
Documentation | EN

EL6751
Master/Slave Terminal for CANopen

2025-07-02 | Version: 4.0.0

Table of contents

EL6751 3Version: 4.0.0

Table of contents
1 Foreword.. 7

1.1 Notes on the documentation ... 7
1.2 Guide through documentation... 8
1.3 Safety instructions... 9
1.4 Documentation issue status .. 10
1.5 Version identification of EtherCAT devices ... 11

1.5.1 General notes on marking.. 11
1.5.2 Version identification of EL terminals ... 12
1.5.3 Beckhoff Identification Code (BIC) ... 13
1.5.4 Electronic access to the BIC (eBIC)... 15

2 Product overview .. 17
2.1 Introduction ... 17
2.2 Technical data... 18
2.3 CANopen - Introduction... 19

3 Mounting and wiring ... 21
3.1 Instructions for ESD protection ... 21
3.2 Explosion protection.. 22

3.2.1 ATEX - Special conditions (extended temperature range)... 22
3.2.2 IECEx - Special conditions... 23
3.2.3 Continuative documentation for ATEX and IECEx... 24

3.3 UL notice ... 25
3.4 Installation positions.. 26
3.5 Positioning of passive Terminals... 28
3.6 Mounting and demounting - traction lever unlocking... 29
3.7 Mounting and demounting - top front unlocking .. 31
3.8 Disposal .. 32
3.9 Note - power supply .. 33
3.10 CANopen cabling .. 34

3.10.1 CAN topology ... 34
3.10.2 Bus length .. 34
3.10.3 Drop lines ... 35
3.10.4 Star Hub (Multiport Tap)... 35
3.10.5 CAN cable .. 35
3.10.6 Shielding .. 37
3.10.7 Cable colors ... 37
3.10.8 BK5151, FC51xx, CX with CAN interface and EL6751: D-sub, 9 pin 38
3.10.9 BK51x0/BX5100: 5-pin open style connector... 39
3.10.10 LC5100: Bus connection via spring-loaded terminals .. 39
3.10.11 Fieldbus Box: M12 CAN socket ... 40

4 Basics communication ... 41
4.1 EtherCAT basics ... 41
4.2 EtherCAT State Machine .. 41
4.3 General notes for setting the watchdog .. 42

Table of contents

EL67514 Version: 4.0.0

4.4 CoE Interface .. 44

5 Parameterization and commissioning .. 49
5.1 TwinCAT Development Environment .. 49

5.1.1 Installation of the TwinCAT real-time driver ... 49
5.1.2 Notes regarding ESI device description ... 55
5.1.3 OFFLINE configuration creation... 59
5.1.4 ONLINE configuration creation .. 64
5.1.5 EtherCAT slave process data settings ... 72

5.2 General Commissioning Instructions for an EtherCAT Slave ... 74
5.3 TwinCAT (2.1x) System Manager ... 82

5.3.1 Configuration by means of the TwinCAT System Manager ... 82
5.3.2 BECKHOFF CANopen Bus Coupler .. 92
5.3.3 CANopen devices .. 94

5.4 CANopen Communication... 100
5.4.1 Network Management .. 100
5.4.2 CANopen Master Network management ... 104
5.4.3 Process Data Objects (PDO) ... 107
5.4.4 PDO Parameterization ... 114
5.4.5 Service Data Objects (SDO) .. 116
5.4.6 EL6751- SDO communication.. 119
5.4.7 CANopen baud rate and bit timing ... 125
5.4.8 Identifier Allocation... 125
5.4.9 Firmware versions.. 126
5.4.10 Sending and receiving of CAN Messages (STD Frame Format) via ADS 127
5.4.11 Modular Device Profil Mapping of EL6751 (MDP) ... 129

5.5 EtherCAT communication EL6751.. 133
5.5.1 CANopen master.. 133
5.5.2 CAN interface... 165

6 Error handling and diagnostics ... 174
6.1 EL6751 – LED description .. 174
6.2 EL6751 – Bus node diagnostics.. 175
6.3 EL6751 diagnostics... 178
6.4 EL6751- Emergency messages .. 179
6.5 EL6751 - ADS Error Codes... 180
6.6 CANopen Trouble Shooting .. 186

7 Appendix.. 189
7.1 EtherCAT AL Status Codes .. 189
7.2 Firmware compatibility .. 190
7.3 Firmware Update EL/ES/EM/ELM/EP/EPP/ERPxxxx ... 191

7.3.1 Device description ESI file/XML... 192
7.3.2 Firmware explanation... 195
7.3.3 Updating controller firmware *.efw ... 196
7.3.4 FPGA firmware *.rbf ... 198
7.3.5 Simultaneous updating of several EtherCAT devices .. 202

7.4 CAN Identifier List ... 203

Table of contents

EL6751 5Version: 4.0.0

7.5 Abbreviations .. 219
7.6 Bibliography .. 220
7.7 Support and Service.. 222

Table of contents

EL67516 Version: 4.0.0

Foreword

EL6751 7Version: 4.0.0

1 Foreword

1.1 Notes on the documentation
Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning these components.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, ATRO®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®,
Safety over EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar® and XTS® are
registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Third-party brands

Trademarks of third parties may be used in this documentation. You can find the trademark notices here:
https://www.beckhoff.com/trademarks

https://www.beckhoff.com/trademarks

Foreword

EL67518 Version: 4.0.0

1.2 Guide through documentation
NOTICE

Further components of documentation
This documentation describes device-specific content. It is part of the modular
documentation concept for Beckhoff I/O components. For the use and safe operation of the
device / devices described in this documentation, additional cross-product descriptions are
required, which can be found in the following table.

Title Description
EtherCAT System Documentation (PDF) • System overview

• EtherCAT basics
• Cable redundancy
• Hot Connect
• EtherCAT devices configuration

Explosion Protection for Terminal
Systems (PDF)

Notes on the use of the Beckhoff terminal systems in
hazardous areas according to ATEX and IECEx

Infrastructure for EtherCAT/Ethernet (PDF) Technical recommendations and notes for design,
implementation and testing

Software Declarations I/O (PDF) Open source software declarations for
Beckhoff I/O components

The documentations can be viewed at and downloaded from the Beckhoff website (www.beckhoff.com) via:

• the “Documentation and Download” area of the respective product page,

• the Download finder,

• the Beckhoff Information System.

If you have any suggestions or proposals for our documentation, please send us an e-mail stating the
documentation title and version number to: documentation@beckhoff.com

https://www.beckhoff.com/en-en/support/download-finder/search-result/?download_group=37140937
https://www.beckhoff.com/en-en/support/download-finder/search-result/?download_group=641025001
https://www.beckhoff.com/en-en/support/download-finder/search-result/?download_group=37139139
https://www.beckhoff.com/en-en/support/download-finder/search-result/?download_group=628288629
http://www.beckhoff.com/
https://www.beckhoff.com/en-us/support/download-finder/technical-documentations/
https://infosys.beckhoff.com/content/1033/fieldbusinfosys/index.html?id=4211986674403809096
mailto:documentation@beckhoff.com

Foreword

EL6751 9Version: 4.0.0

1.3 Safety instructions
Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

EL675110 Version: 4.0.0

1.4 Documentation issue status
Version Comment
3.9 • Chapter “Recommended mounting rails” removed

• Update chapter “Technical data”
• Chapter “IECEx - Special conditions” added
• Update revision status

3.8 • Update chapter „Object description“
• Update chapter „Technical data“
• Structural update

3.7 • Update chapter „Object description“
• Update chapter „Technical data“
• Structural update

3.6 • Update chapter „Object description“
• Update chapter „Parameterization and commissioning“
• Structural update
• Update revision status

3.5 • Update chapter „Object description“
• Structural update
• Update revision status

3.4 • Update chapter „Object description“
• Structural update

3.3 • Update revision status
• Structural update

3.2 • Update chapter „CANopen communication“
• Update chapter „Object description“
• Update revision status
• Structural update

3.1 • "Technical data" chapter updated
• Structural update

3.0 • Migration
• Structural update

2.0 • "Technical data" chapter updated
• Structural update

1.9 • Addenda chapter "Mounting and wiring"
1.8 • Addenda chapter "Mounting and wiring"
1.7 • Addenda firmware compatibility
1.6 • Additions to technical notes
1.5 • Additions to technical notes
1.4 • Chapter inserted "EtherCAT communication"
1.3 • Technical data corrected
1.2 • Supplementary notes CAN interface
1.1 • Addendum CAN Interface description
1.0 • Revision, technical data amended
0.1 • Preliminary version for internal use

Foreword

EL6751 11Version: 4.0.0

1.5 Version identification of EtherCAT devices

1.5.1 General notes on marking

Designation

A Beckhoff EtherCAT device has a 14-digit designation, made up of

• family key
• type
• version
• revision

Example Family Type Version Revision
EL3314-0000-0016 EL terminal

12 mm, non-pluggable connection level
3314
4-channel thermocouple terminal

0000
basic type

0016

ES3602-0010-0017 ES terminal
12 mm, pluggable connection level

3602
2-channel voltage measurement

0010
high-precision version

0017

CU2008-0000-0000 CU device 2008
8-port fast ethernet switch

0000
basic type

0000

Notes
• The elements mentioned above result in the technical designation. EL3314-0000-0016 is used in the

example below.
• EL3314-0000 is the order identifier, in the case of “-0000” usually abbreviated to EL3314. “-0016” is the

EtherCAT revision.
• The order identifier is made up of

- family key (EL, EP, CU, ES, KL, CX, etc.)
- type (3314)
- version (-0000)

• The revision -0016 shows the technical progress, such as the extension of features with regard to the
EtherCAT communication, and is managed by Beckhoff.
In principle, a device with a higher revision can replace a device with a lower revision, unless specified
otherwise, e.g. in the documentation.
Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave
Information) in the form of an XML file, which is available for download from the Beckhoff web site.
From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. “EL2872 with
revision 0022 and serial number 01200815”.

• The type, version and revision are read as decimal numbers, even if they are technically saved in
hexadecimal.

Foreword

EL675112 Version: 4.0.0

1.5.2 Version identification of EL terminals
The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or
on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole
production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version

Example with serial number 12 06 3A 02:
12 - production week 12
06 - production year 2006
3A - firmware version 3A
02 - hardware version 02

Fig. 1: EL2872 with revision 0022 and serial number 01200815

Foreword

EL6751 13Version: 4.0.0

1.5.3 Beckhoff Identification Code (BIC)
The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify
the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is
based on the ANSI standard MH10.8.2-2016.

Fig. 2: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

• on the packaging unit
• directly on the product (if space suffices)
• on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling
and product management.

Each piece of information can be uniquely identified using the so-called data identifier
(ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum
length according to the table below. If the information is shorter, spaces are added to it.

Following information is possible, positions 1 to 4 are always present, the other according to need of
production:

Foreword

EL675114 Version: 4.0.0

Posi-
tion

Type of
information

Explanation Data
identifier

Number of digits
incl. data identifier

Example

1 Beckhoff order
number

Beckhoff order number 1P 8 1P072222

2 Beckhoff Traceability
Number (BTN)

Unique serial number,
see note below

SBTN 12 SBTNk4p562d7

3 Article description Beckhoff article
description, e.g.
EL1008

1K 32 1KEL1809

4 Quantity Quantity in packaging
unit, e.g. 1, 10, etc.

Q 6 Q1

5 Batch number Optional: Year and week
of production

2P 14 2P401503180016

6 ID/serial number Optional: Present-day
serial number system,
e.g. with safety products

51S 12 51S678294

7 Variant number Optional: Product variant
number on the basis of
standard products

30P 12 30PF971, 2*K183

...

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

Structure of the BIC

Example of composite information from positions 1 to 4 and with the above given example value on position
6. The data identifiers are highlighted in bold font:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Accordingly as DMC:

Fig. 3: Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

An important component of the BIC is the Beckhoff Traceability Number (BTN, position 2). The BTN is a
unique serial number consisting of eight characters that will replace all other serial number systems at
Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for
safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet
coded in the BIC.

NOTICE
This information has been carefully prepared. However, the procedure described is constantly being further
developed. We reserve the right to revise and change procedures and documentation at any time and
without prior notice. No claims for changes can be made from the information, illustrations and descriptions
in this documentation.

Foreword

EL6751 15Version: 4.0.0

1.5.4 Electronic access to the BIC (eBIC)

Electronic BIC (eBIC)

The Beckhoff Identification Code (BIC) is applied to the outside of Beckhoff products in a visible place. If
possible, it should also be electronically readable.

The interface that the product can be electronically addressed by is crucial for the electronic readout.

K-bus devices (IP20, IP67)

Currently, no electronic storage or readout is planned for these devices.

EtherCAT devices (IP20, IP67)

All Beckhoff EtherCAT devices have an ESI-EEPROM which contains the EtherCAT identity with the revision
number. The EtherCAT slave information, also colloquially known as the ESI/XML configuration file for the
EtherCAT master, is stored in it. See the corresponding chapter in the EtherCAT system manual (Link) for
the relationships.

Beckhoff also stores the eBIC in the ESI‑EEPROM. The eBIC was introduced into Beckhoff IO production
(terminals, box modules) in 2020; as of 2023, implementation is largely complete.

The user can electronically access the eBIC (if present) as follows:

• With all EtherCAT devices, the EtherCAT master (TwinCAT) can read the eBIC from the ESI‑EEPROM
◦ From TwinCAT 3.1 build 4024.11, the eBIC can be displayed in the online view.
◦ To do this, check the "Show Beckhoff Identification Code (BIC)" checkbox under

EtherCAT → Advanced Settings → Diagnostics:

◦ The BTN and its contents are then displayed:

◦ Note: As shown in the figure, the production data HW version, FW version, and production date,
which have been programmed since 2012, can also be displayed with "Show production info".

◦ Access from the PLC: From TwinCAT 3.1. build 4024.24, the functions FB_EcReadBIC and
FB_EcReadBTN for reading into the PLC are available in the Tc2_EtherCAT library from
v3.3.19.0.

• EtherCAT devices with a CoE directory may also have the object 0x10E2:01 to display their own eBIC,
which can also be easily accessed by the PLC:

https://infosys.beckhoff.com/content/1031/ethercatsystem/2469086859.html

Foreword

EL675116 Version: 4.0.0

◦ The device must be in PREOP/SAFEOP/OP for access:

◦ The object 0x10E2 will be preferentially introduced into stock products in the course of necessary
firmware revision.

◦ From TwinCAT 3.1. build 4024.24, the functions FB_EcCoEReadBIC and FB_EcCoEReadBTN for
reading into the PLC are available in the Tc2_EtherCAT library from v3.3.19.0

• The following auxiliary functions are available for processing the BIC/BTN data in the PLC in
Tc2_Utilities as of TwinCAT 3.1 build 4024.24

◦ F_SplitBIC: The function splits the Beckhoff Identification Code (BIC) sBICValue into its
components using known identifiers and returns the recognized substrings in the ST_SplittedBIC
structure as a return value

◦ BIC_TO_BTN: The function extracts the BTN from the BIC and returns it as a return value
• Note: If there is further electronic processing, the BTN is to be handled as a string(8); the identifier

"SBTN" is not part of the BTN.
• Technical background

The new BIC information is written as an additional category in the ESI‑EEPROM during device
production. The structure of the ESI content is largely dictated by the ETG specifications, therefore the
additional vendor-specific content is stored using a category in accordance with the ETG.2010. ID 03
tells all EtherCAT masters that they may not overwrite these data in the event of an update or restore
the data after an ESI update.
The structure follows the content of the BIC, see here. The EEPROM therefore requires approx.
50..200 bytes of memory.

• Special cases
◦ If multiple hierarchically arranged ESCs are installed in a device, only the top-level ESC carries the

eBIC information.
◦ If multiple non-hierarchically arranged ESCs are installed in a device, all ESCs carry the eBIC

information.
◦ If the device consists of several sub-devices which each have their own identity, but only the top-

level device is accessible via EtherCAT, the eBIC of the top-level device is located in the CoE
object directory 0x10E2:01 and the eBICs of the sub-devices follow in 0x10E2:nn.

PROFIBUS, PROFINET, and DeviceNet devices

Currently, no electronic storage or readout is planned for these devices.

Product overview

EL6751 17Version: 4.0.0

2 Product overview

2.1 Introduction

Fig. 4: EL6751

Master and slave terminals for CANopen

The master and slave terminals for CANopen correspond to the FC5101 PCI card from Beckhoff. Thanks to
the connection via Ethernet, no PCI slots are required in the PC. Within an EtherCAT terminal network, it
enables the integration of any CANopen devices. In addition, general CAN messages can be sent or
received – without having to bother with CAN frames in the applications program. The EL6751 is
alternatively available in a master or slave version and has a powerful protocol implementation with many
features:

• All CANopen PDO communication types are supported: event-controlled, time-controlled (event timer),
synchronous.

• Synchronization with the PC controller's task cycle.
• SYNC cycle with quartz precision for drive synchronization, zero cumulative jitter.
• Parameter communication (SDO) at start-up and at runtime.
• Emergency message handling, guarding and heartbeat.
• Powerful parameter and diagnostics interfaces.
• Online bus load display

Quick links
• EL6751 - CANopen master terminal [} 83]

• EL6751-0010 - CANopen slave terminal [} 88]

Product overview

EL675118 Version: 4.0.0

2.2 Technical data
Technical data EL6751-0000 EL6751-0010
Bus system CANopen
Version Master Slave
Number of fieldbus channels 1
Data transfer rate 10, 20, 50, 100, 125, 250, 500, 800 or 1000 kbit/s
Bus interface D-Sub 9-pole connector according to CANopen specification, galvanically uncoupled
Bus devices**) maximum 127 slaves
Communication CANopen network master and CANopen manager CANopen slave
Diagnostics Status LEDs
Power supply via the E-bus
Current consumption via E-bus typ. 230 mA
Electrical isolation 500 V (E-bus/CANopen)
Configuration with TwinCAT System Manager
Weight approx. 70 g
Permissible ambient temperature range
during operation

-25 °C ... +60 °C (extended temperature range [} 22])

Permissible ambient temperature range
during storage

-40 °C ... +85 °C

Permissible relative humidity 95 %, no condensation
Dimensions (W x H x D) approx. 26 mm x 100 mm x 52 mm (width aligned: 23 mm)
Mounting [} 29] on 35 mm mounting rail conforms to EN 60715

Vibration / shock resistance conforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity / emission conforms to EN 61000-6-2 / EN 61000-6-4
Protection class IP20
Installation position variable
Approvals / markings*) CE, UKCA, EAC, CCC

cULus [} 25], ATEX [} 22], IECEx [} 23]

*) Real applicable approvals/markings see type plate on the side (product marking).

**) Maximum number of bus devices
This value specifies the maximum number of node IDs that can be used. However, this does not
mean that 127 nodes can be operated on one CANopen master.
This depends on many factors: Line length, baud rate, number of PDOs, amount of data, utilization
of the bus, synchronous or asynchronous, cycle time used.
This data is required in order to obtain an estimate of how many CAN nodes you can actually
operate on a CANopen master. Beckhoff can advise you on this at mailto:support@beckhoff.com.

Ex markings

Standard Marking
ATEX II 3 G Ex nA IIC T4 Gc
IECEx Ex nA IIC T4 Gc

mailto:support@beckhoff.com

Product overview

EL6751 19Version: 4.0.0

2.3 CANopen - Introduction

Fig. 5: CANopenLogo

CANopen is a widely used CAN application layer, developed by the CAN-in-Automation association (CiA,
http://www.can-cia.org), and which has meanwhile been adopted for international standardization.

Device Model

CANopen consists of the protocol definitions (communication profile) and of the device profiles that
standardize the data contents for the various device classes. Process data objects (PDO) [} 107] are used for
fast communication of input and output data. The CANopen device parameters and process data are stored
in a structured object directory. Any data in this object directory is accessed via service data objects (SDO).
There are, additionally, a few special objects (such as telegram types) for network management (NMT),
synchronization, error messages and so on.

Fig. 6: CANopen Device Model

Communication Types

CANopen defines a number of communication classes for the input and output data (process data objects):

• Event driven [} 110]: Telegrams are sent as soon as their contents have changed. This means that the
process image as a whole is not continuously transmitted, only its changes.

• Cyclic synchronous [} 110]: A SYNC telegram causes the modules to accept the output data that was
previously received, and to send new input data.

• Requested (polled) [} 107]: A CAN data request telegram causes the modules to send their input data.

The desired communication type is set by the Transmission Type [} 107] parameter.

http://www.can-cia.org

Product overview

EL675120 Version: 4.0.0

Device Profile

The BECKHOFF CANopen devices support all types of I/O communication, and correspond to the device
profile for digital and analog input/output modules (DS401 Version 1). For reasons of backwards
compatibility, the default mapping was not adapted to the DS401 V2 profile version.

Data transfer rates

Nine transmission rates [} 125] from 10 kbit/s up to 1 Mbit/s are available for different bus lengths. The
effective utilization of the bus bandwidth allows CANopen to achieve short system reaction times at relatively
low data rates.

Topology

CAN is based on a linear topology [} 34]. The number of devices participating in each network is logically
limited by CANopen to 128, but physically the present generation of drivers allows up to 64 nodes in one
network segment. The maximum possible size of the network for any particular data rate is limited by the
signal propagation delay required on the bus medium. For 1 Mbit/s, for instance, the network may extend
25 m, whereas at 50 kbit/s the network may reach up to 1000 m. At low data rates the size of the network
can be increased by repeaters, which also allow the construction of tree structures.

Bus access procedures

CAN utilizes the Carrier Sense Multiple Access (CSMA) procedure, i.e. all participating devices have the
same right of access to the bus and may access it as soon as it is free (multi-master bus access). The
exchange of messages is thus not device-oriented but message-oriented. This means that every message is
unambiguously marked with a prioritized identifier. In order to avoid collisions on the bus when messages
are sent by different devices, a bit-wise bus arbitration is carried out at the start of the data transmission. The
bus arbitration assigns bus bandwidth to the messages in the sequence of their priority. At the end of the
arbitration phase only one bus device occupies the bus, collisions are avoided and the bandwidth is optimally
exploited.

Configuration and parameterization

The TwinCAT System Manager allows all the CANopen parameters to be set conveniently. An "eds" file (an
electronic data sheet) is available on the Beckhoff website (http://www.beckhoff.de) for the parameterization
of Beckhoff CANopen devices using configuration tools from other manufacturers.

Certification

The Beckhoff CANopen devices have a powerful implementation of the protocol, and are certified by the
CAN in Automation Association (http://www.can-cia.org).

http://www.beckhoff.de
http://www.can-cia.org

Mounting and wiring

EL6751 21Version: 4.0.0

3 Mounting and wiring

3.1 Instructions for ESD protection
NOTICE

Destruction of the devices by electrostatic discharge possible!
The devices contain components at risk from electrostatic discharge caused by improper handling.
• When handling the components, ensure that there is no electrostatic discharge; also avoid touching the

spring contacts directly (see illustration).
• Contact with highly insulating materials (synthetic fibers, plastic films, etc.) should be avoided when

handling components at the same time.
• When handling the components, ensure that the environment (workplace, packaging and persons) is

properly earthed.

• Each bus station must be terminated on the right-hand side with the EL9011 or EL9012 end cap to ensure
the degree of protection and ESD protection.

Fig. 7: Spring contacts of the Beckhoff I/O components

http://www.beckhoff.com/EL9011
http://www.beckhoff.com/EL9012

Mounting and wiring

EL675122 Version: 4.0.0

3.2 Explosion protection

3.2.1 ATEX - Special conditions (extended temperature range)
 WARNING

Observe the special conditions for the intended use of Beckhoff fieldbus components with
extended temperature range (ET) in potentially explosive areas (directive 2014/34/EU)!
• The certified components are to be installed in a suitable housing that guarantees a protection class of at

least IP54 in accordance with EN 60079-15! The environmental conditions during use are thereby to be
taken into account!

• For dust (only the fieldbus components of certificate no. KEMA 10ATEX0075 X Issue 9): The equipment
shall be installed in a suitable enclosure providing a degree of protection of IP54 according to
EN 60079-31 for group IIIA or IIIB and IP6X for group IIIC, taking into account the environmental
conditions under which the equipment is used!

• If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or
pipes, or higher than 80°C at the wire branching points, then cables must be selected whose
temperature data correspond to the actual measured temperature values!

• Observe the permissible ambient temperature range of -25 to 60°C for the use of Beckhoff fieldbus
components with extended temperature range (ET) in potentially explosive areas!

• Measures must be taken to protect against the rated operating voltage being exceeded by more than
40% due to short-term interference voltages!

• The individual terminals may only be unplugged or removed from the Bus Terminal system if the supply
voltage has been switched off or if a non-explosive atmosphere is ensured!

• The connections of the certified components may only be connected or disconnected if the supply
voltage has been switched off or if a non-explosive atmosphere is ensured!

• The fuses of the KL92xx/EL92xx power feed terminals may only be exchanged if the supply voltage has
been switched off or if a non-explosive atmosphere is ensured!

• Address selectors and ID switches may only be adjusted if the supply voltage has been switched off or if
a non-explosive atmosphere is ensured!

Standards

The fundamental health and safety requirements are fulfilled by compliance with the following standards:

• EN 60079-0:2012+A11:2013
• EN 60079-15:2010
• EN 60079-31:2013 (only for certificate no. KEMA 10ATEX0075 X Issue 9)

Marking

The Beckhoff fieldbus components with extended temperature range (ET) certified according to the ATEX
directive for potentially explosive areas bear the following marking:

II 3G KEMA 10ATEX0075 X Ex nA IIC T4 Gc Ta: -25 … +60°C
II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: -25 ... +60°C
(only for fieldbus components of certificate no. KEMA 10ATEX0075 X Issue 9)

or

II 3G KEMA 10ATEX0075 X Ex nA nC IIC T4 Gc Ta: -25 … +60°C
II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: -25 ... +60°C
(only for fieldbus components of certificate no. KEMA 10ATEX0075 X Issue 9)

Mounting and wiring

EL6751 23Version: 4.0.0

3.2.2 IECEx - Special conditions
 WARNING

Observe the special conditions for the intended use of Beckhoff fieldbus components in
potentially explosive areas!
• For gas: The equipment shall be installed in a suitable enclosure providing a degree of protection of IP54

according to IEC 60079-15, taking into account the environmental conditions under which the equipment
is used!

• For dust (only the fieldbus components of certificate no. IECEx DEK 16.0078X Issue 3):
The equipment shall be installed in a suitable enclosure providing a degree of protection of IP54
according to EN 60079-31 for group IIIA or IIIB and IP6X for group IIIC, taking into account the
environmental conditions under which the equipment is used!

• The equipment shall only be used in an area of at least pollution degree 2, as defined in IEC 60664-1!
• Provisions shall be made to prevent the rated voltage from being exceeded by transient disturbances of

more than 119 V!
• If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or

pipes, or higher than 80°C at the wire branching points, then cables must be selected whose
temperature data correspond to the actual measured temperature values!

• Observe the permissible ambient temperature range for the use of Beckhoff fieldbus components in
potentially explosive areas!

• The individual terminals may only be unplugged or removed from the Bus Terminal system if the supply
voltage has been switched off or if a non-explosive atmosphere is ensured!

• The connections of the certified components may only be connected or disconnected if the supply
voltage has been switched off or if a non-explosive atmosphere is ensured!

• Address selectors and ID switches may only be adjusted if the supply voltage has been switched off or if
a non-explosive atmosphere is ensured!

• The front hatch of certified units may only be opened if the supply voltage has been switched off or a
non-explosive atmosphere is ensured!

Standards

The fundamental health and safety requirements are fulfilled by compliance with the following standards:

• EN 60079-0:2011
• EN 60079-15:2010
• EN 60079-31:2013 (only for certificate no. IECEx DEK 16.0078X Issue 3)

Marking

Beckhoff fieldbus components that are certified in accordance with IECEx for use in areas subject to an
explosion hazard bear the following markings:

Marking for fieldbus components of certificate
no. IECEx DEK 16.0078X Issue 3:

IECEx DEK 16.0078 X
Ex nA IIC T4 Gc
Ex tc IIIC T135°C Dc

Marking for fieldbus components of
certficates with later issues:

IECEx DEK 16.0078 X
Ex nA IIC T4 Gc

Mounting and wiring

EL675124 Version: 4.0.0

3.2.3 Continuative documentation for ATEX and IECEx
NOTICE

Continuative documentation about explosion protection according to ATEX
and IECEx
Pay also attention to the continuative documentation
Ex. Protection for Terminal Systems
Notes on the use of the Beckhoff terminal systems in hazardous areas according to ATEX
and IECEx,

that is available for download within the download area of your product on the Beckhoff
homepage www.beckhoff.com!

https://download.beckhoff.com/download/document/io/bus-terminals/ex-notes_for_terminalsystems_en.pdf

Mounting and wiring

EL6751 25Version: 4.0.0

3.3 UL notice
 CAUTION

Application
Beckhoff EtherCAT modules are intended for use with Beckhoff’s UL Listed EtherCAT
System only.

 CAUTION
Examination
For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire
and electrical shock (in accordance with UL508 and CSA C22.2 No. 142).

 CAUTION
For devices with Ethernet connectors
Not for connection to telecommunication circuits.

Basic principles

UL certification according to UL508. Devices with this kind of certification are marked by this sign:

Mounting and wiring

EL675126 Version: 4.0.0

3.4 Installation positions
NOTICE

Constraints regarding installation position and operating temperature range
Please refer to the technical data for a terminal to ascertain whether any restrictions regarding the
installation position and/or the operating temperature range have been specified. When installing high
power dissipation terminals ensure that an adequate spacing is maintained between other components
above and below the terminal in order to guarantee adequate ventilation!

Optimum installation position (standard)

The optimum installation position requires the mounting rail to be installed horizontally and the connection
surfaces of the EL- / KL terminals to face forward (see Fig. “Recommended distances for standard
installation position”). The terminals are ventilated from below, which enables optimum cooling of the
electronics through convection. “From below” is relative to the acceleration of gravity.

Fig. 8: Recommended distances for standard installation position

Compliance with the distances shown in Fig. “Recommended distances for standard installation position” is
recommended.

Other installation positions

All other installation positions are characterized by different spatial arrangement of the mounting rail - see
Fig “Other installation positions”.

The minimum distances to ambient specified above also apply to these installation positions.

Mounting and wiring

EL6751 27Version: 4.0.0

Fig. 9: Other installation positions

Mounting and wiring

EL675128 Version: 4.0.0

3.5 Positioning of passive Terminals
Hint for positioning of passive terminals in the bus terminal block
EtherCAT Terminals (ELxxxx / ESxxxx), which do not take an active part in data transfer within the
bus terminal block are so called passive terminals. The passive terminals have no current
consumption out of the E-Bus.
To ensure an optimal data transfer, you must not directly string together more than two passive
terminals!

Examples for positioning of passive terminals (highlighted)

Fig. 10: Correct positioning

Fig. 11: Incorrect positioning

Mounting and wiring

EL6751 29Version: 4.0.0

3.6 Mounting and demounting - traction lever unlocking
The terminal modules are fastened to the assembly surface with the aid of a 35 mm mounting rail (e. g.
mounting rail TH 35-15).

Fixing of mounting rails
The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At
the installation, the locking mechanism of the components must not come into conflict with the fixing
bolts of the mounting rail. To mount the recommended mounting rails under the terminals and
couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).

 WARNING
Risk of electric shock and damage of device!
Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or
wiring of the Bus Terminals!

Mounting
• Fit the mounting rail to the planned assembly location.

and press (1) the terminal module against the mounting rail until it latches in place on the mounting rail
(2).

• Attach the cables.

Demounting
• Remove all the cables. Thanks to the KM/EM connector, it is not necessary to remove all the cables

separately for this, but for each KM/EM connector simply undo 2 screws so that you can pull them off
(fixed wiring)!

• Lever the unlatching hook on the left-hand side of the terminal module upwards with a screwdriver (3).
As you do this

◦ an internal mechanism pulls the two latching lugs (3a) from the top hat rail back into the terminal
module,

◦ the unlatching hook moves forwards (3b) and engages

Mounting and wiring

EL675130 Version: 4.0.0

• In the case 32 and 64 channel terminal modules (KMxxx4 and KMxxx8 or EMxxx4 and EMxxx8) you

now lever the second unlatching hook on the right-hand side of the terminal module upwards in the
same way.

• Pull (4) the terminal module away from the mounting surface.

Mounting and wiring

EL6751 31Version: 4.0.0

3.7 Mounting and demounting - top front unlocking
The terminal modules are fastened to the assembly surface with the aid of a 35 mm mounting rail (e. g.
mounting rail TH 35-15).

Fixing of mounting rails
The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At
the installation, the locking mechanism of the components must not come into conflict with the fixing
bolts of the mounting rail. To mount the recommended mounting rails under the terminals and
couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).

 WARNING
Risk of electric shock and damage of device!
Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or
wiring of the Bus Terminals!

Mounting
• Fit the mounting rail to the planned assembly location.

and press (1) the terminal module against the mounting rail until it latches in place on the mounting rail
(2).

• Attach the cables.

Demounting
• Remove all the cables.
• Lever the unlatching hook back with thumb and forefinger (3). An internal mechanism pulls the two

latching lugs (3a) from the top hat rail back into the terminal module.

Mounting and wiring

EL675132 Version: 4.0.0

• Pull (4) the terminal module away from the mounting surface.
Avoid canting of the module; you should stabilize the module with the other hand, if required.

3.8 Disposal
Products marked with a crossed-out wheeled bin shall not be discarded
with the normal waste stream. The device is considered as waste
electrical and electronic equipment. The national regulations for the
disposal of waste electrical and electronic equipment must be observed.

Mounting and wiring

EL6751 33Version: 4.0.0

3.9 Note - power supply
 WARNING

Power supply from SELV / PELV power supply unit!
SELV / PELV circuits (safety extra-low voltage / protective extra-low voltage) according to IEC 61010-2-201
must be used to supply this device.
Notes:
• SELV / PELV circuits may give rise to further requirements from standards such as IEC 60204-1 et al,

for example with regard to cable spacing and insulation.
• A SELV supply provides safe electrical isolation and limitation of the voltage without a connection to the

protective conductor, a PELV supply also requires a safe connection to the protective conductor.

Mounting and wiring

EL675134 Version: 4.0.0

3.10 CANopen cabling
Notes related to checking the CAN wiring can be found in the Trouble Shooting [} 186] section.

3.10.1 CAN topology
CAN is a 2-wire bus system, to which all participating devices are connected in parallel (i.e. using short drop
lines). The bus must be terminated at each end with a 120 (or 121) Ohm terminating resistor to prevent
reflections. This is also necessary even if the cable lengths are very short!

Fig. 12: Termination of the bus with a 120 Ohm termination resistor

Since the CAN signals are represented on the bus as the difference between the two levels, the CAN leads
are not very sensitive to incoming interference (EMI): Both leads are affected, so the interference has very
little effect on the difference.

Fig. 13: Insensitivity to incoming interference

3.10.2 Bus length
The maximum length of a CAN bus is primarily limited by the signal propagation delay. The multi-master bus
access procedure (arbitration) requires signals to reach all the nodes at effectively the same time (before the
sampling within a bit period). Since the signal propagation delays in the CAN connecting equipment
(transceivers, opto-couplers, CAN controllers) are almost constant, the line length must be chosen in
accordance with the baud rate:

Baud rate Bus length
1 Mbit/s < 20 m*
500 kbit/s < 100 m
250 kbit/s < 250 m
125 kbit/s < 500 m
50 kbit/s < 1000 m
20 kbit/s < 2500 m
10 kbit/s < 5000 m

Mounting and wiring

EL6751 35Version: 4.0.0

*) A figure of 40 m at 1 Mbit/s is often found in the CAN literature. This does not, however, apply to networks
with optically isolated CAN controllers. The worst case calculation for opto-couplers yields a figure 5 m at 1
Mbit/s - in practice, however, 20 m can be reached without difficulty.

It may be necessary to use repeaters for bus lengths greater than 1000 m.

3.10.3 Drop lines
Drop lines must always be avoided as far as possible, since they inevitably cause reflections. The reflections
caused by drop lines are not however usually critical, provided they have decayed fully before the sampling
time. In the case of the bit timing settings [} 125] selected in the Bus Couplers it can be assumed that this is
the case, provided the following drop line lengths are not exceeded:

Baud rate Drop line length Total length of all drop lines
1 Mbit/s < 1 m < 5 m
500 kbit/s < 5 m < 25 m
250 kbit/s < 10 m < 50 m
125 kbit/s < 20 m < 100 m
50 kbit/s < 50 m < 250 m

Drop lines must not have terminating resistors.

Fig. 14: Sample topology of drop lines

3.10.4 Star Hub (Multiport Tap)
Shorter drop line lengths must be maintained when passive distributors ("multiport taps"), such as the
Beckhoff ZS5052-4500 Distributor Box. The following table indicates the maximum drop line lengths and the
maximum length of the trunk line (without the drop lines):

Baud rate Drop line length with multiport
topology

Trunk line length (without drop lines)

1 Mbit/s < 0,3 m < 25 m
500 kbit/s < 1,2 m < 66 m
250 kbit/s < 2,4 m < 120 m
125 kbit/s < 4,8 m < 310 m

3.10.5 CAN cable
Screened twisted-pair cables (2x2) with a characteristic impedance of between 108 and 132 Ohm is
recommended for the CAN wiring. If the CAN transceiver’s reference potential (CAN ground) is not to be
connected, the second pair of conductors can be omitted. (This is only recommended for networks of small
physical size with a common power supply for all the participating devices).

ZB5100 CAN Cable

A high quality CAN cable with the following properties is included in Beckhoff's range:

Mounting and wiring

EL675136 Version: 4.0.0

• 2 x 2 x 0.25 mm² (AWG 24) twisted pairs, cable colors: red/black + white/black
• double screened
• braided screen with filler strand (can be attached directly to pin 3 of the 5-pin connection terminal)
• flexible (minimum bending radius 35 mm when bent once, 70 mm for repeated bending)
• characteristic impedance (60 kHz): 120 ohm
• conductor resistance < 80 Ohm/km
• sheath: grey PVC, outside diameter 7.3 +/- 0.4 mm
• Weight: 64 kg/km.
• printed with "Beckhoff ZB5100 CAN-BUS 2x2x0.25" and meter marking (length data every 20cm)

Fig. 15: Structure of CAN cable ZB5100

ZB5200 CAN/DeviceNet Cable

The ZB5200 cable material corresponds to the DeviceNet specification, and is also suitable for CANopen
systems. The ready-made ZK1052-xxxx-xxxx bus cables for the Fieldbus Box modules are made from this
cable material. It has the following specification:

• 2 x 2 x 0.34 mm² (AWG 22) twisted pairs
• double screened, braided screen with filler strand
• characteristic impedance (1 MHz): 126 ohm
• Conductor resistance 54 Ohm/km
• sheath: grey PVC, outside diameter 7.3 mm
• printed with "InterlinkBT DeviceNet Type 572" as well as UL and CSA ratings
• stranded wire colors correspond to the DeviceNet specification
• UL recognized AWM Type 2476 rating
• CSA AWM I/II A/B 80°C 300V FT1
• corresponds to the DeviceNet "Thin Cable" specification

Fig. 16: Structure of CAN/DeviceNet cable ZB5200

Mounting and wiring

EL6751 37Version: 4.0.0

3.10.6 Shielding
The screen is to be connected over the entire length of the bus cable, and only galvanically grounded at one
point, in order to avoid ground loops.
The design of the screening, in which HF interference is diverted through R/C elements to the mounting rail
assumes that the rail is appropriately earthed and free from interference. If this is not the case, it is possible
that HF interference will be transmitted from the mounting rail to the screen of the bus cable. In that case the
screen should not be attached to the couplers - it should nevertheless still be fully connected through.

Notes related to checking the CAN wiring can be found in the Trouble Shooting [} 186] section.

3.10.7 Cable colors
Suggested method of using the Beckhoff CAN cable on Bus Terminal and Fieldbus Box:

BK51x0 pin
PIN BX5100 (X510)

Pin BK5151
CX8050, CX8051,
CXxxxx-B510/M510

Fieldbus
Box pin

Pin
FC51xx

Function ZB5100 cable
color

ZB5200 ca-
ble color

1 3 3 3 CAN Ground black/ (red) black
2 2 5 2 CAN Low black blue
3 5 1 5 Shield Filler strand Filler strand
4 7 4 7 CAN high white white
5 9 2 9 not used (red) (red)

Mounting and wiring

EL675138 Version: 4.0.0

3.10.8 BK5151, FC51xx, CX with CAN interface and EL6751: D-sub,
9 pin

The CANbus cable is connected to the FC51x1, FC51x2 CANopen cards and in the case of the EL6751
CANopen master/slave terminal via 9-pin Sub-D sockets with the following pin assignment.

Pin Assignment
2 CAN low (CAN-)
3 CAN ground (internally connected to pin 6)
6 CAN ground (internally connected to pin 3)
7 CAN high (CAN+)

The unlisted pins are not connected.
The mounting rail contact spring and the plug shield are connected together.

Note: an auxiliary voltage of up to 30 VDC may be connected to pin 9. Some CAN devices use this to supply
the transceiver.

Fig. 17: BK5151, EL6751 pin assignment

FC51x2:

Fig. 18: FC51x2

Mounting and wiring

EL6751 39Version: 4.0.0

3.10.9 BK51x0/BX5100: 5-pin open style connector
The BK51x0/BX5100 (X510) Bus Couplers have a recessed front surface on the left hand side with a five pin
connector.
The supplied CANopen socket can be inserted here.

Fig. 19: BK51x0/BX5100 socket assignment

The left figure shows the socket in the BK51x0/BX5100 Bus Coupler. Pin 5 is the connection strip's top most
pin. Pin 5 is not used. Pin 4 is the CAN high connection, pin 2 is the CAN low connection, and the screen is
connected to pin 3 (which is connected to the mounting rail via an R/C network). CAN-GND can optionally be
connected to pin 1. If all the CAN ground pins are connected, this provides a common reference potential for
the CAN transceivers in the network. It is recommended that the CAN GND be connected to earth at one
location, so that the common CAN reference potential is close to the supply potential. Since the CANopen
BK51X0/BX5100 Bus Couplers provide full electrical isolation of the bus connection, it may in appropriate
cases be possible to omit wiring up the CAN ground.

ZS1052-3000 Bus Interface Connector

The ZS1052-3000 CAN Interface Connector can be used as an alternative to the supplied connector. This
makes the wiring significantly easier. There are separate terminals for incoming and outgoing leads and a
large area of the screen is connected via the strain relief. The integrated terminating resistor can be switched
externally. When it is switched on, the outgoing bus lead is electrically isolated - this allows rapid wiring fault
location and guarantees that no more than two resistors are active in the network.

3.10.10 LC5100: Bus connection via spring-loaded terminals
In the low cost LC5100 Coupler, the CAN wires are connected directly to the contact points 1 (CAN-H,
marked with C+) and 5 (CAN-L, marked with C-). The screen can optionally be connected to contact points 4
or 8, which are connected to the mounting rail via an R/C network.

Mounting and wiring

EL675140 Version: 4.0.0

Fig. 20: LC5100

NOTICE
Risk of device damage!
On account of the lack of electrical isolation, the CAN driver can be destroyed or damaged due to incorrect
cabling. Always carry out the cabling in the switched-off condition.
First connect the power supply and then the CAN. Check the cabling and only then switch on the voltage.

3.10.11 Fieldbus Box: M12 CAN socket
The IPxxxx-B510, IL230x-B510 and IL230x-C510 Fieldbus Boxes are connected to the bus using 5-pin M12
plug-in connectors.

Fig. 21: Pin assignment: M12 plug, fieldbus box

Beckhoff offer plugs for field assembly, passive distributor's, terminating resistors and a wide range of pre-
assembled cables for the Fieldbus Box system. Details be found in the catalogue, or under www.beckhoff.de.

http://www.beckhoff.de

Basics communication

EL6751 41Version: 4.0.0

4 Basics communication

4.1 EtherCAT basics
Please refer to the EtherCAT System Documentation for the EtherCAT fieldbus basics.

4.2 EtherCAT State Machine
The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the
state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be
sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.

A distinction is made between the following states:

• Init
• Pre-Operational
• Safe-Operational
• Operational
• Bootstrap

The regular state of each EtherCAT slave after bootup is the OP state.

Fig. 22: States of the EtherCAT State Machine

Init

After switch-on the EtherCAT slave in the Init state. No mailbox or process data communication is possible.
The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.

Pre-Operational (Pre-Op)

During the transition between Init and Pre-Op the EtherCAT slave checks whether the mailbox was initialized
correctly.

http://infosys.beckhoff.com/content/1033/ethercatsystem/index.html

Basics communication

EL675142 Version: 4.0.0

In Pre-Op state mailbox communication is possible, but not process data communication. The EtherCAT
master initializes the sync manager channels for process data (from sync manager channel 2), the Fieldbus
Memory Management Unit (FMMU) channels and, if the slave supports configurable mapping, PDO mapping
or the sync manager PDO assignment. In this state the settings for the process data transfer and perhaps
terminal-specific parameters that may differ from the default settings are also transferred.

Safe-Operational (Safe-Op)

During transition between Pre-Op and Safe-Op the EtherCAT slave checks whether the sync manager
channels for process data communication and, if required, the Distributed Clocks settings are correct. Before
it acknowledges the change of state, the EtherCAT slave copies current input data into the associated Dual
Port (DP)-RAM areas of the ESC.

In Safe-Op state mailbox and process data communication is possible, although the slave keeps its outputs
in a safe state, while the input data are updated cyclically.

Outputs in SAFEOP state
The default set watchdog monitoring sets the outputs of the ESC module in a safe state - depending
on the settings in SAFEOP and OP - e.g. in OFF state. If this is prevented by deactivation of the
monitoring in the module, the outputs can be switched or set also in the SAFEOP state.

Operational (Op)

Before the EtherCAT master switches the EtherCAT slave from Safe-Op to Op it must transfer valid output
data.

In the Op state the slave copies the output data of the masters to its outputs. Process data and mailbox
communication is possible.

Boot

In the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.

In the Boot state mailbox communication via the file access over EtherCAT (FoE) protocol is possible, but no
other mailbox communication and no process data communication.

4.3 General notes for setting the watchdog
The EtherCAT terminals are equipped with a safety device (watchdog) which, e. g. in the event of interrupted
process data traffic, switches the outputs (if present) to a presettable state after a presettable time,
depending on the device and setting, e. g. to FALSE (off) or an output value.

The EtherCAT slave controller features two watchdogs:

• Sync Manager (SM) watchdog (default: 100 ms)
• Process Data (PDI) watchdog (default: 100 ms)

Their times are individually parameterized in TwinCAT as follows:

Basics communication

EL6751 43Version: 4.0.0

Fig. 23: eEtherCAT tab -> Advanced Settings -> Behavior -> Watchdog

Notes:

• the Multiplier Register 400h (hexadecimal, i. e. 0x0400) is valid for both watchdogs.
• each watchdog has its own timer setting 410h or 420h, which together with the Multiplier results in a

resulting time.
• important: the Multiplier/Timer setting is only loaded into the slave at EtherCAT startup if the checkbox

in front of it is activated.
• if it is not checked, nothing is downloaded and the setting located in the ESC remains unchanged.
• the downloaded values can be seen in the ESC registers 400h, 410h and 420h: ESC Access ->

Memory

SM watchdog (SyncManager Watchdog)

The SyncManager watchdog is reset with each successful EtherCAT process data communication with the
terminal. If, for example, no EtherCAT process data communication with the terminal takes place for longer
than the set and activated SM watchdog time due to a line interruption, the watchdog is triggered. The status
of the terminal (usually OP) remains unaffected. The watchdog is only reset again by a successful EtherCAT
process data access.

The SyncManager watchdog is therefore a monitoring for correct and timely process data communication
with the ESC from the EtherCAT side.

The maximum possible watchdog time depends on the device. For example, for "simple" EtherCAT slaves
(without firmware) with watchdog execution in the ESC it is usually up to 170 seconds. For complex
EtherCAT slaves (with firmware) the SM watchdog function is usually parameterized via register 400h/420h

Basics communication

EL675144 Version: 4.0.0

but executed by the microcontroller (µC) and can be significantly lower. In addition, the execution may then
be subject to a certain time uncertainty. Since the TwinCAT dialog may allow inputs up to 65535, a test of
the desired watchdog time is recommended.

PDI watchdog (Process Data Watchdog)

If there is no PDI communication with the ESC for longer than the set and activated Process Data Interface
(PDI) watchdog time, this watchdog is triggered.

The PDI is the internal interface of the ESC, e.g. to local processors in the EtherCAT slave. With the PDI
watchdog this communication can be monitored for failure.

The PDI watchdog is therefore a monitoring for correct and timely process data communication with the
ESC, but viewed from the application side.

Calculation

Watchdog time = [1/25 MHz * (Watchdog multiplier + 2)] * SM/PDI watchdog

Example: default setting Multiplier = 2498, SM watchdog = 1000 => 100 ms

The value in “Watchdog multiplier + 2” in the formula above corresponds to the number of 40ns base ticks
representing one watchdog tick.

 CAUTION
Undefined state possible!
The function for switching off the SM watchdog via SM watchdog = 0 is only implemented in terminals from
revision -0016. In previous versions this operating mode should not be used.

 CAUTION
Damage of devices and undefined state possible!
If the SM watchdog is activated and a value of 0 is entered the watchdog switches off completely. This is
the deactivation of the watchdog! Set outputs are NOT set in a safe state if the communication is
interrupted.

4.4 CoE Interface
General description

The CoE interface (CAN application protocol over EtherCAT interface) is used for parameter management of
EtherCAT devices. EtherCAT slaves or the EtherCAT master manage fixed (read only) or variable
parameters which they require for operation, diagnostics or commissioning.

CoE parameters are arranged in a table hierarchy. In principle, the user has access via the fieldbus. The
EtherCAT master (TwinCAT System Manager) can access the local CoE lists of the slaves via EtherCAT in
read or write mode, depending on the attributes.

Different CoE data types are possible, including string (text), integer numbers, Boolean values or larger byte
fields. They can be used to describe a wide range of features. Examples of such parameters include
manufacturer ID, serial number, process data settings, device name, calibration values for analog
measurement or passwords.

The order is specified in two levels via hexadecimal numbering: (main)index, followed by subindex.

The value ranges are

• Index: 0x0000 …0xFFFF (0...65535dec)
• Subindex: 0x00…0xFF (0...255dec)

A parameter localized in this way is normally written as 0x8010:07, with preceding “0x” to identify the
hexadecimal numerical range and a colon between index and subindex.

The relevant ranges for EtherCAT fieldbus users are:

Basics communication

EL6751 45Version: 4.0.0

• 0x1000: This is where fixed identity information for the device is stored, including name, manufacturer,
serial number etc., plus information about the current and available process data configurations.

• 0x8000: This is where the operational and functional parameters for all channels are stored, such as
filter settings or output frequency.

Other important ranges are:

• 0x4000: here are the channel parameters for some EtherCAT devices. Historically, this was the first
parameter area before the 0x8000 area was introduced. EtherCAT devices that were previously
equipped with parameters in 0x4000 and changed to 0x8000 support both ranges for compatibility
reasons and mirror internally.

