BECKHOFF

CB2051

Handbuch

Version 1.3

Telefon:

Fax:

Email:

Web:

+49 (0) 52 46/963-0 +49 (0) 52 46/963-198

info@beckhoff.de

www.beckhoff.de

Inhalt

0	Ånd	lerungsindex	6
1	Einl	eitende Hinweise	7
	1.1	Hinweise zur Dokumentation	7
	1.1.	1 Haftungsbedingungen	7
	1.1.	2 Copyright	7
	1.2	Sicherheitshinweise	8
	1.2.	1 Auslieferungszustand	8
	1.2.	2 Erklärung der Sicherheitssymbole	8
	1.3	Grundlegende Sicherheitsmaßnahmen	ç
	1.3.	1 Sorgfaltspflicht des Betreibers	9
	1.3.	2 Nationale Vorschriften je nach Maschinentyp	9
	1.3.	3 Anforderungen an das Bedienungspersonal	9
	1.4	Funktionsumfang	10
2	Übe	ersicht	11
	2.1	Eigenschaften	11
	2.2	Spezifikationen und Dokumente	13
3	Ans	chlüsse	14
	3.1	Stromversorgung	15
	3.2	CMOS-Batterie	16
	3.3	System	17
	3.4	PISA-Slot	18
	3.5	Mini-PCI	21
	3.6	Speicher	23
	3.7	SATA-Schnittstellen	26
	3.8	IDE-Schnittstelle	27
	3.9	Floppy-Schnittstelle	28
	3.10	USB-Schnittstellen, Keyboard/Mouse	29
	3.11	Serielle Schnittstellen COM1 und COM2	31
	3.12	Serielle Schnittstellen COM3 und COM4	32
	3.13	VGA/DVI	33
	3.14	LVDS	34
	3.15	LAN1	36
	3.16	LAN2	37
	3.17	Touchscreen-Anschluss	38
	3.18	Ton	39
	3.19	GPIO	40
	3.20	SMB/I2C	41
	3.21	Lüfteranschlüsse	42
4	BIO	S-Einstellungen	43
	4.1	Benutzung des Setups	43
	4.2	Top-Menü	43
	4.3	Standard CMOS Features	44
	4.3.	1 IDE Channel 0 Master/Slave	46
	4.3.	2 SATA channels	47
	4.4	Advanced BIOS Features	48
	4.4.	1 CPU Feature	50

Inhalt

	4.4.	2	Hard Disk Boot Priority	51		
	4.5	Adva	anced Chipset Features	52		
	4.5.	1	PCI Express Root Port Function	54		
	4.6	Integ	grated Peripherals	55		
	4.6.	1	OnChip IDE Devices	56		
	4.6.		Onboard Devices			
	4.6.	3	SuperIO Devices	58		
	4.7	Pow	er Management Setup	60		
	4.8	PnP/	PCI Configuration	62		
	4.8.	1	IRQ Resources	63		
	4.9	PC F	Health Status	64		
	4.10	Freq	uency/Voltage Control	66		
	4.11	Load	I Fail-Safe Defaults	67		
	4.12	Load	Optimized Defaults	67		
	4.13	Set F	Password	67		
	4.14	Save	e & Exit Setup	67		
	4.15	Exit '	Without Saving	67		
5	BIO	S-Up	date	68		
6	Med	chanis	sche Zeichnung	69		
	6.1		erplatte: Bohrungen			
	6.2	Leite	erplatte: Pin1-Abstände	70		
	6.3	Leite	rplatte: Die-Mittelpunkte	71		
7	Tec	hnisc	he Daten	72		
	7.1	Elek	trische Daten	72		
	7.2	Umg	ebungsbedingungen	72		
	7.3	Ther	mische Spezifikationen	73		
8	Sup	portι	und Service	74		
	8.1	Beck	choff-Support	74		
	8.2	Beck	choff-Service	74		
	8.3	Beck	choff-Firmenzentrale	74		
I	Anh	ang:	Post-Codes	76		
Ш	Anh	ang:	Ressourcen	80		
	IO-Bereich					
	Memoi	ry-Be	reich	80		
	Interrupt80					
	PCI-Devices81					
	Ressourcen: SMR-Devices					

0 Änderungsindex

Version	Änderungen
0.1	erste Vorabversion
0.2	Maßzeichnungen ergänzt
1.0	Kontaktdaten aktualisiert, kleinere Änderungen
1.1	kleinere Änderungen
1.2	Druckqualität Maßzeichnungen verbessert, kleinere Änderungen
1.3	Kapitel 3.16 LAN Pinbelegung korrigiert;
	Anhang II: Gameport ergänzt

HINWEIS

Alle in diesem Handbuch erwähnten Firmennamen und Produktbezeichnungen sind als eingetragene oder nicht eingetragene Marken Eigentum ihrer jeweiligen Inhaber und als solche national und international markenrechtlich geschützt.

1 Einleitende Hinweise

1.1 Hinweise zur Dokumentation

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist. Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

1.1.1 Haftungsbedingungen

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbarer Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Die Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt. Deshalb ist die Dokumentation nicht in jedem Fall vollständig auf die Übereinstimmung mit den beschriebenen Leistungsdaten, Normen oder sonstigen Merkmalen geprüft. Keine der in diesem Handbuch enthaltenen Erklärungen stellt eine Garantie im Sinne von § 443 BGB oder eine Angabe über die nach dem Vertrag vorausgesetzte Verwendung im Sinne von § 434 Abs. 1 Satz 1 Nr. 1 BGB dar. Falls sie technische Fehler oder Schreibfehler enthält, behalten wir uns das Recht vor, Änderungen jederzeit und ohne Ankündigung durchzuführen. Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte gemacht werden.

1.1.2 Copyright

© Diese Dokumentation ist urheberrechtlich geschützt. Jede Wiedergabe oder Drittverwendung dieser Publikation, ganz oder auszugsweise, ist ohne schriftliche Erlaubnis der Beckhoff Automation GmbH verboten.

1.2 Sicherheitshinweise

Beachten Sie bitte die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

1.2.1 Auslieferungszustand

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH.

1.2.2 Erklärung der Sicherheitssymbole

In der vorliegenden Dokumentation werden die folgenden Sicherheitssymbole verwendet. Diese Symbole sollen den Leser vor allem auf den Text des darunter stehenden Sicherheitshinweises aufmerksam machen Dieser Sicherheitshinweis ist aufmerksam zu lesen und unbedingt zu befolgen.

AKUTE VERLETZUNGSGEFAHR!

Wenn der Sicherheitshinweis unter diesem Symbol nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen.

VORSICHT, VERLETZUNGSGEFAHR!

Wenn der Sicherheitshinweis unter diesem Symbol nicht beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen.

GEFAHR FÜR PERSONEN, UMWELT, GERÄTE ODER DATEN!

Wenn der Sicherheitshinweis unter diesem Symbol nicht beachtet wird, können Personen, Umwelt oder Geräte geschädigt oder Daten gelöscht werden.

HINWEIS, TIPP ODER FINGERZEIG

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.

1.3 Grundlegende Sicherheitsmaßnahmen

1.3.1 Sorgfaltspflicht des Betreibers

Der Betreiber muss sicherstellen, dass

- o das Produkt nur bestimmungsgemäß verwendet wird.
- o das Produkt nur in einwandfreiem, funktionstüchtigem Zustand betrieben wird.
- die Betriebsanleitung stets in einem leserlichen Zustand und vollständig am Einsatzort des Produkts zur Verfügung steht.
- o nur ausreichend qualifiziertes und autorisiertes Personal das Produkt bedient.
- dieses Personal regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit und Umweltschutz unterwiesen wird, sowie die Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennt.

1.3.2 Nationale Vorschriften je nach Maschinentyp

Je nach Maschinen- und Anlagentyp, in dem das Produkt zum Einsatz kommt, bestehen nationale Vorschriften für Steuerungen solcher Maschinen und Anlagen, die der Betreiber einhalten muss. Diese Vorschriften regeln unter anderem, in welchen Zeitabständen die Steuerung überprüft werden muss. Der Betreiber muss diese Überprüfung rechtzeitig veranlassen.

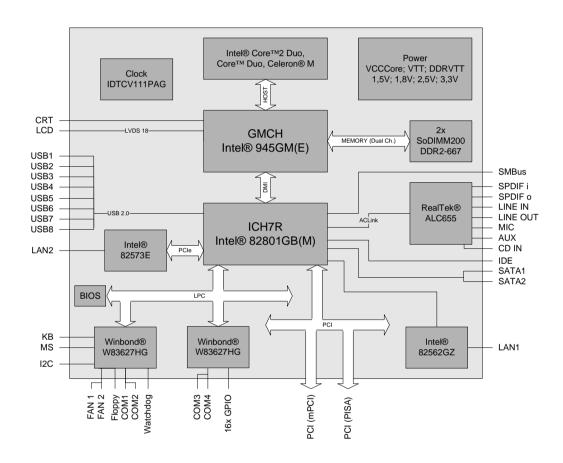
1.3.3 Anforderungen an das Bedienungspersonal

- Betriebsanleitung lesen: Jeder Benutzer des Produkts muss die Betriebsanleitung für die Anlage, an der er eingesetzt wird, gelesen haben.
- Systemkenntnisse: Jeder Benutzer muss alle für ihn erreichbaren Funktionen des Produkts kennen.

Kapitel: Einleitende Hinweise

1.4 Funktionsumfang

HINWEIS


Die in der vorliegenden Dokumentation enthaltenen Beschreibungen stellen eine umfassende Produktbeschreibung dar. Soweit das beschriebene Motherboard als Bestandteil eines Industrie-PC der Beckhoff Automation GmbH erworben worden ist, findet die hierin enthaltene Produktbeschreibung nur in eingeschränktem Umfang Anwendung. Maßgeblich sind die vereinbarten Spezifikationen des entsprechenden Industrie-PC der Beckhoff Automation GmbH. Durch verschiedene Bauformen der Industrie-PC kann es zu Abweichungen in der Bauteilbestückung des Motherboards kommen. Supportund Serviceleistungen der Beckhoff Automation GmbH für das eingebaute Motherboard erstrecken sich ausschließlich auf die Produktbeschreibung einschließlich Betriebssystem des jeweiligen Industrie-PC.

Eigenschaften Kapitel: Übersicht

2 Übersicht

2.1 Eigenschaften

Das CB2051 ist ein Industrie-Motherboard im PISA-Slot-Formfaktor, auf dem aktuelle Prozessoren von Intel® aus den Baureihen Celeron® M, Core™ Duo und Core™2 Duo verbaut werden. Über seine zwei SO-DIMM200-Steckplätze kann es mit bis zu 2 GByte RAM (DDR2-667) ausgestattet werden. Mit dem über den PISA-Slot herausgeführten PCI-Bus und dem zusätzlichen Mini-PCI-Steckplatz bietet das Board umfangreiche Erweiterungsmöglichkeiten. Eine Vielzahl von internen und externen Anschlüssen machen das CB2051 zu einem sehr universell einsetzbaren Motherboard. Vier serielle Schnittstellen, zwei LAN-Anschlüsse, diverse analoge und digitale Ton-Ein- und -Ausgänge, acht USB-Schnittstellen, CRT-, LCD- und TV-Out-Anschluss, ein IDE- und zwei SATA-Anschlüsse lassen keine Wünsche mehr offen.

- o Prozessor wahlweise Intel® Celeron® M, Intel® Core™ Duo, Intel Core™2 Duo
- o Chipsatz Intel® 945GM und Intel® ICH7
- Zwei SO-DIMM200-Steckplätze für bis zu 2 GByte DDR2-667
- Vier serielle Schnittstellen COM1 bis COM4
- LAN-Anschluss Ethernet 10/100 (Base-T)
- o LAN-Anschluss Ethernet 10/100/1000 (Base-T)
- o IDE-Schnittstelle
- o Zwei SATA-Anschlüsse
- o PS2-Keyboard- und -Maus-Schnittstelle
- o Floppy-Schnittstelle
- o Acht USB-2.0-Schnittstellen
- AWARD BIOS 6.10
- CRT-Anschluss

Kapitel: Übersicht Eigenschaften

- TFT-Anschluss über LVDS 18 Bit
- AC97 kompatible Soundausgabe mit SPDIF-Ein- und -Ausgang RTC mit externer CMOS-Batterie
- Mini-PCI-Steckplatz
- PCI-Bus über PISA-Slot
- 16x GPIO
- Format: 192 mm x 125.5 mm

2.2 Spezifikationen und Dokumente

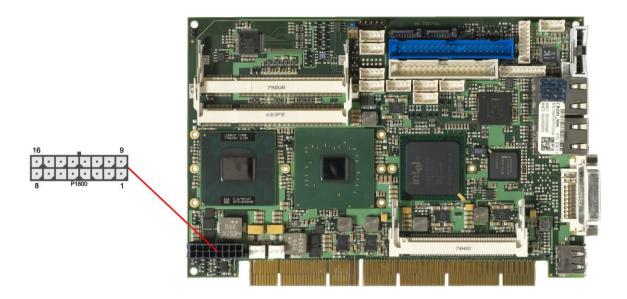
Für die Erstellung dieses Handbuchs bzw. als weiterführende technische Dokumentation wurden die folgenden Dokumente, Spezifikationen oder Internetseiten verwendet.

- PISA-Spezifikation Version 1.8 us.kontron.com
- PCI-Spezifikation
 Version 2.3 bzw. 3.0
 www.pcisig.com
- Mini-PCI-Spezifikation Version 1.0 www.pcisig.com
- ACPI-Spezifikation Version 3.0 www.acpi.info
- ATA/ATAPI-Spezifikation Version 7 Rev. 1 www.t13.org
- USB-Spezifikationen www.usb.org
- SM-Bus-Spezifikation Version 2.0 www.smbus.org
- Intel-Chipsatzbeschreibung
 Mobile Intel 945 Express Chipset Family Datasheet
 www.intel.com
- Intel-Chipbeschreibung ICH7 Datasheet www.intel.com
- Intel-Chipbeschreibungen
 Celeron M, Core Duo/Solo, Core2 Duo
 www.intel.com
- Winbond-Chipbeschreibung
 W83627HG Datasheet
 www.winbond-usa.com oder www.winbond.com.tw
- Intel-Chipbeschreibung 82562EZ/GZ Datasheet www.intel.com
- Intel-Chipbeschreibung 82573L(E) Datasheet www.intel.com
- IDT Chipbeschreibung IDTCV111i Datasheet www.idt.com

Kapitel: Übersicht

3 Anschlüsse

Auf den folgenden Seiten werden sämtliche Steckverbinder auf dem CB2051 beschrieben.

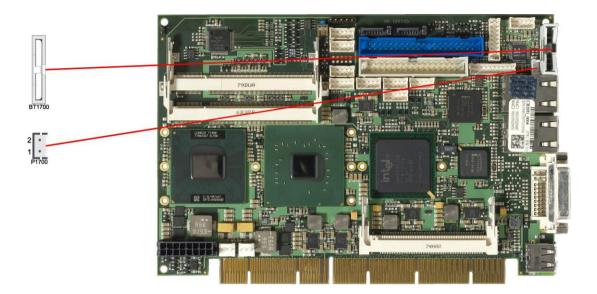

ACHTUNG

Die verwendeten Kabel müssen für die meisten Schnittstellen bestimmten Anforderungen genügen. Für eine zuverlässige USB-2.0-Verbindung sind beispielsweise verdrillte und geschirmte Kabel notwendig. Einschränkungen bei der maximalen Kabellänge sind auch nicht selten. Sämtliche dieser schnittstellenspezifischen Erfordernisse sind den jeweiligen Spezifikationen zu entnehmen und entsprechend zu beachten.

Stromversorgung Kapitel: Anschlüsse

3.1 Stromversorgung

Der Anschluss für die Stromversorgung ist als 2x8-poliger Gehäusestecker (Molex PS 43045-16xx, passender Gegenstecker: Molex PS 43025-16xx) realisiert. Die 12V-Pins werden ausschließlich dafür benötigt, die Lüfteranschlüsse zu versorgen. COM3 RXD und TXD können auch für ein eigenes Netzteil z. B. für USV-Funktion genutzt werden. Als Bestückungsoption können auch SMBus-Signale SCL/SDA statt COM3 TXD/RXD beschaltet werden.

