Feldbus-Box-Module für PROFIBUS
Inhaltsverzeichnis

1 Vorwort ... 5
 1.1 Hinweise zur Dokumentation ... 5
 1.2 Sicherheitshinweise .. 6
 1.3 Ausgabestände der Dokumentation .. 7

2 Produktübersicht ... 8
 2.1 Das Feldbus Box System ... 8
 2.2 Feldbus Box - Bezeichnungsübersicht ... 10
 2.3 Firm- und Hardware-Stand .. 12
 2.4 Technische Daten ... 13
 2.4.1 Module - Technische Daten .. 13
 2.4.2 Controller - Technische Daten .. 13
 2.4.3 Stromverbrauch .. 14

3 PROFIBUS ... 18
 3.1 Feldbusübersicht ... 18
 3.2 Topologie .. 23
 3.3 Busaufbau .. 24
 3.4 PROFIBUS-Verkabelung ... 25
 3.4.1 PROFIBUS-Verkabelung .. 25
 3.4.2 PROFIBUS-Anschluss ... 28
 3.5 Protokollbeschreibung .. 30
 3.5.1 Prozessdaten ... 30
 3.5.2 Konfigurationsdaten (Cfg Data) .. 31
 3.5.3 Aktivieren der DPV1-Funktionen ... 32
 3.6 Beschreibung der Parameterdaten ... 35
 3.6.1 Allgemein .. 35
 3.6.2 Parameterdaten .. 43

4 Parametrierung und Inbetriebnahme ... 47
 4.1 Anlaufverhalten der Feldbus Box ... 47
 4.2 Adressierung .. 48
 4.3 Baud-Rate ... 49
 4.4 Konfiguration .. 50
 4.4.1 Konfigurationsdaten (Cfg Data) .. 50
 4.4.2 Konfiguration der komplexen Module .. 59

5 Diagnose-LEDs .. 65
 5.1 Diagnose-LEDs für Profibus ... 65
 5.2 Diagnose-LEDs für lokale Fehler .. 68
 5.3 Überprüfung der IP-Link-Verbindung ... 70
 5.4 Trouble Shooting ... 73
 5.5 Diagnose Telegramm .. 74
 5.5.1 Diagnose-Telegramm Übersicht .. 74
 5.5.2 Diagnose-Telegramm der Kompakt Box (IPxxx-B3xx) .. 74
 5.5.3 Diagnose-Telegramm der Kopplerbox (IL230x-B3xx) .. 76
 5.5.4 TwinCAT-Beispiel für die Diagnose mit der Feldbuskarte FC310x 79
6 Zubehör .. 81
 6.1 PROFIBUS-Zubehör .. 81
 6.2 Feldbus Box Zubehör .. 87
7 Anhang ... 88
 7.1 Allgemeine Betriebsbedingungen .. 88
 7.2 Zulassungen .. 90
 7.3 Prüfnormen für die Geräteprüfung ... 91
 7.4 Support und Service .. 92
1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Marken

Patente

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright
1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen!
Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Erklärung der Hinweise

In der vorliegenden Dokumentation werden die folgenden Hinweise verwendet. Diese Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

△ GEFAHR	Akute Verletzungsgefahr!	Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!
△ WARNUNG	Verletzungsgefahr!	Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen!
△ VORSICHT	Schädigung von Personen!	Wenn dieser Sicherheitshinweis nicht beachtet wird, können Personen geschädigt werden!
HINWEIS	Schädigung von Umwelt/Geräten oder Datenverlust	Wenn dieser Hinweis nicht beachtet wird, können Umweltschäden, Gerätebeschädigungen oder Datenverlust entstehen.

Tipp oder Fingerzeug

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.
Ausgabestände der Dokumentation

<table>
<thead>
<tr>
<th>Version</th>
<th>Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1</td>
<td>• Systemübersicht aktualisiert</td>
</tr>
<tr>
<td>1.2</td>
<td>• Überprüfung der IP-Link-Verbindung hinzugefügt</td>
</tr>
<tr>
<td>1.1</td>
<td>• Erweiterung der Spezifikation des IP-Links auf 15 Meter</td>
</tr>
</tbody>
</table>
| 1.0 | • PROFIBUS-spezifische Inhalte vervollständigt
 | • Signalvarianten und Anschlussbelegung der Signale in die Feldbus-neutrale Dokumentation *Signalvarianten (Feldbus Box E/A-Module)* ausgelagert, die Sie im Internet unter http://www.beckhoff.de im Bereich *Download* finden. |
| 0.7 | Weitere Feldbus Box Module für Sonderfunktionen hinzugefügt. |
| 0.6 | Feldbus Box Module für analoge Signale und Sonderfunktionen hinzugefügt. |
| 0.4 | Feldbus Box Module hinzugefügt. |
| 0.3 | Erste veröffentlichte Version. |
2 Produktübersicht

2.1 Das Feldbus Box System

Signalanschluss in 3 Varianten

Die digitalen Ein-/Ausgänge können wahlweise über 8 mm Schnapp-Steckverbinder, M8 Schraub-Steckverbinder oder M12 Schraub-Steckverbinder angeschlossen werden. Für analoge Signale ist die M12-Variante vorgesehen.

Alle wichtigen Signalformen

Die Prozessor-Logik, die Eingangsbeschaltung sowie die Sensorversorgung werden aus der Steuerspannung gespeist. Die Lastspannung für die Ausgänge kann separat zugeführt werden. Bei Feldbus Boxen, in denen nur Eingänge zur Verfügung stehen, kann die Lastversorgung UP zur Weiterleitung optional angeschlossen werden.

Die Zustände der Feldbus Box, der Feldbusverbindung, der Spannungsversorgung sowie der Signale werden von LEDs angezeigt.

Die Beschriftungsstreifen lassen sich extern maschinell beschriften und können dann eingeschoben werden.

Kombinierbare Feldbus Boxen für mehr Flexibilität

Die Feldbus Box Serie umfasst neben der Kompakt Box auch erweiterbare Geräte, die Koppler Box und die Erweiterungsbox sowie intelligente Geräte, die SPS Boxen.

Kompakt Box

Die Kompakt Box stellt dem Feldbus die E/A-Daten der angeschlossenen digitalen und analogen Sensoren und Aktuatoren zur Verfügung.

Koppler Box

Die Koppler Box sammelt zusätzlich über eine störsichere LWL-Verbindung (IP-Link) E/A-Daten von den Erweiterungboxen ein. Sie können bis zu 120 Erweiterungsboxen an einer Koppler Box anschließen. Es ergibt sich so ein verteiltes IP67 E/A-Netzwerk mit nur einer Feldbusschnittstelle.

Die Koppler Box erkennt die angeschlossenen Erweiterungsmodule selbsttätig in der Aufstart-Phase und mappt die E/A-Daten automatisch in das Feldbus-Prozessabbild – eine Konfiguration ist nicht erforderlich. Aus Sicht des Feldbusses stellt sich die Koppler Box samt allen vernetzten Erweiterungsboxen als ein einziger Busteilnehmer mit entsprechend vielen E/A-Signalen dar.

Die Koppler Box entspricht dem Buskoppler aus dem BECKHOFF Busklemmen-System. BECKHOFF Feldbus-Geräte der Schutzart IP 20 (Busklemmen) und IP 67 (Feldbus Box) können problemlos kombiniert werden - das Daten-Handling ist jeweils gleich.
IP-Link

IP-Link ist eine LWL-Verbindung mit 2 Megabit/s Übertragungsrate, die 1000 binäre E/A-Daten in ca. 1 ms schnell und sicher überträgt – kleinere Konfigurationen entsprechend schneller. Durch die hohe Nutzdatenrate ist gewährleistet, dass die Kopplung über IP-Link keine spürbare Einschränkung der Feldbus-Performance mit sich bringt.

Durch die getrennte Zuführung der Ausgangs-Spannungsversorgung lassen sich Ausgangsgruppen einzeln abschalten. Außerdem können problemlos unterschiedliche Potenziale innerhalb eines Erweiterungsringes aufgebaut werden, da IP-Link naturgemäß über eine optimale Potenzialtrennung verfügt.

Erweiterungsbox

SPS Box

Bei Bus- oder Steuerungsausfall ist ein Funktionserhalt (z.B. geordnete Überführung des Prozesses in einen sicheren Zustand) möglich.

Die Programmierung erfolgt mit TwinCAT nach IEC 61131-3. Fünf verschiedene Programmiersprachen stehen zur Verfügung:

- Anweisungsliste (AWL)
- Funktionsplan (FUP)
- Kontaktplan (KOP)
- Ablaufsprache (AS)
- Strukturiertem Text (ST).

Der Programm-Download erfolgt wahlweise über den Feldbus oder über die Programmiereingangsschnittstelle.

Es stehen umfangreiche Debug-Funktionalitäten (Breakpoint, Einzelschritt, Monitoring, etc.) zur Verfügung. SPS Box verfügt über einen leistungsfähigen 16 Bit Controller, 32/96 KByte Programmspeicher und 32/64 KByte Datenspeicher. Weiter stehen 512 Byte als nichtflüchtiger Speicher für remanente Merker zur Verfügung.

SPS Box mit IP-Link

Nahezu unbeschränkte E/A-Möglichkeiten ergeben sich durch die programmierbare SPS Box mit IP-Link. Aus dem SPS-Programm heraus lassen sich bis zu 120 Erweiterungsmodul aus dem über 2000 E/As direkt ansprechen. Die SPS Box eignet sich damit auch als autarke Kleinsteuerung zur Steuerung von Anlagenteilen oder kleiner Maschinen.
2.2 Feldbus Box - Bezeichnungsübersicht

Die Bezeichnung der Feldbus Box Module ist wie folgt zu verstehen:
IXxxxy-zyyy

IX beschreibt die Bauform:
"IP" steht für die Bauform Kompakt Box [11].
"IL" steht für die Bauform Koppler Box (mit IP-Link) [11].
"IE" steht für die Bauform Erweiterungsbox [11].

xxxy beschreibt die E/A-Beschaltung:
xxx bezeichnet die E/A-Eigenschaft:
"10x" - 8 x digitale Eingänge
"15x" - Zählermodul
"20x" - 8 x digitale Ausgänge
"23x" - 4 x digitale Eingänge und 4 x digitale Ausgänge
"24x" - 8 x digitale Eingänge und 8 x digitale Ausgänge
"25x" - PWM-Modul
"3xx" - 4 x analoge Eingänge
"4xx" - 4 x analoge Ausgänge
"5xx" - Inkremental-Encoder oder SSI-Geber
"6xx" - Gateway-Module RS232, RS422, RS485, TTY

y beschreibt den mechanischen Anschluss:
"0" steht für 8mm Schnappanschluss
"1" steht für M 8 Schraubanschluss
"2" steht für M 12 Schraubanschluss und
"9" steht für M23 Schraubanschluss

zyyy bezeichnet die Programmierbarkeit und das Feldbus-System:
z unterscheidet ob es sich um einen Slave oder einen programmierbare Slave handelt:
"B" - nicht programmierbar
"C" - programmierbar (SPS Box [11])

yyy steht für das Feldbus-System und den Bus-Anschluss:
"110" - EtherCAT
"200" - Lightbus
"310" - PROFIBUS
"318" - PROFIBUS mit integriertem T-Stück
"400" - Interbus
"510" - CANopen
"518" - CANopen mit integriertem T-Stück
"520" - DeviceNet
"528" - DeviceNet mit integriertem T-Stück
"730" - Modbus
"800" - RS485
"810" - RS232
"900" - Ethernet TCP/IP mit RJ45 für den Bus-Anschluss
"901" - Ethernet TCP/IP mit M12 für den Bus-Anschluss
"903" - PROFINET
"905" - EtherNet/IP
Kompakt Box

Koppler Box

Die Koppler Box gibt es in drei Varianten als IL230x-Bxxx. Diese unterscheidet sich von der Kompakt Box dadurch, dass diese Module eine Schnittstelle zu den sogenannten Erweiterungsboxen bietet. Diese Schnittstelle ist ein Sub-Bussystem auf LWL Basis den sogenannten IP-Link. Dieses leistungsfähige Sub-Bussystem kann bis zu 120 Erweiterungsboxen an einer Koppler Box verarbeiten.

Erweiterungsbox

Feldbusunabhängige Erweiterungsmodule, die nur an einer Koppler Box über IP-Link betrieben werden können.

SPS Box

Eine SPS Box unterscheidet sich von einer Koppler Box dadurch, dass sie in IEC 61131-3 programmierbar ist. Dadurch kann dieser Slave auch ohne Master autonom arbeiten, zum Beispiel für Steuerungs- oder Regelungsaufgaben.
2.3 Firm- und Hardware-Stand

Den Firm- und Hardware-Stand der Module können Sie anhand der mit einem D beginnenden Nummer auf der Seite des Moduls erkennen.

