BECKHOFF New Automation Technology

Original-Handbuch | DE

CX8190 Embedded-PC mit Ethernet

11.03.2025 | Version: 1.8

Inhaltsverzeichnis

1	Hinw	/eise zur	Dokumentation	5
	1.1	Symbole	erklärung	6
	1.2	Ausgabe	estände der Dokumentation	7
2	Zu Ih	nrer Siche	erheit	8
	2.1	Bestimm	nungsgemäße Verwendung	8
	2.2	Persona	Iqualifikation	8
	2.3	Sicherhe	eitshinweise	8
	2.4	Hinweise	e zur Informationssicherheit	9
3	Trans	sport und	d Lagerung	11
4	Prod	luktübers	icht	12
	4.1	Aufbau.		14
	4.2	Typenso	shild	15
	4.3	Ethernet	t-Schnittstellen	16
	4.4	MicroSD)-Karte	19
	4.5	Reset-K	nopf	19
5	Inbet	triebnahn	ne	20
	5.1	Montage	9	20
		5.1.1	Abmessungen	20
		5.1.2	Zulässige Einbaulagen beachten	21
		5.1.3	Auf Tragschiene befestigen	23
	5.2	Spannur	ngsversorgung anschließen	24
6	Konf	iguration]	26
-	6.1	Betriebs	system	26
		6.1.1	Printipaltene Features	27
		6.1.2	Image aktualisieren	28
		6.1.3	FTP-Server	29
	6.2	IP-Adres	sse	31
		6.2.1	Mit DIP-Schaltern einstellen	31
		6.2.2	Im Betriebssystem einstellen	32
	6.3	Webserv	vice	33
		6.3.1	Beckhoff Device Manager starten	33
		6.3.2	Remote Display aktivieren	34
		6.3.3	IP-Adresse der Ethernet-Schnittstellen (X101, X102) ändern	35
		6.3.4	Remote-Verbindung starten	36
	6.4	TwinCA	Т	37
		6.4.1	Mit CX81xx verbinden	37
				30
		6.4.2	Geräte scannen	59
		6.4.2 6.4.3	Geräte scannen SPS-Projekt erstellen	40
		6.4.2 6.4.3 6.4.4	Geräte scannen SPS-Projekt erstellen Variablen verknüpfen	40 42
		6.4.2 6.4.3 6.4.4 6.4.5	Geräte scannen SPS-Projekt erstellen Variablen verknüpfen Realtime-Ethernet konfigurieren	40 42 43
		6.4.26.4.36.4.46.4.56.4.6	Geräte scannen SPS-Projekt erstellen Variablen verknüpfen Realtime-Ethernet konfigurieren EtherCAT Automation Protokoll (EAP) konfigurieren	40 42 43 45
7	Prog	6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 rammier	Geräte scannen SPS-Projekt erstellen Variablen verknüpfen Realtime-Ethernet konfigurieren EtherCAT Automation Protokoll (EAP) konfigurieren	40 42 43 45 47

BECKHOFF

		7.1.1	FB_S_UPS_CX81xx	49
		7.1.2	Datentypen	51
		7.1.3	PlcAppSystemInfo	51
	7.2	Diagnos	e-LEDs ansteuern	52
		7.2.1	Funktion F_CX81x0_LED_WD	52
		7.2.2	Funktion F_CX81x0_LED_ERR	53
		7.2.3	Datentyp TYPE E_CX81x0_LED	53
	7.3	Funktion	F_CX81xx_ADDRESS	53
	7.4	Real Tim	e Clock (RTC)	54
8	Ether	rnet X001	Interface	55
	8.1	Ethernet		55
	8.2	Topologi	ebeispiel	57
	83	ADS-Kor	nmunikation	58
	0.0	7.000 1.001		•••
9	Fehle	erbehand	lung und Diagose	60
9	Fehle 9.1	erbehand Diagnos	lung und Diagose ə-LEDs	60
9	Fehle 9.1 9.2	erbehand Diagnose K-Bus	lung und Diagose e-LEDs	60 60 60
9	Fehle 9.1 9.2 9.3	Prbehand Diagnose K-Bus E-Bus	lung und Diagose e-LEDs	60 60 60 63
9 10	Fehle 9.1 9.2 9.3 Pfleg	erbehand Diagnose K-Bus E-Bus e und Wa	lung und Diagose ∋-LEDs artung	 60 60 60 63 64
9 10	Fehle 9.1 9.2 9.3 Pfleg 10.1	Prbehand Diagnose K-Bus E-Bus e und Wa Batterie	lung und Diagose e-LEDs artung wechseln	 60 60 60 63 64 65
9 10	 Fehle 9.1 9.2 9.3 Pfleg 10.1 10.2 	erbehand Diagnose K-Bus E-Bus e und Wa Batterie Embedd	lung und Diagose e-LEDs artung wechseln ed-PC reinigen	 60 60 60 63 64 65 66
9 10 11	 Fehle 9.1 9.2 9.3 Pfleg 10.1 10.2 Tech 	erbehand Diagnose K-Bus E-Bus e und Wa Batterie Embedda	lung und Diagose e-LEDs artung wechseln ed-PC reinigen aten	 60 60 60 63 64 65 66 67
9 10 11 12	 Fehle 9.1 9.2 9.3 Pfleg 10.1 10.2 Tech Anha 	erbehand Diagnose K-Bus E-Bus e und Wa Batterie Embedda nische Da	lung und Diagose e-LEDs artung wechseln ed-PC reinigen aten	 60 60 60 60 63 64 65 66 67 69
9 10 11 12	Fehle 9.1 9.2 9.3 Pfleg 10.1 10.2 Tech Anha 12.1	erbehand Diagnose K-Bus E-Bus e und Wa Batterie Embedd nische Da Jug	lung und Diagose e-LEDs artung wechseln ed-PC reinigen aten	 60 60 60 60 63 64 65 66 67 69 69
9 10 11 12	 Fehle 9.1 9.2 9.3 Pfleg 10.1 10.2 Tech Anha 12.1 12.2 	erbehand Diagnose K-Bus E-Bus e und Wa Batterie Embedda nische Da Ing Zubehör Zertifizie	lung und Diagose e-LEDs artung wechseln ed-PC reinigen aten rungen	 60 60 60 63 64 65 66 67 69 69 69

1 Hinweise zur Dokumentation

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] und XPlanar[®] sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH.

Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Ether**CAT**

EtherCAT[®] ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Fremdmarken

In dieser Dokumentation können Marken Dritter verwendet werden. Die zugehörigen Markenvermerke finden Sie unter: <u>https://www.beckhoff.com/trademarks</u>.

1.1 Symbolerklärung

In der Dokumentation werden folgende Warnhinweise verwendet. Lesen und befolgen Sie die Warnhinweise.

Warnhinweise, die vor Personenschäden warnen:

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

A WARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

▲ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine leichte Verletzung zur Folge haben kann.

Warnhinweise, die vor Sach- oder Umweltschäden warnen:

HINWEIS

Es besteht eine mögliche Gefährdung für Umwelt und Geräte.

Hinweise, die weitere Informationen oder Tipps anzeigen:

i

Dieser Hinweis gibt wichtige Informationen, die beim Umgang mit dem Produkt oder der Software helfen. Es besteht keine unmittelbare Gefahr für Produkt, Mensch und Umwelt.

1.2 Ausgabestände der Dokumentation

Version	Kommentar
1.0	Erste Version.
1.1	Kapitel "Webservice" und "Programmierung" überarbeitet.
1.2	Kapitel "Spannungsversorgung anschließen" angepasst.
1.3	Kapitel "Technische Daten" angepasst und Kapitel "FTP-Server" hinzugefügt.
1.4	Kapitel "Device Manager" angepasst.
1.5	Kapitel "1-Sekunden-USV" angepasst.
1.6	Kapitel "Ethernet X001 Interface" angepasst.
1.7	Kapitel "Produktübersicht" angepasst.
1.8	Kapitel "Pflege und Wartung" und "Zubehör" angepasst.

2 Zu Ihrer Sicherheit

Lesen Sie das Sicherheitskapitel und halten Sie die Hinweise ein, um sich vor Personenschäden und Sachschäden zu schützen.

Haftungsbeschränkungen

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Eigenmächtige Umbauten und Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind verboten und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG. Darüber hinaus werden folgende Punkte aus der Haftung der Beckhoff Automation GmbH & Co. KG

Darüber hinaus werden folgende Punkte aus der Haftung der Beckhoff Automation GmbH & Co. KG ausgeschlossen:

- Nichtbeachtung dieser Dokumentation.
- Nichtbestimmungsgemäße Verwendung.
- Einsatz von nicht ausgebildetem Fachpersonal.
- Verwendung nicht zugelassener Ersatzteile.

2.1 Bestimmungsgemäße Verwendung

Der Embedded-PC ist ein Steuerungssystem für den Einsatz im Maschinen- und Anlagenbau zur Automatisierung, Visualisierung und Kommunikation. Der Embedded-PC ist für den Einbau in einen Schaltschrank oder Klemmenkasten vorgesehen und wird zusammen mit Bus- oder EtherCAT-Klemmen dazu verwendet, um digitale und analoge Signale von Sensoren aufzunehmen und an Aktoren auszugeben oder an übergeordnete Steuerungen weiterzuleiten.

Der Embedded-PC ist für ein Arbeitsumfeld entwickelt, welches der Schutzklasse IP20 genügt. Es besteht Fingerschutz und Schutz gegen feste Fremdkörper bis 12,5 mm, jedoch kein Schutz gegen Wasser. Der Betrieb der Geräte in nasser und staubiger Umgebung ist nicht gestattet, sofern nicht anders angegeben. Die angegebenen Grenzwerte für elektrische- und technische Daten müssen eingehalten werden.

Nicht bestimmungsgemäße Verwendung

Der Embedded-PC ist nicht für den Betrieb in folgenden Bereichen geeignet:

- In explosionsgefährdeten Bereichen.
- In Bereichen mit einer aggressiven Umgebung, die z.B. mit aggressiven Gasen oder Chemikalien angereichert ist.
- Im Wohnbereich. Im Wohnbereich müssen die entsprechenden Normen und Richtlinien für Störaussendungen eingehalten und die Geräte in Gehäuse oder Schaltkästen mit entsprechender Schirmdämpfung eingebaut werden.

2.2 Personalqualifikation

Alle Arbeitsschritte an der Beckhoff Soft- und Hardware dürfen nur vom Fachpersonal mit Kenntnissen in der Steuerungs- und Automatisierungstechnik durchgeführt werden. Das Fachpersonal muss über Kenntnisse in der Administration des eingesetzten Industrie-PCs und des jeweils eingesetzten Netzwerks verfügen.

Alle Eingriffe müssen mit Kenntnissen in der Steuerungs-Programmierung durchgeführt werden und das Fachpersonal muss die aktuellen Normen und Richtlinien für das Automatisierungsumfeld kennen.

2.3 Sicherheitshinweise

Folgende Sicherheitshinweise müssen während der Montage, der Arbeit mit Netzwerken und der Arbeit mit Software beachtet werden.

BECKHOFF

Montage

- Arbeiten Sie nicht an Geräten unter Spannung. Schalten Sie immer die Spannungsversorgung für das Gerät ab bevor Sie es montieren, Störungen beheben oder Wartungsarbeiten durchführen. Sichern Sie das Gerät gegen ein unbeabsichtigtes Einschalten ab.
- Beachten Sie die Unfallverhütungsvorschriften, die für Ihre Maschine zutreffend sind (z.B. die BGV A 3, Elektrische Anlagen und Betriebsmittel).
- Achten Sie auf einen normgerechten Anschluss und vermeiden Sie Gefahren für das Personal. Verlegen Sie die Daten- und Versorgungsleitungen normgerecht und achten Sie auf die korrekte Anschlussbelegung.
- Beachten Sie die für Ihre Anwendung zutreffenden EMV-Richtlinien.
- Vermeiden Sie die Verpolung der Daten- und Versorgungsleitungen, da dies zu Schäden an den Geräten führen kann.
- In den Geräten sind elektronische Bauteile integriert, die Sie durch elektrostatische Entladung bei Berührung zerstören können. Beachten Sie die Sicherheitsmaßnahmen gegen elektrostatische Entladung entsprechend DIN EN 61340-5-1/-3.

Arbeiten mit Netzwerken

- Beschränken Sie den Zugriff zu sämtlichen Geräten auf einen autorisierten Personenkreis.
- Ändern Sie die standardmäßig eingestellten Passwörter und verringern so das Risiko, dass Unbefugte Zugriff erhalten.
- Schützen Sie die Geräte mit einer Firewall.
- Wenden Sie die Vorgaben zur IT-Sicherheit nach der IEC 62443 an, um den Zugriff und die Kontrolle auf Geräte und Netzwerke einzuschränken.

Arbeiten mit der Software

- Die Empfindlichkeit eines PCs gegenüber Schadsoftware steigt mit der Anzahl der installierten bzw. aktiven Software.
- Deinstallieren oder deaktivieren Sie nicht benötigte Software.

Weitere Informationen zum sicheren Umgang mit Netzwerken und Software finden Sie im Beckhoff-Information System:

http://infosys.beckhoff.com

Dokumentationstitel

IPC Security Guideline

2.4 Hinweise zur Informationssicherheit

Die Produkte der Beckhoff Automation GmbH & Co. KG (Beckhoff) sind, sofern sie online zu erreichen sind, mit Security-Funktionen ausgestattet, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen. Trotz der Security-Funktionen sind die Erstellung, Implementierung und ständige Aktualisierung eines ganzheitlichen Security-Konzepts für den Betrieb notwendig, um die jeweilige Anlage, das System, die Maschine und die Netzwerke gegen Cyber-Bedrohungen zu schützen. Die von Beckhoff verkauften Produkte bilden dabei nur einen Teil des gesamtheitlichen Security-Konzepts. Der Kunde ist dafür verantwortlich, dass unbefugte Zugriffe durch Dritte auf seine Anlagen, Systeme, Maschinen und Netzwerke verhindert werden. Letztere sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn entsprechende Schutzmaßnahmen eingerichtet wurden.

Zusätzlich sollten die Empfehlungen von Beckhoff zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Informationssicherheit und Industrial Security finden Sie in unserem <u>https://www.beckhoff.de/secguide</u>.

Die Produkte und Lösungen von Beckhoff werden ständig weiterentwickelt. Dies betrifft auch die Security-Funktionen. Aufgrund der stetigen Weiterentwicklung empfiehlt Beckhoff ausdrücklich, die Produkte ständig auf dem aktuellen Stand zu halten und nach Bereitstellung von Updates diese auf die Produkte aufzuspielen. Die Verwendung veralteter oder nicht mehr unterstützter Produktversionen kann das Risiko von Cyber-Bedrohungen erhöhen. Um stets über Hinweise zur Informationssicherheit zu Produkten von Beckhoff informiert zu sein, abonnieren Sie den RSS Feed unter <u>https://www.beckhoff.de/secinfo</u>.

3 Transport und Lagerung

Transport

HINWEIS

Kurzschluss durch Feuchtigkeit

Feuchtigkeit kann sich bei Transporten in kalter Witterung oder bei extremen Temperaturunterschieden bilden.

Achten Sie darauf, dass sich keine Feuchtigkeit im Embedded-PC niederschlägt (Betauung) und gleichen Sie ihn langsam der Raumtemperatur an. Schalten Sie den Embedded-PC bei Betauung erst nach einer Wartezeit von mindestens 12 Stunden ein.

Trotz des robusten Aufbaus sind die eingebauten Komponenten empfindlich gegen starke Erschütterungen und Stöße. Der Transport eines Schaltschranks mit eingebautem Embedded-PC kann eine zu hohe Stoßbelastung für den Embedded-PC darstellen.

- Schützen Sie das Gerät bei Transporten vor großer mechanischer Belastung.
- Durch geeignete Verpackung des Industrie-PCs, wie die Originalverpackung, kann die Erschütterungsfestigkeit beim Transport verbessert werden.
- · Versenden Sie den Embedded-PC in der Originalverpackung und einer zusätzlichen Umverpackung.

Tab. 1: Abmessungen und Gewicht des Embedded-PCs CX8190.

	CX8190	
Abmessungen (B x H x T)	71 mm x 100 mm x 73 mm	
Gewicht	ca. 230 g	

Lagerung

 Bei Lagertemperaturen oberhalb von 60 °C entnehmen Sie die Batterie aus dem Embedded-PC. Lagern Sie die Batterie getrennt vom Embedded-PC in einer trockenen Umgebung bei einer Temperatur im Bereich von 0 °C bis 30 °C.