• 0x6000: Input PDOs (“inputs” from the perspective of the EtherCAT master)
• 0x7000: Output PDOs (“outputs” from the perspective of the EtherCAT master)

Availability
Not every EtherCAT device must have a CoE list. Simple I/O modules without dedicated processor
usually have no variable parameters and therefore no CoE list.

If a device has a CoE list, it is shown in the TwinCAT System Manager as a separate tab with a listing of the
elements:

Fig. 24: “CoE Online” tab

The figure “’CoE Online’ tab” shows the CoE objects available in device “EL2502”, ranging from 0x1000 to
0x1600. The subindices for 0x1018 are expanded.

Basics communication

EL675146 Version: 4.0.0

NOTICE
Changes in the CoE directory (CAN over EtherCAT directory), program access
When using/manipulating the CoE parameters observe the general CoE notes in chapter "CoE interface" of
the EtherCAT system documentation:
• Keep a startup list if components have to be replaced,
• Distinction between online/offline dictionary,

• Existence of current XML description (download from the Beckhoff website),
• "CoE-Reload" for resetting the changes

• Program access during operation via PLC (see TwinCAT 3 | PLC Library: "Tc2_EtherCAT" and Example
program R/W CoE)

Data management and function “NoCoeStorage”

Some parameters, particularly the setting parameters of the slave, are configurable and writeable,

• via the System Manager (Fig. “CoE Online” tab) by clicking.
This is useful for commissioning of the system or slaves. Click on the row of the index to be
parameterized and enter a value in the “SetValue” dialog.

• from the control system or PLC via ADS, e.g. through blocks from the TcEtherCAT.lib library.
This is recommended for modifications while the system is running or if no System Manager or
operating staff are available.

Data management
If slave CoE parameters are modified online, Beckhoff devices store any changes in a fail-safe
manner in the EEPROM, i.e. the modified CoE parameters are still available after a restart.
The situation may be different with other manufacturers.

An EEPROM is subject to a limited lifetime with respect to write operations. From typically 100,000
write operations onwards it can no longer be guaranteed that new (changed) data are reliably saved
or are still readable. This is irrelevant for normal commissioning. However, if CoE parameters are
continuously changed via ADS at machine runtime, it is quite possible for the lifetime limit to be
reached. Support for the NoCoeStorage function, which suppresses the saving of changed CoE
values, depends on the firmware version.
Please refer to the technical data in this documentation as to whether this applies to the respective
device.
• If the function is supported: the function is activated by entering the code word 0x12345678 once

in CoE index 0xF008 and remains active as long as the code word is not changed. After
switching the device on it is then inactive. Changed CoE values are not saved in the EEPROM
and can thus be changed any number of times.

• If the function is not supported: continuous changing of CoE values is not permissible in view of
the lifetime limit.

Startup list
Changes in the local CoE list of the terminal are lost if the terminal is replaced. If a terminal is
replaced with a new Beckhoff terminal, it will have the default settings. It is therefore advisable to
link all changes in the CoE list of an EtherCAT slave with the Startup list of the slave, which is
processed whenever the EtherCAT fieldbus is started. In this way a replacement EtherCAT slave
can automatically be parameterized with the specifications of the user.
If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup
list must be used.

Recommended approach for manual modification of CoE parameters
• Make the required change in the System Manager

(the values are stored locally in the EtherCAT slave).
• If the value is to be stored permanently, enter it in the Startup list.

The order of the Startup entries is usually irrelevant.

https://infosys.beckhoff.com/content/1033/ethercatsystem/2469072907.html
https://www.beckhoff.com/de-de/support/downloadfinder/konfigurationsdateien/
https://infosys.beckhoff.com/content/1033/tcplclib_tc2_ethercat/56994827.html
https://infosys.beckhoff.com/content/1033/ethercatsystem/4358261771.html
https://infosys.beckhoff.com/content/1033/ethercatsystem/4358261771.html

Basics communication

EL6751 47Version: 4.0.0

Fig. 25: Startup list in the TwinCAT System Manager

The Startup list may already contain values that were configured by the System Manager based on the ESI
specifications. Additional application-specific entries can also be created.

Online / offline list

When working with the TwinCAT System Manager, a distinction must be made as to whether the EtherCAT
device is currently "available", i.e. switched on and connected via EtherCAT - i.e. online - or whether a
configuration is created offline without slaves being connected.

In both cases a CoE list as shown in Fig. “CoE online tab” is displayed. The connectivity is shown as offline/
online.

• If the slave is offline:
◦ The offline list from the ESI file is displayed. In this case modifications are not meaningful or

possible.
◦ The configured status is shown under Identity.
◦ No firmware or hardware version is displayed since these are features of the physical device.
◦ Offline Data is shown in red.

Fig. 26: Offline list

Basics communication

EL675148 Version: 4.0.0

• If the slave is online:
◦ The actual current slave list is read. This may take several seconds, depending on the size and

cycle time.
◦ The actual identity is displayed.
◦ The firmware and hardware status of the device is displayed in the CoE.
◦ Online Data is shown in green.

Fig. 27: Online list

Channel-based order

The CoE list is available in EtherCAT devices that usually feature several functionally equivalent channels,
for example, a 4-channel analog input terminal also has four logical channels and therefore four identical
sets of parameter data for the channels. In order to avoid having to list each channel in the documentation,
the placeholder “n” tends to be used for the individual channel numbers.

In the CoE system 16 indices, each with 255 subindices, are generally sufficient for representing all channel
parameters. The channel-based order is therefore arranged in 16dec or 10hex steps. The parameter range
0x8000 exemplifies this:

• Channel 0: parameter range 0x8000:00 ... 0x800F:255
• Channel 1: parameter range 0x8010:00 ... 0x801F:255
• Channel 2: parameter range 0x8020:00 ... 0x802F:255
• ...

This is generally written as 0x80n0.

Detailed information on the CoE interface can be found in the EtherCAT system documentation on the
Beckhoff website.

https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html

Parameterization and commissioning

EL6751 49Version: 4.0.0

5 Parameterization and commissioning

5.1 TwinCAT Development Environment
The Software for automation TwinCAT (The Windows Control and Automation Technology) will be
distinguished into:

• TwinCAT 2: System Manager (Configuration) & PLC Control (Programming)
• TwinCAT 3: Enhancement of TwinCAT 2 (Programming and Configuration takes place via a common

Development Environment)

Details:
• TwinCAT 2:

◦ Connects I/O devices to tasks in a variable-oriented manner
◦ Connects tasks to tasks in a variable-oriented manner
◦ Supports units at the bit level
◦ Supports synchronous or asynchronous relationships
◦ Exchange of consistent data areas and process images
◦ Datalink on NT - Programs by open Microsoft Standards (OLE, OCX, ActiveX, DCOM+, etc.)
◦ Integration of IEC 61131-3-Software-SPS, Software- NC and Software-CNC within Windows NT/

2000/XP/Vista, Windows 7, NT/XP Embedded, CE
◦ Interconnection to all common fieldbusses

◦ More…

Additional features:
• TwinCAT 3 (eXtended Automation):

◦ Visual Studio® integration
◦ Choice of the programming language
◦ Supports object orientated extension of IEC 61131-3
◦ Usage of C/C++ as programming language for real time applications
◦ Connection to MATLAB®/Simulink®
◦ Open interface for expandability
◦ Flexible run-time environment
◦ Active support of multi-core- and 64 bit operating system
◦ Automatic code generation and project creation with the TwinCAT Automation Interface

◦ More…

Within the following sections commissioning of the TwinCAT Development Environment on a PC System for
the control and also the basically functions of unique control elements will be explained.

Please see further information to TwinCAT 2 and TwinCAT 3 at http://infosys.beckhoff.com.

5.1.1 Installation of the TwinCAT real-time driver
In order to assign real-time capability to a standard Ethernet port of an IPC controller, the Beckhoff real-time
driver has to be installed on this port under Windows.

This can be done in several ways.

A: Via the TwinCAT Adapter dialog

In the System Manager call up the TwinCAT overview of the local network interfaces via Options → Show
Real Time Ethernet Compatible Devices.

http://infosys.beckhoff.com
http://infosys.beckhoff.com
http://infosys.beckhoff.com

Parameterization and commissioning

EL675150 Version: 4.0.0

Fig. 28: System Manager “Options” (TwinCAT 2)

This have to be called up by the menu “TwinCAT” within the TwinCAT 3 environment:

Fig. 29: Call up under VS Shell (TwinCAT 3)

B: Via TcRteInstall.exe in the TwinCAT directory

Fig. 30: TcRteInstall in the TwinCAT directory

In both cases, the following dialog appears:

Parameterization and commissioning

EL6751 51Version: 4.0.0

Fig. 31: Overview of network interfaces

Interfaces listed under “Compatible devices” can be assigned a driver via the “Install” button. A driver should
only be installed on compatible devices.

A Windows warning regarding the unsigned driver can be ignored.

Alternatively an EtherCAT-device can be inserted first of all as described in chapter Offline configuration
creation, section “Creating the EtherCAT device” [} 59] in order to view the compatible ethernet ports via its
EtherCAT properties (tab “Adapter”, button “Compatible Devices…”):

Fig. 32: EtherCAT device properties (TwinCAT 2): click on “Compatible Devices…” of tab “Adapter”

TwinCAT 3: the properties of the EtherCAT device can be opened by double click on “Device .. (EtherCAT)”
within the Solution Explorer under “I/O”:

After the installation the driver appears activated in the Windows overview for the network interface
(Windows Start → System Properties → Network)

Parameterization and commissioning

EL675152 Version: 4.0.0

Fig. 33: Windows properties of the network interface

A correct setting of the driver could be:

Fig. 34: Exemplary correct driver setting for the Ethernet port

Other possible settings have to be avoided:

Parameterization and commissioning

EL6751 53Version: 4.0.0

Fig. 35: Incorrect driver settings for the Ethernet port

Parameterization and commissioning

EL675154 Version: 4.0.0

IP address of the port used

IP address/DHCP
In most cases an Ethernet port that is configured as an EtherCAT device will not transport general
IP packets. For this reason and in cases where an EL6601 or similar devices are used it is useful to
specify a fixed IP address for this port via the “Internet Protocol TCP/IP” driver setting and to disable
DHCP. In this way the delay associated with the DHCP client for the Ethernet port assigning itself a
default IP address in the absence of a DHCP server is avoided. A suitable address space is
192.168.x.x, for example.

Fig. 36: TCP/IP setting for the Ethernet port

Parameterization and commissioning

EL6751 55Version: 4.0.0

5.1.2 Notes regarding ESI device description

Installation of the latest ESI device description

The TwinCAT EtherCAT master/System Manager needs the device description files for the devices to be
used in order to generate the configuration in online or offline mode. The device descriptions are contained
in the so-called ESI files (EtherCAT Slave Information) in XML format. These files can be requested from the
respective manufacturer and are made available for download. An *.xml file may contain several device
descriptions.

The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website.

The ESI files should be stored in the TwinCAT installation directory.

Default settings:

• TwinCAT 2: C:\TwinCAT\IO\EtherCAT
• TwinCAT 3: C:\TwinCAT\3.1\Config\Io\EtherCAT

The files are read (once) when a new System Manager window is opened, if they have changed since the
last time the System Manager window was opened.

A TwinCAT installation includes the set of Beckhoff ESI files that was current at the time when the TwinCAT
build was created.

For TwinCAT 2.11/TwinCAT 3 and higher, the ESI directory can be updated from the System Manager, if the
programming PC is connected to the Internet; by

• TwinCAT 2: Option → “Update EtherCAT Device Descriptions”
• TwinCAT 3: TwinCAT → EtherCAT Devices → “Update Device Descriptions (via ETG Website)…”

The TwinCAT ESI Updater is available for this purpose.

ESI
The *.xml files are associated with *.xsd files, which describe the structure of the ESI XML files. To
update the ESI device descriptions, both file types should therefore be updated.

Device differentiation

EtherCAT devices/slaves are distinguished by four properties, which determine the full device identifier. For
example, the device identifier EL2521-0025-1018 consists of:

• family key “EL”
• name “2521”
• type “0025”
• and revision “1018”

Fig. 37: Identifier structure

The order identifier consisting of name + type (here: EL2521-0025) describes the device function. The
revision indicates the technical progress and is managed by Beckhoff. In principle, a device with a higher
revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation.
Each revision has its own ESI description. See further notes [} 11].

https://download.beckhoff.com/download/configuration-files/io/ethercat/xml-device-description/Beckhoff_EtherCAT_XML.zip

Parameterization and commissioning

EL675156 Version: 4.0.0

Online description

If the EtherCAT configuration is created online through scanning of real devices (see section Online setup)
and no ESI descriptions are available for a slave (specified by name and revision) that was found, the
System Manager asks whether the description stored in the device should be used. In any case, the System
Manager needs this information for setting up the cyclic and acyclic communication with the slave correctly.

Fig. 38: OnlineDescription information window (TwinCAT 2)

In TwinCAT 3 a similar window appears, which also offers the Web update:

Fig. 39: Information window OnlineDescription (TwinCAT 3)

If possible, the Yes is to be rejected and the required ESI is to be requested from the device manufacturer.
After installation of the XML/XSD file the configuration process should be repeated.

NOTICE
Changing the “usual” configuration through a scan
ü If a scan discovers a device that is not yet known to TwinCAT, distinction has to be made between two

cases. Taking the example here of the EL2521-0000 in the revision 1019
a) no ESI is present for the EL2521-0000 device at all, either for the revision 1019 or for an older revision.

The ESI must then be requested from the manufacturer (in this case Beckhoff).
b) an ESI is present for the EL2521-0000 device, but only in an older revision, e.g. 1018 or 1017.

In this case an in-house check should first be performed to determine whether the spare parts stock
allows the integration of the increased revision into the configuration at all. A new/higher revision usually
also brings along new features. If these are not to be used, work can continue without reservations with
the previous revision 1018 in the configuration. This is also stated by the Beckhoff compatibility rule.

Refer in particular to the chapter “General notes on the use of Beckhoff EtherCAT IO components” and for
manual configuration to the chapter “Offline configuration creation [} 59]”.

If the OnlineDescription is used regardless, the System Manager reads a copy of the device description from
the EEPROM in the EtherCAT slave. In complex slaves the size of the EEPROM may not be sufficient for the
complete ESI, in which case the ESI would be incomplete in the configurator. Therefore it’s recommended
using an offline ESI file with priority in such a case.

The System Manager creates for online recorded device descriptions a new file
“OnlineDescription0000...xml” in its ESI directory, which contains all ESI descriptions that were read online.

http://infosys.beckhoff.com/content/1033/ethercatsystem/2469088779.html

Parameterization and commissioning

EL6751 57Version: 4.0.0

Fig. 40: File OnlineDescription.xml created by the System Manager

Is a slave desired to be added manually to the configuration at a later stage, online created slaves are
indicated by a prepended symbol “>” in the selection list (see Figure Indication of an online recorded ESI of
EL2521 as an example).

Fig. 41: Indication of an online recorded ESI of EL2521 as an example

If such ESI files are used and the manufacturer's files become available later, the file OnlineDescription.xml
should be deleted as follows:

• close all System Manager windows
• restart TwinCAT in Config mode
• delete “OnlineDescription0000...xml”
• restart TwinCAT System Manager

This file should not be visible after this procedure, if necessary press <F5> to update

OnlineDescription for TwinCAT 3.x
In addition to the file described above “OnlineDescription0000...xml”, a so called EtherCAT cache
with new discovered devices is created by TwinCAT 3.x, e.g. under Windows 7:

(Please note the language settings of the OS!)
You have to delete this file, too.

Faulty ESI file

If an ESI file is faulty and the System Manager is unable to read it, the System Manager brings up an
information window.

Fig. 42: Information window for faulty ESI file (left: TwinCAT 2; right: TwinCAT 3)

Parameterization and commissioning

EL675158 Version: 4.0.0

Reasons may include:

• Structure of the *.xml does not correspond to the associated *.xsd file → check your schematics
• Contents cannot be translated into a device description → contact the file manufacturer

Parameterization and commissioning

EL6751 59Version: 4.0.0

5.1.3 OFFLINE configuration creation

Creating the EtherCAT device

Create an EtherCAT device in an empty System Manager window.

Fig. 43: Append EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

Select type “EtherCAT” for an EtherCAT I/O application with EtherCAT slaves. For the present publisher/
subscriber service in combination with an EL6601/EL6614 terminal select “EtherCAT Automation Protocol
via EL6601”.

Fig. 44: Selecting the EtherCAT connection (TwinCAT 2.11, TwinCAT 3)

Then assign a real Ethernet port to this virtual device in the runtime system.

Fig. 45: Selecting the Ethernet port

This query may appear automatically when the EtherCAT device is created, or the assignment can be set/
modified later in the properties dialog; see Fig. “EtherCAT device properties (TwinCAT 2)”.

Parameterization and commissioning

EL675160 Version: 4.0.0

Fig. 46: EtherCAT device properties (TwinCAT 2)

TwinCAT 3: the properties of the EtherCAT device can be opened by double click on “Device .. (EtherCAT)”
within the Solution Explorer under “I/O”:

Selecting the Ethernet port
Ethernet ports can only be selected for EtherCAT devices for which the TwinCAT real-time driver is
installed. This has to be done separately for each port. Please refer to the respective installation
page [} 49].

Defining EtherCAT slaves

Further devices can be appended by right-clicking on a device in the configuration tree.

Fig. 47: Appending EtherCAT devices (left: TwinCAT 2; right: TwinCAT 3)

The dialog for selecting a new device opens. Only devices for which ESI files are available are displayed.

Only devices are offered for selection that can be appended to the previously selected device. Therefore, the
physical layer available for this port is also displayed (Fig. “Selection dialog for new EtherCAT device”, A). In
the case of cable-based Fast-Ethernet physical layer with PHY transfer, then also only cable-based devices
are available, as shown in Fig. “Selection dialog for new EtherCAT device”. If the preceding device has
several free ports (e.g. EK1122 or EK1100), the required port can be selected on the right-hand side (A).

Overview of physical layer

• “Ethernet”: cable-based 100BASE-TX: couplers, box modules, devices with RJ45/M8/M12 connector
• “E-Bus”: LVDS “terminal bus”, EtherCAT plug-in modules (EJ), EtherCAT terminals (EL/ES), various

modular modules

Parameterization and commissioning

EL6751 61Version: 4.0.0

The search field facilitates finding specific devices (since TwinCAT 2.11 or TwinCAT 3).

Fig. 48: Selection dialog for new EtherCAT device

By default, only the name/device type is used as selection criterion. For selecting a specific revision of the
device, the revision can be displayed as “Extended Information”.

Fig. 49: Display of device revision

In many cases several device revisions were created for historic or functional reasons, e.g. through
technological advancement. For simplification purposes (see Fig. “Selection dialog for new EtherCAT
device”) only the last (i.e. highest) revision and therefore the latest state of production is displayed in the
selection dialog for Beckhoff devices. To show all device revisions available in the system as ESI
descriptions tick the “Show Hidden Devices” check box, see Fig. “Display of previous revisions”.

Parameterization and commissioning

EL675162 Version: 4.0.0

Fig. 50: Display of previous revisions

Device selection based on revision, compatibility
The ESI description also defines the process image, the communication type between master and
slave/device and the device functions, if applicable. The physical device (firmware, if available) has
to support the communication queries/settings of the master. This is backward compatible, i.e.
newer devices (higher revision) should be supported if the EtherCAT master addresses them as an
older revision. The following compatibility rule of thumb is to be assumed for Beckhoff EtherCAT
Terminals/ Boxes/ EJ-modules:
device revision in the system >= device revision in the configuration
This also enables subsequent replacement of devices without changing the configuration (different
specifications are possible for drives).

Example

If an EL2521-0025-1018 is specified in the configuration, an EL2521-0025-1018 or higher (-1019, -1020) can
be used in practice.

Fig. 51: Name/revision of the terminal

If current ESI descriptions are available in the TwinCAT system, the last revision offered in the selection
dialog matches the Beckhoff state of production. It is recommended to use the last device revision when
creating a new configuration, if current Beckhoff devices are used in the real application. Older revisions
should only be used if older devices from stock are to be used in the application.

In this case the process image of the device is shown in the configuration tree and can be parameterized as
follows: linking with the task, CoE/DC settings, plug-in definition, startup settings, ...

Parameterization and commissioning

EL6751 63Version: 4.0.0

Fig. 52: EtherCAT terminal in the TwinCAT tree (left: TwinCAT 2; right: TwinCAT 3)

Parameterization and commissioning

EL675164 Version: 4.0.0

5.1.4 ONLINE configuration creation

Detecting/scanning of the EtherCAT device

The online device search can be used if the TwinCAT system is in CONFIG mode. This can be indicated by
a symbol right below in the information bar:

• on TwinCAT 2 by a blue display “Config Mode” within the System Manager window: .

• on TwinCAT 3 within the user interface of the development environment by a symbol .

TwinCAT can be set into this mode:

• TwinCAT 2: by selection of in the Menubar or by “Actions” → “Set/Reset TwinCAT to Config
Mode…”

• TwinCAT 3: by selection of in the Menubar or by “TwinCAT” → “Restart TwinCAT (Config Mode)”

Online scanning in Config mode
The online search is not available in RUN mode (production operation). Note the differentiation
between TwinCAT programming system and TwinCAT target system.

The TwinCAT 2 icon () or TwinCAT 3 icon () within the Windows-Taskbar always shows the
TwinCAT mode of the local IPC. Compared to that, the System Manager window of TwinCAT 2 or the user
interface of TwinCAT 3 indicates the state of the target system.

Fig. 53: Differentiation local/target system (left: TwinCAT 2; right: TwinCAT 3)

Right-clicking on “I/O Devices” in the configuration tree opens the search dialog.

Fig. 54: Scan Devices (left: TwinCAT 2; right: TwinCAT 3)

This scan mode attempts to find not only EtherCAT devices (or Ethernet ports that are usable as such), but
also NOVRAM, fieldbus cards, SMB etc. However, not all devices can be found automatically.

Fig. 55: Note for automatic device scan (left: TwinCAT 2; right: TwinCAT 3)

Parameterization and commissioning

EL6751 65Version: 4.0.0

Ethernet ports with installed TwinCAT real-time driver are shown as “RT Ethernet” devices. An EtherCAT
frame is sent to these ports for testing purposes. If the scan agent detects from the response that an
EtherCAT slave is connected, the port is immediately shown as an “EtherCAT Device” .

Fig. 56: Detected Ethernet devices

Via respective checkboxes devices can be selected (as illustrated in Fig. “Detected Ethernet devices” e.g.
Device 3 and Device 4 were chosen). After confirmation with “OK” a device scan is suggested for all selected
devices, see Fig.: “Scan query after automatic creation of an EtherCAT device”.

Selecting the Ethernet port
Ethernet ports can only be selected for EtherCAT devices for which the TwinCAT real-time driver is
installed. This has to be done separately for each port. Please refer to the respective installation
page [} 49].

Detecting/Scanning the EtherCAT devices

Online scan functionality
During a scan the master queries the identity information of the EtherCAT slaves from the slave
EEPROM. The name and revision are used for determining the type. The respective devices are
located in the stored ESI data and integrated in the configuration tree in the default state defined
there.

Fig. 57: Example default state

NOTICE
Slave scanning in practice in series machine production
The scanning function should be used with care. It is a practical and fast tool for creating an initial
configuration as a basis for commissioning. In series machine production or reproduction of the plant,
however, the function should no longer be used for the creation of the configuration, but if necessary for
comparison [} 69] with the defined initial configuration.Background: since Beckhoff occasionally increases
the revision version of the delivered products for product maintenance reasons, a configuration can be
created by such a scan which (with an identical machine construction) is identical according to the device
list; however, the respective device revision may differ from the initial configuration.

Example:

Company A builds the prototype of a machine B, which is to be produced in series later on. To do this the
prototype is built, a scan of the IO devices is performed in TwinCAT and the initial configuration “B.tsm” is
created. The EL2521-0025 EtherCAT terminal with the revision 1018 is located somewhere. It is thus built
into the TwinCAT configuration in this way:

Parameterization and commissioning

EL675166 Version: 4.0.0

Fig. 58: Installing EthetCAT terminal with revision -1018

Likewise, during the prototype test phase, the functions and properties of this terminal are tested by the
programmers/commissioning engineers and used if necessary, i.e. addressed from the PLC “B.pro” or the
NC. (the same applies correspondingly to the TwinCAT 3 solution files).

The prototype development is now completed and series production of machine B starts, for which Beckhoff
continues to supply the EL2521-0025-0018. If the commissioning engineers of the series machine production
department always carry out a scan, a B configuration with the identical contents results again for each
machine. Likewise, A might create spare parts stores worldwide for the coming series-produced machines
with EL2521-0025-1018 terminals.

After some time Beckhoff extends the EL2521-0025 by a new feature C. Therefore the FW is changed,
outwardly recognizable by a higher FW version and a new revision -1019. Nevertheless the new device
naturally supports functions and interfaces of the predecessor version(s); an adaptation of “B.tsm” or even
“B.pro” is therefore unnecessary. The series-produced machines can continue to be built with “B.tsm” and
“B.pro”; it makes sense to perform a comparative scan [} 69] against the initial configuration “B.tsm” in order
to check the built machine.

However, if the series machine production department now doesn’t use “B.tsm”, but instead carries out a
scan to create the productive configuration, the revision -1019 is automatically detected and built into the
configuration:

Fig. 59: Detection of EtherCAT terminal with revision -1019

This is usually not noticed by the commissioning engineers. TwinCAT cannot signal anything either, since a
new configuration is essentially created. According to the compatibility rule, however, this means that no
EL2521-0025-1018 should be built into this machine as a spare part (even if this nevertheless works in the
vast majority of cases).

In addition, it could be the case that, due to the development accompanying production in company A, the
new feature C of the EL2521-0025-1019 (for example, an improved analog filter or an additional process
data for the diagnosis) is discovered and used without in-house consultation. The previous stock of spare
part devices are then no longer to be used for the new configuration “B2.tsm” created in this way. Þ if series
machine production is established, the scan should only be performed for informative purposes for
comparison with a defined initial configuration. Changes are to be made with care!

If an EtherCAT device was created in the configuration (manually or through a scan), the I/O field can be
scanned for devices/slaves.

Fig. 60: Scan query after automatic creation of an EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

Parameterization and commissioning

EL6751 67Version: 4.0.0

Fig. 61: Manual scanning for devices on a specified EtherCAT device (left: TwinCAT 2; right: TwinCAT 3)

In the System Manager (TwinCAT 2) or the User Interface (TwinCAT 3) the scan process can be monitored
via the progress bar at the bottom in the status bar.

Fig. 62: Scan progressexemplary by TwinCAT 2

The configuration is established and can then be switched to online state (OPERATIONAL).

Fig. 63: Config/FreeRun query (left: TwinCAT 2; right: TwinCAT 3)

In Config/FreeRun mode the System Manager display alternates between blue and red, and the EtherCAT
device continues to operate with the idling cycle time of 4 ms (default setting), even without active task (NC,
PLC).

Fig. 64: Displaying of “Free Run” and “Config Mode” toggling right below in the status bar

Fig. 65: TwinCAT can also be switched to this state by using a button (left: TwinCAT 2; right: TwinCAT 3)

The EtherCAT system should then be in a functional cyclic state, as shown in Fig. Online display example.

Parameterization and commissioning

EL675168 Version: 4.0.0

Fig. 66: Online display example

Please note:

• all slaves should be in OP state
• the EtherCAT master should be in “Actual State” OP
• “frames/sec” should match the cycle time taking into account the sent number of frames
• no excessive “LostFrames” or CRC errors should occur

The configuration is now complete. It can be modified as described under manual procedure [} 59].

Troubleshooting

Various effects may occur during scanning.

• An unknown device is detected, i.e. an EtherCAT slave for which no ESI XML description is available.
In this case the System Manager offers to read any ESI that may be stored in the device. This case is
described in the chapter “Notes regarding ESI device description”.

• Device are not detected properly
Possible reasons include:

◦ faulty data links, resulting in data loss during the scan
◦ slave has invalid device description

The connections and devices should be checked in a targeted manner, e.g. via the emergency scan.
Then re-run the scan.

Fig. 67: Faulty identification

In the System Manager such devices may be set up as EK0000 or unknown devices. Operation is not
possible or meaningful.

Parameterization and commissioning

EL6751 69Version: 4.0.0

Scan over existing Configuration

NOTICE
Change of the configuration after comparison
With this scan (TwinCAT 2.11 or 3.1) only the device properties vendor (manufacturer), device name and
revision are compared at present! A “ChangeTo” or “Copy” should only be carried out with care, taking into
consideration the Beckhoff IO compatibility rule (see above). The device configuration is then replaced by
the revision found; this can affect the supported process data and functions.

If a scan is initiated for an existing configuration, the actual I/O environment may match the configuration
exactly or it may differ. This enables the configuration to be compared.

Fig. 68: Identical configuration (left: TwinCAT 2; right: TwinCAT 3)

If differences are detected, they are shown in the correction dialog, so that the user can modify the
configuration as required.

Fig. 69: Correction dialog

It is advisable to tick the “Extended Information” check box to reveal differences in the revision.

Parameterization and commissioning

EL675170 Version: 4.0.0

Color Explanation
green This EtherCAT slave matches the entry on the other side. Both type and revision match.
blue This EtherCAT slave is present on the other side, but in a different revision. This other revision can

have other default values for the process data as well as other/additional functions.
If the found revision is higher than the configured revision, the slave may be used provided
compatibility issues are taken into account.
If the found revision is lower than the configured revision, it is likely that the slave cannot be used.
The found device may not support all functions that the master expects based on the higher
revision number.

light
blue

This EtherCAT slave is ignored (“Ignore” button)

red • This EtherCAT slave is not present on the other side.
• It is present, but in a different revision, which also differs in its properties from the one specified.

The compatibility principle then also applies here: if the found revision is higher than the
configured revision, use is possible provided compatibility issues are taken into account, since
the successor devices should support the functions of the predecessor devices.
If the found revision is lower than the configured revision, it is likely that the slave cannot be
used. The found device may not support all functions that the master expects based on the
higher revision number.

Device selection based on revision, compatibility
The ESI description also defines the process image, the communication type between master and
slave/device and the device functions, if applicable. The physical device (firmware, if available) has
to support the communication queries/settings of the master. This is backward compatible, i.e.
newer devices (higher revision) should be supported if the EtherCAT master addresses them as an
older revision. The following compatibility rule of thumb is to be assumed for Beckhoff EtherCAT
Terminals/ Boxes/ EJ-modules:
device revision in the system >= device revision in the configuration
This also enables subsequent replacement of devices without changing the configuration (different
specifications are possible for drives).

Example

If an EL2521-0025-1018 is specified in the configuration, an EL2521-0025-1018 or higher (-1019, -1020) can
be used in practice.

Fig. 70: Name/revision of the terminal

If current ESI descriptions are available in the TwinCAT system, the last revision offered in the selection
dialog matches the Beckhoff state of production. It is recommended to use the last device revision when
creating a new configuration, if current Beckhoff devices are used in the real application. Older revisions
should only be used if older devices from stock are to be used in the application.

In this case the process image of the device is shown in the configuration tree and can be parameterized as
follows: linking with the task, CoE/DC settings, plug-in definition, startup settings, ...

Parameterization and commissioning

EL6751 71Version: 4.0.0

Fig. 71: Correction dialog with modifications

Once all modifications have been saved or accepted, click “OK” to transfer them to the real *.tsm
configuration.

Change to Compatible Type

TwinCAT offers a function Change to Compatible Type… for the exchange of a device whilst retaining the
links in the task.

Fig. 72: Dialog “Change to Compatible Type…” (left: TwinCAT 2; right: TwinCAT 3)

The following elements in the ESI of an EtherCAT device are compared by TwinCAT and assumed to be the
same in order to decide whether a device is indicated as "compatible":

- Physics (e.g. RJ45, Ebus...)

- FMMU (additional ones are allowed)

- SyncManager (SM, additional ones are allowed)

- EoE (attributes MAC, IP)

- CoE (attributes SdoInfo, PdoAssign, PdoConfig, PdoUpload, CompleteAccess)

- FoE

- PDO (process data: Sequence, SyncUnit SU, SyncManager SM, EntryCount, Ent-ry.Datatype)

This function is preferably to be used on AX5000 devices.

Change to Alternative Type

The TwinCAT System Manager offers a function for the exchange of a device: Change to Alternative Type

Parameterization and commissioning

EL675172 Version: 4.0.0

Fig. 73: TwinCAT 2 Dialog Change to Alternative Type

If called, the System Manager searches in the procured device ESI (in this example: EL1202-0000) for
details of compatible devices contained there. The configuration is changed and the ESI-EEPROM is
overwritten at the same time – therefore this process is possible only in the online state (ConfigMode).

5.1.5 EtherCAT slave process data settings
The process data transferred by an EtherCAT slave during each cycle (Process Data Objects, PDOs) are
user data which the application expects to be updated cyclically or which are sent to the slave. To this end
the EtherCAT master (Beckhoff TwinCAT) parameterizes each EtherCAT slave during the start-up phase to
define which process data (size in bits/bytes, source location, transmission type) it wants to transfer to or
from this slave. Incorrect configuration can prevent successful start-up of the slave.

For Beckhoff EtherCAT EL/ES slaves the following applies in general:

• The input/output process data supported by the device are defined by the manufacturer in the ESI/XML
description. The TwinCAT EtherCAT Master uses the ESI description to configure the slave correctly.

• The process data can be modified in the system manager. See the device documentation.
Examples of modifications include: mask out a channel, displaying additional cyclic information, 16-bit
display instead of 8-bit data size, etc.

• In so-called “intelligent” EtherCAT devices the process data information is also stored in the CoE
directory. Any changes in the CoE directory that lead to different PDO settings prevent successful
startup of the slave. It is not advisable to deviate from the designated process data, because the
device firmware (if available) is adapted to these PDO combinations.

If the device documentation allows modification of process data, proceed as follows (see Figure “Configuring
the process data”).

• A: select the device to configure
• B: in the “Process Data” tab select Input or Output under SyncManager (C)
• D: the PDOs can be selected or deselected
• H: the new process data are visible as linkable variables in the system manager

The new process data are active once the configuration has been activated and TwinCAT has been
restarted (or the EtherCAT master has been restarted)

• E: if a slave supports this, Input and Output PDO can be modified simultaneously by selecting a so-
called PDO record (“predefined PDO settings”).

Parameterization and commissioning

EL6751 73Version: 4.0.0

Fig. 74: Configuring the process data

Manual modification of the process data
According to the ESI description, a PDO can be identified as “fixed” with the flag “F” in the PDO
overview (Fig. “Configuring the process data”, J). The configuration of such PDOs cannot be
changed, even if TwinCAT offers the associated dialog (“Edit”). In particular, CoE content cannot be
displayed as cyclic process data.This generally also applies in cases where a device supports
download of the PDO configuration, “G”.In case of incorrect configuration the EtherCAT slave
usually refuses to start and change to OP state. The System Manager displays an “invalid SM cfg”
logger message:This error message (“invalid SM IN cfg” or “invalid SM OUT cfg”) also indicates the
reason for the failed start.

Parameterization and commissioning

EL675174 Version: 4.0.0

5.2 General Commissioning Instructions for an EtherCAT
Slave

This summary briefly deals with a number of aspects of EtherCAT Slave operation under TwinCAT. More
detailed information on this may be found in the corresponding sections of, for instance, the EtherCAT
System Documentation.

Diagnosis in real time: WorkingCounter, EtherCAT State and Status

Generally speaking an EtherCAT Slave provides a variety of diagnostic information that can be used by the
controlling task.

This diagnostic information relates to differing levels of communication. It therefore has a variety of sources,
and is also updated at various times.

Any application that relies on I/O data from a fieldbus being correct and up to date must make diagnostic
access to the corresponding underlying layers. EtherCAT and the TwinCAT System Manager offer
comprehensive diagnostic elements of this kind. Those diagnostic elements that are helpful to the controlling
task for diagnosis that is accurate for the current cycle when in operation (not during commissioning) are
discussed below.

Fig. 75: Selection of the diagnostic information of an EtherCAT Slave

In general, an EtherCAT Slave offers

• communication diagnosis typical for a slave (diagnosis of successful participation in the exchange of
process data, and correct operating mode)
This diagnosis is the same for all slaves.

as well as
• function diagnosis typical for a channel (device-dependent)

See the corresponding device documentation

The colors in Fig. Selection of the diagnostic information of an EtherCAT Slave also correspond to the
variable colors in the System Manager, see Fig. Basic EtherCAT Slave Diagnosis in the PLC.

https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html
https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html

Parameterization and commissioning

EL6751 75Version: 4.0.0

Colour Meaning
yellow Input variables from the Slave to the EtherCAT Master, updated in every cycle
red Output variables from the Slave to the EtherCAT Master, updated in every cycle
green Information variables for the EtherCAT Master that are updated acyclically. This means that

it is possible that in any particular cycle they do not represent the latest possible status. It is
therefore useful to read such variables through ADS.

Fig. Basic EtherCAT Slave Diagnosis in the PLC shows an example of an implementation of basic EtherCAT
Slave Diagnosis. A Beckhoff EL3102 (2-channel analogue input terminal) is used here, as it offers both the
communication diagnosis typical of a slave and the functional diagnosis that is specific to a channel.
Structures are created as input variables in the PLC, each corresponding to the process image.

Fig. 76: Basic EtherCAT Slave Diagnosis in the PLC

The following aspects are covered here:

Parameterization and commissioning

EL675176 Version: 4.0.0

Code Function Implementation Application/evaluation
A The EtherCAT Master's diagnostic

information
updated cyclically (yellow) or provided
acyclically (green).

At least the DevState is to be evaluated for
the most recent cycle in the PLC.
The EtherCAT Master's diagnostic
information offers many more possibilities
than are treated in the EtherCAT System
Documentation. A few keywords:

• CoE in the Master for communication
with/through the Slaves

• Functions from TcEtherCAT.lib

• Perform an OnlineScan
B In the example chosen (EL3102) the

EL3102 comprises two analogue input
channels that transmit a single function
status for the most recent cycle.

Status
• the bit significations may be

found in the device
documentation

• other devices may supply
more information, or none that
is typical of a slave

In order for the higher-level PLC task (or
corresponding control applications) to be
able to rely on correct data, the function
status must be evaluated there. Such
information is therefore provided with the
process data for the most recent cycle.

C For every EtherCAT Slave that has cyclic
process data, the Master displays, using
what is known as a WorkingCounter,
whether the slave is participating
successfully and without error in the cyclic
exchange of process data. This important,
elementary information is therefore
provided for the most recent cycle in the
System Manager

1. at the EtherCAT Slave, and, with
identical contents

2. as a collective variable at the
EtherCAT Master (see Point A)

for linking.

WcState (Working Counter)
0: valid real-time communication in
the last cycle
1: invalid real-time communication
This may possibly have effects on
the process data of other Slaves
that are located in the same
SyncUnit

In order for the higher-level PLC task (or
corresponding control applications) to be
able to rely on correct data, the
communication status of the EtherCAT Slave
must be evaluated there. Such information is
therefore provided with the process data for
the most recent cycle.

D Diagnostic information of the EtherCAT
Master which, while it is represented at the
slave for linking, is actually determined by
the Master for the Slave concerned and
represented there. This information cannot
be characterized as real-time, because it

• is only rarely/never changed, except
when the system starts up

• is itself determined acyclically (e.g.
EtherCAT Status)

State
current Status (INIT..OP) of the
Slave. The Slave must be in OP
(=8) when operating normally.
AdsAddr

The ADS address is useful for
communicating from the PLC/task
via ADS with the EtherCAT Slave,
e.g. for reading/writing to the CoE.
The AMS-NetID of a slave
corresponds to the AMS-NetID of
the EtherCAT Master;
communication with the individual
Slave is possible via the port (=
EtherCAT address).

Information variables for the EtherCAT
Master that are updated acyclically. This
means that it is possible that in any particular
cycle they do not represent the latest
possible status. It is therefore possible to
read such variables through ADS.

NOTICE
Diagnostic information
It is strongly recommended that the diagnostic information made available is evaluated so that the
application can react accordingly.

CoE Parameter Directory

The CoE parameter directory (CanOpen-over-EtherCAT) is used to manage the set values for the slave
concerned. Changes may, in some circumstances, have to be made here when commissioning a relatively
complex EtherCAT Slave. It can be accessed through the TwinCAT System Manager, see Fig. EL3102, CoE
directory:

Parameterization and commissioning

EL6751 77Version: 4.0.0

Fig. 77: EL3102, CoE directory

EtherCAT System Documentation
The comprehensive description in the EtherCAT System Documentation (EtherCAT Basics --> CoE
Interface) must be observed!

A few brief extracts:

• Whether changes in the online directory are saved locally in the slave depends on the device. EL
terminals (except the EL66xx) are able to save in this way.

• The user must manage the changes to the StartUp list.

Commissioning aid in the TwinCAT System Manager

Commissioning interfaces are being introduced as part of an ongoing process for EL/EP EtherCAT devices.
These are available in TwinCAT System Managers from TwinCAT 2.11R2 and above. They are integrated
into the System Manager through appropriately extended ESI configuration files.

Fig. 78: Example of commissioning aid for a EL3204

https://www.beckhoff.com/en-en/support/download-finder/search-result/?download_group=37140937

Parameterization and commissioning

EL675178 Version: 4.0.0

This commissioning process simultaneously manages

• CoE Parameter Directory
• DC/FreeRun mode
• the available process data records (PDO)

Although the “Process Data”, “DC”, “Startup” and “CoE-Online” that used to be necessary for this are still
displayed, it is recommended that, if the commissioning aid is used, the automatically generated settings are
not changed by it.

The commissioning tool does not cover every possible application of an EL/EP device. If the available setting
options are not adequate, the user can make the DC, PDO and CoE settings manually, as in the past.

EtherCAT State: automatic default behaviour of the TwinCAT System Manager and manual operation

After the operating power is switched on, an EtherCAT Slave must go through the following statuses

• INIT
• PREOP
• SAFEOP
• OP

to ensure sound operation. The EtherCAT Master directs these statuses in accordance with the initialization
routines that are defined for commissioning the device by the ES/XML and user settings (Distributed Clocks
(DC), PDO, CoE). See also the section on "Principles of Communication, EtherCAT State Machine [} 41]" in
this connection. Depending how much configuration has to be done, and on the overall communication,
booting can take up to a few seconds.

The EtherCAT Master itself must go through these routines when starting, until it has reached at least the
OP target state.

The target state wanted by the user, and which is brought about automatically at start-up by TwinCAT, can
be set in the System Manager. As soon as TwinCAT reaches the status RUN, the TwinCAT EtherCAT
Master will approach the target states.

Standard setting

The advanced settings of the EtherCAT Master are set as standard:

• EtherCAT Master: OP
• Slaves: OP

This setting applies equally to all Slaves.

Fig. 79: Default behaviour of the System Manager

Parameterization and commissioning

EL6751 79Version: 4.0.0

In addition, the target state of any particular Slave can be set in the “Advanced Settings” dialogue; the
standard setting is again OP.

Fig. 80: Default target state in the Slave

Manual Control

There are particular reasons why it may be appropriate to control the states from the application/task/PLC.
For instance:

• for diagnostic reasons
• to induce a controlled restart of axes
• because a change in the times involved in starting is desirable

In that case it is appropriate in the PLC application to use the PLC function blocks from the TcEtherCAT.lib,
which is available as standard, and to work through the states in a controlled manner using, for instance,
FB_EcSetMasterState.

It is then useful to put the settings in the EtherCAT Master to INIT for master and slave.

Parameterization and commissioning

EL675180 Version: 4.0.0

Fig. 81: PLC function blocks

Note regarding E-Bus current

EL/ES terminals are placed on the DIN rail at a coupler on the terminal strand. A Bus Coupler can supply the
EL terminals added to it with the E-bus system voltage of 5 V; a coupler is thereby loadable up to 2 A as a
rule. Information on how much current each EL terminal requires from the E-bus supply is available online
and in the catalogue. If the added terminals require more current than the coupler can supply, then power
feed terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand.

The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager as a
column value. A shortfall is marked by a negative total amount and an exclamation mark; a power feed
terminal is to be placed before such a position.

Fig. 82: Illegally exceeding the E-Bus current

Parameterization and commissioning

EL6751 81Version: 4.0.0

From TwinCAT 2.11 and above, a warning message “E-Bus Power of Terminal...” is output in the logger
window when such a configuration is activated:

Fig. 83: Warning message for exceeding E-Bus current

NOTICE
Caution! Malfunction possible!
The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block!

Parameterization and commissioning

EL675182 Version: 4.0.0

5.3 TwinCAT (2.1x) System Manager

5.3.1 Configuration by means of the TwinCAT System Manager
The TwinCAT System Manager tool is used for the configuration of the EL6751 CANopen master/slave
terminal. The System Manager provides a representation of the number of programs of the TwinCat PLC
systems, the configuration of the axis control and of the connected I/O channels as a structure, and
organizes the mapping of the data traffic.

Fig. 84: TwinCAT System Manager logo

For applications without TwinCAT PLC or NC, the TwinCAT System Manager Tool configures the
programming interfaces for a wide range of application programs:

• ActiveX control (ADS-OCX) for e.g. Visual Basic, Visual C++, Delphi, etc.
• DLL interface (ADS-DLL) for e.g. Visual C++ projects
• Script interface (ADS script DLL) for e.g. VBScript, JScript, etc.

System Manager – Features
• Bit-wise association of server process images and I/O channels
• Standard data formats such as arrays and structures
• User defined data formats
• Continuous variable linking
• Drag and Drop
• Import and export at all levels

The procedure, and the configuration facilities in the System Manager are described below.
• EL6751 - CANopen master terminal [} 83]

• CAN interface [} 86]

• EL6751-0010 - CANopen slave terminal [} 88]

Parameterization and commissioning

EL6751 83Version: 4.0.0

EL6751 - CANopen master terminal

Context menu

Fig. 85: Add Box... <Insert>

Adds CANopen slaves (boxes). The following boxes are currently supported (more detailed description of the
boxes is given further down):

Supported boxes Description
BK5110 Economy Bus Coupler
BK5120 Economy + Bus Coupler
LC5100 Low-Cost Bus Coupler
BK5150 Compact Bus Coupler
BK5151 Compact Bus Coupler with D-Sub connection
BC5150 Compact Bus Terminal Controller with 48 kbyte program memory
BX5100 BX Bus Terminal Controller with 256 kbyte program memory
IPxxxx-B510 Fieldbus compact box: CANopen in/output module, protection class IP67
CANopen Node [} 94] General CANopen device or general CAN device (access via CAN layer 2)

Delete Device...

Removes the EL6751 and all subordinated elements from the I/O configuration.

Online Reset

Initiates an online reset on the CANopen bus.

Parameterization and commissioning

EL675184 Version: 4.0.0

"EL6751" tab

Fig. 86: EL6751 tab

EtherCAT

Terminal ID in the terminal network.

Master Node ID

Node address of the EL6751. Value range: 1...127. Determines the identifier of the master heartbeat
telegram. Ensure that it is not the same as a slave node address.

Baud rate

Set the baud rate [} 114] here. Automatically tests whether the connected slave also supports this baud rate.

Cycle time

Displays the cycle time of the corresponding highest priority task. The display is updated when the mapping
is generated.

Sync-Cycle Multiplier

CANopen SYNC Cycle Time = (Task) Cycle Time x Sync-Cycle Multiplier. Event driven PDO
communications and cyclical synchronized PDO communication are frequently combined when used in
conjunction with CANopen. In order to be able to respond rapidly to an event, the TwinCAT task cycle time
has to be less than the CANopen SYNC cycle time. If the sync cycle multiplier is set to values > 1, the
TwinCAT task is called repeatedly before the SYNC telegram is sent again.

Sync-Cycle Time

The cycle time of the CANopen snyc telegram is displayed here. It results from the cycle time of the highest-
priority task, whose process data are linked with the card, and from the sync cycle multiplier.

Parameterization and commissioning

EL6751 85Version: 4.0.0

Sync-Tx-PDO Delay

Directly after the SYNC telegram, the synchronized slaves send their input data/actual values. The EL6751
can delay the transmission of the output data or setpoint values (TxPDOs from the point of view of the
terminal) in order to minimize the telegram burst directly after the SYNC. This delay is set in percent of the
SYNC cycle time with the parameter Sync-Tx-PDO -Delay.

Sample:

Fig. 87: Diagram: Sync-Tx-PDO-Delay sample

Task Cycle Time = 2000µs, Sync Cycle Multiplier = 5, Sync Tx-PDO Delay =40. Event-controlled PDOs can
be processed by the PLC task every 2 ms; the CANopen sync cycle is 10 ms; the EL6751 transmits its
synchronous PDOs 4 ms (= 40% of 10 ms) after the SYNC.

Input Shift Time [EL6751 only]

Specifies the fraction of the EtherCAT cycle (in %) after which the inputs in the EtherCAT slave controller are
updated. The later this is the case, the shorter the dead time from receipt of a TxPDO until the time when the
associated input data of the task are available. The minimum time to be maintained between the start of the
input update and the next EtherCAT cycle is the CalcAndCopy time (0x1C33:06), which depends on the
number of configured CAN slaves and can be measured in OPERATIONAL state (set entry 0x1C32:08 to 1,
then read entry 0x1C33:06).

Search...

This function searches for all existing channels of the EL6751 and the desired one can be selected.

Hardware Configuration... [FC510x only]

In which the address is set in the lower memory area (below 1 MB) of the PC.

Upload Configuration

This function scans the CANopen network and all devices found are added to the EL6751 (no box may be
appended). In the case of Beckhoff boxes, reads the configuration precisely. In the case of external devices,
the PDO configuration and the identity object are read and evaluated. This function is possible only in Config
mode.

Verify Configuration

Allows a comparison of the expected (entered) network configuration with the devices actually found in the
network. The data from the CANopen Identify Object are read and compared. In the case of Beckhoff boxes
the connected Bus Terminals or extension modules are read and compared (under preparation). This
function is possible only in Config mode.

Parameterization and commissioning

EL675186 Version: 4.0.0

Firmware

Shows the current firmware version of the EL6751.

Firmware Update... [FC510x only]

The firmware update is carried out via the associated hardware.

“ADS” tab

The EL6751 is an ADS device with its own net ID, which can be changed here. All ADS services
(diagnostics, acyclical communication) associated with the EL6751 device must address the card via this
NetID.

”Box States" tab

Fig. 88: ”Box States" tab

Displays an overview of all current box statuses.

"(Online) DPRAM" tab

Refer to "Online display of DPRAM" in the System Manager documentation

CAN interface

Insert the "CAN interface" box directly behind the EL6151 device (see fig. Selection dialog "Inserting a box")

Fig. 89: Selection dialog "Inserting a box"

Parameterization and commissioning

EL6751 87Version: 4.0.0

After the box has been inserted, the following dialog appears for the configuration of the CAN interface:

Fig. 90: Can Queue Sizes setting

Tx queue and Rx queue define the number of messages that are exchanged between the task and the
CANopen master in a task cycle. If the message queues are to transmit 29-bit identifiers in addition, activate
the checkbox "29 Bit Identifier supported".

