OPC Data Access Automation Specification

 DOCPROPERTY "version" * MERGEFORMAT 2.02

[image: image1.wmf]
Data Access Automation Interface Standard
Version 2.02

February 4, 1999

Synopsis:
This specification is an interface for developers of OPC clients and OPC Data Access Servers. The specification is a result of an analysis and design process to develop a standard interface to facilitate the development of servers and clients by multiple vendors that shall inter-operate seamlessly together.

This document defines the OPC Data Access OLE Automation interface for developers of OPC clients and OPC Data Access Servers. The purpose of this specification is to provide an OLE Automation interface for the OPC Data Access Server Custom Interface Functionality

Documentation Type
Industry Standard Specification

Title:
OPC Data Access Automation Specification
Date:
February 3, 1999

Version:
2.02
Soft
MS-Word

Source:
opcda20_auto.doc

Author:
OPC Foundation
Status:
Release

Trademarks:

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:

This specification requires Windows 95/98 (with DCOM installed), Windows NT 4.0 or later. It is recommended that Windows NT 4.0 machines be run with SP3, or later.

NON-EXCLUSIVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of standard OLE/COM interface protocols intended to foster greater interoperability between automation/control applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the “OPC Materials”), form a set of standard OLE/COM interface protocols based upon the functional requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods, and properties for servers of real-time information like distributed process systems, programmable logic controllers, smart field devices and analyzers in order to communicate the information that such servers contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, a license to use, and provide User with a copy of, the current version of the OPC Materials so long as User abides by the terms contained in this Non-Exclusive License Agreement (“Agreement”). If User does not agree to the terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in all formats) of such materials in User’s possession must either be destroyed or returned to the OPC Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to make, use, sell or otherwise distribute any products and/or product literature that are compliant with the standards included in the OPC Materials.
All copies of the OPC Materials made and/or distributed by User must include all copyright and other proprietary rights notices include on or in the copy of such materials provided to User by the OPC Foundation.

The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights) in the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:
User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARS ALL RISK RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet User’s requirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES) OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS AGREEMENT OR ANY USE OF THE OPC MATERIALS.

GENERAL PROVISIONS:

This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC Foundation, at its option, if User commits a material breach hereof. Upon any termination of this Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its possession and take such other actions as the OPC Foundation may reasonably request to ensure that no copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to any person or destination that is not authorized to receive them under the export control laws and regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer is the OPC Foundation, P.O. Box 140524, Austin, Texas 78714-0524.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior understanding or agreement (oral or written) relating to, the OPC Materials.

Revision 2.0 Highlights

This revision replaces the Data Access Automation Interface previously documented in the OPC Data Access 1.0A Specification. Basically the automation interface architecture was redesigned to address ease of use by Visual Basic Programmers, and to take advantage of the technology improvements, inclusive of automation events and object support for the WithEvents keyword.

Revision 2.01 January 6, 1999 Highlights

As noted elsewhere a draft version of the Specification was inadvertently circulated as Version 2.0. The 'correct' version 2.0 has been relabeled as 2.01 (this document), redated and republished. The basic changes between the draft dated October 14, 1998 and this document include:

· Removal of AsyncRefreshComplete (event for refresh follows custom interface architecture, with data returned in DataChange Event);

· Change to AsyncCancelComplete to return the Transaction ID associated with the method being canceled;

· Changing reference to NumItems to Count;

· Correction to OPC error numbering;

· Adding NON-EXCLUSIVE LICENSE AGREEMENT Section;

· Minor formatting changes.

Revision 2.02 February 3, 1999

Minor correction to the CurrentPosition property description in the OPCBrowser Object.

Table of Contents
101
Introduction

1.1
Background
10
1.2
Purpose
10
1.3
Scope
11
1.4
References
11
1.5
Audience
11
2
Architecture
12
2.1
Functional Requirements
12
2.2
OPC Automation Server Object Model
13
2.3
OPC Data Access Automation Object Model
13
2.4
Data Synchronization
14
2.5
Introduction to Exceptions and Events
14
2.5.1
Exceptions
14
2.5.2
Events
14
2.6
Arrays
14
2.7
Collections
14
2.8
Optional Parameters
15
2.9
Method Parameters
15
2.10
Type Library
15
3
About the OPC Data Access Automation Wrapper DLL
16
4
OPC Data Access Automation Objects & Interfaces
17
4.1
OPCServer Object
17
4.1.1
Summary of Properties
17
4.1.2
Summary of Methods
17
4.1.3
Summary of Events
17
4.1.4
OPCServer Properties
17
4.1.4.1
StartTime
17
4.1.4.2
CurrentTime
18
4.1.4.3
LastUpdateTime
18
4.1.4.4
MajorVersion
18
4.1.4.5
MinorVersion
18
4.1.4.6
BuildNumber
19
4.1.4.7
VendorInfo
19
4.1.4.8
ServerState
19
4.1.4.9
LocaleID
20
4.1.4.10
Bandwidth
20
4.1.4.11
OPCGroups
21
4.1.4.12
PublicGroupNames
21
4.1.4.13
ServerName
21
4.1.4.14
ServerNode
21
4.1.4.15
ClientName
22
4.1.5
OPCServer Methods
22
4.1.5.1
GetOPCServers
22
4.1.5.2
Connect
23
4.1.5.3
Disconnect
24
4.1.5.4
CreateBrowser
24
4.1.5.5
GetErrorString
24
4.1.5.6
QueryAvailableLocaleIDs
25
4.1.5.7
QueryAvailableProperties
25
4.1.5.8
GetItemProperties
26
4.1.5.9
LookupItemIDs
27
4.1.6
OPCServer Events
28
4.1.6.1
ServerShutDown
28
4.2
OPCBrowser Object
30
4.2.1
Summary of Properties
31
4.2.2
Summary of Methods
31
4.2.3
OPCBrowser Properties
31
4.2.3.1
Organization
31
4.2.3.2
Filter
31
4.2.3.3
DataType
32
4.2.3.4
AccessRights
32
4.2.3.5
CurrentPosition
33
4.2.3.6
Count
33
4.2.4
OPCBrowser Methods
33
4.2.4.1
Item
33
4.2.4.2
ShowBranches
34
4.2.4.3
ShowLeafs
34
4.2.4.4
MoveUp
35
4.2.4.5
MoveToRoot
35
4.2.4.6
MoveDown
35
4.2.4.7
MoveTo
35
4.2.4.8
GetItemID
36
4.2.4.9
GetAccessPaths
36
4.3
OPCGroups Object
38
4.3.1
Summary of Properties
38
4.3.2
Summary of Methods
38
4.3.3
Summary of Events
38
4.3.4
OPCGroups Properties
39
4.3.4.1
Parent
39
4.3.4.2
DefaultGroupIsActive
39
4.3.4.3
DefaultGroupUpdateRate
39
4.3.4.4
DefaultGroupDeadband
40
4.3.4.5
DefaultGroupLocaleID
40
4.3.4.6
DefaultGroupTimeBias
40
4.3.4.7
Count
41
4.3.5
OPCGroups Methods
41
4.3.5.1
Item
41
4.3.5.2
Add
41
4.3.5.3
GetOPCGroup
42
4.3.5.4
Remove
42
4.3.5.5
RemoveAll
43
4.3.5.6
ConnectPublicGroup
43
4.3.5.7
RemovePublicGroup
43
4.3.6
OPCGroups Events
44
4.3.6.1
GlobalDataChange
44
4.4
OPCGroup Object
46
4.4.1
Summary of Properties
46
4.4.2
Summary of Methods
46
4.4.3
Summary of Events
46
4.4.4
OPCGroup Properties
47
4.4.4.1
Parent
47
4.4.4.2
Name
47
4.4.4.3
IsPublic
48
4.4.4.4
IsActive
48
4.4.4.5
IsSubscribed
49
4.4.4.6
ClientHandle
49
4.4.4.7
ServerHandle
50
4.4.4.8
LocaleID
50
4.4.4.9
TimeBias
51
4.4.4.10
DeadBand
51
4.4.4.11
UpdateRate
52
4.4.4.12
OPCItems
52
4.4.5
OPCGroup Methods
52
4.4.5.1
SyncRead
52
4.4.5.2
SyncWrite
54
4.4.5.3
AsyncRead
55
4.4.5.4
AsyncWrite
56
4.4.5.5
AsyncRefresh
58
4.4.5.6
AsyncCancel
59
4.4.6
OPCGroup Events
59
4.4.6.1
DataChange
59
4.4.6.2
AsyncReadComplete
60
4.4.6.3
AsyncWriteComplete
61
4.4.6.4
AsyncCancelComplete
61
4.5
OPCItems Object
63
4.5.1
Summary of Properties
63
4.5.2
Summary of Methods
63
4.5.3
OPCItems Properties
64
4.5.3.1
Parent
64
4.5.3.2
DefaultRequestedDataType
64
4.5.3.3
DefaultAccessPath
64
4.5.3.4
DefaultIsActive
65
4.5.3.5
Count
65
4.5.4
OPCItems Methods
65
4.5.4.1
Item
65
4.5.4.2
GetOPCItem
66
4.5.4.3
AddItem
66
4.5.4.4
AddItems
67
4.5.4.5
Remove
68
4.5.4.6
Validate
68
4.5.4.7
SetActive
69
4.5.4.8
SetClientHandles
70
4.5.4.9
SetDataTypes
70
4.6
OPCItem Object
72
4.6.1
Summary of Properties
72
4.6.2
Summary of Methods
72
4.6.3
OPCItem Properties
72
4.6.3.1
Parent
72
4.6.3.2
ClientHandle
72
4.6.3.3
ServerHandle
73
4.6.3.4
AccessPath
73
4.6.3.5
AccessRights
73
4.6.3.6
ItemID
74
4.6.3.7
IsActive
74
4.6.3.8
RequestedDataType
74
4.6.3.9
Value
75
4.6.3.10
Quality
75
4.6.3.11
TimeStamp
75
4.6.3.12
CanonicalDataType
75
4.6.3.13
EUType
76
4.6.3.14
EUInfo
76
4.6.4
OPCItem Methods
76
4.6.4.1
Read
76
4.6.4.2
Write
77
5
OPC Data Access Automation Definitions and Symbols
79
5.1
OPCNamespaceTypes
79
5.2
OPCDataSource
79
5.3
OPCAccessRights
79
5.4
OPCServerState
79
5.5
OPCErrors
79
6
Appendix A - OPC Automation Error Handling
81
7
Appendix B – Sample String Filter Syntax Function
83
8
Appendix C - Data Access Automation IDL Specification
85
9
Appendix D- Notes On Automation Data Types
100
1
Introduction

1.1 Background

A standard mechanism for communicating to numerous data sources, either devices on the factory floor, or a database in a control room is the motivation for this specification. The standard mechanism would consist of a standard automation interface targeted to allow Visual Basic applications, as well as other automation enabled applications to communicate to the above named data sources.

Manufacturers need to access data from the plant floor and integrate it into their existing business systems. Manufacturers must be able to utilize off the shelf tools (SCADA Packages, Databases, spreadsheets, etc.) to assemble a system to meet their needs. The key is open and effective communication architecture concentrating on data access, and not the types of data. We have addressed this need by architecting and specifying a standard automation interface to the OPC Data Access Custom interface to facilitate the need s of applications that utilize an automation interface to access plant floor data.

1.2 Purpose

What is needed is a common way for automation applications to access data from any data source like a device or a database.

The OPC Data Access Automation defines a standard by which automation applications can access process data. This interface provides the same functionality as the custom interface, but in an “automation friendly” manner.

Given the common use of Automation to access other software environments (e.g.: RDBMS, MS Office applications, WWW objects), this interface has been tailored to ease application development, without sacrificing functionality defined by the Custom interface.

The figure below shows an Automation client calling into an OPC Data Access Server using a 'wrapper' DLL. This wrapper translates between the custom interface provided by the server and the automation interface desired by the client. Note that in general the connection between the Automation Client and the Automation Server will be 'In Process' while the connection between the Automation Server and the Custom Server may be either In Process, Local or Remote.

[image: image2.wmf]Automation Client

OPC Automation Wrapper

OPC Custom Interface Server

COM / DCOM

Figure 1-1. Custom and Automation Client Applications Interfacing to OPC Servers

1.3 Scope

This document specifies a revised version of the OLE Automation interface that was specified in Release 1.0 of the OPC specification. There were several reasons for these revisions. The most important are as follows:

· Make the interface easier to use by the Visual Basic Programmer

· Take advantage of newer features of Visual Basic (such as events)

· Allow the creation of a common wrapper DLL which could be shared by all vendors

This document assumes that the reader is familiar with the information provided on the OPC Data Access Custom Interface Specification. That document provides an Overview of the OPC functionality as well as detailed descriptions of the behavior of the various functions.

We have deliberately not duplicated that information in an attempt to maintain consistency.

1.4 References

Kraig Brockschmidt, Inside OLE, Second Edition, Microsoft Press, Redmond, WA, 1995.

Microsoft Systems Journal, Q&A, April 1996, pp. 89-101.

OLE Automation Programming Reference, Microsoft Press, Redmond, WA, 1996.

OLE 2 Programming Reference, Vol. 1, Microsoft Press, Redmond, WA, 1994.

OPC Data Access Custom Interface Standard, Version 2.0, OPC Foundation 1998.

1.5 Audience

This specification is intended as reference material for developers of OPC Automation Clients that require the functionality of the OPC Data Access Custom Interface.

The developer needs some knowledge of basic Automation concepts and terminology.

2 Architecture

The fundamental design goal is that this interface is intended to work as a 'wrapper' for existing OPC Data Access Custom Interface Servers providing an automation friendly mechanism to the functionality provided by the custom interface.

2.1 Functional Requirements

· The automation interface provides nearly all of the functionality of the required and optional Interfaces in the OPC Data Access Custom Interface. If the OPC Data Access Custom server supports the interface, the functions and properties at the automation level will work. Automation interfaces generally do not support optional capabilities in the same way that the custom interface does. If the underlying custom interface omits some optional functionality then the corresponding automation functions and properties will exhibit some reasonable default behavior as described in more detail later in this document.

· The interfaces are fully supported by VC++ and Visual Basic 5.0. They allow any application which has an OLE Automation Interface (e.g. VB, VC++, and VBA enabled applications) to access the OPC Interface, according to the limitations of the respective application.

· The interface described in this specification specifically does NOT support VBScript or Java Script. A separate wrapper could be developed to accommodate the needs of VBScript and Java Script. However such an effort is outside the scope of this specification.

2.2 OPC Automation Server Object Model

Figure 2-1. Automation Object Hierarchy

Object
Description

OPCServer
An instance of an OPC Server. You must create an OPCServer object before you can get references to other objects. It contains the OPCGroups Collection and creates OPCBrowser objects.

OPCGroups
An Automation collection containing all of the OPCGroup objects this client has created within the scope of the OPCServer that the Automation Application has connected to via the OPCServer.Connect()

OPCGroup
An instance of an OPCGroup object. The purpose of this object is to maintain state information and provide the mechanism to provide data acquisition services for the OPCItem Collection object that the OPCGroup object references.

OPCItems
An Automation collection containing all of the OPCItem objects this client has created within the scope of the OPCServer, and corresponding OPCGroup object that the Automation Application has created.

OPCItem
An automation object that maintains the item’s definition, current value, status information, last update time. Note the Custom Interface does not provide a separate Item Object.

OPCBrowser
An object that browses item names in the server’s configuration. There exists only one instance of an OPCBrowser object per instance of an OPC Server object.

2.3 OPC Data Access Automation Object Model

The OPCServer object provides a way to access (read/write) or communicate to a set of data sources. The types of sources available are a function of the server implementation.

An OPC Automation client connects to an OPC Automation Server that communicates to the underlying data source (e.g. OPC Data Access Custom Servers) through the functionality provided by the automation objects described here.

The OPCServer provides an (OPCGroups) automation collection object to maintain a collection of OPCGroup Objects.

The OPCGroup object allows clients to organize the data they want to access. An OPCGroup can be activated and deactivated as a unit. An OPCGroup also provides a way for the client to ‘subscribe’ to the list of items so that it can be notified when they change. The OPCGroup Object provides an OPCItems collection of OPCItems.

The OPCItem object provides a connection to a single data item in the underlying data source.

2.4 Data Synchronization

There is a requirement that the VB client be able to read or receive data such that the value, quality, and timestamp information are kept in sync. Basically the client needs to be assured that the quality of the data and the timestamp matches the value.

