Handbuch

CX9020

Embedded-PC

Version: 2.2
Datum: 22.07.2019
Inhaltsverzeichnis

1 Hinweise zur Dokumentation .. 5
 1.1 Symbolerklärung ... 6
 1.2 Weiterführende Dokumente .. 7
 1.3 Ausgabestände der Dokumentation .. 7

2 Zu Ihrer Sicherheit .. 8
 2.1 Bestimmungsgemäße Verwendung ... 8
 2.2 Personalqualifikation .. 9
 2.3 Sicherheitshinweise ... 9

3 Transport und Lagerung .. 11

4 Produktübersicht .. 12
 4.1 Aufbau des Embedded-PCs CX9020 ... 13
 4.2 Typenschild .. 14
 4.3 Ausführungen .. 15
 4.4 Architekturübersicht .. 16

5 Beschreibung der Schnittstellen .. 17
 5.1 USB (X100, X101, X102, X103) ... 17
 5.2 Ethernet RJ45 (X000, X001) ... 18
 5.3 DVI-D (X200) .. 19
 5.4 Optionale Schnittstellen ... 20
 5.4.1 Audioschnittstelle (N020) .. 20
 5.4.2 RS232 (N030) ... 21
 5.4.3 RS422/RS485 (N031) ... 22
 5.4.4 EtherCAT-Slave (B110) .. 23
 5.4.5 PROFIBUS (x310) .. 24
 5.4.6 CANopen (x510) ... 25
 5.4.7 PROFINET RT (x930) .. 26

6 Inbetriebnahme ... 27
 6.1 Montage ... 27
 6.1.1 Zulässige Einbaulagen beachten .. 27
 6.1.2 Auf Tragschiene befestigen .. 29
 6.1.3 MicroSD-Karte ein- und ausbauen ... 30
 6.1.4 Passive EtherCAT-Klemmen montieren ... 31
 6.2 Spannungsversorgung anschließen .. 32
 6.3 Einschalten .. 34
 6.4 Ausschalten ... 34

7 Konfiguration .. 35
 7.1 Windows Embedded Compact 7 ... 35
 7.1.1 Audioschnittstelle (N020) einstellen .. 35
 7.2 Beckhoff Device Manager .. 36
 7.2.1 Beckhoff Device Manager starten .. 36
 7.2.2 Remote Display aktivieren .. 37
 7.3 TwinCAT .. 38
 7.3.1 Strukturansicht .. 38
Inhaltsverzeichnis

7.3.2 Zielsysteme suchen .. 39
7.3.3 Embedded-PC anfügen .. 41

8 NOVRAM .. 42
8.1 Unter TwinCAT 3 verwenden .. 43
8.1.1 Retain-Handler anlegen .. 43
8.1.2 Variablen anlegen und verknüpfen .. 45
8.1.3 Schreibgeschwindigkeit des Retain-Handlers beachten ... 47
8.1.4 Variablen unter dem Retain-Handler löschen .. 48

9 1-Sekunden-USV (Persistente Daten) ... 49
9.1 FB_S_UPS_CX9020_U900 .. 50
9.2 Modus und Status des Funktionsbausteins ... 52
9.3 Gültigkeit der Variablen prüfen .. 53
9.3.1 SYSTEMINFOTYPE ... 53
9.3.2 PlcAppSystemInfo .. 55

10 Fehlerbehandlung und Diagnose ... 56
10.1 Diagnose-LEDs .. 56
10.2 LEDs der Netzteilklemme im K-Bus-Modus ... 57
10.3 LEDs der Netzteilklemme im E-Bus-Modus ... 60
10.4 Störungen .. 61

11 Pflege und Wartung .. 62
11.1 Batterie wechseln .. 62

12 Außerbetriebnahme ... 63
12.1 Leitungen entfernen ... 63
12.2 Embedded-PC demontieren ... 64

13 Technische Daten .. 65

14 Anhang .. 67
14.1 Zubehör .. 67
14.2 Zertifizierungen .. 68
14.3 Support und Service .. 69

Tabellenverzeichnis ... 70
Abbildungsverzeichnis ... 71
1 Hinweise zur Dokumentation

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Marken

Patente

Die EtherCAT Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente:

Die TwinCAT Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente:

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizensiert durch die Beckhoff Automation GmbH, Deutschland

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.
1.1 Symbolerklärung

In der Dokumentation werden folgende Symbole mit einem nebenstehenden Warnhinweis oder Hinweistext verwendet. Lesen und befolgen Sie die Warnhinweise.

Symbole, die vor Personenschäden warnen:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GEFAHR Akute Verletzungsgefahr
Beachten Sie diesen Warnhinweis. Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.</td>
</tr>
<tr>
<td></td>
<td>WARNUNG Verletzungsgefahr
Beachten Sie diesen Warnhinweis. Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.</td>
</tr>
<tr>
<td></td>
<td>VORSICHT Schädigung von Personen
Beachten Sie diesen Warnhinweis. Es besteht eine Gefährdung mit niedrigem Risikograd, die eine geringfügige oder mäßige Verletzung zur Folge haben kann.</td>
</tr>
</tbody>
</table>

Symbole, die vor Sachschäden warnen:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HINWEIS Schädigung von Geräten oder Umwelt
Beachten Sie diesen Warnhinweis. Umwelt und Geräte können geschädigt werden.</td>
</tr>
</tbody>
</table>

Symbole, die weitere Informationen oder Tipps anzeigen:

- **Tipp oder Fingerzeig**
Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.
1.2 Weiterführende Dokumente

Informationen zum Betrieb in explosionsgefährdeten Bereichen

Wichtige Informationen und Hinweise zum Betrieb des Embedded-PCs CX9020 in explosionsgefährdeten Bereichen, entnehmen Sie bitte aus der dazugehörigen Dokumentation. Lesen und befolgen Sie insbesondere die Sicherheitskapitel aus dieser Dokumentation:

http://www.beckhoff.de

<table>
<thead>
<tr>
<th>Dokumentationstitel</th>
<th>Hinweise zum Einsatz des CX9020 in explosionsgefährdeten Bereichen.</th>
</tr>
</thead>
</table>

Dokumentation aufbewahren

Diese Dokumentation ist Bestandteil des Embedded-PCs. Bewahren Sie die Dokumentation während der gesamten Nutzungsdauer in unmittelbarer Nähe auf. Stellen Sie sicher, dass die Dokumentation für das Personal jederzeit zugänglich bleibt. Geben Sie die Dokumentation an jeden nachfolgenden Benutzer weiter und stellen Sie darüber hinaus sicher, dass jede erhaltene Ergänzung in die Dokumentation mit aufgenommen wird.

1.3 Ausgabestände der Dokumentation

<table>
<thead>
<tr>
<th>Version</th>
<th>Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Vorläufige Version (Urfassung)</td>
</tr>
<tr>
<td>1.0</td>
<td>Erste Veröffentlichung</td>
</tr>
<tr>
<td>1.1</td>
<td>Hinweise zur SUPS hinzugefügt</td>
</tr>
<tr>
<td>1.2</td>
<td>Hinweise zur SUPS geändert</td>
</tr>
<tr>
<td>1.3</td>
<td>Bilder in Kapitel Batteriefach überarbeitet</td>
</tr>
<tr>
<td>1.4</td>
<td>Kapitel Technische Daten überarbeitet</td>
</tr>
<tr>
<td>1.5</td>
<td>Architekturübersicht hinzugefügt, Kapitel Ausführungen überarbeitet</td>
</tr>
<tr>
<td>1.6</td>
<td>Kapitel LAN-Anschlüsse überarbeitet</td>
</tr>
<tr>
<td>1.7</td>
<td>Kapitel NOVRAM hinzugefügt, Kapitel 1-Sekunden USV überarbeitet</td>
</tr>
<tr>
<td>1.8</td>
<td>Dokumentation neu strukturiert und überarbeitet</td>
</tr>
<tr>
<td>1.9</td>
<td>Hinweise zum Betrieb in explosionsgefährdeten Bereichen hinzugefügt.</td>
</tr>
<tr>
<td>2.0</td>
<td>Kapitel Beckhoff Device Manager überarbeitet</td>
</tr>
<tr>
<td>2.1</td>
<td>Kapitel „RS232 (N030)“ angepasst.</td>
</tr>
<tr>
<td>2.2</td>
<td>Kapitel „Spannungsversorgung“ angepasst.</td>
</tr>
</tbody>
</table>
Zu Ihrer Sicherheit

Lesen Sie das Sicherheitskapitel und halten Sie die Hinweise ein, um sich vor Personenschäden und Sachschäden zu schützen.

Haftungsbeschränkungen

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Eigenmächtige Umbauten und Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind verboten und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG. Darüber hinaus werden folgende Punkte aus der Haftung der Beckhoff Automation GmbH & Co. KG ausgeschlossen:

- Nichtbeachtung dieser Dokumentation.
- Nichtbestimmungsgemäße Verwendung.
- Einsatz von nicht ausgebildetem Fachpersonal.
- Verwendung nicht zugelassener Ersatzteile.

2.1 Bestimmungsgemäße Verwendung

Der Embedded-PC CX9020 ist ein Steuerungssystem und ist für die Montage auf einer Hutschiene in einem Schaltschrank oder Klemmkasten vorgesehen. Der Embedded-PC wird zusammen mit Busklemmen dazu benutzt, um digitale und analoge Signale von Sensoren aufzunehmen und an Aktoren auszugeben oder an übergeordnete Steuerungen weiterzuleiten.

Der Embedded-PC ist für ein Arbeitsumfeld entwickelt, welches der Schutzklasse IP20 genügt. Es besteht Fingerschutz und Schutz gegen feste Fremdkörper bis 12,5 mm, jedoch kein Schutz gegen Wasser. Der Betrieb der Geräte in nasser und staubiger Umgebung ist nicht gestattet, sofern nicht anders angegeben. Die angegebenen Grenzwerte für elektrische- und technische Daten müssen eingehalten werden.

In explosionsgefährdeten Bereichen

Für den Betrieb des Embedded-PCs in explosionsgefährdeten Bereichen der Zone 2/22, ist die Gerätemodifikation CX2900-0107 zwingend erforderlich. Die Gerätemodifikation beinhaltet einen ab Werk montierten Haltebügel zur mechanischen Sicherung der Steckverbinder.

Der Embedded-PC ist ausschließlich mit der Gerätemodifikation für folgende explosionsgefährdete Bereiche geeignet:

1. Für Bereiche der Zone 2, in denen Gas als brennbarer Stoff vorkommt. Zone 2 bedeutet, dass im Normalbetrieb eine explosionsfähige Atmosphäre normalerweise nicht, oder aber nur kurzzeitig auftritt.
2. Für Bereiche der Zone 22, in denen Staub als brennbarer Stoff vorkommt. Zone 22 bedeutet, dass die explosionsfähige Atmosphäre im Normalbetrieb in Form einer Wolke normalerweise nicht, oder aber nur kurzzeitig auftritt.

Nicht bestimmungsgemäße Verwendung

Der Embedded-PC ist nicht für den Betrieb in folgenden Bereichen geeignet:

- In explosionsgefährdeten Bereichen darf der Embedded-PC nicht in anderen Zonen außer 2/22 und nicht ohne passendes Gehäuse eingesetzt werden.
- In Bereichen mit einer aggressiven Umgebung, die z.B. mit aggressiven Gasen oder Chemikalien angereichert ist.
• Im Wohnbereich. Im Wohnbereich müssen die entsprechenden Normen und Richtlinien für Störaussendungen eingehalten und die Geräte in Gehäuse oder Schaltkästen mit entsprechender Schirmdämpfung eingebaut werden.

2.2 Personalqualifikation
Alle Arbeitsschritte an der Beckhoff Soft- und Hardware dürfen nur vom Fachpersonal mit Kenntnissen in der Steuerungs- und Automatisierungstechnik durchgeführt werden. Das Fachpersonal muss über Kenntnisse in der Administration des eingesetzten Embedded-PCs und des jeweils eingesetzten Netzwerks verfügen.

Alle Eingriffe müssen mit Kenntnissen in der Steuerungs-Programmierung durchgeführt werden und das Fachpersonal muss die aktuellen Normen und Richtlinien für das Automatisierungsumfeld kennen.

2.3 Sicherheitshinweise
Folgende Sicherheitshinweise müssen während der Montage, der Arbeit mit Netzwerken und der Arbeit mit Software beachtet werden.

Explosionsschutz
Für den Betrieb des Embedded-PCs in explosionsgefährdeten Bereichen der Zone 2/22, ist die Gerätemodifikation CX2900-0107 zwingend erforderlich. Die Gerätemodifikation beinhaltet die Modifikation und Relokation des Geräteaufklebers sowie einen ab Werk montierten Haltebügel zur mechanischen Sicherung der Steckverbinder.

WARNUNG

Betrieb ohne Gerätemodifikation
Ohne die Gerätemodifikation CX2900-0107 können die USB-Stecker durch Vibration aus den USB-Schnittstellen herausrutschen und eine Verpuffung oder Explosion auslösen.

Setzen Sie den Embedded-PC ausschließlich mit der Gerätemodifikation ein und befestigen Sie die USB-Stecker mit Kabelbindern an den Haltebügeln.

Die Optionsschnittstelle CXxxxx-N020 (Audio-Schnittstelle) darf nicht in explosionsgefährdeten Bereichen eingesetzt werden.

Achten Sie beim Gehäuse auf die Temperatur an den Einführungsstellen der Kabel. Wenn die Temperatur bei Nennbetrieb an den Einführungsstellen höher als 70°C oder an den Aderverzweigungsstellen höher als 80°C ist, müssen Kabel gewählt werden, die für diese höheren Temperaturen und den Betrieb im explosionsgefährdeten Bereich ausgelegt sind.

Halten Sie die vorgeschriebene Umgebungstemperatur im Betrieb ein. Die zulässige Umgebungstemperatur im Betrieb liegt bei 0°C ... +60°C.

Treffen Sie Maßnahmen, damit die Nennbetriebsspannung nicht durch kurzzeitige Störspannungen um mehr als 119 V überschritten wird.

Schalten Sie die Spannungsversorgung ab und stellen Sie sicher, dass es keine explosionsfähige Atmosphäre gibt, wenn Sie:
• Busklemmen anstecken oder entfernen,
• den Embedded-PC verkabeln oder Kabel an die Anschlüsse anstecken,
• die Frontklappe öffnen,
• die CFast-Karte, MicroSD-Karte oder Batterie wechseln.