The process image of the CAN interface then looks like this:

Fig. 91: CAN interface process image

Message structure with 29-bit support
• Length (0..8)

◦ CobId
o Bit 0-28: 29 Bit-Identifier
o Bit 30: RTR
o Bit 31: 0: normal Message (11 Bit Identifier), 1: extended Message (29 Bit-Identifier)

Parameterization and commissioning

EL675188 Version: 4.0.0

◦ Data[8]

Message structure without 29-bit support
• CobId

o Bit 0-3: Length (0..8)
o Bit 4: RTR
o Bit 5-15: 11 Bit-Identifier

• Data[8]

The "CAN Rx Filter" tab of the CAN interface box in the TwinCAT tree is used for the setting of the filter for
the Rx messages (default: all messages are received).
After clicking the "Append..." button, the following dialog appears:

Fig. 92: Dialog „Add CAN Filter“

An "Enable Filter" defines an area or a mask of COB-ID that is received; a "Disable Filter" defines an area or
a mask of COB-ID that is not received.

Sample code: Sending messages from the PLC
if Outputs.TxCounter = Inputs.TxCounter then
 for i=0 to NumberOfMessagesToSend do
 Outputs.TxMessage[i] = MessageToSend[i];
 End_for
 Outputs.NoOfTxMessages = NumberOfMessagesToSend;
 Outputs.TxCounter := Outputs.TxCounter + 1;
end_if

Sample code: Receiving messages from the PLC
if Outputs.RxCounter <> Inputs.RxCounter then
 for I := 0 to (Inputs.NoOfRxMessages-1) do
 MessageReceived[i] := Inputs.RxMessage [i];
 End_for
 Outputs.RxCounter := Outputs.RxCounter+1;
end_if

EL6751-0010 - CANopen slave terminal

In the system configuration tree structure right-click on I/O Devices and "Append Device" to open the
selection list of supported fieldbus cards:

Parameterization and commissioning

EL6751 89Version: 4.0.0

Fig. 93: EL6751-0010: Dialog "Appending an I/O device"

Select EL6751-0010 CANopenSlave. TwinCAT searches for the terminal and displays the memory
addresses and slots it finds. Select the required address and confirm.

I/O Device EL6751-0010 CANopen Slave

Selecting the inserted I/O device in the tree structure opens a dialog with different configuration options:

"EL6751-0010" tab

Fig. 94: "EL6751-0010" tab

Parameterization and commissioning

EL675190 Version: 4.0.0

EtherCAT

Terminal ID in the terminal network.

Baud rate

Set the baud rate [} 114] here.

Cycle Time

Displays the cycle time of the corresponding highest priority task. The display is updated when the mapping
is generated. The network variables are updated with the cycle of this task.

Search...

Searches for all available EL6751-0010 channels, from which the required channel can be selected. In the
case of an FC5102 both channels A and B appear. These behave in logical terms like two FC5101 cards.

Firmware

Displays the current EL6751-0010 firmware version.

Firmware Update... [FC510x only]

The firmware update for the EL6751-0010 is carried out via the associated EL6751-0010 terminal.

“ADS” tab

The EL6751-0010 is an ADS device with its own net ID, which can be changed here. All ADS services
(diagnostics, acyclic communication) associated with the EL6751-0010 device must address the card via this
NetID. Additional ADS Net IDs can be entered for addressing subordinate ADS devices (e.g. an additional
fieldbus card in the same PC) via the card.

"(Online) DPRAM" tab

Read access to the DPRAM of the card is provided for diagnostic purposes.

EL6751-0010 Slave box

An "EL6781-0010 (CANopen Slave)" box is created automatically. Further parameters have to be set:

CAN Node tab:

Fig. 95: EL6751-0010 TwinCAT tree

Parameterization and commissioning

EL6751 91Version: 4.0.0

Fig. 96: "CAN node" tab

Node ID:

Set the EL6751-0010 node address.

The profile number and the Add. Information form the DeviceType that can be read via object 0x1000.

Configuring network variables

PLC variables communicated by the EL6751-0010 device are referred to as network variables. These
variables must be created and added to the associated PDOs. To this end right-click on the PDO and select
"Inserting variables". The following dialog box opens:

Fig. 97: EL6751-0010 TwinCAT tree, outputs

Parameterization and commissioning

EL675192 Version: 4.0.0

Fig. 98: Dialog "Inserting variables"

If several variables of the same type are added at the same time ("multiple"), the start address for the data is
calculated automatically within the PDO. If individual variables are added the start address must be specified
explicitly.

The network variables added in this way can then be linked in the familiar way (see System Manager
documentation in the TwinCAT Information System) with the variables for the different tasks.

5.3.2 BECKHOFF CANopen Bus Coupler
The BK51xx Bus Coupler and the IPxxx-B510 Fieldbus Box are installed in the CANopen bus. The specific
properties which distinguish them from other Bus Couplers and/or fieldbus box modules are then described
below.

Types Description
BK5110 Economy Bus Coupler
BK5120 Economy + Bus Coupler
LC5100 Low-Cost Bus Coupler
BK5150 Compact Bus Coupler
BK5151 Compact Bus Coupler with D-Sub connection
BC5150 Compact Bus Terminal Controller with 48 kbyte program memory
BX5100 BX Bus Terminal Controller with 256 kbyte program memory
IPxxxx-B510 Fieldbus compact box: CANopen in/output module, protection class IP67

Parameterization and commissioning

EL6751 93Version: 4.0.0

"BK51x0" tab

Fig. 99: "BK51x0" tab

Node Id
Sets the node ID of the CAN bus device (between 1 and 63 (BK51x0) and/or 1 and 99 (IPxxxx-B510)). This
value must comply with the value set at the Bus Coupler and/or at the compact box.

Guard time
Cycle time for the node monitoring (node guarding).

Lifetime factor
Guard time multiplied produces the watchdog time for the monitoring of the master by the coupler (life
guarding). Life guarding is deactivated if the lifetime factor is set to zero.

Inhibit Time
Displays the minimum send interval for PDOs (telegrams) with analog and special signals. If more than
digital 64 signals are present, these are also provided with this Inhibit Time [} 107].

Event Time
Event timer for transmit PDOs. Expiry of this timer is treated as an additional event for the corresponding
PDO, so that the PDO will then be transmitted. If the application event occurs during a timer period, it will
also be transmitted, and the timer is reset.

K-Bus update
Calculates the anticipated duration of a complete update of the terminal bus (according to type and number
of connected terminals).

Use Heartbeat
Heartbeat is used for monitoring of the node. If deactivated, the guarding is used for monitoring.

Trans. type
Gives the Transmission Type [} 107] for digital / analog input telegrams. 254 + 255 corresponds to the event-
driven transfer, 1 ... 240 are synchronous transfer types. For further details see also BK51X0 manual.

Firmware Update
Enables the updating of the coupler firmware via the serial interface (requires KS2000 software package
interface cable).

Parameterization and commissioning

EL675194 Version: 4.0.0

"SDOs" tab

Fig. 100: "SDOs" tab

SDO inputs sent to the node at StartUp are displayed/managed on this page. Inputs with an object index in
straight brackets are automatically created on the basis of the updated terminal configuration. Other inputs
can be managed using ”Add", ”Insert", ”Delete" and ”Edit".

"RxPDOs" tab

Displays the RxPDOs used for the node.

"TxPDOs" tab

Displays the TxPDOs used for the node.

“ADS” tab

The node (Bus Coupler) is assigned an ADS port to enable writing and reading of SDO objects at runtime
(e.g. from the PLC). It can be changed if required. The ADS IndexGroup contains the CANopen object index
and the ADS IndexOffset contains the CANopen Sub-Index. See chapter SDO communication [} 119] for
details of SDO communication via ADS.

“Diag” tab

Diagnostic information is displayed here. The window contents are not cyclically refreshed; select the
"Refresh" button if necessary. The diagnostic information displayed can also be queried by ADS [} 175].

5.3.3 CANopen devices
CANopen devices which are not recognized by the TwinCAT System Manager can be incorporated into the
network by selecting the box ”CANopen Node”. The CAN(open) messages (PDOs) can be configured
directly for these devices. This will guarantee the optimum flexibility of this general CANopen interface.

When using the FC510x / EL6751, this box also enables you to receive and send any CAN identifier - this
enables communication with any CAN node. The only condition is the support of at least one of the baud
rates [} 125] supported by the FC510x / EL6751.

Parameterization and commissioning

EL6751 95Version: 4.0.0

"CAN Node" tab

Fig. 101: "CAN Node" tab

Node ID
Enter the general CANopen device node address here. If you select the ”Auto Adapt PDO COB Ids" box, the
default identifier for the process data object can also be carried out after changing the node ID.

Profile no.
After CANopen, the parameter 0x1000 "Device Type" contains the number of the supported device profile in
both the lowest value bytes. These are entered here and compared at the system StartUp with the device
parameters present. If no device profile is supported, the parameter will contain the value 0.

Add info
The additional info is located in both the highest value bytes of the object directory entry 0x1000 (device
type).

A set/actual configuration comparison is only made if the profile no. or add. info (i.e. object directory entry
0x1000) is set to a value other than zero. If the expected data at the system start do not comply with the
values present, the StartUp of this node will be interrupted and a corresponding error message will appear in
the Diag Tab.

Guard time
The guard time determines the interval in which the node is monitored (node guarding). 0 signifies no
monitoring. The value entered is rounded up to the next multiple of 10 ms.

Lifetime factor
Guard time x lifetime factor determines the watchdog length for the mutual monitoring of card and CANopen
nodes. 0 indicates that the CANopen node is not monitoring the card. At 0 the card takes the guard time
directly as the watchdog length.

The FC 510x / EL6751 also support the Heartbeat protocol and initially attempt to start this form of node
monitoring on the CANopen node (write access to the objects 0x1016 and 0x1017 in the object dictionary). If
this attempt fails, guarding is activated. The guard time as producer heartbeat time and (guard time x lifetime
factor) as consumer heartbeat time are entered. In this case a Heartbeat telegram is transmitted with the
smallest configurable guard time (the guard times can be individually set for each node).

Parameterization and commissioning

EL675196 Version: 4.0.0

Emcy COB Id / Guard COB ID
Identifier for emergency messages or guarding protocol. They result from the node address.

Use Heartbeat
Heartbeat is used for monitoring of the node. If this is deactivated, the guarding is used for monitoring.

Auto-adjust PDO...
Specifies whether TwinCAT should download the PDO communications parameters to the node at the
system start.

If the download of the PDOs Parameter Identifier and Transmission Type fails, the card attempts to read
these parameters and compare them with the configured values. In this way, it supports only those nodes
which, e.g. have implemented the default identifiers as read-only values.

Vendor ID, Product Code, Serial No., Revision No.
If values other than zero are entered here, these identity object inputs (0x1018 in the object directory) are
read off at the system StartUp and compared with the configured values. The corresponding node will be
started only if the values coincide. It is also possible to compare one part of the value (e.g. vendor ID and
product code) - in this case set the not desired parameters to zero.

Node error reaction
• Stop Node

After a recognized node error, the node is set to "Stopped" mode (NMT command "Stop Remote
Node"). The node (according to each device profile) can then be switched to a safe mode via the
network status machine - SDO addressing is not possible in this mode.

• no response
No NMT stop remote node command after node error

Node Restart
• Automatic Restart

After a recognized node error the card automatically attempts to restart the node. The StartUp attempt
is initiated by a node reset command.

• Manual Restart
After a node error, this node remains in error mode and is not restarted automatically. You can actuate
a restart via "I/O-Reset" .

Network response
• no response

The failure of a node has no effect on the other bus devices
• All Nodes Stop

After the failure of a node, all other previously started nodes are stopped (NMT stop remote node
command). You then need to restart the system.

General CAN Node
If you have selected this checkbox, the entire CANopen network management for this device is deactivated.
It is not started, monitored etc. The PDO inputs are detected as pure CAN (2-layer) telegrams and enable
the controller to operate in event driven mode.

CANopen terminology
As the CANopen terminology is retained, even in the case of the general CAN nodes, you need to
take into account the fact that RxPDOs are the telegrams sent by the FC510x / EL6751 and
TxPDOs are the received telegrams.

This option allows any CAN node to be connected to the TwinCAT, if the Baud Rate [} 125] and the
bit timing parameters comply. The respective protocol can then be simulated within the PLC
program. It is also possible to run CANopen devices and general CAN nodes within the same
network - if there are no identifier overlaps (the system structure is such that you cannot use an
identifier twice).

Parameterization and commissioning

EL6751 97Version: 4.0.0

CANopen PDOs

Process Data Objects [} 107] (PDOs) are CAN telegrams which transport process data without a protocol
overhead. RxPDOs are received by node, TxPDOs are sent by the node. This description is contained in the
System Manager from the perspective of the configured node, i.e. RxPDOs are sent by the TwinCAT,
TxPDOs are received by the TwinCAT.

”PDO" tab

Fig. 102: ”PDO" tab

COB Id
The CAN identifier of this PDO. For every two send and receive PDOs per node, CANopen provides Default
Identifiers [} 125]. These can then be changed.

Trans.Type
The Transmission Type [} 107] determines the send behavior of the PDO. 255 corresponds to the event
driven send.

Inhibit Time
Send Delay [} 107] between two identical PDOs. Is entered in multiples of 0.1 ms.

Length
The length of the PDO is based on the mapped variables and cannot therefore be edit here.

Event time (FC510x and EL6751 only)
Enter the value for the Event Timer [} 107] in ms. For send PDOs (here: RxPDOs, see above) the StartUp of
this timer triggers an additional PDO send, for receive PDOs (here: TxPDOs) the arrival of a PDO within the
pre-set value is monitored and the box state of the node is changed as appropriate. If 0, the parameter is not
transferred to the node.

TwinCAT creates corresponding inputs in the node object directory on the basis of the parameters entered
here. These are transferred via SDO at the system start. You can view the inputs at the SDO tab. If this
behavior is not required, you can deactivate "Auto Download of PDO Parameters" by selecting the checkbox
at the CAN node tab.

Deactivate checking of the PDO size
Checkbox for deactivation of the length check of the PDO size.

Parameterization and commissioning

EL675198 Version: 4.0.0

Tree Representation:

Fig. 103: TwinCAT tree: CANopen Box

TwinCAT firstly provides two send and receive PDOs, with Default Identifiers [} 125], for a general CANopen
node. Superfluous PDOs can be selected and removed.

TxPDOs are sent by the CANopen node and generally contain inputs. RxPDOs are received by the node,
i.e., sent by TwinCAT.

Add variables to the PDOs by right clicking on ”Inputs" and/or ”Outputs" and selecting the corresponding
variable(s). If several variables of the same type are inserted with a single action, the offset within the PDO
will be created automatically. If variables are inserted one after another, you need to set the corresponding
offset (start address within the CAN telegram) for each variable.

Object dictionary entries in TwinCAT
TwinCAT places the PDOs in the displayed order according to the object dictionary entries in the
node. This way, for example, the PDO communication parameters of the third listed TxPDO are
always written to index 0x1802 – independent of the designation of the PDO in the System
Manager. Thus, if only PDO1 and PDO3 are to be used, a PDO2 must also be entered – in this
case without assigning variables. PDOs without variables are not transmitted and also not
expected.

Context menu:

Fig. 104: Context menu for inserting further Tx or Rx-PDOs.

The menu above is obtained by right clicking on the general CANopen node. Here you can insert further Tx
PDOs and/or Rx PDOs.

Parameterization and commissioning

EL6751 99Version: 4.0.0

"SDOs" tab

Fig. 105: "SDOs" tab

SDO inputs sent to the node at StartUp are displayed/managed on this page. Inputs with an object index in
straight brackets are automatically created on the basis of the updated terminal configuration. Other inputs
can be managed using ”Add", ”Insert", ”Delete" and ”Edit".

“ADS” tab

In order to be able to read and write SDO objects during the running time (e.g. from the PLC), the node (Bus
Coupler) can be allocated an ADS port (CIFx0-CAN). The FC510x / EL6751 provides an ADS port at all
times for every node since the diagnostic information is transported via ADS. These ports can be used to
read and write SDO objects using ADS read requests and/or write requests.

The ADS IndexGroup contains the CANopen object index and the ADS IndexOffset contains the CANopen
Sub-Index.

Parameterization and commissioning

EL6751100 Version: 4.0.0

5.4 CANopen Communication

5.4.1 Network Management

Simple Boot-Up

CANopen allows the distributed network to boot in a very simple way. After initialization, the modules are
automatically in the Pre-Operational state. In this state it is already possible to access the object directory
using service data objects (SDOs) with default identifiers, so that the modules can be configured. Since
default settings exist for all the entries in the object directory, it is in most cases possible to omit any explicit
configuration.

Only one CAN message is then required to start the module: Start_Remote_Node: Identifier 0, two data
bytes: 0x01, 0x00. It switches the node into the Operational state.

Network Status

The states and the state transitions involved as CANopen boots up can be seen from the state diagram:

Fig. 106: CANopen bootup state diagram

Pre-Operational

After initialization the Bus Coupler goes automatically (i.e. without the need for any external command) into
the Pre-Operational state. In this state it can be configured, since the service data objects (SDOs) are
already active. The process data objects, on the other hand, are still locked.

Operational

In the Operational state the process data objects are also active.

If external influences (such as a CAN error, or absence of output voltage) or internal influences (such as a K-
Bus error) mean that it is no longer possible for the Bus Coupler to set outputs, to read inputs or to
communicate, it attempts to send an appropriate emergency message, goes into the error state, and thus
returns to the Pre-Operational state. In this way the NMT status machine in the network master can also
immediately detect fatal errors.

Stopped

In the Stopped state (formerly: Prepared) data communication with the Coupler is no longer possible - only
NMT messages are received. The outputs go into the fault state.

Parameterization and commissioning

EL6751 101Version: 4.0.0

State Transitions

The network management messages have a very simple structure: CAN identifier 0, with two bytes of data
content. The first data byte contains what is known as the command specifier (cs), and the second data byte
contains the node address, the node address 0 applying to all nodes (broadcast).

11 bit identifier 2 byte user data
0x00 cs Node ID

The following table gives an overview of all the CANopen state transitions and the associated commands
(command specifier in the NMT master telegram):

Status transition Command Specifier cs Explanation
(1) - The initialization state is reached automatically at power-up
(2) - After initialization the pre-operational state is reached

automatically - this involves sending the boot-up message.
(3), (6) cs = 1 = 0x01 Start_Remote_Node.

Starts the module, enables outputs, starts transmission of
PDOs.

(4), (7) cs = 128 = 0x80 Enter_Pre-Operational. Stops PDO transmission, SDO still
active.

(5), (8) cs = 2 = 0x02 Stop_Remote_Node.
Outputs go into the fault state, SDO and PDO switched off.

(9), (10), (11) cs = 129 = 0x81 Reset_Node. Carries out a reset. All objects are reset to their
power-on defaults.

(12), (13), (14) cs = 130 = 0x82 Reset_Communication. Carries out a reset of the
communication functions. Objects 0x1000 - 0x1FFF are reset to
their power-on defaults.

Sample 1

The following telegram puts all the modules in the network into the error state (outputs in a safe state):

11 bit identifier 2 byte of user data
0x00 0x02 0x00

Sample 2

The following telegram resets node 17:

11 bit identifier 2 byte of user data
0x00 0x81 0x11

Boot-up message

After the initialization phase and the self-test the Bus Coupler sends the boot-up message, which is a CAN
message with a data byte (0) on the identifier of the guarding or heartbeat message: CAN-ID = 0x700 + node
ID. In this way temporary failure of a module during operation (e.g. due to a voltage drop), or a module that is
switched on at a later stage, can be reliably detected, even without Node Guarding. The sender can be
determined from the message identifier (see default identifier allocation).

It is also possible, with the aid of the boot-up message, to recognize the nodes present in the network at
start-up with a simple CAN monitor, without having to make write access to the bus (such as a scan of the
network by reading out parameter 0x1000).

Finally, the boot-up message communicates the end of the initialization phase; the Bus Coupler signals that
it can now be configured or started.

Firmware version BA
Up to firmware version BA the emergency identifier was used for the boot up message.

Parameterization and commissioning

EL6751102 Version: 4.0.0

Format of the Boot-up message

11 bit identifier 1 byte of user data
0x700 (=1792)+ node ID 0x00

Node Monitoring

Heartbeat and guarding mechanisms are available to monitor failures in the CANopen network. These are of
particular importance for CANopen, since modules do not regularly speak in the event-driven mode of
operation. In the case of "guarding", the devices are cyclically interrogated about their status by means of a
data request telegram (remote frame), whereas with "heartbeat" the nodes transmit their status on their own
initiative.

Guarding: Node Guarding and Life Guarding

Node Guarding is used to monitor the non-central peripheral modules, while they themselves can use Life
Guarding to detect the failure of the guarding master. Guarding involves the master sending remote frames
(remote transmit requests) to the guarding identifier of the slaves that are to be monitored. These reply with
the guarding message. This contains the slave’s status code and a toggle bit that has to change after every
message. If either the status or the toggle bit do not agree with that expected by the NMT master, or if there
is no answer at all, the master assumes that there is a slave fault.

Guarding procedure

Fig. 107: Schematic diagram: "Guarding procedure"

Protocol

The toggle bit (t) transmitted in the first guarding telegram has the value 0. After this, the bit must change
(toggle) in every guarding telegram so that the loss of a telegram can be detected. The node uses the
remaining seven bits to transmit its network status (s):

s Status
4 = 0x04 Stopped (previously: Prepared)
5 = 0x05 Operational
127 = 0x7F Pre-Operational

Parameterization and commissioning

EL6751 103Version: 4.0.0

Sample

The guarding message for node 27 (0x1B) must be requested by a remote frame having identifier 0x71B
(1819dec). If the node is Operational, the first data byte of the answer message alternates between 0x05 and
0x85, whereas in the Pre-Operational state it alternates between 0x7F and 0xFF.

Guard time and life time factor

If the master requests the guard messages in a strict cycle, the slave can detect the failure of the master. In
this case, if the slave fails to receive a message request from the master within the set Node Life Time (a
guarding error), it assumes that the master has failed (the watchdog function). It then puts its outputs into the
error state, sends an emergency telegram, and returns to the pre-operational state. After a guarding time-out
the procedure can be re-started by transmitting a guarding telegram again.

The node life time is calculated from the guard time (object 0x100C) and life time factor (object 0x100D)
parameters:

Life time = guard time x life time factor

If either of these two parameters is "0" (the default setting), the master will not be monitored (no life
guarding).

Heartbeat: Node Monitoring without Remote Frame

In the heart beat procedure, each node transmits its status message cyclically on its own initiative. There is
therefore no need to use remote frames, and the bus is less heavily loaded than under the guarding
procedure.

The master also regularly transmits its heartbeat telegram, so that the slaves are also able to detect failure of
the master.

Heartbeat procedure

Fig. 108: Schematic diagram: "Heartbeat procedure"

Protocol

The toggle bit is not used in the heart beat procedure. The nodes send their status cyclically (s). See
Guarding [} 102].

Parameterization and commissioning

EL6751104 Version: 4.0.0

5.4.2 CANopen Master Network management

Automatic CANopen StartUp

After the startup (EL6751: switch-over after SAFEOP) the CANopen master sends a Reset Communication
All Nodes command. This is followed by an individual startup for each configured CANopen slave:

SDO Explanation Option
Upload Device
Type 0x1000

The object 0x1000 of the
CANopen slaves is read and
compared with the
configured value

This SDO is active by default and can be switched off via
the configuration (see Advanced button in tab BK51x0
[} 92] or CAN node [} 94] for the box in the System
Manager). If the SDO is active, the startup is aborted if a
value other than the configured value is read.

Upload Vendor ID
0x1018:01

The entry 0x1018:01 of the
CANopen slave is read and
compared with the
configured value, if this not
equal 0.

This SDO is always active in BK51x0 [} 92] Bus Couplers,
in general CANopen slaves [} 94] only if a vendor ID not
equal 0 is entered in the CAN node tab for the box in the
System Manager. If the SDO is active, the startup is
aborted if a value other than the configured value is read.

Upload Product
Code 0x1018:02

The entry 0x1018:02 of the
CANopen slave is read and
compared with the
configured value, if this not
equal 0.

This SDO is always active in BK51x0 [} 92] Bus Couplers,
in general CANopen slaves [} 94] only if a product code
not equal 0 is entered in the CAN node tab for the box in
the System Manager. If the SDO is active, the startup is
aborted if a value other than the configured value is read.

Upload Revision
Number 0x1018:03

The entry 0x1018:03 of the
CANopen slave is read and
compared with the
configured value, if this not
equal 0.

This SDO is never active in BK51x0 [} 92] Bus Couplers,
in general CANopen slaves [} 94] only if a revision number
not equal 0 is entered in the CAN node tab for the box in
the System Manager. If the SDO is active, the startup is
aborted if a value other than the configured value is read.

Upload Serial
Number 0x1018:04

The entry 0x1018:04 of the
CANopen slave is read and
compared with the
configured value, if this not
equal 0.

This SDO is never active in BK51x0 [} 92] Bus Couplers,
in general CANopen slaves [} 94] only if a serial number
not equal 0 is entered in the CAN node tab for the box in
the System Manager. If the SDO is active, the startup is
aborted if a value other than the configured value is read.

Download SYNC
cycle Time 0x1006

The SYNC cycle time is
written to object 0x1006 of
the CANopen slave, if the
SYNC message is sent (the
SYNC message is sent if at
least one synchronous PDO
is configured for any slave).

This SDO is active by default if the SYBC message is sent
and can be switched off via the configuration (see
Advanced button in tab BK51x0 [} 92] or CAN node [} 94]
for the box in the System Manager). If the SDO is active,
the startup is aborted if an SDO abort has occurred.

Download PDO ID
(0x1400+y:01 or
0x1800+y:01)

The COB-ID is written to for
each configured PDO.

These SDOs are active by default for general CANopen
slaves [} 94] and can be switched off via the CAN node
[} 94] tab. For Bus Couplers the PDOs are configured via
object 0x5500. Therefore these SDOs are not active for
BK51x0 [} 92] Bus Couplers.

Parameterization and commissioning

EL6751 105Version: 4.0.0

SDO Explanation Option
Upload PDO ID
(0x1400+y:01 or
0x1800+y:01)

If an SDO abort occurred
during the PDO COB-ID
download, the system tries
to read the entry.

This SDO is only active if a fault occurred in the download
of the respective PDO COB ID. If the SDO is active, the
startup is aborted if a value other than the configured
value is read.

Download PDO
Transmission Type
(0x1400+y:02 or
0x1800+y:02)

The transmission type is
described for each
configured PDO

These SDOs are active by default for general CANopen
slaves [} 94] and can be switched off via the CAN node
[} 94] tab. For Bus Couplers the transmission type is only
distinguished for digital (PDO 1) and analog (PDO 2)
terminals, if object 0x5500 is written to on startup.
Therefore, for BK51x0 [} 92] Bus Couplers these SDOs
are only active for PDOs 1 and 2.

Upload PDO
Transmission Type
(0x1400+y:02 or
0x1800+y:02)

If an SDO abort occurred
during the PDO
transmission type download,
the system tries to read the
entry.

This SDO is only active if a fault occurred in the download
of the respective transmission type PDO. If the SDO is
active, the startup is aborted if a value other than the
configured value is read.

Download PDO
Inhibit Time
(0x1400+y:03 or
0x1800+y:03)

The inhibit time is written to
for each configured PDO.

These SDOs are active for general CANopen slaves [} 94],
if an inhibit time greater than 0 is configured on the PDO
[} 94] tab of the respective PDO. For Bus Couplers there
is only one inhibit time for all PDOs, if the PDOs are
configured via the object 0x5500. The SDOs are active if
this inhibit time on tab BK51x0 [} 92] is greater than 0.

Upload PDO Inhibit
Time (0x1400+y:03
or 0x1800+y:03)

If an SDO abort occurred
during the PDO inhibit time
download, the system tries
to read the entry.

This SDO is only active if a fault occurred in the download
of the respective PDO inhibit time. If the SDO is active,
the startup is aborted if a value other than the configured
value is read.

Download PDO
Event Time
(0x1400+y:05 or
0x1800+y:05)

The event time is written to
for each configured PDO.

These SDOs are active for general CANopen slaves [} 94],
if an event time greater than 0 is configured on the PDO
[} 94] tab of the respective PDO. For Bus Couplers there
is only one event time for all PDOs, if the PDOs are
configured via the object 0x5500. The SDOs are active if
this event time on tab "BK51x0 [} 92]" is greater than 0.

Upload PDO Event
Time (0x1400+y:05
or 0x1800+y:05)

If an SDO abort occurred
during the PDO event time
download, the system tries
to read the entry.

This SDO is only active if a fault occurred in the download
of the respective PDO event time. If the SDO is active, the
startup is aborted if a value other than the configured
value is read.

Download
Producer
Heartbeat 0x1017

The guard time is written to
object 0x1017 of the
CANopen slave.

This SDO is active if the guard time and the life time factor
on the tabs BK51x0 [} 92] or CAN node [} 94] are not
equal 0. If the SDO is active, the startup is aborted if an
SDO timeout has occurred.

Parameterization and commissioning

EL6751106 Version: 4.0.0

SDO Explanation Option
Download
Consumer
Heartbeat
0x1016:01

The object 0x1016:01 of the
CANopen slaves is
multiplied with the guard
time and described with the
life time factor

This SDO is active if the guard time and the life time factor
on the tabs BK51x0 [} 92] and CAN node [} 94] are not
equal 0 and no abort occurred during the download of the
producer heartbeat. If the SDO is active, the startup is
aborted if an SDO abort has occurred.

Download Guard
Time 0x100C

The guard time is written to
object 0x100C of the
CANopen slave.

This SDO is active if the guard time and the life time factor
on the tabs BK51x0 [} 92] and CAN node [} 94] are not
equal 0 and an SDO abort (no SDO timeout) occurred
during the download of the producer heartbeat. If the SDO
is active, the startup is aborted if an SDO abort has
occurred.

Download Life
Time Factor
0x100D

The life time factor is written
to object 0x100D of the
CANopen slave.

This SDO is active if the guard time and the life time factor
on the tabs BK51x0 [} 92] and CAN node [} 94] are not
equal 0 and an SDO abort (no SDO timeout) occurred
during the download of the producer heartbeat. If the SDO
is active, the startup is aborted if an SDO abort has
occurred.

Download further
startup SDOs

Further startup SDOs are
written

All further startup SDOs are written that are listed on the
SDOs tab for BK51x0 [} 92] Bus Couplers or general
CANopen slaves [} 94].

Start Node The CANopen slave is
started

The CANopen slave startup is active by default and can
be switched off via the configuration (see Advanced
button in tab BK51x0 [} 92] or CAN node [} 94] for the box
in the System Manager). If the CANopen slaves startup is
not active, it can be started manually [} 107].

Start All Nodes All CANopen slaves are
started

Once all CANopen slaves have been started individually,
a start command is sent to all CANopen slaves, if the
automatic start was not deactivated in a CANopen slave.

Waiting for
TxPDOs

The NodeState is set to 23 as long as not all configured
TxPDOs of the CANopen slave were received. If the
SDOs tab for BK51x0 [} 92] Bus Couplers or general
CANopen slaves [} 94] is set to restart the CANopen slave
if 10 s after the startup no configured TxPDO was
received (not active by default), the complete startup is
repeated if this monitoring function is triggered.

Sending the
RxPDOs

The configured RxPDOs are sent to the CANopen slave 1
second after the CANopen slave was started.

Parameterization and commissioning

EL6751 107Version: 4.0.0

SDO Explanation Option
Monitoring the
synchronous
TxPDOs

Monitoring of the synchronous TxPDOs commences when
they were received for the first time. If the transmission
type is set to 1, this TxPDO must be received in the SYNC
cycle, otherwise the node state switches to 40 or 22 and
the CANopen slave is treated according to configured
error response. The time slot ends after the input shift
time has elapsed (EL6751, with a SYNC multiplier greater
than 1 the input shift time in the last EtherCAT cycle
counts before the next SYNC cycle commences) or once
all synchronous RxPDOs were sent (FC51xx, CX1500-
M510). The monitoring can be made less strict by setting
an event time not equal 0 in the corresponding TxPDO. In
this case the CANopen master is tolerant for one SYNC
cycle, i.e. the node state is not set to 22 until the TxPDO
has failed twice in succession.
For transmission types greater than 1 the CANopen
master is also tolerant for one cycle before a fault is
detected and the node state is set to 22.

Monitoring the
asynchronous
TxPDOs

Monitoring of the asynchronous TxPDOs is only active if
their event time is configured with greater than 0 and
commences when they are received for the first time. If
the TxPDO is not received within twice the event time, the
node state is set to 22 and the CANopen slave is treated
according to the configured error response.

Error response If a fault is detected in a CANopen slave during TxPDO
monitoring or during guarding/heartbeat, the node state
switches to a value not equal 0 and configured error
response is triggered (according to tab BK51x0 [} 92] or
CAN node [} 94]). In the default setting the CANopen
slave is stopped and then restarted (with communication
reset).

Manual network management

The CANopen state (STOPPED, PRE-OPERATIONAL, OPERATIONAL) of a CANopen slave can be
changed via ADS write control. In this case the AMS address should be set as for SDO communication. The
other parameter are listed in the following table:

ADS State Device State CANopen state transition
ADSSTATE_RUN (5) 0 OP->PREOP
ADSSTATE_RUN (5) 1 PREOP->OP
ADSSTATE_STOP (6) 0 OP->STOP
ADSSTATE_RUN (5) 1 STOP->OP (with communication reset)
ADSSTATE_RUN (5) 3 STOP->OP (without communication reset)
ADSSTATE_STOP (6) 0 PREOP->STOP
ADSSTATE_RUN (5) 2 STOP->PREOP (without communication reset)

5.4.3 Process Data Objects (PDO)

Introduction

In many fieldbus systems the entire process image is continuously transferred - usually in a more or less
cyclic manner. CANopen is not limited to this communication principle, since the multi-master bus access
protocol allows CAN to offer other methods. Under CANopen the process data is not transferred in a master/
slave procedure, but follows instead the producer-consumer model. In this model, a bus node transmits its

Parameterization and commissioning

EL6751108 Version: 4.0.0

data, as a producer, on its own accord. This might, for example, be triggered by an event. All the other nodes
listen, and use the identifier to decide whether they are interested in this telegram, and handle it accordingly.
These are the consumers.

The process data in CANopen is divided into segments with a maximum of 8 bytes. These segments are
known as process data objects (PDOs). The PDOs each correspond to a CAN telegram, whose specific CAN
identifier is used to allocate them and to determine their priority. Receive PDOs (RxPDOs) and transmit
PDOs (TxPDOs) are distinguished, the name being chosen from the point of view of the device: an input/
output module sends its input data with TxPDOs and receives its output data in the RxPDOs. This naming
convention is retained in the TwinCAT System Manager.

Communication parameters

The PDOs can be given different communication parameters according to the requirements of the
application. Like all the CANopen parameters, these are also available in the device's object directory, and
can be accessed by means of the service data objects. The parameters for the receive PDOs are at index
0x1400 (RxPDO1) onwards. There can be up to 512 RxPDOs (ranging up to index 0x15FF). In the same
way, the entries for the transmit PDOs are located from index 0x1800 (TxPDO1) to 0x19FF (TxPDO512).

The Beckhoff Bus Couplers or Fieldbus Coupler Box modules make 16 RxPDO and TxPDOs available for
the exchange of process data (although the figure for Economy and LowCost BK5110 and LC5100 Couplers
and the Fieldbus Boxes is 5 PDOs each, since these devices manage a lower quantity of process data). The
FC510x CANopen master card supports up to 192 transmit and 192 receive PDOs for each channel -
although this is restricted by the size of the DPRAM. The EL6751 CANopen terminal dynamically organizes
the process image; i.e. the process data are written in succession, enabling a higher data transmission rate.
Up to 32 TxPDOs and 32 RxPDOs can be handled in slave mode.

For each existing process data object there is an associated communication parameter object. The TwinCAT
System Manager automatically assigns the set parameters to the relevant object directory entries. These
entries and their significance for the communication of process data are explained below.

PDO Identifier

The most important communication parameter in a PDO is the CAN identifier (also known as the
communication object identifier, or COB-ID). It is used to identify the data, and determines their priority for
bus access. For each CAN data telegram there may only be one sender node (producer), although all
messages sent in the CAN broadcast procedure can be received, as described, by any number of nodes
(consumers). Thus a node can make its input information available to a number of bus devices at the same
time - even without transferring them through a logical bus master. The identifier is located in sub-index 1 of
the communication parameter set. It is coded as a 32-bit value in which the least significant 11 bits (bits
0...10) contain the identifier itself. The data width of the object of 32 bits also allows 29-bit identifiers in
accordance with CAN 2.0B to be entered, although the default identifiers always refer to the more usual 11-
bit versions. Generally speaking, CANopen is economical it its use of the available identifiers, so that the use
of the 29-bit versions remains limited to unusual applications. It is therefore also not supported by a
Beckhoff's CANopen devices. The highest bit (bit 31) can be used to activate the process data object or to
turn it off.

A complete identifier list [} 203] is provided in the appendix.

PDO linking

In the system of default identifiers, all the nodes (here: slaves) communicate with one central station (the
master), since slave nodes do not listen by default to the transmit identifier of any other slave node.

Parameterization and commissioning

EL6751 109Version: 4.0.0

Fig. 109: Default identifier allocation: Master/Slave

Fig. 110: PDO linking: Peer to Peer

If the consumer-producer model of CANopen PDOs is to be used for direct data exchange between nodes
(without a master), the identifier allocation must be appropriately adapted, so that the TxPDO identifier of the
producer agrees with the RxPDO identifier of the consumer: This procedure is known as PDO linking. It
permits, for sample, easy construction of electronic drives in which several slave axes simultaneously listen
to the actual value in the master axis TxPDO.

PDO Communication Types: Overview

CANopen offers a number of possible ways to transmit process data (see also: Notes on PDO
Parameterization [} 114]).

Parameterization and commissioning

EL6751110 Version: 4.0.0

Fig. 111: Diagram: CAN process data transmission

Event driven

The ”event" is the alteration of an input value, the data being transmitted immediately after this change. The
event-driven flow can make optimal use of the bus bandwidth, since instead of the whole process image it is
only the changes in it that are transmitted. A short reaction time is achieved at the same time, since when an
input value changes it is not necessary to wait for the next interrogation from a master.

As from CANopen Version 4 it is possible to combine the event driven type of communication with a cyclic
update. Even if an event has not just occurred, event driven TxPDOs are sent after the event timer has
elapsed. If an event does occur, the event timer is reset. For RxPDOs the event timer is used as a watchdog
in order to monitor the arrival of event driven PDOs . If a PDO does not arrive within a set period of time, the
bus node adopts the error state.

Polled

The PDOs can also be polled by data request telegrams (remote frames). In this way it is possible to get the
input process image of event-driven inputs onto the bus, even when they do not change, for instance through
a monitoring or diagnostic device brought into the network while it is running. The time behavior of remote
frame and response telegrams depends on what CAN controller is in use. Components with full integrated
message filtering ("FullCAN") usually answer a data request telegram immediately, transmitting data that is
waiting in the appropriate transmit buffer - it is the responsibility of the application to see that the data there
is continuously updated. CAN controllers with simple message filtering (BasicCAN) on the other hand pass
the request on to the application which can now compose the telegram with the latest data. This does take
longer, but does mean that the data is up-to-date. Beckhoff use CAN controllers following the principle of
Basic CAN.

Since this device behavior is usually not transparent to the user, and because there are CAN controllers still
in use that do not support remote frames at all, polled communication can only with reservation be
recommended for operative running.

Synchronized

It is not only for drive applications that it is worthwhile to synchronize the determination of the input
information and the setting the outputs. For this purpose CANopen provides the SYNC object, a CAN
telegram of high priority but containing no user data, whose reception is used by the synchronized nodes as
a trigger for reading the inputs or for setting the outputs.

Parameterization and commissioning

EL6751 111Version: 4.0.0

Fig. 112: Diagram: CAN "SYNC" telegram

PDO transmission types: Parameterization

The PDO transmission type parameter specifies how the transmission of the PDO is triggered, or how
received PDOs are handled.

Transmission type Cyclical Acyclical Synchronous Asynchronous Only RTR
0 X X
1-240 X X
241-251 - reserved -
252 X X
253 X X
254, 255 X

The type of transmission is parameterized for RxPDOs in the objects at 0x1400ff, sub-index 2, and for
TxPDOs in the objects at 0x1800ff, sub-index 2.

Acyclic Synchronous

PDOs of transmission type 0 function synchronously, but not cyclically. An RxPDO is only evaluated after the
next SYNC telegram has been received. In this way, for instance, axis groups can be given new target
positions one after another, but these positions only become valid at the next SYNC - without the need to be
constantly outputting reference points. A device whose TxPDO is configured for transmission type 0 acquires
its input data when it receives the SYNC (synchronous process image) and then transmits it if the data
correspond to an event (such as a change in input) having occurred. Transmission type 0 thus combines
transmission for reasons that are event driven with a time for transmission (and, as far as possible, sampling)
and processing given by the reception of "SYNC".

Cyclic Synchronous

In transmission types 1-240 the PDO is transmitted cyclically: after every ”nth" SYNC (n = 1...240). Since
transmission types can be combined on a device as well as in the network, it is possible, for example, for a
fast cycle to be agreed for digital inputs (n = 1), whereas the data for analog inputs is transmitted in a slower
cycle (e.g. n = 10). RxPDOs do not generally distinguish between transmission types 0...240: a PDO that has
been received is set to valid when the next SYNC is received. The cycle time (SYNC rate) can be monitored
(object 0x1006), so that if the SYNC fails the device reacts in accordance with the definition in the device
profile, and switches, for sample, its outputs into the error state.

The FC510x card / EL6751 terminal fully support the synchronous communication method: transmitting the
SYNC telegram is coupled to the linked task, so that new input data is available every time the task begins. If
a synchronous PDO does not arrive, this is detected and reported to the application.

Parameterization and commissioning

EL6751112 Version: 4.0.0

Only RTR

Transmission types 252 and 253 apply to process data objects that are transmitted exclusively on request by
a remote frame. 252 is synchronous: when the SYNC is received the process data is acquired. It is only
transmitted on request. 253 is asynchronous. The data here is acquired continuously, and transmitted on
request. This type of transmission is not generally recommended, because fetching input data from some
CAN controllers is only partially supported. Because, furthermore, the CAN controllers sometimes answer
remote frames automatically (without first requesting up-to-date input data), there are circumstances in which
it is questionable whether the polled data is up-to-date. Transmission types 252 and 253 are for this reason
not supported by the Beckhoff PC cards / terminals.

Asynchronous

The transmission types 254 + 255 are asynchronous, but may also be event-driven. In transmission type
254, the event is specific to the manufacturer, whereas for type 255 it is defined in the device profile. In the
simplest case, the event is the change of an input value - this means that every change in the value is
transmitted. The asynchronous transmission type can be coupled with the event timer, thus also providing
input data when no event has just occurred.

Inhibit time

The ”inhibit time" parameter can be used to implement a ”transmit filter" that does not increase the reaction
time for relatively new input alterations, but is active for changes that follow immediately afterwards. The
inhibit time (transmit delay time) specifies the minimum length of time that must be allowed to elapse
between the transmission of two of the same telegrams. If the inhibit time is used, the maximum bus loading
can be determined, so that the worst case latency can then be found.

Fig. 113: Timing diagram: "Inhibit time"

Although the Beckhoff FC510x PC cards / EL6751 terminal can parameterize the inhibit time on slave
devices, they do not themselves support it. The transmitted PDOs become automatically spread out (transmit
delay) as a result of the selected PLC cycle time - and there is little value in having the PLC run faster than
the bus bandwidth permits. The bus loading, furthermore, can be significantly affected by the synchronous
communication.

Event Timer

An event timer for transmit PDOs can be specified by sub-index 5 in the communication parameters. Expiry
of this timer is treated as an additional event for the corresponding PDO, so that the PDO will then be
transmitted. If the application event occurs during a timer period, it will also be transmitted, and the timer is
reset.

Parameterization and commissioning

EL6751 113Version: 4.0.0

Fig. 114: Time representation of the event timer

In the case of receive PDOs, the timer is used to set a watchdog interval for the PDO: the application is
informed if no corresponding PDO has been received within the set period. The FC510x / EL6751 can in this
way monitor each individual PDO.

Notes on PDO Parameterization [} 114]

PDO Mapping

PDO mapping refers to mapping of the application objects (real time data) from the object directory to the
process data objects. The CANopen device profile provide a default mapping for every device type, and this
is appropriate for most applications. Thus the default mapping for digital I/O simply represents the inputs and
outputs in their physical sequence in the transmit and receive process data objects.

The default PDOs for drives contain 2 bytes each of a control and status word and a set or actual value for
the relevant axis.

The current mapping can be read by means of corresponding entries in the object directory. These are
known as the mapping tables. The first location in the mapping table (sub-index 0) contains the number of
mapped objects that are listed after it. The tables are located in the object directory at index 0x1600ff for the
RxPDOs and at 0x1A00ff for the TxPDOs.

Fig. 115: Mapping representation

Digital and analog input/output modules: Read out the I/O number

The current number of digital and analog inputs and outputs can be determined or verified by reading out the
corresponding application objects in the object directory:

Parameterization and commissioning

EL6751114 Version: 4.0.0

Parameter Object directory address
Number of digital input bytes Index 0x6000, sub-index 0
Number of digital output bytes Index 0x6200, sub-index 0
Number of analog inputs Index 0x6401, sub-index 0
Number of analog outputs Index 0x6411, sub-index 0

Variable mapping

As a rule, the default mapping of the process data objects already satisfies the requirements. For special
types of application the mapping can nevertheless be altered: the Beckhoff CANopen Bus Couplers, for
instance, thus support variable mapping, in which the application objects (input and output data) can be
freely allocated to the PDOs. The mapping tables must be configured for this: as from Version 4 of
CANopen, only the following procedure is permitted, and must be followed precisely:

1. First delete the PDO (set 0x1400ff, or 0x1800ff, sub-index 1, bit 31 to "1")
2. Set sub-index 0 in the mapping parameters (0x1600ff or 0x1A00ff) to "0"
3. Change mapping entries (0x1600ff or 0x1A00ff, SI 1..8)
4. Set sub-index 0 in the mapping parameters to the valid value. The device then checks the entries for

consistency.
5. Create PDO by entering the identifier (0x1400ff or 0x1800ff, sub-index 1).

Dummy Mapping

A further feature of CANopen is the mapping of placeholders, or dummy entries. The data type entries stored
in the object directory, which do not themselves have data, are used as placeholders. If such entries are
contained in the mapping table, the corresponding data from the device is not evaluated. In this way, for
instance, a number of drives can be supplied with new set values using a single CAN telegram, or outputs on
a number of nodes can be set simultaneously, even in event-driven mode.

5.4.4 PDO Parameterization
Even though the majority of CANopen networks operate satisfactorily with the default settings, i.e. with the
minimum of configuration effort, it is wise at least to check whether the existing bus loading is reasonable:
80% bus loading may be acceptable for a network operating purely in cyclic synchronous modes, but for a
network with event-driven traffic this value would generally be too high, as there is hardly any bandwidth
available for additional events.

Consider the Requirements of the Application

The communication of the process data must be optimized in the light of application requirements which are
likely to be to some extent in conflict. These include

• Little work on parameterization - useable default values are optimal
• Guaranteed reaction time for specific events
• Cycle time for regulation processes over the bus
• Safety reserves for bus malfunctions (enough bandwidth for the repetition of messages)
• Maximum baud rate - depends on the maximum bus length
• Desired communication paths - who is speaking with whom

The determining factor often turns out to be the available bus bandwidth (bus load).

Baud rate

We generally begin by choosing the highest baud rate that the bus will permit. It should be borne in mind that
serial bus systems are fundamentally more sensitive to interference as the baud rate is increased. The
following rule therefore applies: just as fast as necessary. 1000 kbit/s are not usually necessary, and only to
be unreservedly recommended on networks within a control cabinet where there is no electrical isolation
between the bus nodes. Experience also tends to show that estimates of the length of bus cable laid are
often over-optimistic - the length actually laid tends to be longer.

Parameterization and commissioning

EL6751 115Version: 4.0.0

Determine the Communication Type

Once the baud rate has been chosen it is appropriate to specify the PDO communication type(s). These
have different advantages and disadvantages:

• Cyclic synchronous communication provides an accurately predictable bus loading, and therefore a
defined time behavior - you could say that the standard case is the worst case. It is easy to configure:
The SYNC rate parameter sets the bus loading globally. The process images are synchronized: Inputs
are read at the same time, output data is set valid simultaneously, although the quality of the
synchronization depends on the implementation. The BECKHOFF FC510x PC cards / EL6751
CANopen terminal are capable of synchronizing the CANopen bus system with the cycles of the
application program (PLC or NC).

The guaranteed reaction time under cyclic synchronous communication is always at least as long as
the cycle time, and the bus bandwidth is not exploited optimally, since old data, i.e. data that has not
changed, is continuously transmitted. It is however possible to optimize the network through the
selection of different SYNC multiples (transmission types 1...240), so that data that changes slowly is
transmitted less often than, for instance, time-critical inputs. It must, however, be borne in mind that
input states that last for a time that is shorter than the cycle time will not necessarily be communicated.
If it is necessary for such conditions to be registered, the associated PDOs for asynchronous
communication should be provided.

• Event-driven asynchronous communication is optimal from the point of view of reaction time and the
exploitation of bus bandwidth - it can be described as "pure CAN". Your choice must, however, also
take account of the fact that it is not impossible for a large number of events to occur simultaneously,
leading to corresponding delays before a PDO with a relatively low priority can be sent. Proper network
planning therefore necessitates a worst-case analysis. Through the use of, for instance, inhibit time
[} 107], it is also necessary to prevent a constantly changing input with a high PDO priority from
blocking the bus (technically known as a "babbling idiot"). It is for this reason that event driving is
switched off by default in the device profile of analog inputs, and must be turned on specifically. Time
windows for the transmit PDOs can be set using progress timers: the telegram is not sent again before
the inhibit time [} 107] has elapsed, and not later than the time required for the progress timer to
complete.

• The communication type is parameterized by means of the transmission type [} 107].

It is also possible to combine the two PDO principles. It can, for instance, be helpful to exchange the set and
actual values of an axis controller synchronously, while limit switches, or motor temperatures with limit values
are monitored with event-driven PDOs. This combines the advantages of the two principles: synchronicity for
the axis communication and short reaction times for limit switches. In spite of being event-driven, the
distributed limit value monitoring avoids a constant addition to the bus load from the analog temperature
value.

In this sample it can also be of value to deliberately manipulate the identifier allocation, in order to optimize
bus access by means of priority allocation: the highest priority is given to the PDO with the limit switch data,
and the lowest to that with the temperature values.

Optimization of bus access latency time through modification of the identifier allocation is not, however,
normally required. On the other hand the identifiers must be altered if masterless communication is to be
made possible (PDO linking [} 107]). In this sample it would be possible for one RxPDO for each axis to be
allocated the same identifier as the limit switch TxPDO, so that alterations of the input value can be received
without delay.