If a client obtains values using any of the Read methods it can be assured that Value, Timestamp, and Quality properties will be in synch with each other.

If a client obtains data by registering for DataChange events, then the Value, Timestamp, and Quality will be in sync within the scope of the EventHandler routine.

If a client mixes these two approaches it will be impossible for the client to ensure that the item properties are exactly in sync since an event which changed the properties could occur between the time the client accesses the various properties.

2.5 Introduction to Exceptions and Events

2.5.1 Exceptions

Most properties and methods described here communicate with an OPC Custom Server. In OLE Automation, there is no easy way to return an error when accessing a property. The best way to resolve this is for the automation server to generate an exception if such an error occurs in the underlying data source. This means that the client needs to have exception logic in place to handle errors.

Errors that occur when setting a property are reported using the standard Visual Basic Err object. Refer to Appendix A - OPC Automation Error Handling for more details on handling errors.

2.5.2 Events

The automation interface supports the event notification mechanism that is provided with Visual Basic 5.0.

The Automation server triggers events in response to Async Refresh, Async Read and Async Write Method calls. In addition, Automation server triggers events when data changes according to the client specification.

The implementation assumes that the Automation Client is equipped to deal with these events.

2.6 Arrays

By convention, the OPC Automation interface assumes that arrays are 1 based. If an array is passed to a function that is larger than the Count or NumItems parameter, only Count or NumItems elements will be used, starting at index 1.

This only applies to parameters for functions and events within the automation interface. This does not apply to item values, where the data type for the item value is itself an array.

To avoid errors it is suggested that VB code use “Option Base 1”.

2.7 Collections

OLE Automation collections are objects that support Count, Item, and a hidden property called _NewEnum. Any object that has these properties as part of the interface can be called a collection. In VB, a collection can be iterated using either of two idioms.

The first method explicitly uses Count and Item to index the elements of the collection.

For I = 1 To object.Count

element = object.Item (I)

‘or…

element = object(I)
Next I

The second method iterates through the available items using the hidden _NewEnum function:

For Each element In object

‘do something with element
Next element

The For Each method of iterating a collection is faster than the explicit Item method.

Item can also be used to access a particular index, such as Item(3). It doesn’t need to be used within a loop.

2.8 Optional Parameters

Optional parameters are denoted by the keyword “Optional”. Optional parameters may be omitted from a method call if the default behavior is acceptable. OLE Automation requires that optional parameters be Dim’d as Variant, though they may hold a string, array, etc.

2.9 Method Parameters

Method parameters are assumed to be passed ByVal unless specified to be ByRef. ByRef parameters get filled in by the method and passed back.

2.10 Type Library

VB uses the OPC Automation Type Library to define the following interfaces. Make sure that (in Visual Basic 5.0) Properties | References has “OPC Automation 2.0” checked.

3 About the OPC Data Access Automation Wrapper DLL

The OPC foundation has provided a reference sample of the Data Access Automation interface for the OPC foundation members use in providing an automation interface to OPC data access custom interface servers. The reference sample is provided as a DLL complete with the Visual C++ source code. Vendors may provide the DLL directly with their product.

Vendors that choose to modify the source code, or even just build the DLL from the source code(unchanged) must do the following prior to including or shipping the DLL.

1. The name of the OPC automation DLL must be changed from OPCDAAuto.dll to a vendor specific unique name.

2. The name of the OPC automation IDL(opcauto.idl) file should be changed to a vendor specific unique name.

3. The helpstring ("OPC Automation 2.0") in the IDL file must be changed to reflect your vendor specific OPC automation interface. This is the name that shows up in the Automation Type Library. Visual Basic applications that use your vendor build OPC automation interface DLL will include the DLL by using the type library.

4. All guid’s in the IDL file must be changed to new values that are generated by using the Guidgen tool. This is required to prevent the vendor built automation interface library from being confused with another vendors built automation library or the OPC foundation provided automation library.

The vendor is encouraged to not change the existing automation interfaces. If additional functionality is desired, a new object and interface should be added and should replicate all the functionality of the existing object that is being added to.

The OPC foundation has also provide a visual basic sample that demonstrates usage of the Data Access Automation interface. This sample is intended only to demonstrate the functionality of the OPC data access automation interface.

4 OPC Data Access Automation Objects & Interfaces

4.1 OPCServer Object

Description
A client creates the OPCServer Automation object. The client then 'connects' it to an OPC Data Access Custom Interface (see the 'Connect' method). The OPCServer object can now be used to obtain general information about an OPC server and to create and manipulate the collection of OPCGroup objects.'

Syntax
OPCServer

Remarks
The WithEvents syntax enables the object to support the declared events for the particular object. For the OPCServer, the only event defined is the ServerShutDown. The OPCGroup (described later) has all the events associated with DataChange and the events as required to support the Asynchronous methods of the OPCGroup object.

Example
Dim WithEvents AnOPCServer As OPCServer
Set AnOPCServer = New OPCServer

4.1.1 Summary of Properties

StartTime
CurrentTime
LastUpdateTime

MajorVersion
MinorVersion
BuildNumber

VendorInfo
ServerState
LocaleID

Bandwidth
OPCGroups
PublicGroupNames

ServerName
ServerNode
ClientName

4.1.2 Summary of Methods

GetOPCServers
Connect
Disconnect

CreateBrowser
GetErrorString
QueryAvailableLocaleIDs

QueryAvailableProperties
GetItemProperties
LookupItemIDs

4.1.3 Summary of Events

ServerShutDown

4.1.4 OPCServer Properties

4.1.4.1 StartTime

Description
(Read-only) Returns the time the server started running. This is the start time of the server that the client has specified to connect to. Multiple Clients connecting to the same server can be assured that each client will read the same value from the server for this property.

Syntax
StartTime As Date

Remarks
The automation server is expected to use the custom interface GetStatus () to obtain the values for this property as well as many of the other properties defined as properties of the OPCServer. An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim AnOPCServerTime As Date
AnOPCServerTime = AnOPCServer.StartTime

4.1.4.2 CurrentTime

Description
(Read-only) Returns the current time from the server. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus () interface.

Syntax
CurrentTime As Date

Remarks
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim AnOPCServerTime As Date
AnOPCServerTime = AnOPCServer.CurrentTime

4.1.4.3 LastUpdateTime

Description
(Read-only) Returns the last update time from the server. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus() interface.

Syntax
LastUpdateTime As Date

Remarks
Returns the last time data was sent from the server to a client application.
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim AnOPCServerTime As Date
AnOPCServerTime = AnOPCServer.LastUpdateTime

4.1.4.4 MajorVersion

Description
(Read-only) Returns the major part of the server version number (e.g. the “1” in version 1.32). When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus() interface.

Syntax
MajorVersion As Integer

Remarks
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim AnOPCServerMajorVersion As String
AnOPCServerMajorVersion = Str(AnOPCServer.MajorVersion)

4.1.4.5 MinorVersion

Description
(Read-only) Returns the minor part of the server version number (e.g. the “32” in version 1.32). When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus () interface.

Syntax
MinorVersion As Integer

Remarks
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim AnOPCServerMinorVersion As String
AnOPCServerMinorVersion = Str(AnOPCServer.MinorVersion)

4.1.4.6 BuildNumber

Description
(Read-only) Returns the build number of the server. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus () interface.

Syntax
BuildNumber As Integer

Remarks
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim BuildNumber as Integer
BuildNumber = AnOPCServer.BuildNumber

4.1.4.7 VendorInfo

Description
(Read-only) Returns the vendor information string for the server. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus () interface.

Syntax
VendorInfo As String

Remarks
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim info As String
info = AnOPCServer.VendorInfo

4.1.4.8 ServerState

Description
(Read-only) Returns the server’s state, which will be one of the OPCServerState values:

Syntax
ServerState As Long

Setting
Description

OPC_STATUS_RUNNING
The server is running normally. This is the usual state for a server

OPC_STATUS_FAILED
A vendor specific fatal error has occurred within the server. The server is no longer functioning. The recovery procedure from this situation is vendor specific. An error code of E_FAIL should generally be returned from any other server method.

OPC_STATUS_NOCONFIG
The server is running but has no configuration information loaded and thus cannot function normally. Note this state implies that the server needs configuration information in order to function. Servers which do not require configuration information should not return this state.

OPC_STATUS_SUSPENDED
The server has been temporarily suspended via some vendor specific method and is not getting or sending data. Note that Quality will be returned as OPC_QUALITY_OUT_OF_SERVICE.

OPC_STATUS_TEST
The server is in Test Mode. The outputs are disconnected from the real hardware but the server will otherwise behave normally. Inputs may be real or may be simulated depending on the vendor implementation. Quality will generally be returned normally.

Remarks
These are the server states that are described in the OPC Data Access Custom Interface Specification, and returned by an OPC server via the custom interface. Refer to the OPC Data Access Custom Interface Specification IOPCServer::GetStatus() for more details. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus () interface.
An error occurs if the client has not connected to a Data Access Server via the Connect method..

Example
Dim ServerState As Long
ServerState = AnOPCServer.ServerState

4.1.4.9 LocaleID

Description
(Read/Write) This property identifies the locale, which may be used to localize strings returned from the server. . This LocaleID will be used by the GetErrorString method on this interface

Syntax
LocaleID As Long

Remarks
It should also be used as the ‘default’ LocaleID by any other server functions that are affected by LocaleID.
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
 ‘(getting the property)::
Dim LocaleID As Long
LocaleID = AnOPCServer.LocaleID
 ‘(setting the property):
 AnOPCServer.LocaleID = LocaleID

4.1.4.10 Bandwidth

Description
(Read-only) This is server specific. The suggested use is the server’s bandwidth as a percentage of available bandwidth. This value will be hFFFFFFFF when the server cannot calculate a bandwidth. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetStatus () interface.

Syntax
Bandwidth As Long

Remarks
An error occurs if the client has not connected to a Data Access Server via the Connect method.

Example
Dim Bandwidth As Long
Bandwidth = AnOPCServer.Bandwidth

4.1.4.11 OPCGroups

Description
(Read only) A collection of OPCGroup objects. This is the default property of the OPCServer object.

Syntax
OPCGroups As OPCGroups

Example
‘(explicit property specification):

Dim groups As OPCGroups

Set groups = AnOPCServer.OPCGroups

 ‘(using the default specification):

Dim groups As OPCGroups

Set groups = AnOPCServer

4.1.4.12 PublicGroupNames

Description
(Read-only) Returns the names of this server’s Public Groups. These names can be used in ConnectPublicGroup. The names are returned as an array of strings.

Syntax
PublicGroupNames As Variant

Remarks
An error occurs if the client has not connected to a Data Access Server via the Connect method. An empty list is returned if the underlying server does not support the Public Groups interface, or if there are no public groups defined.

Example
Dim AllPublicGroupNames As Variant

AllPublicGroupNames = AnOPCServer.PublicGroupNames

4.1.4.13 ServerName

Description
(Read-only) Returns the server name of the server that the client connected to via Connect().

Syntax
ServerName As String

Remarks
When you access this property, you will get the value that the automation server has cached locally.
The ServerName is empty if the client is not connected to a Data Access Server.

Example
Dim info As String
info = AnOPCServer.ServerName

4.1.4.14 ServerNode

Description
(Read-only) Returns the node name of the server that the client connected to via Connect(). When you access this property, you will get the value that the automation server has cached locally.

Syntax
ServerNode As String

Remarks
The ServerNode is empty if the client is not connected to a Data Access Server.
The ServerNode will be empty if no host name was specified in the Connect method.

Example
Dim info As String
info = AnOPCServer.ServerNode

4.1.4.15 ClientName

Description
(Read/Write) This property allows the client to optionally register a client name with the server. This is included primarily for debugging purposes. The recommended behavior is that the client set his Node name and EXE name here.

Syntax
ClientName As String

Remarks
Recommended to put NodeName and ClientName in the string, separated by a semi-colon (;). Refer to the example below for suggested syntax

Example
‘(getting the property):
Dim info As String
info = AnOPCServer.ClientName

 ‘(setting the property):
 AnOPCServer.ClientName = “NodeName;c:\programfiles\vendor\someapplication.exe”

4.1.5 OPCServer Methods

4.1.5.1 GetOPCServers

Description
Returns the names (ProgID’s) of the registered OPC Servers. Use one of these ProgIDs in the Connect method. The names are returned as an array of strings.

Syntax
GetOPCServers(Optional Node As Variant) As Variant

Part
Description

Node
The Node name provides the mechanism to specify the remote node where you want the automation server to give you the list of all the registered OPC servers.

Remarks
Refer to the OPC Data Access Custom Interface Standard for specific registry requirements for the custom servers.

Node is optional. The use of a node name makes use of DCOM to access another computer. Acceptable node names are UNC names (“Server”), or DNS names (“server.com”, “www.vendor.com”, or “180.151.19.75”).

Example
‘ getting the registered OPC Servers (the real OPC servers and adding them to a standard VB listbox).

Dim AllOPCServers As Variant

AllOPCServers = AnOPCServer.GetOPCServers

For i = LBound(AllOPCServers) To UBound(AllOPCServers)

 listbox.AddItem AllOPCServers(i)

Next i

4.1.5.2 Connect

Description
Must be called to establish connection to an OPC Data Access Server (that implements the custom interface).

Syntax
Connect (ProgID As String, Optional Node As Variant)

Part
Description

ProgID
The ProgID is a string that uniquely identifies the registered real OPC Data Access Server (that implements the custom interface).

Node
The Node name can specify another computer to connect using DCOM.

Remarks
Each instance of an OPC Automation Server is “connected” to an OPC Data Access Server (which implements the custom interface).

Node is optional. The use of a node name makes use of DCOM to access another computer. Acceptable node names are UNC names (“Server”), or DNS names (“server.com”, “www.vendor.com”, or “180.151.19.75”).

Calling this function will result in the automation wrapper calling CoCreateInstanceEx to create a Data Access Custom(specified by the ProgID)server on the specified machine(StrNodeName).

If this function is called a second time without calling explicitly calling disconnect the automation wrapper will automatically disconnect the existing connection.

See Also
Use the GetOPCServers method to find the legal ProgIDs.

Example
‘ Connect to the first registered OPCServer returned from the GetOPCServers

Dim AllOPCServers As Variant

AllOPCServers = AnOPCServer.GetOPCServers

AnOPCServer.Connect(AllOPCServers(1))

 ‘Connect to a specific server on some remote node

Dim ARealOPCServer As String

Dim ARealOPCNodeName As String

ARealOPCServer = “VendorX.DataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCServer.Connect (ARealOPCServer, ARealOPCNodeName)

4.1.5.3 Disconnect

Description
Disconnects from the OPC server.

Syntax
Disconnect()

Remarks
This allows you to disconnect from a server and then either connect to another server, or remove the object. It is it is good programming practice for the client application to explicitly remove the objects that it created (including all OPCGroup(s), and OPCItem(s) using the appropriate automation method. Calling this function will remove all of the groups and release all references to the underlying OPC Custom Server.

Example
AnOPCServer.Disconnect

4.1.5.4 CreateBrowser

Description
Creates an OPCBrowser object

Syntax
CreateBrowser() As OPCBrowser

Remarks
The OPC Browse interface is an optional interface that is not required to be supported by an OPC Custom interface server. Therefore, an OPCBrowser object will not be returned for OPC Custom interface servers that do not implement the browse interface.

Example
Dim ARealOPCServer As String

Dim ARealOPCNodeName As String

ARealOPCServer = “VendorX.DataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCServer.Connect(ARealOPCServer, ARealOPCNodeName)

Dim AnOPCServerBrowserObject As OPCBrowser

Set AnOPCServerBrowserObject = AnOPCServer.CreateBrowser

4.1.5.5 GetErrorString

Description
Converts an error number to a readable string. The server will return the string in the Locale that is specified in the server level LocaleID property. Refer to the properties of the OPC Server for setting and getting the LocaleID property.

Syntax
GetErrorString(ErrorCode As Long) As String

Part
Description

ErrorCode
Server specific error code that the client application had returned from an interface function from the server, and for which the client application is requesting the server’s textual representation.

Example
Dim AnOPCServerErrorString As String

‘ for this sample, assume while adding some items, we detected that one of the items was ‘invalid. Not all code included for clarity reasons.