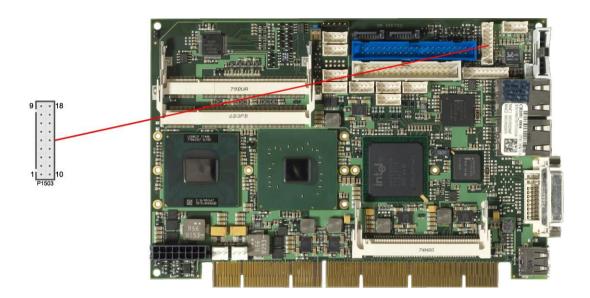

Pinbelegung Powerstecker 2x8:

Beschreibung	Name	Pin		Name	Beschreibung
COM3 Transmit Data	TXD	1	9	RXD	COM3 Receive Data
Netzteil An	PS-ON	2	10	PWRGD	Powergood
Powerbutton Netzteil	PWRBTN#	3	11	SVCC	Standby-Versorgung 5V
Versorgungsspannung 12V	12V	4	12	12V	Versorgungsspannung 12V
Masse	GND	5	13	GND	Masse
Masse	GND	6	14	GND	Masse
Versorgungsspannung 5V	VCC	7	15	VCC	Versorgungsspannung 5V
Versorgungsspannung 5V	VCC	8	16	VCC	Versorgungsspannung 5V

Kapitel: Anschlüsse CMOS-Batterie

3.2 CMOS-Batterie

Das Board wird mit einem CR2032-Batteriehalter (Renata VBH2032-1) samt 3V-Batterie ausgeliefert, kann aber außerdem über einen zweipoligen Gehäusestecker (JST B2B-EH-A, passender Gegenstecker: EHR-2) an eine externe Batterie angeschlossen werden, um die integrierte Uhr auch bei Wegfall der Versorgungsspannung weiter zu versorgen.

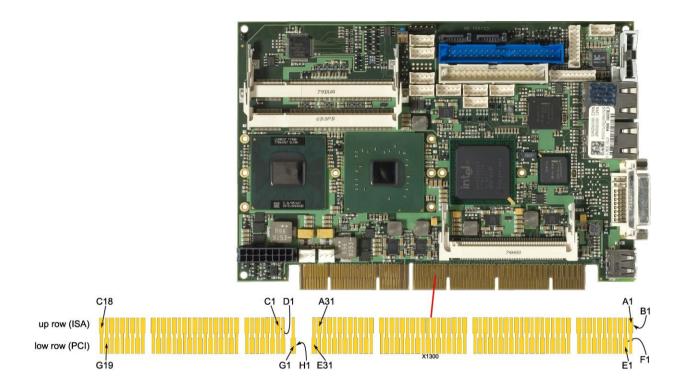

Pinbelegung Batteriestecker:

Pin	Name	Beschreibung
1	BATT	3,3V Batteriespannung
2	GND	Masse

System Kapitel: Anschlüsse

3.3 System

Zum Anschluss der systemtypischen Signale wird ein 2x9poliger Wannenstecker benutzt (JST B18B-PHDSS, passender Gegenstecker: PHDR-18VS). Hier werden Powerbutton, Reset, Tastatur, Lautsprecher, LEDs für Harddisk, für Touchscreen und für Suspend-Modus angeschlossen sowie drei weitere Status-LEDs, die über GPIOs angesteuert werden. Von diesen drei LEDs sind LED1 und LED2 bereits mit Vorwiderständen ausgestattet. Die Pinbelegung ist so gestaltet, dass zusammengehörige Pins gegenüber bzw. nahe beieinander liegen.


Pinbelegung 2x9-Wannenstecker Systemsignale:

Pacabraibung	Name		Pin	Name	Beschreibung
Beschreibung	raine	'		· ··aiiio	
Masse	GND	1	10	PWRBTN#	On/Suspend-Taste
Masse	GND	2	11	RESET#	Reset nach Masse
LED Touchscreen	TOUCHLED	3	12	3,3V	Versorgungsspannung 3,3V
LED Suspend / ACPI	S-LED	4	13	S3,3V	Standby-Versorgung 3,3V
LED Harddisk	HDLED	5	14	3,3V	Versorgungsspannung 3,3V
LED GPIO-Gerät	LED1	6	15	3,3V	Versorgungsspannung 3,3V
LED GPIO-Gerät	LED2	7	16	LED3	LED GPIO-Gerät
Lautsprecher nach 5V	SPEAKER	8	17	KDAT	Tastatur Data
Standby-Versorgung 5V	(S)VCC	9	18	KCLK	Tastatur Clock

Kapitel: Anschlüsse PISA-Slot

3.4 PISA-Slot

Das CB2051-Board wird in einen PISA-Steckplatz eines Trägerboards eingesteckt. Der PISA-Slot stellt eine Möglichkeit dar, auf begrenztem Raum sowohl PCI-Bus als auch ISA-Bus über einen integrierten Stecker zur Verfügung zu stellen. Das CB2051 unterstützt zur Zeit nur den PCI-Bus.

HINWEIS

Bitte beachten Sie die besondere Pin-Nummerierung des PISA-Slot-Steckers, bei der eine "up row" (für ISA-Signale) und eine "low row" (für PCI-Signale) unterschieden wird. Wie aus der obigen Illustration ersichtlich ist die "up row" in die Segmente A bis D eingeteilt und die "low row" in die Segmente E bis H.

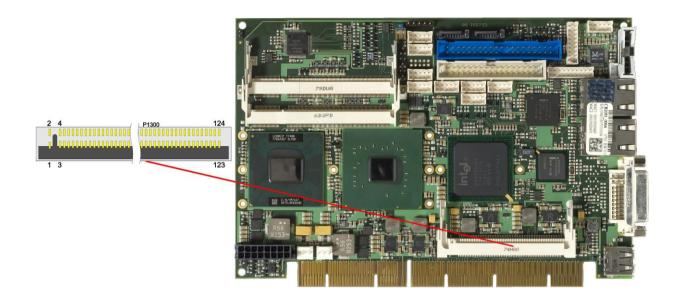
	Pinbe	elegung	ı "up	row"
--	-------	---------	-------	------

Beschreibung	Name	P	in	Name	Beschreibung
Reserviert	N/C	A1	B1	GND	Masse
Reserviert	N/C	A2	B2	N/C	Reserviert
Reserviert	N/C	A3	B3	VCC	Versorgungsspannung 5V
Reserviert	N/C	A4	B4	N/C	Reserviert
Reserviert	N/C	A5	B5	-5V	Versorgungsspannung -5V
Reserviert	N/C	A6	B6	N/C	Reserviert
Reserviert	N/C	A7	B7	-12V	Versorgungsspannung -12V
Reserviert	N/C	A8	B8	N/C	Reserviert
Reserviert	N/C	A9	B9	12V	Versorgungsspannung 12V
Reserviert	N/C	A10	B10	GND	Masse
Reserviert	N/C	A11	B11	N/C	Reserviert
Reserviert	N/C	A12	B12	N/C	Reserviert
Reserviert	N/C	A13	B13	N/C	Reserviert
Reserviert	N/C	A14	B14	N/C	Reserviert
Reserviert	N/C	A15	B15	N/C	Reserviert
Reserviert	N/C	A16	B16	N/C	Reserviert
Reserviert	N/C	A17	B17	N/C	Reserviert

Beschreibung	Name		Pin	Name	Beschreibung
Reserviert	N/C	A18	B18	N/C	Reserviert
Reserviert	N/C	A19	B19	N/C	Reserviert
Reserviert	N/C	A20	B20	N/C	Reserviert
Reserviert	N/C	A21	B21	N/C	Reserviert
Reserviert	N/C	A22	B22	N/C	Reserviert
Reserviert	N/C	A23	B23	N/C	Reserviert
Reserviert	N/C	A24	B24	N/C	Reserviert
Reserviert	N/C	A25	B25	N/C	Reserviert
Reserviert	N/C	A26	B26	N/C	Reserviert
Reserviert	N/C	A27	B27	N/C	Reserviert
Reserviert	N/C	A28	B28	N/C	Reserviert
Reserviert	N/C	A29	B29	VCC	Versorgungsspannung 5V
Reserviert	N/C	A30	B30	N/C	Reserviert
Reserviert	N/C	A31	B31	GND	Masse
Reserviert	N/C	C1	D1	N/C	Reserviert
Reserviert	N/C	C2	D2	N/C	Reserviert
Reserviert	N/C	C3	D3	N/C	Reserviert
Reserviert	N/C	C4	D4	N/C	Reserviert
Reserviert	N/C	C5	D5	N/C	Reserviert
Reserviert	N/C	C6	D6	N/C	Reserviert
Reserviert	N/C	C7	D7	N/C	Reserviert
Reserviert	N/C	C8	D8	N/C	Reserviert
Reserviert	N/C	C9	D9	N/C	Reserviert
Reserviert	N/C	C10	D10	N/C	Reserviert
Reserviert	N/C	C11	D11	N/C	Reserviert
Reserviert	N/C	C12	D12	N/C	Reserviert
Reserviert	N/C	C13	D13	N/C	Reserviert
Reserviert	N/C	C14	D14	N/C	Reserviert
Reserviert	N/C	C15	D15	N/C	Reserviert
Reserviert	N/C	C16	D16	VCC	Versorgungsspannung 5V
Reserviert	N/C	C17	D17	N/C	Reserviert
Reserviert	N/C	C18	D18	GND	Masse

Pinbelegung "low row":

Beschreibung	Name	Р	in	Name	Beschreibung
I2C Clock	I2CLK	E1	F1	I2DAT	I2C Data
Masse	GND	E2	F2	GND	Masse
Interrupt B	INTB#	E3	F3	INTA#	Interrupt A
Interrupt D	INTD#	E4	F4	INTC#	Interrupt C
Versorgungsspannung 5V	VCC	E5	F5	VCC	Versorgungsspannung 5V
kodiert	N/C	E6	F6	N/C	kodiert
Versorgungsspannung 5V	VCC	E7	F7	VIO	IO-Versorgungsspannung
PCI Reset 2	PRST2#	E8	F8	PCLK2	PCI Clock
Grant 0	GNT0#	E9	F9	GND	Masse
Request 0	REQ0#	E10	F10	GNT1#	Grant 1
Masse	GND	E11	F11	GND	Masse
PCI Clock 1	PCLK1	E12	F12	REQ1#	Request 1
Masse	GND	E13	F13	AD31	Adress-/Datenleitung 31
Adress-/Datenleitung 30	AD30	E14	F14	AD29	Adress-/Datenleitung 29
Request 2	REQ2#	E15	F15	PCLK3	PCI Clock 3
kodiert	N/C	E16	F16	N/C	kodiert
Grant 2	GNT2#	E17	F17	PCLK4	PCI Clock 4
Adress-/Datenleitung 28	AD28	E18	F18	AD27	Adress-/Datenleitung 27
Adress-/Datenleitung 26	AD26	E19	F19	AD25	Adress-/Datenleitung 25


Kapitel: Anschlüsse PISA-Slot

Beschreibung	Name	Р	in	Name	Beschreibung
Adress-/Datenleitung 24	AD24	E20	F20	CBE3#	Bus Cmd/Byte Enable 3
Adress-/Datenleitung 22	AD22	E21	F21	AD23	Adress-/Datenleitung 23
Adress-/Datenleitung 20	AD20	E22	F22	AD21	Adress-/Datenleitung 21
Adress-/Datenleitung 18	AD18	E23	F23	AD19	Adress-/Datenleitung 19
Reset	RESET#	E24	F24	REQ3#	Request 3
kodiert	N/C	E25	F25	N/C	kodiert
Masse	GND	E26	F26	GNT3#	Grant 3
Adress-/Datenleitung 16	AD16	E27	F27	AD17	Adress-/Datenleitung 17
Cycle Frame	FRAME#	E28	F28	IRDY#	Initiator Ready
Bus Cmd/Byte Enable 2	CBE2#	E29	F29	DEVSEL#	Device Select
Target Ready	TRDY#	E30	F30	PLOCK#	Lock Bus
Stop Req by Target	STOP#	E31	F31	PERR#	Parity Error
Masse	GND	G1	H1	SERR#	System Error
Reserviert	N/C	G2	H2	AD15	Adress-/Datenleitung 15
Bus Cmd/Byte Enable 1	CBE1#	G3	H3	AD14	Adress-/Datenleitung 14
Parity	PAR	G4	H4	AD12	Adress-/Datenleitung 12
Masse	GND	G5	H5	GND	Masse
kodiert	N/C	G6	H6	N/C	kodiert
Masse	GND	G7	H7	GND	Masse
Adress-/Datenleitung 13	AD13	G8	H8	AD10	Adress-/Datenleitung 10
Adress-/Datenleitung 11	AD11	G9	H9	AD8	Adress-/Datenleitung 8
Adress-/Datenleitung 9	AD9	G10	H10	AD7	Adress-/Datenleitung 7
Bus Cmd/Byte Enable 0	CBE0#	G11	H11	AD5	Adress-/Datenleitung 5
Adress-/Datenleitung 6	AD6	G12	H12	AD3	Adress-/Datenleitung 3
Adress-/Datenleitung 4	AD4	G13	H13	AD1	Adress-/Datenleitung 1
Adress-/Datenleitung 2	AD2	G14	H14	AD0	Adress-/Datenleitung 0
kodiert	N/C	G15	H15	N/C	kodiert
Versorgungsspannung 5V	VCC	G16	H16	VIO	IO-Versorgungsspannung
Versorgungsspannung 5V	VCC	G17	H17	VCC	Versorgungsspannung 5V
Masse	GND	G18	H18	GND	Masse
Masse	GND	G19	H19	GND	Masse

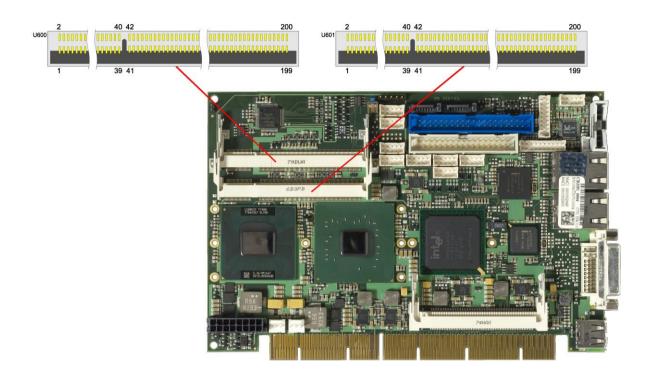
Mini-PCI Kapitel: Anschlüsse

3.5 Mini-PCI

Für Erweiterungskarten nach dem Mini-PCI-Standard (Typ III) steht ein entsprechender Steckplatz zur Verfügung.

