BECKHOFF New Automation Technology

Dokumentation | DE

EL5102

Inkremental-Encoder-Interface, 5 V, (RS422, TTL, Open Collector)

Inhaltsverzeichnis

1	Vorv	wort	7
	1.1	Hinweise zur Dokumentation	7
	1.2	Wegweiser durch die Dokumentation	8
	1.3	Sicherheitshinweise	9
	1.4	Ausgabestände der Dokumentation	10
	1.5	Versionsidentifikation von EtherCAT-Geräten	11
		1.5.1 Allgemeine Hinweise zur Kennzeichnung	11
		1.5.2 Versionsidentifikation von EL-Klemmen	12
		1.5.3 Beckhoff Identification Code (BIC)	13
		1.5.4 Elektronischer Zugriff auf den BIC (eBIC)	15
2	Prod	duktbeschreibung	17
	2.1	EL5102 - Einführung	
	2.2	EL5102 - Technische Daten	
	2.3	Start	
	2.4	Übersicht EL51xx-Serie	
2	C****	ndlagen Inkremental Encoder	24
3		-	
4		hnische Eigenschaften	
	4.1	Unterstützte Encoder / Signaltypen	
		4.1.1 Signaltyp RS422 (diff. input)	
		4.1.2 Signaltyp TTL (single ended) und Open-Collector	
	4.2	Eingänge Latch und Gate/Latch	
	4.3	Eingang "Status-Input"	
	4.4	Geberbetriebsspannung (Supply voltage)	28
5	Grur	ndlagen der Kommunikation	29
	5.1	EtherCAT-Grundlagen	29
	5.2	EtherCAT-Verkabelung - Drahtgebunden	29
	5.3	Allgemeine Hinweise zur Watchdog-Einstellung	31
	5.4	EtherCAT State Machine	32
	5.5	CoE-Interface	34
	5.6	Distributed Clock	39
6	Mon	ntage und Verdrahtung	40
•	6.1	Hinweise zum ESD-Schutz	
	6.2	Tragschienenmontage	
	6.3	UL-Hinweise	
	6.4	Montagevorschriften für erhöhte mechanische Belastbarkeit	
	6.5	Anschluss	
		6.5.1 Anschlusstechnik	
		6.5.2 Verdrahtung	
		6.5.3 Schirmung	
	6.6	Hinweis zur Spannungsversorgung	
	6.7	Einbaulagen	
	6.8	Positionierung von passiven Klemmen	
	6.9	EL5102 - Anschlussbelegung	

Version: 1.4.0

		6.9.1	RS422-Mode	55
		6.9.2	TTL-Mode	57
		6.9.3	Open Collector-Mode	59
	6.10	EL5102	- LEDs	61
	6.11	Entsorg	ung	62
7	Inbet	triebnahn	ne	63
	7.1	TwinCA	T Quickstart	63
		7.1.1	TwinCAT 2	66
		7.1.2	TwinCAT 3	76
	7.2	TwinCA	T Entwicklungsumgebung	89
		7.2.1	Installation der TwinCAT Realtime-Treiber	89
		7.2.2	Hinweise zur ESI-Gerätebeschreibung	95
		7.2.3	TwinCAT ESI Updater	99
		7.2.4	Unterscheidung Online / Offline	99
		7.2.5	OFFLINE Konfigurationserstellung	100
		7.2.6	ONLINE Konfigurationserstellung	105
		7.2.7	EtherCAT-Teilnehmerkonfiguration	113
		7.2.8	NC - Konfiguration (Motion)	123
	7.3	Allgeme	eine Inbetriebnahmehinweise für einen EtherCAT-Slave	126
8	EL51	02 - Inbe	etriebnahme	135
	8.1		ht Funktionen EL5102	
	8.2	Prozess	daten	136
		8.2.1	Sync Manager (SM)	136
		8.2.2	PDO - Zuordnung	
		8.2.3	Predefined PDO Assignment	146
		8.2.4	Betriebsart - Synchronität	
		8.2.5	EtherCAT Zykluszeit	
		8.2.6	"Legacy EL5101"-Mode	151
	8.3	Basisfur	nktionen	152
		8.3.1	Zählerstand (Counter Value)	152
		8.3.2	Zählerstand reset	
		8.3.3	Zählerstand setzen	159
		8.3.4	Zählrichtung detektieren	161
		8.3.5	Zählerstand speichern	164
		8.3.6	Zählerstand sperren	168
	8.4	Erweiter	rte Funktionen	169
		8.4.1	Frequenzmessung	169
		8.4.2	Periodendauermessung	171
		8.4.3	Geschwindigkeits-, Drehzahlberechnung	172
		8.4.4	Duty Cycle Auswertung	174
		8.4.5	Mikroinkremente	175
		8.4.6	Zeitstempelfunktion	177
		8.4.7	Einstellbare Störimpulsfilter	179
		8.4.8	Plausibilitätsprüfung	181
	8.5	Eingäng	je	182

		8.5.1	Eingang Nullimpuls C	182
		8.5.2	Eingang Latch (Latch extern)	184
		8.5.3	Eingang Gate/Latch	186
		8.5.4	Eingang "Status Input"	187
	8.6	Diagnos	e	188
		8.6.1	Diagnose - Grundlagen zu Diag Messages	188
		8.6.2	Diagnose EL5102	198
	8.7	EL5102	- Objektbeschreibung und Parametrierung	203
		8.7.1	Restore Objekt	203
		8.7.2	Konfigurationsdaten	204
		8.7.3	Kommando-Objekt	207
		8.7.4	Eingangsdaten	208
		8.7.5	Ausgangsdaten	209
		8.7.6	Informations-/Diagnosedaten (kanalspezifisch)	210
		8.7.7	Informations-/Diagnostikdaten (gerätespezifisch)	210
		8.7.8	Standardobjekte	210
9	Anha	ıng		236
	9.1	_	T AL Status Codes	
	9.2	Firmware	e Kompatibilität	236
	9.3	Firmware	e Update EL/ES/ELM/EM/EP/EPP/ERPxxxx	236
		9.3.1	Gerätebeschreibung ESI-File/XML	238
		9.3.2	Erläuterungen zur Firmware	241
		9.3.3	Update Controller-Firmware *.efw	242
		9.3.4	FPGA-Firmware *.rbf	244
		9.3.5	Gleichzeitiges Update mehrerer EtherCAT-Geräte	248
	9.4	Wiederh	erstellen des Auslieferungszustandes	249
	0.5	Support	und Sorvice	250

Version: 1.4.0

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, ATRO®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, MX-System®, Safety over EtherCAT®, TC/BSD®, TwinCAT®, TwinCAT/BSD®, TwinSAFE®, XFC®, XPlanar® und XTS® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH.

Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Fremdmarken

In dieser Dokumentation können Marken Dritter verwendet werden. Die zugehörigen Markenvermerke finden Sie unter: https://www.beckhoff.com/trademarks

1.2 Wegweiser durch die Dokumentation

HINWEIS

Weitere Bestandteile der Dokumentation

Diese Dokumentation beschreibt gerätespezifische Inhalte. Sie ist Bestandteil des modular aufgebauten Dokumentationskonzepts für Beckhoff I/O-Komponenten. Für den Einsatz und sicheren Betrieb des in dieser Dokumentation beschriebenen Gerätes / der in dieser Dokumentation beschriebenen Geräte werden zusätzliche, produktübergreifende Beschreibungen benötigt, die der folgenden Tabelle zu entnehmen sind.

Titel	Beschreibung
EtherCAT System-Dokumentation (PDF)	Systemübersicht
	EtherCAT-Grundlagen
	Kabel-Redundanz
	Hot Connect
	Konfiguration von EtherCAT-Geräten
Infrastruktur für EtherCAT/Ethernet (PDF)	Technische Empfehlungen und Hinweise zur Auslegung, Ausfertigung und Prüfung
Software-Deklarationen I/O (PDF)	Open-Source-Software-Deklarationen für Beckhoff-I/O-Komponenten

Die Dokumentationen können auf der Beckhoff-Homepage (<u>www.beckhoff.com</u>) eingesehen und heruntergeladen werden über:

- den Bereich "Dokumentation und Downloads" der jeweiligen Produktseite,
- · den Downloadfinder,
- das Beckhoff Information System.

