BECKHOFF New Automation Technology

Dokumentation | DE

Feldbus Box E/A-Module

Signalvarianten, Installation und Konfiguration

Inhaltsverzeichnis

1	Vorw	vort		7
	1.1	Hinweis	se zur Dokumentation	7
	1.2	Sicherh	eitshinweise	8
	1.3	Ausgab	estände der Dokumentation	9
2	Syst	emübers	sicht	10
	2.1	Das Fel	ldbus Box System	10
	2.2	Feldbus	s Box - Bezeichnungsübersicht	12
	2.3	Firm- ur	nd Hardware-Stand	14
3	E/A-I	Module		15
	3.1		eschreibungen	
		3.1.1	Digitale Eingangsmodule	
		3.1.2	Digitale Ausgangsmodule	
		3.1.3	Digitale Kombimodule	
		3.1.4	Analoge Eingangsmodule	
		3.1.5	Analoge Ausgangsmodule	
		3.1.6	Sonderfunktionsmodule	
		3.1.7	Gateway-Module	61
	3.2	Montage	e	67
		3.2.1	Abmessungen	67
		3.2.2	Befestigung	
	3.3	Verkabe	elung	72
		3.3.1	Anzugsmomente für Steckverbinder	72
		3.3.2	Spannungsversorgung	73
		3.3.3	IP-Link	81
		3.3.4	Signalanschluss	96
		3.3.5	ZS2001 KM-Steckverbinder	125
	3.4	Blocksc	chaltbilder	127
		3.4.1	Übersicht der Blockschaltbilder	127
		3.4.2	IP/IE1xxx Blockschaltbild	128
		3.4.3	IP/IE1502 Blockschaltbild	129
		3.4.4	IP/IE20xx Blockschaltbild	130
		3.4.5	IP/IE23xx Blockschaltbild	131
		3.4.6	IP/IE2400, IP/IE2401 Blockschaltbild	132
		3.4.7	IE2403 Blockschaltbild	133
		3.4.8	IP/IE2512 Blockschaltbild	134
		3.4.9	IE2808 Blockschaltbild	135
		3.4.10	IP/IE3102 Blockschaltbild	137
		3.4.11	IP/IE3112 Blockschaltbild	138
		3.4.12	IP/IE3202 Blockschaltbild	139
		3.4.13	IP/IE3312 Blockschaltbild	140
		3.4.14	IP/IE4112 Blockschaltbild	141
		3.4.15	IP/IE4132 Blockschaltbild	142
		3.4.16	IP/IE5009 Blockschaltbild	143
		3.4.17	IP/IE5109 Blockschaltbild	144

Version: 2.0.1

	3.4.18	IP5209 Blockschaltbild	145
	3.4.19	IP/IE6002 Blockschaltbild	146
	3.4.20	IP/IE6012 Blockschaltbild	147
	3.4.21	IP/IE6022 Blockschaltbild	148
3.5	Mapping	der Feldbus Box Module	149
	3.5.1	IP/IE10xx Mapping	150
	3.5.2	IP/IE1502 Mapping	151
	3.5.3	IP/IE20xx Mapping	153
	3.5.4	IP/IE23xx Mapping	154
	3.5.5	IP/IE240x Mapping	155
	3.5.6	IP/IE2512 Mapping	156
	3.5.7	IE2808 Mapping	158
	3.5.8	IP/IE3102 Mapping	159
	3.5.9	IP/IE3112 Mapping	161
	3.5.10	IP/IE3202, KL3204 Mapping	163
	3.5.11	IP/IE3312, KL3314 Mapping	165
	3.5.12	IP/IE4112 Mapping	167
	3.5.13	IP/IE4132, KL4132 Mapping	169
	3.5.14	IP/IE5009 Mapping	171
	3.5.15	IP/IE5109 Mapping	173
	3.5.16	IP5209 Mapping	175
	3.5.17	IP/IE60x2 Mapping	177
3.6	Konfigur	ation der komplexen Module	178
	3.6.1	Register-Kommunikation	178
	3.6.2	IP/IE1502	183
	3.6.3	IP/IE2512	191
	3.6.4	IE2808	200
	3.6.5	IP/IE3102	206
	3.6.6	IP/IE3112	213
	3.6.7	IP/IE3202	219
	3.6.8	IP/IE3312	228
	3.6.9	IP/IE4112	234
	3.6.10	IP/IE4132	239
	3.6.11	IP/IE5009	244
	3.6.12	IP/IE5109	249
	3.6.13	IP5209	255
	3.6.14	IP/IE60x2	262
Diag	nose		276
4.1	Signalve	rhalten bei Busfehler	276
4.2	Diagnos	e-LEDs	277
4.3	Diagnos	e-LEDs für lokale Fehler	278
Feld	bus Box 2	Zubehör	280
5.1	Zubehör		280
5.2	Powerka	abel	282
5.3	Third Pa	rty Produkte	283

4

5

286 286
287
289
290
291
292

Version: 2.0.1

Feldbus Box E/A-Module

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, ATRO®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar® und XTS® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH.

Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Fremdmarken

In dieser Dokumentation können Marken Dritter verwendet werden. Die zugehörigen Markenvermerke finden Sie unter: https://www.beckhoff.com/trademarks

Version: 2.0.1

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
2.0.1	IP4112-Bxxx, IE4112 aktualisiert
2.0.0	Anzugsmomente für Steckverbinder hinzugefügt
	UL-Hinweise ergänzt
	Zubehör erweitert
	Technische Daten aktualisiert
	IP-Link LED-Diagnoseanzeigen aktualisiert
1.9.1	Systemübersicht aktualisiert
1.9.0	Einführung und Signalanschluss des IE2808 aktualisiert
	Sondervariante IE2808-0001 hinzugefügt
	Blockschaltbild des IP/IE5109 aktualisiert
	Montageanleitung für ZS1022 hinzugefügt
1.8.1	Mapping des IP5209 korrigiert
	Beschreibung des Feature-Registers für IP/IE3312 aktualisiert
1.8.0	Erweiterungsmodul IE2403 hinzugefügt
1.7.4	IL230x-B110 im Kapitel Abmessungen hinzugefügt
	Kapitel Third Party Produkte aktualisiert
1.7.3	Mapping des IE2808 korrigiert
1.7.2	Technische Daten des IE2808 aktualisiert
	Blockschaltbild des IE2808 korrigiert
1.7.1	IP/IE1502, Gate-Eingang wird im Status-Byte abgebildet
1.7.0	Erweiterungsmodul IE2808 hinzugefügt
	Montageschiene ZS5300-0001 hinzugefügt
	IP-Link Direktsteckverbinder ZK1020-0101-1000 hinzugefügt
1.6.2	Diagnose-Kapitel erweitert
1.6.1	Technische Daten der Feldbus Box Module aktualisiert
	kleinere Routinekorrekturen (Tippfehler, Rechtschreibung usw.)
1.6.0	Registereinstellungen IP/IE5009 korrigiert
	kleinere Routinekorrekturen (Tippfehler, Rechtschreibung usw.)
1.5	 Nummerierung der Kanäle in den Beschreibungen der Mappings an Darstellung in TwinCAT und KS2000 angepasst
	kleinere Routinekorrekturen (Tippfehler, Rechtschreibung usw.)
1.4	Beschreibung der Mappings um Ethernet erweitert
1.3	Erweiterung der Spezifikation des IP-Link auf 15 Meter
	Kapitel zu IP-Link überarbeitet und ergänzt
	Registerbeschreibung für die Module IP/IE3202 korrigiert
1.2	Beschreibung von Control- und Status-Bytes aller Module überarbeitet
	 Beschreibung von Mapping und Konfiguration der Module IP/IE2512 und IP/IE5009 aktualisiert
1.1	 Beschreibung der Mappings an die Registerdarstellung in der Konfigurations-Software KS2000 angepasst
1.0	weitere Feldbus Box Module ergänzt
0.8	erste Vorabversion

2 Systemübersicht

2.1 Das Feldbus Box System

Feldbus Box Module sind robuste Feldbusstationen für viele verschiedene Feldbus-Systeme. Sie verfügen über vielfältige E/A-Funktionalität. Alle relevanten Industriesignale werden unterstützt. Neben digitalen und analogen Ein- und Ausgängen samt Thermoelement- und RTD-Eingängen gibt es Inkrementalencoder-Interfaces für die Weg- und Winkelmessung sowie serielle Schnittstellen für die Lösung vielfältiger Kommunikationsaufgaben.

Signalanschluss in 3 Varianten

Die digitalen Ein-/Ausgänge können wahlweise über 8 mm Schnapp-Steckverbinder, M8 Schraub-Steckverbinder oder M12 Schraub-Steckverbinder angeschlossen werden. Für analoge Signale ist die M12-Variante vorgesehen.

Alle wichtigen Signalformen

Spezielle Ein-/Ausgangskanäle auf den Kombi-E/A-Module lassen sich wahlweise als Ein- oder Ausgang nutzen. Eine Konfiguration ist nicht erforderlich, da die Feldbusschnittstelle für jeden Kombikanal sowohl Eingangs- als auch Ausgangsdaten zur Verfügung stellt. Durch die Kombi-Module hat der Anwender alle Vorteile einer feinen Signal-Granularität.

Die Prozessor-Logik, die Eingangsbeschaltung sowie die Sensorversorgung werden aus der Steuerspannung gespeist. Die Lastspannung für die Ausgänge kann separat zugeführt werden. Bei Feldbus Boxen, in denen nur Eingänge zur Verfügung stehen, kann die Lastversorgung UP zur Weiterleitung optional angeschlossen werden.

Die Zustände der Feldbus Box, der Feldbusverbindung, der Spannungsversorgung sowie der Signale werden von LEDs angezeigt.

Die Beschriftungsstreifen lassen sich extern maschinell beschriften und können dann eingeschoben werden.

Kombinierbare Feldbus Boxen für mehr Flexibilität

Die Feldbus Box Serie umfasst neben der Kompakt Box auch erweiterbare Geräte, die Koppler Box und die Erweiterungsbox sowie intelligente Geräte, die SPS Boxen.

Kompakt Box

Die Kompakt Box stellt dem Feldbus die E/A-Daten der angeschlossenen digitalen und analogen Sensoren und Aktuatoren zur Verfügung.

Koppler Box

Die Koppler Box sammelt zusätzlich über eine störsichere LWL-Verbindung (IP-Link) E/A-Daten von den Erweiterungsboxen ein. Sie können bis zu 120 Erweiterungsboxen an eine Koppler Box anschließen. Es ergibt sich so ein verteiltes IP67 E/A-Netzwerk mit nur einer Feldbusschnittstelle.

Die Koppler Box erkennt die angeschlossenen Erweiterungsmodule selbsttätig in der Aufstart-Phase und mappt die E/A-Daten automatisch in das Feldbus-Prozessabbild – eine Konfiguration ist nicht erforderlich. Aus Sicht des Feldbusses stellt sich die Koppler Box samt allen vernetzten Erweiterungsboxen als ein einziger Busteilnehmer mit entsprechend vielen E/A-Signalen dar.

Die Koppler Box entspricht dem Buskoppler aus dem BECKHOFF Busklemmen-System. BECKHOFF Feldbus-Geräte der Schutzart IP20 (Busklemmen) und IP67 (Feldbus Box) können problemlos kombiniert werden - das Daten-Handling ist jeweils gleich.

IP-Link

IP-Link ist eine LWL-Verbindung mit 2 Megabit/s Übertragungsrate, die 1000 binäre E/A-Daten in ca. 1 ms schnell und sicher überträgt – kleinere Konfigurationen entsprechend schneller. Durch die hohe Nutzdatenrate ist gewährleistet, dass die Kopplung über IP-Link keine spürbare Einschränkung der Feldbus-Performance mit sich bringt.

Für die schnelle und einfache Konfektionierung der IP-Link-Kabel vor Ort wurden preisgünstige Steckverbinder in IP67 Schutzart entwickelt. Der Anschluss erfordert kein Spezialwerkzeug und lässt sich schnell und einfach durchführen. Die IP-Link-Kabel sind alternativ auch mit vorkonfektionierten Steckern erhältlich.

Durch die getrennte Zuführung der Ausgangs-Spannungsversorgung lassen sich Ausgangsgruppen einzeln abschalten. Außerdem können problemlos unterschiedliche Potenziale innerhalb eines Erweiterungsringes aufgebaut werden, da IP-Link naturgemäß über eine optimale Potenzialtrennung verfügt.

Erweiterungsbox

Die Erweiterungsboxen decken wie die Kompakt Boxen das gesamte Spektrum der E/A-Signale ab und dürfen bis zu 15 m Abstand voneinander haben. Sie bauen hierbei besonders klein und führen zu besonders preiswerten E/A-Lösungen in hoher Schutzart. Auch hier sind die digitalen Ein-/Ausgänge wahlweise über 8 mm Schnapp-Steckverbinder, M8 Schraub-Steckverbinder oder M12 Schraub-Steckverbinder anschließbar. Analoge Signaltypen werden mit der M12-Variante ausgerüstet. Die Schnapp-Steckverbinder verriegeln formschlüssig und ergeben eine rüttelfeste Verbindung, während sich die Schraub-Steckverbinder durch eine hohe Zugfestigkeit auszeichnen.

SPS Box

Die SPS Box ist eine intelligentes Feldbus Box mit SPS-Funktionalität für dezentrale Vorverarbeitung der E/A-Signale. Hiermit lassen sich Applikationsteile aus der zentralen Steuerung auslagern. Deren CPU und der Feldbus werden entlastet. Dezentral Zählen, Regeln oder Schalten sind typische Anwendungen für die SPS-Box. Die Reaktionszeiten sind unabhängig von der Buskommunikation und der übergeordneten Steuerung.

Bei Bus- oder Steuerungsausfall ist ein Funktionserhalt (z.B. geordnete Überführung des Prozesses in einen sicheren Zustand) möglich.

Die Programmierung erfolgt mit TwinCAT nach IEC 61131-3. Fünf verschiedene Programmiersprachen stehen zur Verfügung:

- Anweisungsliste (AWL)
- Funktionsplan (FUP)
- Kontaktplan (KOP)
- Ablaufsprache (AS)
- Strukturierter Text (ST).

Der Programm-Download erfolgt wahlweise über den Feldbus oder über die Programmierschnittstelle.

Es stehen umfangreiche Debug-Funktionalitäten (Breakpoint, Einzelschritt, Monitoring, etc.) zur Verfügung. SPS Box verfügt über einen leistungsfähigen 16 Bit Controller, 32/96 KByte Programmspeicher und 32/64 KByte Datenspeicher. Weiter stehen 512 Byte als nichtflüchtiger Speicher für remanente Merker zur Verfügung.

SPS Box mit IP-Link

Nahezu unbeschränkte E/A-Möglichkeiten ergeben sich durch die programmierbare SPS Box mit IP-Link. Aus dem SPS-Programm heraus lassen sich bis zu 120 Erweiterungsmodule mit über 2000 E/As direkt ansprechen. Die SPS Box eignet sich damit auch als autarke Kleinsteuerung zur Steuerung von Anlagenteilen oder kleiner Maschinen.

Version: 2.0.1

2.2 Feldbus Box - Bezeichnungsübersicht

Die Bezeichnung der Feldbus Box-Module ist wie folgt zu verstehen: IXxxxy-zyyy

IX beschreibt die Bauform:

"IP" steht für die Bauform Kompakt Box [▶ 13].

"IL" steht für die Bauform Koppler Box (mit IP-Link) [▶ 13].

"IE" steht für die Bauform Erweiterungsbox [▶ 13].

xxxy beschreibt die E/A-Beschaltung:

xxx bezeichnet die E/A-Eigenschaft:

"10x" - 8 x digitale Eingänge

"15x" - Zählermodul

"20x" - 8 x digitale Ausgänge

"23x" - 4 x digitale Eingänge und 4 x digitale Ausgänge

"24x" - 8 x digitale Eingänge und 8 x digitale Ausgänge

"25x" - PWM-Modul

"3xx" - 4 x analoge Eingänge

"4xx" - 4 x analoge Ausgänge

"5xx" - Inkremental-Encoder oder SSI-Geber

"6xx" - Gateway-Module RS232, RS422, RS485, TTY

y beschreibt den mechanischer Anschluss:

"0" steht für 8mm Schnappanschluss

"1" steht für M 8 Schraubanschluss

"2" steht für M 12 Schraubanschluss und

"9" steht für M23 Schraubanschluss

zyyy bezeichnet die Programmierbarkeit und das Feldbus-System:

z unterscheidet ob es sich um einen Slave oder einen programmierbare Slave handelt:

"B" - nicht programmierbar

"C" - programmierbar (SPS Box [▶ 13])

yyy steht für das Feldbus-System und den Bus-Anschluss:

"110" - EtherCAT

"200" - Lightbus

"310" - PROFIBUS

"318" - PROFIBUS mit integriertem T-Stück

"400" - Interbus

"510" - CANopen

"518" - CANopen mit integriertem T-Stück

"520" - DeviceNet

"528" - DeviceNet mit integriertem T-Stück

"730" - Modbus

"800" - RS485

"810" - RS232

"900" - Ethernet TCP/IP mit RJ45 für den Bus-Anschluss

"901" - Ethernet TCP/IP mit M12 für den Bus-Anschluss

"903" - PROFINET

"905" - EtherNet/IP

Kompakt Box

Die Feldbus Box-Module verfügen über vielfältige E/A-Funktionalität. Alle relevanten Industriesignale werden unterstützt. Die digitalen Ein-/Ausgänge können wahlweise über Ø 8 mm Schnapp-, M8 Schraub- oder über M12 Schraub-Steckverbinder angeschlossen werden. Für analoge Signale ist die M12 Variante verfügbar.

Je nach Modul kann der E/A-Teil und der Stromversorgungsteil unterschiedlich sein.

Koppler Box

Die Koppler Box gibt es in drei Varianten als IL230x-Bxxx. Diese unterscheidet sich von der Kompakt Box dadurch, dass diese Module eine Schnittstelle zu den sogenannten Erweiterungsboxen bietet. Diese Schnittstelle ist ein Sub-Bussystem auf LWL Basis den sogenannten IP-Link. Dieses leistungsfähige Sub-Bussytem kann bis zu 120 Erweiterungsboxen an einer Koppler Box verarbeiten.

Erweiterungsbox

Feldbusunabhängige Erweiterungsmodule, die nur an einer Koppler Box über IP-Link betrieben werden können.

SPS Box

Eine SPS Box unterscheidet sich von einer Koppler Box dadurch, dass sie in IEC 61131-3 programmierbar ist. Dadurch kann dieser Slave auch ohne Master autonom arbeiten, zum Beispiel für Steuerungs- oder Regelungsaufgaben.

2.3 Firm- und Hardware-Stand

Diese Dokumentation bezieht sich auf den zum Zeitpunkt ihrer Erstellung gültigen Hard- und Firmware-Stand. Die Eigenschaften werden weiterentwickelt und verbessert. Module älteren Fertigungsstandes können nicht die gleichen Eigenschaften haben wie Module neue Standes. Bestehende Eigenschaften bleiben jedoch erhalten und werden nicht geändert, so das diese Module immer durch neue ersetzt werden können.

Den Firm- und Hardware-Stand der Module können Sie anhand der mit einem *D* beginnenden Nummer auf der Seite des Moduls erkennen.

Syntax:

D. ww yy x y z u

ww - Kalenderwoche

yy - Jahr

x - Firmware-Stand der Busplatine

y - Hardware-Stand der Busplatine

z - Firmware-Stand der E/A-Platine

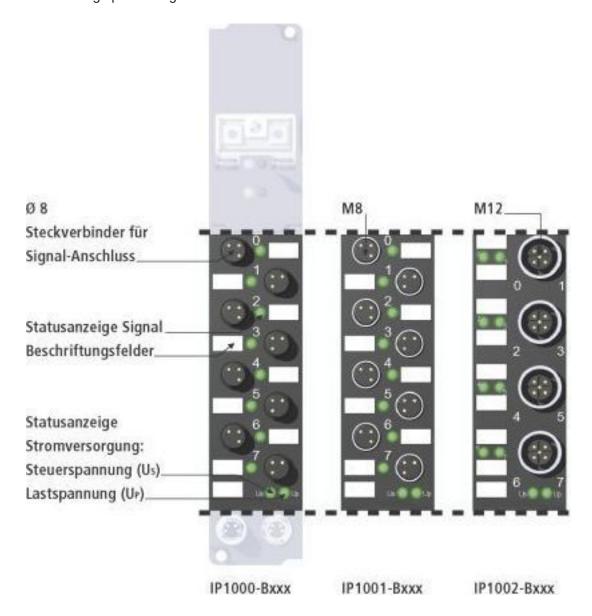
u - Hardware-Stand der E/A-Platine

Beispiel:

D.22081501

- Kalenderwoche 22
- des Jahres 2008
- Firmware-Stand Busplatine: 1
- Hardware Stand Busplatine: 5
- Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig)
- Hardware-Stand E/A-Platine: 1

3 E/A-Module


3.1 Modulbeschreibungen

3.1.1 Digitale Eingangsmodule

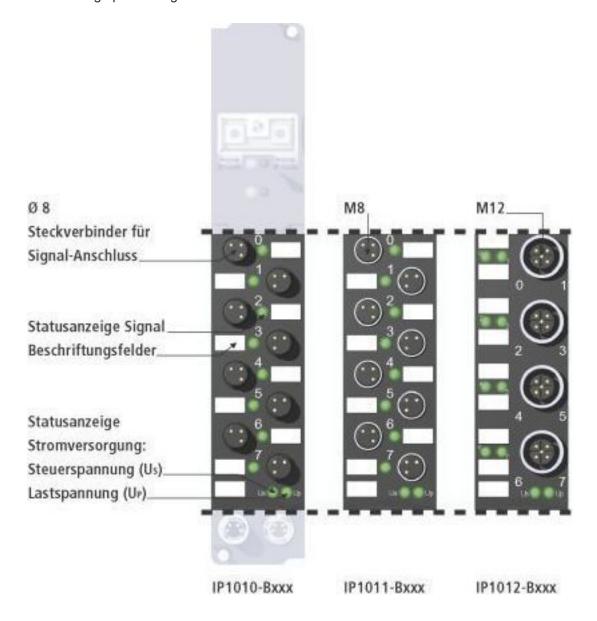
3.1.1.1 IP100x-Bxxx, IE100x

8 digitale Eingänge (Filter 3,0 ms) 24 V_{DC}

Die digitalen Eingangsmodule IP100x erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP1000), M8 Steckverbinder (IP1001) oder M12 Steckverbinder (IP1002). Die Sensoren werden aus der Steuerspannung $U_{\rm S}$ versorgt. Die Lastspannung $U_{\rm P}$ wird im Eingangsmodul nicht verwendet, sie kann jedoch zur Weiterleitung optional angeschlossen werden.

Technische Daten	IP1000-Bxxx, IE1000	IP1001-Bxxx, IE1001	IP1002-Bxxx, IE1002
Anzahl Eingänge	8		
Anschluss Eingänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder
Eingangsfilter	3,0 ms		
Nennspannung Eingänge	24 V _{DC} (20 V 29 V)		
Signalspannung '0'	-3 V 5 V (EN61131-2, Ty	yp 2)	
Signalspannung '1'	11 V 30 V (EN61131-2,	Тур 2)	
Eingangsstrom, Typ.	6 mA (EN61131-2, Typ 2)		
Sensorversorgung	aus Steuerspannung, max	. 0,5 A je Kanal, gesamt ku	rzschlussfest
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	8 Eingangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Steckerbelegung siehe <u>Anschlussplan [▶ 96]</u>.


Mapping siehe Mapping-Beschreibung [▶ 150].

3.1.1.2 IP101x-Bxxx, IE101x

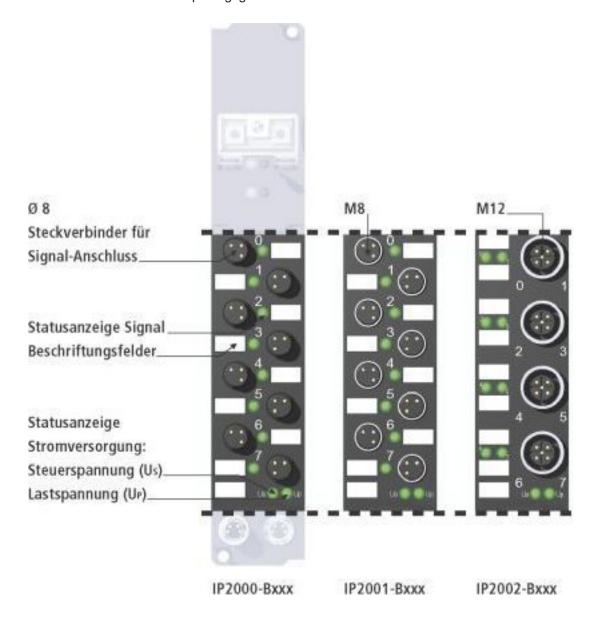
8 digital Eingänge 24 V_{DC.} Filter 0,2 ms

Die digitalen Eingangsmodule IP101x erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand über Leuchtdioden angezeigt, der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP1010), M8 Steckverbinder (IP1011) oder M12 Steckverbinder (IP1012). Die Sensoren werden aus der Steuerspannung $U_{\rm S}$ versorgt. Die Lastspannung $U_{\rm P}$ wird im Eingangsmodul nicht verwendet, sie kann jedoch zur Weiterleitung optional angeschlossen werden.

Technische Daten	IP1010-Bxxx / IE1010	IP1011-Bxxx / IE1011	IP1012-Bxxx / IE1012
Anzahl Eingänge	8	'	
Anschluss Eingänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder
Eingangsfilter	0,2 ms		
Nennspannung Eingänge	24 V _{DC} (20 V 29 V)		
Signalspannung '0'	-3 V 5 V (EN61131-2, Ty	yp 2)	
Signalspannung '1'	11 V 30 V (EN61131-2,	Тур 2)	
Eingangsstrom	typisch 6 mA (EN61131-2,	Typ 2)	
Sensorversorgung	aus Steuerspannung, max	imal 0,5 A je Kanal, gesam	t kurzschlussfest
Stromversorgung	Einspeisung: 1 x M 8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	8 Eingangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Steckerbelegung siehe <u>Anschlussplan [▶ 97]</u>.

Mapping siehe Mapping-Beschreibung [▶ 150].



3.1.2 Digitale Ausgangsmodule

3.1.2.1 IP200x-Bxxx, IE200x

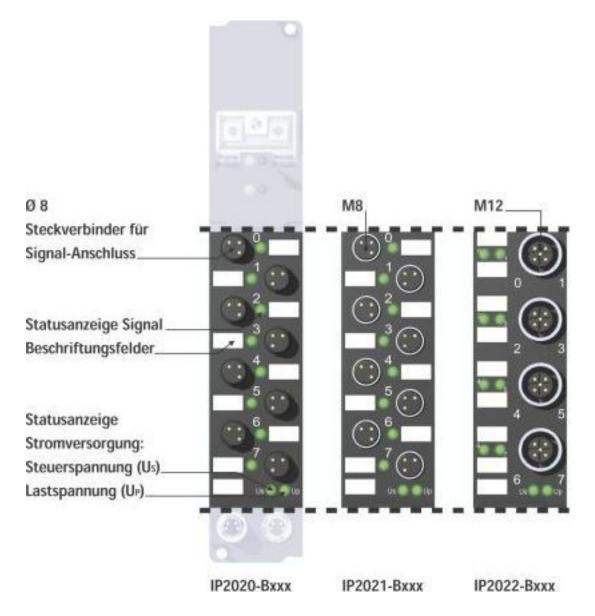
8 digitale Ausgänge 24 V_{DC} , I_{max} = 0,5 A

Die digitalen Ausgangsmodule IP200x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis 0,5 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2000), M8 Steckverbinder (IP2001) oder M12 Steckverbinder (IP2002). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.

Technische Daten	IP2000-Bxxx / IE2000	IP2001-Bxxx / IE2001	IP2002-Bxxx / IE2002
Anzahl Ausgänge	8		
Anschluss Ausgänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder
Lastart	ohmsch, induktiv, Lampen	last	
Nennspannung	24 V _{DC} (20 V 29 V)		
Ausgangsstrom	maximal 0,5 A je Kanal, ei	nzeln kurzschlussfest	
Kurzschlussstrom	typisch 1,5 A		
Stromaufnahme Lastspannung	typisch 20 mA pro Kanal		
Sensorversorgung	aus Steuerspannung, max	imal 0,5 A je Kanal, gesan	nt kurzschlussfest
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	8 Ausgangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Anschluss siehe Anschlussplan [▶ 99].

Mapping siehe <u>Mapping-Beschreibung</u> [▶ <u>153</u>].



3.1.2.2 IP202x-Bxxx, IE202x

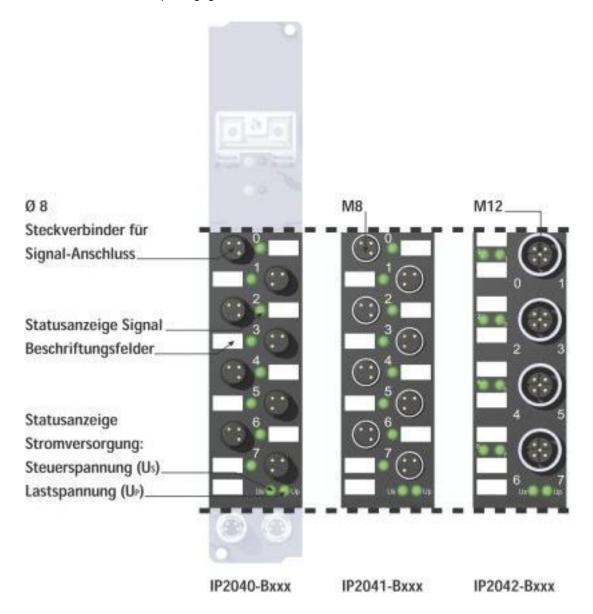
8 digitale Ausgänge 24 V_{DC} , I_{max} = 2,0 A (Summenstrom max. 4 A)

Die digitalen Ausgangsmodule IP202x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis jeweils 2 A , wobei der Gesamtstrom auf 4 A begrenzt ist. Damit eignen sich diese Module besonders für Anwendungen, bei denen nicht alle Ausgänge gleichzeitig aktiv sind oder bei denen nicht alle Aktuatoren Signalströme von 2 A benötigen. Der Signalzustand wird über Leuchtdioden angezeigt.

Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2020), M8 Steckverbinder (IP2021) oder M12 Steckverbinder (IP2022). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.

Technische Daten	IP2020-Bxxx / IE2020	IP2021-Bxxx / IE2021	IP2022-Bxxx / IE2022
Anzahl Ausgänge	8		
Anschluss Ausgänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder
Lastart	ohmsch, induktiv, Lampenl	last	
Nennspannung	24 V _{DC} (20 V 29 V)		
Ausgangsstrom	maximal 2,0 A je Kanal, ei	nzeln kurzschlussfest, Sum	nmenstrom maximal 4 A
Kurzschlussstrom	typisch 4,0 A		
Stromaufnahme Lastspannung	typisch 30 mA pro Kanal		
Sensorversorgung	aus Steuerspannung, max	imal 0,5 A je Kanal, gesam	nt kurzschlussfest
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	8 Ausgangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Anschluss siehe <u>Anschlussplan [▶ 100]</u>.


Mapping siehe <u>Mapping-Beschreibung</u> [▶ <u>153</u>].

3.1.2.3 IP204x-Bxxx, IE204x

8 digitale Ausgänge 24 V_{DC} , I_{max} = 2,0 A (Summenstrom max. 12A)

Die digitalen Ausgangsmodule IP204x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis jeweils 2 A, wobei der Gesamtstrom auf 12 A begrenzt ist. Die Ausgänge werden über drei Lastspannungskreise versorgt; damit entfällt bei diesen Modulen die Weiterleitung der Versorgungsspannung. Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2040), M8 Steckverbinder (IP2041) oder M12 Steckverbinder (IP2042). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.

Technische Daten	IP2040-Bxxx / IE2040	IP2041-Bxxx / IE2041	IP2042-Bxxx / IE2042	
Anzahl Ausgänge	8			
Anschluss Ausgänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder	
Lastart	ohmsch, induktiv, Lampen	last		
Nennspannung	24 V _{DC} (20 V 29 V)			
Ausgangsstrom	maximal 2,0 A je Kanal, ei - Kanäle 03: S 4 A - Kanäle 45: S 4 A - Kanäle 67: S 4 A	nzeln kurzschlussfest, Sum	menstrom 12 A	
Kurzschlussstrom	typisch 4,0 A			
Stromaufnahme Lastspannung	typisch 50 mA pro Kanal			
Sensorversorgung	aus Steuerspannung, max	imal 0,5 A je Kanal, gesamt	t kurzschlussfest	
Stromversorgung	Einspeisung: 2 x M8 Stecker, 4-polig Weiterleitung: keine			
Bits im Prozessabbild	8 Ausgangsbits			
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein			
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C			
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C			
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27			
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4			
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)			
Einbaulage	beliebig			

Anschluss siehe <u>Anschlussplan [▶ 101]</u>.

Mapping siehe <u>Mapping-Beschreibung</u> [▶ <u>153</u>].

25

3.1.2.4 IE2808


16 digitale Ausgänge 24 V_{DC} , I_{max} = 2,0 A (Summenstrom max. 4A)

Das digitale Ausgangsmodul IE2808 schaltet die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 16 Ausgänge verarbeiten Lastströme bis jeweils 0,5 A, wobei der Gesamtstrom auf 4 A begrenzt ist. Damit eignen sich diese Baugruppen besonders für Anwendungen, bei denen nicht alle Ausgänge gleichzeitig aktiv sind oder bei denen nicht alle Aktuatoren Signalströme von 0,5 A benötigen. Ein Ausgangskurzschluss wird erkannt und an die Steuerungsebene weitergeleitet.

Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt über eine 25-polige D-Sub-Buchse. Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.

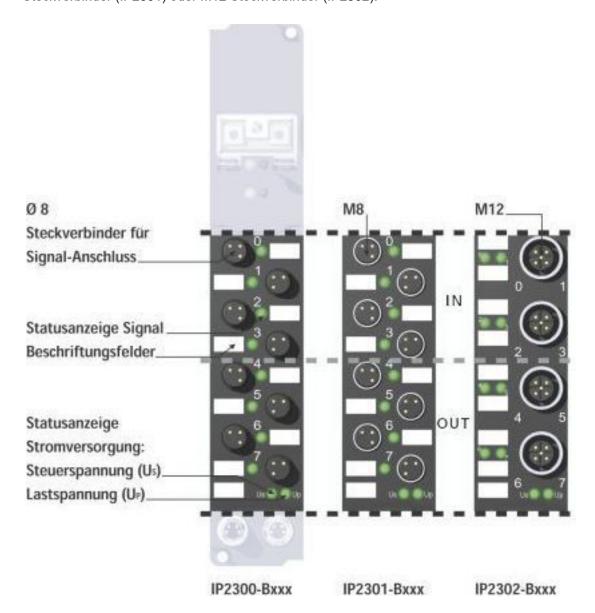
Über die Register R32 und R33 können Default-Werte aktiviert werden, d.h. diese Werte werden im Falle eines Kommunikationsverlustes angenommen.

Mit R32 wird diese Fehlerbehandlung aktiviert. In R33 wird der Wert (ONn oder OFF) für jeden Ausgang vorgegegben.

Technische Daten	IE2808-0000	IE2808-0001	
Anzahl Ausgänge	8		
Anschluss Ausgänge	D-Sub-Buchse, 25-polig, UNC-Gewi	inde	
Lastart	ohmsch, induktiv, Lampenlast		
Nennlastspannung	24 V _{DC} (20 V 29 V)		
Ausgangsstrom	max. 0,5 A je Kanal, einzeln kurzsch	nlussfest, Summenstrom max. 4 A	
Kurzschlussstrom	maximal 1,5 A		
Stromaufnahme Lastspannung	typisch 5 mA pro Kanal		
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	16 Ausgangsbits, optional: 16 Eingangsbits (Diagnose), Control-/ Status-Byte		
Rücksetzen der <u>Fehleranzeige</u> [▶ 200]	manuell automatisch		
Potenzialtrennung	Steuerspannung / Feldbus: ja, durch IP-Link Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Anschluss siehe <u>Anschlussplan [▶ 110]</u>.

Mapping siehe <u>Mapping-Beschreibung</u> [▶ 158].



3.1.3 Digitale Kombimodule

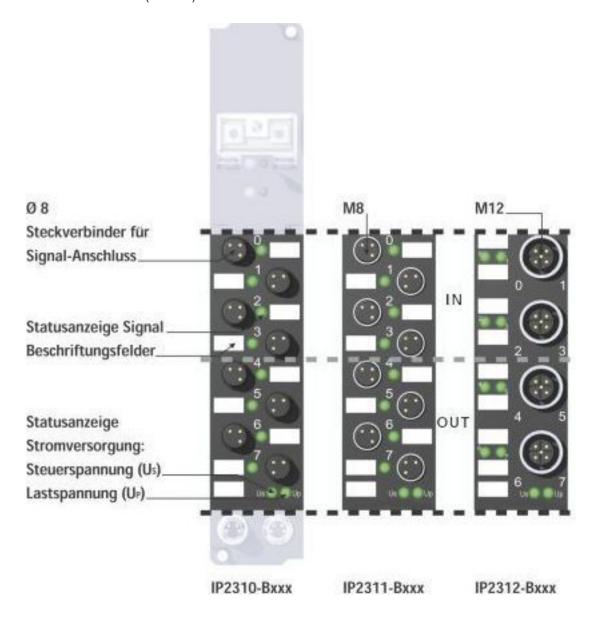
3.1.3.1 IP230x-Bxxx, IE230x

4 digitale Eingänge (Eingangsfilter 3,0 ms) und 4 digitale Ausgänge, 24 V_{DC} , I_{max} = 0,5 A

Die digitalen E/A-Module IP230x kombinieren 4 digitale Eingänge mit einem Eingangsfilter von 3 ms und 4 digitale Ausgänge auf einem Gerät. Die Ausgänge verarbeiten Lastströme bis 0,5 A, sie sind kurzschlussfest und verpolungsgeschützt. Der Signalzustand wird jeweils über Leuchtdioden angezeigt. Der Anschluss der Signale erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2300), M8 Schraub-Steckverbinder (IP2301) oder M12 Steckverbinder (IP2302).

Technische Daten	IP2300-Bxxx / IE2300	IP2301-Bxxx / IE2301	IP2302-Bxxx / IE2302	
Anzahl Ausgänge	4 Eingänge und 4 Ausgänge			
Anschluss Ausgänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder	
Eingangsfilter	3,0 ms			
Signale "0" / "1"	-3 5 V / 11 30 V, 6 mA	A Eingangsstrom (EN61131	-2, Typ 2)	
Lastart	ohmsch, induktiv, Lampenl	ast		
Nennlastspannung	24 V _{DC} (20 V 29 V)			
Ausgangsstrom	maximal 0,5 A je Kanal, ei	nzeln kurzschlussfest		
Kurzschlussstrom	typisch 1,5 A			
Stromaufnahme Lastspannung	typisch 20 mA pro Kanal	typisch 20 mA pro Kanal		
Sensorversorgung	aus Steuerspannung, maximal 0,5 A je Kanal, gesamt kurzschlussfest			
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig			
Bits im Prozessabbild	4 Eingangsbits und 4 Ausgangsbits			
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein			
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C			
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C			
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN	60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN	61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)			
Einbaulage	beliebig			

Anschluss siehe <u>Anschlussplan [▶ 102]</u>.


Mapping siehe Mapping-Beschreibung [▶ 154].

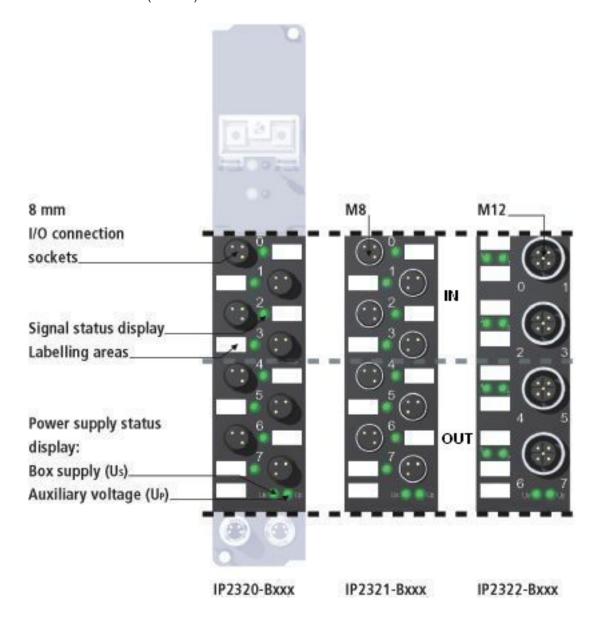
3.1.3.2 IP231x-Bxxx, IE231x

4 digitale Eingänge (Eingangsfilter 0,2 ms) und 4 digitale Ausgänge 24 V_{DC} , I_{max} = 0,5 A

Die digitalen E/A-Module IP231x kombinieren 4 digitale Eingänge mit einem Eingangsfilter von 0,2 ms und 4 digitale Ausgänge auf einem Gerät. Die Ausgänge verarbeiten Lastströme bis 0,5 A, sie sind kurzschlussfest und verpolungsgeschützt. Der Signalzustand wird jeweils über Leuchtdioden angezeigt. Der Anschluss der Signale erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2310), M8 Steckverbinder (IP2311) oder M12 Steckverbinder (IP2312).

Technische Daten	IP2310-Bxxx / IE2310	IP2311-Bxxx / IE2311	IP2312-Bxxx / IE2312
Anzahl Ausgänge	4 Eingänge und 4 Ausgänge		
Anschluss Ausgänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder
Eingangsfilter	0,2 ms		
Signale "0" / "1"	-3 5 V / 11 30 V, 6 mA Eingangsstrom (EN61131-2, Typ 2)		
Lastart	ohmsch, induktiv, Lampenlast		
Nennlastspannung	24 V _{DC} (20 V 29 V)		
Ausgangsstrom	maximal 0,5 A je Kanal, einzeln kurzschlussfest		
Kurzschlussstrom	typisch 1,5 A		
Stromaufnahme Lastspannung	typisch 20 mA pro Kanal		
Sensorversorgung	aus Steuerspannung, maximal 0,5 A je Kanal, gesamt kurzschlussfest		
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	4 Eingangsbits und 4 Ausgangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Anschluss siehe <u>Anschlussplan [▶ 103]</u>.


Mapping siehe Mapping-Beschreibung [▶ 154].

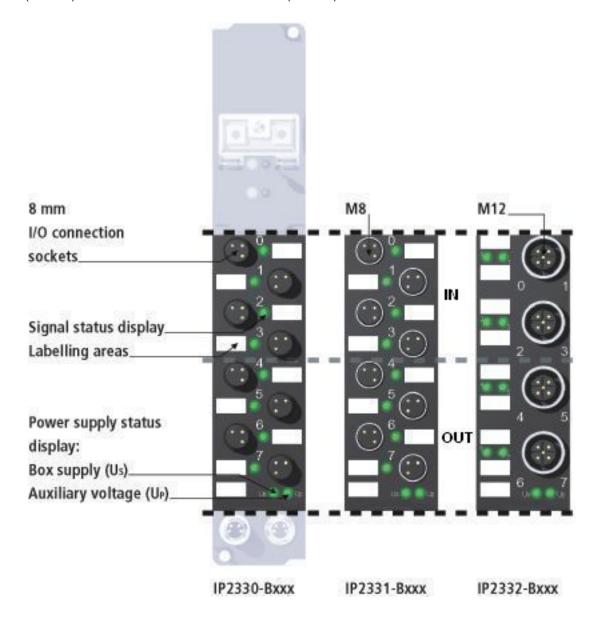
3.1.3.3 IP232x-Bxxx, IE232x

4 digitale Eingänge (Eingangsfilter 3,0 ms) und 4 digitale Ausgänge 24 $V_{\rm DC}$, $I_{\rm max}$ = 2,0 A, Summenstrom 4 A

Die digitalen E/A-Module IP232x kombinieren 4 digitale Eingänge mit einem Eingangsfilter von 3 ms und 4 digitale Ausgänge auf einem Gerät. Die Ausgänge verarbeiten Lastströme bis 2,0 A, sie sind kurzschlussfest und verpolungsgeschützt. Der Signalzustand wird jeweils über Leuchtdioden angezeigt. Der Anschluss der Signale erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2320), M8 Steckverbinder (IP2321) oder M12 Steckverbinder (IP2322).

Technische Daten	IP2320-Bxxx / IE2320	IP2321-Bxxx / IE2321	IP2322-Bxxx / IE2322
Anzahl Ausgänge	4 Eingänge und 4 Ausgänge		
Anschluss Ausgänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder
Eingangsfilter	3,0 ms		
Signale "0" / "1"	-3 5 V / 11 30 V, 6 mA Eingangsstrom (EN61131-2, Typ 2)		
Lastart	ohmsch, induktiv, Lampenlast		
Nennlastspannung	24 V _{DC} (20 V 29 V)		
Ausgangsstrom	max. 2,0 A je Kanal, einzeln kurzschlussfest, Summenstrom 4 A		
Kurzschlussstrom	typisch 4,0 A		
Stromaufnahme Lastspannung	typisch 30 mA pro Kanal		
Sensorversorgung	aus Steuerspannung, max. 0,5 A je Kanal, gesamt kurzschlussfest		
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	4 Eingangsbits und 4 Ausgangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Anschluss siehe <u>Anschlussplan [▶ 104]</u>.


Mapping siehe Mapping-Beschreibung [▶ 154].

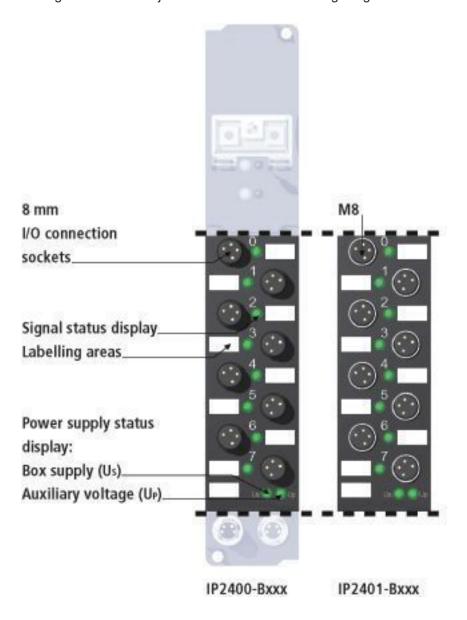
3.1.3.4 IP233x-Bxxx, IE233x

4 digitale Eingänge (Eingangsfilter 0,2 ms) und 4 digitale Ausgänge 24 $V_{\rm DC}$, $I_{\rm max}$ = 2,0 A, Summenstrom 4 A

Die digitalen E/A-Module IP233x kombinieren 4 digitale Eingänge mit einem Eingangsfilter von 0,2 ms und 4 digitale Ausgänge auf einem Gerät. Die Ausgänge verarbeiten Lastströme bis 2,0 A, sie sind kurzschlussfest und verpolungsgeschützt. Der Signalzustand wird jeweils über Leuchtdioden angezeigt. Der Anschluss der Signale erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2330), M8 Schraub-Steckverbinder (IP2331) oder M12 Schraub-Steckverbinder (IP2332).

Technische Daten	IP2330-Bxxx / IE2330	IP2331-Bxxx / IE2331	IP2332-Bxxx / IE2332
Anzahl Ausgänge	4 Eingänge und 4 Ausgänge		
Anschluss Ausgänge	Ø 8 Schnapp- Steckverbinder	M8 Steckverbinder	M12 Steckverbinder
Eingangsfilter	0,2 ms		
Signale "0" / "1"	-3 5 V / 11 30 V, 6 mA Eingangsstrom (EN61131-2, Typ 2)		
Lastart	ohmsch, induktiv, Lampenlast		
Nennlastspannung	24 V _{DC} (20 V 29 V)		
Ausgangsstrom	maximal 2,0 A je Kanal, einzeln kurzschlussfest, Summenstrom 4 A		
Kurzschlussstrom	typisch 4,0 A		
Stromaufnahme Lastspannung	typisch 30 mA pro Kanal		
Sensorversorgung	aus Steuerspannung, max. 2,0 A je Kanal, gesamt kurzschlussfest		
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	4 Eingangsbits und 4 Ausgangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)		
Einbaulage	beliebig		

Anschluss siehe <u>Anschlussplan [▶ 105]</u>.


Mapping siehe Mapping-Beschreibung [▶ 154].

3.1.3.5 IP2400-Bxxx, IE2400, IP2401-Bxxx, IE2401

8 digitale Eingänge (Eingangsfilter 3,0 ms) und 8 digitale Ausgänge, 24 V_{DC} , I_{max} = 0,5 A

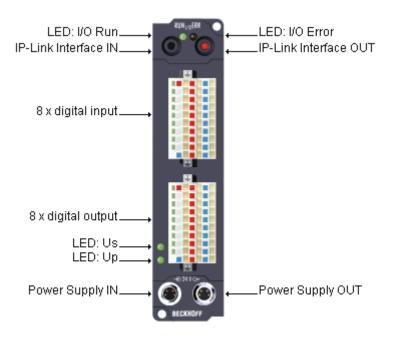
Die digitalen E/A-Module IP240x verfügen über 8 Kanäle, die wahlweise als Ein- oder Ausgang nutzbar sind. Damit passt sich das Gerät flexibel an die Applikationsanforderungen an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2400) oder M8 Schraub-Steckverbinder (IP2401), die jeweils vierpolig ausgeführt sind (getrennte Ein- und Ausgangspins). Damit lässt sich antivalente Sensorik direkt anschließen, für reine Ein- und Ausgänge stehen sowohl Adapterkabel als auch feldkonfektonierbare Steckverbinder zur Verfügung. Zudem können die Stromversorgungskabel direkt als Sensorkabel eingesetzt werden. Die Ausgänge verarbeiten Lastströme bis 0,5 A, sie sind kurzschlussfest und verpolungsgeschützt. Der Signalzustand wird jeweils über Leuchtdioden angezeigt.

Technische Daten	IP2400-Bxxx / IE2400	IP2401-Bxxx / IE2401	
Anzahl Ausgänge	8 Eingänge und 8 Ausgänge		
Anschluss Ausgänge	Ø 8 Schnapp-Steckverbinder	M8 Steckverbinder	
Eingangsfilter	3,0 ms		
Signale "0" / "1"	-3 5 V / 11 30 V, 6 mA Eingangsstrom (EN61131-2, Typ 2)		
Lastart	ohmsch, induktiv, Lampenlast		
Nennlastspannung	24 V _{DC} (20 V 29 V)		
Ausgangsstrom	maximal 0,5 A je Kanal, einzeln kurzschlussfest		
Kurzschlussstrom	typisch 1,5 A		
Stromaufnahme Lastspannung	typisch 20 mA pro Kanal		
Sensorversorgung	aus Steuerspannung, maximal 0,5 A je Kanal, gesamt kurzschlussfest		
Stromversorgung	Einspeisung: 1 x M 8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig		
Bits im Prozessabbild	8 Eingangsbits und 8 Ausgangsbits		
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein		
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C		
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2	-27	
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6	-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	
Einbaulage	beliebig		

Anschluss siehe <u>Anschlussplan [▶ 106]</u>.

Mapping siehe <u>Mapping-Beschreibung</u> [▶ <u>155</u>].