Beschreibung	Name	Р	in	Name	Beschreibung
Reserviert	N/C	1	2	N/C	Reserviert
Reserviert	N/C	3	4	N/C	Reserviert
Reserviert	N/C	5	6	N/C	Reserviert
Reserviert	N/C	7	8	N/C	Reserviert
Reserviert	N/C	9	10	N/C	Reserviert
Reserviert	N/C	11	12	N/C	Reserviert
Reserviert	N/C	13	14	N/C	Reserviert
Reserviert	N/C	15	16	N/C	Reserviert
Interrupt B	INTB#	17	18	VCC	Versorgungsspannung 5V
Versorgungsspannung 3,3V	3,3V	19	20	INTA#	Interrupt A
Reserviert	N/C	21	22	N/C	Reserviert
Masse	GND	23	24	S3,3V	Versorgungsspannung 3,3V
PCI-Clock	PCLK	25	26	PRST#	Reset
Masse	GND	27	28	3,3V	Versorgungsspannung 3,3V
PCI-Request	REQ#	29	30	GNT#	PCI-Grant
Versorgungsspannung 3,3V	3,3V	31	32	GND	Masse
Address/Data 31	AD31	33	34	PME#	Power Management Event
Address/Data 29	AD29	35	36	N/C	Reserviert
Masse	GND	37	38	AD30	Address/Data 30
Address/Data 27	AD27	39	40	3,3V	Versorgungsspannung 3,3V
Address/Data 25	AD25	41	42	AD28	Address/Data 28
Reserviert	N/C	43	44	AD26	Address/Data 26
Bus Cmd/Byte Enables 3	CBE3#	45	46	AD24	Address/Data 24
Address/Data 23	AD23	47	48	IDSEL	Init Device Select
Masse	GND	49	50	GND	Masse
Address/Data 21	AD21	51	52	AD22	Address/Data 22
Address/Data 19	AD19	53	54	AD20	Address/Data 20
Masse	GND	55	56	PAR	Parity
Address/Data 17	AD17	57	58	AD18	Address/Data 18

Kapitel: Anschlüsse Mini-PCI


Beschreibung	Name		Pin	Name	Beschreibung
Bus Cmd/Byte Enables 2	CBE2#	59	60	AD16	Address/Data 16
Initiator Ready	IRDY#	61	62	GND	Masse
Versorgungsspannung 3,3V	3,3V	63	64	FRAME#	Cycle Frame
Clock Running	CLKRUN#	65	66	TRDY#	Target Ready
System Error	SERR#	67	68	STOP#	Stop Request by Target
Masse	GND	69	70	3,3V	Versorgungsspannung 3,3V
Parity Error	PERR#	71	72	DEVSEL#	Device Select
Bus Cmd/Byte Enables 1	CBE1#	73	74	GND	Masse
Address/Data 14	AD14	75	76	AD15	Address/Data 15
Masse	GND	77	78	AD13	Address/Data 13
Address/Data 12	AD12	79	80	AD11	Address/Data 11
Address/Data 10	AD10	81	82	GND	Masse
Masse	GND	83	84	AD9	Address/Data 9
Address/Data 8	AD8	85	86	CBE0#	Bus Cmd/Byte Enables 0
Address/Data 7	AD7	87	88	3,3V	Versorgungsspannung 3,3V
Versorgungsspannung 3,3V	3,3V	89	90	AD6	Address/Data 6
Address/Data 5	AD5	91	92	AD4	Address/Data 4
Reserviert	N/C	93	94	AD2	Address/Data 2
Address/Data 3	AD3	95	96	AD0	Address/Data 0
Versorgungsspannung 5V	VCC	97	98	N/C	Reserviert
Address/Data 1	AD1	99	100	N/C	Reserviert
Masse	GND	101	102	GND	Masse
Reserviert	N/C	103	104	GND	Masse
Reserviert	N/C	105	106	N/C	Reserviert
Reserviert	N/C	107	108	N/C	Reserviert
Reserviert	N/C	109	110	N/C	Reserviert
Reserviert	N/C	111	112	N/C	Reserviert
Reserviert	N/C	113	114	GND	Masse
Reserviert	N/C	115	116	N/C	Reserviert
Reserviert	N/C	117	118	N/C	Reserviert
Reserviert	N/C	119	120	N/C	Reserviert
Reserviert	N/C	121	122	N/C	Reserviert
Versorgungsspannung 5V	VCC	123	124	S3,3V	Versorgungsspannung 3,3V

Speicher Kapitel: Anschlüsse

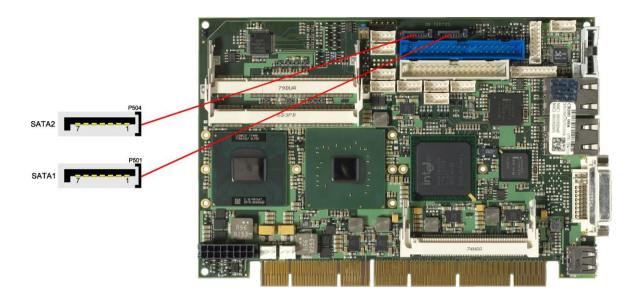
3.6 Speicher

Auf dem CB2051-Board kommen SO-DIMM200-Speichermodule (DDR2-667), wie sie in Notebooks üblich sind, zum Einsatz. Aus technischen und mechanischen Gründen ist es möglich, dass bestimmte Speichermodule nicht eingesetzt werden können. Informieren Sie sich bei Ihrem Distributor über die empfohlenen Speichermodule.

Mit derzeit erhältlichen SO-DIMM200-Modulen ist ein Speicherausbau bis 2 GByte möglich. Alle Timingparameter für die unterschiedlichen Fabrikate und Ausbaustufen werden durch das BIOS automatisch eingestellt.

Beschreibung	Name	Р	in	Name	Beschreibung
Referenzspannung Memory	REF	1	2	GND	Masse
Masse	GND	3	4	DQ4	Datenleitung 4
Datenleitung 0	DQ0	5	6	DQ5	Datenleitung 5
Datenleitung 1	DQ1	7	8	GND	Masse
Masse	GND	9	10	DQM0	Data Mask 0
Data Strobe 0 -	DQS0#	11	12	GND	Masse
Data Strobe 0 +	DQS0	13	14	DQ6	Datenleitung 6
Masse	GND	15	16	DQ7	Datenleitung 7
Datenleitung 2	DQ2	17	18	GND	Masse
Datenleitung 3	DQ3	19	20	DQ12	Datenleitung 12
Masse	GND	21	22	DQ13	Datenleitung 13
Datenleitung 8	DQ8	23	24	GND	Masse
Datenleitung 9	DQ9	25	26	DQM1	Data Mask 1
Masse	GND	27	28	GND	Masse
Data Strobe 1 -	DQS1#	29	30	CK0	Clock 0 +
Data Strobe 1 +	DQS1	31	32	CK0#	Clock 0 -
Masse	GND	33	34	GND	Masse
Datenleitung 10	DQ10	35	36	DQ14	Datenleitung 14
Datenleitung 11	DQ11	37	38	DQ15	Datenleitung 15
Masse	GND	39	40	GND	Masse

Beschreibung	Name	F	Pin	Name	Beschreibung
Masse	GND	41	42	GND	Masse
Datenleitung 16	DQ16	43	44	DQ20	Datenleitung 20
Datenleitung 17	DQ17	45	46	DQ21	Datenleitung 21
Masse	GND	47	48	GND	Masse
Data Strobe 2 -	DQS2#	49	50	N/C	Reserviert
Data Strobe 2 +	DQS2	51	52	DQM2	Data Mask 2
Masse	GND	53	54	GND	Masse
Datenleitung 18	DQ18	55	56	DQ22	Datenleitung 22
Datenleitung 19	DQ19	57	58	DQ23	Datenleitung 23
Masse	GND	59	60	GND	Masse
Datenleitung 24	DQ24	61	62	DQ28	Datenleitung 28
Datenleitung 25	DQ25	63	64	DQ29	Datenleitung 29
Masse	GND	65	66	GND	Masse
Data Mask 3	DQM3	67	68	DQS3#	Data Strobe 3 -
Reserviert	N/C	69	70	DQS3	Data Strobe 3 +
Masse	GND	71	72	GND	Masse
Datenleitung 26	DQ26	73	74	DQ30	Datenleitung 30
Datenleitung 27	DQ27	75	76	DQ30	Datenleitung 31
Masse	GND	77	78	GND	Masse
Clock Enables 0	CKE0	79	80	CKE1	Clock Enables 1
Versorgungsspannung 1,8V	1,8V	81	82	1,8V	Versorgungsspannung 1,8V
Reserviert	N/C	83	84	N/C	Reserviert
SDRAM Bank 2	BA2	85	86	N/C	Reserviert
	1,8V	87	88	1,8V	
Versorgungsspannung 1,8V	A12	89	90	A11	Versorgungsspannung 1,8V
Adressleitung 12	A12 A9	91	90	A7	Adressleitung 11
Adressleitung 9	A9 A8	93	94		Adressleitung 7
Adressleitung 8				A6	Adressleitung 6
Versorgungsspannung 1,8V	1,8V	95 97	96 98	1,8V	Versorgungsspannung 1,8V
Adressleitung 5	A5			A4	Adressleitung 4
Adressleitung 3	A3	99	100	A12	Adressleitung 2
Adressleitung 1	A1	101	102	A0	Adressleitung 0
Versorgungsspannung 1,8V	1,8V	103	104	1,8V	Versorgungsspannung 1,8V
Adressleitung 10	A10	105	106	BA1	SDRAM Bank 1
SDRAM Bank 0	BA0	107	108	RAS#	Row Address Strobe
Write Enable	WE#	109	110	S0#	Chip Select 0
Versorgungsspannung 1,8V	1,8V	111	112	1,8V	Versorgungsspannung 1,8V
Column Address Strobe	CAS#	113	114	ODT0	On Die Termination 0
Chip Select 1	S1#	115	116	A13	Adressleitung 13
Versorgungsspannung 1,8V	1,8V	117	118	1,8V	Versorgungsspannung 1,8V
On Die Termination 1	ODT1	119	120	N/C	Reserviert
Masse	GND	121	122	GND	Masse
Datenleitung 32	DQ32	123	124	DQ36	Datenleitung 36
Datenleitung 33	DQ33	125	126	DQ37	Datenleitung 37
Masse	GND	127	128	GND	Masse
Data Strobe 4 -	DQS4#	129	130	DQM4	Data Mask 4
Data Strobe 4 +	DQS4	131	132	GND	Masse
Masse	GND	133	134	DQ38	Datenleitung 38
Datenleitung 34	DQ34	135	136	DQ39	Datenleitung 39
Datenleitung 35	DQ35	137	138	GND	Masse
Masse	GND	139	140	DQ44	Datenleitung 44
Datenleitung 40	DQ40	141	142	DQ45	Datenleitung 45
Datenleitung 41	DQ41	143	144	GND	Masse
Masse	GND	145	146	DQS5#	Data Strobe 5 -
Data Mask 5	DQM5	147	148	DQS5	Data Strobe 5 +
Masse	GND	149	150	GND	Masse

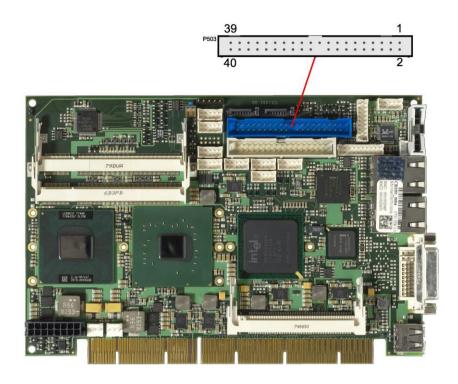

Speicher Kapitel: Anschlüsse

Beschreibung	Name	P	in	Name	Beschreibung
Datenleitung 42	DQ42	151	152	DQ46	Datenleitung 46
Datenleitung 43	DQ43	153	154	DQ47	Datenleitung 47
Masse	GND	155	156	GND	Masse
Datenleitung 48	DQ48	157	158	DQ52	Datenleitung 52
Datenleitung 49	DQ49	159	160	DQ53	Datenleitung 53
Masse	GND	161	162	GND	Masse
Test	Test	163	164	CK1	Clock 1 +
Masse	GND	165	166	CK1#	Clock 1 -
Data Strobe 6 -	DQS6#	167	168	GND	Masse
Data Strobe 6	DQS6	169	170	DQM6	Data Mask 6
Masse	GND	171	172	GND	Masse
Datenleitung 50	DQ50	173	174	DQ54	Datenleitung 54
Datenleitung 51	DQ51	175	176	DQ55	Datenleitung 55
Masse	GND	177	178	GND	Masse
Datenleitung 56	DQ56	179	180	DQ60	Datenleitung 60
Datenleitung 57	DQ57	181	182	DQ61	Datenleitung 61
Masse	GND	183	184	GND	Masse
Data Mask 7	DQM7	185	186	DQS7#	Data Strobe 7 -
Masse	GND	187	188	DQS7	Data Strobe 7 +
Datenleitung 58	DQ58	189	190	GND	Masse
Datenleitung 59	DQ59	191	192	DQ62	Datenleitung 62
Masse	GND	193	194	DQ63	Datenleitung 63
SMBus Data	SDA	195	196	GND	Masse
SMBus Clock	SCL	197	198	SA0	SPD-Adresse
Versorgungsspannung 3,3V	3,3V	199	200	SA1	SPD-Adresse

Kapitel: Anschlüsse SATA-Schnittstellen

3.7 SATA-Schnittstellen

Das CB2051-Board ist mit zwei SATA-Schnittstellen ausgestattet, die eine Übertragungsrate von bis zu 3 Gbit pro Sekunde erlauben. Die Schnittstellen stehen als 7polige SATA-Stecker zur Verfügung. Die notwendigen Einstellungen werden über das BIOS-Setup vorgenommen.

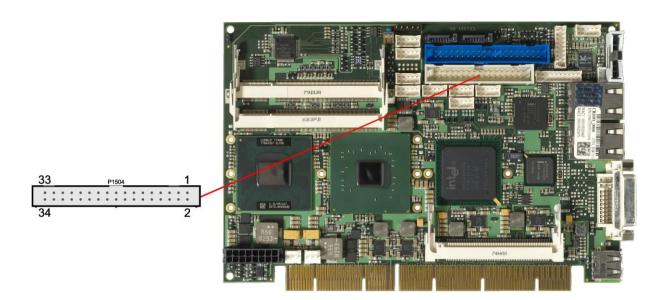

Pinbelegung SATA:

Pin	Name	Beschreibung
1	GND	Masse
2	SATATX	SATA Senden +
3	SATATX#	SATA Senden -
4	GND	Masse
5	SATARX#	SATA Empfangen -
6	SATARX	SATA Empfangen +
7	GND	Masse

IDE-Schnittstelle Kapitel: Anschlüsse

3.8 IDE-Schnittstelle

Zum Anschluss von IDE-Geräten über Flachkabel steht ein 40poliger Standardstecker zur Verfügung.

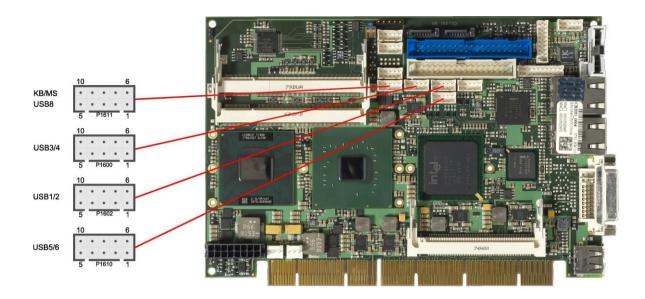

Pinbelegung der IDE-Schnittstelle:

Beschreibung	Name	P	in	Name	Beschreibung
Reset	PRST#	1	2	GND	Masse
HD Data 7	PDD7	3	4	PDD8	HD Data 8
HD Data 6	PDD6	5	6	PDD9	HD Data 9
HD Data 5	PDD5	7	8	PDD10	HD Data 10
HD Data 4	PDD4	9	10	PDD11	HD Data 11
HD Data 3	PDD3	11	12	PDD12	HD Data 12
HD Data 2	PDD2	13	14	PDD13	HD Data 13
HD Data 1	PDD1	15	16	PDD14	HD Data 14
HD Data 0	PDD0	17	18	PDD15	HD Data 15
Masse	GND	19	20	N/C	Kodiert
DMA Request Signal	PDDREQ	21	22	GND	Masse
Write Signal	PDIOW#	23	24	GND	Masse
Read Signal	PDIOR#	25	26	GND	Masse
Ready Signal	PDRDY	27	28	N/C	Reserviert
DMA Acknowledge Signal	PDDACK#	29	30	GND	Masse
Interrupt Signal	PDIRQ	31	32	N/C	Reserviert
Address Bit 1	PDA1	33	34	PDMA66EN	Enable UDMA66
Address Bit 0	PDA0	35	36	PDA2	Address Bit 2
Chip Select Signal 0	PDSC0#	37	38	PDCS1#	Chip Select Signal 1
LED	PHDLED	39	40	GND	Masse

Kapitel: Anschlüsse Floppy-Schnittstelle

3.9 Floppy-Schnittstelle

Ein Floppy-Laufwerk kann über einen herkömmlichen 2x17-poligen Wannenstecker (FCI 75869-306LF) angeschlossen werden.