Montage
• Arbeiten Sie nicht an Geräten unter Spannung. Schalten Sie immer die Spannungsversorgung für das Gerät ab bevor Sie es montieren, Störungen beheben oder Wartungsarbeiten durchführen. Sichern Sie das Gerät gegen ein unbeabsichtigtes Einschalten ab.
• Beachten Sie die Unfallverhütungsvorschriften, die für Ihre Maschine zutreffend sind (z.B. die BGV A 3, Elektrische Anlagen und Betriebsmittel).
• Achten Sie auf einen normgerechten Anschluss und vermeiden Sie Gefahren für das Personal. Verlegen Sie die Daten- und Versorgungsleitungen normgerecht und achten Sie auf die korrekte Anschlussbelegung.
• Beachten Sie die für Ihre Anwendung zutreffenden EMV-Richtlinien.
• Vermeiden Sie die Verpolung der Daten- und Versorgungsleitungen, da dies zu Schäden an den Geräten führen kann.
• In den Geräten sind elektronische Bauteile integriert, die Sie durch elektrostatische Entladung bei Berührung zerstören können. Beachten Sie die Sicherheitsmaßnahmen gegen elektrostatische Entladung entsprechend DIN EN 61340-5-1/-3.

Arbeiten mit Netzwerken
• Beschränken Sie den Zugriff zu sämtlichen Geräten auf einen autorisierten Personenkreis.
• Ändern Sie die standardmäßig eingestellten Passwörter und verringern so das Risiko, dass Unbefugte Zugriff erhalten. Ändern Sie regelmäßige die verwendeten Passwörter.
• Bringen Sie die Geräte hinter einer Firewall an.
• Wenden Sie die Vorgaben zur IT-Sicherheit nach der IEC 62443 an, um den Zugriff und die Kontrolle auf Geräte und Netzwerke einzuschränken.

Arbeiten mit der Software
• Verwenden Sie eine aktuelle Sicherheitssoftware. Die sichere Funktion des PCs kann durch Schadsoftware wie Viren oder Trojaner gefährdet werden.
• Die Empfindlichkeit eines PCs gegenüber Schadsoftware steigt mit der Anzahl der installierten bzw. aktiven Software.
• Deinstallieren oder deaktivieren Sie nicht benötigte Software.

Weitere Informationen zum sicheren Umgang mit Netzwerken und Software finden Sie im Beckhoff-Information System:
http://infosys.beckhoff.com

<table>
<thead>
<tr>
<th>Dokumentationstitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation about IPC Security</td>
</tr>
</tbody>
</table>

Version: 2.2 CX9020
3 Transport und Lagerung

Transport

<table>
<thead>
<tr>
<th>HINWEIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzschluss durch Feuchtigkeit</td>
</tr>
<tr>
<td>Feuchtigkeit kann sich bei Transporten in kalter Witterung oder bei extremen Temperaturunterschieden bilden.</td>
</tr>
</tbody>
</table>

Trotz des robusten Aufbaus sind die eingebauten Komponenten empfindlich gegen starke Erschütterungen und Stöße. Schützen Sie den Embedded-PC bei Transporten vor:

- großer mechanischer Belastung und
- benutzen Sie für den Versand die Originalverpackung.

Tab. 1: Gewicht und Abmessungen.

<table>
<thead>
<tr>
<th>CX9020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht</td>
</tr>
<tr>
<td>Abmessungen (B x H x T)</td>
</tr>
</tbody>
</table>

Lagerung

- Bei Lagertemperaturen oberhalb von 60 °C müssen Sie die Batterie aus dem Embedded-PC entnehmen. Lagern Sie die Batterie getrennt vom Embedded-PC in einer trockenen Umgebung bei einer Temperatur im Bereich von 0 °C bis 30 °C. Das voreingestellte Datum und die Uhrzeit gehen verloren, wenn Sie die Batterie entnehmen.
- Lagern Sie den Embedded-PC in der Originalverpackung.
4 Produktübersicht

Der Embedded-PC CX9020 ist ein vollwertiger PC und hat die folgende Grundausstattung:
- zwei MicroSD-Kartenslots,
- zwei geswitchte Gbit-Ethernet-Schnittstellen,
- vier USB-2.0-Schnittstellen,
- sowie eine DVI-D-Schnittstelle

Als Betriebssystem wird Microsoft Windows Embedded Compact 7 verwendet.

Der Embedded-PC verfügt intern über 128 kB NOVRAM als persistenten Datenspeicher. Bei einem Spannungsausfall werden wichtige Daten ins NOVRAM gespeichert und stehen nach einem Neustart wieder zur Verfügung.

Der Embedded-PC CX9020 kann ab Werk mit einer 1-Sekunden USV bestellt werden (CX9020-U900). Mit der 1-Sekunden-USV können dann bei einem Spannungsausfall bis zu 1 MB persistente Daten auf die MicroSD-Karte gespeichert werden.

Das CPU-Grundmodul kann ab Werk mit einer Optionsschnittstelle bestellt werden. Die Optionsschnittstelle kann nicht nachgerüstet werden.

Tab. 2: Verfügbare Optionsschnittstellen für den CX9020.

<table>
<thead>
<tr>
<th>CX9020-xxxx</th>
<th>Optionsschnittstellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX9020-N020</td>
<td>Audio-Schnittstelle, 3 x 3,5-mm-Klinkenstecker, Line-In, Mic-In, Line-Out</td>
</tr>
<tr>
<td>CX9020-N030</td>
<td>RS232, D-Sub-Stecker, 9-polig.</td>
</tr>
<tr>
<td>CX9020-N031</td>
<td>RS422/RS485, D-Sub-Buchse, 9-polig.</td>
</tr>
<tr>
<td>CX9020-B110</td>
<td>EtherCAT-Slave, EtherCAT IN und OUT (2 x RJ45).</td>
</tr>
<tr>
<td>CX9020-M310</td>
<td>PROFIBUS-Master, D-Sub-Buchse, 9-polig.</td>
</tr>
<tr>
<td>CX9020-B310</td>
<td>PROFIBUS-Slave, D-Sub-Buchse, 9-polig.</td>
</tr>
<tr>
<td>CX9020-M510</td>
<td>CANopen-Master, D-Sub-Stecker, 9-polig.</td>
</tr>
<tr>
<td>CX9020-B510</td>
<td>CANopen-Slave, D-Sub-Stecker, 9-polig.</td>
</tr>
<tr>
<td>CX9020-M930</td>
<td>PROFINET RT, Controller, Ethernet (2 x RJ-45).</td>
</tr>
<tr>
<td>CX9020-B930</td>
<td>PROFINET RT, Device, Ethernet (2 x RJ-45-Switch).</td>
</tr>
<tr>
<td>CX9020-B950</td>
<td>EtherNet/IP-Slave-Schnittstelle, Ethernet (2 x RJ45-Switch).</td>
</tr>
</tbody>
</table>

Netzteilklemme

Software

In Kombination mit der Automatisierungssoftware TwinCAT wird der Embedded-PC CX9020 zu einer leistungsfähigen IEC 61131-3 SPS. Es können bis zu vier virtuelle IEC 61131-CPUs, mit jeweils bis zu vier Tasks, programmiert werden. Alle IEC 61131-3-Sprachen sind nutzbar.

Ebenso stehen Funktionalitäten für den Bereich Motion Control zur Verfügung, wie z.B. einfache Punkt-zu-Punkt-Bewegungen.

Neben den in Echtzeit ausgeführten Steuerungsaufgaben sorgt die Verwaltung im TwinCAT-Echtzeitkern dafür, dass genügend Zeit für die Benutzeroberfläche (HMI) bleibt, die über Softwareschnittstellen, wie ADS oder OPC, mit den Echtzeitanteilen kommuniziert.
4.1 **Aufbau des Embedded-PCs CX9020**

Abb. 1: Aufbau des Embedded-PCs CX9020.

Tab. 3: **Legende zum Aufbau.**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Komponente</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optionsschnittstelle [X300].</td>
<td>Platz für Schnittstellen wie z.B. RS232, EtherCAT, CANopen oder andere. Die Optionsschnittstelle muss ab Werk vorbestellt werden und kann nicht nachträglich nachgerüstet werden.</td>
</tr>
<tr>
<td>2</td>
<td>DVI-D-Schnittstelle [X200].</td>
<td>Schnittstelle für einen Monitor oder Panel.</td>
</tr>
<tr>
<td>3</td>
<td>Batteriefach [X62] (unter der Frontklappe).</td>
<td>Spannungsversorgung für die batteriegepufferte Uhr für Zeit und Datum.</td>
</tr>
<tr>
<td>4</td>
<td>2x MicroSD-Kartenslot. [X301].</td>
<td>Steckplatz für industrietaugliche MicroSD-Karten.</td>
</tr>
<tr>
<td>5</td>
<td>Ethernet-Schnittstellen RJ45 [X000, X001].</td>
<td>Geswitchte Ethernet-Schnittstellen. Für den Anschluss an lokale Netzwerke oder Internet.</td>
</tr>
<tr>
<td>6</td>
<td>USB-Schnittstellen [X100, X101, X102, X103].</td>
<td>Schnittstellen für Peripheriegeräte wie Maus, Tastatur oder USB-Speicher.</td>
</tr>
<tr>
<td>8</td>
<td>Diagnose-LEDs. [X56].</td>
<td>Diagnose-LEDs für Spannungsversorgung, TwinCAT und für die Optionsschnittstelle.</td>
</tr>
<tr>
<td>9</td>
<td>Federkraftklemmen, +24 V und 0 V.</td>
<td>Spannungsversorgung für Embedded-PC.</td>
</tr>
<tr>
<td>11</td>
<td>Federkraftklemmen, +24 V</td>
<td>Spannungsversorgung für Busklemmen über Powerkontakt.</td>
</tr>
<tr>
<td>12</td>
<td>Federkraftklemmen, 0 V</td>
<td>Spannungsversorgung für Busklemmen über Powerkontakt.</td>
</tr>
<tr>
<td>13</td>
<td>Klemmenentriegelung</td>
<td>Löst die Netzteilklemme und damit den Embedded-PC von der Tragschiene.</td>
</tr>
<tr>
<td>14</td>
<td>Federkraftklemme, PE</td>
<td>Federkraftklemme für Powerkontakt PE.</td>
</tr>
<tr>
<td>15</td>
<td>Powerkontakte, +24 V, 0 V, PE</td>
<td>Powerkontakte für Busklemmen.</td>
</tr>
</tbody>
</table>
4.2 Typenschild

Auf dem Embedded-PC CX9020 befindet sich auf der linken Seite des Gehäuses ein Typenschild.

Abb. 2: CX9020 Typenschild.

Tab. 4: Legende zum Typenschild.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UL-Zulassung mit vorgeschriebenen Angaben zu Spannungsversorgung, Sicherung, Temperatur und Kabelquerschnitten.</td>
</tr>
<tr>
<td>2</td>
<td>Angaben zum Netzteil für die Spannungsversorgung, 24V DC und max. 4A.</td>
</tr>
</tbody>
</table>
| 4 | Angaben zu:
• Seriennummer,
• Hardwarestand,
• und Produktionsdatum. |
| 5 | Angaben zum Model. Die letzten vier Ziffern kodieren die Ausführung des Embedded-PCs. |
| 6 | Herstellerangaben inklusive Anschrift. |
| 7 | CE-Konform. |
| 8 | Windows Lizenzaufkleber (optional). |
4.3 Ausführungen

Abb. 3: Bezeichnungssystematik des Embedded-PCs CX9020.

Der Embedded-PC CX9020 ist mit folgenden Softwareoptionen erhältlich:

Tab. 5: CX9020 (1 GHz 1 Kern), Bestellangaben für Software.

<table>
<thead>
<tr>
<th>Modul</th>
<th>kein Betriebssystem</th>
<th>Windows Embedded Compact 7</th>
<th>kein TwinCAT</th>
<th>TwinCAT 2 PLC-Runtime</th>
<th>TwinCAT 2 NC-Runtime</th>
<th>TwinCAT 3 XAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX9020-0100</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX9020-0110</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX9020-0111</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX9020-0112</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX9020-0115</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>
4.4 Architekturübersicht

Die Architektur des CX9020 Embedded-PCs wird im Folgenden beschrieben.

Der CX9020 Embedded-PC basiert auf der ARMv7-A Mikroarchitektur, einer von ARM® entwickelten Mikroarchitektur. Im CX9020 wird die folgende CPU eingesetzt:

- i.MX535 Cortex™-A8

Details zu der CPU können bei ARM nachgelesen werden. Der Speicher ist direkt an der CPU angeschlossen. Es gibt den Embedded-PC in einer Speicherausbaustufe: mit 1GB DDR3 RAM. Der Speicher ist nicht erweiterbar. Der CX9020 Embedded-PC hat zwei MicroSD-Kartenslots.

Die CPU stellt alle benötigten Schnittstellen bereit:

- 2x geswitchte Ethernet-RJ45
- 4x USB 2.0
- DVI-D
- Serielle Schnittstelle (CX9020-N03x)
- 1 EMI zum FPGA für K-/E-Bus und NOV-RAM
- 2x MicroSD-Kartenslot

Die RJ45-Schnittstellen sind auf einen internen Switch geführt und es werden keine zusätzlichen Ethernet-Switche benötigt.
5 Beschreibung der Schnittstellen

5.1 USB (X100, X101, X102, X103)

Abb. 4: USB-Schnittstellen X100, X101, X102, X103.

Der Embedded-PC verfügt über 4 unabhängige USB-Schnittstellen. Hier können Tastaturen, Mäuse, Touchscreens und andere Eingabegeräte sowie Datenspeicher angeschlossen werden.

Abb. 5: USB-Schnittstelle, PIN-Nummerierung.

Achten Sie auf die Leistungsaufnahme der einzelnen Geräte. Es können pro Schnittstelle nicht mehr als 500 mA abgegeben werden. Die USB-Schnittstelle ist vom Typ A und entspricht der USB 2.0 Spezifikation.

