Table of contents

1 Notes on the documentation ... 5

2 For your safety ... 6
 2.1 Signal words ... 6
 2.2 Intended use ... 6
 2.3 Fundamental safety instructions ... 7
 2.4 Operator's obligation to exercise diligence ... 7
 2.5 Notes on information security .. 8

3 Product overview ... 9
 3.1 Structure .. 10
 3.2 Interface description ... 11
 3.2.1 Power supply .. 11
 3.2.2 Ethernet RJ45 ... 12
 3.2.3 USB .. 13
 3.2.4 DisplayPort .. 14
 3.3 Optional interfaces ... 15
 3.3.1 Ethernet RJ45 ... 16
 3.4 Status LEDs .. 17
 3.4.1 UPS-OCT LED ... 17
 3.4.2 PWR LED ... 18
 3.4.3 HDD LED .. 18
 3.4.4 TC LED ... 18
 3.5 Name plate .. 19
 3.6 1-second UPS .. 20

4 Commissioning ... 21
 4.1 Transport and unpacking ... 21
 4.2 Control cabinet installation .. 22
 4.2.1 Mounting options .. 23
 4.2.2 Dimensions .. 24
 4.2.3 Installation in the control cabinet .. 25
 4.3 Connecting the industrial PC ... 27
 4.3.1 Grounding of the Industrial PC ... 28
 4.3.2 Connecting cables and power supply .. 29
 4.4 Switching the industrial PC on and off ... 30

5 Beckhoff Device Manager .. 31

6 Decommissioning ... 33
 6.1 Disconnecting the power supply and cables ... 33
 6.2 Disassembly and disposal .. 34

7 Maintenance ... 36
 7.1 Cleaning ... 36
 7.2 Maintenance ... 37
 7.2.1 Replacing the battery .. 39
 7.2.2 Replacing the storage media ... 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting</td>
<td>43</td>
</tr>
<tr>
<td>Technical data</td>
<td>44</td>
</tr>
<tr>
<td>Appendix</td>
<td>45</td>
</tr>
<tr>
<td>10.1 Service and support</td>
<td>45</td>
</tr>
<tr>
<td>10.2 Approvals</td>
<td>46</td>
</tr>
</tbody>
</table>
1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

The following instructions and explanations must be followed during installation and commissioning of the components. The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development. For that reason the documentation is not in every case checked for consistency with performance data, standards or other characteristics. In the event that it contains technical or editorial errors, we retain the right to make alterations at any time and without warning. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams, and descriptions in this documentation. All illustrations shown are only examples. The configurations depicted may deviate from the standard.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 and similar applications and registrations in several other countries.

Copyright

© Beckhoff Automation GmbH & Co. KG. Publication of this document on websites other than ours is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

Delivery state

All the components are supplied in particular hardware and software configurations appropriate for the application. Changes to the hardware or software configuration are permitted, provided they are within the specified limits for power consumption and power loss (please refer to the respective data sheet).

Currentness

Please check whether you are using the current and valid version of this document. The current version is always available for download from the Beckhoff website. In case of doubt, contact Technical Support.

Delivery conditions

In addition, the general delivery conditions of the company Beckhoff Automation GmbH & Co. KG apply.
2 For your safety

The signal words and their meanings are explained in the chapter on safety. They contain fundamental safety instructions that are essential for the avoidance of personal injuries and damage to property.

Exclusion of liability

Beckhoff shall not be liable in the event of non-compliance with this documentation and thus the use of the devices outside the documented operating conditions.

2.1 Signal words

The signal words used in the documentation are classified below.

Warning of personal injuries

<table>
<thead>
<tr>
<th>Signal Word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Hazard with high risk of death or serious injury.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Hazard with medium risk of death or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>There is a low-risk hazard that can result in minor injury.</td>
</tr>
</tbody>
</table>

Warning of property and environmental damage

<table>
<thead>
<tr>
<th>Signal Word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE</td>
<td>There is a possibility of damage to the environment, equipment or data.</td>
</tr>
</tbody>
</table>

2.2 Intended use

The Industrial PC is intended for use as a control system for automation, visualization and communication in machine and system engineering.

The device has been developed for an IP20 working environment. This involves finger protection and protection against solid foreign objects up to 12.5 mm. There is no protection against water. Operation of the devices in wet and dusty environments is not permitted.

The specified limits for technical data must be adhered to.

The device can be used within the documented operating conditions.

Improper use

Do not use the device outside the documented operating conditions.
2.3 Fundamental safety instructions

The following safety instructions must be observed when handling the Industrial PC.

Application conditions

- Do not use the device under extreme environmental conditions.
- Only use the device in hazardous areas if it is explicitly designed for this purpose.
- Do not carry out any work on the device while it is live. Always switch off the supply voltage for the device before mounting it, replacing device components or rectifying malfunctions. This does not apply to the replacement of hard disks in a RAID configuration.
- Never plug or unplug connectors during thunderstorms. There is a risk of electric shock.
- Ensure that the device has a protective and functional earth connection.
- Observe hot surfaces when using the device. There is a risk of burns.

Damage to property, loss of data and impairment of functions

- If you change the hardware and software configurations, you must keep within the specified limits of power consumption and power loss (please refer to the respective data sheet).
- Ensure that only trained specialists with a control and automation engineering background, operate the device. Use by unauthorized persons can lead to damage to property and loss of data.
- In the case of a 24 V DC power supply unit, fuse the power supply line according to its cross-section to protect the supply line in the event of a short circuit.
- In case of fire, extinguish the device with powder or nitrogen.

2.4 Operator's obligation to exercise diligence

The operator must ensure that

- the products are used only for their intended purpose (see Chapter 2.2 Intended use [6]).
- the products are only operated in sound condition and in working order.
- the products are operated only by suitably qualified and authorized personnel.
- the personnel is instructed regularly about relevant occupational safety and environmental protection aspects, and is familiar with the operating instructions and in particular the safety instructions contained herein.
- the operating instructions are in good condition and complete, and always available for reference at the location where the products are used.
2.5 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online, are equipped with security functions that support the secure operation of plants, systems, machines and networks. Despite the security functions, the creation, implementation and constant updating of a holistic security concept for the operation are necessary to protect the respective plant, system, machine and networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept. The customer is responsible for preventing unauthorized access by third parties to its equipment, systems, machines and networks. The latter should be connected to the corporate network or the Internet only if appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be observed. Further information regarding information security and industrial security can be found in our https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security functions. In light of this continuous further development, Beckhoff expressly recommends that the products are kept up to date at all times and that updates are installed for the products once they have been made available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://www.beckhoff.com/secinfo.
3 Product overview

The C6027 Industrial PC is part of the series of ultra-compact industrial PCs for space-saving control cabinet installation. It is a high-performance device with comparatively low energy consumption. It combines the compactness and fanless design of the C601x devices with the high performance of the C603x devices.