Sollten Sie Vorschläge oder Anregungen zu unserer Dokumentation haben, schicken Sie uns bitte unter Angabe von Dokumentationstitel und Versionsnummer eine E-Mail an: dokumentation@beckhoff.com

1.3 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.4 Ausgabestände der Dokumentation

Version	Kommentar
1.4.0	Update Technische Daten
	Kapitel "UL-Hinweise" hinzugefügt
	Update Revisionsstand
	Update Struktur
1.3	Update Kapitel "Versionsidentifikation von EtherCAT-Geräten"
	Update Kapitel "Technische Daten
	Update Kapitel "Übersicht der EL51xx-Serie"
	Update Kapitel "Technische Eigenschaften
	Update Kapitel "Montage und Verdrahtung"
	Update Kapitel "Diagnose EL5102"
	Update Kapitel "EL5102 - Objektbeschreibung und Parametrierung"
	Update Revisionsstand
	Update Struktur
1.2	Update Kapitel "Übersicht der EL51xx-Serie"
	Update Kapitel "EL5102 - Objektbeschreibung und Parametrierung"
1.1	Update Kapitel "Predefined PDO"
	Update Kapitel "Zeitstempelfunktion"
	Update Struktur
1.0	1. Veröffentlichung
0.3	Erste vorläufige Dokumentation für EL5102

1.5 Versionsidentifikation von EtherCAT-Geräten

1.5.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016		3314	0000	0016
	12 mm, nicht steckbare Anschlussebene	4-kanalige Thermoelementklemme	Grundtyp	
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	12 mm, steckbare Anschlussebene	2-kanalige Spannungsmessung	hochpräzise Version	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		8 Port FastEthernet Switch	Grundtyp	

Hinweise

- Die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die **Revision** -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.

 Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht
 - anders z. B. in der Dokumentation angegeben.

 Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT)
 - Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit Januar 2014 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL2872 mit Revision 0022 und Seriennummer 01200815".
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

1.5.2 Versionsidentifikation von EL-Klemmen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder mit einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module innerhalb einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr FF - Firmware-Stand

HH - Hardware-Stand

Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12

06 - Produktionsjahr 2006

3A - Firmware-Stand 3A

02 - Hardware-Stand 02

Abb. 1: EL2872 mit Revision 0022 und Seriennummer 01200815

1.5.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 2: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P 072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTN k4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1K EL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q 1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P 401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z.B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S 678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	12	30P F971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 3: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumenation können keine Ansprüche auf Änderung geltend gemacht werden.

1.5.4 Elektronischer Zugriff auf den BIC (eBIC)

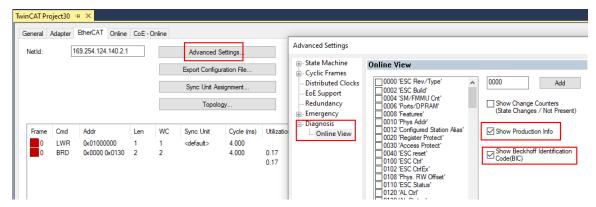
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff-Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

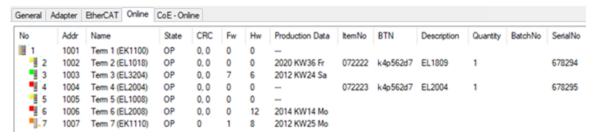
Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt angesprochen werden kann.

K-Bus Geräte (IP20, IP67)

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, das die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (<u>Link</u>).


In das ESI-EEPROM wird durch Beckhoff auch die eBIC geschrieben. Die Einführung des eBIC in die Beckhoff-IO-Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT-Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen:
 - Ab TwinCAT 3.1 Build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter
 EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC bereit.

- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:
 - Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein

Inc	dex	Name	Rags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
•	1011:0	Restore default parameters	RO	>1<		
	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 Build 4024.24 in der *Tc2 Utilities* zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den BIC sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST_SplittedBIC als Rückgabewert
 - BIC TO BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Zum technischen Hintergrund:
 Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT-Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen.
 Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.
- Sonderfälle
 - Bei einer hierarchischen Anordnung mehrerer ESC (EtherCAT Slave Controller) in einem Gerät trägt lediglich der oberste ESC die eBIC-Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC-Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC dieses ESC, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

PROFIBUS-, PROFINET-, DeviceNet-Geräte usw.

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

2 Produktbeschreibung

2.1 EL5102 - Einführung

Zweikanalige Inkremental Encoder Interface Klemme

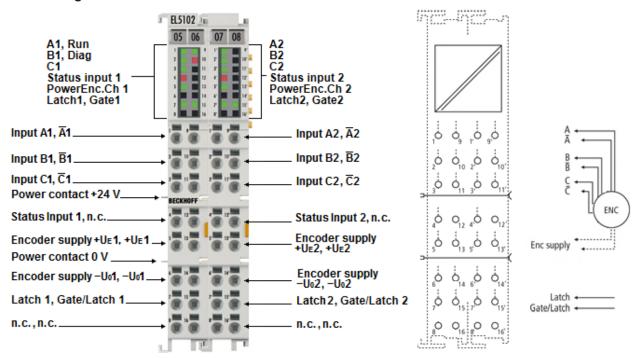


Abb. 4: EL5102

Die EtherCAT-Klemme EL5102 ist ein Interface zum direkten Anschluss von zwei Inkremental-Encodern mit Differenzeingängen (RS422) oder single-ended Eingängen (TTL und Open Collector), parametrierbar je Kanal. Die Encoder können direkt aus der Klemme gespeist werden. Dabei bietet die EL5102 zwei separate Geberversorgungsspannungen an, die wahlweise zwischen 5 V_{DC} , 12 V_{DC} oder 24 V_{DC} umgeschaltet werden können.

Pro Kanal steht ein 32-Bit-Zähler mit Quadraturdecoder zur Verfügung. Weiterhin kann über die Eingänge (Latch-, Gate/Latch und Nullimpuls C-Eingang) der Zählerwert separat gespeichert oder auf einen vorgegebenen Wert gesetzt werden. Zusätzlich besteht die Möglichkeit den Zähler zu verriegeln, wahlweise durch den Gate/Latch-Eingang oder direkt durch die Prozessdaten. An den Status-Input-Eingang der Klemme kann ein Statussignal des Inkrementalencoders angeschlossen werden.

Die EL5102 ermöglicht die Messung einer Periode, einer Frequenz und Geschwindigkeit, mit einer Auflösung von 10 ns. Weiterhin ist eine Duty-Cycle Messung des eingehenden Signals implementiert.

Durch die optionale interpolierende Mikroinkrementefunktionalität kann die EL5102 bei dynamischen Achsen noch genauere Achspositionen liefern. Zudem unterstützt sie über die hochpräzisen EtherCAT-Distributed-Clocks (DC) das synchrone Einlesen des Geberwertes zusammen mit anderen Eingangsdaten im EtherCAT-System. Zusätzlich bietet die EL5102 die Timestamp-Funktion an, so können die letzte registrierte Inkrementalflanke, die Flanke am Latch-Eingang und der Nullimpulsspur C mit einem Zeitstempel ausgegeben werden.

Quick-Links

Grundlagen der Kommunikation [▶ 29]

Konfigurationserstellung TwinCAT [▶ 105]

EL5102 - Prozessdaten [▶ 136]

Konfigurationsdaten [▶ 204]

EL5102 - Objektbeschreibung [▶ 203]

LEDs [▶ 61] und Anschlussbelegung [▶ 53]