Tab. 6: USB-Schnittstellen (X100, X101, X102, X103), PIN-Belegung.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Belegung</th>
<th>Typische Zuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
<td>White</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td>Green</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Black</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Drain Wire</td>
</tr>
</tbody>
</table>
5.2 Ethernet RJ45 (X000, X001)

Beide Ethernet-Schnittstellen sind geswitched und voneinander abhängig. Beachten Sie folgende Punkte bei einem Embedded-PC mit geswicheten Ethernet-Schnittstellen:

- Der Embedded-PC darf nicht an ein lokales Netzwerk angeschlossen und gleichzeitig über die zweite Ethernet-Schnittstelle EtherCAT betrieben werden. Die EtherCAT-Telegramme (Broadcast) stören das locale Netzwerk, was dazu führt, dass der Embedded-PC nicht mehr über einen Host-PC zu erreichen ist.

- Für eine Linientopologie ist kein zusätzlicher Switch erforderlich.

Beide Ethernet-Schnittstellen erreichen Geschwindigkeiten von 10 / 100 MBit. Die LEDs an der linken Seite der Schnittstellen zeigen den Status der Verbindung an. Die obere LED (LINK/ACT) zeigt an, ob die Schnittstelle mit einem Netzwerk verbunden ist. Ist dies der Fall leuchtet die LED gelb auf. Wenn Daten auf der Schnittstelle übertragen werden, blinkt die LED.

Die untere LED (SPEED) zeigt die Geschwindigkeit der Verbindung an. Ist die Geschwindigkeit 10 Mbit, leuchtet die LED nicht. Bei 100 MBit leuchtet die LED grün.

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD +</td>
<td>Transmit +</td>
</tr>
<tr>
<td>2</td>
<td>TD -</td>
<td>Transmit -</td>
</tr>
<tr>
<td>3</td>
<td>RD +</td>
<td>Receive +</td>
</tr>
<tr>
<td>4</td>
<td>connected</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RD -</td>
<td>Receive -</td>
</tr>
<tr>
<td>7</td>
<td>connected</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 6: Ethernet-Schnittstelle X000, X001.

Tab. 7: Ethernet-Schnittstelle X000 und X001, PIN-Belegung.
5.3 **DVI-D (X200)**

VGA-Adapter nicht kompatibel

Die DVI Schnittstelle führt keine VGA Signale aus, so dass der Anschluss von CRT-VGA Monitoren an den Embedded-PC nicht möglich ist.

Ein DVI-D zu VGA-Adapter kann nicht verwendet werden

![DVI-D-Schnittstelle X200](image)

Abb. 8: DVI-D-Schnittstelle X200.

Tab. 8: DVI-D-Schnittstelle X200, PIN-Belegung.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Belegung</th>
<th>Pin</th>
<th>Belegung</th>
<th>Pin</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMDS Data 2-</td>
<td>9</td>
<td>TMDS Data 1-</td>
<td>17</td>
<td>TMDS Data 0-</td>
</tr>
<tr>
<td>2</td>
<td>TMDS Data 2+</td>
<td>10</td>
<td>TMDS Data 1+</td>
<td>18</td>
<td>TMDS Data 0+</td>
</tr>
<tr>
<td>3</td>
<td>TMDS Data 2/4 Shield</td>
<td>11</td>
<td>TMDS Data 1/3 Shield</td>
<td>19</td>
<td>TMDS Data 0/5 Shield</td>
</tr>
<tr>
<td>4</td>
<td>not connected</td>
<td>12</td>
<td>not connected</td>
<td>20</td>
<td>not connected</td>
</tr>
<tr>
<td>5</td>
<td>not connected</td>
<td>13</td>
<td>not connected</td>
<td>21</td>
<td>not connected</td>
</tr>
<tr>
<td>6</td>
<td>DDC Clock</td>
<td>14</td>
<td>+ 5V Power</td>
<td>22</td>
<td>TMDS Clock Shield</td>
</tr>
<tr>
<td>7</td>
<td>DDC Data</td>
<td>15</td>
<td>Ground (+5V, Analog H/V Sync)</td>
<td>23</td>
<td>TMDS Clock +</td>
</tr>
<tr>
<td>8</td>
<td>Analog Vertical Sync</td>
<td>16</td>
<td>Hot Plug Detect</td>
<td>24</td>
<td>TMDA Clock -</td>
</tr>
</tbody>
</table>

Tab. 9: DVI-D-Schnittstelle X200, Auflösung am Bildschirm.

<table>
<thead>
<tr>
<th>Auflösung in Pixel</th>
<th>Entfernung der Schnittstelle vom Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1920 x 1200</td>
<td>5 m</td>
</tr>
<tr>
<td>1920 x 1080</td>
<td>5 m</td>
</tr>
<tr>
<td>1600 x 1200</td>
<td>5 m</td>
</tr>
<tr>
<td>1280 x 1024</td>
<td>5 m</td>
</tr>
<tr>
<td>1024 x 768</td>
<td>5 m</td>
</tr>
<tr>
<td>800 x 600</td>
<td>5 m</td>
</tr>
<tr>
<td>640 x 480</td>
<td>5 m</td>
</tr>
</tbody>
</table>

5.4 Optionale Schnittstellen

5.4.1 Audioschnittstelle (N020)

Es stehen zwei Eingänge "LINE IN" (X300) und "MIC IN" (X301) zur Verfügung. Für die Ausgabe von Audiosignalen ist der "LINE OUT" - Anschluss (X302) vorgesehen. Die Buchsen haben eine Größe von 3,5 mm und sind für Klinkenstecker ausgelegt. Hier kann auch ein Kopfhörer mit einer Leistung von max. 200 mW angeschlossen werden.

![Audioschnittstelle X300, X301, X302.](image)

Abb. 9: Audioschnittstelle X300, X301, X302.

Auf die Audioschnittstellen wird über das Betriebssystem zugegriffen.

Im Standardbetrieb wird die Audioschnittstelle im Stereomodus betrieben. Also Stereo Aus- und Eingänge und ein Einkanaleingang für das Mikrofon. Die Eingänge sind dann wie beschrieben zu beschriften.

Klinkenstecker Line In / Line Out

Der linke Kanal wird über die Spitze des Klinkensteckers übertragen, der rechte Kanal über den ersten Ring. Die übrige Hülse dient zur Erdung.

![Klinkenstecker Line In / Line Out X300, X302.](image)

Abb. 10: Klinkenstecker Line In / Line Out X300, X302.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Linker Kanal</td>
</tr>
<tr>
<td>R</td>
<td>Rechter Kanal</td>
</tr>
<tr>
<td>Ground</td>
<td>Masse</td>
</tr>
</tbody>
</table>

Tab. 10: Klinkenstecker Line In / Line Out, PIN-Belegung.

Klinkenstecker Mic In

Der einzige vorhandene Kanal wird über die Spitze übertragen, die übrige Hülse dient zur Erdung.

![Klinkenstecker Mic In X301.](image)

Abb. 11: Klinkenstecker Mic In X301.
5.4.2 RS232 (N030)

Abb. 12: RS232-Schnittstelle X300 mit PIN-Nummerierung.

Die maximale Baudrate auf beiden Kanälen beträgt 115 kBit. Die Einstellung der Schnittstellenparameter erfolgt über das Betriebssystem oder kann aus dem SPS-Programm heraus gesteuert werden.

Tab. 11: RS232-Schnittstelle X300, PIN-Belegung.

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Typ</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td>Signal in</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>Signal out</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Signal out</td>
<td>Request to Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Signal in</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Signal in</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>

Eingeschränkte Treiberunterstützung

Der Hersteller des Treibers unterstützt nicht alle Standardfunktionen für die Schnittstelle. Das kann dazu führen, dass einige Applikationen unter Windows nicht ohne Probleme ausgeführt werden.

Folgende APIs und IOCTLs werden nicht unterstützt:

- SetupComm
- SetCommBreak
- ClearCommBreak
- EscapeCommFunction (keine Unterstützung für Parameter SETBREAK und CLR-BREAK)

- IOCTL_SERIAL_XOFF_COUNTER
- IOCTL_SERIAL_LSRMST_INSERT
- IOCTL_SERIAL_SET_BREAK_ON
- IOCTL_SERIAL_SET_BREAK_OFF
5.4.3 RS422/RS485 (N031)

Die Optionsschnittstelle N031 stellt eine RS422- bzw. RS 485-Schnittstelle (X300) bereit. Die Schnittstelle ist auf einem 9-poligen D-Sub-Stecker ausgeführt.

Abb. 13: RS485-Schnittstelle X300 mit PIN-Nummerierung.

Die maximale Baudrate auf beiden Kanälen beträgt 115 kBit. Die Einstellung der Schnittstellenparameter erfolgt über das Betriebssystem oder kann aus dem SPS-Programm heraus gesteuert werden.

Tab. 12: RS422/485-Schnittstelle, PIN-Belegung.

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Typ</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>TxD+</td>
<td>Data-Out +</td>
<td>Transmit 422</td>
</tr>
<tr>
<td>3</td>
<td>RxD+</td>
<td>Data-In +</td>
<td>Receive 422</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>VCC</td>
<td>+5V</td>
</tr>
<tr>
<td>7</td>
<td>TxD-</td>
<td>Data-Out -</td>
<td>Transmit 422</td>
</tr>
<tr>
<td>8</td>
<td>RxD-</td>
<td>Data-In -</td>
<td>Receive 422</td>
</tr>
</tbody>
</table>

Für RS 485 muss Pin 2 und 3 (Data +) sowie Pin7 und 8 (Data -) verbunden werden.

Die Schnittstelle ist standardmäßig bei Auslieferung wie folgt parametriert:

Tab. 13: Standardeinstellung, RS485 ohne Echo mit Endpunkt (Terminiert).

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo on</td>
<td>aus</td>
</tr>
<tr>
<td>Echo off</td>
<td>an</td>
</tr>
<tr>
<td>Auto send on</td>
<td>an</td>
</tr>
<tr>
<td>Always send on</td>
<td>aus</td>
</tr>
<tr>
<td>Auto receive on</td>
<td>an</td>
</tr>
<tr>
<td>Always receive on</td>
<td>aus</td>
</tr>
<tr>
<td>Term on</td>
<td>an</td>
</tr>
<tr>
<td>Term on</td>
<td>An</td>
</tr>
</tbody>
</table>

Andere Konfigurationen für die RS485-Schnittstelle

Ab Werk können auch andere Konfigurationen für die RS485-Schnittstelle bestellt werden. Folgende Optionen stehen zur Verfügung:

- N031-0001 RS485 mit Echo, Endpunkt (Terminiert).
- N031-0002 RS485 ohne Echo, Stichleitung (ohne Terminierung).
- N031-0003 RS485 mit Echo, Stichleitung (ohne Terminierung).
- N031-0004 RS422 Full Duplex Endpunkt (Terminiert).

Eine RS485-Schnittstelle kann nicht nachträglich konfiguriert werden und muss immer passend ab Werk bestellt werden.
5.4.4 EtherCAT-Slave (B110)

Embedded-PCs der neueren Generation können ab Werk mit einer EtherCAT-Slave-Schnittstelle (B110) bestellt werden. Auf den Geräten wird die Optionsschnittstelle B110 als X300 bezeichnet.

Abb. 14: EtherCAT-Slave-Schnittstelle X300.

An die obere LAN-Schnittstelle wird das ankommende EtherCAT Signal angeschlossen. Die untere LAN-Schnittstelle leitet das Signal an andere EtherCAT Slave Geräte weiter.

Abb. 15: EtherCAT-Slave LAN-Schnittstelle, PIN-Nummerierung.

Tab. 14: EtherCAT-Slave-Schnittstelle X300, PIN-Belegung.

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD +</td>
<td>Transmit +</td>
</tr>
<tr>
<td>2</td>
<td>TD -</td>
<td>Transmit -</td>
</tr>
<tr>
<td>3</td>
<td>RD +</td>
<td>Receive +</td>
</tr>
<tr>
<td>4</td>
<td>connected</td>
<td>reserviert</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RD -</td>
<td>Receive -</td>
</tr>
<tr>
<td>7</td>
<td>connected</td>
<td>reserviert</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Für die Optionsschnittstelle EtherCAT-Slave (B110) steht auf der Beckhoff Homepage eine Dokumentation mit weiterführender Information zum Download bereit: https://www.beckhoff.de/german/download/epc.htm?id=71003127100362

Dokumentationstitel

CXxxx0-B110 Optionsschnittstelle EtherCAT-Slave.
5.4.5 PROFIBUS (x310)

Pin 6 überträgt 5 V\textsubscript{DC} und Pin 5 GND für den aktiven Abschlusswiderstand. Diese dürfen auf keinen Fall für andere Funktionen benutzt werden, da dies zu Zerstörung des Gerätes führen kann.

Pin 3 und Pin 8 übertragen die Signale des PROFIBUS. Diese dürfen auf keinen Fall getauscht werden, da sonst die Kommunikation gestört ist.

Abb. 16: PROFIBUS-Schnittstelle X310 mit PIN-Nummerierung.

Die Profibus Busleitung wird über einen 9poligen D-Sub mit folgender Belegung angeschlossen:

Tab. 15: PROFIBUS-Schnittstelle X310, PIN-Belegung.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schirmung</td>
</tr>
<tr>
<td>2</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>3</td>
<td>RxD/TxD-P</td>
</tr>
<tr>
<td>4</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>+5V\textsubscript{DC}</td>
</tr>
<tr>
<td>7</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>8</td>
<td>RxD/TxD-N</td>
</tr>
<tr>
<td>9</td>
<td>nicht benutzt</td>
</tr>
</tbody>
</table>

Tab. 16: Leitungsfarben der PROFIBUS Leitung.