Thanks to the available processors, the industrial PC can be used for the following applications, among others:

- diverse automation and visualization tasks
- wide range of IoT tasks with data preprocessing
- complicated HMI applications
- demanding control applications taking into account green IT
- short cycle times
- high-volume data handling
- other PC applications

The basic configuration of the C6027 includes the following aspects:

- Intel® processor
- 2 x DRAM SODIMM
- M.2-SSD
- 24 V DC power supply unit
3.1 Structure

![Structure - basic configuration](image)

Fig. 1: Structure – basic configuration

Table 1: Legend C6027 structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mounting plate</td>
<td>Plate for mounting the industrial PC via the rear panel in the control cabinet</td>
</tr>
<tr>
<td>2</td>
<td>Status LEDs</td>
<td>Status display for UPS-OCT, power, hard disk, TwinCAT</td>
</tr>
<tr>
<td>3</td>
<td>Protective conductor connection PE</td>
<td>Low-resistance protective earthing and functional earthing of the industrial PC</td>
</tr>
<tr>
<td>4</td>
<td>Name plate</td>
<td>Information on the equipment of the industrial PC</td>
</tr>
<tr>
<td>5</td>
<td>Side cover</td>
<td>Access to battery and storage medium</td>
</tr>
<tr>
<td>6</td>
<td>USB interfaces (X106-X109)</td>
<td>Connection of peripheral devices</td>
</tr>
<tr>
<td>7</td>
<td>DisplayPort (X105)</td>
<td>Transmission of the video signal</td>
</tr>
<tr>
<td>8</td>
<td>Ethernet interfaces RJ45 (X102 - X104)</td>
<td>Connection of the industrial PC to a 100/1000BASE-T network</td>
</tr>
<tr>
<td>9</td>
<td>Power supply (X101)</td>
<td>Connection of the power supply and external wiring of the industrial PC</td>
</tr>
</tbody>
</table>
3.2 Interface description

In the basic configuration, the C6027 includes the following interfaces:

- Power supply (X101)
- Ethernet RJ45 (X102-X104)
- DisplayPort (X105)
- USB (X106-X109)

3.2.1 Power supply

The industrial PC is supplied with a nominal voltage of 24 V. The 2x2-pin voltage socket (X101) is used for connection to the power supply and the external wiring of the industrial PC. The main supply voltage is applied between PIN 3 (0 V) and PIN 4 (24 V) of the socket.

![Voltage socket pin numbering](image)

Fig. 2: Voltage socket pin numbering

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC-ON</td>
<td>Input PC-ON</td>
</tr>
<tr>
<td>2</td>
<td>P-S</td>
<td>Power status output</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>0 V</td>
</tr>
<tr>
<td>4</td>
<td>24 V</td>
<td>Power supply</td>
</tr>
</tbody>
</table>

Table 2: Voltage socket pin assignment

The plug for the power supply is specified for 8 A and can accommodate wire cross-sections of up to 1.5 mm². For long supply lines, use 1.5 mm² cables to achieve a low voltage drop on the supply lines. There should be at least 22 V at the power supply plug of the industrial PC, so that the industrial PC remains switched on during voltage fluctuations. The plug is included in the delivery. You can obtain a replacement plug from your Beckhoff Sales using the following ordering option:

- C9900-P943: power supply connector for C60xx Industrial PC
3.2.2 Ethernet RJ45

The C6027 has three Gigabit LAN ports (X102-X104). The 100Base-T and 1000Base-T Ethernet standards enable the connection of corresponding network components and data rates of 100/1000 Mbit/s. The required speed is selected automatically.

The RJ45 connection technology with twisted-pair cables is used. The maximum length of the cable connection is 100 m.

The controllers are used as follows, based on the device generation:

Table 3: Controller classification based on device generation

<table>
<thead>
<tr>
<th>Device generation</th>
<th>Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6027-0000</td>
<td>Intel® i219 (PHY) for LAN1 and Intel® i210 (MAC/PHY) for LAN2 and LAN3</td>
</tr>
</tbody>
</table>

The Ethernet ports (X103, LAN2; X104, LAN3) connected via PCIe with the i210 controller are suitable for cycle times <= 1 ms and for distributed clock applications with EtherCAT.

The Ethernet port (X102, LAN1) integrated in the chipset with the i219 controller is suitable for real-time Ethernet applications with cycle times > 1 ms (without distributed clocks).

![Fig. 3: Ethernet interface pin numbering](image)

Table 4: Ethernet interface pin assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T2 +</td>
<td>Pair 2</td>
</tr>
<tr>
<td>2</td>
<td>T2 -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T3 +</td>
<td>Pair 3</td>
</tr>
<tr>
<td>4</td>
<td>T1 +</td>
<td>Pair 1</td>
</tr>
<tr>
<td>5</td>
<td>T1 -</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T3 -</td>
<td>Pair 3</td>
</tr>
<tr>
<td>7</td>
<td>T4 +</td>
<td>Pair 4</td>
</tr>
<tr>
<td>8</td>
<td>T4 -</td>
<td></td>
</tr>
</tbody>
</table>

The LEDs of the LAN interfaces indicate the activity and the speed of the data transmission (Mbit/s). The LED shown completely green in the figure indicates whether the interface is connected to a network. If this is the case, the LED lights up green. The LED flashes when data transmission is in progress on the interface.

The green/orange LED shown in the figure indicates the speed of data transmission. If the speed is 100 Mbit/s the LED is orange, at 1000 Mbit/s it is green.
3.2.3 USB

The industrial PC has four USB 3.0 interfaces (X106-X109). They are used to connect peripheral devices with USB interfaces.

Each of the four USB interfaces supplies up to 900 mA current and is electronically fused. All ports are protected by a common overcurrent protection (overcurrent detection). All ports will be switched off if overcurrent occurs at any of the ports.

![USB interface pin numbering](image)

Fig. 4: USB interface pin numbering

Table 5: USB interface pin assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vbus</td>
</tr>
<tr>
<td>2</td>
<td>D -</td>
</tr>
<tr>
<td>3</td>
<td>D +</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>StdA_SSRX -</td>
</tr>
<tr>
<td>6</td>
<td>StdA_SSRX +</td>
</tr>
<tr>
<td>7</td>
<td>GND_DRAIN</td>
</tr>
<tr>
<td>8</td>
<td>StdA_SSTX -</td>
</tr>
<tr>
<td>9</td>
<td>StdA_SSTX +</td>
</tr>
</tbody>
</table>
3.2.4 DisplayPort

The industrial PC has a DisplayPort (X105) that enables connection of devices with DisplayPort. It facilitates transfer of image signals.

In addition, DVI signals can be transferred via an adapter. Please order it from your Beckhoff sales team, quoting order identifier C9900-Z468 adapter cable DisplayPort to DVI, 40 cm.

DisplayPort signals are led out via the interface by default. With the use of a level shifter cable the board switches the DisplayPort specification automatically to HDMI signals.