AnOPCItemCollection.Add AddItemCount, AnOPCItemIDs, AnOPCItemServerHandles, AnOPCItemErrors
’Get the error string and display it to tell the user why the item could not be added

AnOPCServerErrorString = AnOPCServer.GetErrorString(AnOPCItemErrors (index))

‘and more code

ErrorBox.Text = AnOPCServerErrorString

‘and more code

4.1.5.6 QueryAvailableLocaleIDs

Description
Return the available LocaleIDs for this server/client session. The LocaleIDs are returned as an array of longs.

Syntax
QueryAvailableLocaleIDs () As Variant

Example
Dim LocaleID As Variant

Dim AnOPCTextSting as String

AnOPCServerLocaleID = AnOPCServer.QueryAvailableLocaleIDs()

For i = LBound(LocaleID) To UBound(LocaleID)

AnOPCTextSting = LocaleIDToString(LocaleID(i))

 listbox.AddItem AnOPCTextSting

Next i

4.1.5.7 QueryAvailableProperties

Description
Return a list of ID codes and Descriptions for the available properties for this ItemID. This list may differ for different ItemIDs. This list is expected to be relatively stable for a particular ItemID. That is, it could be affected from time to time by changes to the underlying system’s configuration.

Syntax
QueryAvailableProperties (ItemID As String, ByRef Count As Long, ByRef PropertyIDs() as Long, ByRef Descriptions() As String, ByRef DataTypes() As Integer)

Part
Description

ItemID
The ItemID for which the caller wants to know the available properties

Count
The number of properties returned

PropertyIDs
DWORD ids for the returned properties. These IDs can be passed to GetItemProperties or LookupItemIDs

Descriptions
A brief vendor supplied text Description of each Property. NOTE LocalID does not apply to Descriptions.

DataTypes
The datatype which will be returned for this Property by GetItemProperties.

Example
‘ Get the available properties

Dim OPCItemID As String

Dim ItemCount As Long

Dim PropertyIDs() As Long

Dim Descriptions() As String

Dim DataTypes() As Integer

Dim AnOPCTextSting As String

OPCItemID = “SomeOPCDataAccessItem”

AnOPCServer.QueryAvailableProperties (OPCItemID, ItemCount, PropertyIDs, Descriptions, DataTypes)

For i = 1 To ItemCount

AnOPCTextSting = Str(PropertyIDs(i) + “ “ + Descriptions(i)

 listbox.AddItem AnOPCTextSting

Next I

4.1.5.8 GetItemProperties

Description
Return a list of the current data values for the passed ID codes.

Syntax
GetItemProperties (ItemID As String, Count As Long, ByRef PropertyIDs() as Long, ByRef PropertyValues() As Variant, ByRef Errors() As Long)

Part
Description

ItemID

The ItemID for which the caller wants to read the list of properties

Count
The number of properties passed

PropertyIDs
DWORD ids for the requested properties. These IDs were returned by QueryAvailableProperties or obtained from the fixed list described earlier.

PropertyValues
An array of size Count VARIANTS returned by the server, which contain the current values of the requested properties.

Errors
Error array indicating whether each property was returned.

Example
Dim OPCItemID as String

Dim ItemCount As Long

Dim PropertyIDs(3) as Long

Dim Data() as Variant

Dim Errors() as Long

Dim AnOPCTextSting As String

‘ Set values for ItemCount and PropertyIDs…

AnOPCServer.GetItemProperties (OPCItemID, ItemCount, PropertyIDs, Data, Errors)

For i = 1 To ItemCount

AnOPCTextSting = Str(PropertyIDs(i) + “ “ + Data(i)

 listbox.AddItem AnOPCTextSting

Next i

4.1.5.9 LookupItemIDs

Description
Return a list of ItemIDs (if available) for each of the passed ID codes. These indicate the ItemID, which could be added to an OPCGroup and used for more efficient access to the data corresponding to the Item Properties. An error within the error array may indicate that the passed Property ID is not defined for this item.

Syntax
LookupItemIDs (ItemID As String, Count As Long, PropertyIDs() as Long, ByRef NewItemIDs() As String, ByRef Errors () As Long)

ItemID
The ItemID for which the caller wants to lookup the list of properties

Count
The number of properties passed

PropertyIDs
DWORD ids for the requested properties. These IDs were returned by QueryAvailableProperties

NewItemIDs
The returned list of ItemIDs.

Errors
Error array indicating whether each New ItemID was returned.

Example
Dim OPCItemID as String

Dim Count As Long

Dim PropertyIDs(1) as Long

Dim NewItemIDs () as String

Dim Errors() as Long

Dim AnOPCTextSting As String

OPCItemID = “SomeOPCDataAccessItem”

Count = 1

PropertyIDs(1) = 5;

AnOPCServer.LookupItemIDs (OPCItemID, Count, PropertyIDs, NewItemIDs, Errors)

For i = 1 To Count

AnOPCTextSting = Str(PropertyIDs(i) + “ “ + NewItemIDs(i)

 listbox.AddItem AnOPCTextSting

Next i

4.1.6 OPCServer Events

4.1.6.1 ServerShutDown

Description
The ServerShutDown event is fired when the server is planning on shutting down and wants to tell all the active clients to release any resources. The client provides this method so that the server can request that the client disconnect from the server. The client should remove all groups and items.

Syntax
ServerShutDown (Reason As String)

Part
Description

ServerReason
An optional text string provided by the server indicating the reason for the shutdown.

Example
Dim WithEvents AnOPCServer As OPCServer

Dim ARealOPCServer As String

Dim ARealOPCNodeName As String

Set AnOPCServer = New OPCServer ‘ note we need to specify an example to facilitate creating an object that is

‘dimensioned with events

ARealOPCServer = “VendorX.DataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCServer.Connect(ARealOPCServer, ARealOPCNodeName)

Private Sub AnOPCServer_ServerShutDown(ByRef aServerReason As String)

‘ write your client code here to let go of the server

End Sub

OPCBrowser Object

Description
The OPCBrowser object is a collection of branch or item names that exist in the server. Browsing is optional. If the server does not support browsing, CreateBrowser will not create this object.

Syntax
OPCBrowser

Remarks
The properties Filter, DataType, and AccessRights affect the collection at the time a method such as ShowLeafs is called. These properties let the client request a subset of the address space.
If the user is browsing names of items to write data to, then the AccessRights property should be set to OPCWritable before calling ShowLeafs.
Servers can have either a flat or hierarchical name space. When the namespace is flat, calling the method ShowLeafs fills the collection with the entire set of names in the server.
Hierarchical browsing is a two step process. First, the browse position is set using a Move method, then the names are put into the collection using the Show methods. Calling ShowBranches fills the collection with the branches below the current position. Calling MoveDown with one of these branch names moves the position to that branch. Calling MoveUp moves up one level. Calling MoveToRoot moves all the way to the top level. From any position, branches and leafs can be browsed.

ShowBranches and ShowLeafs should not be called from inside a For Each loop.

The reason for this restriction is when in a For Each loop or a loop to Count the items, basically you would be changing the contents of the collection, and the next item has no meaning.

Basically, you should not call ShowBranches and ShowLeafs while looping through the Browse object's collection. It is legal to call ShowLeafs while in a loop on some other collection.

Example
Dim WithEvents AnOPCServer As OPCServer

Dim ARealOPCServer As String

Dim ARealOPCNodeName As String

Dim AnOPCServerBrowser As OPCBrowser

Dim SomeName As Variant
Set AnOPCServer = New OPCServer

ARealOPCServer = “VendorX.DataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCServer.Connect(ARealOPCServer, ARealOPCNodeName)

Set browser = AnOPCServer.CreateBrowser
AnOPCServerBrowser.ShowBranches

AnOPCServerBrowser.MoveDown(AnOPCServerBrowser.Item(1))
AnOPCServerBrowser.DataType = vbInteger
AnOPCServerBrowser.ShowLeafs

’ 1st method for getting all names
For I = 1 To AnOPCServerBrowser.Count

name = AnOPCServerBrowser.Item(I)

’ Or…

name = AnOPCServerBrowser (I)

listBox.Add name
Next I

’ 2nd method for getting all names
For Each name In AnOPCServerBrowser

listBox.Add name
Next name

4.1.7 Summary of Properties

Organization
Filter
DataType

AccessRights
CurrentPosition
Count

4.1.8 Summary of Methods

Item
ShowBranches
ShowLeafs

MoveUp
MoveToRoot
MoveDown

MoveTo
GetItemID
GetAccessPaths

4.1.9 OPCBrowser Properties

4.1.9.1 Organization

Description
(Read-only) Returns either OPCHierarchical or OPCFlat.

Syntax
Organization As Long

Remarks
If the organization is OPCFlat, then calling ShowBranches or any Move method has no effect. All names will be available after a single call to ShowLeafs.

Example
Dim TheOrganization As Long

Set AnOPCServerBrowser = AnOPCServer.CreateBrowser
TheOrganization = AnOPCServerBrowser.Organization

4.1.9.2 Filter

Description
(Read/Write) The filter that applies to ShowBranches and ShowLeafs methods. This property defaults to “” (no filtering). Servers may use this filter to narrow the list of names. Servers are recommended to support wildcards such as “*”.

Syntax
Filter As String

See Also
Appendix B – Sample String Filter Syntax Function

Example
VB Syntax Example (getting the property):

Dim TheFilter As String

TheFilter = AnOPCServerBrowser.Filter

VB Syntax Example (setting the property):
Dim TheFilter As String

AnOPCServerBrowser.Filter = “FIC*”

4.1.9.3 DataType

Description
(Read/Write) The requested data type that applies to ShowLeafs methods. This property defaults to VT_EMPTY, which means that any data type is acceptable.

Syntax
DataType As Integer

Remarks
Any legal Variant type can be passed as a requested data type. The server responds with names that are compatible with this data type (may be none). This property provides the mechanism such that the client only gets the leafs that are of a certain DataType.

See Also
Appendix A - OPC Automation Error Handling
Appendix D- Notes On Automation Data Types

Example
VB Syntax Example (getting the property):
Dim TheDataType As Long

TheDataType = AnOPCServerBrowser.DataType

VB Syntax Example (setting the property):
Dim TheDataType As Long

AnOPCServerBrowser.DataType = vbInteger

4.1.9.4 AccessRights

Description
(Read/Write) The requested access rights that apply to the ShowLeafs methods. This property defaults to OPCReadable OR’d with OPCWritable (that is, everything). This property applies to the filtering, i.e. you only want the leafs with these AccessRights.

Syntax
AccessRights As Long

Example
VB Syntax Example (getting the property):
Dim TheAccessRights As Long

TheAccessRights = AnOPCServerBrowser.AccessRights

VB Syntax Example (setting the property):
Dim TheAccessRights As Long

AnOPCServerBrowser.AccessRights = OPCWritable

4.1.9.5 CurrentPosition

Description
(Read-only) Current position in the tree. This string will be “” (i.e. the "root") initially. It will always be “” if Organization is OPCFlat.

Syntax
CurrentPosition As String

Remarks
Current Position returns the absolute position and is equivalent to calling GetItemID on a branch (see also the Custom Interface Spec).

Example
VB Syntax Example (getting the property):
Dim ACurrentPosition As String

AnOPCServerBrowser.MoveDown(“level_1”)

Set ACurrentPosition = AnOPCServerBrowser.CurrentPosition

4.1.9.6 Count

Description
(Read-only) Required property for collections. Returns the number of items in the collection.

Syntax
Count As Long

Example
VB Syntax Example (getting the property):
Dim AnOPCCount As Long
AnOPCCount = AnOPCServerBrowser.Count

4.1.10 OPCBrowser Methods

4.1.10.1 Item

Description
Required property for collections. Returns a name indexed by ItemSpecifier. The name will be a branch or leaf name, depending on previous calls to ShowBranches or ShowLeafs. Item is the default for the OPCBrowser.

Syntax
Item(ItemSpecifier As Variant) As String

Part
Description

ItemSpecifier
1-based index into the collection

Example
AnOPCServerBrowser.ShowBranches

’ 1st method for getting all names
For I = 1 To AnOPCServerBrowser.Count

SomeName = AnOPCServerBrowser.Item(I)

listBox.Add SomeName
Next I

’ 2nd method for getting all names
For I = 1 To AnOPCServerBrowser.Count

SomeName = AnOPCServerBrowser(I)

listBox.Add SomeName
Next I

’ 3rd method for getting all names
For Each SomeName In browser

listBox.Add SomeName
Next SomeName

4.1.10.2 ShowBranches

Description
Fills the collection with names of the branches at the current browse position.

Syntax
ShowBranches()

Example
AnOPCServerBrowser.ShowBranches

4.1.10.3 ShowLeafs

Description
Fills the collection with the names of the leafs at the current browse position. Default for Flat is FALSE.

Syntax
ShowLeafs(Optional Flat As Variant)

Part
Description

Flat
Defines what the collection should contain.

Settings
The Settings for Flat are:

Settings
Description

True
the collection is filled with all leafs at the current browse position, as well as all the leafs that are below the current browse position. Basically we are treated from the current position on down as a flat name space.

False
the collection is filled with all leafs at the current browse position

Remarks
The names of leafs in the collection should match the filter criteria defined by DataType, AccessRights, and Filter. Default for Flat is FALSE.

Example
AnOPCServerBrowser.MoveDown (“Floor1_Mixing”)
AnOPCServerBrowser.ShowLeafs

4.1.10.4 MoveUp

Description
Move up one level in the tree.

Syntax
MoveUp()

Example
AnOPCServerBrowser.MoveUp

4.1.10.5 MoveToRoot

Description
Move up to the first level in the tree.

Syntax
MoveToRoot()

Example
AnOPCServerBrowser.MoveToRoot

4.1.10.6 MoveDown

Description
Move down into this branch.

Syntax
MoveDown(Branch As String)

Example
AnOPCServerBrowser.MoveDown (“Floor1_Mixing”)

4.1.10.7 MoveTo

Description
Move to an absolute position.

Syntax
MoveTo(Branches() As String)

Part
Description

Branches
Branches are an array of branch names from the root to a particular position in the tree.

Remarks
This method is equivalent to calling MoveToRoot, followed by MoveDown for each branch name in the array.

Example
Dim branches(3) As String

AnOPCServerBrowser.MoveToRoot
branches(1) = “node”

branches(2) = “device”

branches(3) = “group”

browser.MoveTo branches

Set ACurrentPosition = AnOPCServerBrowser.CurrentPosition

‘ACurrentPosition is now “node.device.group”

4.1.10.8 GetItemID

Description
Given a name, returns a valid ItemID that can be passed to OPCItems Add method.

Syntax
GetItemID(Leaf As String) As String

Part
Description

Leaf
The name of a BRANCH or LEAF at the current level.

Remarks
The server converts the name to an ItemID based on the current “position” of the browser. It will not correctly translate a name if MoveUp, MoveDown, etc. has been called since the name was obtained.

Example
AnOPCServerBrowser.ShowLeafs

For I = 1 To AnOPCServerBrowser.Count

Set AnOPCItemID = AnOPCServerBrowser.GetItemID(I)

Next I

‘ or

AnOPCServerBrowser.MoveDown “Mixing”
Set AnOPCItemID = AnOPCServerBrowser.GetItemID(“FIC101.PV”)

4.1.10.9 GetAccessPaths

Description
Returns the strings that are legal AccessPaths for this ItemID. May be Null if there are no AccessPaths for this ItemID or the server does not support them.

Syntax
GetAccessPaths(ItemID As String) As Variant

Part
Description

ItemID
Fully Qualified ItemID

Remarks
AccessPath is the “how” for the server to get the data specified by the ItemID (the what). The client uses this function to identify the possible access paths for the specified ItemID.

Example
AnOPCServerBrowser.ShowLeafs

For I = 1 To AnOPCServerBrowser.Count

Set AnAccessPath = AnOPCServerBrowser.GetAccessPaths(“FIC101.PV)

Next I

‘ or

AnOPCServerBrowser.MoveDown “Mixing”
Set AnAccessPath = AnOPCServerBrowser.GetAccessPaths(“FIC101.PV)

OPCGroups Object

Description
OPCGroups is a collection of OPCGroup objects, and the methods that create, remove, and manage them.

This object also has properties for OPCGroup defaults. When OPCGroups are added, the DefaultGroupXXXX properties set its initial state. The defaults can be changed to add OPCGroups with different initial states. Changing the defaults does not affect groups that have already been created. Once an OPCGroup is added, its properties can be modified. This reduces the number of parameters required to call the Add method.