Syntax:

\[D . \, ww \, yy \, x \, y \, z \, u \]

\(ww \) - Kalenderwoche
\(yy \) - Jahr
\(x \) - Firmware-Stand der Busplatine
\(y \) - Hardware-Stand der Busplatine
\(z \) - Firmware-Stand der E/A-Platine
\(u \) - Hardware-Stand der E/A-Platine

Beispiel:

D.22081501
- Kalenderwoche 22
- des Jahres 2008
- Firmware-Stand Busplatine: 1
- Hardware-Stand Busplatine: 5
- Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig)
- Hardware-Stand E/A-Platine: 1
2.4 Technische Daten

2.4.1 Module - Technische Daten

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>IPxxxx-B31x</th>
<th>IL230x-B310, IL230x-C310</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erweiterungsmodule</td>
<td>-</td>
<td>max. 120 mit insgesamt 128 Bytes Ein- und 128 Byte Ausgänge</td>
</tr>
<tr>
<td>Digitale Peripheriesignale</td>
<td>entsprechend E/A-Variante</td>
<td>max. 960 Ein- und Ausgänge</td>
</tr>
<tr>
<td>Analoge Peripheriesignale</td>
<td>entsprechend E/A-Variante</td>
<td>max. 60 Ein- und Ausgänge</td>
</tr>
<tr>
<td>Konfigurationsmöglichkeiten</td>
<td>über KS2000, über die Steuerung (Registerkommunikation, DPV1, oder Parameter Daten)</td>
<td>über KS2000, über die Steuerung (Registerkommunikation oder DPV1)</td>
</tr>
<tr>
<td>Baud-Rate</td>
<td>automatische Erkennung bis 12 MBaud</td>
<td></td>
</tr>
<tr>
<td>Stromversorgung</td>
<td>Steuerspannung: 24V DC (-15%/+20%); Lastspannung: entsprechend E/A Variante</td>
<td></td>
</tr>
<tr>
<td>Stromaufnahme Steuerspannung</td>
<td>entsprechend E/A-Variante + Stromaufnahme Sensorversorgung, max. 0,5A</td>
<td></td>
</tr>
<tr>
<td>Stromaufnahme Lastspannung</td>
<td>entsprechend E/A-Variante</td>
<td></td>
</tr>
<tr>
<td>Anschluss Stromversorgung</td>
<td>Einspeisung: 1 x M8 Stecker 4-polig</td>
<td>Weiterleitung: 1 x M8 Buchse 4-polig (außer IP/IE204x)</td>
</tr>
<tr>
<td>Anschluss Feldbus</td>
<td>1 x M12 5-polig Buchse (inverse Codierung)</td>
<td></td>
</tr>
<tr>
<td>Potentialtrennung</td>
<td>Kanäle / Steuerspannung: nein</td>
<td>zwischen den Kanälen: nein</td>
</tr>
<tr>
<td></td>
<td>Steuerspannung / Feldbus: ja</td>
<td></td>
</tr>
<tr>
<td>zulässiger Umgebungstemperaturbereich im Betrieb</td>
<td>0°C ... +55°C</td>
<td></td>
</tr>
<tr>
<td>zulässiger Umgebungstemperaturbereich bei Lagerung</td>
<td>-25°C ... +85°C</td>
<td></td>
</tr>
<tr>
<td>Vibrations- / Schockfestigkeit</td>
<td>gemäß EN 60068-2-6 / EN 60068-2-27, EN 60068-2-29</td>
<td></td>
</tr>
<tr>
<td>EMV-Festigkeit / Aussendung</td>
<td>gemäß EN 61000-6-2 / EN 61000-6-4</td>
<td></td>
</tr>
<tr>
<td>Schutzart</td>
<td>IP 65/66/67 (gemäß EN 60529)</td>
<td></td>
</tr>
<tr>
<td>Einbaulage</td>
<td>beliebig</td>
<td></td>
</tr>
<tr>
<td>Zulassung</td>
<td>CE, UL E172151</td>
<td></td>
</tr>
</tbody>
</table>

2.4.2 Controller - Technische Daten

Voraussetzungen

<table>
<thead>
<tr>
<th>PLC Daten</th>
<th>IL230x-C31x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmiermöglichkeit</td>
<td>über Programmiertehschnittstelle (TwinCAT) oder über PROFIBUS (TwinCAT mit FC310x)</td>
</tr>
<tr>
<td>Programmspeicher</td>
<td>32/96 kByte</td>
</tr>
<tr>
<td>Datenspeicher</td>
<td>32/64 kByte</td>
</tr>
<tr>
<td>Remanente Merker</td>
<td>512 Byte</td>
</tr>
<tr>
<td>SPS-Zykluszeit</td>
<td>ca. 3 ms für 1000 AWL-Befehle (ohne E/A-Zyklus)</td>
</tr>
<tr>
<td>Programmiersprachen</td>
<td>IEC 6-1131-3 (AWL, KOP, FUP, ST, AS)</td>
</tr>
</tbody>
</table>
2.4.3 Stromverbrauch

Für die Stromweiterleitung und der Absicherung der Module sowie bei der Betrachtung des Spannungsabfalls auf der Powerleitungsversorgung ist es wichtig, den Stromverbrauch der einzelnen Module zu kennen. Die nachfolgende Tabelle enthält den Stromverbrauch bei 24 V\textsubscript{DC}.

Die Sensorversorgung bzw. der Strom für evtl. Ausgänge muss dazu addiert werden.
Tab. 1: E/A-Type Kompakt-Box
<table>
<thead>
<tr>
<th>Module</th>
<th>-B310</th>
<th>-B510, -B520</th>
<th>-B730, -B800, -B810</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP1000-Bxxx, IP1001-Bxxx, IP1002-Bxxx, IP1010-Bxxx, IP1011-Bxxx, IP1012-Bxxx</td>
<td>$I_s = 85\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP1502-Bxxx</td>
<td>$I_s = 85\ mA$ $I_p = 5\ mA$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP2000-Bxxx, IP2001-Bxxx, IP2002-Bxxx</td>
<td>$I_s = 90\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP2020-Bxxx, IP2021-Bxxx, IP2022-Bxxx</td>
<td>$I_s = 90\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP2300-Bxxx, IP2301-Bxxx, IP2302-Bxxx, IP2310-Bxxx, IP2311-Bxxx, IP2312-Bxxx</td>
<td>$I_s = 90\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 50\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 50\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP2320-Bxxx, IP2321-Bxxx, IP2322-Bxxx, IP2330-Bxxx, IP2331-Bxxx, IP2332-Bxxx</td>
<td>$I_s = 90\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 50\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 50\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP2400-Bxxx, IP2401-Bxxx</td>
<td>$I_s = 90\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 50\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 50\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP2512-Bxxx</td>
<td>$I_s = 85\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 45\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP3102-Bxxx</td>
<td>$I_s = 140\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP3112-Bxxx</td>
<td>$I_s = 140\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP3202-Bxxx</td>
<td>$I_s = 110\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 70\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 70\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP3312-Bxxx</td>
<td>$I_s = 110\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 70\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 70\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP4112-Bxxx</td>
<td>$I_s = 115\ mA$ $I_p = 35\ mA$</td>
<td>$I_s = 85\ mA$ $I_p = 35\ mA$</td>
<td>$I_s = 85\ mA$ $I_p = 35\ mA$</td>
</tr>
<tr>
<td>IP4132-Bxxx</td>
<td>$I_s = 140\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP5009-Bxxx</td>
<td>$I_s = 140\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP5109-Bxxx</td>
<td>$I_s = 140\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP5209-Bxxx</td>
<td>$I_s = 140\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
<td>$I_s = 105\ mA$ $I_p = 5\ mA$</td>
</tr>
<tr>
<td>IP6002-Bxxx</td>
<td>$I_s = 115\ mA$ $I_p = 35\ mA$</td>
<td>$I_s = 85\ mA$ $I_p = 35\ mA$</td>
<td>$I_s = 85\ mA$ $I_p = 35\ mA$</td>
</tr>
<tr>
<td>IP6012-Bxxx</td>
<td>$I_s = 115\ mA$ $I_p = 35\ mA$</td>
<td>$I_s = 85\ mA$ $I_p = 35\ mA$</td>
<td>$I_s = 85\ mA$ $I_p = 35\ mA$</td>
</tr>
</tbody>
</table>
Produktübersicht

<table>
<thead>
<tr>
<th>Module</th>
<th>−B310</th>
<th>−B510, −B520</th>
<th>−B730, −B800, −B810</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP6022−Bxxx</td>
<td>Is = 115 mA</td>
<td>Ip = 35 mA</td>
<td>Is = 85 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ip = 35 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Is = 85 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ip = 35 mA</td>
</tr>
</tbody>
</table>

Tab. 2: E/A–Type Koppler Box

<table>
<thead>
<tr>
<th>Module</th>
<th>−B310</th>
<th>−B510, −B520</th>
<th>−B730, −B800, −B810</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2300−Bxxx,</td>
<td>Is = 60 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 60 mA</td>
</tr>
<tr>
<td>IL2301−Bxxx,</td>
<td></td>
<td></td>
<td>Ip = 5 mA</td>
</tr>
<tr>
<td>IL2302−Bxxx</td>
<td></td>
<td></td>
<td>Is = 60 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ip = 5 mA</td>
</tr>
</tbody>
</table>

Tab. 3: E/A–Type Erweiterungsbox

<table>
<thead>
<tr>
<th>Module</th>
<th>−B310</th>
<th>−B510, −B520</th>
<th>−B730, −B800, −B810</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE1000, IE1001, IE1002,</td>
<td>Is = 25 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 25 mA</td>
</tr>
<tr>
<td>IE1010, IE1011, IE1012</td>
<td></td>
<td></td>
<td>Ip = 5 mA</td>
</tr>
<tr>
<td>IE1502</td>
<td>Is = 25 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 25 mA</td>
</tr>
<tr>
<td>IE2000, IE2001, IE2002</td>
<td>Is = 25 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 25 mA</td>
</tr>
<tr>
<td>IE2020, IE2021, IE2022</td>
<td>Is = 25 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 25 mA</td>
</tr>
<tr>
<td>IE23xx, IE240x</td>
<td>Is = 25 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 25 mA</td>
</tr>
<tr>
<td>IE2512</td>
<td>Is = 25 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 25 mA</td>
</tr>
<tr>
<td>IE2808</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
<tr>
<td>IE3102</td>
<td>Is = 55 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 55 mA</td>
</tr>
<tr>
<td>IE3112</td>
<td>Is = 55 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 55 mA</td>
</tr>
<tr>
<td>IE3202</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
<tr>
<td>IE3312</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
<tr>
<td>IE4112</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
<tr>
<td>IE4132</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
<tr>
<td>IE5009</td>
<td>Is = 55 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 55 mA</td>
</tr>
<tr>
<td>IE5109</td>
<td>Is = 55 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 55 mA</td>
</tr>
<tr>
<td>IE6002</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
<tr>
<td>IE6012</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
<tr>
<td>IE6022</td>
<td>Is = 40 mA</td>
<td>Ip = 5 mA</td>
<td>Is = 40 mA</td>
</tr>
</tbody>
</table>
3 PROFIBUS

3.1 Feldbusübersicht

PROFIBUS ist ein herstellerunabhängiger, offener Feldbusstandard mit breitem Anwendungsbereich in der Fertigungs- und Prozessautomatisierung. Herstellerunabhängigkeit und Offenheit sind durch die internationalen Normen EN 50170 und EN 50254 garantiert. PROFIBUS ermöglicht die Kommunikation von Geräten verschiedener Hersteller ohne besondere Schnittstellenanpassungen. PROFIBUS ist sowohl für schnelle, zeitkritische Anwendungen, als auch für komplexe Kommunikationsaufgaben geeignet.

PROFIBUS Gerätetypen

PROFIBUS unterscheidet folgende Gerätetypen:

Slave-Geräte sind Peripheriegeräte wie beispielsweise Ein-/Ausgangsgeräte, Ventile, Antriebe, Messumformer und die Beckhoff PROFIBUS-Slaves der Reihe BK3xx0, BC3xx0, IPxxxx-B310, IL230x-B310 und IL230x-C310. Sie erhalten keine Buszugriffsberechtigung, d.h. sie dürfen nur empfangene Nachrichten quittieren oder auf Anfrage eines Masters Nachrichten an diesen übermitteln. Slaves werden als passive Teilnehmer bezeichnet. Sie benötigen nur einen geringen Anteil des Busprotokolls, dadurch wird eine aufwandsarme Implementierung ermöglicht.

PROFIBUS-DP

Über diese Grundfunktionen hinaus bietet PROFIBUS-DP auch erweiterte azyklische Kommunikationsdienste für zum Beispiel Parametrierung und Bedienung welche auch durch die Beckhoff PROFIBUS-Slaves der Reihe IPxxxx-B310, IL230x-B310 und IL230x-C310 unterstützt werden. Eine zentrale Steuerung (Master) liest zyklisch die Eingangsinformationen von den Slaves und schreibt die Ausgangsinformationen zyklisch an die Slaves. Hierbei sollte die Buszykluszeit kürzer sein als die Programmzykluszeit des zentralen Automatisierungssystems, die in vielen Anwendungen etwa 10 ms beträgt.

Systemkonfiguration und Gerätetypen

Mit PROFIBUS-DP können Mono- oder Multi-Master-Systeme realisiert werden. Dadurch wird ein hohes Maß ab Flexibilität bei der Systemkonfiguration ermöglicht. Es können maximal 126 Geräte (Master oder Slaves) an einem Bus angeschlossen werden. Mit den Beckhoff PROFIBUS-Slaves der Reihe IPxxxx-B310,
IL230x- B310 und IL230x-C310 kann eine Stationsadresse zwischen 0 und 99 gewählt werden. Die Festlegungen zur Systemkonfiguration beinhalten die Anzahl der Stationen, die Zuordnung der Stationsadresse zu den E/A-Adressen, Datenkonsistenz der E/A-Daten, Format der Diagnosemeldungen und die verwendeten Busparameter. Jedes PROFIBUS-DP-System besteht aus unterschiedlichen Gerätytopen. Es werden drei Gerätytopen unterschieden:

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP-Master Klasse 1 (DPM1)</td>
<td>Hierbei handelt es sich um eine zentrale Steuerung, die in einem festgelegten Nachrichtencyclus zyklisch Informationen mit den dezentralen Stationen (Slaves) austauscht. Typische Geräte sind z.B. Speicherprogrammierbare Steuerungen (SPS) oder PC.</td>
</tr>
<tr>
<td>z.B. Beckhoff FC310x: PROFIBUS-Masterkarte für PCs</td>
<td></td>
</tr>
<tr>
<td>DP-Master Klasse 2 (DPM2)</td>
<td>Geräte dieses Typs sind Engineering-, Projektierungs- oder Bediengeräte. Sie werden bei der Inbetriebnahme und zur Wartung und Diagnose eingesetzt, um die angeschlossenen Geräte zu konfigurieren, Messwerte und Parameter auszuwerten sowie den Gerätezustand abzufragen.</td>
</tr>
<tr>
<td>z.B. Beckhoff IPxxxx-B310: Feldbus Box für PROFIBUS</td>
<td></td>
</tr>
</tbody>
</table>

Mono-Master-Systeme

Multi-Master-Betrieb

Gerätestammdatei (GSD)

Die Beckhoff GSD-Dateien sind über das Internet unter http://www.beckhoff.de erhältlich.

Diagnosefunktionen
Sie werden in drei Ebenen eingeteilt:

<table>
<thead>
<tr>
<th>Diagnoseart</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationsbezogen</td>
<td>Meldungen zur allgemeinen Betriebsbereitschaft eines Teilnehmers wie z.B. Übertemperatur oder Unterspannung</td>
</tr>
<tr>
<td>Modulbezogen</td>
<td>Diese Meldungen zeigen an, dass innerhalb eines bestimmten E/A Teilbereichs (z.B. 8 Bit Ausgangs-Modul) eines Teilnehmers eine Diagnose ansteht</td>
</tr>
<tr>
<td>Kanalbezogen</td>
<td>Hier wird die Fehlerursache bezogen auf ein einzelnes Ein-/Ausgangs-Bit (Kanal) angegeben, wie z.B. Kurzschluss auf Ausgang 2</td>
</tr>
</tbody>
</table>

Sync- und Freeze-Mode

Systemverhalten

Es werden folgende drei Hauptzustände unterschieden:
<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>Es findet kein Datenverkehr zwischen dem DPM1 und den DP-Slaves statt. Der Buskoppler spricht die Busklemmen nur einmal nach dem Einschalten der Versorgungsspannung an (keine der E/A - LEDs leuchtet).</td>
</tr>
<tr>
<td>Clear</td>
<td>Der DPM1 liest die Eingangsinformationen der DP-Slaves, und hält die Ausgänge der DP-Slaves im sicheren Zustand (Abhängig von der Reaktion auf Feldbusfehler leuchtet die grüne E/A-LED und werden die Ausgänge gesetzt).</td>
</tr>
<tr>
<td>Operate</td>
<td>Der DPM1 befindet sich in der Datentransferphase. In einem zyklischen Datenverkehr werden die Eingänge von den DP-Slaves gelesen und die Ausgangsinformationen an die DP-Slaves übertragen (Die grüne E/A-LED leuchtet).</td>
</tr>
</tbody>
</table>

Datenverkehr zwischen DPM1 und den DP-Slaves

Der Datenverkehr zwischen dem DPM1 und den DP-Slaves gliedert sich in die Phasen Parametrierung, Konfigurierung und Datentransfer.