![DisplayPort pin numbering](image)

Fig. 5: DisplayPort pin numbering

Table 6: Pin assignment of DisplayPort

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LVDS lane 0 +</td>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>LVDS lane 0 -</td>
<td>4</td>
<td>LVDS lane 1 +</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>6</td>
<td>LVDS lane 1 -</td>
</tr>
<tr>
<td>7</td>
<td>LVDS lane 2 +</td>
<td>8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>LVDS lane 2 -</td>
<td>10</td>
<td>LVDS lane 3 +</td>
</tr>
<tr>
<td>11</td>
<td>Ground</td>
<td>12</td>
<td>LVDS lane 3 -</td>
</tr>
<tr>
<td>13</td>
<td>Config 1</td>
<td>14</td>
<td>Config 2</td>
</tr>
<tr>
<td>15</td>
<td>AUX channel +</td>
<td>16</td>
<td>Ground</td>
</tr>
<tr>
<td>17</td>
<td>AUX channel -</td>
<td>18</td>
<td>Hot-plug detection</td>
</tr>
<tr>
<td>19</td>
<td>Power supply: ground</td>
<td>20</td>
<td>Power supply: 3.3 V / 500 mA</td>
</tr>
</tbody>
</table>
3.3 Optional interfaces

You can extend the industrial PC beyond the basic configuration level by six additional Ethernet interfaces. The following ordering options are available:

- 6x Ethernet adapter with 100/1000BASE-T connection (order designation: C9900-E318)

Any interfaces that are ordered are installed ex factory. They extend the connection area at the front of the industrial PC (see fig. 6).

![Optional interfaces](image)

Fig. 6: Optional interfaces

There is no possibility to extend the interfaces or to add a 1-second UPS. Only one of the two options is available.
3.3.1 Ethernet RJ45

The six additional Ethernet ports enable the connection of appropriate network components with data rates of 100/1000 Mbit/s in accordance with the Ethernet standards 100Base-T and 1000Base-T. The required speed is selected automatically.

The RJ45 connection technology with twisted-pair cables is used. The maximum length of the cable connection is 100 m.

The Ethernet ports are suitable for cycle times <= 1 ms and for distributed clock applications in EtherCAT.

The Intel® i210 (MAC/PHY) is used as controller for all six ports.

![Ethernet RJ45 connection](image)

Fig. 7: Optional Ethernet interfaces – pin numbering

Table 7: Ethernet interface pin assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T2 +</td>
<td>Pair 2</td>
</tr>
<tr>
<td>2</td>
<td>T2 -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T3 +</td>
<td>Pair 3</td>
</tr>
<tr>
<td>4</td>
<td>T1 +</td>
<td>Pair 1</td>
</tr>
<tr>
<td>5</td>
<td>T1 -</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T3 -</td>
<td>Pair 3</td>
</tr>
<tr>
<td>7</td>
<td>T4 +</td>
<td>Pair 4</td>
</tr>
<tr>
<td>8</td>
<td>T4 -</td>
<td></td>
</tr>
</tbody>
</table>

The LEDs of the LAN interfaces indicate the activity and the speed of the data transmission (Mbit/s). The respective lower LED indicates whether the interface is connected to a network. If this is the case, the LED lights up green. The LED flashes when data transmission is in progress on the interface.

The respective upper LED indicates the speed of the data transmission. If the speed is 10 Mbit/s, the LED is not lit. At 100 Mbit/s the LED lights up orange, at 1000 Mbit/s it lights up green.
3.4 Status LEDs

The industrial PC has four status LEDs: UPS-OCT, PWR, HDD, TC. They provide information on the following aspects:

- the transmission quality of the UPS-OCT signals
- the status of the power controller
- the hard disk activity
- the TwinCAT status

![Status LEDs](image)

Fig. 8: Status LEDs

3.4.1 UPS-OCT LED

The UPS-OCT LED indicates the transmission quality of the UPS-OCT signals. UPS stands for the uninterruptible power supply. One-cable technology (OCT) enables the communication between PC and UPS to be transmitted together with the power supply, so that only one cable is required.

The colors and flashing intervals have the following meanings:

<table>
<thead>
<tr>
<th>Color</th>
<th>Flashing interval</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Steadily lit</td>
<td>No UPS-OCT connected</td>
</tr>
<tr>
<td>Blue</td>
<td>Flashing</td>
<td>Bootloader active</td>
</tr>
<tr>
<td>Yellow</td>
<td>Flashing</td>
<td>Moderate signal quality</td>
</tr>
<tr>
<td>Green</td>
<td>Flashing</td>
<td>Good signal quality</td>
</tr>
<tr>
<td>Red</td>
<td>Flashing</td>
<td>Poor signal quality</td>
</tr>
</tbody>
</table>

Table 8: Meaning of the UPS-OCT LED
3.4.2 PWR LED

The PWR (power) LED indicates the status of the power controller. The colors and flashing intervals have the following meanings:

Table 9: Meaning of the PWR LED

<table>
<thead>
<tr>
<th>Color</th>
<th>Flashing interval</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Steadily lit</td>
<td>PC is off</td>
</tr>
<tr>
<td>White</td>
<td>Steadily lit</td>
<td>VCC power fail</td>
</tr>
<tr>
<td>Magenta</td>
<td>Steadily lit</td>
<td>S UPS active (if existent)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Steadily lit</td>
<td>Windows shut down, supply voltage still present</td>
</tr>
<tr>
<td>Green</td>
<td>Steadily lit</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Red</td>
<td>Steadily lit</td>
<td>Reset/power fail</td>
</tr>
<tr>
<td>Green/yellow</td>
<td>Flashing</td>
<td>Bootloader running without error</td>
</tr>
<tr>
<td>Red/yellow</td>
<td>Flashing</td>
<td>Bootloader is starting (start sequence is being run through)</td>
</tr>
<tr>
<td>Magenta</td>
<td>Flashing (0.5 s)</td>
<td>S UPS capacitance test (if S UPS exists)</td>
</tr>
<tr>
<td>Red/magenta</td>
<td>Flashing</td>
<td>Checksum error during the I2C transmission in the bootloader</td>
</tr>
<tr>
<td>Cyan</td>
<td>Flashing (2 s)</td>
<td>contact Beckhoff Service</td>
</tr>
</tbody>
</table>

3.4.3 HDD LED

The HDD LED indicates the activity of the storage medium. The colors and flashing intervals have the following meanings:

Table 10: Meaning of the HDD LED

<table>
<thead>
<tr>
<th>Color</th>
<th>Flashing interval</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Flashing</td>
<td>Activity (access to storage medium)</td>
</tr>
</tbody>
</table>

3.4.4 TC LED

The TC LED indicates the TwinCAT status. The colors and flashing intervals have the following meanings:

Table 11: Meaning of the TC LED

<table>
<thead>
<tr>
<th>Color</th>
<th>Flashing interval</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Steadily lit</td>
<td>TwinCAT Run Mode</td>
</tr>
<tr>
<td>Blue</td>
<td>Steadily lit</td>
<td>TwinCAT Config Mode</td>
</tr>
<tr>
<td>Red</td>
<td>Steadily lit</td>
<td>TwinCAT Stop</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>TwinCAT not started</td>
</tr>
</tbody>
</table>
3.5 Name plate

The name plate provides information on the equipment fitted to the industrial PC. The name plate shown here serves only as an example.