Das voreingestellte Datum und die Uhrzeit gehen verloren, wenn Sie die Batterie entnehmen.

4 Produktübersicht

CX8100 bezeichnet eine Produktfamilie von Embedded-PCs, die auf einem Prozessor des Typs Arm[®] Cortex[®]-A9 basieren. Der Embedded-PC CX8100 ist programmierbar und in der Lage, ein eigenes Steuerungsprogramm abzuarbeiten. Darüber hinaus erfüllt der Embedded-PC die Funktion als Slave-Teilnehmer eines übergeordneten Feldbussystems.

Der Embedded-PC CX8100 hat die folgende Grundausstattung:

- eine 512 MB MicroSD-Karte,
- eine Ethernet-Schnittstelle,
- sowie ein Businterface.

Die Embedded-PCs CX8100 können Sie als dezentrale Steuerungen verwenden und damit sicherstellen, dass bei einer Unterbrechung des übergeordneten Feldbussystems, das lokale Programm auf dem CX8100 weiterhin abgearbeitet wird.

Als Betriebssystem kommt Microsoft Windows Embedded Compact 7 zum Einsatz. Da kein Bildschirmanschluss vorhanden ist, kann nur per Netzwerk auf das Betriebssystem und seinen "virtuellen" Bildschirm zugegriffen werden. Beckhoff Device Manager und Remote-Display (Cerhost)

Der Embedded-PC verfügt intern über eine 1-Sekunden-USV als persistenten Datenspeicher. Mit der 1-Sekunden-USV können dann persistente Daten bei einem Spannungsausfall auf der MicroSD-Karte gespeichert werden.

Netzteilklemme

Auf der rechten Seite des Embedded-PCs befindet sich die Netzteilklemme, die den Embedded-PC mit Spannung versorgt. An die Netzteilklemme können auf der rechten Seite Busklemmen (K-Bus) oder EtherCAT-Klemmen (E-Bus) angereiht werden. Die Netzteilklemme erkennt automatisch das jeweilige Bussystem (K-Bus oder E-Bus).

Beim Einsatz von EtherCAT-Klemmen (E-Bus) ergeben sich weitere Möglichkeiten, wie die Realisierung verschiedener Topologien, die Einbindung weiterer Bussysteme, wie CANopen, PROFIBUS und PROFINET, und – mit den EtherCAT-Box-Modulen – die Verbindung in die IP67-Welt.

Feldbus-Interface

In Vorbereitung sind CX8100-Geräte für weitere Feldbussysteme wie EtherCAT (Slave), PROFINET, EtherNet/IP, CANopen, PROFIBUS und andere Kommunikationssysteme.

Verfügbare Feldbussysteme:

- CX8110: EtherCAT
- <u>CX8180</u>: RS232/485
- <u>CX8190</u>: Ethernet (Realtime-Ethernet, ADS UDP, ADS TCP, EAP, Web Services)
- <u>CX8191</u>: BACnet (Client und Server)

Programmierung

Programmiert werden die Embedded-PCs CX8100 nach der leistungsfähigen IEC 61131-3 Norm. Die Automatisierungssoftware TwinCAT 3 bildet die Grundlage für die Programmierung des Embedded-PCs.

Konfiguration

Die Inbetriebnahme des Embedded-PCs CX8100 erfolgt über die Ethernet-Schnittstelle. Über TwinCAT 3 wird dann das Feldbusinterface und alle angeschlossenen Geräte, wie z.B. EtherCAT-Klemmen oder Busklemmen, ausgelesen. Die Konfiguration wird nach der Parametrierung auf dem Embedded-PC gespeichert. Diese erstellte Konfiguration kann auch wieder ausgelesen werden.

Die kleinste zu verwendende Task-Zeit beträgt 500 µs, die aber nur bei einer sehr geringen Systemauslastung erreicht werden kann. Empfohlen wird eine Task-Zeit von 1 bis 50 ms für die I/O Daten. Weitere Tasks können auch langsamer gestellt werden. Bei Verwendung kleinerer Zykluszeiten ist die gesamte Systemauslastung zu beachten.

Ist die Zykluszeit zu klein gewählt, können Web-Visualisierung und Remote-Display sehr langsam arbeiten oder TimeOuts verursachen. Der Anwender ist selbst dafür verantwortlich sein System so zu projektieren und zu konfigurieren, dass es nicht überlastet wird.

4.1 Aufbau

Abb. 1: Beispielaufbau eines Embedded-PCs CX8190.

Tab. 2: Legende zum Aufbau.

Nr.	Komponente	Beschreibung
1	<u>DIP-Schalter [▶ 31]</u> (S101).	Mit dem DIP-Schalter können Sie die IP-Adresse für die geswitchten Ethernet-Schnittstellen X101/X102 einstellen.
2	Batteriefach (unter der Frontklappe).	Spannungsversorgung für die batteriegepufferte Uhr für Zeit und Datum.
3	MicroSD-Kartenslot [▶_19] (unter der Frontklappe).	Steckplatz für industrietaugliche MicroSD-Karten.
4	Ethernet-Schnittstellen RJ45 [▶_16] (X101, X102).	Für den Anschluss an lokale Netzwerke. Realtime-Ethernet fähig.
5	Reset-Knopf [19]	Damit wird der Embedded-PC in den Config-Modus versetzt.
6	Diagnose-LEDs. [▶ 60]	Diagnose-LEDs. Für die Diagnose-LEDs WD und ERR können Sie eigene Diagnosemeldungen erstellen (siehe: <u>Diagnose-LEDs</u> ansteuern [▶ 52]).
7	Ethernet-Schnittstelle [▶_16] (X001).	Schnittstelle, um den Embedded-PC in Betrieb zu nehmen und zu programmieren.
8	<u>Diagnose-LEDs,</u> Netzteilklemme [▶ 60].	Diagnose der Spannungsversorgung für Embedded-PC und Klemmenbus. Status der E-Bus und K-Bus Kommunikation.
9	Federkraftklemmen, +24 V und 0V	Spannungsversorgung für Embedded-PC.
10	Klemmenbus (K- oder E- Bus)	Schnittstelle für EtherCAT-Klemmen oder Busklemmen. Datenaustausch und Versorgung.
11	Federkraftklemme, +24 V	Spannungsversorgung für Busklemmen über Powerkontakt.
12	Federkraftklemme, 0 V	Spannungsversorgung für Busklemmen über Powerkontakt.
13	Klemmenentriegelung	Löst die Netzteilklemme und damit den Embedded-PC von der Tragschiene.
14	Federkraftklemme, PE	Federkraftklemme für Powerkontakt PE.
15	Powerkontakte, +24 V, 0 V, PE	Powerkontakte für Busklemmen.

4.2 Typenschild

Auf dem Embedded-PC CX8190 befindet sich auf der liken Seite des Gehäuses ein Typenschild.

Abb. 2: CX8190 Typenschild.

Tab. 3: Legende zum Typenschild.

Nr.	Beschreibung
1	Angaben zum Netzteil für die Spannungsversorgung. 24V DC und max. 4A.
2	MAC-Adresse der Ethernet-Schnittstelle X001. Der Hostname wird aus CX- und den letzten 3 Byte der MAC-Adresse gebildet: z.B. wird aus der Mac-Adresse: 00-01-05-aa-bb-cc der Hostname CX-aabbcc gebildet.
3	Angaben zu:
	• Seriennummer,
	• Hardwarestand,
	• und Produktionsdatum.
4	Angaben zum Model. Die letzten zwei Ziffern kodieren die Ausführung des Embedded- PCs.
5	Herstellerangaben inklusive Anschrift.
6	CE-Konformität.

4.3 Ethernet-Schnittstellen

Sie können den Embedded-PC CX8190 über die Ethernet-Schnittstelle X001 programmieren und in Betrieb nehmen. Die Ethernet-Schnittstelle erreicht Geschwindigkeiten von 10 / 100 Mbit/s.

Abb. 3: Ethernet-Schnittstelle X001, X101, X102.

Die LEDs an der linken Seite der Schnittstelle zeigen den Status der Verbindung an. Die obere LED (LINK/ ACT) zeigt an, ob die Schnittstelle mit einem Netzwerk verbunden ist. Ist dies der Fall, leuchtet die LED grün auf. Wenn Daten auf der Schnittstelle übertragen werden, blinkt die LED.

Die untere LED (SPEED) zeigt die Geschwindigkeit der Verbindung an. Ist die Geschwindigkeit 10 Mbit/s, leuchtet die LED nicht. Bei 100 Mbit/s leuchtet die LED orange.

Tab. 4: Ethernet-Schnittstelle X001, PIN-Belegung.

PIN	Signal	Beschreibung
1	TD +	Transmit +
2	TD -	Transmit -
3	RD +	Receive +
4	connected	reserviert
5		
6	RD -	Receive -
7	connected	reserviert
8		

Ethernet-Schnittstellen X101 und X102

Beide Ethernet-Schnittstellen sind geswitched und voneinander abhängig. Beide Ethernet-Schnittstellen erreichen Geschwindigkeiten von 100 Mbit/s.

Es werden Protokolle, wie Realtime-Ethernet, ADS UDP/TCP, Modbus TCP Client/Server oder eine offene TCP/IP-UDP/IP-Kommunikation unterstützt.

Tab.	5: Ethe	ernet-Schnitt	stelle X101	und X10	2, PIN-Belegung
------	---------	---------------	-------------	---------	-----------------

PIN	Signal	Beschreibung
1	TD +	Transmit +
2	TD -	Transmit -
3	RD +	Receive +
4	connected	reserviert
5		
6	RD -	Receive -
7	connected	reserviert
8		

Übertragungsstandards

10Base5

Das Übertragungsmedium für 10Base5 ist ein dickes Koaxialkabel (Yellow Cable) mit einer max. Übertragungsgeschwindigkeit von 10 MBaud und einer Linien-Topologie mit Abzweigen (Drops), an die jeweils ein Teilnehmer angeschlossen wird. Da hier alle Teilnehmer an einem gemeinsamen Übertragungsmedium angeschlossen sind, kommt es bei 10Base5 zwangsläufig häufig zu Kollisionen.

10Base2

10Base2 (Cheaper net) ist eine Weiterentwicklung von 10Base5 und hat den Vorteil, dass dieses Koaxialkabel billiger und durch eine höhere Flexibilität einfacher zu verlegen ist. Es können mehrere Geräte an eine 10Base2-Leitung angeschlossen werden. Häufig werden die Abzweige eines 10Base5-Backbones als 10Base2 ausgeführt.

10BaseT

Beschreibt ein Twisted-Pair-Kabel für 10 MBaud. Hierbei wird das Netz sternförmig aufgebaut, so dass nun nicht mehr jeder Teilnehmer am gleichem Medium hängt. Dadurch führt ein Kabelbruch nicht mehr zum Ausfall des gesamten Netzes. Durch den Einsatz von Switches als Sternkoppler können Kollisionen vermindert oder bei Voll-Duplex Verbindungen auch vollständig vermieden werden.

100BaseT

Twisted-Pair-Kabel für 100 MBaud. Für die höhere Datengeschwindigkeit ist eine bessere Kabelqualität und die Verwendung entsprechender Hubs oder Switches erforderlich.

10BaseF

Der Standard 10BaseF beschreibt mehrere Lichtwellenleiter-Varianten.

Kurzbezeichnung der Kabeltypen für 10BaseT und 100BaseT

Twisted-Pair Kupferkabel für sternförmige Topologie, wobei der Abstand zwischen zwei Geräten 100 Meter nicht überschreiten darf.

UTP

Unshielded Twisted-Pair (nicht abgeschirmte, verdrillte Leitung) Dieser Kabeltyp gehört zur Kategorie 3 und sind für industrielle Umgebungen nicht empfehlenswert.

S/UTP

Screened/Unshielded Twisted-Pair (mit Kupfergeflecht abgeschirmte, verdrillte Leitung) Besitzen einen Gesamtschirm aus einem Kupfergeflecht zur Reduktion der äußeren Störeinflüsse. Dieses Kabel wird zum Einsatz mit den Buskopplern empfohlen.

FTP

Foilesshielded Twisted-Pair (mit Alufolie abgeschirmte, verdrillte Leitung) Dieses Kabel hat eine alukaschierten Kunststoff-Folie-Gesamtschirm.

S/FTP

Screened/Foilesshielded Twisted-Pair (mit Kupfergeflecht und Alufolie abgeschirmte, verdrillte Leitung) Besitzt einen alukaschierten Gesamtschirm mit einem darüber liegenden Kupfergeflecht. Solche Kabel können eine Störleistungsunterdrückung bis zu 70dB erreichen.

STP

Shielded Twisted-Pair (abgeschirmte, verdrillte Leitung) Beschreibt ein Kabel mit Gesamtschirm ohne weitere Angabe der Art der Schirmung.

S/STP

Screened/Shielded Twisted-Pair (einzeln abgeschirmte, verdrillte Leitung) Ein solche Bezeichnung kennzeichnet ein Kabel mit einer Abschirmung für jedes Leitungspaar sowie einen Gesamtschirm.

ITP

Industrial Twisted-Pair

Ist von Aufbau dem S/STP ähnlich, besitzt allerdings im Gegensatz zum S/STP nur 2 Leitungspaare.

industrielle Anwendungen als

Ersatzteil.

4.4 MicroSD-Karte

In der Grundausstattung enthält der CX8190 eine 512 MB MicroSD-Karte. Sie können den Embedded-PC optional mit einer größeren16 GB MicroSD-Karte bestellen.

Die verwendeten Karten sind SLC-Speicher mit erweiterten Temperaturbereich für industrielle Anwendungen. Verwenden Sie ausschließlich von Beckhoff freigegebene MicroSD-Karten.

Bestellbezeichnung	Kapazität	Beschreibung
CX1900-0131	16 GB	MicroSD-Karte (SLC-Speicher) mit erweitertem Temperaturbereich für industrielle Anwendungen anstelle der 512 MB Karte (Bestelloption)
Bestellbezeichnung	Kapazität	Beschreibung
CX1900-0122	512 MB	MicroSD-Karte (SLC-Speicher) mit
CX1900-0132	16 GB	erweitertem Temperaturbereich für

4.5 Reset-Knopf

Mit dem Reset-Knopf können Sie den Config-Modus aktivieren. Diese Funktion können Sie nutzen, wenn das SPS-Programm unbeabsichtigt einen Fehler verursacht. Dafür müssen Sie den Reset-Knopf während des Neustarts für eine längere Zeit gedrückt halten.

Aktivieren Sie den Config-Modus wie folgt:

- 1. Öffnen Sie die Frontklappe.
- 2. Schalten Sie die den Embedded-PC ab.
- 3. Starten Sie den Embedded-PC und halten Sie den Reset-Knopf solange gedrückt, bis die ERR-LED rot und dann gelb leuchtet.
- ⇒ Der Embedded-PC CX81xx wird in den Config-Modus gesetzt.

5 Inbetriebnahme

5.1 Montage

5.1.1 Abmessungen

Abb. 4: Abmessungen des Embedded-PCs CX81xx.

Technische Zeichnungen in verschiedenen im DWG-Format und im STP-Formaten finden Sie unter:

https://www.beckhoff.com/CX8100

5.1.2 Zulässige Einbaulagen beachten

Erhöhte Wärmeentwicklung

Bei einer falsch gewählten Einbaulage und nicht eingehaltenen Mindestabständen kann der Embedded-PC überhitzen.

Stellen Sie eine ausreichende Belüftung sicher. Optimal ist eine waagerechte Einbaulage. Lassen Sie einen Freiraum von mindestens 30 mm oberhalb und unterhalb des Embedded-PCs.

Beachten Sie folgende Vorgaben für den Schaltschrank:

- Halten Sie sich an die vorgeschriebene Umgebungstemperatur. Messen Sie dazu die Temperatur unter dem Embedded-PC in einem Abstand von 30 mm zu den Kühlrippen, um die Umgebungstemperatur korrekt zu ermitteln.
- Halten Sie die Mindestabstände von 30 mm ober- und unterhalb des Embedded-PCs ein.
- Weitere elektrische Geräte beeinflussen die Wärmeentwicklung im Schaltschrank. Wählen Sie eine passende Schaltschrankgröße abhängig vom Anwendungsfall oder sorgen Sie dafür, dass überschüssige Wärme aus dem Schaltschrank abtransportiert wird.

Vorgeschriebene Einbaulage für Temperaturen bis 60°C

Montieren Sie den Embedded-PC waagerecht im Schaltschrank auf einer Tragschiene, damit die Wärme optimal abgeführt wird.