2.2 EL5102 - Technische Daten

Technische Daten	EL5102
Encodertyp	Inkremental, differentiell (RS422), Single-ended (TTL, Open Collector), Zähler, Impulsgeber
Geberanschluss	Differenzeingänge (RS422): A, Ā, B, B, C, C
	Single-Ended-Anschluss (TTL, Open Collector): A, B, C
	Zähler, Impulsgeber: A, B
Anzahl Kanäle	2 x A, B, C
zusätzliche Eingänge	Latch, Gate/Latch (24 V _{DC} , t _{ON} > 1 µs) pro Kanal,
	Status-Input-Eingang (max. 5 V _{DC} , negativ schaltend, t _{ON} > 10 μs) pro Kanal
Geberbetriebsspannung	$5V_{DC}$ (voreingestellt), 12 V_{DC} , 24 V_{DC} umschaltbar, 0,3 A pro Kanal (erzeugt aus den 24 V_{DC} - Powerkontakten)
Zähler	32 Bit (voreingestellt) oder 16 Bit umschaltbar
Grenzfrequenz	RS422-Mode: 20 Mio. Inkremente/s bei 4-fach-Auswertung, entspricht 5 MHz
	TTL-Mode: 4 Mio. Inkremente/s bei 4-fach Auswertung, entspricht 1 MHz
	Open Collector: 400.000 Inkremente/s bei 4-fach Auswertung, entspricht 100 kHz
Quadraturdecoder	4-fach-Auswertung (voreingestellt), 2-fach-, 1-fach-Auswertung umschaltbar
Auflösung Mikroinkremente	1/256 Bit Mikroinkremente
Drahtbrucherkennung zum Geber	Ja für RS422 Encoder
Distributed Clocks	Ja
Timestamp	Auflösung 1 ns
Besondere Funktionen	Frequenz-, Periodendauer- und Duty Cycle Messung, Mikroinkremente, einstellbare Störimpulsfilter,
	Zeitstempel auf: letzte Inkrementalflanke, Nullimpuls C, Latch-Eingang und Gate/Latch-Eingang
Zykluszeit	min. 100 μs
Stromaufnahme aus dem E-Bus	typ. 210 mA
Stromaufnahme aus den Powerkontakten	Typ. 20 mA + Last
Potenzialtrennung	500 V (E-Bus/Feldspannung)
Konfiguration	über TwinCAT System Manager [▶ 113]
Gewicht	ca. 100 g
Zulässiger Umgebungstemperaturbereich im Betrieb	0°C +55°C
Zulässiger Umgebungstemperaturbereich bei Lagerung	-25°C +85°C
Zulässige relative Luftfeuchtigkeit	95 %, keine Betauung
Abmessungen (B x H x T)	ca. 27 mm x 100 mm x 70 mm (Breite angereiht: 24 mm)
Montage [▶ 41]	auf 35 mm Tragschiene nach EN 60715
Montagevorschriften für Klemmen mit erhöhter mechanischer Belastbarkeit	Ja, siehe auch Montagevorschriften für Klemmen mit erhöhter mechanischer Belastbarkeit [▶ 45]
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	beliebig
Zulassungen / Kennzeichnungen*	CE, EAC, UKCA, <u>cULus [44]</u>

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

2.3 Start

Zur Inbetriebsetzung:

- Montieren Sie den EL5102 wie im Kapitel Montage und Verdrahtung [▶ 40] beschrieben
- Konfigurieren Sie den EL5102 in TwinCAT wie im Kapitel <u>Inbetriebnahme</u> [▶ 63] beschrieben.
- Parametrieren Sie den EL5102 wie im Kapitel <u>EL5102 Inbetriebnahme [\bar{b}_135]</u> beschrieben.

2.4 Übersicht EL51xx-Serie

Technische Daten		EL5102	EL5	EL5112		EL5131
		2 x A, B, C	1 x A, B, C	2 x A, B	2 x A, B	1 x A, B, C
Anzahl Kanä	le	2	1	2	2	1
Encodertyp,	Differentiell RS422	Ja	Ja	Ja	Nein	Ja
Inkremental	Single-ended TTL	Ja	Ja	Ja	Ja	Ja
	OpenCollector	Ja	Ja	Ja	Ja	Ja
	Zähler / Impulsgeber	Ja	Ja	Ja	Ja	Ja
Anzahl Digita Kanal	Anzahl Digital Eingänge pro Kanal		2	1	1	2
Anzahl Digita Kanal	ıl Ausgänge pro	Nein	Nein	Nein	Nein	2
Geberbetriebsspannung 5 V _{DC} , 12 V _{DC} , 24 V _{DC} umschaltbar		Ja	Ja	Ja	Ja	Ja
Geberausgangsstrom pro Kanal		0,3 A	0,3 A	Summen- strom 0,3 A	Summen- strom 0,3 A	0,3 A
Grenzfrequenz			20 Mio. Inkremente/s, entspr. 5 MHz	· ·		20 Mio. Inkremente/s, entspr. 5 MHz

Funktionen		EL5102	EL5	112	EL5122	EL5131
		2 x A, B, C	1 x A, B, C	2 x A, B	2 x A, B	1 x A, B, C
Zählerstand	Nullimpuls C	Ja	Ja	Nein	Nein	Ja
Reset über	Latch-Eingang	Ja	Ja	Ja	Ja	Ja
Zählerstand	SPS Variable	Ja	Ja	Ja	Ja	Ja
setzen über	Nullimpuls C	Ja	Ja	Nein	Nein	Ja
	Latch-Eingang	Ja	Ja	Ja	Nein	Ja
	Gate/Latch- Eingang	Nein	Nein	Ja	Ja	Nein
Zählerstand	Nullimpuls C	Ja	Ja	Nein	Nein	Ja
speichern	Latch-Eingang	Ja	Ja	Ja	Nein	Ja
über	Gate/Latch -Eingang	Ja	Ja	Nein	Ja	Ja
Zählerstand	SPS Variable	Ja	Ja	Ja	Ja	Ja
sperren über	Gate/Latch -Eingang	Ja	Ja	Ja	Ja	Ja
	/ergleichswerten equency / Period	Nein	Nein	Nein	Nein	Ja
Zählrichtung	detektieren	Ja	Ja	Nein	Nein	Ja
Zählrichtungs	sumkehr detektieren	Ja	Ja	Nein	Nein	Ja
Frequenzmes	quenzmessung		Ja	Ja	Ja	Ja
Periodendau	ermessung	Ja	Ja	Ja	Ja	Ja
	Geschwindigkeits-, Drehzahlberechnung		Ja	Ja	Ja	Ja
Duty Cycle A	uswertung	Ja	Ja	Nein	Nein	Ja
Mikroinkreme	ente	Ja	Ja	Nein	Nein	Ja
Zeitstempelfu	Zeitstempelfunktion		Ja	Nein	Nein	Ja
Einstellbare S	Störimpulsfilter	Ja	Ja	Ja	Ja	Ja
Plausibilitäts	orüfung	Ja	Ja	Ja	Ja	Ja

20 Version: 1.4.0 EL5102

3 Grundlagen Inkremental Encoder

Inkremental-Encoder teilen eine 360° - Drehung der Encoder-Achse in einzelne Schritte (Inkremente) auf und kennzeichnen eine volle Umdrehung durch eine Sondermarke (Nullimpuls). Ein RS422-Encoder überträgt das Signal symmetrisch als differentielles Leitungspaar. TTL- und Open Collector- Encoder nutzen einzelne Signalleitungen (Single-Ended).

Das Modul wertet an Spur A und B die um 90° phasenverschobenen Rechtecksignale eines Inkremental-Encoders aus. Der Nullimpuls wird an Spur C erfasst. Zusätzlich werden bei differentiellem Anschluss auch die invertierten Signale (\overline{A} , \overline{B} , \overline{C}) erfasst.

Diese Signale werden mit Hilfe des Quadraturdecoders und des 32 Bit Zählers in einen Positionswert mit wahlweise vierfach-, zweifach-, oder einfach- Auswertung gewandelt. Die digitalen Eingänge ermöglichen Latch-, Reset- und Set-Funktionalitäten und damit ein exaktes und geschwindigkeitsunabhängiges Referenzieren und Speichern des Zählerstandes.

Encodertyp		Inkrementalsignale	
RS422 Encoder	mit Nullimpuls	A, \overline{A} , B, \overline{B} , C, \overline{C}	
RS422 Encoder	ohne Nullimpuls	А, Ѫ, В, В	
RS422 Zähler oder Impulsgeber	mit Nullimpuls	A, \overline{A} , C, \overline{C} ; Zählrichtungsvorgabe über Spur B (B, \overline{B})	
RS422 Zähler oder Impulsgeber	ohne Nullimpuls	A, \overline{A} ; Zählrichtungsvorgabe über Spur B (B, \overline{B})	
TTL, Open Collector Encoder	mit Nullimpuls	A, B, C	
TTL, Open Collector Encoder	ohne Nullimpuls	A, B	
TTL, Open Collector Zähler oder Impulsgeber	mit Nullimpuls	A, C; Zählrichtungsvorgabe über B	
TTL, Open Collector Zähler oder Impulsgeber	ohne Nullimpuls	A, Zählrichtungsvorgabe über B	

Die Phasenlage zwischen den Signalen an Spur A und Spur B gibt die Zählrichtung vor.

Vorwärts (cw): Signal an Spur A ist 90° voreilend gegenüber Spur B

Rückwärts (ccw): Signal an Spur A ist 90° nacheilend gegenüber Spur B.

Bei einfach - Auswertung werden die steigenden Flanken an Spur A gezählt.

Bei zweifach - Auswertung werden die steigenden und fallenden Flanken an Spur A gezählt.

Bei vierfach - Auswertung werden die steigenden und fallenden Flanken an Spur A und Spur B gezählt.