Syntax
OPCGroups

4.1.11 Summary of Properties

Parent
DefaultGroupIsActive
DefaultGroupUpdateRate

DefaultGroupDeadband
DefaultGroupLocaleID
DefaultGroupTimeBias

Count

4.1.12 Summary of Methods

Item
Add
GetOPCGroup

Remove
RemoveAll
ConnectPublicGroup

RemovePublicGroup

4.1.13 Summary of Events

GlobalDataChange

Example Syntax Base
The following sample code is necessary for the subsequent Visual Basic Examples to be operational.

This code is referred to as OPCGroupsObjectBase.

Dim WithEvents AnOPCServer As OPCServer

Dim ARealOPCServer As String

Dim ARealOPCNodeName As String

Dim AnOPCServerBrowser As OPCBrowser

Dim MyGroups As OPCGroups

Dim DefaultGroupUpdateRate As Long

Dim OneGroup As OPCGroup

Dim AnOPCItemCollection As OPCItems

Dim AnOPCItem As OPCItem

Dim ClientHandles(100) As Long

Dim AnOPCItemIDs(100) As String

Dim AnOPCItemServerHandles() As Long

Dim AnOPCItemServerErrors() As Long

Set AnOPCServer = New OPCServer

ARealOPCServer = “VendorX.DataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCServer.Connect(ARealOPCServer, ARealOPCNodeName)

Set MyGroups = AnOPCServer.OPCGroups

MyGroups.DefaultGroupIsActive = True

Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

Set AnOPCItemCollection = OneGroup.OPCItems

4.1.14 OPCGroups Properties

4.1.14.1 Parent

Description
(Read-only) Returns reference to the parent OPCServer object.

Syntax
Parent As OPCServer

4.1.14.2 DefaultGroupIsActive

Description
(Read/Write) This property provides the default active state for OPCGroups created using Groups.Add.

Syntax
DefaultGroupIsActive As Boolean

Remarks
This property defaults to True.

Example
VB Syntax Example (getting the property):
Dim DefaultGroupIsActive As Boolean

DefaultGroupIsActive = MyGroups.DefaultGroupIsActive

VB Syntax Example (setting the property):
MyGroups.DefaultGroupIsActive = FALSE

4.1.14.3 DefaultGroupUpdateRate

Description
(Read/Write) This property provides the default update rate (in milliseconds) for OPCGroups created using Groups.Add. This property defaults to 1000 milliseconds (1 second).

Syntax
DefaultGroupUpdateRate As Long

Example
VB Syntax Example (getting the property):
Dim DefaultGroupUpdateRate As Long

DefaultGroupUpdateRate = MyGroups.DefaultGroupUpdateRate

VB Syntax Example (setting the property):
MyGroups.DefaultGroupUpdateRate = 250

4.1.14.4 DefaultGroupDeadband

Description
(Read/Write) This property provides the default deadband for OPCGroups created using Groups.Add. A deadband is expressed as percent of full scale (legal values 0 to 100).

Syntax
DefaultGroupDeadband As Single

Remarks
This property defaults to 0. Error would be generated if value > 100 or less than 0.

Example
VB Syntax Example (getting the property):
Dim DefaultGroupDeadband As Single

DefaultGroupDeadband = MyGroups.DefaultGroupDeadband

VB Syntax Example (setting the property):
MyGroups.DefaultGroupDeadband = 10

4.1.14.5 DefaultGroupLocaleID

Description
(Read/Write) This property provides the default locale for OPCGroups created using Groups.Add.

Syntax
DefaultGroupLocaleID As Long

Remarks
This property defaults to the Servers LocaleID..

Example
VB Syntax Example (getting the property):
Dim DefaultGroupLocaleID As Long

DefaultGroupLocaleID = MyGroups.DefaultGroupLocaleID

VB Syntax Example (setting the property):
MyGroups.DefaultGroupLocaleID = ConvertLocaleIdStringToLocaleIdLong (“English”)

4.1.14.6 DefaultGroupTimeBias

Description
(Read/Write) This property provides the default time bias for OPCGroups created using Groups.Add.

Syntax
DefaultGroupTimeBias As Long

Remarks
This property defaults to 0 minutes.

Example
VB Syntax Example (getting the property):
Dim DefaultGroupTimeBias As Long

DefaultGroupTimeBias = MyGroups.DefaultGroupTimeBias

VB Syntax Example (setting the property):
MyGroups.DefaultGroupTimeBias = 60

4.1.14.7 Count

Description
(Read-only) Required property for collections.

Syntax
Count As Long

Example
VB Syntax Example :
For index = 1 to MyGroups.Count

‘ some code here

Next index

4.1.15 OPCGroups Methods

4.1.15.1 Item

Description
Returns an OPCGroup by ItemSpecifier. ItemSpecifier is the name or 1-based index into the collection. Use GetOPCGroup to reference by ServerHandle.
Item is the default method for OPCGroups.

Syntax
Item(ItemSpecifier As Variant) As OPCGroup

Example
VB Syntax Example:

Dim AnOPCGroup As OPCGroup

Set AnOPCGroup = MyGroups.Item(3)

‘Or

Set AnOPCGroup = MyGroups(“Group3”)

4.1.15.2 Add

Description
Creates a new OPCGroup object and adds it to the collection. The properties of this new group are determined by the current defaults in the OPCServer object. After a group is added, its properties can also be modified.

Syntax
Add(Optional Name As Variant) As OPCGroup

Part
Description

Name
Name of the group. The name must be unique among the other groups created by this client. If no name is provided, The server-generated name will also be unique relative to any existing groups.

Remarks
If the optional name is not specified, the server generates a unique name. This method will fail if a name is specified but it is not unique. A failure in this case results in the OPCGroup object not being created, and Visual Basic will generate an error when attempting to use the object that has not been set.
Refer to Appendix A - OPC Automation Error Handling for information on OPC Automation errors and Exceptions.

Example
MyGroups.DefaultGroupIsActive = True

Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

4.1.15.3 GetOPCGroup

Description
Returns an OPCGroup by ItemSpecifier.

Syntax
GetOPCGroup (ItemSpecifier As Variant) As OPCGroup

Part
Description

ItemSpecifier
ItemSpecifier is either the OPCGroup’s ServerHandle, or the name of an OPCGroup. Use Item to reference by index.

Example
 ‘ If “AnOPCGroupName” has already been Added

Set OneGroup = MyGroups.GetOPCGroup(“AnOPCGroupName”)

4.1.15.4 Remove

Description
Removes an OPCGroup by Key.

Syntax
Remove(ItemSpecifier As Variant)

Part
Description

ItemSpecifier
ItemSpecifier is either the OPCGroup’s ServerHandle, or the name of an OPCGroup. Use Item to reference by index.

Remarks
This method will fail if the group is a public group. Refer to Appendix A - OPC Automation Error Handling for information on OPC Automation Errors and Exceptions.

Example
Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

‘ some more code here

MyGroups.Remove(“AnOPCGroupName”)

‘or

Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

‘ some more code here

MyGroups.Remove(OneGroup.ServerHandle)

4.1.15.5 RemoveAll

Description
Removes all current OPCGroup and OPCItem objects to prepare for server shutdown.

Syntax
RemoveAll()

Remarks
This is designed to make thorough sub-object cleanup much easier for clients to ensure all objects are released when the Server object is released. It is equivalent to calling Remove on all remaining OPCItem and OPCGroup objects. OPCBrowser objects are not sub-objects of the server, and they are not removed by this method.

Example
Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

Set OneGroup = MyGroups.Add(“AnOPCGroupName1”)

Set OneGroup = MyGroups.Add(“AnOPCGroupName2”)

‘ some more code here

MyGroups.RemoveAll

4.1.15.6 ConnectPublicGroup

Description
Public Groups are pre-existing groups in a server. These groups can be connected rather than added..

Refer to Appendix A - OPC Automation Error Handling for information on OPC Automation errors and Exceptions.

Syntax
ConnectPublicGroup (Name As String) As OPCGroup

Part
Description

Name
Name of group to be connected.

Remarks
This method will fail if the server does not support public groups or the name is not valid

Refer to Appendix A - OPC Automation Error Handling for information on OPC Automation errors and Exceptions

Example
Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCServerDefinedPublicGroup””)

4.1.15.7 RemovePublicGroup

Description
Removes the OPCGroup specified by ItemSpecifier.

Syntax
RemovePublicGroup (ItemSpecifier As Variant)

Part
Description

ItemSpecifier
The ServerHandle returned by ConnectPublicGroup, or the name of a Public OPCGroup.

Remarks
This method will fail if the server does not support public groups, or if the group has not been connected to via ConnectPublicGroup.

Refer to Appendix A - OPC Automation Error Handling for information on OPC Automation errors and Exceptions

Example
Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

MyGroups.RemovePublicGroup (“AnOPCGroupName”)

‘or

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

MyGroups.RemovePublicGroup (OneGroup.ServerHandle)

4.1.16 OPCGroups Events

4.1.16.1 GlobalDataChange

Description
The GlobalDataChangeevent is an event to facilitate one event handler being implemented to receive and process data changes across multiple groups.

Syntax
GlobalDataChange (TransactionID As Long, GroupHandle As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)

Part
Description

TransactionID
The client specified transaction ID. A non-0 value for this indicates that this call has been generated as a result of an AsyncRefresh. A value of 0 indicates that this call has been generated as a result of normal subscription processing.

GroupHandle
ClientHandle of the OPCGroup Object the changed data corresponds to.

NumItems
The number of items returned

ClientHandles
Array of client item handles for the items

ItemValues
Array of values.

Qualities
Array of Qualities for each item's value.

TimeStamps
Array of UTC TimeStamps for each item's value

Remarks
NOTE – it is recommended that the event OnDataChange on the OPCGroup object be used normally. This event has been provided to facilitate one event handler being set up to process data changes for multiple OPCGroup objects. Normally, your application has an individual event handler for each group to receive and process the data changes. This allows you to have one event handler, and then using the GroupHandle, know which Group the event has been fired on behalf of.

This event will be invoked for each OPCGroup object that contains an item, whose value or state of the value has changed since the last time this event, was fired. The individual event on the OPCGroup object is also fired as well. Your application, when using both event handlers will receive the data value twice, once for the individual group event, and once for the AllGroupsDataChange Event.

Example
Dim WithEvents AnOPCGroupCollection As OPCGroups

Private Sub AnOPCGroupCollection_GlobalDataChange (TransactionID As Long, GroupHandle As Long, MasterQuality As Long, MasterError As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)

‘ write your client code here to process the data change values

End Sub

OPCGroup Object

Description
The OPC Groups provide a way for clients to organize data. For example, the group might represent items in a particular operator display or report. Data can be read and written. Exception based connections can also be created between the client and the items in the group and can be enabled and disabled as needed. An OPC client can configure the rate that an OPC server should provide the data changes to the OPC client.

Syntax
OPCGroup

4.1.17 Summary of Properties

Parent
Name
IsPublic

IsActive
IsSubscribed
ClientHandle

ServerHandle
LocaleID
TimeBias

DeadBand
UpdateRate
OPCItems

4.1.18 Summary of Methods

SyncRead
SyncWrite
AsyncRead

AsyncWrite
AsyncRefresh
AsyncCancel

4.1.19 Summary of Events

DataChange
AsyncReadComplete
AsyncWriteComplete

AsyncCancelComplete

Example Syntax Base
The following sample code is necessary for the subsequent Visual Basic Examples to be operational. .

This code is referred to as OPCGroupObjectBase.

Dim WithEvents AnOPCServer As OPCServer

Dim ARealOPCServer As String

Dim ARealOPCNodeName As String

Dim AnOPCServerBrowser As OPCBrowser

Dim MyGroups As OPCGroups

Dim DefaultGroupUpdateRate As Long

Dim WithEvents OneGroup As OPCGroup

Dim AnOPCItemCollection As OPCItems

Dim AnOPCItem As OPCItem

Dim ClientHandles(100) As Long

Dim AnOPCItemIDs(100) As String

Dim AnOPCItemServerHandles() As Long

Dim AnOPCItemServerErrors() As Long

Set AnOPCServer = New OPCServer

ARealOPCServer = “VendorX.DataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCServer.Connect(ARealOPCServer, ARealOPCNodeName)

Set MyGroups = AnOPCServer.OPCGroups

MyGroups.DefaultGroupIsActive = True

Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

Set AnOPCItemCollection = OneGroup.OPCItems

For x = 1 To AddItemCount

ClientHandles(x)
= x + 1

AnOPCItemID(x) = “Register_” & x

Next x

AnOPCItemCollection.AddItems AddItemCount, AnOPCItemIDs, AnOPCItemServerHandles, AnOPCItemServerErrors

4.1.20 OPCGroup Properties

4.1.20.1 Parent

Description
(Read-only) Returns reference to the parent OPCServer object.

Syntax
Parent As OPCServer

4.1.20.2 Name

Description
(Read/Write) The name given to this group.

Syntax
Name As String

Part
Description

Name
Name of the group. The name must be a unique group name, with respect to the naming of other groups created by this client.

Remarks
Naming a group is optional. This property allows the user to specify a name, therefore a unique name must be provided when setting the value for this property.
The server will generate a unique name for the group, if no name is specified, on the Add method of the OPCGroups object.

Example
VB Syntax Example (getting the property):
Dim CurrentValue As String

Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

CurrentValue = OneGroup.Name

VB Syntax Example (setting the property):
Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

OneGroup.Name = “aName”

4.1.20.3 IsPublic

Description
(Read-only) Returns True if this group is a public group, otherwise False.

Syntax
IsPublic As Boolean

Example
Dim CurrentValue As Boolean
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.IsPublic ‘ to get the value

4.1.20.4 IsActive

Description
(Read/Write) This property controls the active state of the group. A group that is active acquires data. An inactive group typically does not continue data acquisition except as required for read/writes.

Syntax
IsActive As Boolean

Remarks
Default value for this property is the value from the OPCGroups corresponding default value at time of the Add();

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Boolean
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.IsActive ‘ to get the value

VB Syntax Example (setting the property):
Dim CurrentValue As Boolean
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

OneGroup.IsActive = True

4.1.20.5 IsSubscribed

Description
(Read/Write) This property controls asynchronous notifications to the group. A group that is subscribed receives data changes from the server.

Syntax
IsSubscribed As Boolean

Remarks
Default value for this property is the value from the OPCGroups corresponding default value at time of the Add();

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Boolean
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.IsSubscribed ‘ to get the value

VB Syntax Example (setting the property):
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

OneGroup.IsSubscribed = True ‘ to set the value

4.1.20.6 ClientHandle

Description
(Read/Write) A Long value associated with the group. Its purpose is for the client to quickly locate the destination of data. The handle is typically an index, etc. This handle will be returned to the client along with data or status.

Syntax
ClientHandle As Long

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Long
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.ClientHandle ‘ to get the value

VB Syntax Example (setting the property):
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

OneGroup.ClientHandle = 1975 ‘ to set the value

4.1.20.7 ServerHandle

Description
(Read-only) The server assigned handle for the group. The ServerHandle is a Long that uniquely identifies this group. The client must supply this handle to some of the methods that operate on OPCGroup objects (such as OPCGroups.Remove).

Syntax
ServerHandle As Long

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Long
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.ServerHandle ‘ to get the value

4.1.20.8 LocaleID

Description
(Read/Write) This property identifies the locale, which may be used to localize strings returned from the server. This property’s default depends on the value set in the OPCGroups Collection..

Syntax
LocaleID As Long

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Long
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.LocaleID

VB Syntax Example (setting the property):
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

OneGroup.LocaleID = StringToLocaleID(“English”)

4.1.20.9 TimeBias

Description
(Read/Write). This property provides the information needed to convert the time stamp on the data back to the local time of the device.

Syntax
TimeBias As Long

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Long
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.TimeBias

VB Syntax Example (setting the property):
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

OneGroup.TimeBias = 100

4.1.20.10 DeadBand

Description
(Read/Write) A deadband is expressed as percent of full scale (legal values 0 to 100). This property’s default depends on the value set in the OPCGroups Collection.

Syntax
DeadBand As Single

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Single
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set CurrentValue = OneGroup.DeadBand

VB Syntax Example (setting the property):
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

OneGroup.DeadBand = 5

4.1.20.11 UpdateRate

Description
(Read/Write) The fastest rate at which data change events may be fired. A slow process might cause data changes to fire at less than this rate, but they will never exceed this rate. Rate is in milliseconds. This property’s default depends on the value set in the OPCGroups Collection. Assigning a value to this property is a “request” for a new update rate. The server may not support that rate, so reading the property may result in a different rate (the server will use the closest rate it does support).