Die Lüftungsöffnungen befinden sich auf der Gehäuseunter- und Gehäuseoberseite. Auf diese Weise kommt ein optimaler Luftstrom zustande, der den Embedded-PC in vertikaler Richtung durchströmt. Zusätzlich ist ein Freiraum von mindestens 30 mm oberhalb und unterhalb des Embedded-PCs erforderlich, um eine ausreichende Belüftung zu gewährleisten.

Abb. 5: Embedded-PC CX8190, waagerechte Einbaulage.

Einbaulagen mit eingeschränktem Temperaturbereich bis 50°C

Sie können den Embedded-PC auch senkrecht oder liegend auf der Tragschiene montieren. Beachten Sie dabei, dass Sie den Embedded-PC dann nur bis zu einer Umgebungstemperatur von 50°C betreiben können.

Abb. 6: Embedded-PC CX8190, senkrechte Einbaulage.

Abb. 7: Embedded-PC CX8190, liegende Einbaulage.

Achten Sie darauf, dass Busklemmen, die an den Embedded-PCs angeschlossenen werden, für den senkrechten oder liegenden Betrieb ausgelegt sind.

5.1.3 Auf Tragschiene befestigen

Das Gehäuse ist so konstruiert, dass der Embedded-PC an die Tragschiene gehalten und auf diese eingerastet werden kann. Durch eine Arretierung auf der linken Seite des Embedded-PCs wird der Embedded-PC auf der Hutschiene befestigt.

Voraussetzungen:

• Tragschiene von Typ TS35/7.5 oder TS35/15 nach DIN EN 60715.

Befestigen Sie den Embedded-PC wie folgt auf der Tragschiene:

1. Setzen Sie den Embedded-PC frontal auf die Tragschiene. Drücken Sie den Embedded-PC leicht an die Tragschiene bis es leise klickt und der Embedded-PC eingerastet ist.

2. Verriegeln Sie anschließend die Arretierung auf der linken Seite des Embedded-PCs. Benutzen Sie dazu einen Schraubendreher.

⇒ Überprüfen Sie nochmal die korrekte Montage und ob der Embedded-PC an der Tragschiene eingerastet ist.

5.2 Spannungsversorgung anschließen

HINWEIS

Schäden an den Embedded-PCs

Die Embedded-PCs können während der Verdrahtung beschädigt werden.

• Schließen Sie die Leitungen für die Spannungsversorgung nur im spannungsfreien Zustand an.

Für die Spannungsversorgung der Netzteilklemme ist eine externe Spannungsquelle erforderlich, die eine 24 V Gleichspannung (-15 % / +20 %) bereitstellt. Die Netzteilklemme muss 4 A bei 24 V liefern, um den Betrieb des Embedded-PCs in allen Fällen zu gewährleisten.

Verkabeln Sie den Embedded-PC im Schaltschrank entsprechend der Norm EN 60204-1:2006 Schutzkleinspannungen (PELV = Protective Extra Low Voltage):

- Die Leiter "PE" und "0 V" der Spannungsquelle für ein CPU-Grundmodul müssen auf dem gleichen Potential liegen (im Schaltschrank verbunden).
- Die Norm EN 60204-1:2006 Abschnitt 6.4.1:b: schreibt vor, dass eine Seite des Stromkreises oder ein Punkt der Energiequelle dieses Stromkreises an das Schutzleitersystem angeschlossen werden muss.

Anschlussbeispiel

Tab. 6: Legende zum Anschlussbeispiel

Nr.	Beschreibung
1	Die oberen Federkraftklemmen mit der Bezeichnung "24 V" und "0 V" versorgen den Embedded-PC und den Klemmbus (Datenübertragung über K- oder E-Bus) mit Spannung.
2	Die Federkraftklemmen mit der Bezeichnung "+", "-, und "PE" versorgen die Busklemmen über die Powerkontakte mit Spannung und die an den Busklemmen angeschlossenen Sensoren oder Aktoren.

BECKHOFF

Federkraftklemmen öffnen und schließen:

Die Leitungen einer externen Spannungsquelle werden mit Federkraftklemmen am Netzteil verbunden. Schließen Sie die Leitungen wie folgt an:

Tab.	7: Erforderliche	Leitungsquerschnitte	und Abisolierlängen
------	------------------	----------------------	---------------------

Leitungsquerschnitt	0,5 2,5 mm ²	AWG 20 AWG 14
Abisolierlänge	8 9 mm	0.33 inch

Sie haben die Spannungsquelle erfolgreich an das Netzteil angeschlossenen, wenn die beiden oberen LEDs der Netzteilklemme grün aufleuchten.

- Die linke LED (Us 24V) zeigt die Versorgung des CPU-Grundmoduls und des Klemmenbusses an.
- Die rechte LED (Up 24V) zeigt die Versorgung der Busklemmen über die Powerkontakte an.

HINWEIS

Spannungsversorgung unterbrechen / abschalten

Um den Embedded-PC abzuschalten darf nicht die Masse (0 V) getrennt werden, da sonst je nach Gerät der Strom über den Schirm weiterfließt und der Embedded-PC oder die Peripherie beschädigt wird.

• Trennen Sie immer die 24 V Leitung. An dem Embedded-PC angeschlossene Geräte mit eigener Stromversorgung (z.B. ein Panel) müssen für "PE" und "0 V" das gleiche Potential wie der Embedded-PC haben (keine Potentialdifferenz).

UL-Anforderungen beachten

Die Embedded-PCs CX8190 sind UL-zertifiziert. Das entsprechende UL-Label befindet sich auf dem Typenschild.

Die Embedded-PCs CX8190 können damit in Bereichen eingesetzt werden, in denen spezielle UL-Anforderungen eingehalten werden müssen. Diese Anforderungen gelten für die Systemspannung (Us) und für die Powerkontakte (Up). Einsatzbereiche ohne spezielle UL-Anforderungen sind von den UL-Vorschriften nicht betroffen.

UL-Anforderungen:

- Die Embedded-PCs dürfen nicht mit unbegrenzten Spannungsquellen verbunden werden.
- Embedded-PCs dürfen nur mit einer Spannungsquelle von 24 V Gleichspannung versorgt werden. Die Spannungsquelle muss isoliert sein und mit einer Sicherung (entsprechend UL248) von maximal 4 A geschützt werden.
- Oder die Spannungsversorgung muss von einer Spannungsquelle stammen, die NEC class 2 entspricht. Eine Spannungsquelle entsprechend NEC class 2 darf dabei nicht seriell oder parallel mit einer anderen NEC class 2 Spannungsquelle verbunden werden.

6 Konfiguration

6.1 Betriebssystem

Auf dem Embedded-PC CX8190 kommt das Betriebssystem Microsoft Windows Embedded Compact 7 zum Einsatz. Dieses Betriebssystem ist für den Embedded-PC CX8190 optimiert. Dadurch stehen nicht alle Features von Windows Embedded Compact 7 zur Verfügung.

Sicherheit

Aus Sicherheitsgründen sind die Dienste CERHOST und TELNET im Auslieferungszustand deaktiviert. Um diese Dienste wieder zu aktivieren, benötigen Sie ein Lesegerät für MicroSD-Karten.

CERHOST

CERHOST wird von aktuellen Images beim ersten Start über die Registry-Datei *CeRemoteDisplay_Disable.reg* deaktiviert, die sich im Ordner *RegFiles* befindet.

Um CERHOST wieder zu aktivieren, müssen Sie die Datei *CeRemoteDisplay_Disable.reg* aus dem Ordner *RegFiles* und zusätzlich den Ordner *Documents and Settings* löschen

Stecken Sie anschließend die MicroSD-Karte wieder in den Embedded-PC und booten Sie neu. Der Embedded-PC erzeugt ein neues Verzeichnis *Document and Settings* und bootet dann selbständig neu.

Anschließend ist der Embedded-PC wieder über CERHOST erreichbar.

TELNET

TELNET wird von aktuellen Images beim ersten Start über die Registry-Datei *Telnet_Disable.reg* deaktiviert, die sich im Ordner *RegFiles* befindet.

Um TELNET wieder zu aktivieren, müssen Sie die Datei *Telnet_Disable.reg* aus dem Ordner *RegFiles* und zusätzlich den Ordner *Documents and Settings* löschen.

Stecken Sie anschließend die MicroSD-Karte wieder in den Embedded-PC und booten Sie neu. Der Embedded-PC erzeugt ein neues Verzeichnis *Document and Settings* und bootet dann selbständig neu.

6.1.1 Enthaltene Features

Features	CX8190
ATL	X
MFC	X
XML DOM	X
XML Minimal Parser	X
СОМ	X
DCOM	X
COM Storage	X
Winsock	X
TCP/IP	X
TCP/IPv6	X
Firewall	X
Network Utilities (IpConfig, Ping, Route)	X
Object Exchange Protocol OBEX	-
Message Queuing MSMQ	-
UPnP	
Control Point	-
Device Host	X
SOAP	
Client	-
Server	-
Server	-
File Server (SMB/CIFS)	X
FTP-Server	X
Print-Server (SMB/CIFS)	-
RAS Server / PPTP Server	X
Simple Network Time Protocol (SNTP)	X
SNTP Client Service	X
Simple Network Management Protocol (SNMP)	X
Telnet Server	X
Web Server (HTTPD) / Active Server Pages (ASP) Support / JScript 5.8 / VBScript 5.8	X
	-
NET Compact Framework	V3.5
RDP Client (Remote Desktop protocol)	-
CAB File Installer/Uninstaller	X

6.1.2 Image aktualisieren

HINWEIS

Datenverlust

Alle Daten auf der MicroSD-Karte werden gelöscht. Sichern Sie Ihre Daten, die sich auf der MicroSD-Karte befinden, bevor Sie vorfahren.

Das neue Image wird direkt auf die MicroSD-Karte kopiert, um das Image des Embedded-PCs zu aktualisieren.

Das neue Image wird vom Beckhoff Service zur Verfügung gestellt. Führen Sie das Update nur nach Rücksprache mit dem Beckhoff Service durch.

Voraussetzungen:

• Kartenleser für MicroSD-Karten.

Aktualisieren Sie das Image wie folgt:

- 1. Schalten Sie den Embedded-PC aus und entfernen Sie die MicroSD-Karte aus dem Embedded-PC.
- 2. Stecken Sie die MicroSD-Karte in einen externen Kartenleser und öffnen Sie die Ordnerstruktur der MicroSD-Karte.
- 3. Löschen Sie alle Dateien und Ordner auf der MicroSD-Karte.

- 4. Kopieren Sie alle Dateien und Ordner des neuen Images auf die leere MicroSD-Karte.
- 5. Bauen Sie die MicroSD-Karte wieder in den Embedded-PC ein.
- 6. Starten Sie den Embedded-PC.
- ⇒ Der Embedded-PC wird gestartet und speichert die aktuelle Hardwarekonfiguration im Ordner Documents and Settings. Damit wurde das Image erfolgreich aktualisiert.

6.1.3 FTP-Server

i

Eingeschränkter Zugriff durch Firewall

Ab Image-Version: "CX8100_WEC7_LF_v604h_TC31_B4022.20" ist die Firewall beim CX8190 standardmäßig eingeschaltet. Dadurch kann keine passive FTP-Verbindung (die zum Beispiel Microsoft verwendet) aufgebaut werden. Wir empfehlen Ihnen daher einen aktiven FTP-Zugriff zu nutzen. Tragen Sie dafür die TCP-Ports 20 und 21 in der Firewall ein.

Das File Transfer Protocol (FTP) basiert ausschließlich auf TCP-basierten Kommunikationsverbindungen. FTP spezifiziert zwei TCP-Ports, welche für die Datenübertragung wichtig sind:

- Port 20/tcp: Dieser Port wird auch als **Data-Port** bezeichnet und dient zum Senden/Empfangen von Dateien und Verzeichnislisten.
- Port 21/tcp: Dieser Port wird allgemein auch als **Command-Port** bezeichnet und dient zum Austausch von Statusinformationen zwischen Client und Server.

Zum Senden und Empfangen von Dateien (Data-Port) sowie zur Übertragung von Kommandos (Command-Port) wird jeweils eine separate TCP-Verbindung verwendet. FTP kennt für den Aufbau solcher Verbindungen zwei Verbindungsmodi: "**Aktives FTP**" und "**Passives FTP**". Abhängig vom jeweiligen Verbindungsmodus werden die beiden oben genannten Ports unterschiedlich initiiert, was im Folgenden näher beschrieben werden soll.

Aktives FTP

Beim aktiven FTP verbindet sich der Client mit dem Command-Port des FTP-Servers. Als Quell-Port verwendet der Client hierbei einen zufälligen Port N, z.B. 4242/tcp. Anschließend lauscht der Client auf Port N+1 und teilt diesen Port dann dem Server mit. Der Server verbindet sich dann mit dem Client auf Port N+1 und verwendet hierbei als Quell-Port seinen Data-Port.

Ein Problem beim aktiven FTP ist, dass der Client selbst keine Verbindung zum Data-Port des Servers herstellt, sondern dem Server einen Port (N+1) mitteilt und dieser sich dann über seinen Data-Port mit dem Client verbindet. Im Falle von Firewalls oder NAT-Geräten, welche vor den Client geschaltet wurden, könnte dies also mit zusätzlichem Konfigurationsaufwand auf Client-Seite verbunden sein, da der Data-Port des Clients hinter der Firewall ja für den Server erreichbar sein muss (vgl. Bild "Connect 4243").

Passives FTP

Diese Technik wird eingesetzt, wenn der Client für den Server nicht direkt erreichbar ist. Dies ist beispielsweise der Fall, wenn der Client sich hinter einer Firewall befindet, welche die Adresse des Clients mittels NAT umschreibt. Beim passiven FTP initiiert der FTP-Client eine Verbindung über zwei zufällige TCP-Ports N (Command-Port) und N+1 (Data-Port). Der erste Port wird verwendet, um sich mit dem Command-Port des Servers zu verbinden. Anstelle, dass der Client nun jedoch seinen Port N+1 dem Server mitteilt, damit der Server eine Verbindung dahin öffnen kann (vgl. aktives FTP), übermittelt der Client nun zunächst das sogenannte PASV-Kommando. Der Server weiß nun, dass es sich um eine Verbindung via passivem FTP handelt. Als Resultat öffnet der Server einen (zufälligen) Port P als Data-Port und übermittelt diesen dem Client. Der Client initiiert dann eine Verbindung mit dem Port P und benutzt hierbei als Quell-Port seinen Port N+1 (Data-Port). Diese Verbindung wird dann benutzt, um die Daten zu übertragen.

Bei näherer Betrachtung erkennt man, dass sich das Firewall-Problem des aktiven FTP beim passiven FTP genau andersherum verhält. Server-seitig muss die Firewall so konfiguriert werden, dass der Data-Port des Servers entsprechend für den Client erreichbar ist. Viele FTP-Server bieten dazu die Möglichkeit, die zu verwendenden Data-Ports zu konfigurieren. Bei Windows CE oder WEC7 gibt es diese Möglichkeit nicht.

6.2 IP-Adresse

6.2.1 Mit DIP-Schaltern einstellen

Mit den DIP-Schaltern S101 können Sie die IP-Adresse nur für die geswitchten Ethernet-Schnittstellen X101/ X102 einstellen. Für die Ethernet-Schnittstelle X001 haben die DIP-Schalter keine Bedeutung.

Abb. 8: DIP-Schalter S101, Schalter 1 bis 10.

Schalter rechte Position: on "1".

Schalter linke Position: off "0".

Mit den DIP-Schaltern 1 bis 8 können Sie das letzte Byte der IP-Adresse editieren. Die DIP-Schalter haben Vorrang vor den Einstellungen im Betriebssystem. Die Änderungen werden erst nach einem Neustart des Embedded-PCs übernommen.

Tab. 8: Bedeutung der DIP-Schalter S101.

DIP-Schalter S101	Bedeutung				
10 on und 9 off.	DHCP aktiv. Standardeinstellung ab Werk. Die DIP-Schalter 1 bis 8 haben dann keine Bedeutung.				
10 off und 9 off.	DHCP inaktiv.				
	Standardmäßig wird die feste IP-Adresse 192.168.1.xxx und Subnetzmaske 255.255.255.0 verwendet.				
	Das letzte Byte der IP-Adresse 192.168.1.xxx wird mit den DIP- Schaltern 1 bis 8 editiert.				
	Die ersten drei Byte der IP-Adresse können Sie im <u>Betriebssystem</u> [▶ <u>32]</u> oder über das <u>Webinterface (Beckhoff Device Manager)</u> [▶ <u>35]</u> ändern. Das letzte Byte der IP-Adresse können Sie wieder durch die DIP-Schalter editieren.				
10 off und 9 off	Die komplette IP-Adresse wird aus dem Betriebssystem oder dem				
1 bis 8 alle on	Webinterface (Beckhoff Device Manager) übernommen.				