Schutzmechanismen

<table>
<thead>
<tr>
<th>Schutzmechanismen</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>

Ident-Nummer

3.2 Topologie

- Ein Bussegment darf aus maximal 32 Teilnehmern bestehen (einschließlich den Repeatern).
- Die maximale Leitungslänge eines Segmentes ist abhängig von der verwendeten Übertragungsgeschwindigkeit und der Qualität der verwendeten Busleitung.
- Zwischen zwei Teilnehmer dürfen maximal 9 Repeater installiert werden.
- Stichleitungen sind zu vermeiden und ab 1,5 MBaud nicht zulässig.
- Maximale Anzahl an Teilnehmern 127
- Unterbrechung der Versorgungsspannung von Leitungsabschlüssen durch abschalten des Repeaters/Slave oder abziehen des Steckers ist nicht zulässig.

Abb. 1: RS485-Topologie mit 3 Segmenten und 2 Repeatern.
3.3 Busaufbau

Beispiel für einen Busaufbau mit Profibus
3.4 PROFIBUS-Verkabelung

3.4.1 PROFIBUS-Verkabelung

Die physikalische Datenübertragung ist in der PROFIBUS-Norm definiert (siehe PROFIBUS Schicht 1: Physical Layer).

Kabelgebundene Übertragung

Es stehen zwei Leitungstypen mit unterschiedlichen Höchstleitungslängen zur Verfügung (siehe Tabelle RS485).

Tab. 4: RS485 - Grundlegende Eigenschaften

<table>
<thead>
<tr>
<th>Netzwerk Topologie</th>
<th>Linearer Bus, aktiver Busabschluss an beiden Enden, Stichleitungen sind möglich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Abgeschirmtes verdrilltes Kabel, Schirmung darf abhängig von den Umgebungsbedingungen (EMV) entfallen</td>
</tr>
<tr>
<td>Anzahl der Stationen</td>
<td>32 Stationen in jedem Segment ohne Repeater. Mit Repeater erweiterbar bis 127 Stationen</td>
</tr>
<tr>
<td>Max. Bus Länge ohne Repeater</td>
<td>100 m bei 12 MBit/s; 200 m bei 1500 KBit/s, bis zu 1,2 km bei 93,75 KBit/s</td>
</tr>
<tr>
<td>Übertragungsgeschwindigkeit (in Stufen einstellbar)</td>
<td>9,6 kBit/s; 19,2 kBit/s; 93,75 kBit/s; 187,5 kBit/s; 500 kBit/s; 1500 kBit/s; 12 MBit/s</td>
</tr>
<tr>
<td>Steckverbinder</td>
<td>9-Pin D-Sub-Steckverbinder für IP20; M12 Rundsteckverbinder für IP65/67</td>
</tr>
</tbody>
</table>

Verkabelung für PROFIBUS-DP und PROFIBUS-FMS

Beachten Sie die besonderen Anforderungen an das Datenkabel bei Baud-Raten von mehr als 1,5 MBit/s. Das richtige Kabel ist Grundvoraussetzung für den störungsfreien Betrieb des Bussystems. Bei der Verwendung des normalen 1,5 MBit/s-Kabels kann es durch Reflexionen und zu großer Dämpfung zu erstaunlichen Phänomenen kommen. Zum Beispiel bekommt eine eine angeschlossenen PROFIBUS-Station keine Verbindung, kann diese aber nach Abziehen der benachbarten Station wieder aufnehmen. Oder es kommt zu Übertragungsfehlern, wenn ein bestimmtes Bitmuster übertragen wird. Das kann bedeuten, das der PROFIBUS ohne Funktion der Anlage störungsfrei arbeitet und nach dem Hochlauf zufällig Busfehler meldet. Eine Reduzierung der Baud-Rate (< 93,75 kBit/s) beseitigt das geschilderte Fehlerverhalten.

Führt die Verringerung der Baud-Rate nicht zur Beseitigung des Fehlers, liegt in häufig ein Verdrahtungsfehler vor. Die beiden Datenleitungen sind an einem oder mehreren Steckern gedreht oder Abschlusswiderstände sind nicht oder an falschen Stellen aktiviert.
Vorkonfektionierte Kabel von BECKHOFF

Abschlusswiderstände

In Systemen mit mehr als zwei Stationen werden alle Teilnehmer parallel verdrahtet. An den Leitungsenden muss das Buskabel in jedem Fall mit Widerständen abgeschlossen werden, um Reflexionen und damit Übertragungsprobleme zu vermeiden.

Längenausdehnung

Die Busleitung ist in der EN 50170 spezifiziert. Daraus ergibt sich die nachfolgende Längenausdehnung eines Bussegment.

<table>
<thead>
<tr>
<th>Baud-Rate in kBits/sec</th>
<th>9,6</th>
<th>19,2</th>
<th>93,75</th>
<th>187,5</th>
<th>500</th>
<th>1500</th>
<th>12000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitungslänge in m</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1000</td>
<td>400</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Stichleitungen bis 1500 kBaud < 6,6 m, bei 12 MBit/s sollten keine Stichleitungen verwendet werden.

Bussegment

IP-Link ist das Sub-Bussystem der Feldbus Boxen dessen Topologie eine Ringstruktur ist. In den Koppler Modulen (IP230x-Bxxx oder IP230x-Cxxx) befindet sich ein IP-Link Master, an den bis zu 120 Erweiterungsmodule (IExxxx) angeschlossen werden dürfen. Der Abstand zwischen zwei Modulen darf dabei 5 m nicht überschreiten. Achten Sie bei der Planung und Installation der Module, dass aufgrund der Ringsstruktur das letzte Modul wieder am IP-Link Master angeschlossen werden muss.

Einbaurichtlinie

Beachten Sie bei der Montage der Module und beim Verlegen der Leitung die technischen Richtlinien der PROFIBUS-Nutzerorganisation e.V. zu PROFIBUS-DP/FMS (siehe www.profibus.de).
Überprüfung der PROFIBUS-Verkabelung

Ein PROFIBUS-Kabel (bzw. ein Kabel-Segment bei Verwendung von Repeatern) kann mit ein paar einfachen Widerstandsmessungen überprüft werden. Dazu sollte das Kabel von allen Stationen abgezogen werden:

1. Widerstand zwischen A und B am Anfang der Leitung: ca. 110 Ohm
2. Widerstand zwischen A und B am Ende der Leitung: ca. 110 Ohm
3. Widerstand zwischen A am Anfang und A am Ende der Leitung: ca. 0 Ohm
4. Widerstand zwischen B am Anfang und B am Ende der Leitung: ca. 0 Ohm
5. Widerstand zwischen Schirm am Anfang und Schirm am Ende der Leitung: ca. 0 Ohm

3.4.2 PROFIBUS-Anschluss

M12-Rundsteckverbinder

Die M12-Buchse ist invers codiert und besitzt 5 Stifte. Stift 1 überträgt 5 V_{DC} und Stift 3 überträgt GND für den aktiven Abschlusswiderstand. Diese dürfen auf keinen Fall für andere Funktionen missbraucht werden, da dies zu Zerstörung des Gerätes führen kann.

Stift 2 und Stift 4 übertragen die Signale des PROFIBUS. Diese dürfen auf keinen Fall getauscht werden, da sonst die Kommunikation gestört ist. Stift 5 ist überträgt den Schirm (Shield) der kapazitiv mit der Grundfläche der Feldbus Box verbunden ist.

Pinbelegung M12 Buchse (-B310)

Pinbelegung M12 Buchse/Stecker (-B318)

Neunpoliger D-Sub

Stift 6 überträgt 5 V_{DC} und Stift 5 GND für den aktiven Abschlusswiderstand. Diese dürfen auf keinen Fall für andere Funktionen missbraucht werden, da dies zu Zerstörung des Gerätes führen kann.

Stift 3 und Stift 8 übertragen die Signale des PROFIBUS. Diese dürfen auf keinen Fall getauscht werden, da sonst die Kommunikation gestört ist.

Pinbelegung der PROFIBUS D-Sub Buchse

Leitungsfarben PROFIBUS

<table>
<thead>
<tr>
<th>PROFIBUS Leitung</th>
<th>M12</th>
<th>D-Sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>B rot</td>
<td>Stift 4</td>
<td>Stift 3</td>
</tr>
<tr>
<td>A grün</td>
<td>Stift 2</td>
<td>Stift 8</td>
</tr>
</tbody>
</table>
Anschluss der Feldbus Box Module

Der Anschluss der Feldbus Box Module erfolgt entweder direkt oder mittels T-Stück (oder Y-Stück).

Die B318 Serie verfügt über jeweils eine Buchse und einen Stecker, d.h. hier wird der PROFIBUS in dem Modul weitergeleitet. Die Versorgungsspannung (+5V \text{DC}) für den Abschluss-Widerstand liegt nur auf der Buchse an. Der Abschluss-Widerstand ZS1000-1610 steht nur als Stecker zur Verfügung!

Die ankommende PROFIBUS-Leitung sollte stets mit einer Buchse enden.

Es stehen zwei T-Stücke zur Verfügung:

- ZS1031-2600 mit +5V \text{dc} Weiterleitung zur Versorgung des Abschluss-Widerstandes
- ZS1031-2610 ohne +5V \text{dc} Weiterleitung
3.5 Protokollbeschreibung

3.5.1 Prozessdaten

Nachdem die Parameterdaten und auch die Konfigurationsdaten fehlerfrei empfangen und bestätigt wurden, geht der Slave in den Zustand Data_Exch, d.h. er tauscht Daten mit dem Master aus. Der Master sendet die Ausgangsdaten und der Slave antwortet mit den Eingangsdaten.
3.5.2 Konfigurationsdaten (Cfg Data)

Nach dem Parametrieren sendet der Master ein Konfigurationstelegramm an den Slave. Das Konfigurationstelegramm veranlasst den Slave, die vom Master gesendeten Konfiguration zu prüfen.

Aufbau eines Konfigurationsbytes

Bit 0..3 Länge der Daten
00 = 1 Byte/Word
15 = 16 Byte/Word

Bit 4..5 Ein-/Ausgabe
00 = spezielles Kennungsformat
01 = Eingabe
10 = Ausgabe
11 = Ein-/Ausgabe

Bit 6 Byte/Word
0 = Byte
1 = Word

Bit 7 Konsistenz
0 = Konsistenz über Byte/Word
1 = Konsistenz gesamte Länge
3.5.3 Aktivieren der DPV1-Funktionen

In der Parameterdaten (GSD, GSE) können die DPV1 Funktionen aktiviert werden. In der Default Einstellung sind diese Funktionen deaktiviert. (Prm. Byte 0 Bit 15=1 aktiviert, Bit 15 =0 [Default] deaktiviert)

DPV1-Funktionen

Die IP/IL Module und die Economy Plus Buskoppler (BK3120) unterstützen die folgende Funktionen der DPV1 Dienste. Die maximale Länge der DP-V1 Dienste beträgt 48 Byte.

IP/IL-Konfiguration (nur IP-Link)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wert: Beschreibung der digitalen Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>wenn Bit 4 = 0: Anzahl der Ausgänge mal 2 Bit, wenn Bit 4 = 1: Anzahl der Ausgänge mal 8 Bit</td>
</tr>
<tr>
<td>2-3</td>
<td>wenn Bit 4 = 0: Anzahl der Eingänge mal 2 Bit, wenn Bit 4 = 1: Anzahl der Eingänge mal 8 Bit</td>
</tr>
<tr>
<td>4</td>
<td>0: Bit Größe 2, 1: Bit Größe 8</td>
</tr>
<tr>
<td>5-6</td>
<td>0: Standard: Eingänge und Ausgänge haben nicht die gleiche Anfangsadresse 1: Kombi E/A: Eingänge und Ausgänge haben die gleiche Anfangsadresse 2: Reserviert 3: Ausgänge mit Diagnose</td>
</tr>
<tr>
<td>7-15</td>
<td>immer 0</td>
</tr>
</tbody>
</table>

Die Modul-Konfiguration kann mit folgenden DPV1-Parametern ausgelesen werden: (KS2000 Tabelle 9) Eingetragen werden die Module in der Reihenfolge wie diese am IP-Link angeschlossen sind.

<table>
<thead>
<tr>
<th>Slot-Nummer</th>
<th>Index</th>
<th>Byte</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>0-1</td>
<td>Buskoppler/Modul Bezeichnung</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>2-3</td>
<td>Modul-1</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>46-47</td>
<td>Modul-23</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0-1</td>
<td>Modul 24</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>46-47</td>
<td>Modul 47</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0-1</td>
<td>Modul 48</td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>46-47</td>
<td>Modul 95</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>0-1</td>
<td>Modul 96</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>30-31</td>
<td>Modul 119</td>
</tr>
</tbody>
</table>

Diese Informationen können auch per DVP1 geschrieben werden. Sollte die geschriebene Konfiguration nicht mit der in der Tabelle enthaltenen Konfiguration übereinstimmen bekommt man eine DPV1 Fehlermeldung.