3.1.3.6 IE2403


8 digitale Eingänge (Eingangsfilter 3,0 ms) und 8 digitale Ausgänge, 24 V_{DC} , I_{max} = 0,5 A

Das digitale Kombimodul IE2403 verfügt über 16 Kanäle mit 8 Ein- und 8 Ausgängen. Das Gerät passt sich flexibel an die Applikationsanforderungen an. Die Ausgänge stellen Lastströme bis 0,5 A zur Verfügung, Sie sind kurzschlussfest und verpolungsgeschützt. Der Signalanschluss erfolgt über KM-Steckverbinder mit Federkrafttechnik. Die KM-Steckverbinder stehen optional in 1- und 3-poliger Ausführung zur Verfügung. Die Baugruppe wird ohne KM-Steckverbinder ausgeliefert.

HINWEIS

Achtung

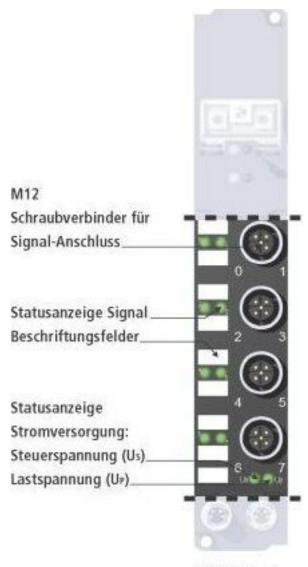
Das Kombimodul IE2403 entspricht der Schutzart IP20. Es ist dazu gedacht innerhalb von Schalttafeln, Bedientableaus oder Schaltkästen eingesetzt zu werden um deren Signale in den IP-Link zu integrieren. Das Kombimodul IE2403 entspricht nicht den Schutzarten IP65/IP67!

Feldbus Box E/A-Module Version: 2.0.1 37

Technische Daten	IE2403
Anzahl Kanäle	16 (8 Eingänge und 8 Ausgänge)
Anschluss Eingänge	Über KM-Steckverbinder ZS2001 (nicht im Lieferumfang des IE2403 enthalten). Bestellen Sie die gewünschte Variante für Ein- oder Dreileiteranschlusstechnik (siehe <u>Bestellangaben</u> [• 125] und technische Daten [• 126]).
Eingangsfilter	3,0 ms
Signale "0" / "1"	-3 5 V / 11 30 V, 6 mA Eingangsstrom (EN61131-2, Typ 2)
Sensorversorgung	aus Steuerspannung, maximal 0,5 A je Kanal, gesamt kurzschlussfest
Anschluss Ausgänge	Über KM-Steckverbinder ZS2001 (nicht im Lieferumfang des IE2403 enthalten). Bitte bestellen Sie die gewünschte Variante für Einoder Dreileiteranschlusstechnik (siehe <u>Bestellangaben [▶ 125]</u> und <u>technische Daten [▶ 126]</u>).
Nennlastspannung	24 V _{DC} (20 V 29 V)
Lastart	ohmsch, induktiv, Lampenlast
Ausgangsstrom	maximal 0,5 A je Kanal, einzeln kurzschlussfest
Kurzschlussstrom	typisch 1,5 A
Stromaufnahme Lastspannung	typisch 20 mA pro Kanal
Stromversorgung	Einspeisung: 1 x M 8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	8 Eingangsbits und 8 Ausgangsbits
Potenzialtrennung	Steuerspannung / Feldbus: ja, durch IP-Link Kanäle / Steuerspannung: nein zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	beliebig

Anschluss siehe <u>Anschlussplan [▶ 107]</u>.

Mapping siehe Mapping-Beschreibung [▶ 155].



3.1.4 Analoge Eingangsmodule

3.1.4.1 IP3102-Bxxx, IE3102

4 analoge Eingänge, ±10 V

Die analoge Eingangsmodule IP3102 verarbeitet Signale im Bereich von -10 V bis +10 V. Die Spannung wird mit einer Auflösung von 16 Bit digitalisiert und galvanisch getrennt zum übergeordneten Automatisierungsgerät transportiert. Die 4 Eingangskanäle sind Differenzeingänge und besitzen ein gemeinsames, internes Massepotenzial. Die eingespeiste Lastspannung (frei wählbar bis 30 $V_{\rm DC}$) wird für die Sensorversorgung durchgeleitet. Somit können z. B. Mess-Potentiometer mit 10 $V_{\rm DC}$ von einer externen Spannungsquelle versorgt werden. Das Modul verfügt über vielfältige Leistungsmerkmale, wobei die Default-Werte so gewählt wurden, dass eine Konfiguration in der Regel nicht erforderlich ist. Die Eingangsfilter und damit verbunden die Wandlungszeiten sind in weiten Bereichen einstellbar, mehrere Datenausgabeformate stehen zur Wahl. Die Skalierung der Eingänge kann bei Bedarf verändert werden, eine automatische Grenzwertüberwachung steht ebenfalls zur Verfügung. Parametriert wird wahlweise über den Feldbus oder mit der Konfigurations-Software KS2000.

IP3102-Bxxx

Technische Daten	IP3102-Bxxx / IE3102
Anzahl Kanäle	4 analoge Eingänge
Anschluss Ausgänge	M12 Steckverbinder
Eingangsbereich Nennwert	-10 V +10 V
Eingangswiderstand	> 100 kΩ
Gleichtaktspannung	maximal 35 V
Wandlungszeit	250 ms (default), konfigurierbar bis 5 ms
Auflösung	15 Bit + Vorzeichen
Relativer Messfehler	< ± 0,3% vom Messbereichsendwert
Eingangsfilter	konfigurierbar
Sensorversorgung	aus der Lastspannung U _P , DC, frei wählbar bis 30 V
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	E: 4 x 16 Bit, optional E/A: 4 x 8 Bit Control/Status + 4 x 16 Bit
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: 500 V zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe <u>Anschlussplan [▶ 111]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ <u>206</u>].

Mapping siehe Mapping-Beschreibung [▶ 159].

3.1.4.2 IP3112-Bxxx, IE3112

4 analog Eingänge, 0 bis 20 mA

Das analoge Eingangsmodul IP3112 verarbeitet Signale im Bereich von 0 bis 20 mA. Der Eingangsstrom wird mit einer Auflösung von 16 Bit (Default: 15 Bit) digitalisiert und galvanisch getrennt zum übergeordneten Automatisierungsgerät transportiert. Die 4 Eingangskanäle sind Differenzeingänge und besitzen ein gemeinsames, internes Massepotential. Die eingespeiste Lastspannung (frei wählbar bis 30 $V_{\rm DC}$) wird für die Sensorversorgung durchgeleitet. Das Modul verfügt über vielfältige Leistungsmerkmale, wobei die Default-Werte so gewählt wurden, dass eine Konfiguration in der Regel nicht erforderlich ist. Die Eingangsfilter und damit verbunden die Wandlungszeiten sind in weiten Bereichen einstellbar, mehrere Datenausgabeformate stehen zur Wahl. Die Skalierung der Eingänge kann bei Bedarf verändert werden, eine automatische Grenzwertüberwachung steht ebenfalls zur Verfügung. Parametriert wird wahlweise über den Feldbus oder mit dem Konfigurations-Software KS2000tool über die Konfigurationsschnittstelle. Die Parameter werden auf dem Modul gespeichert.

Feldbus Box E/A-Module Version: 2.0.1 41

Technische Daten	IP3112-Bxxx / IE3112
Anzahl Kanäle	4 analoge Eingänge
Anschluss Ausgänge	M12 Steckverbinder
Eingangsbereich Nennwert	0 20 mA
Eingangswiderstand	80 Ω Messwiderstand
Gleichtaktspannung	maximal 35 V
Wandlungszeit	140 ms
Auflösung	15 Bit + Vorzeichen
Relativer Messfehler	< ± 0,3% vom Messbereichsendwert
Eingangsfilter	konfigurierbar
Sensorversorgung	aus der Lastspannung U _P , DC, frei wählbar bis 30 V
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	E: 4 x 16 Bit, optional E/A: 4 x 8 Bit Control/Status + 4 x 16 Bit
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: 500 V zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe <u>Anschlussplan</u> [▶ 112].

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ <u>213</u>].

Mapping siehe <u>Mapping-Beschreibung</u> [▶ 161].

3.1.4.3 IP3202-Bxxx, IE3202

4 Analoge Eingänge für PT100 (RTD)

Das analoge Eingangsmodul IP3202 erlaubt den direkten Anschluss von Widerstandssensoren. Die Schaltung des Moduls kann Sensoren in 2-, 3- und 4-Leiter-Anschlusstechnik betreiben. Die Linearisierung über den gesamten Temperaturbereich wird durch einen Mikroprozessor realisiert. Der Temperaturbereich ist frei wählbar. Das Modul kann auch zur Widerstandsmessung eingesetzt werden, die Ausgabe erfolgt dann direkt in Ohm. Die Standardeinstellung des Moduls ist: Auflösung 0,1°C im Temperaturbereich der PT100-Sensoren in 4-Leiteranschlusstechnnik. Sensorstörungen, wie z. B. Drahtbruch werden über Error-LEDs angezeigt. Das Modul verfügt über vielfältige Features, wobei die Default-Werte so gewählt wurden, dass ein Konfiguration in der Regel nicht erforderlich ist. Die Eingangsfilter und damit verbunden die Wandlungszeiten sind in weiten Bereichen einstellbar, mehrere Datenausgabeformate stehen zur Wahl. Die Skalierung der Eingänge kann bei Bedarf verändert werden, eine automatische Grenzwertüberwachung steht ebenfalls zur Verfügung. Parametriert wird wahlweise über den Feldbus oder mit dem Softwaretool KS2000.

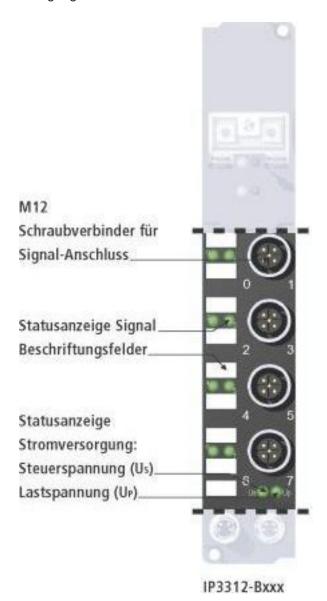
Feldbus Box E/A-Module Version: 2.0.1 43

Technische Daten	IP3202-Bxxx / IE3202
Anzahl Kanäle	4 analoge Eingänge
Anschluss Eingänge	M12 Steckverbinder
PT100-Anschlussart	2-, 3- und 4-Leiter (4-Leiter default)
Eingangsbereich Nennwert	PT100, PT200, PT500, PT1000, Ni100, Ni120, Ni1000, Widerstandsmessung (z.B. Potentiometer)
Auflösung	0,1°C pro Digit
Mess-Strom	typisch 0,5 A
Wandlungszeit	260 ms
Messfehler	< +/-1°C
Eingangsfilter	4 Varianten
Sensorversorgung	aus der Lastspannung U _s
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	E: 4 x 16 Bit, optional E/A: 4 x 8 Bit Control/Status + 4 x 16 Bit
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: 500 V zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe <u>Anschlussplan [▶ 113]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ <u>219</u>].

Mapping siehe Mapping-Beschreibung.



3.1.4.4 IP3312-Bxxx, IE3312

4 analoge Eingänge für Thermoelemente

Das analoge Eingangsmodul IP3312 erlaubt den direkten Anschluss von vier Thermoelementen. Die Schaltung des Moduls kann Thermoelement-Sensoren in 2-Leitertechnik betreiben. Die Linearisierung über den gesamten Temperaturbereich wird durch einen Mikroprozessor realisiert. Der Temperaturbereich ist frei wählbar. Das Modul kann auch zur Spannungsmessung (mV) eingesetzt werden. Die Standardeinstellung des Moduls ist: Auflösung 0,1°C im Temperaturbereich der Typ K-Sensoren. Sensorstörungen, wie z. B. Drahtbruch werden über Error-LEDs angezeigt. Die Kaltstellenkompensation erfolgt durch Temperaturmessung im Anschluss-Stecker. Somit können Standard Verlängerungsleitungen angeschlossen werden.

Das Modul verfügt über vielfältige Features, wobei die Default-Werte so gewählt wurden, dass ein Konfiguration in der Regel nicht erforderlich ist. Die Eingangsfilter und damit verbunden die Wandlungszeiten sind in weiten Bereichen einstellbar, mehrere Datenausgabeformate stehen zur Wahl. Die Skalierung der Eingänge kann bei Bedarf verändert werden, eine automatische Grenzwertüberwachung steht ebenfalls zur Verfügung. Parametriert wird wahlweise über den Feldbus oder mit der Parametrierungs-Software KS2000.

Feldbus Box E/A-Module Version: 2.0.1 45

Technische Daten	IP3312-Bxxx / IE3312
Anzahl Kanäle	4 analoge Eingänge
Anschluss Eingänge	M12 Steckverbinder
Eingangsbereich Nennwert	Typ J, K, L, B, E, N, R, S, T, U (Voreingestellt Typ K), mV Messung
Auflösung	0,1°C pro Digit
Wandlungszeit	260 ms
Messfehler	< +/- 0,5% (vom Messbereichsendwert)
Eingangsfilter	4 Varianten
Kaltstellenkompensation	über ZS2000-3712
Sensorversorgung	aus der Lastspannung U _s
Stromversorgung	Einspeisung: 1 x M 8 Stecker, 4-polig Weiterleitung: 1 x M 8 Buchse, 4-polig
Bits im Prozessabbild	E: 4 x 16 Bit, optional E/A: 4 x 8 Bit Control/Status + 4 x 16 Bit
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: 500 V zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe <u>Anschlussplan [▶ 115]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [<u>> 228]</u>.

Mapping siehe Mapping-Beschreibung.

3.1.5 Analoge Ausgangsmodule

3.1.5.1 IP4112-Bxxx, IE4112

HINWEIS

U_P nicht ohne U_S anlegen

Falls Sie die Versorgungsspannung U_P anlegen, bevor U_S angelegt wurde, geben die Analog-Ausgänge ggf. unerwünschte Stromsignale aus.

4 analoge Ausgänge, 0 bis 20 mA

Das analoge Ausgangsmodul IP/IE4112 erzeugt analoge Ausgangssignale im Bereich von 0 bis 20 mA. Der Strom wird mit einer Auflösung von 15 Bit (Default) galvanisch getrennt in die Prozessebene gespeist. Unter Verzicht auf die Übertragung des Vorzeichens kann auch eine Auflösung von 16 Bit gewählt werden. Die Skalierung der Ausgänge kann bei Bedarf verändert werden.

Die 4 Ausgangskanäle besitzen ein gemeinsames Massepotential mit der Versorgung 24 V_{DC} . Die Ausgangstreiber werden aus der Steuerspannung gespeist. Die eingespeiste Lastspannung (frei wählbar bis $30\ V_{DC}$) wird für die Aktuatorversorgung durchgeleitet.

Technische Daten	IP4112-Bxxx, IE4112
Anzahl Kanäle	4
Anschluss Ausgänge	M12-Steckverbinder
Ausgangsbereich	0/420 mA
Bürdenwiderstand	< 500 Ω
Auflösung	15 Bit, konfigurierbar 16 Bit
Wandlungszeit	< 4 ms
Genauigkeit	< ± 0,1% vom Messbereichsendwert
Aktuatorversorgung	aus Lastspannung U _P
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	A: 4 x 16 Bit Daten, optional: 4 x 8 Bit Control/Status
Potenzialtrennung	Steuerspannung / Feldbus: abhängig vom Bussystem Kanäle / Steuerspannung: 500 V zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C 55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C + 85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe <u>Anschluss [▶ 116]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [<u>▶ 234</u>].

Mapping siehe <u>Mapping-Beschreibung</u> [▶ 167].



3.1.5.2 IP4132-Bxxx, IE4132

4 analoge Ausgänge, -10 V bis +10 V

Das analoge Ausgangsmodul IP/IE4132 erzeugt analoge Ausgangssignale im Bereich von -10 V bis +10 V. Die Spannung wird mit einer Auflösung von 16 Bit galvanisch getrennt zur Prozessebene gespeist. Die Skalierung der Ausgänge kann bei Bedarf verändert werden.

Die 4 Ausgangskanäle besitzen ein gemeinsames Massepotential mit der Versorgung 24 V_{DC} . Die Ausgangstreiber werden aus der Steuerspannung gespeist. Die eingespeiste Lastspannung (frei wählbar bis $30\ V_{DC}$) steht zur Aktuatorversorgung zur Verfügung.

II TIJA DAAA

Technische Daten	IP4132-Bxxx
Anzahl Kanäle	4
Anschluss Ausgänge	M12 Steckverbinder
Ausgangsbereich	- 10 V / 0 V 10 V
Bürdenwiderstand	> 5 kΩ
Auflösung	16 Bit
Wandlungszeit	< 4 ms
Genauigkeit	< ± 0,1% vom Messbereichsendwert
Aktuatorversorgung	aus Lastspannung U _P
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	A: 4 x 16 Bit Daten, optional: 4 x 8 Bit Control/Status
Potenzialtrennung	Steuerspannung / Feldbus: abhängig vom Bussystem Kanäle / Steuerspannung: ja zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C 55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C + 85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe <u>Anschlussplan [▶ 117]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ <u>239</u>].

Mapping siehe Mapping-Beschreibung. [▶ 242]

Gewicht und Abmessungen siehe Seite Abmessungen [\(\bullet_{67}\)].

3.1.6 Sonderfunktionsmodule

3.1.6.1 IP1502-Bxxx, IE1502

Zähler Modul

Das Zählermodul verfügt über zwei schnelle Zähler bis 100 kHz. Es zählt binäre Impulse und transportiert den Zählerstand zum übergeordneten Automatisierungsgerät. Über den Eingang V/R sind die Zähler zwischen Vorwärts- und Rückwärtszählen (32 Bit) umschaltbar. Über die Torsignale (Gate-Eingänge) lassen sich die Zähler triggern: abhängig vom Gate-Eingangspegel wird die Zählfunktion unterbunden bzw. aktiviert. Die Ausgänge können abhängig vom Zählerstand schalten oder pulsen und lassen sich somit als schnelle Steuersignale für Feldgeräte nutzen. Von der Steuerung aus können der Zählerstand gesetzt, die Zählfunktionen gestartet und unterbunden sowie die Ausgänge gesetzt werden. Das Modul zeigt den Signalzustand der Ein- und Ausgänge durch Leuchtdioden an.

Feldbus Box E/A-Module Version: 2.0.1 51

Technische Daten	IP1502-Bxxx / IE1502
Anzahl der Zähler	2 mit je 32 Bit Zählertiefe
Schaltfrequenz	100 kHz (2 kHz bei der Umschaltung von Vorwärts/ Rückwärts)
Anschluss Signale	M12 Steckverbinder
Anzahl Eingänge	2 Zählereingänge, 2 Gate-Eingänge, 2 Vorwärts-/ Rückwärtsumschalter
Nennspannung Eingänge	24 V _{DC} (20 V 29 V)
Signalspannung "0"	-3 V 5 V (EN61131-2, Typ 2)
Signalspannung "1"	11 V 30 V (EN61131-2, Typ 2)
Anzahl der Ausgänge	pro Zähler ein Ausgang, maximal 0,5 A, kurzschlussfest
Sensorversorgung	aus der Steuerspannung, maximal 0,5 A gesamt, kurzschlussfest
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	64 Ausgangsbits (2 x 32) und 64 Eingangsbits (2 x 32) für Prozessdaten, 8 Ausgangsbits für Control-Byte und 8 Eingangsbits für Status-Byte
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Steckerbelegung siehe <u>Anschlussplan [▶ 98]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ 183].

Mapping siehe <u>Mapping-Beschreibung</u> [▶ 151].

53

3.1.6.2 IP2512-Bxxx, IE2512

2-Kanal Pulsweiten Ausgang 24 V_{DC}

Die Ausgänge der Module IP25x2 modulieren ein binäres Signal in der Pulsweite. Das Takt- und Pausenverhältnis wird durch einen 16-Bit-Wert vom Automatisierungsgerät vorgegeben. Die Ausgangsstufe ist überlast- und kurzschlusssicher, der maximalen Ausgangsstrom beträgt 2,5 A je Kanal. Neben der Betriebsart Pulsweitenmodulation können die Ausgänge auch frequenzmoduliert oder zur Schrittmotoransteuerung mit Puls-Richtungsvorgabe betrieben werden. Die Module enthalten zwei Kanäle, die ihren Signalzustand durch Leuchtdioden anzeigen. Die LEDs sind mit den Ausgängen getaktet und zeigen durch ihre Helligkeit das Taktverhältnis an.

IP2512-Bxxx

Technische Daten	IP2512-Bxxx / IE2512
Anzahl der Ausgänge	2
Anschluss Signale	M12 Steckverbinder
Lastart	ohmsch, induktiv
Nennlastspannung	24 V _{DC} (-15%/+20%)
Ausgangsstrom	maximal 2,5 A je Kanal, einzeln kurzschlussfest
Grundfrequenz	2 Hz 80 kHz, Default: 250 Hz
Tastverhältnis	0 % 100 % (T _{on} > 750 ns, T _{off} > 500 ns)
Auflösung	maximal 10 Bit
Freilaufdiode (Ausgang)	ja
Stromversorgung	Einspeisung: 1 x M 8 Stecker, 4-polig Weiterleitung: 1 x M 8 Buchse, 4-polig
Bits im Prozessabbild	2 x 16 Ausgangsbits für Prozessdaten, 2 x 8 Ausgangsbits für Control-Bytes und 2 x 8 Eingangsbits für Status-Bytes
Potenzialtrennung	Steuerspannung / Feldbus: ja Kanäle / Steuerspannung: nein zwischen den Kanälen: nein
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Steckerbelegung siehe Anschlussplan [> 109].

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ 191].

Mapping siehe Mapping-Beschreibung [▶ 156].

Gewicht und Abmessungen siehe Seite Abmessungen [\(\bullet_{67}\)].

3.1.6.3 IP5009-Bxxx, IE5009

1-Kanal SSI-Geber Interface

Das SSI-Interface Modul IP5009 dient zum direkten Anschluss eines SSI-Gebers. Die Versorgung des Gebers erfolgt über das SSI-Interface. Die Schnittstellenschaltung gibt zum Auslesen des Gebers ein Taktsignal aus und stellt der Steuerung den einlaufenden Datenstrom als Datenwort im Prozessabbild zur Verfügung. Das Modul gibt die Daten wahlweise in Dual-Zahlen (binär) umgewandelt oder Graycode aus. Die Drehrichtungsanpassung ist konfigurierbar. Unterschiedliche Betriebsarten, Übertragungsfrequenzen und Bitbreiten können über Kontrollregister dauerhaft eingestellt werden.

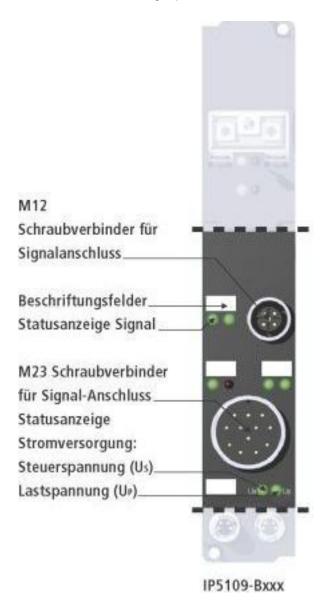
Technische Daten	IP5009-Bxxx / IE5009
Anzahl der Kanäle	1
Anschluss Encoder	M23 Steckverbinder, 12-polig
Signalart	Differenzsignal (RS485)
Geberversorgung	24 V _{DC} , aus Lastspannung
Übertragungsrate	einstellbar bis 1 MHz, 250 kHz voreingestellt
serieller Eingang	24 Bit (einstellbar)
Datenrichtung	lesen
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	32 Eingangsbits für Prozessdaten, optional: 8 Ausgangsbits für Control-Byte und 8 Eingangsbits für Status-Byte
Potenzialtrennung	abhängig vom Bussystem
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Steckerbelegung siehe <u>Anschlussplan [▶ 118]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ 244].

Mapping siehe <u>Mapping-Beschreibung</u> [▶ 171].

Maximale Ausgangsleistung siehe <u>Derating</u> [▶ 194].


3.1.6.4 IP5109-Bxxx, IE5109

1-Kanal Inkremental Encoder-Interface 1 MHz

Das Modul IP5109 ist ein Interface zum direkten Anschluss von Inkremental-Encodern mit Differenzeingängen (RS485/5V) oder Einfacheingängen. Ein 16 Bit Zähler mit Quadraturdecoder sowie ein 16 Bit Latch für den Nullimpuls können gelesen, gesetzt oder aktiviert werden. Die Eingänge können wahlweise als Komplementär- oder Einfacheingänge genutzt werden.

Am Status Eingang des Interfaces kann, falls vorhanden, der Störmelde-Ausgang des Encoders angeschlossen werden. Eine Periodendauermessung mit einer Auflösung von 200 ns ist möglich. Der Tor-Eingang (Gate) erlaubt das Sperren des Zählers (High = Stop).

Über den Latch-Eingang wird mit einer steigenden Flanke vom Encoder oder über einen externen Sensor der aktuelle Zählerwert gespeichert.

Technische Daten	IP5109-Bxxx / IE5109
Anzahl der Kanäle	1
Anschluss Encoder	M23 Steckverbinder, 12-polig
Anschluss Gate/Latch	M12 Steckverbinder
Sensorversorgung	aus Steuerspannung, maximal 0,5 A, gesamt kurzschlussfest
Zähler	16 Bit binär
Geberversorgung	5 V _{DC}
Grenzfrequenz	1 MHz (bei 4-fach Auswertung)
Quadraturdecoder	1-, 2-, 4-fach Auswertung
Nullimpuls-Latch	16 Bit
Befehle	Lesen, Setzen, Aktivieren
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	E/A: 2 x 16 Bit Daten, 1 x 8 Bit Control/Status
Potenzialtrennung	abhängig vom Bussystem
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Steckerbelegung siehe <u>Anschlussplan [▶ 119]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [<u>▶ 249</u>].

Mapping siehe Mapping-Beschreibung [▶ 173].

3.1.6.5 IP5209-Bxxx (1Vss), IP5209-Bxxx-1000 (11μAss)

1-Kanal SinCos Encoder-Interface

Das Sinus-Cosinus Modul IP5209 dient als Interface zum direkten Anschluss eines Mess-Sensors z.B. eines Messtasters oder Encoders mit sinusförmigem Spannungsausgang 1Vss bzw. 11µAss an den übergeordneten Feldbus. Das Mess-Signal wird aufbereitet, interpoliert und als 32 Bit Wert zur Verfügung gestellt. Eine Signalperiode wird mit 10 Bit, d.h. 1024 Schritten aufgelöst. Die Interpolationsrate kann über das Register R35 geändert werden. Eine Zählrichtungsänderung kann über Register R32 durchgeführt werden. Die Referenzmarke wird ebenfalls in einem 32 Bit Wert gespeichert. Der aktuelle Zählwert und der Wert der Referenzmarke können gelesen und auf Null gesetzt werden. Ebenso ist ein Setzen des Zählwertes möglich. Die Grenzfrequenz für die Messsignaleingänge beträgt 100 kHz.

Die Verfahr- bzw. Drehgeschwindigkeit kann durch Vorgabe eines Grenzwertes überwacht werden. Wird dieser Grenzwert überschritten, wird ein Fehlerbit gesetzt.

Technische Daten	IP5209-Bxxx (1Vss), IP5209-Bxxx-1000 (11μAss)
Anzahl der Zähler	1
Anschluss Encoder	M23 Steckverbinder, 12-polig
Sensorversorgung	5 V _{DC} aus Steuerspannung, maximal 0,5 A
Grenzfrequenz	100 kHz (Abtastung der Eingangssignale mit 500 kHz)
Auflösung	10 Bit, 1024 Schritte je Periode
Befehle	Zählwert löschen, Zählwert setzen, Zählrichtung ändern, Referenzmarken-Latch, Skalierung des Messwertes
Stromversorgung	Einspeisung: 1 x M8 Stecker, 4-polig Weiterleitung: 1 x M8 Buchse, 4-polig
Bits im Prozessabbild	E/A: 2 x 32 Bit Daten (alternativ 1 x 32 Bit), 1 x 8 Bit Control/Status
Potenzialtrennung	abhängig vom Bussystem
Zulässige Umgebungstemperatur im Betrieb	0°C +55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Steckerbelegung siehe <u>Anschlussplan [▶ 120]</u>.

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ <u>255]</u>.

Mapping siehe Mapping-Beschreibung [▶ 175].

3.1.7 Gateway-Module

3.1.7.1 IP6002-Bxxx, IE6002

1-Kanal RS232-Gateway

Das Schnittstellen-Modul IP/IE6002 ermöglicht den Anschluss von Geräten mit einer RS232-Schnittstelle. Die Schnittstelle arbeitet normkonform nach CCITT V.28/DIN 66 259-1. Das Modul überträgt die Daten volltransparent zum überlagerten Automatisierungsgerät, wobei der Datentransfer über den Feldbus mit einem einfachen Handshake-Protokoll abgewickelt wird. Dieses hat keinen Einfluss auf das Protokoll der seriellen Schnittstelle. Der aktive serielle Kommunikationskanal arbeitet unabhängig vom überlagerten Bussystem im Vollduplex-Betrieb mit bis zu 19200 Baud, wobei 128 Byte Empfangs- und 16 Byte Sendepuffer zur Verfügung stehen. Die RS323-Schnittstelle garantiert hohe Störsicherheit durch galvanisch getrennte Signale.

Feldbus Box E/A-Module Version: 2.0.1 61

Technische Daten	IP6002-Bxxx, IE6002
Anzahl Kanäle	1 TxD und RxD, vollduplex
Übertragungsrate	1200 19200 Baud, 9600 Baud (8 Daten-Bits, no parity, ein Stop Bit)
Anschluss RS 232	5 Pin M12 Buchse
Bitverzerrung	< 3 %
RS 232 Leitungslänge	maximal 15 m
Signalspannung LOW	3 V 18 V
Signalspannung HIGH	-18 V3 V
Datenpuffer	128 Byte Empfangs und 16 Byte Sendepuffer
Bytes im Prozessabbild	E/A: 5 Byte Nutzdaten,1 Byte Control/Status
Potenzialtrennung	Steuerspannung / Feldbus: abhängig vom Bus- System RS232 / Steuerspannung: 500 V
Zulässige Umgebungstemperatur im Betrieb	0°C 55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C + 85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe Anschlussplan [▶ 121].

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ 262].

Mapping siehe Mapping-Beschreibung [▶ 177].

3.1.7.2 IP6012-Bxxx, IE6012

1-Kanal TTY-Gateway

Das Modul IP/IE6012 ermöglicht den Anschluss von Geräten mit einer 20 mA Strom-Schnittstelle. Die Schnittstelle arbeitet im passiven Betrieb. Das Modul überträgt die Daten volltransparent zum überlagerten Automatisierungsgerät, wobei der Datentransfer über den Feldbus mit einem einfachen Handshake-Protokoll abgewickelt wird. Dieses hat keinen Einfluss auf das Protokoll der seriellen Schnittstelle. Der aktive serielle Kommunikationskanal arbeitet unabhängig vom überlagerten Bussystem im Vollduplex-Betrieb mit bis zu 19200 Baud, wobei 128 Byte Empfangs- und 16 Byte Sendepuffer zur Verfügung stehen. Die Strom-Schnittstelle garantiert hohe Störsicherheit durch galvanisch getrennte Signale mit eingeprägtem Strom.

Feldbus Box E/A-Module Version: 2.0.1 63

Technische Daten	IP6012-Bxxx, IE6012
Anzahl Kanäle	1
Übertragungsrate	1200 19200 Baud, 9600 Baud (8 Daten-Bits, no parity, ein Stop Bit)
Anschluss TTY	5 Pin M12 Buchse, Steckverbinder
Bitverzerrung	< 3 %
TTY Leitungslänge	maximal 1000 m twisted pair
Signalspannung LOW	0 3 mA
Signalspannung HIGH	14 20 mA
Datenpuffer	128 Byte Empfangs und 16 Byte Sendepuffer
Bytes im Prozessabbild	E/A: 5 Byte Nutzdaten,1 Byte Control/Status
Potenzialtrennung	Steuerspannung / Feldbus: abhängig vom Bus- System TTY-Schnittstelle / Steuerspannung: 500 V
Zulässige Umgebungstemperatur im Betrieb	0°C 55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C + 85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe Anschlussplan [▶ 122].

Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ 262].

Mapping siehe Mapping-Beschreibung [▶ 177].

3.1.7.3 IP6022-Bxxx, IE6022

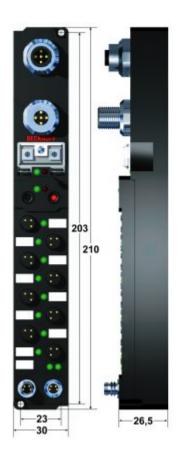
1-Kanal RS422/RS485-Gateway

Das Schnittstellen-Modul IP/IE6022 ermöglicht den Anschluss von Geräten mit einer RS422- oder RS485-Schnittstelle. Das Modul überträgt die Daten volltransparent zum überlagerten Automatisierungsgerät, wobei der Datentransfer über den Feldbus mit einem einfachen Handshake-Protokoll abgewickelt wird. Dieses hat keinen Einfluss auf das Protokoll der seriellen Schnittstelle. Der aktive serielle Kommunikationskanal arbeitet unabhängig vom überlagerten Bussystem im Vollduplex-Betrieb mit bis zu 19200 Baud, wobei 128 Byte Empfangs- und 16 Byte Sendepuffer zur Verfügung stehen. Die Differenzsignal-Übertragung nach RS422 garantiert hohe Störsicherheit durch galvanisch getrennte Signale.

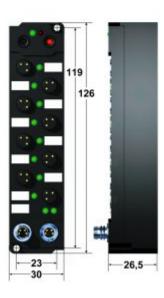
Feldbus Box E/A-Module Version: 2.0.1 65

Technische Daten	IP6022-Bxxx, IE6022
Anzahl Kanäle	1 RS 422 vollduplex, RS 485 halbduplex
Übertragungsrate	1200 19200 Baud, 9600 Baud (8 Daten-Bits, no parity, ein Stop Bit)
Anschluss RS 422/485	5 Pin M12 Buchse, Steckverbinder
Bitübertragung	mit Differenzsignal
Leitungsimpendanz	120 Ω
RS 422/485 Leitungslänge	maximal 500 m twisted pair
Datenpuffer	128 Byte Empfangs und 16 Byte Sendepuffer
Gleichtaktspannung	-7 V 12 V gegen Masse
Bytes im Prozessabbild	E/A: 5 Byte Nutzdaten,1 Byte Control/Status
Potenzialtrennung	Steuerspannung / Feldbus: abhängig vom Bus- System RS422/485 / Steuerspannung: 500 V
Zulässige Umgebungstemperatur im Betrieb	0°C 55°C
Zulässige Umgebungstemperatur bei Lagerung	-25°C + 85°C
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)
Einbaulage	beliebig

Anschluss siehe Anschlussplan [▶ 124].


Parametrierung siehe <u>Parametrierungsbeschreibung</u> [▶ 262].

Mapping siehe Mapping-Beschreibung [▶ 177].



3.2 Montage

3.2.1 Abmessungen

Alle Maßangaben sind in Millimeter angegeben.

Allgemein

Technische Daten	Feldbus Box
Gehäusematerial	PA6 (Polyamid), Vergussmasse: Polyuhrethan
Montage	2 x Befestigungslöcher für M3
Metallteile	Messing, vernickelt
Kontakte	CuZn, vergoldet
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27, EN 60068-2-29
EMV-Festigkeit / Aussendung	IEC EN 50082-2 / EN 50081-2
Zulässige Umgebungstemperatur im Betrieb	0 55°C
Zulässige Umgebungstemperatur bei Lagerung	-25 + 85°C
Einbaulage	beliebig
Schutzart	im verschraubten Zustand IP65/66/67
Zulassungen	CE, UL E172151

Feldbus Box E/A-Module Version: 2.0.1 67

IPxxxx-Bxx8, IL230x-Bxx8, IL230x-B110, IXxxxx-B400, IXxxxx-B90x, IXxxxx-C900

Technische Daten	Kompakt- und Kopplerbox mit integriertem T- Stück
Abmessungen (H x B x T)	ca. 210 x 30 x 26,5 mm (Höhe bis Oberkante Feldbus-Buchse 30 mm)
Gewicht	ca. 260 g - 290 g, je nach Modultyp

IPxxxx-Bxx0, IL230x-Bxx0, IL230x-Cxx0

Technische Daten	Kompakt- und Kopplerbox
Abmessungen (H x B x T)	ca. 175 x 30 x 26,5 mm (Höhe bis Oberkante Feldbus-Buchse 30 mm, mit T-Stück ZS1031-2600 Höhe ca. 65 mm)
Gewicht	ca. 250 g - 280 g, je nach Modultyp

IExxxx

Technische Daten	Erweiterungsbox
Abmessungen (H x B x T)	ca. 126 x 30 x 26,5 mm
Gewicht	ca. 120 g - 200 g, je nach Modultyp

68 Version: 2.0.1 Feldbus Box E/A-Module

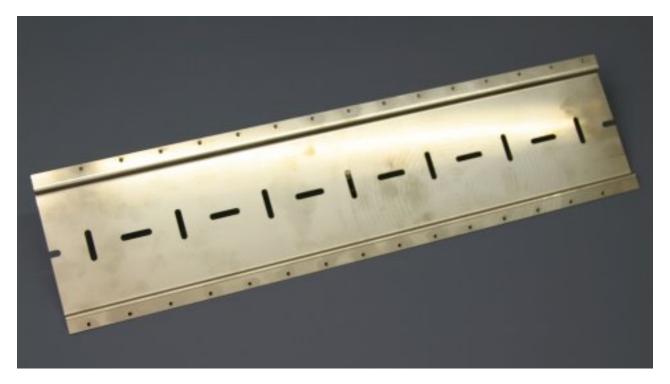
3.2.2 Befestigung

HINWEIS

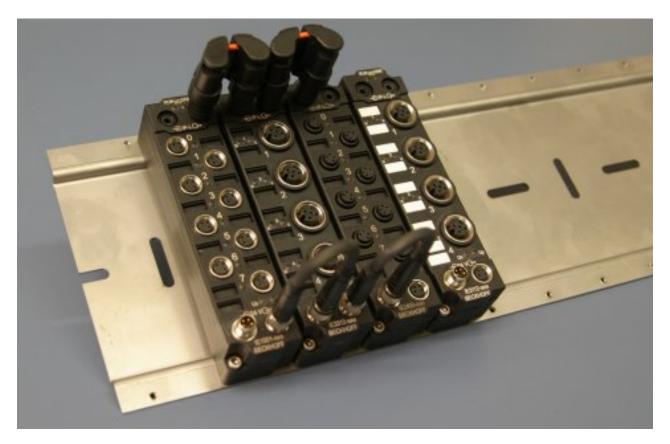
Achtung

Schützen Sie während der Montage der Module alle Anschlüsse, insbesondere die IP-Link-Anschlüsse vor Verschmutzung!Die Schutzart IP65 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind! Nicht benutzte Anschlüsse müssen mit den entsprechenden Steckern geschützt werden (Steckersets siehe Katalog)!

Die Feldbus Boxen werden mit zwei M3-Schrauben befestigt. Die Schrauben müssen länger als 15 mm sein. Die Befestigungslöcher besitzen kein Gewinde. Beachten Sie bei der Montage, dass ein Y oder T-Stück für den Feldbusanschluss die Gesamthöhe noch vergrößert. Siehe Kapitel Zubehör [▶ 280].


Der Abstand zwischen den Modulen sollte mindestens 4 cm betragen, damit der für das <u>IP-Link-Kabel [▶ 81]</u> minimal zulässige Biegeradius von 50 mm nicht unterschritten wird. Die Erweiterungsmodule dürfen auch dicht aneinander gebaut werden, wenn Sie dabei folgendes beachten:

- Der für das IP-Link-Kabel minimal zulässige Biegeradius darf nicht unterschritten werden.
- Die Umgebungstemperatur darf 55°C nicht überschreiten.



Montageschiene ZS5300-0001

ZS5300-0001

Die Montageschiene ZS5300-0001 (500 mm x 129 mm) ermöglicht einen zeitsparenden Aufbau der Erweiterungs-Box-Module. Die Schiene besteht aus rostfreiem Stahl (V2A), ist 1,5 mm stark mit passend vorgefertigten M3 Gewinden. Mittels M5 Schrauben (5,3 mm Langlöcher) kann die Schiene an der Maschine befestigt werden.

Die Schiene ist 500 mm lang und erlaubt bei einem Modulabstand von 2 mm die Montage von 15 Modulen. Sie kann applikationsspezifisch gekürzt werden.

HINWEIS

Achtung

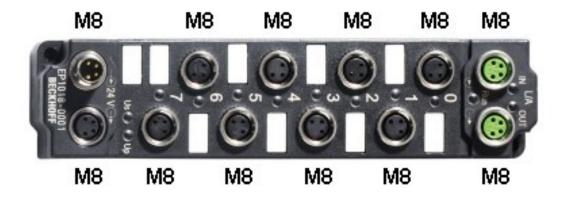
Verwenden Sie zusammen mit Montageschiene ZS5300-0001 den IP-Link Direktsteckverbinder ZK1020-0101-1000 um den minimal zulässige Biegeradius (50 mm) des Standard-IP-Link-Kabels nicht zu unterscheiten.

IP-Link Direktsteckverbinder ZK1020-0101-1000

ZK1020-0101-1000

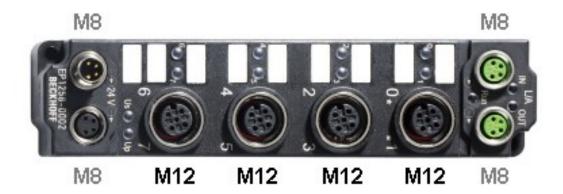
Der IP-Link Direktsteckverbinder ZK1020-0101-1000 ermöglicht die direkte Verbindung zweier Erweiterungs-Box-Module, zur einfachen Montage direkt nebeneinander.

Mit dem IP-Link Direktsteckverbinder kann der Montageabstand der Module zwischen 0 und 5 mm betragen.



3.3 Verkabelung

3.3.1 Anzugsmomente für Steckverbinder


M8-Steckverbinder

Es wird empfohlen die M8-Steckverbinder mit einem Drehmoment von **0,4 Nm** festzuziehen.

M12-Steckverbinder

Es wird empfohlen die M12-Steckverbinder mit einem Drehmoment von **0,6 Nm** festzuziehen.

Drehmomentschlüssel

Korrektes Drehmoment sicherstellen

Verwenden Sie die von Beckhoff lieferbaren Drehmomentschlüssel, um die Steckverbinder festzuziehen (siehe <u>Zubehör</u> [▶ 280])!

3.3.2 Spannungsversorgung

3.3.2.1 Power Anschluss

Steuerspannung U_s: 24V

Aus der 24 V_{DC} Steuerspannung U_s werden der Feldbus, die Prozessor-Logik, die Eingänge und auch die Sensorik versorgt. Die Steuerspannung ist galvanisch von Feldbusteil getrennt.

Lastspannung U_P: 24V

Die Lastspannung U_p versorgt die digitalen Ausgänge, sie kann separat zugeführt werden. Wird die Lastspannung abgeschaltet (z.B. in Not-Aus-Fall), so bleiben die Feldbus-Funktion sowie Versorgung und Funktion der Eingänge erhalten.

Weiterleitung der Versorgungsspannungen

Die Power-Anschlüsse IN und OUT sind im Modul gebrückt (nicht IP204x-Bxxx und IE204x). Somit können auf einfache Weise die Versorgungsspannungen U_s und U_p von Feldbus Box zu Feldbus Box weitergereicht werden.

HINWEIS

Achtung

Beachten Sie bei der Weiterleitung der Versorgungsspannung Us und Up jeweils, dass der maximal zulässige Strom von 4 A nicht überschritten wird!

Galvanische Trennung

Digitale Module

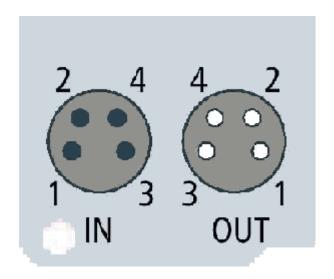
Bei den digitalen Ein-/Ausgabemodulen sind die Massen (GND) von Steuerspannung und Lastspannung verbunden!

Analoge Module

Bei den analogen Ein-/Ausgabemodulen sind diese Massen getrennt, um die galvanische Trennung der Analogsignale von der Steuerspannung zu gewährleisten. Bei einigen Analogmodulen wird die Sensorik bzw. Aktorik aus U_p versorgt - damit kann z.B. bei 0...10V Eingängen eine beliebige Referenzspannung (0...30 V) an Up angeschlossen werden, diese steht dann den Sensoren zur Verfügung (z.B. geglättete 10 V für Messpotentiometer). Details der Spannungsversorgung bei Analogmodulen sind daher dem Kapitel Signalvarianten zu entnehmen.

HINWEIS

Achtung


Wenn Sie digitale und analoge Feldbus Boxen direkt über vierpolige Powerleitungen verbinden, so ist für die analogen Feldbus Boxen die galvanische Trennung der Analogsignale von der Steuerspannung nicht mehr gegeben!

Version: 2.0.1

Pinbelegung (nicht IP204x-Bxxx und IE204x)

IP204x-Bxxx und IE204x

Pinbelegung (IP204x-Bxxx und IE204x)

IP204x-Bxxx und IE204x

Siehe auch im Kapitel IP204x-Bxxx / IE204x Signalanschluss unter Potentialgruppen [▶ 101].

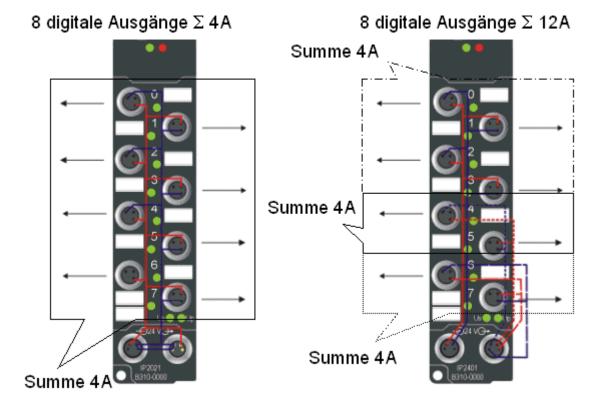
3.3.2.2 Zuleitung und Stromversorgung

Allgemein

Bei den Feldbus Boxen gilt für jedes Modul, das pro Pin nur maximal 4 A fließen dürfen. Dies gilt für sämtliche Anschlussvarianten S8, M 8 und M12.

Worauf müssen Sie achten

- Stromverbrauch der Feldbus Boxen (siehe Kapitel Stromverbrauch [77])
- · Stromverbrauch der Sensoren
- · Stromverbrauch der Aktuatoren
- Kabel Länge und Verluste auf den Leitungen (siehe Kapitel Leitungsverluste [> 76])
- Wird die Powerleitung weitergeführt, ist darauf zu achten das der Strom nicht überschritten wird (siehe Punkte davor).

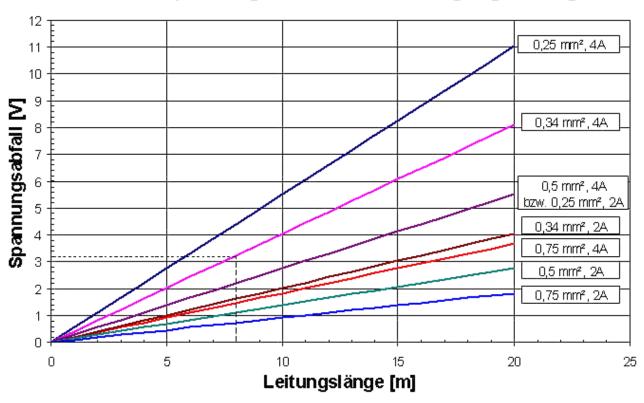

Hinweis:

Beispiel 1:

Werden zum Beispiel an einem IP2001-Bxxx alle 8 Ausgänge mit 0,5 A gleichzeitig belastet, darf in diesem Fall die Power-Weiterleitung nicht genutzt werden, da dies sonst zur Zerstörung des Anschlusses bzw. des Gerätes führen kann.

Beispiel 2:

An einem IP/IE204x die Kanäle 0...3 angeschlossen, so dürfen hier nur 2 der 4 Kanäle mit 2 A belastet werden.



3.3.2.3 Leitungsverluste

Bei den Powerkabeln ZK2020-xxxx-yyyy sollten 15 m Gesamtlänge bei 4 A (mit Weiterleitung) nicht überschritten werden. Achten Sie bei der Verkablung darauf, dass bei 24 V Nennspannung ab einem Spannungsabfall von 6 V die Funktionalität der Module nicht mehr gewährleistet werden kann. Außerdem sind Spannungsschwankungen des Netzteils zu berücksichtigen.

Spannungsabfall Stromversorgungsleitung

Beispiel:

8 m Powerkabel mit 0,34 mm² hat bei 4 A Belastung einen Spannungsabfall von 3,2 V.

3.3.2.4 Stromverbrauch

Für die Stromweiterleitung und der Absicherung der Module sowie bei der Betrachtung des Spannungsabfall auf der Powerleitungsversorgung ist es wichtig, den Stromverbrauch der einzelnen Module zu kennen. Die nachfolgende Tabelle enthält den Stromverbrauch bei 24 $V_{\rm DC}$.

Die Sensorversorgung bzw. der Strom für evtl. Ausgänge muss dazu addiert werden.