Cyclical output

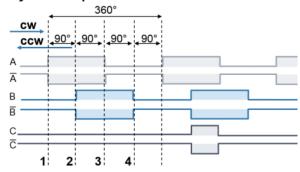


Abb. 5: Inkremental-Signale

Absolutwertencoder liefern direkt nach dem Einschalten einen absoluten und über den kompletten Verfahrweg eindeutigen Positionswert. Bei Inkremental-Encodern muss nach dem Einschalten eine Referenzfahrt (Homing) durchgeführt werden, um eine eindeutige Position ermitteln zu können. Das Referenzieren kann z. B. mit Hilfe von Referenznocken oder über den Nullimpuls des Gebers vorgenommen werden.

HINWEIS

Differenzieller und Single-Ended Anschluss

Das RS422-Signal überträgt eine Differenzspannung, dadurch ist das Signal störunempfindlicher im Vergleich zu einem Single-Ended-Signal.

- Soll das Gebersignal über längere Entfernung oder mit höheren Frequenzen übertragen werden, wird ein Encoder mit RS422-Signalen empfohlen.
- Es sollten geschirmte und paarig verdrillte (Twisted Pair) Leitungen verwendet werden.

4 Technische Eigenschaften

Die Inkremental-Encoder-Interface Klemmen der EL51xx-Serie ermöglichen den Anschluss von Inkremental-Encodern an Buskoppler bzw. die SPS. Neben den Gebereingängen A, B und optional Nullimpuls C stehen bis zu zwei zusätzliche 24 V_{DC} Eingänge (Latch und Gate/Latch) zum Reset, Setzen, Sperren und Speichern des Zählerstandes zur Verfügung. Besitzt der Inkremental-Encoder einen Störmelde-Ausgang, so kann dieser an den Status Input Eingang (5 V_{DC}) angeschlossen werden.

- Folgende Eingänge mit den jeweiligen technischen Eigenschaften stehen zur Verfügung:
 - Geberanschluss:
 Differentielle Signale nach RS422 und Single-Ended-Signale von TTL-Encodern und Open Collector-Encodern werden unterstützt.
 - Latch-Eingang und Gate/Latch-Eingang
 - Status-Input-Eingang
- Die Klemme stellt eine parametrierbare Geberversorgung zur Verfügung.
 - · Geberbetriebsspannung

HINWEIS

Schnelle Digitale Eingänge – Beeinflussung durch störende Geräte

Beachten Sie, dass die Eingangsbeschaltung nur eine sehr geringe Filterung aufweist. Sie ist auf schnelle Signalübertragung vom Eingang zur Auswerteeinheit optimiert. Schnelle Pegeländerungen/Pulse im µs-Bereich und/oder hochfrequente Störsignale von Geräten (z. B. Proportionalventilen, Schrittmotor- oder DC-Motor-Endstufen) treffen also nahezu ungefiltert/ungedämpft an der Auswerteeinheit ein. Diese Störungen können fälschlicherweise als Signal erfasst werden.

- Um Störungen zu unterdrücken, kann ein zusätzlicher Eingangsfilter parametriert werden.
- Weiterhin werden eine EMV-gerechte Verkabelung und der Einsatz von getrennten Netzteilen für die Klemme und die Störungen verursachenden Geräte empfohlen.

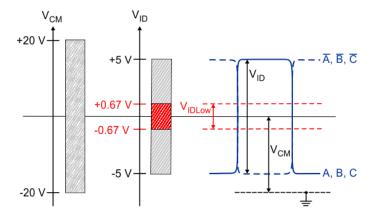
4.1 Unterstützte Encoder / Signaltypen

Als Geberanschluss sind differentielle Signale nach RS422 vorgesehen. Single-Ended-Signale von TTL-Encodern und auch Signale von Open Collector-Encodern sind durch interne Pull Up Widerstände möglich.

Folgende Signaltypen werden unterstützt:

Geber	Signaltyp	Einstellung in Index 0x80n1:1D * "Counter mode"	Grenzfrequenz	Bemerkungen
Encoder mit oder ohne Nullimpulsspur C	RS422 (diff. Input)	0	20 Mio. Inkremente/s bei 4-fach Auswertung,	Es werden Signalpegel nach RS422 erwartet
Zähler/Impulsgeber mit oder ohne Nullimpulsspur C		1	entspricht 5 MHz je Spur	Drahtbruch- u. Kurzschlusserkennung [• 23]
Encoder mit oder ohne Nullimpulsspur C	TTL (single ended)	2	4 Mio. Inkremente/s bei 4-fach Auswertung,	Es wird ein Spannungspegel von nominell 2,0 V bis 6,0 V mit einem
Zähler/Impulsgeber mit oder ohne Nullimpulsspur C		3	entspricht 1 MHz je Spur	Strom von min. 2,1 mA erwartet. Keine Drahtbrucherkennung
Encoder mit oder ohne Nullimpulsspur C	open collector	4	400.000 Inkremente/s bei 4-fach Auswertung, entspricht 100 kHz je Spur	Keine Drahtbrucherkennung
Zähler/Impulsgeber mit oder ohne Nullimpulsspur C		5		
*) abhängig von der Anzahl der Kanäle (n = 0 für Kanal 1 und n = 1 für Kanal 2)				

Die richtige Verdrahtung für den jeweiligen Encoder finden Sie im Kapitel Anschlussbelegung [53].



4.1.1 Signaltyp RS422 (diff. input)

Bei folgenden Einstellungen im "Counter mode" (0x80n1:1D) werden differenzielle Signalpegel nach RS422 erwartet:

- 0: Encoder RS422 (diff. input)
- 1: Counter RS422 (diff. input)

Zulässig ist eine Grenzfrequenz bis max. 20 Mio. Inkremente pro Sekunde, bei 4-fach-Auswertung (entspricht 5 MHz).

V_{CM} Common-Mode Spannungsbereich

V_{ID} Differenzspannung

V_{IDLow} Differenzspannung zu niedrig

A, B, C Signale A, B, C

A, B, C Invertierte Signale A, B, C

RS422 Signalpegel

HINWEIS

Überschreitung Common Mode Bereich

Eine Überschreitung des Common-Mode Spannungsbereichs kann zur Zerstörung des Gerätes führen.

RS422 - Drahtbruch- und Kurzschlusserkennung (Open circuit)

In den RS422 (differentieller Input) Modi ist es möglich einen Drahtbruch und Kurzschluss an den einzelnen Encoder-Eingängen zu erkennen.

- Im Drahtbruchfall, z. B. zwischen dem Eingang A und Eingang A,
 - \circ beträgt die Differenzspannung V_{ID} nahezu 0 V,
 - · dies führt zu einem Fehler mit niedriger Differenzspannung.
- Beim Kurzschlussfall, z. B. zwischen dem Eingang A und Eingang Ā, ähnelt das Fehlerverhalten dem Drahtbruch, dies führt ebenfalls zu einer Fehlererkennung.

Aktivierung und Diagnose eines Drahtbruches oder Kurzschlusses finden Sie im Kapitel RS422 – Drahtbruch- und Kurzschlusserkennung (Open circuit). [▶ 199]

Fehler-Bits bei Drahtbruch an einem Encoder-Eingang nicht dauerhaft gesetzt

Liegt ein Drahtbruch nur an einem Encoder-Eingang (z. B. nur Spur A) vor, kann es in Einzelfällen dazu führen, dass die Differenzspannung (V_{ID}), aufgrund der anliegenden Common-Mode-Spannung (V_{CM}), über dem Grenzbereich (V_{IDLow}) liegt. Dadurch wird der Fehler nicht eindeutig identifiziert.

Die entsprechenden Fehler-Bits ("Open circuit" und "Error A") stehen dadurch nicht dauerhaft an!

HINWEIS

Differenzieller und Single-Ended Anschluss

Das RS422-Signal überträgt eine Differenzspannung, dadurch ist das Signal störunempfindlicher im Vergleich zu einem Single-Ended-Signal.

- Soll das Gebersignal über längere Entfernung oder mit höheren Frequenzen übertragen werden, wird ein Encoder mit RS422-Signalen empfohlen.
- Es sollten geschirmte und paarig verdrillte (Twisted Pair) Leitungen verwendet werden.

4.1.2 Signaltyp TTL (single ended) und Open-Collector

Bei folgenden Einstellungen im "Counter mode" (0x80n1:1D) wird ein Spannungspegel von nominell 2,0 V bis 6,0 V mit einem Strom von min. 2,1 mA erwartet:

- 2: Encoder TTL (single ended)
- 3: Counter TTL (single ended)
- · 4: Encoder open collector
- 5: Counter open collector

Für TTL-Encoder ist eine Grenzfrequenzen bis 4 Mio. Inkremente pro Sekunde, bei 4-fach Auswertung, zulässig. Dies entspricht 1 MHz.