Determining the Bus Loading

It is always worth determining the bus loading. But what bus loading values are permitted, or indeed
sensible? It is first necessary to distinguish a short burst of telegrams in which a number of CAN messages
follow one another immediately - a temporary 100% bus loading. This is only a problem if the sequence of
receive interrupts that it caused at the CAN nodes cannot be handled. This would constitute a data overflow
(or CAN queue overrun). This can occur at very high baud rates (> 500 kbit/s) at nodes with software
telegram filtering and relatively slow or heavily loaded microcontrollers if, for instance, a series of remote
frames (which do not contain data bytes, and are therefore very short) follow each other closely on the bus
(at 1 Mbit/s this can generate an interrupt every 40 µs; for example, an NMT master might transmit all its
guarding requests in an unbroken sequence). This can be avoided through skilled implementation, and the
user should be able to assume that the device suppliers have taken the necessary trouble. A burst condition

Parameterization and commissioning

EL6751116 Version: 4.0.0

is entirely normal immediately after the SYNC telegram, for instance: triggered by the SYNC, all the nodes
that are operating synchronously try to send their data at almost the same time. A large number of arbitration
processes take place, and the telegrams are sorted in order of priority for transmission on the bus. This is
not usually critical, since these telegrams do contain some data bytes, and the telegrams trigger a sequence
of receive interrupts at the CAN nodes which is indeed rapid, but is nevertheless manageable.

Bus loading most often refers to the value averaged over several primary cycles, that is the mean value over
100-500 ms. CAN, and therefore CANopen, is indeed capable of managing a bus loading of close to 100%
over long periods, but this implies that no bandwidth is available for any repetitions that may be necessitated
by interference, for asynchronous error messages, parameterization and so on. Clearly, the dominant type of
communication will have a large influence on the appropriate level of bus loading: a network with entirely
cyclic synchronous operation is always in any case near to the worst case state, and can therefore be
operated with values in the 70-80% range. The figure is very hard to state for an entirely event-driven
network: an estimate must be made of how many events additional to the current state of the system might
occur, and of how long the resulting burst might last - in other words, for how long the lowest priority
message will be delayed. If this value is acceptable to the application, then the current bus loading is
acceptable. As a rule of thumb it can usually be assumed that an event-driven network running with a base
loading of 30-40% has enough reserve for worst-case scenarios, but this assumption does not obviate the
need for a careful analysis if delays could have critical results for the plant.

The BECKHOFF FC510x CANopen master cards / EL6751 CANopen master terminal display the bus load
via the System Manager. This variable can also be processed in the PLC, or can be displayed in the
visualization system.

The amount data in the process data objects is of course as relevant as the communication parameters: the
PDO mapping. [} 113]

5.4.5 Service Data Objects (SDO)
The parameters listed in the object directory are read and written by means of service data objects. These
SDOs are Multiplexed Domains, i.e. data structures of any size that have a multiplexer (address). The
multiplexer consists of a 16-bit index and an 8-bit sub-index that address the corresponding entries in the
object directory.

Fig. 116: SDO protocol: access to the object directory

The CANopen Bus Couplers are servers for the SDO, which means that at the request of a client (e.g. of the
IPC or the PLC) they make data available (upload), or they receive data from the client (download). This
involves a handshake between the client and the server.

Parameterization and commissioning

EL6751 117Version: 4.0.0

When the size of the parameter to be transferred is not more than 4 bytes, a single handshake is sufficient
(one telegram pair): For a download, the client sends the data together with its index and sub-index, and the
server confirms reception. For an upload, the client requests the data by transmitting the index and sub-
index of the desired parameter, and the server sends the parameter (including index and sub-index) in its
answer telegram.

The same pair of identifiers is used for both upload and download. The telegrams, which are always 8 bytes
long, encode the various services in the first data byte. All parameters with the exception of objects 1008h,
1009h and 100Ah (device name, hardware and software versions) are only at most 4 bytes long, so this
description is restricted to transmission in expedited transfer.

Protocol

The structure of the SDO telegrams is described below.

Client -> Server, Upload Request

11 bit identifier 8 byte user data
0x600 (=1536dec) + node ID 0x40 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Client -> Server, Upload Response

11 bit identifier 8 byte user data
0x580 (=1408dec) + node ID 0x4x Index0 Index1 SubIdx Data0 Data1 Data2 Data3

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

Parameters whose data type is Unsigned8 are transmitted in byte D0, parameters whose type is Unsigned16
use D0 and D1.

The number of valid data bytes is coded as follows in the first CAN data byte (0x4x):

Number of parameter bytes 1 2 3 4
First CAN data byte 0x4F 0x4B 0x47 0x43

Client -> Server, Download Request

11 bit identifier 8 byte user data
0x600 (=1536dec) + node ID 0x22 Index0 Index1 SubIdx Data0 Data1 Data2 Data3

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

It is optionally possible to give the number of valid parameter data bytes in the first CAN data byte

Parameterization and commissioning

EL6751118 Version: 4.0.0

Number of parameter bytes 1 2 3 4
First CAN data byte 0x2F 0x2B 0x27 0x23

This is, however, not generally necessary, since only the less significant data bytes up to the length of the
object directory entry that is to be written are evaluated. A download of data up to 4 bytes in length can
therefore always be achieved in BECKHOFF bus nodes with 22 h in the first CAN data byte.

Client -> Server, Download Response

11 bit identifier 8 byte user data
0x580 (=1408dec) + node ID 0x60 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Breakdown of Parameter Communication

Parameter communication is interrupted if it is faulty. The client or server send an SDO telegram with the
following structure for this purpose:

11 bit identifier 8 byte user data
0x580 (client) or
0x600 (server) + node ID

0x80 Index0 Index1 SubIdx Error0 Error1 Error2 Error3

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Error0 SDO error code low low byte (LLSB)
Error3 SDO error code high high byte (MMSB)

List of SDO error codes (reason for abortion of the SDO transfer):

Parameterization and commissioning

EL6751 119Version: 4.0.0

SDO error code Explanation
0x05 03 00 00 Toggle bit not changed
0x05 04 00 01 SDO command specifier invalid or unknown
0x06 01 00 00 Access to this object is not supported
0x06 01 00 02 Attempt to write to a Read_Only parameter
0x06 02 00 00 The object is not found in the object directory
0x06 04 00 41 The object cannot be mapped into the PDO
0x06 04 00 42 The number and/or length of mapped objects would exceed the PDO length
0x06 04 00 43 General parameter incompatibility
0x06 04 00 47 General internal error in device
0x06 06 00 00 Access interrupted due to hardware error
0x06 07 00 10 Data type or parameter length do not agree or are unknown
0x06 07 00 12 Data type does not agree, parameter length too great
0x06 07 00 13 Data type does not agree, parameter length too short
0x06 09 00 11 Sub-index not present
0x06 09 00 30 General value range error
0x06 09 00 31 Value range error: parameter value too great
0x06 09 00 32 Value range error: parameter value too small
0x06 0A 00 23 Resource not available
0x08 00 00 00 General error
0x08 00 00 21 Access not possible due to local application
0x08 00 00 22 Access not possible due to current device status

Further, manufacturer-specific error codes have been introduced for register communication (index 0x4500,
0x4501):

SDO error code Explanation
0x06 02 00 11 Invalid table: Table or channel not present
0x06 02 00 10 Invalid register: table not present
0x06 01 00 22 Write protection still set
0x06 07 00 43 Incorrect number of function arguments
0x06 01 00 21 Function still active, try again later
0x05 04 00 40 General routing error
0x06 06 00 21 Error accessing BC table
0x06 09 00 10 General error communicating with terminal
0x05 04 00 47 Time-out communicating with terminal

5.4.6 EL6751- SDO communication
CANopen SDO (Service Data Object) communication is used to read or write any parameters in the
CANopen bus node's object directory. The EL6751 CANopen terminal uses the SDO communication for the
configuration of the communication parameters when starting up. Two types of application-specific SDO
communication are additionally possible:

1. Downloading Application-Specific Parameters when Starting Up

The appropriate parameters are to be entered here in the System Manager for the corresponding node in the
"SDO" tab. The objects that result from the configuration in the CAN node tab appear in square brackets.
Any desired number of object directory entries can then be inserted.

Parameterization and commissioning

EL6751120 Version: 4.0.0

Fig. 117: SDO tab, editing an SDO entry

The terminal expects a positive acknowledgement of the parameter download from the relevant bus device.
If it was not possible to write a parameter (the bus device has aborted the SDO) the terminal then attempts
to read the corresponding value back and to compare it with the value that was to be written. This is because
it could, for instance, be a read-only value, and therefore already correctly configured within the bus device.
If the values match the terminal goes to the next parameter entry.

2. Upload and Download at Runtime via ADS

It is possible to perform SDO accesses to the bus devices' object directories using Beckhoff's ADS
communication when the system is running. This is also possible from the PLC, from the NC, from the OPC
server, from ActiveX controls or from any other ADS device.

The whole SDO protocol is handled by the terminal. Using the ADS Write or ADS Read functions the
parameters are transferred to the terminal, and the data is transferred (write) or fetched (read). The
"IDXGRP" parameter here corresponds to the 16-bit index in the CANopen object directory, while
"IDXOFFS" corresponds to the 8 bit sub-index in the CANopen object directory. Details about the ADS
function blocks can be found in the TwinCAT documentation (Beckhoff Information System).

The ADS function block parameters are represented as follows in the SDO parameters:

Parameterization and commissioning

EL6751 121Version: 4.0.0

ADSREAD / ADSWRITE

Parameter Description
NETID The NetID is a string, 23 bytes in length, and is formed by default from the IP address of

the computer with an additional two bytes. It addresses the EL6751 and can be taken from
the "ADS" tab in the System Manager.

PORT Contains the ADS device's port number - this is the port number of the CANopen bus
device that is to be addressed.

IDXGRP Corresponds to the 16 bit index in the CANopen object directory.
IDXOFFS Corresponds to the 8 bit sub-index in the CANopen object directory.
LEN The length of the parameter that is to be read or written, in bytes.
DESTADDR
(only
ADSREAD)

Contains the address of the buffer which is to receive the data that has been read. The
programmer is himself responsible for dimensioning the buffer to a size that can accept
'LEN' bytes. The buffer can be a single variable, an array or a structure, whose address
can be found with the ADR operator.

SRCADDR
(only
ADSWRITE)

Contains the address of the buffer from which the data to be written is to be fetched. The
programmer is himself responsible for dimensioning the buffer to such a size that 'LEN'
bytes can be taken from it. The buffer can be a single variable, an array or a structure,
whose address can be found with the ADR operator.

READ The ADS command is triggered by a rising edge at this input.
TIMEOUT States the time before the function is cancelled.
BUSY This output remains TRUE until the function block has executed a command, but at the

longest for the duration supplied to the 'Timeout' input. While Busy = TRUE, no new
command will be accepted at the inputs. Please note that it is not the execution of the
service but its acceptance whose time is monitored.

ERR This output is switched to TRUE if an error occurs during the execution of the command.
ERRID Contains the command-specific error code of the most recently executed command. Is

reset to 0 by the execution of a command at the inputs.

The ERRID is a 32-bit value. The Low word (bits 0 to 15) contains the general ADS ERROR CODES, while
the High word (bits 16 to 31) returns SDO-specific error codes:

MSB LSB

Bit 31 Bit 30...24 Bit 23...20 Bit 19..16 Bit 15...0
1 Bits 6 to 0 of the

SDO error code
Bits 19 to 16 of
the SDO error
code

Bits 27 to 24 of the
SDO error code

ADS ERROR code, see chapter Error
handling and diagnostics [} 180] for
meaning

If one of the values SDO Additional Code, SDO Error Code or SDO Error Class is larger than the available
data width (hidden bits set), then the value 0x2115 is returned in the High word (bits 16 to 31).

Sample: SDO Read via ADS

In the following sample program (structured text) for the use of ADS services for SDO communication, object
0x1000, sub-index 0, from the node with port number 0x1001 is read. The DeviceType is CANopen. This is
coded as UnSigned32, and is therefore 4 bytes long.

Fig. 118: ADS tab

Parameterization and commissioning

EL6751122 Version: 4.0.0

SDO_READ(

StartReading := ReadStart,
CO_Index := 16#1000,
CO_SubIndex := 16#0,
DataLength := 4,
PortNr := 16#1001,
ADSNetID:='192.168.10.11.2.1'
);

IF SDO_READ.ReadDataAvailable THEN
ReadStart := FALSE;
ReadError := SDO_READ.Error;
ReadData := SDO_READ.ReadData;
END_IF

The SDO_READ function block that has been called in turn calls the ADSREAD function a number of times.
It looks like this (starting with the variable declaration):
FUNCTION_BLOCK SDO_READ
VAR_INPUT

ADSNetID:STRING(23); (* The AMSNetID addresses the EL6751. Can be empty if only one local single cha
nnel card is present*)

PortNr:WORD; (* This Port No. addresses the CANopen Node (see System Manager) *)

CO_Index:DWORD; (* This is the Index of the CANopen Object Dictionary Entry*)

CO_SubIndex:DWORD; (* This is the Sub-Index of the CANopen Object Dictionary Entry*)

DataLength:DWORD; (* This is the Length of the CANopen Object Dictionary Entry*)

StartReading:BOOL; (* only reset to FALSE after ReadDataAvailable=TRUE*)

END_VAR

VAR_OUTPUT
ReadData:ARRAY[0..255] OF BYTE;
ReadDataAvailable:BOOL;
Error:DWORD;
END_VAR

VAR
state:BYTE := 0;
ADSREAD:ADSREAD;
END_VAR

CASE
state OF
0:
 IF StartReading THEN
 ReadDataAvailable := FALSE;
 Error := 0;
 ADSRead(
 NETID:= ADSNetID,
 PORT:= PortNr,
 IDXGRP:= CO_Index,
 IDXOFFS:= CO_SubIndex,
 LEN:= DataLength,
 DESTADDR:= ADR(ReadData),
 READ:= TRUE,
 TMOUT := T#1s
);
 IF ADSRead.err THEN
 state := 2;
 ReadDataAvailable := TRUE;
 Error := ADSRead.ErrId;
 ELSE
 state := 1;
 END_IF
 ELSE
 ADSRead(
 NETID:= ADSNetID,
 PORT:= PortNr,
 IDXGRP:= CO_Index,
 IDXOFFS:= CO_SubIndex,

Parameterization and commissioning

EL6751 123Version: 4.0.0

 LEN:= DataLength,
 DESTADDR:= ADR(ReadData),
 READ:= FALSE,
 TMOUT := T#1s
);
 END_IF
 1:
 ADSRead(READ:= FALSE);
 IF ADSRead.err THEN
 state := 2;
 ReadDataAvailable := TRUE;
 Error := ADSRead.ErrId;
 ELSE
 IF NOT ADSRead.busy THEN
 state := 2;
 ReadDataAvailable := TRUE;
 END_IF
 END_IF
 2:
 ADSRead(READ:= FALSE);
 state := 0;
END_CASE

Sample: SDO Write via ADS

In the following sample program (structured text) for the use of ADS services for SDO communication, object
0x6200, sub-index 3, from the node with port number 0x1001 is written. It concerns digital outputs to an I/O
node.
(* Data to be written *)
WriteData[0] := 16#55;

(* write Object *)
SDO_WRITE(
StartWriting := WriteStart,
CO_Index := 16#6200,
CO_SubIndex := 3,
DataLength := 1,
PortNr := 16#1001,
WriteData := WriteData,
ADSNetID:='192.168.10.11.2.1'
);
IF SDO_WRITE.WriteDataFinished THEN
WriteStart := FALSE;
WriteError := SDO_WRITE.Error;
END_IF

The SDO_WRITE function block that has been called in turn calls the ADSWRITE function a number of
times. It looks like this (starting with the variable declaration):
FUNCTION_BLOCK SDO_WRITE
VAR_INPUT

ADSNetID:STRING(23); (* The AMSNetID addresses the EL6751. Can be empty if only one local single c
hannel card is present*)
PortNr:WORD; (* The Port No. addresses the CANopen Node (see System Manager) *)
CO_Index:DWORD; (* This is the Index of the CANopen Object Dictionary Entry*)
CO_SubIndex:DWORD; (*This is the Sub-Index of the CANopen Object Dictionary Entry*)
DataLength:DWORD; (* This is the Length of the CANopen Object Dictionary Entry*)
StartWriting:BOOL; (*only reset to FALSE after WriteDataFinished=TRUE*)

WriteData:ARRAY[0..255] OF BYTE; (*This array contains the data to be written to the CANopen Object
Dictionary*)
END_VAR
VAR_OUTPUT
WriteDataFinished:BOOL;
Error:DWORD;
END_VAR
VAR
state:BYTE := 0;
ADSWRITE:ADSWRITE;
END_VAR

Parameterization and commissioning

EL6751124 Version: 4.0.0

CASE
state OF
0:
 IF StartWriting THEN
 WriteDataFinished := FALSE;
 Error := 0;
 ADSWrite(
 NETID:= ADSNetID,
 PORT:= PortNr,
 IDXGRP:= CO_Index,
 IDXOFFS:= CO_SubIndex,
 LEN:= DataLength,
 SRCADDR:= ADR(WriteData),
 WRITE:= TRUE,
 TMOUT := T#1s
);
 IF ADSWrite.err THEN
 state := 2;
 WriteDataFinished := TRUE;
 Error := ADSWrite.ErrId;
 ELSE
 state := 1;
 END_IF
 ELSE
 ADSWrite(
 NETID:= '',
 PORT:= PortNr,
 IDXGRP:= CO_Index,
 IDXOFFS:= CO_SubIndex,
 LEN:= DataLength,
 SRCADDR:= ADR(WriteData),
 WRITE:= FALSE,
 TMOUT := T#1s
);
 END_IF
1:
 ADSWrite(WRITE:= FALSE);
 IF ADSWrite.err THEN
 state := 2;
 WriteDataFinished := TRUE;
 Error := ADSWrite.ErrId;
 ELSE
 IF NOT ADSWrite.busy THEN
 state := 2;
 WriteDataFinished := TRUE;
 END_IF
 END_IF
2:
 ADSWrite(WRITE:= FALSE);
 state := 0;
END_CASE

Parameterization and commissioning

EL6751 125Version: 4.0.0

5.4.7 CANopen baud rate and bit timing
Bit Timing

The following baud rates and entries in the bit-timing register are supported by the CANopen devices:

Baud rate [kbit/s] BTR0 BTR1 Sampling Point
1000 0x00 0x14 75%
800 0x00 0x16 80%
500 0x00 0x1C 87%
250 0x01 0x1C 87%
125 0x03 0x1C 87%
100 0x04 0x1C 87%
50 0x09 0x1C 87%
20 0x18 0x1C 87%
10 0x31 0x1C 87%

The bit-timing register settings given (BTR0, BTR1) apply, for example, for the Philips 82C200, SJA1000,
Intel 80C527, Siemens 80C167 and other CAN controllers. They are optimized for the maximum bus length.

5.4.8 Identifier Allocation

Default identifier

CANopen provides default identifiers for the most important communication objects, and these are derived
from the 7-bit node address (the node ID) and a 4-bit function code in accordance with the following scheme:

Fig. 119: Schematic: CANopen default identifier

For broadcast objects the node ID is set to 0. This gives rise to the following default identifiers:

Broadcast objects

Object Function Function
code

Resulting COB ID hex / dec Object for communication Pa-
rameter / mapping

NMT Boot-Up 0 0x00 / 0 - / -
SYNC Synchronization 1 0x80 / 128 0x1005 + 0x1006 / -

Parameterization and commissioning

EL6751126 Version: 4.0.0

Peer-to-peer objects

Object Function with I/O de-
vices

Function
code

Resulting COB ID hex / dec Object for communication
Parameter / mapping

Emergency Status / error 1 0x81 - 0xFF/ 129 - 255 - / -
PDO1 (tx) dig. inputs 11 0x181 - 0x1FF / 385 - 511 0x1800 / 0x1A00
PDO1 (rx) digital outputs 100 0x201 - 0x27F/ 513-639 0x1400 / 0x1600
PDO2 (tx) analog inputs 101 0x281 - 0x2FF/ 641-767 0x1801 / 0x1A01
PDO2 (rx) analog outputs 110 0x301 - 0x37F/ 769-895 0x1401 / 0x1601
PDO3 (tx) analog inputs* 111 0x381 - 0x3FF / 897 - 1023 0x1802 / 0x1A02
PDO3 (rx) analog outputs* 1000 0x401 - 0x47F/ 1025 - 1151 0x1402 / 0x1602
PDO4 (tx) analog inputs* 1001 0x481 - 0x4FF/ 1153 - 1279 0x1803 / 0x1A03
PDO4 (rx) analog outputs* 1010 0x501 - 0x57F/ 1281 - 1407 0x1403 / 0x1603
SDO (tx) Parameter 1011 0x581 - 0x5FF/ 1409-1535 - / -
SDO (rx) Parameter 1100 0x601 - 0x67F/ 1537-1663 - / -
Guarding Life and node

guarding,
heartbeat,
boot-up message

1110 0x701 - 0x77F/ 1793-1919 (0x100C, 0x100D, 0x100E,
0x1016, 0x1017)

* For historical reasons, the Beckhoff default mapping applies to PDOs 3 and 4 in Beckhoff I/O devices. In
most configurations, PDOs 3 and 4 contain data related to analog inputs and outputs, but there can also be
"excess" data from digital I/Os, or data from special terminals. Details may be found in the Bus Coupler
documentation.

Up until version 3 of the CANopen specification, default identifiers were assigned to 2 PDOs at a time. The
Beckhoff Bus Couplers up to firmware status BA correspond to this issue of the specification. After firmware
status C0 (CANopen version 4), default identifiers are provided for up to 4 PDOs.

5.4.9 Firmware versions

Notes on Firmware 18 (FW 18 [} 190])
• By default, the EL6751 does not start transmitting the RxPDOs until one second after sending the

Startup NMT message to a CANopen node. This function can be deactivated in the "Advanced
Settings" (see fig.). In this case, immediately after the startup NMT message, the EL6751 starts
sending the RxPDo for that node.

Parameterization and commissioning

EL6751 127Version: 4.0.0

Fig. 120: Advanced Settings tab

• The terminal now also allows configuration of CANopen nodes without PDOs. These can still be used
with asynchronous services.

• The option of sending any CAN messages via the IndexGroup 0xF923 has been extended by a
function of receiving CAN messages.

5.4.10 Sending and receiving of CAN Messages (STD Frame Format)
via ADS

Sending CAN messages via ADS
AdsWrite:

NETID = AoeNetId der EL6751

PORT = 200

IDXGRP = 16#F921

IDXOFFS = 0

LEN = Length of the following DATA,

DATA[0]: 1st CAN-Message, CAN-Id Bit 0-7

DATA[1], Bit 0-2: 1st CAN-Message, CAN-Id Bit 8-10

Parameterization and commissioning

EL6751128 Version: 4.0.0

DATA[1], Bit 7: 1 = RTR (the length then indicates the number of data to be read, no data follows
the message, the next CAN message starts at DATA [3]

DATA[2]: Length of the 1st CAN-Message

DATA[3-n]: Data of the 1st CAN-Message

DATA[(n+1)]: 2nd CAN-Message, CAN-Id Bit 0-7

etc.

Enable / disable CAN messages for receiving

For receiving, the CAN IDs must first be activated.
AdsWrite:

NETID = AoeNetId der EL6751

PORT = 200

IDXGRP = 16#F923

IDXOFFS = 0

LEN = Number of CAN-IDs * 2

DATA[0]: 1st CAN-ID, Bit 0-7

DATA[1]: 1st CAN-ID, Bit 8-11,

Bit 15=0: Activate for receiving

Bit 15=1: Deactivate for receiving

DATA[2]: 2nd CAN-ID, Bit 0-7

etc.

Reading the received CAN messages
AdsRead:

NETID = AoeNetId der EL6751

PORT = 200

IDXGRP = 16#F921

IDXOFFS = 0

LEN = 640 (maximum buffer size)

The DATA has the same structure when sending the CAN messages.

The buffer in the EL6751 comprises approx. 50 CAN messages (with 8 bytes of data per frame).
This feature is available from FW18.

Parameterization and commissioning

EL6751 129Version: 4.0.0

5.4.11 Modular Device Profil Mapping of EL6751 (MDP)
The MDP mapping mode for the EL6751 is activated via the "EtherCAT" tab of the CANopen device.

Fig. 121: EtherCAT tab: Activate MDP Mapping Mode

If the "MDP Mapping (from V01.00)" radio button is activated, the following mapping options of the process
image are available for selection:

Box State

This option extends the input process image by the "NodeState" of a box.
See Index F102 Node State [} 162].

Fig. 122: Variable NoteState

Diag Flag

This option extends the input process image by the "Diag Flag" of a box.
See Index F103 CANopen Diag Flag [} 163].

Fig. 123: Variable DiagFlag

Parameterization and commissioning

EL6751130 Version: 4.0.0

PDO Toggle (/PDO State)

In order to use this option, you have to additionally set a selection at "PDO-Toggle/PDO-State" in the
characteristics of the desired TxPDO.

Fig. 124: PDO tab: Set PDO toggle selection

If the "PDOToggle" option is selected in the MDP Diaglog, the input process image is extended by the
PDOToggle bit varibale.
See Index 6004-67E4 CAN TxPDOs Toggle Node [} 152].

Fig. 125: Variable PDOToggle

If the "PDOToggle" - option is not selected in the MDP Diaglog, the selection "PDO-Toggle/PDO-State" for
TxPDO extends the input process image by the PDOState bit varibale.
See Index Index 6008-67E8 CAN TxPDOs PDOState [} 152].

Fig. 126: Variable PDOState

Parameterization and commissioning

EL6751 131Version: 4.0.0

Control

This option adds the "control flags" to the output process image.
See Index F200 Control. [} 164]

Fig. 127: Variable ControlFlags

8-Byte Align of PDOs

If this option is set, each CAN PDO occupies 8 bytes in the EtherCAT process data, even if it is smaller than
8 bytes.

If this option is not set, the CAN PDOs in the EtherCAT process data are appended one after the other.

Maximum / Minimum Diagnosis

The minimal diagnosis contains objects from the CAN state (object 0xF108 [} 163]).

Fig. 128: Minimum diagnosis

The maximum diagnosis is extended and contains objects from the CAN status (Object 0xF108 [} 163]) and
the diagnosis of the CANopen Master (Object 0x101 [} 162]).

Parameterization and commissioning

EL6751132 Version: 4.0.0

Fig. 129: Maximum Diagnosis

Parameterization and commissioning

EL6751 133Version: 4.0.0

5.5 EtherCAT communication EL6751

5.5.1 CANopen master

5.5.1.1 EtherCAT State Machine
The EL6751 can be configured in several ways:

1. Configuration of the EL6751 with StartUp SDOs [} 133]: Here, the StartUp SDOs are calculated in the
EtherCAT configurator and transferred to the EtherCAT master, in the same way as is carried out, for
example, in the TwinCAT System Manager.

2. Configuration of the EL6751 by scanning the CAN bus [} 135]: Here, the EL6751 is ordered to scan the
CAN bus and to save the CANopen configuration found there in the InfoData objects.

3. Configuration of the EL6751 with Backup Parameter Storage [} 137]: Here, the configuration of the
CANopen slave is stored in the flash memory of the EL6751 and need only be transmitted once.

Configuration of the EL6751 with StartUp SDOs

The following flow chart shows the sequence of the configuration of the EL6751 with StartUp SDOs:

Parameterization and commissioning

EL6751134 Version: 4.0.0

Fig. 130: Flow chart for the EL6751 with Start SDOs

After a power-on, the EL6751 is in the INIT state and has no CANopen configuration. The CAN controller is
in the OFFLINE state.

CAN bus parameters

The CANopen configuration is carried out via SDO download in the PREOP state. The objects to be loaded
must be transmitted either with Complete Access or with consistency nesting (first set SubIndex 0 to 0, then
write SubIndex 1-n, then set SubIndex 0 to n). Care should thereby be taken to always start with object
0xF800. After receiving the object 0xF800, the EL6751 switches the CAN controller with the appropriate
baud rate from 0xF800:02 to ONLINE.

Parameterization and commissioning

EL6751 135Version: 4.0.0

CANopen slave configuration

After object 0xF800, the objects 0x8yy0, 0x8yy6 (if the CANopen slave has CAN TxPDOs), 0x8yy8 (if the
CANopen slave has CAN RxPDOs) and 0x8yy3 (if application-specific StartUp-SDOs are to be sent to the
CANopen slave before the sending of the CAN Start Node command) must be transmitted in this order for
each CANopen slave to be configured. yy is to be incremented (starting from 0) for each CANopen slave to
be configured.

PDO Mapping

For each configured CANopen slave, there is an EtherCAT RxPDO (if the CANopen slave has CAN
RxPDOs) and an EtherCAT TxPDO (if the CANopen slave has CAN TxPDOs). The PDO mapping of the
EtherCAT PDOs is automatically calculated by the EL6751 after the download of the respective 0x8yyz
objects and can be read. The PDO mapping objects 0x16yy and 0x1Ayy thereby belong to the configuration
objects 0x8yyz. The PDO mapping objects can only be written with the values that the EL6751 has
calculated itself. The writing of the PDO mapping thus serves only to check the PDO mapping calculated by
the EtherCAT configurator and can therefore be omitted.

PDO Assign

In addition, there are a few other EtherCAT PDOs that contain control, status and diagnostic information.
These PDOs are selected via the PDO Assign. It should thereby be ensured that all EtherCAT PDOs that are
assigned to the configured CANopen slaves (PDO number <= 128) always appear in the PDO Assign. With
regard to the order of the PDOs in the PDO Assign, it is important to ensure that the index of the assigned
EtherCAT PDO increases with each entry in the corresponding PDO Assign object. If the EtherCAT master
does not transmit any PDO Assign in the StartUp SDOs, then PDOs 0x1A83 and 0x1A85 are assigned for
status and diagnosis.

Cyclic CANopen communication

During the transition to SAFEOP, the EL6751 checks the length configured in the Sync Manager channels 2
and 3 against the length calculated from PDO Mapping and PDO Assign. The SAFEOP state is only adopted
if these lengths match. In the SAFEOP state, the EL6751 starts the boot-up of the configured CANopen
slaves. After the transmission of all CAN StartUp SDOs, the respective CANopen slave is started with the
‘Start Node’ message and the CAN PDO communication is active. All outputs in the CAN RxPDOs are
thereby set to 0. As soon as the EL6751 has been switched to OP, the data from the EtherCAT outputs are
also adopted into the CAN RxPDOs.

Configuration of the EL6751 by scanning the CAN bus

The following flow chart shows the sequence of the configuration of the EL6751 by scanning the CAN bus:

Parameterization and commissioning

EL6751136 Version: 4.0.0

Fig. 131: Flow chart for EL6751 with scanning of the CAN bus

After a power-on, the EL6751 is in the INIT state and has no CANopen configuration. The CAN controller is
in the OFFLINE state.

Scanning the CAN bus

The scanning of the CAN bus can be started in the PREOP state, provided that no CANopen configuration
has been loaded yet. To this end, the desired baud rate must be written to entry 0xF002:01 (SDO download).
The EL6751 switches the CAN controller with the appropriate baud rate to ONLINE and scans the CAN bus.
By cyclically reading (SDO upload) the entries 0xF002:02 or 0xF002:03, the EtherCAT master can determine
the progress of the scanning of the CAN bus.

Parameterization and commissioning

EL6751 137Version: 4.0.0

Reading the CANopen slave configuration

After completion of the scan, the InfoData objects 0x9yy0, 0x9yy8 and 0x9yyA contain the CANopen slave
configuration found. The number of CANopen slaves found can be read via entry 0xF002:03 or object
0xF040. The EtherCAT master can now read the InfoData objects 0x9yyz, generate the StartUp objects
0x8yyz from them and proceed according to the Configuration of the EL6751 with StartUp SDOs [} 133].

Creating the Backup Parameter Storage

As an alternative to reading the InfoData, the Backup Parameter Storage can also be created by writing the
value 0x65766173 to entry 0x1010:01. Subsequently, the EL6751 must be switched to INIT and with
configuration

Configuration of the EL6751 with Backup Parameter Storage

The following flow chart shows the sequence of the configuration of the EL6751 with Backup Parameter
Storage:

Fig. 132: Flow chart for EL6751 with Backup Parameter Storage

Parameterization and commissioning

EL6751138 Version: 4.0.0

After a power-on, the EL6751 is in the INIT state and has no CANopen configuration. The CAN controller is
in the OFFLINE state.

CAN Bus parameter / CANopen slave configuration

The configuration stored in the Backup Parameter Storage object 0x10F2 is loaded during the transition from
INIT to PREOP. Since the StartUp SDOs from the Configuration of the EL6751 with StartUp SDOs [} 133] are
stored in the Backup Parameter Storage object, the sequence is the same as the one described there.
Hence, the stored data are first written to object 0xF800 and then the EL6751 switches the CAN controller
with the appropriate baud rate from 0xF800:02 to ONLINE. Subsequently, the CANopen slaves are
generated according to the stored CANopen slave configuration. If the PREOP state is acknowledged, the
current CANopen configuration in objects 0xF800, 0x8yy0, 0x8yy6, 0x8yy8 and 0x8yy3 can be read.

PDO Mapping / PDO Assign

In addition, the EtherCAT master can also read the PDO Mapping and PDO Assign in the PREOP state in
order to determine the lengths of the EtherCAT process data.

Creating the Backup Parameter Storage

The Backup Parameter Storage can be created as follows:

1. Download the object 0x10F2 (in PREOP, SAFEOP or OP): in this case, the data received are stored as
Backup Parameter Storage in the flash memory

2. Scan the CAN bus and then write the value 0x65766173 to entry 0x1010:01: here, the EL6751
automatically generates the Backup Parameter Storage from the InfoData 0x9yy0, 0x9yy8 and 0x9yyA and
stores it in the flash memory.

In both cases the EL6751 is automatically rebooted after 5 s (reverts to INIT with the AL status code 0x60).
Furthermore, all SDO downloads of the objects 0xF800 or 0x8yyz are rejected.

Deleting the Backup Parameter Storage

In order to load a new Backup Parameter Storage or to simply delete the existing one, the value
0x64616F6C has to be written to entry 0x1011:01.

5.5.1.2 Synchronization
In the EL 6751, the CAN cycle is synchronized with the EtherCAT cycle. Synchronization takes place by
default via the Sync Manager 2 event or, if there is no EtherCAT output process data, via the Sync Manager
3 event. Alternatively, the EL6751 can also be operated in the Distributed Clocks mode, in which case
synchronization takes place via the SNYC0 and SYNC1 events.

CAN cycle (Sync Multiplier = 1)

The following flow chart shows the sequence of the CAN cycle if a CAN cycle is also executed with each
EtherCAT cycle (Sync Multiplier = 1 (0x1C32:02 == 0xF800:04 or 0x1C32:02 == 0 (default) or 0xF800:04 ==
0)). If the cycle time of the EtherCAT master (0x1C32:05) is not transmitted in the StartUp SDOs (or the
Backup Parameter Storage object) and no Distributed Clocks mode is set, then 0x1C32:05 = 0 and, hence,
the Sync Multiplier = 1.

Parameterization and commissioning

EL6751 139Version: 4.0.0

Fig. 133: Flow chart for CAN cycle (Sync Multiplier = 1)

Synchronization with SM2 (SM3) event

When receiving the EtherCAT process data telegram, the SM2 event (SM3 if no EtherCAT output data are
configured, i.e. only CANopen slaves without CAN RxPDOs) is generated by the EtherCAT slave controller,
thus starting the CAN cycle. If synchronous CAN PDOs are configured, they will be dealt with at the
beginning. Following the preparation of CAN transmit PDOs, the SYNC message will initially be sent.
Because some CANopen slaves react strangely if their RxPDOs are received before they have sent their
TxPDOs, a delay can be set for the TxPDOs in 0xF800:0E. After sending the SYNC message, the EL6751
waits until this delay has expired before sending any further CAN messages. After that, the synchronous
RxPDOs are transmitted first, followed by the asynchronous RxPDOs (if they have changed or if the event
time has expired). If the synchronous RxPDOs have been sent, the expiry of the input shift time is waited for.
Subsequently, the receipt of the synchronous TxPDOs is checked. If the transmission type of a TxPDO is set
to 1, the EL6751 expects a RxPDO in each cycle until the time T4; if this has not been received, the Node
State of the CANopen slave (0xF102:yy) is set to 0x28 for one cycle. If the next SM2 (SM3) event is received
before the CAN cycle is completed, the Cycle Exceed counter (0x1C32:0B or 0x1C33:0B) is incremented
and a CAN cycle is omitted.

Parameterization and commissioning

EL6751140 Version: 4.0.0

If only asynchronous PDOs are configured, then the process is much simpler. After receiving the SM2 event,
the asynchronous CAN RxPDOs to be sent are determined (data has changed or event time has expired)
and sent. Then the CAN TxPDOs received since the end of the last cycle are copied to the EtherCAT input
data. If the Sync Managers 2 and 3 are set to 1-buffer mode and the input shift time is not equal to 0, the
copying of the status and diagnosis to the EtherCAT input data is delayed until this time has expired. The
advantage of this is that CAN TxPDOs received within this time window can be copied directly into the
EtherCAT input data. However, care must be taken when setting the input shift time to ensure that the
EtherCAT input data can be copied completely before the next EtherCAT cycle begins, otherwise the
working the counter would not be okay.

Synchronization with SYNC0/SYNC1 event

The Distributed Clocks mode only makes sense if synchronous CAN PDOs are present. In this case, the
CAN cycle is started by the SYNC0 event. The sending of the SYNC message is delayed until the SYNC1
event occurs, so that the SYNC message is sent with a jitter of maximum 500 ns. The remaining sequence
of the CAN cycle corresponds to that in the case of synchronization with SM2 event.

CAN cycle (Sync Multiplier > 1)

The following flow chart shows the sequence of the CAN cycle if a CAN cycle is also executed with every nth

EtherCAT cycle (n > 1) (Sync Multiplier > 1 (n*0x1C32:02 == 0xF800:04 and 0x1C32:02 != 0 and
0xF800:04 != 0)). If no Distributed Clocks mode is set, then the cycle time of the EtherCAT master
(0x1C32:02) must be transmitted in the StartUp SDOs (or the Backup Parameter Storage object).

Parameterization and commissioning

EL6751 141Version: 4.0.0

Fig. 134: Flow chart for CAN cycle (Sync Multiplier > 1)

Synchronization with SM2 (SM3) event

Whereas in operating mode Sync Multiplier = 1 the synchronous RxPDOs must be sent completely before
the EtherCAT input data is updated, this can extend over n EtherCAT cycles in operation with Sync Multiplier
= n. The beginning of the CAN cycle is still the same as in operation with Sync Multiplier = 1. After the
TxPDO delay has expired (on the flow chart it is assumed that the TxPDO delay is smaller than the input
shift time), transmission of the synchronous RxPDOs begins. If the input shift time expires during that time,
the EtherCAT input data containing the most recent data from all TxPDOs received up to this time is
updated. After that, the next event is waited for each time until the last EtherCAT cycle within the CAN cycle
is reached. In the middle EtherCAT cycles, the data of the asynchronous RxPDOs to be sent always receive
the latest value, whereas the data of the synchronous RxPDOs are only updated in the first EtherCAT cycle.

Parameterization and commissioning

EL6751142 Version: 4.0.0

In the last EtherCAT cycle, the synchronous RxPDOs are checked following the expiry of the input shift time
(as in operation with Sync Multiplier = 1). A Sync Multiplier > 1 is ineffective if only asynchronous PDOs are
configured.

Synchronization with SYNC0/SYNC1 event

If distributed clocks are switched on, the CAN cycle would be started by the SYNC0 event. The sending of
the SYNC message is delayed until the SYNC1 event occurs, so that the SYNC message is sent with a jitter
of maximum 500 ns. The remaining sequence of the CAN cycle corresponds to that in the case of
synchronization with SM2 event.

5.5.1.3 Object description and parameterization

EtherCAT XML Device Description
The display matches that of the CoE objects from the EtherCAT ESI Device Description (XML).We
recommend downloading the latest XML file from the download area of the Beckhoff website and
installing it according to installation instructions.

Parameterization via the CoE list (CAN over EtherCAT)
The EtherCAT device is parameterized via the CoE-Online tab (double-click on the respective
object) or via the Process Data tab (allocation of PDOs). Please note the following general CoE
notes [} 44] when using/manipulating the CoE parameters:
• Keep a startup list if components have to be replaced
• Differentiation between online/offline dictionary, existence of current XML description
• use “CoE reload” for resetting changes

Presentation of the object description with "MDP Mapping“
The following object description uses the "Modular Device Profile Mapping" (MDP) for the mapping
of the terminal information to the process image.

5.5.1.3.1 Standard objects (0x1000-0x1FFF)
The standard objects have the same meaning for all EtherCAT slaves.

Index 1000 Device type
Index (hex) Name Meaning Data type Flags Default
1000:0 Device type Device type of the EtherCAT slave: The Lo-Word

contains the CoE profile used (5001). The Hi-Word
contains the module profile according to the modular
device profile.

UINT32 RO 0x00001389
(5001dec)

Index 1008 Device name
Index (hex) Name Meaning Data type Flags Default
1008:0 Device name Device name of the EtherCAT slave STRING RO EL6751

Index 1009 Hardware version
Index (hex) Name Meaning Data type Flags Default
1009:0 Hardware version Hardware version of the EtherCAT slave STRING RO

Index 100A Software version
Index (hex) Name Meaning Data type Flags Default
100A:0 Software version Firmware version of the EtherCAT slave STRING RO

https://download.beckhoff.com/download/configuration-files/io/ethercat/xml-device-description/Beckhoff_EtherCAT_XML.zip
https://download.beckhoff.com/download/configuration-files/io/ethercat/xml-device-description/Beckhoff_EtherCAT_XML.zip

Parameterization and commissioning

EL6751 143Version: 4.0.0

Index 1010 Store parameters
Index (hex) Name Meaning Data type Flags Default
1010:0 Store parameters Save the CANopen configuration after scanning the CAN

bus with entry 0xF002:01
UINT8 RO

1010:01 SubIndex 001 If you set this entry to ‘0x65766173’, the Backup
Parameter Storage (object 0x10F2 [} 144]) is generated
from the InfoData 0x9yyz.

UINT32 RW

Index 1011 Restore default parameters
Index (hex) Name Meaning Data type Flags Default
1011:0 Restore default

parameters
Restore default parameters UINT8 RO

1011:01 SubIndex 001 If you set this entry to ‘0x64616F6C’, all backup objects
are reset to the delivery state.

UINT32 RW

Index 1018 Identity
Index (hex) Name Meaning Data type Flags Default
1018:0 Identity Information for identifying the slave UINT8 RO 0x04 (4dec)
1018:01 Vendor ID Vendor ID of the EtherCAT slave UINT32 RO 0x00000002

(2dec)
1018:02 Product code Product code of the EtherCAT slave UINT32 RO 0x1A5F3052

(442445906dec
)

1018:03 Revision Revision number of the EtherCAT slave; the low word (bit
0-15) indicates the special terminal number, the high
word (bit 16-31) refers to the device description

UINT32 RO 0x00100000
(1048576dec)

1018:04 Serial number Serial number of the EtherCAT slave; the low byte (bit
0-7) of the low word contains the year of production, the
high byte (bit 8-15) of the low word contains the week of
production, the high word (bit 16-31) is 0

UINT32 RO 0x00000000
(0dec)

Index 10F0 Backup parameter handling
Index (hex) Name Meaning Data type Flags Default
10F0:0 Backup parameter

handling
Information for standardized loading and saving of
backup entries

UINT8 RO

10F0:01 Checksum Checksum of the Backup Parameter Storage (object
0x10F2 [} 144], word 2-3)

UINT32 RO

Parameterization and commissioning

EL6751144 Version: 4.0.0

Index 10F2 Backup parameter storage
Index Name Meaning Data type Flags Default
10F2:0 Backup parameter

storage
If this object is used, no StartUp SDOs may be
transmitted in the PREOP state, since the Backup
Parameter Storage contains the complete StartUp SDOs
(see Configuration of the EL6751 with Backup Parameter
Storage [} 137]). The EL6751 is rebooted 5 s after the
flashing of the Backup Parameter Storage (switches to
INIT with AL status code = 0x60). The data have the
following meaning:

OCTET-
STRING[n]

RW

Word-Offset Description
0 Command: with 0xC0DE, the received

data are stored in the flash memory
1 Length of the data from word offset 4 in

bytes
2-3 Checksum, which is calculated locally
4 Index of the object of the 1st StartUp

SDO
5 len1: Length of the object of the 1st

StartUp SDO as CompleteAccess (from
SubIndex 0) in bytes

6-n1 Data of the object of the 1st StartUp SDO
as CompleteAccess (n1 = 2*((len1+1)/
2)+5)

n1+1 Index of the object of the 2nd StartUp
SDO

n1+2 len2: Length of the object of the 2nd

StartUp SDO as CompleteAccess (from
SubIndex 0) in bytes

(n1+3)-n2 Data of the object of the 2nd StartUp SDO
as CompleteAccess (n2 = 2*((len2+1)/
2)+n1+2)

...
m Index of the object of the 3rd StartUp

SDO
m+1 len3: Length of the object of the 3rd

StartUp SDO as CompleteAccess (from
SubIndex 0) in bytes

(m+2)-n3 Data of the object of the 3rd StartUp SDO
as CompleteAccess (n3 = 2*((len3+1)/
2)+m+1)

Index 1600-167E RxPDO-Map Node yyy
Index (hex) Name Meaning Data type Flags Default
1600+n:0 RxPDO-Map Node

yyy
For each configured CANopen slave there is one
RxPDO, which contains all CAN RxPDOs of the
CANopen slave. The CAN RxPDOs written in object
0x8008 [} 157]+ (n*16) are located in the RxPDO
mapping object 0x1600+n. If a CANopen slave contains
no CAN RxPDOs, then neither object 0x8008
[} 157]+16*n nor the PDO mapping object 0x1600+n
exist. These PDOs are mandatory and must always be
contained in the PDO Assign object 0x1C12 [} 149],
depending on the configured CANopen slaves. SubIndex
0 contains the number of CAN RxPDOs of the (n+1)th

configured CANopen slave. The RxPDO mapping objects
0x1600-0x167E can be written in order to change the
order of the CAN RxPDOs of a configured CANopen
slave within its EtherCAT RxPDO. If a RxPDO mapping
object of the EtherCAT RxPDOs 1-127 is written, then all
PDO mapping objects of the EtherCAT RxPDOs 1-127
and the EtherCAT TxPDOs 1-127 must always be
written.

UINT8 RW

(1600+n):01 first mapped CAN RxPDO of the (n+1)th configured
CANopen slave

UINT32 RW

... ..
(1600+n):m last mapped CAN RxPDO of the (n+1)th configured

CANopen slave
UINT32 RW

Parameterization and commissioning

EL6751 145Version: 4.0.0

Index 1685 RxPDO-Map Control
Index (hex) Name Meaning Data type Flags Default
1685:0 RxPDO-Map Control The control word (index 0xF200 [} 164]) can be mapped

into the EtherCAT output data with this PDO. This PDO
is optional.

UINT8 RO 0x02 (2dec)

1685:01 SubIndex 001 1. PDO Mapping entry (object 0xF200 (Control), entry
0x01 (CAN Controller Auto Reset when BUS-OFF))

UINT32 RO 0xF200:01, 1

1685:02 SubIndex 002 2. PDO Mapping entry (15 bits align) UINT32 RO 0x0000:00, 15

Index 1881 TxPDO-Par PDO State
Index (hex) Name Meaning Data type Flags Default
1881:0 TxPDO-Par PDO

State
PDO Parameter TxPDO 130 UINT8 RO 0x06 (6dec)

1881:06 Exclude TxPDOs Specifies the TxPDOs (index of TxPDO mapping objects)
that must not be transferred together with TxPDO 130

OCTET-
STRING[14]

RO 80 1A 00 00
00 00 00 00
00 00 00 00
00 00

Index 1882 TxPDO-Par CANopen Diag Flag
Index (hex) Name Meaning Data type Flags Default
1882:0 TxPDO-Par CANopen

Diag Flag
PDO parameter TxPDO 131 UINT8 RO 0x06 (6dec)

1882:06 Exclude TxPDOs Specifies the TxPDOs (index of TxPDO mapping objects)
that must not be transferred together with TxPDO 131

OCTET-
STRING[14]

RO 80 1A 00 00
00 00 00 00
00 00 00 00
00 00

Index 1883 TxPDO-Par Node State
Index (hex) Name Meaning Data type Flags Default
1883:0 TxPDO-Par Node

State
PDO parameter TxPDO 132 UINT8 RO 0x06 (6dec)

1883:06 Exclude TxPDOs Specifies the TxPDOs (index of TxPDO mapping objects)
that must not be transferred together with TxPDO 132

OCTET-
STRING[14]

RO 80 1A 00 00
00 00 00 00
00 00 00 00
00 00

Index 1884 TxPDO-Par Extended Diag
Index (hex) Name Meaning Data type Flags Default
1884:0 TxPDO-Par Extended

Diag
PDO parameter TxPDO 133 UINT8 RO 0x06 (6dec)

1884:06 Exclude TxPDOs Specifies the TxPDOs (index of TxPDO mapping objects)
that must not be transferred together with TxPDO 133

OCTET-
STRING[14]

RO 80 1A 85 1A
00 00 00 00
00 00 00 00
00 00

Index 1885 TxPDO-Par CAN Status
Index (hex) Name Meaning Data type Flags Default
1885:0 TxPDO-Par CAN

status
PDO parameter TxPDO 134 UINT8 RO 0x06 (6dec)

1885:06 Exclude TxPDOs Specifies the TxPDOs (index of TxPDO mapping objects)
that must not be transferred together with TxPDO 134

OCTET-
STRING[14]

RO 80 1A 84 1A
00 00 00 00
00 00 00 00
00 00

Index 1888 TxPDO-Par CAN TxPDO Toggle 1
Index (hex) Name Meaning Data type Flags Default
1888:0 TxPDO-Par CAN

TxPDO Toggle 1
PDO parameter TxPDO 137 UINT8 RO 0x06 (6dec)

1888:06 Exclude TxPDOs Specifies the TxPDOs (index of TxPDO mapping objects)
that must not be transferred together with TxPDO 137

OCTET-
STRING[14]

RO 80 1A 00 00
00 00 00 00
00 00 00 00
00 00

Parameterization and commissioning

EL6751146 Version: 4.0.0

Index 1889 TxPDO-Par CAN TxPDO Toggle 2
Index (hex) Name Meaning Data type Flags Default
1889:0 TxPDO-Par CAN

TxPDO Toggle 2
PDO parameter TxPDO 138 UINT8 RO 0x06 (6dec)

1889:06 Exclude TxPDOs Specifies the TxPDOs (index of TxPDO mapping objects)
that must not be transferred together with TxPDO 138

OCTET-
STRING[14]

RO 80 1A 00 00
00 00 00 00
00 00 00 00
00 00

Index 1A00-1A7E TxPDO-Map Node yyy
Index (hex) Name Meaning Data type Flags Default
1A00+n:0 TxPDO-Map Node

yyy
For each configured CANopen slave there is one
TxPDO, which contains all CAN TxPDOs of the
CANopen slave. The CAN TxPDOs written in object
0x8006 [} 156]+ (n*16) are located in the TxPDO
mapping object 0x1A00+n. If a CANopen slave contains
no CAN TxPDOs, then neither object 0x8006
[} 156]+16*n nor the PDO mapping object 0x1A00+n
exist. These PDOs are mandatory and must always be
contained in the PDO Assign object 0x1C13 [} 149],
depending on the configured CANopen slaves. SubIndex
0 contains the number of CAN RxPDOs of the (n+1)th

configured CANopen slave. The TxPDO mapping objects
0x1A00-0x1A7E can be written in order to change the
order of the CAN TxPDOs of a configured CANopen
slave within its EtherCAT TxPDO. If a TxPDO mapping
object of the EtherCAT TxPDOs 1-127 is written, then all
PDO mapping objects of the EtherCAT TxPDOs 1-127
and the EtherCAT RxPDOs 1-127 must always be
written.