Modul-Register

Die Register der Erweiterungsmodule könne gelesen oder geschrieben werden:
IP-Link-Reset

Der IP-Link-Reset kann mit den folgenden DPV1-Parameter aktiviert werden (Nach einer IP-Link Unterbrechung und dessen Behebung kann der IP-Link wieder gestartet werden):

<table>
<thead>
<tr>
<th>Slot-Number</th>
<th>Index</th>
<th>Byte</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Messen der IP-Link-Zykluszeit

Das starten und stoppen der IP-Link-Zykluszeit wird über die folgenden DPV1-Parameter eingestellt:

<table>
<thead>
<tr>
<th>Slot-Number</th>
<th>Index</th>
<th>Byte</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>2-3</td>
<td>0: Stop, >0: Start</td>
</tr>
</tbody>
</table>

Die Zyklus Zeit kann gelesen werden und für das Rücksetzen der Werte können diese auch geschrieben werden mit den folgenden DPV1-Parameter:

<table>
<thead>
<tr>
<th>Slot-Number</th>
<th>Index</th>
<th>Byte</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>98</td>
<td>0-1</td>
<td>Minimale IP-Link-Zykluszeit (in µs)</td>
</tr>
<tr>
<td>0</td>
<td>98</td>
<td>2-3</td>
<td>Maximale IP-Link-Zykluszeit (in µs)</td>
</tr>
<tr>
<td>0</td>
<td>98</td>
<td>4-5</td>
<td>Aktuelle IP-Link-Zykluszeit (in µs)</td>
</tr>
<tr>
<td>0</td>
<td>98</td>
<td>6-7</td>
<td>Mittlere IP-Link-Zykluszeit (in µs)</td>
</tr>
</tbody>
</table>

Hersteller-Einstellung

Für das Setzen der Hersteller-Einstellungen müssen folgende DPV1 Parameter geschrieben werden:

<table>
<thead>
<tr>
<th>Slot-Number</th>
<th>Index</th>
<th>Byte</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>99</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
3.6 Beschreibung der Parameterdaten

3.6.1 Allgemein

3.6.1.1 Parametriertelegramm

Mit dem Dienst Set_Prm können neben den in der PROFIBUS-DP-Norm beschriebenen Parametern auch herstellerspezifische Betriebsparameter (User_Prm_Data) übertragen werden. Diese werden beim Verbindungsaufbau einmal vom Master zum Slave übertragen. In der Regel kann das Konfigurationstool des DP-Masters die einstellbaren Betriebsparameter der Feldbus Box aus der GSD-Datei lesen und im Klartext darstellen. Folgende herstellerspezifische Betriebsparameter können Sie für die Feldbus Box einstellen:

<table>
<thead>
<tr>
<th>Standard-Funktionalität</th>
<th>Module, die die Funktionen unterstützen</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPV1 - Dienste</td>
<td>IPxxxx-B310, IL230x-B310, IL230x-C310</td>
</tr>
<tr>
<td>Reset bei IP-Link-Fehler</td>
<td>IL230x-B310, IL230x-C310</td>
</tr>
<tr>
<td>Datenformat der Prozessdaten [39]</td>
<td>IPxxxx-B310, IL230x-B310, IL230x-C310</td>
</tr>
<tr>
<td>Synchronisierung DP-/IP-Link-Zyklus [35]</td>
<td>IL230x-B310, IL230x-C310</td>
</tr>
<tr>
<td>Reaktion auf Profibus-Fehler [40]</td>
<td>IPxxxx-B310, IL230x-B310, IL230x-C310</td>
</tr>
<tr>
<td>Reaktion auf IP-Link-Fehler [41]</td>
<td>IL230x-B310, IL230x-C310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experten-Funktionalität</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Byte-SPS-Interface</td>
<td></td>
</tr>
</tbody>
</table>

3.6.1.2 Aktualisierung des Prozessabbilds

Funktion

Free Run

![PB-Cycle Diagram](image-url)
Bild: Free-Run-Mode

Synchron

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6</td>
<td>Prozessabbildaktualisierung</td>
</tr>
</tbody>
</table>

Hinweis

Bei der Parametrierung der Funktion Prozessabbildaktualisierung sind insbesondere die Lauf- und Reaktionszeiten des Gesamtsystems zu beachten.

Fast-Free-Run

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4</td>
<td>Fast-Free-Run-Mode</td>
</tr>
</tbody>
</table>
Die Übertragung der Signale von den Eingängen in die Steuerung und von der Steuerung zu den Ausgängen benötigt eine Laufzeit. Sie setzt sich aus verschiedenen Teilen zusammen:

- Übertragung von der Steuerung in den Profibus Master
- Übertragung über den Profibus und (siehe Profibus-Reaktionszeit [37])
- Übertragung von der Profibus-Box zu den Ausgängen (siehe K-Bus-Reaktionszeit [37]) / (siehe IP-Link Zykluszeit [38])

Für den Rückweg gilt das in umgekehrter Weise.

PROFIBUS-Reaktionszeit

PROFIBUS-Reaktionszeit

Die **Reaktionszeit** t_{DP} auf dem Profibus setzt sich wie folgt zusammen. Die Konstanten A, B und T_{BYTE} sind von der Baud-Rate abhängig.

<table>
<thead>
<tr>
<th>$t = t_{DP}$</th>
<th>Konstante A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+ (Konstante B + (Zahl der E/A-Byte x T_{BYTE}))$</td>
<td>[Slave 1]</td>
</tr>
<tr>
<td>$+ (Konstante B + (Zahl der E/A-Byte x T_{BYTE}))$</td>
<td>[Slave 2]</td>
</tr>
<tr>
<td>$+ (Konstante B + (Zahl der E/A-Byte x T_{BYTE}))$</td>
<td>[Slave 3]</td>
</tr>
<tr>
<td>$+(Konstante B + (Zahl der E/A-Byte x T_{BYTE}))$</td>
<td>[Slave n]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baud-Rate</th>
<th>Konstante A (in ms)</th>
<th>Konstante B (in ms)</th>
<th>TBYTE (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,6 kBaud</td>
<td>64,5</td>
<td>25,6</td>
<td>1,15</td>
</tr>
<tr>
<td>19,2 kBaud</td>
<td>32,3</td>
<td>12,8</td>
<td>0,573</td>
</tr>
<tr>
<td>93,75 kBaud</td>
<td>6,6</td>
<td>2,62</td>
<td>0,118</td>
</tr>
<tr>
<td>187,5 kBaud</td>
<td>3,3</td>
<td>1,31</td>
<td>0,059</td>
</tr>
<tr>
<td>500 kBaud</td>
<td>1,6</td>
<td>0,49</td>
<td>0,022</td>
</tr>
<tr>
<td>1,5 MBaud</td>
<td>0,67</td>
<td>0,164</td>
<td>0,00733</td>
</tr>
<tr>
<td>3 MBaud</td>
<td>0,436</td>
<td>0,085</td>
<td>0,00367</td>
</tr>
<tr>
<td>6 MBaud</td>
<td>0,27</td>
<td>0,044</td>
<td>0,00183</td>
</tr>
<tr>
<td>12 MBaud</td>
<td>0,191</td>
<td>0,024</td>
<td>0,00092</td>
</tr>
</tbody>
</table>

K-Bus-Reaktionszeit (K-Bus)

K-Bus-Reaktionszeit (K-Bus)

Kompaktbox (Zahlen sind Anzahl der Kanäle)

<table>
<thead>
<tr>
<th>Digital OUT</th>
<th>Digital IN</th>
<th>Analog IN/OUT</th>
<th>T_Zyklus (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
<td>245</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>0</td>
<td>24</td>
<td>0</td>
<td>230</td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td>0</td>
<td>230</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0</td>
<td>275</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>630</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>700</td>
</tr>
</tbody>
</table>

Hinweis

IP-Link-Reaktionszeit

IP-Link-Reaktionszeit

<table>
<thead>
<tr>
<th>Erweiterungs-Box, mit Koppler Box verbunden</th>
<th>Digital OUT (Bit)</th>
<th>Digital IN (Bit)</th>
<th>Analog IN/OUT (Kanäle)</th>
<th>T_Zyklus (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>16</td>
<td>0</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>16</td>
<td>0</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>4</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>16</td>
<td>16</td>
<td>2360</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>16</td>
<td>28</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>16</td>
<td>40</td>
<td>4000</td>
<td></td>
</tr>
</tbody>
</table>

Die Einstellungen zur Funktion Prozessabbildaktualisierung befinden sich im Byte 9 der User_Prm_Data (Defaulteinstellungen sind fett gekennzeichnet):
3.6.1.3 Datenformat Auto-Konfiguration

Mit diesem Parameter stellen Sie das Darstellungsformat der komplexen Klemmen ein. Sie können zwischen Intel- und Motorola-Format wählen:

- Beim Intel-Format liegt das niedervwertige Byte (Low-Byte) eines Daten-Wortes auf dem niedrigen Adress-Offset des Speicherplatzes.
- Beim Motorola-Format liegt das höherwertige Byte (High-Byte) eines Daten-Wortes auf dem niedrigen Adress-Offset des Speicherplatzes.

Wenn Sie für digitale Klemmen das Motorola-Format wählen, so wird z.B. in den für 16 aufeinanderfolgende Digital-Kanäle übertragenen zwei Bytes, das High-Byte mit dem Low-Byte getauscht.

Darstellung im Intel-Format

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wort 0</td>
<td>Wort 1</td>
<td>Wort 2</td>
<td>Wort 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bezogen auf Bitadressen ergibt sich:

<table>
<thead>
<tr>
<th>High Byte</th>
<th>Low Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0</td>
<td>0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0</td>
</tr>
</tbody>
</table>

Darstellung im Motorola-Format

<table>
<thead>
<tr>
<th>Byte 1</th>
<th>Byte 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wort 0</td>
<td>Wort 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wort 2</td>
<td>Wort 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bezogen auf Bitadressen ergibt sich:

<table>
<thead>
<tr>
<th>High Byte</th>
<th>Low Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Einstellungen

Die Einstellungen zur Funktion Datenformat Auto-Konfiguration befinden sich im Byte 9 der User_Prm_Data (Defaulteinstellungen sind fett gekennzeichnet):

<table>
<thead>
<tr>
<th>Bit-Nr.</th>
<th>Beschreibung</th>
<th>Wird unterstützt von</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Datenformat Auto-Konfiguration 0: Intel 1: Motorola</td>
<td>IP15xx, IP25xx, IP31xx, IP41xx, IP50xx, IP51xx, IP60xx</td>
</tr>
</tbody>
</table>

Die Einstellungen zur Funktion Datenformat Auto-Konfiguration befinden sich im TwinCAT System-Manager im Kartiereiter PrmData der entsprechenden Busbox.

3.6.1.4 Reaktion auf Profibus-Fehler

Bei einem Profibus-Fehler (z.B. abziehen des Steckers, STOP des DP-Masters, etc.) kann die Fehlerreaktion eingestellt werden. Die möglichen Reaktionen sind:

- Stopp des K-Busses
- Zurücksetzen der Ausgänge auf 0
- beibehalten der aktuellen Ausgangszustände

Hinweis

Die Signalzustände an den Ausgangsklemmen sind in der Einstellung Zyklus wird gestoppt identisch mit denen in der Einstellung Outputs werden 0.

Die Einstellungen zur Funktion Reaktion auf Profibus-Fehler befinden sich im Byte 10 der User_Prm_Data (Defaulteinstellungen sind fett gekennzeichnet):

<table>
<thead>
<tr>
<th>Bit-Nr.</th>
<th>Beschreibung</th>
<th>Wird unterstützt von</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 0/1</td>
<td>Reaktion auf Profibus-Fehler 0: Zyklus wird gestoppt 1: Outputs werden 0 2: Outputs bleiben gleich</td>
<td>IP10xx, IP15xx, IP20xx, IP23xx, IP25xx, IP31xx, IP41xx, IP50xx, IP51xx, IP60xx</td>
</tr>
</tbody>
</table>

Die Einstellungen zur Funktion Reaktion auf Profibus-Fehler befinden sich im TwinCAT System-Manager im Karteireiter "PrmData" des entsprechenden Buskopplers.

3.6.1.5 Reaktion auf IP-Link Fehler

Bei einem IP-Link-Fehler (z.B. abziehen des Steckers) kann die Fehlerreaktion eingestellt werden. Die möglichen Reaktionen sind:

- Datenaustausch wird gestoppt
- Profibus Eingänge werden 0
- Profibus Eingänge bleiben erhalten

Die Einstellungen zur Funktion Reaktion auf Profibus-Fehler befinden sich im Byte 10 der User_Prm_Data (Defaulteinstellungen sind fett gekennzeichnet):

<table>
<thead>
<tr>
<th>Bit</th>
<th>Beschreibung</th>
<th>Wird unterstützt von</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3</td>
<td>Reaktion auf Profibus-Fehler</td>
<td>IL230x-B3xx</td>
</tr>
<tr>
<td>0:</td>
<td>Datenaustausch wird verlassen</td>
<td></td>
</tr>
<tr>
<td>1:</td>
<td>Inputs werden 0</td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>Inputs bleiben gleich</td>
<td></td>
</tr>
</tbody>
</table>

Die Einstellungen zur Funktion Reaktion auf IP-Link-Fehler befinden sich im TwinCAT System-Manager im Karteireiter "PrmData" des entsprechenden Buskopplers.
0	DPV1 Dienste (Klasse 1)	ist aktiv
7	Verhalten bei IP-Link-Fehler	manueller Reset
7	IP-Moduldiagnose	ist nicht aktiv
3	Datenformat	INTEL
3	Prozessabmeldaktualisierung	freilaufend
10	Reaktion auf DP-Fehler	IL-Zyklus wird gestoppt

DataExchange wird verlassen
- DP-Inputs werden 0
- DP-Inputs bleiben gleich
3.6.2 Parameterdaten

3.6.2.1 Anwender-Parameter für Kompakt Box Module (IPxxxx-B31x)

Datenformat

Datenformat [39]

Auto-Konfiguration (nur bei allen komplexen Geräten, bei digitalen nicht benötigt)
Die Daten der komplexen Klemmen können im Intel- oder Motorola-Format dargestellt werden, wobei eine
Steuerung die Daten in der Regel im Motorola-Format erwartet.

Beispiel:
Ein analog Wert eines IP3312-Bxxx zeigt im Motorola-Format 0x0016 an. Im Intel-Format wird dann das
High- und Low-Byte getauscht 0x1600.

Prozessabbildaktualisierung

Prozessabbildaktualisierung [35]

- Zyklussynchron bedeutet das die Daten synchron zum Profibusabbild angetriggert werden. Wenn ein
 Profibustelegramm den Slave erreicht, kopiert der Slave die Daten nach verlassen des Antwort
 Telegramms in das ASIC. Die Ausgänge werden sofort geschrieben.
- Freilaufend bedeutet, das die Daten geholt werden und in das ASIC kopiert werden und dies immer
 wider wiederholt wird.

Freilaufen kann benutzt werden, wenn die Eingangsdaten möglichst schnell in der Steuerung übertragen
werden sollen. Dies hat aber den Nachteil, dass diese Daten nicht jitterfrei sind. Braucht man schnelle
Ausgänge oder ist man auf jitterfreie Eingänge angewiesen (z.B. bei schnellen Reglern) dann sollte die
zyklische Übertragung gewählt werden.