Pinbelegung FDD-2x17-Wannenstecker:

Beschreibung	Name		Pin	Name	Beschreibung
Masse	GND	1	2	DRVDEN0	Drive Density Sel 0
Masse	GND	3	4	N/C	Reserviert
Masse	GND	5	6	DRVDEN1	Drive Density Sel 1
Masse	GND	7	8	IDX#	Index
Masse	GND	9	10	MT0#	Motor Enable 0
Masse	GND	11	12	DR1#	Drive Sel 1
Masse	GND	13	14	DR0#	Drive Sel 0
Masse	GND	15	16	MT1#	Motor Enable 1
Masse	GND	17	18	DIR#	Direction
Masse	GND	19	20	STP#	Step
Masse	GND	21	22	WD#	Write Data
Masse	GND	23	24	WE#	Write Enable
Masse	GND	25	26	TR0#	Track 0
Masse	GND	27	28	WPRT#	Write Protect
Reserviert	N/C	29	30	RDATA#	Read Data
Masse	GND	31	32	HDSL#	Head Select
Reserviert	N/C	33	34	DC#	Disk Change

3.10 USB-Schnittstellen, Keyboard/Mouse

Das CB2051 verfügt über acht USB-Kanäle, von denen einer (USB7) über einen Standard USB-Stecker herausgeführt wird. Die anderen sieben (USB1-6 und USB8) stehen über 2x5polige Wannenstecker zur Verfügung. Im Falle von USB8 liegen an diesem Wannenstecker zusätzlich noch die Signale für Keyboard und Mouse an.

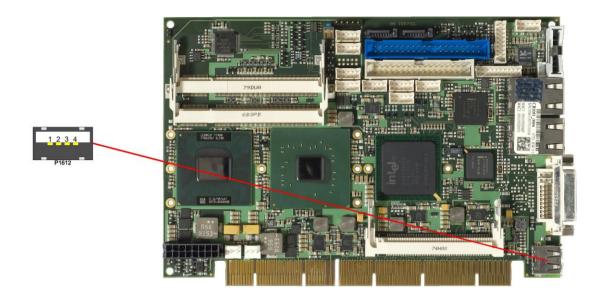
Pinbelegung Wannenstecker USB 1/2

Beschreibung	Name	Pin		Name	Beschreibung
5V für USB1	VCC	1	6	VCC	5V für USB2
Minus-Datenkanal USB1	USB1-	2	7	USB2-	Minus-Datenkanal USB2
Plus-Datenkanal USB1	USB1+	3	8	USB2+	Plus-Datenkanal USB2
Masse	GND	4	9	GND	Masse
Reserviert	N/C	5	10	N/C	Reserviert

Pinbelegung Wannenstecker USB 3/4

Beschreibung	Name	Pin		Name	Beschreibung
5V für USB3	VCC	1	6	VCC	5V für USB4
Minus-Datenkanal USB3	USB3-	2	7	USB4-	Minus-Datenkanal USB4
Plus-Datenkanal USB3	USB3+	3	8	USB4+	Plus-Datenkanal USB4
Masse	GND	4	9	GND	Masse
Reserviert	N/C	5	10	N/C	Reserviert

Pinbelegung Wannenstecker USB 5/6

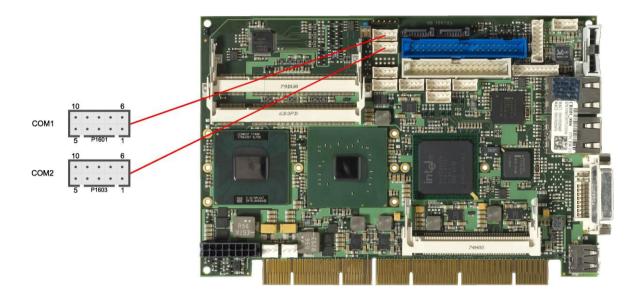

Beschreibung	Name		Pin	Name	Beschreibung
5V für USB5	VCC	1	6	VCC	5V für USB6
Minus-Datenkanal USB5	USB5-	2	7	USB6-	Minus-Datenkanal USB6
Plus-Datenkanal USB5	USB5+	3	8	USB6+	Plus-Datenkanal USB6
Masse	GND	4	9	GND	Masse
Reserviert	N/C	5	10	N/C	Reserviert

Pinbelegung Wannenstecker USB 8/Keyboard-Mouse

Beschreibung Name	Pin	Name	Beschreibung
-------------------	-----	------	--------------

Kapitel: Anschlüsse

Beschreibung	Name	Pin		Name	Beschreibung
5V für USB8	VCC	1	6	VCC	Spannungsversorgung 5V
Minus-Datenkanal USB8	USB8-	2	7	KCLK	Keyboard Clock
Plus-Datenkanal USB8	USB8+	3	8	KDAT	Keyboard Data
Masse	GND	4	9	MCLK	Mouse Clock
Masse	GND	5	10	MDAT	Mouse Data

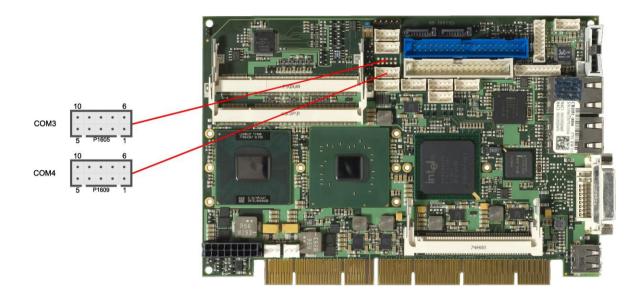

Pinbelegung USB2.0-Stecker für Port X:

Pin	Name	Beschreibung
1	VCC	5V für USBX
2	USBX#	Minus-Datenkanal USBX
3	USBX	Plus-Datenkanal USBX
4	GND	Masse

3.11 Serielle Schnittstellen COM1 und COM2

Die seriellen Schnittstellen COM1 und COM2 stehen in Form von 2x5poligen Wannensteckern zur Verfügung (JST B10B-PHDSSLFSN, passender Gegenstecker: PHDR-10VS). Bei der Bestellung des Produkts besteht die Option, die Signale statt nach RS232-Norm in TTL-Pegel zur Verfügung gestellt zu bekommen.

Die Port-Adresse und der benutzte Interrupt werden mit Hilfe des BIOS-Setups eingestellt.

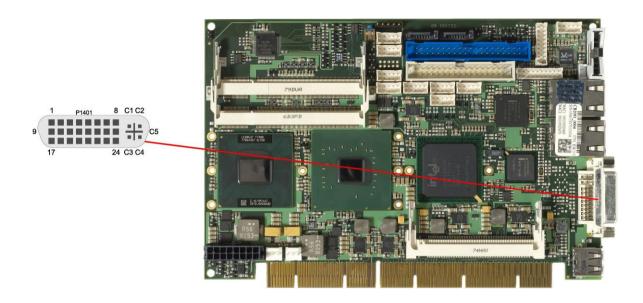


Beschreibung	Name	Р	in	Name	Beschreibung
Data Carrier Detect	DCD	1	6	DSR	Data Set Ready
Receive Data	RXD	2	7	RTS	Request to Send
Transmit Data	TXD	3	8	CTS	Clear to Send
Data Terminal Ready	DTR	4	9	RI	Ring Indicator
Masse	GND	5	10	VCC	Versorgungsspannung 5V

3.12 Serielle Schnittstellen COM3 und COM4

Die seriellen Schnittstellen COM3 und COM4 stehen in Form von 2x5poligen Wannensteckern zur Verfügung (JST B10B-PHDSSLFSN, passender Gegenstecker: PHDR-10VS). Die Bestückung des COM3-Steckers ist optional. Bei der Bestellung des Produkts besteht die Option, die Signale statt nach RS232-Norm in TTL-Pegel zur Verfügung gestellt zu bekommen.

Die Port-Adresse und der benutzte Interrupt werden mit Hilfe des BIOS-Setups eingestellt.

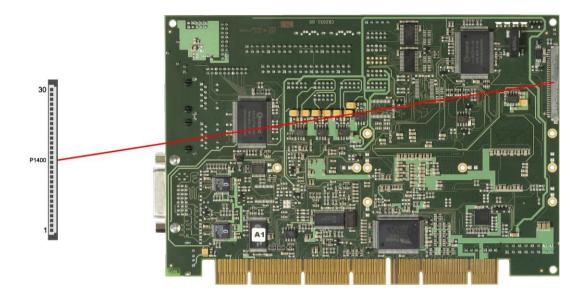


Beschreibung	Name	Pin		Name	Beschreibung
Data Carrier Detect	DCD	1	6	DSR	Data Set Ready
Receive Data	RXD	2	7	RTS	Request to Send
Transmit Data	TXD	3	8	CTS	Clear to Send
Data Terminal Ready	DTR	4	9	RI	Ring Indicator
Masse	GND	5	10	VCC	Versorgungsspannung 5V

VGA/DVI Kapitel: Anschlüsse

3.13 VGA/DVI

Das Board verfügt über einen DVI-I-Anschluss, an den ein DVI-fähiger Monitor oder – ggf. mit einem entsprechenden DVI-DSUB-Adapter – ein Standard-VGA-Monitor angeschlossen werden kann.


Pinbelegung DVI-I:

Pin	Name	Beschreibung
1	TMDSDAT2#	DVI-Daten 2 -
2	TMDSDAT2	DVI-Daten 2 +
3	GND	Masse
4	N/C	Reserviert
5	N/C	Reserviert
6	DDC CLK	DDC Clock (DVI/VGA)
7	DDC DAT	DDC Data (DVI/VGA)
8	VSYNC	VGA Vertikaler Sync
9	TMDSDAT1#	DVI-Daten 1 -
10	TMDSDAT1	DVI-Daten 1 +
11	GND	Masse
12	N/C	Reserviert
13	N/C	Reserviert
14	VCC	Versorgungsspannung 5V
15	GND	Masse
16	HP_DETECT	Hot Plug Detect
17	TMDSDAT0#	DVI-Daten 0 -
18	TMDSDAT0	DVI-Daten 0 +
19	GND	Masse
20	N/C	Reserviert
21	N/C	Reserviert
22	GND	Masse
23	TMDS CLK	DVI-Clock
24	TMDS CLK#	DVI-Clock
C1	RED	VGA Rot
C2	GREEN	VGA Grün
C3	BLUE	VGA Blau
C4	HSYNC	VGA Horizontaler Sync
C5	GND	Masse

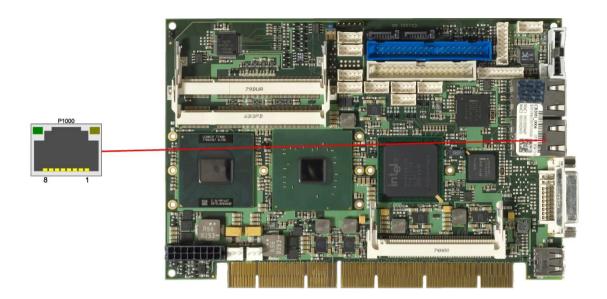
Kapitel: Anschlüsse

3.14LVDS

Das Board verfügt über einen 30poligen Flachsteckeranschluss (JAE FI-X30S-HF-NPB, passender Gegenstecker: FI-X30C(2)-NPB), an dem LVDS-fähige Displays betrieben werden können. Es dürfen nur geschirmte und verdrillte Anschlusskabel benutzt werden. Der verwendete Display-Typ wird über das BIOS-Setup eingetragen. Neben den 30 Anschlusspolen verfügt der Stecker noch über zwei Shield-Kontakte S1 und S2, die in der untenstehenden Pin-Tabelle ausgespart worden sind.

Pinbelegung des 30-poligen LVDS-Steckers:

Pin	Name	Beschreibung
1	TXO00#	LVDS even Data 0 -
2	TXO00	LVDS even Data 0 +
3	TXO01#	LVDS even Data 1 -
4	TXO01	LVDS even Data 1 +
5	TXO02#	LVDS even Data 2 -
6	TXO02	LVDS even Data 2 +
7	GND	Masse
8	TXO0C#	LVDS even Clock -
9	TXO0C	LVDS even Clock +
10	TXO03#	LVDS even Data 3 -
11	TXO03	LVDS even Data 3 +
12	TXO10#	LVDS odd Data 0 -
13	TXO10	LVDS odd Data 0 +
14	GND	Masse
15	TXO11#	LVDS odd Data 1 -
16	TXO11	LVDS odd Data 1 +
17	GND	Masse
18	TXO12#	LVDS odd Data 2 -
19	TXO12	LVDS odd Data 2 +
20	TXO1C#	LVDS odd Clock -
21	TXO1C	LVDS odd Clock +
22	TXO13#	LVDS odd Data 3 -
23	TXO13	LVDS odd Data 3 +
24	GND	Masse
25	3,3V	Versorgungsspannung 3,3V

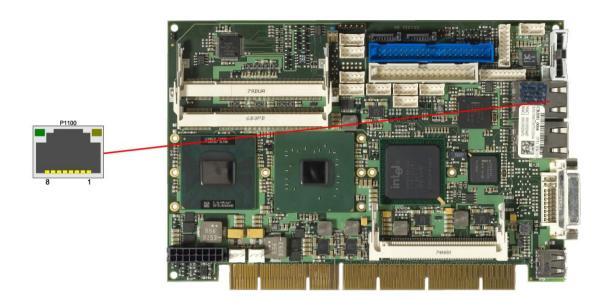

LVDS Kapitel: Anschlüsse

Pin	Name	Beschreibung
26	DDC_CLK	EDID Clock für LCD
27	DDC_DAT	EDID Data für LCD
28	FP_3,3V	Geschaltete 3,3V für Display
29	FP_BL	Geschaltete 5V für Backlight
30	VCC	Versorgungsspannung 5V

Kapitel: Anschlüsse LAN1

3.15LAN1

Das Board hat zwei LAN-Anschlüsse. An LAN1 können sowohl 10BaseT- als auch 100BaseT-kompatible Netzwerkkomponenten angeschlossen werden. Die erforderliche Geschwindigkeit wird automatisch gewählt. Der LAN1-Anschluss beherrscht außerdem Auto-Cross und Auto-Negotiate. Als Controller-Chip kommt Intel®s 82562EZ zum Einsatz. PXE- und RPL-Funktion wird ebenfalls unterstützt.


Pinbelegung LAN 10/100:

Pin	Name	Beschreibung
1	LAN1-0	LAN1 Transmit Plus
2	LAN1-0#	LAN1 Transmit Minus
3	LAN1-1	LAN1 Receive Plus
4	N/C	Reserviert
5	N/C	Reserviert
6	LAN1-1#	LAN1 Receive Minus
7	N/C	Reserviert
8	N/C	Reserviert

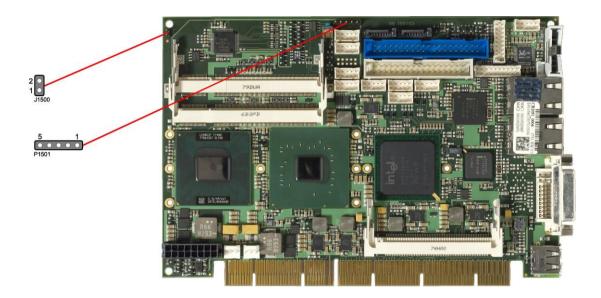
LAN2 Kapitel: Anschlüsse

3.16LAN2

An LAN2 können neben 10BaseT- und 100BaseT- auch 1000BaseT-kompatible Netzwerkkomponenten angeschlossen werden. Die erforderliche Geschwindigkeit wird automatisch gewählt. Der Anschluss ist nicht Auto-Cross- oder Auto-Negotiate-fähig. Controller-Chip ist hier Intel®s 82573L(E). PXE und RPL stehen nicht zur Verfügung.

Pinbelegung LAN 10/100/1000:

Pin	Name	Beschreibung
1	LAN2-0	LAN2 Leitung 0 Plus
2	LAN2-0#	LAN2 Leitung 0 Minus
3	LAN2-1	LAN2 Leitung 1 Plus
4	LAN2-2	LAN2 Leitung 2 Plus
5	LAN2-2#	LAN2 Leitung 2 Minus
6	LAN2-1#	LAN2 Leitung 1 Minus
7	LAN2-3	LAN2 Leitung 3 Plus
8	LAN2-3#	LAN2 Leitung 3 Minus


Kapitel: Anschlüsse Touchscreen-Anschluss

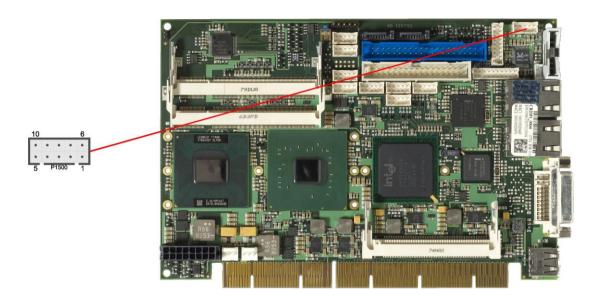
3.17 Touchscreen-Anschluss

Zu den Besonderheiten des Boards zählt die Möglichkeit, einen Touchscreen anzuschließen. Es werden Touchscreens des Typs 4-wire bzw. 5-wire resistiv unterstützt. Die eingehenden Signale werden dabei über eine fünfpolige Stiftleiste im 2,54mm-Rastermaß entgegengenommen. Wenn man den zugehörigen 2poligen Jumper überbrückt, löst dies beim Booten die NVRST-Funktion des Controllers aus, bei der alle NVRAM-Parameter auf Default-Werte zurückgesetzt werden.