Tab. 1: E/A-Type Kompakt-Box

Module	-B310	-B510, -B520	-B730, -B800, -B810
IP1000-Bxxx, IP1001-Bxxx, IP1002-Bxxx, IP1010-Bxxx, IP1011-Bxxx, IP1012-Bxxx	Is = 85 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA
IP1502-Bxxx	Is = 85 mA	Is = 45 mA	Is = 45 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP2000-Bxxx, IP2001-Bxxx, IP2002-Bxxx	Is = 90 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA
IP2020-Bxxx, IP2021-Bxxx, IP2022-Bxxx	Is = 90 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA
IP2040-Bxxx, IP2041-Bxxx, IP2042-Bxxx	Is = 90 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA	Is = 45 mA Ip = 5 mA
IP2300-Bxxx, IP2301-Bxxx, IP2302-Bxxx, IP2310-Bxxx, IP2311-Bxxx, IP2312-Bxxx	Is = 90 mA Ip = 5 mA	Is = 50 mA Ip = 5 mA	Is = 50 mA Ip = 5 mA
IP2320-Bxxx, IP2321-Bxxx, IP2322-Bxxx, IP2330-Bxxx, IP2331-Bxxx, IP2332-Bxxx	Is = 90 mA Ip = 5 mA	Is = 50 mA Ip = 5 mA	Is = 50 mA Ip = 5 mA
IP2400-Bxxx,	Is = 90 mA	Is = 50 mA	Is = 50 mA
IP2401-Bxxx	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP2512-Bxxx	Is = 85 mA	Is = 45 mA	Is = 45 mA
IP3102-Bxxx	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
	Is = 140 mA	Is = 105 mA	Is = 105 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP3112-Bxxx	Is = 140 mA	Is = 105 mA	Is = 105 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP3202-Bxxx	Is = 110 mA	Is = 70 mA	Is = 70 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP3312-Bxxx	Is = 110 mA	Is = 70 mA	Is = 70 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP4112-Bxxx	Is = 115 mA	Is = 85 mA	Is = 85 mA
	Ip = 35 mA	Ip = 35 mA	Ip = 35 mA
IP4132-Bxxx	Is = 140 mA	Is = 105 mA	Is = 105 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP5009-Bxxx	Is = 140 mA	Is = 105 mA	Is = 105 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP5109-Bxxx	Is = 140 mA	Is = 105 mA	Is = 105 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP5209-Вххх	Is = 110 mA	Is = 70 mA	Is = 70 mA
	Ip = 5 mA	Ip = 5 mA	Ip = 5 mA
IP6002-Bxxx	Is = 115 mA	Is = 85 mA	Is = 85 mA
	Ip = 35 mA	Ip = 35 mA	Ip = 35 mA
IP6012-Bxxx	Is = 115 mA	Is = 85 mA	Is = 85 mA
	Ip = 35 mA	Ip = 35 mA	Ip = 35 mA

Module	-B310	-B510, -B520	-B730, -B800, -B810
IP6022-Bxxx	Is = 115 mA	Is = 85 mA	Is = 85 mA
	Ip = 35 mA	Ip = 35 mA	Ip = 35 mA

Tab. 2: E/A-Type Koppler Box

Module	−B310	−B510, −B520	-B730, -B800, -B810
,			Is = 60 mA Ip = 5 mA
,	Is = 100 mA Ip = 5 mA	_	_

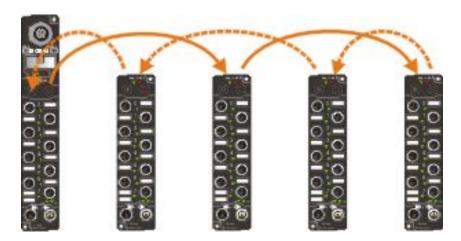
Tab. 3: E/A-Type Erweiterungsbox

Module	
IE1000, IE1001, IE1002, IE1010, IE1011, IE1012	Is = 25 mA
	Ip = 5 mA
IE1502	Is = 25 mA
	Ip = 5 mA
IE2000, IE2001, IE2002	Is = 25 mA
	Ip = 5 mA
IE2020, IE2021, IE2022	Is = 25 mA
	Ip = 5 mA
IE23xx, IE240x	Is = 25 mA
	Ip = 5 mA
IE2512	Is = 25 mA
	Ip = 5 mA
IE2808	Is = 40 mA
	Ip = 5 mA
IE3102	Is = 55 mA
	Ip = 5 mA
IE3112	Is = 55 mA
	Ip = 5 mA
IE3202	Is = 40 mA
1.20202	Ip = 5 mA
IE3312	Is = 40 mA
120012	Ip = 5 mA
IE4112	Is = 40 mA
	Ip = 5 mA
IE4132	Is = 40 mA
164102	Ip = 5 mA
IE5009	Is = 55 mA
123009	Ip = 5 mA
IE5109	Is = 55 mA
IE5109	Ip = 5 mA
150000	•
IE6002	Is = 40 mA
150010	Ip = 5 mA
IE6012	Is = 40 mA
	Ip = 5 mA
IE6022	Is = 40 mA
	Ip = 5 mA

3.3.3 **IP-Link**

3.3.3.1 Verkabelung des IP-Link

IP-Link ist das Sub-Bussystem der Feldbus Boxen. Die Topologie ist eine Ringstruktur. In der Koppler Box (IL230x-Bxxx oder IL230x-Cxxx) befindet sich der IP-Link-Master. Die Erweiterungsboxen (IExxxx) sind Slaves. Es dürfen max. 120 Erweiterungsboxen angeschlossen werden. Berücksichtig werden muss aber auch der Adressraum, den der jeweilige Feldbus-Master zur Verfügung stellt. Der Abstand zwischen zwei Erweiterungsboxen darf 15 Meter nicht überschreiten. Beachten Sie bei Planung und Installation der Erweiterungsboxen, dass die letzte Erweiterungsbox des LWL-Rings wieder an der Koppler Box angeschlossen werden muss.

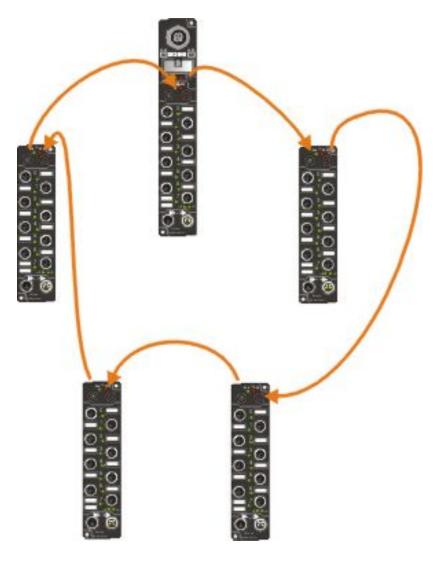

Aufbau/Topologie

Aufbau einer Linie

Hierbei wird nur jede zweite Erweiterungsboxen angeschlossen. Es ist hierbei zu beachten das sich die maximale Entfernung zwischen zwei Boxen halbiert.

Beispiel

Sie haben 4 Erweiterungsboxen (4 x 15 m = 60 m). Weil nur jede zweite Erweiterungsbox an der Hinleitung angeschlossen wird, ergibt sich für die letzte Erweiterungsbox eine maximale Entfernung von 30 Meter zum Koppler.



Aufbau eines Rings

Hierbei dürfen die erste und die letzte Erweiterungsbox jeweils maximal 15 Meter von der Koppler Box entfernt sein.

Version: 2.0.1

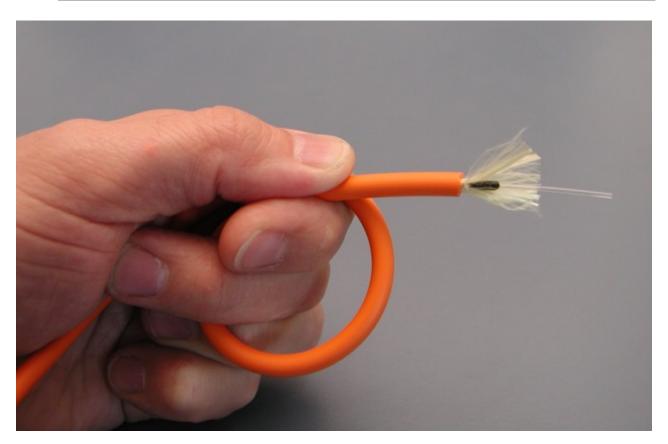
Technische Daten

Tab. 4: IP-Link

	IP-Link
Baud-Rate	2 MBaud
Medium	Licht
Anzahl der Teilnehmer	max. 120
Länge zwischen zwei Stationen	15 m
Kabel	Kunststoff-Lichtwellenleiter 1000 um - Kern 1-adrig, PU Schutzmantel mit Kevlarfaser Durchmesser 5,5 mm
IP-Link Stecker	zugelassen nur ZS1020-0010
Ausziehkräfte	20 N - 30 N

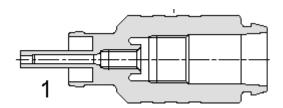
Tab. 5: IP-Link Kabel Z1101

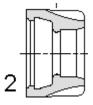
	Z1101
Außendurchmesser Nennwert	5,5 mm
Mantelwanddicke	1,4 mm
Faser	Kunststoff LWL 980/1000 µm aus PMMA
Ader	PE Aderhülle, Nenndurchmesser 2,2 mm
Temperatur	-20+70°C
Außenmantelwerkstoff	PUR
Gewicht Nennwert kg/km	25
Zugfestigkeit (DIN VDE 0888 Teil 100V erf.501)	dauernd 100 N kurzzeitig 400 N
Biegeradien	Radius minimal 50 mm
Wechselbiegefestigkeit (DIN VDE 0888 Teil100 Verf.509)	30.000 Zyklen
Schleppkettenprüfung	Radius 10 X Dm., 2 Millionen Zyklen
Dämpfung bei 650 nm	< 200 dB/km


3.3.3.2 Konfektionierung des IP-Link-Kabels

Benötigtes Werkzeug:

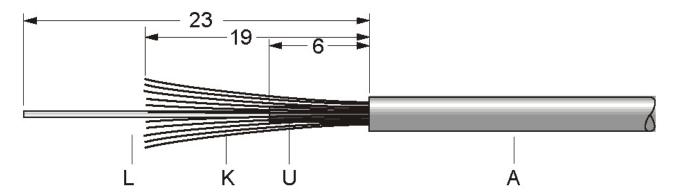
- · Seitenschneider
- Abiosolierwerkzeug
- · Schleifpapier (Körnung 600)


Beachten Sie beim Abisolieren und bei der Montage,

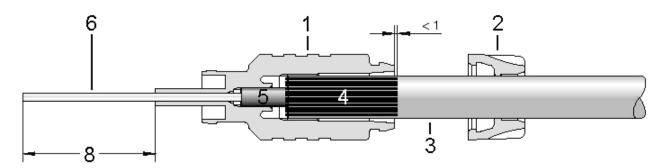

- · dass der Lichtwellenleiter nicht geknickt und
- der minimale Biegeradius von 50 mm nicht unterschritten wird! Engere Biegeradien können den Lichtwellenleiter beschädigen.
- während der Montage ist es hilfreich, die Ader gegen Verschieben zu fixieren. Dies geht am einfachsten, indem Sie die LWL-Leitung mittels einer Schlaufe in der Hand halten (siehe Bild). Die kurzzeitige Unterschreitung des Biegeradius führt zu keiner bleibenden Dämpfung der Leitung.

Fixierung der IP-Link-Leitung zur Abisolierung

IP-Link-Stecker



IP-Link-Stecker (1) mit Kappe (2)



Kabelende vorbereiten

- · Schieben Sie zuerst die Kappe des IP-Link-Steckers (2) auf das Lichtwellenleiterkabel.
- Kürzen Sie den orange-farbenen Außenmantel (A) um ca. 23 mm, ohne dabei die darunter liegenden Kevlar-Fasern (K) zu beschädigen.
- Kürzen Sie die Kevlar-Fasern (K) auf ca. 19 mm.
- Legen Sie die gelbe Kevlar-Fasern (K) nach hinten über den Außenmantel (A) zurück.
- Kürzen Sie den schwarzen Adernmantel (U) um ca. 17 mm, ohne dabei den darunter liegenden Lichtwellenleiter (L) zu beschädigen.

Montage des IP-Link-Steckers

- Schieben Sie den IP-Link-Stecker (1) vorsichtig auf das Lichtwellenleiterkabel, bis er gegen die über den Außenmantel geschlagenen Kevlar-Fasern stößt.
- Schrauben Sie den Stecker im Uhrzeigersinn so weit auf den Außenmantel, bis er sich von Hand nicht weiter weiter drehen lässt (handfest). Verwenden Sie dazu kein Werkzeug! Der Stecker ist so konzipiert, dass er dabei in den schwarzen Adernmantel (U) ein Gewinde schneidet.
 Bei exakter Abisolierung steht der Lichtwellenleiter jetzt ca. 8 mm vorne aus dem IP-Link-Stecker (1) heraus.
- Schneiden Sie die evtl. hinten aus dem IP-Link-Stecker herausstehenden Kevlar-Fasern ab, ohne den Außenmantel zu beschädigen.
- Schieben sie die Kappe (2) auf dem Lichtwellenleiterkabel von hinten gegen den IP-Link-Stecker (1), bis sie darauf einrastet.
- Schneiden Sie den vorne aus dem IP-Link-Stecker herausstehenden Lichtwellenleiter ca. 2 mm vor der Steckerspitze ab. Achtung, nicht kürzer schneiden, da die Faser sehr spröde ist und bis in den Stecker hinein absplittern könnte!
- Schleifen Sie den Lichtwellenleiter mit Schleifpapier von 600er-Körnung, bis er nur noch ca. 0,4 mm aus der Steckerspitze heraussteht. Schleifen dabei den Stecker nicht an!

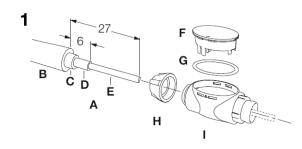
Version: 2.0.1

• Entfernen Sie vorhandenen Schleifstaub und evtl. den entstandenen Grat.

Faserenden prüfen (Sichtkontrolle)

Überprüfen Sie die geschliffenen Faserenden:

- Das Ende des Lichtwellenleiters muss rechtwinkelig zur Steckerführung eine saubere, plane Fläche aufweisen, die ca. 0,4 mm aus der Steckerspitze heraussteht.
- Richten Sie ein Kabelende auf eine Lichtquelle. Am anderen Kabelende dürfen in der leuchtenden Faser keine Kratze, Risse oder Absplitterungen zu sehen sein.


Bestellhinweis

ZS1020-0010: IP-Link-Stecker, Verpackungseinheit 1 Stück ZS1021-0010: IP-Link-Stecker, Verpackungseinheit 10 Stück

3.3.3.3 Montage des IP-Link-Steckers ZS1022-0010 (Clip-Variante)

Vorbereitung (Explosionszeichnung)

A: Lichtwellenleiter

B: Außenmantel

C: Kevlarfaser

D: Fasermantel

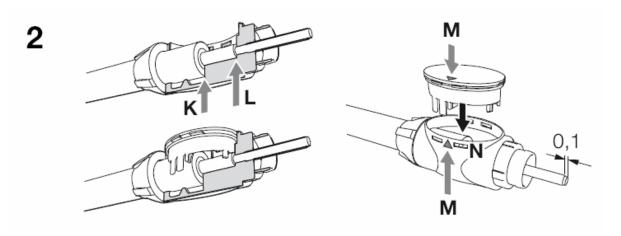
E: Faserkern

F: Klemmverschluss

G: O-Ring

H: Tülle

I: Steckergehäuse

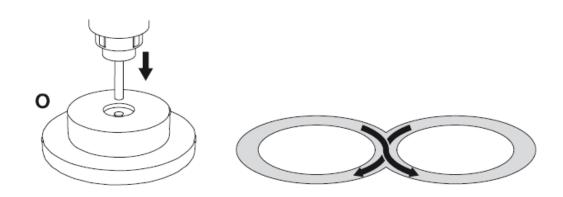

 Manteln Sie Außen- und Fasermantel gemäß den vordefinierten Längenangaben ab. ACHTUNG:

Achten Sie darauf achten, dass der Faserkern nicht beschädigt wird!

Kürzen Sie die Kevlarfaser bündig zum Außenmantel. ACHTUNG:

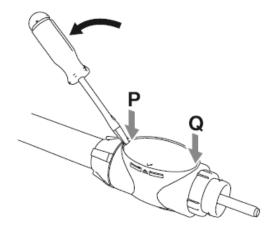
Um maximale Klemmkräfte zu erreichen, müssen Außen- und Fasermantel frei von plastischer Verformung (Kerben, etc.) sowie fett-, öl- und schmiermittelfrei sein.

Montage


- 1. Ziehen Sie die Tülle auf den Außenmantel und den O-Ring auf den Klemmverschluss.
- 2. Führen Sie den vorbereiteten Lichtwellenleiter soweit in das Steckergehäuse ein, bis Außenmantel an **L** und Fasermantel an **K** gleichzeitig anschlagen.
- 3. Richten Sie das Steckergehäuse wie gewünscht aus um eine evtl. Torsion der Leitung beim Einbau zu verhindern.
- 4. Schieben Sie die Tülle soweit auf das Steckergehäuse, bis sie radial einrastet.
- 5. Drücken Sie den Klemmverschluss soweit in das Steckergehäuse, bis alle 4 Rastnasen einrasten. Dies kann werkzeugfrei oder unterstützend mit einer entsprechenden Zange erfolgen. Achten Sie dabei ist auf die richtige Einbaulage des Klemmverschlusses (siehe Kennzeichnung **M**). Die Rastlöcher **N** dienen zusätzlich zur Montagekontrolle des O-Rings.

Version: 2.0.1

Oberflächenbehandlung



- 1. Bearbeiten Sie den Faserkern mittels Schleiflehre **O** auf das Endmaß und die Endgüte. Verwenden Sie dazu Schleifpapier mit 600er Körnung und einen festen, glatten Untergrund.
- 2. Stecken Sie den montierten Stecker in die Schleiflehre und bewegen Sie die Schleiflehre mit leichtem Druck in Form einer Acht über das Schleifpapier.
- 3. Entfernen Sie den angefallenen Schleifstaub mit einem sauberen, fusselfreien Tuch.
- 4. Prüfen Sie die Qualität der geschliffenen Stirnfläche. Die Oberfläche muss eben und frei von Kratzern, Rillen und Absplitterungen sein!

Demontage

- 1. Setzen Sie mit einem geeigneten Werkzeug an den Aussparungen P oder Q an.
- Hebeln Sie den Klemmverschluss einseitig aus dem geschlossenen Steckergehäuse heraus. ACHTUNG:
 - Beschädigte bzw. verformte Bauteile nach erfolgter Demontage nicht wiederverwenden!
- 3. Bereiten Sie den LWL nach erfolgter Demontage erneut gemäß Punkt 1 vor.

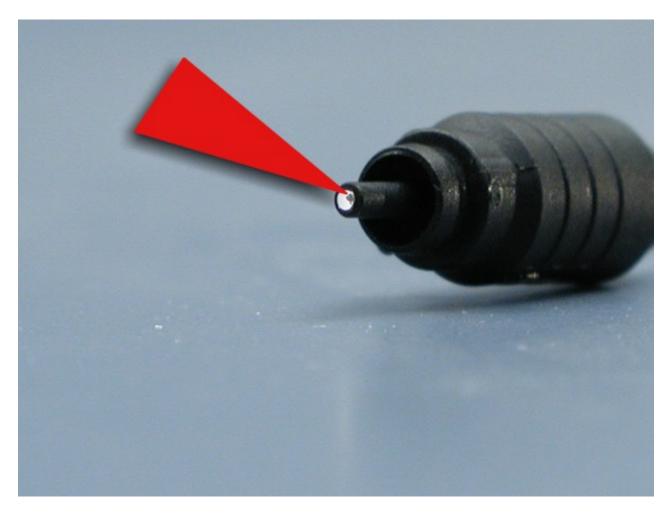
Bestellhinweis

ZS1022-0010: IP-Link-Stecker (Clip-Variante), Verpackungseinheit 10 Stück

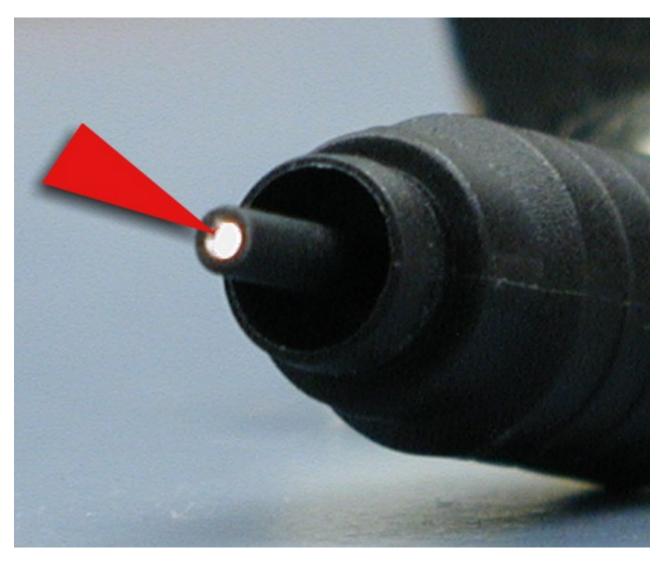
3.3.3.4 Beispiele konfektionierter Stecker

Die Fotos wurden bei Verwendung einer Taschenlampe mit weißem Licht aufgenommen, die in das gegenüberliegende Ende der Leitung scheint.

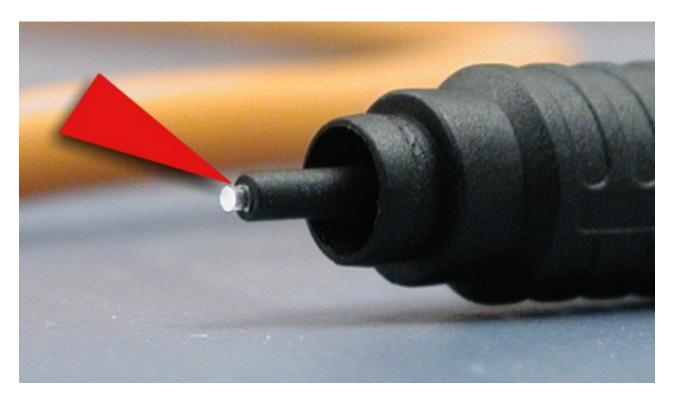
Richtig:


Ein korrekt konfektionierter IP-Link Stecker sollte so aussehen:

Die Faser steht leicht über und ist rechtwinklig abgeschliffen. Keine Splitter oder ähnliches sind erkennbar.


Falsch:

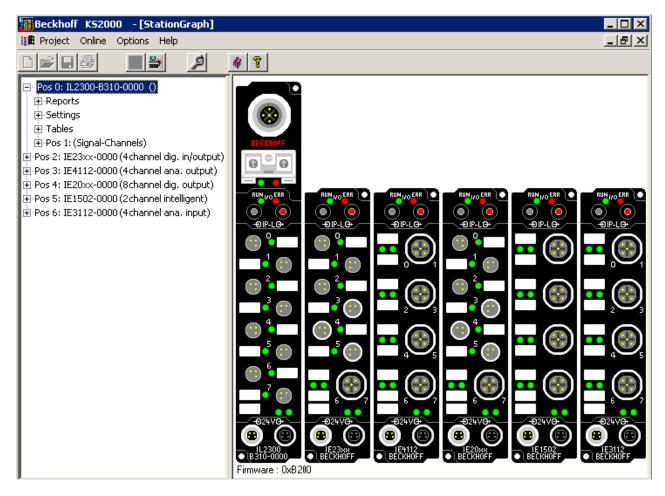
Die Faser wurde zu kurz vor dem Stecker abgeschnitten, dabei splitterte sie bis in den Stecker zurück (der dunkle Teil im Faserzentrum). Hier muss neu abgesetzt werden!


Falsch:

Hier wurde von vornherein zu kurz abgeschnitten. Die Faser erreicht nicht mal das Stecker-Ende. Hier muss neu abgesetzt werden!

Falsch:

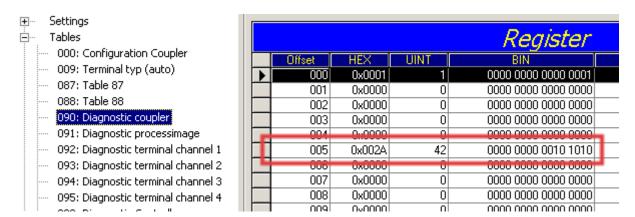
Faser wurde korrekt geschliffen. Sie zeigt einen sauberen, gleichmäßigen Lichtaustritt.


Die Faser ist aber zu lang und könnte so beim Stecken die optischen Elemente der Module beschädigen. Hier kann einfach etwas weiter abgeschliffen werden.

3.3.3.5 Überprüfung der IP-Link-Verbindung

Ein IP-Link-Kabel mit auf beiden Seiten korrekt konfektionierten IP-Link-Steckern garantiert eine fehlerfrei Übertragung.

Eine nachträgliche Prüfung der Übertragungsqualität und eine Fehlersuche ist mit der Konfigurationssoftware KS2000 möglich.


Hierzu sollte die Steuerung (z.B. ein PC mit Profibus-Karte) am Feldbus des Koppler Box angeschlossen sein und diese zyklisch mit Daten versorgen, oder die Koppler Box sollte mit der KS2000 auf *freilaufend* geschaltet werden.

Als Ergebnis sollte die I/O RUN LED auf dem Kopplermodul hellgrün leuchten. Dies zeigt, dass ein Datenaustausch mit den angeschlossenen Erweiterungsbox Modulen stattfindet. Eine rot flackernde I/O ERR LED zeigt fehlerhafte IP-Link-Telegramme an! Telegramme werden wie bei auch jedem Feldbussystem im Fehlerfall wiederholt, so dass eine Übertragung der Daten gewährleistet ist.

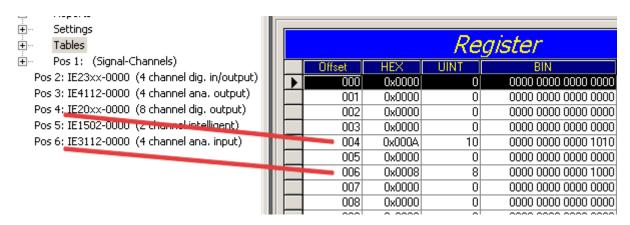
Fehlerzähler

In Tabelle 90, Offset 005 werden aufgetretene IP-Link-Fehler gezählt. Sporadisch auftretende Fehler bedeuten noch keine Probleme für die Kommunikation. Dieser Fehlerzähler wird nur durch ein Power ON/ OFF zurückgesetzt.

Sollten in kurzer Zeit viel Fehler auftreten, wird eine schwere Störung diagnostiziert und das Koppler-Modul meldet diesen Fehler. Dies ist am Offset 006 oder 007 zu erkennen. Die beiden Werte stehen dann auf einem Wert > 200 und die I/O ERR LEDs des Koppler-Moduls blinken mit dem entsprechenden Fehler-Code.

Hinweis

Die Konfigurations-Software KS2000 kommuniziert über einen seriellen Kanal mit der Koppler Box. Der Registerinhalt wird nicht andauernd aktualisiert, muss also manuell refreshed werden.


Fehlerort

Stellt das Koppler Modul einen Fehler fest, versucht es den Fehlerort aus dem Register der Erweiterungs-Box herauszulesen. Ist der Ring tatsächlich unterbrochen bzw. die Kommunikation stark gestört, ist dies nicht möglich. Dann wird nur der Ort des Bruchs dargestellt und zwar rückwärts vom Koppler gezählt (siehe IP-Link Fehlersuche).

Läuft die Kommunikation noch, kann in Tabelle 87 der Fehlerzähler je Erweiterungsmodul ausgelesen werden.

Hier bezieht sich der Offset auf die Position links im KS2000 Baum (siehe Grafik). d.h. in diesem Beispiel werden Fehler beim Offset 004 und 006 angezeigt.

Im IP-Link Aufbau ist der Fehler also bei der Übertragung zu Modul IE20xx und bei der Übertragung zu IE3112 zu suchen.

Der Fehler kann also liegen, an:

- · dem Sender-Modul
- · dem Empfänger-Modul
- · dem Kabel oder
- den Steckern

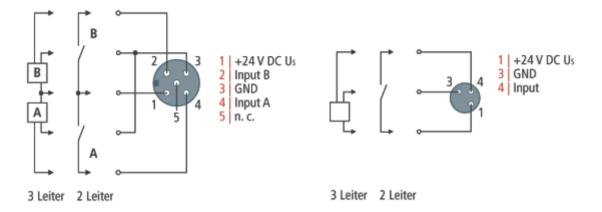
Wird in Tabelle 90 ein Fehler angezeigt, aber in Tabelle 87 nicht, so ist die Fehlerursache in der Übertragungsstrecke zwischen dem letzten Erweiterungsmodul und dem Koppler zu suchen.

In fast allen Fällen sind Übertragungsfehler auf schlecht konfektionierte IP-Link-Stecker oder zu hohe Dämpfung im LWL-Kabel (durch scharfe Knicke o.ä.) zurückzuführen.

Tabelle 87 wird bei einer IP-Link-Unterbrechung nicht aktualisiert, da diese Werte direkt aus den Erweiterungs-Modulen kommen. Diese können dann über den IP-Link natürlich nicht mehr ausgelesen werden.

Hinweis

Falls Sie eine Koppler-Box (z.B. IL2300-Bxxx, IL2301-Bxxx oder IL2302-Bxxx) ganz ohne Erweiterungs-Box-Module (IExxxx) betreiben möchten, müssen Sie Sende- und Empfangs-Anschluss diese Koppler-Box über ein IP-Link-Kabel direkt miteinander verbinden! Hierfür eignet sich besonders der IP-Link-Verbindungsstecker ZK1020-0101-1000.

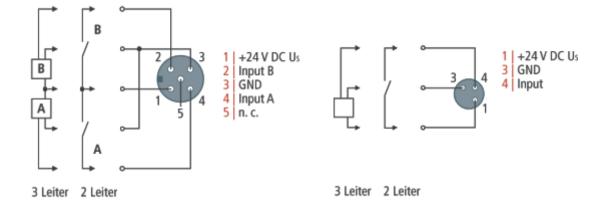


3.3.4 Signalanschluss

3.3.4.1 IP100x-Bxxx, IE100x Signalanschluss

8 digitale Eingänge 24 V_{DC}, Filter 3,0 ms

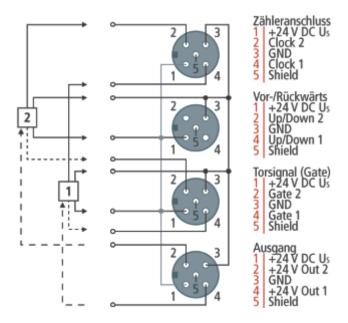
Die digitalen Eingangsmodule IP100x erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt, der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP1000), M8 Schraub-Steckverbinder (IP1001) oder M12 Schraub-Steckverbinder (IP1002). Die Sensoren werden aus der Steuerspannung $U_{\rm s}$ versorgt. Die Lastspannung $U_{\rm p}$ wird im Eingangsmodul nicht verwendet, sie kann jedoch zur Weiterleitung optional angeschlossen werden.



3.3.4.2 IP101x-Bxxx, IE101x Signalanschluss

8 digitale Eingänge 24 V_{DC}, Filter 0,2 ms

Die digitalen Eingangsmodule IP101x erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP1010), M8 Schraub-Steckverbinder (IP1011) oder M12 Schraub-Steckverbinder (IP1012). Die Sensoren werden aus der Steuerspannung $U_{\rm S}$ versorgt. Die Lastspannung $U_{\rm P}$ wird im Eingangsmodul nicht verwendet, sie kann jedoch zur Weiterleitung optional angeschlossen werden.

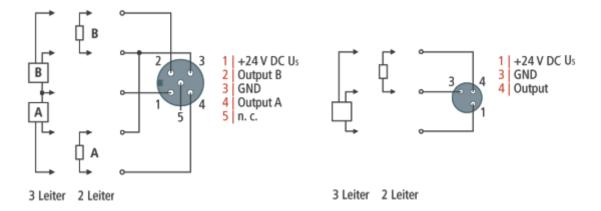


3.3.4.3 IP1502-Bxxx, IE1502 Signalanschluss

2-Kanal Vor-/Rückwärts-Zähler 24 V_{DC}, 100 kHz

Das Zählermodul wird wie folgt angeschlossen:

Die Zählimpulse der Zähler 1 und 2 werden über Buchse A (Zähleranschluss) angeschlossen. Die Zählrichtung kann über Buchse B (Vor-/Rückwärts) vorgegeben werden. An Buchse C kann das Torsignal (Gate) kann den Zählerstand einfrieren, d.h. die Clock-Signale werden ignoriert. Die Ausgänge werden über Buchse D ausgegeben. Die Ausgänge werden über U_P gespeist. Die Feldbus Box und die Signale für den Sensor werden über U_S gesteuert.

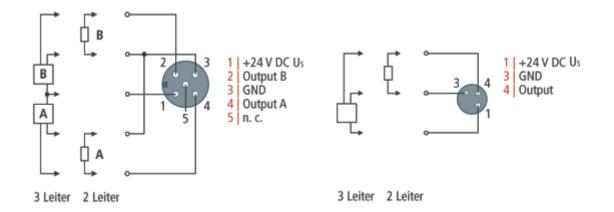


3.3.4.4 IP200x-Bxxx, IE200x Signalanschluss

8 digitale Ausgänge 24 V_{DC} , $I_{max} = 0.5 A$

Die digitalen Ausgangsmodule IP200x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis 0,5 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2000), M8 Schraub-Steckverbinder (IP2001) oder M12 Schraub-Steckverbinder (IP2002). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.

3.3.4.5 IP202x-Bxxx, IE202x Signalanschluss

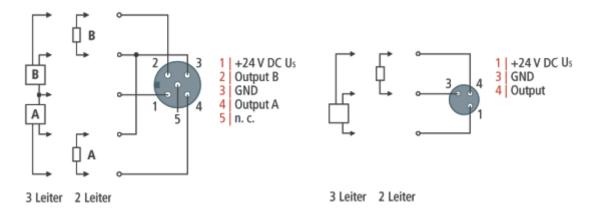

8 digitale Ausgänge 24 V_{DC} , I_{max} = 2,0 A, Summenstrom 4 A

Die digitalen Ausgangsmodule IP202x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis 2,0 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2020), M8 Schraub-Steckverbinder (IP2021) oder M12 Schraub-Steckverbinder (IP2022). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.

HINWEIS

Achtung

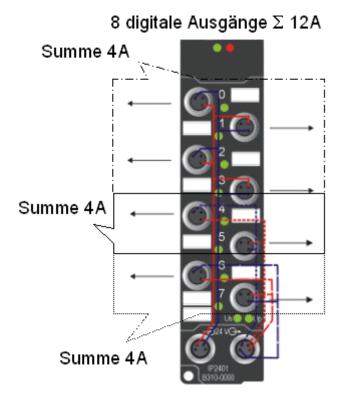
Der Summenstrom darf nicht überschritten werden. Das heißt, es dürfen nur maximal 2 Ausgänge mit jeweils 2 A Last gleichzeitig eingeschaltet sein.



3.3.4.6 IP204x-Bxxx, IE204x Signalanschluss

8 digitale Ausgänge 24 V_{DC} , I_{max} = 2,0 A, Summenstrom 12 A

Die digitalen Ausgangsmodule IP204x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis 2,0 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2040), M8 Schraub-Steckverbinder (IP2041) oder M12 Schraub-Steckverbinder (IP2042). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.



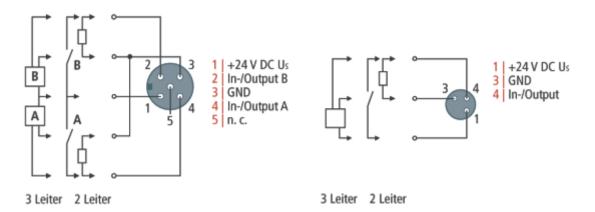
Potentialgruppen

Potentialgruppen

Bei diesem Modul wird die Lastspannung drei mal eingespeist. U_P1 für Kanal 0-3 (Summenstrom 4 A), U_P2 für Kanal 4-5 (Summenstrom 4 A) und U_P3 für Kanal 6-7 (Summenstrom 4 A).

Der Summenstrom darf nicht überschritten werden. Das heißt, es dürfen nur maximal 2 Ausgänge mit jeweils 2 A Last gleichzeitig von Kanal 0-3 eingeschaltet sein.

Siehe auch Kapitel Technische Daten [▶ 23].

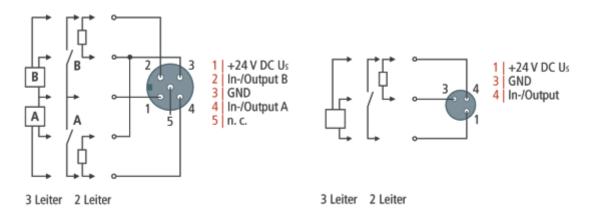

3.3.4.7 IP230x-Bxxx, IL230x-Bxxx / IL230x-Cxxx / IE230x Signalanschluss

4 digitale Eingänge (Filter 3,0 ms) und 4 digitale Ausgänge 24 V_{DC}, I_{max} = 0,5 A

Die digitalen Ausgangsmodule IP230x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 4 Ausgänge verarbeiten Lastströme bis 0,5 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2300), M8 Schraub-Steckverbinder (IP2301) oder M12 Schraub-Steckverbinder (IP2302). Die kurzschlussfesten und verpolungsgeschützten Ausgänge befinden sich auf der unteren Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 untersten Buchsen und bei der M12 Anschlusstechnik die beiden untersten, wobei sich bei der M12 Variante 2 Ausgänge auf einer Buchse befinden.

Die digitalen Eingänge erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder, M8 Schraub-Steckverbinder oder M12 Schraub-Steckverbinder. Die Eingänge befinden sich auf der oberen Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 obersten Buchsen und beim M12 die beiden oberen, wobei sich bei der M12 Variante 2 Eingänge auf einer Buchse befinden.

Die Sensoren werden aus der Steuerspannung U_s versorgt. Die Lastspannung U_p wird für die Ausgangstreiber benötigt. Wenn U_p und U_s für die Weiterleitung genutzt wird, darf der maximale Strom 4 A nicht überschreiten.

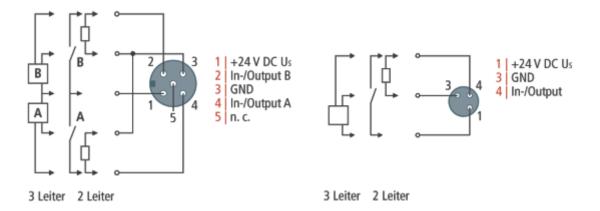

3.3.4.8 IP231x-Bxxx, IE231x Signalanschluss

4 digitale Eingänge (Filter 0,2 ms) und 4 digitale Ausgänge 24 V_{DC} , I_{max} = 0,5 A

Die digitalen Ausgangsmodule IP231x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 4 Ausgänge verarbeiten Lastströme bis 0,5 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2300), M8 Schraub-Steckverbinder (IP2301) oder M12 Schraub-Steckverbinder (IP2302). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt. Die Ausgänge befinden sich auf der unteren Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 untersten Buchsen und bei der M12 Anschlusstechnik die beiden untersten, wobei sich bei der M12 Variante 2 Ausgänge auf einer Buchse befinden.

Die digitalen Eingänge erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt, der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder, M8 Schraub-Steckverbinder oder M12 Schraub-Steckverbinder. Die Eingänge befinden sich auf der oberen Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 obersten Buchsen und beim M12 die beiden oberen, wobei sich bei der M12 Variante 2 Eingänge auf einer Buchse befinden.

Die Sensoren werden aus der Steuerspannung U_s versorgt. Die Lastspannung U_P wird für die Ausgangstreiber benötigt. Wenn U_P und U_S für die Weiterleitung genutzt wird, darf der maximale Strom 4 A nicht überschreiten.

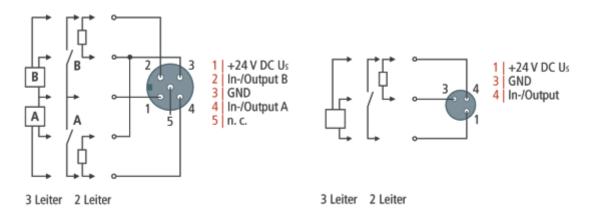

3.3.4.9 IP232x-Bxxx, IE232x Signalanschluss

4 digitale Eingänge (Filter 3,0 ms) und 4 digitale Ausgänge 24 V_{DC} , I_{max} = 2,0 A

Die digitalen Ausgangsmodule IP232x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 4 Ausgänge verarbeiten Lastströme bis 2,0 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2320), M8 Schraub-Steckverbinder (IP2321) oder M12 Schraub-Steckverbinder (IP2322). Die kurzschlussfesten und verpolungsgeschützten Ausgänge befinden sich auf der unteren Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 untersten Buchsen und bei der M12 Anschlusstechnik die beiden untersten, wobei sich bei der M12 Variante 2 Ausgänge auf einer Buchse befinden.

Die digitalen Eingänge erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder, M8 Schraub-Steckverbinder oder M12 Schraub-Steckverbinder. Die Eingänge befinden sich auf der oberen Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 obersten Buchsen und beim M12 die beiden oberen, wobei sich bei der M12 Variante 2 Eingänge auf einer Buchse befinden.

Die Sensoren werden aus der Steuerspannung U_s versorgt. Die Lastspannung U_p wird für die Ausgangstreiber benötigt. Wenn U_p und U_s für die Weiterleitung genutzt wird darf der maximale Strom die 4 A nicht überschreiten.

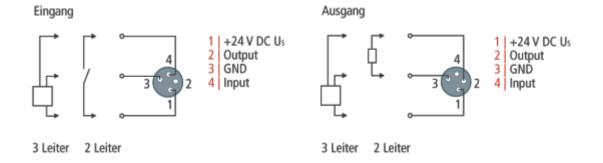

3.3.4.10 IP233x-Bxxx, IE233x Signalanschluss

4 digitale Eingänge (Filter 0,2 ms) und 4 digitale Ausgänge 24 V_{DC} , I_{max} = 2,0 A

Die digitalen Ausgangsmodule IP233x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 4 Ausgänge verarbeiten Lastströme bis 2,0 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2330), M8 Schraub-Steckverbinder (IP2331) oder M12 Schraub-Steckverbinder (IP2332). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt. Die Ausgänge befinden sich auf der unteren Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 untersten Buchsen und bei der M12 Anschlusstechnik die beiden untersten, wobei sich bei der M12 Variante 2 Ausgänge auf einer Buchse befinden.

Die digitalen Eingänge erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder, M8 Schraub-Steckverbinder oder M12 Schraub-Steckverbinder. Die Eingänge befinden sich auf der oberen Hälfte der Feldbus Box. Bei den S8 und M8 sind dies die 4 obersten Buchsen und beim M12 die beiden oberen, wobei sich bei der M12 Variante 2 Eingänge auf einer Buchse befinden.

Die Sensoren werden aus der Steuerspannung U_s versorgt. Die Lastspannung U_p wird für die Ausgangstreiber benötigt. Wenn U_p und U_s für die Weiterleitung genutzt wird darf der maximale Strom 4 A nicht überschreiten.



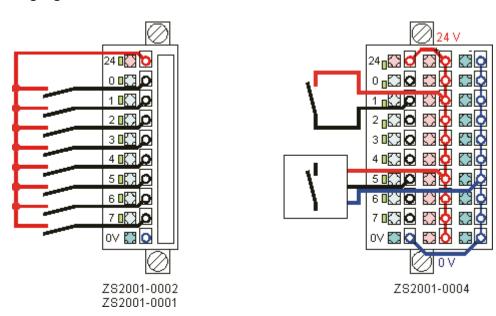
3.3.4.11 IP2400-Bxxx, IE2400, IP2401-Bxxx, IE2401 Signalanschluss

8 digitale Eingänge (Filter 3,0 ms) und 8 digitale Ausgänge 24 V_{DC} , I_{max} = 0,5 A

Die digitalen Ausgangsmodule IP240x schalten die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktuatoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis 0,5 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder (IP2400) oder M8 Schraub-Steckverbinder (IP2400). Die Ausgänge sind kurzschlussfest und verpolungsgeschützt. Ein Ausgang befinden sich zusammen mit einem Eingang auf einem S8 bzw. M8 Buchse.

Die digitalen Eingänge erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt wahlweise über 8 mm Schnapp-Steckverbinder oder M8 Schraub-Steckverbinder. Die Sensoren werden aus der Steuerspannung $U_{\rm S}$ versorgt. Die Lastspannung $U_{\rm P}$ wird für die Ausgangstreiber benötigt. Wenn $U_{\rm P}$ und $U_{\rm S}$ für die Weiterleitung genutzt, wird darf der maximale Strom 4 A nicht überschreiten.

3.3.4.12 IE2403 Signalanschluss

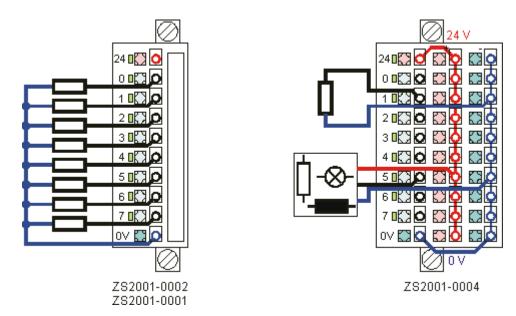

8 digitale Eingänge (Filter 3,0 ms) und 8 digitale Ausgänge 24 $V_{\rm DC}$, $I_{\rm max}$ = 0,5 A

Das digitale Ausgangsmodul IE2403 schaltet die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Akttoren weiter. Die 8 Ausgänge verarbeiten Lastströme bis 0,5 A und zeigen ihren Signalzustand über Leuchtdioden an. Der Signalanschluss erfolgt wahlweise über verschiedene KM-Steckverbinder. Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.

Die digitalen Eingänge erfassen die binären Steuersignale aus der Prozessebene und transportieren sie zum übergeordneten Automatisierungsgerät. Der Signalzustand wird über Leuchtdioden angezeigt. Der Signalanschluss erfolgt wahlweise über verschiedene KM-Steckverbinder.

Die Sensoren werden aus der Steuerspannung U_s versorgt. Die Lastspannung U_P , wird für die Ausgangstreiber benötigt. Falls U_P und U_S weitergeführt werden, darf der maximale Strom 4 A nicht überschreiten.

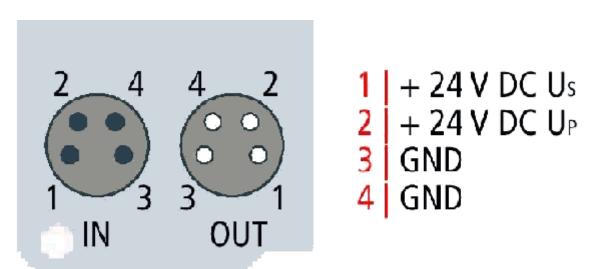
Eingänge



Die Grafik zeigt den Anschluss von 8 Sensoren in Einleitertechnik sowie von jeweils einem Sensor in Zweiund Dreileitertechnik.

Bitte beachten Sie für KM-Steckverbinder ZS2001-0004: zwei Brücken (24 V und 0 V) sind erforderlich um die Klemmstellen für Zwei- und Dreileiteranschlusstechnik zu versorgen.

Ausgänge


Die Grafik zeigt den Anschluss von 8 Aktoren in Einleitertechnik sowie von jeweils einem Aktor in Zwei- und Dreileitertechnik.

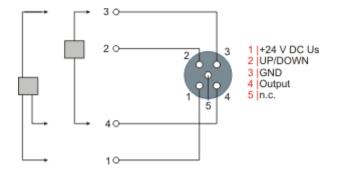
Bitte beachten Sie für KM-Steckverbinder ZS2001-0004: zwei Brücken (24 V und 0 V) sind erforderlich um die Klemmstellen für Zwei- und Dreileiteranschlusstechnik zu versorgen.

Spannungsversorgung

(Siehe auch Kapitel Power-Anschluss [▶ 73])

Das Kombimodul IE2403 wird über den linken M8-Schraubsteckverbinder (IN) Versorgt. Die Sensoren werden aus der Steuerspannung $U_{\rm S}$ versorgt. Die Lastspannung $U_{\rm P}$ wird für die Ausgangstreiber benötigt.

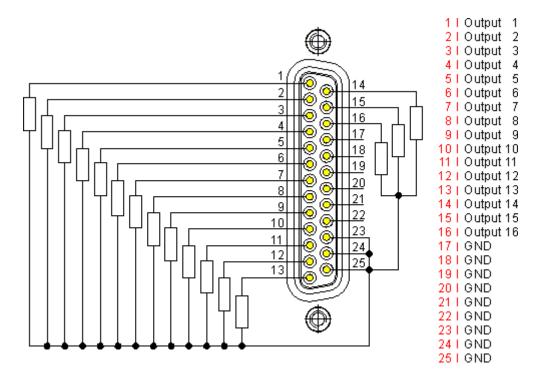
Der rechte M8-Schraubsteckverbinder (OUT) steht zur Weiterleitung der Versorgungsspannungen zum nächstem IP-Modul zur Verfügung.


Wenn U_P und U_S für die Weiterleitung genutzt werden, wird darf der maximale Strom 4 A nicht überschreiten.

3.3.4.13 IP2512-Bxxx, IE2512 Signalanschluss

2 Pulsweitenausgänge, 24 $V_{\rm DC}$

Das Pulsweitenmodul wird wie folgt angeschlossen:

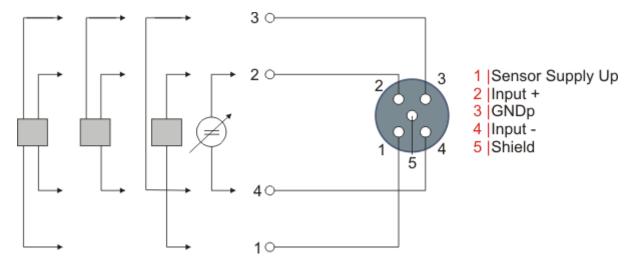

3.3.4.14 IE2808 Signalanschluss

8 digitale Ausgänge 24 V_{DC} , $I_{max} = 0.5 A$

Das digitale Ausgangsmodul IE2808 schaltet die binären Steuersignale des Automatisierungsgerätes zur Prozessebene an die Aktoren weiter.

Die 16 Ausgänge liefern Lastströme bis 0,5 A, wobei der Gesamtstrom aller Ausgänge 4 A nicht überschreiten darf.

Der Signalanschluss erfolgt über eine 25-polige D-Sub-Buchse. Die Ausgänge sind kurzschlussfest und verpolungsgeschützt.



3.3.4.15 IP3102-Bxxx, IE3102 Signalanschluss

4 analoge Eingänge; -10 bis +10 V

Das Signal wird über ein Differenzsignal gemessen. Stehen an ihrem Sensor keine zwei Leitungen für die Differenzmessung zur Verfügung (z.B. 24 V, GND und Signal), muss *GND* mit *Input* gebrückt werden.

Pin 5 (Shield) ist kapazitiv mit dem Untergrund Ihrer Feldbus Box verbunden.

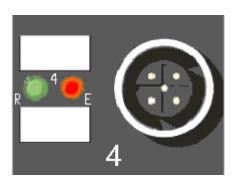
Versorgungsspannung

U_S - Es versorgt die Feldbus Elektronik und die Sensorelektronik. Sie ist galvanisch getrennt von U_P.

U_P - Wird für die Funktion des Moduls nicht benötigt und braucht nicht eingespeist werden.

HINWEIS

Achtung

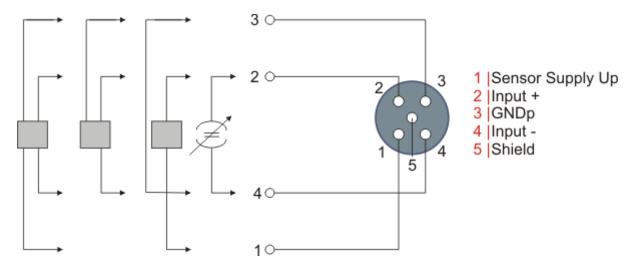

Sollten Sie UP für eine Weiterleitung nutzen und sie schließen ein Modul an in der US und UP nicht galvanisch getrennt sind (z.B. alle digitalen Module), wird durch die Weiterleitung die galvanische Trennung aufgehoben.

Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet wenn Daten zum D/A-Wandler übertragen werden. Die rote LED *Error* zeigt einen Fehler an (Drahtbruch, Messwert außerhalb des Messbereichs).

Version: 2.0.1

Eine einwandfreie Funktion besteht wenn die grüne LED Run leuchtet und die rote LED Error aus ist.



3.3.4.16 IP3112-Bxxx, IE3112 Signalanschluss

4 analoge Eingänge, 0 bis 20 mA

Das Signal wird über ein Differenzsignal gemessen. Stehen an ihrem Sensor nur zwei Leitungen für die Differenzmessung zur Verfügung, d.h. der Sensor wird aus dem Modul gespeist , muss *GND* mit *Input*gebrückt werden.

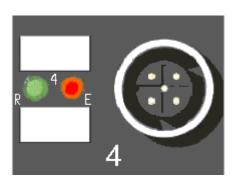
Pin 5 (Shield) ist kapazitiv mit dem Untergrund Ihrer Feldbus Box verbunden.

Versorgungsspannung

U_S - Es versorgt die Feldbus Elektronik und die Sensorelektronik. Sie ist galvanisch getrennt von U_P.

U_P - Wird für die Funktion des Moduls nicht benötigt und braucht nicht eingespeist werden.

