _ | OnCompensation      |
| _ | OffCompensation     |
| _ | Options             |
| _ | NciToPlc >          |
| _ | Output ⊳            |

*XFC\_PathPositionCam* realizes a path cam that switches a digital output on and off depending on the path.

In contrast to the digital cam controller <u>MC\_PathDigitalCamSwitch\_MultiEdge [ $\blacktriangleright$  44], the function block switches precisely one cam on a digital output track. This facilitates parameterization of the block, although it cannot be used if several cams are required on an output track.</u>

In addition to the switching state of the digital output the output data structure contains precise time information for the next switching operations.

This information is used for the actual output at an XFC output terminal with a downstream function block (XFC\_EL2252 or <u>XFC\_EL2262</u> [).

#### Inputs

| VAR | INPUT               |   |                      |
|-----|---------------------|---|----------------------|
|     | HParam              | : | UDINT;               |
|     | FirstPathId         | : | UDINT;               |
|     | LastPathId          | : | UDINT;               |
|     | FirstOnPathPosition | : | LREAL;               |
|     | LastOnPathPosition  | : | LREAL;               |
|     | OnCompensation      | : | LREAL;               |
|     | OffCompensation     | : | LREAL;               |
|     | Options             | : | ST CamSwitchOptions, |
| END | VAR                 |   | —                    |
|     |                     |   |                      |

**HParam** H\_parameter value that corresponds to the switching state. **FirstPathId** Unique ID that continually increases over the path and belongs to the relative path until the cam switches on. LastPathId Unique ID that continually increases over the path and belongs to the relative path until the cam switches off. **FirstOnPathPosition** Relative path until the cam switches on. LastOnPathPosition Relative path until the cam switches off. OnCompensation Compensation time for the rising edge of the cam in [s]. For negative values of OnCompensation the switching time is brought forward, otherwise it is delayed. The value OnCompensation parameterized here has priority over TRACK REF OffCompensation Compensation time for the falling edge of the cam in [s]. For negative values of OffCompensation the switching time is brought forward, otherwise it is delaved. The value OffCompensation parameterized here has priority over TRACK REF **Optional parameters** Options Options. EncoderIndex If more than one encoder is connected to the axis. the encoder index [0 – 9] can be defined here.

| The first end                                                                                                                                                                                | coder has the index 0.                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Options. UseAcceleration UseAcceler<br>in order to in<br>acceleration<br>position cal<br>can be adva<br>values of th<br>used. UseA<br>disadvantag<br>that supply<br>because the<br>erroneous | ation can be set to TRUE<br>neorporate the<br>n of the axis into the<br>culation. <i>UseAcceleration</i><br>antageous if the setpoint<br>e acceleration can be<br><i>cceleration</i> may be<br>geous with encoder axes<br>a noisy position signal,<br>e acceleration is also |

#### Inputs/outputs

```
VAR_IN_OUT
NciToPlc : NciChannelToPlc;
Output : OUTPUT_REF;
END VAR
```

| NciToPlc | The structure of the cyclic channel interface from the NCI to the PLC. This structure is only accessed for reading                                                               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output   | The <u>data structure [] 18]</u> <i>Output</i> contains the calculated state of the digital output and the associated time stamp for the output at a digital XFC output terminal |

## 4.2.6 XFC\_TimeOfPathPosition

|   | XFC_TimeOfPath | Position |  |
|---|----------------|----------|--|
| _ | GrpId          | DcTime   |  |
| - | PathPosition   | Error    |  |
| - | Options        | ErrorID  |  |

*XFC\_TimeOfPathPosition* calculates the time at which an Nci group has travelled or will have travelled a preset relative path.

The function extrapolates the time in relation to the current path position and dynamics. Precise extrapolation is only possible over a short interval, since the Nci group dynamics may change.

The function block requires precisely one call in order to provide the result. It can therefore be used similar to a function, although as well as the time it may also return an error. This error must be analyzed in order to ensure that the calculated time *DcTime* is valid.