Für Open-Collector-Encoder ist eine Grenzfrequenz bis 400.000 Inkremente pro Sekunde, bei 4-fach Auswertung, zulässig. Dies entspricht 100 kHz.

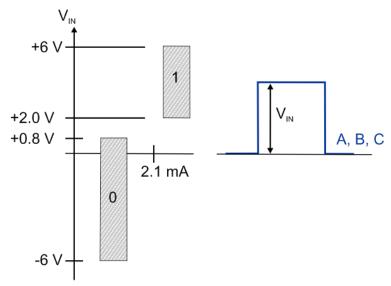


Abb. 6: TTL, Open Collector Signalpegel (Single Ended Signal)

Legende:

V_{IN} Single ended Eingangsspannung

A, B, C Encodersignale A, B, C

HINWEIS

Drahtbrucherkennung (open circuit detection)

Die Drahtbrucherkennung (Open circuit detection) funktioniert prinzipbedingt nicht bei Single-Ended-Leitungen: TTL und Open Collector Encodern sowie Zählern/Impulsgebern.

HINWEIS

Beschaltung Open Collector

Bei der Auswahl eines Open Collector Encoders unter "Counter mode" (0x80n1:1D) werden die Eingänge A, B, C über PullUp Widerstände (1 kOhm) auf 5 V gelegt.

4.2 Eingänge Latch und Gate/Latch

Die Klemme stellt zwei digitale 24 V_{DC} Eingänge zur Verfügung. Die Funktion dieser Eingänge ist dem jeweiligen Kapitel zu entnehmen.

- Eingang Latch [▶ 184] (Latch extern)
- Eingang Gate/Latch [▶ 186] (Latch extern 2)

Beide Eingänge sind Typ 3 Eingänge gemäß EN 61131-2, mit einer mind. Pulsdauer von $t_{\text{ON}} > 1 \mu s$.

Digitaler Eingang Typ 3, gemäß EN 61131-2	Spannung [V]	Eingangsstrom [mA]
Signalspannung "0 - LOW"	-3 V +5 V typ.	0 mA 2,6 mA typ.
Signalspannung "1 - HIGH"	11 V 30 V typ.	2,5 mA typ.

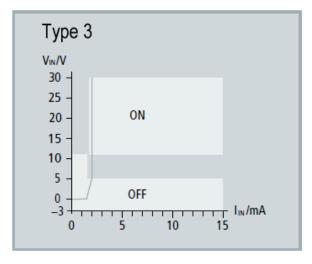


Abb. 7: Kennlinie Eingang 24 V_{DC} Typ 3

HINWEIS

Prellen beachten bei Verwendung von elektromechanischen Schaltern und Tastern

Bei der Verwendung von elektromechanischen Schaltern und Tastern kann bei Betätigung des Schalters bzw. Tasters ein mehrfaches Schließen und Öffnen des Tasters auftreten, das sogenannte Prellen.

- Ist die Funktion 0x80n0:22 "Enable continuous latch extern" oder 0x80n0:23 "Enable continuous latch extern 2" aktiv, dann wird durch das Prellen der gespeicherte Wert mehrfach überschrieben. Dadurch erhält man nicht den zuerst, sondern den zuletzt gespeicherten Wert in Parameter 0x60n0:12 "Latch value" bzw. 0x60n0:22 "Latch value 2".
- Ist die Funktion deaktiviert, so wird nur das erste Öffnen oder Schließen des Schalters bzw. Tasters erkannt und als Wert im entsprechenden Parameter gespeichert. Weitere Vorgänge bleiben unberücksichtigt.

4.3 Eingang "Status-Input"

Die Klemme stellt einen Status-Input-Eingang zur Verfügung. Die Funktion ist dem Kapitel <u>Eingang Status</u> Input [▶ 187] zu entnehmen.

Der Eingang ist 5 V kompatibel.

Digitaler Eingang, 5 V TTL Eingangscharakteristik	Spannung [V]	Eingangsstrom [mA]
Signalspannung "0 - LOW"	-6 V + 0,8 V	5 mA typ.
Signalspannung "1 - HIGH"	+2 V +6 V	0 mA typ.

HINWEIS

Beschaltung "Status Input"-Eingang

In der Klemme ist der "Status Input"-Eingang intern über einen Pull-Up-Widerstand (1 kOhm) auf 5 V gelegt. Der Encoder-Ausgang muss das Signal aktiv gegen GND ziehen. Der Widerstand ist dabei so zu dimensionieren, dass er < 120 Ohm beträgt.

Die externe Speisung wird nicht empfohlen. Wird extern gespeist sind max. 5 V gegen GND zulässig.

4.4 Geberbetriebsspannung (Supply voltage)

Die Geberversorgung wird intern aus den 24 V der Powerkontakte erzeugt. In Index 0x80n1:17 "Supply voltage" kann die Geberversorgung eingestellt werden. Voreingestellt ist eine Betriebsspannung von 5 V_{DC} . Es können Spannungswerte 5 V_{DC} , 12 V_{DC} und 24 V_{DC} ausgewählt werden. Die Einstellungen erfolgen für jeden Kanal separat.

Es gelten folgende Toleranzen

Spannungsbereich	Toleranz
5 V _{DC}	+/- 5 % (4,75 V 5,25 V)
12 V _{DC}	+/- 10 % (10,8 V 13,2 V)
24 V _{DC}	-15 % bis +20 % (20,4 V 28,8 V)

HINWEIS

Geberversorgungsspannung einstellen

- Stellen Sie vor dem Umschalten auf eine höhere Spannung sicher, dass der angeschlossene Encoder den gewählten Spannungsbereich unterstützt!
- Zum Beschreiben von 0x80n1:17 "Supply voltage" müssen Sie in Index <u>0xF008 [▶ 235]</u> "Code word" den Wert 0x72657375 (ASCII: "user") setzen.

5 Grundlagen der Kommunikation

5.1 EtherCAT-Grundlagen

Grundlagen zum Feldbus EtherCAT entnehmen Sie bitte der EtherCAT System-Dokumentation.

5.2 EtherCAT-Verkabelung - Drahtgebunden

Die zulässige Leitungslänge zwischen zwei EtherCAT-Geräten darf maximal 100 Meter betragen. Dies resultiert aus der FastEthernet-Technologie, die vor allem aus Gründen der Signaldämpfung über die Leitungslänge eine maximale Linklänge von 5 m + 90 m + 5 m erlaubt, wenn Leitungen mit entsprechenden Eigenschaften verwendet werden. Siehe dazu auch die <u>Auslegungsempfehlungen zur Infrastruktur für</u> EtherCAT/Ethernet.

Kabel und Steckverbinder

Verwenden Sie zur Verbindung von EtherCAT-Geräten nur Ethernet-Verbindungen (Kabel + Stecker), die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen. EtherCAT nutzt vier Adern des Kabels für die Signalübertragung.

EtherCAT verwendet beispielsweise RJ45-Steckverbinder. Die Kontaktbelegung ist zum Ethernet-Standard (ISO/IEC 8802-3) kompatibel.

Pin	Aderfarbe	Signal	Beschreibung
1	gelb	TD+	Transmission Data +
2	orange	TD-	Transmission Data -
3	weiß	RD+	Receiver Data +
6	blau	RD-	Receiver Data -

Aufgrund der automatischen Kabelerkennung (Auto-Crossing) können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte als auch gekreuzte Leitungen (Cross-Over) verwendet werden.

Empfohlene Kabel

Es wird empfohlen, die entsprechenden Beckhoff-Komponenten zu verwenden, z. B.

- Kabelsätze ZK1090-9191-xxxx bzw.
- feldkonfektionierbare RJ45 Stecker ZS1090-0005 oder
- feldkonfektionierbare Ethernet Leitung ZB9010, ZB9020.

Geeignete Kabel zur Verbindung von EtherCAT-Geräten finden Sie auf der Beckhoff Website!

E-Bus-Versorgung

Ein Buskoppler kann die an ihm angefügten EL-Klemmen mit der E-Bus-Systemspannung von 5 V versorgen, in der Regel ist ein Koppler dabei bis zu 2 A belastbar (siehe Dokumentation des jeweiligen Gerätes).

Zu jeder EL-Klemme ist die Information, wie viel Strom sie aus der E-Bus-Versorgung benötigt, online und im Katalog verfügbar. Benötigen die angefügten Klemmen mehr Strom als der Koppler liefern kann, sind an entsprechender Position im Klemmenstrang Einspeiseklemmen (z. B. <u>EL9410</u>) zu setzen.