Reaktion auf Profibus-Fehler

Reaktion auf Profibus-Fehler [40]

- Zyklus wird gestoppt. Der interne Datenprozess wird gestoppt und der Watchdog (WD) der Kanäle (in
der Regel 100 ms) schlägt zu.
- Outputs werden 0. Es werden definiert alle Ausgänge zu null geschrieben.
- Outputs bleiben gleich. Das letzte empfangene Profibustelegramm und dessen Ausgangsdaten
 werden beibehalten. Ein geschalteter Ausgang, z.B. bei einem IP4112 mit 12 ms bleibt so lange
 erhalten bis der Profibuszyklus wieder aufgebaut ist und über die Prozessdaten ein neuer Wert
 übertragen wird.

3.6.2.2 Anwender-Parameter für Koppler Box Module (IL230x-B31x)

DPV1-Dienste

Hier können die DPV1 Dienste aktiviert bzw. deaktiviert werden. Default: nicht aktiv (siehe DPV1-Dienste
[32]).

Verhalten bei IP-Link-Fehler

Der IP-Link kann selbstständig nach Behebung eines IP-Link-Fehlers (z.B. Kabelbruch) selbstständig wieder
anlaufen. Achtung: Die Profibus-Datenkommunikation wird wieder aufgenommen und Ausgänge werden
wieder geschrieben. Der Anwender muss sicherstellen, das in diesem Fall nicht unabsichtlich Ausgänge
geschrieben werden. Default: Manueller Reset.
Feldbus Box Diagnose
Hier können die Diagnose Daten aktiviert werden. Default: nicht aktiv (siehe Diagnose der Kompakt Box bzw. Diagnose der Koppler Box).
Byte 7, Bit 1:
• True aktiviert
• False deaktiviert

Datenformat

Prozessdatenaktualisierung
Der IP-Link kann synchron zum Profibus angestoßen werden oder freilaufend arbeiten. Default: freilaufend (siehe Prozessdatenaktualisierung [35]).

Reaktion auf Profibus-Fehler
Dies beschreibt das Verhalten des Slaves wenn ein Profibus-Fehler vorliegt (zum Beispiel Leitung defekt). Default: IP-Link Zyklus wird verlassen
• Der IP-Link-Zyklus wird verlassen, das heißt der Watchdog der Erweiterungsmodule schlägt nach 100 ms zu und die Ausgänge werden in den Sichern Zustand geschaltet
• Die Ausgänge werden vom IP-Link Master zu null geschrieben
• Die Ausgänge bleiben im letzten Zustand eingefroren

Reaktion auf IP-Link-Fehler
Dies beschreibt das Verhalten des Slaves wenn ein IP-Link Fehler vorliegt (zum Beispiel Leitung defekt). Default: DataExchange wird verlassen
• DataExchange wird verlassen, bedeutet, dass der Slave die Profibus Kommunikation unterbricht.
• DP-Inputs werden 0 - Die Eingänge werden zu Null geschrieben
• DP-Inputs bleiben erhalten - Die Eingänge bleiben im letzten gültigen Zustand erhalten

IL/IE Byte-Alignment

Damit können alle IL/IE23xx Module mit 4 Bit Ein-/Ausgänge auf ein Byte aufgerundet werden.

Byte 10 Bit 5 Default "0"
1 alle IE23xx Module werden mir 8 Bit gemappt, wobei die Eingänge von 0..3 reichen (4..7 werden nicht benutzt) und die Ausgänge von Bit 4..7 (0..3 werden nicht benutzt).
0 alle IE23xx Module mappen sich mit 4 Eingängen und 4 Ausgängen (Default)

)1Ab Software-Version 1 D:xxxx1xxx, Firmware Update bei den IL-Modulen ist möglich.

3.6.2.3 Anwender-Parameter für Controller Box Module

Feldbus- und IP-Link-Status in den lokierten Merkerbereich kopieren
Byte 13, Bit 5
1 wird in den Bereich %MB408-411 kopiert (default)
0 wird nicht in den Bereich %MB408-411 kopiert
Abspeichern der Module beim erstellen des Bootprojektes

Byte 13, Bit 6
1 wird überprüft (default)
0 wird nicht überprüft

Zyklustick-Counter in den lokierten Merkerbereich kopieren

Byte 12, Bit 0
1 wird in den Bereich %MB404-407 kopiert (default)
0 wird nicht in den Bereich %MB404-407 kopiert

Reaktion auf Breakpoints

Byte 12, Bit 1
1 Ausgänge werde zu Null geschrieben
0 Ausgänge bleiben unverändert (default)

3.6.2.4 Modulspezifische Parameterdaten

Anwender-Parameter für Kompakt Box Module (IP3xxx-B310)

IP3102-B310
- Overflow Offset (für jeden Kanal individuell einstellbar)
- Grenzwerte einstellen und aktivieren (für jeden Kanal individuell einstellbar)

IP3112-B310
- Overflow Offset (für jeden Kanal individuell einstellbar)
- Grenzwerte einstellen und aktivieren(für jeden Kanal individuell einstellbar)
- Eingangsstrombereich(für jeden Kanal individuell einstellbar): 0...20 mA oder 4...20 mA

IP3202-B310
- PT-Elemente einstellen(für jeden Kanal individuell einstellbar)
- Zwei- / Drei- / Vierleiteranschluss(für jeden Kanal individuell einstellbar)
- Overrange-Protektion(für jeden Kanal individuell einstellbar)

IP3312-B310
- Thermo-Element einstellen (für jeden Kanal individuell einstellbar)
- Kaltstellenkompensation(für jeden Kanal individuell einstellbar)
- Overrange-Protektion(für jeden Kanal individuell einstellbar)

Anwender-Parameter für Kompakt Box Module IP4xxx-B310

IP4112-B310
- Ausgangsstrombereich (nur für alle Kanäle gemeinsam einstellbar): 0...20 mA oder 4...20 mA
- Watchdog(für jeden Kanal individuell einstellbar)
IP4132-B310

- Watchdog (für jeden Kanal individuell einstellbar)
4 Parametrierung und Inbetriebnahme

4.1 Anlaufverhalten der Feldbus Box

Nach dem Einschalten prüft die Feldbus Box ihren Zustand, konfiguriert (wenn vorhanden) den IP-Link und erstellt anhand der Erweiterungsmodule eine Aufbauliste. Wenn die Feldbus Box eine dezentrale Steuerung besitzt (IL230x-C310) wird nach einer erfolgreichen Aufbauliste die lokale SPS gestartet. Beim Hochlauf des Moduls leuchten und blinken die E/A LEDs. Im fehlerfreien Zustand sollte nach ca. 2-3 sec keine E/A LED mehr Blinken. Sollte ein Fehler vorliegen, hängt es von der Fehlerart ab, welche LED blinkt (siehe Kapitel Diagnose LEDs).
4.2 Adressierung

Feldbus Box

![Feldbus Box](image)

Beispiel

Sie wollen Adresse 34 einstellen.
- Linker Drehwahlschalter: 3
- Rechter Drehwahlschalter: 4

Buskoppler

Der untere Schalter S311 ist der Zehner Multiplikator und der obere Schalter S310 der Einer Multiplikator.
4.3 Baud-Rate

Die Feldbus Box für Profibus besitzt eine automatische Baud-Raten-Erkennung. Nach Einschalten der Versorgungsspannung sucht die Feldbus Box die anliegende Baud-Rate und speichert sie, solange die Versorgungsspannung anliegt.

Hinweis
Wenn Sie die Baud-Rate Ihres Profibus-Masters ändern, müssen Sie die Feldbus Box einmal aus und wieder einschalten, damit die Änderung übernommen wird.

Längenausdehnung
Die Busleitung ist in der EN 50170 spezifiziert. Daraus ergibt sich die nachfolgende Längenausdehnung eines Bussegment.

<table>
<thead>
<tr>
<th>Baud-Rate in kBit/sec</th>
<th>9,6</th>
<th>19,2</th>
<th>93,75</th>
<th>187,5</th>
<th>500</th>
<th>1500</th>
<th>12000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitungslänge in m</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1000</td>
<td>400</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Bis 1500 kBaud können Stichleitungen von maximal 6,6 m Länge verwendet werden. Bei 12 MBaud sollten keine Stichleitungen verwendet werden.
4.4 Konfiguration

4.4.1 Konfigurationsdaten (Cfg Data)

Cfg Data [31]

Der PROFIBUS-Koppler erstellt einen Datenbereich mit Ein- und Ausgangsbytes (Peripheriedaten im Prozessabbild). Die Zuordnung zwischen den Kanälen der Busklemmen/Modulen und des Prozessab bilds wird vom Buskoppler/Feldbus Box durchgeführt.

Hinweis

Tab. 5: Busklemmen

<table>
<thead>
<tr>
<th>byteorientierte Busklemmen</th>
<th>bitorientierte Busklemmen</th>
</tr>
</thead>
</table>

Tab. 6: Feldbus Boxen

<table>
<thead>
<tr>
<th>byteorientierte Feldbus Boxen</th>
<th>bitorientierte Feldbus Boxen</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/IE1501, IP/IE25x2, IE2808</td>
<td>IP/IE1xxx, IP/IE2xxx</td>
</tr>
<tr>
<td>IP/IE3xx2, IP/IE4xx2</td>
<td></td>
</tr>
<tr>
<td>IP/IE5xx2, IP/IE6xx2</td>
<td></td>
</tr>
</tbody>
</table>

Beispiel Siemens S5

Konfiguration: Siemens S5-Steuerung mit COM-Profinbus

Kopieren Sie als erstes die *.gsg Dateien in das GSD-Verzeichnis Ihrer COM-PROFIBUS-Software. Die GSD finden Sie auf der Beckhoff-Homepage. Im nächsten Schritt lesen Sie die Dateien in die COM-PROFIBUS-Software ein.

Sie finden die Dateien danach unter DP-Slave/E/A/...
Wählen Sie nun den passenden Slave aus.

4.4.1.1.2 Konfiguration: IP41xx-B310

Sie haben bei der IP41xx-B310 die Möglichkeit zwischen zwei verschiedenen Mapping-Typen auszuwählen:

- Das kompakte Mapping beschreibt rein die Ausgangsnutzdaten, d.h. 4 Ausgangsworte (für jeden Kanal 16 Bit).

Diese Einstellungen können nur für ein gesamtes Modul eingestellt werden (nicht kanalbezogen).

Beispiel für kompaktes Mapping:
Beispiel für komplexes Mapping:
Sie können auch die User-Parameter ändern (siehe Konfigurationsdateien [50]).
4.4.1.2 Beispiel Siemens S7

4.4.1.2.1 Konfiguration: Siemens S7-Steuerung

Einfügen der Bilder

Um in der Siemens Software den Geräten ein Bild zuzuweisen müssen diese in in das Verzeichnis \texttt{Step7\S7Data\ncbmp} kopiert werden.

\begin{itemize}
\item \texttt{IPxxxx-B310} \texttt{IL230x-B310/C310}
\end{itemize}

Einfügen der GSD Dateien

- Gehen sie in den Hardwarekatalog ihrer Step7 unter \textit{Extras\Neue GSD installieren}.
- Wählen sie das Verzeichnis aus, in dem sich die Beckhoff GSD befinden und importieren Sie die Dateien.
- Sie finden diese dann im Hardware Katalog unter \textit{Profibus-DP\Weiter Feldgeräte\I/O}.

4.4.1.2.2 Konfiguration: Siemens S7-Steuerung IL230x-B31x

Parameterdaten des IL230x-B31x

Einstellungen
Parametrierung und Inbetriebnahme

Parameterdaten

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPV1-Services</td>
<td>DPV1-Dienste [32]</td>
</tr>
<tr>
<td>IP-Link-Error</td>
<td>Reaktion bei IP-Link</td>
</tr>
<tr>
<td>IP-Modul diagnose</td>
<td>PROFIBUS Diagnose [74]</td>
</tr>
<tr>
<td>Data-Format</td>
<td>Daten Format [39]</td>
</tr>
<tr>
<td>Updating of process image</td>
<td>K-Bus Update [35]</td>
</tr>
<tr>
<td>Reaction on DP-Error</td>
<td>Reaktion auf Feldbusfehler [40]</td>
</tr>
<tr>
<td>IP-Link-Error-Reaction</td>
<td>IP-Link Fehler Reaktion</td>
</tr>
<tr>
<td>IL/IE23xx Byte-Align</td>
<td>Mapping der 4 DI / DO (IL/IE23xx) Module</td>
</tr>
</tbody>
</table>

Konfiguration IL230x-B31x Modul mit nur digitale Ein-/Ausgängen

Beispiel:
- 1 x IL2301-B310
- 4 x IE1001
- 5 x IE2001

Die Summe der digitalen Bytes müssen zusammenaddiert werden und eingetragen werden.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Module / ...</th>
<th>Order number</th>
<th>I Address</th>
<th>Q Address</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>40 Bit digital inputs</td>
<td>0..4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>48 Bit digital outputs</td>
<td>0..5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Version: 1.2.1
Beispiel:
1 x IL2301-B310
4 x IE1001
5 x IE2001

Die gleiche Konfiguration kann man auch wie folgt erstellen. Vorteil dieser Art ist es, dass jedes Byte eine unterschiedliche Adresse bekommt und wenn ein digitales Erweiterungsmodul eingeführt wird sich die Adressen der anderen Module nicht verschiebt. Maximal können 64 Module eingeführt werden (0-63 Slots).

<table>
<thead>
<tr>
<th>Slot</th>
<th>Module / ...</th>
<th>Order number</th>
<th>I Address</th>
<th>Q Address</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8DI</td>
<td>8 Bit digital inputs</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8DI</td>
<td>8 Bit digital inputs</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8DI</td>
<td>8 Bit digital inputs</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8DI</td>
<td>8 Bit digital inputs</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8DI</td>
<td>8 Bit digital inputs</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8DO</td>
<td>8 Bit digital outputs</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8DO</td>
<td>8 Bit digital outputs</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8DO</td>
<td>8 Bit digital outputs</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8DO</td>
<td>8 Bit digital outputs</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8DO</td>
<td>8 Bit digital outputs</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8DO</td>
<td>8 Bit digital outputs</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration IL230x-B31x Modul mit komplexen und digitale Ein-/Ausgängen

Komplexe Module mappen sich als erstes in das Prozessabbild, daher müssen erst alle komplexen Module in der Reihenfolge wie diese am IP-Link hängen eingetragen werden und anschließend die digitalen Signale auf ein Byte aufgerundet.
Beispiel:
1 x IL2301-B310
1 x IE3102 kompaktes Mapping

Beispiel:
1 x IL2301-B310
1 x IE3102 komplexes Mapping
4.4.2 Konfiguration der komplexen Module

4.4.2.1 Registerkommunikation

4.4.2.1.1 Allgemeine Registerbeschreibung

Allgemeine Registerbeschreibung

Komplexe Module, die einen Prozessor besitzen, sind in der Lage mit der übergeordneten Steuerung bidirektional Daten auszutauschen. Diese Module werden im folgenden als intelligente Module bezeichnet. Zu ihnen zählen die analogen Eingänge (0 bis 10 V, -10 bis 10 V, 0 bis 20 mA, 4 bis 20 mA), die analogen Ausgänge (0 bis 10 V, -10 bis 10 V, 0 bis 20 mA, 4 bis 20 mA), serielle Schnittstellenmodule (RS485, RS232, TTY, Datenaustausch-Module), Zähler-Module, Encoder-Interface, SSI-Interface, PWM-Module und alle anderen parametrierbare Module.