HINWEIS


Achtung

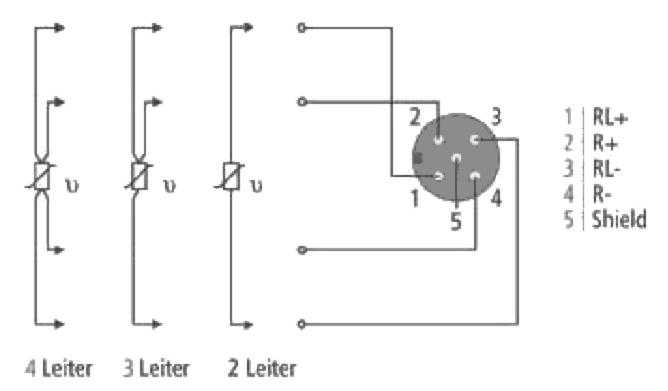
Sollten Sie UP für eine Weiterleitung nutzen und sie schließen ein Modul an in der US und UP nicht galvanisch getrennt sind (z.B. alle digitalen Module), wird durch die Weiterleitung die galvanische Trennung aufgehoben.

Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error* . Die grüne LED *Run* leuchtet wenn Daten zum D/A Wandler übertragen werden. Die rote LED *Error* zeigt einen Fehler an (Drahtbruch, Messwert außerhalb des Messbereichs).

Eine einwandfreie Funktion besteht wenn die grüne LED Run leuchtet und die rote LED Error aus ist.

3.3.4.17 IP3202-Bxxx, IE3202 Signalanschluss


4 analoge Eingänge PT100 (RTD)

Die Vierleitertechnik hat den Vorteil, dass der Fehler durch das Kabel und Kontakte mit gemessen und herausgerechnet wird. Die Dreileitertechnik misst nur in eine Richtung zum Widerstandssensor den Leitungswiderstand und multipliziert diesen mal zwei. Dafür müssen Hin- und Rückleitung annähernd den gleichen ohmschen Widerstand besitzen. Bei der Zweileitertechnik gibt es einen Fehler, der durch Temperaturdeltas und Kabelquerschnitt sehr unterschiedlich sein kann.

HINWEIS

Achtung

Die Einstellung der Anschlusstechnik muss für alle vier Kanäle gleich sein!

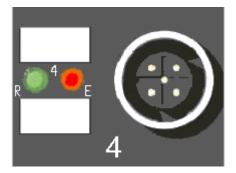
Pin 5 (Shield) ist kapazitiv mit dem Untergrund Ihrer Feldbus Box verbunden.

Versorgungsspannung

U_s - Versorgt die Feldbus Elektronik und die Sensorelektronik. Sie ist galvanisch getrennt von U_s.

U_P - Wird für die Funktion des Moduls nicht benötigt und braucht nicht eingespeist werden.

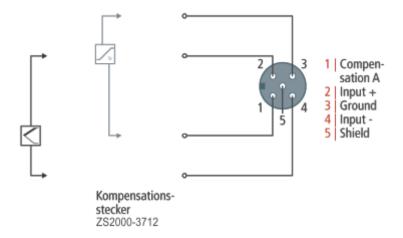
HINWEIS


Achtung

Sollten Sie UP für eine Weiterleitung nutzen und sie schließen ein Modul an in der US und UP nicht galvanisch getrennt sind (z.B. alle digitalen Module), wird durch die Weiterleitung die galvanische Trennung aufgehoben.

Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet wenn Daten zum D/A Wandler übertragen werden. Die rote LED *Error* zeigt einen Fehler an (Drahtbruch, Messwert außerhalb des Messbereichs, Temperaturkompensation außerhalb des Gültigkeitsbereich). Eine einwandfreie Funktion besteht wenn die grüne LED *Run* leuchtet und die rote LED *Error* aus ist.



3.3.4.18 IP3312-Bxxx, IE3312 Signalanschluss

4 analoge Eingänge Thermoelement

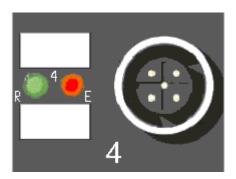
Die Temperaturkompensation ist bei den IP/IE3312 Modulen nach außen geführt. Das heißt im Stecker wird die Temperaturkompensation direkt an der Anschlussstelle gemessen. Dies erlaubt ein wesentlich besseres Messergebnis der Temperatur. Beckhoff bietet hierfür ein Stecker (ZS2000-3712) an. Die Temperaturkompensation kann auch entfernt von der Feldbus Box durchgeführt werden. Sie müssen dann ein PT1000 zwischen Pin 1 und Pin 3 schalten. Je länger Sie die Leitung wählen, desto größer wird der gemessene Fehler durch Leitungslänge, Leitungsverluste und Störungen.

Pin 5 (Shield) ist kapazitiv mit dem Untergrund Ihrer Feldbus Box verbunden.

Versorgungsspannung

U_S - Es versorgt die Feldbus Elektronik und die Sensorelektronik. Sie ist galvanisch getrennt von U_P.

U_P - Wird für die Funktion des Moduls nicht benötigt und braucht nicht eingespeist werden.

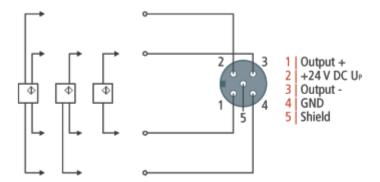

HINWEIS

Achtung

Sollten Sie UP für eine Weiterleitung nutzen und sie schließen ein Modul an in der US und UP nicht galvanisch getrennt sind (z.B. alle digitalen Module), wird durch die Weiterleitung die galvanische Trennung aufgehoben.

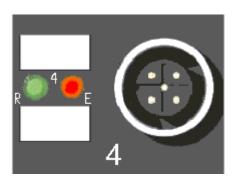
Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet wenn Daten zum D/A Wandler übertragen werden. Die rote LED *Error* zeigt einen Fehler an (Drahtbruch, Messwert außerhalb des Messbereichs, Temperaturkompensation außerhalb des Gültigkeitsbereich). Eine einwandfreie Funktion besteht wenn die grüne LED *Run* leuchtet und die rote LED *Error* aus ist.



3.3.4.19 IP4112-Bxxx, IE4112 Signalanschluss

4 analoge Ausgänge, 0 bis 20 mA


Der angeschlossene Aktuator wird über Output +/- angeschlossen. Optional kann der Aktuator noch mit 24 V_{DC} betrieben/versorgt werden. Der Shield ist kapazitiv mit dem Untergrund verbunden. Um eine wirkungsvolle Ableitung der Störungen zu gewährleisten, muss der Untergrund leitend sein und niederohmig geerdet sein.

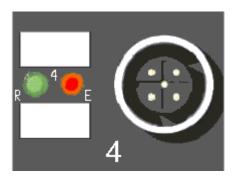
Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet wenn Daten zum D/A Wandler übertragen werden. Die rote LED *Error* hat keine Funktion und leuchtet nur in der Hochlaufphase kurz auf.

Eine einwandfreie Funktion besteht, wenn die grüne LED Run leuchtet und die rote LED Error aus ist.

3.3.4.20 IP4132-Bxxx, IE4132 Signalanschluss

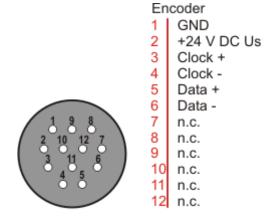
4 analoge Ausgänge, -10 bis +10 V


Der angeschlossene Aktuator wird über Output +/- angeschlossen. Optional kann der Aktuator noch mit 24 V_{DC} betrieben/versorgt werden. Shield ist kapazitiv mit dem Untergrund verbunden. Um eine wirkungsvolle Ableitung der Störungen zu gewährleisten, muss der Untergrund leitend sein und niederohmig geerdet sein.

Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet wenn Daten zum D/A Wandler übertragen werden. Die rote LED *Error* hat keine Funktion und leuchtet nur in der Hochlaufphase kurz auf.

Eine einwandfreie Funktion besteht, wenn die grüne LED Run leuchtet und die rote LED Error aus ist.



3.3.4.21 IP5009-Bxxx, IE5009 Signalanschluss

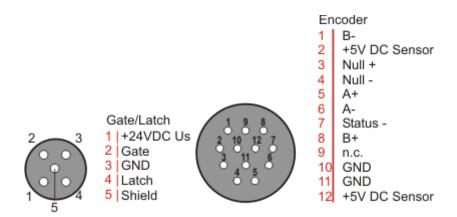
1-Kanal SSI-Geber-Interface

Das Modul besitzt eine M23-Buchse mit Außengewinde.

Pinbelegung:

Bedeutung der LEDs

Die grünen LEDs zeigen den Betrieb des Moduls an.


3.3.4.22 IP5109-Bxxx, IE5109 Signalanschluss

1-Kanal Inkremental Encoder-Interface, 1 MHz

Das Modul besitzt eine M23-Buchse mit Außengewinde für den Encoder-Anschluss und eine M12-Buchse mit Innengewinde.

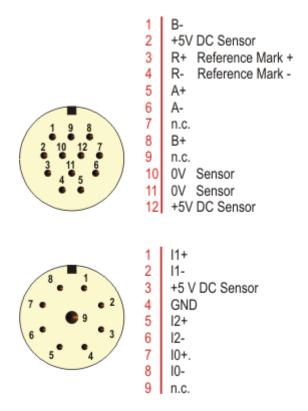
Der Encoder wird über A, B und Null am M23 angeschlossen werden. Falls ein Fehlermeldeausgang am Encoder vorhanden ist, kann dieser über den Status-Eingang angeschlossen werden.

Über *Gate* auf dem M12-Steckverbinder kann der Encoder freigegeben werden. Über *Latch* wird z.B. ein externer Sensor angeschlossen, über den die Freigabe für die Erfassung des Latch-Werts erfolgen kann.

Bedeutung der LEDs

Die grünen LEDs zeigen die Pegel der Kanäle A, B und C an.

3.3.4.23 IP5209-Bxxx Signalanschluss

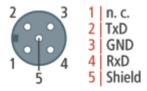

1-Kanal SinCos-Encoder-Interface

Das Modul besitzt eine M23-Buchse mit Außengewinde.

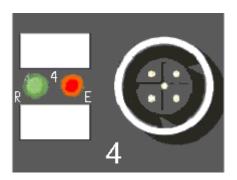
- die Variante IP5209-Bxxx-0000 (Version für 1 V_{ss}) hat einen 12-poligen Stecker.
- die Variante IP5209-Bxxx-1000 (Version für 11 μA_{SS}) hat einen 9-poligen Stecker.

Der Messtaster wird über einen M23-Steckverbinder (male) angeschlossen. Dieser ist typischerweise per Kabel direkt am Messtaster fest angeschlossen und enthält eine Anpassungs-Elektronik. Über den Stecker wird der Messtaster/Encoder/Sensor vom Modul aus mit der notwendigen Spannung versorgt!

Übertragen werden das Sinus-, das Cosinus-Signal und die Referenzmarke (Nullpunkt).



3.3.4.24 IP6002-Bxxx, IE6002 Signalanschluss


1 Kanal RS 232 Gateway

Die RS 232 Schnittstelle ist ein vollduplex Datenübertragung.

Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet, wenn Daten übertragen werden. Die rote LED *Error* leuchtet, wenn Fehler in der Datenübertragung festgestellt werden.

3.3.4.25 IP6012-Bxxx, IE6012 Signalanschluss

1 Kanal TTY Gateway

Mit der TTY-Schnittstelle ist eine vollduplex Übertagung möglich. Das Modul ist rein passiv, d.h. der Strom für die Datenübertragung muss vom angeschlossenen Gerät geliefert werden. Sollte es sich bei dem angeschossenen Gerät ebenfalls um eine passive Strom Schnittstelle handeln muss der Strom eingespeist werden (siehe Bild 2).

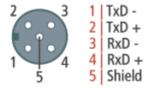


Abb.1: Anschlussbelegung TTY-Schnittstelle

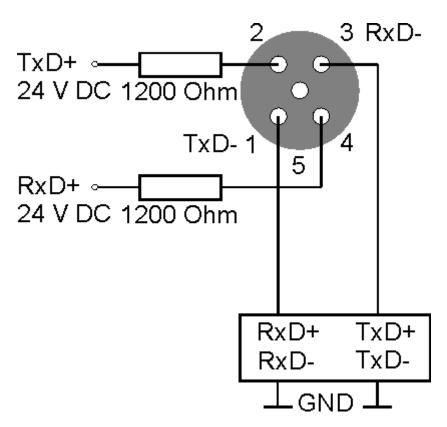
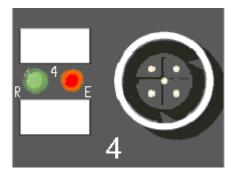
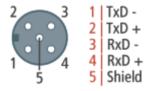
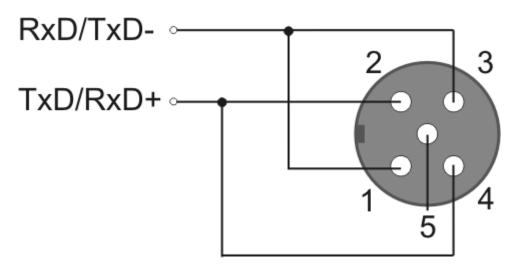



Abb.2: Anschluss an ein passives TTY-Geräte

Bedeutung der LEDs

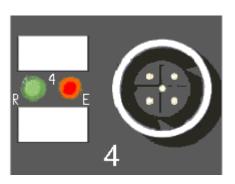
Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet, wenn Daten übertragen werden. Die rote LED *Error* leuchtet wenn Fehler in der Datenübertragung festgestellt werden.




3.3.4.26 IP6022-Bxxx, IE6022 Signalanschluss

1 Kanal RS 422 / RS 485 Gateway

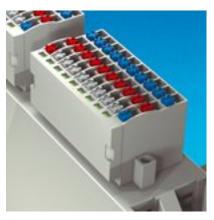
Das Modul kann als RS 422 vollduplex oder als RS 485 halbduplex Gerät betrieben werden. Für den Betrieb an einem RS485 Gerät achten Sie darauf die PIN 1 und 3 und die PIN 2 und 4 zu brücken. Die Abschirmung (Shield) ist kapazitiv mit dem Untergrund verbunden. Um Störungen über die Abschirmung wirkungsvoll abzuleiten, muss der Untergrund, auf den das Modul befestig ist, niederohmig mit der Erde verbunden sein).



Anschluss Beispiel für RS 485 Übertragung

Bedeutung der LEDs

Für jeden Kanal gibt es eine grüne LED *Run* und eine rote LED *Error*. Die grüne LED *Run* leuchtet, wenn Daten übertragen werden. Die rote LED *Error* leuchtet, wenn Fehler in der Datenübertragung festgestellt werden.



3.3.5 ZS2001 KM-Steckverbinder

3.3.5.1 Bestellangaben für KM-Steckverbinder

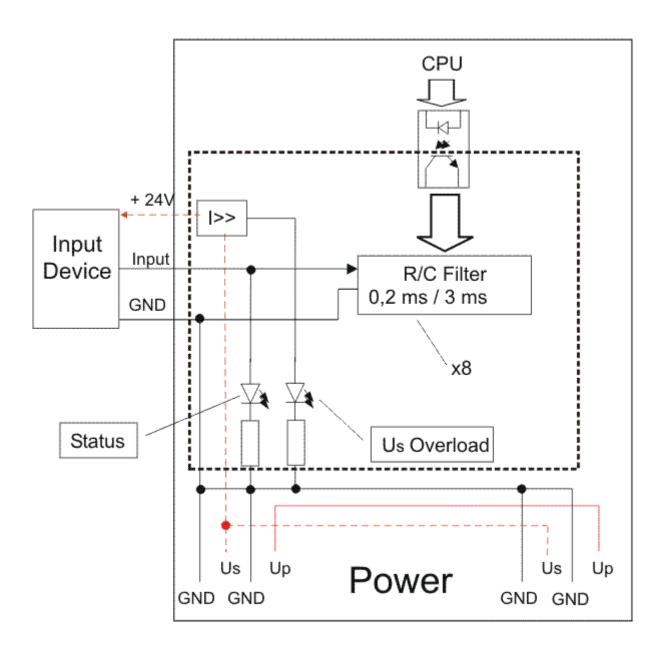
KM-Steckverbinder für Einleiteranschlusstechnik (ZS2001-0001, ZS2001-0002)

KM-Steckverbinder für Dreileiteranschlusstechnik (ZS2001-0004)

Bestellbezeich-	Signal LEDs	Anschlusstechnik		
nung		Einleiter	Zweileiter	Dreileiter
ZS2001-0001	nein	ja	nein	nein
ZS2001-0002	ja	ja	nein	nein
ZS2001-0004	ja	ja	ja	ja

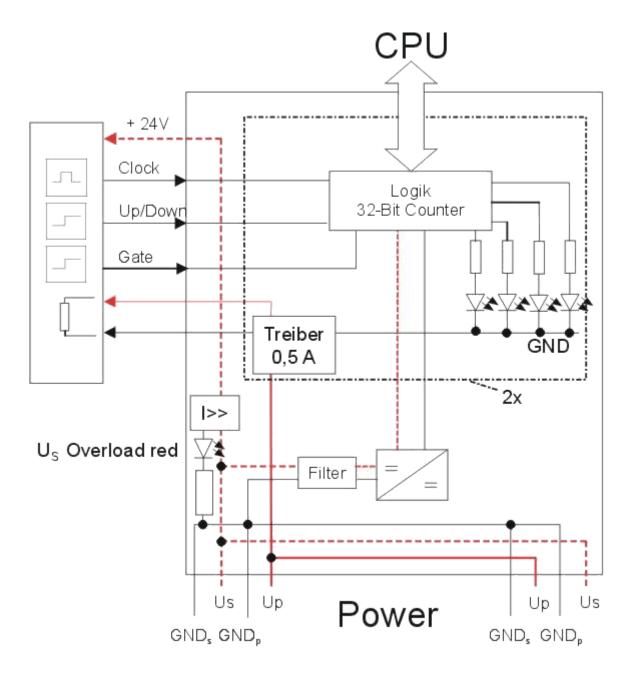
3.3.5.2 Technische Daten

Technische Daten	ZS2001-0001	ZS2001-0002	ZS2001-0004		
Anzahl der Klemmstellen	10	10	30		
Signal-LEDs	nein	ja	ja		
Nennspannung	50 V _{DC}	24 V _{DC}	24 V _{DC}		
Nennstrom	2 A				
Leitungsquerschnitt	0,5 mm ² 1,5 mm ²				
Abisolierlänge	8 mm				
Abmessungen (B x H x T)	ca. 42mm x 10,3mm x 26,9mm	ca. 42mm x 12,7mm x 26,9mm	ca. 42mm x 20,8mm x 26,9mm		
Gewicht	ca. 10 g	ca. 10 g	ca. 20 g		
zulässiger Umgebungstemperaturber eich im Betrieb	0°C + 55°C				
zulässiger Umgebungstemperaturber eich bei Lagerung	-25°C + 85°C				
zulässige relative Luftfeuchtigkeit	95%, keine Betauung				
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27, EN 60068-2-29				
EMV- Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4				
Schutzart	IP20				
Einbaulage	beliebig				
Zulassung	CE				

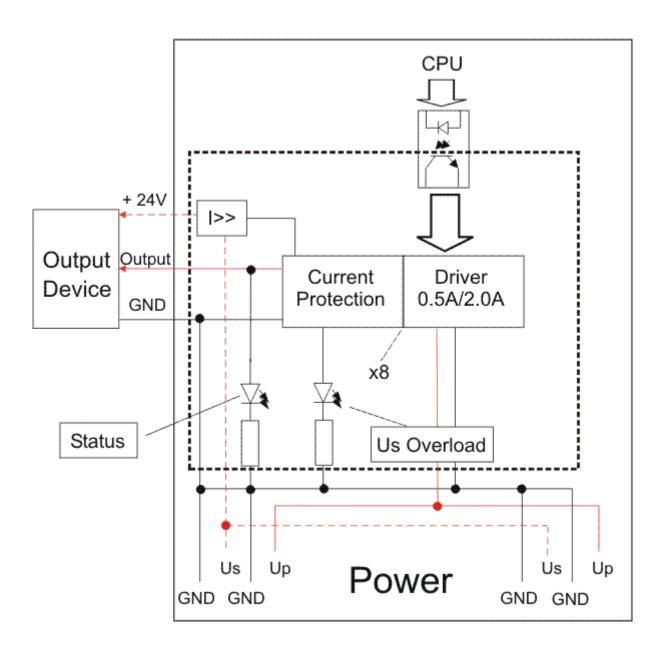

3.4 Blockschaltbilder

3.4.1 Übersicht der Blockschaltbilder

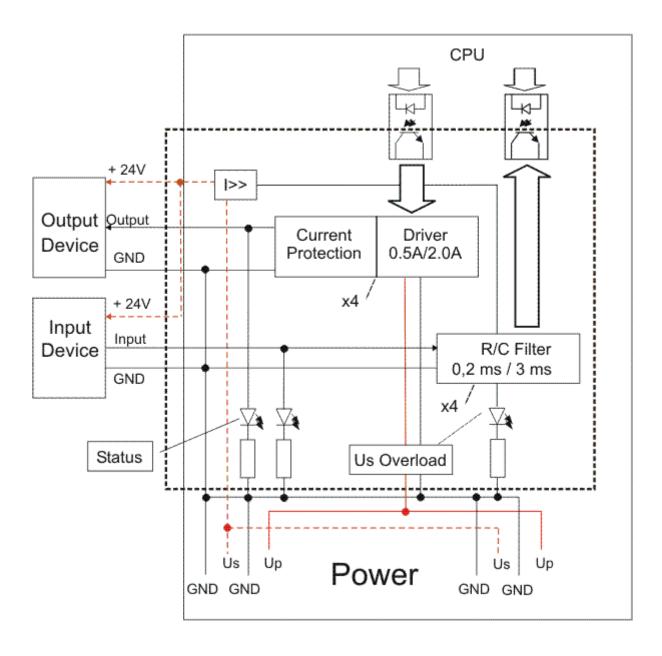
Тур	Beschreibung	Zeichnung
IP/IE1xxx	8 digitale Eingänge 24 V _{DC}	Blockschaltbild [128]
IP/IE1502	Vor-/Rückwärts-Zähler 24 V _{DC} , 100 kHz	Blockschaltbild [▶ 129]
IP/IE200x	8 digitale Ausgänge 24 V _{DC} , 0,5 A	Blockschaltbild [▶ 130]
IP/IE202x	8 digitale Ausgänge 24 V _{DC} , 2.0 A, Summe = 4 A	Blockschaltbild [▶ 130]
IP/IE204x	8 digitale Ausgänge 24 V _{DC} , 2.0 A, Summe = 12 A	Blockschaltbild [▶ 130]
IP/IE23xx	4 digitale Eingänge 24 V _{DC} , 4 digitale Ausgänge 24 V _{DC}	Blockschaltbild [▶ 131]
IP/IE2400, IP/IE2401	8 digitale Eingänge 24 V_{DC} , 8 digitale Ausgänge 24 V_{DC}	Blockschaltbild [▶ 132]
IE2403 (IP20)	8 digitale Eingänge 24 V _{DC} , 8 digitale Ausgänge 24 V _{DC}	Blockschaltbild [▶ 133]
IP/IE2512	2 Kanal Pulsweiten-Ausgang	Blockschaltbild [▶ 134]
IE2808	16 digitale Ausgänge 24 V _{DC} , 2,0 A, Summe = 4A	Blockschaltbild [135]
IP/IE3102	4 analoge Differenzeingänge +-10V, 16 Bit	Blockschaltbild [▶ 137]
IP/IE3112	4 analoge Differenzeingänge 020 mA, 16 Bit	Blockschaltbild [▶ 138]
IP/IE3202	4 analoge Differenzeingänge RTD, 16 Bit	Blockschaltbild [▶ 139]
IP/IE3312	4 analoge Differenzeingänge Thermoelemente, 16 Bit	Blockschaltbild [▶ 140]
IP/IE4112	4 analoge Differenzausgänge 020 mA, 16 Bit	Blockschaltbild [▶ 141]
IP/IE4132	4 analoge Differenzausgänge +- 10 V, 16 Bit	Blockschaltbild [▶ 142]
IP/IE5009	SSI Geber Interface	Blockschaltbild [143]
IP/IE5109	Inkremental Encoder Eingang	Blockschaltbild [144]
IP5209	Sin/Cos Encoder Eingang	Blockschaltbild [> 145]
IP/IE6002	serielle Schnittstelle RS232	Blockschaltbild [> 146]
IP/IE6012	serielle Schnittstelle 020 mA (TTY)	Blockschaltbild [147]
IP/IE6022	serielle Schnittstelle RS485	Blockschaltbild [▶ 148]



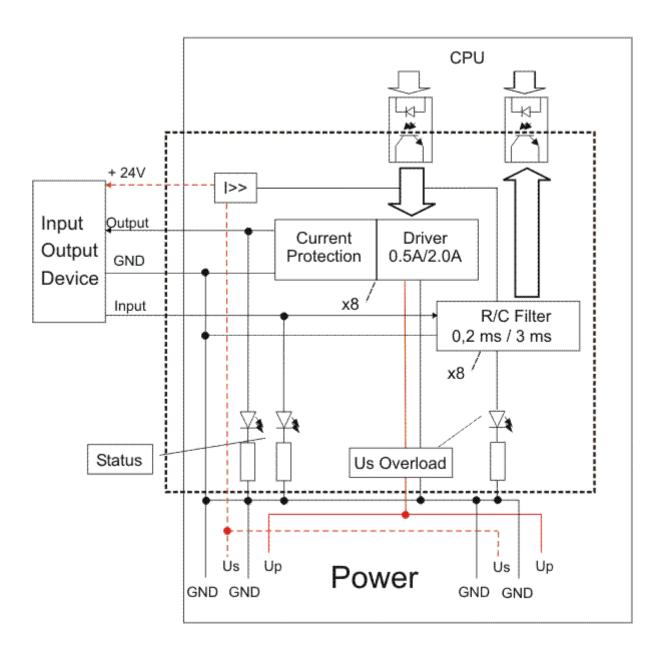
3.4.2 IP/IE1xxx Blockschaltbild



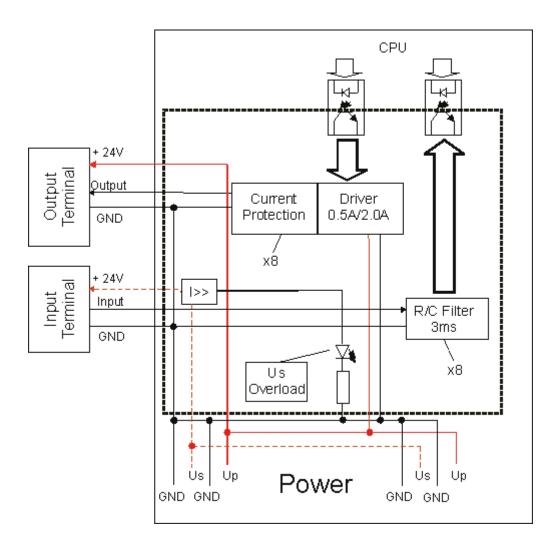
3.4.3 IP/IE1502 Blockschaltbild



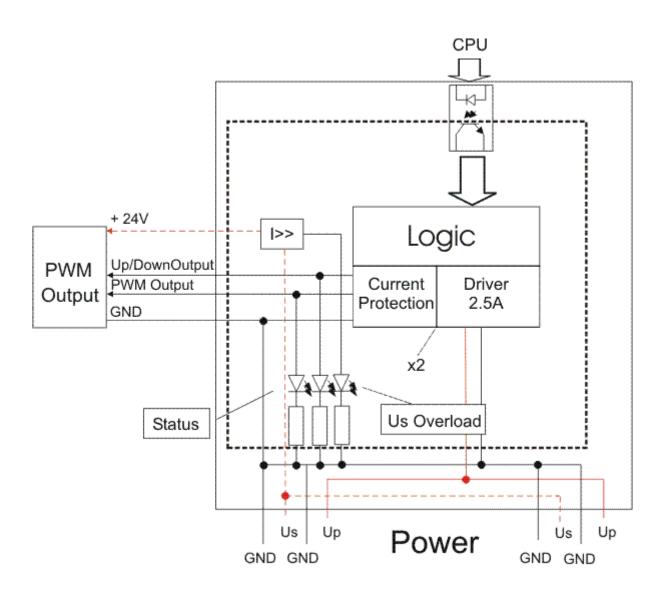
3.4.4 IP/IE20xx Blockschaltbild



3.4.5 IP/IE23xx Blockschaltbild

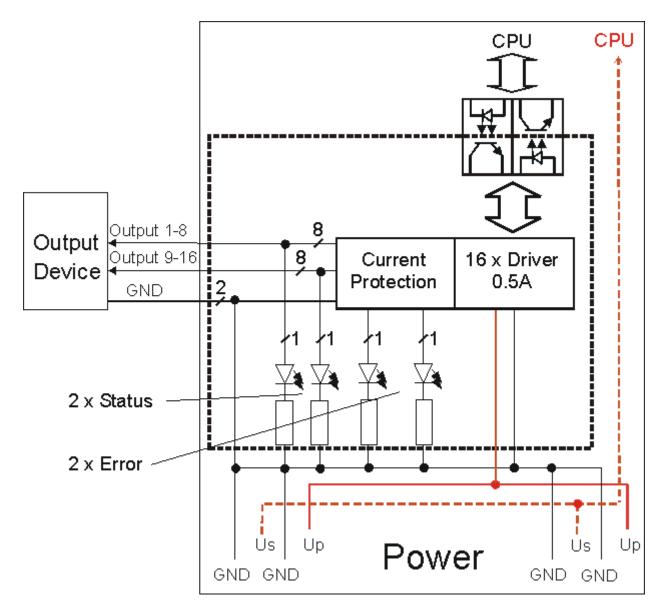


3.4.6 IP/IE2400, IP/IE2401 Blockschaltbild



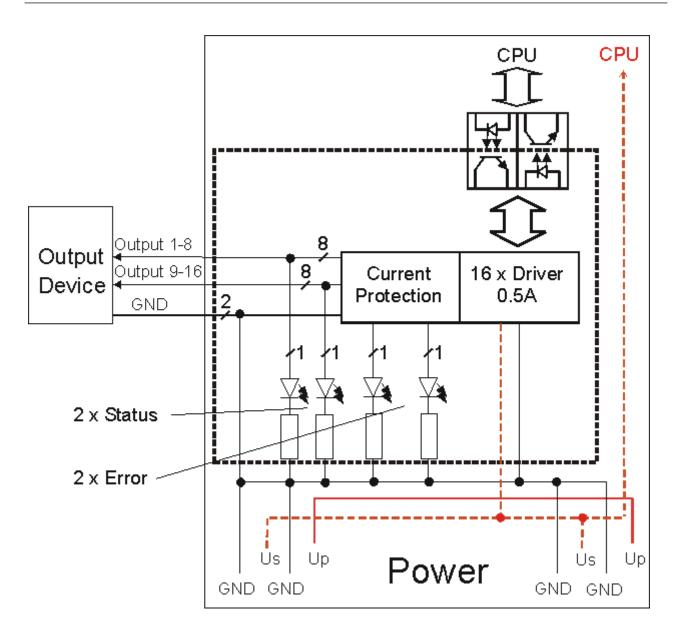
3.4.7 IE2403 Blockschaltbild

3.4.8 IP/IE2512 Blockschaltbild

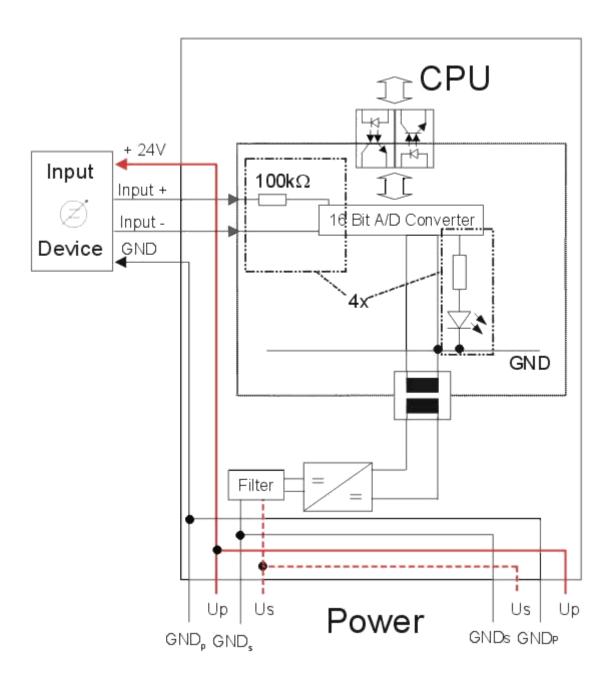


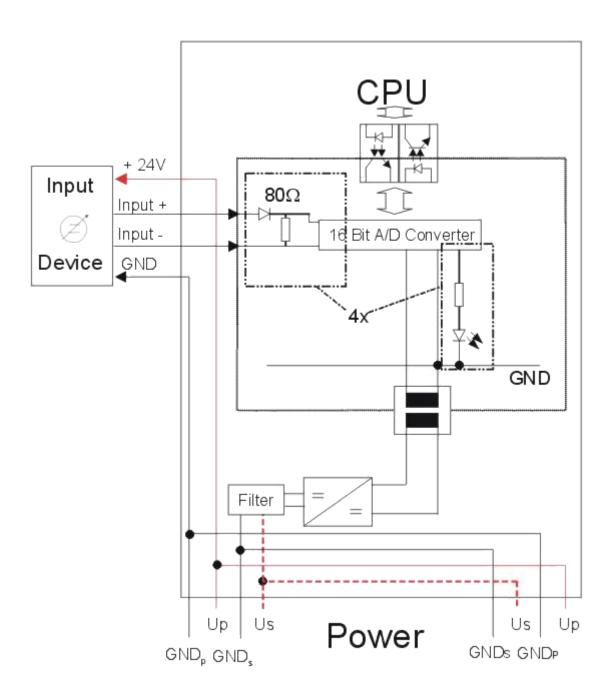
3.4.9 IE2808 Blockschaltbild

Ab Hardware-Version 0012:

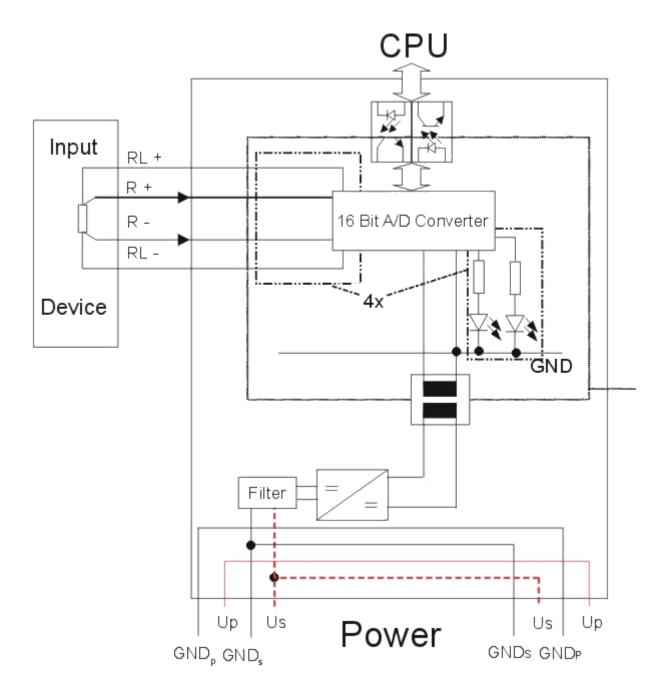

<u>Hardware-Version</u> [▶ 14]

Bis Hardware-Version 0011:

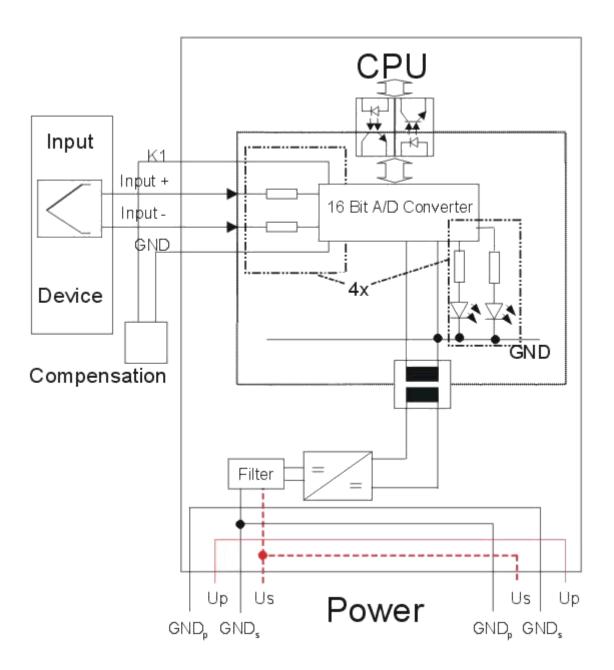

Hardware-Version [▶ 14]



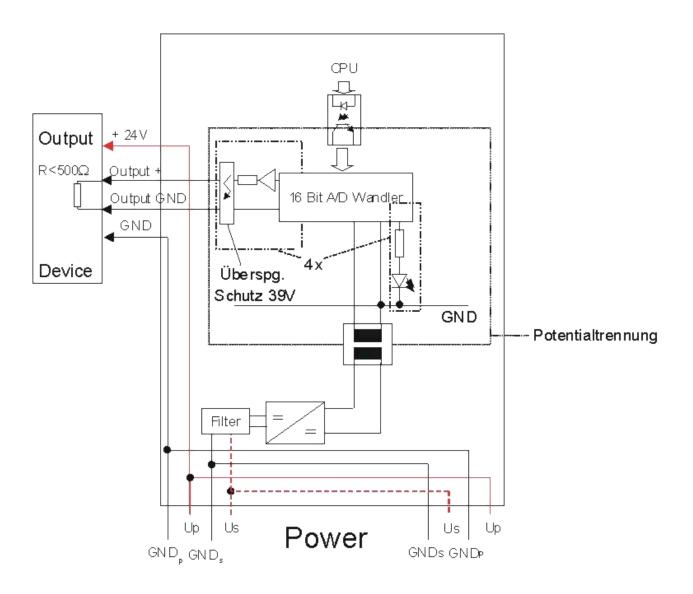
3.4.10 IP/IE3102 Blockschaltbild



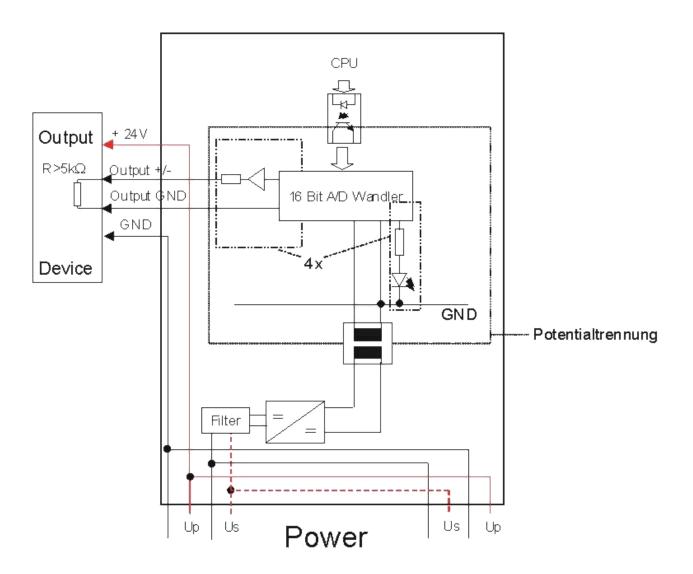
3.4.11 IP/IE3112 Blockschaltbild



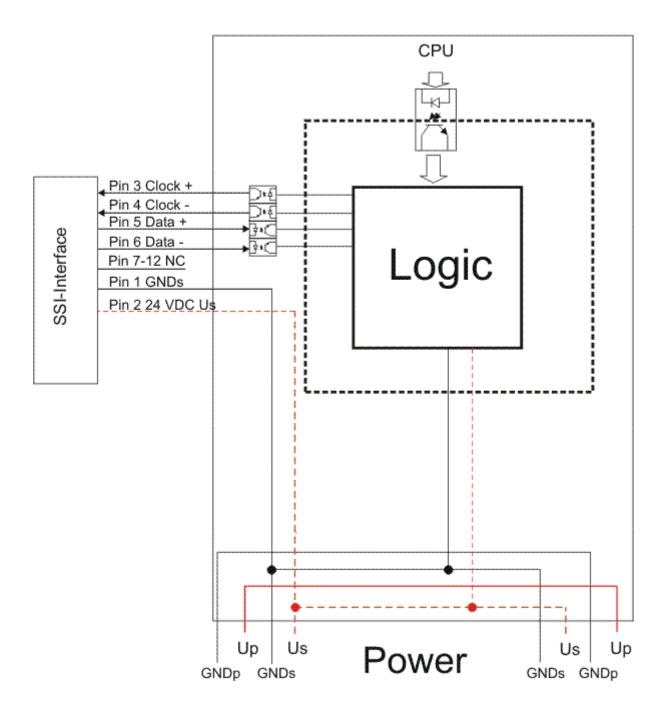
3.4.12 IP/IE3202 Blockschaltbild



3.4.13 IP/IE3312 Blockschaltbild



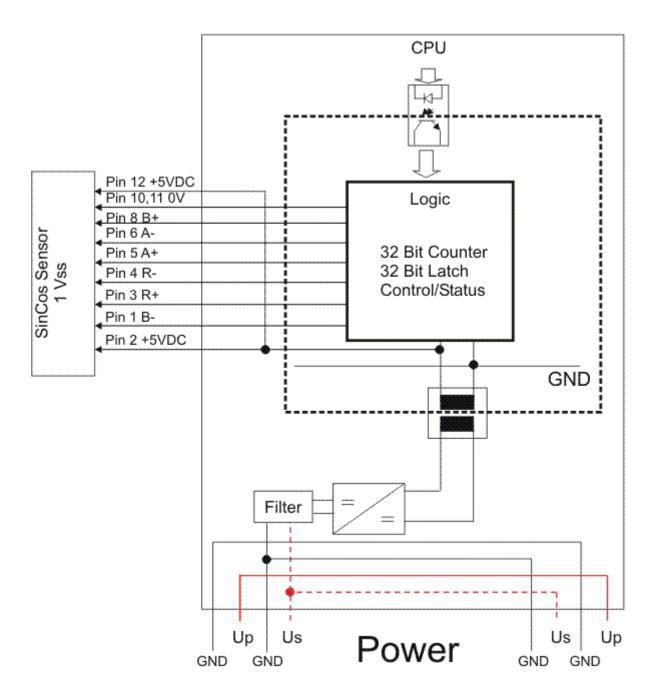
3.4.14 IP/IE4112 Blockschaltbild



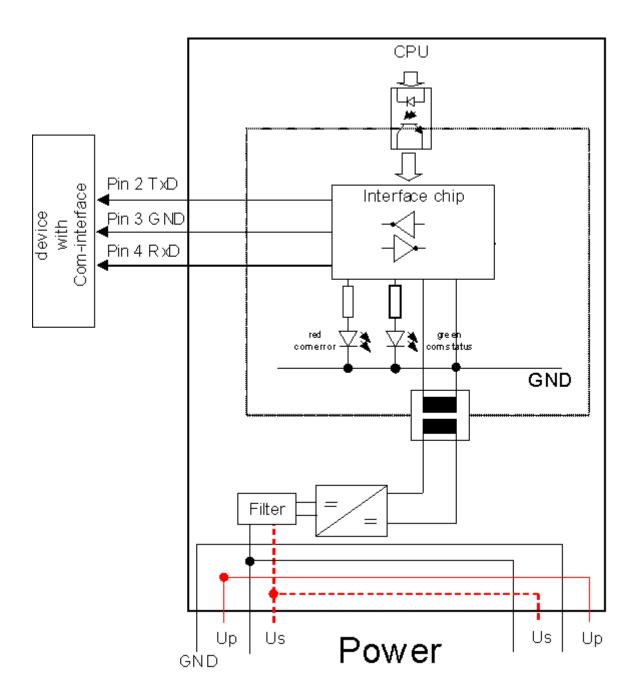
3.4.15 IP/IE4132 Blockschaltbild



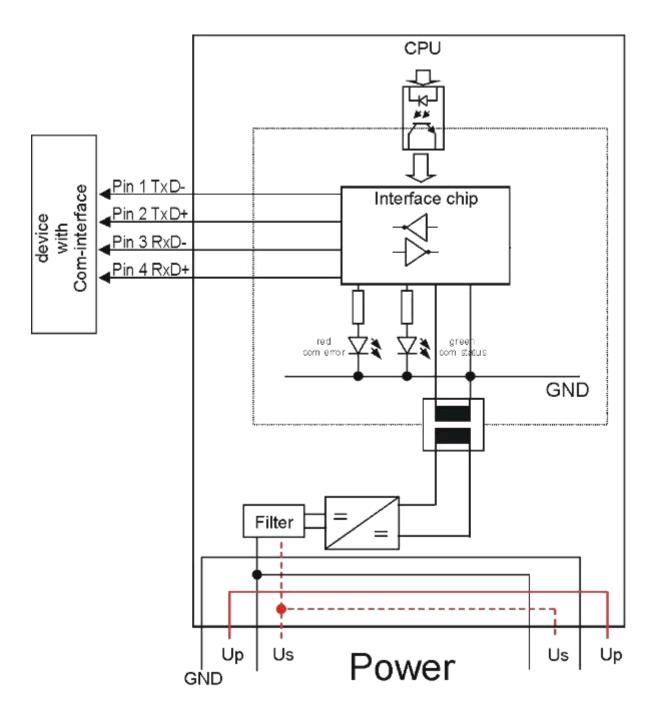
3.4.16 IP/IE5009 Blockschaltbild



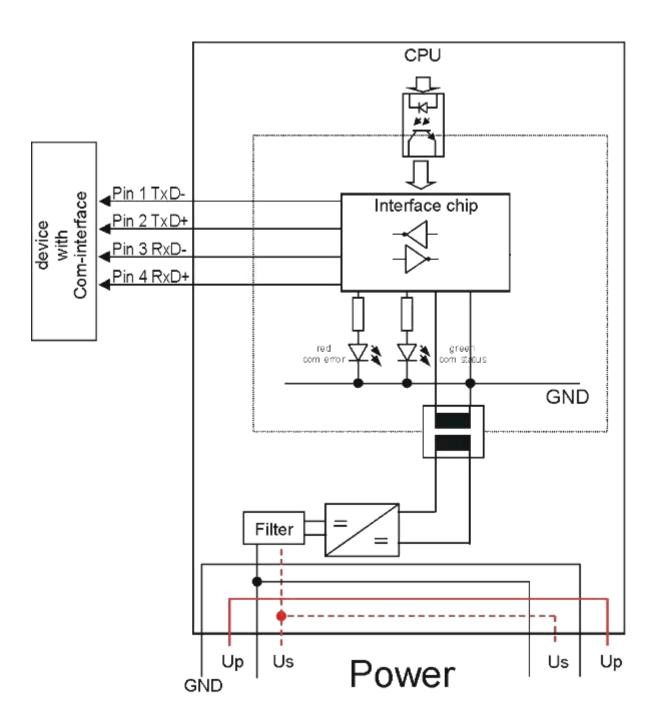
3.4.17 IP/IE5109 Blockschaltbild


3.4.18 IP5209 Blockschaltbild

Feldbus Box E/A-Module Version: 2.0.1



3.4.19 IP/IE6002 Blockschaltbild


3.4.20 IP/IE6012 Blockschaltbild

Feldbus Box E/A-Module Version: 2.0.1

3.4.21 IP/IE6022 Blockschaltbild

3.5 Mapping der Feldbus Box Module

Die Feldbus Box Module besitzen einen Speicher für das Abbild der Prozessdaten. Dieser Speicher wird vom Feldbus-Master ausgelesen bzw. beschrieben. Die Größe und die die Art des Prozessabbilds hängt vom Feldbus Box Typ, der Konfiguration, vom Feldbus-System und vom Feldbus-Master ab.

- Bit-orientierte Feldbus Box Module (hauptsächlich digitale Module) haben eine feste Anzahl an Daten.
- Nur bei den Byte-orientierten Feldbus Box Modulen (z.B. analoge Module und Module für Sonderfunktionen) können einige Änderungen vorgenommen werden:
 - kompaktes oder komplettes Mapping
 - tauschen von High- und Low-Byte (Intel-/Motorola-Format)
 - Word-Alignment (nur bei LightBus und Ethernet)
- Eine Koppler Box hat ein variables Mapping, das von Art und Anzahl der angeschlossenen Erweiterungsboxen abhängt.

Bit-orientierte Feldbus Box Module

Bit-orientierte Feldbus Box Module besitzen eine bestimmte Anzahl von Ein oder/und Ausgängen, die nicht verändert werden kann.

	Eingangsdaten	Ausgangsdaten
Modul	Anzahl der benutzten Bits	Anzahl der benutzten Bits
IP10xx-Byyy IE10xx	8	0
IP20xx-Byyy IE20xx	0	8
IP23xx-Byyy IE23xx	4 (die 4 höherwertigen Bits werden nicht benutzt, belegen aber Prozessdatenspeicher)	4 (die 4 höherwertigen Bits werden nicht benutzt, belegen aber Prozessdatenspeicher)
IP2400-Byyy, IP2401-Byyy IE2400, IE2401, IE2403	8	8

yyy steht für das Feldbus-System und den Bus-Anschluss (siehe Kapitel Bezeichnungsübersicht).

Byte-orientierte Feldbus Box Module

Byte-orientierten Feldbus Box Module können mit kompakten oder kompletten Prozessabbild betrieben werden. Die Anzahl der Bytes für das komplette Mapping ist in Klammern angegeben.

	Eingangsdaten	Ausgangsdaten
Modul	Anzahl der benutzten Bytes	Anzahl der benutzten Bytes
IP15xx-Byyy IE15xx	6 (6)	6 (6)
IP25xx-Byyy IE25xx	6 (6)	6 (6)
IE2808	2 (3)	2 (3)
IP3xxx-Byyy IE3xxx	8 (12)	0 (12)
IP41xx-Byyy IE41xx	0 (12)	8 (12)
IP5009-Byyy IE5009	4 (6)	4 (6)
IP5109-Byyy IE5109	6 (8)	6 (8)
IE5209	10 (10)	10 (10)
IP6xxx-Byyy IE6xxx	6 (6)	6 (6)

Version: 2.0.1

Bei eingeschaltetem Word-Alignment kann sich die Anzahl der belegten Bytes noch erhöhen da nicht benutzte Bytes eingefügt werden können. Details entnehmen Sie bitte den modulspezifischen Mapping-Beschreibungen.

3.5.1 IP/IE10xx Mapping

Alle IP/IE10xx mappen sich mit 8 Bit Eingänge im Prozessabbild und sind für alle Bussysteme gleich.