Im TwinCAT System Manager wird der berechnete, theoretische maximale E-Bus-Strom angezeigt. Eine Unterschreitung wird durch einen negativen Summenbetrag und Ausrufezeichen markiert, vor einer solchen Stelle ist eine Einspeiseklemme zu setzen.

Abb. 8: System Manager Stromberechnung

HINWEIS

Fehlfunktion möglich!

Die E-Bus-Versorgung aller EtherCAT-Klemmen eines Klemmenblocks muss aus demselben Massepotential erfolgen!

5.3 Allgemeine Hinweise zur Watchdog-Einstellung

Die EtherCAT-Klemmen sind mit einer Sicherungseinrichtung (Watchdog) ausgestattet, die z. B. bei unterbrochenem Prozessdatenverkehr nach einer voreinstellbaren Zeit die Ausgänge (sofern vorhanden) in einen gegebenenfalls vorgebbaren Zustand schaltet, in Abhängigkeit von Gerät und Einstellung z. B. auf FALSE (aus) oder einen Ausgabewert.

Der EtherCAT Slave Controller verfügt dazu über zwei Watchdogs:

- · Sync Manager (SM)-Watchdog (default: 100 ms)
- Process-Data (PDI)-Watchdog (default: 100 ms)

Deren Zeiten werden in TwinCAT wie folgt einzeln parametriert:

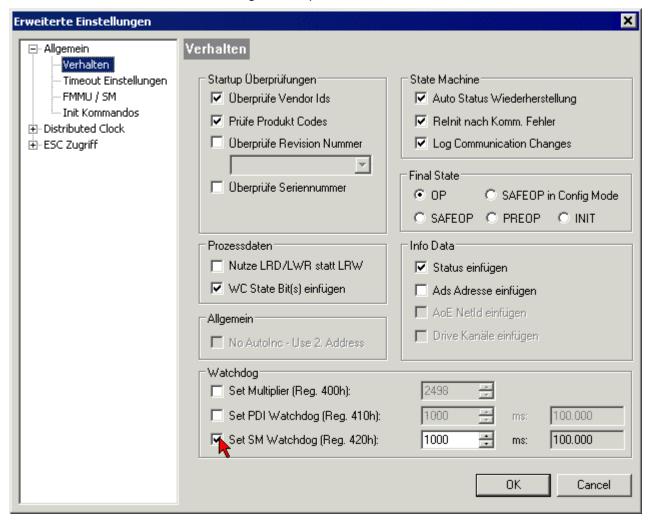


Abb. 9: Karteireiter EtherCAT -> Erweiterte Einstellungen -> Verhalten -> Watchdog

Anmerkungen:

- Das Multiplier-Register 400h (hexadezimal, also 0x0400), ist für beide Watchdogs gültig.
- Jeder Watchdog hat seine eigene Timer-Einstellung 410h bzw. 420h, die zusammen mit dem Multiplier eine resultierende Zeit ergibt.
- Wichtig: die Multiplier-/Timer-Einstellung wird nur dann beim EtherCAT-Start in den Slave geladen, wenn die Checkbox davor aktiviert ist.
 Ist diese nicht aktiviert, wird nichts herunter geladen und die im ESC befindliche Einstellung bleibt unverändert.
- Die heruntergeladenen Werte k\u00f6nnen in den ESC-Registern 400h, 410h und 420h eingesehen werden: ESC Zugriff -> Speicher (ESC Access -> Memory).

SM-Watchdog (SyncManager-Watchdog)

Der SyncManager-Watchdog wird bei jeder erfolgreichen EtherCAT-Prozessdatenkommunikation mit der Klemme zurückgesetzt. Findet z. B. durch eine Leitungsunterbrechung länger als die eingestellte und aktivierte SM-Watchdog-Zeit keine EtherCAT-Prozessdatenkommunikation mit der Klemme statt, löst der Watchdog aus. Der Status der Klemme (in der Regel OP) bleibt davon unberührt. Der Watchdog wird erst wieder durch einen erfolgreichen EtherCAT-Prozessdatenzugriff zurückgesetzt.

Der SyncManager-Watchdog ist also eine Überwachung auf korrekte und rechtzeitige Prozessdatenkommunikation zwischen Master und ESC. die allein auf EtherCAT-Ebene abläuft.

Die maximal mögliche Watchdog-Zeit ist geräteabhängig. Beispielsweise beträgt sie bei "einfachen" EtherCAT-Slaves (ohne Firmware) mit Watchdog-Ausführung im ESC in der Regel bis zu 170 Sekunden. Bei komplexen EtherCAT-Slaves (mit Firmware) wird die SM-Watchdog-Funktion in der Regel zwar über Register 400h/420h parametriert, aber vom Microcontroller (μC) ausgeführt und kann deutlich darunter liegen. Außerdem kann die Ausführung dann einer gewissen Zeitunsicherheit unterliegen. Da der TwinCAT-Dialog ggf. Eingaben bis 65535 zulässt, wird ein Test der gewünschten Watchdog-Zeit empfohlen.

PDI-Watchdog (Process Data Watchdog)

Findet länger als die eingestellte und aktivierte PDI-Watchdog-Zeit keine PDI (Process Data Interface)-Kommunikation mit dem ESC statt, löst dieser Watchdog aus.

PDI ist die interne Schnittstelle des ESC z. B. zu lokalen Prozessoren im EtherCAT-Slave. Mit dem PDI-Watchdog kann diese Kommunikation auf Ausfall überwacht werden.

Der PDI-Watchdog ist also eine Überwachung auf korrekte und rechtzeitige Prozessdatenkommunikation mit dem ESC, nun aber von der Applikationsseite aus betrachtet.

Berechnung

Watchdog-Zeit = [1/25 MHz * (Watchdog-Multiplier + 2)] * SM/PDI Watchdog

Beispiel: Default-Einstellung Multiplier'= 2498, SM-Watchdog = 1000 => 100 ms

Der Wert in "Watchdog-Multiplier + 2" in der oberen Formel entspricht der Anzahl 40ns-Basisticks, die einen Watchdog-Tick darstellen.

⚠ VORSICHT

Ungewolltes Verhalten des Systems möglich!

Die Abschaltung des SM-Watchdog durch SM-Watchdog = 0 funktioniert erst in Klemmen ab Revision -0016. In vorherigen Versionen wird vom Einsatz dieser Betriebsart abgeraten.

⚠ VORSICHT

Beschädigung von Geräten und ungewolltes Verhalten des Systems möglich!

Bei aktiviertem SM-Watchdog und eingetragenem Wert 0 schaltet der Watchdog vollständig ab! Dies ist die Deaktivierung des Watchdogs! Gesetzte Ausgänge werden dann bei einer Kommunikationsunterbrechung NICHT in den sicheren Zustand gesetzt!

5.4 EtherCAT State Machine

Über die EtherCAT State Machine (ESM) wird der Zustand des EtherCAT-Slaves gesteuert. Je nach Zustand sind unterschiedliche Funktionen im EtherCAT-Slave zugänglich bzw. ausführbar. Insbesondere während des Hochlaufs des Slaves müssen in jedem State spezifische Kommandos vom EtherCAT-Master zum Gerät gesendet werden.

Es werden folgende Zustände unterschieden:

- Init
- Pre-Operational
- · Safe-Operational
- · Operational

Bootstrap

Regulärer Zustand eines jeden EtherCAT-Slaves nach dem Hochlauf ist der Status Operational (OP).

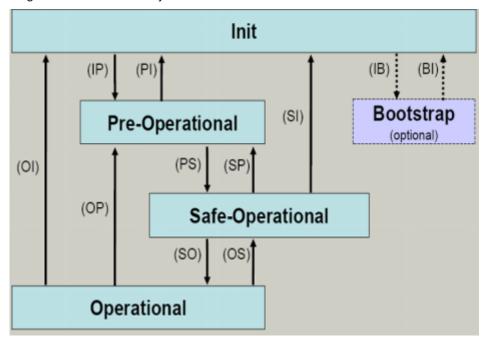


Abb. 10: Zustände der EtherCAT State Machine

Init

Nach dem Einschalten befindet sich der EtherCAT-Slave im Zustand *Init*. Dort ist weder Mailbox- noch Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle 0 und 1 für die Mailbox-Kommunikation.

Pre-Operational (Pre-Op)

Beim Übergang von Init nach Pre-Op prüft der EtherCAT-Slave, ob die Mailbox korrekt initialisiert wurde.