Beispiel

Wenn Sie für die Ethernet-Schnittstelle X101/X102 die IP-Adresse 192.168.1. **67** mit den DIP-Schaltern einstellen möchten, dann müssen Sie die DIP-Schalter wie folgt konfigurieren:

DIP 1	DIP 2	DIP 3	DIP 4	DIP 5	DIP 6	DIP 7	DIP 8	DIP 9	DIP 10
On	On	Off	Off	Off	Off	On	Off	off	off

Aus den eingeschalteten DIP-Schaltern ergibt sich dann folgender Wert für das letzte Byte der IP-Adresse. $2^{0} + 2^{1} + 2^{6} = 67$

Tab. 9: Werte für die einzelnen DIP-Schalter.

	DIP 1	DIP 2	DIP 3	DIP 4	DIP 5	DIP 6	DIP 7	DIP 8
Wert	2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	27

6.2.2 Im Betriebssystem einstellen

Unter Windows Embedded Compact 7 werden die beiden Ethernet-Schnittstellen X001 und X101/X102 als EMAC1 und TCCCATMP1 angezeigt.

Abb. 9: Ethernet-Schnittstellen unter Windows Embedded Compact 7.

EMAC1 (X001)

Standardmäßig ist DHCP aktiv und die IP-Adresse wird automatisch vergeben. Sie können DHCP deaktivieren und eine statische IP-Adresse vergeben.

TCCCATMP1 (X101/102)

Standardmäßig werden die ersten drei Byte der IP-Adresse (Standard: 192.168.1) im Betriebssystem vergeben. Das letzte Byte der IP-Adresse (192.168.1.xxx) kann über die DIP-Schalter eingestellt werden.

Ab Werk sind die DIP-Schalter so eingestellt, das DHCP für die Ethernet-Schnittstellen (X101, X102) aktiv ist. Die DIP-Schalter haben Vorrang vor den Einstellungen im Betriebssystem. Die Einstellungen im Betriebssystem oder über das Webinterface werden dadurch nicht übernommen.

Um das letzte Byte der IP-Adresse im Betriebssystem einzustellen, müssen Sie die DIP-Schalter passend einstellen. Stellen Sie die DIP-Schalter 10 und 9 auf "off" und 1 bis 8 auf "on", damit die komplette IP-Adresse aus dem Betriebssystem übernommen wird.

EtherCAT-Schnittstelle

Die EtherCAT-Schnittstelle ist eine weitere Ethernet-Schnittstelle, die für die IP-Adressierung im Betriebssystem nicht sichtbar ist.

6.3 Webservice

6.3.1 Beckhoff Device Manager starten

Mit dem Beckhoff Device Manager kann ein Industrie-PC per Fernzugriff mit Hilfe eines Webbrowsers konfiguriert werden. Abhängig von der Imageversion erfolgt der Zugriff über unterschiedliche Protokolle und erfordert unterschiedliche Portfreigaben. Bei älteren Imageversionen erfolgt der Zugriff über das HTTP-Protokoll und Port 80 (TCP). Aktuellere Imageversionen verwenden HTTPS und Port 443 (TCP).

Voraussetzungen:

- Host-PC und Embedded-PC müssen sich im gleichen Netzwerk befinden. Die Netzwerkfirewall muss abhängig von der Version des Betriebssystems, den Zugriff über Port 80 (HTTP) oder Port 443 (HTTPS) zulassen.
- IP-Adresse oder Hostname des Embedded-PCs.

Tab. 10: Zugangsdaten zum Beckhoff Device Manager bei Auslieferung.

Benutzername	Passwort
Administrator	1

Starten Sie den Beckhoff Device Manager wie folgt:

- 1. Öffnen Sie einen Webbrowser auf dem Host-PC.
- 2. Geben Sie die IP-Adresse oder den Hostnamen des Industrie-PCs im Webbrowser ein, um den Beckhoff Device Manager zu starten.
 - Beispiel mit IP-Adresse: https://169.254.136.237/config
 - Beispiel mit Hostnamen: https://CX-16C2B8/config
- 3. Geben Sie den Benutzernamen und das Passwort ein. Die Startseite erscheint:

BECKHOFF Device Manager		ϵ
<u></u> 🏠	Device	\checkmark
System	Name	CX-16C2B8
Device	Date Time	16.08.2016 10:55:11
	Operating System	Windows CE 7.0
	Image Version	CX20x0 HPS 6.02j
	Hardware Version	CX2040-0121 v1.6 2013-12-17
Boot Opt.	Serial number of IPC	3138
EQ	Device Manager Version	2.0.0.10
Software	Workload	Temperature
	CPU	0% 38°C Max: 100% Mainboard Max: 100°C
TwinCAT	Memory	1% Max: 100%
	FAN	
	FAN 1 (rpm)	2685
	FAN 2 (rpm)	0
	FAN 3 (rpm)	0

Navigieren Sie weiter im Menü und konfigurieren Sie den Industrie-PC. Beachten Sie, dass Änderungen erst nach einer Bestätigung wirksam werden. Gegebenenfalls muss der Industrie-PC neu gestartet werden.

6.3.2 Remote Display aktivieren

Damit Sie per Fernzugriff auf einen Industrie-PC mit CE-Betriebssystem zugreifen zu können, müssen Sie zuerst Remote Display im Beckhoff Device Manager aktivieren. Remote Display ist standardmäßig deaktiviert.

Voraussetzungen:

- Host-PC und Embedded-PC müssen sich im gleichen Netzwerk befinden. Die Netzwerkfirewall muss abhängig von der Version des Betriebssystems, den Zugriff über Port 80 (HTTP) oder Port 443 (HTTPS) zulassen.
- IP-Adresse oder Hostname des Embedded-PCs müssen bekannt sein.

Tab. 11: Zugangsdaten zum Beckhoff Device Manager bei Auslieferung	Tab.	11: Zugangsdaten	zum Beckhoff	Device Manager	bei Auslieferuna.
--	------	------------------	--------------	----------------	-------------------

Betriebssystem	Zugangsdaten
Windows Embedded Compact 7	Benutzername: Administrator Passwort: 1

Aktivieren Sie Remote Display wie folgt:

- 1. Öffnen Sie einen Webbrowser auf dem Host-PC.
- 2. Geben Sie die IP-Adresse oder den Hostnamen des Industrie-PCs im Webbrowser ein, um den Beckhoff Device Manager zu starten.
 - Beispiel mit IP-Adresse: https://169.254.136.237/config
 - Beispiel mit Hostnamen: https://CX-16C2B8/config
- 3. Geben Sie den Benutzernamen und das Passwort ein. Die Startseite erscheint.
- 4. Klicken Sie im Menü unter **Device** auf **Boot Opt**.

BECKHOFF Device Manag	ger		$\epsilon \rightarrow$
_ <u>_</u> 2	Startup Numlock St	ate	\checkmark ×
2 0` sy	Startup Numlock State	Off	•
Device	Remote Display		×
	Remote Display	On	•
Hardware	Restore Factory Set	ttings	
F.O.	Warning	You may have to clear yo reconnect.	our browsers cache before you are able to
Software	Restore Settings		
£3	Reboot Machine		
TwinCAT	Reboot		

- 5. Wählen Sie unter **Remote Display** die Option **On** aus und bestätigen Sie die Einstellungen.
- 6. Klicken Sie im Hinweisfenster auf OK, damit die Einstellungen übernommen werden.
- ⇒ Sie haben Remote Display erfolgreich auf dem Industrie-PC aktiviert. Nach dem Neustart können Sie per Fernzugriff auf ihren Industrie-PC zugreifen.

6.3.3 IP-Adresse der Ethernet-Schnittstellen (X101, X102) ändern

DIP-Schalter haben Vorrang

Ab Werk sind die DIP-Schalter so eingestellt, das DHCP für die Ethernet-Schnittstellen (X101, X102) aktiv ist. Einstellungen im Betriebssystem oder über das Webinterface werden dadurch nicht übernommen.

Deaktivieren Sie DHCP über die DIP-Schalter. Stellen Sie die DIP-Schalter 10 und 9 auf "off" und 1 bis 8 auf "on", damit die Einstellungen aus dem Betriebssystem oder dem Webinterface übernommen werden.

In diesem Arbeitsschritt wird gezeigt, wie Sie die IP-Adresse der Ethernet-Schnittstelle (X101, X102) über das Webinterface (Beckhoff Device Manager) ändern.

Voraussetzungen:

- Stellen Sie die DIP-Schalter richtig ein, damit die IP-Adresse komplett aus dem Betriebssystem übernommen wird.
- Starten Sie das Webinterface (siehe: Beckhoff Device Manager starten).

Ändern Sie die IP-Adresse wie folgt:

- 1. Klicken Sie auf Device und anschließend auf Connectivity.
- 2. Klicken Sie auf das Schraubenschlüssel-Symbol, um die Netzwerkeinstellungen zu konfigurieren.

BECKHOFF Device Manage	er Network		< → &
7 <mark>8</mark> 5 Syst	em Name	EMAC1	
Device	IPv4 Address	172.17.42.18	
	IPv4 Subnet Mask	255.255.252.0	
Connec	IPv4 Default Gateway	172.17.40.1	
	DHCP	Enabled	
Boot	Dpt.		
-3	Name	TCCCAIMP1	
L'OS	IPv4 Address	192.168.1.0	
Software	IPv4 Subnet Mask	255.255.255.0	
SULWATE	IPv4 Default Gateway	0.0.0.0	
63	DHCP	Disabled	
کہ]¥ TwinCAT	AMS Net ID		
IWIICAI	AMS Net ID	5.48.22.246.1.1	

3. Ändern Sie die Netzwerkeinstellungen und vergeben Sie eine neue IP-Adresse.

TCCCATMP1		5 🗸 🗙
MAC Address	00 01 05 30 16 f7	
IPv4 Address	192.168.1.0	
IPv4 Subnet Mask	255.255.255.0	
IPv4 Default Gateway	0.0.0.0	
DHCP	Disabled	

⇒ Speichern Sie die Einstellungen, damit alle Änderungen übernommen werden.

6.3.4 Remote-Verbindung starten

Mithilfe des Programms Remote Display Control (CERHOST) kann eine Remote-Verbindung hergestellt und ein Industrie-PC mit CE-Betriebssystem von einem Host-PC ferngesteuert werden.

Voraussetzungen:

- Remote Display ist aktiv. Siehe: Remote Display aktivieren.
- Hostname des Embedded-PCs.
- Remote Display Control (CERHOST). Download unter: <u>https://infosys.beckhoff.com/content/1031/</u> <u>CX8190 HW/Resources/5047075211.zip</u>

Starten Sie die Remote-Verbindung wie folgt:

- 1. Entpacken Sie die Zip-Datei auf dem Host-PC und führen Sie die cerhost.exe aus.
- 2. Klicken Sie in der Menüleiste auf File und dann auf Connect.

- 3. Geben Sie im Feld Hostname den Hostnamen des Embedded-PCs ein.
- ⇒ Die Remote-Verbindung wird gestartet und der Windows Embedded CE 7 Startbildschirm erscheint.

6.4 TwinCAT

6.4.1 Mit CX81xx verbinden

Bevor Sie mit dem CX81xx arbeiten können, müssen Sie Ihren lokalen Rechner mit dem CX81xx (Zielsystem) verbinden. Danach können Sie mit Hilfe der IP-Adresse oder dem Host Namen nach Geräten, wie z.B. EtherCAT-Klemmen suchen.

Der lokale PC und das Zielsystem müssen mit dem gleichen Netzwerk oder direkt über ein Ethernet Kabel miteinander verbunden werden. In TwinCAT kann auf diese Weise nach allen Geräten gesucht und anschließend projektiert werden.

Voraussetzungen für diesen Arbeitsschritt:

- TwinCAT 3 muss sich im Config Mode befinden.
- IP-Adresse oder Host Name des Embedded-PCs.

Stellen Sie eine Verbindung wie folgt her:

- 1. Klicken Sie oben im Menü auf File > New > Project und erstellen Sie ein neues TwinCAT XAE Projekt.
- 2. Klicken Sie links in der Strukturansicht auf **SYSTEM** und dann auf **Choose Target**.

3. Klicken Sie auf **Search (Ethernet)**.

Choose Target System	×
□-4 -4 -4 -4 -4 -4 -4 -4 -4 -4	OK Cancel
	Search (Ethernet)

4. Tippen Sie im Feld **Enter Host Name / IP** den Host Namen oder die IP-Adresse des Gerätes ein und drücken Sie **[Enter]**.

Enter Host Name / IP:	CX12470	00		Refresh Status	Bro	adcast Search
Host Name	Connected	Address	AMS NetId	TwinCAT	OS Version	Comment
<		Ш			10./ 70	ANCATO DC
 Interview (Target): msNetId: 		III	F	loute Name (Remote) Farget Route	: Hw-Tv Remo	VINCAT2-PC
 coute Name (Target): msNetId: ransport Type; 	TCP IP	m	F	toute Name (Remote) Farget Route Project	t Hw-Tv Remo ⊚ No	VINCAT2-PC te Route one
< [TCP_IP	m	F	ioute Name (Remote) Farget Route Project Static	t Hw-Tv Remol ⊙ No ⊛ St	VINCAT2-PC te Route one atic
Coute Name (Target): msNetId: ransport Type: uddress Info: Host Name	TCP_IP IP Address	m	F	loute Name (Remote) Farget Route Project Static Temporary	t Hw-Tv Remol ⊙ No @ St ⊙ Te	VINCAT2-PC te Route one atic emporary

5. Markieren Sie das gefundene Gerät und klicken Sie auf Add Route.

Enter Host Name	/IP: 0X-1247	cc		Refresh Status	Bro	adicast Search
Host Name	Connected	Address	AMS NetId	TwinCAT	OS Version	Comment

Das Fenster Logon Information erscheint.

Geben Sie im Feld **User Name** und im Feld **Password** den Benutzernahmen und das Passwort für den CX ein und klicken Sie auf **OK**.

(TwinCAT 3.1 >= 4024)		
entials		
Administrator	Password:	•
	[TwinCAT 2.x Password Format
	(TwinCAT 3.1 >= 4024) entials Administrator	(TwinCAT 3.1 >= 4024) Initials Administrator Password:

Als Standard ist bei den CXen folgende Information eingestellt: **User name:** Administrator **Password:** 1

6. Klicken Sie auf **Close**, wenn Sie keine weiteren Geräte suchen wollen und schließen damit das **Add Route Fenster**.

Das neue Gerät wird im Fenster Choose Target System angezeigt.

7. Markieren Sie das Gerät welches Sie als Zielsystem festlegen wollen und klicken Sie auf OK.

Choose Target System	
□ Local (172.17.40.65.1.1) □ 2 CX-0C8416 (5.12.132.22.1.1) □ 2 CX-108946 (5.16.137.70.1.1) □ CX-108946 (5.16.137.70.1.1) □ CX-1247CC (5.18.71.204.1.1)	OK Cancel
	Search (Ethernet)

⇒ Sie haben erfolgreich in TwinCAT nach einem Gerät gesucht und das Gerät als Zielsystem eingefügt. In der Menüleiste wird das neue Zielsystem mit dem Host Namen angezeigt.

Mit dieser Vorgehensweise können Sie nach allen verfügbaren Geräten suchen und auch jederzeit zwischen den Zielsystemen wechseln. Als nächstes können Sie das Gerät in TwinCAT in die Strukturansicht anfügen.

38

6.4.2 Geräte scannen

Sobald der CX81xx als Zielsystem in TwinCAT eingefügt wurde, können Sie nach weiteren Geräten scannen und so z.B. alle am CX81xx angeschlossenen EtherCAT-Klemmen oder Busklemmen in die TwinCAT Strukturansicht einfügen.

Voraussetzungen für diesen Arbeitsschritt:

- Der CX81xx ist als Zielsystem mit TwinCAT verbunden (siehe: Mit CX81xx verbinden [) 37]).
- TwinCAT 3 befindet sich im Config Mode.

Scannen Sie nach Geräten wie folgt:

- 1. Klicken Sie links in der Strukturansicht unter I/O mit rechter Maustaste auf Devices.
- 2. Klicken Sie im Kontextmenü auf Scan.
- 3. Wählen Sie die Geräte, die Sie verwenden wollen und bestätigen die Auswahl mit OK.