Table 12: Legend C6027 name plate

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manufacturer, including address</td>
</tr>
<tr>
<td>2</td>
<td>Model: The last four digits indicate the device generation.</td>
</tr>
<tr>
<td>3</td>
<td>Serial number (BTN)</td>
</tr>
<tr>
<td>4</td>
<td>UPS-OCT LED</td>
</tr>
<tr>
<td>5</td>
<td>Date of manufacture</td>
</tr>
<tr>
<td>6</td>
<td>Power LED</td>
</tr>
<tr>
<td>7</td>
<td>Mainboard</td>
</tr>
<tr>
<td>8</td>
<td>CPU</td>
</tr>
<tr>
<td>9</td>
<td>Hard disk LED</td>
</tr>
<tr>
<td>10</td>
<td>Main memory</td>
</tr>
<tr>
<td>11</td>
<td>Storage medium</td>
</tr>
<tr>
<td>12</td>
<td>TwinCAT LED</td>
</tr>
<tr>
<td>13</td>
<td>Ordering option: Additional Ethernet interfaces</td>
</tr>
<tr>
<td>14</td>
<td>Warning: hot surfaces</td>
</tr>
<tr>
<td>15</td>
<td>Symbols</td>
</tr>
</tbody>
</table>

Note: Here are the symbols applicable to the device such as CE, EAC, UKCA, . The approvals of your device can be found on the name plate and in chapter 10.2 Approvals.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>MAC addresses of the Ethernet interfaces (X102-X104)</td>
</tr>
<tr>
<td>17</td>
<td>Power supply: 24 V DC NEC class 2</td>
</tr>
</tbody>
</table>
3.6 1-second UPS

NOTICE

Loss of data

Using the 1-second UPS in a way that is not documented as an option can lead to loss or corruption of data.

- Only use TwinCAT to control the 1-second UPS and only save persistent data with a maximum size of 1 MB.

There is an option to order the industrial PC with an internal uninterruptible power supply (UPS). This is a capacitive 1-second UPS for reliable saving of persistent application data on the storage medium. This requires TwinCAT and Windows IoT Enterprise.

You can order the industrial PC with internal UPS ex factory by specifying the order identifier C9900-U334.

The capacitive 1-second UPS continues to supply the processor with power if the power supply fails. During this period, persistent data can be saved, which are available when the device is switched on again. Since the capacity of the 1-second UPS is neither sufficient for bridging power failures nor for operating a hard disk, in the event of a power failure the data is only stored on the Compact Flash/CFast/MicroSD card. The 1-second UPS only works for a few seconds.

The UPS can be controlled from the PLC with the function block FB_S_UPS_BAPI. For more information, please visit the Beckhoff Information System at the following link: https://infosys.beckhoff.com/english.php?content=../content/1033/tcpclib_tc2_ups/3716524299.html&id=7162402166301276776.

<table>
<thead>
<tr>
<th>Without UPS</th>
<th>With 1-second UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power failure</td>
<td>Saving of the data</td>
</tr>
<tr>
<td>PC failure</td>
<td>Quickshutdown</td>
</tr>
<tr>
<td>Restart of the PC</td>
<td>Loading of the data</td>
</tr>
<tr>
<td>Restart of the plant</td>
<td>Restart of the work step</td>
</tr>
</tbody>
</table>

Fig. 10: UPS function
4 Commissioning

To be able to use the industrial PC, you must first commission it. The first step is to transport the device to its operating location and unpack it. This is followed by installing the device in the control cabinet, connecting the cables and the power supply and finally switching on the industrial PC.

4.1 Transport and unpacking

Note the specified transport and storage conditions (see Chapter 9 Technical data [44]).

Despite the robust design of the unit, the components are sensitive to strong vibrations and impacts. Transporting a control cabinet with a built-in PC can result in excessive impact on the industrial PC. During transport the device must therefore be protected from excessive mechanical stress. Appropriate packaging of the industrial PC, in particular the original packaging, can improve the vibration resistance during transport.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware damage due to condensation</td>
</tr>
</tbody>
</table>
Unfavorable weather conditions during transport can cause damage to the device.

- Protect the device against moisture (condensation) during transport in cold weather or in case of extreme temperature fluctuations.
- Do not put the device into operation until it has slowly adjusted to the room temperature.
- Should condensation occur, wait for about 12 hours before switching the device on.

Unpacking

Proceed as follows to unpack the unit:

1. Remove packaging.
2. Keep the packaging for possible future transport.
3. Check your delivery for completeness by comparing it with your order.
4. Check the contents for visible shipping damage.
5. In case of discrepancies between the package contents and the order, or in case of transport damage, please inform Beckhoff Service (see Chapter 10.1 Service and Support [45]).
4.2 Control cabinet installation

The C6027 Industrial PC is designed for mounting in control cabinets in machine and plant engineering applications. The environmental conditions specified for operation must be observed (see chapter 9 Technical data [44]).

Using different mounting plates, you can align the cable entry based on the application requirements.

Figure 11 shows the three available mounting plates: standard mounting plate 1, optional mounting plate 2, and optional mounting plate 3 with DIN rail adapter. The three mounting plates are mounted on the device as follows:

- Mounting plate 1: at the rear of the industrial PC with three Torx TX10 screws and a tightening torque of approx. 0.5 Nm
- Mounting plate 2: on the right-hand side wall of the industrial PC with four Torx TX10 screws and a tightening torque of approx. 0.5 Nm
- Mounting plate 3: at the rear of the industrial PC with two Torx TX10 screws and a tightening torque of approx. 0.5 Nm

Mounting plate 2 offers two mounting options (see Chapter 4.2.1 Mounting options [23]).

![Fig. 11: Mounting plates](image)

The basic version of the industrial PC is supplied with the standard mounting plate 1 already mounted as shown in Fig. 11. The scope of delivery does not include any further mounting plates. You can choose the following ordering options:

Table 13: Mounting plate ordering options

<table>
<thead>
<tr>
<th>Order identifier</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9900-M682</td>
<td>Mounting plate for C602x on the side wall, instead of the standard mounting plate</td>
</tr>
<tr>
<td>C9900-M683</td>
<td>Mounting plate for lateral mounting of the C602x, single part, not mounted</td>
</tr>
<tr>
<td>C9900-M684</td>
<td>Mounting plate with DIN rail adapter for C602x, instead of the standard mounting plate</td>
</tr>
<tr>
<td>C9900-M685</td>
<td>Mounting plate with DIN rail adapter for C602x, single part, not mounted</td>
</tr>
</tbody>
</table>
4.2.1 Mounting options

NOTICE

Incorrect installation
Mounting the device in a way that deviates from the documentation can impair its functionality.
- Mount the device only in the orientations shown in the documents.

The three different mounting plates enable you to align the industrial PC according to the desired cable routing in the control cabinet. In the case of mounting plates 1 and 3, you can only install the device in the control cabinet via the rear side (see Fig. 12).

![Fig. 12: Mounting options – mounting plates 1 and 3](image)

In the case of mounting plate 2, there are two different mounting options for the device. Figure 13 shows the possible mounting options:
- Connections point to the right (A)
- Connections point to the left (B)

![Fig. 13: Mounting options for mounting plate 2](image)
4.2.2 Dimensions

The dimensions of the industrial PC and the mounting plates are used to prepare the control cabinet and to mount the device correctly in the control cabinet.

All dimensions are in mm.

Fig. 14 gives an example of the dimensions using the mounting option via the rear of the device with mounting plate 1.

Fig. 15 shows the dimensions using the mounting option with the connections pointing to the right with mounting plate 2 as an example.