3.5.2 **IP/IE1502 Mapping**

Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdat	ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	SB1	Ch1 D0	CB1
Auswertung:	1	Ch1 D2	Ch1 D1	Ch1 D2	Ch1 D1
egal Motorola-	2	SB2	Ch1 D3	CB2	Ch1 D3
Format: nein	3	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Word-	4	Ch2 D3	Ch2 D2	Ch2 D3	Ch2 D2
Alignment: nein					

Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdat	ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D3	SB1	Ch1 D3	CB1
Auswertung:	1	Ch1 D1	Ch1 D2	Ch1 D1	Ch1 D2
egal Motorola-	2	SB2	Ch1 D0	CB2	Ch1 D0
Format: ja	3	Ch2 D2	Ch2 D3	Ch2 D2	Ch2 D3
Word-	4	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Alignment: nein					

Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsda	ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung:	1	Ch1 D1	Ch1 D0	Ch1 D1	Ch1 D0
egal Motorola-	2	Ch1 D3	Ch1 D2	Ch1 D3	Ch1 D2
Format: nein	3	reserviert	SB2	reserviert	CB2
Word- Alignment: ja	4	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
	5	Ch2 D3	Ch2 D2	Ch2 D3	Ch2 D2

Tab. 6: Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdat	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung:	1	Ch1 D2	Ch1 D3	Ch1 D2	Ch1 D3
egal Motorola-	2	Ch1 D0	Ch1 D1	Ch1 D0	Ch1 D1
Format: ja Word- Alignment: ja	3	reserviert	SB2	reserviert	CB2
	4	Ch2 D2	Ch2 D3	Ch2 D2	Ch2 D3
	5	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1

Version: 2.0.1

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, Daten-Byte 0 (niederwertigste Byte)

Ch n D1: Kanal n, Daten-Byte 1

Ch n D2: Kanal n, Daten-Byte 2

Ch n D3: Kanal n, Daten-Byte 3 (höchstwertigste Byte)

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.3 IP/IE20xx Mapping

Alle IP/IE20xx mappen sich mit 8 Bit Ausgänge im Prozessabbild und sind für alle Bussysteme gleich.

Feldbus Box E/A-Module Version: 2.0.1 153

3.5.4 IP/IE23xx Mapping

Alle IP/IE23xx mappen sich mit 4 Bit Ein- und 4 Bit Ausgänge im Prozessabbild und sind für alle Bussysteme gleich.

Bei Profibus kann das Mapping auf ein Byte aufgerundet werden (siehe Byte-Alignment).

3.5.5 IP/IE240x Mapping

Alle IP/IE240x mappen sich mit 8 Bit Ein- und 8 Bit Ausgänge im Prozessabbild und sind für alle Bussysteme gleich.

Feldbus Box E/A-Module Version: 2.0.1

3.5.6 **IP/IE2512 Mapping**

Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 Reg0	SB1	Ch1 D0	CB1
Auswertung:	1	SB2	Ch1 Reg1	CB2	Ch1 D1
egal Motorola- Format: nein Word- Alignment: nein	2	Ch2 Reg1	Ch2 Reg0	Ch2 D1	Ch2 D0

Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 Reg1	SB1	Ch1 D1	CB1
Auswertung:	1	SB2	Ch1 Reg0	CB2	Ch1 D0
egal Motorola- Format: ja	2	Ch2 Reg0	Ch2 Reg1	Ch2 D0	Ch2 D1
Word- Alignment: nein					

Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung:	1	Ch1 Reg1	Ch1 Reg0	Ch1 D1	Ch1 D0
egal Motorola-	2	reserviert	SB2	reserviert	CB2
Motorola- Format: nein Word- Alignment: ja	3	Ch2 Reg1	Ch2 Reg0	Ch2 D1	Ch2 D0

Tab. 7: Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdaten		Ausgangsda	ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung:	1	Ch1 Reg0	Ch1 Reg1	Ch1 D0	Ch1 D1
egal Motorola-	2	reserviert	SB2	reserviert	CB2
Format: ja Word-	3	Ch2 Reg0	Ch2 Reg1	Ch2 D0	Ch2 D1
Alignment: ja					

156 Version: 2.0.1 Feldbus Box E/A-Module

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, niederwertiges Daten-Byte Ch n D1: Kanal n, höherwertiges Daten-Byte

Ch n Reg0: Kanal n, niederwertiges Byte für Register Kommunikation Ch n Reg1: Kanal n, höherwertiges Byte für Register Kommunikation

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

"-": Diese Byte wird von der Feldbus Box nicht belegt oder benutzt.

Feldbus Box E/A-Module Version: 2.0.1

3.5.7 **IE2808 Mapping**

Tab. 8: Kompakte Auswertung

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette Auswertung: nein Motorola- Format: egal Word- Alignment: egal	0	-	-	Out2	Out1

Tab. 9: Komplette Auswertung ohne Word-Alignment

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Diag1	SB	Out1	СВ
Auswertung: ja Motorola- Format: egal Word- Alignment: nein	1	-	Diag2	-	Out2

Tab. 10: Komplette Auswertung mit Word-Alignment

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Diag1	SB	Out1	СВ
Auswertung: ja Motorola- Format: egal Word- Alignment: ja	1	res.	Diag2	res.	Out2

Legende

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB: Status-Byte (erscheint im Eingangsprozessabbild) CB: Control-Byte (erscheint im Ausgangsprozessabbild)

Out1: Eingangsbits der Kanäle 8 bis 1 Out2: Eingangsbits der Kanäle 16 bis 9

Diag1: Diagnosebits der Kanäle 8 bis 1 Diag2: Diagnosebits der Kanäle 16 bis 9

res.: reserviert; dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.8 **IP/IE3102 Mapping**

Kompakte Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette Auswertung:	0	Ch1 D1	Ch1 D0	-	-
	1	Ch2 D1	Ch2 D0	-	-
nein Motorola-	2	Ch3 D1	Ch3 D0	-	-
Format: nein Word-	3	Ch4 D1	Ch4 D0	-	-
Alignment: egal					

Kompakte Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsda	ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	Ch1 D1	-	-
Auswertung:	1	Ch2 D0	Ch2 D1	-	-
nein Motorola-	2	Ch3 D0	Ch3 D1	-	-
Format: ja Word-	3	Ch4 D0	Ch4 D1	-	-
Alignment: egal					

Tab. 11: Komplette Auswertung im Intel-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	SB1	Ch1 D0	CB1
Auswertung: ja	1	SB2	Ch1 D1	CB2	Ch1 D1
Motorola- Format: nein	2	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Word-	3	Ch3 D0	SB3	Ch3 D0	CB3
Alignment: nein	4	SB4	Ch3 D1	CB4	Ch3 D1
	5	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 12: Komplette Auswertung im Motorola-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	SB1	Ch1 D1	CB1
Auswertung: ja	1	SB2	Ch1 D0	CB2	Ch1 D0
Motorola- Format: ja	2	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Word-	3	Ch3 D1	SB3	Ch3 D1	CB3
Alignment: nein	4	SB4	Ch3 D0	CB4	Ch3 D0
	5	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Version: 2.0.1

Komplette Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdater	1
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D1	Ch1 D0	Ch1 D1	Ch1 D0
Motorola- Format: nein	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D1	Ch3 D0	Ch3 D1	Ch3 D0
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 13: Komplette Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdat	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D0	Ch1 D1	Ch1 D0	Ch1 D1
Motorola- Format: ja	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D0	Ch3 D1	Ch3 D0	Ch3 D1
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, niederwertiges Daten-Byte Ch n D1: Kanal n, höherwertiges Daten-Byte

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.9 **IP/IE3112 Mapping**

Kompakte Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette Auswertung:	0	Ch1 D1	Ch1 D0	-	-
	1	Ch2 D1	Ch2 D0	-	-
nein Motorola-	2	Ch3 D1	Ch3 D0	-	-
Format: nein Word-	3	Ch4 D1	Ch4 D0	-	-
Alignment: egal					

Kompakte Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	Ch1 D1	-	-
Auswertung:	1	Ch2 D0	Ch2 D1	-	-
nein Motorola-	2	Ch3 D0	Ch3 D1	-	-
Format: ja Word- Alignment: egal	3	Ch4 D0	Ch4 D1	-	-

Tab. 14: Komplette Auswertung im Intel-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	SB1	Ch1 D0	CB1
Auswertung: ja	1	SB2	Ch1 D1	CB2	Ch1 D1
Motorola- Format: nein	2	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Word-	3	Ch3 D0	SB3	Ch3 D0	CB3
Alignment: nein	4	SB4	Ch3 D1	CB4	Ch3 D1
	5	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 15: Komplette Auswertung im Motorola-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	SB1	Ch1 D1	CB1
Auswertung: ja	1	SB2	Ch1 D0	CB2	Ch1 D0
Motorola- Format: ja	2	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Word-	3	Ch3 D1	SB3	Ch3 D1	CB3
Alignment: nein	4	SB4	Ch3 D0	CB4	Ch3 D0
	5	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Version: 2.0.1

Komplette Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdater	1
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D1	Ch1 D0	Ch1 D1	Ch1 D0
Motorola- Format: nein	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D1	Ch3 D0	Ch3 D1	Ch3 D0
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 16: Komplette Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdat	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D0	Ch1 D1	Ch1 D0	Ch1 D1
Motorola- Format: ja	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D0	Ch3 D1	Ch3 D0	Ch3 D1
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, niederwertiges Daten-Byte Ch n D1: Kanal n, höherwertiges Daten-Byte

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.10 IP/IE3202, KL3204 Mapping

Kompakte Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsda	ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	Ch1 D0	-	-
Auswertung:	1	Ch2 D1	Ch2 D0	-	-
nein Motorola-	2	Ch3 D1	Ch3 D0	-	-
Format: nein Word-	3	Ch4 D1	Ch4 D0	-	-
Alignment: egal					

Kompakte Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	Ch1 D1	-	-
Auswertung:	1	Ch2 D0	Ch2 D1	-	-
nein Motorola-	2	Ch3 D0	Ch3 D1	-	-
Format: ja Word- Alignment: egal	3	Ch4 D0	Ch4 D1	-	-

Tab. 17: Komplette Auswertung im Intel-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	SB1	Ch1 D0	CB1
Auswertung: ja	1	SB2	Ch1 D1	CB2	Ch1 D1
Motorola- Format: nein	2	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Word-	3	Ch3 D0	SB3	Ch3 D0	CB3
Alignment: nein	4	SB4	Ch3 D1	CB4	Ch3 D1
	5	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 18: Komplette Auswertung im Motorola-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	SB1	Ch1 D1	CB1
Auswertung: ja	1	SB2	Ch1 D0	CB2	Ch1 D0
Motorola- Format: ja	2	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Word-	3	Ch3 D1	SB3	Ch3 D1	CB3
Alignment: nein	4	SB4	Ch3 D0	CB4	Ch3 D0
	5	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Version: 2.0.1

Komplette Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D1	Ch1 D0	Ch1 D1	Ch1 D0
Motorola- Format: nein	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D1	Ch3 D0	Ch3 D1	Ch3 D0
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 19: Komplette Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdat	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D0	Ch1 D1	Ch1 D0	Ch1 D1
Motorola- Format: ja	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D0	Ch3 D1	Ch3 D0	Ch3 D1
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, niederwertiges Daten-Byte Ch n D1: Kanal n, höherwertiges Daten-Byte

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.11 IP/IE3312, KL3314 Mapping

Kompakte Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	Ch1 D0	-	-
Auswertung:	1	Ch2 D1	Ch2 D0	-	-
nein Motorola-	2	Ch3 D1	Ch3 D0	-	-
Format: nein Word-	3	Ch4 D1	Ch4 D0	-	-
Alignment: egal					

Kompakte Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsda	ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	Ch1 D1	-	-
Auswertung:	1	Ch2 D0	Ch2 D1	-	-
nein Motorola-	2	Ch3 D0	Ch3 D1	-	-
Format: ja Word-	3	Ch4 D0	Ch4 D1	-	-
Alignment: egal					

Tab. 20: Komplette Auswertung im Intel-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette Auswertung: ja	0	Ch1 D0	SB1	Ch1 D0	CB1
	1	SB2	Ch1 D1	CB2	Ch1 D1
Motorola- Format: nein	2	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Word-	3	Ch3 D0	SB3	Ch3 D0	CB3
Alignment: nein	4	SB4	Ch3 D1	CB4	Ch3 D1
	5	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 21: Komplette Auswertung im Motorola-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	SB1	Ch1 D1	CB1
Auswertung: ja	1	SB2	Ch1 D0	CB2	Ch1 D0
Motorola- Format: ja	2	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Word-	3	Ch3 D1	SB3	Ch3 D1	CB3
Alignment: nein	4	SB4	Ch3 D0	CB4	Ch3 D0
	5	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Version: 2.0.1

Komplette Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D1	Ch1 D0	Ch1 D1	Ch1 D0
Motorola- Format: nein	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D1	Ch3 D0	Ch3 D1	Ch3 D0
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 22: Komplette Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdater	า	Ausgangsdate	n
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D0	Ch1 D1	Ch1 D0	Ch1 D1
Motorola- Format: ja	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D0	Ch3 D1	Ch3 D0	Ch3 D1
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Komplette Auswertung: Die Klemme/das Modul wird mit Control- und Status-Byte gemappt.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Die Klemme/das Modul liegt auf einer Wordgrenze im Buskoppler.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, niederwertiges Daten-Byte Ch n D1: Kanal n, höherwertiges Daten-Byte

reserviert: Dieses Byte belegt Prozessdatenspeicher, hat aber keine Funktion.

3.5.12 **IP/IE4112 Mapping**

Kompakte Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	-	-	Ch1 D1	Ch1 D0
Auswertung:	1	-	-	Ch2 D1	Ch2 D0
nein Motorola-	2	-	-	Ch3 D1	Ch3 D0
Format: nein Word-	3	-	-	Ch4 D1	Ch4 D0
Alignment: egal					

Kompakte Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	-	-	Ch1 D0	Ch1 D1
Auswertung:	1	-	-	Ch2 D0	Ch2 D1
nein Motorola-	2	-	-	Ch3 D0	Ch3 D1
Format: ja Word- Alignment: egal	3	-	-	Ch4 D0	Ch4 D1

Tab. 23: Komplette Auswertung im Intel-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	SB1	Ch1 D0	CB1
Auswertung: ja	1	SB2	Ch1 D1	CB2	Ch1 D1
Motorola- Format: nein	2	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Word-	3	Ch3 D0	SB3	Ch3 D0	CB3
Alignment: nein	4	SB4	Ch3 D1	CB4	Ch3 D1
	5	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 24: Komplette Auswertung im Motorola-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	SB1	Ch1 D1	CB1
Auswertung: ja	1	SB2	Ch1 D0	CB2	Ch1 D0
Motorola- Format: ja	2	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Word-	3	Ch3 D1	SB3	Ch3 D1	CB3
Alignment: nein	4	SB4	Ch3 D0	CB4	Ch3 D0
	5	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Version: 2.0.1

Komplette Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdate	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D1	Ch1 D0	Ch1 D1	Ch1 D0
Motorola- Format: nein	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D1	Ch3 D0	Ch3 D1	Ch3 D0
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 25: Komplette Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdat	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D0	Ch1 D1	Ch1 D0	Ch1 D1
Motorola- Format: ja	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D0	Ch3 D1	Ch3 D0	Ch3 D1
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, niederwertiges Daten-Byte Ch n D1: Kanal n, höherwertiges Daten-Byte

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.13 IP/IE4132, KL4132 Mapping

Kompakte Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	-	-	Ch1 D1	Ch1 D0
Auswertung:	1	-	-	Ch2 D1	Ch2 D0
nein Motorola-	2	-	-	Ch3 D1	Ch3 D0
Format: nein	3	-	-	Ch4 D1	Ch4 D0
Alignment: egal					

Kompakte Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	-	-	Ch1 D0	Ch1 D1
Auswertung:	1	-	-	Ch2 D0	Ch2 D1
nein Motorola-	2	-	-	Ch3 D0	Ch3 D1
Format: ja Word- Alignment: egal	3	-	-	Ch4 D0	Ch4 D1

Tab. 26: Komplette Auswertung im Intel-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D0	SB1	Ch1 D0	CB1
Auswertung: ja	1	SB2	Ch1 D1	CB2	Ch1 D1
Motorola- Format: nein	2	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Word-	3	Ch3 D0	SB3	Ch3 D0	CB3
Alignment: nein	4	SB4	Ch3 D1	CB4	Ch3 D1
	5	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 27: Komplette Auswertung im Motorola-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	Ch1 D1	SB1	Ch1 D1	CB1
Auswertung: ja	1	SB2	Ch1 D0	CB2	Ch1 D0
Motorola- Format: ja	2	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Word-	3	Ch3 D1	SB3	Ch3 D1	CB3
Alignment: nein	4	SB4	Ch3 D0	CB4	Ch3 D0
	5	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Version: 2.0.1

Komplette Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdate	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D1	Ch1 D0	Ch1 D1	Ch1 D0
Motorola- Format: nein	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D1	Ch2 D0	Ch2 D1	Ch2 D0
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D1	Ch3 D0	Ch3 D1	Ch3 D0
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D1	Ch4 D0	Ch4 D1	Ch4 D0

Tab. 28: Komplette Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdate	Eingangsdaten		ten
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB1	reserviert	CB1
Auswertung: ja	1	Ch1 D0	Ch1 D1	Ch1 D0	Ch1 D1
Motorola- Format: ja	2	reserviert	SB2	reserviert	CB2
Word-	3	Ch2 D0	Ch2 D1	Ch2 D0	Ch2 D1
Alignment: ja	4	reserviert	SB3	reserviert	CB3
	5	Ch3 D0	Ch3 D1	Ch3 D0	Ch3 D1
	6	reserviert	SB4	reserviert	CB4
	7	Ch4 D0	Ch4 D1	Ch4 D0	Ch4 D1

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB n: Status-Byte für Kanal n (erscheint im Eingangsprozessabbild) CB n: Control-Byte für Kanal n (erscheint im Ausgangsprozessabbild)

Ch n D0: Kanal n, niederwertiges Daten-Byte Ch n D1: Kanal n, höherwertiges Daten-Byte

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.14 IP/IE5009 Mapping

Kompakte Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D1	D0	-	-
Auswertung: nein Motorola- Format: nein Word- Alignment: egal	1	D3	D2	-	-

Kompakte Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D2	D3	-	-
Auswertung: nein Motorola- Format: ja Word- Alignment: egal	1	D0	D1	-	-

Tab. 29: Komplette Auswertung im Intel-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D0	SB	Reg0	Control
Auswertung: ja	1	D2	D1	reserviert	Reg1
Motorola- Format: nein Word- Alignment: nein	2	-	D3	-	reserviert

Tab. 30: Komplette Auswertung im Motorola-Format

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D3	SB	Reg1	СВ
Auswertung: ja	1	D1	D2	reserviert	Reg0
Motorola- Format: ja Word-	2	-	D0	-	reserviert
Alignment: nein					

Version: 2.0.1

Komplette Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB	reserviert	СВ
Auswertung: ja	1	D1	D0	Reg1	Reg0
Motorola- Format: nein Word- Alignment: ja	2	D3	D2	reserviert	reserviert

Tab. 31: Komplette Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB	reserviert	СВ
Auswertung: ja	1	D2	D3	Reg0	Reg1
Motorola- Format: ja Word- Alignment: ja	2	D0	D1	reserviert	reserviert

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB: Status-Byte (erscheint im Eingangsprozessabbild) CB: Control-Byte (erscheint im Ausgangsprozessabbild)

D0 - D3 : Daten Bytes 0 bis 3

Reg0: niederwertiges Byte für Register Kommunikation Reg1: höherwertiges Byte für Register Kommunikation

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.15 **IP/IE5109 Mapping**

Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D0	SB	Reg0	СВ
Auswertung:	1	D2	D1	reserviert	Reg1
egal Motorola- Format: nein Word-	2	D4	D3	reserviert	reserviert
Alignment: nein					

Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D1	SB	Reg1	СВ
Auswertung:	1	D2	D0	reserviert	Reg0
egal Motorola- Format: ja	2	D3	D4	reserviert	reserviert
Word- Alignment: nein					

Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	reserviert	SB	reserviert	СВ
Auswertung:	1	D1	D0	Reg1	Reg0
egal Motorola-	2	reserviert	D2	reserviert	reserviert
Format: nein Word- Alignment: ja	3	D4	D3	reserviert	reserviert

Tab. 32: Auswertung Motorola-Format bei Word-Alignment

	Adresse	Eingangsdaten		Ausgangsda	Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte	
Komplette	0	reserviert	SB	reserviert	СВ	
Auswertung:	1	D0	D1	Reg0	Reg1	
egal Motorola-	2	reserviert	D2	reserviert	reserviert	
Format: ja Word- Alignment: ja	3	D3	D4	reserviert	reserviert	

Version: 2.0.1

Legende

Komplette Auswertung: Das Modul wird mit Control- und Status-Byte gemappt.

Motorola-Format: Einstellbar ist das Motorola oder Intel-Format .

Word-Alignment: Das Modul liegt auf einer Wordgrenze in der Koppler Box.

SB: Status-Byte (erscheint im Eingangsprozessabbild) CB: Control-byte (erscheint im Ausgangsprozessabbild)

D0: niederwertiges Byte des Counter Word (lesen/setzen) D1: höherwertiges Byte des Counter Word (lesen/setzen) D2: Status von A,B, C (Latch), Gate und Latch Eingang

D3: niederwertiges Byte des Latch Word (lesen) / niederwertiges Byte der Periodendauer

D4: höherwertiges Byte des Latch Word (lesen) / höherwertiges Byte der Periodendauer

Reg0: niederwertiges Byte für Register Kommunikation Reg1: höherwertiges Byte für Register Kommunikation

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.5.16 IP5209 Mapping

Im Auslieferungszustand werden diese Module im Standard Format mit 8 Byte Nutzdaten ausgeliefert (Default: 8 Byte Nutzdaten, 9 Byte gesamt). Durch Umschalten des Feature Registers R32 kann auch ein 5-Byte Prozessinterface gewählt werden. Die Datenbytes des Latch-Wertes D4-D7 entfallen dann!

Auswertung im Intel-Format

Default-Mapping für CANopen, DeviceNet, Modbus, RS232 und RS485

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D0	SB	D0	СВ
Auswertung:	1	D2	D1	D2	D1
egal Motorola-	2	D4	D3	reserviert	D3
Format: nein	3	D6	D5	reserviert	reserviert
Word-	4	-	D7	-	reserviert
Alignment: nein					

Auswertung im Motorola-Format

Default-Mapping für Profibus und Interbus

	Adresse	Eingangsdaten		Ausgangsdaten		
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte	
Komplette	0	D3	SB	D3	СВ	
Auswertung:	1	D1	D2	D1	D2	
egal Motorola-	2	D7	D0	reserviert	D0	
Format: ja	3	D5	D6	reserviert	reserviert	
Word- Alignment: nein	4	-	D4	reserviert	-	

Auswertung im Intel-Format bei Word-Alignment

Default-Mapping für Lightbus und Ethernet

	Adresse	Eingangsdaten		Ausgangsdaten		
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte	
Komplette Auswertung:	0	-	SB	-	СВ	
	1	D1	D0	D1	D0	
egal Motorola-	2	D3	D2	D3	D2	
Format: nein	3	D5	D4	reserviert	reserviert	
Word- Alignment: ja	4	D7	D6	reserviert	reserviert	

Tab. 33: Auswertung im Motorola-Format bei Word-Alignment

	Adresse	Eingangsdaten		Ausgangsda	Ausgangsdaten		
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte		
Komplette	0	-	SB	-	СВ		
Auswertung:	1	D2	D3	D2	D3		
egal Motorola-	2	D0	D1	D0	D1		
Format: ja	3	D6	D7	reserviert	reserviert		
Word- Alignment: ja	4	D4	D5	reserviert	reserviert		

Version: 2.0.1

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB: Status-Byte (erscheint im Eingangsprozessabbild)

CB: Control-Byte (erscheint im Ausgangsprozessabbild)

D0, D1, D2, D3: Bytes für den Counter-Wert (lesen), Zählwert

D4, D5, D6, D7: Bytes für den Latch-Wert (lesen)

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

177

3.5.17 IP/IE60x2 Mapping

Standardformat

(Default: 5 Byte Nutzdaten, 6 Byte gesamt)

Im Auslieferungszustand werden diese Module im Standard Format mit 5 Byte Nutzdaten ausgeliefert.

Tab. 34: Default-Mapping für Lightbus, Profibus, Interbus, CANopen, DeviceNet, Modbus, RS232, RS485 und Ethernet sowie Controller Box (IL230x-Cxxx)

	Adresse	Eingangsdaten		Ausgangsdaten	
Bedingungen	Wort-Offset	High-Byte	Low-Byte	High-Byte	Low-Byte
Komplette	0	D0	SB	D0	СВ
Auswertung:	1	D2	D1	D2	D1
egal Motorola-	2	D4	D3	D4	D3
Format: egal					
Word- Alignment: egal					

Legende

Komplette Auswertung: Zusätzlich zu den Prozessdaten werden auch die Control- und Status-Bytes in den Adressraum eingeblendet.

Motorola-Format: Einstellbar ist Motorola- oder Intel-Format.

Word-Alignment: Damit der Adressbereich der Kanäle immer auf einer Wortgrenze beginnt, werden Leer-Bytes in das Prozessabbild eingefügt.

SB: Status-Byte (erscheint im Eingangsprozessabbild) CB: Control-Byte (erscheint im Ausgangsprozessabbild)

D0, D1, D2, D3, D4: Daten-Bytes

reserviert: Dieses Byte belegt den Prozessdatenspeicher, hat aber keine Funktion.

3.6 Konfiguration der komplexen Module

3.6.1 Register-Kommunikation

3.6.1.1 Allgemeine Registerbeschreibung

Bei den komplexen Modulen können verschiedene Betriebsarten bzw. Funktionalitäten eingestellt werden. Die *Allgemeine Registerbeschreibung* erläutert den Inhalt der Register, die bei allen komplexen Modulen identisch sind. Die modulspezifischen Register werden in dem darauffolgendem Kapitel erklärt. Der Zugriff auf die internen Register der Module wird im Kapitel *Register-Kommunikation* beschrieben.

Allgemeine Registerbeschreibung

Komplexe Module die einen Prozessor besitzen, sind in der Lage mit der übergeordneten Steuerung bidirektional Daten auszutauschen. Diese Module werden im folgenden als intelligente Module bezeichnet. Zu ihnen zählen die analogen Eingänge (0 bis 10 V, -10 bis 10 V, 0 bis 20 mA, 4 bis 20 mA), die analogen Ausgänge (0 bis 10 V, -10 bis 10 V, 0 bis 20 mA, 4 bis 20 mA), serielle Schnittstellenmodule (RS485, RS232, TTY, Datenaustausch-Module), Zähler-Module, Encoder-Interface, SSI-Interface, PWM-Module und alle anderen parametrierbare Module.

Alle intelligenten Modulen besitzen intern eine in ihren wesentlichen Eigenschaften identisch aufgebaute Datenstruktur. Dieser Datenbereich ist wortweise organisiert und umfasst 64 Speicherplätze. Über diese Struktur sind die wesentlichen Daten und Parameter der Module les- und einstellbar. Zusätzlich sind Funktionsaufrufe mit entsprechenden Parametern möglich. Jeder logische Kanal einer intelligenten Module besitzt eine solche Struktur (4-Kanal analoge Module besitzen also 4 Registersätze).

Diese Struktur gliedert sich in folgende Bereiche:

Bereich	Adresse
Prozessvariablen	0-7
Typ-Register	8-15
Hersteller- Parameter	16-30
Anwender- Parameter	31-47
Erweiterter Anwenderbereich	48-63

Register R0-R7 (im internen RAM des Moduls)

Die Prozessvariablen können ergänzend zum eigentlichen Prozessabbild genutzt werden und sind in ihrer Funktion Modulspezifisch.

R0-R5

Diese Register besitzen eine vom Modul-Typ abhängige Funktion.

R6

Diagnose-Register: Das Diagnose-Register kann zusätzliche Diagnose-Information enthalten. So werden z.B. bei seriellen Schnittstellenmodulen Paritäts-Fehler, die während der Datenübertragung aufgetreten sind, angezeigt.

R7

Kommandoregister

- High-Byte Write = Funktionsparameter
- Low-Byte_Write = Funktionsnummer
- High-Byte Read = Funktionsergebnis
- Low-Byte_ Read = Funktionsnummer

Register R8-R15 (im internen ROM des Moduls)

Die Typ- und Systemparameter sind fest vom Hersteller programmiert und können vom Anwender nur gelesen und nicht verändert werden.

R8

Feldbus Box Typ: Der Feldbus Box Typ in Register R8 wird zur Identifizierung der Feldbus Box benötigt.

R9

Softwareversion x.y.: Die Software-Version kann als ASCII-Zeichenfolge gelesen werden.

R10

Datenlänge: R10 beinhaltet die Anzahl der gemultiplexten Schieberegister und deren Länge in Bit. Der Buskoppler sieht diese Struktur.

R11

Signalkanäle: Im Vergleich zu R10 steht hier die Anzahl der logisch vorhandenen Kanäle. So kann z.B. ein physikalisch vorhandenes Schieberegister durchaus aus mehreren Signalkanälen bestehen.

R12

Minimale Datenlänge: Das jeweilige Byte enthält die minimal zu übertragene Datenlänge eines Kanals. Ist das MSB gesetzt, so ist das Control/Status-Byte für die Funktion des Moduls nicht zwingend notwendig, und wird bei entsprechender Konfiguration des Buskopplers nicht zur Steuerung übertragen. Die Information steht

- · bei einem Ausgangsmodul im High-Byte
- · bei einem Eingangsmodul im Low-Byte.

R13

Datentypregister

Datentypregister	Beschreibung
0x00	Modul ohne gültigen Datentyp
0x01	Byte-Array
0x02	Struktur 1 Byte n Bytes
0x03	Word-Array
0x04	Struktur 1 Byte n Worte
0x05	Doppelwort-Array
0x06	Struktur 1 Byte n Doppelworte
0x07	Struktur 1 Byte 1 Wort
0x08	Struktur 1 Byte 1 Doppelwort
0x11	Byte-Array mit variabler logischer Kanallänge
0x12	Struktur 1 Byte n Bytes mit variabler logischer Kanallänge (z.B. 60xx)
0x13	Word-Array mit variabler logischer Kanallänge
0x14	Struktur 1 Byte n Worte mit variabler logischer Kanallänge
0x15	Doppelwort-Array mit variabler logischer Kanallänge
0x16	Struktur 1 Byte n Doppelworte mit variabler logischer Kanallänge

Version: 2.0.1

R14

reserviert

R15

Alignment-Bits (RAM): Mit den Alignment-Bits wird das Analogmodul im Prozessabbild auf eine Bytegrenze gelegt.

Register R16-R30 (Hersteller-Parameter, serielles EEPROM)

Die Hersteller-Parameter werden vom Hersteller für jeden Modultyp modulspezifisch festgelegt, können jedoch mit der Konfigurations-Software KS2000 oder über Registerkommunikation durch die Steuerung geändert werden. Die Hersteller-Parameter sind spannungsausfallsicher im seriellen EERPOM der Klemme gespeichert. Zu Änderung der Hersteller-Parameter müssen Sie zuvor in Register R31 ein Code-Wort setzen.

Register R31-R47 (Anwendungs-Parameter, serielles EEPROM)

Die Anwender-Parameter sind Modulspezifisch. Sie können mit der Konfigurations-Software KS2000 oder über Registerkommunikation durch die Steuerung geändert werden. Die Anwender-Parameter sind spannungsausfallsicher im seriellen EERPOM der Klemme gespeichert. Zu Änderung der Anwender-Parameter müssen Sie zuvor in Register R31 das Anwender-Code-Wort setzen.

R31

Code-Wort-Register im RAM: Damit Parameter im Anwender-Bereich geändert werden können muss hier das Code-Wort 0x1235 eingetragen werden. Wird ein abweichender Wert in dieses Register eingetragen, so wird der Schreibschutz gesetzt. Bei inaktivem Schreibschutz wird das Code-Wort beim Lesen des Register zurückgegeben, ist der Schreibschutz aktiv enthält das Register den Wert Null.

R32

Feature-Register: Dieses Register legt die Betriebsarten der Klemme fest. So kann z.B. bei den analogen E/A-Modulen eine anwenderspezifische Skalierung aktiviert werden.

R33 bis R63

Klemmenspezifische Register: Diese Register sind vom Klemmentyp abhängig.

Register R47 bis R63 (Registererweiterung für zusätzliche Funktionen)

Diese Register sind für zusätzliche Funktionen vorgesehen.

3.6.1.2 Beispiel für Register-Kommunikation

Control-Byte

Das Control-Byte befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	REG	R/W	Registernummer					

Bit	Name	Beschreibung	
7	REG	1 _{bin}	Registerkommunikation eingeschaltet: Die ersten zwei Byte der Nutzdaten werden nicht für den Prozessdatenaustausch verwendet, sondern in den Registersatz der Feldbus Box geschrieben oder daraus gelesen.
6	R/W	0_{bin}	Read: Das Register soll gelesen werden ohne es zu verändern.
		1 _{bin}	Write: Das Register soll beschrieben werden.
5-0	Registernummer	Nummer des Registers, das gelesen oder beschrieben werden soll. Es sind 64 Register adressierbar.	

Das Status-Byte befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	REG	R	Registernu	mmer				

Bit	Name	Beschreibung	
7	REG	1 _{bin}	Quittung Registerzugriff
6	R	O _{bin}	Read
5-0		Nummer des Registers, das gelesen oder beschrieben wurde.	

Beispiel 1

Tab. 35: Lesen des Registers 8 von KL3204 oder IP/IE3202

Byte 0 (Control-Byte)	Byte 1 (Data Out, High-Byte)	Byte 2 (Data Out, Low-Byte)
0x88 (1000 1000 _{bin})	0xXX	0xXX

Bit 0.7 gesetzt bedeutet Register-Kommunikation aktiv

Bit 0.6 nicht gesetzt bedeutet lesen des Registers.

Bit 0.5 bis Bit 0.0 geben mit 001000_{bin} die Registernummer 8 an.

Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim lesenden Zugriff ohne Bedeutung. Will man ein Register verändern, so schreibt man in das Ausgangswort den gewünschten Wert hinein.

Byte 0 (Status-Byte)	Byte 1 (Data In, High-Byte)	Byte 2 (Data In, Low-Byte)
0x88	0x0C	0x84

Die Klemme/Box liefert im Eingangsdatenwort (Byte 1 und Byte 2) die Typ-Bezeichnung 0x0C84 (entspricht unsigned Integer 3204) zurück .

Besonderheit bei der Bezeichnung von Feldbus Boxen:

Die letzte Ziffer des zurückgegebenen unsigned Integer (3204) entspricht nicht der letzten Ziffer der Feldbus Box-Bezeichnung (3202), die für die Anschlussvariante (0 für S8, 1 für M8 und 2 für M12) steht. Sie gibt stattdessen die Anzahl der Kanäle wieder (IE3204 besitzt 4 Kanäle).

Feldbus Box E/A-Module Version: 2.0.1 181

Hinweis

Damit Register beschreiben werden können, müssen Sie zuvor das Codewort 0x1235 in Register 31 schreiben, um den Schreibschutz zu deaktivieren. Das Schreiben eines Wertes ungleich 0x1235 in Register 31 aktiviert den Schreibschutz wieder. Beachten Sie das einige Einstellungen in den Registern erst nach einem Neustart (Power-Off/Power-ON) des Moduls übernommen werden.

Beispiel 2

Ablauf einer Register-Kommunikation zum ändern eines Register.

Tab. 36: 1. Schreiben des Register 31 (Codewort setzen)

Byte 0 (Control-Byte)	Byte 1 (Data Out, High-Byte)	Byte 2 (Data Out, Low-Byte)
0xDF	0x12	0x35

Antwort des Moduls/Busklemme

Byte 0 (Status-Byte)	Byte 1 (Data In, High-Byte)	Byte 2 (Data In, Low-Byte)
0x9F	0xXX	0xXX

Tab. 37: 2. Lesen des Register 31 (gesetztes Codewort überprüfen)

Byte 0 (Control-Byte)	Byte 1 (Data Out, High-Byte)	Byte 2 (Data Out, Low-Byte)
0x9F	0xXX	0xXX

Antwort des Moduls/Busklemme

Byte 0 (Status-Byte)	Byte 1 (Data In, High-Byte)	Byte 2 (Data In, Low-Byte)
0x9F	0x12	0x35

Tab. 38: 3. Schreiben des Register 32 (Register ändern)

Byte 0 (Control-Byte)	Byte 1 (Data Out, High-Byte)	Byte 2 (Data Out, Low-Byte)e
0xE0	0x00	0x02

Antwort des Moduls/Busklemme

Byte 0 (Status-Byte)	Byte 1 (Data In, High-Byte)	Byte 2 (Data In, Low-Byte)
0xA0	0xXX	0xXX

Tab. 39: 4. Lesen des Register 32 (geändertes Register überprüfen)

Byte 0 (Control-Byte)	Byte 1 (Data Out, High-Byte)	Byte 2 (Data Out, Low-Byte)
0xA0	0xXX	0xXX

Antwort des Moduls/Busklemme

Byte 0 (Status-Byte)	Byte 1 (Data In, High-Byte)	Byte 2 (Data In, Low-Byte)	
0xA0	0x00	0x02	

Tab. 40: 5. Schreiben des Register 31 (Codewort zurücksetzen)

Byte 0 (Control-Byte)	Byte 1 (Data Out, High-Byte)	Byte 2 (Data Out, Low-Byte)	
0xDF	0x00	0x00	

Antwort des Moduls/Busklemme

Byte 0 (Status-Byte)	Byte 1 (Data In, High-Byte)	Byte 2 (Data In, Low-Byte)	
0x9F	0xXX	0xXX	

3.6.2 IP/IE1502

3.6.2.1 Funktionsweise IP/IE1502

Das Eingangsmodul Ix1502 zählt binäre Impulse und überträgt den aktuellen Wert zur übergeordneten Steuerung. Es stehen zwei vollkommen eigenständige 32-Bit-Vor/Rückwärts-Gated-Counter zur Verfügung. Ein Low-Pegel bzw. High-Pegel am Eingang *GATE* stoppt den jeweiligen Zähler abhängig der Einstellung im Feature-Register (Feature.8) des Kanals. Die Zählrichtungen können durch separate Eingänge gesteuert werden (Low-Pegel=vorwärts, High-Pegel=rückwärts). Darüber hinaus können 2 digitale Ausgänge gesetzt werden.

Die maximale Eingangsfrequenz ist auf 100 kHz begrenzt, die minimale Impulsbreite des Eingangssignals beträgt ca. 1 Mikrosekunde. Die Zähler reagieren auf eine steigende Flanke des Eingangssignals. Von der Steuerung kann über das Control-Byte (CB) der Zählerstand gesetzt (CB.5), die Zählfunktion des Moduls unterbunden (CB.4) und die Ausgänge aktiviert werden (CB.2). Außerdem kann eine interne Funktion aktiviert werden (CB.0), die das automatische Setzen der Ausgänge bei definierten Zählerständen ermöglicht. Durch das Bit R32.2 im Feature-Register kann noch unterschieden werden, ob die Zähler Flanken- oder Zustandsgesteuert gesetzt werden.

Interne Funktionen

Setzen/Zurücksetzen des Ausgangs und Reset des Zählers

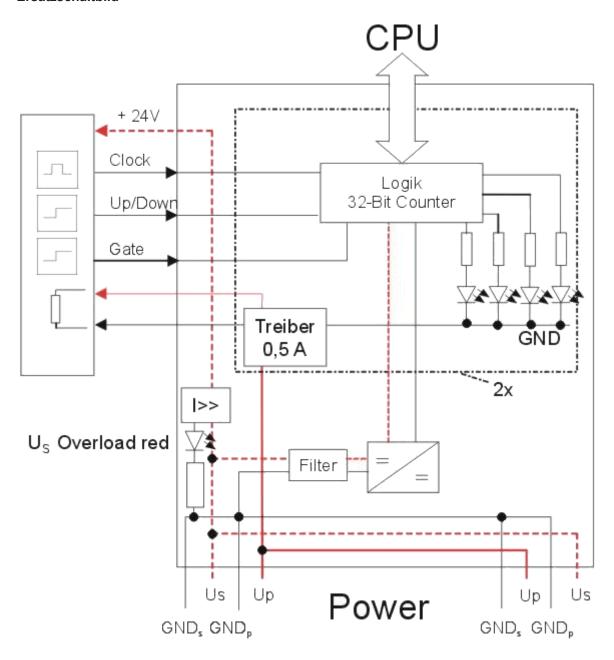
Bei aktivierter interner Funktion (CB.0) werden die Ausgänge abhängig der Einstellungen im Feature-Register (R32.4 - R32.6) und der voreingestellten Werte in den Registern 35 - 38 gesetzt bzw. zurückgesetzt. Das Bit (Control Byte, Bit 2) zum Setzen des Ausgangs ist hierbei außer Funktion. Register 39 und 40 geben die Werte vor, bei denen die Zähler auf Null gesetzt werden, diese Funktion wird nur durch das Bit R32.6 im Feature-Register aktiviert und ist unabhängig vom Control-Byte.

Hinweis

Das Setzen/Zurücksetzen/Reset der Zähler ist nur beim Vorwärtszählen implementiert! Beim Starten des Moduls werden die Registerdaten aus dem EEPROM Bereich in den RAM Bereich übertragen. Sollen die Werte während der Laufzeit geändert werden, so müssen sie von der Steuerung im RAM Bereich R0 - R5 eingetragen werden.

Impulsbetrieb

Bei aktivierter Impulsbetriebsart (R32.7 und CB.0) wird abhängig der voreingestellten Werte in den Registern 35 und 36 der jeweilige Ausgang für eine vorgegebene Impulslänge (Einstellung im Register 41, Einheit: 1 µs/Digit oder 64 µs/Digit (Timer Faktor, Bit R32.9), kleinster Impuls: 250 µs, maximaler Impuls 4 s) gesetzt. Hierbei haben die Bits R32.4 und R32.5 des Feature-Registers keine Funktion. Der Reset der Zählerstände erfolgt identisch. Durch Bit R32.10 des Feature-Registers kann die Abschaltung des Ausgangs beeinflusst werden, und zwar ob der Ausgang mit einem Reset des Zählers oder nach Ablauf der Impulszeit zurückgenommen werden soll. Die voreingestellten Werte der Register 35 bis 41 werden nach einem Power-On-Reset in die Register 0 bis 5 kopiert (siehe Registertabelle), diese können während des Betriebes verändert werden. Nachdem das Feature-Register oder andere Register-Werte die im EEPROM stehen verändert wurden, muss ein Power-On-Reset erfolgen, damit diese Werte übernommen werden.


Prozessdaten

Beim Ix1502 Modul werden 5 Byte (4 Byte Nutzdaten und 1 Byte Control/Status) gemappt. Werden 100ms keine Prozessdaten ausgetauscht (Aktivierung über Bit R32.3 des Feature-Register), schaltet ein Watchdog die Ausgänge ab.

Version: 2.0.1

Ersatzschaltbild

3.6.2.2 Control- und Status-Byte IP/IE1502

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist immer sichtbar. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	0	CNT_SET	CNT_INH	GATE_A	SET_A	0	EN_A
	s							

Name	Beschreibung
RegAccess	0 _{bin} · Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)
CNT_SET	Das Modul wird auf den Wert, der über die Prozessdaten vorgegeben wird, gesetzt. Das Setzen des Zählers kann Flanken- oder Pegelgesteuert erfolgen (Bit 2 des Feature-Registers). Pegelgesteuert: Das Zählermodul übernimmt die vorgegebenen Daten, der Zähler ist gesperrt bis zum zurücksetzen des CNT_SET Bit gesperrt. Flankengesteuert: Das Zählermodul übernimmt die vorgegebenen Daten bei einer positiven Flanke des CNT_SET Bit. Der Zähler kann danach sofort weiter zählen.
CNT_INH	Der Zähler wird gestoppt, solange dieses Bit aktiv ist. Der alte Zählerstand bleibt erhalten.
GATE_A	Der Zustand des GATE EIngangs wird im Status- Byte angezeigt. (IE1502 ab Version D.xxxxxxx11, IP1502-Bxxx ab Version D.xxxxxxx23)
SET_A	Setzen des Ausgangs
EN_A	Über dieses Bit werden die internen Funktionen im Register 32 freigegeben.

Das Control-Byte ist immer sichtbar. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	0	SET_ACC	INH_ACC	ST_GATE	ST_A	ST_V/R	0
	s							

Name	Beschreibung
RegAccess	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)
SET_ACC	Die Daten zum Setzen des Zählers wurden vom Modul übernommen.
INH_ACC	Solange dieses Bit gesetzt ist, ist der Zähler gestoppt.
ST_GATE	Der Zustand des GATE Eingangs wird in diesem Bit wiedergegeben, wenn GATE_A im Control-Byte aktiviert ist.(ab Version D.xxxxxxx11)
ST_A	Der Zustand vom Ausgang wird in diesem Bit wiedergegeben.
ST_V/R	Der Zustand vom V/R-Eingang wird im diesem Bit wiedergegeben.

Register-Kommunikation

Während der Register-Kommunikation sind keine Zählerwerte übertragbar.

Control-Byte

Das Control-Byte ist immer sichtbar. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

E	Bit	7	6	5	4	3	2	1	0
1	lame	RegAcces	R/W	Registernummer					
		s		-					

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
Registernummer	Nummer des Registers, das gelesen oder beschrieben werden soll.

Das Control-Byte ist immer sichtbar. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

3.6.2.3 Registerübersicht IP/IE1502

Die Änderungen der Register R35 bis R40 werden erst nach einem Power On in die Register R0 bis R5 übernommen. R0 bis R5 können aber auch direkt beschrieben werden, dann werden die Schwellwerte, je nach Einstellung von R32, sofort gültig.

Achtung: Einschalt-Schwellwert < Ausschaltschwellwert < Reset-Schwellwert!

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	Einschalt- Schwellwert, niederwertiges Wort	variabel	R/W	RAM
R1	Einschalt- Schwellwert, High- Wort	variabel	R/W	RAM
R2	Ausschalt- Schwellwert, niederwertiges Wort Impulslänge (1µs/ Digit)	variabel	R/W	RAM
R3	Ausschalt- Schwellwert, höherwertiges Wort	variabel	R/W	RAM
R4	Reset-Schwellwert, niederwertiges Wort	variabel	R/W	RAM
R5	Reset-Schwellwert, höherwertiges Wort		R/W	RAM
R6	reserviert	0x0000	R	RAM
R7	reserviert	0x0000	R	RAM
R8	Modul Typ	1502dec	R	ROM
R9	Software-Version	0xXXXx	R	ROM
R10	Multiplex- Schieberegister	0x0228	R	ROM
R11	Signalkanäle	0x0228	R	ROM
R12	minimale Datenlänge	0x2828	R	ROM
R13	Datenstruktur	0x0006	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Register	variable	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	EEPROM
R17	reserviert	0x0000	R/W	
R30	reserviert	0x0000	R/W	
R31	Codeword-Register	variabel	R/W	RAM
R32	Feature-Register	0x0104	R/W	EEPROM
R33	reserviert	0x0000	R/W	
R34	reserviert	0x0000	R/W	
R35	Einschalt- Schwellwert, niederwertiges Wort	0x0000	R/W	EEPROM
R36	Einschalt- Schwellwert, höherwertiges Wort	0x0000	R/W	EEPROM
R37	Ausschalt- Schwellwert, niederwertiges Wort	0x0000	R/W	EEPROM

Feldbus Box E/A-Module Version: 2.0.1 187

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R38	Ausschalt- Schwellwert, höherwertiges Wort	0x0000	R/W	EEPROM
R39	Reset-Schwellwert, niederwertiges Wort	0xFFFF	R/W	EEPROM
R40	Reset-Schwellwert, höherwertiges Wort		R/W	EEPROM
R41	Impulslänge (1µs bzw. 64µs/Digit)	0x00FA	R/W	EEPROM
R42	reserviert	0x0000	R/W	
63	reserviert	0x0000	R/W	

3.6.2.4 Feature-Register (R32) IP/IE1502

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden. Die Einstellungen in Register 32 wenden erst nach einem Power-On-Reset (Modul aus- und einschalten) gültig. Default 0x0104

Bit	Wert	Beschreibung	default
0	O _{bin}	reserviert	O _{bin}
1	O _{bin}	reserviert	O _{bin}
2	O _{bin}	Watchdog ist aktiv	O _{bin}
	1 _{bin}	Watchdog ist inaktiv	
3	O _{bin}	Das Setzen des Zählers erfolgt bei einen positiven Signal von CNT_SET Bit im Control-Byte	1 _{bin}
	1 _{bin}	Das Setzen des Zählers erfolgt bei positiver Flanke von CNT_SET Bit im Control-Byte	
4	O _{bin}	Die Funktion zum Setzen des Ausgangs ist inaktiv	O _{bin}
	1 _{bin}	Die Funktion zum Setzen des Ausgangs ist aktiv	
5	O _{bin}	Rücksetzen des Ausgangs ist inaktiv	O _{bin}
	1 _{bin}	Die Funktion zum Rücksetzen des Ausgangs ist aktiv	
6	O _{bin}	Die Funktion zum Reset des Zählers ist inaktiv	O_bin
	1 _{bin}	Die Funktion zum Reset des Zählers ist aktiv	
7	O _{bin}	Die Impuls-Betriebsart ist inaktiv	O_bin
	1 _{bin}	Die Impuls-Betriebsart ist aktiv	
8	O _{bin}	Zähler ist gesperrt wenn der Eingang <i>Gate</i> low (0) ist.	1 _{bin}
	1 _{bin}	Zähler ist gesperrt wenn der Eingang <i>Gate</i> high (1) ist.	
9	O _{bin}	Timer-Basis (Impulslänge Register 41): 1 μs/Digi (250 μs - 65 ms)	O_bin
	1 _{bin}	Timer-Basis (Impulslänge Register 41): 64 µs/Digi (10 ms - 4 s)	
10	O _{bin}	Zurücksetzen des Ausgangs erfolgt mit einem Reset des Zählers	O _{bin}
	1 _{bin}	Zurücksetzen des Ausgangs erfolgt nach Ablauf der Impulszeit	
11	O _{bin}	reserviert	O _{bin}
15	O _{bin}	reserviert	O _{bin}

Erläuterung zum Watchdog Der Watchdog-Timer ist im Auslieferungszustand eingeschaltet. Bei einem Watchdog-Overflow (>100 ms) wird der Ausgang zurückgesetzt.

Feldbus Box E/A-Module 189 Version: 2.0.1

3.6.2.5 Funktions-Register IP/IE1502

Tab. 41: On/Off/Reset-Betrieb (RAM)

Register	Bedeutung	Ort	Speicher
0	Einschalt-Schwellwert	Low-Wort	RAM
1	Einschalt-Schwellwert	High-Wort	RAM
2	Ausschalt-Schwellwert	Low-Wort	RAM
3	Ausschalt-Schwellwert	High-Wort	RAM
4	Reset-Schwellwert	Low-Wort	RAM
5	Reset-Schwellwert	High-Wort	RAM

Tab. 42: On/Off/Reset-Betrieb (EEPROM)

Register	Bedeutung	Ort	Speicher
35	Einschalt-Schwellwert	Low-Wort	EEPROM
36	Einschalt-Schwellwert	High-Wort	EEPROM
37	Ausschalt-Schwellwert	Low-Wort	EEPROM
38	Ausschalt-Schwellwert	High-Wort	EEPROM
39	Reset-Schwellwert	Low-Wort	EEPROM
40	Reset-Schwellwert	High-Wort	EEPROM

Tab. 43: Impuls/Reset-Betrieb (RAM)

Register	Bedeutung	Ort	Speicher
0	Einschalt-Schwellwert	Low-Wort	RAM
1	Einschalt-Schwellwert	High-Wort	RAM
2	Impulslänge	1/64 µs/Digit	RAM
3	-	-	-
4	Reset-Schwellwert	Low-Wort	RAM
5	Reset-Schwellwert	High-Wort	RAM

Tab. 44: Impuls/Reset-Betrieb (EEPROM)

Register	Bedeutung	Ort	Speicher
35	Einschalt-Schwellwert	Low-Wort	EEPROM
36	Einschalt-Schwellwert	High-Wort	EEPROM
37	-	-	-
38	-	-	-
39	Reset-Schwellwert	Low-Wort	EEPROM
40	Reset-Schwellwert	High-Wort	EEPROM
41	Impulslänge	1/64 µs/Digit	EEPROM

Hinweise:

- Beim Unterlauf der Zähler werden die Zählerstände nicht zurückgesetzt, d.h. das automatische Setzen der Zähler auf Null erfolgt nur, wenn der Reset-Wert von unten angelaufen wird.
- Die folgenden Bereiche der Schwellwerte sind einzuhalten: Einschaltschwellwert < Ausschaltschwellwert < Reset-Schwelle
- mögliche Impulslänge von 0,25 ms 4000 ms
- Beim Impulsbetrieb darf die Zählerbreite die Zählerlaufzeit nicht überschreiten: max. Impulslänge < Reset Schwelle/Zählerfrequenz

3.6.3 IP/IE2512

3.6.3.1 Funktionsweise IP/IE2512

Das Sonderfunktions-Modul IP/IE2512 moduliert ein binäres Signal. Dabei wird entweder die Frequenz oder Pulsweite/Impulslänge beeinflusst und kontinuierlich ausgegeben. es kann auch gezielt eine bestimmte Anzahl von Impulsen ausgegeben werden (Cnt_Cnt_PWM Modus).