<table>
<thead>
<tr>
<th>PROFIBUS Leitung</th>
<th>D-Sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>B rot</td>
<td>Pin 3</td>
</tr>
<tr>
<td>A grün</td>
<td>Pin 8</td>
</tr>
</tbody>
</table>

Für die Optionsschnittstelle PROFIBUS (x310) steht auf der Beckhoff Homepage eine Dokumentation mit weiterführender Information zum Download bereit:
https://www.beckhoff.de/german/download/epc.htm?id=71003127100362

Dokumentationstitel
CXxxxx0-x310 Optionsschnittstelle Profibus.
5.4.6 CANopen (x510)

Die CAN Busleitung wird über eine 9polige D-sub-Buchse mit folgender Belegung angeschlossen:

Tab. 17: CANopen-Schnittstelle X510, PIN-Belegung.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>2</td>
<td>CAN low (CAN-)</td>
</tr>
<tr>
<td>3</td>
<td>CAN Ground (intern verbunden mit Pin 6)</td>
</tr>
<tr>
<td>4</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>5</td>
<td>Schirm</td>
</tr>
<tr>
<td>6</td>
<td>CAN Ground (intern verbunden mit Pin 3)</td>
</tr>
<tr>
<td>7</td>
<td>CAN high (CAN+)</td>
</tr>
<tr>
<td>8</td>
<td>nicht benutzt</td>
</tr>
<tr>
<td>9</td>
<td>nicht benutzt</td>
</tr>
</tbody>
</table>

Für die Optionsschnittstelle CANopen (x510) steht auf der Beckhoff Homepage eine Dokumentation mit weiterführender Information zum Download bereit:

https://www.beckhoff.de/german/download/epc.htm?id=71003127100362

Dokumentationstitel
CXxxx0-x510 Optionsschnittstelle CANopen.
Beschreibung der Schnittstellen

5.4.7 PROFINET RT (x930)

Abb. 18: PROFINET RT-Schnittstelle X300.

Abb. 19: PROFINET RT LAN-Schnittstelle, PIN-Nummerierung.

Tab. 18: PROFINET RT-Schnittstelle, PIN-Belegung.

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD +</td>
<td>Transmit +</td>
</tr>
<tr>
<td>2</td>
<td>TD -</td>
<td>Transmit -</td>
</tr>
<tr>
<td>3</td>
<td>RD +</td>
<td>Receive +</td>
</tr>
<tr>
<td>4</td>
<td>connected</td>
<td>reserviert</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RD -</td>
<td>Receive -</td>
</tr>
<tr>
<td>7</td>
<td>connected</td>
<td>reserviert</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Inbetriebnahme

6.1 Montage

6.1.1 Zulässige Einbautagen beachten

Erhöhte Wärmeentwicklung
Bei einer falsch gewählten Einbautage und nicht eingehaltenen Mindestabständen kann der Embedded-PC überhitzen.
Der Embedded-PC darf nur bis Umgebungstemperaturen von 60°C betrieben werden. Stellen Sie eine ausreichende Belüftung sicher. Wählen Sie eine horizontale Einbautage. Lassen Sie einen Freiraum von mindestens 30 mm oberhalb und unterhalb des Embedded-PCs.

Montieren Sie den Embedded-PC waagerecht im Schaltschrank auf einer Tragschiene, damit die Wärme optimal abgeführt wird.

Beachten Sie folgende Vorgaben für den Schaltschrank:

- Betreiben Sie den Embedded-PC nur bei Umgebungstemperaturen von -25 °C bis 60 °C. Messen Sie dazu die Temperatur unter dem Embedded-PC in einem Abstand von 30 mm zu den Kühlrippen, um die Umgebungstemperatur korrekt zu ermitteln.
- Halten Sie die Mindestabstände von 30 mm ober- und unterhalb des Embedded-PCs ein.
- Weitere elektrische Geräte beeinflussen die Wärmeentwicklung im Schaltschrank. Wählen Sie eine passende Schaltschrankgröße abhängig vom Anwendungsfall oder sorgen Sie dafür, dass überschüssige Wärme aus dem Schaltschrank abtransportiert wird.

Zulässige Einbautage
Der Embedded-PC muss waagerecht auf die Tragschiene montiert werden. Die Lüftungsoffnungen befinden sich auf der Gehäuseunter- und Gehäuseoberseite. Auf diese Weise kommt ein optimaler Luftstrom zustande, der den Embedded-PC in vertikaler Richtung durchströmt. Zusätzlich ist ein Freiraum von mindestens 30 mm oberhalb und unterhalb des Embedded-PCs erforderlich, um eine ausreichende Belüftung zu gewährleisten.

Wenn Vibrationen und Stöße in der gleichen Richtung verlaufen wie die Tragschiene, muss der Embedded-PC zusätzlich mit einer Halterung fixiert werden, damit er nicht verrutscht.
Unzulässige Einbaulagen

Abb. 21: Embedded-PC CX9020, unzulässige Einbaulagen.
6.1.2 Auf Tragschiene befestigen

Das Gehäuse ist so konstruiert, dass der Embedded-PC an die Tragschiene gehalten und auf diese eingerastet werden kann.

Voraussetzungen:

- Tragschiene von Typ TS35/7.5 oder TS35/15 nach DIN EN 60715.

Befestigen Sie den Embedded-PC wie folgt auf der Tragschiene:

1. Entriegeln Sie die Halteriegel an der Ober- und Unterseite.

3. Verriegeln Sie anschließend wieder die Halteriegel.

Sie haben den Embedded-PC erfolgreich montiert. Überprüfen Sie nochmal die korrekte Montage und ob der Embedded-PC an der Tragschiene eingerastet ist.
6.1.3 MicroSD-Karte ein- und ausbauen

Datenverlust

MicroSD-Karten werden im Betrieb stark beansprucht und müssen viele Schreibzyklen und extreme Umweltbedingungen aushalten. MicroSD-Karten anderer Hersteller können ausfallen, was zu Datenverlust führt. Verwenden Sie ausschließlich industrietaugliche MicroSD-Karten die von Beckhoff geliefert werden.

Im oberen Einschub (Slot 1) muss die Karte für das Betriebssystem stecken. Der untere Einschub (Slot 2) ist für eine weitere MicroSD-Karte vorgesehen. Hier können Daten oder weitere Programme abgelegt werden.

Die Auswurfmeechanik wird nach dem Push-Push-Prinzip betätigt. Im Folgenden wird gezeigt, wie die MicroSD-Karten ein- und ausgebaut werden.

Voraussetzungen:

- Der Embedded-PC muss ausgeschaltet sein. Die MicroSD-Karten dürfen nur im ausgeschalteten Zustand ein- oder ausgebaut werden.

MicroSD-Karten ausbauen

2. Die Karte wird um ca. 2-3 mm aus dem Gehäuse gehoben. Ziehen Sie die Karte heraus.

![Ausbau MicroSD-Karte](image1)

MicroSD-Karten einbauen

1. Schieben Sie die MicroSD-Karte in den MicroSD-Kartenslot.
2. Die MicroSD-Karte rastet mit einem leisen Klicken ein.

⇒ Die Karte sitzt richtig, wenn sie sich ca. 1 mm tiefer als die Frontseite des Gerätegehäuses befindet.

![Einbau MicroSD-Karte](image2)
6.1.4 Passive EtherCAT-Klemmen montieren

Falsch montierte passive EtherCAT-Klemmen
Das E-Bus Signal zwischen einem Embedded-PC und den EtherCAT-Klemmen kann durch falsch montierte passive EtherCAT-Klemmen geschwächt werden.
Montieren Sie passive EtherCAT-Klemmen nicht direkt an das Netzteil.

EtherCAT-Klemmen, die nicht aktiv am Datenaustausch teilnehmen, werden als passive Klemmen bezeichnet. Dadurch haben passive EtherCAT-Klemmen kein Prozessabbild und benötigen keinen Strom aus dem Klemmbus (E-Bus).

Passive EtherCAT-Klemmen (z.B. eine EL9195) können Sie in TwinCAT erkennen. Die EtherCAT-Klemme wird im Strukturbaum ohne Prozessabbild angezeigt und der Wert in der Spalte „E-Bus (mA)” verändert sich im Vergleich zu der vorangehenden EtherCAT-Klemme nicht.

In den technischen Daten einer EtherCAT-Klemme können Sie unter dem Eintrag „Stromaufnahme aus dem E-Bus” nachlesen, ob eine bestimmte EtherCAT-Klemme Strom aus dem Klemmbus (E-Bus) benötigt.

Die folgende Abbildung zeigt die zulässige Montage einer passiven EtherCAT-Klemme. Die passive EtherCAT-Klemme wurde nicht direkt an das Netzteil angereiht.

Abb. 23: Passive EtherCAT-Klemmen, zulässige Montage.

Die folgende Abbildung zeigt die unzulässige Montage einer passiven EtherCAT-Klemme.

6.2 Spannungsversorgung anschließen

HINWEIS

Schäden an den Embedded-PCs
Die Embedded-PCs können während der Verdrahtung beschädigt werden.
- Schließen Sie die Leitungen für die Spannungsversorgung nur im spannungsfreien Zustand an.

Für die Spannungsversorgung der Netzteilklemme ist eine externe Spannungsquelle erforderlich, die eine 24 V Gleichspannung (-15 % / +20 %) bereitstellt. Die Netzteilklemme muss 4 A bei 24 V liefern, um den Betrieb des Embedded-PCs in allen Fällen zu gewährleisten.

Verkabeln Sie den Embedded-PC im Schaltschrank entsprechend der Norm EN 60204-1:2006 Schutzkleinspannungen (PELV = Protective Extra Low Voltage):
- Die Leiter "PE" und "0 V" der Spannungsquelle für ein CPU-Grundmodul müssen auf dem gleichen Potential liegen (im Schaltschrank verbunden).

Anschlussbeispiel

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Die oberen Federkraftklemmen mit der Bezeichnung "24 V" und "0 V" versorgen den Embedded-PC und den Klemmbus (Datenübertragung über K- oder E-Bus) mit Spannung.</td>
</tr>
<tr>
<td>2</td>
<td>Die Federkraftklemmen mit der Bezeichnung "+", "-", und "PE" versorgen die Busklemmen über die Powerkontakte mit Spannung und die an den Busklemmen angeschlossenen Sensoren oder Aktoren.</td>
</tr>
</tbody>
</table>

Die Leitungen einer externen Spannungsquelle werden mit Federkraftklemmen am Netzteil verbunden.

Tab. 20: Erforderliche Leiterquerschnitte und Abisolierlängen.

<table>
<thead>
<tr>
<th>Leiterquerschnitt</th>
<th>0,5 ... 2,5 mm²</th>
<th>AWG 20 ... AWG 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abisolierlänge</td>
<td>8 ... 9 mm</td>
<td>0.33 inch</td>
</tr>
</tbody>
</table>
Sie haben die Spannungsquelle erfolgreich an das Netzteil angeschlossen, wenn die beiden oberen LEDs der Netzteilklemme grün aufleuchten.

- Die linke LED (Us) zeigt die Versorgung des CPU-Grundmoduls und des Klemmenbusses an.
- Die rechte LED (Up) zeigt die Versorgung der Busklemmen über die Powerkontakte an.

HINWEIS

Spannungsversorgung unterbrechen / abschalten

Um den Embedded-PC abzuschalten darf nicht die Masse (0 V) getrennt werden, da sonst je nach Gerät der Strom über den Schirm weiterfließt und der Embedded-PC oder die Peripherie beschädigt wird.

UL-Anforderungen beachten

Die Embedded-PCs CX9020 sind nach der Norm UL508 zertifiziert. Das entsprechende UL-Label befindet sich auf dem Typenschild.

Abb. 25: UL-Label beim CX9020.

Die Embedded-PCs CX9020 können damit in Bereichen eingesetzt werden, in denen spezielle UL-Anforderungen eingehalten werden müssen.

UL-Anforderungen:

- Die Embedded-PCs dürfen nicht mit unbegrenzten Spannungsquellen verbunden werden.
- Oder die Spannungsversorgung muss von einer Spannungsquelle stammen, die NEC class 2 entspricht. Eine Spannungsquelle entsprechend NEC class 2 darf dabei nicht seriell oder parallel mit einer anderen NEC class 2 Spannungsquelle verbunden werden.
6.3 Einschalten

Stellen Sie sicher, dass Sie den Embedded-PC fertig konfiguriert haben, bevor Sie den Embedded-PC einschalten.

Schalten Sie den Embedded-PC wie folgt ein:

1. Überprüfen Sie, ob alle Erweiterungs-, System- und Feldbusmodule richtig angeschlossen sind.
2. Überprüfen Sie, ob Sie das passende CX2100-Netzteil und die richtige Einbaulage ausgewählt haben.
4. Schalten Sie erst danach die externe Stromversorgung für das Netzteil ein.
 ⇨ Der Embedded-PC startet automatisch, sobald Sie die externe Stromversorgung für das Netzteil einschalten. Das vorinstallierte Betriebssystem wird gestartet und alle angesteckten Erweiterungs-, System- und Feldbusmodule werden konfiguriert.

6.4 Ausschalten

Datenverlust

Wenn Sie den Embedded-PC im laufenden Betrieb ausschalten, können Daten auf der CFast-Karte oder anderen Festplatten verloren gehen.

Trennen Sie den Embedded-PC nicht im laufenden Betrieb von der Stromversorgung.

Schalten Sie den Embedded-PC wie folgt aus:

1. Beenden Sie ordnungsgemäß alle laufenden Programme, wie z.B. die Steuerungssoftware auf dem Embedded-PC.
2. Fahren Sie das Betriebssystem herunter.
3. Schalten Sie erst zum Schluss die externe Stromversorgung für das Netzteil ab, damit der Embedded-PC ausgeschaltet wird.
7 Konfiguration

7.1 Windows Embedded Compact 7

7.1.1 Audioschnittstelle (N020) einstellen

Unter Windows Embedded Compact 7 können die Audioeinstellungen über das Beckhoff CX-Configuration-Tool einstellt werden.

Voraussetzungen:
- Embedded-PC mit Audioschnittstelle.
- Windows Embedded Compact 7.

Gehen Sie wie folgt vor:
1. Öffnen Sie das Beckhoff CX-Configuration Tool unter Start > Control Panel > CX Configuration. Das Fenster Beckhoff CX-Configuration Tool erscheint.
2. Klicken Sie auf die Registerkarte **Miscellaneous**.

3. Aktivieren Sie das Kontrollkästchen **Enable Audio Device**.
4. Klicken Sie auf **Audio Settings** und stellen Sie die Lautstärke für Ein- und Ausgabe über die Schieberegler ein.
5. Wählen Sie unter **Input Select** die Eingabequelle aus. Es kann nur eine Eingabequelle gleichzeitig aktiv sein.

☞ Bestätigen Sie die Einstellungen mit OK, wenn Sie die Audioschnittstelle fertig eingestellt haben.
7.2 Beckhoff Device Manager

7.2.1 Beckhoff Device Manager starten

Voraussetzungen:

- IP-Adresse oder Hostname des Embedded-PCs.