Syntax
UpdateRate As Long

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Long
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

DefaultGroupUpdateRate = OneGroup.UpdateRate

VB Syntax Example (setting the property):
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

OneGroup.UpdateRate = 50

4.1.20.12 OPCItems

Description
A collection of OPCItem objects. This is the default property of the OPCGroup object.

Syntax
OPCItems As OPCItems

Example
VB Syntax Example (getting the property):
Dim AnOPCItemCollection As OPCItems
Set MyGroups = AnOPCServer.OPCGroups

Set OneGroup = MyGroups.ConnectPublicGroup (“AnOPCGroupName”)

‘ some more code here

Set AnOPCItemCollection = OneGroup.OPCItems

4.1.21 OPCGroup Methods

4.1.21.1 SyncRead

Description
This function reads the value, quality and timestamp information for one or more items in a group.

Syntax
SyncRead(Source As Integer, NumItems As Long, ServerHandles() As Long, ByRef Values() As Variant, ByRef Errors() As Long, Optional ByRef Qualities As Variant, Optional ByRef TimeStamps As Variant)

Part
Description

Source
The ‘data source’; OPC_DS_CACHE or OPC_DS_DEVICE

NumItems
The number of items to be read.

ServerHandles
Array of server item handles for the items to be read

Values
Array of values.

Errors
Array of Long’s indicating the success of the individual item reads. This indicates whether the read succeeded in obtaining a defined value, quality and timestamp. NOTE any FAILED error code indicates that the corresponding Value, Quality and Time stamp are UNDEFINED.

Qualities
Variant containing an Integer Array of Qualities.

TimeStamps
Variant containing a Date Array of UTC TimeStamps. If the device cannot provide a timestamp then the server will provide one.

Remarks
The function runs to completion before returning. The data can be read from CACHE in which case it should be accurate to within the ‘UpdateRate’ and percent deadband of the group. The data can be read from the DEVICE in which case an actual read of the physical device is to be performed. The exact implementation of CACHE and DEVICE reads is not defined by this specification.
When reading from CACHE, the data is only valid if both the group and the item are active. If either the group or the item is inactive, then the Quality will indicate out of service (OPC_QUALITY_OUT_OF_SERVICE). Refer to the discussion of the quality bits later in this document for further information.
DEVICE reads are not affected by the ACTIVE state of the group or item.

Example
Private Sub ReadButton_Click()

Dim Source As Integer

Dim NumItems As Long

Dim ServerIndex As Long

Dim ServerHandles(10) As Long

Dim Values() As Variant

Dim Errors() As Long

Dim Qualities() As Variant

Dim TimeStamps() As Variant

Source = OPC_DS_DEVICE

NumItems = 10

For ServerIndex = 1 to NumItems

‘ set up which items to be read

ServerHandles(ServerIndex) = AnOPCItemServerHandles(ServerIndex)

Next ServerIndex

OneGroup.SyncRead Source, NumItems, ServerHandles, Values, Errors, Qualities, TimeStamps

For ServerIndex = 1 to NumItems

‘ process the values

TextBox(ServerIndex).Text = Values(ServerIndex)

Next ServerIndex

End Sub

4.1.21.2 SyncWrite

Description
Writes values to one or more items in a group. The function runs to completion. The values are written to the DEVICE. That is, the function should not return until it verifies that the device has actually accepted (or rejected) the data.

Syntax
SyncWrite(NumItems As Long, ServerHandles() As Long, Values() As Variant, ByRef Errors() As Long)

Part
Description

NumItems
Number of items to be written

ServerHandles
Array of server item handles for the items to be written

Values
Array of values.

Errors
Array of Long’s indicating the success of the individual item writes..

Remarks
Writes are not affected by the ACTIVE state of the group or item.

Example
Private Sub WriteButton_Click()

Dim Source As Integer

Dim NumItems As Long

Dim ServerIndex As Long

Dim ServerHandles() As Long

Dim Values() As Variant

Dim Errors() As Long

NumItems = 10

For ServerIndex = 1 to NumItems

‘ set up which items to be written

ServerHandles(ServerIndex) = AnOPCItemServerHandles(ServerIndex)

Values(ServerIndex) = ServerIndex * 2 ‘ any random value for this example would suffice

Next ServerIndex

OneGroup.SyncWrite NumItems, ServerHandles, Values, Errors

For ServerIndex = 1 to NumItems

‘ process the Errors

TextBox(ServerIndex).Text = Errors(ServerIndex)

Next ServerIndex

End Sub

4.1.21.3 AsyncRead

Description
Read one or more items in a group. The results are returned via the AsyncReadComplete event associated with the OPCGroup object.

Reads are from ‘DEVICE’ and are not affected by the ACTIVE state of the group or item.

Syntax
AsyncRead(NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long, TransactionID As Long, ByRef CancelID As Long)

Part
Description

NumItems
The number of items to be read.

ServerHandles
Array of server item handles for the items to be read

Errors
Array of Long’s indicating the status of the individual items to be read.

TransactionID
The client specified transaction ID. This is included in the ‘completion’ information provided in the Corresponding Event.

CancelID
A Server generated transaction ID. This is provided to enable the client to cancel the “transaction”.

Remarks
The AsyncRead requires the OPCGroup object to have been dimensioned with events (Dim WithEvents xxx As OPCGroup) in order for the results of the AsyncRead operation to be returned to the automation client application. The AsyncReadComplete event associated with the OPCGroup object will be fired (called) by the automation server with the results of the AsyncRead operation.

See Also
IOPCAsyncIO2::Read from the OPC Data Access Custom Interface Specification

Example
Private Sub AsyncReadButton_Click()

Dim NumItems As Long

Dim ServerIndex As Long

Dim ServerHandles(10) As Long

Dim Values() As Variant

Dim Errors() As Long

Dim ClientTransactionID As Long
Dim ServerTransactionID As Long

Dim Qualities() As Variant

Dim TimeStamps() As Variant

NumItems = 10
ClientTransactionID = 1975

For ServerIndex = 1 to NumItems

‘ set up which items to be read

ServerHandles(ServerIndex) = AnOPCItemServerHandles(ServerIndex)

Next ServerIndex

OneGroup.AsyncRead NumItems, ServerHandles, Errors, ClientTransactionID , ServerTransactionID

End Sub

4.1.21.4 AsyncWrite

Description
Write one or more items in a group. The results are returned via the AsyncWriteComplete event associated with the OPCGroup object.

Syntax
AsyncWrite(NumItems As Long, ServerHandles() As Long, Values() As Variant, ByRef Errors() As Long, TransactionID As Long, ByRef CancelID As Long)

Part
Description

NumItems
The number of items to be written.

ServerHandles
Array of server item handles for the items to be written.

Values
Array of values.

Errors
Array of Long’s indicating the status of the individual items to be written.

TransactionID
The client specified transaction ID. This is included in the ‘completion’ information provided in the Corresponding Event.

CancelID
A Server generated transaction ID. This is provided to enable the client to cancel the “transaction”.

Remarks
The AsyncWrite requires the OPCGroup object to have been dimensioned with events (Dim WithEvents xxx As OPCGroup) in order for the results of the AsyncWrite operation to be returned to the automation client application. The AsyncWriteComplete event associated with the OPCGroup object will be fired (called) by the automation server with the results of the AsyncWrite operation.

See Also
IOPCAsyncIO2::Write from the OPC Data Access Custom Interface Specification

Example
Private Sub AsyncWriteButton_Click()

Dim NumItems As Long

Dim ServerIndex As Long

Dim ServerHandles(10) As Long

Dim Values() As Variant

Dim Errors() As Long

Dim ClientTransactionID As Long
Dim ServerTransactionID As Long

NumItems = 10

For ServerIndex = 1 to NumItems

ClientTransactionID = 1957
‘ set up which items to be write

ServerHandles(ServerIndex) = AnOPCItemServerHandles(ServerIndex)

Values(ServerIndex) = ServerIndex * 2 ‘any random value for this example would suffice

Next ServerIndex

OneGroup.AsyncWrite NumItems, ServerHandles, Values, Errors, ClientTransactionID , ServerTransactionID

End Sub

4.1.21.5 AsyncRefresh

Description
Generate an event for all active items in the group (whether they have changed or not). Inactive items are not included in the callback. The results are returned via the DataChange event associated with the OPCGroup object, as well as the GlobalDataChange event associated with the OPCGroups object.

Syntax
AsyncRefresh(Source As Integer, TransactionID As Long,ByRef CancelID As Long)

Part
Description

Source
The ‘data source’; OPC_DS_CACHE or OPC_DS_DEVICE

TransactionID
The client specified transaction ID. This is included in the ‘completion’ information provided in the Corresponding Event.

CancelID
A Server generated transaction ID. This is provided to enable the client to cancel the “transaction”.

Remarks
The AsyncRefresh requires the OPCGroup object to have been dimensioned with events (Dim WithEvents xxx As OPCGroup) in order for the results of the refresh operation to be returned to the automation client application. The DataChange event associated with the OPCGroup object will be fired (called) by the automation server with the results of the refresh operation.
If the automation cleint application has dimensioned with events the OPCGroups Object (Dim WithEvents xyz as OPCGroups), then the GlobalDataChange event associated with the OPCGroups object will be fired (called) by the automation server with the results of the refresh operation.

See Also
IOPCAsyncIO::Refresh from the OPC Data Access Custom Interface Specification.

Example
Dim MyGroups As OPCGroups

Dim DefaultGroupUpdateRate As Long

Dim WithEvents OneGroup As OPCGroup
Private Sub AsyncRefreshButton_Click()

Dim ServerIndex As Long

Dim Source As Long

Dim ClientTransactionID As Long
Dim ServerTransactionID As Long

ClientTransactionID = 2125

Source = OPC_DS_DEVICE

OneGroup.AsyncRefresh Source, ClientTransactionID ServerTransactionID

End Sub

4.1.21.6 AsyncCancel

Description
Request that the server cancel an outstanding transaction. An AsyncCancelComplete event will occur indicating whether or not the cancel succeeded.

Syntax
AsyncCancel(CancelID As Long)

Part
Description

CancelID
The Server generated CancelID that was previously returned by the AsyncRead, AsyncWrite or AsyncRefresh method that the client now wants to cancel.

See Also
IOPCAsyncIO2::Cancel from the OPC Data Access Custom Interface Specification

Remarks
The AsyncCancel requires the OPCGroup object to have been dimensioned with events (Dim WithEvents xxx As OPCGroup) in order for the results of the AsyncCancel operation to be returned to the automation client application. The AsyncCancelComplete event associated with the OPCGroup object will be fired (called) by the automation server with the results of the AsyncCancel operation. The client specified transaction ID (TransactionID) will be returned to the automation client application in the AsyncCancelComplete event.

Example
Private Sub AsyncCancelButton_Click()

Dim ServerIndex As Long

Dim CancelID As Long

CancelID = 1 ‘ some transaction id returned from one of the async calls like read, write, or refresh.

OneGroup.AsyncCancel CancelID

End Sub

4.1.22 OPCGroup Events

4.1.22.1 DataChange

Description
The DataChange event is fired when a value or the quality of a value for an item within the group has changed. Note the event will not fire faster than the update rate of the group. Therefore, item values will be held by the server and buffered until the current time + update rate is greater than the time of the previous update (event fired).
This is also affected by active states for both Group and Items. Only items that are active, and whose group is active will be sent to the client in an event.

Syntax
DataChange (TransactionID As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)

Part
Description

TransactionID
The client specified transaction ID. A non-0 value for this indicates that this call has been generated as a result of an AsyncRefresh. A value of 0 indicates that this call has been generated as a result of normal subscription processing.

NumItems
The number of items returned

ClientHandles
Array of client item handles for the items

ItemValues
Array of values.

Qualities
Array of Qualities for each item's value.

TimeStamps
Array of UTC TimeStamps for each item's value. If the device cannot provide a timestamp then the server will provide one.

Remarks
If the item values are changing faster than the update reat, only the most recent value for each item will be buffered and returned to the client in the event.

Example
Dim WithEvents AnOPCGroup As OPCGroup

Private Sub AnOPCGroup_DataChange (TransactionID As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)

‘ write your client code here to process the data change values

End Sub

4.1.22.2 AsyncReadComplete

Description
This event fires when an AsyncRead is completed.

Syntax
AsyncReadComplete (TransactionID As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date, Errors() As Long)

Part
Description

TransactionID
The client specified transaction ID.

NumItems
The number of items returned

ClientHandles
Array of client item handles for the items

ItemValues
Array of values.

Qualities
Array of Qualities for each item's value.

TimeStamps
Array of UTC TimeStamps for each item's value. If the device cannot provide a timestamp then the server will provide one.

Errors
Array of Long’s indicating the success of the individual item reads. This indicates whether the read succeeded in obtaining a defined value, quality and timestamp. NOTE any FAILED error code indicates that the corresponding Value, Quality and Time stamp are UNDEFINED.

Example
Dim WithEvents AnOPCGroup As OPCGroup

Private Sub AnOPCGroup_AsyncReadComplete (TransactionID As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)

‘ write your client code here to process the data change values

End Sub

4.1.22.3 AsyncWriteComplete

Description
This event fires when an AsyncWrite is completed.

Syntax
AsyncWriteComplete (TransactionID As Long, NumItems As Long, ClientHandles() As Long, Errors() As Long)

Part
Description

TransactionID
The client specified transaction ID.

NumItems
The number of items returned

ClientHandles
Array of client item handles for the items

Errors
Array of Long’s indicating the success of the individual item writes.

Example
Dim WithEvents AnOPCGroup As OPCGroup

Private Sub AnOPCGroup_AsyncWriteComplete (TransactionID As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)

‘ write your client code here to process the errors

End Sub

4.1.22.4 AsyncCancelComplete

Description
This event fires when an AsyncCancel is completed.

Syntax
AsyncCancelComplete (TransactionID As Long)

Part
Description

TransactionID
The client specified transaction ID. This is included in the ‘completion’ information provided in the Corresponding Event.

Example
Dim WithEvents AnOPCGroup As OPCGroup

Private Sub AnOPCGroup_AsyncCancelComplete (TransactionID As Long)

‘ write your client code here to process the cancel

End Sub

OPCItems Object

Description
This object also has properties for OPCItem defaults. When an OPCItem is added, the DefaultXXXX properties set its initial state. The defaults can be changed to add OPCItems with different initial states. Of course, once an OPCItem is added, its properties can be modified. This reduces the number of parameters required to call the Add method.

Syntax
OPCItems

4.1.23 Summary of Properties

Parent
DefaultRequestedDataType
DefaultAccessPath

DefaultIsActive
Count

4.1.24 Summary of Methods

Item
GetOPCItem
AddItem

AddItems
Remove
Validate

SetActive
SetClientHandles
SetDataTypes

Example Syntax Base
The following sample code is necessary for the subsequent Visual Basic Examples to be operational.

 This code is referred to as OPCItemsObjectBase.

Dim AnOPCServer As OPCServer

Dim ARealOPCServer As String

Dim ARealOPCNodeName As String

Dim AnOPCServerBrowser As OPCBrowser

Dim MyGroups As OPCGroups

Dim DefaultGroupUpdateRate As Long

Dim OneGroup As OPCGroup

Dim AnOPCItemCollection As OPCItems

Dim AnOPCItem As OPCItem

Dim ClientHandles(100) As Long

Dim AnOPCItemIDs(100) As String

Dim AnOPCItemServerHandles(10) As Long

Dim AnOPCItemServerErrors() As Long

Set AnOPCServer = New OPCServer

ARealOPCServer = “VendorX.DataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCServer.Connect(ARealOPCServer, ARealOPCNodeName)

Set MyGroups = AnOPCServer.OPCGroups

MyGroups.DefaultGroupIsActive = True

Set OneGroup = MyGroups.Add(“AnOPCGroupName”)

Set AnOPCItemCollection = OneGroup.OPCItems

4.1.25 OPCItems Properties

4.1.25.1 Parent

Description
 (Read-only) Returns reference to the parent OPCGroup object.

Syntax
 Parent As OPCGroup

4.1.25.2 DefaultRequestedDataType

Description
 (Read/Write) The requested data type that will be used in calls to Add. This property defaults to VT_EMPTY (which means the server sends data in the server canonical data type).

Syntax
 DefaultRequestedDataType As Integer

Remarks
 Any legal Variant type can be passed as a requested data type.