Die Peripherieseite der Modulelektronik ist vom Feldbus, bzw. IP-Link galvanisch getrennt. Den Takt (Grundfrequenz) und das Puls-Pausenverhältnis können Sie über 16-Bit Werte im Prozessabbild der Steuerung vorgeben.

Das Modul IP/IE2512 belegt im Auslieferungszustand 6 Byte im Prozessabbild. Das Mapping der IP/IE2512 ist über die Steuerung oder mit der Konfigurationssoftware KS2000 einstellbar. Das IP/IE2512 kann neben der Betriebsart PWM (Pulsweitenmodulation), auch in der Betriebsart FM (Frequenz-Modulation) oder zur Schrittmotoransteuerung mit Puls- Richtungsvorgabe (Frq-Cnt-Impuls-Modus) betrieben werden. Die Defaulteinstellung des Moduls ist der PWM-Modus mit einer Grundfrequenz von 250 Hz und einer Auflösung von 10 Bit.

Das Modul wird temperaturüberwacht. Bei einer Übertemperatur werden die Ausgänge abgeschaltet, die rote Error LED am Ausgang wird gesetzt und ein Fehler-Bit im Status-Byte gesetzt!

Betriebsarten

Betriebsarten

Die verschiedenen Betriebsarten des Moduls werden über das Feature Register (R32) eingestellt. Drei Parameter sind beeinflussbar:

- · Pulsweiten-Verhältnis
- Impulslänge
- Frequenz (Periodendauer)

Je nach Betriebsart hängen diese Parameter voneinander ab!

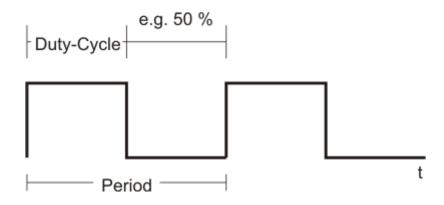
HINWEIS

Achtung

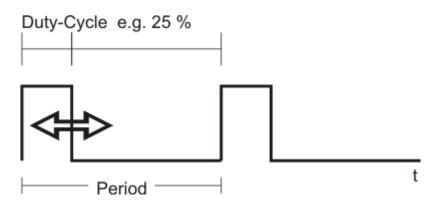
Bei Auswahl der Schrittmotorfunktion (Frq_Cnt_PWM, Frq_Cnt_Impuls, Cnt_Cnt_PWM) ist nur Kanal 1 nutzbar!

PWM-Modus (Frequenz im Register, Pulsweite über die Prozessdaten)

PWM-Modus


Im PWMH- und im PWML-Modus können zwei Kanäle betrieben werden. Dabei ist die Betriebsart und die Periodendauer für beide Kanäle identisch.

Das Verhältnis von Duty-Cycle zur Periodendauer wird über die Prozessdaten vorgegeben (100 % Einschaltdauer dem Prozessdatum 0x7FFF). Der Duty-Cycle ist das Verhältnis von eingeschaltetem Zustand zu ausgeschaltetem Zustand.


Über das Register R2 können Sie im laufenden Betrieb die Periodendauer also die Frequenz vorgeben. Dieses Register wird nach einem Systemstart automatisch aus dem Register R35 (SEEROM) geladen. Im R35 sollte also die Applikations-Default-Einstellung abgelegt werden.

Version: 2.0.1

oder

Es gibt zwei unterschiedliche PWM-Frequenzbereiche, die Sie über das Feature Register (R32) vorwählen können.

Tab. 45: PWMH-Modus

Parameter	Speicherort
Periodendauer	R2 (R35)
DutyCycle	Prozessdaten

Der Frequenzbereich erstreckt sich von 1 kHz bis 80 KHz.

Die Periodendauer wird in R2 (R35) vorgegeben. 1 Digit = $0.25 \mu s$. Achtung: dieser Wert weicht von der Einstellung der IP20 Klemme KL2502 ab!

Der Duty-Cycle wird über die Prozessdaten gewählt, 0x7FFF hex entspricht 100 % Duty-Cycle. 25 % sind demzufolge 0x1FFF hex.

Tab. 46: PWML-Modus

Parameter	Speicherort
Periodendauer	R2 (R35)
DutyCycle	Prozessdaten

Der Frequenzbereich erstreckt sich von 8Hz bis 1 kHz.

Die Periodendauer wird in R2 (R35) vorgegeben. 1 Digit = 2μ sec. Achtung: dieser Wert weicht von der Einstellung der IP20 Klemme KL2502 ab!

Der Duty-Cycle wird über die Prozessdaten gewählt, 0x7FFF hex entspricht 100 % Duty-Cycle. 25 % sind demzufolge 0x1FFF hex.

Frq-Cnt-PWM-Modus (Pulsweitenverhältnis im Register, Frequenz über die Prozessdaten)

Frq-Cnt-PWM-Modus

Parameter	Speicherort	
Puls-Weitenverhältnis	R36	
Frequenz	Prozessdaten	

Über die Prozessausgangsdaten der Steuerung wird die Frequenz in 8 Hz pro Digit vorgegeben. Die Steuerung erhält die Anzahl der von dem Modul ausgegebenen Perioden als Prozesseingangsdaten zurück. Die Zählrichtung wird in dieser Betriebsart über das Vorzeichen der Ausgangsdaten bestimmt:

- 8 Hz entspricht hier dem Wert 0x0001
- -8 Hz dem Wert 0xFFFF (signed Integer)

Der Frequenzbereich erstreckt sich von 8 Hz bis 8 kHz.

Die Impulse werden auf Ausgang OUTPUT, die Zählrichtung wird auf Ausgang UP/DOWN ausgegeben. Dabei entspricht:

- aufsteigende Zählrichtung dem Pegel V_{CC}
- · absteigende Zählrichtung dem Pegel GND

Mit steigender Flanke des Bit 0 im Control-Byte werden die Prozesseingangsdaten auf den Wert der Prozessausgangsdaten gesetzt (Prozessdatenbetrieb, d.h. Bit 7 des Control-Bytes ist 0).

Das Pulsweiten-Verhältnis wird über Register R36 festgelegt und bleibt konstant!

Änderungen werden erst nach dem Neustart des Moduls übernommen.

Frq-Cnt-Impuls-Modus(Pulslänge im Register, Frequenz über die Prozessdaten)

Frq-Cnt-Impuls-Modus

Parameter	Speicherort
Impulsbreite	R37
Frequenz	Prozessdaten

Über die Prozessausgangsdaten der Steuerung wird die Frequenz mit 8 Hz pro Digit vorgegeben. Die Steuerung erhält die Anzahl der von dem Modul ausgegebenen Impulse als Prozesseingangdaten zurück. Die Zählrichtung wird in dieser Betriebsart über das Vorzeichen der Ausgangsdaten bestimmt:

- 8 Hz entspricht dem Wert 0x0001
- -8 Hz entspricht dem Wert 0xFFFF (Signed Integer)

Der Frequenzbereich erstreckt sich von 8 Hz bis 8 kHz.

Die Impulse werden auf Ausgang OUTPUT, die Zählrichtung wird auf Ausgang UP/DOWN ausgegeben. Dabei entspricht:

- aufsteigende Zählrichtung dem Pegel V_{CC}
- absteigende Zählrichtung dem Pegel GND

Mit steigender Flanke des Bit 0 im Control-Byte, werden die Prozesseingangsdaten auf den Wert der Prozessausgangsdaten gesetzt (Control-Byte im Prozessdatenbetrieb, d.h. Bit7=0). Die für alle Frequenzen feste Impulsbreite wird über R37 in 2 µs Schritten pro Digit festgelegt.

Version: 2.0.1

Änderungen werden erst nach dem Neustart des Moduls übernommen.

Cnt-Cnt-PWM-Modus (Pulsweitenverhältnis und Frequenz im Register, Impuls-Anzahl über die Prozessdaten)

Cnt-Cnt-PWM-Modus

Parameter	Speicherort
Puls-Weitenverhältnis	R36
Periodendauer	R35
Anzahl Impulse	Prozessdaten

Über die Prozessausgangsdaten wird die Anzahl der Impulse vorgegeben. Die Steuerung erhält die Anzahl der ausgegebenen Perioden als Prozesseingangsdaten zurück. Dabei wird das

- Pulsweitenverhältnis über Register R36 und die
- Periodendauer über Register R35 festgelegt (1 Digit = 0,25 μs).

Der Frequenzbereich erstreckt sich von 1 kHz bis 32 kHz.

Eine positiven Flanke des Bit 0 im Control-Byte startet die Pulsausgabe. Mit jeder weiteren Flanke kann diese nachgetriggert werden. Die Impulse werden auf Ausgang OUTPUT ausgegeben. Ausgang UP/DOWN kann über Bit 2 des Control-Bytes gesetzt werden.

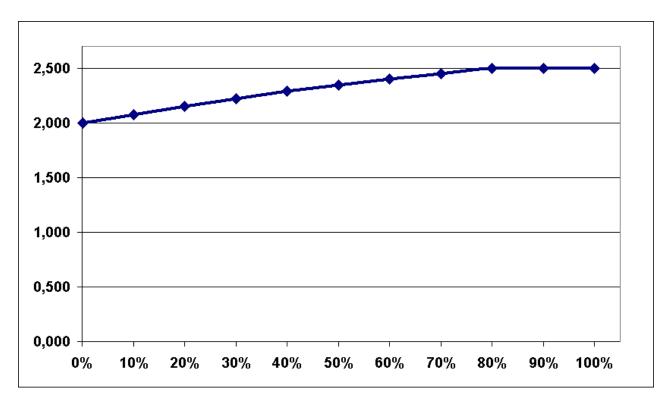
Als Status-Information erhält die Steuerung in Bit 0 des Status-Bytes die Übernahme und den gleichzeitigen Start der Impulsausgabe zurück. Bit 1 des Status-Bytes bleibt solange gesetzt, wie die Ausgabe aktiv ist. Bit 2 des Status-Bytes meldet den Zustand von Kanal 1 zurück.

Pulsweiten-Verhältnis in den Prozessdaten

Eingabeformat: Darstellung im Zweier-Komplement (der Integer-Wert "-1" wird als 0xFFFF dargestellt). Das Verhältnis von Duty-Cycle/Periodendauer wird mit einer maximalen Auflösung von 10 Bit vorgegeben.

Prozessdatum	Ausgabewert
0x0000	0 % Duty-Cycle
0x3FFF	50 % Duty-Cycle
0x7FFF	100 % Duty-Cycle

3.6.3.2 Ausgangsleistung (Derating), IP/IE2512


Beim Einsatz der PWM-Module ist die Verlustleistung innerhalb des Moduls zu berücksichtigen.

Die maximale Stromstärke für den stark induktiven Grenzfall, z.B. beim Einsatz von Proportional-Ventilen wird in der folgenden Grafik angegeben.

Im stark ohmschen Grenzfall verläuft die Linie horizontal bei 2,5 A, unabhängig von der Frequenz.

195

Stromstärke in Abhängigkeit vom Duty Cycle (Tastverhältnis)

Achtung

Bei Modulen mit Hardwarestand D.xxxxxxx00 (siehe Hard-Softwarestände) ist ein anderes Derating zu berücksichtigen.

HINWEIS

Sehen Sie dazu auch

- Firm- und Hardware-Stand [▶ 14]
- Ausgangsleistung (Derating), IP/IE2512 [▶ 198]

3.6.3.3 Control- und Status-Byte IP/IE2512

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	0	0	0	0	0	0	StartPulse
	s							s

Name	Beschreibung
RegAccess	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)
StartPulses	Im Cnt_Cnt_PWM Modus startet eine positiven Flanke dieses Bits die Pulsausgabe. Mit jeder weiteren positiven Flanke kann diese nachgetriggert werden.

Feldbus Box E/A-Module Version: 2.0.1

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	ERROR	OVR_TE	-	0	StateCh1	OUT	StartPulse
	s		MP_ERR					s

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb
ERROR	0 _{bin} : allgemeines Fehlerbit, Fehler liegt vor
OVR_TEMP_ERR	0 _{bin} : kein Fehler
	1 _{bin} : Übertemperatur im Modul, die Ausgänge werden ausgeschaltet.
StateCh1	Im Cnt_Cnt_PWM Modus wird der Zustand den von Kanal 1 zurückgemeldet.
OUT	Im Cnt_Cnt_PWM Modus wird der Status des Ausgangs eingeblendet (1 _{bin} : Write).
StartPulses	Im Cnt_Cnt_PWM Modus wird der Status von Bit 0 des des Control-Bytes eingeblendet.

Register-Kommunikation

Während der Register-Kommunikation können keine Zählerwerte übertragen werden.

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	S							

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
Registernummer	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s		-					

196 Version: 2.0.1 Feldbus Box E/A-Module

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
Registernummer	Nummer des Registers, das gelesen oder beschrieben wurde.

3.6.3.4 Registerübersicht IP/IE2512

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	reserviert	0x0000	R	RAM
R1	reserviert	0x0000	R	RAM
R2	Periodendauer	variabel	R/W	RAM
R3	Grundfrequenz	variabel	R/W	RAM
R4	reserviert	variabel	R/W	RAM
R5	PWM-Rohwert	variabel	R/W	RAM
R6	Diagnose-Register - nicht benutzt	0x0000	R	RAM
R7	Kommandoregister - nicht benutzt	0x0000	R	RAM
R8	Modultyp	2512dec	R	ROM
R9	Software Versionsnummer	0xXXXX	R	ROM
R10	Multiplex- Schieberegister	0x0218	R	ROM
R11	Signalkanäle	0x0218	R	ROM
R12	minimale Datenlänge	0x1818	R	ROM
R13	Datenstruktur	0x0000	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Register	variable	R/W	RAM
R16	Hardware Versionsnummer	0xXXXX	R/W	SEEROM
R17	reserviert	0x0000	R/W	
R18	reserviert	0x0000	R/W	
R19	Hersteller Skalierung: Offset	0x0000	R/W	
R20	Hersteller Skalierung: Gain	0x0000	R/W	
R21	reserviert	0x0000	R/W	
R30	reserviert	0x0000	R/W	
R31	Codeword-Register	variabel	R/W	RAM
R32	Feature-Register	0x0004	R/W	SEEROM
R33	Anwender-Offset	0x0000	R/W	SEEROM
R34	Anwender-Gain	0x0100	R/W	SEEROM
R35	Periodendauer PWM	0x0FA0	R/W	SEEROM
R36	Duty-Cycle	0x0000	R/W	SEEROM
R37	Impulsdauer	0x0000	R/W	SEEROM
R38	reserviert	0x0000	R/W	SEEROM
R63	reserviert	0x0000	R/W	SEEROM

Feldbus Box E/A-Module Version: 2.0.1

3.6.3.5 Feature-Register (R32) IP/IE2512

Mit dem Feature-Register können Sie die grundlegenden Einstellungen des Moduls vorgeben. Um das Register zu beschreiben zu können, müssen Sie zuvor mit dem Codewort-Register den Schreibschutz aufheben.

Default 0x0004

Bit	Wert	Beschreibung	Beschreibung				
0	O _{bin}	Anwender-Skalieru	ng nicht aktiv	O _{bin}			
	1 _{bin}	Anwender-Skalieru	Anwender-Skalierung aktiv				
1	O _{bin}	Hersteller-Skalierur	ng nicht aktiv	0_{bin}			
	1 _{bin}	Hersteller-Skalierur	ng aktiv				
2	O _{bin}	Watchdog nicht akt	iv	1 _{bin}			
	1 _{bin}	Watchdog aktiv Empfängt die Klem Daten, so wird das Einschaltdauer ges					
12 - 3	reserviert		0				
15 - 13		Betriebsart [▶ 191]	Frequenzbereich	000 _{bin}			
	000 _{bin}	PWMH-Modus [▶ 191]	1 kHz bis 80 kHz				
	001 _{bin}	PWML-Modus [▶ 191]	8 Hz bis 1 kHz	-			
	011 _{bin}	Frq-Cnt-PWM- Modus [> 194]	8 Hz bis 8 kHz				
	101 _{bin}	Frq-Cnt-Impuls- Modus [> 193]	8Hz bis 8 kHz				
	111 _{bin}	Cnt-Cnt-PWM- Modus [▶ 194]	1 kHz bis 32 kHz				

3.6.3.6 Ausgangsleistung (Derating), IP/IE2512

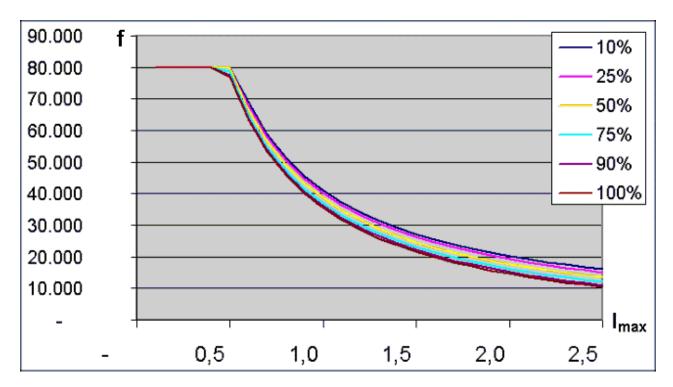
Beim Einsatz der PWM-Module Hardwarestand D.xxxxxxx00 ist die Verlustleistung innerhalb des Moduls zu berücksichtigen.

Sie setzt sich aus drei Komponenten zusammen und darf insgesamt max. 1W betragen ($P = P_1 + P_f + P_1$):

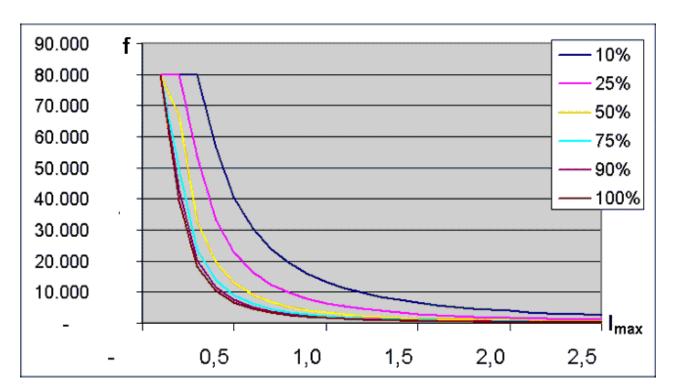
- 1. stromabhängige Verluste
 - $P_1 = I_{max}^2 \times 0.15 \text{ Ohm}$
- 2. frequenzabhängige Verluste $P_f = U \times I_{max} \times 10^{-6} sec \times f$
- 3. induktive Rückspeisung $P_L = I_{max}^2 x L / (2 x f)$

Legende

 I_{max} : maximaler Ausgangsstrom (Duty-Cycle berücksichtigen)


U: Ausgangs-Spannung

f : Frequenz L: Induktivität



Die induktive Komponente wird über eine interne Diode mit 39 V abgebaut. Durch eine externe Schottky-Diode mit entsprechender Verlustleistung und Spannung (min. 45 V), kann die Energie außerhalb des Moduls umgesetzt werden. Der Anschluss erfolgt mit Kathode an Pin 4, Anode an Pin 3.

Zur Veranschaulichung die möglichen Frequenzen in Abhängigkeit des Ausgangsstroms (für verschiedene Duty-Cycle).

Derating ohne induktive Komponente

Derating bei 1 mH induktiver Belastung

3.6.4 IE2808

3.6.4.1 Funktionsweise IE2808

Das Ausgangsmodul IE2808 besitzt 16 Ausgänge mit einer Strombelastbarkeit von je 0,5 A. Der Gesamtstrom des Moduls darf maximal 4,0 A betragen.

Fehleranzeige

Jeder Kanal ist individuell diagnostizierbar, d.h. im Fehlerfall wird für diesen Kanal ein Fehlerbit im Prozessdaten-Eingangsbereich gesetzt.

Für das IE2808-0000 muss dieses Fehlerbit durch Setzen eines Bits im <u>Control-Byte [▶ 200]</u> manuell zurückgesetzt werden.

Für das IE2808-0001 wird dieses Fehlerbit nach Beseitigung des Fehlers automatisch zurück gesetzt.

LEDs

Das Modul verfügt über 4 LEDs. Us und Up zeigen das Vorhandensein der Spannungsversorgung für Logik bzw. die Ausgänge an.

ERR 1-8 und ERR 9-16 zeigen gruppenweise den Zustand der Ausgänge an.

LED	Grün	Rot
	,	mindestens ein Ausgang der Gruppe 1-8 hat einen Kurzschluss
		mindestens ein Ausgang der Gruppe 9-16 hat einen Kurzschluss

3.6.4.2 Control- und Status-Byte IE2808

Prozessdatenbetrieb

Control-Byte

Das Control-Byte (CB) ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAcces	ResetErr	SetDefault	-	-	-	-	-
	s		Status					

200 Version: 2.0.1 Feldbus Box E/A-Module

Bit	Name	Beschreibung	
CB.7	RegAccess	O _{bin}	Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)
CB.6	ResetErr	1 _{bin}	Setzt im Status-Byte angezeigte Fehler zurück.
CB.5	SetDefaultStatus	1 _{bin}	Setzt Ausgänge auf den mit Register R33 [▶ 204] vorgegebenen Default- Status
CB.4	-	O _{bin}	reserviert
CB.0	-	O _{bin}	reserviert

Das Status-Byte (SB) ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAcces	Error	UnderVolt	OvrCurren	OvrCurren	-	DefaultSta	-
	s		age	tGrp2	tGrp1		tus	

Feldbus Box E/A-Module Version: 2.0.1 201

Bit	Name	Beschreibung	
SB.7	RegAccess	O _{bin}	Quittung für Prozessdatenbetrieb
SB.6	Error	O _{bin}	allgemeines Fehlerbit: kein Fehler aufgetreten
		1 _{bin}	allgemeines Fehlerbit: Fehler aufgetreten
SB.5	UnderVoltage	O _{bin}	Lastspannung U _L ≥ 18 V
		1 _{bin}	Lastspannung U_L < 18 V, U_L -LED leuchtet rot, die Ausgänge bleiben aber geschaltet
SB.4	OvrCurrentGrp2	O _{bin}	kein Fehler
		1 _{bin}	Kurzschluss an einem Ausgang der Gruppe 2. Der betroffene Ausgang wird im Eingangs-Byte Diag2 [* 158] angezeigt. Diese Fehleranzeige muss nach Behebung durch Bit CB.6 [* 200] des Control-Bytes zurückgesetzt werden!
SB.3	OvrCurrentGrp1	O _{bin}	kein Fehler
		1 _{bin}	Kurzschluss an einem Ausgang der Gruppe 1. Der betroffene Ausgang wird im Eingangs-Byte Diag1 [• 158] angezeigt. Diese Fehleranzeige muss nach Behebung durch Bit <u>CB.6 [• 200]</u> des Control-Bytes zurückgesetzt werden!
SB.2	-	O _{bin}	reserviert
SB.1	DefaultStatus	O _{bin}	Ausgänge in Betrieb
		1 _{bin}	Ausgänge haben den in Register R33 definierten Default-Status angenommen
SB.0	-	O _{bin}	reserviert

Register-Kommunikation

Control-Byte

Das Control-Byte (CB) ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAcces	R/W	Registernummer					
	s							

202 Version: 2.0.1 Feldbus Box E/A-Module

Bit	Name	Beschreibung	
CB.7	RegAccess	1 _{bin}	Registerkommunikation eingeschaltet
CB.6	R/W	O _{bin}	Read
		1 _{bin}	Write
CB.5 - CB.0	Registernummer	Nummer des Registers, das gelesen oder beschrieben werden soll.	

Das Status-Byte (SB) ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAcces	R/W	Registernummer					
	s							

Bit	Name	Beschreibung	
SB.7	RegAccess		Quittung für Registerzugriff
SB.6	R/W	O _{bin}	Read
SB.5 - SB.0	Registernummer	Nummer des Registers, das gelesen oder beschrieben wurde.	

Feldbus Box E/A-Module Version: 2.0.1 203

3.6.4.3 Registerübersicht IE2808

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	reserviert	0x0000	R/W	RAM
R5	reserviert	0x0000	R/W	RAM
R6	Diagnose-Register - nicht benutzt	0x0000	R	RAM
R7	Kommandoregister - nicht benutzt	0x0000	R	RAM
R8	Modultyp	2808 _{dez}	R	ROM
R9	Firmware Versionsnummer	z.B. 0x3142	R	ROM
R10	Multiplex- Schieberegister	0x0118	R	ROM
R11	Signalkanäle	0x0118	R	ROM
R12	minimale Datenlänge	0x9898	R	ROM
R13	Datenstruktur	0x0001	R	ROM
R14	reserviert	0x0000	R/W	RAM
R30	reserviert	0x0000	R/W	RAM
R31	Code-Wort- Register	variabel	R/W	RAM
R32	Enable- Defaultstatus- Register	0xFFFF	R/W	SEEROM
R33	Defaultstatus- Register	0x0000	R/W	SEEROM
R34	reserviert	0x0000	R/W	SEEROM
•••				
R63	reserviert	0x0000	R/W	SEEROM

3.6.4.4 Watchdog-Feature (R32-R33) IE2808

Über das Enable-Defaultstatus-Register R32 und das Defaultstatus-Register R33 kann das Verhalten der Ausgänge im Fall eines Kommunikationsausfalls festgelegt werden.

- Register R32 aktiviert oder deaktiviert das Watchdog-Feature.
- Register R33 definiert für jeden einzelnen Kanal den Schaltzustand seines Ausgangs im Fehlerfall (wenn Watchdog aktiviert wurde).

Zum Ändern der Register muss zunächst der Schreibschutz aufgehoben werden. Dies geschieht durch Schreiben des Anwender-Code-Worts (0x1235) in das Register R31.

HINWEIS

Achtung

Beachten Sie bei Nutzung des Watchdog-Features, dass beim Einschalten des Systems keine Kommunikationsverbindung besteht, d.h. die Ausgänge werden auf die vordefinierten Wert egesetzt.

Register	Beschreibung	Ausgang	Beschreibung	Default
32	Watchdog aktiv	00 - 15		0xFFFF
			deaktiviert	

Register	Beschreibung	Ausgang	Beschreibung	Default
33	Output State	00 - 15	1 = ON; 0 = OFF	0x0000

204 Version: 2.0.1 Feldbus Box E/A-Module

In Auslieferungszustand ist der Watchdog aktiviert und die vordefinierten Ausgangs-Stati sind auf 0 gesetzt. Alle Ausgänge werden also im Fehlerfall ausgeschaltet!

Beispiel

Register 32 = 1111 1111 1111 1111 Register 33 = 1000 0000 0000 0000

Prozessdaten von der übergeordneten Steuerung = ON für alle Ausgänge

Bei einer Kommunikationsunterbrechung werden nun alle Ausgänge, außer Ausgang 16, auf OFF gesetzt. Ausgang 16 wird auf ON gesetzt.

3.6.4.5 Defaultstatus-Register (R33) IE2808

Das Defaultstatus-Register legt legt für jeden einzelnen Ausgang den Defaultstatus für den Kommunikationsfehlerfall fest.

Bit	Wert	Beschreibung	Hersteller- einstellung
0	0 _{bin} Defaultstatus für Ausgang 1 ist AUS		0_{bin}
	1 _{bin}	Defaultstatus für Ausgang 1 ist EIN	
1	O _{bin}	Defaultstatus für Ausgang 2 ist AUS	O _{bin}
	1 _{bin}	Defaultstatus für Ausgang 2 ist EIN	
	O _{bin}		O _{bin}
	1 _{bin}		
15	O_{bin}	Defaultstatus für Ausgang 16 ist AUS	O _{bin}
	1 _{bin}	Defaultstatus für Ausgang 16 ist EIN	

3.6.4.6 Enable-Defaultstatus-Register (R32) IE2808

Das Enable-Defaultstatus-Register legt legt für jeden einzelnen Ausgang fest, ob dieser im Kommunikationsfehlerfall auf den für Ihn im Register R33 festgelegten Default-Wert gesetzt wird.

Bit	Wert	Beschreibung	Hersteller- einstellung
0	0 _{bin} Defaultstatus für Ausgang 1 gesperrt		O _{bin}
	1 _{bin}	Defaultstatus für Ausgang 1 freigegeben	
1	O _{bin}	Defaultstatus für Ausgang 2 gesperrt	O _{bin}
	1 _{bin}	Defaultstatus für Ausgang 3 freigegeben	
	O _{bin}		O _{bin}
	1 _{bin}		
15	0_{bin}	Defaultstatus für Ausgang 16 gesperrt	0_{bin}
	1 _{bin}	Defaultstatus für Ausgang 16 freigegeben	

Version: 2.0.1

3.6.5 IP/IE3102

3.6.5.1 Funktionsweise IP/IE3102

Das analoge Eingangsmodul verarbeitet Signale von -10 V bis 10 V mit einer Auflösung von 16 Bit. Die Filterkonstanten und die damit verbundenen Wandlungszeiten sind in weiten Bereichen einstellbar.

Prozessdaten (hex)	Prozessdaten (dezimal)	Messwert
0x8000	-32768	-10 V
0xC001	-16383	- 5 V
0x0000	0	0 V
0x3FFF	16383	5 V
0x7FFF	32767	10 V

Die Darstellung entspricht dem Zahlenformat Integer (INT) . Die Prozessdaten werden in der Default-Einstellung im Zweierkomplement eingegeben (-1 entspricht 0xFFFF).

Prozessdaten

Die Prozessdaten, die die Steuerung schreibt, werden wie folgt ausgegeben:

x_adc = Ausgabe Wert des A/D Wandlers

y_aus = Prozessdaten zur PLC Steuerung

B a, A a = Hersteller Skalierung (Register 17, 18)

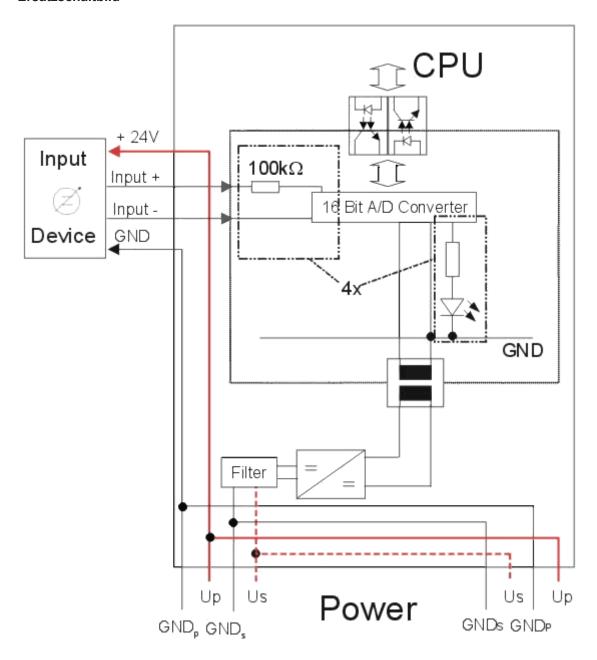
B h, A h = Hersteller Skalierung (Register 19, 20)

B w, A w = Anwender Skalierung (Register 33, 34)

Y_dac = Ausgabewert zum D/A Wandler

weder Anwender noch Herstellerskalierung aktiv

Herstellerskalierung aktiv (Default)


Anwenderskalierung aktiv

Hersteller- und Anwenderskalierung aktiv

Die Gradengleichungen werden über Register 32 aktiviert.

Ersatzschaltbild

3.6.5.2 Control- und Status-Byte IP/IE3102

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	-						
	s							

Legende:

Bit	Name	Beschreibung			
7	RegAccess		Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)		
60	-	reserviert			

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	Error	Grenzwert	2	Grenzwert	1	Over-	Under-
	s						Range	Range

Legende:

Bit	Name	Beschreibung	
7	RegAccess	O _{bin}	Quittung für Prozessdatenbetrieb
6	Error	allgemeines Feh	nlerbit
5,4	Grenzwert 2	00 _{bin} :	Grenzwert 2 nicht aktiv
		01 _{bin}	Prozessdaten > Grenzwert 2
		10 _{bin}	Prozessdaten < Grenzwert 2
		11 _{bin}	Prozessdaten = Grenzwert 2
3,2	Grenzwert 1	OO _{bin} :	Grenzwert 1 nicht aktiv
		01 _{bin}	Prozessdaten > Grenzwert 1
		10 _{bin}	Prozessdaten < Grenzwert 1
		11 _{bin}	Prozessdaten = Grenzwert 1
1	Over-Range	1 _{bin}	wenn R32.4 = 0: Messbereich überschritten (>0x7FFF)
			wenn R32.4 = 1: Messwert ≥ 10,5 V
0	Under-Range	1 _{bin}	wenn R32.4 = 0: Messbereich unterschritten (>0x8000)
			wenn R32.4 = 1: Messwert ≤ -10,5 V

•

Hinweis

Um den Over/Under-Range Bereich zu ändern muss die Anwenderskalierung geändert werden. Beispiel: Sie wollen einen Overrange von 10,6 V einstellen. Dazu müssen Sie die Anwenderskalierung aktivieren und den Gain in Register 34 auf 0x00F0 ändern. Der Messbereich geht nun bis 10,6 V (maximal bis 11,8 V möglich).

Register-Kommunikation

Während der Register-Kommunikation sind keine Messwerte übertragbar.

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0					
Name	RegAcces	R/W	Registernu	Registernummer									
	s												

Legende:

Bit	Name	Beschreibung					
7	RegAccess	1 _{bin}	Registerkommunikation eingeschaltet				
6	R/W	O _{bin}	Read				
		1 _{bin}	Write				
50	Registernummer	Nummer des F beschrieben w	Registers, das gelesen oder verden soll.				

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0				
Name	RegAcces	R/W	Registernu	Registernummer								
	s											

Legende:

Bit	Name	Beschreibung	
7	RegAccess		Quittung für Registerzugriff
6	R/W	O _{bin}	Read
50	Registernummer	Nummer des Registers, da beschrieben wurde.	s gelesen oder

Feldbus Box E/A-Module

3.6.5.3 Registerübersicht IP/IE3102

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	ADC-Rohwert	variabel	R	RAM
R1	reserviert	0x0000	R	
R7	reserviert	0x0000	R	
R8	Modul Typ	3102dec	R	ROM
R9	Software-Version	0xXXXx	R	ROM
R10	Multiplex- Schieberegister	0x0418	R	ROM
R11	Signalkanäle	0x0418	R	ROM
R12	minimale Datenlänge	0x0098	R	ROM
R13	Datenstruktur	0x0004	R	ROM
R14	nicht benutzt	0x0000	R	
R15	Alignment-Regiser	variable	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	SEEROM
R17	Hardware- Abgleich: Offset	spezifisch	R/W	SEEROM
R18	Hardware- Abgleich: Gain	spezifisch	R/W	SEEROM
R19	Hersteller Skalierung: Offset	0x0000	R/W	SEEROM
R20	Hersteller Skalierung: Gain	0x0100	R/W	SEEROM
R21	reserviert	0x0000	R/W	SEEROM
R30	reserviert	0x0000	R/W	SEEROM
R31	Codeword-Register	variabel	R/W	RAM
R32	Feature-Register	0x0010	R/W	SEEROM
R33	Anwender-Offset	0x0000	R/W	SEEROM
R34	Anwender-Gain	0x0100	R/W	SEEROM
R35	Grenzwert 1	0x0000	R/W	SEEROM
R36	Grenzwert 2	0x0000	R/W	SEEROM
R37	Filter-Register	0x3200	R/W	SEEROM
R38	reserviert	0x0000	R/W	SEEROM
R63	reserviert	0x0000	R/W	SEEROM

3.6.5.4 Feature-Register (R32) IP/IE3102

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden. Default [0x0010]

Bit	Wert	Beschreibung	Hersteller- einstellung		
0	O _{bin}	Anwender-Skalierung inaktiv	O _{bin}		
	1 _{bin}	Anwender-Skalierung aktiv			
1	O _{bin}	Hersteller-Skalierung inaktiv	0_{bin}		
	1 _{bin}	Hersteller-Skalierung aktiv			
2	0_{bin}	reserviert	O _{bin}		
3	O _{bin}	Betragsvorzeichendarstell ung inaktiv	0_{bin}		
	1 _{bin}	Betragsvorzeichendarstell ung aktiv (-1 = 0x8001)			
4	O _{bin}	Overflow-Offset inaktiv:	1 _{bin}		
		Die Prozessdaten werden auf größer 0x7FFF (oder 0xFFFF je nach Hersteller-Skalierung) überwacht und das Ergebnis wird im Status- Byte angezeigt.			
	1 _{bin}	Overflow-Offset aktiv Der Messwert (die tatsächliche Spannung) wird überwacht und das Ergebnis wird im Status- Byte angezeigt.			
5	O _{bin}	reserviert	O _{bin}		
8	0 _{bin}	reserviert	O _{bin}		
9	O _{bin}	Grenzwert 1 inaktiv	O _{bin}		
	1 _{bin}	Grenzwert 1 aktiv (der Grenzwert 1 wird in Register R35 [▶ 210] festgelegt)			
10	O _{bin}	Grenzwert 2 inaktiv	O _{bin}		
	1 _{bin}	Grenzwert 2 aktiv (der Grenzwert 2 wird in Register <u>R36 [</u> ▶ <u>210]</u> festgelegt)			
11	O _{bin}	reserviert	O _{bin}		
15	O_{bin}	reserviert	0_{bin}		

3.6.5.5 Filter-Register (R37) IP/IE3102

Die IP/IE3102 besitzen zwei Tiefpass Filterstufen. Die erste Stufe besteht aus einem sinc³ Filter. Diese ist immer aktiv. Die zweite besteht aus einem FIR-Filter 22. Ordnung, welches deaktiviert werden kann. Die Filtereinstellungen gelten immer für alle Kanäle und werden im ersten Register des Kanal 1 eingestellt. Die Einstellungen sind erst nach einem Power-On Reset (Feldbus Box aus und wieder einschalten) wirksam.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nam e	SF1 1	SF1 0	SF9	SF8	SF7	SF6	SF5	SF4	SF3	SF2	SF1	SF0	0	0	SKIP	Fast

Feldbus Box E/A-Module Version: 2.0.1 211

FAST

0 - Inaktiv

1 - Aktiv

Bei Aktivierung folgt eine schnelle Reaktion auf Sprünge am Eingang (trotz aktivierter 2. Filterstufe), der Filter wird für die nächsten & A/D Wandlungen umgangen und der Wert gemittelt.

SKIP

0 - FIR Filter aktiv

1 - FIR Filter wird umgangen. Bei aktiviertem SKIP Modus ist der FAST Modus irrelevant.

Bit 2, 3

müssen Null sein.

SF0-11

Dies ist die eigentliche Filterkonstante. Diese legt die 3dB Grenzfrequenz des sinc³ Filter fest. Der Wertebereich erstreckt sich von 150 - 2047. Die 3 dB Grenzfrequenz bzw. die 64,5 dB Stopfrequenz F_{stop} sind in der folgenden Tabelle aufgelistet und werden wie folgt berechnet:

SKIP = 0 SF = 11981/ F_{Grenz} SF = 43008/ F_{stop} SKIP = 1

 $SF = 80486/F_{Grenz}$

Beispiel: Sie wollen eine Grenzfrequenz von 75 Hz einstellen SF = $11981/F_{Grenz}$ = $11981/75 = 160_{dez}$ » 0000_1010_0000 bin + Low-Byte = $0000_1010_0000_0000_{bin}$ = 0x0A00

Default-Registereinstellung ist 0x35C0.

	Register 37	F _{stop} [Hz]	F _{Grenz} [Hz]	Zykluszeit [ms]
SKIP =0	0x0A00	270	75	50
Fast = 0	0x1400	135	38	100
	0x1E00	90	25	150
	0x2800	68	19	200
	0x3200	54	15	250
SKIP = 0	0x0781			5
Fast =1	0x0F01			10
	0x1681			15
	0x1E01			20
	0x2581			25
SKIP = 1	0x0782		671	5
Fast = x	0x0F02		335	10
	0x1682		224	15
	0x1E02		168	20
	0x2582		134	15

3.6.6 IP/IE3112

3.6.6.1 Funktionsweise IP/IE3112

Das analoge Eingangsmodul verarbeitet Signale von 0 bis 20 mA mit einer Auflösung von 16 Bit. Die Filterkonstanten und die damit verbundenen Wandlungszeiten sind in weiten Bereichen einstellbar.

Prozessdaten (hex)	Prozessdaten (dezimal)	Messwert
0x0000	0	0 mA
0x3FFF	16383	10 mA
0x7FFF	32767	20 mA

Ab der Softwareversion [IP3112-Bxxx "3"; IE3112 "0"] (siehe Anhang) kann im Register 32 (Bit 5= 1) auch der Bereich von 4..20 mA eingestellt werden. Diese Einstellung im Feature-Register (R32) können für jeden Kanal separat angewählt werden.

Prozessdaten (hex)	Prozessdaten (dezimal)	Messwert
0x0000	0	4 mA
0x3FFF	16383	12 mA
0x7FFF	32767	20 mA

Version: 2.0.1

Die Darstellung entspricht dem INT (Integer) Zahlenformat. Die Prozessdaten werden in der Default-Einstellung im 2er Complement eingegeben (-1 entspricht 0xFFFF).

Prozessdaten

Die Prozessdaten, die die Steuerung schreibt, werden wie folgt ausgegeben:

x_adc = Ausgabe Wert des A/D Wandlers

y_aus = Prozessdaten zur PLC Steuerung

B_a, A_a = Hersteller Skalierung (Register 17, 18)

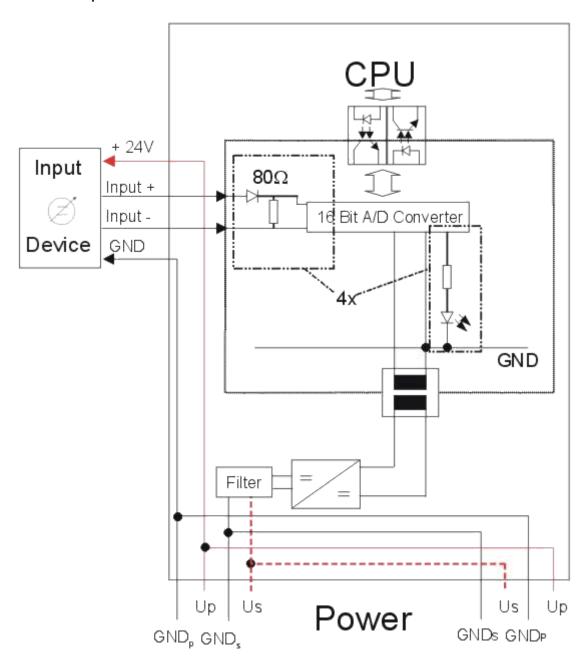
B_h, A_h = Hersteller Skalierung (Register 19, 20)

B w, A w = Anwender Skalierung (Register 33, 34)

Y_dac = Ausgabewert zum D/A Wandler

weder Anwender noch Herstellerskalierung aktiv

Herstellerskalierung aktiv (Default)


Anwenderskalierung aktiv

Hersteller- und Anwenderskalierung aktiv

Die Gradengleichungen werden über Register 32 aktiviert.

Ersatzschaltplan

3.6.6.2 Control- und Status-Byte IP/IE3112

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	Error	Grenzwert	2	Grenzwert	1	Over-	Under-
	s						Range	Range

Name	Beschreibung			
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrie	eb		
Error	allgemeines Fehlerbit (Messwert >21 mA, bzw. <3mA (420mA Modus)			
Grenzwert 2 Grenzwert 1	00 _{bin} : Grenzwert nicht aktiv 10 _{bin} : Prozessdaten < Grenzwert 01 _{bin} : Prozessdaten > Grenzwert 11 _{bin} : Prozessdaten = Grenzwert			
Over-Range	R32 Bit 4 = 0 Messbereich überschritten >0x7FFF bzw. 0xFFFF	R32 Bit 4 = 1 Messwert > 20 mA		
Under-Range	R32 Bit 4 = 0 und R32 Bit 5 = 0 keine Funktion	R32 Bit 4 = 1 und R32 Bit 5 = 1 Messwert < 4 mA		

Register-Kommunikation

Während der Register-Kommunikation sind keine Messwerte übertragbar.

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild der Feldbus Box und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Version: 2.0.1

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

3.6.6.3 Registerübersicht IP/IE3112

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	ADC-Rohwert	variabel	R	RAM
R1	reserviert	0x0000	R	
R7	reserviert	0x0000	R	
R8	Modul Typ	0x0C28 (3112dec)	R	ROM
R9	Software-Version	0xXXXX	R	ROM
R10	Multiplex- Schieberegister	0x0418	R	ROM
R11	Signalkanäle	0x0418	R	ROM
R12	minimale Datenlänge	0x0098	R	ROM
R13	Datenstruktur	0x0004	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Register	variable	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	EEPROM
R17	Hardware- Abgleich: Offset	spezifisch	R/W	EEPROM
R18	Hardware- Abgleich: Gain	spezifisch	R/W	EEPROM
R19	Hersteller- Skalierung: Offset	0x0000	R/W	EEPROM
R20	Hersteller- Skalierung: Gain	0x0080	R/W	EEPROM
R21	reserviert	0x0000	R/W	
R30	reserviert	0x0000	R/W	
R31	Codeword Register	variabel	R/W	RAM
R32	Feature-Register	0x0012	R/W	EEPROM
R33	Anwender-Offset	0x0000	R/W	EEPROM
R34	Anwender-Gain	0x0100	R/W	EEPROM
R35	Grenzwert 1	0x0000	R/W	EEPROM
R36	Grenzwert 2	0x0000	R/W	EEPROM
R37	Filter-Register	0x3200	R/W	EEPROM
R38	reserviert	0x0000	R/W	
R63	reserviert	0x0000	R/W	

3.6.6.4 Feature-Register (R32) IP/IE3112

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden. Default [0x0012]

Bit	Wert	Beschreibung	Hersteller- einstellung
0	O _{bin}	Anwender-Skalierung inaktiv	O _{bin}
	1 _{bin}	Anwender-Skalierung aktiv	
1	O _{bin}	Hersteller-Skalierung inaktiv	1 _{bin}
	1 _{bin}	Hersteller-Skalierung aktiv	
2	O _{bin}	reserviert	O _{bin}
3	O _{bin}	Betragsvorzeichendarstell ung inaktiv	O _{bin}
	1 _{bin}	Betragsvorzeichendarstell ung aktiv (-1 = 0x8001)	
4	O_{bin}	Overflow-Offset inaktiv	1 _{bin}
	1 _{bin}	Overflow-Offset aktiv	
5) ¹	O _{bin}	020 mA Modus	0 _{bin}
	1 _{bin}	420 mA Modus	
6	0_{bin}	reserviert	O _{bin}
8	O _{bin}	reserviert	O _{bin}
9	O _{bin}	Grenzwert 1 inaktiv	O _{bin}
	1 _{bin}	Grenzwert 1 aktiv (R35)	
10	O _{bin}	Grenzwert 2 inaktiv	O _{bin}
	1 _{bin}	Grenzwert 2 aktiv (R36)	
11	0_{bin}	reserviert	O _{bin}
15	O _{bin}	reserviert	O _{bin}

Overflow-Offset

Ist dieses Bit gesetzt, wird der Messwert (der tatsächliche Strom) überwacht und im Status-Byte angezeigt. Ist dieses Bit nicht gesetzt, so werden die Prozessdaten auf größer 0x7FFF (oder 0xFFFF je nach Hersteller Skalierung) im Status-Byte angezeigt.

)¹ ab <u>Software-Version [▶ 14]</u> der E/A Platine IP3112-Bxxx "3" IE3112 "0"

3.6.6.5 Filter-Register (R37) IP/IE3112

Die IP/IE3112 besitzen zwei Tiefpass-Filterstufen. Die erste Stufe besteht aus einem sinc³ Filter. Diese ist immer aktiv. Die zweite besteht aus einem FIR-Filter 22. Ordnung, welches deaktiviert werden kann. Die Filtereinstellungen gelten immer für alle Kanäle und werden im ersten Register des Kanal 1 eingestellt. Die Einstellungen sind erst nach einem Power-On-Reset (Feldbus Box aus und wieder einschalten) wirksam.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SF1	SF1	SF9	SF8	SF7	SF6	SF5	SF4	SF3	SF2	SF1	SF0	0	0	SKIP	Fast
Nam	1	0														
е																

FAST

0 - Inaktiv

1 - Aktiv

Bei Aktivierung folgt eine schnelle Reaktion auf Sprünge am Eingang (trotz aktivierter 2. Filterstufe), der Filter wird für die nächsten & A/D Wandlungen umgangen und der Wert gemittelt.

SKIP

0 - FIR Filter aktiv

1 - FIR Filter wird umgangen. Bei aktiviertem SKIP Modus ist der FAST Modus irrelevant.

Bit 2, 3

müssen Null sein.

SF0-11

Dies ist die eigentliche Filterkonstante. Diese legt die 3dB Grenzfrequenz des sinc³ Filter fest. Der Wertebereich erstreckt sich von 150 - 2047.

Die 3 dB Grenzfrequenz bzw. die 64,5 dB Stopfrequenz F_{stop} sind in der folgenden Tabelle aufgelistet und werden wie folgt berechnet:

SKIP = 0

SF = 11981/ F_{Grenz}

 $SF = 43008/F_{stop}$

SKIP = 1

 $SF = 80486/ F_{Grenz}$

Beispiel

Sie wollen eine Grenzfrequenz von 75 Hz einstellen:

 $SF=11981/F_{Grenz}=11981/75=160_{dez} \times 0000_1010_0000_{bin}+LowByte=0000_1010_0000_0000=0x0A00$

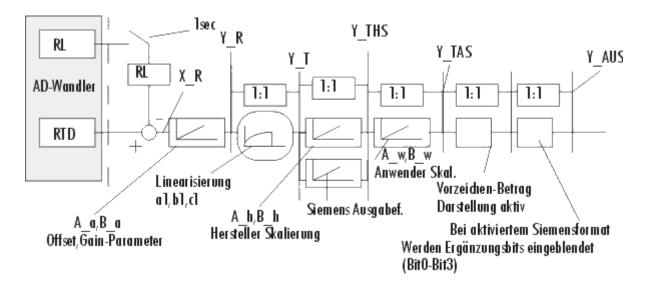
Defaultregistereinstellung ist 0x3200.