UINT8 RW

(1A00+n):01 first mapped CAN TxPDO of the (n+1)th configured
CANopen slave

UINT32 RW

...
(1A00+n):m last mapped CAN TxPDO of the (n+1)th configured

CANopen slave
UINT32 RW

Index 1A81 TxPDO-Map PDO State
Index (hex) Name Meaning Data type Flags Default
1A81:0 TxPDO-Map PDO

State
In this PDO there is a bit for each configured CANopen
slave that is set if the CAN communication to the
CANopen slave is not OK (a more detailed error cause
can be found in 0xF102 [} 162]:m for the mth configured
CANopen slave). If the bit is set, the data of the
associated TxPDO m is to be ignored. This PDO is
optional.

UINT8 RO Number of
configured
CANopen
slaves

1A81:01 PDO state of the first configured CANopen slave
(configured via the objects 0x800z)

UINT32 RO 0x1800:07, 1

...
1A81:m PDO state of the last (mth) configured CANopen slave

(configured via the objects 0x800z+(m-1)*16 (1 <= m <=
127))

UINT32 RO 0x1800+
(m-1):07, 1

Index 1A82 TxPDO-Map CANopen Diag Flag
Index (hex) Name Meaning Data type Flags Default
1A82:0 TxPDO-Map

CANopen Diag Flag
In this PDO there is a bit for each configured CANopen
slave that is set if the diagnostic information (object
0xF103 [} 163]) has changed. This PDO is optional.

UINT8 RO Number of
configured
CANopen
slaves

1A82:01 Diag Flag of the first configured CANopen slave
(configured via the objects 0x800z)

UINT32 RO 0xF103:01,1

...
1A82:m Diag Flag of the last (mth) configured CANopen slave

(configured via the objects 0x800z+(m-1)*16 (1 <= m <=
127))

UINT32 RO 0xF103:m,1

Parameterization and commissioning

EL6751 147Version: 4.0.0

Index 1A83 TxPDO-Map Node State
Index (hex) Name Meaning Data type Flags Default
1A83:0 TxPDO-Map Node

State
In this PDO there is a byte for each configured CANopen
slave that contains the communication state (object
0xF102 [} 162]) to the CANopen slave. This PDO is
optional.

UINT8 RO 0x00 (0dec)

1A83:01 Node state of the first configured CANopen slave
(configured via the objects 0x800z)

UINT32 RO 0xF102:01,8

...
1A83:m Node state of the last (mth) configured CANopen slave

(configured via the objects 0x800z+(m-1)*16 (1 <= m <=
127))

UINT32 RO 0xF102:m,8

Index 1A84 TxPDO-Map Extended Diag
Index (hex) Name Meaning Data type Flags Default
1A84:0 TxPDO-Map

Extended Diag
This PDO contains the CAN status (object 0xF108
[} 163]) and the CANopen master diagnostics (object
0xF101 [} 162]) and is optional

UINT8 RO 0x16 (22dec)

1A84:01 SubIndex 001 1. PDO Mapping entry (11 bits align) UINT32 RO 0x0000:00, B
1A84:02 SubIndex 002 2. PDO Mapping entry (object 0xF101 (Extended Diag),

entry 0x0C (SYNC Toggle))
UINT32 RO 0xF101:0C, 1

1A84:03 SubIndex 003 3. PDO Mapping entry (object 0xF101 (Extended Diag),
entry 0x0D (Device Diag))

UINT32 RO 0xF101:0D, 1

1A84:04 SubIndex 004 4. PDO Mapping entry (1 bits align) UINT32 RO 0x0000:00, 1
1A84:05 SubIndex 005 5. PDO Mapping entry (object 0xF101 (Extended Diag),

entry 0x0F (PDO Toggle))
UINT32 RO 0xF101:0F, 1

1A84:06 SubIndex 006 6. PDO Mapping entry (object 0xF101 (Extended Diag),
entry 0x10 (PDO State))

UINT32 RO 0xF101:10, 1

1A84:07 SubIndex 007 7. PDO Mapping entry (object 0xF101 (Extended Diag),
entry 0x11 (Cycle Counter))

UINT32 RO 0xF101:11, 16

1A84:08 SubIndex 008 8. PDO Mapping entry (object 0xF101 (Extended Diag),
entry 0x12 (Slave Status Counter))

UINT32 RO 0xF101:12, 8

1A84:09 SubIndex 009 9. PDO Mapping entry (8 bits align) UINT32 RO 0x0000:00, 8
1A84:0A SubIndex 010 10. PDO Mapping entry (object 0xF101 (Extended Diag),

entry 0x14 (Cycle Time))
UINT32 RO 0xF101:14, 16

1A84:0B SubIndex 011 11. PDO Mapping entry (16 bits align) UINT32 RO 0x0000:00, 16
1A84:0C SubIndex 012 12. PDO Mapping entry (object 0xF108 (CAN Status),

entry 0x21 (RX error counter))
UINT32 RO 0xF108:21, 8

1A84:0D SubIndex 013 13. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x22 (TX error counter))

UINT32 RO 0xF108:22, 8

1A84:0E SubIndex 014 14. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x01 (Bus-Off))

UINT32 RO 0xF108:01, 1

1A84:0F SubIndex 015 15. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x02 (warning limit reached))

UINT32 RO 0xF108:02, 1

1A84:10 SubIndex 016 16. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x03 (RX overflow))

UINT32 RO 0xF108:03, 1

1A84:11 SubIndex 017 17. PDO Mapping entry (1 bits align) UINT32 RO 0x0000:00, 1
1A84:12 SubIndex 018 18. PDO Mapping entry (object 0xF108 (CAN Status),

entry 0x05 (TX overflow))
UINT32 RO 0xF108:05, 1

1A84:13 SubIndex 019 19. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x06 (Ack error))

UINT32 RO 0xF108:06, 1

1A84:14 SubIndex 020 20. PDO Mapping entry (2 bits align) UINT32 RO 0x0000:00, 2
1A84:15 SubIndex 021 21. PDO Mapping entry (8 bits align) UINT32 RO 0x0000:00, 8
1A84:16 SubIndex 022 22. PDO Mapping entry (16 bits align) UINT32 RO 0x0000:00, 16

Parameterization and commissioning

EL6751148 Version: 4.0.0

Index 1A85 TxPDO-Map CAN Status
Index (hex) Name Meaning Data type Flags Default
1A85:0 TxPDO-Map CAN

status
This PDO contains the CAN status (object 0xF108
[} 163]) and is optional

UINT8 RO 0x0B (11dec)

1A85:01 SubIndex 001 1. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x01 (Bus-Off))

UINT32 RO 0xF108:01, 1

1A85:02 SubIndex 002 2. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x02 (warning limit reached))

UINT32 RO 0xF108:02, 1

1A85:03 SubIndex 003 3. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x03 (RX overflow))

UINT32 RO 0xF108:03, 1

1A85:04 SubIndex 004 4. PDO Mapping entry (1 bits align) UINT32 RO 0x0000:00, 1
1A85:05 SubIndex 005 5. PDO Mapping entry (object 0xF108 (CAN Status),

entry 0x05 (TX overflow))
UINT32 RO 0xF108:05, 1

1A85:06 SubIndex 006 6. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x06 (Ack error))

UINT32 RO 0xF108:06, 1

1A85:07 SubIndex 007 7. PDO Mapping entry (2 bits align) UINT32 RO 0x0000:00, 2
1A85:08 SubIndex 008 8. PDO Mapping entry (8 bits align) UINT32 RO 0x0000:00, 8
1A85:09 SubIndex 009 9. PDO Mapping entry (16 bits align) UINT32 RO 0x0000:00, 16
1A85:0A SubIndex 010 10. PDO Mapping entry (object 0xF108 (CAN Status),

entry 0x21 (RX error counter))
UINT32 RO 0xF108:21, 8

1A85:0B SubIndex 011 11. PDO Mapping entry (object 0xF108 (CAN Status),
entry 0x22 (TX error counter))

UINT32 RO 0xF108:22, 8

Index 1A88 TxPDO-Map CAN TxPDO Toggle 1
Index (hex) Name Meaning Data type Flags Default
1A88:0 TxPDO-Map CAN

TxPDO Toggle 1
This PDO can contain a toggle bit for each CAN TxPDO.
Whether the toggle bit of a CAN TxPDO is mapped into
this PDO depends on the setting in the respective
TxPDO configuration object 0x8nn6 [} 156]. This PDO is
optional

UINT8 RO

1A88:01 first CAN TxPDO toggle bit UINT32 RO
...
1A88:n nth CAN TxPDO toggle bit (if no more than 255 CAN

TxPDO toggle bits are mapped, this is also the last CAN
TxPDO toggle bit)

UINT32 RO

Index 1A89 TxPDO-Map CAN TxPDO Toggle 2
Index (hex) Name Meaning Data type Flags Default
1A89:0 TxPDO-Map CAN

TxPDO Toggle 2
If more than 255 CAN TxPDO toggle bits are mapped,
the additional CAN TxPDO toggle bits are contained here

UINT8 RO 0x00 (0dec)

1A89:01 (n+1)th CAN TxPDO toggle bit
...
1A89:m mth CAN TxPDO toggle bit

Index 1A8A CAN TxPDO State
Index (hex) Name Meaning Data type Flags Default
1A8A:0 CAN TxPDO State-

Map
For each configured CAN TxPDO there is a bit that is set
if the CAN communication is not ok.
If this bit is set, the data of the corresponding TxPDO m
has to be ignored.

UINT8 RO Number of
configured
TxPDOs

1A8A:01 PDO State of the first configured TxPDO. UINT32 RO 0x6008:01, 1
...
1A8A:m PDO State of the last (m.) configured TxPDO TxPDO. UINT32 RO 0x67E8:02, 1

Parameterization and commissioning

EL6751 149Version: 4.0.0

Index 1C00 Sync manager type
Index (hex) Name Meaning Data type Flags Default
1C00:0 Sync manager type Using the sync managers UINT8 RO 0x04 (4dec)
1C00:01 SubIndex 001 Sync-Manager Type Channel 1: Mailbox Write UINT8 RO 0x01 (1dec)
1C00:02 SubIndex 002 Sync-Manager Type Channel 2: Mailbox Read UINT8 RO 0x02 (2dec)
1C00:03 SubIndex 003 Sync-Manager Type Channel 3: Process Data Write

(Outputs)
UINT8 RO 0x03 (3dec)

1C00:04 SubIndex 004 Sync-Manager Type Channel 4: Process Data Read
(Inputs)

UINT8 RO 0x04 (4dec)

Index 1C12 RxPDO assign
Index (hex) Name Meaning Data type Flags Default
1C12:0 RxPDO assign PDO Assign Outputs: the RxPDOs must be assigned in

the order of their indexes. The RxPDOs of the configured
CANopen slaves (0x1600 [} 144]-0x167E) must be
assigned if object 0x1C12 is transmitted in the StartUp
SDOs. It can then still be decided via RxPDO Assign
whether or not the RxPDO Control (index 0x1685 [} 145])
is transmitted in the EtherCAT output data.

UINT8 RW

1C12:01 1. allocated RxPDO (contains the index of the associated
RxPDO mapping object)

UINT16 RW

...
1C12:80 128. allocated RxPDO (contains the index of the

associated RxPDO mapping object)
UINT16 RW

Index 1C13 TxPDO assign
Index (hex) Name Meaning Data type Flags Default
1C13:0 TxPDO assign PDO Assign Inputs: the TxPDOs must be assigned in the

order of their indexes. The TxPDOs of the configured
CANopen slaves (0x1A00 [} 146]-0x1A7E) must be
assigned if object 0x1C13 is transmitted in the StartUp
SDOs. It can then still be decided via TxPDO Assign
whether or not the TxPDOs PDO State (index 0x1A81
[} 146]), DiagFlag (index 0x1A82 [} 146]), NodeState
(index 0x1A83 [} 147]), ExtendedDiag (index 0x1A84
[} 147]), CAN Status (index 0x1A85 [} 148]) and CAN
TxPDO Toggle (index 0x1A88 [} 148]) are transmitted in
the EtherCAT input data. In addition to the TxPDOs of
the configured CANopen slaves, the TxPDOs 0x1A83
and 0x1A85 are transmitted in the default settings.

UINT8 RW

1C13:01 1. allocated TxPDO (contains the index of the associated
TxPDO mapping object)

UINT16 RW

...
1C13:83 135. allocated TxPDO (contains the index of the

associated TxPDO mapping object)
UINT16 RW

Parameterization and commissioning

EL6751150 Version: 4.0.0

Index 1C32 SM output parameter
Index (hex) Name Meaning Data type Flags Default
1C32:0 SM output parameter Synchronisation parameters for the outputs UINT8 RO 0x20 (32dec)
1C32:01 Sync mode Current synchronisation mode:

• 1: Synchronous with SM 2 event
• 3: DC-Mode - Synchronous with SYNC1 event

UINT16 RW 0x0001 (1dec)

1C32:02 Cycle time Cycle time (in ns):
• Cycle time of the EtherCAT master

UINT32 RW 0x00000000
(0dec)

1C32:03 Shift time not used UINT32 RO 0x00000000
(0dec)

1C32:04 Sync modes
supported

Supported synchronization modes:
• Bit 1 = 1: Synchron with SM 2 event is supported
• Bit 2-3 = 01: DC mode is supported
• Bit 14 = 1: dynamic times (measurement through

writing of 0x1C32:08 [} 150])

UINT16 RO 0x4006
(16390dec)

1C32:05 Minimum cycle time Minimum cycle time (in ns) UINT32 RO 0x00000000
(0dec)

1C32:06 Calc and copy time Minimum time between SYNC0 and SYNC1 event (in ns,
DC mode only)

UINT32 RO 0x00000000
(0dec)

1C32:08 Command • 0: Measurement of the local cycle time is stopped
• 1: Measurement of the local cycle time is started

The entries 0x1C32:03 [} 150], 0x1C32:05 [} 150],
0x1C32:06 [} 150], 0x1C32:09 [} 150], 0x1C33:03 [} 151],
0x1C33:06 [} 150], 0x1C33:09 [} 151] are updated with
the maximum measured values.
For a subsequent measurement the measured values
are reset

UINT16 RW 0x0000 (0dec)

1C32:09 Delay time Time between SYNC1 event and output of the outputs (in
ns, DC mode only)

UINT32 RO 0x00000000
(0dec)

1C32:0B SM event missed
counter

Number of missed SM events in OPERATIONAL (DC
mode only)

UINT16 RO 0x0000 (0dec)

1C32:0C Cycle exceeded
counter

Number of occasions the cycle time was exceeded in
OPERATIONAL (cycle was not completed in time or the
next cycle began too early)

UINT16 RO 0x0000 (0dec)

1C32:0D Shift too short counter Number of occasions that the interval between SYNC0
and SYNC1 event was too short (DC mode only)

UINT16 RO 0x0000 (0dec)

1C32:20 Sync error The synchronization was not correct in the last cycle
(outputs were output too late; DC mode only)

BOOLEAN RO 0x00 (0dec)

Parameterization and commissioning

EL6751 151Version: 4.0.0

Index 1C33 SM input parameter
Index (hex) Name Meaning Data type Flags Default
1C33:0 SM input parameter Synchronisation parameters for the inputs UINT8 RO 0x20 (32dec)
1C33:01 Sync mode Current synchronisation mode:

• 1: Synchron with SM 3 Event (no outputs available)
• 3: DC - Synchron with SYNC1 Event
• 34: Synchron with SM 2 Event (outputs available)

UINT16 RW 0x0022 (34dec)

1C33:02 Cycle time as 0x1C32:02 [} 150] UINT32 RW 0x00000000
(0dec)

1C33:03 Shift time Time between SYNC0 event and reading of the inputs (in
ns, only DC mode)

UINT32 RO 0x00000000
(0dec)

1C33:04 Sync modes
supported

Supported synchronization modes:
• Bit 1: Synchronous with SM 2 Event is supported

(outputs available)
• Bit 1: Synchronous with SM 3 Event is supported

(no outputs available)
• Bit 2-3 = 01: DC mode is supported
• Bit 14 = 1: dynamic times (measurement through

writing of 0x1C32:08 [} 150] or 0x1C33:08 [} 151])

UINT16 RO 0x4006
(16390dec)

1C33:05 Minimum cycle time as 0x1C32:05 [} 150] UINT32 RO 0x00000000
(0dec)

1C33:06 Calc and copy time Time between reading of the inputs and availability of the
inputs for the master (in ns, only DC mode)

UINT32 RO 0x00000000
(0dec)

1C33:08 Command as 0x1C32:08 [} 150] UINT16 RW 0x0000 (0dec)

1C33:09 Delay time not supported UINT32 RO 0x00000000
(0dec)

1C33:0B SM event missed
counter

as 0x1C32:11 [} 150] UINT16 RO 0x0000 (0dec)

1C33:0C Cycle exceeded
counter

as 0x1C32:12 [} 150] UINT16 RO 0x0000 (0dec)

1C33:0D Shift too short counter as 0x1C32:13 [} 150] UINT16 RO 0x0000 (0dec)

1C33:20 Sync error as 0x1C32:32 [} 150] BOOLEAN RO 0x00 (0dec)

5.5.1.3.2 Profile-specific objects (0x6000-0xFFFF)
The profile-specific objects have the same meaning for all EtherCAT slaves that support the profile 5001.

Index 6000-67E0 CAN TxPDOs Node yyy
Index (hex) Name Meaning Data type Flags Default
6000+n*16:
0

CAN TxPDOs Node
yyy

This object contains the CAN TxPDOs 1-255 of the
(n+1)th configured CANopen slave. The corresponding
SubIndex is only present if the corresponding CAN
TxPDO was also configured in object 0x8006+n*16
[} 156]. The object is mapped in the TxPDO (n+1) (index
0x1A00 [} 146]+n).

UINT8 RO

(6000+n*16)
:01

Data of CAN TxPDO 1 of the (n+1)th configured
CANopen slave

OCTET-
STRING

RO

...
(6000+n*16)
:FF

Data of CAN TxPDO 255 of the (n+1)th configured
CANopen slave

OCTET-
STRING

RO

Parameterization and commissioning

EL6751152 Version: 4.0.0

Index 6004-67E4 CAN TxPDOs Toggle Node yyy
Index (hex) Name Meaning Data type Flags Default
6004+n*16:
0

CAN TxPDOs Toggle
Node yyy

This object contains the toggle bits of the CAN TxPDOs
1-255 of the (n+1)th configured CANopen slave. The bit
toggles if the associated CAN TxPDO has been received
since the previous EtherCAT input update. It does not
matter whether the CAN TxPDO was received one or
more times. The corresponding SubIndex is present only
if the toggle bit was also configured in object
0x8006+n*16 [} 156]. These toggle bits are mapped in
the TxPDOs 137/138 (index 0x1A88 [} 148] or 0x1A89
[} 148])

UINT8 RO

(6004+n*16)
:01

Toggle bit of CAN TxPDO 1 of the (n+1)th configured
CANopen slave

BOOLEAN RO

...
(6004+n*16)
:FF

Toggle bit of CAN TxPDO 255 of the (n+1)th configured
CANopen slave

BOOLEAN RO

Index 6008-67E8 CAN TxPDOs PDOState yyy
Index (hex) Name Meaning Data type Flags Default
6008+n*16:
0

CAN TxPDOs
PDOState yyy

This object contains the PDOState bits of the configured
m. CAN TxPDOs
(1 <= m <= 254) (n = (m-1) div 2)
(div: integer division)
The bit is set if the CAN communication of this TxPDO is
not ok.
If the bit is set, the data of the corresponding TxPDO n
has to be ignored.
This PDO is optional.

UINT8 RO

(6008+n*16)
:01

PDOState Bit of the 1. configured
CAN TxPDO (n = 0)

BOOLEAN RO

(6008+n*16)
:02

PDOState Bit of the 2. configured
CAN TxPDO (n = 0)

BOOLEAN RO

(6008+n*16)
:01

PDOState Bit of the 3. configured
CAN TxPDO (n = 1)

BOOLEAN RO

(6008+n*16)
:02

PDOState Bit of the 4. configured
CAN TxPDO (n = 1)

BOOLEAN RO

...
(6008+n*16)
:02

PDOState Bit of the 254. configured
CAN TxPDO (n = 126)

BOOLEAN RO

Index 7000-77E0 CAN RxPDOs Node yyy
Index (hex) Name Meaning Data type Flags Default
7000+n*16:
0

CAN RxPDOs Node
yyy

This object contains the CAN RxPDOs 1-255 of the
(n+1)th configured CANopen slave. The corresponding
SubIndex is only present if the corresponding CAN
RxPDO was also configured in object 0x8006+n*16
[} 156]. The object is mapped in the RxPDO (n+1) (index
0x1600 [} 144]+n).

UINT8 RO

(7000+n*16)
:01

Data of CAN RxPDO 1 of the (n+1)th configured
CANopen slave

OCTET-
STRING

RO

...
(7000+n*16)
:FF

Data of CAN RxPDO 255 of the (n+1)th configured
CANopen slave

OCTET-
STRING

RO

Parameterization and commissioning

EL6751 153Version: 4.0.0

Index 7004-77E4 CAN TxPDOs RTR Request Node yyy
Index (hex) Name Meaning Data type Flags Default
7004+n*16:
0

CAN TxPDOs RTR
Request Node yyy

This object contains the RTR bits of the CAN TxPDOs
1-255 of the (n+1)th configured CANopen slave. If the bit
is toggled, a RTR request is sent to collect the
associated CAN TxPDO. The corresponding SubIndex is
present only if the RTR bit was also configured in object
0x8006+n*16 [} 156].

UINT8 RO

(7004+n*16)
:01

RTR bit of CAN TxPDO 1 of the (n+1)th configured
CANopen slave

BOOLEAN RO

...
(7004+n*16)
:FF

RTR bit of CAN TxPDO 255 of the (n+1)th configured
CANopen slave

BOOLEAN RO

Parameterization and commissioning

EL6751154 Version: 4.0.0

Index 8000-87E0 Communication Parameter Node yyy
Index (hex) Name Meaning Data type Flags Default
8000+n*16:
0

Communication
Parameter Node yyy

This object contains the CAN configuration of the (n+1)th

configured CANopen slave (0 <= n <127). The object is
to be transmitted with Complete Access, or SubIndex 0
must first be set to 0, then the individual SubIndexes
transmitted (non-existent SubIndexes or gaps are
thereby to be omitted) and finally SubIndex 0 set to the
correct value.

UINT8 RW 0x2E (46dec)

(8000+n*16)
:01

Node address CANopen node address of the CANopen slave, permitted
values: 1-127; the entry 0xF020 [} 161]:(n+1) is hence
automatically updated

UINT16 RW

(8000+n*16)
:04

Device type Object 0x1000 of the CANopen slave; this value is
checked at the CAN boot-up, provided that the check is
not disabled via the flags (SubIndex 20 of this object)

UINT32 RW

(8000+n*16)
:05

Vendor ID Object 0x1018:01 of the CANopen slave; this value is
checked at the boot-up if not equal to 0

UINT32 RW

(8000+n*16)
:06

Product code Object 0x1018:02 of the CANopen slave; this value is
checked at the boot-up if not equal to 0

UINT32 RW

(8000+n*16)
:07

Revision Object 0x1018:03 of the CANopen slave; this value is
checked at the boot-up if not equal to 0

UINT32 RW

(8000+n*16)
:08

Serial number Object 0x1018:04 of the CANopen slave; this value is
checked at the boot-up if not equal to 0

UINT32 RW

(8000+n*16)
:1D

Network flags reserved for AMS via CANopen UINT16 RW 0x0000 (0dec)

(8000+n*16)
:1E

Network port reserved for AMS via CANopen UINT16 RW 0x0000 (0dec)

(8000+n*16)
:1F

Network segment
address

reserved for AMS via CANopen OCTET-
STRING[6]

RW 0x00, 0x00,
0x00, 0x00,
0x00, 0x00

(8000+n*16)
:20

Flags Bit 0 CAN Layer 2-Node: only asynchronous
OnChange CAN PDOs are exchanged with
the slave

UINT16 RW 0x0000 (0dec)

Bit 1 Automatic sending of the CAN PDO
communication parameters is switched off
during the boot-up

Bit 2 reserved, must be 0
Bit 3 reserved, must be 0
Bit 4 Guarding is used instead of Heartbeat
Bit 5 If not all configured CAN TxPDOs have been

received 10 s after the start of the CANopen
slave, the CANopen slave is rebooted

Bit 6 The checking of object 0x1000 during the
CAN boot-up is switched off

Bit 7 The writing of object 0x1006 during the CAN
boot-up is switched off

Bit 8 The automatic start of the CANopen slave
after completion of the CAN boot-up is
switched off

Bit 9 reserved, must be 0
Bit 10 reserved, must be 0
Bit 11 reserved, must be 0
Bit 12 reserved, must be 0
Bit 13 reserved, must be 0
Bit 14 reserved, must be 0
Bit 15 reserved, must be 0

(8000+n*16)
:21

Guarding time Guarding time (object 0x100C or 0x1017) for Guarding or
Heartbeat in accordance with bit 4 of the flags in
SubIndex 0x20)

UINT16 RW

(8000+n*16)
:22

Life time factor Life time factor (object 0x100D) for Guarding or Life time
factor*Guarding time (object 0x1016:01) for Heartbeat (in
accordance with bit 4 of the flags in SubIndex 0x20)

UINT16 RW

(8000+n*16)
:23

SDO timeout Timeout for the transmission of CAN SDOs to the
CANopen slave (in ms, 0 corresponds to 2000 ms)

UINT16 RW 0x07D0
(2000dec)

Parameterization and commissioning

EL6751 155Version: 4.0.0

Index (hex) Name Meaning Data type Flags Default
(8000+n*16)
:24

Boot timeout This time is allowed to elapse after a Reset Node before
the first CAN SDO is sent during the boot-up (in ms, 0
corresponds to 2000 ms)

UINT16 RW 0x07D0
(2000dec)

(8000+n*16)
:25

Parallel AoE services Number of parallel acyclic CAN SDO orders for the
CANopen slave that can be received via AoE from the
EtherCAT master, saved and processed on the EL6751
(0 corresponds to the default value of 5)

UINT8 RW 0x05 (5dec)

(8000+n*16)
:26

Reaction on
CANopen fault

If an error is detected during communication with the
CANopen slave (error code in 0xF102 [} 162]:(n+ 1)), the
reaction is as follows:

BOOLEAN RW FALSE

FALSE The CANopen is stopped; the next startup
(see SubIndex 0x27) will begin with Reset
Node

TRUE The CANopen is stopped; the next startup
(see SubIndex 0x27) will begin with the first
CAN StartUp SDO (usually the reading of
object 0x1000)

(8000+n*16)
:27

Restart behavior after
CANopen fault

If an error is determined during communication with the
CANopen slave and the ‘Reaction on CANopen fault’ has
been executed, the restart behavior is as follows

BOOLEAN RW FALSE

FALSE The CANopen slave is automatically
restarted (in accordance with SubIndex 0x26)

TRUE The CANopen slave must be restarted via
AoE

(8000+n*16)
:28

Master reaction after
CANopen fault

If an error is determined during communication with the
CANopen slave, the CANopen communication with the
other CANopen slaves can be influenced:

BOOLEAN RW FALSE

FALSE no influence
TRUE a Stop Node is sent to all CANopen slaves;

the CANopen communication must be
restarted via AoE

(8000+n*16)
:29

Changes of CAN
TxPDOs after
CANopen fault

If an error is detected during communication with the
CANopen slave, the EtherCAT input data is influenced as
follows

BOOLEAN RW FALSE

FALSE The data of the CAN TxPDOs in the
EtherCAT input data is set to 0

TRUE The data of the CAN TxPDOs in the
EtherCAT input data remains unchanged

(8000+n*16)
:2A

reserved for extensions; must be 0 4-bit gap RW 0x00 (0dec)

(8000+n*16)
:2E

reserved for extensions; must be 10 UNSIGNED8 RW 0x0A (10dec)

(8000+n*16)
:2F

reserved for extensions; must be 0 8-bit gap RW 0x00 (0dec)

(8000+n*16)
:30

reserved for extensions; must be 0 32-bit gap RW 0x00000000
(0dec)

(8000+n*16)
:31

reserved for extensions; must be 0 32-bit gap RW 0x00000000
(0dec)

(8000+n*16)
:32

reserved for extensions; must be 0 32-bit gap RW 0x00000000
(0dec)

(8000+n*16)
:33

reserved for extensions; must be 0 32-bit gap RW 0x00000000
(0dec)

(8000+n*16)
:34

reserved for extensions; must be 0 32-bit gap RW 0x00000000
(0dec)

(8000+n*16)
:35

reserved for extensions; must be 0 32-bit gap RW 0x00000000
(0dec)

(8000+n*16)
:36

reserved for extensions; must be 0 32-bit gap RW 0x00000000
(0dec)

Parameterization and commissioning

EL6751156 Version: 4.0.0

Index 8003-87E3 CAN SDO Init Cmds Node yyy
Index (hex) Name Meaning Data type Flags Default
8003+n*16:
0

CAN SDO Init Cmds
Node yyy

This object contains the CAN StartUp SDOs of the (n+1)th

configured CANopen slave (0 <= n <127), which are sent
to the CANopen slave after the boot-up and before the
start of the CANopen slave. Up to 255 StartUp SDOs can
be configured per CANopen slave. SubIndex 0 contains
the number of configured CAN StartUp SDOs. The object
is to be transmitted with Complete Access.

UINT8 RW

(8003+n*16)
:01

first CAN StartUp SDO OCTET-
STRING

RW
Bytes 0-1 Index of the StartUp SDO
Byte 2 SubIndex of the StartUp SDO
Bytes 3-4 Length of the following data of the StartUp

SDO
from byte
5

Data of the StartUp SDO

...
(8003+n*16)
:FF

255. CAN StartUp SDO

Index 8006-87E6 CAN TxPDO Configuration Node yyy
Index (hex) Name Meaning Data type Flags Default
8006+n*16:
0

CAN TxPDO
Configuration
Node yyy

This object contains the CAN TxPDO configuration of the
(n+1)th configured CANopen slave (0 <= n <127). TxPDOs
1-255 of a CANopen slave are configurable. SubIndex 0
contains the maximum configured CAN TxPDO number. If
CAN TxPDOs are not present in between, the SubIndex is to
be omitted or, in the case of Complete Access, filled with
zeros. The object is to be transmitted with Complete Access, or
SubIndex 0 must first be set to 0, then the individual
SubIndexes transmitted (non-existent SubIndexes or gaps are
thereby to be omitted) and finally SubIndex 0 set to the correct
value.

UINT8 RW

(8006+n*16)
:01

Configuration of CAN TxPDO 1 of the CANopen slave OCTET-
STRING

RW
Bytes 0-3 COB-ID (bits 11-31 must be 0)
Byte 4 Transmission Type
Byte 5 Length of the data of the CAN TxPDO
Bytes 6-7 Inhibit Time
Bytes 8-9 Event Time
Bytes 10-11 Flags

Bit 0 CAN TxPDO toggle (entry 0x6004
[} 152]+(n*16):01) is mapped into
EtherCAT TxPDO 137/138 (index
0x1A88 [} 148]/0x1A89)

Bit 1-9 reserved for extensions; must be 0
Bit 10 Length checking is switched off
Bits 11-15 reserved for extensions; must be 0

...
(8006+n*16)
:FF

Configuration of CAN TxPDO 255 of the CANopen slave

Parameterization and commissioning

EL6751 157Version: 4.0.0

Index 8008-87E8 CAN RxPDO Configuration Node yyy
Index (hex) Name Meaning Data type Flags Default
8008+n*16:
0

CAN RxPDO
Configuration Node
yyy

This object contains the CAN RxPDO configuration of the
(n+1)th configured CANopen slave (0 <= n <127).
RxPDOs 1-255 of a CANopen slave are configurable.
SubIndex 0 contains the maximum configured CAN
RxPDO number. If CAN RxPDOs are not present in
between, the SubIndex is to be omitted or, in the case of
Complete Access, filled with zeros. The object is to be
transmitted with Complete Access, or SubIndex 0 must
first be set to 0, then the individual SubIndexes
transmitted (non-existent SubIndexes or gaps are
thereby to be omitted) and finally SubIndex 0 set to the
correct value.

UINT8 RW

(8008+n*16)
:01

Configuration of CAN RxPDO 1 of the CANopen slave OCTET-
STRING[12]

RW
Byte 0-3 COB-ID (bits 11-31 must be 0)
Byte 4 Transmission Type
Byte 5 Length of the data of the CAN RxPDO
Bytes 6-7 Inhibit time, is ignored by the EL6751
Bytes 8-9 Event Time
Bytes 10-11 Flags, must be 0

...
(8008+n*16)
:FF

Configuration of CAN RxPDO 255 of the CANopen slave OCTET-
STRING[12]

RW

Index 9000-97D0 Detected CANopen Identification Node yyy
Index (hex) Name Meaning Data type Flags Default
9000+n*16:
0

Detected CANopen
Identification Node
yyy

This object contains the InfoData on the (n+1)th found
CANopen slave, if the Scan Boxes command has been
executed following switching to PREOP.

UINT8 RO

(9000+n*16)
:01

Node Address Station address of the CANopen slave (same value as in
0xF040 [} 161]:(n+1))

UINT16 RO

(9000+n*16)
:02

Device name Object 0x1008 of the CANopen slave STRING RO

(9000+n*16)
:04

Device type Object 0x1000 of the CANopen slave UINT32 RO

(9000+n*16)
:05

Vendor ID Object 0x1018:01 of the CANopen slave UINT32 RO

(9000+n*16)
:06

Product code Object 0x1018:02 of the CANopen slave UINT32 RO

(9000+n*16)
:07

Revision Object 0x1018:03 of the CANopen slave UINT32 RO

(9000+n*16)
:08

Serial number Object 0x1018:04 of the CANopen slave UINT32 RO

Index 9006-97D6 Detected TxPDO Configuration Node yyy
Index (hex) Name Meaning Data type Flags Default
9006+n*16:
0

Detected TxPDO
Configuration Node
yyy

This object contains the InfoData on the CAN TxPDOs of
the (n+1)th found CANopen slave, if the Scan Boxes
command has been executed following switching to
PREOP.

UINT8 RO

(9006+n*16)
:01

CAN TxPDO 1 (meaning of the data is identical to object
0x8yy6 [} 156])

OCTET-
STRING[12]

RO

...
(9006+n*16)
:FF

CAN TxPDO 255 OCTET-
STRING[12]

RO

Parameterization and commissioning

EL6751158 Version: 4.0.0

Index 9008-9085 Detected RxPDO Configuration Node yyy
Index (hex) Name Meaning Data type Flags Default
9008+n*16:
0

Detected RxPDO
Configuration Node
yyy

This object contains the InfoData on the CAN RxPDOs of
the (n+1)th found CANopen slave, if the Scan Boxes
command has been executed following switching to
PREOP.

UINT8 RO

(9008+n*16)
:01

CAN RxPDO 1 (meaning of the data is identical to object
0x8yy8 [} 157])

OCTET-
STRING[12]

RO

...
(9008+n*16)
:FF

CAN RxPDO 255 OCTET-
STRING[12]

RO

Parameterization and commissioning

EL6751 159Version: 4.0.0

Index A001-A7E1 CANopen Diagnosis Node yyy
Index (hex) Name Meaning Data type Flags Default
A001+n*16:
0

CANopen Diagnosis
Node yyy

there is a diagnostic object for each CANopen slave
configured in 0x8000+n*16

UINT8 RO

(A001+n*16
):01

Flags Bit 0 It was possible to set Producer Heartbeat;
Consumer Heartbeat was rejected; despite
that, the CANopen slave has been started (in
order to activate monitoring on the CANopen
slave, Guarding should be set instead of
Heartbeat in object 0x8yy0 [} 154]:20)

UINT16 RO

Bit 1 An incorrect boot-up message was received
from the CANopen slave

Bit 2 The CAN-Emergency-FIFO (10 emergencies
can be stored) has overflowed

Bits
3-15

reserved for extensions

(A001+n*16
):02

Received TxPDOs Bit 0 CAN TxPDO 1 was not received at least once
after the sending of Start Node

UINT16 RO

Bit 1 CAN TxPDO 2 was not received at least once
after the sending of Start Node

Bit 2 CAN TxPDO 3 was not received at least once
after the sending of Start Node

Bit 3 CAN TxPDO 4 was not received at least once
after the sending of Start Node

Bit 4 CAN TxPDO 5 was not received at least once
after the sending of Start Node

Bit 5 CAN TxPDO 6 was not received at least once
after the sending of Start Node

Bit 6 CAN TxPDO 7 was not received at least once
after the sending of Start Node

Bit 7 CAN TxPDO 8 was not received at least once
after the sending of Start Node

Bit 8 CAN TxPDO 9 was not received at least once
after the sending of Start Node

Bit 9 CAN TxPDO 10 was not received at least once
after the sending of Start Node

Bit 10 CAN TxPDO 11 was not received at least once
after the sending of Start Node

Bit 11 CAN TxPDO 12 was not received at least once
after the sending of Start Node

Bit 12 CAN TxPDO 13 was not received at least once
after the sending of Start Node

Bit 13 CAN TxPDO 14 was not received at least once
after the sending of Start Node

Bit 14 CAN TxPDO 15 was not received at least once
after the sending of Start Node

Bit 15 all other configured CAN TxPDOs were not
received at least once after the sending of Start
Node

(A001+n*16
):03

CAN PDO fault 1 incorrect length of the CAN TxPDO UINT16 RO
2 synchronous CAN TxPDO was not received in

time
3 CANopen slave has automatically switched to

PRE-OPERATIONAL
4 CAN TxPDO supervised with event time was

not received in time
5 no response during Guarding, or failure of the

Producer Heartbeat
6 Toggle bit has not toggled during Guarding
7 CANopen slave has automatically switched to

STOPPED
8 CANopen slave sends an unknown COP state
9 Send queue of the EL6751 has overflowed

(e.g. when no further CAN acknowledge is
received during the operation)

Parameterization and commissioning

EL6751160 Version: 4.0.0

Index (hex) Name Meaning Data type Flags Default
(A001+n*16
):04

CAN SDO/StartUp
fault

Bits 0-6 1 incorrect value when reading a
StartUp SDO (details in SubIndex 7
and 8)

UINT16 RO

2 incorrect length when reading a
StartUp SDO

3 SDO error when reading or writing a
StartUp SDO (details in SubIndex 5
and 6)

4 incorrect boot-up message
Bit 7 0 Error during SDO upload

1 Error during SDO download
Bits
8-15

reserved for extensions

(A001+n*16
):05

Fault object (for SDO
fault)

Object in which the StartUp SDO error has occurred UINT32 RO

(A001+n*16
):06

Abort Code (for SDO
fault)

Abort code of the last abort of the StartUp SDOs UINT32 RO

(A001+n*16
):07

Read value (for SDO/
StartUp fault)

read value of the StartUp SDO UINT32 RO

(A001+n*16
):08

Expected value (for
SDO/StartUp fault)

expected value of the StartUp SDO UINT32 RO

Index A002-A7E2 CANopen Emergencies Node yyy
Index (hex) Name Meaning Data type Flags Default
A002+n*16:
0

CANopen
Emergencies Node
yyy

for each CANopen slave configured in 0x8000+n*16,
there is an object that contains the received
emergencies. SubIndex 0 contains the number of stored
emergencies (is set to 0 if the entry 0xF103 [} 163]:(n+1)
is set to 0)

UINT8 RO

(A002+n*16
):01

first received CAN emergency OCTET-
STRING[8]

RO

...
(A002+n*16
):FF

last received CAN emergency OCTET-
STRING[8]

RO

Index F000 Modular device profile
Index (hex) Name Meaning Data type Flags Default
F000:0 Modular device profile General information for the modular device profile UINT8 RO 0x02 (2dec)
F000:01 Module index

distance
Index distance of the objects of the individual channels UINT16 RO 0x0010 (16dec)

F000:02 Maximum number of
modules

Number of channels UINT16 RO 0x007F
(127dec)

F000:03 General Configuration
Entries

indicates which of the SubIndexes 1-31 of the objects
0x8zz0 are supported

UINT16 RO 0x700000F9

F000:04 General Information
Entries

indicates which of the SubIndexes 1-31 of the objects
0x9zz0 are supported

UINT16 RO 0x000000FD

Parameterization and commissioning

EL6751 161Version: 4.0.0

Index F002 Detect modules command
Index (hex) Name Meaning Data type Flags Default
F002:0 Detect modules

command
The CAN bus can be scanned in PREOP for CANopen
slave with this object. The CAN node addresses of the
CANopen slaves found are stored in the object 0xF040
[} 161]. Furthermore, the InfoData objects 0x9yyz [} 157]
are created. However, none of the objects 0x8yyz [} 154]
or 0xF800 [} 165] may be transmitted before that. If this is
the case, or if the scan is to be repeated, the EL6751
must be switched once to INIT and back to PREOP
beforehand.

UINT8 RO

F002:01 Command Request The writing of this entry starts the scan; the baud rate
according to 0xF800:02 [} 165] is located in the data word

OCTET-
STRING[2]

RW

F002:02 Command Status 0 Command ended without error, no response
data

UINT8 RO

1 Command ended without error, response
data in SubIndex 3

3 Command ended with an error, error code in
SubIndex 3

100-199 0-99% of the command are ended
255 Command is being executed

F002:03 Command Response Byte 0 as SubIndex 2 OCTET-
STRING[n]

RO
Byte 1 reserved for extensions
Bytes 2-3 Number of found slaves
Byte 4 Node address of the first CANopen slave

found
Bytes 5-8 Vendor ID of the first CANopen slave found
Bytes
9-12

Product code of the first CANopen slave
found

Byte 13 Node address of the second CANopen slave
found …

... etc.

Index F020 Configured address list
Index (hex) Name Meaning Data type Flags Default
F020:0 Configured address

list
This object contains the node addresses of the
configured CANopen slaves. SubIndex 0 contains the
number of configured CANopen slaves. The list has a
maximum of 127entries (CAN interface (if configured:
node address 0 in 0xF020:01) plus 126 CANopen slaves)

UINT8 RO

F020:01 Node address of the first configured CANopen slave
(same value as in 0x8000 [} 154]:01)

UINT16 RO

...
F020:7F Node address of the 127th configured CANopen slave

(same value as in 0x87E0 [} 154]:01)
UINT16 RO

Index F040 Detected address list
Index (hex) Name Meaning Data type Flags Default
F040:0 Configured address

list
This object contains the node addresses of the CANopen
slaves found if the Detect modules command [} 161] has
been executed. SubIndex 0 contains the number of
CANopen slaves found. The list has a maximum of 126
entries.

UINT8 RO

F040:01 Node address of the first CANopen slave found (same
value as in 0x9000 [} 157]:01)

UINT16 RO

...
F040:7E Node address of the 126th CANopen slave found (same

value as in 0x97D0 [} 157]:01)
UINT16 RO

Parameterization and commissioning

EL6751162 Version: 4.0.0

Index F101 Extended Diag
Index (hex) Name Meaning Data type Flags Default
F101:0 Extended Diag This object contains the diagnosis of the EL6751, which

is mapped into TxPDO 133 (Index 0x1A84 [} 147])
UINT8 RO

F101:01 reserved for extensions 8-bit gap
F101:09 reserved for extensions 3-bit gap
F101:0C SYNC Toggle toggles with each transmission of the SYNC message BOOLEAN RO
F101:0D Device Diag reserved for extensions BOOLEAN RO
F101:0E Sync Error reserved for extensions BOOLEAN RO
F101:0F PDO Toggle The bit toggles if the EtherCAT input data has been

updated since the previous EtherCAT input update
BOOLEAN RO

F101:10 PDO State This bit is set if at least one configured CANopen slave
has a node state that is not equal to 0

BOOLEAN RO

F101:11 Cycle Counter This counter is incremented after each CAN cycle (if at
least one CANopen slave has been configured)

UINT16 RO

F101:12 Slave Status Counter This byte contains the number of UINT8 RO
F101:13 reserved for extensions 8-bit gap
F101:14 Cycle Time This entry contains the required CPU ticks of the CAN

cycle Unit in ticks
UINT16 RO

Index F102 Node State
Index (hex) Name Meaning Data type Flags Default
F102:0 Node State There is a node state for each CANopen slave

configured in 0x8000+n*16. The node states are mapped
in TxPDO 132 (Index 0x1A83 [} 147]).

UINT8 RO

F102:01 Node state of the first configured CANopen slave UINT8 RO
0 No error
1 CANopen slave has not been restarted

following an error, because entry 0x8yy0:27
has been configured for manual restart or
because the CANopen slave was stopped with
AoE

2 CANopen slave does not respond
4 Length of the data at a StartUp SDO upload is

incorrect or StartUp SDO download has failed
5 Value of the data at a StartUp SDO upload is

incorrect
8 CANopen slave is in boot-up (StartUp SDOs

are being transmitted, so far no error)
11 CAN controller is in bus-off
12 CANopen slave has left OPERATIONAL

(automatically or on request by AoE)
14 Guarding has not toggled
18 CANopen slave was started, all CAN TxPDOs

were received, but no EtherCAT process data
has been exchanged yet

20 CAN TxPDO with incorrect length received
22 synchronous or event-timer-triggered CAN

TxPDO was not received in time
23 at least one CAN TxPDO has not yet been

received after the Start Node
24 TX FIFO overflow (e.g. if no CAN acknowledge

is detected)
40 CAN TxPDO with type 1 transmission was not

received in this CAN cycle
...
F102:7F Node state of the 127th configured CANopen slave UINT8 RO

Parameterization and commissioning

EL6751 163Version: 4.0.0

Index F103 CANopen Diag Flag
Index (hex) Name Meaning Data type Flags Default
F103:0 CANopen Diag Flag There is a Diag Flag for each CANopen slave configured

in 0x8000+n*16. The Diag Flag is set if the diagnosis
(object 0xA001+((m-1)*16)) or the saved CAN
emergencies (object 0xA002+((m-1)*16)) of the mth

configured CANopen slave has changed. If the bit is set,
the diagnosis and/or emergencies have changed. In
order to reset the bit, 0 must be written to the
corresponding entry (0xF103:m). The Diag Flags are
mapped in TxPDO 131 (Index 0x1A82 [} 146]).

UINT8 RO

F103:01 Diag Flag of the first configured CANopen slave BOOLEAN RW
...
F103:7F Diag Flag of the last configured CANopen slave BOOLEAN RW

Index F108 CAN Status
Index (hex) Name Meaning Data type Flags Default
F108:0 CAN status This object contains the CAN status that is mapped into

TxPDOs 133 and 134 (index 0x1A84 [} 147] and 0x1A85
[} 148])

UINT8 RO 0x22 (34dec)

F108:01 Bus-Off indicates whether the CAN controller reports bus-off BOOLEAN RO 0x00 (0dec)
F108:02 warning limit reached indicates whether the CAN controller reports EWarning

Limit Reached
BOOLEAN RO 0x00 (0dec)

F108:03 RX overflow RX-FIFO overflow BOOLEAN RO 0x00 (0dec)
F108:05 TX overflow TX-FIFO overflow BOOLEAN RO 0x00 (0dec)
F108:06 Ack error CAN acknowledge has not been detected (e.g. no CAN

cable connected)
BOOLEAN RO 0x00 (0dec)

F108:21 RX error counter Rx error counter of the CAN controller UINT8 RO 0x00 (0dec)
F108:22 TX error counter Tx error counter of the CAN controller UINT8 RO 0x00 (0dec)

Parameterization and commissioning

EL6751164 Version: 4.0.0

Index F120 Diagnostic Data
Index (hex) Name Meaning Data type Flags Default
F120:0 Diagnostic Data This object contains additional measured times for the

CAN cycle that are not contained in the Sync Manager
parameter objects 0x1C32 [} 150]/0x1C33 [} 151]

UINT8 RO

F120:01 Cycle Time current cycle time of the CAN cycle in [ns] UINT32 RO
F120:03 Maximum Cycle Time maximum cycle time of the CAN cycle (in [ns]) UINT32 RO
F120:04 Bus Load CAN bus load in % UINT16 RO
F120:05 16-bit gap
F120:09 Sync RxPDOs

finished Time (T3)
current time after the start of the CAN cycle at which all
synchronous RxPDOs were sent (in [ns])

UINT32 RO

F120:0B Sync RxPDOs
finished Maximum
Time (max T3)

maximum time after the start of the CAN cycle when all
synchronous RxPDOs have been sent (in [ns])

UINT32 RO

F120:0C Preparing of PDOs
finished Time (T2)

current time after the start of the CAN cycle at which the
sending of the synchronous RxPDOs begins (in [ns])

UINT32 RO

F120:0E Preparing of PDOs
finished Maximum
Time (max T2)

maximum time after the start of the CAN cycle at which
the sending of the synchronous RxPDOs begins (in [ns])

UINT32 RO

F120:0F Output Calc and Copy
Time (T1)

current time after the start of the CAN cycle at which the
SYNC message can be sent (in [ns])

UINT32 RO

F120:11 Ouput Calc and Copy
Maximum Time (max
T1)

maximum time after the start of the CAN cycle at which
the SYNC message can be sent (in [ns])

UINT32 RO

F120:12 Input Calc and Copy
Time (T5)

current time still required after the input shift time
(0x1C33 [} 151]:03) until the EtherCAT input data have
been completely written (in [ns])

UINT32 RO

F120:14 Input Calc and Copy
Maximum Time (max
T5)

maximum time still required after the input shift time
(0x1C33 [} 151]:03) until the EtherCAT input data have
been completely written (in [ns])

UINT32 RO

F120:15 Output Failed Counter Number of cycles in which the EtherCAT output data
were not adopted

UINT16 RO

F120:16 Input Failed Counter Number of cycles in which the EtherCAT input data were
not collected

UINT16 RO

F120:17 Send sync RxPDO
Failed Counter

Number of CAN cycles that were omitted because the
previous CAN cycle was not ended in time

UINT16 RO

F120:18 RX Error Counter Rx error counter (cumulative errors from 0xF108
[} 163]:21)

UINT16 RO

F120:19 TX Error Counter Tx error counter (cumulative errors from 0xF108
[} 163]:22)

UINT16 RO

F120:1A reserved for extensions 16-bit gap RO

Index F200 Control
Index (hex) Name Meaning Data type Flags Default
F200:0 Control The object contains the control data that are mapped in

RxPDO 134 (index 0x1685 [} 145])
UINT8 RO

F200:01 CAN Controller Auto
Reset when BUS-
OFF

In the case of a CAN bus-off, this allows the EL6751 to
be switched again to bus-on via the process data.