2 new I/O devices fou	und 💌	
Device 2 (CX-BK)	2 new I/O devices found Device 1 (Beckholf CCAT) Device 2 (EtherCAT)	OK Cancel Select All Unselect All

Abhängig davon, ob EtherCAT-Klemmen oder Busklemmen am CX81xx angeschlossen sind, wird die K-Bus-Schnittstelle (Busklemmen) oder die EtherCAT-Schnittstelle (EtherCAT-Klemmen) gefunden.

- 4. Bestätigen Sie die Anfrage mit **Ja**, um nach Boxen zu suchen.
- 5. Klicken Sie bei der Anfrage, ob FreeRun aktiviert werden soll, auf Ja.
- ⇒ Die Geräte werden in der Strukturansicht angelegt. Abhängig von den angeschlossenen Klemmen, wird entweder ein Buskoppler oder ein EtherCAT-Koppler mit den dazugehörigen Klemmen angezeigt.

Im nächsten Schritt können Sie ein kleines Programm erstellen.

6.4.3 SPS-Projekt erstellen

In den nächsten Schritten wird beschrieben, wie Sie ein SPS-Projekt in TwinCAT erstellen und in der Strukturansicht einfügen.

Voraussetzungen für diesen Arbeitsschritt:

• Ein neu angelegtes TwinCAT XAE Projekt.

Erstellen Sie ein SPS-Projekt wie folgt:

- 1. Klicken Sie in der Strukturansicht mit der rechten Maustaste auf PLC.
- 2. Klicken Sie im Kontextmenü auf Ad New Item und wählen Sie das Standard PLC Project.

3. Klicken Sie in der Strukturansicht auf das neu erstellte SPS-Projekt und dann unter **POUs** doppelt auf **MAIN (PRG)**.

4. Schreiben Sie ein kleines Programm wie im folgenden Bild.

BECKHOFF

5. Klicken Sie in der Strukturansicht mit der rechten Maustaste auf das SPS-Projekt und dann im Kontextmenü auf **Build**.

⇒ Sie haben erfolgreich ein SPS-Projekt erstellt und das Projekt in TwinCAT angefügt. Es wird eine SPS-Instanz mit den Variablen für die Eingänge und Ausgänge aus dem SPS-Projekt erstellt.

Im nächsten Schritt können Sie die Variablen mit der Hardware verknüpfen.

6.4.4 Variablen verknüpfen

Wurde das SPS-Projekt erfolgreich in TwinCAT angefügt, dann können die Sie die neu angelegten Ein- und Ausgangsvariablen aus dem SPS-Projekt mit den Ein- und Ausgängen Ihrer Hardware verknüpfen.

Voraussetzungen für diesen Arbeitsschritt:

• Ein angefügtes SPS-Projekt in TwinCAT.

Verknüpfen Sie die Variablen wie folgt:

 Klicken Sie doppelt auf die Ein- bzw. Ausgangsvariablen in der Strukturansicht unter PLC. Das Fenster Attach Variable erscheint und zeigt an, welche Eingänge bzw. Ausgänge mit den Variablen aus dem SPS-Projekt verknüpft werden können.

2. Klicken Sie doppelt im Fenster **Attach Variable** auf die Ein bzw. Ausgänge der Hardware. Verknüpfen Sie die Eingangsvariablen mit den Eingängen und die Ausgangsvariablen mit den Ausgängen der Hardware.

- Bereits verknüpfte Variablen werden in TwinCAT mit einem kleinen Pfeilsymbol markiert.
- 3. Klicken Sie in der Symbolleiste auf Activate Configuration.

- 4. Bestätigen Sie die Anfrage, ob TwinCAT im Free Run Modus gestartet werden soll, mit Ja.
- ⇒ Sie haben erfolgreich Variablen mit der Hardware verknüpft. Mit Activate Configuration wird die aktuelle Konfiguration gesichert und aktiviert.

Als nächstes kann die Konfiguration auf den Embedded-PC geladen werden, um TwinCAT automatisch im Run Modus und dann das SPS-Projekt zu starten.

6.4.5 Realtime-Ethernet konfigurieren

Die Ethernet-Schnittstelle (X101/X102) des Embedded-PCs CX8190 unterstützt das Realtime-Ethernet Protokoll und kann als Master konfiguriert werden. Das Realtime-Ethernet Protokoll wird in TwinCAT konfiguriert.

Nach der Konfiguration können Sie nach Buskopplern scannen und diese als dezentrale Knoten betreiben. Grundsätzlich gibt es keine Beschränkung bei der Anzahl der Buskoppler, die am Embedded-PC CX8190 angeschlossen werden können. Es ist empfehlenswert die Anzahl auf 10 Knoten zu begrenzen.

Voraussetzungen:

• Der Embedded-PC CX8190 wurde als Zielsystem ausgewählt.

Konfigurieren Sie Realtime-Ethernet wie folgt:

- 1. Klicken Sie links in der Strukturansicht mit rechter Maustaste auf Devices.
- 2. Klicken Sie im Kontextmenü auf Add New Item.

 Device 1 Device 2 	0 *0	Add New Item Add Existing Item	Ins Shift+Alt+A
Mappings		Export EAP Config File	
	×	Scan	
	6	Paste	Ctrl+V
		Paste with Links	

Das Fenster Insert Device erscheint.

3. Klicken Sie in der Strukturansicht auf Ethernet und wählen Sie Real Time Ethernet Protokoll (BK90xx, AX2000-B900).

Гуре:	😥 🚟 EtherCAT	Ok
	Ethernet	
	Real-Time Ethernet Adapter (Multiple Protocol Handler)	Cancel
	Hai Real-Time Ethemet Protocol (BK90xx, AX2000-B900)	
	The second secon	
	E CANopen	
	🗄 😤 DeviceNet	
	🗄 🛖 EtherNet/IP	T
		l'arget l'ype
	HO Beckhoff Lightbus	PC only
	terenter use	CX only
		RX only
		O DA only
		© All

4. Klicken Sie in der Strukturliste auf RT-Ethernet Protocol.

5. Klicken Sie auf die Registerkarte Adapter und anschließend auf Search.

6. Wählen Sie den CCAT-Adapter aus.

Device Found At	23
Device 1 (Beckhoff CCAT) - Slot 1 (MAC-DMA) Switched	ОК
	Cancel
	Onused
	Help

Wenn Sie keinen CCAT-Adapter in TwinCAT angelegt haben, dann wird kein Adapter angezeigt. Legen Sie einen CCAT-Adapter an, wenn Sie echtzeitfähige Protokolle verwenden.

⇒ Unter Adapter Reference erscheint der CCAT-Adapter.

Adapter Ref	erence	
Adapter:	Device 1 (Beckhoff CCAT) - Slot 1 (MAC-DMA) Switched	•

Sie haben das Realtime-Ethernet Protokoll erfolgreich konfiguriert. Schließen Sie weitere Geräte mit Realtime-Ethernet an die Ethernet-Schnittstelle (X101/X102) an. Schalten Sie den CX8190 anschließend in den Konfig Modus und scannen Sie nach den Geräten.

6.4.6 EtherCAT Automation Protokoll (EAP) konfigurieren

Die Ethernet-Schnittstelle (X101/X102) des Embedded-PCs CX8190 unterstützt das EtherCAT Automation Protokoll (EAP). Das EtherCAT Automation Protokoll (EAP) wird in TwinCAT konfiguriert.

Über die Publisher- und Subscriber-Dienste können Daten in Echtzeit mit anderen Steuerungen ausgetauscht werden.

Weitere Informationen zum EtherCAT Automation Protokoll (EAP): Produktbeschreibung

Voraussetzungen:

• Der Embedded-PC CX8190 wurde als Zielsystem ausgewählt.

Konfigurieren Sie das EtherCAT Automation Protokoll (EAP) wie folgt:

- 1. Klicken Sie links in der Strukturansicht mit rechter Maustaste auf Devices.
- 2. Klicken Sie im Kontextmenü auf Add New Item.

Das Fenster Insert Device erscheint.

3. Klicken Sie in der Strukturansicht auf Ethernet und wählen Sie EtherCAT Automation Protocol.

уре:	EtherCAT	~	Ok
	EtherCAT Master		
	EtherCAT Slave		Cancel
	EtherCAT Automation Protocol (Network Variables)		
	EtherLAT Automation Protocol Via EL6601, EtherLAT		
	EtherCAT Simulation		
	🕀 🔮 Ethernet		
	Refibus DP	423	
		E.	
	🗄 CANopen		
	🗄 🛖 DeviceNet		larget lype
	🗄 🛖 EtherNet/IP		PC only
	III SERCOS interface		
	Beckhoff Lightbus		CX only
	USB		BX only
	· ⊞- ^{BRC} BACnet		
	Beckhoff Hardware	+	() All

4. Klicken Sie links in der Strukturansicht auf das Gerät EtherCAT Automation Protocol.

5. Klicken Sie auf die Registerkarte Adapter und anschließend auf Search.

Solution Explorer 🛛 👻 🕂 💙	TwinCAT CX8190 K-Bus 🕫 🗙
○○☆│७・๗│⊁	General Adapter Protocol Startup CoE - Online
Search Solution Explorer (Ctrl+ü)	Network Adapter OS (NDIS) PCI DPRAM Description: Device Name: PCI Bus/Slot: PCI Bus/Slot: MAC Address: 00 01 05 30 16 f7 Compatible Devices IP Address: 0.0.0.0 (0.0.00) Promiscuous Mode (use with Wireshark only) Virtual Device Names
Device 3 (EtherCAT Automation Mappings	Adapter Reference Adapter: Device 1 (Beckhoff CCAT) - Slot 1 (MAC-DMA) Switched Freerun Cycle (ms):

6. Wählen Sie den CCAT-Adapter aus.

evice Found At	2
Device 1 (Beckhoff CCAT) - Slot 1 (MAC-DMA) Switched	ОК
	Cancel
	Onused
	O All
	Help

Es wird kein Adapter zur Auswahl angezeigt, wenn Sie keinen CCAT-Adapter in TwinCAT angelegt haben. Legen Sie einen CCAT-Adapter an, wenn Sie echtzeitfähige Protokolle verwenden.

⇒ Unter Adapter Reference erscheint der CCAT-Adapter.

		Adapter Ref	-
Adapter: Device 1 (Beckhoff CCAT) - Slot 1 (MAC-DMA) Switched	•	Adapter:	

Sie haben das EtherCAT Automation Protokoll (EAP) erfolgreich konfiguriert.

7 Programmierung

7.1 1-Sekunden-USV (Persistente Variablen)

Datenverlust

Verwenden Sie ausschließlich TwinCAT, um die 1-Sekunden-USV anzusteuern und speichern Sie nur persistente Daten mit einer Größe von maximal 1 MB. Eine Verwendung darüber hinaus, kann zu Datenverlust oder korrupten Daten führen.

Die 1-Sekunden-USV ist ein UltraCap-Kondensator, der den Prozessor weiterhin mit Strom versorgt, wenn die Spannungsversorgung ausfällt. In diesem Zeitraum können persistente Daten gespeichert werden, die beim Wiedereinschalten zur Verfügung stehen.

Ohne USV	Mit 1-Sekunden-USV			
Wegfall der Spannung				
	Speichern der Daten			
PC-Ausfall	Quickshutdown			
Neustart des PCs				
Neustart o	ler Anlage			
	Laden der Daten			
Neustart des Arbeitsgangs	Fortsetzen des Arbeitsgangs			

Abb. 10: Verhalten von Anlagen bei einem Spannungsausfall ohne und mit 1-Sekunden-USV.

Da die 1-Sekunden-USV für die gesamte Lebensdauer ausgelegt ist, ist die Haltezeit bei neuen Geräten deutlich länger. Im Laufe der Zeit altern die Kondensatoren und die Haltezeit nimmt ab. Deswegen können maximal 1 MB persistente Daten über die gesamte Lebensdauer zuverlässig gespeichert werden. Speichern Sie keine anderen Daten und verwenden Sie keine anderen Applikationen, um die 1-Sekunden-USV anzusteuern.

Beachten Sie, dass die 1-Sekunden-USV weder den K-Bus noch den E-Bus mit Spannung versorgt und deren Daten bei Aktivierung der 1-Sekunden-USV bereits ungültig sein können. Auch kann das Feldbussystem (oder Ethernet) nicht oder nur unzureichend funktionieren sobald die 1-Sekunden-USV aktiv wurde.

Tab.	12: Speicherort	und Bezeichnung	der Dateien	unter 7	winCAT 3	3.
------	-----------------	-----------------	-------------	---------	----------	----

Entwicklungsumgebung	Dateipfad	Dateiname
TwinCAT 3	\\TwinCat\3.1\Boot\Plc	Port_85x.bootdata Port_85x.bootdata-old (Backup) Das x im Dateinamen steht für die Nummer des Laufzeitsystems.

Konfiguration der 1-Sekunden-USV

- Deklarieren Sie wichtige Daten, wie z.B. Zählerstände in der SPS als VAR PERSISTENT. Rufen Sie anschließend den Funktionsbaustein FB_S_UPS_CX81xx zyklisch in TwinCAT mit der schnellsten Task auf, um die 1-Sekunden-USV anzusteuern (siehe: <u>FB_S_UPS_CX81xx [▶ 49]</u>).
- Wählen Sie den Modus im Funktionsbaustein und bestimmen damit, was bei einem Spannungsausfall passiert. Legen Sie z.B. fest, ob persistente Daten gespeichert werden und ein Quickshutdown ausgeführt wird (siehe: <u>Datentypen [▶ 51]</u>).
- Im Anschluss können Sie die Gültigkeit der Variablen überprüfen und überwachen, ob die persistenten Variablen fehlerfrei geladen wurden (siehe: <u>PlcAppSystemInfo [▶ 51]</u>).

Beispielprojekt:

https://infosys.beckhoff.com/content/1031/CX8190_HW/Resources/1937303563.pro.

Ablauf beim Speichern und Laden der persistenten Daten

Die persistenten Daten werden in der Port_85x.bootdata-Datei auf der Speicherkarte gespeichert. Beim Starten der SPS wird die Port_85x.bootdata-Datei von der Speicherkarte geladen, dort als Port_85x.bootdata_old (Backup) gesichert und dann gelöscht.

Erst beim Runterfahren des Systems, bzw. dem ansprechen der 1-Sekunden-USV wird erneut eine aktuelle Port_85x.bootdata-Datei geschrieben.

Ist beim Starten des Embedded-PCs keine Port_85x.bootdata-Datei vorhanden, so sind die persistenten Daten ungültig und werden gelöscht (Standardeinstellung). Ursache hierfür ist, das beim Starten des Embedded-PCs und vor dem Starten der TwinCAT-PLC die 1-Sekunden-USV aktiv wurde. Dann wurden keine persistenten Daten gesichert, da nicht sichergestellt war, ob die Pufferzeit noch reichte, um die Daten abzuspeichern.

Rufen Sie den Funktionsbaustein immer aus der SPS auf und verwenden Sie dafür immer die schnellste Task. Bei einem Spannungsausfall empfiehlt Beckhoff die restliche Applikation nicht weiter aufzurufen, um sicherzustellen, dass genügend Zeit für das Schreiben der Daten bleibt.

```
IF NOT FB_S_UPS_CX81xx.bPowerFailDetect THEN
  ;//Call programs and function blocks
END IF
```

Die restliche Applikation beeinflusst die CPU-Auslastung und die CPU-Auslastung hat wiederum Einfluss auf die Dauer mit der die persistenten Daten geschrieben werden.

Das Backup der persistenten Daten laden

In der Registry kann eingestellt werden, ob die Sicherungsdatei gelöscht oder verwendet werden soll. In der Standarteinstellung 0 wird die Sicherungsdatei verwendet:

[HKEY_LOCAL_MACHINE\SOFTWARE\Beckhoff\TwinCAT\Plc]"ClearInvalidPersistentData"= 0

Wenn die Sicherungsdatei gelöscht werden soll, muss in der Registry der Wert von "ClearInvalidPersistentData" auf 1 gesetzt werden.

Auch in TwinCAT kann links in der Strukturansicht unter **PLC** eingestellt werden, ob die Sicherungsdatei verwendet werden soll oder nicht.