	Register 37	F _{stop} [Hz]	F _{Grenz} [Hz]	Zykluszeit [ms]
SKIP =0	0x0A00	270	75	50
Fast = 0	0x1400	135	38	100
	0x1E00	90	25	150
	0x2800	68	19	200
	0x3200	54	15	250
SKIP = 0	0x0781			5
Fast =1	0x0F01			10
	0x1681			15
	0x1E01			20
	0x2581			25
SKIP = 1	0x0782		671	5
Fast = x	0x0F02		335	10
	0x1682		224	15
	0x1E02		168	20
	0x2582		134	15

3.6.7 IP/IE3202

3.6.7.1 Funktionsweise IP/IE3202

Das analoge Eingangsmodul IP3202-Bxxx bzw. IE3202 erlaubt den direkten Anschluss von vier Widerstandssensoren. Die Widerstandssensoren können in 2, 3 oder 4 Leiteranschlusstechnik betrieben werden. Die Umrechnung und Linearisierung des Widerstandswertes in eine Temperatur erfolgt durch einen Mikro-Controller in dem Modul.


Temperaturen werden in 1/10°C (1 Digit = 0,1°C) ausgegeben. Darüber hinaus wird ein Drahtbruch bzw. Kurzschluss an den Slave bzw. an die Steuerung gemeldet und durch die Error-LED angezeigt.

Als Widerstandssensoren sind die Elemente PT100, NI100, PT200, PT500, NI120, NI1000 und PT1000 über ihren kompletten Messbereich implementiert. Das Modul ist über einen Feldbus vollständig konfigurierbar, so kann z.B. eine selbstdefinierte Skalierung der Ausgabe erfolgen, oder es kann die Temperaturumrechnung abgeschaltet werden. In diesem Fall erfolgt die Ausgabe des Messwerts in einem Bereich von 10 Ohm bis 1,2/5,0 kOhm mit einer Auflösung von 1/10 bzw. 1/2 Ohm (Die interne Auflösung des Widerstandswertes beträgt 1/255 Ohm).

Ausgabeformat der Prozessdaten

Prozessdaten (hex)	Prozessdaten Dezimal (integer)	Messwert
0xF63C	-2500	-250°C
0xF830	-2000	-200°C
0xFC18	-1000	-100°C
0xFFFF	-1	-0,1°C
0x0000	0	0,0°C
0x0001	1	0,1°C
0x02E8	1000	100°C
0x07D0	2000	200°C
0x1388	5000	500°C
0x2134	8500	850°C

Prozessdaten

Die Prozessdaten, die zum K-Bus übertragen werden, berechnen sich aus folgenden Gleichungen:

X RL: ADC-Wert der Zuleitung

X RTD: ADC-Wert des Temperatursensors inklusive einer Zuleitung

X_R: ADC-Wert des Temperatursensors

A_a, B_a: Hersteller, Gain und Offsetabgleich (R17,R18)

A_h, B_h: Hersteller-Skalierung

A_w, B_w: Anwender-Skalierung

Y_R: Widerstandswert des Temperatursensors

Y_T: gemessene Temperatur in 1/16°C

Y THS: Temperatur nach Herstellerskalierung (1/10°C)

Y_TAS: Temperatur nach Anwenderskalierung

Y AUS: Prozessdaten zur SPS- Steuerung

a) Berechnung des Widerstandswertes:

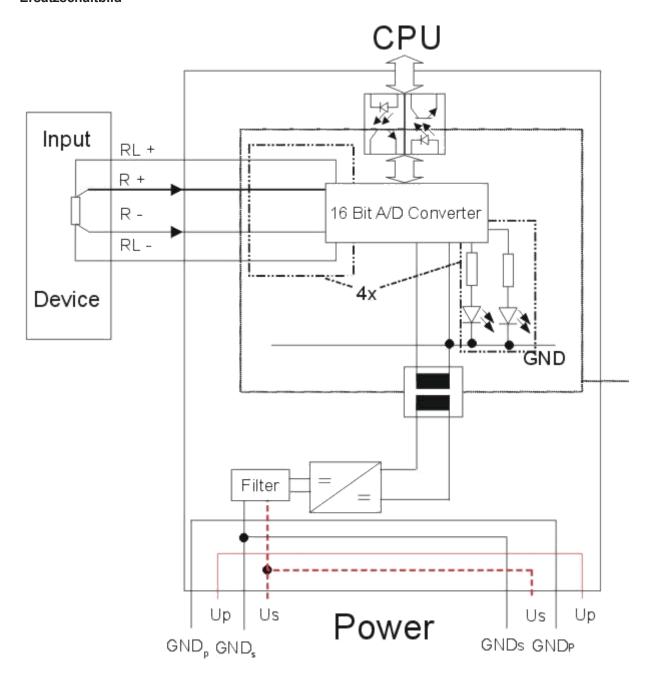
$$X_R = X_{RTD}-X_{RL}$$
 (1.0) $Y_R = A_a * (X_R - B_a)$ (1.1)

b) Linearisierung der Kennlinie:

$$Y_T = a1 * Y_R^2 + b1 * Y_R + c1 (1.2) oder Y_T = Y_R wenn Ausgabe in Ohm (1.3)$$

c) weder Anwender noch Herstellerskalierung aktiv:

$$Y AUS = Y T (1.4)$$


d) Herstellerskalierung aktiv (Werkseinstellung):

e) Anwenderskalierung aktiv:

f) Hersteller- und Anwenderskalierung aktiv: (1.7)

Ersatzschaltbild

3.6.7.2 Control und Status-Byte IP/IE3202

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	Error	reserviert		reserviert		Over-	Under-
	s						Range	Range

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb
Error	allgemeines Fehlerbit
Over-Range	R > 400 Ohm
Under-Range	R < 18 Ohm

Register-Kommunikation

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernu	Registernummer				
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
Registernummer	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0	
Name	RegAcces	R/W	Registernu	Registernummer					
	s								

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

222 Version: 2.0.1 Feldbus Box E/A-Module

3.6.7.3 Registerübersicht IP/IE3202

Register	Bezeichnung	eichnung Default-Wert F		Speichermedium
R0	ADC-Rohwert	variabel	R	RAM
R1	ADC-Rohwert der Leitung	variabel	R	RAM
R2	reserviert	0x0000	R	
R5	reserviert	0x0000	R	
R6	Diagnose-Register	variabel	R	RAM
R7	reserviert	0x0000	R	
R8	Modul Typ	3202dec	R	ROM
R9	Software-Version	0xXXXX	R	ROM
R10	Multiplex- Schieberegister	0x0418	R	ROM
R11	Signalkanäle	0x0418	R	ROM
R12	minimale Datenlänge	0x0098	R	ROM
R13	Datenstruktur	0x0000	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Regiser	variable	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	SEEROM
R17	Hardware- Abgleich: Offset	spezifisch	R/W	SEEROM
R18	Hardware- Abgleich: Gain	spezifisch	R/W	SEEROM
R19	Hersteller- Skalierung: Offset	0x0000	R/W	SEEROM
R20	Hersteller Skalierung: Gain	0x00A0	R/W	SEEROM
R21	Offset-Register Zweidraht- Anschlusstechnik	spezifisch	R/W	SEEROM
R22	Offset-Register Dreidraht- Anschlusstechnik	spezifisch	R/W	SEEROM
R30	reserviert	0x0000	R/W	SEEROM
R31	Codeword Register	variabel	R/W	RAM
R32	Feature-Register	0x0102	R/W	SEEROM
R33	Anwender-Offset	0x0000	R/W	SEEROM
R34	Anwender-Gain	0x0100	R/W	SEEROM
R35	reserviert	0x0000	R/W	SEEROM
R36	reserviert	0x0000	R/W	SEEROM
R37	Filter-Register	0x0000	R/W	SEEROM
R38	reserviert	0x0000	R/W	SEEROM
R63	reserviert	0x0000	R/W	SEEROM

3.6.7.4 Feature-Register (R32) IP/IE3202

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden.

Um das Register zu beschreiben muss im Codewort- Register erst der Schreibschutz aufgehoben werden (default: 0x0106).

HINWEIS

Achtung

Die Auswahl der Messmethode (2-, 3- oder 4-Leiteranschluss) muss für alle Kanälen gleich sein.

Bit	Wert	Beschreibung	default
0	O _{bin}	Anwender-Skalierung inaktiv	O _{bin}
	1 _{bin}	Anwender- Skalierung aktiv (Register 33, 34)	-
1	O _{bin}	Hersteller- Skalierung inaktiv	1 _{bin}
	1 _{bin}	Hersteller- Skalierung aktiv (Register 19, 20)	
2	O _{bin}	reserviert	O _{bin}
3	O _{bin}	Betrags-Vorzeichendarstellung inaktiv	O _{bin}
	1 _{bin}	Betrags-Vorzeichendarstellung aktiv	
4	O _{bin}	Siemens-Ergänzungsbits ausblenden	O _{bin}
	1 _{bin}	Siemens-Ergänzungsbits einblenden]
5	O _{bin}	reserviert	O _{bin}
6	O _{bin}	reserviert	O _{bin}
7	O _{bin}	manuelle Filtereinstellung in Register 37 deaktivieren	O _{bin}
	1 _{bin}	manuelle Filtereinstellung in Register 37 aktivieren	
8	O _{bin}	Overrange-Protection deaktivieren	1 _{bin}
	1 _{bin}	Overrange-Protection aktivieren: Wird eine Temperatur von 850°C überschritten, werden die Statusbits entsprechend gesetzt und der Ausgabewert auf 850°C beschränkt.	
109	00 _{bin}	4-Leiteranschluss aktviert (Achtung: alle Kanäle müssen gleich konfiguriert werden!)	00 _{bin}
	01 _{bin}	3-Leiteranschluss aktviert *(Achtung: alle Kanäle müssen gleich konfiguriert werden!)	
	10 _{bin}	2-Leiteranschluss aktviert (Achtung: alle Kanäle müssen gleich konfiguriert werden!)	
11	O _{bin}	reserviert	O _{bin}

Bit	Wert	Beschreibung	default	
1512	12 0 _{hex} PT		-200°C - 850°C ± 0,3°C	O _{hex}
	1 _{hex}	NI100	-60°C - 250°C ± 0,3°C	
	2 _{hex}	PT1000	-200°C - 850°C ± 0,3°C	
	3 _{hex}	PT500	-200°C - 850°C ± 0,5°C	
	4 _{hex}	PT200	-200°C - 850°C ± 0,3°C	
	5 _{hex}	NI1000	-200°C - 850°C ± 0,3°C	
	6 _{hex}	NI120	-80°C - 320°C ± 0,3°C	
	7 _{hex}	RSNE1000	Nickel 1000 spezielle Temperaturkurve der Fa. Siemens	
	E _{hex}	Ohm	10 - 5000 Ohm (Darstellung in 1/2 Ohm)	
	F _{hex}	Ohm	10 - 1200 Ohm (Darstellung in 1/10 Ohm)	

^{*)} ab Firmware-Version 2 der E/A-Platine des IP3202 bzw. ab Firmware-Version 0 der E/A-Platine des IE3202

Erläuterung zum Vorzeichenbit

Default zweierkomplementäre Darstellung, d.h. bei -1 Darstellung 0xFFFF

Betrags Vorzeichendarstellung aktiv, d.h. bei -1 Darstellung 0x8001

Skalierungsbeispiel

Hersteller-Sklalierung aktiv, Anwender-Skalierung aktiv, Ausgabe in Ohm 10 - 5000 Ohm

Register 34 0x0500 0,100 Ohm / Digit

Register 34 0x0400 0,125 Ohm / Digit

Register 34 0x0200 0,250 Ohm / Digit

Register 34 0x0100 0,500 Ohm / Digit

Register 34 0x0080 1,000 Ohm / Digit

Siemens-Ausgabeformat (S5)

Wird das Siemens-Ausgabeformat ausgewählt werden die niedrigsten drei Bits zur Statusauswertung genutzt. Das Prozessdatum wird in den Bits 15-3 abgebildet, wobei das Bit 15 das Vorzeichenbit ist.

Bit	Name	Beschreibung	
0	Überlauf	O _{bin}	Messwert im gültigen Bereichgültig Value in Range
		1 _{bin}	Messwertüberlauf Value out of range
1	Error	O _{bin}	kein Fehler
		1 _{bin}	Fehler
2	-	O _{bin}	reserviert
143	Messwert Value	O _{bin}	Prozessdatum
15	Vorzeichen Sign	O _{bin}	plus
		1 _{bin}	minus

Zweileiteranschluss

Über den Zweileiteranschluss kann direkt ein Widerstand gemessen werden. Den ohmschen Anteil des Leitungswiderstand kann man messen und in das Register 21 eintragen. Für den Zweileiter-Anschluss muss man bei kurzgeschlossenem Leitungswiderstand (+RL -RL) den ADC-Rohwert aus Register 1 in das Register 21 eintragen.

Anwender-Skalierung

Beispiel für die Skalierung auf Fahrenheit [▶ 286]

3.6.7.5 Filter-Register (R37) IP/IE3202

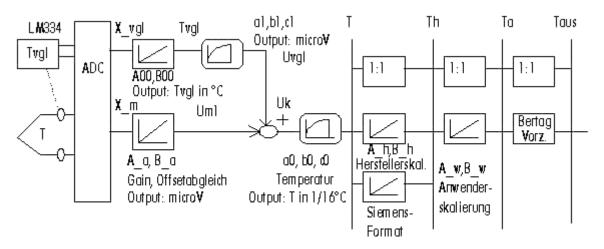
Im Filter-Register kann die Filterzeit des A/D Wandlers geändert werden. Um das Register zu beschreiben muss im Codewort Register erst der Schreibschutz aufgehoben werden. Mit der Filterzeit verändert sich auch die Wandlungszeit des A/D Wandlers. Beide Werte sind direkt von einander Abhängig. Die Filtereinstellungen gelten immer für alle Kanäle und werden im ersten Register des Kanal 1 eingestellt. Die Einstellungen sind erst nach einem Power-On-Reset wirksam (Feldbus Box aus und wieder einschalten).

Default 0x0000

Wert	Filter First Notch [Hz]	Wandlungszeit
0x0000	25	250 ms
0x0050	100	65 ms
0x00A0	50	125 ms
0x0140	25	250 ms
0x0280	12.5	500 ms

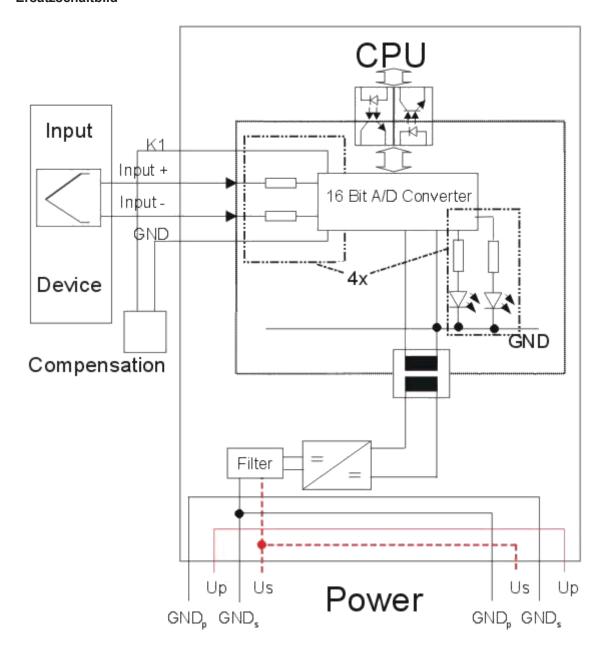
3.6.8 IP/IE3312

3.6.8.1 Funktionsweise IP/IE3312


Thermoelemente gehören zu der Kategorie der aktiven Messwertaufnehmer, ausgenutzt wird hier der thermoelektrische Effekt (Seebeck, Peltier, Thomson). An den Berührungsstellen zweier elektrischer Leiter aus unterschiedlichen Materialien (z.B. Eisen-Konstantan) tritt eine Ladungsverschiebung an den Berührungspunkten auf. Es entsteht eine Kontaktspannung, die eine eindeutige Funktion der Temperatur ist. Diese Thermospannung ist sowohl eine Funktion der Messtemperatur T als auch der Vergleichstemperatur Tv an den Anschlusskontakten des Thermoelementes. Da die Ermittlung der Koeffizienten bei einer Vergleichstemperatur von 0°C erfolgt, muss der Einfluss der Vergleichstemperatur kompensiert werden. Dazu wird die Vergleichstemperatur in eine vom Thermoelement-Typ abhängigen Vergleichsspannung umgerechnet und diese zur gemessenen Thermospannung addiert. Aus der resultierenden Spannung und der entsprechenden Kennlinie wird die Temperatur ermittelt.

Temperaturen werden in 1/10°C (1 Digit = 0,1°C) ausgegeben. Darüber hinaus wird ein Drahtbruch bzw. der fehlende Kaltstellenkompensations-Sensor (PT1000) gemeldet und durch die Error-LED angezeigt.

Ausgabeformat der Prozessdaten


Prozessdaten (hex)	Prozessdaten Dezimal (integer)	Messwert
0xF63C	-2500	-250°C
0xF830	-2000	-200°C
0xFC18	-1000	-100°C
0xFFFF	-1	-0,1°C
0x0000	0	0,0°C
0x0001	1	0,1°C
0x02E8	1000	100°C
0x07D0	2000	200°C
0x1388	5000	500°C
0x2134	8500	850°C

Prinzipschaltbild

Ersatzschaltbild

3.6.8.2 Control- und Status-Byte IP/IE3312

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
RegAccess	0 _{bin} : Registerkommunikation ausgeschaltet
	(Prozessdatenbetrieb)

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	Error	-	-	NoColdJu	internal	Over-	Under-
	s				nction	Error	Range	Range

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb
Error	allgemeines Fehlerbit
NoColdJunction	Verlust der Kaltstelle im Stecker: Wenn die Kaltstelle nicht im Bereich von -50 bis 100°C liegt so wird ein Fehler gemeldet.
internal Error	Analogteil der Feldbus Box ist defekt
Over-Range	Drahtbruch
Under-Range	Minimalwert des ausgewählten Thermoelements (Bit R32.12 bis Bit R32.12 des Feature-Registers) unterschritten

Register-Kommunikation

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

230 Version: 2.0.1 Feldbus Box E/A-Module

3.6.8.3 Registerübersicht IP/IE3312

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	ADC-Rohwert	variabel	R	RAM
R1	VGL-Rohwert	variabel	R	RAM
R2	TVGL in 1/16°C	variabel	R	RAM
R3	reserviert	0x0000	R	
R4	reserviert	0x0000	R	
R5	reserviert	0x0000	R	
R6	Diagnose-Register	variabel	R	RAM
R7	reserviert	0x0000	R	
R8	Modul-Typ	3314dec	R	ROM
R9	Software-Version	0xXXXX	R	ROM
R10	Multiplex- Schieberegister	0x0418	R	ROM
R11	Signalkanäle	0x0418	R	ROM
R12	minimale Datenlänge	0x0098	R	ROM
R13	Datenstruktur	0x0000	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Regiser	variable	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	SEEROM
R17	Hardware- Abgleich: Offset	spezifisch	R/W	SEEROM
R18	Hardware- Abgleich: Gain	spezifisch	R/W	SEEROM
R19	Hersteller- Skalierung: Offset	0x0000	R/W	SEEROM
R20	Hersteller Skalierung: Gain	0x00A0	R/W	SEEROM
R21	Hardware- Abgleich: Vergleichstemperat ur	spezifisch	R/W	SEEROM
R22	reserviert	0x0000	R/W	SEEROM
R30	reserviert	0x0000	R/W	SEEROM
R31	Codeword-Register	variabel	R/W	RAM
R32	Feature-Register	0x1002	R/W	SEEROM
R33	Anwender-Offset	0x0000	R/W	SEEROM
R34	Anwender-Gain	0x0100	R/W	SEEROM
R35	reserviert	0x0000	R/W	SEEROM
R36	reserviert	0x0000	R/W	SEEROM
R37	Filter-Register	0x0000	R/W	SEEROM
R38	reserviert	0x0000	R/W	SEEROM
R63	reserviert	0x0000	R/W	SEEROM

3.6.8.4 Feature-Register (R32) IP/IE3312

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden. Default: 0x1002

Bit	Wert	Beschreil	oung			Hersteller- einstellung			
0	O _{bin}	Anwender	Anwender-Skalierung inaktiv						
	1 _{bin}	Anwender	- Skalierung akti	V		O _{bin}			
1	O _{bin}	Hersteller-	- Skalierung inak	tiv		1 _{bin}			
	1 _{bin}	Hersteller-	- Skalierung aktiv	V					
2	O _{bin}	reserviert				O _{bin}			
3	O _{bin}	Betrags-V	Betrags-Vorzeichendarstellung inaktiv						
	1 _{bin}	Betrags-V	Betrags-Vorzeichendarstellung aktiv						
4	O _{bin}	Siemens-	Ergänzungsbits	ausblenden		O _{bin}			
	1 _{bin}	Siemens-	Siemens- Ergänzungsbits einblenden						
5	O _{bin}	manueller	Filtereinstellung	in Register 37 o	leaktivieren	O _{bin}			
	1 _{bin}	manueller	manueller Filtereinstellung in Register 37 aktivieren						
6	O _{bin}	reserviert	5 5						
7	O _{bin}	reserviert				O _{bin}			
8	O _{bin}	Vergleichs	Vergleichstemperatur eingeschaltet						
	1 _{bin}	Vergleichs	Vergleichstemperatur ausgeschaltet						
9	O _{bin}	reserviert	O _{bin}						
10	O _{bin}	reserviert	O _{bin}						
11	O _{bin}	Vergleichs Kanäle nic	O _{bin}						
	1 _{bin}	Vergleichs Kanäle üb							
15-12		Thermoele	ement-Typ	Minimalwert	Maximalwert	1 _{hex}			
	O _{hex}	Typ L		-100 °C	900 °C				
	1 _{hex}	Тур К		-100 °C	1370 °C				
	2 _{hex}	Тур J		-100 °C	1000 °C				
	3 _{hex}	Тур Е		-100 °C	800 °C				
	4 _{hex}	Тур Т		-100 °C	400 °C				
	5 _{hex}	Typ N		-100 °C	1300 °C				
	6 _{hex}	Typ U		-100 °C	600 °C				
	7 _{hex}	Тур В		600 °C	1800 °C				
	8 _{hex}	Typ R		0 °C	1700 °C				
	9 _{hex}	Typ S		0 °C	1700 °C				
		Millivoltme Auflösung		Minimalwert	Maximalwert				
	D _{hex}	1 μV*	1,6 µV**	-30 mV	+30 mV				
	E _{hex}	2 μV*	3,2 µV**	-60 mV	+60 mV				
	F _{hex}	4 μV*	6,4 µV**	-80 mV					

Hinweis

Beachten Sie bei der Millivoltmessung, welche Skalierung aktiviert ist: *) keine Skalierung aktiv **) nur Herstellerskalierung aktiv

Erläuterung zum Vorzeichenbit

Default zweierkomplementäre Darstellung, d.h. bei -1 Darstellung 0xFFFF

Betrags Vorzeichendarstellung aktiv, d.h. bei -1 Darstellung 0x8001

Anwender Skalierung

Siehe Beispiel für die Skalierung auf Fahrenheit [▶ 286].

3.6.8.5 Filter-Register (R37) IP/IE3312

Im Filter-Register kann die Filterzeit des A/D-Wandlers geändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden. Mit der Filterzeit verändert sich auch die Wandlungszeit des A/D-Wandlers. Beide Werte sind direkt von einander Abhängig. Die Filtereinstellungen gelten immer für alle Kanäle und werden im ersten Register des Kanal 1 eingestellt. Die Einstellungen sind erst nach einem Power-Restart wirksam (Feldbus Box aus und wieder einschalten).

Default 0x0000

Wert	Filter First Notch [Hz]	Wandlungszeit
0x0000	25	200 ms
0x0050	100	70 ms
0x00A0	50	120 ms
0x0140	25	200 ms
0x0280	12.5	400 ms

3.6.9 IP/IE4112

3.6.9.1 Funktionsweise IP/IE4112

Das analoge Ausgangsmodul erzeugt Ausgangssignale im Bereich von 0...20 mA. Der Ausgangsstrom wird mit bis zu 16 Bit Auflösung von dem Modul ausgegeben.

Prozessdaten (hex)	Prozessdaten (dezimal)	Ausgabewert
0x0000	0	0 mA
0x3FFF	16383	10 mA
0x7FFF	32767	20 mA

Ab der Softwareversion 2 (siehe Anhang) kann im Register 32 (Bit 5= 1) auch der Bereich von 4...20mA eingestellt werden. Diese Einstellung im Feature-Register des ersten Kanals ist dann für alle Kanäle gültig und kann nicht für jeden Kanal separat angewählt werden.

Prozessdaten (hex)	Prozessdaten (dezimal)	Ausgabewert	
0x0000	0	4 mA	
0x3FFF	16383	12 mA	
0x7FFF	32767	20 mA	

Die Darstellung entspricht dem Zahlenformat Integer (INT) . Die Prozessdaten werden in der Default-Einstellung im Zweierkomplement eingegeben (-1 entspricht 0xFFFF).

Prozessdaten

Die Prozessdaten, die die Steuerung schreibt, werden wie folgt ausgegeben:

x = Prozessdaten der PLC (D0, D1)

B a, A_a = Hersteller Skalierung (Register 17, 18)

B_h, A_h = Hersteller Skalierung (Register 19, 20)

B_w, A_w = Anwender Skalierung (Register 33, 34)

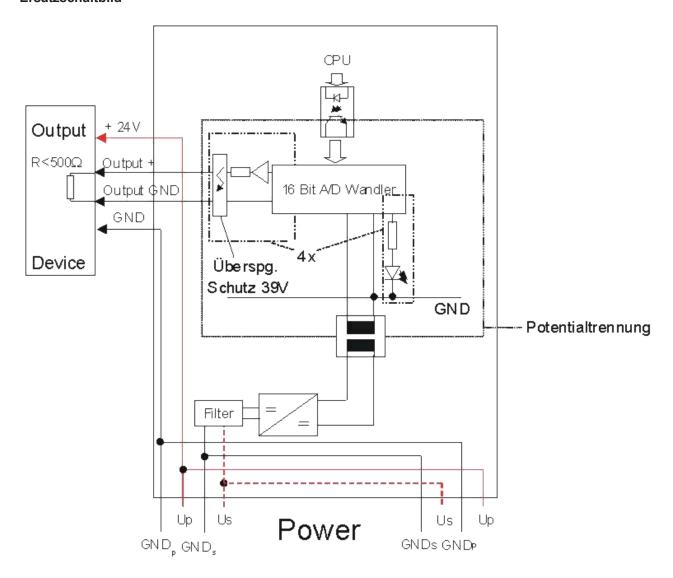
Y_dac = Ausgabewert zum D/A Wandler

weder Anwender noch Herstellerskalierung aktiv

Herstellerskalierung aktiv (Default)

$$Y_1 = B_h + A_h * Y_0$$

Y dac = Y 1


Anwenderskalierung aktiv

Hersteller- und Anwenderskalierung aktiv

Die Gradengleichungen werden über Register 32 aktiviert.

Ersatzschaltbild

3.6.9.2 Control- und Status-Byte IP/IE4112

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
RegAccess	0 _{bin} : Registerkommunikation ausgeschaltet
	(Prozessdatenbetrieb)

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb

Register-Kommunikation

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s		-					

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	S		•					

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

236 Version: 2.0.1 Feldbus Box E/A-Module

3.6.9.3 Registerübersicht IP/IE4112

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium	
R0	Hersteller Einschaltwert	0x0000	R/W		
R4	reserviert	0x0000	R		
R5	DAC-Rohwert	variabel	R	RAM	
R6	reserviert	0x0000	R		
R7	reserviert	0x0000	R		
R8	Modul Typ	4112dec	R	ROM	
R9	Software-Version	0xXXXx	R	ROM	
R10	Multiplex- Schieberegister	0x0418	R	ROM	
R11	Signalkanäle	0x0418	R	ROM	
R12	minimale Datenlänge	0x9800	R	ROM	
R13	Datenstruktur	0x0004	R	ROM	
R14	reserviert	0x0000	R		
R15	Alignment-Register	variable	R/W	RAM	
R16	Hardware- Versionsnummer	0xXXXX	R/W	EEPROM	
R17	Hardware-Abgleich Offset	spezifisch	R/W	EEPROM	
R18	Hardware-Abgleich Gain	spezifisch	R/W	EEPROM	
R19	Hersteller Skalierung: Offset	0x0000	R/W	EEPROM	
R20	Hersteller Skalierung: Gain	0x0200	R/W	EEPROM	
R21	reserviert	0x0000	R/W		
R30	reserviert	0x0000	R/W		
R31	Codeword-Register	variabel	R/W	RAM	
R32	Feature-Register	0x0002	R/W	EEPROM	
R33	Anwender-Offset	0x0000	R/W	EEPROM	
R34	Anwender-Gain	0x0100	R/W	EEPROM	
R35	Anwender Einschaltwert	0x0000	R/W		
R63	reserviert	0x0000	R/W		

3.6.9.4 Feature-Register (R32) IP/IE4112

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden.

Bit	Wert	Beschreibung	Hersteller Einstellung
0	0bin	Anwender-Skalierung inaktiv	0bin
	1bin	Anwender- Skalierung aktiv	
1	0bin	Hersteller- Skalierung inaktiv	1bin
	1bin	Hersteller Skalierung aktiv	
2			0bin
	1bin	Watchdog-Timer inaktiv	
3	0bin	reserviert	0bin
4	0bin	reserviert	0bin
5)1	0bin	Modus 020 mA	0bin
	1bin	Modus 420 mA	
6	0bin	reserviert	0bin
7	0bin	reserviert	0bin
8	0bin	Hersteller-Einschaltwert [0]	0bin
	1bin	Anwender-Einschaltwert R35	
9	0bin	reserviert	0bin
15	0bin	reserviert	0bin

Erläuterung zum Watchdog-Timer

Der Watchdog-Timer ist im Auslieferungszustand eingeschaltet. Bei einem Watchdog Overflow wird entweder der Hersteller- oder der Anwender-Einschaltwert am Ausgang des Moduls ausgegeben.

HINWEIS

Hinweis

Aus Kompatibilitätsgründen ist das Standard-Ausgabeformat 16 Bit signed Integer eingeschaltet. Der positive Wertebereich für 0..20 mA erstreckt sich von 0x0000..0x7FFF. Dies entspricht 15 Bit. Um alle 16 Bit zu nutzen, muss die Hersteller-Skalierung deaktiviert werden.)1 Ab Software-Version der E/A Platine IP4112-Bxxx "2" IE4112 "0"

3.6.10 IP/IE4132

3.6.10.1 Funktionsweise IP/IE4132

Das analoge Ausgangsmodul erzeugt Ausgangssignale im Bereich von -10...10 V. Die Ausgangsspannung wird mit bis zu 16 Bit Auflösung von dem Modul ausgegeben.

Prozessdaten (hex)	Prozessdaten (dezimal)	Ausgabewert
0x8001	-32767	-10 V
0xC001	-16383	- 5 V
0x0000	0	0 V
0x3FFF	16383	5 V
0x7FFF	32767	10 V

Version: 2.0.1

Die Darstellung entspricht dem Zahlenformat Integer (INT). Die Prozessdaten werden in der Default-Einstellung im Zweierkomplement eingegeben (-1 entspricht 0xFFFF).

Prozessdaten

Die Prozessdaten, die die Steuerung schrieb, werden wie folgt ausgegeben:

x = Prozessdaten der PLC (D0, D1)

B_a, A_a = Hersteller Skalierung (Register 17, 18)

B_h, A_h = Hersteller Skalierung (Register 19, 20)

B w, A w = Anwender Skalierung (Register 33, 24)

Y_dac = Ausgabewert zum D/A Wandler

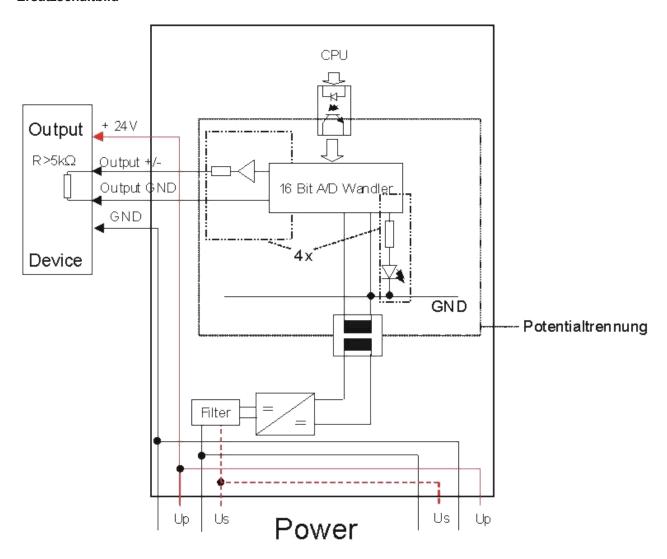
weder Anwender noch Herstellerskalierung aktiv

Herstellerskalierung aktiv (Default)

Anwenderskalierung aktiv

$$Y_2 = B_w + A_w * Y_0$$

 $Y_{dac} = Y_2$


Hersteller- und Anwenderskalierung aktiv

$$Y_1 = B_h + A_h *Y_0$$

 $Y_{dac} = B_w + A_w * Y_1$

Die Gradengleichungen werden über Register 32 aktiviert.

Ersatzschaltbild

3.6.10.2 Control- und Status-Byte IP/IE4132

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
RegAccess	0 _{bin} : Registerkommunikation ausgeschaltet
	(Prozessdatenbetrieb)

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

241

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb

Register-Kommunikation

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernu	Registernummer				
	S							

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

3.6.10.3 Registerübersicht IP/IE4132

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	Herstelller Einschaltwert	0x0000	R/W	
R4	reserviert	0x0000	R	
R5	DAC-Rohwert	variabel	R	RAM
R6	reserviert	0x0000	R	
R7	reserviert	0x0000	R	
R8	Modul Typ	4132dec	R	ROM
R9	Software-Version	0xXXXx	R	ROM
R10	Multiplex- Schieberegister	0x0418	R	ROM
R11	Signalkanäle	0x0418	R	ROM
R12	minimale Datenlänge	0x9800	R	ROM
R13	Datenstruktur	0x0004	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Register	variable	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	SEEROM
R17	Hardware- Abgleich: Offset	spezifisch	R/W	SEEROM
R18	Hardware- Abgleich: Gain	spezifisch	R/W	SEEROM
R19	Hersteller- Skalierung: Offset	0x0000	R/W	SEEROM
R20	Hersteller Skalierung: Gain	0x0100	R/W	SEEROM
R21	reserviert	0x0000	R/W	SEEROM
R30	reserviert	0x0000	R/W	SEEROM
R31	Codeword-Register	variabel	R/W	RAM
R32	Feature-Register	0x0000	R/W	SEEROM
R33	Anwender-Offset	0x0000	R/W	SEEROM
R34	Anwender-Gain	0x0100	R/W	SEEROM
R35	Anwender Einschaltwert	0x0000	R/W	SEEROM
R63	reserviert	0x0000	R/W	SEEROM

3.6.10.4 Feature-Register (R32) IP/IE4132

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden.

Bit	Wert	Beschreibung	default
0	O _{bin}	Anwender-Skalierung inaktiv	O _{bin}
	1 _{bin}	Anwender-Skalierung aktiv	
1	O _{bin}	Hersteller-Skalierung inaktiv	O _{bin}
	1 _{bin}	Hersteller-Skalierung aktiv	
2	O _{bin}	Watchdog-Timer aktiv	O _{bin}
	1 _{bin}	Watchdog-Timer inaktiv	
3	O _{bin}	reserviert	O _{bin}
7	O _{bin}	reserviert	O _{bin}
8	0 _{bin}	Hersteller-Einschaltwert [0]	O _{bin}
	1 _{bin}	Anwender-Einschaltwert R35	
9	O _{bin}	reserviert	O _{bin}
15	O _{bin}	reserviert	O _{bin}

Erläuterung zum Watchdog-Timer

Der Watchdog-Timer ist im Auslieferungszustand eingeschaltet. Bei einem Watchdog-Overflow wird entweder der Hersteller- oder der Anwender-Einschaltwert am Ausgang des Moduls ausgegeben.

3.6.11 IP/IE5009

3.6.11.1 Funktionsweise IP/IE5009

Das SSI-Geber Interface Modul IP/IE5009 ermöglicht den direkten Anschluss eines SSI-Gebers an den Feldbus bzw. die Koppler Box. Die Versorgung des Gebers erfolgt über das SSI-Interface. Das Modul gibt zum Auslesen des Gebers einen Takt aus und stellt der Steuerung den einlaufenden darauf abgestimmten Datenstrom im Prozessabbild zur Verfügung. Unterschiedliche Betriebsarten, Übertragungsfrequenzen, Bitbreiten und Codeumsetzungen sind einstellbar. Die individuelle Konfiguration wird permanent in einem Registersatz gespeichert.

Das SSI-Interface wird mit einer Datenbreite von 24-Bit und aktivierter Gray-code-Wandlung geliefert. Die Baudrate zum SSI-Geber ist auf 250 kHz eingestellt. Die Prozessdaten werden in den Eingangs-Daten-Bytes D0 - D3 ausgegeben. Das Mapping Moduls wird im Kapitel *Mapping* näher beschrieben.

Prozessdaten

Signale	Beschreibung
Ausgänge Clock+ / Clock-	Taktausgang für den SSI-Geber
Eingänge Data+ / Data-	Differenzsignaleingänge (RS485)
+24 V _{DC} U _S	Spannungsausgang zur Versorgung des Gebers
Us	Spannungsversorgung für Elektronik und Encoder
U _P , GND	Eine Spannungsversorgung von 0 V und 24 V muß für den Betrieb des Moduls auf diese Kontakte gelegt werden.

3.6.11.2 Control- und Status-Byte IP/IE5009

Prozessdatenbetrieb

Control-Byte

Das Control-Byte nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	reserviert						
	s							

Name	Beschreibung
_ =	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild der Feldbus Box und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	Error	0	0	0	0	FRAME_E	SSI_IN_E
	s							

244 Version: 2.0.1 Feldbus Box E/A-Module

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb
Error	Ein allgemeiner Fehler ist aufgetreten. Dieses Bit wird gesetzt wenn FRAME-E oder SSI_IN-E Fehler aufgetreten ist
FRAME_E	Es liegt ein falscher Datenrahmen vor, d.h. der Datenrahmen wird nicht mit Null abgeschlossen (evtl. Drahtbruch auf Clock-Leitungen).
SSI_IN_E	Der SSI-Eingang der Klemme liegt auf Low-Pegel, wenn keine Datenübertragung stattfindet. (SSI hat keine Spannungsversorgung bzw. Drahtbruch auf SSI-Dateneingänge D+ bzw. D-oder Datenleitungen vertauscht.)

Register-Kommunikation

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0	
Name	RegAcces	R/W	Registernu	Registernummer					
	S								

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
Registernummer	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

Version: 2.0.1

Feldbus Box E/A-Module

3.6.11.3 Registerübersicht IP/IE5009

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	reserviert	0000 _{hex}	R	
R7	reserviert	0000 _{hex}	R	
R8	Modul Typ	5009 _{dec}	R	ROM
R9	Software-Version	XXXX _{hex}	R	ROM
R10	Multiplex- Schieberegister	0218 _{hex} /0130 _{hex}	R	ROM
R11	Signalkanäle	0128 _{hex}	R	ROM
R12	minimale Datenlänge	00A8 _{hex}	R	ROM
R13	Datenstruktur	0000 _{hex}	R	ROM
R14	reserviert	0000 _{hex}	R	
R15	Alignment-Regiser	variabel	R/W	RAM
R16	Hardware- Versionsnummer	XXXX _{hex}	R/W	SEEROM
R17	reserviert	0000 _{hex}	R	
R30	reserviert	0000 _{hex}	R	
R31	Codewort-Register	variabel	R/W	RAM
R32	Feature-Register	0007 _{hex}	R/W	SEEROM
R33	Baudrate	0002 _{hex}	R	
R34	Datenlänge	0018 _{hex}	R	
R35	reserviert	0000 _{hex}	R	
R63	reserviert	0000 _{hex}	R	

Hinweis

Änderungen der Registereinstellungen werden erst nach einem Neustart der Feldbus Box wirksam.

3.6.11.4 Feature-Register (R32) IP/IE5009

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden. Default: 0x0001

Bit	Wert	Beschreibung	default
0	O _{bin}	Binärausgabe	1 _{bin}
	1 _{bin}	GrayCode Die Zahlen werden als Graycode ausgegeben	
1	O _{bin}	reserviert	O _{bin}
2	O _{bin}	Freilaufend	O _{bin}
	1 _{bin}	Synchrone Betriebsart Die Daten werden synchron zum Lesezyklus des Klemmenbus geladen.	
3	O _{bin}	Multi- Turn Auswertung des Gebers	O _{bin}
	1 _{bin}	Single- Turn Auswertung des Gebers	
4	O _{bin}	Enable Frame Error	O _{bin}
	1 _{bin}	Disable Frame Error Nach dem letzten gültigen Bit wird nicht überprüft ob die Datenleitung ein Null Signal liefert.	

3.6.11.5 Baudraten-Register (R33) IP/IE5009

Im Baudraten-Register wird die Baudrate für dasLesen der SSI-Daten eingestellt. Damit das Register beschreiben werden kann, müssen Sie zuvor mit dem Codewort-Register den Schreibschutz für die Register aufheben.

(Default: 0x0002)

Bit	Beschreibumg
0x0000	reserviert
0x0001	1 MHz
0x0002	250 kHz (Default)
0x0003	125 kHz
0x0004	100 kHz
0x0005	83 kHz
0x0006	71 kHz
0x0007	62,5 kHz
0x0008	reserviert
0xFFFF	reserviert

3.6.11.6 Datenlängen-Register (R34) IP/IE5009

Im Datenlängen-Register wird die wir die Datenlänge, die im Prozessabbild erscheint eingestellt. Damit das Register beschreiben werden kann, müssen Sie zuvor mit dem Codewort-Register den Schreibschutz für die Register aufheben.

Default: 0x0018 (24 Bit Datenlänge)

Bit	Wert	Beschreibung
0 bis 7	O _{hex}	0 Bit Datenlänge
	1 _{hex}	1 Bit Datenlänge
	20 _{hex}	32 Bit Datenlänge
	21 _{hex}	reserviert
	FF _{hex}	reserviert
8 bis 15	reserviert	

3.6.12 IP/IE5109

3.6.12.1 Funktionsweise IP/IE5109

Die Inkremental Encoder Interface Modul IP/IE5109 ermöglicht den Anschluss beliebiger 5 V Inkremental Encoder an den Feldbus bzw. die Koppler Box. Ein 16-Bit Zähler mit Quadraturdecoder sowie ein 16-Bit Latch können gelesen, gesetzt oder aktiviert werden. Neben den Gebereingängen A, B, C steht ein zusätzlicher Latch-Eingang (24 V) sowie ein Gate-Eingang (24 V) zum Sperren des Zählers zur Verfügung.

Darüber hinaus ist die Betriebsart 16-Bit Vor- Rückwärts-Zähler anwählbar. In dieser Betriebsart ist Eingang A der Zähleingang, über Eingang B wird die Zählrichtung vorgegeben.

Über das Feature Register ist auch eine Periodendauermessung möglich. Dabei wird die Periodendauer zwischen zwei positiven Flanken des Eingangssignals A mit einer Auflösung von 250 ns ermittelt.

Eine 1-fach, 2-fach bzw. 4-fach Auswertung der Encoder-Signale A, B, C in einfacher oder komplementärer Form kann über den Feldbus parametriert werden. Geliefert wir das Modul in der Grundeinstellung als 4-fach Quadraturdecoder mit komplementärer Auswertung der Gebersignale A, B, C.

Besitzt der Encoder einen Störmeldeausgang, so kann dieser an dem STATUS Eingang des Moduls angeschlossen werden.

Der Encoder wird vom Modul mit der erforderlichen Spannung von 5 V_{DC} versorgt.

Prozessdaten

Signale	Beschreibung
Eingänge A,/A	Impulseingang in der Encoder- und Zähler- Betriebsart des Moduls
Eingänge B,/B	Phasenverschobener Impulseingang in der Encoder- Betriebsart des Moduls
Eingänge C,/C	Nullpunktimpuls-Eingang für das Latch-Register des Moduls
	Dieser Eingang wird über das EN_LATC Bit im Control-Byte des Moduls aktiviert
Externes Latch 24V	Zusätzlicher Latch-Eingang des Moduls
	Dieser Eingang wird über das EN_LAT_EXT-Bit im Control-Byte des Moduls aktiviert. Ist dieser Eingang scharf geschaltet und erfolgt ein Flankenwechsel von 0 V auf 24 V, so wird der Zählerwert gelatcht.
Externes Gate 24 V	Ein High-Pegel an diesem Kontakt unterbindet das Zählen der Klemme.
Status Eingang	Besitzt der Inkremental Encoder ein Störmelde Ausgang, kann dieser an den Status Eingang angeschlossen werden (aktiv low Eingang mit interner pull-up Beschaltung).
Us	Spannungsversorgung für Elektronik und Encoder
U _P , GND	Eine Spannungsversorgung von 0 V und 24 V muss für den Betrieb des Moduls auf diese Kontakte gelegt werden.

Version: 2.0.1

3.6.12.2 Control- und Status-Byte IP/IE5109

Prozessdatenbetrieb

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces s	-	-	-	-	CNT_SET	EN_LAT_ EXT /	EN_LATC
							RD_PERI OD	

Name	Beschreibung
RegAccess	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)
CNT_SET	Der Zähler wird mit steigender Flanke von CNT_SET auf den Wert , der über die Prozessdaten vorgegeben wird, gesetzt.
EN_LAT_EXT	Der externe Latch-Eingang wird aktiviert. Beim ersten externen Latch-Impuls nach Gültigkeit des EN_LAT_EXT Bits wird der Zählerwert im Latch-Register gespeichert. Die folgenden Impulse haben bei gesetztem Bit keinen Einfluß auf das Latch-Register. Es ist darauf zu achten, dass das entsprechende Latch-Valid-Bit (LAT_EXT_VAL) vor einem Scharfschalten des Nullimpulses vom Modul zurückgenommen wurde. Diese Funktionalität ist im Feature Register einstellbar (Defaulteinstellung).
RD_PERIOD	Es wird die Periodendauer zwischen zwei postiven Flanken vom Eingang A mit einer Auflösung von 200 ns gemessen. Diese Periodendauer wird bei gesetztem Bit in den Datenbytes D3, D4 ausgegeben. Diese Funktionalität ist im Feature Register einstellbar.
EN_LATC	Der Nullpunkt-Latch (C-Eingang) wird aktiviert. Beim ersten externen Latch-Impuls nach Gültigkeit des EN_LATC Bits wird der Zählerwert im Latch-Register gespeichert (hat Vorrang vor EN_LAT_EXT). Die folgenden Impulse haben bei gesetztem Bit keinen Einfluss auf das Latch-Register. Es ist darauf zu achten, dass das entsprechende Latch-Valid-Bit (LATC_VAL) vor einem Scharfschalten des Nullimpulses vom Modul zurückgenommen wurde. (das Latch-Valid-Bit kann von dem Modul erst zurückgenommen werden, wenn der C-Impuls einen Low Pegel besitzt).

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

250 Version: 2.0.1 Feldbus Box E/A-Module

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	-	STATUS_	OVERFL	UNDERFL	CNTSET-	LAT_EXT	LATC_VA
	s		EINGANG	OW	OW	ACC	_VAL/	L
							RD PERI	
							OD_Q	

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb
STATUS_EINGANG	Es wird der Zustand des Status-Einganges in diesem Bit eingeblendet (Einstellmöglichkeit über Feature-Register)
OVERFLOW	Tritt ein Überlauf (65535 auf 0) des 16-Bit Zählers auf, so wird dieses Bit gesetzt. Es wird zurückgesetzt wenn der Zähler ein Drittel des Messbereichs überschreitet (21845 auf 21846) oder sobald ein Unterlauf auftritt.
UNDERFLOW	Tritt ein Unterlauf (0 auf 65535) des 16-Bit Zählers auf, so wird dieses Bit gesetzt. Es wird zurückgesetzt wenn der Zähler zwei Drittel des Messbereichs unterschreitet (43690 auf 43689) oder sobald ein Überlauf auftritt.
CNTSET_ACC	Die Daten zum Setzen des Zählers wurden vom Modul übernommen.
LAT_EXT_VAL	Ein externer Latch-Impuls ist aufgetreten. Die Daten D3,D4 im Prozessabbild entsprechen dem aktuellen Zählerwert bei gesetztem Bit. Um den Latch-Eingang erneut zu aktivieren, muss EN_LAT_EXT erst zurückgenommen und dann neu gesetzt werden.
RD_PERIOD_Q	Die Datenbytes 3, 4 beinhalten die Periodendauer
LATC_VAL	Ein Nullpunkt-Latch ist aufgetreten. Die Daten D3,D4 im Prozessabbild entsprechen dem aktuellen Zählerwert bei gesetztem Bit. Um den Latch-Eingang neu zu aktivieren muss EN_LATC erst zurückgenommen und dann neu gesetzt werden.

Register-Kommunikation

Während der Register-Kommunikation sind keine Messwerte übertragbar.

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces s	R/W	Registernummer					

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
Registernummer	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

3.6.12.3 Registerübersicht IP/IE5109

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium	
R0	reserviert	0x0000	R		
R7	reserviert	0x0000	R		
R8	Modul Typ	5109dec	R	ROM	
R9	Software-Version	0xXXXX	R	ROM	
R10	10 Multiplex- Schieberegister		R	ROM	
R11	Signalkanäle	0x0130	R	ROM	
R12	minimale Datenlänge	0x3030	R	ROM	
R13	Datenstruktur	0x0000	R	ROM	
R14	reserviert	0x0000	R		
R15	Alignment-Regiser	variabel	R/W	RAM	
R16	Hardware- Versionsnummer	0xXXXX	R/W	SEEROM	
R17	reserviert	0x0000	R		
R30	reserviert	0x0000	R		
R31	Codewort Register	variabel	R/W	RAM	
R32	Feature Register	0x0000	R/W	SEEROM	
R33	reserviert	0x0000	R		
R63	reserviert	0x0000	R		

252 Version: 2.0.1 Feldbus Box E/A-Module

3.6.12.4 Datenbyte D2, IP/IE5109

D2-Byte

In der Betriebsart Vor-/Rückwärtszähler wird im Byte D2 der Status der Encoder- und Gate/Latch Eingänge angezeigt.