BOOLEAN RO

Parameterization and commissioning

EL6751 165Version: 4.0.0

Index F800 CAN Bus Parameter Set
Index (hex) Name Meaning Data type Flags Default
F800:0 CAN Bus Parameter

Set
This object contains the CAN bus parameters. The object
is to be transmitted with Complete Access, or SubIndex 0
must first be set to 0, then the individual SubIndexes
transmitted (non-existent SubIndexes or gaps are
thereby to be omitted) and finally SubIndex 0 set to the
correct value.

UINT16 RW 0x11 (17dec)

F800:01 Master Node Address Node address of the CANopen master that is used for
the Consumer Heartbeat

UINT8 RW 0x7F (127dec)

F800:02 Baud rate 0 1 Mbit/s UINT8 RW
1 800 kbit/s
2 500 kbit/s
3 250 kbit/s
4 125 kbit/s
5 100 kbit/s
6 50 kbit/s
7 20 kbit/s
8 10 kbit/s
255 The baud rate is determined via the bus timing

register (SubIndex 5)
F800:03 COB ID SYNC COB ID of the SYNC message (default:0x80) UINT16 RW 0x80 (128dec)
F800:04 SYNC cycle time SYNC cycle time (must be an integer multiple of the

EtherCAT cycle time (0x1C32 [} 150]:02))
UINT32 RW

F800:05 Bus timing registers byte 0 BT0 register of the SJA1000 CAN controller UINT32 RW 0x00 (0dec)
byte 1 BT1 register of the SJA1000 CAN controller
byte 2 must be 0
byte 3 must be 0

F800:06 Slave Mode must be 0 (CANopen master) BOOLEAN RW 0x00 (0dec)
F800:07 PDO Align 8 Bytes 0 CAN PDOs are appended to the EtherCAT

process data in succession
BOOLEAN RW 0x00 (0dec)

1 each CAN PDO occupies 8 bytes in the
EtherCAT process data

F800:08 reserved for extensions BOOLEAN RW 0x00 (0dec)
F800:09 reserved for extensions 5-bit gap 0x00 (0dec)
F800:0E TxPDO Delay SYNC cycle time delay in % until the sending of the

synchronous RxPDOs begins
UINT8 RW 0x1E (30dec)

F800:0F CAN message queue
size

Depth of the low priority CAN Tx queue (for SDOs,
Heartbeat and Guarding, default: 100)

UINT16 RW 0x64 (100dec)

F800:10 reserved for extensions UINT8 RW 0x00 (0dec)
F800:11 reserved for extensions UINT8 RW 0x00 (0dec)
F800:12 reserved for extensions 16-bit gap RW 0x00 (0dec)
F800:13 reserved for extensions 32-bit gap RW 0x00 (0dec)
F800:14 reserved for extensions 32-bit gap RW 0x00 (0dec)
F800:15 reserved for extensions 32-bit gap RW 0x00 (0dec)
F800:16 reserved for extensions 32-bit gap RW 0x00 (0dec)
F800:17 reserved for extensions 32-bit gap RW 0x00 (0dec)
F800:18 reserved for extensions 32-bit gap RW 0x00 (0dec)

5.5.2 CAN interface

5.5.2.1 CAN interface configuration
The CAN interface of the EL6751 is configured via the StartUp SDOs of the objects 0xF800, 0x8000 and
0x8001 (optional) in the PREOP state.

Parameterization and commissioning

EL6751166 Version: 4.0.0

Fig. 135: Flow chart for CAN interface startup

After a power-on, the EL6751 is in the INIT state and has no CAN configuration. The CAN controller is in the
OFFLINE state.

Parameterization and commissioning

EL6751 167Version: 4.0.0

CAN bus parameters

The CANopen configuration is carried out via SDO download in the PREOP state. The objects to be loaded
must be transmitted either with Complete Access or with consistency nesting (first set SubIndex 0 to 0, then
write SubIndex 1-n, then set SubIndex 0 to n). Care should thereby be taken to always start with object
0xF800. After receiving the object 0xF800, the EL6751 switches the CAN controller with the appropriate
baud rate from 0xF800:02 to ONLINE.

CAN interface configuration

After object 0xF800, object 0x8000 and, if Rx filter table is to be used, object 0x8001 must be transmitted.

PDO Mapping

There is one EtherCAT RxPDO and one EtherCAT TxPDO for the CAN interface. The PDO mapping of the
EtherCAT PDOs is automatically calculated by the EL6751 after the download of the object 0x8000 and can
be read. The PDO mapping objects can only be written with the values that the EL6751 has calculated itself.
The writing of the PDO mapping thus serves only to check the PDO mapping calculated by the EtherCAT
configurator and can therefore be omitted.

PDO Assign

In addition, there is one EtherCAT RxPDO and one EtherCAT TxPDO, the CAN control and CAN status.
These PDOs are selected via the PDO Assign. It should thereby be observed that the EtherCAT PDOs of the
CAN interface must appear in the PDO Assign. With regard to the order of the PDOs in the PDO Assign, it is
important to ensure that the index of the assigned EtherCAT PDO increases with each entry in the
corresponding PDO Assign object. If the EtherCAT master does not transmit any PDO Assign in the StartUp
SDOs, then PDO 0x1A85 (CAN status) is transmitted alongside the CAN interface.

Cyclic communication

During the transition to SAFEOP, the EL6751 checks the length configured in the Sync Manager channels 2
and 3 against the length calculated from PDO Mapping and PDO Assign. The SAFEOP state is only adopted
if these lengths match. In the SAFEOP state, the EL6751 can already receive CAN messages that are stored
in the local RX queue. As soon as the EL6751 has been switched to OP, the data from the EtherCAT outputs
are adopted and the CAN messages can also be exchanged via EtherCAT.

5.5.2.2 CAN interface synchronization
The CAN interface cycle, which determines the CAN messages to be sent from the EtherCAT output data
and enters the CAN messages received in the EtherCAT input data, is synchronized with the EtherCAT
cycle. Synchronization takes place by default via the Sync Manager 2 event. In Fast CAN Queue mode, the
EL6751 can also be operated in the Distributed Clocks mode; in this case, synchronization takes place via
the SYNC0 and the SYNC1 events.

Buffered CAN Queue

The following flow chart shows the sequence of the CAN cycle in the Buffered CAN Queue mode.

Parameterization and commissioning

EL6751168 Version: 4.0.0

Fig. 136: Flow chart for CAN cycle in buffered CAN Queue mode

When receiving the EtherCAT process data telegram, the SM2 event is generated by the EtherCAT slave
controller, thus starting the CAN interface cycle. Now it is checked whether the TxCounter (entry 0x700z:01)
in the EtherCAT output data has changed. If this is the case, NoOfTxMessages (entry 0x700z:03) indicates
how many CAN messages have been transmitted in the EtherCAT output data. The first CAN Tx message
(entry 0x700z:04) is sent if no transmission process is active, otherwise the CAN Tx message is inserted into
the local CAN send queue. The other CAN Tx messages to be sent (entries 0x700z:05 -
0x700z:03+NoOfTxMessages) are inserted into the local CAN send queue and are automatically sent as
soon as the last CAN message has been sent. After that, the TxCounter in the EtherCAT input data (entry
0x600z:01) is set to the value of the TxCounter in the EtherCAT output data (0x700z:01).

Subsequently, the CAN Rx messages received since the last increment of the RxCounter in the EtherCAT
input data are entered in the EtherCAT input data, provided that the RxCounter in the EtherCAT output data
(entry 0x700z:02) is equal to the RxCounter in the EtherCAT input data (entry 0x600z:02). Furthermore, the
number of messages entered in the EtherCAT input data (entries 0x600z :05-0x600z:03+NoOfRxMessages)
is written in the NoOfRxMessages (entry 0x600z:03) of the EtherCAT input data. Then the Transaction
Number (0x600z:04) of the last transmitted CAN TxMessage is entered in the EtherCAT input data and the
RxCounters (entry 0x600z:02) in the EtherCAT input data are incremented.

The CAN interface cycle ends with the update of the CAN status in the EtherCAT input data.

Fast CAN Queue

The Fast CAN Queue mode essentially differs in that there is no local CAN Rx queue and that it can also be
synchronized with Distributed Clocks. The CAN Rx messages received are entered directly in the EtherCAT
input data; there is no longer any local storage. So that the CAN receiver always has access to EtherCAT
input data, the Fast CAN Queue works only in the 3-buffer mode of the Sync Managers.

Parameterization and commissioning

EL6751 169Version: 4.0.0

The following flow chart shows the sequence of the CAN cycle in the Fast CAN Queue mode.

Fig. 137: Flow chart for CAN cycle in Fast CAN Queue mode

Synchronization with SM2 event

In the transmit direction, the sequence is identical to the Buffered CAN Queue mode. In the receive direction,
the copying of the received CAN messages from the local Rx queue to the EtherCAT data input is dispensed
with.

Synchronization with SYNC0/SYNC1 event

If distributed clocks are switched on, the CAN interface cycle would be started by the SYNC0 event. The
sending of the first CAN Tx message is delayed until the SYNC1 event occurs, so that the sending of the first
CAN Tx message takes place with a jitter of maximum 500 ns. The output delay time is the time between the
SYNC1 event and the start of the CAN transmission of the first CAN Tx message in the CAN controller. The
remaining sequence of the CAN interface cycle corresponds to that in the case of synchronization with SM2
event.

EtherCAT Update

In the EtherCAT Update it should be noted that the process data is usually transmitted with a LRW telegram.
As a result of this, two cycles elapse in the task with which the EtherCAT master cycle is synchronized until
the increment of the TxCounter is confirmed by the EL6751. This dead time can be avoided by selecting
‘Separate input update’ in the task, since in this case the EtherCAT output data are to be transmitted with a

Parameterization and commissioning

EL6751170 Version: 4.0.0

LWR telegram and the EtherCAT input data just before the start of the next task cycle with a LRD telegram.
A second alternative would be to allow the task (and hence the EtherCAT master) to run with half the cycle
time of the CAN interface cycle.

5.5.2.3 Object description – CAN interface
If the EL6751 is used as a CAN Layer-2 interface, the following objects are available:

Index (hex) Name
1000 [} 142] Device type

1008 [} 142] Device name

1009 [} 142] Hardware version

100A [} 142] Software version

1011 [} 143] Restore default parameters

1018 [} 143] Identity

10F0 [} 143] Backup parameter handling

10F2 [} 144] Backup parameter storage

1600 [} 171] RxPDO-Map CAN Interface

1685 [} 145] RxPDO-Map CAN Control

1A00 [} 171] TxPDO-Map CAN Interface

1A85 [} 148] TxPDO-Map CAN Status

1C00 [} 149] Sync manager type

1C12 [} 149] RxPDO assign

1C13 [} 149] TxPDO assign

1C32 [} 150] Sm output parameter

1C33 [} 151] SM input parameter

6000 [} 172] CAN Interface input (11-bit identifier)

6001 [} 172] CAN Interface input (29-bit identifier)

7000 [} 172] CAN Interface output (11-bit identifier)

7001 [} 172] CAN Interface output (29-bit identifier)

8000 [} 173] CAN interface configuration

8001 [} 173] CAN filter table

F000 [} 160] Modular device profile

F108 [} 142] CAN Status

F200 [} 164] CAN Control

F800 [} 165] CAN bus parameter

5.5.2.3.1 Standard objects (0x1000-0x1FFF)

Here, only those objects that have a different meaning than in the CANopen master [} 142] are described.

Parameterization and commissioning

EL6751 171Version: 4.0.0

Index 1600 RxPDO-Map CAN Interface
Index (hex) Name Meaning Data type Flags Default
1600:0 RxPDO-Map CAN

Interface
The CAN interface is mapped into the EtherCAT output
data with this PDO. The number of buffers for the CAN
messages is configured in object 0x8000. Furthermore,
object 0x8000 is used to configure whether the CAN
messages are transmitted with an 11-bit identifier (object
0x7000) or with a 29-bit identifier (object 0x7001).
Depending on this setting, object 0x7000 or object
0x7001 is mapped in this PDO. The PDO is mandatory
and must always be contained in the PDO Assign object
0x1C12

UINT8 RW

1600:01 1. PDO Mapping entry (object 0x700z (CAN Interface
output), entry 0x01 (TX Counter))

UINT32 RW

1600:02 2. PDO Mapping entry (object 0x700z (CAN Interface
output), entry 0x02 (RX Counter))

UINT32 RW

1600:03 3. PDO Mapping entry (object 0x700z (CAN Interface
output), entry 0x03 (Number of TX Messages))

UINT32 RW

1600:04 4. PDO Mapping entry (object 0x700z (CAN Interface
output), entry 0x04 (TX Message 1))

UINT32 RW

... ..
1600:m m. PDO Mapping entry (object 0x700z (CAN Interface

output), entry m (TX Message m-3))
UINT32 RW

Index 1A00 TxPDO-Map CAN Interface
Index (hex) Name Meaning Data type Flags Default
1A00:0 TxPDO-Map CAN

Interface
The CAN interface is mapped into the EtherCAT input
data with this PDO. The number of buffers for the CAN
messages is configured in object 0x8000. Furthermore,
object 0x8000 is used to configure whether the CAN
messages are transmitted with an 11-bit identifier (object
0x6000) or with a 29-bit identifier (object 0x6001).
Depending on this setting, object 0x6000 or object
0x6001is mapped in this PDO. The PDO is mandatory
and must always be contained in the PDO Assign object
0x1C13

UINT8 RW

1A00:01 1. PDO Mapping entry (object 0x6000 (CAN Interface
input), entry 0x01 (TX Counter))

UINT32 RW

1A00:02 2. PDO Mapping entry (object 0x6000 (CAN Interface
input), entry 0x02 (RX Counter))

UINT32 RW

1A00:03 3. PDO Mapping entry (object 0x6000 (CAN Interface
input), entry 0x03 (Number of RX Messages))

UINT32 RW

1A00:04 4. PDO Mapping entry (object 0x6000 (CAN Interface
input), entry 0x04 (TX Transaction Number))

UINT32 RW

1A00:05 5. PDO Mapping entry (object 0x6000 (CAN Interface
input), entry 0x05 (RX Message 1))

UINT32 RW

... ..
1A00:m m. PDO Mapping entry (object 0x6000 (CAN Interface

input), entry m (RX Message m-4))
UINT32 RW

5.5.2.3.2 Profile-specific objects (0x6000-0xFFFF)
The profile-specific objects have the same meaning for all EtherCAT slaves that support the profile 5001.

Parameterization and commissioning

EL6751172 Version: 4.0.0

Index 6000 CAN Rx message queue
Index (hex) Name Meaning Data type Flags Default
6000:0 CAN Rx message

queue
This object contains the inputs of the CAN interface with
11-bit identifier.

UINT8 RO

6000:01 TX counter see CAN interface description UINT16 RO
6000:02 RX counter see CAN interface description UINT16 RO
6000:03 Number of RX

Messages
see CAN interface description UINT16 RO

6000:04 TX Transaction
Number

see CAN interface description UNT16 RO

6000:05 RX Message 1 see CAN interface description OCTET-
STRING[10]

RO

...
6000:m RX Message m-4 see CAN interface description OCTET-

STRING[10]
RO

Index 6001 CAN Rx extended message queue
Index (hex) Name Meaning Data type Flags Default
6001:0 CAN Rx extended

message queue
This object contains the inputs of the CAN interface with
29-bit identifier.

UINT8 RO

6001:01 TX counter see CAN interface description UINT16 RO
6001:02 RX counter see CAN interface description UINT16 RO
6001:03 Number of RX

Messages
see CAN interface description UINT16 RO

6001:04 TX Transaction
Number

see CAN interface description UNT16 RO

6001:05 RX Message 1 see CAN interface description OCTET-
STRING[14]

RO

...
6001:m RX Message m-4 see CAN interface description OCTET-

STRING[14]
RO

Index 7000 CAN Tx message queue
Index (hex) Name Meaning Data type Flags Default
7000:0 CAN Tx message

queue
This object contains the outputs of the CAN interface with
11-bit identifier.

UINT8 RO

7000:01 TX counter see CAN interface description UINT16 RO
7000:02 RX counter see CAN interface description UINT16 RO
7000:03 Number of TX

Messages
see CAN interface description UINT16 RO

7000:04 TX Message 1 see CAN interface description OCTET-
STRING[12]

RO

...
7000:m TX Message m-3 see CAN interface description OCTET-

STRING[12]
RO

Index 7001 CAN Tx extended message queue
Index (hex) Name Meaning Data type Flags Default
7001:0 CAN Tx extended

message queue
This object contains the outputs of the CAN interface with
11-bit identifier.

UINT8 RO

7001:01 TX counter see CAN interface description UINT16 RO
7001:02 RX counter see CAN interface description UINT16 RO
7001:03 Number of TX

Messages
see CAN interface description UINT16 RO

7001:04 TX Message 1 see CAN interface description OCTET-
STRING[16]

RO

...
7001:m TX Message m-3 see CAN interface description OCTET-

STRING[16]
RO

Parameterization and commissioning

EL6751 173Version: 4.0.0

Index 8000 CAN Interface configuration
Index (hex) Name Meaning Data type Flags Default
8000:0 CAN interface

configuration
the CAN interface is configured with this object UINT8 RO 0x24 (36dec)

8000:01 Node address must be set to 0 UINT16 RW 0x0000 (0dec)
8000:20 Flags Bits 0-2 reserved for extensions, must be 0 UINT16 RW 0x0000 (0dec)

Bit 3 0 = Standard Queue (11 Bit Identifier), 1 =
Extended Queue (29 Bit Identifier)

Bits 4-8 reserved for extensions, must be 0
Bit 9 0 = Buffered CAN Queue, 1 = Fast CAN

Queue (non buffered)
Bits 10-15 reserved for extensions, must be 0

8000:21 Rx queue size Number of RX messages UINT8 RW
8000:22 Tx queue size Number of TX messages UINT8 RW
8000:23 reserved for extensions; must be 150 UINT16 RW 0x0096

(150dec)
8000:24 reserved for extensions; must be 150 UINT16 RW 0x0096

(150dec)

Index 8001 CAN Rx filter table

From firmware 17 of the EL6751, parameter 0x8001 must be written with valid values.

If all data are to be written into the CAN interface, the following must be entered:

For 11 bit and 29 bit identifiers:
0x8001: 01 00 00 00 00 00 00 FF FF FF 1F

For 11 bit identifiers
0x8001: 01 00 00 00 00 00 00 00 FF 07 00 00
Index (hex) Name Meaning Data type Flags Default
8001:0 CAN Rx filter table Number of valid filter sub index values (1..m, m = 255).

With this object, the CAN identifier ranges can be defined
for the identifiers CAN messages, which are entered in
the Rx queue and transferred with the EtherCAT input
data. This object must be configured from firmware 17.

UINT8 RO

8001:01 Identifier Area 1 Bytes 0-3: first identifier that is entered in the Rx queue UINT64 RO
Bytes 4-7: last identifier that is entered in the Rx queue

...
8001:m Identifier Area m Bytes 0-3: first identifier that is entered in the Rx queue UINT64 RO

Bytes 4-7: last identifier that is entered in the Rx queue

Error handling and diagnostics

EL6751174 Version: 4.0.0

6 Error handling and diagnostics

6.1 EL6751 – LED description

Fig. 138: LEDs

LED behavior

The most important states of the terminal can be quickly diagnosed on the basis of the LEDs:

LED Color Meaning
RUN green This LED indicates the terminal's operating state:

off State of the EtherCAT State Machine:
INIT = initialization of the terminal;
BOOTSTRAP = function for terminal firmware updates

Flashes at 2 Hz State of the EtherCAT State Machine:
PREOP = function for mailbox communication and different standard-settings set

Flashes at 1 Hz State of the EtherCAT State Machine:
SAFEOP = verification of the sync manager channels and the distributed clocks.
Outputs remain in safe state

on State of the EtherCAT State Machine: OP = normal operating state; mailbox and process data
communication is possible

Err red off All configured bus devices are error-free (box state = 0); TwinCAT task or process is running.
Flashes at 1 Hz At least one box state is not equal to 0 (e.g. device not found, wrong configuration, device in

error state)
Flashes at 10 Hz Configuration upload being carried out
on CAN controller is BUS OFF. Physical CAN problem. Possible causes: e.g. missing termination

resistor, bus line too long, wrong baud rate, node address assigned twice, wiring error, short-
circuit.
Restart required

CPU
error

red on EL6751 processor error
Flashes at 10 Hz The EL6751 processor starts

Error handling and diagnostics

EL6751 175Version: 4.0.0

6.2 EL6751 – Bus node diagnostics
The CANopen fieldbus card EL6751 has a comprehensive range of diagnostic options for connected network
nodes.

Fig. 139: Diagnosis of inputs in the TwinCAT tree

For each CANopen fieldbus node there is a node state input variable, which signals the status of the current
slave during the runtime and can be linked, for example with the PLC.

Node State (Box-State)

Fig. 140: "Variable" tab

Error handling and diagnostics

EL6751176 Version: 4.0.0

Node State Meaning Explanation
0 = 0x00 No error Bus node is operational, communication is running correctly
1 = 0x01 Node deactivated The node is subject to one or more of the following errors:

• guarding/heartbeat error (failure, toggle bit error, node has
changed state)

• expected TxPDO has not been received
• TxPDO length shorter than expected

Node has been stopped, because "Manual restart [} 95]" following
a node failure has been selected.

2 = 0x02 Node not found Node not found: no answer to SDO read access to object 0x1000 at
the expected node address. Check the following at the node: what
node address is set, and what baud rate. Check network
(terminating resistors, connectors, bus length, crossed wiring etc.)

4 = 0x04 SDO syntax error at
StartUp

Error during SDO write access: SDO abort by node. See the "Diag"
tab for details.
or: the length of an object read by SDO does not agree with the
expected length.

5 = 0x05 SDO data mismatch at
StartUp

Expected data does not agree with that read via SDO (e.g. device
profile and/or additional info do not agree with object 0x1000). Can
also occur if the value to be written (e.g. PDO COB-ID) is read back
due to refusal of write access, and does not agree. See the "Diag"
tab for details.

8 = 0x08 Node StartUp in progress Node was found and has been started.
11 = 0x0B EL6751Bus-OFF CAN chip has entered the "Bus-OFF" state: transmit error counter

is running
12 = 0x0C Pre-Operational Node has gone pre-operational (on its own account).
13 = 0x0D Severe bus fault General firmware error
14 = 0x0E Guarding: toggle error Guarding error: Toggle bit has not changed
20 = 0x14 TxPDO too short Received TxPDO shorter than expected
22 = 0x16 Expected TxPDO is

missing
• TxPDO has not been received within the expected time interval:
• sync interval with synchronous TxPDOs,
• event timer with event-driven PDOs)

23 = 0x17 Node is Operational but
not all TxPDOs were
received

Node has been started, but at least one TxPDO has not yet been
received from the node. Possible causes (e.g.):
• The node only sends event-driven PDOs after the first event (this

is not the intention of the CANopen specification, but is quite
usual)

• Too many TxPDOs have been configured
• A TxPDO is present at the node, but no process data has been

mapped
• The TxPDO has transmission type 1...120 (synchronous), but

SYNC has not yet been sent because the associated task has
not been started

DiagFlag

Shows whether the box diagnostic information has changed.

Reading the Diagnostic Data via ADS

CANopen emergencies and other diagnostic data can be read out via ADS read (new data present as soon
as you see the DiagFlag). The ADS Net-ID of the EL6751 must be entered for this. Other ADS parameters:

Port: 200

IndexGroup: Lo-Word = 0xF180, Hi-Word = Node-Number.

Error handling and diagnostics

EL6751 177Version: 4.0.0

IndexOffset: See below

Length: See below

If more than 26 bytes of diagnostic data have been read out the emergency memory is reset. The DiagFlag
is reset as soon as at least 108 bytes have been read starting from offset 0. Alternatively, the flag is reset
after each of read access, if IndexGroup 0xF181 (instead of 0xF180) is used for the read.

The diagnostic data have the following definitions:

Offset 0,1: Bit 1: Boot up message not received or incorrect
Bit 2: Emergency-Overflow
Bit 0, Bit 3-15: reserved

Offset 2,3: Bit 0-14: TX-PDO (i+1) received
Bit 15: All TX PDOs 16-n received

Offset 4,5: Bit 0-4: 1: Incorrect TX PDO length
2: Synchronous TX PDO absent
3: Node signaling PRE-OPERATIONAL
4: Event timer timed out for TX PDO
5: No response and guarding is activated
6: Toggling missed several times and guarding activated

Bit 5-15: Associated COB ID
Offset 6: Bit 0-7: 1: Incorrect value during SDO upload

2: Incorrect length during SDO upload
3: Abort during SDO up/download
4: Incorrect date during a boot-up message
5: Timeout while waiting for a boot-up message

Offset 7: Bit 0-7: 2: Incorrect SDO command specifier
3: SDO toggle bit has not changed
4: SDO length too great
5: SDO-Abort
6: SDO-Timeout

Offset 8,9 Bit 0-7: SDO up/download index
Offset 10: Bit 0-7: SDO up/download sub-index
Offset 11: Bit 0-7: reserved
Offset 12: Bit 0-7: Abort errorClass
Offset 13: Bit 0-7: Abort errorCode
Offset 14,15: Bit 0-15: Abort additionalCode
Offset 16-19: Read value (if offset 6 = 1)
Offset 20-23: Expected value (if offset 6 = 1)
Offset 24-25: Number of consecutive emergencies
Offset 26 - n: Emergencies (8 bytes each)

Error handling and diagnostics

EL6751178 Version: 4.0.0

6.3 EL6751 diagnostics
Diagnostic Inputs

The EL6751 has various diagnostic variables that describe the state of the terminal and the CANopen
network:

Fig. 141: TwinCAT tree: Diagnostic variables of the EL6751

Error
Shows the number of slaves whose Box State is not equal to zero. Only check the BoxState of the slaves if
this value is other than 0.

CANState

Bit 0: CAN controller is in BUS OFF state; due to an excessive number of CAN errors (error frames) the CAN
controller no longer takes part in the bus traffic; in this case there is a serious physical error in the CAN
network (e.g. insufficient or too many termination resistors, at least one device with invalid baud rate, short
circuit, etc.). The Bus Off state can only be quit with a CAN node reset.
Bit 1: CAN controller warning limit reached; the send or receive error counter of the CAN controller has
exceeded 96.
Bit 2: Rx queue overrun; overflow of the internal receive buffer. Data retrieval by the controller is too slow.
Bit 3: Hi-Prio Tx queue overrun; transmit buffer overflow for PDOs and SYNC messages.
Bit 4: Lo-Prio Tx queue overrun; transmit buffer overflow for SDOs, guarding, heartbeat, etc.
Bit 5: CAN transmission error; this bit is set when no data can be transmitted, e.g. if the EL6751 connector is
unplugged.
Bit 7: internal Rx queue full; the data are not read in via the CAN interface (function available from firmware
9).
Bit 15: toggles when the CAN-SYNC message is sent. This enables the function of the CAN multiplier (CAN
transmission in every nth EtherCAT cycle) to be checked.

RxErrorCounter
Faulty receive data; this is set to a certain value in the event of an error and decremented to one once
faultless communication has resumed.

TxErrorCounter
Faulty transmission data; this is set to a certain value in the event of an error and decremented to one once
faultless communication has resumed.

DiagFlag: Shows whether the diagnostics information on the card has changed. This can be read off using
ADS-Read. For that purpose, specify the net ID of the EL6751, the port number 200 and the IndexGroup
0xF100. The IndexOffset and the length then relate to the diagnostic data. (Note: The Box States are also
available as box variables.)

Offset 1-127: BusStatus List, 1-127 one byte each station address which contains the station status (see
BoxState for CANopen boxes)

Error handling and diagnostics

EL6751 179Version: 4.0.0

6.4 EL6751- Emergency messages
The EL6751 stores incoming emergency messages in the diagnostic area from offset 26 (see below). Up to
10 emergencies can be stored for each bus node. The oldest message is replaced if more emergencies than
this arrive.

New diagnostic data (emergencies or other diagnostic data) is present as soon as the DiagFlag is set.

Fig. 142: TwinCAT tree: Diagnostic Inputs

CANopen emergencies and other diagnostic data can be read via ADS. You need to enter the EL6751 ADS
net ID. Other ADS parameters:

Port: 200

IndexGroup: Lo-Word = 0xF180, Hi-Word = Node-Number.

IndexOffset: See below

Length: See below

If more than 26 bytes of diagnostic data have been read out the emergency memory is reset. The DiagFlag
is reset as soon as at least 108 bytes have been read starting from offset 0. Alternatively, the flag is reset
after each of read access, if IndexGroup 0xF181 (instead of 0xF180) is used for the read.

A description of the diagnostic data at offset 0...23 is to be found in the corresponding Section [} 175]. The
diagnostic area starting at offset 24 is organized as follows:

Offset 24-25: Number of consecutive emergencies

Offset 26 - n: Emergencies (8 bytes each)

The significance of the emergency data is to be found in the technical documentation for the particular
CANopen device.

Error handling and diagnostics

EL6751180 Version: 4.0.0

6.5 EL6751 - ADS Error Codes
The ADS error codes have the following meaning:

Error handling and diagnostics

EL6751 181Version: 4.0.0

Error Description
0x1001 Insufficient memory for AMS command
0x1101 Incorrect data length at StartFieldbus
0x1102 Incorrect DeviceState at StartFieldbus
0x1103 Device cannot change from INIT to RUN
0x1104 Incorrect AdsState in INIT state
0x1105 Incorrect DeviceState at StopFieldbus
0x1106 Device cannot change from STOP to RUN if a CDL is not defined
0x1107 Device cannot change from STOP to RUN if a box is not defined
0x1108 Incorrect data length at StartDataTransfer
0x1109 Incorrect DeviceState at StartDataTransfer
0x110A Incorrect AdsState in STOP state
0x110B Device cannot change from RUN to INIT
0x110C Incorrect data length at StopDataTransfer
0x110D Incorrect DeviceState at StopDataTransfer
0x1110 Incorrect AdsState in RUN state
0x1111 Loading the device parameters is only permitted in the INIT state
0x1112 Incorrect data length at SetDeviceState
0x1113 AddBox not allowed in INIT state
0x1114 Incorrect data length at AddBox
0x1115 DeleteBox not allowed in INIT state
0x1116 Incorrect IndexOffset at DeleteBox
0x1117 Incorrect data length at DeleteBox
0x1118 ReadBox only with AdsRead
0x1119 AddCdl not allowed in INIT state
0x111A Incorrect data length at AddCdl
0x111B DeleteCdl not allowed in INIT state
0x111C Incorrect IndexOffset at DeleteCdl
0x111D Incorrect data length at DeleteCdl
0x111E Incorrect IndexGroup at AdsWrite
0x111F Device parameters cannot be read
0x1120 Box parameters cannot be read
0x1121 Cdl parameters cannot be read
0x1122 DeleteBox or DeleteCdl only with AdsWrite
0x1123 ReadBox only possible in STOP state
0x1124 Incorrect IndexOffset at ReadBox
0x1125 Incorrect data length at ReadBox
0x1126 Incorrect IndexGroup at AdsRead
0x1127 AddDeviceNotification not allowed in INIT state
0x1128 DelDeviceNotification not allowed in INIT state
0x1129 IndexOffset too large during reading of the device diagnostic data
0x112B IndexOffset too large during reading of the box diagnostic data
0x112F Insufficient memory for ReadBox response
0x1201 AddCdl: CDL no. is too large
0x1202 DeleteCdl only possible when CDL is stopped
0x1203 DeleteCdl not possible as no CDL defined
0x1204 Cycle could not be completed within the internal watchdog time

Error handling and diagnostics

EL6751182 Version: 4.0.0

Error Description
0x1301 AddCdl: I/O access multiplier is too large
0x1302 AddCdl: Start cycle must be smaller than I/O access multiplier
0x1303 AddCdl: Incorrect data length for output area
0x1304 AddCdl: Incorrect data offset for output area
0x1305 AddCdl: Output area is already defined
0x1306 AddCdl: Incorrect data length for input area
0x1307 AddCdl: Incorrect data offset for input area
0x1308 AddCdl: Input area is already defined
0x1309 AddCdl: Incorrect area type
0x130A AddCdl: BoxNo has not been defined with AddBox
0x130B AddCdl: Incorrect action type
0x130C AddCdl: Insufficient memory for poll list
0x130D AddCdl: Insufficient memory for poll list array
0x130E AddCdl: Insufficient memory for actions
0x130F AddCdl: CdlNo already exists
0x1310 DeleteCdl: CDL is not stopped
0x1311 AddCdl: Insufficient memory for asynchronous transmit list
0x1312 AddCdl: Insufficient memory for synchronous receive list
0x1313 AddCdl: Insufficient memory for asynchronous receive list
0x1316 AddCdl: Insufficient memory for synchronous receive list
0x1318 AddCdl: Only slave action allowed
0x1319 AddCdl: Insufficient memory for slave list
0x1601 AddBox: BoxNo is too large
0x1602 AddBox: Insufficient memory for ADS StartUp telegram
0x1604 DeleteBox: Box is not stopped
0x1605 AddBox: Insufficient memory for CDL telegram
0x1606 AddBox: Number of CDL telegrams is too large
0x1607 BoxRestart: Box is not stopped
0x1608 BoxRestart: AdsWriteControl syntax error
0x1609 BoxRestart: Incorrect AdsState
0x160A Syntax error in AdsWrite to box port
0x160B AMS CmdId is not supported by box port
0x160E AdsReadState is not supported by box port
0x160F AddBox: Insufficient memory for the ADS interface
0x1610 AddBox: AMS channel is invalid
0x1611 Error communicating with an AMS box
0x1613 Error communicating with an AMS box: Incorrect offset
0x1614 Error communicating with an AMS box: Data packet is too large
0x1615 Error communicating with an AMS box: AMS command is too large
0x1616 Error communicating with an AMS box: First data packet is too large
0x1617 Error communicating with an AMS box: First offset is incorrect
0x1701 AddDeviceNotification: Length of device diagnostic data to small
0x1702 AddDeviceNotification: Length of device diagnostic data to large
0x1703 AddDeviceNotification: Length of box diagnostic data to small
0x1704 AddDeviceNotification: Length of box diagnostic data to large
0x1705 AddDeviceNotification: Box is not defined
0x1706 AddDeviceNotification: Incorrect IndexGroup
0x1707 AddDeviceNotification: No more resources for client

Error handling and diagnostics

EL6751 183Version: 4.0.0

Error Description
0x1708 DelDeviceNotification: Incorrect handle
0x1801 StartFieldbus: In equidistant operation, shift time + safety time + 2*PLL sync. time

must be greater than the cycle time
0x1802 StartFieldbus: Cycle time is too large
0x1803 StartFieldbus: Cycle time is too large
0x1804 StartFieldbus: Shift time is too large
0x1805 StartFieldbus: PLL sync time is too large
0x1806 StartFieldbus: Safety time is too large
0x1807 StartFieldbus: Cycle times shorter than 1 ms must be integral divisors of 1 ms

Error handling and diagnostics

EL6751184 Version: 4.0.0

Error Description
0x1A01 Memory could not be allocated from the huge heap, because it is larger than 0x8000

bytes
0x1A02 Memory could not be allocated from the near heap, because it is larger than 0x1000

bytes
0x1A03 Memory could not be allocated from the huge heap, because it is 0 bytes
0x1A04 Memory could not be allocated from the near heap, because it is 0 bytes
0x2001 StartFieldbus: Initialization of the CAN controller failed
0x2002 AddBox: Incorrect box parameter length
0x2003 AddBox: Incorrect box number
0x2004 AddBox: Syntax error in ADS StartUp parameters
0x2005 AddBox: Syntax errors in PDO parameters
0x2006 AddBox: Syntax error in data length
0x2007 AddBox: Insufficient memory
0x2008 AddCdl: Incorrect receive data length
0x2009 AddCdl: Incorrect transmit data length
0x200A AddCdl: PDO is not defined
0x200B AddCdl: PDO Id is already defined
0x200C AddBox: Syntax error in ADS StartUp parameters
0x200D AddBox: Syntax error in ADS StartUp parameters
0x200E AddBox: Emergency Id is already defined
0x200F AddBox: Too many PDOs defined
0x2010 AddCdl: Incorrect telegram index
0x2011 AddBox: Too many Rx or Tx PDOs
0x2012 AdsRead: Incorrect IndexGroup
0x2013 AdsRead: Incorrect IndexOffset
0x2014 AdsRead: Incorrect length
0x2015 AdsWrite: Incorrect IndexGroup
0x2016 AdsWrite: Incorrect IndexOffset
0x2017 AdsWrite: Incorrect length
0x2018 AddBox: Guarding time smaller than 10 is not possible
0x2019 AddBox: Incorrect transmission type in CAN Layer 2 node
0x201A AdsRead: not possible at CAN Layer 2 node
0x201B AdsWrite: not possible at CAN Layer 2 node
0x201C AddBox: BootUp Id is already defined
0x201D AddBox: BoxNo 0 is not possible
0x201E StartFieldbus: Loading the device parameters is only possible in the OFFLINE state
0x201F StartDataTransfer: No memory for copy queue
0x2020 ReadBox: no more memory
0x2021 ReadBox: SDO error or timeout
0x2022 ReadBox: SDO cannot be initialized
0x2023 StartFieldbus: reserved device parameter not equal to 0
0x2101 Insufficient memory for low-priority queues
0x2102 Insufficient memory for low-priority queues
0x2103 Insufficient memory at node boot-up
0x2104 Insufficient memory at node boot-up
0x2105 Insufficient memory at node boot-up
0x2106 Insufficient memory at node boot-up
0x2107 Insufficient memory at node boot-up
0x2108 Insufficient memory at node boot-up

Error handling and diagnostics

EL6751 185Version: 4.0.0

Error Description
0x2109 Insufficient memory at node boot-up
0x210A Insufficient memory at node boot-up
0x210B Insufficient memory at node boot-up
0x210C Insufficient memory at node boot-up
0x210D Insufficient memory at node boot-up
0x210E Insufficient memory at node boot-up
0x210F Insufficient memory at node boot-up
0x2110 Insufficient memory at node boot-up
0x2111 Insufficient memory at node boot-up
0x2112 Insufficient memory at node boot-up
0x2113 Insufficient memory at node boot-up
0x2114 Insufficient memory at node boot-up
0x2301 Insufficient memory for low-priority queues
0x2302 Insufficient memory for low-priority queues

Error handling and diagnostics

EL6751186 Version: 4.0.0

6.6 CANopen Trouble Shooting
Error Frames

One sign of errors in the CAN wiring, the address assignment or the setting of the baud rate is an increased
number of error frames: the diagnostic LEDs then show Warning Limit exceeded or Bus-off state entered.

Error Frames
Warning limit exceeded, passive error or bus-off state are indicated first of all at those nodes that
have detected the most errors. These nodes are not necessarily the cause for the occurrence of
error frames!
If, for instance, one node contributes unusually heavily to the bus traffic (e.g. because it is the only
one with analog inputs, the data for which triggers event-driven PDOs at a high rate), then the
probability of its telegrams being damaged increases. Its error counter will, correspondingly, be the
first to reach a critical level.

Node ID / Setting the Baud Rate

Care must be taken to ensure that node addresses are not assigned twice: there may only be one sender for
each CAN data telegram.

Test 1

Check node addresses. If the CAN communication functions at least some of the time, and if all the devices
support the boot up message, then the address assignment can also be examined by recording the boot up
messages after the devices are switched on. This will not, however, recognize node addresses that have
been swapped.

Test 2

Check that the same baud rate has been set everywhere. For special devices, if the bit timing parameters
are accessible, do they agree with the CANopen definitions (sampling time, SJW, oscillator).

Testing the CAN wiring

These tests should not be carried out if the network is active: No communication should take place during
the tests. The following tests should be carried out in the stated sequence, because some of the tests
assume that the previous test was successful. Not all the tests are generally necessary.

Network terminator and signal leads

The nodes should be switched off or the CAN cable unplugged for this test, because the results of the
measurements can otherwise be distorted by the active CAN transceiver.

Error handling and diagnostics

EL6751 187Version: 4.0.0

Fig. 143: Wiring diagram for test setup

Test 3

Determine the resistance between CAN high and CAN low - at each device, if necessary.

If the measured value is greater than 65 Ohms, it indicates the absence of a terminating resistor or a break
in a signal lead. If the measured value is less than 50 Ohms, look for a short circuit between the CAN lines,
more than the correct number of terminating resistors, or faulty transceivers.

Test 4

Check for a short circuit between the CAN ground and the signal leads, or between the screen and signal
leads.

Test 5

Remove the earth connection from the CAN ground and screen. Check for a short circuit between the CAN
ground and screen.

Topology

The possible cable length in CAN networks depends heavily on the selected baud rate. CAN will tolerate
short drop lines - although this again depends on the baud rate. The maximum permitted drop line length
should not be exceeded. The length of cable that has been installed is often underestimated - estimates can
even be a factor of 10 less than the actual length. The following test is therefore recommended:

Test 6

Measure the lengths of the drop lines and the total bus lengths (do not just make rough estimates!) and
compare them with the topology rules for the relevant baud rate.

Screening and earthing

The power supply and the screen should be carefully earthed at the power supply unit, once only and with
low resistance. At all connecting points, branches and so forth the screen of the CAN cable (and possibly the
CAN GND) must also be connected, as well as the signal leads. In the Beckhoff IP20 Bus Couplers, the
screen is grounded for high frequencies via an R/C element.

Error handling and diagnostics

EL6751188 Version: 4.0.0

Test 7

Use a DC ammeter (16 amp max.) to measure the current between the power supply ground and the shield
at the end of the network most remote from the power supply unit. An equalization current should be present.
If there is no current, then either the screen is not connected all the way through, or the power supply unit is
not properly earthed. If the power supply unit is somewhere in the middle of the network, the measurement
should be performed at both ends. When appropriate, this test can also be carried out at the ends of the drop
line.

Test 8

Interrupt the screen at a number of locations and measure the connection current. If current is flowing, the
screen is earthed at more than one place, creating a ground loop.

Potential differences

The screen must be connected all the way through for this test, and must not be carrying any current - this
has previously been tested.

Test 9

Measure and record the voltage between the screen and the power supply ground at each node. The
maximum potential difference between any two devices should be less than 5 volts.

Detect and localize faults

The "low-tech approach" usually works best: disconnect parts of the network, and observe when the fault
disappears.

However, this does not work well for problems such as excessive potential differences, ground loops, EMC
or signal distortion, since the reduction in the size of the network often solves the problem without the
"missing" piece being the cause. The bus load also changes as the network is reduced in size, which can
mean that external interference "hits" CAN telegrams less often.

Diagnosis with an oscilloscope is not usually successful: even when they are in good condition, CAN signals
can look really chaotic. It may be possible to trigger on error frames using a storage oscilloscope - this type
of diagnosis, however, is only possible for expert technicians.

Protocol problems

In rare cases, protocol problems (e.g. faulty or incomplete CANopen implementation, unfavorable timing at
boot up, etc.) can be the cause of faults. In this case it is necessary to trace the bus traffic for evaluation by a
CANopen experts - the Beckhoff support team can help here.
A free channel on a Beckhoff FC5102 CANopen PCI card is appropriate for such a trace - Beckhoff make the
necessary trace software available on the internet. Alternatively, it is of course possible to use a normal
commercial CAN analysis tool.

Protocol problems can be avoided if devices that have not been conformance tested are not used. The
official CANopen Conformance Test (and the appropriate certificate) can be obtained from the CAN in
Automation Association (https://www.can-cia.org).

https://www.can-cia.org

Appendix

EL6751 189Version: 4.0.0

7 Appendix

7.1 EtherCAT AL Status Codes
For detailed information please refer to the EtherCAT system description.

https://infosys.beckhoff.de/content/1033/ethercatsystem/1037010571.html

Appendix

EL6751190 Version: 4.0.0

7.2 Firmware compatibility
Beckhoff EtherCAT devices are delivered with the latest available firmware version. Compatibility of firmware
and hardware is mandatory; not every combination ensures compatibility. The overview below shows the
hardware versions on which a firmware can be operated.

Note
• It is recommended to use the newest possible firmware for the respective hardware
• Beckhoff is not under any obligation to provide customers with free firmware updates for delivered

products.

NOTICE
Risk of damage to the device!
Pay attention to the instructions for firmware updates on the separate page [} 191]. If a device is placed in
BOOTSTRAP mode for a firmware update, it does not check when downloading whether the new firmware
is suitable. This can result in damage to the device! Therefore, always make sure that the firmware is
suitable for the hardware version!

EL6751-0000
Hardware (HW) Firmware Revision no. Release date
07 - 19 06 EL6751-0000-0016 2007/10

07 2008/11
08 2008/12
09 EL6751-0000-0017 2010/06
10 2010/08
11 2011/01

EL6751-0000-0018 2011/02
12 2012/02

EL6751-0000-0019 2012/10
13 2013/03
14 EL6751-0000-0020 2014/07

20 - 27* 15 EL6751-0000-0021 2014/12
16 EL6751-0000-0022 2016/04
17 2017/03
18 2018/04
19* 2025/04

EL6751-0010
Hardware (HW) Firmware Revision no. Release date
06 - 07 01 EL6751-0010-0016 2007/10

02 EL6751-0010-0018 2008/11
08 - 18 03 2009/07

04 2012/03
EL6751-0010-0019 2012/10

05 EL6751-0010-0020 2014/07
19 – 25* 06 EL6751-0010-0021 2014/12

07 2016/04
08 2017/03
09* 2018/04

*) This is the current compatible firmware/hardware version at the time of the preparing this documentation.
Check on the Beckhoff web page whether more up-to-date documentation is available.

https://www.beckhoff.com/en-us/support/download-finder

Appendix

EL6751 191Version: 4.0.0

7.3 Firmware Update EL/ES/EM/ELM/EP/EPP/ERPxxxx
This section describes the device update for Beckhoff EtherCAT slaves from the EL/ES, ELM, EM, EK, EP,
EPP and ERP series. A firmware update should only be carried out after consultation with Beckhoff support.

NOTICE
Only use TwinCAT 3 software!
A firmware update of Beckhoff IO devices must only be performed with a TwinCAT 3 installation. It is
recommended to build as up-to-date as possible, available for free download on the Beckhoff website.
To update the firmware, TwinCAT can be operated in the so-called FreeRun mode, a paid license is not
required.
The device to be updated can usually remain in the installation location, but TwinCAT has to be operated in
the FreeRun. Please make sure that EtherCAT communication is trouble-free (no LostFrames etc.).
Other EtherCAT master software, such as the EtherCAT Configurator, should not be used, as they may not
support the complexities of updating firmware, EEPROM and other device components.

Storage locations

An EtherCAT slave stores operating data in up to three locations:

• Each EtherCAT slave has a device description, consisting of identity (name, product code), timing
specifications, communication settings, etc.
This device description (ESI; EtherCAT Slave Information) can be downloaded from the Beckhoff
website in the download area as a zip file and used in EtherCAT masters for offline configuration, e.g.
in TwinCAT.
Above all, each EtherCAT slave carries its device description (ESI) electronically readable in a local
memory chip, the so-called ESI EEPROM. When the slave is switched on, this description is loaded
locally in the slave and informs it of its communication configuration; on the other hand, the EtherCAT
master can identify the slave in this way and, among other things, set up the EtherCAT communication
accordingly.

NOTICE
Application-specific writing of the ESI-EEPROM
The ESI is developed by the device manufacturer according to ETG standard and released for the
corresponding product.
- Meaning for the ESI file: Modification on the application side (i.e. by the user) is not permitted.
- Meaning for the ESI EEPROM: Even if a writeability is technically given, the ESI parts in the EEPROM
and possibly still existing free memory areas must not be changed beyond the normal update process.
Especially for cyclic memory processes (operating hours counter etc.), dedicated memory products such as
EL6080 or IPC's own NOVRAM must be used.

• Depending on functionality and performance EtherCAT slaves have one or several local controllers for
processing I/O data. The corresponding program is the so-called firmware in *.efw format.

• In some EtherCAT slaves the EtherCAT communication may also be integrated in these controllers. In
this case the controller is usually a so-called FPGA chip with *.rbf firmware.

Customers can access the data via the EtherCAT fieldbus and its communication mechanisms. Acyclic
mailbox communication or register access to the ESC is used for updating or reading of these data.

The TwinCAT System Manager offers mechanisms for programming all three parts with new data, if the
slave is set up for this purpose. Generally the slave does not check whether the new data are suitable, i.e. it
may no longer be able to operate if the data are unsuitable.

Simplified update by bundle firmware

The update using so-called bundle firmware is more convenient: in this case the controller firmware and the
ESI description are combined in a *.efw file; during the update both the firmware and the ESI are changed in
the terminal. For this to happen it is necessary

• for the firmware to be in a packed format: recognizable by the file name, which also contains the
revision number, e.g. ELxxxx-xxxx_REV0016_SW01.efw

https://www.beckhoff.com/en-us/support/download-finder/software-and-tools/
https://www.beckhoff.com/de-de/download/128205835

Appendix

EL6751192 Version: 4.0.0

• for password=1 to be entered in the download dialog. If password=0 (default setting) only the firmware
update is carried out, without an ESI update.

• for the device to support this function. The function usually cannot be retrofitted; it is a component of
many new developments from year of manufacture 2016.

Following the update, its success should be verified

• ESI/Revision: e.g. by means of an online scan in TwinCAT ConfigMode/FreeRun – this is a convenient
way to determine the revision

• Firmware: e.g. by looking in the online CoE of the device

NOTICE
Risk of damage to the device!
ü Note the following when downloading new device files
a) Firmware downloads to an EtherCAT device must not be interrupted
b) Flawless EtherCAT communication must be ensured. CRC errors or LostFrames must be avoided.
c) The power supply must adequately dimensioned. The signal level must meet the specification.
ð In the event of malfunctions during the update process the EtherCAT device may become unusable and

require re-commissioning by the manufacturer.

7.3.1 Device description ESI file/XML
NOTICE

Attention regarding update of the ESI description/EEPROM
Some slaves have stored calibration and configuration data from the production in the EEPROM. These are
irretrievably overwritten during an update.

The ESI device description is stored locally on the slave and loaded on start-up. Each device description has
a unique identifier consisting of slave name (9 characters/digits) and a revision number (4 digits). Each slave
configured in the System Manager shows its identifier in the EtherCAT tab:

Fig. 144: Device identifier consisting of name EL3204-0000 and revision -0016

The configured identifier must be compatible with the actual device description used as hardware, i.e. the
description which the slave has loaded on start-up (in this case EL3204). Normally the configured revision
must be the same or lower than that actually present in the terminal network.

For further information on this, please refer to the EtherCAT system documentation.

https://infosys.beckhoff.com/content/1033/ethercatsystem/index.html

Appendix

EL6751 193Version: 4.0.0

Update of XML/ESI description
The device revision is closely linked to the firmware and hardware used. Incompatible combinations
lead to malfunctions or even final shutdown of the device. Corresponding updates should only be
carried out in consultation with Beckhoff support.

Display of ESI slave identifier

The simplest way to ascertain compliance of configured and actual device description is to scan the
EtherCAT boxes in TwinCAT mode Config/FreeRun:

Fig. 145: Scan the subordinate field by right-clicking on the EtherCAT device

If the found field matches the configured field, the display shows

Fig. 146: Configuration is identical

otherwise a change dialog appears for entering the actual data in the configuration.