Im Zustand *Pre-Op* ist Mailbox-Kommunikation aber keine Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle für Prozessdaten (ab Sync-Manager-Kanal 2), die Kanäle der Fieldbus Memory Management Unit (FMMU) und, falls der Slave ein konfigurierbares Mapping unterstützt, das Mapping der Prozessdatenobjekte (PDOs) oder das Sync-Manager-PDO-Assignement. Weiterhin werden in diesem Zustand die Einstellungen für die Prozessdatenübertragung sowie ggf. noch klemmenspezifische Parameter übertragen, die von den Default-Einstellungen abweichen.

Safe-Operational (Safe-Op)

Beim Übergang von *Pre-Op* nach *Safe-Op* prüft der EtherCAT-Slave, ob die Sync-Manager-Kanäle für die Prozessdatenkommunikation sowie ggf. die Einstellungen für die Distributed Clocks korrekt sind. Bevor er den Zustandswechsel quittiert, kopiert der EtherCAT-Slave aktuelle Inputdaten in die entsprechenden Dual Port (DP)-RAM-Bereiche des ESC.

Im Zustand *Safe-Op* ist Mailbox- und Prozessdatenkommunikation möglich, allerdings hält der Slave seine Ausgänge im sicheren Zustand und gibt sie noch nicht aus. Die Inputdaten werden aber bereits zyklisch aktualisiert.

Ausgänge im SAFEOP

Die standardmäßig aktivierte Überwachung mittels Watchdog bringt die Ausgänge im ESC-Modul in Abhängigkeit von den Einstellungen im SAFEOP und OP in einen sicheren Zustand - je nach Gerät und Einstellung - z. B. auf AUS. Wird dies durch Deaktivieren der Überwachung unterbunden, können auch im Geräte-Zustand SAFEOP Ausgänge geschaltet werden bzw. gesetzt bleiben.

Operational (Op)

Bevor der EtherCAT-Master den EtherCAT-Slave von *Safe-Op* nach *Op* schaltet, muss er bereits gültige Outputdaten übertragen.

Im Zustand *Op* kopiert der Slave die Ausgangsdaten des Masters auf seine Ausgänge. Es ist Prozessdatenund Mailboxkommunikation möglich.

Boot

Im Zustand *Boot* kann ein Update der Slave-Firmware vorgenommen werden. Der Zustand *Boot* ist nur über den Zustand *Init* zu erreichen.

Im Zustand *Boot* ist Mailbox-Kommunikation über das Protokoll File-Access over EtherCAT (FoE) möglich, aber keine andere Mailbox- und Prozessdatenkommunikation.

5.5 CoE-Interface

Allgemeine Beschreibung

Das CoE-Interface (CAN application protocol over EtherCAT Interface) ist die Parameterverwaltung für EtherCAT-Geräte. EtherCAT-Slaves oder auch der EtherCAT-Master verwalten darin feste (ReadOnly) oder veränderliche Parameter, die sie zum Betrieb, Diagnose oder Inbetriebnahme benötigen.

CoE-Parameter sind in einer Tabellen-Hierarchie angeordnet und prinzipiell dem Anwender über den Feldbus zugänglich. Der EtherCAT-Master (TwinCAT System Manager) kann über EtherCAT auf die lokalen CoE-Verzeichnisse der Slaves zugreifen und je nach Eigenschaften lesend oder schreibend einwirken.

Es sind verschiedene Typen für CoE-Datentypen möglich wie String (Text), Integer-Zahlen, Bool'sche Werte oder größere Byte-Felder. Damit lassen sich ganz verschiedene Eigenschaften beschreiben. Beispiele für solche Parameter sind Herstellerkennung, Seriennummer, Prozessdateneinstellungen, Gerätename, Abgleichwerte für analoge Messungen oder Passwörter.

Die Ordnung erfolgt in zwei Ebenen über hexadezimale Nummerierung: Zuerst wird der (Haupt)Index genannt, dann der Subindex.

Die Wertebereiche sind:

- Index: 0x0000...0xFFFF (0...65535_{dez})
- Subindex: 0x00...0xFF (0...255_{dez})

Üblicherweise wird ein so lokalisierter Parameter geschrieben als 0x8010:07 mit voranstehendem "0x" als Kennzeichen des hexadezimalen Zahlenraumes und Doppelpunkt zwischen Index und Subindex.

Die für den EtherCAT-Feldbusanwender wichtigen Bereiche sind

- 0x1000: Hier sind feste Identitätsinformationen zum Gerät hinterlegt wie Name, Hersteller, Seriennummer etc. Außerdem liegen hier Angaben über die aktuellen und verfügbaren Prozessdatenkonstellationen.
- 0x8000: Hier sind die für den Betrieb erforderlichen funktionsrelevanten Parameter für alle Kanäle zugänglich wie Filtereinstellung oder Ausgabefrequenz.

Weitere wichtige Bereiche sind:

- 0x4000: Hier befinden sich bei manchen EtherCAT-Geräten die Kanalparameter. Historisch war dies der erste Parameterbereich, bevor der 0x8000 Bereich eingeführt wurde. EtherCAT-Geräte, die früher mit Parametern in 0x4000 ausgerüstet wurden und auf 0x8000 umgestellt wurden, unterstützen aus Kompatibilitätsgründen beide Bereiche und spiegeln intern.
- 0x6000: Hier liegen die Eingangs-PDO ("Eingänge" aus Sicht des EtherCAT-Masters)
- 0x7000: Hier liegen die Ausgangs-PDO ("Ausgänge" aus Sicht des EtherCAT-Masters)

Verfügbarkeit

Nicht jedes EtherCAT-Gerät muss über ein CoE-Verzeichnis verfügen. Einfache I/O-Module ohne eigenen Prozessor verfügen in der Regel über keine veränderlichen Parameter und haben deshalb auch kein CoE-Verzeichnis.

Wenn ein Gerät über ein CoE-Verzeichnis verfügt, stellt sich dies im TwinCAT System Manager als ein eigener Karteireiter mit der Auflistung der Elemente dar:

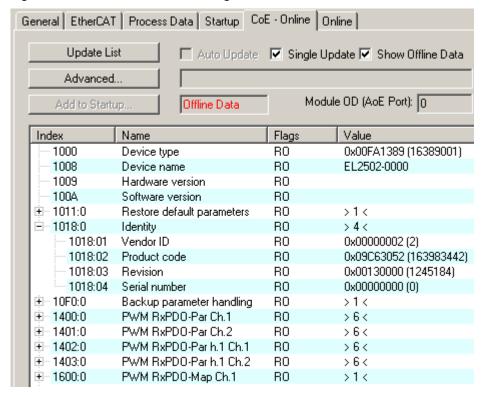


Abb. 11: Karteireiter "CoE-Online"

In der Abbildung "Karteireiter 'CoE-Online" sind die im Gerät "EL2502" verfügbaren CoE-Objekte von 0x1000 bis 0x1600 zu sehen, die Subindizes von 0x1018 sind aufgeklappt.

HINWEIS

Veränderungen im CoE-Verzeichnis (CAN over EtherCAT-Verzeichnis), Programmzugriff

Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise im Kapitel "CoE-Interface" der EtherCAT-System-Dokumentation:

- Startup-Liste führen für den Austauschfall,
- Unterscheidung zwischen Online/Offline Dictionary,
- Vorhandensein aktueller XML-Beschreibung (Download von der Beckhoff Website),
- "CoE-Reload" zum Zurücksetzen der Veränderungen
- Programmzugriff im Betrieb über die PLC (s. <u>TwinCAT 3 | PLC-Bibliothek: "Tc2 EtherCAT"</u> und Beispielprogramm R/W CoE)

Datenerhaltung und Funktion "NoCoeStorage"

Einige, insbesondere die vorgesehenen Einstellungsparameter des Slaves, sind veränderlich und beschreibbar,

über den System Manager (siehe Abb. "Karteireiter "CoE-Online") durch Anklicken.
 Dies bietet sich bei der Inbetriebnahme der Anlage bzw. Slaves an. Klicken Sie auf die entsprechende Zeile des zu parametrierenden Indizes und geben Sie einen entsprechenden Wert im "SetValue"-Dialog ein.

• aus der Steuerung bzw. PLC über ADS z. B. durch die Bausteine aus der TcEtherCAT.lib Bibliothek. Dies wird für Änderungen während der Anlagenlaufzeit empfohlen oder wenn kein System Manager bzw. Bedienpersonal zur Verfügung steht.