See Also
Appendix A - OPC Automation Error Handling
Appendix D- Notes On Automation Data Types

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Integer
Dim SomeValue As Integer
CurrentValue = AnOPCItemCollection.DefaultRequestedDataType

VB Syntax Example (setting the property):
AnOPCItemCollection.DefaultRequestedDataType = SomeValue

4.1.25.3 DefaultAccessPath

Description
 (Read/Write) The default AccessPath that will be used in calls to Add. This property defaults to “”.

Syntax
 DefaultAccessPath As String

Example
VB Syntax Example (getting the property):
Dim CurrentValue As String
Dim SomeValue As String
CurrentValue = AnOPCItemCollection.DefaultAccessPath

VB Syntax Example (setting the property):
AnOPCItemCollection.DefaultAccessPath = SomeValue

4.1.25.4 DefaultIsActive

Description
 (Read/Write) The default active state that will be used in calls to Add. This property defaults to True.

Syntax
 DefaultIsActive As Boolean

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Boolean
Dim SomeValue As Boolean
CurrentValue = AnOPCItemCollection.DefaultIsActive

VB Syntax Example (setting the property):
AnOPCItemCollection.DefaultIsActive = SomeValue

4.1.25.5 Count

Description
 (Read-only) Required property for collections.

Syntax
 Count As Long

Example
VB Syntax Example (getting the property):
Dim CurrentValue As Long
Dim SomeValue As Long
CurrentValue = AnOPCItemCollection.Count

4.1.26 OPCItems Methods

4.1.26.1 Item

Description
Required property for collections.

Syntax
 Item (ItemSpecifier As Variant) As OPCItem

Part
Description

ItemSpecifier
Returns an OPCItem by ItemSpecifier. ItemSpecifier is the 1-based index into the collection

Remarks
Returns an OPCItem by ItemSpecifier. ItemSpecifier is the 1-based index into the collection. Use GetOPCItem to reference by ServerHandle.

NOTE: do not confuse the automation 'Item' property with the OPCItem object. The automation 'Item' is a special reserved property used in a generic way by automation collections to refer to the items they contain. The OPCItem is an OPC Automation specific object type that can reside in an 'OPCItems' collection.

4.1.26.2 GetOPCItem

Description
Returns an OPCItem by ServerHandle returned by Add. Use the Item property to reference by index.

Syntax
GetOPCItem (ServerHandle As Long) As OPCItem

Part
Description

ServerHandle
ServerHandle is the OPCItem’s ServerHandle
Use Item to reference by index.

Example
Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

4.1.26.3 AddItem

Description
Creates a new OPCItem object and adds it to the collection. The properties of this new OPCItem are determined by the current defaults in the OPCItems collection object. After an OPCItem is added, its properties can also be modified.

Syntax
AddItem (ItemID As String, ClientHandle As Long)

Part
Description

ItemID
Fully Qualified ItemID

ClientHandle
Client handle that will be returned with the

Remarks
This method is intended to provide the mechanism to add one item to the collection at a time. For adding multiple items use the AddItems method, rather than repetitively calling AddItem for each object to be added.

See Also
Appendix A - OPC Automation Error Handling
Appendix D- Notes On Automation Data Types

Example
Dim AnOPCItemID as String

Dim AnClientHandle as Long

AnOPCItemID = “N7:0”

AnClientHandle = 1975

AnOPCItemCollection.AddItem AnOPCItemID AnClientHandle

4.1.26.4 AddItems

Description
Creates OPCItem objects and adds them to the collection. The properties of each new OPCItem are determined by the current defaults in the OPCItems collection object. After an OPCItem is added, its properties can also be modified.

Syntax
AddItems (Count As Long, ItemIDs() As String, ClientHandles() As Long, ByRef ServerHandles() As Long, ByRef Errors() As Long, Optional RequestedDataTypes As Variant, Optional AccessPaths As Variant)

Part
Description

Count
The number of items to be affected

ItemIDs
Array of Fully Qualified ItemID’s

ClientHandles
Array of client item handles for the items processed

ServerHandles
Array of server item handles for the items processed

Errors
Array of Long’s indicating the success of the individual items operation.

RequestedDataTypes
Optional Variant containing an integer array of Requested DataTypes.

AccessPaths
Optional Variant containing a string array of Access Path’s.

See Also
Appendix A - OPC Automation Error Handling
Appendix D- Notes On Automation Data Types

Example
Dim addItemCount as long

Dim AnOPCItemIDs() as String

Dim AnOPCItemServerHandles as long

Dim AnOPCItemServerErrors as long

Dim AnOPCRequestedDataTypes as variant

Dim AnOPCAccessPathss as variant

For x = 1 To AddItemCount

ClientHandles(x)
= x + 1

AnOPCItemID(x) = “Register_” & x

Next x

AnOPCItemCollection.AddItems AddItemCount, AnOPCItemIDs, ClientHandles, AnOPCItemServerHandles, AnOPCItemServerErrors, AnOPCRequestedDataTypes, AnOPCAccessPathss

‘ add code to process any errors that are returned from ‘the method, individual errors are reported in the Errors array

4.1.26.5 Remove

Description
 Removes an OPCItem

Syntax
 Remove (Count As Long, ServerHandles() As Long, ByRef Errors() As Long)

Part
Description

Count
The number of items to be removed

ServerHandles
Array of server item handles for the items processed

Errors
Array of Long’s indicating the success of the individual items operation.

Example
AnOPCItemCollection.Remove AnOPCItemServerHandles, AnOPCItemServerErrors

‘ add code to process any errors that are returned from ‘the method, individual errors are reported in the Errors array

4.1.26.6 Validate

Description
Determines if one or more OPCItems could be successfully created via the Add method (but does not add them).

Syntax
Validate (Count As Long, ItemIDs() As String, ByRef Errors() As Long, Optional RequestedDataTypes As Variant, Optional AccessPaths As Variant)

Part
Description

Count
The number of items to be affected

ItemIDs
Array of Fully Qualified ItemID’s

Errors
Array of Long’s indicating the success of the individual items operation.

RequestedDataTypes
Variant containing an integer array of Requested DataTypes.

AccessPaths
Variant containing a string array of Access Path’s.

See Also
Appendix A - OPC Automation Error Handling
Appendix D- Notes On Automation Data Types

Example
Dim addItemCount as long

Dim AnOPCItemIDs() as String

Dim AnOPCItemServerHandles as long

Dim AnOPCItemServerErrors as long

Dim AnOPCRequestedDataTypes as variant

Dim AnOPCAccessPathss as variant

For x = 1 To AddItemCount

ClientHandles(x)
= x + 1

AnOPCItemID(x) = “Register_” & x

Next x

AnOPCItemCollection.Validate AddItemCount, AnOPCItemIDs, AnOPCItemServerErrors, AnOPCRequestedDataTypes, AnOPCAccessPathss

‘ add code to process any errors that are returned from ‘the method, individual errors are reported in the Errors array

4.1.26.7 SetActive

Description
Allows Activation and deactivation of individual OPCItem’s in the OPCItems Collection

Syntax
 SetActive (Count As Long, ServerHandles() As Long, ActiveState As Boolean, ByRef Errors() As Long)

Part
Description

Count
The number of items to be affected

ServerHandles
Array of server item handles for the items processed

ActiveState
TRUE if items are to be activated. FALSE if items are to be deactivated.

Errors
Array of Long’s indicating the success of the individual items operation.

Example
‘set items to active (TRUE)

AnOPCItemCollection.SetActive ItemCount, AnOPCItemServerHandles, TRUE, AnOPCItemServerErrors

‘ add code to process any errors that are returned from ‘the method, individual errors are reported in the Errors array

4.1.26.8 SetClientHandles

Description
 Changes the client handles or one or more Items in a Group.

Syntax
 SetClientHandles (Count As Long, ServerHandles() As Long, ClientHandles() As Long, ByRef Errors() As Long)

Part
Description

Count
The number of items to be affected

ServerHandles
Array of server item handles for the items processed

ClientHandles
Array of new Client item handles to be stored. The Client handles do not need to be unique.

Errors
Array of Long’s indicating the success of the individual items operation.

Example
For x = 1 To ItemCount

ClientHandles(x)
= x + 1975

Next x

AnOPCItemCollection. SetClientHandles ItemCount, AnOPCItemServerHandles, ClientHandles, AnOPCItemServerErrors

4.1.26.9 SetDataTypes

Description
Changes the requested data type for one or more Items

Syntax
SetDataTypes (Count As Long, ServerHandles() As Long, RequestedDataTypes() As Long, ByRef Errors() As Long)

Part
Description

Count
The number of items to be affected

ServerHandles
Array of server item handles for the items processed

RequestedDataTypes
Array of new Requested DataTypes to be stored.

Errors
Array of Long’s indicating the success of the individual items operation.

See Also
Appendix A - OPC Automation Error Handling
Appendix D- Notes On Automation Data Types

Example
Dim RequestedDataTypes(100) As Long

For x = 1 To ItemCount

RequestedDataTypes (x)
= “some vbinteger”

Next x

AnOPCItemCollection.SetDataTypes ItemCount, AnOPCItemServerHandles, RequestedDataTypes, AnOPCItemServerErrors

OPCItem Object

Description
An OPC Item represents a connection to data sources within the server. Associated with each item is a Value, Quality and Time Stamp. The value is in the form of a VARIANT, and the Quality is similar to that specified by Fieldbus.

Syntax
OPCItem

4.1.27 Summary of Properties

Parent
ClientHandle
ServerHandle

AccessPath
AccessRights
ItemID

IsActive
RequestedDataType
Value

Quality
TimeStamp
CanonicalDataType

EUType
EUInfo

4.1.28 Summary of Methods

Read
Write

4.1.29 OPCItem Properties

4.1.29.1 Parent

Description
 (Read-only) Returns reference to the parent OPCGroup object.

Syntax
 Parent As OPCGroup

4.1.29.2 ClientHandle

Description
 (Read/Write) A Long value associated with the OPCItem. Its purpose is for the client to quickly locate the destination of data. The handle is typically an index, etc. This handle will be returned to the client along with data or status changes by OPCGroup events.

Syntax
ClientHandle As Long

Example
Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As Long
Dim SomeValue As Long
CurrentValue = AnOPCItem.ClientHandle

VB Syntax Example (setting the property):
AnOPCItem.ClientHandle = SomeValue

4.1.29.3 ServerHandle

Description
(Read-only) The server assigned handle for the AnOPCItem. The ServerHandle is a Long that uniquely identifies this AnOPCItem. The client must supply this handle to some of the methods that operate on OPCItem objects (such as OPCItems.Remove).

Syntax
 ServerHandle As Long

Example
Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As Long
Dim SomeValue As Long
CurrentValue = AnOPCItem.ServerHandle

4.1.29.4 AccessPath

Description
 (Read-only) The access path specified by the client on the Add function..

Syntax
 AccessPath As String

Example
Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As String
Dim SomeValue As String
CurrentValue = AnOPCItem.AccessPath

4.1.29.5 AccessRights

Description
 (Read-only) Returns the access rights of this item.

Syntax
 AccessRights As Long

Remarks
Indicates if this item is read only, write only or read/write.

Example
Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As Long
Dim SomeValue As Long
CurrentValue = AnOPCItem.AccessRights

4.1.29.6 ItemID

Description
 (Read-only) The unique identifier for this item.

Syntax
 ItemID As String

Example
Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As String
Dim SomeValue As String
CurrentValue = AnOPCItem.ItemID

4.1.29.7 IsActive

 Description
 (Read/Write) State of the Data Acquisition for this item.

Syntax
 IsActive As Boolean

Remarks
FALSE if the item is not currently active, TRUE if the item is currently active

Example
Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As Boolean
Dim SomeValue As Boolean
CurrentValue = AnOPCItem.IsActive

VB Syntax Example (setting the property):
AnOPCItem.IsActive = SomeValue

4.1.29.8 RequestedDataType

Description
(Read/Write) The data type in which the item's value will be returned. Note that if the requested data type was rejected the OPCItem will be invalid(failed), until the RequestedDataType is set to a valid value.

Syntax
 RequestedDataType As Integer

See Also
Appendix A - OPC Automation Error Handling
Appendix D- Notes On Automation Data Types

Example
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
VB Syntax Example (getting the property):
Dim CurrentValue As Integer
Dim SomeValue As Integer
CurrentValue = AnOPCItem.RequestedDataType
VB Syntax Example (setting the property):
AnOPCItem.RequestedDataType = SomeValue

4.1.29.9 Value

Description
 (Read-only) Returns the latest value read from the server. This is the default property of AnOPCItem.

Syntax
 Value As Variant

Example
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
VB Syntax Example (getting the property):
Dim CurrentValue As Variant
Dim SomeValue As Variant
CurrentValue = AnOPCItem.Value

4.1.29.10 Quality

Description
 (Read-only) Returns the latest quality read from the server.

Syntax
 Quality As Long

Example
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
VB Syntax Example (getting the property):
Dim CurrentValue As Long
Dim SomeValue As Long
CurrentValue = AnOPCItem.Quality

4.1.29.11 TimeStamp

Description
 (Read-only) Returns the latest timestamp read from the server.

Syntax
 TimeStamp As Date

Example
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
VB Syntax Example (getting the property):
Dim CurrentValue As Date
Dim SomeValue As Date
CurrentValue = AnOPCItem.TimeStamp

4.1.29.12 CanonicalDataType

Description
 (Read-only) Returns the native data type in the server.

Syntax
 CanonicalDataType As Integer

See Also
Appendix A - OPC Automation Error Handling

Example
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
VB Syntax Example (getting the property):
Dim CurrentValue As Integer
Dim SomeValue As Integer
CurrentValue = AnOPCItem.CanonicalDataType

4.1.29.13 EUType

Description
(Read-only) Indicate the type of Engineering Units (EU) information (if any) contained in EUInfo.

Syntax
 EUType As Integer

See Also
OPCITEMATTRIBUTES in the OPC Data Access Custom Interface Specification

Remarks
0 - No EU information available (EUInfo will be VT_EMPTY)
1 - Analog - EUInfo will contain a SAFEARRAY of exactly two doubles (VT_ARRAY | VT_R8) corresponding to the LOW and HI EU range.
2 - Enumerated - EUInfo will contain a SAFEARRAY of strings (VT_ARRAY | VT_BSTR) which contains a list of strings (Example: “OPEN”, “CLOSE”, “IN TRANSIT”, etc.) corresponding to sequential numeric values (0, 1, 2, etc.)

Example
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
VB Syntax Example (getting the property):
Dim CurrentValue As Integer
Dim SomeValue As Integer
CurrentValue = AnOPCItem.EUType

4.1.29.14 EUInfo

Description
(Read-only) Variant that contains the Engineering Units information

Syntax
 EUInfo As Variant

See Also
OPCITEMATTRIBUTES in the OPC Data Access Custom Interface Specification

Example
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
VB Syntax Example (getting the property):
Dim CurrentValue As Variant
Dim SomeValue As Variant
CurrentValue = AnOPCItem.EUInfo

4.1.30 OPCItem Methods

4.1.30.1 Read

Description
Read makes a blocking call to read this item from the server.
Read can be called with only a source (either OPCCache or OPCDevice) to refresh the item’s value, quality and timestamp properties. If the value, quality and timestamp must be in sync, this method’s optional parameters return values that were acquired together.

Syntax
 Read (Source As Integer, Optional ByRef Value As Variant, Optional ByRef Quality As Variant, Optional ByRef TimeStamp As Variant)

Part
Description

Source
The ‘data source’; OPC_DS_CACHE or OPC_DS_DEVICE

Value
Returns the latest value read from the server

Quality
Returns the latest value read from the server

TimeStamp
Returns the latest timestamp read from the server.

Example
Private Sub ReadButton_Click()
Dim AnOPCItem as OPCItem
Set OPCItem = GetOPCItem(SomeItemServerHandle)
Dim Source As Integer
Dim Value As Variant
Dim Quality As Variant
Dim TimeStamp As Variant
Source = OPC_DS_DEVICE
AnOPCItem.Read Source, ServerHandles, Value, Quality, TimeStamp
 ‘ process the values
TextBox.Text = Value
End Sub

4.1.30.2 Write

Description
Write makes a blocking call to write this value to the server.

Syntax
 Write (Value As Variant)

Part
Description

Value
Value to be written to the data source.