Diese Struktur gliedert sich in folgende Bereiche:

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessvariablen</td>
<td>0-7</td>
</tr>
<tr>
<td>Typ-Register</td>
<td>8-15</td>
</tr>
<tr>
<td>Hersteller- Parameter</td>
<td>16-30</td>
</tr>
<tr>
<td>Anwender- Parameter</td>
<td>31-47</td>
</tr>
<tr>
<td>Erweiterter Anwenderbereich</td>
<td>48-63</td>
</tr>
</tbody>
</table>

Register R0-R7 (im internen RAM des Moduls)

Die Prozessvariablen können ergänzend zum eigentlichen Prozessabbild genutzt werden und sind in ihrer Funktion Modulspezifisch.

R0-R5

Diese Register besitzen eine vom Modul-Typ abhängige Funktion.

R6

Diagnose-Register: Das Diagnose-Register kann zusätzliche Diagnose-Information enthalten. So werden z.B. bei seriellen Schnittstellenmodulen Paritäts-Fehler, die während der Datenübertragung aufgetreten sind, angezeigt.

R7

Kommandoregister

- High-Byte_Write = Funktionsparameter
- Low-Byte_Write = Funktionsnummer
- High-Byte_Read = Funktionsergebnis
- Low-Byte_Read = Funktionsnummer

Register R8-R15 (im internen ROM des Moduls)

Die Typ- und Systemparameter sind fest vom Hersteller programmiert und können vom Anwender nur gelesen und nicht verändert werden.

R8

Feldbus Box Typ: Der Feldbus Box Typ in Register R8 wird zur Identifizierung der Feldbus Box benötigt.

R9

Softwareversion x.y.: Die Software-Version kann als ASCII-Zeichenfolge gelesen werden.

R10

Datenlänge: R10 beinhaltet die Anzahl der gemultiplexten Schieberegister und deren Länge in Bit. Der Buskoppler sieht diese Struktur.
R11
Signalkanäle: Im Vergleich zu R10 steht hier die Anzahl der logisch vorhandenen Kanäle. So kann z.B. ein physikalisch vorhandenes Schieberegister durchaus aus mehreren Signalkanälen bestehen.

R12
Minimale Datenlänge: Das jeweilige Byte enthält die minimal zu übertragene Datenlänge eines Kanals. Ist das MSB gesetzt, so ist das Control/Status-Byte für die Funktion des Moduls nicht zwingend notwendig, und wird bei entsprechender Konfiguration des Buskopplers nicht zur Steuerung übertragen. Die Information steht
- bei einem Ausgangsmodul im High-Byte
- bei einem Eingangsmodul im Low-Byte.

R13
Datentypregister

<table>
<thead>
<tr>
<th>Datentypregister</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Modul ohne gültigen Datentyp</td>
</tr>
<tr>
<td>0x01</td>
<td>Byte-Array</td>
</tr>
<tr>
<td>0x02</td>
<td>Struktur 1 Byte n Bytes</td>
</tr>
<tr>
<td>0x03</td>
<td>Word-Array</td>
</tr>
<tr>
<td>0x04</td>
<td>Struktur 1 Byte n Worte</td>
</tr>
<tr>
<td>0x05</td>
<td>Doppelwort-Array</td>
</tr>
<tr>
<td>0x06</td>
<td>Struktur 1 Byte n Doppelworte</td>
</tr>
<tr>
<td>0x07</td>
<td>Struktur 1 Byte 1 Wort</td>
</tr>
<tr>
<td>0x08</td>
<td>Struktur 1 Byte 1 Doppelwort</td>
</tr>
<tr>
<td>0x11</td>
<td>Byte-Array mit variabler logischer Kanallänge</td>
</tr>
<tr>
<td>0x12</td>
<td>Struktur 1 Byte n Bytes mit variabler logischer Kanallänge (z.B. 60xx)</td>
</tr>
<tr>
<td>0x13</td>
<td>Word-Array mit variabler logischer Kanallänge</td>
</tr>
<tr>
<td>0x14</td>
<td>Struktur 1 Byte n Worte mit variabler logischer Kanallänge</td>
</tr>
<tr>
<td>0x15</td>
<td>Doppelwort-Array mit variabler logischer Kanallänge</td>
</tr>
<tr>
<td>0x16</td>
<td>Struktur 1 Byte n Doppelworte mit variabler logischer Kanallänge</td>
</tr>
</tbody>
</table>

R14
reserviert

R15
Alignment-Bits (RAM): Mit den Alignment-Bits wird das Analogmodul im Prozessabbild auf eine Bytegrenze gelegt.

Register R16-R30 (Hersteller-Parameter, serielles EEPROM)

Register R31-R47 (Anwendungs-Parameter, serielles EEPROM)

R31

R32

Feature-Register: Dieses Register legt die Betriebsarten der Klemme fest. So kann z.B. bei den analogen E/A-Modulen eine anwenderspezifische Skalierung aktiviert werden.

R33 bis R63

Klemmenspezifische Register: Diese Register sind vom Klemmentyp abhängig.

Register R47 bis R63 (Registererweiterung für zusätzliche Funktionen)

Diese Register sind für zusätzliche Funktionen vorgesehen.

4.4.2.1.2 Beispiel für Register-Kommunikation

Control-Byte

Das Control-Byte befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>REG</td>
<td>1<sub>bin</sub> Registerkommunikation eingeschaltet: Die ersten zwei Byte der Nutzdaten werden nicht für den Prozessdatenaustausch verwendet, sondern in den Registersatz der Feldbus Box geschrieben oder daraus gelesen.</td>
</tr>
<tr>
<td>6</td>
<td>R/W</td>
<td>0<sub>bin</sub> Read: Das Register soll gelesen werden ohne es zu verändern.</td>
</tr>
<tr>
<td>5-0</td>
<td>Registernummer</td>
<td>1<sub>bin</sub> Write: Das Register soll beschrieben werden.</td>
</tr>
</tbody>
</table>

Status-Byte

Das Status-Byte befindet sich im Eingangsabbild und kann nur gelesen werden.
Beispiel 1

Tab. 7: Lesen des Registers 8 von KL3204 oder IP/IE3202

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>REG</td>
<td>(1_{bin}) Quittung Registerzugriff</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
<td>(0_{bin}) Read</td>
</tr>
<tr>
<td>5-0</td>
<td>Registernummer</td>
<td>Nummer des Registers, das gelesen oder beschrieben wurde.</td>
</tr>
</tbody>
</table>

Bit 0.7 gesetzt bedeutet Register-Kommunikation aktiv
Bit 0.6 nicht gesetzt bedeutet lesen des Registers.
Bit 0.5 bis Bit 0.0 geben mit 001000\(_{bin}\) die Registernummer 8 an.
Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim lesenden Zugriff ohne Bedeutung. Will man ein Register verändern, so schreibt man in das Ausgangswort den gewünschten Wert hinein.

Beispiel 2

Ablauf einer Register-Kommunikation zum ändern eines Register.

Tab. 8: 1. Schreiben des Register 31 (Codewort setzen)

<table>
<thead>
<tr>
<th>Byte 0 (Control-Byte)</th>
<th>Byte 1 (Data Out, High-Byte)</th>
<th>Byte 2 (Data Out, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xDF</td>
<td>0x12</td>
<td>0x35</td>
</tr>
</tbody>
</table>

Antwort des Moduls/Busklemme

<table>
<thead>
<tr>
<th>Byte 0 (Status-Byte)</th>
<th>Byte 1 (Data In, High-Byte)</th>
<th>Byte 2 (Data In, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x9F</td>
<td>0xXX</td>
<td>0xXX</td>
</tr>
</tbody>
</table>

Tab. 9: 2. Lesen des Register 31 (gesetztes Codewort überprüfen)

<table>
<thead>
<tr>
<th>Byte 0 (Control-Byte)</th>
<th>Byte 1 (Data Out, High-Byte)</th>
<th>Byte 2 (Data Out, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x9F</td>
<td>0xXX</td>
<td>0xXX</td>
</tr>
</tbody>
</table>

Antwort des Moduls/Busklemme
<table>
<thead>
<tr>
<th>Byte 0 (Status-Byte)</th>
<th>Byte 1 (Data In, High-Byte)</th>
<th>Byte 2 (Data In, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x9F</td>
<td>0x12</td>
<td>0x35</td>
</tr>
</tbody>
</table>

Tab. 10: 3. Schreiben des Register 32 (Register ändern)

<table>
<thead>
<tr>
<th>Byte 0 (Control-Byte)</th>
<th>Byte 1 (Data Out, High-Byte)</th>
<th>Byte 2 (Data Out, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE0</td>
<td>0x00</td>
<td>0x02</td>
</tr>
</tbody>
</table>

Antwort des Moduls/Busklemme

<table>
<thead>
<tr>
<th>Byte 0 (Status-Byte)</th>
<th>Byte 1 (Data In, High-Byte)</th>
<th>Byte 2 (Data In, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xA0</td>
<td>0XX</td>
<td>0XX</td>
</tr>
</tbody>
</table>

Tab. 11: 4. Lesen des Register 32 (geändertes Register überprüfen)

<table>
<thead>
<tr>
<th>Byte 0 (Control-Byte)</th>
<th>Byte 1 (Data Out, High-Byte)</th>
<th>Byte 2 (Data Out, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xA0</td>
<td>0XX</td>
<td>0XX</td>
</tr>
</tbody>
</table>

Antwort des Moduls/Busklemme

<table>
<thead>
<tr>
<th>Byte 0 (Status-Byte)</th>
<th>Byte 1 (Data In, High-Byte)</th>
<th>Byte 2 (Data In, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xA0</td>
<td>0x00</td>
<td>0x02</td>
</tr>
</tbody>
</table>

Tab. 12: 5. Schreiben des Register 31 (Codewort zurücksetzen)

<table>
<thead>
<tr>
<th>Byte 0 (Control-Byte)</th>
<th>Byte 1 (Data Out, High-Byte)</th>
<th>Byte 2 (Data Out, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xDF</td>
<td>0x00</td>
<td>0x00</td>
</tr>
</tbody>
</table>

Antwort des Moduls/Busklemme

<table>
<thead>
<tr>
<th>Byte 0 (Status-Byte)</th>
<th>Byte 1 (Data In, High-Byte)</th>
<th>Byte 2 (Data In, Low-Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x9F</td>
<td>0XX</td>
<td>0XX</td>
</tr>
</tbody>
</table>
5 Diagnose-LEDs

Fehlerdiagnose
Es gibt 2 Arten von Fehlern:

- Feldbus Fehler
- Lokaler Fehler auf Kompakt Box oder Koppler Box

Blink-Codes

<table>
<thead>
<tr>
<th>Blinkfolge</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnelles Blinken</td>
<td>Anfang</td>
</tr>
<tr>
<td>erste langsame Sequenz</td>
<td>Fehler-Code</td>
</tr>
<tr>
<td>zweite langsame Sequenz</td>
<td>Fehler-Argument</td>
</tr>
<tr>
<td>dritte langsame Sequenz (optional)</td>
<td>Fehler-Argument bei mehr als 20 Erweiterungen</td>
</tr>
</tbody>
</table>

5.1 Diagnose-LEDs für Profibus
Diese werden von den beiden oberen LEDs beschrieben.
<table>
<thead>
<tr>
<th>LED grün</th>
<th>LED rot</th>
<th>E/A RUN</th>
<th>Beschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>an</td>
<td>keine Bedeutung</td>
<td>Modul wartet auf Kommunikation</td>
<td>Eine Baud-Rate wurde gefunden, Kommunikation Starten, falsche Ident-Nummer</td>
</tr>
<tr>
<td>aus</td>
<td>an</td>
<td>keine Bedeutung</td>
<td>Modul ist im Baud-Raten Such Modus</td>
<td>Profibus Starten, Busleitung anschließen/ kontrollieren</td>
</tr>
<tr>
<td>aus</td>
<td>aus</td>
<td>keine Bedeutung</td>
<td>Modul wartet auf zyklische Kommunikation</td>
<td>Die zyklische Profibuskommunikation starten (Task starten)</td>
</tr>
<tr>
<td>an</td>
<td>blinkt</td>
<td>keine Bedeutung</td>
<td>Baud-Rate gefunden, Start-Up Fehler</td>
<td>Parameter- oder Konfigurationsfehler, siehe Blink-Code</td>
</tr>
<tr>
<td>an</td>
<td>aus</td>
<td>aus</td>
<td>DP-Hochlauf okay aber noch kein Data_Exchange-Telegramm erhalten</td>
<td>Die zyklische Profibuskommunikation starten (Task starten)</td>
</tr>
<tr>
<td>an</td>
<td>aus</td>
<td>an</td>
<td>Modul im Datenaustausch</td>
<td>kein Fehler</td>
</tr>
</tbody>
</table>

Parameterdaten Fehler

Fehler-Code 1

Die reservierten und festen UserPrm Data haben einen falschen Wert. Das Fehlerargument gibt das falsche Byte an (Byte 0 startet mit Fehlerargument 1).

Fehler-Code 3

Die Kombination einiger Funktionen, über die UserPrmData, ist nicht erlaubt. Das Fehlerargument gibt nähere Informationen.