○ ○ ☆ 🛱 - ⁷ 0 - ₱ ≯ 🗕	Project Settings		1
Search Solution Explorer (Ctrl+;) Solution 'New Project' (1 project) System Moniton Pice Pice Pice Pice Pice Pice Pice Pice	 P → Target Archive ✓ Login Information ✓ Project Sources ✓ Compiled Libraries ☐ Source Libraries 	File/E-Mail Archive Login Information Project Sources Compiled Libraries Source Libraries Core Dump	
C++ C++ ANALYTICS I/O C+ C++ C++ C++ C++ C++ C++ C++ C++ C++	Target Files Boot Files TMC File TPY File Target Behavior		
Solution Explorer Team Explorer	Clear Invalid Persistent Data		>

Abb. 11: Backup der persistenten Daten laden. Einstellungen unter TwinCAT 3.

Wenn die Option **Clear Invalid Persistent Data** aktiviert ist, werden die Sicherungsdateien gelöscht. Entspricht dem Registry-Eintrag 1.

7.1.1 FB_S_UPS_CX81xx

HINWEIS

Datenverlust

Wenn andere Applikationen oder die SPS weitere Dateien offen halten oder in diese schreiben, kann es zu fehlerhaften Dateien kommen, wenn die Sekunden-USV die Steuerung abschaltet.

Beim CX81xx wird der Funktionsbaustein FB_S_UPS_CX81xx k verwendet, um die Sekunden-USV aus der SPS anzusteuern. Verwenden Sie möglichst die Standardwerte des FB_S_UPS_CX81xx und rufen Sie den Funktionsbaustein zyklisch in der SPS auf.

Die Sekunden-USV kann bei Spannungsausfall nur für wenige Sekunden verwendet werden, um persistente Daten zu speichern. Das Speichern der Daten muss im schnellen "Persistent Modus" "SPDM_2PASS" erfolgen, auch wenn es hier zu Echtzeitverletzungen kommen kann. Konfigurieren Sie zum Speichern der persistenten Daten ausreichend Routerspeicher.

Unabhängig vom Modus und damit unabhängig davon, ob Daten gespeichert oder der Quickshutdown ausgeführt wurde, schaltet die 1-Sekunden-USV nach Entladung der Kondensatoren das Mainboard ab.

Modi des Funktionsbausteins

Im Modus eSUPS_WrPersistData_Shutdown (Standardeinstellung) wird nach dem Speichern der persistenten Daten automatisch ein QuickShutdown ausgeführt.

Im Modus eSUPS_WrPersistData_NoShutdown werden nur die persistenten Daten gespeichert, es wird kein QuickShutdown ausgeführt.

Im Modus eSUPS_ImmediateShutdown wird sofort ein QuickShutdown ausgeführt, ohne dass Daten gespeichert werden.

Im Modus eSUPS_CheckPowerStatus wird nur geprüft, ob ein Spannungsausfall auftrat. Ist dies der Fall, geht der Baustein erst nach Ablauf der tRecoverTime (10s) wieder in den Zustand PowerOK.

🔁 Eingänge

VAR	INPUT		
	sNetID	:	T AmsNetId:= ''; (* '' = local netid *)
	iPLCPort	:	UINT; (* PLC Runtime System for writing persistent data *)
	tTimeout	:	TIME := DEFAULT ADS TIMEOUT; (* ADS Timeout *)
	eUpsMode	:	E S UPS Mode := eSUPS WrPersistData Shutdown; (* UPS mode (w/
wo	writing persister	nt	data, w/wo shutdown) *)
	ePersistentMode	:	E PersistentMode := SPDM 2PASS; (* mode for writing persistent data *)
	tRecoverTime	:	TIME := T#10s; (* ON time to recover from short power failure in mode eSUPS Wr
Per	sistData NoShutdo	owr	n/eSUPS CheckPowerStatus *)
			_

END_VAR

Name	Тур	Beschreibung	
sNetID	T_AmsNetId	AmsNetID der Steuerung	
iPLCPort	UINT	Portnummer des SPS-Laufzeitsystems (851 für das erste SPS- Laufzeitsystem, 852 für das zweite SPS-Laufzeitsystem, …). Wenn Sie keine Portnummer angeben, wird der Port des SPS- Laufzeitsystems vom Baustein eigenständig ermittelt.	
tTimeout	TIME	Timeout für die Ausführung des Schreibens der persistenten Daten bzw. des QuickShutdowns	
eUpsMode	E_S_UPS_Mode	Definiert, ob persistente Daten geschrieben werden sollen und ob ein QuickShutdown ausgeführt werden soll. Standardwert ist eSUPS_WrPersistData_Shutdown, d. h. nach dem Speichern der persistenten Daten wird automatisch ein QuickShutdown ausgeführt.	
ePersistentMode	E_PersistentMode	Modus für das Schreiben der persistenten Daten. Standardwert ist SPDM_2PASS.	
tRecoverTime	TIME	Zeit, nach der die USV bei UPS-Modi ohne Shutdown wieder in den PowerOK Status zurückgeht. Die tRecoverTime muss etwas größer sein als die maximale Haltezeit der USV, um sicherzustellen, dass die Kondensatoren vollständig geladen sind.	

Ausgänge

```
VAR_OUTPUT
bPowerFailDetect : BOOL; (* TRUE while powerfailure is detected *)
eState := eSUPS_PowerOK; (* current ups state *)
END_VAR
```

Name	Тур	Beschreibung
bPowerFailDetect	BOOL	TRUE, während des Spannungsausfalls. FALSE, wenn die Versorgungsspannung anliegt.
eState	E_S_UPS_State	Interner Zustand des Funktionsbausteins

Globale Variablen

VAR_GLOBAL eGlobalSUpsState : E_S_UPS_State; (*current ups state*) END_VAR

Name	Тур	Beschreibung
eGlobalSUpsStat e	E_S_UPS_State	Interner Zustand des Funktionsbausteins als globale Kopie des VAR_OUTPUT
eState	E_S_UPS_State	Werte siehe E_S_UPS_State

Voraussetzungen

Entwicklungsumgebung	Zielplattform	Hardware	Einzubindende SPS Bi- bliotheken
TwinCAT v3.1	CX81xx	Sekunden USV	Tc2_SUPS

7.1.2 Datentypen

E_S_UPS_Mode

Mit dem gewählten Modus im Funktionsbaustein können Sie bestimmen, was bei einem Spannungsausfall passiert.

eSUPS WrPersistData Shutdown: Schreiben der persistenten Daten und dann QuickShutdown

eSUPS_WrPersistData_NoShutdown: Nur Schreiben der persistenten Daten (kein QuickShutdown)

eSUPS ImmediateShutdown: Nur QuickShutdown (kein Schreiben der persistenten Daten)

eSUPS_CheckPowerStatus: Nur Status ermitteln (weder Schreiben der persistenten Daten noch QuickShutdown)

E_S_UPS_State

Mit E_S_UPS_State kann der interne Zustand des Funktionsbausteins ausgelesen werden.

```
eSUPS_PowerOK:
   in allen Modi: Versorgungsspannung ist OK
eSUPS PowerFailure:
   in allen Modi: Versorgungsspannung fehlerhaft (steht nur einen Zyklus an)
eSUPS WritePersistentData:
   im Modus eSUPS WrPersistData Shutdown: Schreiben der persistenten Daten ist aktiv
   im Modus eSUPS WrPersistData NoShutdown: Schreiben der persistenten Daten ist aktiv
eSUPS QuickShutdown:
   im Modus eSUPS WrPersistData Shutdown: QuickShutdown ist aktiv
   im Modus eSUPS ImmediateShutdown: QuickShutdown ist aktiv
eSUPS WaitForRecover:
   im Modus eSUPS WrPersistData NoShutdown: Warten auf Wiederkehr der Spannung
   im Modus eSUPS CheckPowerStatus: Warten auf Wiederkehr der Spannung
eSUPS WaitForPowerOFF:
   im Modus eSUPS WrPersistData Shutdown: Warten auf das Abschalten durch die USV
  im Modus eSUPS ImmediateShutdown: Warten auf das Abschalten durch die USV
```

7.1.3 PIcAppSystemInfo

Jede SPS beinhaltet eine Instanz des Typs 'PIcAppSystemInfo' mit dem Namen '_AppInfo'.

Der zugehörige Namensraum (namespace) ist 'TwinCAT_SystemInfoVarList'. Dieser muss beispielsweise bei Verwendung in einer Bibliothek mit angegeben werden.

PlcAppSystemInfo		
CT		
ObjId	:	OTCID;
TaskCnt	:	UDINT;
OnlineChangeCnt	:	UDINT;
Flags	:	DWORD;
AdsPort	:	UINT;
BootDataLoaded	:	BOOL;
OldBootData	:	BOOL;
AppTimestamp	:	DT;
KeepOutputsOnBP	:	BOOL;
ShutdownInProgress	:	BOOL;
LicensesPending	:	BOOL;
BSODOccured	:	BOOL;
TComSrvPtr	:	ITComObjectServer
	PlcAppSystemInfo CT ObjId TaskCnt OnlineChangeCnt Flags AdsPort BootDataLoaded OldBootData AppTimestamp KeepOutputsOnBP ShutdownInProgress LicensesPending BSODOccured TComSrvPtr	PlcAppSystemInfo CT ObjId : TaskCnt : OnlineChangeCnt : Flags : AdsPort : BootDataLoaded : OldBootData : AppTimestamp : KeepOutputsOnBP : ShutdownInProgress : LicensesPending : BSODOccured : TComSrvPtr :

AppName ProjectName END_STRUCT END_TYPE : STRING(63); : STRING(63);

•	SILIN

Objld	Objekt-ID der SPS-Projektinstanz
TaskCnt	Anzahl der im Laufzeitsystem befindlichen Tasks
OnlineChangeCnt	Anzahl der seit dem letzten Komplettdownload gemachten Online-Änderungen
Flags	Reserviert
AdsPort	ADS-Port der SPS-Applikation
BootDataLoaded	PERSISTENT Variablen: LOADED (fehlerfrei geladen)
OldBootData	PERSISTENT Variablen: INVALID (es wurde die Sicherungskopie geladen, weil keine gültige Datei vorhanden war)
AppTimestamp	Zeitpunkt, zu dem die SPS-Applikation übersetzt wurde
KeepOutputsOnBP	Das Flag kann gesetzt werden und verhindert, dass die Ausgänge genullt werden, wenn ein Breakpoint erreicht wird. Die Task läuft in dem Fall weiter. Allein die Ausführung des SPS Code ist unterbrochen.
ShutdownInProgress	Diese Variable hat den Wert TRUE, falls das TwinCAT-System aktuell heruntergefahren wird. Manche Teile des TwinCAT-Systems sind ggf. schon heruntergefahren worden.
LicensesPending	Diese Variable hat den Wert TRUE, falls noch nicht alle Lizenzen, die von Lizenz-Dongles zur Verfügung gestellt werden, auf Gültigkeit geprüft wurden.
BSODOccured	Diese Variable hat den Wert TRUE, falls sich Windows in einem BSOD befindet.
TComSrvPtr	Pointer auf den TcCOM Object Server
AppName	Von TwinCAT generierter Name, welcher den Port beinhaltet.
ProjectName	Name des Projekts

7.2 Diagnose-LEDs ansteuern

7.2.1 Funktion F_CX81x0_LED_WD

Da der CX8190 verschiedene Protokolle unterstützt, werden die beiden LEDs WD und ERR auf dem CX8190 nicht durch die Firmware genutzt. Dadurch hat der Anwender die Möglichkeit eigene Diagnosemeldungen zu erstellen. Mit den LEDs können Sie zum Beispiel anzeigen, ob der CX8190 eine IP-Adresse vom DHCP Server erhalten hat oder, ob sich Teilnehmer im Datenaustausch befinden.

Die Funktion F_CX8190_LED_WD steuert die WD-LED auf dem CX8190 an. Hier können verschiedene Farben und Blinkmodi benutzt werden. Mögliche Farben für die LEDs sind rot und grün.

VAR_INPUT

VAR_INPUT eMode : E_CX81x0_LED; END VAR

<u>eMode [▶ 53]</u>: Art und Weise wie die LED leuchtet.

VAR_OUTPUT

F_CX8190_LED_WD : INT;

F_CX8190**_LED_WD**: -1, nicht implementierter Blink Code, 0 OK

Voraussetzungen

Entwicklungsumgebung	Zielplattform	Hardware	Einzubindende SPS Bi- bliotheken
TwinCAT v3.1 Build 4022.30	Arm®	CX8190	Tc2_SystemCX

7.2.2 Funktion F_CX81x0_LED_ERR

Da der CX8190 verschiedene Protokolle unterstützt, werden die beiden LEDs WD und ERR auf dem CX8190 nicht durch die Firmware genutzt. Dadurch hat der Anwender die Möglichkeit eigene Diagnosemeldungen zu erstellen. Mit den LEDs können Sie zum Beispiel anzeigen, ob der CX8190 eine IP-Adresse vom DHCP Server erhalten hat oder, ob sich Teilnehmer im Datenaustausch befinden.

F_CX8190	LED_ERR
-eMode E_CX81x0_LED	INT F_CX8190_LED_ERR

Die Funktion F_CX8190 CX8190 _LED_ERR steuert die ERR-LED auf dem CX8190 an. Hier können verschiedene Farben und Blinkmodi benutzt werden. Mögliche Farben für die LEDs sind rot und grün.

VAR_INPUT

```
VAR_INPUT
eMode : E_CX81x0_LED;
END VAR
```

eMode [53]: Art und Weise wie die LED leuchtet.

VAR_OUTPUT

F_CX8190_LED_ERR : INT;

F_CX8190_LED_ERR: -1, nicht implementierter Blink Code, 0 OK

Voraussetzungen

Entwicklungsumgebung	Zielplattform	Hardware	Einzubindende SPS Bi- bliotheken
TwinCAT v3.1 Build 4022.30	Arm®	CX8190	Tc2_SystemCX

7.2.3 Datentyp TYPE E_CX81x0_LED

```
END TYPE
```

7.3 Funktion F_CX81xx_ADDRESS

Diese Funktion liest die Stellung des DIP-Schalters beim CX8190 aus. Eine mögliche Anwendung ist, dass Sie abhängig von der Schalterstellung verschiedene Programmteile in der SPS aktivieren können.

VAR_INPUT

```
VAR_INPUT

iCX_Typ : INT; (* Use product code without `CX' e.g.: CX8180 -> 8180 *)

END_VAR
```

VAR_OUTPUT

F_CX80xx_ADDRESS : INT;

F_CX80xx_ADDRESS

: -1, nicht implementierter CX, Adresse des Schalters

Voraussetzungen

Entwicklungsumgebung	Zielplattform	Hardware	Einzubindende SPS Bi- bliotheken
TwinCAT v3.1 Build 4022.30	Arm®	CX8190	Tc2_SystemCX

7.4 Real Time Clock (RTC)

Die Real Time Clock (RTC) wird über die Funktionsbausteine FB_LocalSystemTime ausgelesen und kann mit dem Baustein NT_SetLocalTime eingestellt werden (siehe TcUtilities.lib). Die RTC wird über die Batterie versorgt und kann so im ausgeschalteten Zustand weiterlaufen.

Real Time Clock (RTC) läuft zu langsam

TwinCAT verwendet einen eigenen Real-Time-Treiber. Dieser hat den Vorteil, dass die Qualität der Echtzeit um ein Vielfaches verbessert wurde und dadurch der Jitter der Task auf ein Minimum reduziert werden konnte. Damit wird das Betriebssystem von TwinCAT aufgerufen. Die RTC auf dem Betriebssystem wird über TwinCAT gesteuert und muss zu gewissen Zeiten aufgerufen werden.

Wenn die Taskzykluszeit auf der TwinCAT-Seite sehr lang und die CPU Auslastung hoch ist, wird das Betriebssystem nicht mehr genügend oft aufgerufen. Die RTC auf dem Betriebssystem geht dadurch nach. Wenn Sie festgestellt haben, dass die RTC zu langsam läuft und die Uhrzeit auf dem CX8190 nachgeht, können Sie die folgende Problembehandlung anwenden:

Abhilfe

Der Aufruf der RTC wird immer mit einem Auslesen der Hardware-RTC verknüpft. Dies hat zwar den Nachteil einer etwas höheren CPU-Auslastung, da aber die CPU Auslastung durch Ihre Applikation eh schon hoch ist, kann dies vernachlässigt werden. Passen Sie die Einstellungen in der Registry an:

[HKEY_LOCAL_MACHINE\Platform] "SoftRTC"=dword:0

Wert	Beschreibung
0	Es wird immer die Hardware-RTC ausgelesen, wenn die Windows-Zeit angefragt wird.
1	Es wird einmal beim Start die Hardware-RTC ausgelesen. Ab dann läuft die Windows-Uhr über den internen System-Tick weiter.