Tab. 21: Zugangsdaten zum Beckhoff Device Manager bei Auslieferung.

<table>
<thead>
<tr>
<th>Betriebssystem</th>
<th>Zugangsdaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Embedded Compact 7</td>
<td>Benutzername: Webguest</td>
</tr>
<tr>
<td></td>
<td>Passwort: 1</td>
</tr>
</tbody>
</table>

Starten Sie den Beckhoff Device Manager wie folgt:

2. Geben Sie den Benutzernamen und das Passwort ein. Die Startseite erscheint:

⇒ Navigieren Sie weiter im Menü und konfigurieren Sie den Embedded-PC. Beachten Sie, dass Änderungen erst nach einer Bestätigung wirksam werden.
7.2.2 Remote Display aktivieren

Voraussetzungen:

- IP-Adresse oder Hostname des Embedded-PCs müssen bekannt sein.

Tab. 22: Zugangsdaten zum Beckhoff Device Manager bei Auslieferung.

<table>
<thead>
<tr>
<th>Betriebssystem</th>
<th>Zugangsdaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Embedded</td>
<td>Benutzername: Webguest</td>
</tr>
<tr>
<td>Compact 7</td>
<td>Passwort: 1</td>
</tr>
</tbody>
</table>

Aktivieren Sie Remote Display wie folgt:

1. Tippen Sie auf dem Host-PC im Webbrowser die IP-Adresse oder den Hostnamen des Embedded-PCs ein, um den Beckhoff Device Manager zu starten.
 Beispiel mit Hostnamen: https://CX-16C2B8/config
2. Geben Sie den Benutzernamen und das Passwort ein. Die Startseite erscheint.
4. Wählen Sie unter Remote Display die Option On aus und bestätigen Sie die Einstellungen.
5. Klicken Sie im Hinweisfenster auf OK, damit die Einstellungen übernommen werden.

7.3 TwinCAT

7.3.1 Strukturansicht

Sie können das Kapitel Strukturansicht als Beispiel dazu benutzen, um ein Projekt ohne tatsächlich vorhandene Hardware anzulegen. Alle Geräte und Komponenten eines Embedded-PCs müssen dabei manuell in TwinCAT 3 angefügt werden.

Die kleinstmögliche Konfiguration eines Embedded-PCs CX9020 wird unter TwinCAT 3 wie folgt in der Strukturansicht angelegt:

Die Konfiguration in der Strukturansicht unterscheidet sich je nachdem ob EtherCAT-Klemmen oder Busklemmen an den Embedded-PC angesteckt werden.

Tab. 23: Legende zur Strukturansicht.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>EtherCAT-Klemmen (E-Bus) werden unter dem Buskoppler EK1200 in der Strukturansicht angezeigt.</td>
</tr>
<tr>
<td>3</td>
<td>Der CX9020 verfügt über NOVRAM, um maximal 128 kB Daten sicher zu speichern. An dieser Stelle wird der NOVRAM-Handler angelegt und anschließend werden die retain Variablen konfiguriert.</td>
</tr>
<tr>
<td>4</td>
<td>Wenn Busklemmen (K-Bus) zusammen mit einem Embedded-PC verwendet werden, wird der Buskoppler (CX-BK) zusammen mit den Busklemmen eingefügt.</td>
</tr>
</tbody>
</table>
7.3.2 Zielsysteme suchen

Der lokale PC und die Zielgeräte müssen mit dem gleichen Netzwerk oder direkt über ein Ethernet Kabel miteinander verbunden werden. In TwinCAT kann auf diese Weise nach allen Geräten gesucht und anschließend projektiert werden.

Voraussetzungen für diesen Arbeitsschritt:
- TwinCAT 3 muss sich im Config Mode befinden.
- IP-Adresse oder Host Name des Gerätes.

Suchen Sie nach den Geräten wie folgt:
2. Klicken Sie links in der Strukturansicht auf SYSTEM und dann auf Choose Target.
3. Klicken Sie auf Search (Ethernet).
4. Tippen Sie im Feld Enter Host Name / IP den Host Namen oder die IP-Adresse des Gerätes ein und drücken Sie [Enter].
5. Markieren Sie das gefundenene Gerät und klicken Sie auf Add Route.

Das Fenster Logon Information erscheint.
Geben Sie im Feld **User Name** und im Feld **Password** den Benutzernamen und das Passwort für den CX ein und klicken Sie auf **OK**.

Als Standard ist bei den CXen folgende Information eingestellt:
User name: Administrator **Password:** 1

6. Klicken Sie auf **Close**, wenn Sie keine weiteren Geräte suchen wollen und schließen damit das Add Route Fenster. Das neue Gerät wird im Fenster Choose Target System angezeigt.

7. Markieren Sie das Gerät welches Sie als Zielsystem festlegen wollen und klicken Sie auf **OK**.

Sie haben erfolgreich in TwinCAT nach einem Gerät gesucht und das Gerät als Zielsystem eingefügt. In der Menüleiste wird das neue Zielsystem mit dem Host Namen angezeigt.

Mit dieser Vorgehensweise können Sie nach allen verfügbaren Geräten suchen und auch jederzeit zwischen den Zielsystemen wechseln. Als nächstes können Sie das Gerät in TwinCAT in die Strukturansicht anfügen.
7.3.3 Embedded-PC anfügen

Mit diesem Arbeitsschritt können Sie einen Embedded-PC in TwinCAT anfügen und anschließend weiter konfigurieren.

Voraussetzungen für diesen Arbeitsschritt:
- Ein gescanntes und ausgewähltes Zielgerät.

Fügen Sie den Embedded-PC wie folgt ein:
1. Starten Sie TwinCAT und öffnen Sie ein leeres Projekt.
2. Klicken Sie links in der Strukturansicht mit rechter Maustaste auf I/O Devices.
3. Klicken Sie im Kontextmenü auf Scan.

4. Wählen Sie Geräte, die Sie verwenden wollen und bestätigen die Auswahl mit OK. Es stehen immer Geräte zur Auswahl, die tatsächlich verfügbar sind.

Bei Embedded-PCs mit angeschlossenen Busklemmen (K-Bus) wird ein Buskoppler Device (CX-BK) angezeigt.
Bei EtherCAT-Klemmen (E-Bus) wird der EtherCAT-Koppler automatisch angefügt.

5. Bestätigen Sie die Anfrage mit Ja, um nach Boxen zu suchen.

Der Embedded-PC wurde erfolgreich in TwinCAT angefügt und wird in der Strukturansicht mit den Ein- und Ausgängen angezeigt.
Im Kapitel Strukturansicht[38] wird gezeigt, wie Embedded-PCs mit angeschlossenen Bus- oder EtherCAT-Klemmen angezeigt werden.
8 NOVRAM

Das NOVRAM kann dazu verwendet werden, um wichtige Variablenwerte, wie z.B. Betriebsdaten oder Zählerstände bei einem Spannungsausfall sicher zu speichern. Die Speichergröße des NOVRAMs ist beschränkt und eignet sich für kleinere Datenmengen bis zu einer Größe von maximal 63 kB.

In diesem Kapitel wird gezeigt, wie das NOVRAM

- in TwinCAT 3 verwendet wird (siehe: Unter TwinCAT 3 verwenden [43]).

Funktionsweise

Das NOVRAM (Non-Volatile Random Access Memory) ist ein spezieller Speicherbaustein der dazu verwendet wird, um wichtige Daten sicher zu speichern. Das NOVRAM besteht aus zwei Bereichen. Einem volatilen Speicher und einem non-volatilen Speicher.

![Diagramm NOVRAM Verhalten](attachment:diagram.png)

Abb. 27: Verhalten der Steuerung ohne und mit NOVRAM.

Speichergröße

Das NOVRAM hat eine Speichergröße von 128 kB. Aus Gründen der Datenkonsistenz können jedoch effektiv weniger als 63 kB Daten im NOVRAM gesichert werden. Die Daten werden zyklisch und wechselweise nach dem Doppelpufferprinzip gespeichert, um damit das Risiko von Dateninkonsistenz zu vermeiden.

Voraussetzungen

<table>
<thead>
<tr>
<th>Entwicklungsumgebung</th>
<th>Zielplattformen</th>
<th>Hardware</th>
<th>Einzubindende SPS-Bibliotheken</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwinCAT 3.1 Build: 4020</td>
<td>PC oder CX (x86, x64, ARM)</td>
<td>CX9020, CX20x0, CX20x2</td>
<td>Tc2_IoFunctions</td>
</tr>
</tbody>
</table>
8.1 Unter TwinCAT 3 verwenden

Unter TwinCAT 3 ab Build 4020 wird ein Delta-Algorithmus benutzt, um Daten im NOVRAM zu speichern. Der Algorithmus speichert nicht alle Variablen auf einmal, sondern sucht nach Änderungen (Deltas) im Vergleich zum letzten Zyklus und speichert nur veränderte Variablen im NOVRAM.

Um den Delta-Algorithmus zu nutzen, muss in TwinCAT 3 ein Retain-Handler angelegt werden und die relevanten Variablen in der SPS mit dem Schlüsselwort VAR_RETAIN deklariert werden.

Neu an dieser Methode ist, dass keine Funktionsbausteine benutzt werden müssen. Der Retain Handler speichert Daten in das NOVRAM und stellt sie nach einem Spannungsausfall wieder bereit.

8.1.1 Retain-Handler anlegen

Voraussetzungen für diesen Arbeitsschritt:
• TwinCAT 3.1 Build: 4020.
• Ein in TwinCAT ausgewähltes Zielgerät.

Legen Sie den Retain-Handler wie folgt an:
2. Klicken Sie im Kontextmenü auf Scan.

3. Wählen Sie Device (NOV-DP-RAM) und bestätigen Sie die Auswahl mit OK.

4. Klicken Sie auf Ja, um nach Boxen zu suchen.

6. Klicken Sie auf die Option RAM.

8. Wählen Sie den Retain Handler und klicken Sie auf OK.

⇒ Sie haben erfolgreich einen Retain-Handler in TwinCAT angelegt.

Im nächsten Schritt können Sie Retain-Variablen in der SPS anlegen und mit dem Retain-Handler verknüpfen.
8.1.2 Variablen anlegen und verknüpfen

Voraussetzung für diesen Arbeitsschritt:
- Ein SPS-Projekt angelegt in TwinCAT.

Legen Sie Variablen wie folgt an:

1. Legen Sie die Variablen in Ihrem SPS-Projekt in einem VAR RETAIN-Bereich an.

```plaintext
VAR RETAIN
  x : UINT;
  y : UINT;
  z : UINT;
END_VAR
```

2. Klicken Sie oben auf der Symbolleiste auf Build und dann auf Build Solution.

3. Klicken Sie links in der Strukturansicht auf Ihre PLC Instance und anschließend auf die Registerkarte Data Area.

Eine bestehende Verknüpfung wird mit einem Pfeilsymbol angezeigt.
8.1.3 Schreibgeschwindigkeit des Retain-Handlers beachten

Der Retain-Handler benötigt eine bestimmte Zeit, um nach Änderungen (Deltas) in den Variablen zu suchen und diese ins NOVRAM zu speichern.

Die folgenden Diagramme geben einen Überblick darüber, wie lange der Retain-Handler benötigt, um eine bestimmte Datenmenge ins NOVRAM zu speichern. Benutzen Sie die Diagramme und wählen Sie Ihre Taskzykluszeit so, dass eine bestimmte Datenmenge innerhalb der gewählten Taskzykluszeit ins NOVRAM gespeichert wird.

Abb. 28: Retain-Handler Schreibgeschwindigkeit, bis 63 kB in 512 Byte-Schritten.

Abb. 29: Retain-Handler Schreibgeschwindigkeit, bis 8 kB in 64 Byte-Schritten.
8.1.4 Variablen unter dem Retain-Handler löschen

Diese Variablen müssen unter TwinCAT 3 manuell gelöscht werden.

Voraussetzungen für diesen Arbeitsschritt:
- Mit VAR_RATAIN deklarierte Variablen wurden in der SPS gelöscht.

Löschen Sie Variablen unter dem Retain-Handler wie folgt:
1. Die Variable GVL_Retain.iNt unter dem Retain-Handler soll gelöscht werden.

Die Variable unter dem Retain-Handler wird gelöscht.
9 1-Sekunden-USV (Persistente Daten)

Datenverlust
Der Einsatz der 1-Sekunden-USV über die dokumentierten Möglichkeiten hinaus, kann zu Datenverlust oder korrupten Daten führen.
Verwenden Sie ausschließlich TwinCAT, um die 1-Sekunden-USV anzusteuern und speichern Sie nur persistente Daten mit einer Größe von maximal 1 MB.

Die 1-Sekunden-USV ist ein UltraCap-Kondensator, der den Prozessor weiterhin mit Strom versorgt, wenn die Spannungsversorgung ausfällt.
In diesem Zeitraum können persistente Daten gespeichert werden, die beim Wiedereinschalten zur Verfügung stehen.
Da die 1-Sekunden-USV für die gesamte Lebensdauer ausgelegt ist, ist die Haltezeit bei neuen Geräten deutlich länger. Im Laufe der Zeit altern die Kondensatoren und die Haltezeit nimmt ab. Deswegen können maximal 1 MB persistente Daten über die gesamte Lebensdauer zuverlässig gespeichert werden.
Speichern Sie keine anderen Daten und verwenden Sie keine anderen Applikationen, um die 1-Sekunden-USV anzusteuern.

Beachten Sie, dass die 1-Sekunden-USV weder den K-Bus noch den E-Bus mit Spannung versorgt und deren Daten bei Aktivierung der 1-Sekunden-USV bereits ungültig sein können. Auch kann das Feldbussystem (oder Ethernet) nicht oder nur unzureichend funktionieren sobald die 1-Sekunden-USV aktiv wurde.