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Im Synchronen-Mode ist es nicht erlaubt die Reaktion auf Profibus-Fehler "Ausgänge unverändert" einzustellen. Der Watchdog des Subbussystem schlägt schneller zu als der Watchdog des Profibus.</td>
</tr>
<tr>
<td>2-7</td>
<td>reserve</td>
</tr>
<tr>
<td>8</td>
<td>Synchron Made ist nicht gestattet wenn keine Ausgänge vorhanden sind.</td>
</tr>
<tr>
<td>9-11</td>
<td>reserve</td>
</tr>
<tr>
<td>12</td>
<td>Der Fast-FreeRun Mode ist nicht erlaubt wenn der Synchron Mode eingeschaltet ist.</td>
</tr>
</tbody>
</table>

Fehler-Code 9

Fehler-Code 9 beschreibt Start-Up Fehler
Fehlerargument	Beschreibung
1 | Länge der DP Input Daten zu lang
2 | Länge der DP Output Daten zu lang
3 | Länge der DP CfgData zu lang
4 | IP-Box Typ nicht erkannt
5 | Konfigurationsdaten der DP-Schnittstelle sind nicht OK

Konfigurationsdaten (CfgData) Fehler

Fehler-Code 2
Fehler beim Vergleich der Konfigurationsdaten. Das Fehlerargument zeigt das erste fehlerhafte Byte an (beginnt mit "1")

Fehler-Code 5
Fehler bei der Länge der digitalen Output Daten. Das Fehlerargument zeigt die erwartete Byte Anzahl an.

Fehler-Code 6
Fehler bei der Länge der digitalen Input Daten. Das Fehlerargument zeigt die erwartete Byte Anzahl an.

Fehler-Code 7
Fehler-Code 7 beschreibt CfgData Fehler

<table>
<thead>
<tr>
<th>Fehlerargument</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Länge der CfgData stimmen nicht</td>
</tr>
<tr>
<td>2</td>
<td>Syntax der CfgData stimmt nicht</td>
</tr>
<tr>
<td>3</td>
<td>Länge der berechneten Input Daten der Konfigurationsdaten ist zu groß</td>
</tr>
<tr>
<td>4</td>
<td>Länge der berechneten Output Daten der Konfigurationsdaten ist zu groß</td>
</tr>
</tbody>
</table>
5.2 Diagnose-LEDs für lokale Fehler

Lokale Fehler in einer Koppler Box (IL230x-Bxxx/Cxxx)

Unter den lokalen Fehlern ist gemeint, dass ein Fehler in der Feldbus Box oder dem IP-Link aufgetreten ist. IP-Link-Fehler sind meist durch unsachgemäßen Gebrauch der Lichtwellenleitung zurück zu führen.

<table>
<thead>
<tr>
<th>LED grün</th>
<th>LED rot</th>
<th>Beschreibung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>aus</td>
<td>aus</td>
<td>kein Datenaustausch</td>
<td>Modul im synchron Mode - zyklische Daten aktivieren</td>
</tr>
<tr>
<td>aus</td>
<td>1</td>
<td>EEPROM-Prüfsummenfehler</td>
<td>Herstellereinstellung setzen</td>
</tr>
<tr>
<td>aus</td>
<td>2</td>
<td>reserviert</td>
<td>-</td>
</tr>
<tr>
<td>aus</td>
<td>3</td>
<td>Bruchstelle wurde erkannt</td>
<td>n-tes Modul vor dem Empfänger des Masters</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Bruchstelle wurde erkannt</td>
<td>(n*10)+m-tes Modul vor dem Empfänger des Masters</td>
</tr>
<tr>
<td>aus</td>
<td>4</td>
<td>zu viele fehlerhafte Telegramme erkannt (mehr als 25%)</td>
<td>vor dem n-ten Erweiterungsmodul (vor dem Empfänger des Masters) ist die LWL-Verkabelung zu prüfen</td>
</tr>
<tr>
<td>aus</td>
<td>5</td>
<td>Registerzugriff auf komplexe Module gescheitert</td>
<td>n-tes Modul überprüfen</td>
</tr>
<tr>
<td>aus</td>
<td>11</td>
<td>Komplexes Modul arbeitet fehlerhaft</td>
<td>n-tes Modul tauschen</td>
</tr>
<tr>
<td>aus</td>
<td>12</td>
<td>mehr als 120 Module im Ring</td>
<td>weniger Module anschließen</td>
</tr>
<tr>
<td>aus</td>
<td>13</td>
<td>n-tes Modul unbekannt</td>
<td>Firmware Update erforderlich</td>
</tr>
<tr>
<td>an</td>
<td>aus</td>
<td>Modul ist im Datenaustausch (kein Fehler)</td>
<td>-</td>
</tr>
</tbody>
</table>
Lokale Fehler in einer Erweiterungsbox

<table>
<thead>
<tr>
<th>LED grün</th>
<th>LED rot</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>aus</td>
<td>an</td>
<td>es werden kein Daten über den IP-Link empfangen</td>
</tr>
<tr>
<td>aus</td>
<td>blinkt, flackert</td>
<td>es werden fehlerhafte IP-Link Protokolle empfangen (sehr schlechte Datenverbindung)</td>
</tr>
<tr>
<td>blinkt, flackert</td>
<td>blinkt, flackert</td>
<td>es werden fehlerhafte IP-Link Protokolle empfangen (schlechte Datenverbindung), muss noch nicht zum Fehler führen</td>
</tr>
<tr>
<td>an</td>
<td>aus</td>
<td>es werden IP-Link Protokolle empfangen, kein Fehler</td>
</tr>
</tbody>
</table>

Fehlerhafte IP-Link Protokolle können entstehen durch:

- schlecht konfektionierte IP-Link Steckverbinder
- IP-Link Leitung mit erhöhter Dämpfung durch z.B. Knick o.ä.
- defekte oder verschmutzte Sende LED (Modul vor dem fehlerhaften Modul)
- defekter oder verschmutzter Empfänger

Der interne [IP-Link-Fehlerzähler](#) der Koppler Box kann mit der KS2000 Software ausgelesen werden.
5.3 Überprüfung der IP-Link-Verbindung

Ein IP-Link-Kabel mit auf beiden Seiten korrekt konfektionierten IP-Link-Steckern garantiert eine fehlerfrei Übertragung.

Hierzu sollte die Steuerung (z.B. ein PC mit Profibus-Karte) am Feldbus des Koppler Box angeschlossen sein und diese zyklisch mit Daten versorgen, oder die Koppler Box sollte mit der KS2000 auf freilaufend geschaltet werden.

Fehlerzähler

In Tabelle 90, Offset 005 werden aufgetretene IP-Link-Fehler gezählt. Sporadisch auftretende Fehler bedeuten noch keine Probleme für die Kommunikation. Dieser Fehlerzähler wird nur durch ein Power ON/OFF zurückgesetzt.

Hinweis
Die Konfigurations-Software KS2000 kommuniziert über einen seriellen Kanal mit der Koppler Box. Der Registerinhalt wird nicht andauernd aktualisiert, muss also manuell refreshed werden.

Fehlerort
Stellt das Koppler Modul einen Fehler fest, versucht es den Fehlerort aus dem Register der Erweiterungs-Box herauszulesen. Ist der Ring tatsächlich unterbrochen bzw. die Kommunikation stark gestört, ist dies nicht möglich. Dann wird nur der Ort des Bruchs dargestellt und zwar rückwärts vom Koppler gezählt (siehe IP-Link Fehlersuche).

Läuft die Kommunikation noch, kann in Tabelle 87 der Fehlerzähler je Erweiterungsmodul ausgelesen werden.

Hier bezieht sich der Offset auf die Position links im KS2000 Baum (siehe Grafik). d.h. in diesem Beispiel werden Fehler beim Offset 004 und 006 angezeigt.

Im IP-Link Aufbau ist der Fehler also bei der Übertragung zu Modul IE20xx und bei der Übertragung zu IE3112 zu suchen.

Der Fehler kann also liegen an:
• dem Sender-Modul
• dem Empfänger-Modul
• dem Kabel oder
• den Steckern

Wird in Tabelle 90 ein Fehler angezeigt, aber in Tabelle 87 nicht, so ist die Fehlerursache in der Übertragungsstrecke zwischen dem letzten Erweiterungsmodul und dem Koppler zu suchen.
In fast allen Fällen sind Übertragungsfehler auf schlecht konfektionierte IP-Link-Stecker oder zu hohe Dämpfung im LWL-Kabel (durch scharfe Knicke o.ä.) zurückzuführen.

Hinweis

Falls Sie eine Koppler-Box (z.B. IL2300-Bxxx, IL2301-Bxxx oder IL2302-Bxxx) ganz ohne Erweiterungs-Box-Module (IExxxx) betreiben möchten, müssen Sie Sende- und Empfangs-Anschluss diese Koppler-Box über ein IP-Link-Kabel direkt miteinander verbinden! Hierfür eignet sich besonders der IP-Link-Verbindungsstecker ZK1020-0101-1000.
5.4 Troubleshooting

Sollten Sie Probleme mit dem Modul haben, geben die Status LEDs Hinweise auf die mögliche Fehlerursache.

Vermeiden typischer Fehler

Überprüfung der Profibus-Verkabelung

Ein Profibus-Kabel (bzw. ein Kabel-Segment bei Verwendung von Repeatern) kann mit ein paar einfachen Widerstandsmessungen überprüft werden. Dazu sollte das Kabel von allen Stationen abgezogen werden:

<table>
<thead>
<tr>
<th>Messpunkte</th>
<th>typischer Widerstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischen A und B am Anfang der Leitung</td>
<td>ca. 110 Ohm</td>
</tr>
<tr>
<td>Zwischen A und B am Ende der Leitung</td>
<td>ca. 110 Ohm</td>
</tr>
<tr>
<td>Zwischen A am Anfang und A am Ende der Leitung</td>
<td>ca. 0 Ohm</td>
</tr>
<tr>
<td>Zwischen B am Anfang und B am Ende der Leitung</td>
<td>ca. 0 Ohm</td>
</tr>
<tr>
<td>Zwischen Schirm am Anfang und Schirm am Ende der Leitung</td>
<td>ca. 0 Ohm</td>
</tr>
</tbody>
</table>

Reihenfolge bei der Konfiguration

Tragen Sie beim konfigurieren eines IP-Link mit analogen und digitalen Erweiterungsschienen immer zuerst alle analogen Boxen in der Reihenfolge wie diese am IP-Link angeschlossen sind ein. Tragen Sie danach die digitalen Boxen in der Reihenfolge wie diese am IP-Link angeschlossen sind ein. Dann werden die Ein- und Ausgänge gemappt.

Konfigurationsfehler bei IL230x-B3xx

Feldbus Boxen, die im Ein- oder Ausgangsbereich weniger als 8 Bit Prozessdaten besitzen, werden auf 8 Bit aufgerundet und belegen somit 8 Bit im jeweiligen Bereich. Beachten Sie, dies z.B. für die Box IL230x-B3xx, die vier Ein- und 4 Ausgänge besitzt.

IP-Link-Fehler

Falls die IP-Link-Error-LED leuchtet bzw. unregelmäßig blinkt, werden gar keine oder fehlerhaften Telegramme übertragen. Die Module verstärken zwar jedes Telegramm, können aber einen einmal aufgetretenen Fehler nicht wieder zurückkorrigieren. Der Fehler muss also vom letzten Modul rückwärts bis zum ersten fehlerfreien Modul zurückverfolgt werden. Die Verbindung von diesem Modul zum nächsten ist die Fehlerquelle.

Im Zweifelsfall muss der Stecker neu konfektioniert werden. Dabei ist darauf zu achten, die optische Faser nicht zu weit zurückzuschleifen.

Beim Konfektionieren ist darauf zu achten, dass die Abisoliermaße eingehalten werden.

Das fertige Kabel kann am einfachsten geprüft werden, in dem es zwischen Koppler Box und Erweiterung gesteckt wird. Bei einem korrekt angeschlossenem Kabel gibt es keine fehlerhaften Telegramme.
5.5 Diagnose Telegramm

5.5.1 Diagnose-Telegramm Übersicht

<table>
<thead>
<tr>
<th>Parameterdaten</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompakt Boxen</td>
<td>IPxxxx-B3xx</td>
</tr>
<tr>
<td>Koppler Boxen</td>
<td>IL230x-B31x</td>
</tr>
<tr>
<td>Erweiterungs- Module</td>
<td>IExxxx</td>
</tr>
</tbody>
</table>

5.5.2 Diagnose-Telegramm der Kompakt Box (IPxxxx-B3xx)

DiagData im DPV1-Format

Tab. 13: Diagnose

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Slave antwortet nicht (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Slave ist im Hochlauf (Parametrierung und Konfiguration wird ausgewertet)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Konfigurationsfehler</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Ext_Diag_Data liegen vor (ab Byte 6)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Funktion wird nicht unterstützt</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Falsche Antwort des Slaves (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Parametrierfehler</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Slave ist mit anderem Master im Datenaustausch (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Slave muss neu parametriert werden</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Slave hat statische Diagnose</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>DP-Watchdog ist aktiv</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Slave ist im Freeze-Mode</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Slave ist im Sync-Mode</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>reserviert</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Slave ist deaktiviert (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td>2</td>
<td>0-6</td>
<td>reserviert</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Zu viele Ext_Diag_Data</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Stationsadresse des Masters, mit dem Datenaustausch durchgeführt wird</td>
</tr>
<tr>
<td>4, 5</td>
<td></td>
<td>Ident-Nummer</td>
</tr>
</tbody>
</table>

Tab. 14: Herstellerspezifische Diagnose für Kompakt Box

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>Länge der Ext_Diag_Data inklusive Längenbyte</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0x81 (Kennung DPV1 Diagnoseformat)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0x00</td>
</tr>
</tbody>
</table>
Tab. 15: Diagnose für Kompakt Box

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0-5</td>
<td>bei Feldbus Boxen sind die Bits 0-5 immer null</td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td>fehlerhafte Kanalnummer (0-3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x00 Kanal 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x40 Kanal 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x80 Kanal 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0xC0 Kanal 3</td>
</tr>
<tr>
<td>17</td>
<td>0-5</td>
<td>Status-Byte des Kanals (Bit 0-5)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Allgemeines Fehlerbit</td>
</tr>
<tr>
<td>18</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis
Das Status-Byte wird beim komplexen Mapping von der Klemme zur Steuerung übertragen. Es enthält verschiedene Statusbits in Abhängigkeit des entsprechenden Klemmentyps (wie z.B. Prozessdaten kleiner/größer Grenzwert x, Overrange, Underrange etc.)