Standardeinstellung: "SoftRTC"=dword:1

8 Ethernet X001 Interface

8.1 Ethernet

Ethernet wurde ursprünglich von DEC, Intel und Xerox (als DIX-Standard) für die Datenübertragung zwischen Bürogeräten entwickelt. Heute versteht man darunter meist die Spezifikation *IEEE 802.3 CSMA/CD*, die 1985 veröffentlicht wurde. Diese Technologie ist durch ihren weltweiten Einsatz und die hohen Stückzahlen überall erhältlich und sehr preiswert. Eine Anbindung an vorhandene Netze kann so problemlos realisiert werden.

Mittlerweile gibt es die verschiedensten Übertragungsmedien: Koaxialkabel (10Base5), Lichtwellenleiter (10BaseF) oder verdrillte Zweidrahtleitung (10BaseT) mit Schirmung (STP) oder ohne Schirmung (UTP). Mit Ethernet lassen sich verschieden Topologien aufbauen wie Ring, Linie oder Stern.

Ethernet transportiert Ethernet-Pakete von einem Sender zu einem oder mehreren Empfängern. Diese Übertragung verläuft ohne Quittung und ohne Wiederholung von verlorenen Paketen. Für die sichere Daten-Kommunikation stehen Protokolle wie TCP/IP zu Verfügung, die auf Ethernet aufsetzen.

MAC-ID

Sender und Empfänger von Ethernet-Paketen werden über die MAC-ID adressiert. Die MAC-ID ist ein 6 Byte großer Identifikations-Code, der eineindeutig, d.h. für jedes Ethernet-Gerät weltweit unterschiedlich ist. Die MAC-ID besteht aus zwei Teilen. Der erste Teil (d.h. die ersten 3 Byte) ist eine Herstellerkennung. Die Firma Beckhoff hat die Kennung 00 01 05. Die nächsten 3 Byte werden durch den Hersteller vergeben und entsprechen einer eindeutigen Seriennummer. Die MAC-ID kann zum Beispiel beim BootP-Protokoll zum Einstellen der TCP/IP-Nummer verwendet werden. Dafür wird ein Telegramm zum entsprechenden Knoten geschickt, das die Informationen wie Name oder TCP/IP-Nummer beinhaltet. Sie können die MAC-ID mit der Konfigurationssoftware KS2000 auslesen.

Internet-Protokoll (IP)

Die Grundlage der Datenkommunikation ist das Internet-Protokoll (IP). IP transportiert Datenpakete von einem Teilnehmer zu einem anderen, der sich im gleichen oder in einem anderen Netz befinden kann. IP kümmert sich dabei um das Adress-Management (Finden und Zuordnen der MAC-IDs), die Segmentierung und die Pfadsuche (Routing). Wie das Ethernet-Protokoll gewährleistet auch IP keinen gesicherten Transport der Daten; Datenpakete können verloren gehen oder in ihrer Reihenfolge vertauscht werden.

Für einen standardisierten, gesicherten Informationsaustausch zwischen beliebig vielen verschiedenen Netzwerken wurde TCP/IP entwickelt. Dabei ist TCP/IP weitgehend unabhängig von der verwendeten Hardund Software. Oftmals als ein Begriff verwendet, handelt es sich hierbei um mehrere aufeinander aufgesetzte Protokolle: z.B. IP, TCP, UDP, ARP und ICMP.

Transmission Control Protocol (TCP)

Das auf IP aufsetzende Transmission Control Protocol (TCP) ist ein verbindungsorientiertes Transport-Protokoll. Es umfasst Fehlererkennungs- und Behandlungsmechanismen. Verlorengegangene Telegramme werden wiederholt.

User Datagram Protocol (UDP)

UDP ist ein verbindungsloses Transport-Protokoll. Es gibt keine Kontrollmechanismen beim Datenaustausch zwischen Sender und Empfänger. Dadurch resultiert eine schnellere Verarbeitungsgeschwindigkeit als zum Beispiel bei TCP. Eine Prüfung ob das Telegramm angekommen ist muss vom übergeordneten Protokoll durchgeführt werden.

Auf TCP/IP und UDP/IP aufsetzende Protokolle

Auf TCP/IP bzw. UDP können zum Beispiel folgende Protokolle aufsetzen:

- ADS
- ModbusTCP

Abb. 13: Auf TCP/IP und UDP/IP aufsetzende Protokolle.

ADS setzt wahlweise auf TCP oder UDP auf.

8.2 Topologiebeispiel

Mit dem CX8190 ist eine sternförmige Verkabelung oder eine Linientopologie möglich. Beckhoff empfiehlt die Anzahl der Knoten auf 10 zu begrenzen.

Abb. 14: Topologiebeispiel, CX8190 verbunden mit dezentralen Buskopplern über Realtime-Ethernet.

8.3 ADS-Kommunikation

Das ADS-Protokoll (ADS: Automation Device Specification) ist eine Transportschicht innerhalb des TwinCAT Systems. Es ist für den Datenaustausch der verschiedenen Software-Module entwickelt worden, zum Beispiel für die Kommunikation zwischen der NC und der PLC. Mit diesem Protokoll haben Sie die Freiheit von jedem Punkt im TwinCAT mit anderen Tools kommunizieren zu können. Wird die Kommunikation zu anderen PCs oder Geräten benötigt, setzt das ADS-Protokoll auf TCP/IP auf. Somit ist es in einem vernetzten System möglich, alle Daten von einem beliebigen Punkt aus zu erreichen.

Abb. 15: ADS-Protokoll als Transportschicht innerhalb von TwinCAT.

Das ADS-Protokoll wird auf das TCP/IP- oder UDP/IP-Protokoll aufgesetzt. Es ermöglicht dem Benutzer innerhalb des Beckhoff-Systems über nahezu beliebige Verbindungswege mit allen angeschlossenen Geräten zu kommunizieren und diese zu parametrieren. Außerhalb des Beckhoff-Systems stehen verschiedene Wege offen, um mit anderen Software-Tools Daten auszutauschen.

Software-Schnittstellen

ADS-OCX

Das ADS-OCX ist eine Active-X-Komponente und bietet eine Standardschnittstelle zum Beispiel zu Visual Basic, Delphi, u.s.w.

ADS-DLL

Sie können die ADS-DLL (DLL: Dynamic Link Library) in Ihr C-Programm einbinden.

OPC

Die OPC-Schnittstelle ist eine genormte Standardschnittstelle für die Kommunikation in der Automatisierungstechnik. Beckhoff bietet hierfür einen OPC-Server an.

Protokoll

Die ADS-Funktionen bieten die Möglichkeit, direkt vom PC auf Informationen des Buskopplers zuzugreifen. Dafür können ADS-Funktionsbausteine in TwinCAT verwendet werden. Die Funktionsbausteine sind in der Bibliothek *Tc2_System.lib* enthalten. Genauso ist es möglich, die ADS-Funktionen von AdsOCX, ADSDLL oder OPC aufzurufen.

BECKHOFF

Abb. 16: Aufbau der ADS-Kommunikation.

AMSNetID

Die AMSNetID beschreibt das anzusprechende Gerät. Diese wird aus der Mac-Adresse des ersten Ethernet Ports (X001) und ist beim CX80xx auf der Seite aufgedruckt. Es werden für die AMSNetID typischerweise die Bytes 3..6 plus ".1.1" verwendet. Beispiel:

MAC-Adresse 00-01-**05-01-02-03** AMSNetID 5.1.2.3.1.1

Port-Nummer

Die Portnummer unterscheidet im angeschlossenen Gerät Unterelemente. Port 851: lokale Prozessdaten PLC Laufzeit 1

Index Group

Die Index Group unterscheidet innerhalb eines Ports verschiedene Daten.

Index Offset

Gibt den Offset an, ab welchem Byte gelesen oder geschrieben werden soll.

Len

Gibt die Länge der Daten in Byte an, die gelesen bzw. geschrieben werden sollen.

TCP-Port-Nummer

Die TCP-Port-Nummer beträgt für das ADS-Protokoll 48898 oder 0xBF02.

9 Fehlerbehandlung und Diagose

9.1 Diagnose-LEDs

Anzeige	LED	Bedeutung
BECKHOFF CX8190 TC	тс	TwinCAT Status-LED: TwinCAT ist im Run Mode (grün). TwinCAT ist im Stop Mode (rot). TwinCAT ist im Config Mode (blau).
WD ERR	WD	Keine Funktion ab Werk. Die LED kann für anwenderspezifische Diagnosemeldungen parametriert werden.
	ERR	Leuchtet rot beim Einschalten. Software wird geladen. Geht aus, wenn alles in Ordnung.
		Die LED kann für anwenderspezifische Diagnosemeldungen parametriert werden.

9.2 K-Bus

Die angeschlossenen Busklemmen werden vom Netzteil auf Fehler überprüft. Die rote LED "K-BUS ERR" ist aus, wenn keine Fehler vorhanden sind. Die rote LED "K-BUS ERR" blinkt, wenn Fehler im Bereich der Busklemmen vorhanden sind.

Tab. 14: Diagnose-LEDs im K-Bus-Modus.

Anzeige	LED	Bedeutung
Us 24 V X Up 24 V K-BUS RUN K-BUS ERR	Us 24V	Spannungsversorgung für CPU-Grundmodul. Die LED leuchtet grün bei korrekter Spannungsversorgung.
	Up 24V	Spannungsversorgung für Klemmenbus. Die LED leuchtet grün bei korrekter Spannungsversorgung.
	K-BUS RUN	Diagnose K-Bus. Die grüne LED leuchtet, um den fehlerfreien Betrieb anzuzeigen. Fehlerfrei bedeutet, dass auch die Kommunikation mit dem Feldbussystem fehlerfrei läuft.
	K-BUS ERR	Diagnose K-Bus. Die rote LED blinkt zur Fehleranzeige. Die rote LED blinkt mit zwei unterschiedlichen Frequenzen.

Durch die Frequenz und Anzahl des Blinkens kann der Fehlercode und das Fehlerargument ermittelt werden. Ein Fehler wird durch die LED "K-BUS ERR" in einer festen Reihenfolge angezeigt.

Tab. 15: K-BUS ERR LED, Reihenfolge der Fehleranzeige durch die LED.

Reihenfolge	Bedeutung
Schnelles Blinken	Start der Sequenz
Erste langsame Sequenz	Fehlercode
Keine Anzeige	Pause, die LED ist aus
Zweite langsame Sequenz	Fehlerargument

Zählen Sie, wie oft die rote LED K-BUS ERR blinkt, um den Fehlercode und das Fehlerargument zu ermitteln. Bei dem Fehlerargument zeigt die Anzahl der Impulse die Position der letzten Busklemme vor dem Fehler an. Passive Busklemmen, wie zum Beispiel eine Einspeiseklemme, werden nicht mitgezählt.

Fehlercode	Fehlerargument	Beschreibung	Abhilfe
Ständiges, konstantes		EMV Probleme.	 Spannungsversorgung auf Unter- oder Überspannungsspitzen kontrollieren.
Blinken			 EMV-Ma ßnahmen ergreifen.
			 Liegt ein K-Bus-Fehler vor, kann durch erneutes Starten (Aus- und Wiedereinschalten des Netzteils) der Fehler lokalisiert werden.
3 Impulse	0	K-Bus-Kommandofehler.	Keine Busklemme gesteckt.
			 Eine der Busklemmen ist defekt, angehängte Busklemmen halbieren und prüfen ob der Fehler bei den übrigen Busklemmen noch vorhanden ist. Dieses Vorgehen wiederholen, bis die defekte Busklemme lokalisiert ist.
4 Impulse	0	K-Bus-Datenfehler, Bruchstelle hinter dem Netzteil.	Kontrollieren, ob die Busendklemme 9010 gesteckt ist.
	n	Bruchstelle hinter Busklemme n.	Prüfen, ob die Busklemme n+1 hinter dem Netzteil richtig gesteckt ist, gegebenenfalls tauschen.
5 Impulse	n	K-Bus-Fehler bei Register-Kommunikation mit Busklemme n.	Busklemme an Stelle n tauschen.
6 Impulse	0	Fehler bei der Initialisierung.	Embedded-PC tauschen.
	1	Interner Datenfehler.	Hardware-Reset des Embedded-PCs (aus - und wieder einschalten).
	8	Interner Datenfehler.	Hardware-Reset des Embedded-PCs (aus- und wieder einschalten).
7 Impulse	0	Prozessdatenlängen der Soll- und Ist-Konfiguration stimmen nicht überein.	Konfiguration und Busklemmen auf Konsistenz prüfen.

Bei manchen Fehlern geht die LED "K-BUS ERR" nicht aus, obwohl der Fehler beseitigt wurde. Schalten Sie die Spannungsversorgung für das Netzteil aus und wieder ein, damit die LED nach der Fehlerbeseitigung ausgeschaltet wird.

State-Variable

In TwinCAT gibt es unter dem Buskoppler die Variable State, für die K-Bus-Diagnose.

C Example - Microsoft Visual Studio	TurinSAEE DI	C Tools Scone	Window Holn	
		telease - Twi Unbenannt1	inCAT RT (x86)	- ❷; € 9:0:1:1:0:0:0;;;;
Solution Explorer	Example × Variable Flags Name: Type: Group: Address:	Online State UINT Inputs 0 (0x0)	Size: User ID:	2.0
 I/O I/O Image Image Image Image Image State Outputs Term 2 (KL2012) Image Term 3 (KL4032) 	Linked to Comment: ADS Info:	Bit 0 = K-Bus Err Bit 1 = Terminal State Err Bit 2 = Process Data Length Err Bit 8 = No valid Inputs Bit 9 = K-Bus Input Update busy Bit 10 = K-Bus Output Update busy Bit 11 = Watchdog Err Bit 15 = Acyc. Function atcive (e.g. K-Bus Reset)		set)
 Iterm 4 (KL3102) End Term (KL9010) Image Inputs Outputs Box 1 (CX2100 Power Supply) DIS Inputs 	Full Name:	TIID^Device 3 (CX-E	3K)^Box 1 (CX-BK)^Input:	s^State
Device 5 (NOV-DP-RAM) Mappings Ready	•			•

Abb. 17: Status-Variable für Fehlerbehandlung und Diagnose unter TwinCAT.

Ist der Wert "0" so arbeitet der K-Bus synchron und ohne Fehler. Sollte der Wert <> "0" sein, kann ein Fehler vorliegen. Es kann aber auch nur ein Hinweis sein, das zum Beispiel der K-Bus-Zyklus länger dauert, als die verwendete Task. Damit ist er dann nicht mehr synchron zu der Task. Die Task-Zeit sollte schneller als 100 ms sein. Wir empfehlen eine Task-Zeit kleiner 50 ms. Typischerweise liegt die K-Bus-Update-Zeit zwischen einer und fünf ms.

Bit	Beschreibung
Bit 0	K-Bus-Fehler.
Bit 1	Klemmenkonfiguration hat sich seit dem Start geändert.
Bit 2	Prozessabbildlängen stimmen nicht überein.
Bit 8	(noch) keine gültigen Eingänge.
Bit 9	K-Bus ist im Inputupdate noch nicht fertig.
Bit 10	K-Bus ist im Output-Update noch nicht fertig.
Bit 11	Watchdog.
Bit 15	azyklische K-Bus-Funktion aktiv (z.B. K-Bus-Reset).

Liegt ein K-Bus-Fehler vor, kann dieser über den Funktionsbaustein IOF_DeviceReset (in der TcloFunctions.lib) zurückgesetzt werden.

9.3 E-Bus

Die angeschlossenen EtherCAT-Klemmen werden vom Netzteil überprüft. Im E-Bus-Modus leuchtet die LED "L/A". Wenn Daten übertragen werden, blinkt die LED "L/A".

Tab.	18: Diagnose-LEDs im K-Bus-Modus.
------	-----------------------------------

Anzeige	LED		Bedeutung
Us 24 V 💢 🔀 Up 24 V	Us 24 V		Spannungsversorgung für CPU-Grundmodul. Die LED leuchtet grün bei korrekter Spannungsversorgung.
	Up 24 V		Spannungsversorgung für Klemmenbus. Die LED leuchtet grün bei korrekter Spannungsversorgung.
	L/A	aus	E-Bus nicht angeschlossen.
		an	E-Bus angeschlossen / Kein Datenverkehr.
		blinkt	E-Bus angeschlossen / Datenverkehr auf dem E-Bus.

10 Pflege und Wartung

HINWEIS

Einsatz falscher Ersatzteile

Der Einsatz von Ersatzteilen, die nicht über den Beckhoff Service bestellt wurden, kann zu unsicherem und fehlerhaftem Betrieb führen.