Appendix

EL6751194 Version: 4.0.0

Fig. 147: Change dialog

In this example in Fig. Change dialog, an EL3201-0000-0017 was found, while an EL3201-0000-0016 was
configured. In this case the configuration can be adapted with the Copy Before button. The Extended
Information checkbox must be set in order to display the revision.

Changing the ESI slave identifier

The ESI/EEPROM identifier can be updated as follows under TwinCAT:

• Trouble-free EtherCAT communication must be established with the slave.
• The state of the slave is irrelevant.
• Right-clicking on the slave in the online display opens the EEPROM Update dialog, Fig. EEPROM

Update

Fig. 148: EEPROM Update

The new ESI description is selected in the following dialog, see Fig. Selecting the new ESI. The checkbox
Show Hidden Devices also displays older, normally hidden versions of a slave.

Appendix

EL6751 195Version: 4.0.0

Fig. 149: Selecting the new ESI

A progress bar in the System Manager shows the progress. Data are first written, then verified.

The change only takes effect after a restart.
Most EtherCAT devices read a modified ESI description immediately or after startup from the INIT.
Some communication settings such as distributed clocks are only read during power-on. The
EtherCAT slave therefore has to be switched off briefly in order for the change to take effect.

7.3.2 Firmware explanation

Determining the firmware version

Determining the version via the TwinCAT System Manager

The TwinCAT System Manager shows the version of the controller firmware if the master can access the
slave online. Click on the E-Bus Terminal whose controller firmware you want to check (in the example
terminal 2 (EL3204)) and select the tab CoE Online (CAN over EtherCAT).

CoE Online and Offline CoE
Two CoE directories are available:
• online: This is offered in the EtherCAT slave by the controller, if the EtherCAT slave supports this.
This CoE directory can only be displayed if a slave is connected and operational.
• offline: The EtherCAT Slave Information ESI/XML may contain the default content of the CoE.
This CoE directory can only be displayed if it is included in the ESI (e.g. “Beckhoff EL5xxx.xml”).
The Advanced button must be used for switching between the two views.

In Fig. Display of EL3204 firmware version the firmware version of the selected EL3204 is shown as 03 in
CoE entry 0x100A.

Appendix

EL6751196 Version: 4.0.0

Fig. 150: Display of EL3204 firmware version

In (A) TwinCAT 2.11 shows that the Online CoE directory is currently displayed. If this is not the case, the
Online directory can be loaded via the Online option in Advanced Settings (B) and double-clicking on
AllObjects.

7.3.3 Updating controller firmware *.efw
CoE directory
The Online CoE directory is managed by the controller and stored in a dedicated EEPROM, which
is generally not changed during a firmware update.

Switch to the Online tab to update the controller firmware of a slave, see Fig. Firmware Update.

Appendix

EL6751 197Version: 4.0.0

Fig. 151: Firmware Update

Proceed as follows, unless instructed otherwise by Beckhoff support. Valid for TwinCAT 2 and 3 as
EtherCAT master.

• Switch TwinCAT system to ConfigMode/FreeRun with cycle time >= 1 ms (default in ConfigMode is
4 ms). A FW-Update during real time operation is not recommended.

• Switch EtherCAT Master to PreOP

• Switch slave to INIT (A)
• Switch slave to BOOTSTRAP

Appendix

EL6751198 Version: 4.0.0

• Check the current status (B, C)
• Download the new *efw file (wait until it ends). A password will not be necessary usually.

• After the download switch to INIT, then PreOP
• Switch off the slave briefly (don't pull under voltage!)
• Check within CoE 0x100A, if the FW status was correctly overtaken.

7.3.4 FPGA firmware *.rbf
If an FPGA chip deals with the EtherCAT communication an update may be accomplished via an *.rbf file.

• Controller firmware for processing I/O signals
• FPGA firmware for EtherCAT communication (only for terminals with FPGA)

The firmware version number included in the terminal serial number contains both firmware components. If
one of these firmware components is modified this version number is updated.

Determining the version via the TwinCAT System Manager

The TwinCAT System Manager indicates the FPGA firmware version. Click on the Ethernet card of your
EtherCAT strand (Device 2 in the example) and select the Online tab.

The Reg:0002 column indicates the firmware version of the individual EtherCAT devices in hexadecimal and
decimal representation.

Appendix

EL6751 199Version: 4.0.0

Fig. 152: FPGA firmware version definition

If the column Reg:0002 is not displayed, right-click the table header and select Properties in the context
menu.

Fig. 153: Context menu Properties

The Advanced Settings dialog appears where the columns to be displayed can be selected. Under
Diagnosis/Online View select the '0002 ETxxxx Build' check box in order to activate the FPGA firmware
version display.

Appendix

EL6751200 Version: 4.0.0

Fig. 154: Dialog Advanced Settings

Update

For updating the FPGA firmware

• of an EtherCAT coupler the coupler must have FPGA firmware version 11 or higher;
• of an E-Bus Terminal the terminal must have FPGA firmware version 10 or higher.

Older firmware versions can only be updated by the manufacturer!

Updating an EtherCAT device

The following sequence order have to be met if no other specifications are given (e.g. by the Beckhoff
support):

• Switch TwinCAT system to ConfigMode/FreeRun with cycle time >= 1 ms (default in ConfigMode is
4 ms). A FW-Update during real time operation is not recommended.

Appendix

EL6751 201Version: 4.0.0

• In the TwinCAT System Manager select the terminal for which the FPGA firmware is to be updated (in
the example: Terminal 5: EL5001) and
click the Advanced Settings button in the EtherCAT tab:

• The Advanced Settings dialog appears. Under ESC Access/E²PROM/FPGA click on Write FPGA
button:

Appendix

EL6751202 Version: 4.0.0

• Select the file (*.rbf) with the new FPGA firmware, and transfer it to the EtherCAT device:

• Wait until download ends
• Switch slave current less for a short time (don't pull under voltage!). In order to activate the new FPGA

firmware a restart (switching the power supply off and on again) of the EtherCAT device is required.
• Check the new FPGA status

NOTICE
Risk of damage to the device!
A download of firmware to an EtherCAT device must not be interrupted in any case! If you interrupt this
process by switching off power supply or disconnecting the Ethernet link, the EtherCAT device can only be
recommissioned by the manufacturer!

7.3.5 Simultaneous updating of several EtherCAT devices
The firmware and ESI descriptions of several devices can be updated simultaneously, provided the devices
have the same firmware file/ESI.

Fig. 155: Multiple selection and firmware update

Select the required slaves and carry out the firmware update in BOOTSTRAP mode as described above.

Appendix

EL6751 203Version: 4.0.0

7.4 CAN Identifier List
The list provided here should assist in identifying and assigning CANopen messages. All the identifiers
allocated by the CANopen default identifier allocation are listed, as well as the manufacturer-specific default
identifiers issued by BECKHOFF via object 0x5500 (only to be used in networks with node addresses less
than 64).

The following values can be used as search aids and "entry points" in the extensive identifier table in the
*chm edition of the documentation:

Decimal: 400 [} 204], 500 [} 211], 600 [} 211], 700 [} 206], 800 [} 207], 900 [} 208], 1000 [} 213], 1100
[} 213], 1200 [} 209], 1300 [} 209], 1400 [} 214], 1500 [} 215], 1600 [} 215], 1700 [} 210], 1800 [} 218], 1900
[} 210]

Hexadecimal: 0x181 [} 204], 0x1C1 [} 211], 0x201 [} 205], 0x301 [} 207], 0x401 [} 208], 0x501 [} 209], 0x601
[} 217], 0x701 [} 218]

The identifier distribution via object 0x5500 follows this pattern:

Object Resulting COB ID (dec) Resulting COB ID (hex)
Emergency [} 204] 129 to 191 [255] 0x81 to 0xBF [0xFF]

TxPDO1 [} 204] 385 to 447 [511] 0x181 to 0x1BF [0x1FF]

RxPDO1 [} 205] 513 to 575 [639] 0x201 to 0x23F [0x27F]

TxPDO2 [} 206] 641 to 676 [767] 0x281 to 0x2BF [0x2FF]

RxPDO2 [} 207] 769 to 831 [895] 0x301 to 0x33F [0x37F]

TxDPO3 [} 208] 897 to 959 [1023] 0x381 to 0x3BF [0x3FF]

RxPDO3 [} 208] 1025 to 1087 [1151] 0x401 to 0x43F [0x47F]

TxPDO4 [} 209] 1153 to 1215 [1279] 0x481 to 0x4BF [0x4FF]

RxPDO4 [} 209] 1281 to 1343 [1407] 0x501 to 0x53F [0x57F]

TxPDO5 [} 210] 1665 to 1727 0x681 to 0x6BF

RxPDO5 [} 210] 1921 to 1983 0x781 to 0x7BF

TxPDO6 [} 211] 449 to 511 0x1C1 to 0x1FF

RxPDO6 [} 211] 577 to 639 0x241 to 0x27F

TxDPO7 [} 212] 705 to 767 0x2C1 to 0x2FF

RxPDO7 [} 212] 833 to 895 0x341 to 0x37F

TxPDO8 [} 213] 961 to 1023 0x3C1 to 0x3FF

RxPDO8 [} 213] 1089 to 1151 0x441 to 0x47F

TxPDO9 [} 214] 1217 to 1279 0x4C1 to 0x4FF

RxPDO9 [} 214] 1345 to 1407 0x541 to 0x57F

TxDPO10 [} 215] 1473 to 1535 0x5C1 to 0x5FF

RxPDO10 [} 215] 1601 to 1663 0x641 to 0x67F

TxPDO11 [} 216] 1729 to 1791 0x6C1 to 0x6FF

RxPDO11 [} 216] 1857 to 1919 0x741 to 0x77F

SDO (Tx) [} 217] 1409 to 1471 [1535] 0x581 to 0x5BF [0x5FF]

SDO (Rx) [} 217] 1537 to 1599 [1663] 0x601 to 0x63F [0x67F]

Guarding / Heartbeat/ Bootup
[} 218]

1793 to 1855 [1919] 0x701 to 0x73F [0x77F]

Identifier List

Identifiers marked with * are given manufacturer-specific assignments on the Bus Couplers after writing
index 0x5500

Appendix

EL6751204 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
0 0x00 NMT 149 0x95 EMCY Nd.21 171 0xAB EMCY Nd.43
128 0x80 SYNC 150 0x96 EMCY Nd.22 172 0xAC EMCY Nd.44
129 0x81 EMCY Nd.1 151 0x97 EMCY Nd.23 173 0xAD EMCY Nd.45
130 0x82 EMCY Nd.2 152 0x98 EMCY Nd.24 174 0xAE EMCY Nd.46
131 0x83 EMCY Nd.3 153 0x99 EMCY Nd.25 175 0xAF EMCY Nd.47
132 0x84 EMCY Nd.4 154 0x9A EMCY Nd.26 176 0xB0 EMCY Nd.48
133 0x85 EMCY Nd.5 155 0x9B EMCY Nd.27 177 0xB1 EMCY Nd.49
134 0x86 EMCY Nd.6 156 0x9C EMCY Nd.28 178 0xB2 EMCY Nd.50
135 0x87 EMCY Nd.7 157 0x9D EMCY Nd.29 179 0xB3 EMCY Nd.51
136 0x88 EMCY Nd.8 158 0x9E EMCY Nd.30 180 0xB4 EMCY Nd.52
137 0x89 EMCY Nd.9 159 0x9F EMCY Nd.31 181 0xB5 EMCY Nd.53
138 0x8A EMCY Nd.10 160 0xA0 EMCY Nd.32 182 0xB6 EMCY Nd.54
139 0x8B EMCY Nd.11 161 0xA1 EMCY Nd.33 183 0xB7 EMCY Nd.55
140 0x8C EMCY Nd.12 162 0xA2 EMCY Nd.34 184 0xB8 EMCY Nd.56
141 0x8D EMCY Nd.13 163 0xA3 EMCY Nd.35 185 0xB9 EMCY Nd.57
142 0x8E EMCY Nd.14 164 0xA4 EMCY Nd.36 186 0xBA EMCY Nd.58
143 0x8F EMCY Nd.15 165 0xA5 EMCY Nd.37 187 0xBB EMCY Nd.59
144 0x90 EMCY Nd.16 166 0xA6 EMCY Nd.38 188 0xBC EMCY Nd.60
145 0x91 EMCY Nd.17 167 0xA7 EMCY Nd.39 189 0xBD EMCY Nd.61
146 0x92 EMCY Nd.18 168 0xA8 EMCY Nd.40 190 0xBE EMCY Nd.62
147 0x93 EMCY Nd.19 169 0xA9 EMCY Nd.41 191 0xBF EMCY Nd.63
148 0x94 EMCY Nd.20 170 0xAA EMCY Nd.42

dec hex Telegram type dec hex Telegram type dec hex Telegram type
385 0x181 TxPDO1, DI, Nd.1 406 0x196 TxPDO1, DI, Nd.22 427 0x1AB TxPDO1, DI, Nd.43
386 0x182 TxPDO1, DI, Nd.2 407 0x197 TxPDO1, DI, Nd.23 428 0x1AC TxPDO1, DI, Nd.44
387 0x183 TxPDO1, DI, Nd.3 408 0x198 TxPDO1, DI, Nd.24 429 0x1AD TxPDO1, DI, Nd.45
388 0x184 TxPDO1, DI, Nd.4 409 0x199 TxPDO1, DI, Nd.25 430 0x1AE TxPDO1, DI, Nd.46
389 0x185 TxPDO1, DI, Nd.5 410 0x19A TxPDO1, DI, Nd.26 431 0x1AF TxPDO1, DI, Nd.47
390 0x186 TxPDO1, DI, Nd.6 411 0x19B TxPDO1, DI, Nd.27 432 0x1B0 TxPDO1, DI, Nd.48
391 0x187 TxPDO1, DI, Nd.7 412 0x19C TxPDO1, DI, Nd.28 433 0x1B1 TxPDO1, DI, Nd.49
392 0x188 TxPDO1, DI, Nd.8 413 0x19D TxPDO1, DI, Nd.29 434 0x1B2 TxPDO1, DI, Nd.50
393 0x189 TxPDO1, DI, Nd.9 414 0x19E TxPDO1, DI, Nd.30 435 0x1B3 TxPDO1, DI, Nd.51
394 0x18A TxPDO1, DI, Nd.10 415 0x19F TxPDO1, DI, Nd.31 436 0x1B4 TxPDO1, DI, Nd.52
395 0x18B TxPDO1, DI, Nd.11 416 0x1A0 TxPDO1, DI, Nd.32 437 0x1B5 TxPDO1, DI, Nd.53
396 0x18C TxPDO1, DI, Nd.12 417 0x1A1 TxPDO1, DI, Nd.33 438 0x1B6 TxPDO1, DI, Nd.54
397 0x18D TxPDO1, DI, Nd.13 418 0x1A2 TxPDO1, DI, Nd.34 439 0x1B7 TxPDO1, DI, Nd.55
398 0x18E TxPDO1, DI, Nd.14 419 0x1A3 TxPDO1, DI, Nd.35 440 0x1B8 TxPDO1, DI, Nd.56
399 0x18F TxPDO1, DI, Nd.15 420 0x1A4 TxPDO1, DI, Nd.36 441 0x1B9 TxPDO1, DI, Nd.57
400 0x190 TxPDO1, DI, Nd.16 421 0x1A5 TxPDO1, DI, Nd.37 442 0x1BA TxPDO1, DI, Nd.58
401 0x191 TxPDO1, DI, Nd.17 422 0x1A6 TxPDO1, DI, Nd.38 443 0x1BB TxPDO1, DI, Nd.59
402 0x192 TxPDO1, DI, Nd.18 423 0x1A7 TxPDO1, DI, Nd.39 444 0x1BC TxPDO1, DI, Nd.60
403 0x193 TxPDO1, DI, Nd.19 424 0x1A8 TxPDO1, DI, Nd.40 445 0x1BD TxPDO1, DI, Nd.61
404 0x194 TxPDO1, DI, Nd.20 425 0x1A9 TxPDO1, DI, Nd.41 446 0x1BE TxPDO1, DI, Nd.62
405 0x195 TxPDO1, DI, Nd.21 426 0x1AA TxPDO1, DI, Nd.42 447 0x1BF TxPDO1, DI, Nd.63

Appendix

EL6751 205Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
513 0x201 RxPDO1, DO, Nd.1 534 0x216 RxPDO1, DO, Nd.22 555 0x22B RxPDO1, DO,

Nd.43
514 0x202 RxPDO1, DO, Nd.2 535 0x217 RxPDO1, DO, Nd.23 556 0x22C RxPDO1, DO,

Nd.44
515 0x203 RxPDO1, DO, Nd.3 536 0x218 RxPDO1, DO, Nd.24 557 0x22D RxPDO1, DO,

Nd.45
516 0x204 RxPDO1, DO, Nd.4 537 0x219 RxPDO1, DO, Nd.25 558 0x22E RxPDO1, DO,

Nd.46
517 0x205 RxPDO1, DO, Nd.5 538 0x21A RxPDO1, DO, Nd.26 559 0x22F RxPDO1, DO,

Nd.47
518 0x206 RxPDO1, DO, Nd.6 539 0x21B RxPDO1, DO, Nd.27 560 0x230 RxPDO1, DO,

Nd.48
519 0x207 RxPDO1, DO, Nd.7 540 0x21C RxPDO1, DO, Nd.28 561 0x231 RxPDO1, DO,

Nd.49
520 0x208 RxPDO1, DO, Nd.8 541 0x21D RxPDO1, DO, Nd.29 562 0x232 RxPDO1, DO,

Nd.50
521 0x209 RxPDO1, DO, Nd.9 542 0x21E RxPDO1, DO, Nd.30 563 0x233 RxPDO1, DO,

Nd.51
522 0x20A RxPDO1, DO, Nd.10 543 0x21F RxPDO1, DO, Nd.31 564 0x234 RxPDO1, DO,

Nd.52
523 0x20B RxPDO1, DO, Nd.11 544 0x220 RxPDO1, DO, Nd.32 565 0x235 RxPDO1, DO,

Nd.53
524 0x20C RxPDO1, DO, Nd.12 545 0x221 RxPDO1, DO, Nd.33 566 0x236 RxPDO1, DO,

Nd.54
525 0x20D RxPDO1, DO, Nd.13 546 0x222 RxPDO1, DO, Nd.34 567 0x237 RxPDO1, DO,

Nd.55
526 0x20E RxPDO1, DO, Nd.14 547 0x223 RxPDO1, DO, Nd.35 568 0x238 RxPDO1, DO,

Nd.56
527 0x20F RxPDO1, DO, Nd.15 548 0x224 RxPDO1, DO, Nd.36 569 0x239 RxPDO1, DO,

Nd.57
528 0x210 RxPDO1, DO, Nd.16 549 0x225 RxPDO1, DO, Nd.37 570 0x23A RxPDO1, DO,

Nd.58
529 0x211 RxPDO1, DO, Nd.17 550 0x226 RxPDO1, DO, Nd.38 571 0x23B RxPDO1, DO,

Nd.59
530 0x212 RxPDO1, DO, Nd.18 551 0x227 RxPDO1, DO, Nd.39 572 0x23C RxPDO1, DO,

Nd.60
531 0x213 RxPDO1, DO, Nd.19 552 0x228 RxPDO1, DO, Nd.40 573 0x23D RxPDO1, DO,

Nd.61
532 0x214 RxPDO1, DO, Nd.20 553 0x229 RxPDO1, DO, Nd.41 574 0x23E RxPDO1, DO,

Nd.62
533 0x215 RxPDO1, DO, Nd.21 554 0x22A RxPDO1, DO, Nd.42 575 0x23F RxPDO1, DO,

Nd.63

Appendix

EL6751206 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
641 0x281 TxPDO2, AI, Nd.1 662 0x296 TxPDO2, AI, Nd.22 683 0x2AB TxPDO2, AI, Nd.43
642 0x282 TxPDO2, AI, Nd.2 663 0x297 TxPDO2, AI, Nd.23 684 0x2AC TxPDO2, AI, Nd.44
643 0x283 TxPDO2, AI, Nd.3 664 0x298 TxPDO2, AI, Nd.24 685 0x2AD TxPDO2, AI, Nd.45
644 0x284 TxPDO2, AI, Nd.4 665 0x299 TxPDO2, AI, Nd.25 686 0x2AE TxPDO2, AI, Nd.46
645 0x285 TxPDO2, AI, Nd.5 666 0x29A TxPDO2, AI, Nd.26 687 0x2AF TxPDO2, AI, Nd.47
646 0x286 TxPDO2, AI, Nd.6 667 0x29B TxPDO2, AI, Nd.27 688 0x2B0 TxPDO2, AI, Nd.48
647 0x287 TxPDO2, AI, Nd.7 668 0x29C TxPDO2, AI, Nd.28 689 0x2B1 TxPDO2, AI, Nd.49
648 0x288 TxPDO2, AI, Nd.8 669 0x29D TxPDO2, AI, Nd.29 690 0x2B2 TxPDO2, AI, Nd.50
649 0x289 TxPDO2, AI, Nd.9 670 0x29E TxPDO2, AI, Nd.30 691 0x2B3 TxPDO2, AI, Nd.51
650 0x28A TxPDO2, AI, Nd.10 671 0x29F TxPDO2, AI, Nd.31 692 0x2B4 TxPDO2, AI, Nd.52
651 0x28B TxPDO2, AI, Nd.11 672 0x2A0 TxPDO2, AI, Nd.32 693 0x2B5 TxPDO2, AI, Nd.53
652 0x28C TxPDO2, AI, Nd.12 673 0x2A1 TxPDO2, AI, Nd.33 694 0x2B6 TxPDO2, AI, Nd.54
653 0x28D TxPDO2, AI, Nd.13 674 0x2A2 TxPDO2, AI, Nd.34 695 0x2B7 TxPDO2, AI, Nd.55
654 0x28E TxPDO2, AI, Nd.14 675 0x2A3 TxPDO2, AI, Nd.35 696 0x2B8 TxPDO2, AI, Nd.56
655 0x28F TxPDO2, AI, Nd.15 676 0x2A4 TxPDO2, AI, Nd.36 697 0x2B9 TxPDO2, AI, Nd.57
656 0x290 TxPDO2, AI, Nd.16 677 0x2A5 TxPDO2, AI, Nd.37 698 0x2BA TxPDO2, AI, Nd.58
657 0x291 TxPDO2, AI, Nd.17 678 0x2A6 TxPDO2, AI, Nd.38 699 0x2BB TxPDO2, AI, Nd.59
658 0x292 TxPDO2, AI, Nd.18 679 0x2A7 TxPDO2, AI, Nd.39 700 0x2BC TxPDO2, AI, Nd.60
659 0x293 TxPDO2, AI, Nd.19 680 0x2A8 TxPDO2, AI, Nd.40 701 0x2BD TxPDO2, AI, Nd.61
660 0x294 TxPDO2, AI, Nd.20 681 0x2A9 TxPDO2, AI, Nd.41 702 0x2BE TxPDO2, AI, Nd.62
661 0x295 TxPDO2, AI, Nd.21 682 0x2AA TxPDO2, AI, Nd.42 703 0x2BF TxPDO2, AI, Nd.63

Appendix

EL6751 207Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
769 0x301 RxPDO2, AO, Nd.1 790 0x316 RxPDO2, AO, Nd.22 811 0x32B RxPDO2, AO,

Nd.43
770 0x302 RxPDO2, AO, Nd.2 791 0x317 RxPDO2, AO, Nd.23 812 0x32C RxPDO2, AO,

Nd.44
771 0x303 RxPDO2, AO, Nd.3 792 0x318 RxPDO2, AO, Nd.24 813 0x32D RxPDO2, AO,

Nd.45
772 0x304 RxPDO2, AO, Nd.4 793 0x319 RxPDO2, AO, Nd.25 814 0x32E RxPDO2, AO,

Nd.46
773 0x305 RxPDO2, AO, Nd.5 794 0x31A RxPDO2, AO, Nd.26 815 0x32F RxPDO2, AO,

Nd.47
774 0x306 RxPDO2, AO, Nd.6 795 0x31B RxPDO2, AO, Nd.27 816 0x330 RxPDO2, AO,

Nd.48
775 0x307 RxPDO2, AO, Nd.7 796 0x31C RxPDO2, AO, Nd.28 817 0x331 RxPDO2, AO,

Nd.49
776 0x308 RxPDO2, AO, Nd.8 797 0x31D RxPDO2, AO, Nd.29 818 0x332 RxPDO2, AO,

Nd.50
777 0x309 RxPDO2, AO, Nd.9 798 0x31E RxPDO2, AO, Nd.30 819 0x333 RxPDO2, AO,

Nd.51
778 0x30A RxPDO2, AO, Nd.10 799 0x31F RxPDO2, AO, Nd.31 820 0x334 RxPDO2, AO,

Nd.52
779 0x30B RxPDO2, AO, Nd.11 800 0x320 RxPDO2, AO, Nd.32 821 0x335 RxPDO2, AO,

Nd.53
780 0x30C RxPDO2, AO, Nd.12 801 0x321 RxPDO2, AO, Nd.33 822 0x336 RxPDO2, AO,

Nd.54
781 0x30D RxPDO2, AO, Nd.13 802 0x322 RxPDO2, AO, Nd.34 823 0x337 RxPDO2, AO,

Nd.55
782 0x30E RxPDO2, AO, Nd.14 803 0x323 RxPDO2, AO, Nd.35 824 0x338 RxPDO2, AO,

Nd.56
783 0x30F RxPDO2, AO, Nd.15 804 0x324 RxPDO2, AO, Nd.36 825 0x339 RxPDO2, AO,

Nd.57
784 0x310 RxPDO2, AO, Nd.16 805 0x325 RxPDO2, AO, Nd.37 826 0x33A RxPDO2, AO,

Nd.58
785 0x311 RxPDO2, AO, Nd.17 806 0x326 RxPDO2, AO, Nd.38 827 0x33B RxPDO2, AO,

Nd.59
786 0x312 RxPDO2, AO, Nd.18 807 0x327 RxPDO2, AO, Nd.39 828 0x33C RxPDO2, AO,

Nd.60
787 0x313 RxPDO2, AO, Nd.19 808 0x328 RxPDO2, AO, Nd.40 829 0x33D RxPDO2, AO,

Nd.61
788 0x314 RxPDO2, AO, Nd.20 809 0x329 RxPDO2, AO, Nd.41 830 0x33E RxPDO2, AO,

Nd.62
789 0x315 RxPDO2, AO, Nd.21 810 0x32A RxPDO2, AO, Nd.42 831 0x33F RxPDO2, AO,

Nd.63

Appendix

EL6751208 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
897 0x381 TxPDO3*, Nd.1 918 0x396 TxPDO3*, Nd.22 939 0x3AB TxPDO3*, Nd.43
898 0x382 TxPDO3*, Nd.2 919 0x397 TxPDO3*, Nd.23 940 0x3AC TxPDO3*, Nd.44
899 0x383 TxPDO3*, Nd.3 920 0x398 TxPDO3*, Nd.24 941 0x3AD TxPDO3*, Nd.45
900 0x384 TxPDO3*, Nd.4 921 0x399 TxPDO3*, Nd.25 942 0x3AE TxPDO3*, Nd.46
901 0x385 TxPDO3*, Nd.5 922 0x39A TxPDO3*, Nd.26 943 0x3AF TxPDO3*, Nd.47
902 0x386 TxPDO3*, Nd.6 923 0x39B TxPDO3*, Nd.27 944 0x3B0 TxPDO3*, Nd.48
903 0x387 TxPDO3*, Nd.7 924 0x39C TxPDO3*, Nd.28 945 0x3B1 TxPDO3*, Nd.49
904 0x388 TxPDO3*, Nd.8 925 0x39D TxPDO3*, Nd.29 946 0x3B2 TxPDO3*, Nd.50
905 0x389 TxPDO3*, Nd.9 926 0x39E TxPDO3*, Nd.30 947 0x3B3 TxPDO3*, Nd.51
906 0x38A TxPDO3*, Nd.10 927 0x39F TxPDO3*, Nd.31 948 0x3B4 TxPDO3*, Nd.52
907 0x38B TxPDO3*, Nd.11 928 0x3A0 TxPDO3*, Nd.32 949 0x3B5 TxPDO3*, Nd.53
908 0x38C TxPDO3*, Nd.12 929 0x3A1 TxPDO3*, Nd.33 950 0x3B6 TxPDO3*, Nd.54
909 0x38D TxPDO3*, Nd.13 930 0x3A2 TxPDO3*, Nd.34 951 0x3B7 TxPDO3*, Nd.55
910 0x38E TxPDO3*, Nd.14 931 0x3A3 TxPDO3*, Nd.35 952 0x3B8 TxPDO3*, Nd.56
911 0x38F TxPDO3*, Nd.15 932 0x3A4 TxPDO3*, Nd.36 953 0x3B9 TxPDO3*, Nd.57
912 0x390 TxPDO3*, Nd.16 933 0x3A5 TxPDO3*, Nd.37 954 0x3BA TxPDO3*, Nd.58
913 0x391 TxPDO3*, Nd.17 934 0x3A6 TxPDO3*, Nd.38 955 0x3BB TxPDO3*, Nd.59
914 0x392 TxPDO3*, Nd.18 935 0x3A7 TxPDO3*, Nd.39 956 0x3BC TxPDO3*, Nd.60
915 0x393 TxPDO3*, Nd.19 936 0x3A8 TxPDO3*, Nd.40 957 0x3BD TxPDO3*, Nd.61
916 0x394 TxPDO3*, Nd.20 937 0x3A9 TxPDO3*, Nd.41 958 0x3BE TxPDO3*, Nd.62
917 0x395 TxPDO3*, Nd.21 938 0x3AA TxPDO3*, Nd.42 959 0x3BF TxPDO3*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1025 0x401 RxPDO3*, Nd.1 1046 0x416 RxPDO3*, Nd.22 1067 0x42B RxPDO3*, Nd.43
1026 0x402 RxPDO3*, Nd.2 1047 0x417 RxPDO3*, Nd.23 1068 0x42C RxPDO3*, Nd.44
1027 0x403 RxPDO3*, Nd.3 1048 0x418 RxPDO3*, Nd.24 1069 0x42D RxPDO3*, Nd.45
1028 0x404 RxPDO3*, Nd.4 1049 0x419 RxPDO3*, Nd.25 1070 0x42E RxPDO3*, Nd.46
1029 0x405 RxPDO3*, Nd.5 1050 0x41A RxPDO3*, Nd.26 1071 0x42F RxPDO3*, Nd.47
1030 0x406 RxPDO3*, Nd.6 1051 0x41B RxPDO3*, Nd.27 1072 0x430 RxPDO3*, Nd.48
1031 0x407 RxPDO3*, Nd.7 1052 0x41C RxPDO3*, Nd.28 1073 0x431 RxPDO3*, Nd.49
1032 0x408 RxPDO3*, Nd.8 1053 0x41D RxPDO3*, Nd.29 1074 0x432 RxPDO3*, Nd.50
1033 0x409 RxPDO3*, Nd.9 1054 0x41E RxPDO3*, Nd.30 1075 0x433 RxPDO3*, Nd.51
1034 0x40A RxPDO3*, Nd.10 1055 0x41F RxPDO3*, Nd.31 1076 0x434 RxPDO3*, Nd.52
1035 0x40B RxPDO3*, Nd.11 1056 0x420 RxPDO3*, Nd.32 1077 0x435 RxPDO3*, Nd.53
1036 0x40C RxPDO3*, Nd.12 1057 0x421 RxPDO3*, Nd.33 1078 0x436 RxPDO3*, Nd.54
1037 0x40D RxPDO3*, Nd.13 1058 0x422 RxPDO3*, Nd.34 1079 0x437 RxPDO3*, Nd.55
1038 0x40E RxPDO3*, Nd.14 1059 0x423 RxPDO3*, Nd.35 1080 0x438 RxPDO3*, Nd.56
1039 0x40F RxPDO3*, Nd.15 1060 0x424 RxPDO3*, Nd.36 1081 0x439 RxPDO3*, Nd.57
1040 0x410 RxPDO3*, Nd.16 1061 0x425 RxPDO3*, Nd.37 1082 0x43A RxPDO3*, Nd.58
1041 0x411 RxPDO3*, Nd.17 1062 0x426 RxPDO3*, Nd.38 1083 0x43B RxPDO3*, Nd.59
1042 0x412 RxPDO3*, Nd.18 1063 0x427 RxPDO3*, Nd.39 1084 0x43C RxPDO3*, Nd.60
1043 0x413 RxPDO3*, Nd.19 1064 0x428 RxPDO3*, Nd.40 1085 0x43D RxPDO3*, Nd.61
1044 0x414 RxPDO3*, Nd.20 1065 0x429 RxPDO3*, Nd.41 1086 0x43E RxPDO3*, Nd.62
1045 0x415 RxPDO3*, Nd.21 1066 0x42A RxPDO3*, Nd.42 1087 0x43F RxPDO3*, Nd.63

Appendix

EL6751 209Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1153 0x481 TxPDO4*, Nd.1 1174 0x496 TxPDO4*, Nd.22 1195 0x4AB TxPDO4*, Nd.43
1154 0x482 TxPDO4*, Nd.2 1175 0x497 TxPDO4*, Nd.23 1196 0x4AC TxPDO4*, Nd.44
1155 0x483 TxPDO4*, Nd.3 1176 0x498 TxPDO4*, Nd.24 1197 0x4AD TxPDO4*, Nd.45
1156 0x484 TxPDO4*, Nd.4 1177 0x499 TxPDO4*, Nd.25 1198 0x4AE TxPDO4*, Nd.46
1157 0x485 TxPDO4*, Nd.5 1178 0x49A TxPDO4*, Nd.26 1199 0x4AF TxPDO4*, Nd.47
1158 0x486 TxPDO4*, Nd.6 1179 0x49B TxPDO4*, Nd.27 1200 0x4B0 TxPDO4*, Nd.48
1159 0x487 TxPDO4*, Nd.7 1180 0x49C TxPDO4*, Nd.28 1201 0x4B1 TxPDO4*, Nd.49
1160 0x488 TxPDO4*, Nd.8 1181 0x49D TxPDO4*, Nd.29 1202 0x4B2 TxPDO4*, Nd.50
1161 0x489 TxPDO4*, Nd.9 1182 0x49E TxPDO4*, Nd.30 1203 0x4B3 TxPDO4*, Nd.51
1162 0x48A TxPDO4*, Nd.10 1183 0x49F TxPDO4*, Nd.31 1204 0x4B4 TxPDO4*, Nd.52
1163 0x48B TxPDO4*, Nd.11 1184 0x4A0 TxPDO4*, Nd.32 1205 0x4B5 TxPDO4*, Nd.53
1164 0x48C TxPDO4*, Nd.12 1185 0x4A1 TxPDO4*, Nd.33 1206 0x4B6 TxPDO4*, Nd.54
1165 0x48D TxPDO4*, Nd.13 1186 0x4A2 TxPDO4*, Nd.34 1207 0x4B7 TxPDO4*, Nd.55
1166 0x48E TxPDO4*, Nd.14 1187 0x4A3 TxPDO4*, Nd.35 1208 0x4B8 TxPDO4*, Nd.56
1167 0x48F TxPDO4*, Nd.15 1188 0x4A4 TxPDO4*, Nd.36 1209 0x4B9 TxPDO4*, Nd.57
1168 0x490 TxPDO4*, Nd.16 1189 0x4A5 TxPDO4*, Nd.37 1210 0x4BA TxPDO4*, Nd.58
1169 0x491 TxPDO4*, Nd.17 1190 0x4A6 TxPDO4*, Nd.48 1211 0x4BB TxPDO4*, Nd.59
1170 0x492 TxPDO4*, Nd.18 1191 0x4A7 TxPDO4*, Nd.49 1212 0x4BC TxPDO4*, Nd.60
1171 0x493 TxPDO4*, Nd.19 1192 0x4A8 TxPDO4*, Nd.40 1213 0x4BD TxPDO4*, Nd.61
1172 0x494 TxPDO4*, Nd.20 1193 0x4A9 TxPDO4*, Nd.41 1214 0x4BE TxPDO4*, Nd.62
1173 0x495 TxPDO4*, Nd.21 1194 0x4AA TxPDO4*, Nd.42 1215 0x4BF TxPDO4*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1281 0x501 RxPDO4*, Nd.1 1302 0x516 RxPDO4*, Nd.22 1323 0x52B RxPDO4*, Nd.43
1282 0x502 RxPDO4*, Nd.2 1303 0x517 RxPDO4*, Nd.23 1324 0x52C RxPDO4*, Nd.44
1283 0x503 RxPDO4*, Nd.3 1304 0x518 RxPDO4*, Nd.24 1325 0x52D RxPDO4*, Nd.45
1284 0x504 RxPDO4*, Nd.4 1305 0x519 RxPDO4*, Nd.25 1326 0x52E RxPDO4*, Nd.46
1285 0x505 RxPDO4*, Nd.5 1306 0x51A RxPDO4*, Nd.26 1327 0x52F RxPDO4*, Nd.47
1286 0x506 RxPDO4*, Nd.6 1307 0x51B RxPDO4*, Nd.27 1328 0x530 RxPDO4*, Nd.48
1287 0x507 RxPDO4*, Nd.7 1308 0x51C RxPDO4*, Nd.28 1329 0x531 RxPDO4*, Nd.49
1288 0x508 RxPDO4*, Nd.8 1309 0x51D RxPDO4*, Nd.29 1330 0x532 RxPDO4*, Nd.50
1289 0x509 RxPDO4*, Nd.9 1310 0x51E RxPDO4*, Nd.30 1331 0x533 RxPDO4*, Nd.51
1290 0x50A RxPDO4*, Nd.10 1311 0x51F RxPDO4*, Nd.31 1332 0x534 RxPDO4*, Nd.52
1291 0x50B RxPDO4*, Nd.11 1312 0x520 RxPDO4*, Nd.32 1333 0x535 RxPDO4*, Nd.53
1292 0x50C RxPDO4*, Nd.12 1313 0x521 RxPDO4*, Nd.33 1334 0x536 RxPDO4*, Nd.54
1293 0x50D RxPDO4*, Nd.13 1314 0x522 RxPDO4*, Nd.34 1335 0x537 RxPDO4*, Nd.55
1294 0x50E RxPDO4*, Nd.14 1315 0x523 RxPDO4*, Nd.35 1336 0x538 RxPDO4*, Nd.56
1295 0x50F RxPDO4*, Nd.15 1316 0x524 RxPDO4*, Nd.36 1337 0x539 RxPDO4*, Nd.57
1296 0x510 RxPDO4*, Nd.16 1317 0x525 RxPDO4*, Nd.37 1338 0x53A RxPDO4*, Nd.58
1297 0x511 RxPDO4*, Nd.17 1318 0x526 RxPDO4*, Nd.38 1339 0x53B RxPDO4*, Nd.59
1298 0x512 RxPDO4*, Nd.18 1319 0x527 RxPDO4*, Nd.39 1340 0x53C RxPDO4*, Nd.60
1299 0x513 RxPDO4*, Nd.19 1320 0x528 RxPDO4*, Nd.40 1341 0x53D RxPDO4*, Nd.61
1300 0x514 RxPDO4*, Nd.20 1321 0x529 RxPDO4*, Nd.41 1342 0x53E RxPDO4*, Nd.62
1301 0x515 RxPDO4*, Nd.21 1322 0x52A RxPDO4*, Nd.42 1343 0x53F RxPDO4*, Nd.63

Appendix

EL6751210 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1665 0x681 TxPDO5*, Nd.1 1686 0x696 TxPDO5*, Nd.22 1707 0x6AB TxPDO5*, Nd.43
1666 0x682 TxPDO5*, Nd.2 1687 0x697 TxPDO5*, Nd.23 1708 0x6AC TxPDO5*, Nd.44
1667 0x683 TxPDO5*, Nd.3 1688 0x698 TxPDO5*, Nd.24 1709 0x6AD TxPDO5*, Nd.45
1668 0x684 TxPDO5*, Nd.4 1689 0x699 TxPDO5*, Nd.25 1710 0x6AE TxPDO5*, Nd.46
1669 0x685 TxPDO5*, Nd.5 1690 0x69A TxPDO5*, Nd.26 1711 0x6AF TxPDO5*, Nd.47
1670 0x686 TxPDO5*, Nd.6 1691 0x69B TxPDO5*, Nd.27 1712 0x6B0 TxPDO5*, Nd.48
1671 0x687 TxPDO5*, Nd.7 1692 0x69C TxPDO5*, Nd.28 1713 0x6B1 TxPDO5*, Nd.49
1672 0x688 TxPDO5*, Nd.8 1693 0x69D TxPDO5*, Nd.29 1714 0x6B2 TxPDO5*, Nd.50
1673 0x689 TxPDO5*, Nd.9 1694 0x69E TxPDO5*, Nd.30 1715 0x6B3 TxPDO5*, Nd.51
1674 0x68A TxPDO5*, Nd.10 1695 0x69F TxPDO5*, Nd.31 1716 0x6B4 TxPDO5*, Nd.52
1675 0x68B TxPDO5*, Nd.11 1696 0x6A0 TxPDO5*, Nd.32 1717 0x6B5 TxPDO5*, Nd.53
1676 0x68C TxPDO5*, Nd.12 1697 0x6A1 TxPDO5*, Nd.33 1718 0x6B6 TxPDO5*, Nd.54
1677 0x68D TxPDO5*, Nd.13 1698 0x6A2 TxPDO5*, Nd.34 1719 0x6B7 TxPDO5*, Nd.55
1678 0x68E TxPDO5*, Nd.14 1699 0x6A3 TxPDO5*, Nd.35 1720 0x6B8 TxPDO5*, Nd.56
1679 0x68F TxPDO5*, Nd.15 1700 0x6A4 TxPDO5*, Nd.36 1721 0x6B9 TxPDO5*, Nd.57
1680 0x690 TxPDO5*, Nd.16 1701 0x6A5 TxPDO5*, Nd.37 1722 0x6BA TxPDO5*, Nd.58
1681 0x691 TxPDO5*, Nd.17 1702 0x6A6 TxPDO5*, Nd.38 1723 0x6BB TxPDO5*, Nd.59
1682 0x692 TxPDO5*, Nd.18 1703 0x6A7 TxPDO5*, Nd.39 1724 0x6BC TxPDO5*, Nd.60
1683 0x693 TxPDO5*, Nd.19 1704 0x6A8 TxPDO5*, Nd.40 1725 0x6BD TxPDO5*, Nd.61
1684 0x694 TxPDO5*, Nd.20 1705 0x6A9 TxPDO5*, Nd.41 1726 0x6BE TxPDO5*, Nd.62
1685 0x695 TxPDO5*, Nd.21 1706 0x6AA TxPDO5*, Nd.42 1727 0x6BF TxPDO5*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1921 0x781 RxPDO5*, Nd.1 1942 0x796 RxPDO5*, Nd.22 1963 0x7AB RxPDO5*, Nd.43
1922 0x782 RxPDO5*, Nd.2 1943 0x797 RxPDO5*, Nd.23 1964 0x7AC RxPDO5*, Nd.44
1923 0x783 RxPDO5*, Nd.3 1944 0x798 RxPDO5*, Nd.24 1965 0x7AD RxPDO5*, Nd.45
1924 0x784 RxPDO5*, Nd.4 1945 0x799 RxPDO5*, Nd.25 1966 0x7AE RxPDO5*, Nd.46
1925 0x785 RxPDO5*, Nd.5 1946 0x79A RxPDO5*, Nd.26 1967 0x7AF RxPDO5*, Nd.47
1926 0x786 RxPDO5*, Nd.6 1947 0x79B RxPDO5*, Nd.27 1968 0x7B0 RxPDO5*, Nd.48
1927 0x787 RxPDO5*, Nd.7 1948 0x79C RxPDO5*, Nd.28 1969 0x7B1 RxPDO5*, Nd.49
1928 0x788 RxPDO5*, Nd.8 1949 0x79D RxPDO5*, Nd.29 1970 0x7B2 RxPDO5*, Nd.50
1929 0x789 RxPDO5*, Nd.9 1950 0x79E RxPDO5*, Nd.30 1971 0x7B3 RxPDO5*, Nd.51
1930 0x78A RxPDO5*, Nd.10 1951 0x79F RxPDO5*, Nd.31 1972 0x7B4 RxPDO5*, Nd.52
1931 0x78B RxPDO5*, Nd.11 1952 0x7A0 RxPDO5*, Nd.32 1973 0x7B5 RxPDO5*, Nd.53
1932 0x78C RxPDO5*, Nd.12 1953 0x7A1 RxPDO5*, Nd.33 1974 0x7B6 RxPDO5*, Nd.54
1933 0x78D RxPDO5*, Nd.13 1954 0x7A2 RxPDO5*, Nd.34 1975 0x7B7 RxPDO5*, Nd.55
1934 0x78E RxPDO5*, Nd.14 1955 0x7A3 RxPDO5*, Nd.35 1976 0x7B8 RxPDO5*, Nd.56
1935 0x78F RxPDO5*, Nd.15 1956 0x7A4 RxPDO5*, Nd.36 1977 0x7B9 RxPDO5*, Nd.57
1936 0x790 RxPDO5*, Nd.16 1957 0x7A5 RxPDO5*, Nd.37 1978 0x7BA RxPDO5*, Nd.58
1937 0x791 RxPDO5*, Nd.17 1958 0x7A6 RxPDO5*, Nd.38 1979 0x7BB RxPDO5*, Nd.59
1938 0x792 RxPDO5*, Nd.18 1959 0x7A7 RxPDO5*, Nd.39 1980 0x7BC RxPDO5*, Nd.60
1939 0x793 RxPDO5*, Nd.19 1960 0x7A8 RxPDO5*, Nd.40 1981 0x7BD RxPDO5*, Nd.61
1940 0x794 RxPDO5*, Nd.20 1961 0x7A9 RxPDO5*, Nd.41 1982 0x7BE RxPDO5*, Nd.62
1941 0x795 RxPDO5*, Nd.21 1962 0x7AA RxPDO5*, Nd.42 1983 0x7BF RxPDO5*, Nd.63

Appendix

EL6751 211Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
449 0x1C1 TxPDO6*, Nd.1 470 0x1D6 TxPDO6*, Nd.22 491 0x1EB TxPDO6*, Nd.43
450 0x1C2 TxPDO6*, Nd.2 471 0x1D7 TxPDO6*, Nd.23 492 0x1EC TxPDO6*, Nd.44
451 0x1C3 TxPDO6*, Nd.3 472 0x1D8 TxPDO6*, Nd.24 493 0x1ED TxPDO6*, Nd.45
452 0x1C4 TxPDO6*, Nd.4 473 0x1D9 TxPDO6*, Nd.25 494 0x1EE TxPDO6*, Nd.46
453 0x1C5 TxPDO6*, Nd.5 474 0x1DA TxPDO6*, Nd.26 495 0x1EF TxPDO6*, Nd.47
454 0x1C6 TxPDO6*, Nd.6 475 0x1DB TxPDO6*, Nd.27 496 0x1F0 TxPDO6*, Nd.48
455 0x1C7 TxPDO6*, Nd.7 476 0x1DC TxPDO6*, Nd.28 497 0x1F1 TxPDO6*, Nd.49
456 0x1C8 TxPDO6*, Nd.8 477 0x1DD TxPDO6*, Nd.29 498 0x1F2 TxPDO6*, Nd.50
457 0x1C9 TxPDO6*, Nd.9 478 0x1DE TxPDO6*, Nd.30 499 0x1F3 TxPDO6*, Nd.51
458 0x1CA TxPDO6*, Nd.10 479 0x1DF TxPDO6*, Nd.31 500 0x1F4 TxPDO6*, Nd.52
459 0x1CB TxPDO6*, Nd.11 480 0x1E0 TxPDO6*, Nd.32 501 0x1F5 TxPDO6*, Nd.53
460 0x1CC TxPDO6*, Nd.12 481 0x1E1 TxPDO6*, Nd.33 502 0x1F6 TxPDO6*, Nd.54
461 0x1CD TxPDO6*, Nd.13 482 0x1E2 TxPDO6*, Nd.34 503 0x1F7 TxPDO6*, Nd.55
462 0x1CE TxPDO6*, Nd.14 483 0x1E3 TxPDO6*, Nd.35 504 0x1F8 TxPDO6*, Nd.56
463 0x1CF TxPDO6*, Nd.15 484 0x1E4 TxPDO6*, Nd.36 505 0x1F9 TxPDO6*, Nd.57
464 0x1D0 TxPDO6*, Nd.16 485 0x1E5 TxPDO6*, Nd.37 506 0x1FA TxPDO6*, Nd.58
465 0x1D1 TxPDO6*, Nd.17 486 0x1E6 TxPDO6*, Nd.38 507 0x1FB TxPDO6*, Nd.59
466 0x1D2 TxPDO6*, Nd.18 487 0x1E7 TxPDO6*, Nd.39 508 0x1FC TxPDO6*, Nd.60
467 0x1D3 TxPDO6*, Nd.19 488 0x1E8 TxPDO6*, Nd.40 509 0x1FD TxPDO6*, Nd.61
468 0x1D4 TxPDO6*, Nd.20 489 0x1E9 TxPDO6*, Nd.41 510 0x1FE TxPDO6*, Nd.62
469 0x1D5 TxPDO6*, Nd.21 490 0x1EA TxPDO6*, Nd.42 511 0x1FF TxPDO6*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
577 0x241 RxPDO6*, Nd.1 598 0x256 RxPDO6*, Nd.22 619 0x26B RxPDO6* Nd.43
578 0x242 RxPDO6*, Nd.2 599 0x257 RxPDO6*, Nd.23 620 0x26C RxPDO6, Nd.44
579 0x243 RxPDO6*, Nd.3 600 0x258 RxPDO6*, Nd.24 621 0x26D RxPDO6*, Nd.45
580 0x244 RxPDO6*, Nd.4 601 0x259 RxPDO6*, Nd.25 622 0x26E RxPDO6*, Nd.46
581 0x245 RxPDO6*, Nd.5 602 0x25A RxPDO6*, Nd.26 623 0x26F RxPDO6*, Nd.47
582 0x246 RxPDO6*, Nd.6 603 0x25B RxPDO6*, Nd.27 624 0x270 RxPDO6*, Nd.48
583 0x247 RxPDO6*, Nd.7 604 0x25C RxPDO6*, Nd.28 625 0x271 RxPDO6*, Nd.49
584 0x248 RxPDO6*, Nd.8 605 0x25D RxPDO6*, Nd.29 626 0x272 RxPDO6*, Nd.50
585 0x249 RxPDO6*, Nd.9 606 0x25E RxPDO6*, Nd.30 627 0x273 RxPDO6*, Nd.51
586 0x24A RxPDO6*, Nd.10 607 0x25F RxPDO6*, Nd.31 628 0x274 RxPDO6*, Nd.52
587 0x24B RxPDO6*, Nd.11 608 0x260 RxPDO6*, Nd.32 629 0x275 RxPDO6*, Nd.53
588 0x24C RxPDO6*, Nd.12 609 0x261 RxPDO6*, Nd.33 630 0x276 RxPDO6*, Nd.54
589 0x24D RxPDO6*, Nd.13 610 0x262 RxPDO6*, Nd.34 631 0x277 RxPDO6*, Nd.55
590 0x24E RxPDO6*, Nd.14 611 0x263 RxPDO6*, Nd.35 632 0x278 RxPDO6*, Nd.56
591 0x24F RxPDO6*, Nd.15 612 0x264 RxPDO6*, Nd.36 633 0x279 RxPDO6*, Nd.57
592 0x250 RxPDO6*, Nd.16 613 0x265 RxPDO6*, Nd.3 634 0x27A RxPDO6*, Nd.58
593 0x251 RxPDO6*, Nd.17 614 0x266 RxPDO6*, Nd.8 635 0x27B RxPDO6*, Nd.59
594 0x252 RxPDO6*, Nd.18 615 0x267 RxPDO6*, Nd39 636 0x27C RxPDO6*, Nd.60
595 0x253 RxPDO6*, Nd.19 616 0x268 RxPDO6*, N.40 637 0x27D RxPDO6*, Nd.61
596 0x254 RxPDO6*, Nd.20 617 0x269 RxPDO6*, d.41 638 0x27E RxPDO6*, Nd.62
597 0x255 RxPDO6*, Nd.21 618 0x26A RxPDO6*,Nd.42 639 0x27F RxPDO6*, Nd.63