Fig. 16 gives an example of the dimensions using the mounting options via the rear of the device with mounting plate 3 with DIN rail adapter.
4.2.3 Installation in the control cabinet

NOTICE

Extreme environmental conditions

Extreme environmental conditions can cause damage to the device.
- Avoid extreme environmental conditions.
- Protect the device against dust, moisture and heat.
- Do not block the ventilation slots of the device.

Observe the following information when installing in the control cabinet to ensure sufficient air circulation:
- 5 cm free space above and below the device
- 2 cm free space on the side of the device where the name plate is attached

Mounting via mounting plates

In order to mount the industrial PC with mounting plate 1 or 2 in the control cabinet, it must be furnished with the holes for the fastening screws according to the dimensions of the PC (see Chapter 4.2.2 Dimensions [p.24]). You need M4 screws for mounting.

After you have drilled the holes for the fastening screws in the control cabinet, you can mount the industrial PC in the control cabinet with mounting plates 1 or 2.

![Mounting plates for control cabinet installation](image)

Fig. 17: Mounting plates for control cabinet installation

To install the industrial PC in the control cabinet, follow the steps below:
1. Place the fastening screws in the drill holes in the rear panel of the control cabinet.
2. Hang the PC on the screws at the marked points of the mounting plate (see Fig. 17).
3. Tighten the fastening screws.
 ⇒ You have successfully installed the industrial PC in the control cabinet.

Mounting with DIN rail adapter

If you want to install the industrial PC in the control cabinet with the DIN rail adapter, no preparation of the control cabinet is necessary. All you need to do is attach the device to the DIN rail using the adapter. To do this, follow the steps below as shown in Figure 18:
Fig. 18: DIN rail adapter for control cabinet installation

1. Hook the lower side of the adapter into the DIN rail (A).
2. Push the device upwards so that the spring contacts of the adapter are pressed in (B).
3. Keep the device pressed upwards and also hook the upper side of the adapter into the DIN rail (C).
 ⇒ You have successfully installed the industrial PC on the DIN rail.

Fig. 19: DIN rail adapter mounted
CAUTION

Risk of electric shock

Dangerous touch voltages can lead to electric shock. To avoid electric shock, observe the following:

• Never connect or disconnect the device cables during a thunderstorm.
• Provide protective earthing for handling the device.

To prepare the industrial PC for operation, it must be connected. The first step is to ground the device. Then you can connect the cables and the power supply.

An external power supply unit providing 24 V DC (-15%/+20%) from an isolated source is required for the power supply. This source must be protected by a UL 248 rated fuse with a maximum rating of 4 A.

The cabling of the industrial PC in the control cabinet must be done in accordance with the standard EN 60204-1:2006 PELV = Protective Extra Low Voltage:

• The PE conductor (protective earth) and the "0 V" conductor of the voltage source must be on the same potential (connected in the control cabinet).
• Standard EN 60204-1:2006, section 6.4.1:b stipulates that one side of the circuit, or a point of the energy source for this circuit must be connected to the protective conductor system.

Devices connected to the industrial PC with their own power supply must have the same potential for the PE and "0 V" conductors as the industrial PC (no potential difference).

![Diagram](image)

Fig. 20: Wiring example
4.3.1 Grounding of the Industrial PC

Potential differences are minimized and electrical currents are diverted to the ground through grounding or potential equalization of electronic devices. This is to prevent dangerous touch voltages and electromagnetic interference.

Protective earth

The protective grounding of a device serves to avoid dangerous touch voltages. According to the EN 60204-1 standard (Chapter 8 Potential equalization), protective grounding is required if:

- the device exceeds dimensions of 50 mm x 50 mm,
- the device can be touched or encompassed over a large area,
- contact between the device and active parts is possible,
- an insulation fault may occur.

Establish the low-resistance protective grounding via the PE protective conductor connection on the housing of the industrial PC (see also chapter 3.1 Structure [10]) and thus avoid dangerous touch voltages.

EMC

NOTICE

Hardware damage due to electromagnetic interference

Using the industrial PC without functional earthing can lead to hardware damage due to electromagnetic interference.

- Only use the device with functional earth.

Electromagnetic compatibility (EMC) of the industrial PC includes on the one hand not affecting other devices and equipment by electromagnetic interference and on the other hand not being disturbed by electrical or electromagnetic effects itself.

For this purpose, the industrial PC must comply with certain protection requirements. The industrial PC has EMC interference immunity according to EN 61000-6-2. The EMC interference emission of the device meets the requirements of EN 61000-6-4.

The functional earth is necessary for the EMC of the device. The functional earthing is also established via the earthing connection between the protective conductor connection on the device and the central grounding point of the control cabinet in which the PC is installed. Use wires with a cross-section of at least 4 mm² or a flat conductor for the ground connection, as the circumference of the conductor should be as large as possible.

![Fig. 21: Protective conductor connection PE](image-url)
4.3.2 Connecting cables and power supply

NOTICE

Incorrect connection procedure
Incorrect procedure when connecting the cables and the power supply can cause hardware damage.
• Follow the documented procedure for connecting the cables and the power supply.
• Always connect all cables first and only then switch on the power supply.
• Please read the documentation for the external devices prior to connecting them.

Connecting cables

The connections are located in the front of the industrial PC and are documented in Chapter 3.2 Interface description [11].

Make sure that you first ground the PC (see chapter 4.3.1 Grounding of the Industrial PC [28]) and then plug in all data transmission cables.

Connecting the power supply

Cables with a maximum cable cross-section of 1.5 mm² can be used for connecting the power supply. For long supply lines, use 1.5 mm² cables to achieve a low voltage drop on the supply line. There should be at least 22 V at the voltage connector of the industrial PC, so that the PC remains switched on during voltage fluctuations.

Proceed as follows to connect the 24 VDC power supply unit:
1. Install the voltage supply line on the voltage supply plug.
2. Plug the power supply cable into the four-pin power supply socket of the industrial PC.
3. Screw the power supply connector to the power supply socket of the industrial PC.
4. Connect the PC to your external 24 V power supply.
5. Switch on the 24 V power supply.

You have connected the power supply.
4.4 Switching the industrial PC on and off

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public networks</td>
</tr>
<tr>
<td>Connecting the PC to public networks without additional protective measures can compromise the safety of the device.</td>
</tr>
<tr>
<td>• Protect the PC before connecting it to public networks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data loss due to switching off the PC while the software is running</td>
</tr>
<tr>
<td>Switching off the PC before the running software is terminated and the operating system is shut down can lead to data loss.</td>
</tr>
<tr>
<td>• Quit the running software and shut down the operating system before switching off the PC.</td>
</tr>
</tbody>
</table>

The industrial PC is started or switched off when the system is switched on or off or when the power supply to the PC is connected or disconnected.

You can use the PC-ON input of the PC to control the startup and shutdown of the operating system. The PC-ON signal is inverted, which is why the operating system boots up at 0 V at the input and shuts down at 24 V. During operation, 0 V must therefore be permanently applied to the input. If you want to shut down the operating system, you must apply 24 V to the PC-ON input. Once the operating system has shut down, the PC power supply unit sets the Power Status output from 24 V to 0 V. This indicates that the shutdown is complete. You can then switch off the power supply. If you remove the 24 V from the PC-ON input before you have switched off the power supply, the operating system restarts. Therefore, 24 V must be applied to the input until you have switched off the power supply.