Speicherort und Bezeichnung der Dateien:
Die persistenten Daten werden standardmäßig im TwinCAT Boot-Verzeichnis gespeichert:

<table>
<thead>
<tr>
<th>Entwicklungsumgebung</th>
<th>Dateipfad</th>
<th>Dateiname</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwinCAT 2</td>
<td>C:\TwinCAT\Boot\</td>
<td>TCPLC_T_x.wbp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCPLC_T_x.wb~ (Backup)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Das x im Dateinamen steht für die Nummer des Laufzeitsystems.</td>
</tr>
<tr>
<td>TwinCAT 3</td>
<td>C:\TwinCAT\3.1\Boot\</td>
<td>Port_85x.bootdata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port_85x.bootdata-old (Backup)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Das x im Dateinamen steht für die Nummer des Laufzeitsystems.</td>
</tr>
</tbody>
</table>

Konfigurieren Sie die 1-Sekunden-USV wie folgt, um persistente Daten zu speichern:
- Die 1-Sekunden-USV muss beim CX9020 ab Werk bestellt werden (CX9020-U900).
- Deklarieren Sie wichtige Daten, wie z.B. Zählerstände in der SPS als VAR PERSISTENT. Rufen Sie anschließend den Funktionsbaustein FB_S_UPS_CX9020_U900 zyklisch in TwinCAT auf, um die 1-Sekunden-USV anzusteuern (siehe: FB_S_UPS_CX9020_U900 [50]).
- Wählen Sie den Modus im Funktionsbaustein und bestimmen damit, was bei einem Spannungsausfall passiert. Legen Sie z.B. fest, ob persistente Daten gespeichert werden und ein Quickshutdown ausgeführt wird (siehe: Modus und Status des Funktionsbausteins [52]).
- Im Anschluss können Sie die Gültigkeit der Variablen überprüfen und überwachen ob die persistenten Variablen fehlerfrei geladen wurden (siehe: Gültigkeit der Variablen prüfen [53]).

Beispielprojekt:
https://infosys.beckhoff.com/content/1031/CX9020_HW/Resources/pro/2574947979.pro

Komponenten	Version
TwinCAT auf dem Entwicklungsrechner und auf der Steuerung	TwinCAT 2.11R3 Build 2047 oder höher
	TwinCAT 3.1 Build 4018 oder höher
9.1 FB_S_UPS_CX9020_U900

Datenverlust
Die 1-Sekunden-USV schaltet das Mainboard ab, sobald die Kondensatoren entladen sind. Falls andere Applikationen oder die SPS weitere Daten offen halten oder in diese schreiben, kann es zu fehlerhaften Daten oder Datenverlust kommen.

Bei dem CX9020 wird der Funktionsbaustein FB_S_UPS_CX9020_U900 verwendet, um die 1-Sekunden-USV aus der SPS anzusteuern. Verwenden Sie möglichst die Standardwerte des FB_S_UPS_CX9020_U900 und rufen Sie den Funktionsbaustein zyklisch in der SPS auf.

Der Funktionsbaustein hat verschiedene Modi, die das Verhalten des Embedded-PC steuern, sobald die 1-Sekunden-USV ausgelöst wird:

Tab. 24: Modi des Bausteins.

<table>
<thead>
<tr>
<th>Modus</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>eSUPS_WrPersistData_Shutdown</td>
<td>Schreiben der persistenten Daten, anschließend QuickShutdown.</td>
</tr>
<tr>
<td>eSUPS_WrPersistData_NoShutdown</td>
<td>Nur Schreiben der persistenten Daten (kein QuickShutdown).</td>
</tr>
<tr>
<td>eSUPS_ImmediateShutdown</td>
<td>Nur QuickShutdown (kein Schreiben der persistenten Daten).</td>
</tr>
<tr>
<td>eSUPS_CheckPowerStatus</td>
<td>Reines Monitoring (weder Schreiben der persistenten Daten noch QuickShutdown), Datenhandling liegt ganz im Ermessen des Anwenders.</td>
</tr>
</tbody>
</table>

Unabhängig vom Modus und damit unabhängig davon, ob Daten gespeichert oder der Quickshutdown ausgeführt wurde, schaltet die 1-Sekunden-USV nach Entladung der Kondensatoren das Mainboard ab, auch wenn die Spannung zwischenzeitlich wiederkehrt.

Bei Windows CE/WEC7 darf kein QuickShutdown ausgeführt werden, sonst startet Windows CE/WEC7, nachdem die persistenten Daten gespeichert wurden, sofort wieder auf. Das kann zu Problemen mit den persistenten Daten führen.

Wählen Sie bei Windows CE/WEC7 ausschließlich den Modus eSUPS_WrPersistData_NoShutdown, umpersistente Daten fehlerfrei zu speichern.

VAR_INPUT

sNetID : T_AmsNetId:= ''; (* '' = local netid *)
iPLCPort : UINT := 0; (* PLC Runtime System for writing persistent data *)
tTimeout : TIME := DEFAULT_ADS_TIMEOUT; (* ADS Timeout *)
eUpsMode : E_S_UPS_Mode := eSUPS_WrPersistData_Shutdown; (* UPS mode (w/wo writing persistent data, w/wo shutdown) *)
ePersistentMode : E_PersistentMode := SPDM_2PASS; (* mode for writing persistent data *)
tRecoverTime : TIME := T#10s; (* ON time to recover from short power failure in mode eSUPS_WrPersistData_NoShutdown/eSUPS_CheckPowerStatus *)

sNetID: AmsNetId der Steuerung. (Typ: T_AmsNetId)
iPLCPort: Portnummer des SPS-Laufzeitsystems.
tTimeout: Timeout für die Ausführung des QuickShutdowns.
eUpsMode: eUpsMode definiert, ob persistente Daten geschrieben werden sollen und ob ein QuickShutdown ausgeführt werden soll. Standardwert ist eSUPS_WrPersistData_Shutdown, d.h. mit Schreiben der persistenten Daten und dann QuickShutdown. (Typ: E_S_UPS_Mode [52])

ePersistentMode: Modus für das Schreiben der persistenten Daten. Standardwert ist SPDM_2PASS.

tRecoverTime: Zeit, nach der die USV bei UPS-Modi ohne Shutdown wieder in den PowerOK Status zurückgeht. Die tRecoverTime muss etwas größer sein als die maximale Haltezeit der USV, da die USV auch bei wiederkehrender Spannung abschaltet.

VAR_OUTPUT

<table>
<thead>
<tr>
<th>VAR_OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>bPowerFailDetect : BOOL; (* TRUE while powerfailure is detected *)</td>
</tr>
<tr>
<td>eState : E_S_UPS_State; (* current ups state *)</td>
</tr>
<tr>
<td>END_VAR</td>
</tr>
</tbody>
</table>

bPowerFailDetect: TRUE während des Spannungsausfalls. FALSE, wenn die Versorgungsspannung anliegt.

eState: Interner Zustand des Funktionsbausteins (Typ: E_S_UPS_State [52])

VAR_GLOBAL

<table>
<thead>
<tr>
<th>VAR_GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGlobalSUpsState : E_S_UPS_State; (current ups state)</td>
</tr>
<tr>
<td>END_VAR</td>
</tr>
</tbody>
</table>

eGlobalSUpsState: Interner Zustand des Funktionsbausteins als globale Kopie des VAR_OUTPUT

eState: Werte siehe E_S_UPS_State [52].

Entwicklungsumgebung Zielplattform Hardware Einzubindende SPS- Bibliotheken

<table>
<thead>
<tr>
<th>Entwicklungsamlgebung</th>
<th>Zielplattform</th>
<th>Hardware</th>
<th>Einzubindende SPS- Bibliotheken</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwinCAT v2.11 R3 B2246</td>
<td>CX9020-U900</td>
<td>Sekunden-USV</td>
<td>Für TwinCAT 2: TcSUPS_CX9020_U900.lib</td>
</tr>
<tr>
<td>TwinCAT v3.1 B4016</td>
<td></td>
<td></td>
<td>Für TwinCAT 3: Tc2_SUPS</td>
</tr>
</tbody>
</table>
9.2 Modus und Status des Funktionsbausteins

E_S_UPS_Mode

Mit dem gewählten Modus im Funktionsbaustein können Sie bestimmen, was bei einem Spannungsaufall passiert.

- eSUPS_WrPersistData_Shutdown: Schreiben der persistenten Daten und dann QuickShutdown
- eSUPS_WrPersistData_NoShutdown: Nur Schreiben der persistenten Daten (kein QuickShutdown)
- eSUPS_ImmediateShutdown: Nur QuickShutdown (kein Schreiben der persistenten Daten)
- eSUPS_CheckPowerStatus: Nur Status ermitteln (weder Schreiben der persistenten Daten noch QuickShutdown)

E_S_UPS_State

Mit E_S_UPS_State kann der interne Zustand des Funktionsbausteins ausgelesen werden.

- eSUPS_PowerOK: in allen Modi: Versorgungsspannung ist OK
- eSUPS_PowerFailure: in allen Modi: Versorgungsspannung fehlerhaft (steht nur einen Zyklus an)
- eSUPS_WritePersistentData:
 - im Modus eSUPS_WrPersistData_Shutdown: Schreiben der persistenten Daten ist aktiv
 - im Modus eSUPS_WrPersistData_NoShutdown: Schreiben der persistenten Daten ist aktiv
- eSUPS_QuickShutdown:
 - im Modus eSUPS_WrPersistData_Shutdown: QuickShutdown ist aktiv
 - im Modus eSUPS_ImmediateShutdown: QuickShutdown ist aktiv
- eSUPS_WaitForRecover:
 - im Modus eSUPS_WrPersistData_NoShutdown: Warten auf Wiederkehr der Spannung
 - im Modus eSUPS_CheckPowerStatus: Warten auf Wiederkehr der Spannung
- eSUPS_WaitForPowerOFF:
 - im Modus eSUPS_WrPersistData_Shutdown: Warten auf das Abschalten durch die USV
 - im Modus eSUPS_ImmediateShutdown: Warten auf das Abschalten durch die USV
9.3 Gültigkeit der Variablen prüfen

Bei TwinCAT 2 kann die implizite Struktur Systeminfotype.bootDataFlags ausgelesen werden, um die Gültigkeit der persistenten Daten zu ermitteln (siehe: SYSTEMINFOTYPE [5.53]).

9.3.1 SYSTEMINFOTYPE

TYPE SYSTEMINFOTYPE
STRUCT
runTimeNo :BYTE;
projectName :STRING(32);
numberOfTasks :BYTE;
onlineChangeCount :UINT;
bootDataFlags :BYTE;
systemStateFlags :WORD;
END_STRUCT
END_TYPE

runTimeNo : Gibt die Nummer des Laufzeitsystems (1..4) an.

projName : Name des Projekts als STRING.

numberOfTasks : Anzahl der im Laufzeitsystem befindlichen Tasks (max. 4).

onlineChangeCount : Anzahl der seit dem letzten Komplettdownload gemachten Online-Änderungen.

<table>
<thead>
<tr>
<th>Bitnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RETAIN Variablen: LOADED (fehlerfrei geladen)</td>
</tr>
<tr>
<td>1</td>
<td>RETAIN Variablen: INVALID (es wurde die Sicherungskopie geladen, weil keine gültige Datei vorhanden war)</td>
</tr>
<tr>
<td>2</td>
<td>RETAIN Variablen: REQUESTED (RETAIN Variablen sollten geladen werden, Einstellung im TwinCAT System Control)</td>
</tr>
<tr>
<td>3</td>
<td>reserviert</td>
</tr>
<tr>
<td>4</td>
<td>PERSISTENT Variablen: LOADED (fehlerfrei geladen)</td>
</tr>
<tr>
<td>5</td>
<td>PERSISTENT Variablen: INVALID (es wurde die Sicherungskopie geladen, weil keine gültige Datei vorhanden war)</td>
</tr>
<tr>
<td>6</td>
<td>reserviert</td>
</tr>
<tr>
<td>7</td>
<td>reserviert</td>
</tr>
</tbody>
</table>

systemStateFlags : Reserviert.

Beim Shutdown (Stopp) von TwinCAT werden die PERSISTENT und die RETAIN Daten in zwei Dateien auf die Festplatte geschrieben. Der Pfad kann im TwinCAT System Control über die TwinCAT System Eigenschaften (Reiter PLC) angegeben werden. Die Standardeinstellung ist "<Laufwerk>:\TwinCAT\Boot". Die Dateien haben alle einen festen Namen und eine feste Endung:

<table>
<thead>
<tr>
<th>Dateiname</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPLC_P_x.wbp</td>
<td>Bootprojekt (x = Nummer des Laufzeitsystems)</td>
</tr>
<tr>
<td>TCPLC_S_x.wbp</td>
<td>Gepackter Sourcecode (x = Nummer des Laufzeitsystems)</td>
</tr>
<tr>
<td>TCPLC_R_x.wbp</td>
<td>RETAIN Variablen (x = Nummer des Laufzeitsystems)</td>
</tr>
<tr>
<td>TCPLC_T_x.wbp</td>
<td>PERSISTENT Variablen (x = Nummer des Laufzeitsystems)</td>
</tr>
<tr>
<td>TCPLC_R_x.wb~</td>
<td>Sicherungskopie der RETAIN Variablen (x = Nummer des Laufzeitsystems)</td>
</tr>
<tr>
<td>TCPLC_T_x.wb~</td>
<td>Sicherungskopie der PERSISTENT Variablen (x = Nummer des Laufzeitsystems)</td>
</tr>
</tbody>
</table>
Wenn die persistenten oder retain Variablen nicht geladen werden, weil sie z.B. nicht valide sind, wird standardmäßig die Sicherungsdatei geladen. In der SPS ist dann im bootDataFlags das Bit 1 (für die RETAIN Variablen) oder/und das Bit 5 (für die PERSISTENT Variablen) gesetzt.

In der Registry kann eingestellt werden, ob die Sicherungsdatei gelöscht oder verwendet werden soll. In der Standarteinstellung 0 wird die Sicherungsdatei verwendet. Wenn die Sicherungsdatei gelöscht werden soll, muss in der Registry unter:

```
[HKEY_LOCAL_MACHINE\SOFTWARE\Beckhoff\TwinCAT\Plc]
"ClearInvalidRetainData"=dword:00000000
"ClearInvalidPersistentData"=dword:00000000
```

der Wert von "ClearInvalidRetainData" auf 1 bzw. von "ClearInvalidPersistentData" auf 1 gesetzt werden.

Auch im TwinCAT Systemmanager kann links im Strukturbaum unter **PLC > Plc Settings** eingestellt werden, ob die Sicherungsdatei verwendet werden soll oder nicht:

Wenn die **Option Clear Invalid Retain Data** oder **Clear Invalid Persistent Data** im Systemmanager aktiviert ist, werden die Sicherungsdateien gelöscht. Entspricht dem Registry-Eintrag 1.