Appendix

EL6751212 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
705 0x2C1 TxPDO7*, Nd.1 726 0x2D6 TxPDO7*, Nd.22 747 0x2EB TxPDO7*, Nd.43
706 0x2C2 TxPDO7*, Nd.2 727 0x2D7 TxPDO7*, Nd.23 748 0x2EC TxPDO7*, Nd.44
707 0x2C3 TxPDO7*, Nd.3 728 0x2D8 TxPDO7*, Nd.24 749 0x2ED TxPDO7*, Nd.45
708 0x2C4 TxPDO7*, Nd.4 729 0x2D9 TxPDO7*, Nd.25 750 0x2EE TxPDO7*, Nd.46
709 0x2C5 TxPDO7*, Nd.5 730 0x2DA TxPDO7*, Nd.26 751 0x2EF TxPDO7*, Nd.47
710 0x2C6 TxPDO7*, Nd.6 731 0x2DB TxPDO7*, Nd.27 752 0x2F0 TxPDO7*, Nd.48
711 0x2C7 TxPDO7*, Nd.7 732 0x2DC TxPDO7*, Nd.28 753 0x2F1 TxPDO7*, Nd.49
712 0x2C8 TxPDO7*, Nd.8 733 0x2DD TxPDO7*, Nd.29 754 0x2F2 TxPDO7*, Nd.50
713 0x2C9 TxPDO7*, Nd.9 734 0x2DE TxPDO7*, Nd.30 755 0x2F3 TxPDO7*, Nd.51
714 0x2CA TxPDO7*, Nd.10 735 0x2DF TxPDO7*, Nd.31 756 0x2F4 TxPDO7*, Nd.52
715 0x2CB TxPDO7*, Nd.11 736 0x2E0 TxPDO7*, Nd.32 757 0x2F5 TxPDO7*, Nd.53
716 0x2CC TxPDO7*, Nd.12 737 0x2E1 TxPDO7*, Nd.33 758 0x2F6 TxPDO7*, Nd.54
717 0x2CD TxPDO7*, Nd.13 738 0x2E2 TxPDO7*, Nd.34 759 0x2F7 TxPDO7*, Nd.55
718 0x2CE TxPDO7*, Nd.14 739 0x2E3 TxPDO7*, Nd.35 760 0x2F8 TxPDO7*, Nd.56
719 0x2CF TxPDO7*, Nd.15 740 0x2E4 TxPDO7*, Nd.36 761 0x2F9 TxPDO7*, Nd.57
720 0x2D0 TxPDO7*, Nd.16 741 0x2E5 TxPDO7*, Nd.37 762 0x2FA TxPDO7*, Nd.58
721 0x2D1 TxPDO7*, Nd.17 742 0x2E6 TxPDO7*, Nd.38 763 0x2FB TxPDO7*, Nd.59
722 0x2D2 TxPDO7*, Nd.18 743 0x2E7 TxPDO7*, Nd.39 764 0x2FC TxPDO7*, Nd.60
723 0x2D3 TxPDO7*, Nd.19 744 0x2E8 TxPDO7*, Nd.40 765 0x2FD TxPDO7*, Nd.61
724 0x2D4 TxPDO7*, Nd.20 745 0x2E9 TxPDO7*, Nd.41 766 0x2FE TxPDO7*, Nd.62
725 0x2D5 TxPDO7*, Nd.21 746 0x2EA TxPDO7*, Nd.42 767 0x2FF TxPDO7*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
833 0x341 RxPDO7*, Nd.1 854 0x356 RxPDO7*, Nd.22 875 0x36B RxPDO7*, Nd.43
834 0x342 RxPDO7*, Nd.2 855 0x357 RxPDO7*, Nd.23 876 0x36C RxPDO7*, Nd.44
835 0x343 RxPDO7*, Nd.3 856 0x358 RxPDO7*, Nd.24 877 0x36D RxPDO7*, Nd.45
836 0x344 RxPDO7*, Nd.4 857 0x359 RxPDO7*, Nd.25 878 0x36E RxPDO7*, Nd.46
837 0x345 RxPDO7*, Nd.5 858 0x35A RxPDO7*, Nd.26 879 0x36F RxPDO7*, Nd.47
838 0x346 RxPDO7*, Nd.6 859 0x35B RxPDO7*, Nd.27 880 0x370 RxPDO7*, Nd.48
839 0x347 RxPDO7*, Nd.7 860 0x35C RxPDO7*, Nd.28 881 0x371 RxPDO7*, Nd.49
840 0x348 RxPDO7*, Nd.8 861 0x35D RxPDO7*, Nd.29 882 0x372 RxPDO7*, Nd.50
841 0x349 RxPDO7*, Nd.9 862 0x35E RxPDO7*, Nd.30 883 0x373 RxPDO7*, Nd.51
842 0x34A RxPDO7*, Nd.10 863 0x35F RxPDO7*, Nd.31 884 0x374 RxPDO7*, Nd.52
843 0x34B RxPDO7*, Nd.11 864 0x360 RxPDO7*, Nd.32 885 0x375 RxPDO7*, Nd.53
844 0x34C RxPDO7*, Nd.12 865 0x361 RxPDO7*, Nd.33 886 0x376 RxPDO7*, Nd.54
845 0x34D RxPDO7*, Nd.13 866 0x362 RxPDO7*, Nd.34 887 0x377 RxPDO7*, Nd.55
846 0x34E RxPDO7*, Nd.14 867 0x363 RxPDO7*, Nd.35 888 0x378 RxPDO7*, Nd.56
847 0x34F RxPDO7*, Nd.15 868 0x364 RxPDO7*, Nd.36 889 0x379 RxPDO7*, Nd.57
848 0x350 RxPDO7*, Nd.16 869 0x365 RxPDO7*, Nd.37 890 0x37A RxPDO7*, Nd.58
849 0x351 RxPDO7*, Nd.17 870 0x366 RxPDO7*, Nd.38 891 0x37B RxPDO7*, Nd.59
850 0x352 RxPDO7*, Nd.18 871 0x367 RxPDO7*, Nd.39 892 0x37C RxPDO7*, Nd.60
851 0x353 RxPDO7*, Nd.19 872 0x368 RxPDO7*, Nd.40 893 0x37D RxPDO7*, Nd.61
852 0x354 RxPDO7*, Nd.20 873 0x369 RxPDO7*, Nd.41 894 0x37E RxPDO7*, Nd.62
853 0x355 RxPDO7*, Nd.21 874 0x36A RxPDO7*, Nd.42 895 0x37F RxPDO7*, Nd.63

Appendix

EL6751 213Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
961 0x3C1 TxPDO8*, Nd.1 982 0x3D6 TxPDO8*, Nd.22 1003 0x3EB TxPDO8*, Nd.43
962 0x3C2 TxPDO8*, Nd.2 983 0x3D7 TxPDO8*, Nd.23 1004 0x3EC TxPDO8*, Nd.44
963 0x3C3 TxPDO8*, Nd.3 984 0x3D8 TxPDO8*, Nd.24 1005 0x3ED TxPDO8*, Nd.45
964 0x3C4 TxPDO8*, Nd.4 985 0x3D9 TxPDO8*, Nd.25 1006 0x3EE TxPDO8*, Nd.46
965 0x3C5 TxPDO8*, Nd.5 986 0x3DA TxPDO8*, Nd.26 1007 0x3EF TxPDO8*, Nd.47
966 0x3C6 TxPDO8*, Nd.6 987 0x3DB TxPDO8*, Nd.27 1008 0x3F0 TxPDO8*, Nd.48
967 0x3C7 TxPDO8*, Nd.7 988 0x3DC TxPDO8*, Nd.28 1009 0x3F1 TxPDO8*, Nd.49
968 0x3C8 TxPDO8*, Nd.8 989 0x3DD TxPDO8*, Nd.29 1010 0x3F2 TxPDO8*, Nd.50
969 0x3C9 TxPDO8*, Nd.9 990 0x3DE TxPDO8*, Nd.30 1011 0x3F3 TxPDO8*, Nd.51
970 0x3CA TxPDO8*, Nd.10 991 0x3DF TxPDO8*, Nd.31 1012 0x3F4 TxPDO8*, Nd.52
971 0x3CB TxPDO8*, Nd.11 992 0x3E0 TxPDO8*, Nd.32 1013 0x3F5 TxPDO8*, Nd.53
972 0x3CC TxPDO8*, Nd.12 993 0x3E1 TxPDO8*, Nd.33 1014 0x3F6 TxPDO8*, Nd.54
973 0x3CD TxPDO8*, Nd.13 994 0x3E2 TxPDO8*, Nd.34 1015 0x3F7 TxPDO8*, Nd.55
974 0x3CE TxPDO8*, Nd.14 995 0x3E3 TxPDO8*, Nd.35 1016 0x3F8 TxPDO8*, Nd.56
975 0x3CF TxPDO8*, Nd.15 996 0x3E4 TxPDO8*, Nd.36 1017 0x3F9 TxPDO8*, Nd.57
976 0x3D0 TxPDO8*, Nd.16 997 0x3E5 TxPDO8*, Nd.37 1018 0x3FA TxPDO8*, Nd.58
977 0x3D1 TxPDO8*, Nd.17 998 0x3E6 TxPDO8*, Nd.38 1019 0x3FB TxPDO8*, Nd.59
978 0x3D2 TxPDO8*, Nd.18 999 0x3E7 TxPDO8*, Nd.39 1020 0x3FC TxPDO8*, Nd.60
979 0x3D3 TxPDO8*, Nd.19 1000 0x3E8 TxPDO8*, Nd.40 1021 0x3FD TxPDO8*, Nd.61
980 0x3D4 TxPDO8*, Nd.20 1001 0x3E9 TxPDO8*, Nd.41 1022 0x3FE TxPDO8*, Nd.62
981 0x3D5 TxPDO8*, Nd.21 1002 0x3EA TxPDO8*, Nd.42 1023 0x3FF TxPDO8*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1089 0x441 RxPDO8*, Nd.1 1110 0x456 RxPDO8*, Nd.22 1131 0x46B RxPDO8*, Nd.43
1090 0x442 RxPDO8*, Nd.2 1111 0x457 RxPDO8*, Nd.23 1132 0x46C RxPDO8*, Nd.44
1091 0x443 RxPDO8*, Nd.3 1112 0x458 RxPDO8*, Nd.24 1133 0x46D RxPDO8*, Nd.45
1092 0x444 RxPDO8*, Nd.4 1113 0x459 RxPDO8*, Nd.25 1134 0x46E RxPDO8*, Nd.46
1093 0x445 RxPDO8*, Nd.5 1114 0x45A RxPDO8*, Nd.26 1135 0x46F RxPDO8*, Nd.47
1094 0x446 RxPDO8*, Nd.6 1115 0x45B RxPDO8*, Nd.27 1136 0x470 RxPDO8*, Nd.48
1095 0x447 RxPDO8*, Nd.7 1116 0x45C RxPDO8*, Nd.28 1137 0x471 RxPDO8*, Nd.49
1096 0x448 RxPDO8*, Nd.8 1117 0x45D RxPDO8*, Nd.29 1138 0x472 RxPDO8*, Nd.50
1097 0x449 RxPDO8*, Nd.9 1118 0x45E RxPDO8*, Nd.30 1139 0x473 RxPDO8*, Nd.51
1098 0x44A RxPDO8*, Nd.10 1119 0x45F RxPDO8*, Nd.31 1140 0x474 RxPDO8*, Nd.52
1099 0x44B RxPDO8*, Nd.11 1120 0x460 RxPDO8*, Nd.32 1141 0x475 RxPDO8*, Nd.53
1100 0x44C RxPDO8*, Nd.12 1121 0x461 RxPDO8*, Nd.33 1142 0x476 RxPDO8*, Nd.54
1101 0x44D RxPDO8*, Nd.13 1122 0x462 RxPDO8*, Nd.34 1143 0x477 RxPDO8*, Nd.55
1102 0x44E RxPDO8*, Nd.14 1123 0x463 RxPDO8*, Nd.35 1144 0x478 RxPDO8*, Nd.56
1103 0x44F RxPDO8*, Nd.15 1124 0x464 RxPDO8*, Nd.36 1145 0x479 RxPDO8*, Nd.57
1104 0x450 RxPDO8*, Nd.16 1125 0x465 RxPDO8*, Nd.37 1146 0x47A RxPDO8*, Nd.58
1105 0x451 RxPDO8*, Nd.17 1126 0x466 RxPDO8*, Nd.38 1147 0x47B RxPDO8*, Nd.59
1106 0x452 RxPDO8*, Nd.18 1127 0x467 RxPDO8*, Nd.39 1148 0x47C RxPDO8*, Nd.60
1107 0x453 RxPDO8*, Nd.19 1128 0x468 RxPDO8*, Nd.40 1149 0x47D RxPDO8*, Nd.61
1108 0x454 RxPDO8*, Nd.20 1129 0x469 RxPDO8*, Nd.41 1150 0x47E RxPDO8*, Nd.62
1109 0x455 RxPDO8*, Nd.21 1130 0x46A RxPDO8*, Nd.42 1151 0x47F RxPDO8*, Nd.63

Appendix

EL6751214 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1217 0x4C1 TxPDO9*, Nd.1 1238 0x4D6 TxPDO9*, Nd.22 1259 0x4EB TxPDO9*, Nd.43
1218 0x4C2 TxPDO9*, Nd.2 1239 0x4D7 TxPDO9*, Nd.23 1260 0x4EC TxPDO9*, Nd.44
1219 0x4C3 TxPDO9*, Nd.3 1240 0x4D8 TxPDO9*, Nd.24 1261 0x4ED TxPDO9*, Nd.45
1220 0x4C4 TxPDO9*, Nd.4 1241 0x4D9 TxPDO9*, Nd.25 1262 0x4EE TxPDO9*, Nd.46
1221 0x4C5 TxPDO9*, Nd.5 1242 0x4DA TxPDO9*, Nd.26 1263 0x4EF TxPDO9*, Nd.47
1222 0x4C6 TxPDO9*, Nd.6 1243 0x4DB TxPDO9*, Nd.27 1264 0x4F0 TxPDO9*, Nd.48
1223 0x4C7 TxPDO9*, Nd.7 1244 0x4DC TxPDO9*, Nd.28 1265 0x4F1 TxPDO9*, Nd.49
1224 0x4C8 TxPDO9*, Nd.8 1245 0x4DD TxPDO9*, Nd.29 1266 0x4F2 TxPDO9*, Nd.50
1225 0x4C9 TxPDO9*, Nd.9 1246 0x4DE TxPDO9*, Nd.30 1267 0x4F3 TxPDO9*, Nd.51
1226 0x4CA TxPDO9*, Nd.10 1247 0x4DF TxPDO9*, Nd.31 1268 0x4F4 TxPDO9*, Nd.52
1227 0x4CB TxPDO9*, Nd.11 1248 0x4E0 TxPDO9*, Nd.32 1269 0x4F5 TxPDO9*, Nd.53
1228 0x4CC TxPDO9*, Nd.12 1249 0x4E1 TxPDO9*, Nd.33 1270 0x4F6 TxPDO9*, Nd.54
1229 0x4CD TxPDO9*, Nd.13 1250 0x4E2 TxPDO9*, Nd.34 1271 0x4F7 TxPDO9*, Nd.55
1230 0x4CE TxPDO9*, Nd.14 1251 0x4E3 TxPDO9*, Nd.35 1272 0x4F8 TxPDO9*, Nd.56
1231 0x4CF TxPDO9*, Nd.15 1252 0x4E4 TxPDO9*, Nd.36 1273 0x4F9 TxPDO9*, Nd.57
1232 0x4D0 TxPDO9*, Nd.16 1253 0x4E5 TxPDO9*, Nd.37 1274 0x4FA TxPDO9*, Nd.58
1233 0x4D1 TxPDO9*, Nd.17 1254 0x4E6 TxPDO9*, Nd.38 1275 0x4FB TxPDO9*, Nd.59
1234 0x4D2 TxPDO9*, Nd.18 1255 0x4E7 TxPDO9*, Nd.39 1276 0x4FC TxPDO9*, Nd.60
1235 0x4D3 TxPDO9*, Nd.19 1256 0x4E8 TxPDO9*, Nd.40 1277 0x4FD TxPDO9*, Nd.61
1236 0x4D4 TxPDO9*, Nd.20 1257 0x4E9 TxPDO9*, Nd.41 1278 0x4FE TxPDO9*, Nd.62
1237 0x4D5 TxPDO9*, Nd.21 1258 0x4EA TxPDO9*, Nd.42 1279 0x4FF TxPDO9*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1345 0x541 RxPDO9*, Nd.1 1366 0x556 RxPDO9*, Nd.22 1387 0x56B RxPDO9*, Nd.43
1346 0x542 RxPDO9*, Nd.2 1367 0x557 RxPDO9*, Nd.23 1388 0x56C RxPDO9*, Nd.44
1347 0x543 RxPDO9*, Nd.3 1368 0x558 RxPDO9*, Nd.24 1389 0x56D RxPDO9*, Nd.45
1348 0x544 RxPDO9*, Nd.4 1369 0x559 RxPDO9*, Nd.25 1390 0x56E RxPDO9*, Nd.46
1349 0x545 RxPDO9*, Nd.5 1370 0x55A RxPDO9*, Nd.26 1391 0x56F RxPDO9*, Nd.47
1350 0x546 RxPDO9*, Nd.6 1371 0x55B RxPDO9*, Nd.27 1392 0x570 RxPDO9*, Nd.48
1351 0x547 RxPDO9*, Nd.7 1372 0x55C RxPDO9*, Nd.28 1393 0x571 RxPDO9*, Nd.49
1352 0x548 RxPDO9*, Nd.8 1373 0x55D RxPDO9*, Nd.29 1394 0x572 RxPDO9*, Nd.50
1353 0x549 RxPDO9*, Nd.9 1374 0x55E RxPDO9*, Nd.30 1395 0x573 RxPDO9*, Nd.51
1354 0x54A RxPDO9*, Nd.10 1375 0x55F RxPDO9*, Nd.31 1396 0x574 RxPDO9*, Nd.52
1355 0x54B RxPDO9*, Nd.11 1376 0x560 RxPDO9*, Nd.32 1397 0x575 RxPDO9*, Nd.53
1356 0x54C RxPDO9*, Nd.12 1377 0x561 RxPDO9*, Nd.33 1398 0x576 RxPDO9*, Nd.54
1357 0x54D RxPDO9*, Nd.13 1378 0x562 RxPDO9*, Nd.34 1399 0x577 RxPDO9*, Nd.55
1358 0x54E RxPDO9*, Nd.14 1379 0x563 RxPDO9*, Nd.35 1400 0x578 RxPDO9*, Nd.56
1359 0x54F RxPDO9*, Nd.15 1380 0x564 RxPDO9*, Nd.36 1401 0x579 RxPDO9*, Nd.57
1360 0x550 RxPDO9*, Nd.16 1381 0x565 RxPDO9*, Nd.37 1402 0x57A RxPDO9*, Nd.58
1361 0x551 RxPDO9*, Nd.17 1382 0x566 RxPDO9*, Nd.38 1403 0x57B RxPDO9*, Nd.59
1362 0x552 RxPDO9*, Nd.18 1383 0x567 RxPDO9*, Nd.39 1404 0x57C RxPDO9*, Nd.60
1363 0x553 RxPDO9*, Nd.19 1384 0x568 RxPDO9*, Nd.40 1405 0x57D RxPDO9*, Nd.61
1364 0x554 RxPDO9*, Nd.20 1385 0x569 RxPDO9*, Nd.41 1406 0x57E RxPDO9*, Nd.62
1365 0x555 RxPDO9*, Nd.21 1386 0x56A RxPDO9*, Nd.42 1407 0x57F RxPDO9*, Nd.63

Appendix

EL6751 215Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1473 0x5C1 TxPDO10*, Nd.1 1494 0x5D6 TxPDO10*, Nd.22 1515 0x5EB TxPDO10*, Nd.43
1474 0x5C2 TxPDO10*, Nd.2 1495 0x5D7 TxPDO10*, Nd.23 1516 0x5EC TxPDO10*, Nd.44
1475 0x5C3 TxPDO10*, Nd.3 1496 0x5D8 TxPDO10*, Nd.24 1517 0x5ED TxPDO10*, Nd.45
1476 0x5C4 TxPDO10*, Nd.4 1497 0x5D9 TxPDO10*, Nd.25 1518 0x5EE TxPDO10*, Nd.46
1477 0x5C5 TxPDO10*, Nd.5 1498 0x5DA TxPDO10*, Nd.26 1519 0x5EF TxPDO10*, Nd.47
1478 0x5C6 TxPDO10*, Nd.6 1499 0x5DB TxPDO10*, Nd.27 1520 0x5F0 TxPDO10*, Nd.48
1479 0x5C7 TxPDO10*, Nd.7 1500 0x5DC TxPDO10*, Nd.28 1521 0x5F1 TxPDO10*, Nd.49
1480 0x5C8 TxPDO10*, Nd.8 1501 0xDE TxPDO10*, Nd.29 1522 0x5F2 TxPDO10*, Nd.50
1481 0x5C9 TxPDO10*, Nd.9 1502 0x5DE TxPDO10*, Nd.30 1523 0x5F3 TxPDO10*, Nd.51
1482 0x5CA TxPDO10*, Nd.10 1503 0x5DF TxPDO10*, Nd.31 1524 0x5F4 TxPDO10*, Nd.52
1483 0x5CB TxPDO10*, Nd.11 1504 0x5E0 TxPDO10*, Nd.32 1525 0x5F5 TxPDO10*, Nd.53
1484 0x5CC TxPDO10*, Nd.12 1505 0x5E1 TxPDO10*, Nd.33 1526 0x5F6 TxPDO10*, Nd.54
1485 0x5CD TxPDO10*, Nd.13 1506 0x5E2 TxPDO10*, Nd.34 1527 0x5F7 TxPDO10*, Nd.55
1486 0x5CE TxPDO10*, Nd.14 1507 0x5E3 TxPDO10*, Nd.35 1528 0x5F8 TxPDO10*, Nd.56
1487 0x5CF TxPDO10*, Nd.15 1508 0x5E4 TxPDO10*, Nd.36 1529 0x5F9 TxPDO10*, Nd.57
1488 0x5D0 TxPDO10*, Nd.16 1509 0x5E5 TxPDO10*, Nd.37 1530 0x5FA TxPDO10*, Nd.58
1489 0x5D1 TxPDO10*, Nd.17 1510 0x5E6 TxPDO10*, Nd.38 1531 0x5FB TxPDO10*, Nd.59
1490 0x5D2 TxPDO10*, Nd.18 1511 0x5E7 TxPDO10*, Nd.39 1532 0x5FC TxPDO10*, Nd.60
1491 0x5D3 TxPDO10*, Nd.19 1512 0x5E8 TxPDO10*, Nd.40 1533 0x5FD TxPDO10*, Nd.61
1492 0x5D4 TxPDO10*, Nd.20 1513 0x5E9 TxPDO10*, Nd.41 1534 0x5FE TxPDO10*, Nd.62
1493 0x5D5 TxPDO10*, Nd.21 1514 0x5EA TxPDO10*, Nd.42 1535 0x5FF TxPDO10*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1601 0x641 RxPDO10*, Nd.1 1622 0x656 RxPDO10*, Nd.22 1643 0x66B RxPDO10*, Nd.43
1602 0x642 RxPDO10*, Nd.2 1623 0x657 RxPDO10*, Nd.23 1644 0x66C RxPDO10*, Nd.44
1603 0x643 RxPDO10*, Nd.3 1624 0x658 RxPDO10*, Nd.24 1645 0x66D RxPDO10*, Nd.45
1604 0x644 RxPDO10*, Nd.4 1625 0x659 RxPDO10*, Nd.25 1646 0x66E RxPDO10*, Nd.46
1605 0x645 RxPDO10*, Nd.5 1626 0x65A RxPDO10*, Nd.26 1647 0x66F RxPDO10*, Nd.47
1606 0x646 RxPDO10*, Nd.6 1627 0x65B RxPDO10*, Nd.27 1648 0x670 RxPDO10*, Nd.48
1607 0x647 RxPDO10*, Nd.7 1628 0x65C RxPDO10*, Nd.28 1649 0x671 RxPDO10*, Nd.49
1608 0x648 RxPDO10*, Nd.8 1629 0x65D RxPDO10*, Nd.29 1650 0x672 RxPDO10*, Nd.50
1609 0x649 RxPDO10*, Nd.9 1630 0x65E RxPDO10*, Nd.30 1651 0x673 RxPDO10*, Nd.51
1610 0x64A RxPDO10*, Nd.10 1631 0x65F RxPDO10*, Nd.31 1652 0x674 RxPDO10*, Nd.52
1611 0x64B RxPDO10*, Nd.11 1632 0x660 RxPDO10*, Nd.32 1653 0x675 RxPDO10*, Nd.53
1612 0x64C RxPDO10*, Nd.12 1633 0x661 RxPDO10*, Nd.33 1654 0x676 RxPDO10*, Nd.54
1613 0x64D RxPDO10*, Nd.13 1634 0x662 RxPDO10*, Nd.34 1655 0x677 RxPDO10*, Nd.55
1614 0x64E RxPDO10*, Nd.14 1635 0x663 RxPDO10*, Nd.35 1656 0x678 RxPDO10*, Nd.56
1615 0x64F RxPDO10*, Nd.15 1636 0x664 RxPDO10*, Nd.36 1657 0x679 RxPDO10*, Nd.57
1616 0x650 RxPDO10*, Nd.16 1637 0x665 RxPDO10*, Nd.37 1658 0x67A RxPDO10*, Nd.58
1617 0x651 RxPDO10*, Nd.17 1638 0x666 RxPDO10*, Nd.38 1659 0x67B RxPDO10*, Nd.59
1618 0x652 RxPDO10*, Nd.18 1639 0x667 RxPDO10*, Nd.39 1660 0x67C RxPDO10*, Nd.60
1619 0x653 RxPDO10*, Nd.19 1640 0x668 RxPDO10*, Nd.40 1661 0x67D RxPDO10*, Nd.61
1620 0x654 RxPDO10*, Nd.20 1641 0x669 RxPDO10*, Nd.41 1662 0x67E RxPDO10*, Nd.62
1621 0x655 RxPDO10*, Nd.21 1642 0x66A RxPDO10*, Nd.42 1663 0x67F RxPDO10*, Nd.63

Appendix

EL6751216 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1729 0x6C1 TxPDO11*, Nd.1 1750 0x6D6 TxPDO11*, Nd.22 1771 0x6EB TxPDO11*, Nd.43
1730 0x6C2 TxPDO11*, Nd.2 1751 0x6D7 TxPDO11*, Nd.23 1772 0x6EC TxPDO11*, Nd.44
1731 0x6C3 TxPDO11*, Nd.3 1752 0x6D8 TxPDO11*, Nd.24 1773 0x6ED TxPDO11*, Nd.45
1732 0x6C4 TxPDO11*, Nd.4 1753 0x6D9 TxPDO11*, Nd.25 1774 0x6EE TxPDO11*, Nd.46
1733 0x6C5 TxPDO11*, Nd.5 1754 0x6DA TxPDO11*, Nd.26 1775 0x6EF TxPDO11*, Nd.47
1734 0x6C6 TxPDO11*, Nd.6 1755 0x6DB TxPDO11*, Nd.27 1776 0x6F0 TxPDO11*, Nd.48
1735 0x6C7 TxPDO11*, Nd.7 1756 0x6DC TxPDO11*, Nd.28 1777 0x6F1 TxPDO11*, Nd.49
1736 0x6C8 TxPDO11*, Nd.8 1757 0x6DD TxPDO11*, Nd.29 1778 0x6F2 TxPDO11*, Nd.50
1737 0x6C9 TxPDO11*, Nd.9 1758 0x6DE TxPDO11*, Nd.30 1779 0x6F3 TxPDO11*, Nd.51
1738 0x6CA TxPDO11*, Nd.10 1759 0x6DF TxPDO11*, Nd.31 1780 0x6F4 TxPDO11*, Nd.52
1739 0x6CB TxPDO11*, Nd.11 1760 0x6E0 TxPDO11*, Nd.32 1781 0x6F5 TxPDO11*, Nd.53
1740 0x6CC TxPDO11*, Nd.12 1761 0x6E1 TxPDO11*, Nd.33 1782 0x6F6 TxPDO11*, Nd.54
1741 0x6CD TxPDO11*, Nd.13 1762 0x6E2 TxPDO11*, Nd.34 1783 0x6F7 TxPDO11*, Nd.55
1742 0x6CE TxPDO11*, Nd.14 1763 0x6E3 TxPDO11*, Nd.35 1784 0x6F8 TxPDO11*, Nd.56
1743 0x6CF TxPDO11*, Nd.15 1764 0x6E4 TxPDO11*, Nd.36 1785 0x6F9 TxPDO11*, Nd.57
1744 0x6D0 TxPDO11*, Nd.16 1765 0x6E5 TxPDO11*, Nd.37 1786 0x6FA TxPDO11*, Nd.58
1745 0x6D1 TxPDO11*, Nd.17 1766 0x6E6 TxPDO11*, Nd.38 1787 0x6FB TxPDO11*, Nd.59
1746 0x6D2 TxPDO11*, Nd.18 1767 0x6E7 TxPDO11*, Nd.39 1788 0x6FC TxPDO11*, Nd.60
1747 0x6D3 TxPDO11*, Nd.19 1768 0x6E8 TxPDO11*, Nd.40 1789 0x6FD TxPDO11*, Nd.61
1748 0x6D4 TxPDO11*, Nd.20 1769 0x6E9 TxPDO11*, Nd.41 1790 0x6FE TxPDO11*, Nd.62
1749 0x6D5 TxPDO11*, Nd.21 1770 0x6EA TxPDO11*, Nd.42 1791 0x6FF TxPDO11*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1857 0x741 RxPDO11*, Nd.1 1878 0x756 RxPDO11*, Nd.22 1899 0x76B RxPDO11*, Nd.43
1858 0x742 RxPDO11*, Nd.2 1879 0x757 RxPDO11*, Nd.23 1900 0x76C RxPDO11*, Nd.44
1859 0x743 RxPDO11*, Nd.3 1880 0x758 RxPDO11*, Nd.24 1901 0x76D RxPDO11*, Nd.45
1860 0x744 RxPDO11*, Nd.4 1881 0x759 RxPDO11*, Nd.25 1902 0x76E RxPDO11*, Nd.46
1861 0x745 RxPDO11*, Nd.5 1882 0x75A RxPDO11*, Nd.26 1903 0x76F RxPDO11*, Nd.47
1862 0x746 RxPDO11*, Nd.6 1883 0x75B RxPDO11*, Nd.27 1904 0x770 RxPDO11*, Nd.48
1863 0x747 RxPDO11*, Nd.7 1884 0x75C RxPDO11*, Nd.28 1905 0x771 RxPDO11*, Nd.49
1864 0x748 RxPDO11*, Nd.8 1885 0x75D RxPDO11*, Nd.29 1906 0x772 RxPDO11*, Nd.50
1865 0x749 RxPDO11*, Nd.9 1886 0x75E RxPDO11*, Nd.30 1907 0x773 RxPDO11*, Nd.51
1866 0x74A RxPDO11*, Nd.10 1887 0x75F RxPDO11*, Nd.31 1908 0x774 RxPDO11*, Nd.52
1867 0x74B RxPDO11*, Nd.11 1888 0x760 RxPDO11*, Nd.32 1909 0x775 RxPDO11*, Nd.53
1868 0x74C RxPDO11*, Nd.12 1889 0x761 RxPDO11*, Nd.33 1910 0x776 RxPDO11*, Nd.54
1869 0x74D RxPDO11*, Nd.13 1890 0x762 RxPDO11*, Nd.34 1911 0x777 RxPDO11*, Nd.55
1870 0x74E RxPDO11*, Nd.14 1891 0x763 RxPDO11*, Nd.35 1912 0x778 RxPDO11*, Nd.56
1871 0x74F RxPDO11*, Nd.15 1892 0x764 RxPDO11*, Nd.36 1913 0x779 RxPDO11*, Nd.57
1872 0x750 RxPDO11*, Nd.16 1893 0x765 RxPDO11*, Nd.37 1914 0x77A RxPDO11*, Nd.58
1873 0x751 RxPDO11*, Nd.17 1894 0x766 RxPDO11*, Nd.38 1915 0x77B RxPDO11*, Nd.59
1874 0x752 RxPDO11*, Nd.18 1895 0x767 RxPDO11*, Nd.39 1916 0x77C RxPDO11*, Nd.60
1875 0x753 RxPDO11*, Nd.19 1896 0x768 RxPDO11*, Nd.40 1917 0x77D RxPDO11*, Nd.61
1876 0x754 RxPDO11*, Nd.20 1897 0x769 RxPDO11*, Nd.41 1918 0x77E RxPDO11*, Nd.62
1877 0x755 RxPDO11*, Nd.21 1898 0x76A RxPDO11*, Nd.42 1919 0x77F RxPDO11*, Nd.63

Appendix

EL6751 217Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1409 0x581 SDO Tx Nd.1 1430 0x596 SDO Tx Nd.22 1451 0x5AB SDO Tx Nd.43
1410 0x582 SDO Tx Nd.2 1431 0x597 SDO Tx Nd.23 1452 0x5AC SDO Tx Nd.44
1411 0x583 SDO Tx Nd.3 1432 0x598 SDO Tx Nd.24 1453 0x5AD SDO Tx Nd.45
1412 0x584 SDO Tx Nd.4 1433 0x599 SDO Tx Nd.25 1454 0x5AE SDO Tx Nd.46
1413 0x585 SDO Tx Nd.5 1434 0x59A SDO Tx Nd.26 1455 0x5AF SDO Tx Nd.47
1414 0x586 SDO Tx Nd.6 1435 0x59B SDO Tx Nd.27 1456 0x5B0 SDO Tx Nd.48
1415 0x587 SDO Tx Nd.7 1436 0x59C SDO Tx Nd.28 1457 0x5B1 SDO Tx Nd.49
1416 0x588 SDO Tx Nd.8 1437 0x59D SDO Tx Nd.29 1458 0x5B2 SDO Tx Nd.50
1417 0x589 SDO Tx Nd.9 1438 0x59E SDO Tx Nd.30 1459 0x5B3 SDO Tx Nd.51
1418 0x58A SDO Tx Nd.10 1439 0x59F SDO Tx Nd.31 1460 0x5B4 SDO Tx Nd.52
1419 0x58B SDO Tx Nd.11 1440 0x5A0 SDO Tx Nd.32 1461 0x5B5 SDO Tx Nd.53
1420 0x58C SDO Tx Nd.12 1441 0x5A1 SDO Tx Nd.33 1462 0x5B6 SDO Tx Nd.54
1421 0x58D SDO Tx Nd.13 1442 0x5A2 SDO Tx Nd.34 1463 0x5B7 SDO Tx Nd.55
1422 0x58E SDO Tx Nd.14 1443 0x5A3 SDO Tx Nd.35 1464 0x5B8 SDO Tx Nd.56
1423 0x58F SDO Tx Nd.15 1444 0x5A4 SDO Tx Nd.36 1465 0x5B9 SDO Tx Nd.57
1424 0x590 SDO Tx Nd.16 1445 0x5A5 SDO Tx Nd.37 1466 0x5BA SDO Tx Nd.58
1425 0x591 SDO Tx Nd.17 1446 0x5A6 SDO Tx Nd.38 1467 0x5BB SDO Tx Nd.59
1426 0x592 SDO Tx Nd.18 1447 0x5A7 SDO Tx Nd.39 1468 0x5BC SDO Tx Nd.60
1427 0x593 SDO Tx Nd.19 1448 0x5A8 SDO Tx Nd.40 1469 0x5BD SDO Tx Nd.61
1428 0x594 SDO Tx Nd.20 1449 0x5A9 SDO Tx Nd.41 1470 0x5BE SDO Tx Nd.62
1429 0x595 SDO Tx Nd.21 1450 0x5AA SDO Tx Nd.42 1471 0x5BF SDO Tx Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1537 0x601 SDO Rx Nd.1 1558 0x616 SDO Rx Nd.22 1579 0x62B SDO Rx Nd.43
1538 0x602 SDO Rx Nd.2 1559 0x617 SDO Rx Nd.23 1580 0x62C SDO Rx Nd.44
1539 0x603 SDO Rx Nd.3 1560 0x618 SDO Rx Nd.24 1581 0x62D SDO Rx Nd.45
1540 0x604 SDO Rx Nd.4 1561 0x619 SDO Rx Nd.25 1582 0x62E SDO Rx Nd.46
1541 0x605 SDO Rx Nd.5 1562 0x61A SDO Rx Nd.26 1583 0x62F SDO Rx Nd.47
1542 0x606 SDO Rx Nd.6 1563 0x61B SDO Rx Nd.27 1584 0x630 SDO Rx Nd.48
1543 0x607 SDO Rx Nd.7 1564 0x61C SDO Rx Nd.28 1585 0x631 SDO Rx Nd.49
1544 0x608 SDO Rx Nd.8 1565 0x61D SDO Rx Nd.29 1586 0x632 SDO Rx Nd.50
1545 0x609 SDO Rx Nd.9 1566 0x61E SDO Rx Nd.30 1587 0x633 SDO Rx Nd.51
1546 0x60A SDO Rx Nd.10 1567 0x61F SDO Rx Nd.31 1588 0x634 SDO Rx Nd.52
1547 0x60B SDO Rx Nd.11 1568 0x620 SDO Rx Nd.32 1589 0x635 SDO Rx Nd.53
1548 0x60C SDO Rx Nd.12 1569 0x621 SDO Rx Nd.33 1590 0x636 SDO Rx Nd.54
1549 0x60D SDO Rx Nd.13 1570 0x622 SDO Rx Nd.34 1591 0x637 SDO Rx Nd.55
1550 0x60E SDO Rx Nd.14 1571 0x623 SDO Rx Nd.35 1592 0x638 SDO Rx Nd.56
1551 0x60F SDO Rx Nd.15 1572 0x624 SDO Rx Nd.36 1593 0x639 SDO Rx Nd.57
1552 0x610 SDO Rx Nd.16 1573 0x625 SDO Rx Nd.37 1594 0x63A SDO Rx Nd.58
1553 0x611 SDO Rx Nd.17 1574 0x626 SDO Rx Nd.38 1595 0x63B SDO Rx Nd.59
1554 0x612 SDO Rx Nd.18 1575 0x627 SDO Rx Nd.39 1596 0x63C SDO Rx Nd.60
1555 0x613 SDO Rx Nd.19 1576 0x628 SDO Rx Nd.40 1597 0x63D SDO Rx Nd.61
1556 0x614 SDO Rx Nd.20 1577 0x629 SDO Rx Nd.41 1598 0x63E SDO Rx Nd.62
1557 0x615 SDO Rx Nd.21 1578 0x62A SDO Rx Nd.42 1599 0x63F SDO Rx Nd.63

Appendix

EL6751218 Version: 4.0.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1793 0x701 Guarding Nd.1 1814 0x716 Guarding Nd.22 1835 0x72B Guarding Nd.43
1794 0x702 Guarding Nd.2 1815 0x717 Guarding Nd.23 1836 0x72C Guarding Nd.44
1795 0x703 Guarding Nd.3 1816 0x718 Guarding Nd.24 1837 0x72D Guarding Nd.45
1796 0x704 Guarding Nd.4 1817 0x719 Guarding Nd.25 1838 0x72E Guarding Nd.46
1797 0x705 Guarding Nd.5 1818 0x71A Guarding Nd.26 1839 0x72F Guarding Nd.47
1798 0x706 Guarding Nd.6 1819 0x71B Guarding Nd.27 1840 0x730 Guarding Nd.48
1799 0x707 Guarding Nd.7 1820 0x71C Guarding Nd.28 1841 0x731 Guarding Nd.49
1800 0x708 Guarding Nd.8 1821 0x71D Guarding Nd.29 1842 0x732 Guarding Nd.50
1801 0x709 Guarding Nd.9 1822 0x71E Guarding Nd.30 1843 0x733 Guarding Nd.51
1802 0x70A Guarding Nd.10 1823 0x71F Guarding Nd.31 1844 0x734 Guarding Nd.52
1803 0x70B Guarding Nd.11 1824 0x720 Guarding Nd.32 1845 0x735 Guarding Nd.53
1804 0x70C Guarding Nd.12 1825 0x721 Guarding Nd.33 1846 0x736 Guarding Nd.54
1805 0x70D Guarding Nd.13 1826 0x722 Guarding Nd.34 1847 0x737 Guarding Nd.55
1806 0x70E Guarding Nd.14 1827 0x723 Guarding Nd.35 1848 0x738 Guarding Nd.56
1807 0x70F Guarding Nd.15 1828 0x724 Guarding Nd.36 1849 0x739 Guarding Nd.57
1808 0x710 Guarding Nd.16 1829 0x725 Guarding Nd.37 1850 0x73A Guarding Nd.58
1809 0x711 Guarding Nd.17 1830 0x726 Guarding Nd.38 1851 0x73B Guarding Nd.59
1810 0x712 Guarding Nd.18 1831 0x727 Guarding Nd.39 1852 0x73C Guarding Nd.60
1811 0x713 Guarding Nd.19 1832 0x728 Guarding Nd.40 1853 0x73D Guarding Nd.61
1812 0x714 Guarding Nd.20 1833 0x729 Guarding Nd.41 1854 0x73E Guarding Nd.62
1813 0x715 Guarding Nd.21 1834 0x72A Guarding Nd.42 1855 0x73F Guarding Nd.63

Appendix

EL6751 219Version: 4.0.0

7.5 Abbreviations
Abbreviation Description
CAN Controller Area Network.

Serial bus system standardized in ISO 11898 that is used as the basic technology for
CANopen

CiA CAN in Automation e.V..
An international association of manufacturers and users based in Erlangen, Germany.

CoB Communication Object.
A CAN telegram with up to 8 data bytes.

CoB-ID Communication Object Identifier.
Telegram address (not to be confused with the node address).
CANopen uses the 11-bit identifier according to CAN 2.0A.

CoE CANopen over EtherCAT
ESC EtherCAT Slave Controller
FBM Fieldbus master
MC Motion Control
NMT Network Management.

One of the service primitives of the CANopen specification. Network management is used to
initialize the network and to monitor nodes.

OP OPERATIONAL
PDO Process Data Object.

A CAN telegram for the transfer of process data (e.g. I/O data).
PREOP PRE-OPERATIONAL
RxPDO Receive PDO.

PDOs are always identified from the point of view of the device under consideration. Thus a
TxPDO with input data from an I/O module becomes an RxPDO from the controller's point of
view.

SAFEOP SAFE OPERATIONAL
SDO Service Data Object.

A CAN telegram with a protocol for communication with data in the object directory (typically
parameter data).

SI Subindex
SM SyncManager
SoE Servo Profile over EtherCAT
TxPDO Transmit PDO (named from the point of view of the CAN node).

Appendix

EL6751220 Version: 4.0.0

7.6 Bibliography
German books

• Holger Zeltwander (Pub.):
CANopen,
VDE Verlag, 2001. 197 pages,
ISBN 3-800-72448-0

• Konrad Etschberger:
Controller Area Network, Grundlagen, Protokolle, Bausteine, Anwendungen. (Principles, protocols,
components, applications.)
Hanser Verlag, 2000. 431 pages.
ISBN 3-446-19431-2

General fieldbus technology
• Gerhard Gruhler (Pub.):

Feldbusse und Geräte-Kommunikationssysteme, Praktisches Know-How mit
Vergleichsmöglichkeiten. (Fieldbus and Device Communication Systems, Practical Know-how with
Comparative Resources)
Franzis Verlag, 2001. 244 pages.
ISBN 3-7723-5745-8

English books
• Konrad Etschberger:

Controller Area Network,
Ixxat Press, 2001. 440 pages.
ISBN 3-00-007376-0

• M. Farsi, M. Barbosa:
CANopen Implementation,
RSP 2000. 210 pages.
ISBN 0-86380-247-8

Appendix

EL6751 221Version: 4.0.0

Standards
• ISO 11898:

Road Vehicles - Interchange of digital information - Controller Area Network (CAN) for high speed
communication.

• CiA DS 301:
CANopen Application Layer and Communication Profile.
Available from the CAN in Automation Association.

• CiA DS 401:
CANopen Device Profile for Generic I/O Modules.
Available from the CAN in Automation Association.

http://www.can-cia.org
http://www.can-cia.org

Appendix

EL6751222 Version: 4.0.0

7.7 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Support

The Beckhoff Support offers you comprehensive technical assistance, helping you not only with the
application of individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
e-mail: support@beckhoff.com
web: www.beckhoff.com/support

Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963 460
e-mail: service@beckhoff.com
web: www.beckhoff.com/service

Headquarters Germany

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/
https://www.beckhoff.com/support
https://www.beckhoff.com/service
https://www.beckhoff.com/

Trademark statements

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Third-party trademark statements

DeviceNet and EtherNet/IP are trademarks of ODVA, Inc.

DSP System Toolbox, Embedded Coder, MATLAB, MATLAB Coder, MATLAB Compiler, MathWorks, Predictive Maintenance Toolbox,
Simscape, Simscape™ Multibody™, Simulink, Simulink Coder, Stateflow and ThingSpeak are registered trademarks of The MathWorks, Inc.

Intel, the Intel logo, Intel Core, Xeon, Intel Atom, Celeron and Pentium are trademarks of Intel Corporation or its subsidiaries.

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/EL6751

mailto:info@beckhoff.com?subject=EL6751
https://www.beckhoff.com
https://www.beckhoff.com/EL6751

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Guide through documentation
	1.3 Safety instructions
	1.4 Documentation issue status
	1.5 Version identification of EtherCAT devices
	1.5.1 General notes on marking
	1.5.2 Version identification of EL terminals
	1.5.3 Beckhoff Identification Code (BIC)
	1.5.4 Electronic access to the BIC (eBIC)

	2 Product overview
	2.1 Introduction
	2.2 Technical data
	2.3 CANopen - Introduction

	3 Mounting and wiring
	3.1 Instructions for ESD protection
	3.2 Explosion protection
	3.2.1 ATEX - Special conditions (extended temperature range)
	3.2.2 IECEx - Special conditions
	3.2.3 Continuative documentation for ATEX and IECEx

	3.3 UL notice
	3.4 Installation positions
	3.5 Positioning of passive Terminals
	3.6 Mounting and demounting - traction lever unlocking
	3.7 Mounting and demounting - top front unlocking
	3.8 Disposal
	3.9 Note - power supply
	3.10 CANopen cabling
	3.10.1 CAN topology
	3.10.2 Bus length
	3.10.3 Drop lines
	3.10.4 Star Hub (Multiport Tap)
	3.10.5 CAN cable
	3.10.6 Shielding
	3.10.7 Cable colors
	3.10.8 BK5151, FC51xx, CX with CAN interface and EL6751: D-sub, 9 pin
	3.10.9 BK51x0/BX5100: 5-pin open style connector
	3.10.10 LC5100: Bus connection via spring-loaded terminals
	3.10.11 Fieldbus Box: M12 CAN socket

	4 Basics communication
	4.1 EtherCAT basics
	4.2 EtherCAT State Machine
	4.3 General notes for setting the watchdog
	4.4 CoE Interface

	5 Parameterization and commissioning
	5.1 TwinCAT Development Environment
	5.1.1 Installation of the TwinCAT real-time driver
	5.1.2 Notes regarding ESI device description
	5.1.3 OFFLINE configuration creation
	5.1.4 ONLINE configuration creation
	5.1.5 EtherCAT slave process data settings

	5.2 General Commissioning Instructions for an EtherCAT Slave
	5.3 TwinCAT (2.1x) System Manager
	5.3.1 Configuration by means of the TwinCAT System Manager
	5.3.2 BECKHOFF CANopen Bus Coupler
	5.3.3 CANopen devices

	5.4 CANopen Communication
	5.4.1 Network Management
	5.4.2 CANopen Master Network management
	5.4.3 Process Data Objects (PDO)
	5.4.4 PDO Parameterization
	5.4.5 Service Data Objects (SDO)
	5.4.6 EL6751- SDO communication
	5.4.7 CANopen baud rate and bit timing
	5.4.8 Identifier Allocation
	5.4.9 Firmware versions
	5.4.10 Sending and receiving of CAN Messages (STD Frame Format) via ADS
	5.4.11 Modular Device Profil Mapping of EL6751 (MDP)

	5.5 EtherCAT communication EL6751
	5.5.1 CANopen master
	5.5.1.1 EtherCAT State Machine
	5.5.1.2 Synchronization
	5.5.1.3 Object description and parameterization
	5.5.1.3.1 Standard objects (0x1000-0x1FFF)
	5.5.1.3.2 Profile-specific objects (0x6000-0xFFFF)

	5.5.2 CAN interface
	5.5.2.1 CAN interface configuration
	5.5.2.2 CAN interface synchronization
	5.5.2.3 Object description – CAN interface
	5.5.2.3.1 Standard objects (0x1000-0x1FFF)
	5.5.2.3.2 Profile-specific objects (0x6000-0xFFFF)

	6 Error handling and diagnostics
	6.1 EL6751 – LED description
	6.2 EL6751 – Bus node diagnostics
	6.3 EL6751 diagnostics
	6.4 EL6751- Emergency messages
	6.5 EL6751 - ADS Error Codes
	6.6 CANopen Trouble Shooting

	7 Appendix
	7.1 EtherCAT AL Status Codes
	7.2 Firmware compatibility
	7.3 Firmware Update EL/ES/EM/ELM/EP/EPP/ERPxxxx
	7.3.1 Device description ESI file/XML
	7.3.2 Firmware explanation
	7.3.3 Updating controller firmware *.efw
	7.3.4 FPGA firmware *.rbf
	7.3.5 Simultaneous updating of several EtherCAT devices

	7.4 CAN Identifier List
	7.5 Abbreviations
	7.6 Bibliography
	7.7 Support and Service

		documentation@beckhoff.com
	2025-07-02T09:22:10+0200
	Beckhoff Automation, Verl
	Documentation Publishing