To shut down the operating system properly, you can install an additional ON/OFF switch next to the machine's main switch to turn the machine on and off. The main switch can thus remain switched on in principle and thus ensures that the PC is still supplied with power during the shutdown of the operating system. Via the Power Status output, you can switch, for example, a contactor that switches off the entire system. The load capacity of the Power Status output is limited to max. 0.5 A. No fuse protection is required.

Driver installation

When you switch on the PC for the first time, the optionally pre-installed operating system will be started. For any additional hardware you have connected, you have to install the drivers yourself afterwards. In addition, the Beckhoff Device Manager starts automatically. The Device Manager is a software from Beckhoff that supports you in configuring the PC.

If you have ordered the PC without an operating system, you must install this and the driver software for the additional hardware you have connected and for the devices in the PC yourself. Please follow the instructions in the documentation for the operating system and the additional devices.

UPS software components

The UPS software components with the corresponding drivers must be installed on the PC to operate the power supply unit as a UPS. The software components and drivers are already installed on delivery of the PC with operating system. Otherwise, you have to install the installation package Beckhoff UPS yourself.

You can obtain the installation package from Beckhoff Service (service@beckhoff.com), who will provide you with the package. You then use the installation package to install the UPS software components. The UPS software components come with a detailed help function. Call up the help files either directly from the configuration register by clicking the Help button or start the file under Start > Programs > Beckhoff > UPS software components.

The communication between your PC and the UPS takes place via the BIOS API. In addition to the UPS driver, you also need the Beckhoff Automation Device Driver.
5 Beckhoff Device Manager

The Beckhoff Device Manager enables detailed system diagnostics with uniform secure access to the existing hardware and software components. System data is recorded, analyzed and evaluated during operation. The data helps to detect deviations at an early stage and prevent PC downtime.

The Beckhoff Device Manager always starts automatically after the industrial PC has been booted. In addition, you have the option of manually starting the previously closed Device Manager at any time.

The industrial PC is delivered with predefined access data as standard:

- User name: Administrator
- Password: 1

You also have the option of using the Beckhoff Device Manager to remotely configure the industrial PC via a web browser. More detailed information is available in the Beckhoff Device Manager manual.

First start Beckhoff Device Manager

When your industrial PC is booted for the first time, the Beckhoff Device Manager also starts automatically for the first time. The Security Wizard opens. This tells you that you should reset the default password set by Beckhoff. Proceed as follows:

1. Click Next on the Security Wizard start page.
 - This will take you to the Change Passwords page:

![Fig. 22: Beckhoff Device Manager - Change passwords](image)

2. Enter the access data of the Device Manager on delivery.
3. Choose a secure new password. Instructions for choosing a secure password are given below.
4. Confirm the changes by clicking on the tick in the red box on the right.
5. Exit the Security Wizard.
 - You have reached the Device Manager start page.
Navigate forward in the menu and configure the industrial PC. Note that modifications only become active once they have been confirmed.

Manual start Beckhoff Device Manager

To start the Beckhoff Device Manager manually, proceed as follows:

1. Open a web browser locally on the industrial PC.
2. Enter `localhost/config` in the web browser to start the Beckhoff Device Manager.

The Beckhoff Device Manager starts. The Security Wizard appears.

Secure passwords

Strong passwords are an important prerequisite for a secure system.

Beckhoff supplies the device images with standard user names and standard passwords for the operating system. It is imperative that you change these.

Controllers are shipped without a password in the UEFI/BIOS setup. Beckhoff recommends assigning a password here as well.

Please note the following:

- Passwords should be unique for each user and service.
- Only change passwords after an incident in which passwords have become known without authorization.
- Train the device users in the use of passwords.

A secure password has the following characteristics:

- **Password complexity:** The password should contain capital and lower-case letters, numbers, punctuation marks and special characters.
- **Password length:** The password should be at least 10 characters long.
6 Decommissioning

NOTICE

Hardware damage due to power supply
A connected power supply can cause damage to the industrial PC during disassembly.
• Disconnect the power supply from the device before starting to disassemble it.

When taking the industrial PC out of operation, you must first disconnect the power supply and cables. You can then remove the device from the control cabinet.

If you do not want to continue using the industrial PC, Chapter 6.2 Disassembly and disposal [34] provides information on the correct disposal of the device.

6.1 Disconnecting the power supply and cables

CAUTION

Risk of electric shock
Disconnecting the industrial PC during a thunderstorm can lead to electric shock.
• Never disconnect the cables from the device during thunderstorms.

Before you remove the industrial PC from the control cabinet, you must disconnect the cables and the power supply. Follow the steps below:

1. Shut down the industrial PC.
2. Disconnect the PC from your external 24 V power supply.
3. Unscrew the four-pin power supply connector and pull it out of the PC.
4. Remove the power supply cable if the four-pin connector is to remain with the PC.
5. Make a note of the wiring of all data transmission cables if you want to restore the cabling with another device.
6. Disconnect all data transfer cables from the industrial PC.
7. Finally, disconnect the ground connection.

⇒ You have disconnected the cables and the power supply.
6.2 Disassembly and disposal

Before you can remove the industrial PC from the control cabinet, you must first disconnect the power supply and the cables (see chapter 6.1 Disconnecting the power supply and cables (p. 33)).

Disassembly with mounting plates

To remove the industrial PC with the corresponding mounting plate 1 or 2 from the control cabinet, proceed as follows:

1. Loosen the fastening screws just enough so that they remain attached to the control cabinet.
2. Lift the PC far enough so that the fastening screws slip into the keyholes (see fig. 23).
3. Remove the PC from the control cabinet.

⇒ You have successfully disassembled the PC.

Disassembly with DIN rail adapter

To remove the industrial PC from the control cabinet via mounting plate 3 with the DIN rail adapter, follow the steps below, which are shown in Fig. 24:

1. Push the PC upwards to press in the spring contacts on the DIN rail adapter (A).
2. Unhook the upper side of the adapter from the DIN rail (B).
3. Also unhook the lower side of the adapter from the DIN rail.

⇒ You have successfully removed the industrial PC from the control cabinet.

Disposal of the industrial PC
Be sure to observe the national electronic scrap regulations when disposing of the industrial PC.

In order to dispose of the device, it must be removed and fully dismantled. Dispose of the components in the following way:

- Send plastic parts (polycarbonate, polyamide (PA6.6)) for plastics recycling.
- Take metal parts to the metal recycling collection point.
- Electronic parts such as fans and circuit boards must be disposed of in accordance with national electronic scrap regulations.
- Stick insulating tape over the poles of the CR2032 battery on the motherboard and dispose of the battery via the local battery recycling.
7 Maintenance

⚠️ CAUTION

Risk of electric shock
Working on the industrial PC while it is live can lead to electric shock.
• Turn off the supply voltage before cleaning the device or replacing device components. This does not apply to the replacement of hard disks and SSDs in a RAID configuration.

Maintenance measures increase the efficiency of the device by ensuring long-term functionality. Cleaning and maintenance of certain device components and the replacement of other device components contribute to this.