Wenn ein vierädriger Touchscreen angeschlossen werden soll, dann wird Pin 1 nicht benötigt. Die korrekte Umsetzung auf den Anschlussstecker des Touchscreens muss extern erfolgen. Dabei sind die Vorgaben des jeweiligen Herstellers zu beachten.

Anmerkung zur Pinbelegungstabelle (s. u.): H, X, S, Y und L sind die Signalnamen bei 5-wire, XL, XR, YT und YB bei 4-wire.

Pinbelegung Touchscreen-Anschluss:

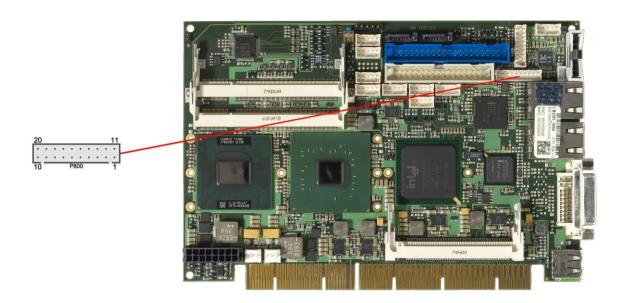

Pin	Name	Beschreibung
1	H-DRV	H-Driver Control
2	X/XL-DRV	X/XL-Driver Control
3	S/XR-DRV	S/XR-Driver Control
4	Y/YT-DRV	Y/YT-Driver Control
5	L/YB-DRV	L/YB-Driver Control

Ton Kapitel: Anschlüsse

3.18 Ton

Die Audio-Funktionen sind über einen 2x5poligen Wannenstecker erreichbar (JST B10B-PHDSSLFSN, passender Gegenstecker: PHDR-10VS). Die Signale für Tonein- und -ausgabe haben dabei eine Doppelfunktion. Standard ist die bekannte Tonausgabe-, Toneingabe- und Mikrofon-Funktion. Durch die Treiber für das jeweilige Betriebssystem können diese Signale auf einen 5.1-Ausgang umgeschaltet werden. In diesem Modus stehen keine Toneingabemöglichkeiten mehr zur Verfügung. Alle Signale werden zur Tonausgabe verwendet.

Die Signale "SPDIFI" und "SPDIFO" ermöglichen die digitale Ein- und Ausgabe. Die dafür erforderliche Umsetzung auf Koax bzw. optisch muss extern erfolgen.

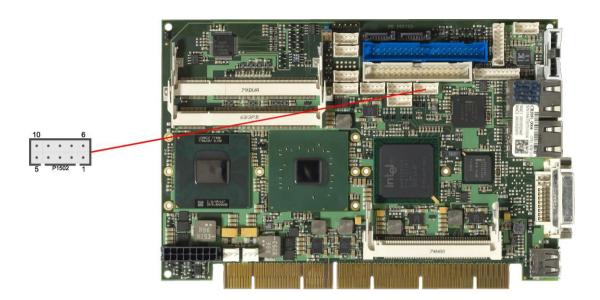


Beschreibung	Name	Р	in	Name	Beschreibung
Digital Ausgang SPDIF	SPDIFO	1	6	3,3V	Versorgungsspannung 3,3V
Digital Eingang SPDIF	SPDIFI	2	7	S_AGND	Analog Masse Ton
Ton Ausgang rechts /	LOUT_R /	3	8	LOUT_L /	Ton Ausgang links /
Ausgang vorn rechts	FRONT_R			FRONT_L	Ausgang vorn links
AUX Eingang rechts /	AUXA_R /	4	9	AUXA_L /	AUX Eingang links /
Ausgang hinten rechts	REAR_R			REAR_L	Ausgang hinten links
Mikrophone 1 Eingang /	MIC1 /	5	10	MIC2 /	Mikrophone 2 Eingang /
Ausgang Center	CENTER			LFE	Ausgang Subwoofer

Kapitel: Anschlüsse GPIO

3.19 **GPIO**

Das Board verfügt über eine General Purpose Input/Output-Schnittstelle, die über einen 2x10poligen Wannenstecker herausgeführt ist (JST B20B-PHDSSLFSN, passender Gegenstecker: PHDR-20VS). Durch entsprechende Programmierung des zugehörigen Chips (Super-IO) können hier in sehr flexibler Weise I/O-Funktionen angelegt werden. Erkundigen Sie sich bei Ihrem Distributor nach entsprechender Software-Unterstützung.

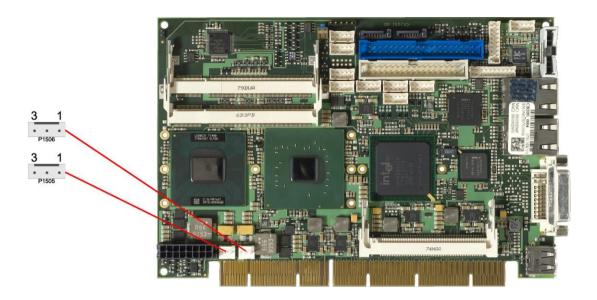

Pinbelegung GPIO-Stecker:

Beschreibung	Name	Р	in	Name	Beschreibung
Versorgungsspannung 5V	VCC	1	11	VCC	Versorgungsspannung 5V
GP Input/Output 10	GPIO10	2	12	GPIO20	GP Input/Output 20
GP Input/Output 11	GPIO11	3	13	GPIO21	GP Input/Output 21
GP Input/Output 12	GPIO12	4	14	GPIO22	GP Input/Output 22
GP Input/Output 13	GPIO13	5	15	GPIO23	GP Input/Output 23
GP Input/Output 14	GPIO14	6	16	GPIO24	GP Input/Output 24
GP Input/Output 15	GPIO15	7	17	GPIO25	GP Input/Output 25
GP Input/Output 16	GPIO16	8	18	GPIO26	GP Input/Output 26
GP Input/Output 17	GPIO17	9	19	GPIO27	GP Input/Output 27
Masse	GND	10	20	GND	Masse

SMB/I2C Kapitel: Anschlüsse

3.20 SMB/I2C

Die Baugruppe besitzt die Fähigkeit, mit anderen Schaltelementen über das SMBus- oder das I2C-Protokoll zu kommunizieren. Die Anschlüsse hierfür sind in einem 2x5poligen Wannenstecker realisiert (JST B10B-PHDSSLFSN, passender Gegenstecker: PHDR-10VS). Die SMBus-Signale werden durch den Chipsatz verarbeitet, die I2C-Signale durch den SIO-Chip.


Pinbelegung SMB/I2C-Stecker:

Beschreibung	Name	P	in	Name	Beschreibung
Versorgungsspannung 3,3V	3,3V	1	6	GND	Masse
SMBus Clock	SMBCLK	2	7	SMBDAT	SMBus Data
SMBus Alarm	SMBALRT#	3	8	SVCC	Standby-Versorgung 5V
I2C-Bus Clock	I2CLK	4	9	I2DAT	I2C-Bus Data
Versorgungsspannung 5V	VCC	5	10	GND	Masse

Kapitel: Anschlüsse Lüfteranschlüsse

3.21 Lüfteranschlüsse

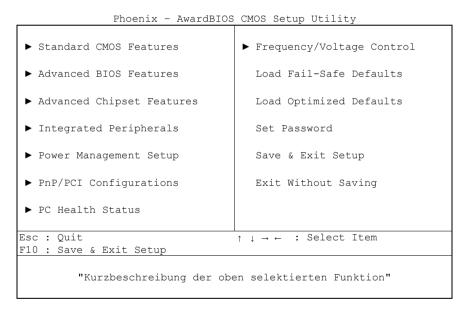
Die Baugruppe verfügt über zwei 3polige Lüfteranschlüsse. Diese ermöglichen es, Lüfter mit einer Versorgungsspannung von 12 Volt direkt an die Baugruppe anzuschließen. Ein Signal für die Überwachung der Lüfterdrehzahl ist ebenfalls jeweils vorhanden.

Pinbelegung Lüfterstecker:

Pin	Name	Beschreibung
1	GND	Masse
2	12V	Versorgungsspannung 12V geregelt
3	TACHO	Überwachungssignal Lüfter

4 BIOS-Einstellungen

4.1 Benutzung des Setups


Innerhalb der einzelnen Setup-Seiten werden mit F6 ("Fail-Safe Defaults") und F7 ("Optimized Defaults") Standardwerte für die einzelnen Setup-Einträge geladen. Diese Standardwerte sind unabhängig davon, ob das Board schon einmal mit einer Setup-Einstellung erfolgreich gebootet hat. Anders ist es, wenn man im Top-Menü "Load Fail-Safe Defaults" oder "Load Optimized Defaults" aufruft. Wurde bereits einmal eine Setup-Einstellung abgespeichert, die im Anschluss auch zu einem erfolgreichen Booten führte, so werden mit beiden Menü-Punkten diese Werte als Default für die Setup-Seiten geladen. Siehe dazu auch die Abschnitte "Load Fail-Safe Defaults" und "Load Optimized Defaults" (Seite 67).

HINWEIS

Das BIOS wird regelmäßig weiterentwickelt, so dass die verfügbaren Setup-Optionen sich jederzeit und ohne gesonderte Mitteilung ändern können. Dadurch kann es zu Abweichungen kommen zwischen den tatsächlich vorhandenen Optionen und denen, die nachfolgend beschrieben werden. Zu beachten ist außerdem, dass die in den Setup-Menüs im Folgenden gezeigten Einstellungen nicht notwendigerweise die empfohlenen oder die Default-Einstellungen sind. Welche Einstellungen gewählt werden müssen, hängt jeweils vom Anwendungsszenario ab. in dem das Board betrieben wird.

4.2 Top-Menü

Ein "▶"-Zeichen vor dem Menüpunkt bedeutet, dass ein Untermenü vorhanden ist. Das "x"-Zeichen vor einem Menüpunkt heißt, dass es eine Einstellmöglichkeit gibt, die jedoch erst durch eine darüber liegende Einstellung aktiviert werden muss. Die Navigation von einem Menüpunkt zum anderen erfolgt mit Hilfe der Pfeiltasten, wobei mit der Enter-Taste der entsprechende Menüpunkt ausgewählt wird, was dann z. B. den Aufruf eines Untermenüs oder eines Auswahldialogs bewirkt.

4.3 Standard CMOS Features

Phoenix - AwardBIOS CMOS Setup Utility Standard CMOS Features

Date (mm:dd:yy) Time (hh:mm:ss)	Wed, Mar 12 2008 19 : 13 : 35	Item Help
➤ IDE Channel 0 Master ➤ IDE Channel 0 Slave ➤ IDE Channel 1 Master ➤ IDE Channel 1 Slave ➤ SATA 0 ➤ SATA 1 ➤ SATA 2 ➤ SATA 3	[None]	
Drive A Halt On Base Memory Extended Memory Total Memory	[None] [No Errors] 640K 1038336K 1039360K	

11---:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ Date (mm:dd:yy)

Optionen: mm: Monat

dd: Tag yy: Jahr

√ Time (hh:mm:ss)

Optionen: hh: Stunden

mm: Minuten ss: Sekunden

✓ IDE Channel 0 Master

Untermenü: siehe "IDE Channel 0 Master/Slave" (Seite 46)

√ IDE Channel 0 Slave

Untermenü: siehe "IDE Channel 0 Master/Slave" (Seite 46)

√ IDE Channel 1 Master

Untermenü: siehe "IDE Channel 0 Master/Slave" (Seite 46)

✓ IDE Channel 1 Slave

Untermenü: siehe "IDE Channel 0 Master/Slave" (Seite 46)

✓ SATA 0

Untermenü: siehe "SATA channels" (Seite 47)

✓ SATA 1

Untermenü: siehe "SATA channels" (Seite 47)

✓ SATA 2

Untermenü: siehe "SATA channels" (Seite 47)

✓ SATA 3

Untermenü: siehe "SATA channels" (Seite 47)

Kapitel: BIOS-Einstellungen

✓ Drive A

Optionen: None / 360K, 5.25 in. / 1.2M, 5.25 in. / 720K, 3.5 in. / 1.44M, 3.5 in. / 2.88M, 3.5 in.

✓ Halt On

Optionen: All Errors / No Errors / All, But Keyboard / All, But Diskette / All, But Disk/Key

✓ Base Memory

Optionen: keine

✓ Extended Memory

Optionen: keine

✓ Total Memory

4.3.1 IDE Channel 0 Master/Slave

Phoenix - AwardBIOS CMOS Setup Utility
IDE Channel 0 Master

	Channel O Master	
IDE HDD Auto-Detection	[Press Enter]	Item Help
IDE Channel 0 Master	[Auto]	
Access Mode	[Auto]	
Capacity	0 MB	
Cylinder	0	
Head	0	
Precomp	0	
Landing Zone	0	
Sector	0	

† : Move Enter: Select +/-/PU/PD: Value F10: Save ESC: Exit F1: Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ IDE HDD Auto-Detection

Optionen: keine

√ IDE Channel 0 Master

Optionen: None / Auto / Manual

✓ Access Mode

Optionen: CHS / LBA / Large / Auto

✓ Capacity

Optionen: keine

✓ Cylinder

Optionen: keine

✓ Head

Optionen: keine

✓ Precomp

Optionen: keine

✓ Landing Zone

Optionen: keine

✓ Sector

4.3.2 SATA channels

Phoenix - AwardBIOS CMOS Setup Utility SATA 0

	DAIA U		
IDE Auto-Detection	[Press	Enter]	Item Help
Extended IDE Drive Access Mode	[Auto] [Auto]		
Capacity	0	MB	
Cylinder Head Precomp Landing Zone Sector	0 0 0 0		

†|---:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ IDE Auto-Detection

Optionen: keine

✓ Extended IDE Drive

Optionen: None / Auto

✓ Access Mode

Optionen: Large / Auto

✓ Capacity

Optionen: keine

✓ Cylinder

Optionen: keine

✓ Head

Optionen: keine

✓ Precomp

Optionen: keine

✓ Landing Zone

Optionen: keine

✓ Sector

4.4 Advanced BIOS Features

Phoenix - AwardBIOS CMOS Setup Utility
Advanced BIOS Features

	DIOD FEACULES	
► CPU Feature	[Press Enter]	Item Help
► Hard Disk Boot Priority	[Press Enter]	reem nerp
Virus Warning	[Disabled]	
CPU L1 & L2 Cache	[Enabled]	
CPU L3 Cache	[Enabled]	
Quick Power On Self Test	[Enabled]	
First Boot Device	[Hard Disk]	
Second Boot Device	[Hard Disk]	
Third Boot Device	[Disabled]	
Boot Other Device	[Enabled]	
Boot Up Floppy Seek	[Disabled]	
Boot Up NumLock Status	[On]	
Gate A20 Option	[Fast]	
Typematic Rate Setting	[Disabled]	
x Typematic Rate (Chars/Sec)	6	
x Typematic Delay (Msec)	250	
Security Option	[Setup]	
APIC Mode	[Enabled]	
MPS Version Control For OS	[1.4]	
OS Select For DRAM > 64MB	[Non OS2]	
HDD S.M.A.R.T. Capability	[Enabled]	
Full Screen LOGO Show	[Disabled]	

11--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ CPU Feature

Untermenü: siehe "CPU Feature" (Seite 50)

√ Hard Disk Boot Priority

Untermenü: siehe "Hard Disk Boot Priority" (Seite 51)

√ Virus Warning

Optionen: Enabled / Disabled

✓ CPU L1 & L2 Cache

Optionen: Enabled / Disabled

✓ CPU L3 Cache

Optionen: Enabled / Disabled

✓ Quick Power On Self Test

Optionen: Enabled / Disabled

√ First Boot Device

Optionen: Floppy/LS120/Hard Disk/CDROM/ZIP100/USB-FDD/USB-ZIP/USB-CDROM/LAN

/ Disabled

✓ Second Boot Device

Optionen: Floppy / LS120 / Hard Disk / CDROM / ZIP100 / USB-FDD / USB-ZIP / USB-CDROM / LAN