Example
Private Sub WriteButton_Click()

Dim AnOPCItem as OPCItem

Set OPCItem = GetOPCItem(SomeItemServerHandle)

Dim Value As Variant

Value = 1975

AnOPCItem.Write Value

End Sub

5 OPC Data Access Automation Definitions and Symbols

5.1 OPCNamespaceTypes

Symbol
Description

OPCHierarchical

OPCFlat

5.2 OPCDataSource

Symbol
Description

 OPCCache

OPCDevice

5.3 OPCAccessRights

Symbol
Description

 OPCReadable

OPCWritable

5.4 OPCServerState

Symbol
Description

OPCRunning
The server is running normally. This is the usual state for a server

OPCFailed
A vendor specific fatal error has occurred within the server. The server is no longer functioning. The recovery procedure from this situation is vendor specific. An error code of E_FAIL should generally be returned from any other server method.

OPCNoconfig
The server is running but has no configuration information loaded and thus cannot function normally. Note this state implies that the server needs configuration information in order to function. Servers which do not require configuration information should not return this state.

OPCSuspended
The server has been temporarily suspended via some vendor specific method and is not getting or sending data. Note that Quality will be returned as OPC_QUALITY_OUT_OF_SERVICE.

OPCTest
The server is in Test Mode. The outputs are disconnected from the real hardware but the server will otherwise behave normally. Inputs may be real or may be simulated depending on the vendor implementation. Quality will generally be returned normally.

OPCDisconnected
The Automation server object is not connected to an OPC custom interface server

5.5 OPCErrors

OPC Error
Value
Description

 OPCInvalidHandle
 0xC0040001L
The value of the handle is invalid. Note: a client should never pass an invalid handle to a server. If this error occurs, it is due to a programming error in the client or possibly in the server.

 OPCBadType
 0xC0040004L
The server cannot convert the data between the specified format/ requested data type and the canonical data type.

 OPCPublic
 0xC0040005L
The requested operation cannot be done on a public group.

 OPCBadRights
 0xC0040006L
The Items AccessRights do not allow the operation.

 OPCUnknownItemID
 0xC0040007L
The item ID is not defined in the server address space (on add or validate) or no longer exists in the server address space (for read or write).

 OPCInvalidItemID
 0xC0040008L
The item ID doesn't conform to the server's syntax.

 OPCInvalidFilter
 0xC0040009L
The filter string was not valid

 OPCUnknownPath
 0xC004000AL
The item's access path is not known to the server.

 OPCRange
 0xC004000BL
The value was out of range.

 OPCDuplicateName
 0xC004000CL
Duplicate name not allowed.

 OPCUnsupportedRate
 0x0004000DL
The server does not support the requested data rate but will use the closest available rate.

 OPCClamp
 0x0004000EL
A value passed to WRITE was accepted but the output was clamped.

 OPCInuse
 0x0004000FL
The operation cannot be performed because the object is bering referenced.

 OPCInvalidConfig
 0xC0040010L
The server's configuration file is an invalid format.

 OPCNotFound
 0xC0040011L
Requested Object (e.g. a public group) was not found.

 OPCInvalidPID
 0xC0040203L
The passed property ID is not valid for the item.

6 Appendix A - OPC Automation Error Handling
When a run-time error occurs, the properties of the Visual Basic Err object are filled with information that uniquely identifies the error.

If your Visual Basic code is not set up to handle the error using the On Error mechanism, an exception will be generated, and depending on the context (Visual Basic in Debug Mode, or an executable), a message box will be invoked with the following information:

· Runtime Error: decimal error number (hex error number)

· Method “X” of Object “Y” Failed. (Note when your application is an executable, no value for X and Y are displayed)

Therefore, it is highly recommended by the OPC Foundation, that your application take appropriate steps to catch any OPC Automation errors that may occur as a result of setting properties or invoking methods on the OPC Data Access Automation Objects.

An error handler is a routine for trapping and responding to errors in your application. An OPC Automation client should add error handlers for any application functionality that involves setting a property or calling a method of OPC Data Access Automation Objects. The process of designing an error handler involves three steps:
1.
Set, or enable, an error trap by telling the application where to branch to (which error-handling routine to execute) when an error occurs.
The On Error statement enables the trap and directs the application to the label marking the beginning of the error-handling routine.
2.
Write an error-handling routine that will handle errors from setting properties or from method invocation on OPC Data Access Automation objects.
3.
Exit the error-handling routine.
Decide what action your application should take as a result of the error. For example, if you attempted to add a group with a duplicate name(provided from the end user), you could advise the end user that the group was not added, and to enter a different name. Your application could also take the approach of adding the group again(with a “”), letting the server generate the name.
Watching for Errors
An error trap is enabled when Visual Basic executes the On Error statement, which specifies an error handler. The error trap remains enabled while the procedure containing it is active — that is, until an Exit Sub, Exit Function, Exit Property, End Sub, End Function, or End Property statement is executed for that procedure.

To set an error trap that jumps to an error-handling routine, use a On Error GoTo line statement, where line indicates the label identifying the error-handling code.
Handling the Errors
The first step in writing an error-handling routine is adding a line label to mark the beginning of the error handling routine. The line label should have a descriptive name and must be followed by a colon.

The body of the error handling routine contains the code that actually handles the error, usually in the form of a Case or If…Then…Else statement. You need to determine which errors are likely to occur and provide a course of action for each.

The Number property of the Err object contains a numeric code representing the most recent run-time error.

The error number from the Number property on the Err object contains the value that you would call GetErrorString with to covert the error number into a readable string.
A Sample OPC Automation Error Code Fragment

Dim AnOpcServer As OPCServer

Private Sub Command1_Click()

On Error GoTo testerror

Set AnOpcServer = New OPCServer

‘ assuming fuzz does’nt exist so the connect fails and your

‘VB code goes to the label testerror

AnOpcServer.Connect ("fuzz")

Time = AnOpcServer.CurrentTime

Debug.Print Time

testerror:

Debug.Print Err.Number

End Sub
7 Appendix B – Sample String Filter Syntax Function
Syntax
BOOL MatchPattern(LPCTSTR string, LPCTSTR pattern, BOOL bCaseSensitive)
Return Value
If string matches pattern, return is TRUE; if there is no match, return is FALSE. If either string or pattern is Null, return is FALSE;
Parameters

string String to be compared with pattern.

pattern Any string conforming to the pattern-matching conventions described in Remarks.

bCaseSensitive TRUE if comparison should be case sensitive.

Remarks
A versatile tool used to compare two strings. The pattern-matching features allow you to use wildcard characters, character lists, or character ranges, in any combination, to match strings. The following table shows the characters allowed in pattern and what they match:

Characters in pattern
Matches in string

?
Any single character.

*
Zero or more characters.

#
Any single digit (0-9).

[charlist]
Any single character in charlist.

[!charlist]
Any single character not in charlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any single character in string and can include almost any character code, including digits.

Note To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk (*), enclose them in brackets. The right bracket (]) can't be used within a group to match itself, but it can be used outside a group as an individual character.

By using a hyphen (-) to separate the upper and lower bounds of the range, charlist can specify a range of characters. For example, [A-Z] results in a match if the corresponding character position in string contains any uppercase letters in the range A-Z. Multiple ranges are included within the brackets without delimiters.

Other important rules for pattern matching include the following:

· An exclamation point (!) at the beginning of charlist means that a match is made if any character except the characters in charlist is found in string. When used outside brackets, the exclamation point matches itself.

· A hyphen (-) can appear either at the beginning (after an exclamation point if one is used) or at the end of charlist to match itself. In any other location, the hyphen is used to identify a range of characters.

· When a range of characters is specified, they must appear in ascending sort order (from lowest to highest). [A-Z] is a valid pattern, but [Z-A] is not.

The character sequence [] is considered a zero-length string ("").

8 Appendix C - Data Access Automation IDL Specification
// OPCAuto.idl : OPC Automation 2.0 interface

// Version 2.19.00

//

// The following naming is used to make Visual Basic see the correct names:

// OPCxxx is the name used in the spec, IOPCxxx is an interface

// OPCBrowser, OPCGroups, OPCItems are unchanged from the spec

// OPCServer is the name of the coclass containing IOPCAutoServer

// IOPCAutoServer is the actual interface (IOPCServer is already used!)

// OPCGroup is the name of the coclass

// IOPCGroup is the actual interface

// DIOPCGroupEvent is the group's event disp-interface

// This file will be processed by the MIDL tool to

// produce the type library (OPCAuto.tlb) and marshalling code.

#define DISPID_NEWENUM -4

import "oaidl.idl";

import "ocidl.idl";

interface OPCBrowser; // Forward references

interface OPCGroups;

interface OPCGroup;

interface OPCItems;

interface OPCItem;

//***

 [

 object,

 dual,

 uuid(28E68F90-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPC Server Event"),

 pointer_default(unique),

 oleautomation

]

 interface IOPCServerEvent : IDispatch

 {

 HRESULT ServerShutDown(

 [in,string] BSTR Reason);

 };

//***

 [

 object,

 dual,

 uuid(28E68F9C-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPCGroups Event"),

 pointer_default(unique),

 oleautomation

]

 interface IOPCGroupsEvent : IDispatch

 {

 [helpstring("Event to update item data from any group")]

 HRESULT GlobalDataChange(

 [in] LONG TransactionID,

 [in] LONG GroupHandle,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT)* ItemValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [in] SAFEARRAY(DATE) * TimeStamps);

 };

//***

 [

 object,

 dual,

 uuid(28E68F90-8D75-11d1-8DC3-3C302A000001),

 helpstring("OPCGroup Events"),

 pointer_default(unique),

 oleautomation

]

 interface IOPCGroupEvent : IDispatch

 {

 [helpstring("Event to notify when active data has changed")]

 HRESULT DataChange(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT)* ItemValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [in] SAFEARRAY(DATE) * TimeStamps);

 [helpstring("Event to update item data when a read request was completed")]

 HRESULT AsyncReadComplete(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT)* ItemValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(LONG) * Errors);

 [helpstring("Event to notify when a write request was completed")]

 HRESULT AsyncWriteComplete(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(LONG) * Errors);

 [helpstring("Event to notify when a cancel transaction request was completed")]

 HRESULT AsyncCancelComplete(

 [in] LONG TransactionID);

 };

//***

[

 uuid(28E68F91-8D75-11d1-8DC3-3C302A000000),

 version(1.0),

 helpstring("OPC Automation 2.0")

]

library OPCAutomation

{

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 enum OPCNamespaceTypes { OPCHierarchical = 1, OPCFlat};

 enum OPCDataSource { OPCCache = 1, OPCDevice};

 enum OPCAccessRights { OPCReadable = 1, OPCWritable};

 enum OPCServerState{ OPCRunning = 1, OPCFailed,

 OPCNoconfig, OPCSuspended,

 OPCTest, OPCDisconnected };

 enum OPCErrors{ OPCInvalidHandle = 0xC0040001L,

 OPCBadType = 0xC0040004L,

 OPCPublic = 0xC0040005L,

 OPCBadRights = 0xC0040006L,

 OPCUnknownItemID = 0xC0040007L,

 OPCInvalidItemID = 0xC0040008L,

 OPCInvalidFilter = 0xC0040009L,

 OPCUnknownPath = 0xC004000AL,

 OPCRange = 0xC004000BL,

 OPCDuplicateName = 0xC004000CL,

 OPCUnsupportedRate = 0x0004000DL,

 OPCClamp = 0x0004000EL,

 OPCInuse = 0x0004000FL,

 OPCInvalidConfig = 0xC0040010L,

 OPCNotFound = 0xC0040011L,

 OPCInvalidPID = 0xC0040203L };

//***

 // OPCServer Interface

 [

 object,

 dual,oleautomation,

 uuid(28E68F92-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPCServer Object"),

 pointer_default(unique)

]

 interface IOPCAutoServer : IDispatch

 {

 // Properties

 [propget,helpstring("Time the Server Started")]

 HRESULT StartTime([out, retval] DATE * StartTime);

 [propget]

 HRESULT CurrentTime([out, retval] DATE * CurrentTime);

 [propget,helpstring("Last time the server sent data")]

 HRESULT LastUpdateTime([out, retval] DATE * LastUpdateTime);

 [propget]

 HRESULT MajorVersion([out, retval] short * MajorVersion);

 [propget]

 HRESULT MinorVersion([out, retval] short * MinorVersion);

 [propget]

 HRESULT BuildNumber([out, retval] short * BuildNumber);

 [propget,helpstring("Server Vendor's name")]

 HRESULT VendorInfo([out, retval] BSTR * VendorInfo);

 [propget,helpstring("Returns an OPCServerState")]

 HRESULT ServerState([out, retval] LONG * ServerState);

 [propget,helpstring("Returns this server's name")]

 HRESULT ServerName([out, retval] BSTR * ServerName);

 [propget,helpstring("Returns this server's node")]

 HRESULT ServerNode([out, retval] BSTR * ServerNode);

 [propget,helpstring("Identify the client")]

 HRESULT ClientName([out, retval] BSTR * ClientName);

 [propput]

 HRESULT ClientName([in] BSTR ClientName);

 [propget]

 HRESULT LocaleID([out, retval] LONG * LocaleID);

 [propput]

 HRESULT LocaleID([in] LONG LocaleID);

 [propget,helpstring("Might possibly be Percent utilization")]

 HRESULT Bandwidth([out, retval] LONG * Bandwidth);

 [id(0),propget,helpstring("The collection of OPCGroup Objects")]

 HRESULT OPCGroups([out, retval] OPCGroups ** ppGroups);

 [propget,helpstring("Returns an array of names")]

 HRESULT PublicGroupNames([out, retval] VARIANT * PublicGroups);

 // Methods

 [helpstring("Returns an array of Server names, optionally on another node")]

 HRESULT GetOPCServers(

 [in, optional] VARIANT Node,

 [out, retval] VARIANT * OPCServers);

 [helpstring("Connect to a named OPC Server")]

 HRESULT Connect(

 [in, string] BSTR ProgID,

 [in, optional] VARIANT Node);

 [helpstring("End Connection with OPC Server")]

 HRESULT Disconnect();

 [helpstring("Create a new OPCBrowser Object")]

 HRESULT CreateBrowser(

 [out, retval] OPCBrowser ** ppBrowser);

 [helpstring("Convert an error code to a descriptive string")]

 HRESULT GetErrorString(

 [in] LONG ErrorCode,

 [out, retval] BSTR * ErrorString);

 [helpstring("The LocaleIDs supported by this server")]

 HRESULT QueryAvailableLocaleIDs(

 [out, retval] VARIANT * LocaleIDs);

 HRESULT QueryAvailableProperties(

 [in, string] BSTR ItemID,

 [out] LONG * Count,

 [out] SAFEARRAY(LONG) * PropertyIDs,

 [out] SAFEARRAY(BSTR) * Descriptions,

 [out] SAFEARRAY(SHORT) * DataTypes);

 HRESULT GetItemProperties(

 [in, string] BSTR ItemID,

 [in] LONG Count,

 [in] SAFEARRAY(LONG) * PropertyIDs,

 [out] SAFEARRAY(VARIANT)* PropertyValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT LookupItemIDs(

 [in, string] BSTR ItemID,

 [in] LONG Count,

 [in] SAFEARRAY(LONG) * PropertyIDs,

 [out] SAFEARRAY(BSTR) * NewItemIDs,

 [out] SAFEARRAY(LONG) * Errors);

 };

//***

 // OPCServer's Event fired back to the client

 [

 uuid(28E68F93-8D75-11d1-8DC3-3C302A000000),

 nonextensible,

 helpstring("OPC Server Event")

]

 dispinterface DIOPCServerEvent

 {

 properties:

 methods:

 [id(1)] void ServerShutDown(

 [in,string] BSTR Reason);

 };

//***

 // OPCBrowser Interface

 [

 object,

 dual, oleautomation,

 uuid(28E68F94-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPC Browser"),

 pointer_default(unique)

]

 interface OPCBrowser : IDispatch

 {

 // Properties

 [propget,helpstring("Returns one of OPCNamespaceTypes")]

 HRESULT Organization([out, retval] LONG * Organization);

 [propget,helpstring("Filter narrows the search results")]

 HRESULT Filter([out, retval] BSTR * Filter);

 [propput]

 HRESULT Filter([in] BSTR Filter);

 [propget,helpstring("Data type used in ShowLeafs (any Variant type)")]

 HRESULT DataType([out, retval] SHORT * DataType);

 [propput]

 HRESULT DataType([in] SHORT DataType);

 [propget,helpstring("Access Rights used in ShowLeafs ()")]

 HRESULT AccessRights([out, retval] LONG * AccessRights);

 [propput]

 HRESULT AccessRights([in] LONG AccessRights);

 [propget,helpstring("Position in the Tree")]