Also see about this
Service and support [45]

7.1 Cleaning

⚠️ NOTICE

Unsuitable cleaning agents
The use of unsuitable cleaning agents can damage the device.
• Only clean the industrial PC as specified.

It is essential to observe the following aspects when cleaning the industrial PC:
• Keep to the boundary conditions of protection rating IP20.
• Only use a vacuum cleaner to clean the PC. The industrial PC does not have to be switched off for this.
• Never use compressed air to clean the PC.
• Maintain an ambient temperature range of 0 °C to +50 °C.
7.2 Maintenance

NOTICE

Use of incorrect spare parts
The use of spare parts not ordered from Beckhoff Service can lead to unsafe and faulty operation.

- Only use spare parts that you have ordered from Beckhoff Service.

Beckhoff industrial PCs are manufactured from components of the highest quality and robustness. They are selected and tested for best interoperability, long-term availability and reliable function under the specified environmental conditions.

Nevertheless, some components of the industrial PC may be subject to a limited service life if they are operated under certain conditions, such as more demanding ambient conditions during operation or during storage, or if they are out of service for long periods of storage.

Beckhoff therefore recommends replacing some of the industrial PC components after the time after which predictions of the remaining service life of such components can no longer be reliably calculated.

These are the following components:

- Battery
- Storage medium

The following table provides recommendations for the regular, precautionary replacement of the PC components:

Table 14: Replacement recommendations for PC components

<table>
<thead>
<tr>
<th>Component</th>
<th>Recommendation for replacement intervals (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS battery pack</td>
<td>5 years</td>
</tr>
<tr>
<td>2.5-inch hard disk</td>
<td>5 years or after 20,000 operating hours at more than 40 °C or after 30,000 operating hours at less than 40 °C</td>
</tr>
<tr>
<td>3.5-inch hard disk</td>
<td>5 years, irrespective of the operating hours</td>
</tr>
<tr>
<td>Fan</td>
<td>7 years</td>
</tr>
<tr>
<td>Compact Flash, CFast or SSD</td>
<td>10 years</td>
</tr>
<tr>
<td>Motherboard battery</td>
<td>5 years</td>
</tr>
</tbody>
</table>

Beckhoff is excluded from liability in the event of possible damage occurring during maintenance work. Before working on the device, you should have established ESD protection to prevent damage to the device through electrostatic discharge.

ESD protection

NOTICE

Electrostatic discharge
The replacement of device components without ESD protection can lead to functional impairment and destruction of the device.

- If possible, apply ESD protection measures during maintenance work.

When working on electronic devices, there is a risk of damage due to ESD (electrostatic discharge), which can impair the function or destroy the device.

Protect the industrial PC and create an ESD-protected environment in which any electrostatic charges are discharged to the ground in a controlled manner and charging is prevented.

An ESD-protected environment can best be created by setting up ESD protection zones. The following measures serve this purpose:

- ESD-compliant floors with sufficient conductivity to the reference potential PE;
• ESD-compatible work surfaces such as tables and shelves;
• Wrist grounding strap, especially for sedentary activities;
• grounded and electrostatically dissipating equipment and operating materials (e.g. tools) within the ESD protection zone.

If it is not possible to create an ESD protection zone, you can still protect the device against ESD damage. For example, the following measures can be used:

• Use conductive mats connected to the ground potential as underlays.
• Dissipate possible charges from your own body by touching grounded metal (e.g. control cabinet door).
• Wear a wrist grounding strap.
• Only remove new electronic components from the ESD packaging (tinted plastic bag) after putting on the wrist grounding strap.
• Do not walk around with electronic components in your hand if they are not in ESD packaging.

Access to exchangeable device components

You can access the device components to be replaced via the cover on the left-hand side. You gain access to the battery and the storage medium. To do this, remove the two Torx TX6 screws and remove the cover (see fig. 25).

![Access to battery and storage media](image)

Fig. 26: Access to battery and storage media

You now have access to the battery (1) and storage medium (2) (see fig. 26).

![Battery and storage media](image)

Fig. 27: Battery and storage media
7.2.1 Replacing the battery

NOTICE

Incorrect battery type

Replace the battery with R/C (BBCV2), order number CR2032, nominal voltage 3 V. Using any other battery may cause fire or explosion.

- Use exclusively the specified battery type.

NOTICE

Battery damage

Incorrect handling of the motherboard battery can damage it.

- Do not recharge the battery.
- Do not throw the battery on the fire.
- Do not open the battery.
- Protect the battery against direct sunlight and moisture.

NOTICE

Motherboard failure

Scratches on the motherboard may cause the motherboard to fail.

- Be very careful when replacing the battery and be sure to avoid scratches on the motherboard.

The industrial PC does not contain a lithium-ion battery. The motherboard battery is a CR2032 lithium-metal cell. It is used to supply power to the clock integrated on the motherboard. If the battery is depleted or missing, the date and time are displayed incorrectly.

Replacement batteries should only be obtained from Beckhoff Service (see Chapter 10.1 Service and support).

Table 15: Technical data of the battery

<table>
<thead>
<tr>
<th>Battery type</th>
<th>Electrical properties (at 20 °C)</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal voltage</td>
<td>Nominal capacity</td>
</tr>
<tr>
<td>CR2032</td>
<td>3.0 V</td>
<td>225 mAh</td>
</tr>
</tbody>
</table>

Chapter 7.2 Maintenance [371] shows how to access the battery. When replacing the battery, make sure that the polarity is correct.

To change the battery, proceed as follows:

1. Place a lever made on the negative pole of the battery holder below the battery.
2. Lift the battery side out of the holder.

 ⊠ The battery is now in an oblique position (see fig. 27).

Fig. 28: Battery change

3. Remove the battery completely from the battery holder.
4. Insert the new battery with the correct polarity back into the inclined position on the positive pole of the battery holder. The correct polarity is shown in the figure.
5. Push the high side of the battery down into the battery holder (see fig. 27).
You have successfully replaced the battery.

To dispose of the battery, remove it, tape off the poles and put it in the battery disposal.
7.2.2 Replacing the storage media

For new storage media, please contact the Beckhoff Sales only. Hard disks from Beckhoff are optimized for industrial applications. SSDs have a considerably higher lifetime expectancy than commercially available SSDs.

The C6027 contains one M.2 SSD.

Data transmission before replacement

If you want to exchange a storage medium according to Beckhoff's recommendation, you must copy the data from the old to the new storage medium. You can use the Beckhoff Service Tool (BST) for this purpose. BST is a graphical backup and restore program for PCs with a Windows operating system. You can create an image of your operating system and use it to back up the operating system. Then you can restore the created image to a new data carrier. The BST is available on a bootable BST USB flash drive. This includes Windows and a backup software. Select the size of the BST USB flash drive according to the size of the backup copy of your operating system. You can then keep the flash drive as a backup copy. For this purpose, the BST USB flash drives are designed for particularly long data preservation by means of special flash. For more information on the function of the BST, please refer to the corresponding manual.

If your storage medium is defective and there is no backup, Beckhoff Service can provide you with a fresh Windows image. For this to be possible, the Beckhoff PC must already have been shipped with a valid operating system license. After installing the fresh image, the applications must be reinstalled.