#### Inputs

```
VAR_INPUT

GrpId : UDINT;

PathPosition : LREAL;

Options : ST_NcTimeConversionOptions;

END VAR
```

| Grpld        | Group ID of the Nci group. Th the system. | Group ID of the Nci group. This clearly identifies the requested Nci group in the system.                                                                 |  |
|--------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PathPosition | Relative path                             |                                                                                                                                                           |  |
| Options      | Data structure with options fo            | or the extrapolation of the relative path.                                                                                                                |  |
| Options.     | SubIndex                                  | not implemented                                                                                                                                           |  |
| Options.     | InterpolationOptions                      | 0: The extrapolation of the relative<br>path is carried out at the current path<br>velocity without taking into account<br>the current path acceleration. |  |

|          |                  | 1: The path acceleration of the axis is incorporated into the extrapolation of the relative path. |
|----------|------------------|---------------------------------------------------------------------------------------------------|
| Options. | CompensationTime | additional compensation time                                                                      |

#### Outputs

```
VAR_OUTPUT
DcTime : T_DCTIME32;
Error : BOOL;
ErrorID : UDINT;
END VAR
```

| DcTime  | Distributed clock system time at which the relative path <i>PathPosition</i> will have been travelled or at which this was passed. <i>DcTime</i> contains the lower 32 bits of the complete <i>DcTime</i> and covers a time range of +/- 2 seconds around the current time. |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error   | Becomes TRUE if an error occurs.                                                                                                                                                                                                                                            |
| ErrorID | If the error output is set, this parameter supplies the error number                                                                                                                                                                                                        |

## 4.2.7 XFC\_TimeToPathPosition

| XFC_TimeToPathPosition |                |  |  |  |
|------------------------|----------------|--|--|--|
| -GrpId                 | Duration       |  |  |  |
| -PathId                | TimeOfPosition |  |  |  |
| -PathPosition          | Error          |  |  |  |
| -Options               | ErrorID        |  |  |  |

*XFC\_TimeToPathPosition* calculates the time period within which an Nci group has travelled a relative path or which has elapsed since then.

The function extrapolates the time in relation to the current path position and dynamics. Precise extrapolation is only possible over a short interval, since the group dynamics may change.

The function block requires precisely one call in order to provide the result. It can therefore be used similar to a function, although as well as the time it may also return an error. This error must be analyzed in order to ensure that the calculated time duration is valid.

#### Inputs

```
VAR_INPUT

GrpId : UDINT;

PathId : UDINT;

PathPosition : LREAL;

Options : ST_NcTimeConversionOptions;

END_VAR
```

| Grpld        | Group ID of the Nci group. This clearly identifies the requested Nci group in the system.   |                                                                                                                                                                                                                                                                                 |  |  |
|--------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pathld       | Unique ID that continually increases over the path course and belongs to the relative path. |                                                                                                                                                                                                                                                                                 |  |  |
| PathPosition | Relative path                                                                               |                                                                                                                                                                                                                                                                                 |  |  |
| Options      | Data structure with options fo                                                              | Data structure with options for the extrapolation of the relative path.                                                                                                                                                                                                         |  |  |
| Options.     | SubIndex                                                                                    | not implemented                                                                                                                                                                                                                                                                 |  |  |
| Options.     | InterpolationOptions                                                                        | <ul> <li>0: The extrapolation of the relative path is carried out at the current path velocity without taking into account the current path acceleration.</li> <li>1: The path acceleration of the axis is incorporated into the extrapolation of the relative path.</li> </ul> |  |  |

| Options. | CompensationTime | additional compensation time. |
|----------|------------------|-------------------------------|
|----------|------------------|-------------------------------|

#### Outputs

| VAR | OUTPUT         |   |             |
|-----|----------------|---|-------------|
|     | Duration       | : | DINT;       |
|     | TimeOfPosition | : | T_DCTIME32; |
|     | Error          | : | BOOL;       |
|     | ErrorID        | : | UDINT;      |
| END | VAR            |   |             |
|     |                |   |             |

# Duration Time period in nanoseconds after which the relative path will have been travelled (>0) or which has elapsed since then (<0). Duration is a differential value from two variables of the type T\_DCTIME32</td> TimeOfPosition Distributed clock system time at which the relative path distance was or will have been be travelled. DcTime contains the lower 32 bits of the complete DcTime and covers a time range of +/- 2 seconds around the current time. Error Becomes TRUE if an error occurs. ErrorID If the error output is set, this parameter supplies the error number

More Information: www.beckhoff.de/ts5065

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