/ Disabled

✓ Third Boot Device

Optionen: Floppy / LS120 / Hard Disk / CDROM / ZIP100 / USB-FDD / USB-ZIP / USB-CDROM / LAN

/ Disabled

✓ Boot Other Device

Optionen: Enabled / Disabled

✓ Boot Up Floppy Seek

Optionen: Enabled / Disabled

✓ Boot Up NumLock Status

Optionen: Off / On

√ Gate A20 Option

Optionen: Normal / Fast

✓ Typematic Rate Setting

Optionen: Enabled / Disabled

✓ Typematic Rate (Chars/Sec)

Optionen: 6 / 8 / 10 / 12 / 15 / 20 / 24 / 30

✓ Typematic Delay (Msec)

Optionen: 250 / 500 / 750 / 1000

✓ Security Option

Optionen: Setup / System

✓ APIC Mode

Optionen: Enabled / Disabled

✓ MPS Version Control For OS

Optionen: 1.1 / 1.4

√ OS Select For DRAM > 64MB

Optionen: Non-OS2 / OS2

✓ HDD S.M.A.R.T. Capability

Optionen: Enabled / Disabled

✓ Full Screen LOGO Show

Optionen: Enabled / Disabled

Kapitel: BIOS-Einstellungen

4.4.1 CPU Feature

Phoenix - AwardBIOS CMOS Setup Utility CPU Feature

Dalas Dalas to Mhassal	mw aliaalala	
Delay Prior to Thermal		Item Help
C1E Function	[Auto]	Teem neip
Execute Disable Bit	[Enabled]	
Virtualization Technology	[Enabled]	

14--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ Delay Prior to Thermal

Optionen: keine

√ C1E Function

Optionen: Auto / Disabled

✓ Execute Disable Bit

Optionen: Enabled / Disabled

√ Virtualization Technology

Optionen: Enabled / Disabled

4.4.2 Hard Disk Boot Priority

Phoenix - AwardBIOS CMOS Setup Utility
Hard Disk Boot Priority

	nara bibk book firefrey	
1. Bootable Add-	in Cards	Item Help

↑↓→-:Move PU/PD/+/-:Change Priority F10:Save ESC:Exit F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

√ [Liste der verfügbaren Devices]

Optionen: bei mehreren bootfähigen HDD-Devices kann hier ausgewählt werden, in welcher Reihenfolge die Devices für einen Bootversuch angesprochen werden sollen.

✓ Achtung!

In diesem Untermenü haben die Tasten <Page Up>, <Page Down>, <+> und <-> eine andere Funktion als sonst: Sie dienen dazu, die in der Liste aufgeführten Devices nach oben bzw. unten zu verschieben.

4.5 Advanced Chipset Features

Phoenix - AwardBIOS CMOS Setup Utility Advanced Chipset Features

	-	
DRAM Timing Selectable	[By SPD]	Item Help
x CAS Latency Time	Auto	I CCIII IICIP
x DRAM RAS# to CAS# Delay	Auto	
x DRAM RAS# Precharge	Auto	
x Precharge delay (tRAS)	Auto	
x System Memory Frequency	Auto	
SLP_S4# Assertion Widtch	[4 to 5 Sec.]	
System BIOS Cacheable	[Enabled]	
Video BIOS Cacheable	[Disabled]	
Memory Hole At 15M-16M	[Disabled]	
▶ PCI Express Root Port Func	[Press Enter]	
** VGA Setting **		
PEG/Onchip VGA Control	[Auto]	
On-Chip Frame Buffer Size	[8MB]	
DVMT Mode	[DVMT]	
DVMT/FIXED Memory Size	[128MB]	
Boot Display	[Auto]	
Panel Scaling	[Auto]	
Panel Number	[640x480]	
Morro Entanicalent I/ /DII	/DD 17-1 D10 0 D00 D	'

↑↓→:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ DRAM Timing Selectable

Optionen: By SPD / Manual

✓ CAS Latency Time

Optionen: 5 / 4 / 3 / 6 / Auto

✓ DRAM RAS# to CAS# Delay

Optionen: 2/3/4/5/6/Auto

✓ DRAM RAS# Precharge

Optionen: 2/3/4/5/6/Auto

✓ Precharge delay (tRAS)

Optionen: Auto / 4 / 5 / 6 / 7 / 8 / 10 / 11 / 12 / 13 / 14 / 15

✓ System Memory Frequency

Optionen: Auto / 533MHz / 667MHz

✓ SLP S4# Assertion Width

Optionen: 4 to 5 Sec. / 3 to 4 Sec. / 2 to 3 Sec. / 1 to 2 Sec.

√ System BIOS Cacheable

Optionen: Enabled / Disabled

√ Video BIOS Cacheable

Optionen: Enabled / Disabled

✓ Memory Hole At 15M-16M

Optionen: Enabled / Disabled

✓ PCI Express Root Port Func

Untermenü: siehe "PCI Express Root Port Function" (Seite 54)

✓ PEG/Onchip VGA Control

Optionen: Onchip VGA / PEG Port / Auto

Kapitel: BIOS-Einstellungen

On-Chip Frame Buffer Size Optionen: 1MB / 8MB

✓ DVMT Mode

Optionen: FIXED / DVMT / BOTH

✓ DVMT/FIXED Memory Size

Optionen: 64MB / 128MB / 224MB

✓ Boot Display

Optionen: VBIOS Default / LFP / EFP / EFP2

✓ Panel Scaling

Optionen: Auto / On / Off

✓ Panel Number

Optionen: 640x480 / 800x600 / 1024x768 / 1280x1024 / 1400x1050 / 1600x1200 / 1280x768 /

1680x1050 / 1920x1200 / 1280x800 / 1440x900

4.5.1 PCI Express Root Port Function

Phoenix - AwardBIOS CMOS Setup Utility PCI Express Root Port Func

	TCT DAPTCSS	ROOL FOIL FUIL	
PCI Express Port	1	[Auto]	Item Help
PCI Express Port	2	[Auto]	I CCM IICIP
PCI Express Port	3	[Auto]	
PCI Express Port	4	[Auto]	
PCI-E Compliancy	Mode	[v1.0a]	
	- / //-		

↑↓→:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ PCI Express Port 1

Optionen: Auto / Enabled / Disabled

✓ PCI Express Port 2

Optionen: Auto / Enabled / Disabled

✓ PCI Express Port 3

Optionen: Auto / Enabled / Disabled

✓ PCI Express Port 4

Optionen: Auto / Enabled / Disabled

✓ PCI-E Compliancy Mode

Optionen: v1.0a / v1.0

4.6 Integrated Peripherals

Phoenix - AwardBIOS CMOS Setup Utility
Integrated Peripherals

▶ OnChip IDE Device▶ Onboard Device	[Press Enter] [Press Enter]	Item Help
► SuperIO Device	[Press Enter]	

†|--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ OnChip IDE Device

Untermenü: siehe "OnChip IDE Devices" (Seite 56)

✓ Onboard Device

Untermenü: siehe "Onboard Devices" (Seite 57)

√ SuperIO Device

Untermenü: siehe "SuperIO Devices" (Seite 58)

4.6.1 OnChip IDE Devices

Phoenix - AwardBIOS CMOS Setup Utility
OnChip IDE Device

	IDD DCVICC	
IDE HDD Block Mode	[Enabled]	Item Help
IDE DMA transfer access	[Enabled]	Teem nerp
On-Chip Primary PCI IDE	[Enabled]	
IDE Primary Master PIO	[Auto]	
IDE Primary Slave PIO	[Auto]	
IDE Primary Master UDMA	[Auto]	
IDE Primary Slave UDMA	[Auto]	
*** On-Chip Serial ATA Setting	* * *	
SATA Mode	[IDE]	
On-Chip Serial ATA	[Disabled]	
SATA PORT Speed Settings	[Disabled]	
PATA IDE Mode	[Secondary]	
SATA Port	PO, P2 is Primary	
	,	

11--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ IDE HDD Block Mode

Optionen: Enabled / Disabled

✓ IDE DMA transfer access

Optionen: Enabled / Disabled

✓ On-Chip Primary PCI IDE

Optionen: Enabled / Disabled

✓ IDE Primary Master PIO

Optionen: Auto / Mode 0 / Mode 1 / Mode 2 / Mode 3 / Mode 4

√ IDE Primary Slave PIO

Optionen: Auto / Mode 0 / Mode 1 / Mode 2 / Mode 3 / Mode 4

✓ IDE Primary Master UDMA

Optionen: Disabled / Auto

✓ IDE Primary Slave UDMA

Optionen: Disabled / Auto

✓ SATA Mode

Optionen: IDE / RAID / AHCI

✓ On-Chip Serial ATA

Optionen: Disabled / Auto / Combined Mode / Enhanced Mode / SATA Only

✓ SATA PORT Speed Settings

Optionen: Disabled / Force GEN I / Force GEN II

✓ PATA IDE Mode

Optionen: keine

✓ SATA Port

4.6.2 Onboard Devices

Phoenix - AwardBIOS CMOS Setup Utility
Onboard Device

USB Controller	[Enabled]	
		Item Help
USB 2.0 Controller	[Enabled]	
USB Keyboard Support	[Disabled]	
Azalia/AC97 Audio	[Auto]	
Touch	[Enabled]	
AL • Morro Entor • Sologt +/-		

↑↓→:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ USB Controller

Optionen: Enabled / Disabled

✓ USB 2.0 Controller

Optionen: Enabled / Disabled

✓ USB Keyboard Support

Optionen: Enabled / Disabled

✓ Azalia/AC97 Audio Select

Optionen: Auto / AC97 Audio only / All Disabled

✓ Touch

Optionen: Enabled / Disabled

4.6.3 SuperIO Devices

Phoenix - AwardBIOS CMOS Setup Utility

Si	perlO Device	
Onboard FDC Controller	[Enabled]	Item Help
Onboard Serial Port 1	[3F8/IRQ4]	I cem Heip
Onboard Serial Port 2	[2F8/IRQ3]	
UART Mode Select	[Normal]	
x RxD , TxD Active	Hi,Lo	
x IR Transmission Delay	Enabled	
x UR2 Duplex Mode	Half	
x Use IR Pins	RxD2, TxD2	
Onboard Parallel Port	[378/IRQ7]	
Parallel Port Mode	[Normal]	
x EPP Mode Select	EPP1.9	
x ECP Mode Use DMA	3	
Onboard Serial Port 3	[3E8/IRQ11]	
Onboard Serial Port 4	[2E8/IRQ10]	

11--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ Onboard FDC Controller

Optionen: Enabled / Disabled

✓ Onboard Serial Port 1

Optionen: Disabled / 3F8/IRQ4 / 2F8/IRQ3 / 3E8/IRQ4 / 2E8/IRQ3 / Auto

✓ Onboard Serial Port 2

Optionen: Disabled / 3F8/IRQ4 / 2F8/IRQ3 / 3E8/IRQ4 / 2E8/IRQ3 / Auto

✓ UART Mode Select

Optionen: IrDA / ASKIR / Normal

√ RxD , TxD Active

Optionen: Hi,Hi / Hi,Lo / Lo,Hi / Lo,Lo

✓ IR Transmission Delay

Optionen: Enabled / Disabled

√ UR2 Duplex Mode

Optionen: Full / Half

✓ Use IR Pins

Optionen: RxD2,TxD2 / IR-Rx2Tx2

✓ Onboard Parallel Port

Optionen: Disabled / 378/IRQ7 / 278/IRQ5 / 3BC/IRQ7

✓ Parallel Port Mode

Optionen: SPP / EPP / ECP / ECP+EPP / Normal

✓ EPP Mode Select

Optionen: EPP1.9 / EPP1.7

✓ ECP Mode Use DMA

Optionen: 1/3

✓ Onboard Serial Port 3

Optionen: Disabled / 3F8/IRQ11 / 2F8/IRQ11 / 3E8/IRQ11 / 2E8/IRQ11

✓ Onboard Serial Port 4

Optionen: Disabled / 3F8/IRQ10 / 2F8/IRQ10 / 3E8/IRQ10 / 2E8/IRQ10

4.7 Power Management Setup

Phoenix - AwardBIOS CMOS Setup Utility
Power Management Setup

10001	Management Setup	
ACPI Function	[Enabled]	Item Help
ACPI Suspend Type	[S1 (POS)]	тсеш нетр
Run VGABIOS if S3 Resume	Yes	
Power Management	[User Define]	
Video Off Method	[DPMS]	
Video Off in Suspend	[Yes]	
Suspend Type	[Stop Grant]	
Modem Use IRQ	[3]	
Suspend Mode	[Disabled]	
HDD Power Down	[Disabled]	
Soft-Off by PWR-BTTN	[Instant-Off]	
PWRON After PWR-Fail	[On]	
Wake-Up by PCI card	[Disabled]	
Power On by Ring	[Disabled]	
x USB KB Wake-Up From S3	Disabled	
Resume by Alarm	[Disabled]	
x Date(of Month) Alarm	0	
x Time(hh:mm:ss)	0:0:0	

11--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ ACPI function

Optionen: Enabled / Disabled

√ ACPI Suspend Type

Optionen: S1(POS) / S3(STR) / S1&S3

√ Run VGABIOS if S3 Resume

Optionen: Auto / Yes / No

✓ Power Management

Optionen: User Define / Min Saving / Max Saving

✓ Video Off Method

Optionen: Blank Screen / V/H SYNC+Blank / DPMS

√ Video Off In Suspend

Optionen: No / Yes

√ Suspend Type

Optionen: Stop Grant / PwrOn Suspend

✓ MODEM Use IRQ

Optionen: NA/3/4/5/7/9/10/11

√ Suspend Mode

Optionen: Disabled / 1 Min / 2 Min / 4 Min / 8 Min / 12 Min / 20 Min / 30 Min / 40 Min / 1 Hour

✓ HDD Power Down

Optionen: Disabled / 1 Min ... 15 Min

✓ Soft-Off by PWR-BTTN

Optionen: Instant-Off / Delay 4 Sec

✓ PWRON After PWR-Fail

Optionen: Former Sts / On / Off

Kapitel: BIOS-Einstellungen

✓ Wake Up by PCI Card

Optionen: Enabled / Disabled

✓ Power-On by Ring

Optionen: Enabled / Disabled

✓ USB KB Wake Up From S3

Optionen: Enabled / Disabled

✓ Resume by Alarm

Optionen: Enabled / Disabled

✓ Date(of Month) Alarm

Optionen: 1 / ... / 31

√ Time (hh:mm:ss) Alarm

Optionen: [hh], [mm] und [ss] eintragen

✓ Primary IDE 0

Optionen: Enabled / Disabled

✓ Primary IDE 1

Optionen: Enabled / Disabled

✓ Secondary IDE 0

Optionen: Enabled / Disabled

✓ Secondary IDE 1

Optionen: Enabled / Disabled

✓ FDD,COM,LPT Port

Optionen: Enabled / Disabled

✓ PCI PIRQ[A-D]#

Optionen: Enabled / Disabled

✓ HPET Support

Optionen: Enabled / Disabled

✓ HPET Mode

Optionen: 32-bit mode / 64-bit mode

4.8 PnP/PCI Configuration

Phoenix - AwardBIOS CMOS Setup Utility PNP/PCI Configurations

	[PCI Slot]	Item Help
Reset Configuration Data	[Disabled]	Teem nerp
December Controlled Du	[Manual]	
Resources Controlled By IRQ Resources	[Manual] [Press Enter]	
ING Nesources	[IICSS EliceI]	
PCI/VGA Palette Snoop	[Disabled]	
** PCI Express relative	items **	
Maximum Payload Size	[128]	

11--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ Init Display First

Optionen: PCI Slot / Onboard

✓ Reset Configuration Data

Optionen: Enabled / Disabled

√ Resources Controlled By

Optionen: Auto(ESCD) / Manual

✓ IRQ Resources

Untermenü: siehe "IRQ Resources" (Seite 63)

✓ PCI/VGA Palette Snoop

Optionen: Enabled / Disabled

√ Maximum Payload Size

Optionen: 128 / 256 / 512 / 1024 / 2048 / 4096

(Hinweis: Die Intel®-Chipsätze 945GM und SCH US15W unterstützen nur eine MPL von 128B)

4.8.1 IRQ Resources

Phoenix - AwardBIOS CMOS Setup Utility
TRO Resources

			IRQ Resour	. CC3	
IRQ-3	assigned	to	[PCI	Device]	Item Help
IRQ-4	assigned	to	[PCI	Device]	rtem neip
IRQ-5	assigned	to	[PCI	Device]	
IRQ-7	assigned	to	[PCI	Device]	
IRQ-9	assigned	to	[PCI	Device]	
IRQ-10	assigned	to	[PCI	Device]	
IRQ-11	assigned	to	[PCI	Device]	
IRQ-12	assigned	to	[PCI	Device]	
IRQ-14	assigned	to	[PCI	Device]	
IRQ-15	assigned	to	[PCI	Device]	

11--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

√ IRQ-3 assigned to

Optionen: PCI Device / Reserved

✓ IRQ-4 assigned to

Optionen: PCI Device / Reserved

√ IRQ-5 assigned to

Optionen: PCI Device / Reserved

√ IRQ-7 assigned to

Optionen: PCI Device / Reserved

√ IRQ-9 assigned to

Optionen: PCI Device / Reserved

√ IRQ-10 assigned to

Optionen: PCI Device / Reserved

✓ IRQ-11 assigned to

Optionen: PCI Device / Reserved

✓ IRQ-12 assigned to

Optionen: PCI Device / Reserved

✓ IRQ-14 assigned to

Optionen: PCI Device / Reserved

√ IRQ-15 assigned to

Optionen: PCI Device / Reserved

4.9 PC Health Status

Phoenix - AwardBIOS CMOS Setup Utility
PC Health Status

	IC HEATCH Status	
On Die Digital Temp.	41°C/105°F	T+om Holm
Temp. Board	38°C	Item Help
Temp. DDR	43°C	
CPU Core	1.20V	
GMCH Core	1.05V	
CPU VTT	1.02V	
Memory 1.8 V	1.84V	
+3.3 V	3.29V	
+5.0 V	4.99V	
+1.5 V	1.50V	
-5 V / -12 V	-4.92V -11.64V	
12 V / DDR VTT	12.31V 0.91V	
S3.3 V / S1.2 V	3.31V 1.20V	
VBatt	3.28V	
Fan1 / 2 Speed	4166 RPM 0 RPM	
Board Revision	1	

14--:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ On Die Digital Temp.