<table>
<thead>
<tr>
<th>Entwicklungsumgebung</th>
<th>Zielplattform</th>
<th>Einzubindende SPS Bibliotheken</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwinCAT v2.7.0</td>
<td>PC or CX (x86)</td>
<td>PLCSystem.Lib</td>
</tr>
<tr>
<td>TwinCAT v2.8.0</td>
<td>PC or CX (x86)</td>
<td>TcSystem.Lib</td>
</tr>
<tr>
<td>TwinCAT v2.10.0 Build >= 1301</td>
<td>CX (ARM)</td>
<td>TcSystem.Lib</td>
</tr>
</tbody>
</table>
9.3.2 PlcAppSystemInfo

Jede SPS beinhaltet eine Instanz des Typs 'PlcAppSystemInfo' mit dem Namen '_AppInfo'.

Der zugehörige Namensraum (namespace) ist 'TwinCAT_SystemInfoVarList'. Dieser muss beispielsweise bei Verwendung in einer Bibliothek mit angegeben werden.

```
TYPE PlcAppSystemInfo
STRUCT
  ObjId       : OTCID;
  TaskCnt     : UDINT;
  OnlineChangeCnt : UDINT;
  Flags       : DWORD;
  AdsPort    : UINT;
  BootDataLoaded : BOOL;
  OldBootData : BOOL;
  AppTimestamp   : DT;
  KeepOutputsOnBP : BOOL;
  ShutdownInProgress : BOOL;
  LicensesPending : BOOL;
  BSODOccurred : BOOL;
  TComSrvPtr     : ITComObjectServer;
  AppName       : STRING(63);
  ProjectName   : STRING(63);
END_STRUCT
END_TYPE

ObjId Objekt-ID der SPS-Projektinstanz
TaskCnt Anzahl der im Laufzeitsystem befindlichen Tasks
OnlineChangeCnt Anzahl der seit dem letzten Komplettdownload gemachten Online-Änderungen
Flags Reserviert
AdsPort ADS-Port der SPS-Applikation
BootDataLoaded PERSISTENT Variablen: LOADED (fehlerfrei geladen)
OldBootData PERSISTENT Variablen: INVALID (es wurde die Sicherungskopie geladen, weil keine gültige Datei vorhanden war)
AppTimestamp Zeitpunkt, zu dem die SPS-Applikation übersetzt wurde
LicensesPending Diese Variable hat den Wert TRUE, falls noch nicht alle Lizenzen, die von Lizenz-Dongles zur Verfügung gestellt werden, auf Gültigkeit geprüft wurden.
BSODOccurred Diese Variable hat den Wert TRUE, falls sich Windows in einem BSOD befindet.
TComSrvPtr Pointer auf den TcCOM Object Server
AppName Von TwinCAT generierter Name, welcher den Port beinhaltet.
ProjectName Name des Projekts
```

Unterschiede zu TwinCAT 2

Wurde die Variable runTimeNo unter TwinCAT 2 verwendet, so muss der Programmcode für die Verwendung unter TwinCAT 3 umgestellt werden.

Beispiel:

- Verwendung unter TwinCAT 2: nPlcAdsPort := 801 + (SystemInfo.runTimeNo - 1) * 10;
- Verwendung unter TwinCAT 3: nPlcAdsPort := _AppInfo.AdsPort;
10 Fehlerbehandlung und Diagnose

10.1 Diagnose-LEDs

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>LED</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>Spannungsversorgung. Die Power LED leuchtet (grün) bei Anschluss an ein Netzteil mit eingeschalteter Spannungsversorgung auf. Die LED blinkt schnell (rot) wenn ein Fehler in der Spannungsversorgung vorliegt. Die LED blinkt langsam (rot), wenn keine oder eine fehlerhaft MicroSD-Karte gesteckt ist.</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>TwinCAT Status LED TwinCAT ist im Run-Modus (grün) TwinCAT ist im Stop-Modus (rot) TwinCAT ist im Konfig-Modus (blau)</td>
<td></td>
</tr>
<tr>
<td>FB1</td>
<td>Status LED1 für Feldbus (Funktion wird bei der Feldbusschnittstelle beschrieben)</td>
<td></td>
</tr>
<tr>
<td>FB2</td>
<td>Status LED2 für Feldbus (Funktion wird bei der Feldbusschnittstelle beschrieben)</td>
<td></td>
</tr>
<tr>
<td>HDD 1</td>
<td>Blinkt bei Zugriff auf µSD-Karte in Slot 1. Bei Lesezugriff blinkt die LED grün. Bei Schreibzugriff blinkt die LED gelb.</td>
<td></td>
</tr>
<tr>
<td>HDD 2</td>
<td>Blinkt bei Zugriff auf µSD-Karte in Slot 2. Bei Lesezugriff blinkt die LED grün. Bei Schreibzugriff blinkt die LED gelb.</td>
<td></td>
</tr>
</tbody>
</table>
10.2 LEDs der Netzteilklemme im K-Bus-Modus

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>LED</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Us 24V</td>
<td>Spannungsversorgung für CPU-Grundmodul. Die LED leuchtet grün bei korrekter Spannungsversorgung.</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 25: K-BUS ERR LED, Reihenfolge der Fehleranzeige durch die LED.

<table>
<thead>
<tr>
<th>Reihenfolge</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnelles Blinken</td>
<td>Start der Sequenz</td>
</tr>
<tr>
<td>Erste langsame Sequenz</td>
<td>Fehlercode</td>
</tr>
<tr>
<td>Keine Anzeige</td>
<td>Pause, die LED ist aus</td>
</tr>
<tr>
<td>Zweite langsame Sequenz</td>
<td>Fehlerargument</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fehlercode</th>
<th>Fehlerargument</th>
<th>Beschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ständiges, konstantes Blinken</td>
<td>EMV Probleme.</td>
<td>• Spannungsversorgung auf Unter- oder Überspannungsspitzen kontrollieren.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EMV-Maßnahmen ergreifen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Liegt ein K-Bus-Fehler vor, kann durch erneutes Starten (Aus- und Wiedereinschalten des Netzteils) der Fehler lokalisiert werden.</td>
<td></td>
</tr>
<tr>
<td>3 Impulse 0</td>
<td>K-Bus-Kommandofehler.</td>
<td>• Keine Busklemme gesteckt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Eine der Busklemmen ist defekt, angehängte Busklemmen halbieren und prüfen ob der Fehler bei den übrigen Busklemmen noch vorhanden ist. Dieses Vorgehen wiederholen, bis die defekte Busklemme lokalisiert ist.</td>
<td></td>
</tr>
<tr>
<td>6 Impulse 0</td>
<td>Fehler bei der Initialisierung.</td>
<td>Embedded-PC tauschen.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Interner Datenfehler.</td>
<td>Hardware-Reset des Embedded-PCs (aus- und wieder einschalten).</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Interner Datenfehler.</td>
<td>Hardware-Reset des Embedded-PCs (aus- und wieder einschalten).</td>
<td></td>
</tr>
<tr>
<td>7 Impulse 0</td>
<td>Prozessdatenlängen der Soll- und Ist-Konfiguration stimmen nicht überein.</td>
<td>Konfiguration und Busklemmen auf Konsistenz prüfen.</td>
<td></td>
</tr>
</tbody>
</table>

Bei manchen Fehlern geht die LED „K-BUS ERR“ nicht aus, obwohl der Fehler beseitigt wurde. Schalten Sie die Spannungsversorgung für das Netzeil aus und wieder ein, damit die LED nach der Fehlerbeseitigung ausgeschaltet wird.
State-Variable

In TwinCAT gibt es unter dem Buskoppler die Variable State, für die K-Bus-Diagnose.

Tab. 27: Beschreibung der Werte bei der State-Variable.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 0</td>
<td>K-Bus-Fehler.</td>
</tr>
<tr>
<td>Bit 1</td>
<td>Klemmenkonfiguration hat sich seit dem Start geändert.</td>
</tr>
<tr>
<td>Bit 2</td>
<td>Prozessabbildlängen stimmen nicht überein.</td>
</tr>
<tr>
<td>Bit 8</td>
<td>(noch) keine gültigen Eingänge.</td>
</tr>
<tr>
<td>Bit 9</td>
<td>K-Bus ist im Inputupdate noch nicht fertig.</td>
</tr>
<tr>
<td>Bit 10</td>
<td>K-Bus ist im Output-Update noch nicht fertig.</td>
</tr>
<tr>
<td>Bit 11</td>
<td>Watchdog.</td>
</tr>
</tbody>
</table>

Liegt ein K-Bus-Fehler vor, kann dieser über den Funktionsbaustein IOF_DeviceReset (in der TcioFunctions.lib) zurückgesetzt werden.
10.3 LEDs der Netzteilklemme im E-Bus-Modus

Die angeschlossenen EtherCAT-Klemmen werden vom Netzteil überprüft. Im E-Bus-Modus leuchtet die LED „L/A“. Wenn Daten übertragen werden, blinkt die LED „L/A“.

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>LED</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Us 24 V</td>
<td>Spannungsversorgung für CPU-Grundmodul. Die LED leuchtet grün bei korrekter Spannungsversorgung.</td>
<td></td>
</tr>
</tbody>
</table>
10.4 Störungen

Lesen Sie dazu auch das Kapitel Sicherheitshinweise.

Mögliche Störungen und ihre Beseitigung

<table>
<thead>
<tr>
<th>Störung</th>
<th>Ursache</th>
<th>Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Embedded-PC bootet nicht vollständig</td>
<td>Festplatte beschädigt (z.B. durch Abschalten bei laufender Software), Setupeinstellungen fehlerhaft, andere Ursachen</td>
<td>Setupeinstellungen prüfen Beckhoff Support anrufen</td>
</tr>
<tr>
<td>Rechner bootet, Software wird gestartet, aber Steuerung arbeitet nicht einwandfrei</td>
<td>Fehlerursache liegt bei der Software oder bei Anlagenteilen außerhalb des Embedded-PCs</td>
<td>Rufen Sie den Maschinen- oder Softwarehersteller an.</td>
</tr>
<tr>
<td>Fehler bei µSD Card Zugriff</td>
<td>Fehlerhafte µSD Card, fehlerhafter Einschub</td>
<td>Mit einer anderen µSD Card den Einschub überprüfen Beckhoff Support anrufen</td>
</tr>
<tr>
<td>Embedded-PC funktioniert nur teilweise oder nur zeitweise</td>
<td>Komponenten im Embedded-PC defekt</td>
<td>Beckhoff Support anrufen</td>
</tr>
</tbody>
</table>

Bitte notieren Sie sich vor Kontaktaufnahme mit dem Service oder Support folgende Angaben:

1. Genaue Gerätebezeichnung CXxxxx-xxxx
2. Serienummer
3. Hardwarestand
4. evtl. vorhandene Schnittstellen (N030, N031, B110, ...)
5. eingesetzte TwinCAT Version
6. evtl. weitere eingesetzte Komponenten / Software

11 Pflege und Wartung

11.1 Batterie wechseln

HINWEIS

Explosionsgefahr

Eine falsch eingelegte Batterie kann explodieren und den Embedded-PC beschädigen.

Verwenden Sie nur Originalbatterien und achten Sie unbedingt darauf, dass die Plus- und Minuspole der Batterie korrekt eingelegt sind.

Tab. 28: Technische Daten der eingesetzten Batterie.

<table>
<thead>
<tr>
<th>Batterietyp</th>
<th>Elektrische Eigenschaften (bei 20° C)</th>
<th>Standard Belastung</th>
<th>Abmessungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nominal Spannung</td>
<td>nominal Kapazität</td>
<td>kontinuierliche Last</td>
</tr>
<tr>
<td>CR2032</td>
<td>3,0 V</td>
<td>225 mAh</td>
<td>0.20 mA</td>
</tr>
</tbody>
</table>

Das Batteriefach befindet sich unter der Frontklappe. Die Batterie puffert die Uhrzeit und das Datum. Die Uhrzeit und das Datum werden zurückgesetzt, sobald die Batterie entfernt wird.

Beachten Sie dieses Verhalten für Ihre Hard- und Softwarekonfiguration und stellen Sie die Uhrzeit und das Datum nach dem Wechsel neu ein.

Voraussetzungen:

- Der Embedded-PC ist ausgeschaltet.

Wechseln Sie die Batterie wie folgt:

1. Hebeln Sie die Frontklappe mit einem Schraubendreher auf und entfernen Sie die Frontklappe.
2. Ziehen die Batterie an der Auswurflasche vorsichtig aus der Halterung.

⇒ Der Batteriewechsel ist abgeschlossen. Schließen Sie die Frontklappe und stellen Sie das Datum und die Uhrzeit neu ein.
12 Außerbetriebnahme

12.1 Leitungen entfernen

HINWEIS

Elektrische Spannung

Eine eingeschaltete Spannungsversorgung kann während der Demontage zu Schäden an den Embedded-PCs führen.

- Schalten Sie die Spannungsversorgung für die Embedded-PCs während der Demontage ab.

Verkabelung

Notieren Sie sich die Beschaltung, wenn Sie die Verkabelung mit einem anderen Gerät wiederherstellen wollen.

Voraussetzungen:

- Beenden Sie die Software und fahren Sie den Embedded-PC herunter.
- Schalten Sie die Spannungsversorgung ab.

Entfernen Sie die Leitungen wie folgt:

1. Entfernen Sie die Verkabelung vom Embedded-PC.

2. Entfernen Sie die Verkabelung von der ersten Klemme neben der Netzteilklemme.

3. Ziehen Sie an der orangefarbenen Lasche und ziehen Sie damit die erste Klemme nach der Netzteilklemme nach vorne heraus.

⇒ Der Embedded-PC kann im nächsten Schritt von der Hutschiene genommen und demontiert werden.
12.2 Embedded-PC demontieren

In diesem Kapitel wird gezeigt, wie Sie den Embedded-PC demontieren und damit von der Tragschiene nehmen.

Voraussetzungen:

- Alle Leitungen wurden vom Embedded-PC entfernt.