Replacing the SSD

Chapter 7.2 Maintenance [37] shows how to access the SSD.

To replace the SSD, follow the steps shown below in Fig. 28:

1. Remove the Torx TX10 fastening screw of the SSD you want to remove (section A).
 - The SSD automatically places itself in an inclined position (section B).
2. Pull the SSD out of the slot in the inclined position (section C).

 ![Diagram](A B C)

 Fig. 29: Replacing the storage media

3. Insert the new SSD into the slot in the same inclined position.
4. Push down the protruding side of the SSD.
5. Replace the fixing screw and tighten it to a tightening torque of approx. 0.3 Nm.
 - You have replaced the SSD.

The old SSD must be disposed of in accordance with the national electronic scrap regulations.

Also see about this
Service and support [45]
8 Troubleshooting

Table 16: Troubleshooting

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing happens after the Industrial PC has been switched on</td>
<td>Missing power supply of the Industrial PC</td>
<td>Check the power supply cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Beckhoff Service</td>
</tr>
<tr>
<td></td>
<td>Other cause</td>
<td></td>
</tr>
<tr>
<td>The Industrial PC does not boot fully</td>
<td>Setup settings are incorrect</td>
<td>Check the setup settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Beckhoff Service</td>
</tr>
<tr>
<td></td>
<td>Other cause</td>
<td></td>
</tr>
<tr>
<td>Computer boots, software starts, but control does not operate correctly</td>
<td>Cause of the fault is either in the software or in parts of the plant outside the Industrial PC</td>
<td>Call the machine and software manufacturer</td>
</tr>
</tbody>
</table>
Technical data

Table 17: Technical data

<table>
<thead>
<tr>
<th>Product designation</th>
<th>C6027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (W x H x D)</td>
<td>82 x 127 x 69 mm, without mounting plate</td>
</tr>
</tbody>
</table>
| Weight | approx. 1000 g without mounting plate
approx. 1060 g with mounting plate |
| Supply voltage | 22-30 V_{DC} (24 V_{DC} power supply unit) |
| Power consumption | Data sheet for calculating power consumption and power loss at Downloadfinder:
| Protection rating | IP20 |
| Vibration resistance (sinusoidal vibration) | EN 60068-2-6: 10 to 58 Hz: 0.035 mm
58 to 500 Hz: 0.5 G (approx. 5 m/s²) |
| Shock resistance (shock) | EN 60068-2-27: 5 G (approx. 50 m/s²), duration: 30 ms |
| EMC interference immunity | conforms to EN 61000-6-2 |
| EMC interference emission | conforms to EN 61000-6-4 |
| Permissible ambient temperature | 0 °C to +50 °C (operation)
-25 °C to +65 °C (transport / storage) |
| Permissible air humidity | Maximum 95 %, no condensation |
| Transport and storage | The same values for air humidity and shock resistance are to be observed during transport and storage as in operation. The shock resistance during transport can be improved by means of suitably packing the industrial PC. |
10 Appendix

In the appendix you will find information for servicing and details of the approvals that your device has.

10.1 Service and support

Beckhoff and its worldwide branch offices offer comprehensive service and support, providing fast and competent assistance with all issues relating to Beckhoff products and system solutions.

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- on-site service
- repair service
- spare parts service
- hotline service

Hotline: + 49 5246/963-460
email: service@beckhoff.com

If your device requires service, please indicate the serial number, which you can find on the name plate.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- World-wide support
- Design, programming and commissioning of sophisticated automation systems
- extensive training program for Beckhoff system components

Hotline: + 49 5246/963-157
email: support@beckhoff.com

Headquarters

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany

Phone: + 49 5246/963-0
email: info@beckhoff.de

The addresses of the worldwide Beckhoff branches and agencies can be found on our website at http://www.beckhoff.com/.

You will also find further documentation for Beckhoff components there.
10.2 Approvals

Your device has the following approvals:

- CE
- EAC
- UKCA
- FCC

You will find all other applicable approvals on the name plate of your device.

FCC approvals for the United States of America

FCC: Federal Communications Commission Radio Frequency Interference Statement

This device was tested and complies with the limits for a digital device of class A, according part 15 of the FCC regulations. These limits are designed to provide adequate protection against adverse interference, if the device is used in a commercial environment. This device generates, uses and may emit radio frequency energy and may cause adverse interference with radio communications, if it is not installed and used in accordance with the operating instructions. If this device is used in a residential area it is likely to cause adverse interference, in which case the user must take appropriate countermeasures in order to eliminate the interference at his own expense.

FCC approvals for Canada

FCC: Canadian Notice

This device does not exceed the class A limits for radiation, as specified by the Radio Interference Regulations of the Canadian Department of Communications.
List of figures

Fig. 1 Structure – basic configuration ... 10
Fig. 2 Voltage socket pin numbering ... 11
Fig. 3 Ethernet interface pin numbering .. 12
Fig. 4 USB interface pin numbering ... 13
Fig. 5 DisplayPort pin numbering ... 14
Fig. 6 Optional interfaces .. 15
Fig. 7 Optional Ethernet interfaces – pin numbering .. 16
Fig. 8 Status LEDs ... 17
Fig. 9 Name plate ... 19
Fig. 10 UPS function .. 20
Fig. 11 Mounting plates .. 22
Fig. 12 Mounting options – mounting plates 1 and 3 .. 23
Fig. 13 Mounting options for mounting plate 2 .. 23
Fig. 14 Mounting plate, rear panel ... 24
Fig. 15 Mounting plate, side panel .. 24
Fig. 16 Mounting plate, DIN rail adapter .. 24
Fig. 17 Mounting plates for control cabinet installation 25
Fig. 18 DIN rail adapter for control cabinet installation 26
Fig. 19 DIN rail adapter mounted ... 26
Fig. 20 Wiring example ... 27
Fig. 21 Protective conductor connection PE ... 28
Fig. 22 Beckhoff Device Manager - Change passwords 31
Fig. 23 Beckhoff Device Manager – Start page ... 32
Fig. 24 Positions of the fastening screws .. 34
Fig. 25 Disassembly of the DIN rail adapter .. 34
Fig. 26 Access to battery and storage media ... 38
Fig. 27 Battery and storage media ... 38
Fig. 28 Battery change ... 39
Fig. 29 Replacing the storage media ... 41
List of tables

Table 1 Legend C6027 structure .. 10
Table 2 Voltage socket pin assignment .. 11
Table 3 Controller classification based on device generation .. 12
Table 4 Ethernet interface pin assignment .. 12
Table 5 USB interface pin assignment .. 13
Table 6 Pin assignment of DisplayPort .. 14
Table 7 Ethernet interface pin assignment .. 16
Table 8 Meaning of the UPS-OCT LED .. 17
Table 9 Meaning of the PWR LED .. 18
Table 10 Meaning of the HDD LED ... 18
Table 11 Meaning of the TC LED .. 18
Table 12 Legend C6027 name plate .. 19
Table 13 Mounting plate ordering options ... 22
Table 14 Replacement recommendations for PC components .. 37
Table 15 Technical data of the battery ... 39
Table 16 Troubleshooting ... 43
Table 17 Technical data .. 44