• Setzen Sie ausschließlich Ersatzteile ein, die Sie über den Beckhoff Service bestellt haben.

Beckhoff Industrie-PCs werden aus Komponenten der höchsten Qualität und Robustheit hergestellt, ausgewählt und getestet für beste Interoperabilität, langfristige Verfügbarkeit und zuverlässige Funktion unter den spezifizierten Umgebungsbedingungen.

Trotzdem können einige Komponenten des Industrie-PCs einer begrenzten Lebensdauer unterworfen sein, wenn sie unter gewissen Bedingungen betrieben werden, wie unter anderem bei erhöhten Umgebungsbedingungen während des Betriebs oder während der Lagerung oder bei langen Einlagerungszeiträumen außer Betrieb.

Darum empfiehlt Beckhoff einige der Komponenten des Industrie-PCs nach der Zeit auszuwechseln, nach welcher Vorhersagen der verbleibenden Lebensdauer solcher Komponenten nicht länger zuverlässig berechnet werden können.

Abhängig vom verwendeten Gerät handelt es sich um folgende Komponenten:

- Batterie
- Speichermedium
- Lüfterkassette

Die folgende Tabelle gibt Empfehlungen zum regelmäßigen, vorsorglichen Austausch der PC-Komponenten an:

Tap. 19. Austauschenipienlungen FC-Nomponenten	Tab.	19: Austauschem	pfehlungen	PC-Kom	ponenten
--	------	-----------------	------------	--------	----------

Komponente	Empfehlung zum Austausch nach Zeitraum (Jah- re)
USV, Akkupack	5 Jahre
2.5 Zoll Festplatte	5 Jahre oder nach 20.000 Betriebsstunden bei mehr als 40 °C oder nach 30.000 Betriebsstunden bei weniger als 40 °C
Lüfter	5 Jahre
CFast, SSD, MicroSD, CompactFlash [®]	10 Jahre
Batterie des Motherboards	5 Jahre

Im Fall möglicher Schäden, die bei Wartungsmaßnahmen entstehen, ist Beckhoff von der Haftung ausgeschlossen. Bevor Sie Arbeiten am Gerät vornehmen, sollten Sie einen ESD-Schutz aufgebaut haben, um Schäden am Gerät durch elektrostatische Entladung zu vermeiden.

ESD-Schutz

HINWEIS

Elektrostatische Entladung

Der Austausch von Gerätekomponenten ohne ESD-Schutz kann zur Funktionsbeeinträchtigung und Zerstörung des Geräts führen.

• Wenden Sie nach Möglichkeit ESD-Schutzmaßnahmen bei Wartungsarbeiten an.

Bei Arbeiten an elektronischen Geräten besteht die Gefahr einer Schädigung durch ESD (electrostatic discharge), was die Funktionsbeeinträchtigung oder Zerstörung des Geräts zur Folge haben kann.

Schützen Sie den Industrie-PC und schaffen Sie eine ESD-geschützte Umgebung, in der bestehende elektrostatische Ladungen kontrolliert gegen die Erde abgeleitet werden und Aufladung verhindert wird.

Eine ESD-geschützte Umgebung können Sie am besten durch die Einrichtung von ESD-Schutzzonen schaffen. Dazu dienen die folgenden Maßnahmen:

- ESD-gerechte Fußböden mit ausreichender Leitfähigkeit gegenüber dem Bezugspotential PE;
- ESD-gerechte Arbeitsoberflächen wie Tische und Regale;
- Handgelenkerdungsband, besonders bei sitzenden Tätigkeiten;
- geerdete und elektrostatisch ableitende Einrichtungen und Betriebsmittel (z.B. Werkzeuge) innerhalb der ESD-Schutzzone.

Haben Sie keine Möglichkeit, eine ESD-Schutzzone zu schaffen, können Sie das Gerät trotzdem gegen ESD-Schäden absichern. Dazu dienen beispielsweise die folgenden Maßnahmen:

- Leitfähige, mit dem Erdungspotenzial verbundene Matten als Ablage verwenden.
- Eventuelle Ladungen vom eigenen Körper ableiten durch die Berührung von geerdetem Metall (z.B. Schaltschranktür).
- Handgelenkerdungsband tragen.
- Erst mit Handgelenkerdungsband neue elektronische Komponenten aus der ESD-Verpackung (getönter Kunststoffbeutel) entnehmen.
- Kein Umhergehen mit elektronischen Komponenten ohne ESD-Verpackung in der Hand.

10.1 Batterie wechseln

HINWEIS

Brand- und Explosionsgefahr

Es besteht Brand- und Explosionsgefahr, wenn die Batterie kurzgeschlossen wird.

• Verwenden Sie isolierte, nichtleitende Werkzeuge, wenn Sie die Batterie nicht mit den Fingern greifen können, und achten Sie beim Batteriewechsel auf die richtige Polarität.

Die Batterie muss alle 5 Jahre gewechselt werden. Ersetzen Sie die Batterie durch eine Batterie vom Typ CR2032 (3 V, 225 mAh). Das Batteriefach befindet sich unter der Frontklappe.

Die Batterie versorgt die eingebaute Uhr und puffert damit die Uhrzeit und das Datum. Die Uhrzeit und das Datum werden falsch angezeigt, wenn die Batterie leer ist oder die Batterie entfernt wird. Beachten Sie dieses Verhalten bei Ihrer Hard- und Softwarekonfiguration und stellen Sie nach einem Batteriewechsel die Uhrzeit und das Datum neu ein. Wenn das Betriebssystem die Zeit von einem NTP-Server erhält, kann die Uhrzeit und das Datum über das Betriebssystem eingestellt werden.

Voraussetzungen:

• Der Embedded-PC ist ausgeschaltet.

Wechseln Sie die Batterie wie folgt:

- 1. Öffnen Sie Frontklappe.
- 2. Setzen Sie einen Schraubenzieher aus Kunststoff unter- oder oberhalb der Batterie an und hebeln Sie die Batterie vorsichtig aus dem Batteriefach.

3. Schieben Sie die neue Batterie in das Batteriefach. Der Pluspol zeigt dabei nach links in Richtung der Ethernet-Schnittstellen.

⇒ Der Batteriewechsel ist abgeschlossen. Schließen Sie die Frontklappe und überprüfen Sie Datum und Uhrzeit.

10.2 Embedded-PC reinigen

Stromschlaggefahr

Unter Spannung stehende Geräte oder Teile können zu Stromschlägen führen. Trennen Sie den Embedded-PC vor der Reinigung von der Spannungsversorgung.

Reinigen Sie ausschließlich das Gehäuse des Embedded-PCs. Verwenden Sie dafür einen feuchten, weichen Putzlappen. Sorgen Sie dafür, dass die Lüftungsschlitze des Geräts immer frei sind und nicht verstopfen. Verwenden Sie dafür ausschließlich einen Staubsauger. Verwenden Sie auf keinen Fall Pressluft zum Reinigen des Embedded-PCs.

Die folgenden Reinigungsmittel und -materialien sind ungeeignet und können zu Schäden führen:

- ätzende Reinigungsmittel
- Lösungsmittel
- Scheuermittel
- · harte Gegenstände

11 Technische Daten

Tab. 20: Technische Daten, Abmessungen und Gewicht.

	CX8190
Abmessungen (B x H x T)	71 mm x 100 mm x 73 mm
Gewicht	230 g

Tab. 1	21:	Technische	Daten,	allgemeine Daten.
--------	-----	------------	--------	-------------------

Technische Daten	CX8190
Prozessor	Arm [®] Cortex [®] -A9, 800 MHz
Anzahl Kerne	1
Flash-Speicher	Einschub für MicroSD-Karte, 512-MB-Karte enthalten (erweiterbar)
Arbeitsspeicher	512 MB DDR3-RAM (nicht erweiterbar)
1-Sekunden-USV	integriert (1 MB auf MicroSD-Karte)
Schnittstellen	1 x RJ45 10/100 MBit/s, 1 x Businterface
Kühlung	passiv
Businterface	2 x RJ45 (switched)
Protokoll	Realtime-Ethernet, ADS UDP, ADS TCP, EAP (EtherCAT Automation Protocol)
Spannungsversorgung	24 V _{DC} (-15 %/+20 %)
max. Leistungsaufnahme	4 W
max. Leistungsaufnahme (mit USV laden)	9 W
Max. Leistungsaufnahme E-Bus/K- Bus	10 W (5 V/max. 2 A)
Spannungsfestigkeit	500 V (Versorgung/interne Elektronik)
Betriebssystem	Microsoft Windows Embedded Compact 7 ¹⁾
Steuerungssoftware	TwinCAT 3, Lizenzen nicht enthalten
Diagnose-LED	1 x TC-Status, 1 x WD-LED, 1 x ERR-LED
Uhr	interne, batteriegepufferte Uhr (RTC) für Zeit und Datum (Batterie wechselbar)
Zulassungen	CE, UL

¹⁾ Der Supportzeitraum für das Betriebssystem Microsoft Windows Embedded Compact 7 ist bereits abgelaufen. Eine Aktualisierung von Security-Updates kann daher nicht mehr bereitgestellt werden. TwinCAT wird nur bis einschließlich Build 4024 unterstützt.

Tab. 22: Technische Daten, I/O-Klemmen.

Technische Daten	CX8190
I/O-Anschluss	via Netzteilklemme (E-Bus oder K-Bus, automatische Erkennung)
Stromversorgung für I/O-Klemmen	max. 2 A
Strombelastung Powerkontakte	max. 10 A
Prozessdaten K-Bus	max. 2 kByte In und 2 kByte Out
max. Anzahl der Klemmen (K-Bus)	64 (255 mit K-Bus-Verlängerung)
max. Anzahl der Klemmen (E-Bus)	bis zu 65534 Klemmen.

Technische Daten	CX8190
Umgebungstemperatur im Betrieb	-25° C +60° C
Umgebungstemperatur bei Lagerung	-40° C +85° C siehe Hinweise unter: Transport und Lagerung
Relative Feuchte	95% ohne Betauung
Schwingungsfestigkeit	gemäß EN 60068-2-6
Schockfestigkeit	gemäß EN 60068-2-27
EMV-Festigkeit	gemäß EN 61000-6-2
EMV-Aussendung	gemäß EN 61000-6-4
Schutzart	IP20

Tab. 23: Technische Daten, Umgebungsbedingungen.

Tab. 24: Technische Daten, Ethernet-Schnittstelle X001.

Technische Daten	Beschreibung
Übertragungsmedium	4 x 2 Twisted-Pair-Kupferkabel Kategorie 5 (100 MBit/s)
Leitungslänge	100 m vom Switch bis zum CX8190
Übertragungsrate	10/100 MBit/s
Topologie	sternförmige Verkabelung
Protokolle	alle nicht Echtzeitfähigen Protokolle die auf TCP oder UDP basieren und keine Echtzeiterweiterung benötigen

Tab. 25: Technische Daten, Ethernet-Schnittstellen X101/X102.

Technische Daten	Beschreibung
Übertragungsmedium	4 x 2 Twisted-Pair-Kupferkabel Kategorie 5 (100 MBit/s)
Leitungslänge	100 m vom Switch bis CX8190
Übertragungsrate	100 MBit/s
Topologie	sternförmige Verkabelung, Linientopologie
Protokolle (Echtzeit)	RT-Ethernet, EAP (publisher/subscriber)
Protokolle (nicht Echtzeit)	alle nicht Echtzeitfähigen Protokolle die auf TCP oder UDP basieren und keine Echtzeiterweiterung benötigen

12 Anhang

12.1 Zubehör

Tab. 26: MicroSD-Karten.

Bestellnummer	Beschreibung
CX1900-0122	512-MB-MicroSD-Karte
CX1900-0132	16-GB-MicroSD-Karte

12.2 Zertifizierungen

FCC Approvals for the United States of America

FCC: Federal Communications Commission Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Approval for Canada

FCC: Canadian Notice

This equipment does not exceed the Class A limits for radiated emissions as described in the Radio Interference Regulations of the Canadian Department of Communications.

12.3 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Downloadfinder

Unser <u>Downloadfinder</u> beinhaltet alle Dateien, die wir Ihnen zum Herunterladen anbieten. Sie finden dort Applikationsberichte, technische Dokumentationen, technische Zeichnungen, Konfigurationsdateien und vieles mehr.

Die Downloads sind in verschiedenen Formaten erhältlich.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den <u>lokalen Support und</u> <u>Service</u> zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unserer Internetseite: <u>www.beckhoff.com</u>

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963-157 E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- Hotline-Service

Hotline:	+49 5246 963-460
E-Mail:	service@beckhoff.com

Beckhoff Unternehmenszentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon:	+49 5246 963-0
E-Mail:	info@beckhoff.com
Internet:	www.beckhoff.com

Tabellenverzeichnis

Tab. 1	Abmessungen und Gewicht des Embedded-PCs CX8190	11
Tab. 2	Legende zum Aufbau	14
Tab. 3	Legende zum Typenschild	15
Tab. 4	Ethernet-Schnittstelle X001, PIN-Belegung.	16
Tab. 5	Ethernet-Schnittstelle X101 und X102, PIN-Belegung	16
Tab. 6	Legende zum Anschlussbeispiel	24
Tab. 7	Erforderliche Leitungsquerschnitte und Abisolierlängen	25
Tab. 8	Bedeutung der DIP-Schalter S101	31
Tab. 9	Werte für die einzelnen DIP-Schalter	31
Tab. 10	Zugangsdaten zum Beckhoff Device Manager bei Auslieferung	33
Tab. 11	Zugangsdaten zum Beckhoff Device Manager bei Auslieferung	34
Tab. 12	Speicherort und Bezeichnung der Dateien unter TwinCAT 3	47
Tab. 13	Beschreibung des SoftRTC-Registrykeys	54
Tab. 14	Diagnose-LEDs im K-Bus-Modus.	60
Tab. 15	K-BUS ERR LED, Reihenfolge der Fehleranzeige durch die LED	60
Tab. 16	K-BUS ERR LED, Fehlerbeschreibung und Abhilfe	61
Tab. 17	Beschreibung der Werte bei der State-Variable	62
Tab. 18	Diagnose-LEDs im K-Bus-Modus.	63
Tab. 19	Austauschempfehlungen PC-Komponenten	64
Tab. 20	Technische Daten, Abmessungen und Gewicht.	67
Tab. 21	Technische Daten, allgemeine Daten	67
Tab. 22	Technische Daten, I/O-Klemmen	67
Tab. 23	Technische Daten, Umgebungsbedingungen	68
Tab. 24	Technische Daten, Ethernet-Schnittstelle X001	68
Tab. 25	Technische Daten, Ethernet-Schnittstellen X101/X102.	68
Tab. 26	MicroSD-Karten	69

Abbildungsverzeichnis

Abb. 1	Beispielaufbau eines Embedded-PCs CX8190	14
Abb. 2	CX8190 Typenschild	15
Abb. 3	Ethernet-Schnittstelle X001, X101, X102	16
Abb. 4	Abmessungen des Embedded-PCs CX81xx.	20
Abb. 5	Embedded-PC CX8190, waagerechte Einbaulage	21
Abb. 6	Embedded-PC CX8190, senkrechte Einbaulage	22
Abb. 7	Embedded-PC CX8190, liegende Einbaulage	22
Abb. 8	DIP-Schalter S101, Schalter 1 bis 10	31
Abb. 9	Ethernet-Schnittstellen unter Windows Embedded Compact 7	32
Abb. 10	Verhalten von Anlagen bei einem Spannungsausfall ohne und mit 1-Sekunden-USV	47
Abb. 11	Backup der persistenten Daten laden. Einstellungen unter TwinCAT 3	49
Abb. 12	Aufbau des Ethernet-Protokolls	55
Abb. 13	Auf TCP/IP und UDP/IP aufsetzende Protokolle	56
Abb. 14	Topologiebeispiel, CX8190 verbunden mit dezentralen Buskopplern über Realtime-Ethernet	57
Abb. 15	ADS-Protokoll als Transportschicht innerhalb von TwinCAT	58
Abb. 16	Aufbau der ADS-Kommunikation	59
Abb. 17	Status-Variable für Fehlerbehandlung und Diagnose unter TwinCAT.	62
Trademark statements

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Third-party trademark statements

Arm, Arm9 and Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere.

Intel, the Intel logo, Intel Core, Xeon, Intel Atom, Celeron and Pentium are trademarks of Intel Corporation or its subsidiaries.

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Mehr Informationen: www.beckhoff.de/CX8190

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