 HRESULT CurrentPosition([out, retval] BSTR * CurrentPosition);

 [propget,helpstring("Number of items in the Collection")]

 HRESULT Count([out, retval] LONG * Count);

 [propget, restricted, id(DISPID_NEWENUM)]

 HRESULT _NewEnum([out, retval] IUnknown ** ppUnk);

 // Methods

 HRESULT Item(

 [in] VARIANT ItemSpecifier,

 [out, retval] BSTR * Item);

 [helpstring("Get all of the branch names that match the filter")]

 HRESULT ShowBranches();

 [helpstring("Get all of the leaf names that match the filter")]

 HRESULT ShowLeafs(

 [in, optional] VARIANT Flat);

 [helpstring("Move up a level in the tree")]

 HRESULT MoveUp();

 [helpstring("Move up to the top (root) of the tree")]

 HRESULT MoveToRoot();

 [helpstring("Move down into this branch")]

 HRESULT MoveDown(

 [in, string] BSTR Branch);

 [helpstring("Move to this absolute position")]

 HRESULT MoveTo(

 [in] SAFEARRAY(BSTR) * Branches);

 [helpstring("Converts a leaf name to an ItemID")]

 HRESULT GetItemID(

 [in, string] BSTR Leaf,

 [out, retval] BSTR * ItemID);

 [helpstring("Returns an array of Access Paths for an ItemID")]

 HRESULT GetAccessPaths(

 [in, string] BSTR ItemID,

 [out, retval] VARIANT * AccessPaths);

 };

//***

 // OPCGroups Interface

 [

 object,

 dual,oleautomation,

 uuid(28E68F95-8D75-11d1-8DC3-3C302A000000),

 helpstring("Collection of OPC Group objects"),

 pointer_default(unique)

]

 interface IOPCGroups : IDispatch

 {

 // Properties

 [propget,helpstring("Returns the parent OPCServer")]

 HRESULT Parent([out, retval] IOPCAutoServer ** ppParent);

 [propget]

 HRESULT DefaultGroupIsActive([out, retval] VARIANT_BOOL * DefaultGroupIsActive);

 [propput]

 HRESULT DefaultGroupIsActive([in] VARIANT_BOOL DefaultGroupIsActive);

 [propget]

 HRESULT DefaultGroupUpdateRate([out, retval] LONG * DefaultGroupUpdateRate);

 [propput]

 HRESULT DefaultGroupUpdateRate([in] LONG DefaultGroupUpdateRate);

 [propget]

 HRESULT DefaultGroupDeadband([out, retval] float * DefaultGroupDeadband);

 [propput]

 HRESULT DefaultGroupDeadband([in] float DefaultGroupDeadband);

 [propget]

 HRESULT DefaultGroupLocaleID([out, retval] LONG * DefaultGroupLocaleID);

 [propput]

 HRESULT DefaultGroupLocaleID([in] LONG DefaultGroupLocaleID);

 [propget]

 HRESULT DefaultGroupTimeBias([out, retval] LONG * DefaultGroupTimeBias);

 [propput]

 HRESULT DefaultGroupTimeBias([in] LONG DefaultGroupTimeBias);

 [propget,helpstring("Number of items in the Collection")]

 HRESULT Count([out, retval] LONG * Count);

 [propget, restricted, id(DISPID_NEWENUM)]

 HRESULT _NewEnum([out, retval] IUnknown ** ppUnk);

 // Methods

 [id(0),helpstring("Returns an OPCGroup by index (starts at 1) or name")]

 HRESULT Item(

 [in] VARIANT ItemSpecifier,

 [out, retval] OPCGroup ** ppGroup);

 [helpstring("Adds an OPCGroup to the collection")]

 HRESULT Add(

 [in,optional] VARIANT Name,

 [out, retval] OPCGroup ** ppGroup);

 [helpstring("Returns an OPCGroup specified by server handle or name")]

 HRESULT GetOPCGroup(

 [in] VARIANT ItemSpecifier,

 [out, retval] OPCGroup ** ppGroup);

 [helpstring("Remove all groups and their items")]

 HRESULT RemoveAll();

 [helpstring("Removes an OPCGroup specified by server handle or name")]

 HRESULT Remove(

 [in] VARIANT ItemSpecifier);

 [helpstring("Adds an existing public OPCGroup to the collection")]

 HRESULT ConnectPublicGroup(

 [in] BSTR Name,

 [out, retval] OPCGroup ** ppGroup);

 [helpstring("Removes a public OPCGroup specified by server handle or name")]

 HRESULT RemovePublicGroup(

 [in] VARIANT ItemSpecifier);

 };

//***

 // OPCGroup's Events fired back to the client

 [

 uuid(28E68F9D-8D75-11d1-8DC3-3C302A000000),

 nonextensible,

 helpstring("OPC Groups Event")

]

 dispinterface DIOPCGroupsEvent

 {

 properties:

 methods:

 [id(1)] void GlobalDataChange(

 [in] LONG TransactionID,

 [in] LONG GroupHandle,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT)* ItemValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [in] SAFEARRAY(DATE) * TimeStamps);

 };

//***

 // IOPCGroup Interface

 [

 object,

 dual,oleautomation,

 uuid(28E68F96-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPC Group Object"),

 pointer_default(unique)

]

 interface IOPCGroup : IDispatch

 {

 // Properties

 [propget,helpstring("Returns the parent OPCServer")]

 HRESULT Parent([out, retval] IOPCAutoServer ** ppParent);

 [propget]

 HRESULT Name([out, retval] BSTR * Name);

 [propput]

 HRESULT Name([in] BSTR Name);

 [propget,helpstring("True if this group is public")]

 HRESULT IsPublic([out, retval] VARIANT_BOOL * IsPublic);

 [propget,helpstring("True if this group is active")]

 HRESULT IsActive([out, retval] VARIANT_BOOL * IsActive);

 [propput]

 HRESULT IsActive([in] VARIANT_BOOL IsActive);

 [propget,helpstring("True if this group will get asynchronous data updates")]

 HRESULT IsSubscribed([out, retval] VARIANT_BOOL * IsSubscribed);

 [propput]

 HRESULT IsSubscribed([in] VARIANT_BOOL IsSubscribed);

 [propget]

 HRESULT ClientHandle([out, retval] LONG * ClientHandle);

 [propput]

 HRESULT ClientHandle([in] LONG ClientHandle);

 [propget]

 HRESULT ServerHandle([out, retval] LONG * ServerHandle);

 [propget]

 HRESULT LocaleID([out, retval] LONG * LocaleID);

 [propput]

 HRESULT LocaleID([in] LONG LocaleID);

 [propget]

 HRESULT TimeBias([out, retval] LONG * TimeBias);

 [propput]

 HRESULT TimeBias([in] LONG TimeBias);

 [propget]

 HRESULT DeadBand([out, retval] FLOAT * DeadBand);

 [propput]

 HRESULT DeadBand([in] FLOAT DeadBand);

 [propget,helpstring("Rate data can be returned to an application (in mSec)")]

 HRESULT UpdateRate([out, retval] LONG * UpdateRate);

 [propput]

 HRESULT UpdateRate([in] LONG UpdateRate);

 [id(0),propget,helpstring("Returns the OPCItems collection")]

 HRESULT OPCItems([out, retval] OPCItems ** ppItems);

 // Methods

 HRESULT SyncRead(

 [in] SHORT Source,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(VARIANT) * Values,

 [out] SAFEARRAY(LONG) * Errors,

 [out,optional] VARIANT * Qualities,

 [out,optional] VARIANT * TimeStamps);

 HRESULT SyncWrite(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(VARIANT) * Values,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT AsyncRead(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [in] LONG TransactionID,

 [out] LONG * CancelID);

 HRESULT AsyncWrite(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(VARIANT) * Values,

 [out] SAFEARRAY(LONG) * Errors,

 [in] LONG TransactionID,

 [out] LONG * CancelID);

 HRESULT AsyncRefresh(

 [in] SHORT Source,

 [in] LONG TransactionID,

 [out] LONG * CancelID);

 HRESULT AsyncCancel(

 [in] LONG CancelID);

 };

//***

 // OPCGroup's Events fired back to the client

 [

 uuid(28E68F97-8D75-11d1-8DC3-3C302A000000),

 nonextensible,

 helpstring("OPC Group Events")

]

 dispinterface DIOPCGroupEvent

 {

 properties:

 methods:

 [id(1)] void DataChange(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT)* ItemValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [in] SAFEARRAY(DATE) * TimeStamps);

 [id(2)] void AsyncReadComplete(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT)* ItemValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(LONG) * Errors);

 [id(3)] void AsyncWriteComplete(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(LONG) * Errors);

 [id(4)] void AsyncCancelComplete(

 [in] LONG CancelID);

 };

//***

 // OPCItems Collection Interface

 [

 object,

 dual,oleautomation,

 uuid(28E68F98-8D75-11d1-8DC3-3C302A000000),

 helpstring("Collection of OPC Item objects"),

 pointer_default(unique)

]

 interface OPCItems : IDispatch

 {

 // Properties

 [propget,helpstring("Returns the parent OPCGroup")]

 HRESULT Parent([out, retval] OPCGroup ** ppParent);

 [propget]

 HRESULT DefaultRequestedDataType([out, retval] SHORT * DefaultRequestedDataType);

 [propput]

 HRESULT DefaultRequestedDataType([in] SHORT DefaultRequestedDataType);

 [propget]

 HRESULT DefaultAccessPath([out, retval] BSTR * DefaultAccessPath);

 [propput]

 HRESULT DefaultAccessPath([in, string] BSTR DefaultAccessPath);

 [propget]

 HRESULT DefaultIsActive([out, retval] VARIANT_BOOL * DefaultIsActive);

 [propput]

 HRESULT DefaultIsActive([in] VARIANT_BOOL DefaultIsActive);

 [propget,helpstring("Number of items in the Collection")]

 HRESULT Count([out, retval] LONG * Count);

 [propget, restricted, id(DISPID_NEWENUM)]

 HRESULT _NewEnum([out, retval] IUnknown ** ppUnk);

 // Methods

 [id(0),helpstring("Returns an OPCItem by index (starts at 1)")]

 HRESULT Item(

 [in] VARIANT ItemSpecifier,

 [out, retval] OPCItem ** ppItem);

 [helpstring("Returns an OPCItem specified by server handle")]

 HRESULT GetOPCItem(

 [in] LONG ServerHandle,

 [out, retval] OPCItem ** ppItem);

 [helpstring("Adds an OPCItem object to the collection")]

 HRESULT AddItem(

 [in, string] BSTR ItemID,

 [in] LONG ClientHandle,

 [out, retval] OPCItem ** ppItem);

 [helpstring("Adds OPCItem objects to the collection")]

 HRESULT AddItems(

 [in] LONG NumItems,

 [in] SAFEARRAY(BSTR) * ItemIDs,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [out] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [in, optional] VARIANT RequestedDataTypes,

 [in, optional] VARIANT AccessPaths);

 [helpstring("Removes OPCItem objects from the collection")]

 HRESULT Remove(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors);

 [helpstring("?")]

 HRESULT Validate(

 [in] LONG NumItems,

 [in] SAFEARRAY(BSTR) * ItemIDs,

 [out] SAFEARRAY(LONG) * Errors,

 [in, optional] VARIANT RequestedDataTypes,

 [in, optional] VARIANT AccessPaths);

 [helpstring("Set the active state of OPCItem objects")]

 HRESULT SetActive(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] VARIANT_BOOL ActiveState,

 [out] SAFEARRAY(LONG) * Errors);

 [helpstring("Set the Client handles of OPCItem objects")]

 HRESULT SetClientHandles(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [out] SAFEARRAY(LONG) * Errors);

 [helpstring("Set the Data Types of OPCItem objects")]

 HRESULT SetDataTypes(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(LONG) * RequestedDataTypes,

 [out] SAFEARRAY(LONG) * Errors);

 };

//***

 // OPCItem Interface

 [

 object,

 dual,oleautomation,

 uuid(28E68F99-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPC Item object"),

 pointer_default(unique)

]

 interface OPCItem : IDispatch

 {

 // Properties

 [propget,helpstring("Returns the parent OPCGroup")]

 HRESULT Parent([out, retval] OPCGroup ** Parent);

 [propget]

 HRESULT ClientHandle([out, retval] LONG * ClientHandle);

 [propput]

 HRESULT ClientHandle([in] LONG ClientHandle);

 [propget]

 HRESULT ServerHandle([out, retval] LONG * ServerHandle);

 [propget]

 HRESULT AccessPath([out, retval] BSTR * AccessPath);

 [propget]

 HRESULT AccessRights([out, retval] LONG * AccessRights);

 [propget]

 HRESULT ItemID([out, retval] BSTR * ItemID);

 [propget]

 HRESULT IsActive([out, retval] VARIANT_BOOL * IsActive);

 [propput]

 HRESULT IsActive([in] VARIANT_BOOL IsActive);

 [propget]

 HRESULT RequestedDataType([out, retval] SHORT * RequestedDataType);

 [propput]

 HRESULT RequestedDataType([in] SHORT RequestedDataType);

 [id(0),propget]

 HRESULT Value([out, retval] VARIANT * CurrentValue);

 [propget]

 HRESULT Quality([out, retval] LONG * Quality);

 [propget]

 HRESULT TimeStamp([out, retval] DATE * TimeStamp);

 [propget]

 HRESULT CanonicalDataType([out, retval] SHORT * CanonicalDataType);

 [propget]

 HRESULT EUType([out, retval] SHORT * EUType);

 [propget]

 HRESULT EUInfo([out, retval] VARIANT * EUInfo);

 // Methods

 HRESULT Read(

 [in] SHORT Source,

 [out,optional] VARIANT * Value,

 [out,optional] VARIANT * Quality,

 [out,optional] VARIANT * TimeStamp);

 HRESULT Write(

 [in] VARIANT Value);

 };

//***

 [

 uuid(28E68F9A-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPC Automation Server")

]

 coclass OPCServer

 {

 [default] interface IOPCAutoServer;

 [source, default] dispinterface DIOPCServerEvent;

 };

//***

 [

 uuid(28E68F9E-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPC Automation Groups Collection")

]

 coclass OPCGroups

 {

 [default] interface IOPCGroups;

 [source, default] dispinterface DIOPCGroupsEvent;

 };

//***

 [

 uuid(28E68F9B-8D75-11d1-8DC3-3C302A000000),

 helpstring("OPC Automation Group")

]

 coclass OPCGroup

 {

 [default] interface IOPCGroup;

 [source, default] dispinterface DIOPCGroupEvent;

 };

};

9 Appendix D- Notes On Automation Data Types
The OPC Custom Interface allows servers to support data types including VT_I1, VT_UI2, VT_UI4, as well as arrays of these same data types. For a client that is developed in C++, using these data types is very straight forward, but for an automation client application, these data types are not natively supported. Therefore, we have chosen to provide a logical mapping and conversion to those data types which are more native to automation client applications.

The automation interface shall provide the standard automation data types therefore the requested data types that the automation client requests will be those that are natively supported by the automation applications. The problem comes in, when the automation client either does not specify a requested data type, or the server application rejects the requested data type, and the data is then returned in the servers native canonical data type.

The following is the conversion approach that the automation interface (and corresponding implementation) should provide to facilitate providing data values in the data type representation most suitable for automation applications. A value in the canonical data types representation will be converted to the automation data types according to the table below.

CANONICAL DATA TYPE
 AUTOMATION DATA TYPE

 VT_I1

 VT_I2

 VT_UI2

 VT_I4

 VT_UI4

 VT_R8 (or VT_CY)

 VT_ARRAY | VT_I1

 VT_ARRAY | VT_I2

 VT_ARRAY | VT_UI2

 VT_ARRAY | VT_I4

 VT_ARRAY | VT_UI4

 VT_ARRAY | VT_R8 (or VT_CY)

These conversions rules are only applicable when the client either has not specified a requested data type, or the requested data type conversion are rejected by the server application. Note: The canonical data type that is returned by the automation methods, will indicate the data type natively supported by the server, and not the automation data type (from the table above) that the value will be converted to. (This is for consistency with Custom interface client applications)

OPCServer

OPCGroups �(collection)

OPCGroup

OPCItems�(collection)

OPCItem

OPCBrowser

� EMBED Word.Picture.8 ���

7

_953964303.doc

�

_958369224.doc

Automation Client

OPC Automation Wrapper

OPC Custom Interface Server

COM / DCOM