Optionen: keine

√ Temp. Board

Optionen: keine

✓ Temp. DDR

Optionen: keine

✓ CPU Core

Optionen: keine

✓ GMCH Core

Optionen: keine

✓ CPU VTT

Optionen: keine

✓ Memory 1.8 V

Optionen: keine

✓ +3.3 V

Optionen: keine

✓ +5.0 V

Optionen: keine

✓ +1.5 V

Optionen: keine

✓ -5 V / -12 V

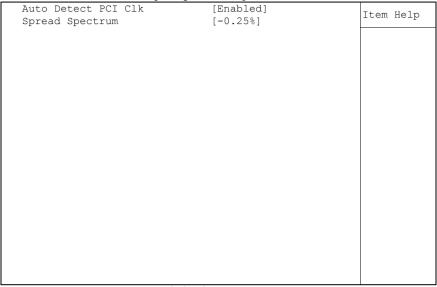
Optionen: keine

√ 12 V / DDR VTT

✓ S3.3 V / S1.2 V

Optionen: keine

√ VBatt


Optionen: keine

✓ Fan1 / 2 Speed Optionen: keine

✓ Board Revision

4.10 Frequency/Voltage Control

Phoenix - AwardBIOS CMOS Setup Utility Frequency / Voltage Control

† : Move Enter: Select +/-/PU/PD: Value F10: Save ESC: Exit F1: Help F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

✓ Auto Detect PCI Clk

Optionen: Enabled / Disabled

√ Spread Spectrum

Optionen: Disabled / -0.25% / -0.5% / -0.75% / -1% / +-0.125% / +-0.25% / +-0.375% / +-0.5%

4.11 Load Fail-Safe Defaults

Wird diese Option gewählt, so wird das letzte funktionsfähige Setup aus dem Flash geladen. Funktionsfähig heißt, dass diese Setup-Einstellungen bereits zu einem erfolgreichen Booten geführt haben.

Bei der allerersten BIOS-Setup-Einstellung werden damit sichere Werte für das Setup geladen, die das Board zum Booten bringen. Dieser Zustand wird auch wieder erreicht, wenn das Board mit dem dazugehörigen Flash-Programm und den notwendigen Parametern neu programmiert wird.

4.12 Load Optimized Defaults

Diese Option verhält sich analog zu "Load Fail-Safe Defaults" (s. o.). Bei der ersten BIOS-Setup-Einstellung werden damit optimierte Werte für das Setup geladen, die das Board zum Booten bringen sollten. Dieser Zustand wird auch wieder erreicht, wenn das Board mit dem dazugehörigen Flash-Programm und den notwendigen Parametern neu programmiert wird.

4.13 Set Password

Hier kann ein BIOS-Passwort vergeben werden, das Unbefugten die Möglichkeit zu einer Veränderung von BIOS-Einstellungen verwehrt. Diese Option verursacht in der Praxis die meisten Probleme, weil die Passwörter oft vergessen werden.

4.14 Save & Exit Setup

Mit dieser Option werden die Einstellungen inklusive aller Änderungen gespeichert und das Setup beendet.

4.15 Exit Without Saving

Durch Auswahl dieses Menüpunktes wird das Setup verlassen, ohne dass die vorgenommenen Änderungen gespeichert werden.

Kapitel: BIOS-Update Exit Without Saving

5 BIOS-Update

Wenn ein Update des BIOS vorgenommen werden soll, dann wird hierzu das Programm "AWDFLASH.EXE" der Firma Phoenix benutzt. Dabei ist es wichtig, dass das Programm aus einer DOS Umgebung ohne einen virtuellen Speichermanager wie zum Beispiel "EMM386.EXE" gestartet wird. Sollte ein solcher Speichermanager geladen sein, wird das Programm mit einer Fehlermeldung abbrechen oder einen Absturz verursachen.

Während des Flash-Vorgangs darf das System auf keinen Fall unterbrochen werden, da sonst das Update abbricht und anschließend das BIOS auf dem Board zerstört ist.

Das Programm sollte wie folgt gestartet werden:

awdflash [biosfilename] /sn /cc /cp

/sn Aktuelles BIOS nicht sichern

/cc Löschen des CMOS

/cp Löschen der PnP-Information

Das Löschen von CMOS, DMI und PnP wird dringend empfohlen. Dies gewährleistet, dass das neue BIOS korrekt funktioniert und alle Chipsetregister, die im Setup gespeichert waren, durch das BIOS neu initialisiert werden. Das DMI sollte nur gelöscht werden (Option /cd), wenn der BIOS-Lieferant dies ausdrücklich empfiehlt.

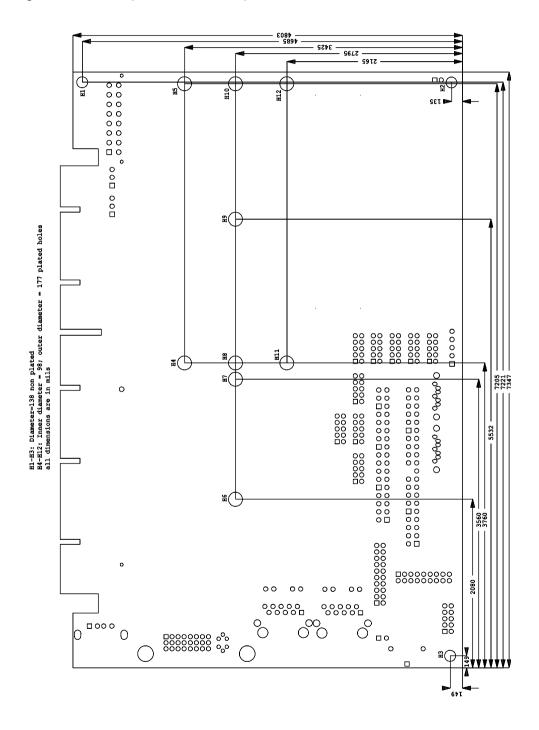
Eine komplette Beschreibung aller gültigen Parameter wird durch Starten des Programmes mit dem Parameter "/?" dargestellt.

Um das BIOS-Update automatisch ablaufen zu lassen, muss der Parameter "/py" angefügt werden. Dieser umgeht alle Sicherheitsabfragen zum Programmieren.

ACHTUNG

Wenn das BIOS-Update fehlerhaft durchgeführt wird, kann das Board dadurch unbenutzbar werden. Deshalb sollte ein BIOS-Update nur gemacht werden, wenn die Korrekturen/Ergänzungen, die die neue BIOS-Version mitbringt, auch wirklich benötigt werden.

ACHTUNG

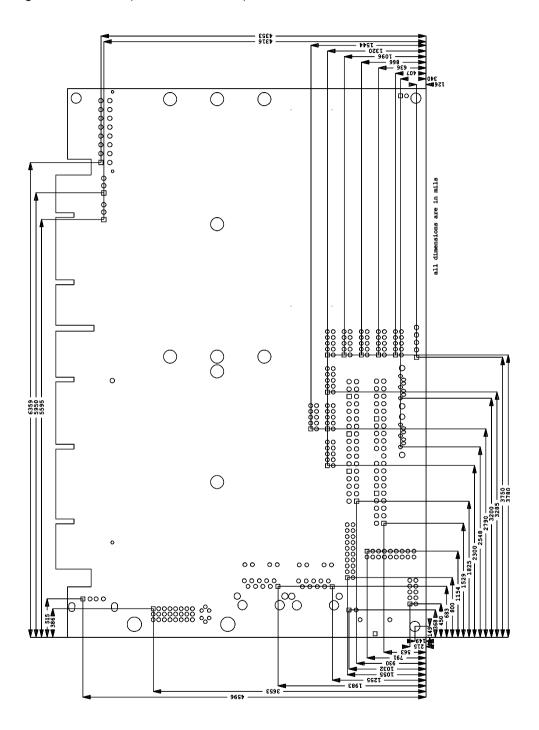

Vor einem geplanten BIOS-Update muss unbedingt sichergestellt werden, dass die BIOS-Datei, die neu eingespielt werden soll, wirklich für genau dieses Board und für genau diese Boardversion herausgegeben wurde. Wenn eine ungeeignete Datei verwendet wird, dann führt dies unweigerlich dazu, dass das Board anschließend nicht mehr startet.

6 Mechanische Zeichnung

6.1 Leiterplatte: Bohrungen

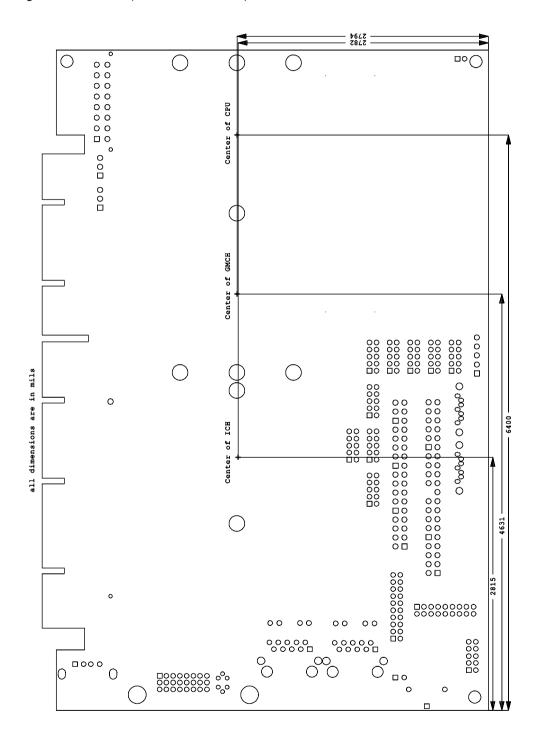
i HINWEIS

Alle Maßangaben sind in mil (1 mil = 0,0254 mm)



6.2 Leiterplatte: Pin1-Abstände

HINWEIS


Alle Maßangaben sind in mil (1 mil = 0,0254 mm)

6.3 Leiterplatte: Die-Mittelpunkte

i HINWEIS

Alle Maßangaben sind in mil (1 mil = 0,0254 mm)

7 Technische Daten

7.1 Elektrische Daten

Spannungsversorgung:

Board: +5V, -5V, +12V, -12V (+/-5%)

RTC: >= 3 Volt

Stromverbrauch:

Board: tbd

RTC: $\leq 10\mu A$

7.2 Umgebungsbedingungen

Temperaturbereich:

Operating: 0°C bis +60°C (erw. Temperaturbereich auf Anfrage)

Lagerung: -25°C bis +85°C

Versand: -25°C bis +85°C, für verpackte Boards

Temperaturänderungen:

Operating: 0,5°C pro Minute, 7,5°C in 30 Minuten

Lagerung: 1,0°C pro Minute

Versand: 1,0°C pro Minute, für verpackte Boards

Relative Luftfeuchte:

Operating: 5% bis 85% (nicht kondensierend)

Lagerung: 5% bis 95% (nicht kondensierend)

Versand: 5% bis 100% (nicht kondensierend), für verpackte Boards

Stoß:

Operating: 150m/s², 6ms Lagerung: 400m/s², 6ms

Versand: 400m/s², 6ms, für verpackte Boards

Vibrationen:

Operating: 10 bis 58Hz, 0,075mm Amplitude

58 bis 500Hz, 10m/s²

Lagerung: 5 bis 9Hz, 3,5mm Amplitude

9 bis 500Hz, 10m/s²

Versand: 5 bis 9Hz, 3,5mm Amplitude

9 bis 500Hz, 10m/s², für verpackte Boards

ACHTUNG

Die Angaben zu Stoß- und Vibrationsfestigkeit beziehen sich auf das reine Motherboard ohne Kühlkörper, Speicherriegel, Verkabelungen usw.

7.3 Thermische Spezifikationen

Das Board ist spezifiziert für einen Umgebungstemperaturbereich von 0°C bis +60°C (erw. Temperaturbereich auf Anfrage). Zusätzlich muss darauf geachtet werden, dass die Temperatur des Prozessor-Dies 100°C nicht überschreitet. Hierfür muss ein geeignetes Kühlkonzept realisiert werden, das sich an der maximalen Leistungsaufnahme des Prozessors/Chipsatzes orientiert. Zu beachten ist dabei auch, dass eventuell vorhandene Kontroller im Kühlkonzept Berücksichtigung finden. Die Leistungsaufnahme dieser Bausteine liegt unter Umständen in der gleichen Größenordnung wie die Leistungsaufnahme des stromsparenden Prozessors.

Das Board ist durch geeignete Bohrungen für den Einsatz moderner Kühl-Lösungen vorbereitet. Wir haben eine Reihe von kompatiblen Kühl-Komponenten im Programm. Ihr Distributor berät Sie gerne bei der Auswahl geeigneter Lösungen.

ACHTUNG

Es liegt im Verantwortungsbereich des Endkunden, dass die Die-Temperatur des Prozessors 100°C nicht überschreitet! Eine dauerhafte Überhitzung kann das Board zerstören!

Für den Fall, dass die Temperatur 100°C überschreitet, muss die Umgebungstemperatur reduziert werden. Unter Umständen muss für eine ausreichende Luftzirkulation Sorge getragen werden.

Kapitel: Technische Daten

8 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff-Produkten und -Systemlösungen zur Verfügung stellt.

8.1 Beckhoff-Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff-Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- weltweiter Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff-Systemkomponenten

Hotline: +49(0)5246/963-157 Fax: +49(0)5246/963-9157 E-Mail: support@beckhoff.com

8.2 Beckhoff-Service

Das Beckhoff-Service-Center unterstützt Sie rund um den After-Sales-Service:

- Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- Hotline-Service

Hotline: +49(0)5246/963-460 Fax: +49(0)5246/963-479 E-Mail: service@beckhoff.com

8.3 Beckhoff-Firmenzentrale

Beckhoff Automation GmbH Eiserstr. 5 33415 Verl Deutschland

Telefon: +49(0)5246/963-0
Fax: +49(0)5246/963-198
E-Mail: info@beckhoff.de
Web www.beckhoff.de

Weitere Support- und Serviceadressen finden Sie auf unseren Internetseiten unter http://www.beckhoff.de. Dort finden Sie auch weitere Dokumentationen zu Beckhoff-Komponenten.