Demontieren Sie den Embedded-PC wie folgt:

1. Lösen Sie die Hutschienenbefestigung, indem Sie die Haken mit einem Schraubendreher nach außen drücken.

2. Ziehen Sie an der orangefarbenen Lasche, die sich an der Netzteilklemme befindet und nehmen Sie das Gerät vorsichtig von der Hutschiene.

Sie haben den Embedded-PC erfolgreich demontiert.

Entsorgung

13 Technische Daten

Tab. 29: Technische Daten, Abmessungen und Gewichte.

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>CX9020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht</td>
<td>ca. 590 g</td>
</tr>
<tr>
<td>Abmessungen (B x H x T)</td>
<td>84 mm x 99 mm x 91 mm</td>
</tr>
</tbody>
</table>

Tab. 30: Technische Daten, allgemeine Daten.

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>CX9020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessor</td>
<td>i.MX535 ARM Cortex™-A8, 1 GHz</td>
</tr>
<tr>
<td>Arbeitsspeicher</td>
<td>1 GB DDR3-RAM</td>
</tr>
<tr>
<td>Flash-Speicher</td>
<td>256 MB MicroSD (optional erweiterbar), 2 x MicroSD-Kartenslot</td>
</tr>
<tr>
<td>NOVARAM integriert</td>
<td>128 kB</td>
</tr>
<tr>
<td>Spannungsversorgung</td>
<td>24 V DC (-15 %/+20 %)</td>
</tr>
<tr>
<td>max. Verlustleistung</td>
<td>5 W (einschließlich der Systemschnittstellen)</td>
</tr>
<tr>
<td>Spannungsfestigkeit</td>
<td>500 Veff (Versorgung/interne Elektronik)</td>
</tr>
<tr>
<td>Betriebssystem</td>
<td>Microsoft Windows Embedded Compact 7</td>
</tr>
<tr>
<td>Steuerungssoftware</td>
<td>TwinCAT-2-PLC-Runtime oder TwinCAT-2-NC-PTP-Runtime</td>
</tr>
<tr>
<td>Diagnose LED</td>
<td>1 x Power, 1 x TC-Status, 2 x Bus-Status, 2 x Flash-Zugriff</td>
</tr>
<tr>
<td>Uhr</td>
<td>interne, batteriegepufferte Uhr für Zeit und Datum (Batterie wechselbar)</td>
</tr>
<tr>
<td>Zulassungen</td>
<td>CE, UL, Ex, GL, IECEx</td>
</tr>
</tbody>
</table>

Tab. 31: Technische Daten, I/O-Klemmen.

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O-Anschluss</td>
<td>via Netzteilklemme (E-Bus oder K-Bus, automatische Erkennung)</td>
</tr>
<tr>
<td>Stromversorgung für I/O-Klemmen</td>
<td>max. 2A</td>
</tr>
<tr>
<td>Strombelastung Powerkontakte</td>
<td>max. 10 A</td>
</tr>
<tr>
<td>Prozessdaten K-Bus</td>
<td>max. 2048 Byte In und 2048 Byte Output</td>
</tr>
<tr>
<td>max. Anzahl der Klemmen (K-Bus)</td>
<td>64 (255 mit K-Bus-Verlängerung)</td>
</tr>
<tr>
<td>Prozessdaten E-Bus</td>
<td>max. 3328 Byte</td>
</tr>
<tr>
<td>max. Anzahl der Klemmen (E-Bus)</td>
<td>bis zu 65534 Klemmen.</td>
</tr>
</tbody>
</table>
Tab. 32: Technische Daten, Umgebungsbedingungen.

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umgebungstemperatur im Betrieb</td>
<td>-25° C ... +60° C</td>
</tr>
</tbody>
</table>
| Umgebungstemperatur bei Lagerung | -40° C ... +85° C
 siehe Hinweise unter: Transport und Lagerung [› 11] |
| Relative Feuchte | 95% ohne Betauung |
| Schwingungsfestigkeit | 10 Frequenzdurchläufe, in 3-Achsen
 6 Hz < f < 58,1 Hz Auslenkung 0,15 mm, konstante Amplitude
 58,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
 gemäß EN 60068-2-6 |
| Schockfestigkeit | 1000 Schocks je Richtung, in 3-Achsen
 15 g, 11 ms
 gemäß EN 60068-2-27 |
| EMV-Festigkeit | gemäß EN 61000-6-2 |
| EMV-Aussendung | gemäß EN 61000-6-4 |
| Schutzart | IP 20 |

Tab. 33: Technische Daten, Grafikspezifikationen.

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessorgrafik</td>
<td>Integrierte Grafik, ARM</td>
</tr>
</tbody>
</table>

Tab. 34: Technische Daten, Schnittstellen.

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>2 x RJ 45, 10/100 MBit/s</td>
</tr>
<tr>
<td>USB</td>
<td>4 x USB 2.0 mit je 500 mA, Typ A</td>
</tr>
</tbody>
</table>
| DVI-D | Auflösung am Monitor in Pixel:
 640 x 480 bis 1920 x 1200 |

Tab. 35: Technische Daten, Optionsschnittstellen.

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Line In, Line Out, Mic In</td>
</tr>
</tbody>
</table>
| RS232 | D-Sub-Stecker, 9-polig
 Potenzialtrennung 500 V |
| RS422/RS485 | D-Sub-Stecker, 9-polig
 Potenzialtrennung 500 V |
| EtherCAT-Slave | 2 x RJ 45, EtherCAT IN und OUT
 100 MBaud |
| PROFIBUS | D-Sub-Stecker, 9-polig
 9,6 kBaud bis 12MBaud |
| CANopen | D-Sub-Stecker, 9-polig
 10 kBaud bis 1.000 kBaud |
| PROFINET RT | 2 x RJ-45-Switch |
14 Anhang

14.1 Zubehör

Tab. 36: MicroSD-Karten.

<table>
<thead>
<tr>
<th>Bestellnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX1900-0122</td>
<td>512-MB-MicroSD-Karte</td>
</tr>
<tr>
<td>CX1900-0124</td>
<td>1-GB-MicroSD-Karte</td>
</tr>
<tr>
<td>CX1900-0126</td>
<td>2-GB-MicroSD-Karte</td>
</tr>
<tr>
<td>CX1900-0128</td>
<td>4-GB-MicroSD-Karte</td>
</tr>
<tr>
<td>CX1900-0130</td>
<td>8-GB-MicroSD-Karte</td>
</tr>
</tbody>
</table>

größere Kapazitäten auf Anfrage

Tab. 37: DVI-zu-VGA passiver Adapter.

<table>
<thead>
<tr>
<th>Bestellnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX1900-0101</td>
<td>DVI-zu-VGA passiver Adapter für den Anschluss von Standard-VGA-Monitoren an das CX-System</td>
</tr>
<tr>
<td></td>
<td>– führt die VGA-Signale der DVI-I-Schnittstelle des CX-Moduls aus</td>
</tr>
<tr>
<td></td>
<td>– DVI-A-Stecker, 29-polig (unten), Buchse, 15-polig (oben)</td>
</tr>
<tr>
<td></td>
<td>– Gewicht: ca. 40 g</td>
</tr>
<tr>
<td></td>
<td>– Abmessungen (B x H x T): 40 x 42 x 15 mm</td>
</tr>
</tbody>
</table>

Tab. 38: Ersatzbatterie CX-Systeme.

<table>
<thead>
<tr>
<th>Bestellnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX1900-0102</td>
<td>Batterie für CX-Systeme</td>
</tr>
<tr>
<td></td>
<td>Original Herstellerbezeichnung: Panasonic Typ CR2032 3V/225mAh</td>
</tr>
</tbody>
</table>
14.2 Zertifizierungen

FCC Approvals for the United States of America

FCC: Federal Communications Commission Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Approval for Canada

FCC: Canadian Notice

This equipment does not exceed the Class A limits for radiated emissions as described in the Radio Interference Regulations of the Canadian Department of Communications.
14.3 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

• Support
• Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
• umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157
E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

• Vor-Ort-Service
• Reparaturservice
• Ersatzteilservice
• Hotline-Service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
E-Mail: service@beckhoff.com

Beckhoff Firmenzentrale

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Deutschland

Telefon: +49(0)5246/963-0
Fax: +49(0)5246/963-198
E-Mail: info@beckhoff.com

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten:
http://www.beckhoff.de

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tab.</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gewicht und Abmessungen</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Verfügbare Optionsschnittstellen für den CX9020.</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Legende zum Aufbau</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Legende zum Typenschild</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>CX9020 (1 GHz 1 Kern), Bestellangaben für Software.</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>USB-Schnittstellen (X100, X101, X102, X103), PIN-Belegung.</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Ethernet-Schnittstelle X000 und X001, PIN-Belegung.</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>DVI-D-Schnittstelle X200, PIN-Belegung</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>DVI-D-Schnittstelle X200, Auflösung am Bildschirm.</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>Klinkenstecker Line In /Line Out, PIN-Belegung.</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>RS232-Schnittstelle X300, PIN-Belegung</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>RS422/485-Schnittstelle, PIN-Belegung</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>Standardeinstellung, RS485 ohne Echo mit Endpunkt (Terminiert).</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>EtherCAT-Slave-Schnittstelle X300, PIN-Belegung.</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>PROFINET-Schnittstelle X310, PIN-Belegung.</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>Leitungsfarben der PROFIBUS Leitung.</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>CANopen-Schnittstelle X510, PIN-Belegung</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>PROFINET RT-Schnittstelle, PIN-Belegung</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>Legende zum Anschlussbeispiel</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>Erforderliche Leiterquerschnitte und Abisolierlängen.</td>
<td>32</td>
</tr>
<tr>
<td>21</td>
<td>Zugangsdaten zum Beckhoff Device Manager bei Auslieferung.</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>Zugangsdaten zum Beckhoff Device Manager bei Auslieferung.</td>
<td>37</td>
</tr>
<tr>
<td>23</td>
<td>Legende zur Strukturansicht</td>
<td>38</td>
</tr>
<tr>
<td>24</td>
<td>Modi des Bausteins</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>K-BUS ERR LED, Reihenfolge der Fehleranzeige durch die LED.</td>
<td>57</td>
</tr>
<tr>
<td>26</td>
<td>K-BUS ERR LED, Fehlerbeschreibung und Abhilfe.</td>
<td>58</td>
</tr>
<tr>
<td>27</td>
<td>Beschreibung der Werte bei der State-Variable.</td>
<td>59</td>
</tr>
<tr>
<td>28</td>
<td>Technische Daten der eingesetzten Batterie.</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>Technische Daten, Abmessungen und Gewichte.</td>
<td>65</td>
</tr>
<tr>
<td>30</td>
<td>Technische Daten, allgemeine Daten</td>
<td>65</td>
</tr>
<tr>
<td>31</td>
<td>Technische Daten, I/O-Klemmen</td>
<td>65</td>
</tr>
<tr>
<td>32</td>
<td>Technische Daten, Umgebungsbedingungen.</td>
<td>66</td>
</tr>
<tr>
<td>33</td>
<td>Technische Daten, Grafikspezifikationen.</td>
<td>66</td>
</tr>
<tr>
<td>34</td>
<td>Technische Daten, Schnittstellen.</td>
<td>66</td>
</tr>
<tr>
<td>35</td>
<td>Technische Daten, Optionsschnittstellen.</td>
<td>66</td>
</tr>
<tr>
<td>36</td>
<td>MicroSD-Karten.</td>
<td>67</td>
</tr>
<tr>
<td>37</td>
<td>DVI-zu-VGA passiver Adapter.</td>
<td>67</td>
</tr>
<tr>
<td>38</td>
<td>Ersatzbatterie CX-Systeme.</td>
<td>67</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 1 Aufbau des Embedded-PCs CX9020. .. 13
Abb. 2 CX9020 Typenschild... 14
Abb. 3 Bezeichnungssystematik des Embedded-PCs CX9020. ... 15
Abb. 4 USB-Schnittstellen X100, X101, X102, X103. .. 17
Abb. 5 USB-Schnittstelle, PIN-Nummerierung ... 17
Abb. 6 Ethernet-Schnittstelle X000, X001. .. 18
Abb. 7 Ethernet-Schnittstelle, PIN-Nummerierung... 18
Abb. 8 DVI-D-Schnittstelle X200. .. 19
Abb. 9 Audioschnittstelle X300, X301, X302. .. 20
Abb. 10 Klinkenstecker Line In / Line Out X300, X302. ... 20
Abb. 11 Klinkenstecker Mic In X301. ... 20
Abb. 12 RS232-Schnittstelle X300 mit PIN-Nummerierung. ... 21
Abb. 13 RS485-Schnittstelle X300 mit PIN-Nummerierung. ... 22
Abb. 14 EtherCAT-Slave-Schnittstelle X300. .. 23
Abb. 15 EtherCAT-Slave LAN-Schnittstelle, PIN-Nummerierung. ... 23
Abb. 16 PROFIBUS-Schnittstelle X310 mit PIN-Nummerierung .. 24
Abb. 17 CANopen-Schnittstelle X510 mit PIN-Nummerierung. ... 25
Abb. 18 PROFINET RT-Schnittstelle X300. ... 26
Abb. 19 PROFINET RT LAN-Schnittstelle, PIN-Nummerierung .. 26
Abb. 20 Embedded-PC CX9020, zulässige Einbaulage. ... 27
Abb. 21 Embedded-PC CX9020, unzulässige Einbaulagen. ... 28
Abb. 22 Passive EtherCAT-Klemme in TwinCAT identifizieren. .. 31
Abb. 23 Passive EtherCAT-Klemmen, zulässige Montage. ... 31
Abb. 24 Passive EtherCAT-Klemmen, unzulässige Montage. ... 31
Abb. 25 UL-Label beim CX9020. .. 33
Abb. 26 Embedded-PC CX9020 in der Strukturansicht von TwinCAT 3, mit angereihten EtherCAT- Klemmen (links) oder Busklemmen (rechts). ... 38
Abb. 27 Verhalten der Steuerung ohne und mit NOVRAM. ... 42
Abb. 28 Retain-Handler Schreibgeschwindigkeit, bis 63 kB in 512 Byte-Schritten. 47
Abb. 29 Retain-Handler Schreibgeschwindigkeit, bis 8 kB in 64 Byte-Schritten. .. 47
Abb. 30 Status-Variable für Fehlerbehandlung und Diagnose unter TwinCAT. .. 59