5.5.3 Diagnose-Telegramm der Kopplerbox (IL230x-B3xx)

DiagData im DPV1-Format

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Slave antwortet nicht (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Slave ist im Hochlauf (Parametrierung und Konfiguration wird ausgewertet)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Konfigurationsfehler</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Ext_Diag_Data liegen vor (ab Byte 6)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Funktion wird nicht unterstützt</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Falsche Antwort des Slaves (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Parametrierfehler</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Slave ist mit anderem Master im Datenaustausch (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Slave muss neu parametriert werden</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Slave hat statiche Diagnose</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>DP-Watchdog ist aktiv</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Slave ist im Freeze-Mode</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Slave ist im Sync-Mode</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>reserviert</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Slave ist deaktiviert (wird vom DP-Master intern gesetzt)</td>
</tr>
<tr>
<td>2</td>
<td>0-6</td>
<td>reserviert</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Zu viele Ext_Diag_Data</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Stationsadresse des Masters, mit dem Datenaustausch durchgeführt wird</td>
</tr>
<tr>
<td>4, 5</td>
<td></td>
<td>Ident-Nummer</td>
</tr>
</tbody>
</table>
Tab. 17: Herstellerspezifische Diagnose für Koppler Box

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>Länge der Ext_Diag_Data inklusive Längenbyte</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0xA1 (Kennung DPV1 Diagnoseformat)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>kein Fehler</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Start IP-Link-Fehlererkennungsdiagnose</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>Allgemeiner IP-Link-Fehler</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>kein Fehler</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>IP-Link Unterbrechung Fehlerargument: Fehlerstelle (Achtung: Bei Kabelbruch ist die Zählinrichtung entgegen der Lichtleiterverkabelung)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>IP-Link Timeout-Fehler Fehlerargument: Fehlerstelle</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Fehler beim Lesen der Register der komplexen Module Fehlerargument: Problematisches Modul</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Erweiterungsmodul bearbeitet das Synchronisationstelegramm nicht Fehlerargument: Problematisches Modul</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Mehr als 120 Module verkabelt Fehlerargument: Anzahl der zuviel gesteckten Module</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Modultyp wird nicht unterstützt Fehlerargument: Problematisches Modul</td>
</tr>
<tr>
<td>13</td>
<td>0-120</td>
<td>Fehlerargument: IP-Link-Fehler (z.B. Leitungsbruch) hinter der n .ten Erweiterungsbox. Zählung beginnend mit n = 1 von der letzten angeschlossenen Erweiterungsbox in Richtung Kopplerbox (siehe auch Beschreibung zum Fehlerargument Error LED). Fehlerargument n=0 entspricht IP-Link-Fehler zwischen der Kopplerbox und der letzten angeschlossenen Erweiterungsbox. Achtung: Bei Kabelbruch ist die Zählrichtung entgegen der Lichtleiterverkabelung</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0x00</td>
</tr>
</tbody>
</table>
Diagnose-LEDs

Tab. 18: Diagnose für Koppler Box und SPS Box

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0-7</td>
<td>fehlerhafte IE-Box-Nummer (1-120 nur komplexe Module werden in Zählrichtung "mit dem Licht" gezählt)</td>
</tr>
<tr>
<td>17</td>
<td>0-5</td>
<td>Status-Byte des Kanals (Bit 0-5) fehlerhafte Kanalnummer (0-3)</td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0-7</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0-7</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis

Das Status-Byte wird beim komplexen Mapping von der Klemme zur Steuerung übertragen. Es enthält verschiedene Statusbits in Abhängigkeit des entsprechenden Klemmentyps (wie z.B. Prozessdaten kleiner/größer Grenzwert x, Overrange, Underrange etc.)

5.5.4 TwinCAT-Beispiel für die Diagnose mit der Feldbuskarte FC310x

Über das Bit *DiagnoseStation11* wird die Diagnose der Station 11 gemeldet. Die Diagnoseinformationen werden mit dem ADS-Baustein ausgelesen und in das Array *strDiagnose* kopiert. Dort kann die weitere Bearbeitung erfolgen.

<table>
<thead>
<tr>
<th>NETID</th>
<th>Port</th>
<th>IDXGRP</th>
<th>IDXOFF</th>
<th>LEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>276 Byte</td>
</tr>
<tr>
<td>NETID der FC310x Karte</td>
<td>Diagnose Port Fest 200</td>
<td>Slave-Adresse im High-Wort und die Konstante 0xF181 im Low-Wort</td>
<td>immer "0", gesamte Diagnose auslesen</td>
<td></td>
</tr>
</tbody>
</table>
Aufbau der Diagnosedaten

<table>
<thead>
<tr>
<th>Offset</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Receive-Error-Counter (WORD): Anzahl der fehlerhaften Telegramme bei der Kommunikation mit diesem Slave</td>
</tr>
<tr>
<td>2</td>
<td>ab FC310x, Version 1.11: Repeat-Counter[9] (WORD): Die Repeat-Counter zeigen an, wie oft wie viele Repeats (1..MaxRetryLimit, MaxRetryLimit ohne Antwort) gemacht werden mussten. Repeat-Counter[0] zeigt an, wie oft ein Telegramm zu diesem Slave einmal wiederholt werden musste, Repeat-Counter[1], wie oft ein Telegramm zu diesem Slave zweimal wiederholt werden musste, etc. Der Parameter MaxRetryLimit kann in den Profibus-Parametern eingestellt werden (Wertebereich 0..8)</td>
</tr>
<tr>
<td>20</td>
<td>NoAnswer-Counter (DWORD): Anzahl der Telegramme bei der Kommunikation mit diesem Slave, auf die nicht geantwortet und bei denen kein Repeat durchgeführt wurde. Wenn ein Slave das erste Mal nicht antwortet, wird bis zu MaxRetryLimit mal das Telegramm wiederholt, wenn er auch dann nicht geantwortet hat, wird beim nächsten Mal keine Wiederholung mehr durchgeführt.</td>
</tr>
<tr>
<td>24-31</td>
<td>reserviert</td>
</tr>
<tr>
<td>32-37</td>
<td>Profibus-Norm-Diagnose</td>
</tr>
<tr>
<td>38-275</td>
<td>Profibus-Norm-Extended-Diagnose (siehe Dokumentation des Herstellers)</td>
</tr>
</tbody>
</table>

Programmbeispiel

VAR
DiagnoseStation11 AT %IX100.0:BOOL;
strDiagnose : ARRAY[0..275] OF BYTE;
fbADSREAD : ADSREAD;
k: INT;
END_VAR

CASE k OF
 0: IF DiagnoseStation11 THEN fbADSREAD(NETID:='172.16.3.106.2.1',
 PORT:=200,
 IDXGRP:=16#BF181,
 IDXOFFS:=16#0,
 LEN:=276,
 DESTADDR:=ADR(strDiagnose),
 READ:= TRUE,
 TMOUT:= t#10s,);
 k:=k+1;
 END_IF
 1: IF NOT fbADSREAD.busy THEN
 k:=0;
 END_IF
END_CASE
6 Zubehör

6.1 PROFIBUS-Zubehör
Dieses Zubehör können Sie auch für andere RS485-basierte Feldbussysteme (Modbus, RS485) verwenden.
<table>
<thead>
<tr>
<th>Bestellbezeichnung</th>
<th>Feldbuskabel</th>
<th>Verbinder</th>
<th>Kontakte</th>
<th>Querschnitt</th>
<th>Länge</th>
<th>Abb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZK1031-6200-1020</td>
<td>Buchse gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>2,00</td>
<td>A</td>
</tr>
<tr>
<td>ZK1031-6200-1050</td>
<td>Buchse gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>5,00</td>
<td>A</td>
</tr>
<tr>
<td>ZK1031-6200-1100</td>
<td>Buchse gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>10,00</td>
<td>A</td>
</tr>
<tr>
<td>ZK1031-6200-1150</td>
<td>Buchse gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>15,00</td>
<td>A</td>
</tr>
<tr>
<td>ZK1031-6100-1020</td>
<td>Stecker gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>2,00</td>
<td>B</td>
</tr>
<tr>
<td>ZK1031-6100-1050</td>
<td>Stecker gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>5,00</td>
<td>B</td>
</tr>
<tr>
<td>ZK1031-6100-1100</td>
<td>Stecker gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>10,00</td>
<td>B</td>
</tr>
<tr>
<td>ZK1031-6100-1150</td>
<td>Stecker gerade, offenes Ende</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>15,00</td>
<td>B</td>
</tr>
<tr>
<td>ZK1031-6251-1003</td>
<td>Stecker gerade, Buchse gerade</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>0,30</td>
<td>A und B</td>
</tr>
<tr>
<td>ZK1031-6251-1005</td>
<td>Stecker gerade, Buchse gerade</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>0,50</td>
<td>A und B</td>
</tr>
<tr>
<td>ZK1031-6251-1010</td>
<td>Stecker gerade, Buchse gerade</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>1,00</td>
<td>A und B</td>
</tr>
<tr>
<td>ZK1031-6251-1020</td>
<td>Stecker gerade, Buchse gerade</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>2,00</td>
<td>A und B</td>
</tr>
<tr>
<td>ZK1031-6251-1050</td>
<td>Stecker gerade, Buchse gerade</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>5,00</td>
<td>A und B</td>
</tr>
<tr>
<td>ZK1031-6251-1100</td>
<td>Stecker gerade, Buchse gerade</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>10,00</td>
<td>A und B</td>
</tr>
<tr>
<td>ZK1031-6251-1150</td>
<td>Stecker gerade, Buchse gerade</td>
<td>M12 schraubbar</td>
<td>8-polig</td>
<td>0,32</td>
<td>15,00</td>
<td>A und B</td>
</tr>
</tbody>
</table>
Stecker

Tab. 19: Pinbelegung

1 nc.
2 grün
3 nc.
4 rot
5 Shield

Ø 8,5 mm
Technische Daten

<table>
<thead>
<tr>
<th>Elektrische Daten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemessungsdaten</td>
<td>300 V, 80°C</td>
</tr>
<tr>
<td>Material</td>
<td>Außenmantel PUR, Innere Isolierung Polyethylen</td>
</tr>
<tr>
<td>Querschnitt</td>
<td>0,32 mm²</td>
</tr>
<tr>
<td>DC Widerstand</td>
<td>54,12 Ohm/km</td>
</tr>
<tr>
<td>Leitungskapazität</td>
<td>26,9 pF/m</td>
</tr>
<tr>
<td>Nominal-Impedanz</td>
<td>150 Ohm bei 1 MHz</td>
</tr>
<tr>
<td>Zulassung</td>
<td>UL-Zulassung, AWM, Typ 20233, 80°C, 300V; CSA AWM, I/II A/B, 80°C, 300V FT1</td>
</tr>
</tbody>
</table>

Zubehör PROFIBUS

<table>
<thead>
<tr>
<th>Bestellbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS1031-2600</td>
<td>T-Stück, 12 MBaud</td>
</tr>
<tr>
<td>ZS1000-2600</td>
<td>Y-Stück, 12 MBaud</td>
</tr>
<tr>
<td>ZS1000-1610</td>
<td>Endwiderstand (Stecker)</td>
</tr>
<tr>
<td>ZS1000-0620</td>
<td>Kupplung feldkonfektionierbar</td>
</tr>
<tr>
<td>ZS1000-0610</td>
<td>Stecker feldkonfektionierbar</td>
</tr>
<tr>
<td>ZS1031-6610</td>
<td>Schaltschrank Durchführung M12, Stecker-Kupplung</td>
</tr>
</tbody>
</table>

Tab. 20: ZS1031-2600
Tab. 21: ZS1000-2600

Abb. 1: Add Profibus End.gif (7936 Byte)
ZS1031-6610

O-Ring

47.4
29.4

M12

Kontermutter M12

Unterlegscheibe M12
6.2 Feldbus Box Zubehör

Feldbuszubehör

- Vorkonfektionierte Kabel
- Stecker
- Verteiler

Spannungsversorgung

- Vorkonfektionierte Kabel
- Stecker
- Verteiler

Sensorversorgung

- Vorkonfektionierte Kabel
- Stecker
- Verteiler

IP-Link

- Vorkonfektionierte Kabel
- Stecker
7.1 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Die Bezeichnung erfolgt in nachstehender Weise.

1. Ziffer: Staub- und Berührungsschutz

<table>
<thead>
<tr>
<th>Ziffer</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nicht geschützt</td>
</tr>
<tr>
<td>1</td>
<td>Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø50 mm</td>
</tr>
<tr>
<td>2</td>
<td>Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø12,5 mm</td>
</tr>
<tr>
<td>3</td>
<td>Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø2,5 mm</td>
</tr>
<tr>
<td>4</td>
<td>Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø1 mm</td>
</tr>
<tr>
<td>5</td>
<td>Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird</td>
</tr>
</tbody>
</table>

2. Ziffer: Wasserschutz*

<table>
<thead>
<tr>
<th>Ziffer</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nicht geschützt</td>
</tr>
<tr>
<td>1</td>
<td>Geschützt gegen Tropfwasser</td>
</tr>
<tr>
<td>2</td>
<td>Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist</td>
</tr>
<tr>
<td>3</td>
<td>Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben</td>
</tr>
<tr>
<td>4</td>
<td>Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben</td>
</tr>
<tr>
<td>5</td>
<td>Geschützt gegen Strahlwasser.</td>
</tr>
<tr>
<td>6</td>
<td>Geschützt gegen starkes Strahlwasser.</td>
</tr>
<tr>
<td>7</td>
<td>Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist</td>
</tr>
</tbody>
</table>

*) In diesen Schutzklassen wird nur der Schutz gegen Wasser definiert.
Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der Feldbus Box und den verwendeten Metallteilen.

<table>
<thead>
<tr>
<th>Art</th>
<th>Beständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserdampf</td>
<td>bei Temperaturen >100°C nicht beständig</td>
</tr>
<tr>
<td>Natriumlaugen (ph-Wert > 12)</td>
<td>bei Raumtemperatur beständig > 40°C unbeständig</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>unbeständig</td>
</tr>
<tr>
<td>Argon (technisch rein)</td>
<td>beständig</td>
</tr>
</tbody>
</table>

Legende

beständig: Lebensdauer mehrere Monate
bedingt beständig: Lebensdauer mehrere Wochen
unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung
7.2 Zulassungen

Zulassungen
UL E172151

Konformitätskennzeichnung
CE

Schutzart
IP65/66/67 gemäß EN60529
7.3 Prüfnormen für die Geräteprüfung

EMV
Festigkeit: EN 61000-6-2
Aussendung: EN 61000-6-4

Vibrationsfestigkeit
Schwingungsprüfung: EN 60068-2-2, Amplitude 2 g (Norm 1 g)
Schockprüfung: EN 60068-2-27, Schockanzahl 1000 (Norm 2)
7.4 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: https://www.beckhoff.de

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

• Support
• Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
• umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49(0)5246 963 157
Fax: +49(0)5246 963 9157
E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

• Vor-Ort-Service
• Reparaturservice
• Ersatzteilservice
• Hotline-Service

Hotline: +49(0)5246 963 460
Fax: +49(0)5246 963 479
E-Mail: service@beckhoff.com

Beckhoff Firmenzentrale

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Deutschland
Telefon: +49(0)5246 963 0
Fax: +49(0)5246 963 198
E-Mail: info@beckhoff.com
Internet: https://www.beckhoff.de