I Anhang: Post-Codes

Code	Beschreibung
01h	Der Xgroup-Programmcode wird ab Adresse 1000:0 in den Arbeitsspeicher geschrieben
03h	Initialisiere Variable/Routine "Superio_Early_Init".
05h	1. Bildschirm löschen
	2. CMOS error flag löschen
07h	1. Löschen der 8042 (Tastaturkontroller) Interface-Register
	2. Initialisierung und Selbsttest des 8042 (Tastaturkontroller)
08h	Test spezieller Tastaturkontroller (Winbond 977 Super I/O Chip-Serie).
	Aktivierung der Tastatur-Interfaceregister
0Ah	1. Ausschalten der PS/2-Maus-Schnittstelle (wahlweise).
	2. Auto-Erkennung der Anschlüsse für Tastatur und Maus, optional: Tausch der PS/2-Ports &
	-Schnittstellen
0Eh	Test des F000h-Speichersegments (Read/Write-Fähigkeit). Bei Fehler: Signaltonausgabe über
	den Lautsprecher.
10h	Auto-Erkennung des Flash-Rom-Typ und Laden des passenden Schreib-/Lese-Programms in
401	das Run-Time-Speichersegment F000 (wird für ESCD-Daten & den DMI-Pool-Support benötigt).
12h	Interface-Test der CMOS RAM-Logik ("walking 1's"-Algorithmus). Setzen des Power Status der
14h	Echtzeituhr (RTC), danach Test auf Registerüberlauf.
1411	Initialisierung des Chipsatzes mit den Default-Werten. Diese können von OEM-Kunden per Software (MODBIN) verändert werden.
16h	Initialisiere Variable/Routine "Early_Init_Onboard_Generator".
18h	CPU-Autoerkennung (Hersteller, SMI Typ (Cyrix oder Intel), CPU-Klasse (586 oder 686)).
1Bh	Initialisierung der Interrupt-Zeigertabelle. Wenn nicht anders vorgegeben, zeigen die
IDII	Hardware-Interrupts auf SPURIOUS_INT_HDLR und die Software-Interrupts auf
	SPURIOUS_soft_HDLR.
1Dh	Initialisiere Variable/Routine EARLY_PM_INIT.
1Fh	Tastatur-Tabelle laden (Notebooks)
21h	Initialisierung des Hardware Power Managements (HPM) (Notebooks)
23h	1. Gültigkeit der RTC-Werte testen. (Beispiel: "5Ah" ist ein ungültiger Wert für eine RTC-Minute).
_0	2. Lade die CMOS-Werte in den BIOS Stackbereich. Bei CMOS-Checksummenfehler werden die
	Default-Werte geladen.
	3. Vorbereiten der BIOS 'resource map' für die PCI & Plug and Play-Konfiguration. If ESCD is
	valid, take into consideration of the ESCD's legacy information.
	4. Initialisiere den Onboard-Taktgenerator. Taktabschaltung bei nicht genutzten PCI- und
	DIMM-Slots.
	5. Erste Initialisierung der PCI-Devices: PCI Bus-Nummern vergeben, Memory & I/O Ressourcen
	zuweisen, nach funktionsfähigem VGA-Kontroller und VGA-BIOS suchen, letzteres in
27h	Speichersegment C000:0 kopieren (Video ROM Shadow). Initialisiere Pufferspeicher für INT 09
2711 29h	Programmiere CPU (interne MTRR bei P6 und PII) für den ersten Memory-Adressbereich
2911	(0-640K).
	2. Initialisierung des APIC bei CPUs der Pentium-Klasse.
	3. Programmiere den Chipsatz gemäß den Einstellungen des CMOS-Setup (Beispiel: Onboard
	IDE-Kontroller).
	4. Messen der CPU-Taktrate.
	5. Initialisiere das Video BIOS.
2Dh	Initialisiere die "Multi-Language"-Funktion des BIOS
	2. Bildschirm-Ausgabe, z. B. Award-Logo, CPU-Typ und -Taktrate
33h	Tastatur-Reset (außer Super I/O Chips der Winbond-977-Serie).
3Ch	Teste den 8254 (Timer-Baustein)
3Eh	Teste die Interrupt-Maskenbits von IRQ-Kanal 1 des 8259-Interrupt-Kontrollers.
40h	Teste die Interrupt-Maskenbits von IRQ-Kanal 2 des 8259-Interrupt-Kontrollers.
43h	Testen der Funktionen des Interrupt-Kontrollers (8259).
47h	Initialisiere EISA-slot (wenn vorhanden).

Code	Beschreibung
49h	1. Bestimmung der gesamten Speichergröße durch Überprüfung des letzten 32-Bit double word
	jedes 64k-Speichersegments.
	2. Programmiere "write allocation" bei AMD K5-CPUs.
4Eh	1. Programmiere MTRR bei M1 CPUs
	2. Initialisiere Level 2-Cache bei CPUs der P6-Klasse, einschließlich Setzen der "cacheable
	range" des Arbeitsspeichers.
	3. Initialisiere APIC bei CPUs der P6-Klasse.
	4. Nur Multiprozessor-Systeme (MP platform): Einstellen der "cacheable range" auf den jeweils
= 0.1	kleinsten Wert (für den Fall nicht-identischer Werte).
50h	Initialisiere USB-Schnittstelle
52h	Testen des gesamten Arbeitsspeichers und Löschen des Extended Memory (auf "0" setzen)
55h	Nur Multiprozessor-Systeme (MP platform): Anzahl der CPUs anzeigen.
57h	1. Plug and Play Logo anzeigen
	2. Erste ISA Plug and Play-Initialisierung - CSN-Zuweisung für jedes erkannte ISA Plug and
	Play-Device.
59h 5Bh	Initialisiere TrendMicro Anti-Virus Programmcode.
SBII	(Optional:) Anzeigen der Möglichkeit zum Starten von AWDFLASH.EXE (Flash ROM-Programmierung) von der Festplatte.
5Dh	Initialisiere Variable/Routine Init Onboard Super IO.
ווטטו	2. Initialisiere Variable/Routine Init_Onboard_AUDIO.
60h	Freigabe zum Starten des CMOS-Setup (d.h. vor dieser Stufe des POST können User nicht in
0011	das BIOS-Setup gelangen).
65h	Initialisierung der PS/2 Maus.
67h	Informationen über die Größe des Arbeitsspeichers für Funktionsaufruf (INT 15h mit AX-Reg. =
	E820h).
69h	Level 2 Cache einschalten
6Bh	Programmieren der Chipsatz-Register gemäß BIOS-Setup und Auto-Erkennungstabelle.
6Dh	1. Zuweisung der Ressourcen für alle ISA Plug and Play Devices.
	2. Zuweisung der Portadresse für Onboard COM-Ports (nur bei im Setup eingestellter
	automatischer Zweigung).
6Fh	1. Initialisierung des Floppy-Controllers.
	2. Programmierung aller relevanten Register und Variablen (Floppy und Floppy-Kontroller).
73h	Optionales Feature:
	Aufruf von AWDFLASH.EXE wenn:
	- das Programm AWDFLASH wurde auf einer Diskette im Floppy-Laufwerk gefunden.
756	- die Tastenkombination ALT+F2 wurde gedrückt.
75h 77h	Erkennung und Installation der IDE-Laufwerke: HDD, LS120, ZIP, CDROM
7/11 7Ah	Erkennung der seriellen und parallelen Ports. Co-Prozessor wird erkannt und aktiviert.
7Fh	Umschalten in den Textmodus, Logo-Ausgabe wird unterstützt.
7 511	- Anzeige eventuell aufgetretener Fehler. Warten auf Tastatureingabe.
	- Keine Fehler aufgetreten bzw. Taste F1 wurde gedrückt (weiter):
	Löschen des EPA-Logos oder des eigenen Logos.
82h	Zeiger zum "Chipsatz Power Management" aufrufen.
	Text-Font des EPA-Logos laden (nicht bei Vollbildausgabe des Logos)
	3. Falls ein Passwort gesetzt ist, wird es hier abgefragt.
83h	Speicherung der Daten im Stack, zurück zum CMOS.
84h	Initialisierung von ISA-Plug-and-Play-Bootlaufwerken (auch Boot-ROMs)
85h	Endgültige Initialisierung des USB-Hosts.
	2. Bei Netzwerk-PCs (Boot-ROM): Aufbau der SYSID-Strukturtabelle
	Bildschirmdarstellung in Textmode zurückschalten
	4. ACPI-Tabelle initialisieren (top of memory).
	5. ROMs auf ISA-Karten initialisieren und einbinden
	6. Zuweisung der PCI-IRQs
	7. Initialisierung des Advanced Power Managements (APM)
	8. IRQ-Register zurücksetzen.

Code	Beschreibung
93h	Einlesen des Festplatten-Bootsektors zur Überprüfung durch das interne Antivirenprogramm (Trend Anti-Virus Code)
94h	 Aktivieren des Level 2 Cache Einstellen der Taktrate während des Bootvorgangs Endgültige Chipsatz-Initialisierung. Endgültige Power Management-Initialisierung. Bildschirm löschen und Übersichtstabelle ("rechteckiger Kasten") anzeigen. Programmiere "write allocation" bei K6-CPUs (AMD) Programmiere "write combining" bei P6-CPUs (INTEL)
95h	Programmiere Sommer-/Winterzeitumschaltung Einstellungen von Tastatur-LED und -Wiederholrate aktualisieren
96h	Multiprozessor-System: MP-Tabelle erstellen ESCD-Tabelle erstellen und aktualisieren Jahrhundert-Einstellung im CMOS (20xx or 19xx) korrigieren DOS-Systemtimer mit CMOS-Zeit synchronisieren MSIRQ-Routing Tabelle erstellen.
C0h	Chipsatz-Initialisierung: - Shadow RAM ausschalten - L2 Cache (Sockel 7 oder älter) ausschalten - Chipsatz-Register initialisieren
C1h	Speichererkennung: Auto-Erkennung von DRAM Größe, Typ und Fehlerkorrektur (ECC oder keine) Auto-Erkennung der L2-Cachegröße (Sockel 7 oder älter)
C3h	Entpacken des komprimierten BIOS-Programmcodes in den Arbeitsspeicher.
C5h	Kopieren des BIOS-Programmcodes ins Shadow-RAM (Segmente E000 & F000) via Zeiger-Aufruf (chipset hook).
CFh	Test der CMOS Read/Write-Funktionalität
FFh	Bootversuch über Boot-Loader-Routine (Software-Interrupt INT 19h)

II Anhang: Ressourcen

IO-Bereich

Die verwendeten Ressourcen sind abhängig von der Setup-Einstellung.

Bei den aufgeführten Bereichen handelt es sich um feststehende IO-Bereiche die durch AT-Kompatibilität gegeben sind. Es werden weitere IO-Bereiche benutzt, die durch die Plug&Play-Funktion des BIOS während der Boot-Phase dynamisch vergeben werden.

Adresse	Funktion
0-FF	Reservierter IO-Bereich für das Board
170-17F	IDE2
1F0-1F7	IDE1
200-20F	Gameport
278-27F	LPT2
2E8-2EF	COM4
2F8-2FF	COM2
370-377	FDC2
378-37F	LPT1
3BC-3BF	LPT3
3E8-3EF	COM3
3F0-3F7	FDC1
3F8-3FF	COM1

Memory-Bereich

Die verwendeten Ressourcen sind abhängig von der Setup-Einstellung.

Wenn der gesamte Bereich durch Option-ROM's belegt wird, können diese Funktionen nicht mehr aktiviert werden bzw. funktionieren nicht mehr.

Adresse	Funktion
A0000-BFFFF	VGA-RAM
C0000-CFFFF	VGA-BIOS
D0000-DFFFF	AHCI BIOS / RAID / PXE (falls verfügbar)
E0000-EFFFF	System-BIOS während des Bootvorgangs
F0000-FFFFF	System-BIOS

Interrupt

Die verwendeten Ressourcen sind abhängig von der Setup-Einstellung.

Die aufgeführten Interrupts und deren Benutzung sind durch die AT-Kompatibilität gegeben. Wenn Interrupts exklusiv auf der ISA-Seite zur Verfügung stehen müssen, sind diese durch das BIOS-Setup zu reservieren. Auf der PCI-Seite ist die Exklusivität nicht gegeben und auch nicht möglich.

Adresse	Funktion
IRQ0	Timer
IRQ1	PS/2 Tastatur
IRQ2 (9)	(COM3)
IRQ3	COM1
IRQ4	COM2
IRQ5	(COM4)
IRQ6	FDC
IRQ7	LPT1

Adresse	Funktion
IRQ8	RTC
IRQ9	
IRQ10	
IRQ11	
IRQ12	PS/2 Maus
IRQ13	FPU
IRQ14	IDE Primary
IRQ15	(IDE Secondary)

PCI-Devices

Die hier aufgeführten PCI-Devices sind alle auf dem Board vorhandenen inklusive der, die durch das BIOS erkannt und konfiguriert werden. Durch Setup-Einstellungen des BIOS kann es vorkommen, dass verschiedene PCI-Devices oder Funktionen von Devices nicht aktiviert sind. Wenn Devices deaktiviert werden, kann sich dadurch bei anderen Devices die Bus-Nummer ändern.

AD	INTA	REQ	PCI	Dev.	Fkt.	Kontroller / Slot
16	-	-	0	0	0	Host Bridge (GMCH) ID27AC
18	Α	-	0	2	0	VGA Graphics (GMCH) ID27AE
12	(A)	-	0	28	0	PCI Express Port 1 (ICH)
12	(B)	-	0	28	1	PCI Express Port 2 (ICH)
12	(C)	-	0	28	2	PCI Express Port 3 (ICH)
12	(D)	-	0	28	3	PCI Express Port 4 (ICH)
12	(A)	-	0	28	4	PCI Express Port 5 (ICH)
12	(B)	-	0	28	5	PCI Express Port 6 (ICH)
13	(A)	-	0	29	0	USB UHCI Controller #1 (ICH) ID27C8
13	(B)	-	0	29	1	USB UHCI Controller #2 (ICH) ID27C9
13	(C)	-	0	29	2	USB UHCI Controller #3 (ICH) ID27CA
13	(D)	-	0	29	3	USB UHCI Controller #4 (ICH) ID27CB
13	(A)	-	0	29	7	USB 2.0 EHCl Controller (ICH) ID27CC
14	-	-	0	30	0	PCI-to-PCI Bridge (ICH) ID244E
14	(A)	-	0	30	2	AC '97 Audio Controller (ICH) ID27DE
14	(B)	-	0	30	3	AC '97 Modem Controller (ICH)
15	-	-	0	31	0	LPC Controller (ICH) ID27B8
15	(A)	-	0	31	1	IDE Controller (ICH) ID27DF
15	(B)	-	0	31	2	SATA Controller (ICH)
15	(B)	-	0	31	3	SMBus Controller (ICH) ID27DA
19	Α	0?	m	3		Externer Slot 1 (PISA backplane)
20	D?	1?	m	4		Externer Slot 2 (PISA backplane)
21	C?	2?	m	5		Externer Slot 3 (PISA backplane)
22	B?	3?	m	6		Externer Slot 4 (PISA backplane)
23	?	4	m	7		Externer Slot mPCI
24	(E)	-	n	8	0	LAN Intel 82562GZ (ICH) ID27DC

Ressourcen: SMB-Devices

Die folgende Tabelle listet die reservierten SM-Bus-Device-Adressen in 8-Bit-Schreibweise auf. Diese Adressbereiche dürfen auch dann nicht von externen Geräten benutzt werden, wenn die in der Tabelle zugeordnete Komponente auf dem Motherboard gar nicht vorhanden ist.

Adresse	Funktion
10-11	Standard-Slave-Adresse
40-41	GPIO
60-61	Reserviert vom BIOS

Anhang: Ressourcen

Adresse	Funktion
70-73	POST-Code Output
88-89	Vom BIOS definierte Slave-Adresse
A0-A1	DIMM 1
A2-A3	DIMM 2
A4-AF	Reserviert vom BIOS
B0-BF	Reserviert vom BIOS
D2-D3	Clock