Bit	7	6	5	4	3	2	1	0
Name			INPUT_A	INPUT_B	INPUT_C	INPUT_E RR	LATCH	GATE

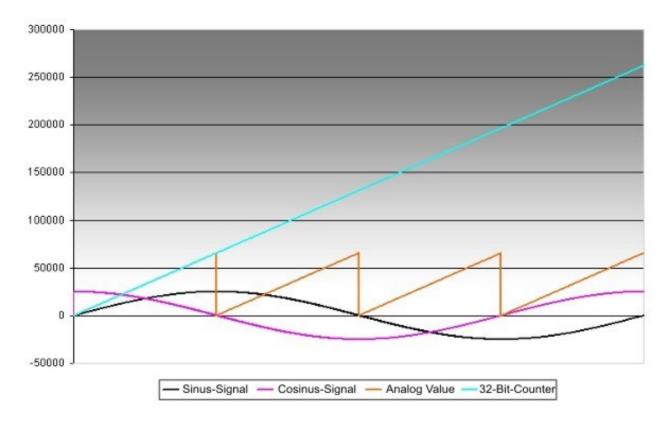
Name	Beschreibung
INPUT_A	Status des Eingangskanal A
INPUT_B	Status des Eingangskanal B
INPUT_C	Status des Eingangskanal C
INPUT_ERR	Status des Störmeldekanals
LATCH	Status des LATCH Eingangs der M12 Buchse
GATE	Status des GATE Eingangs der M12 Buchse

3.6.12.5 Feature-Register (R32) IP/IE5109

Im Feature-Register können die grundlegenden Einstellungen des Moduls verändert werden. Um das Register zu beschreiben muss im Codewort-Register erst der Schreibschutz aufgehoben werden. Default: 0x0000

Bit	Wert	Beschreibung	default
0	O _{bin}	nicht benutzt	O _{bin}
1	O _{bin}	Zähler sperrt mit High- Pegel am Gate-Eingang	0
	1 _{bin}	Zähler sperrt mit Low- Pegel am Gate-Eingang	
3, 2	00 _{bin}	Status-Eingang (aktiv-low) wird ins Status-Byte.5 (ST.5) eingeblendet	00
	10 _{bin}	ST.5 = Status-Eingang, ST.6 = StatusEingang	
	11 _{bin}	ST.5 = Status-Eingang, ST.6 = !StatusEingang	
	01 _{bin}	reserviert	
6, 5, 4	000 _{bin}	Externe Latchfunktion aktiv	000
	001 _{bin}	Periodendauer-Messung aktiv	
	alle anderen Kombinationen	reserviert, nicht benutzen	
7 - 9		reserviert, nicht benutzen	
11, 10	00 _{bin}	4-fach Auswertung der Encodersignale A,B,C d.h. sowohl steigende als auch fallende Flanken der Gebersignale A, B werden gezählt	
	01 _{bin}	1-fach Auswertung der Encodersignale A, B, C d.h. jede Periode des Gebersignals A wird gezählt.	
	10 _{bin}	2-fach Auswertung der Encodersignale A, B, C d.h. jede Flanke des Gebersignals A wird gezählt.	
	11 _{bin}	4-fach Auswertung der Encodersignale A, B, C	
14 - 12		reserviert, nicht benutzen	
15	O _{bin}	Encoder Interface	0
	1 _{bin}	Counter Modus ist aktiviert. 16 Bit Vorwärts/Rückwärts Zähler Eingang A: Counter Eingang B: Zählrichtung (5 V oder offen = vorwärts, 0 V = rückwärts Eingang C: Latch	

3.6.13 IP5209


3.6.13.1 Funktionsweise IP5209

Das Eingangsmodul IP5209-Bxxx-0000 wertet die 1 V_{SS} Sinus-Cosinus Signale und das Eingangsmodul IP5209-Bxxx-1000 wertet die 11 μA_{SS} Sinus-Cosinus Signale eines entsprechenden Messtasters oder Encoders aus. Eine Signalperiode wird mit 10 Bit, entsprechend 1024 Schritten aufgelöst. So ergibt z.B. ein Drehgeber mit 1024 Signalperioden ca. 2 Millionen Messschritte pro Umdrehung. Das entspricht einer Auflösung von 21-Bit.

Verglichen mit einem herkömmlichen Drehgeber mit digitalen Rechtecksignalen reduziert sich so die Übertragungsfrequenz bei gleicher Auflösung erheblich. Anstelle von Übertragungsraten im MHz Bereich erreicht der Drehgeber so bei 6000 U/min lediglich 100 kHz.

Die IP5209-Bxxx FeldbusBox erlaubt durch die interne Zählfrequenz von 400 kHz eine maximale Eingangs-Grenzfrequenz von 100 kHz.

Das Modul belegt 9 Byte Eingangs- und 9 Byte Ausgangsdaten im Prozessabbild. Alternativ kann das Prozessabbild auf 5-Byte begrenzt werden. Der Latch-Wert wird dann nicht übertragen.

Prozessdaten

Eine Signalperiode wird mit 10 Bit, d.h. in 1048 Schritte aufgelöst. Die Gesamt-Zählwertdarstellung erfolgt als 32 Bit-Wert. Dabei erfolgt von Bit 31 ... 10 die Zählung der Perioden, in Bit 9 und Bit 8 die der Viertelperioden bzw. Nulldurchgänge und die Interpolation innerhalb der Viertelperiode von Bit 7 bis Bit 0.

Die Darstellung wird durch das Skalierungsregister R35 beeinflusst. In der Default-Einstellung 0x0008 wird der Messwert folgendermaßen dargestellt:

Version: 2.0.1

Bit	31 10	9	8	7	6	6	4	3	2	1	0
Name	Periode nzähler	Nulldurc	Nulldurchgänge Auflösung innerhalb der Viertelperiode								
Komm entar	4.194.3 04 Periode n	3 1024 Schritte innerhalb einer Periode									

Die Referenzmarke, wird in den Latch-Worten auf die gleiche Weise abgebildet (siehe <u>IP5209 Mapping</u> [<u>\bar{1}175]</u>).

Interne Funktionen

Rücksetzen/Setzen des Zählers

Durch Setzen des CNT_SET Bit im Control-Byte wird der Zählwert auf den Wert D1-D3 im Ausgangs-Prozessbereich gesetzt.

Referenzmarke (Null Latch) Wert speichern

Die Referenzmarken-Erfassung wird aktiviert und der bei Erreichen der Referenzmarke gültige Zählerwert wird in das Latch geschrieben.

Statusanzeigen

Im Status-Byte des Zählers wird ein Überschreiten der max. Zählfrequenz (einstellbar über R36, R37) angezeigt.

3.6.13.2 Control- und Status-Byte IP5209

Prozessdatenbetrieb

Control-Byte

Das Control-Byte wird von der Steuerung zur FeldbusBox übertragen. Es befindet sich im Ausgangsabbild der Feldbus Box und kann gelesen und beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	REG	RS_FRQ_ ERR	RS_CNT_ LAT	-	-	CNT_SET	-	EN_LATC

256 Version: 2.0.1 Feldbus Box E/A-Module

Name	Beschreibung
REG	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)
RS_FRQ_ERR	Setzt FRQ_ERR im Status-Byte zurück (solange das Bit gesetzt bleibt, wird die Frequenz nicht überwacht!)
RS_CNT_LAT	Bei Setzen von RS_CNT_LAT und EN_LATC, wird der Zähler mit steigender Flanke des Nullpunktlatch zurückgesetzt (C-Eingang)
CNT_SET	Der Zähler wird mit steigender Flanke von CNT_SET mit den Werten aus D0-D3 (siehe Mapping) gesetzt.
EN_LATC	Das Referenzmarken-Signal (Nullpunkt-Latch) wird aktiviert. Beim ersten Auftreten des Signals nach Gültigkeit des EN_LATC wird der aktuelle Zählerwert in das Latch-Register gespeichert.
	Die folgenden Impulse haben keinen Einfluss auf das Latch-Register bei gesetztem Bit.
	Im Prozessabbild D4 - D7 stehen die Daten zur Verfügung.

Status-Byte

Das Status-Byte wird von der Feldbus Box zur Steuerung übertragen. Es befindet sich im Eingangsabbild der Feldbus Box und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	REG	ERROR	NO_SIGN AL	-	FRQ_ER R	CNTSET_ ACC	-	LATC_VA L

Name	Beschreibung
REG	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)
ERROR	allgemeines Fehlerbit, wird gesetzt wenn NO_SIGNAL gesetzt ist
NO_SIGNAL	Das Bit wird gesetzt, wenn kein Sinus-Cosinus Signal an den Eingängen anliegt (Betrag des Sinus-Cosinus-Signals < 0,3V)
FRQ_ERR	Bei Überschreitung der in R37 angegebenen Viertelperiode pro Fenster (R36), wird das FRQ_ERR-Bit im Status-Byte gesetzt. Ein Rücksetzen ist nur über RS_FRQ_ERR im Control- Byte möglich.
	Die Zählfrequenz beträgt dabei maximal 400 KHz, das entspricht einer Eingangsfrequenz von 100 KHz.
CNTSET_ACC	Die Daten zum Setzen des Zählers wurden von der FeldbusBox übernommen.
LATC_VAL	Ein Referenzmarken-Signal (Nullpunkt Latch) ist aufgetreten. Die Daten D4 - D7 im Prozessabbild entsprechen dem gespeicherten Wert, falls die Funktion aktiviert ist (EN_LATC im CONTROL Byte).
	Um den Wert erneut zu latchen, muss EN_LATC erst zurückgenommen werden, auf die Quittung der Rücknahme gewartet und dann das Bit neu gesetzt werden.

Version: 2.0.1

Feldbus Box E/A-Module

Register-Kommunikation

Während der Register-Kommunikation sind keine Messwerte übertragbar.

Control-Byte

Das Control-Byte befindet sich im Ausgangsabbild der Feldbus Box und kann gelesen und beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	REG	R/W	Registernu	Registernummer				

Name	Beschreibung
REG	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
	Nummer des Registers, das gelesen oder beschrieben werden soll.

Status-Byte

Das Status-Byte befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	REG	R/W	Registernummer					

Name	Beschreibung
REG	1 _{bin} : Quittung für Registerkommunikation
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

3.6.13.3 Feature-Register (R32) IP5209

Im Feature-Register wird die Betriebsart des Moduls festgelegt.

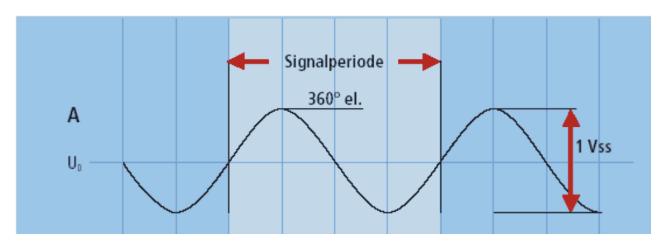
Default: 0x0000

Bit	Wert	Beschreibung	default
0	O _{bin}	Normale Zählrichtung	O _{bin}
	1 _{bin}	Umgekehrte Zählrichtung	
1	O _{bin}	9-Byte Prozessdaten- Interface	O _{bin}
	1 _{bin}	5-Byte Prozessdaten- Interface (ohne Latch- Wert)	
2	O _{bin}	IP5209-Bxxx- 0 000 (Version für 1 V _{ss})	ja nach Modultyp*
	1 _{bin}	IP5209-Bxxx- 1 000 (Version für 11 μA _{ss})	

HINWEIS

Achtung*)

Bit 2 ist für den jeweiligen Modultyp (IP5209-Bxxx-0000 oder IP5209-Bxxx-1000) voreingestellt und darf nicht geändert werden!


3.6.13.4 Skalierungsfaktor-Register (R35) IP5209

Im Skalierungsfaktor-Register wird die Skalierung bzw. Interpolation des Moduls festgelegt. Diese sollte auf die eingesetzte Mess-Hardware abgestimmt sein.

Durch die Skalierung kann der Messwert auf die Applikation abgeglichen werden, so dass ein Umrechnen im Anwendungsprogramm oft entfallen kann!

Der Wert in R35 gibt die Anzahl von Binärstellen (Bits) an, die innerhalb der Viertelperiode eingeblendet werden (Default: 0x0008).

Die folgende Grafik zeigt den Signalverlauf des Sinus-Signals.

Mit der Defaulteinstellung R35 = 0x0008 wird der Messwert D3/D2/D1/D0 des Sinus/Cosinus-Encoders folgendermaßen dargestellt:

Bit	31 10	9	8	7	6	5	4	3	2	1	0
Name	Anzahl Signalp erioden		chgänge	Auflösung innerhalb der Viertelperiode							
Komm entar	4.194.3 04 Periode n			1024 Schritte innerhalb einer Periode							

z.B. R35 = 0004

Bit	31 6	5	4	3	2	1	0
Name	Anzahl Signalperio den		chgänge	Auflös	ung innerhal	b der Viertelp	eriode
Kommenta r	67.108.864 Perioden	64 Schritte innerhalb einer Periode					

Berechnungs-Beispiel

Sinus/Cosinus-Messtaster 2 µm Signalperiode

Default Einstellung R35: 0x0008,

Taster im ausgefahrenen Zustand auf Null gesetzt (Control-Byte =0x0004),

Messtaster über den vollen Messweg einschieben.

Ergebnis:

Byte	D3	D2	D1	D0
Wert	0x00	0x63	0x34	0x00

Umrechnung in reellen Messwert:

Wert = Modulwert x Gebersignalperiode / (4 x 2^{R35})

Wert = $0x633400 \times 2 \mu m / (4 \times 2^8)$

Wert = $6.501.376 * 2 \mu m / (4 \times 256) = 0.012698 m = 12,698 mm$

Der gemessene Wert entspricht der Datenblatt Angabe eines Gesamthubes von 12 mm für diesen Messtaster.

3.6.13.5 Frequenzüberwachungs-Register (R36, R37) IP5209

Um die Verfahr- bzw. Drehgeschwindigkeit des Sinus/Cosinus-Sensors zu überwachen, kann eine Frequenzüberwachung eingestellt werden.

Diese besteht aus einem Zeitfenster, dargestellt über Register R36, und einem Grenzwert R37. Innerhalb des Zeitfensters werden die Viertelperioden des Signals gezählt. Überschreiten sie den in R37 parametrierten Wert, so wird ein Fehlerbit im Status-Byte gesetzt.

R36: Frequenzüberschreitungsfenster

Default: [1600]

Diese Überwachungsfenster hat eine Auflösung von 0,0625 μ s/Digit. Die Defaulteinstellung ist 1600_{dez} , also $1600 \times 0,0625 \mu$ s = 100μ s = 0,1 ms.

R37: Maximaler Zähler für die Zeitüberwachung

Default: [41]

Der Zähler gibt die maximale Anzahl der Viertelperioden pro Zeitfenster an. Wird diese Anzahl erreicht, so wird das FRQ_ERR-Bit im Status-Byte des Moduls gesetzt. Das Rückstellen kann nur über das Bit RS_FRQ_ERR im Control-Byte erfolgen. Die Zählfrequenz beträgt maximal 400 KHz, aufgrund der Quadratur-Auswertung ergibt dies eine maximale Eingangs- und damit Geberfrequenz von 100 kHz.

 $f = R37 / (R36 \times 0.0625 \mu s \times 4)$

Defaulteinstellung

 $f=41\ /\ (1.600\ x\ 0.0625\mu s\ x\ 4\)=102.500\ Hz$, d.h. 40 Viertelperioden sind noch in Ordnung, $\ 40\ /\ (1600\ x\ 0.0625\mu s\ x\ 4)=100\ KHz$. Werden 41 Viertelperioden gezählt entspricht dies einer Frequenz von 102,5 KHz und ist damit eine Frequenzüberschreitung.

Beispiel 1

Messtaster mit einer Signalperiode von 2 µm.

max. Verfahrgeschwindigkeit = Modul-Eingangsfreguenz x Signalperiode des Tasters

max. $V = 100 \text{ kHz x 2} \mu\text{m} = 0.2 \text{ m/s} = 200 \text{ mm/s}$

Bei der obigen Default-Einstellung würde also bei einer Verfahrgeschwindigkeit oberhalb von 200mm/sec ein Fehlerbit gesetzt werden.

Beispiel 2

Messtaster mit einer Signalperiode von 10µm. Maximale Verfahrgeschwindigkeit 50mm/sec.

Modul-Eingangsfrequenz = max. V / Signalperiode

 $f = 50 \text{mm/s} / 10 \mu \text{m} = 5000 \text{ Hz} = 5 \text{ kHz}$

z.B. R36 = 25600

 $R37 = f \times R36 \times 0,0625 \mu s \times 4$

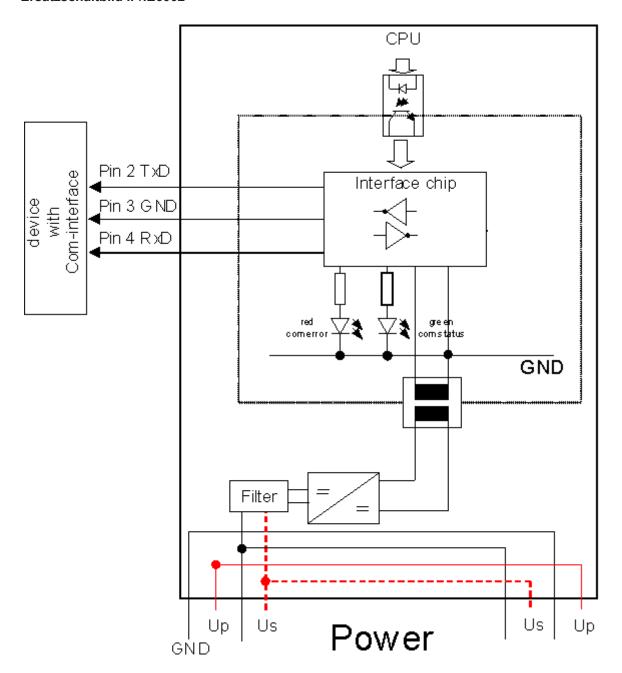
R37 = $5000 \text{ Hz} \times 25600 \times 0,0625 \mu \text{s} \times 4 = 32$

R37 muss auf den nächst höheren Wert also 33, R36 auf den Wert 25600 eingestellt werden. Dann wird bei einer Überschreitung von 50 mm/s ein Fehlerbit gesetzt!

3.6.13.6 Registerübersicht IP5209

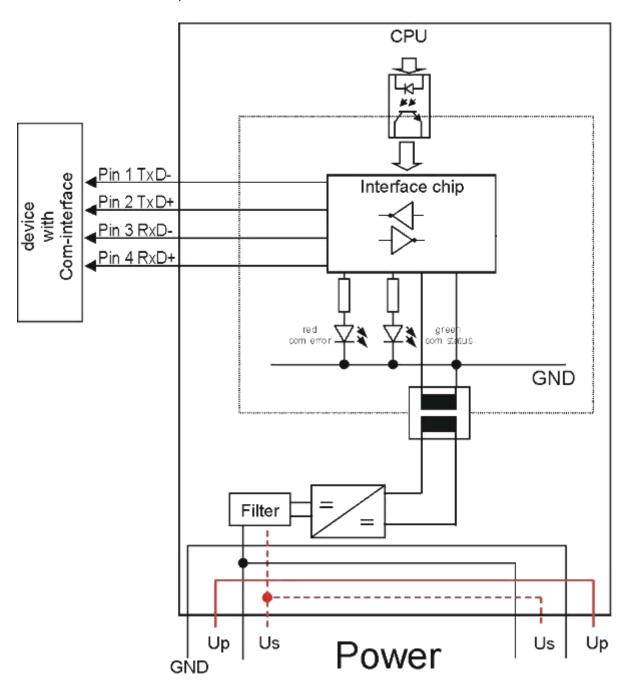
Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	reserviert	0x0000	R	
R7	reserviert	0x0000	R	
R8	Modul Typ	5209dec	R	ROM
R9	Software-Version	0xXXXX	R	ROM
R10	Multiplex- Schieberegister	0x0228	R	ROM
R11	Signalkanäle	0x0148	R	ROM
R12	minimale Datenlänge	0x4848	R	ROM
R13	Datenstruktur	0x0006	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Regiser	variabel	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	SEEROM
R17	reserviert	0x0000	R	
R30	reserviert	0x0000	R	
R31	Codeword-Register	variabel	R/W	RAM
R32	Feature-Register	0x0000	R/W	SEEROM
R33	reserviert	0x0000	R	
R34	reserviert	0x0000	R	
R35	Skalierungsfaktor	0x0008	R/W	SEEROM
R36	Frequenzüberwach ungsfenster	0x0640	R/W	SEEROM
R37	Viertelperioden- Grenzzähler	0x0028	R/W	SEEROM
R38	reserviert	0x0000	R	
R63	reserviert	0x0000	R	

3.6.14 IP/IE60x2


3.6.14.1 Funktionsweise IP/IE60x2

Die serielle Schnittstellenklemmen KL60x1 Modul IP/IE60x2 ermöglicht den Anschluss von Geräten mit eine serielle Schnittstelle (z.B. bei Bar Code Scannern). Unabhängig vom überlagerten Bussystem können Daten im Halb-/Vollduplex-Betrieb mit der Steuerung ausgetauscht werden. Der Empfangsbuffer ist 128 Byte, der Sendebuffer 16 Byte groß. Der Datentransfer zwischen Klemme/Modul und Steuerung wird über einen Handshake im Status und Control-Byte abgewickelt. Die Werkseinstellung der Klemme/Modul ist 9600 Baud, 8 Daten-Bits, 1Stopbit, no Parity.

Beschreibung	Input %IB	Output %QB
Handshake-Byte	Status	Control
Datenbyte 0	D0	D0
Datenbyte 1	D1	D1
Datenbyte 2	D2	D2
Datenbyte 3	D3	D3
Datenbyte 4	D4	D4



Ersatzschaltbild IP/IE6002

Ersatzschaltbild IP/IE6012, IP/IE6022

3.6.14.2 Control- und Status-Byte IP/IE60x2

Prozessdatenbetrieb

Zur Abwicklung der Datenübertragung (Handshake) wird das Control- und Status-Byte im Prozessdatenaustausch benutzt.

Control-Byte

Das Control-Byte wird von der Steuerung zum Modul übertragen. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	OL2	OL1	OL0	-	IR	RA	TR
	s							

264 Version: 2.0.1 Feldbus Box E/A-Module

265

Name	Beschreibung
RegAccess	0 _{bin} : Registerkommunikation ausgeschaltet (Prozessdatenbetrieb: Control- und Statusbyte im Handshake)
OL2-OL0	Anzahl der gesendeten Daten
IR	Handshake Bit für die Initialisierung der Busklemme/ Modul Ist IR high, so führt die Busklemme/Module eine Initialisierung durch. Die Sende und Empfangsfunktionen werden gesperrt, die FIFO- Zeiger werden zurückgesetzt und die Schnittstelle wird mit den Werten der zuständigen Register (R32- R35,R18) initialisiert. Die Ausführung der Initialisierung wird von der Busklemme/Modul mit IA quittiert.
RA	Handshake Bit für das Empfangen von Daten Über eine Zustandsänderung von RR teilt die Busklemme/Modul der Steuerung mit, daß sich die in IL0-IL1 angezeigte Anzahl von Daten in D0-D4 befinden. Die Übernahme der Daten wird im Control-Byte mit RA quittiert, erst daraufhin werden neue Daten von der Busklemme/Modul zur Steuerung übertragen.
TR	Handshake Bit für das Senden von Daten Der Handshake für das Senden der Daten wird über dieses Bit durchgeführt. Eine Zustandsänderung von TR bewirkt, daß die über OL0-OL2 festgesetzte Anzahl von Daten (maximal 5 Bytes) in das Sende- FIFO geladen werden. Die Busklemme/Modul signalisiert über TA die Ausführung dieses Befehls.

Status-Byte

Das Status-Byte wird von der Busklemme/Modul zur Steuerung übertragen. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	IL2	IL1	IL0	BUF_F	IA	RR	TA
	s							

Name	Beschreibung
RegAccess	0 _{bin} : Quittung für Prozessdatenbetrieb (Control- und Statusbyte im Handshake)
IL2-IL0	Anzahl der empfangenen Daten
BUF_F	Empfangspuffer voll, Daten die jetzt noch empfangen werden gehen verloren
IA	Handshake Bit für die Initialisierung der Busklemme/ Modul Ist IR high, so führt die Busklemme/Module eine Initialisierung durch. Die Sende und Empfangsfunktionen werden gesperrt, die FIFO- Zeiger werden zurückgesetzt und die Schnittstelle wird mit den Werten der zuständigen Register (R32- R35,R18) initialisiert. Die Ausführung der Initialisierung wird von der Busklemme/Modul mit IA quittiert.
RR	Handshake Bit für das Empfangen von Daten Über eine Zustandsänderung von RR teilt die Busklemme/Modul der Steuerung mit, daß sich die in IL0-IL1 angezeigte Anzahl von Daten in D0-D4 befinden. Die Übernahme der Daten wird im Control-Byte mit RA quittiert, erst daraufhin werden neue Daten von der Busklemme/Modul zur Steuerung übertragen.
TA	Handshake Bit für das Senden von Daten Der Handshake für das Senden der Daten wird über dieses Bit durchgeführt. Eine Zustandsänderung von TR bewirkt, daß die über OL0-OL2 festgesetzte Anzahl von Daten (maximal 5 Bytes) in das Sende- FIFO geladen werden. Die Busklemme/Modul signalisiert über TA die Ausführung dieses Befehls.

Hinweis: Beim ersten empfangen der Daten, steht nur ein Byte im Puffer, da die Busklemme/Modul noch nicht weiß ob weitere Daten folgen.

Beispiele

Beispiel für das Empfangen von Daten

Hinweis: beim Empfang von Daten wird, auch bei mehreren Bytes zunächst nur ein Byte angezeigt.!

Output Control-Byte	Input Status-Byte	Beschreibung
0000_0000	0xxx_x00x	Start der Datenübertragung
0xxx_000x	0011_x01x	3 Bytes in den Datenbytes und sind bereit zur Abholung
0xxx_001x	0011_x01x	Quittierung, das die Datenbytes abgeholt worden sind
0xxx_001x	0 101 _x0 0 x	5 Bytes in den Datenbytes und sind bereit zur Abholung
0xxx_00 0 x	0101_x00x	Quittierung, das die Datenbytes abgeholt worden sind

Tab. 47: Beispiel für das Senden von Daten

Output Control-Byte	Input Status-Byte	Beschreibung
0000_0000	0xxx_x0x0	Start der Datenübertragung
0 010 _00x 1	0xxx_x0x0	2 Bytes in den Datenbytes sollen gesendet werden
0010_00x1		2 Byte Daten in den Sende FIFO geladen, Daten werden gesendet
0 101 _00x 0	0xxx_x0x1	5 Bytes in den Datenbytes sollen gesendet werden
0101_00x0	0xxx_x0x 0	5 Byte Daten in den Sende FIFO geladen, Daten werden gesendet

Tab. 48: Beispiel für das Initialisierung

Output Control-Byte	Input Status-Byte	Beschreibung
0xxx_xxxx	0xxx_xxxx	Start der Datenübertragung
0000_0100	0xxx_xxxx	Busklemme/Modul soll initialisiert werden
0000_0100	0000_0100	Busklemme/Modul hat Initialisierung vollzogen
0000_0 0 00	0000_0100	Busklemme/Modul wieder in den Datenaustausch versetzen
0000_0000	0000_0 0 00	Busklemme/Modul ist beriebsbereit

Fehlerbehandlung

Tritt ein Parity-, Framing- oder Overun-Error auf, so geht das betreffende Datum für die Übertragung verloren, es wird nicht in das Empfangs-FIFO der Busklemme/Modul geladen. Ist der Buffer voll, so werden die ankommenden Daten ignoriert.

Im Fehlerfall werden die entsprechenden Diagnosebits in Register 6 gesetzt.

Register-Kommunikation

Während der Register-Kommunikation sind keine seriellen Daten übertragbar.

Control-Byte

Das Control-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Ausgangsabbild und kann gelesen oder beschrieben werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Registerkommunikation eingeschaltet
R/W	0 _{bin} : Read 1 _{bin} : Write
	Nummer des Registers, das gelesen oder beschrieben werden soll.

Version: 2.0.1

Status-Byte

Das Status-Byte ist nur sichtbar, wenn die Feldbus Box im kompletten Modus betrieben wird. Es befindet sich im Eingangsabbild und kann nur gelesen werden.

Bit	7	6	5	4	3	2	1	0
Name	RegAcces	R/W	Registernummer					
	s							

Name	Beschreibung
RegAccess	1 _{bin} : Quittung für Registerzugriff
R/W	0 _{bin} : Read
	Nummer des Registers, das gelesen oder beschrieben wurde.

268 Version: 2.0.1 Feldbus Box E/A-Module

3.6.14.3 Registerübersicht IP/IE60x2

Register	Bezeichnung	Default-Wert	Read/Write	Speichermedium
R0	Anzahl der Datenbytes im Sende-Buffer	variabel	R	RAM
R1	Anzahl der Datenbytes im Empfangs-Buffer	variabel	R	RAM
R2	reserviert	0x0000	R	RAM
R5	reserviert	0x0000	R	RAM
R6	<u>Diagnose-Register</u> [▶ 269]	variabel	R	RAM
R7	reserviert	0x0000	R	
R8	Modul Typ	6002dec	R	ROM
R9	Software-Version	0xXXXx	R	ROM
R10	Multiplex- Schieberegister	0x0218	R	ROM
R11	Signalkanäle	0x0230	R	ROM
R12	minimale Datenlänge	0x5050	R	ROM
R13	Datenstruktur	0x0000	R	ROM
R14	reserviert	0x0000	R	
R15	Alignment-Register	variable	R/W	RAM
R16	Hardware- Versionsnummer	0xXXXX	R/W	SEEROM
R17	reserviert	0x0000	R/W	SEEROM
R18	Buffer -Größe [▶ 270]	0x0080	R/W	SEEROM
R19	reserviert	0x0000	R/W	SEEROM
R30	reserviert	0x0000	R/W	SEEROM
R31	Codeword-Register	variabel	R/W	RAM
R32	Baud-Raten- Register	0x0006	R/W	SEEROM
R33	Datenrahmen- Register	0x0003	R/W	SEEROM
R34	Feature-Register	0x0000	R/W	SEEROM
R35	Datenbyte-Register	0x0005	R/W	SEEROM
R36	reserviert	0x0000	R/W	SEEROM
R63	reserviert	0x0000	R/W	SEEROM

Version: 2.0.1

R6: Diagnose-Register

R6

Bit Nr.	Wert	Bedeutung	
Bit 0		Der Empfangsbuffer ist übergelaufen, ankommende Daten gehen verloren.	
Bit 1	1	Parity Error ist aufgetreten	
Bit 2	1	Framing Error ist aufgetreten	
Bit 3	1	Overrun ist aufgetreten	
Bit 4	1	Buffer ist voll	
Bit 5-16	-	reserviert	

R18: Buffer-Größe

R18

Buffer-Größe [0x0080]

Das Register R18 legt die Anzahl der Daten im Empfangs-FIFO fest, ab der das BUF_F-Bit im Status-Byte gesetzt wird.

Low-Byte: wird dieser Wert erreicht, so wird BUF_F im Status gesetzt

High-Byte: reserviert

3.6.14.4 Baudraten-Register (R32) IP/IE60x2

Im Baud-Raten-Register kann die gewünschte Übertragungsrate eingestellt werden (Default 9600 Baud).

Bit	Wert	Baud-Rate	Default
0-3	0011 _{bin}	1200 Baud	0110 _{bin}
	0100 _{bin}	2400 Baud	
	0101 _{bin}	4800 Baud	
	0110 _{bin}	9600 Baud	
	0111 _{bin}	19200 Baud	
	1000 _{bin}	38400 Baud (ab Hardware	
		<u>Stand [▶ 14]</u> D.XX XX XX X1)	
	1001 _{bin}	56600 Baud (ab Hardware	
		<u>Stand [▶ 14]</u> D.XX XX XX X1)	
	1010 _{bin}	115000 Baud (ab	
		Hardware Stand [▶ 14] D.XX XX XX X1)	
4	-	reserviert	O _{bin}
15	-	reserviert	O _{bin}

Die Baud-Rate wird nach folgender Gleichung eingestellt:

Baud-Rate = 4 MHz/(16*(HB+1))

Dabei muss das Low-Byte mit OxFF beschrieben werden, und das High-Byte (HB) gibt den Operator an.

3.6.14.5 Datenrahmen-Register (R33) IP/IE60x2

Im Datenrahmen-Register kann der gewünschte Übertragungsrahmen eingestellt werden Default: 0x0003.

Bit	Wert	Datenrahmen	default
0-2	001 _{bin}	7 Daten-Bits, even Parity	011 _{bin}
	010 _{bin}	7 Daten-Bits, odd Parity	
	011 _{bin}	8 Daten-Bits, no Parity	
	100 _{bin}	8 Daten-Bits, even Parity	
	101 _{bin}	8 Daten-Bits, odd Parity	
3	O _{bin}	1 Stopbit	O _{bin}
	1 _{bin}	2 Stopbits	
4	-	reserviert	O _{bin}
			O _{bin}
15	-	reserviert	O _{bin}

3.6.14.6 Feature-Register (R34) IP/IE60x2

Das Feature-Register der IP/IE6002 und IP/IE6012 legt die Betriebsart des Moduls fest. Default: 0x0000

Bit	Wert	Beschreibung	Default
0	-	reserviert	O _{bin}
1	-	reserviert	O _{bin}
2	O _{bin}	nicht aktiv	O _{bin}
	1 _{bin}	aktiv: Das Status-Byte wird von dem Modul einen Zyklus später als die höherwertigen Datenbytes in die Schieberegister des IP-Link kopiert. Dadurch verringert sich die Datenübertragungsrate zur Steuerung.	
3	O _{bin}	nicht aktiv	O _{bin}
	1 _{bin}	aktiv: Das XON/XOFF-Protokoll wird von dem Modul beim Senden von Daten unterstützt, d.h. das Modul sendet die von der Steuerung übergebenen Daten, bis es das Zeichen XOFF (DC3==0x13) vom Partner empfängt. Das Senden wird daraufhin solange unterbunden bis das Zeichen XON (DC1==0x11) empfangen wird.	
4	O _{bin}	nicht aktiv	O _{bin}
	1 _{bin}	aktiv: Das XON/XOFF-Protokoll wird von dem Modul beim Daten-Empfang unterstützt. Das Modul sendet das Steuerzeichen XOFF, wenn 118 Zeichen im Buffer der Busklemme/ Modul stehen, XON wird gesendet, wenn vorher XOFF gesendet wurde und die Buffer-Grenze von 18-Byte unterschritten wurde.	
5	-	reserviert	0_{bin}

Bit	Wert	Beschreibung	Default
6	O _{bin}	nicht aktiv	O _{bin}
	1 _{bin}	aktiv: Kontinuierliches Senden der Daten aus dem Fifo. Über die Steuerung wird der Sendebuffer gefüllt (bis zu 16 Byte). Mit steigender Flanke im Control-Byte.3 wird der gefüllte Buffer-Inhalt gesendet. Sind die Daten übertragen, so wird dies durch das Setzen des Bits Status-Byte.2 von dem Modul an die Steuerung quittiert. Status-Byte.2 wird mit Control-Byte.3 zurückgenommen.	
7	-	reserviert	O _{bin}
15	-	reserviert	O _{bin}

Das Feature-Register des IP/IE6022 legt die Betriebsart des Moduls fest.

Bit	Wert	Beschreibung	Default
0	O _{bin}	Halbduplex: Der Empfang der gesendeten Daten wird unterdrückt	O _{bin}
	1 _{bin}	Vollduplex Gesendete Daten im RS485 Mode werden mitgehört	
1	-		O _{bin}
2	O _{bin}	nicht aktiv	0_{bin}
	1 _{bin}	aktiv: Das Status-Byte wird von dem Modul einen Zyklus später als die höherwertigen Datenbytes in die Schieberegister des IP-Link kopiert. Dadurch verringert sich die Datenübertragungsrate zur Steuerung.	
3	O _{bin}	nicht aktiv	O _{bin}
	1 _{bin}	aktiv: Das XON/XOFF-Protokoll wird von dem Modul beim Senden von Daten unterstützt, d.h. das Modul sendet die von der Steuerung übergebenen Daten, es sie das Zeichen XOFF (DC3==0x13) vom Partner empfängt. Das Senden wird daraufhin solange unterbunden bis das Zeichen XON (DC1==0x11) empfangen wird.	
4	O _{bin}	nicht aktiv	0 _{bin}
	1 _{bin}	aktiv: Das XON/XOFF-Protokoll wird von dem Modul beim Daten-Empfang unterstützt. Das Modul sendet das Steuerzeichen XOFF, wenn 118 Zeichen im Buffer dem Modul stehen, XON wird gesendet, wenn vorher XOFF gesendet wurde und die Buffer-Grenze von 18-Byte unterschritten wurde.	
5	O _{bin}	RS485 Norm in einer Busstruktur genutzt	O _{bin}
	1 _{bin}	Das Modul wird als Punkt zu Punkt Verbindung genutzt (RS 422). Das Modul schaltet die Datenleitung nicht hochohmig	

Bit	Wert	Beschreibung	Default
6	O _{bin}	nicht aktiv	O _{bin}
	1 _{bin}	aktiv: Kontinuierliches Senden der Daten aus dem Fifo. Über die Steuerung wird der Sendebuffer gefüllt (bis zu 16 Byte). Mit steigender Flanke im Control-Byte.3 wird der gefüllte Buffer-Inhalt gesendet. Sind die Daten übertragen, so wird dies durch das Setzen des Bits Status-Byte.2 von dem Modul an die Steuerung quittiert. Status-Byte.2 wird mit Control-Byte.3 zurückgenommen.	
7-15	-	reserviert	O _{bin}

3.6.14.7 Datenbyte-Register (R35) IP/IE60x2

Bestimmt die Anzahl der Daten-Bytes die zwischen Steuerung und Buskoppler/Feldbus Box übertragen werden.

Bit	Wert	Beschreibung	Default
0-7	1 _{hex}	1 Byte	5 _{hex}
	2 _{hex}	2 Byte	
	3 _{hex}	3 Byte	
	4 _{hex}	4 Byte	
	5 _{hex}	5 Byte	
8	-	reserviert	O _{bin}
15	-	reserviert	O _{bin}

4 Diagnose

4.1 Signalverhalten bei Busfehler

IP-Link-Fehler

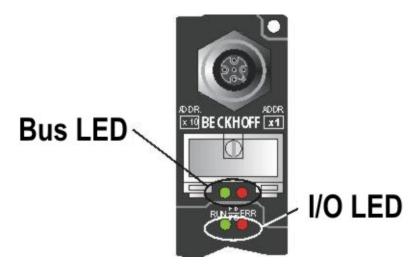
Bei IP-Link-Fehler setzen

- · die digitalen Erweiterungsbox-Module ihre Ausgänge auf Null.
- die analogen Erweiterungsbox-Module ihre Ausgänge auf Null oder den Anwender-Einschaltwert, falls dieser parametriert ist.

Feldbus-Fehler

Bei Ausfall des übergeordneten Feldbusses verhalten sich die Ausgänge der Erweiterungsbox-Module wie die Kopplerbox, an die sie angeschlossen sind.

Das Verhalten von Kopplerbox und Kompaktbox Modulen ist feldbusspezifisch (siehe Feldbus Box Dokumentation zum übergeordneten Feldbus) und abhängig von der Parametrierung.



4.2 Diagnose-LEDs

Fehlerdiagnose

Es gibt 2 Arten von Fehlern:

- · Feldbus Fehler
- Lokaler Fehler auf Kompakt Box oder Koppler Box

Blink-Codes

Blinkfolge	Bedeutung
Schnelles Blinken	Anfang
erste langsame Sequenz	Fehler-Code
zweite langsame Sequenz	Fehler-Argument
dritte langsame Sequenz (optional)	Fehler-Argument bei mehr als 20 Erweiterungen

4.3 Diagnose-LEDs für lokale Fehler

Lokale Fehler in einer Koppler Box (IL230x-Bxxx/Cxxx)

Unter den lokalen Fehlern ist gemeint, das ein Fehler in der Feldbus Box oder dem IP-Link aufgetreten ist. IP-Link-Fehler sind meist durch unsachgemäßen Gebrauch der Lichtwellenleitung zurück zu führen.

LED grün	LED rot			Beschreibung	Abhilfe
aus	aus			kein Datenaustausch	Modul im synchron Mode - zyklische Daten aktivieren
aus	1	0		EEPROM- Prüfsummenfeh ler	Herstellereinstel lung setzen
aus	2	·		reserviert	-
aus	3	n		Bruchstelle wurde erkannt	n-tes Modul vor dem Empfänger des Masters
	3	n	m	Bruchstelle wurde erkannt	(n*10)+m-tes Modul vor dem Empfänger des Masters
aus	4	n		zu viele fehlerhafte Telegramme erkannt (mehr als 25%)	vor dem n-ten Erweiterungsmo dul (vor dem Empfänger des Masters) ist die LWL- Verkabelung zu prüfen
aus	5	n		Registerzugriff auf komplexe Module gescheitert	n-tes Modul überprüfen
aus	11	n		Komplexes Modul arbeitet fehlerhaft	n-tes Modul tauschen
aus	12	n		mehr als 120 Module im Ring	weniger Module anschließen
aus	13	n		n-tes Modul unbekannt	Firmware Update erforderlich
an	aus			Modul ist im Datenaustausch (kein Fehler)	-

•

Hinweis

Bei einer Unterbrechung der letzten IP-Link Verbindung vor der Koppler-Box kann statt des tatsächlichen Fehlerarguments 0 auch eine 1 zurückgemeldet werden, da durch die Empfängerschaltung eine eindeutige Identifikation nicht möglich ist. Ist mindestens ein Teilnehmer davor noch in Ordnung wird mindestens ein lesbares Telegramm empfangen.

Lokale Fehler in einer Erweiterungsbox

LED grün	LED rot	Beschreibung
aus	an	es werden kein Daten über den IP- Link empfangen
aus	blinkt, flackert	es werden fehlerhafte IP-Link Protokolle empfangen (sehr schlechte Datenverbindung)
blinkt, flackert	blinkt, flackert	es werden fehlerhafte IP-Link Protokolle empfangen (schlechte Datenverbindung), muss noch nicht zum Fehler führen
an	aus	es werden IP-Link Protokolle empfangen, kein Fehler

Fehlerhafte IP-Link Protokolle können entstehen durch:

- schlecht konfektionierte IP-Link Steckverbinder
- IP-Link Leitung mit erhöhter Dämpfung durch z.B. Knick o.ä.
- defekte oder verschmutzte Sende LED (Modul vor dem fehlerhaften Modul)
- defekter oder verschmutzter Empfänger

Der interne <u>IP-Link-Fehlerzähler [▶ 93]</u> der Koppler Box kann mit der KS2000 Software ausgelesen werden.

5 Feldbus Box Zubehör

Das notwendige Zubehör für die Feldbus Box Module gibt es in Schutzklasse IP67 ebenfalls von Beckhoff. Eine Übersicht entnehmen Sie bitte aus dem Beckhoff Katalog oder unseren Internet-Seiten (http://www.beckhoff.de).

Feldbuszubehör

- · Vorkonfektionierte Kabel
- Stecker
- Verteiler

Spannungsversorgung

- · Vorkonfektionierte Kabel
- Stecker
- Verteiler

Sensorversorgung

- · Vorkonfektionierte Kabel
- Stecker
- Verteiler

IP-Link

- · Vorkonfektionierte Kabel
- Stecker

5.1 Zubehör

Tab. 49: Befestigung

Bestellangaben	Beschreibung
ZS5300-0001	Montageschiene (500 mm x 129 mm)

Tab. 50: Beschriftungsmaterial, Stopfen

Bestellangaben	Beschreibung
ZS5000-0000	Feldbus-Box-Set M8 (Beschriftungsschilder, Abdeckstopfen)
ZS5000-0002	Feldbus-Box-Set M12 (Beschriftungsschilder, Abdeckstopfen)
ZS5000-0010	Stopfen M8, IP67 (50 Stück)
ZS5000-0020	Stopfen M12, IP67 (50 Stück)
ZS5100-0000	Beschriftungsschilder unbedruckt, 4 Streifen à 10 Stück
ZS5100-xxxx	Beschriftungsschilder bedruckt, auf Anfrage

Tab. 51: Werkzeug

Bestellangaben	Beschreibung
ZB8800	Drehmomentsteckschlüssel mit Ratsche für angespritzte M8-Steckverbinder
ZB8800-0001	Ratsche für feldkonfektionierbare M8-Steckverbinder
ZB8800-0002	Ratsche für angespritzte M12-Steckverbinder

Weiteres Zubehör

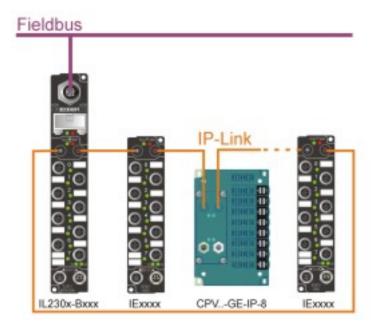
Weiteres Zubehör finden Sie in der Preisliste für Feldbuskomponenten von Beckhoff und im Internet unter www.beckhoff.de.

5.2 Powerkabel

Bestelldaten

Bestellbe- zeichnung	Powerleitung	Schraub- Steckverbinder	Kontakte	Querschnitt	Länge	
ZK2020-3200-0 020	Buchse gerade, offenes Ende		4-polig	0,34 mm ²	2,00 m	
ZK2020-3200-0 050					5,00 m	
ZK2020-3200-0 100					10,00 m	
ZK2020-3400-0 020	gewinkelt,				2,00 m	
ZK2020-3400-0 050	offenes Ende				5,00 m	
ZK2020-3400-0 100					10,00 m	
ZK2020-3132-0 001	gewinkelt,				0,15 m	
ZK2020-3132-0 005					0,50 m	
ZK2020-3132-0 010					1,00 m	
ZK2020-3132-0 020					2,00 m	
ZK2020-3132-0 050		020-3334-0 Buchse				5,00 m
ZK2020-3334-0 001						0,15 m
ZK2020-3334-0 005					0,50 m	
ZK2020-3334-0 010					1,00 m	
ZK2020-3334-0 020					2,00 m	
ZK2020-3334-0 050					5,00 m	

Weitere verfügbare Powerkabel und die dazugehörigen Datenblätter finden Sie im Beckhoff Katalog oder auf unseren Internet-Seiten (http://www.beckhoff.de).


Technische Daten

Daten		
Bemessungsspannung nach IEC61076-2-101	30 V _{DC}	
Verschmutzungsgrad nach IEC 60 664-1	3/2	
Isolationswiderstand IEC 60 512-2	>10°W	
Strombelastbarkeit IEC 60512-3	4 A	
Durchgangswiderstand IEC 60512-2	< 5 mW	
Schutzart nach IEC 60529	IP65/66/67, im verschraubten Zustand	
Umgebungstemperatur	-30°C bis +80°C	

5.3 Third Party Produkte

Zum IP-Link des Feldbus Box Systems kompatible Produkte gibt es außer von Beckhoff auch von anderen Herstellern (Third Party).

Diese Produkte werden von Beckhoff nicht vertrieben. Bitte wenden Sie sich an den entsprechenden Hersteller.

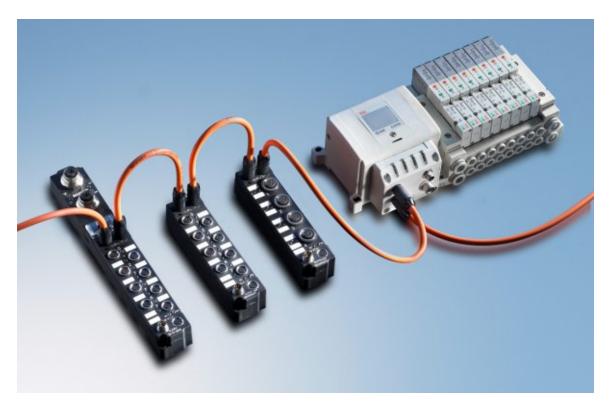
Ventilinseln

FESTO

CPV10-IL-IP8 und CPV14-IL-IP8 von FESTO sind kompakte Ventilinseln mit direktem Interface an den IP-Link.

Im TwinCAT werden diese Module als IE4404-0010 bzw. IE4404-0014 abgebildet.

Weitere Informationen erhalten Sie im Internet unter http://www.festo.com.


SMC

Das EX250 von SMC ist eine modulare Ventilinsel mit direktem Interface an den IP-Link.

Im TwinCAT wird dieses Modul als IE4414 abgebildet.

Weitere Informationen erhalten Sie im Internet unter http://www.smceu.com.

6 Anhang

6.1 Anwenderskalierung

Um das Modul auf Fahrenheit umzustellen müssen Sie die Formel umrechnen und die Anwender-Register beschreiben.

Formel:

 $F = 9/5 \times C + 32$

Zur Einstellung der Skalierung auf 1/10 °F wird der konstante Teil (Offset) mit 10 multipliziert. Das bedeutet :

- für den Offset 32 *10 =320
- für den Gain (9/5 *10/16 *256) = 288

Nötige Registereinstellungen:

- R31 Codewort setzen = 0x1235
- R32 Herstellerskalierung deaktivieren
- R32 Anwenderskalierung aktivieren
- R33 Anwender Offset = 320_{dez}
- R34 Anwender Gain = 288_{dez}

Die Änderungen der Skalierung sind sofort gültig und sind für jeden Kanal separat einstellbar.

6.2 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Die Bezeichnung erfolgt in nachstehender Weise.

1. Ziffer: Staub- und Berührungsschutz	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

2. Ziffer: Wasserschutz*	Bedeutung
0	Nicht geschützt
1	Geschützt gegen Tropfwasser
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben
5	Geschützt gegen Strahlwasser.
6	Geschützt gegen starkes Strahlwasser.
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist

^{*)} In diesen Schutzklassen wird nur der Schutz gegen Wasser definiert.

Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der Feldbus Box und den verwendeten Metallteilen.

Art	Beständigkeit
Wasserdampf	bei Temperaturen >100°C nicht beständig
Natriumlauge (ph-Wert > 12)	bei Raumtemperatur beständig > 40°C unbeständig
Essigsäure	unbeständig
Argon (technisch rein)	beständig

Legende

beständig: Lebensdauer mehrere Monate

bedingt beständig: Lebensdauer mehrere Wochen unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung

6.3 Zulassungen

Zulassungen

UL E172151

Konformitätskennzeichnung

CE

Schutzart

IP65/66/67 gemäß EN60529

6.4 UL-Anforderungen

Die Installation der nach UL zertifizierten Feldbus Box Module muss den folgenden Anforderungen entsprechen.

Versorgungsspannung

HINWEIS

- von einer isolierten, mit einer Sicherung (entsprechend UL248) von maximal 4 A geschützten Quelle, oder
- von einer Spannungsquelle die NEC class 2 entspricht stammt.
 Eine Spannungsquelle entsprechend NEC class 2 darf nicht seriell oder parallel mit einer anderen NEC class 2 entsprechenden Spannungsquelle verbunden werden!

HINWEIS

Achtung

Zur Einhaltung der UL-Anforderungen dürfen die Feldbus Box Module nicht mit unbegrenzten Spannungsquellen verbunden werden!

Netzwerke

HINWEIS

Achtung

Zur Einhaltung der UL-Anforderungen dürfen die Feldbus Box Module nicht mit Telekommunikations-Netzen verbunden werden!

Umgebungstemperatur

HINWEIS

Achtung

Zur Einhaltung der UL-Anforderungen dürfen die Feldbus Box Module nur in einem Umgebungstemperaturbereich von 0 bis 55°C betrieben werden!

Kennzeichnung für UL

Alle nach UL (Underwriters Laboratories) zertifizierten Feldbus Box Module sind mit der folgenden Markierung gekennzeichnet:

6.5 Prüfnormen für die Geräteprüfung

EMV

Festigkeit: EN 61000-6-2 Aussendung: EN 61000-6-4

Vibrationsfestigkeit

Schwingungsprüfung: EN 60068-2-2, Amplitude 2 g (Norm 1 g) Schockprüfung: EN 60068-2-27, Schockanzahl 1000 (Norm 2)

6.6 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com

Internet: www.beckhoff.com

Trademark statements	
Beckhoff®, ATRO®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®, TwinCATBSD®, TwinSAFE®, XFC®, XPlanar® and XTS® are registered and licensed trademarks of Beckhoff Automation GmbH.	
Third-party trademark statements	
DeviceNet and EtherNet/IP are trademarks of ODVA, Inc. Intel, the Intel logo, Intel Core, Xeon, Intel Atom, Celeron and Pentium are trademarks of Intel Corporation or its subsidiaries.	

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com