Datenerhaltung

Werden online auf dem Slave CoE-Parameter geändert, wird dies in Beckhoff-Geräten üblicherweise ausfallsicher im Gerät (EEPROM) gespeichert. D. h. nach einem Neustart (Re Power) sind die veränderten CoE-Parameter immer noch erhalten. Andere Hersteller können dies anders handhaben.

Ein EEPROM unterliegt in Bezug auf Schreibvorgänge einer begrenzten Lebensdauer. Ab typischerweise 100.000 Schreibvorgängen kann eventuell nicht mehr sichergestellt werden, dass neue (veränderte) Daten sicher gespeichert werden oder noch auslesbar sind. Dies ist für die normale Inbetriebnahme ohne Belang. Werden allerdings zur Maschinenlaufzeit fortlaufend CoE-Parameter über ADS verändert, kann die Lebensdauergrenze des EEPROMs durchaus erreicht werden.

Es ist von der FW-Version abhängig, ob die Funktion NoCoeStorage unterstützt wird, die das Abspeichern veränderter CoE-Werte unterdrückt.

Ob das auf das jeweilige Gerät zutrifft, ist den technischen Daten der entsprechenden Dokumentation zu entnehmen.

- Wird diese unterstützt: Die Funktion ist per einmaligem Eintrag des Codeworts 0x12345678 im CoE-Index 0xF008 zu aktivieren. Die Funktion ist solange aktiv, wie das Codewort unverändert bleibt. Nach dem Einschalten des Gerätes ist sie nicht aktiv.
 Veränderte CoE-Werte werden dann nicht im EEPROM abgespeichert, sie können somit beliebig oft verändert werden.
- Wird diese nicht unterstützt: Eine fortlaufende Änderung von CoE-Werten ist angesichts der o.a.
 Lebensdauergrenze nicht zulässig.

Startup-Liste

Veränderungen im lokalen CoE-Verzeichnis der Klemme gehen im Austauschfall mit der alten Klemme verloren. Wird im Austauschfall eine neue Klemme mit Beckhoff Werkseinstellungen eingesetzt, bringt diese die Standardeinstellungen mit. Es ist deshalb empfehlenswert, alle Veränderungen im CoE-Verzeichnis eines EtherCAT-Slaves in der Startup-Liste des Slaves zu verankern, die bei jedem Start des EtherCAT-Feldbus abgearbeitet wird. So wird auch im Austauschfall ein neuer EtherCAT-Slave automatisch mit den Vorgaben des Anwenders parametriert.

Wenn EtherCAT-Slaves verwendet werden, die lokal CoE-Werte nicht dauerhaft speichern können, ist zwingend die Startup-Liste zu verwenden.

Empfohlenes Vorgehen bei manueller Veränderung von CoE-Parametern

- Gewünschte Änderung im System Manager vornehmen (Werte werden lokal im EtherCAT-Slave gespeichert).
- Wenn der Wert dauerhaft Anwendung finden soll, einen entsprechenden Eintrag in der Startup-Liste vornehmen. Die Reihenfolge der Startup-Einträge ist dabei i.d.R. nicht relevant.

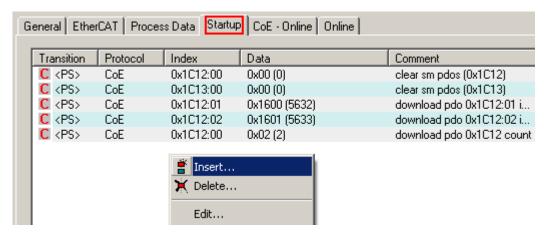


Abb. 12: Startup-Liste im TwinCAT System Manager

In der Startup-Liste können bereits Werte enthalten sein, die vom System Manager nach den Angaben der ESI dort angelegt werden. Zusätzliche anwendungsspezifische Einträge können ebenfalls angelegt werden.

Online- / Offline Verzeichnis

Im Rahmen der Arbeit mit dem TwinCAT System Manager ist zu differenzieren, ob das EtherCAT-Gerät gegenwärtig "verfügbar" ist, also angeschaltet und über EtherCAT verbunden – somit **online** – oder ob eine Konfiguration **offline** erstellt wird, ohne dass Slaves angeschlossen sind.

In beiden Fällen ist ein CoE-Verzeichnis nach Abb. "Karteireiter "CoE-Online" zu sehen, die Konnektivität wird allerdings als offline oder online angezeigt.

- · Wenn der Slave offline ist,
 - wird das Offline-Verzeichnis aus der ESI-Datei angezeigt; Änderungen sind hier nicht sinnvoll bzw.
 möglich.
 - · wird in der Identität der konfigurierte Stand angezeigt.
 - wird kein Firmware- oder Hardware-Stand angezeigt, da dies Eigenschaften des realen Gerätes sind.
 - ist ein rotes Offline Data zu sehen.

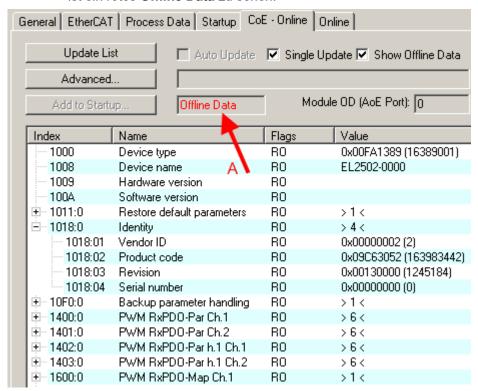


Abb. 13: Offline-Verzeichnis

- · Wenn der Slave online ist.
 - wird das reale, aktuelle Verzeichnis des Slaves ausgelesen; dies kann je nach Größe und Zykluszeit einige Sekunden dauern.
 - · wird die tatsächliche Identität angezeigt.
 - wird der Firmware- und Hardware-Stand des Gerätes im CoE angezeigt.
 - ist ein grünes Online Data zu sehen.

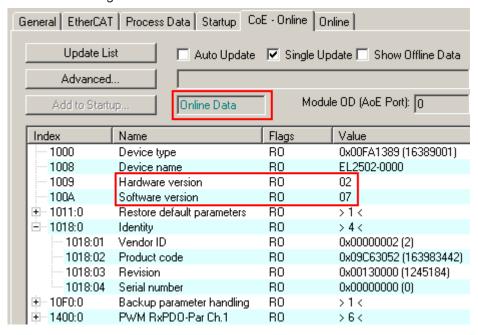


Abb. 14: Online-Verzeichnis

Kanalweise Ordnung

Das CoE-Verzeichnis ist in EtherCAT-Geräten angesiedelt, die meist mehrere funktional gleichwertige Kanäle umfassen; z. B. hat eine vierkanalige Analogeingangsklemme auch vier logische Kanäle und damit vier gleiche Sätze an Parameterdaten für die Kanäle. Um in den Dokumentationen nicht jeden Kanal auflisten zu müssen, wird gerne der Platzhalter "n" für die einzelnen Kanalnummern verwendet.

Im CoE-System sind für die Menge aller Parameter eines Kanals eigentlich immer 16 Indizes mit jeweils 255 Subindizes ausreichend. Deshalb ist die kanalweise Ordnung in 16_{dez} bzw. 10_{hex} -Schritten eingerichtet. Am Beispiel des Parameterbereichs 0x8000 sieht man dies deutlich:

- Kanal 0: Parameterbereich 0x8000:00 ... 0x800F:255
- Kanal 1: Parameterbereich 0x8010:00 ... 0x801F:255
- Kanal 2: Parameterbereich 0x8020:00 ... 0x802F:255
- ...

Allgemein wird dies geschrieben als 0x80n0.

Ausführliche Hinweise zum CoE-Interface finden Sie in der <u>EtherCAT-Systemdokumentation</u> auf der Beckhoff Website.

5.6 Distributed Clock

Die Distributed Clock stellt eine lokale Uhr im EtherCAT Slave Controller (ESC) dar mit den Eigenschaften:

- Einheit 1 ns
- Nullpunkt 1.1.2000 00:00
- Umfang 64 Bit (ausreichend für die nächsten 584 Jahre); manche EtherCAT-Slaves unterstützen jedoch nur einen Umfang von 32 Bit, d. h. nach ca. 4,2 Sekunden läuft die Variable über
- Diese lokale Uhr wird vom EtherCAT Master automatisch mit der Master Clock im EtherCAT-Bus mit einer Genauigkeit < 100 ns synchronisiert.

Detaillierte Informationen entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.

6 Montage und Verdrahtung

6.1 Hinweise zum ESD-Schutz

HINWEIS

Zerstörung der Geräte durch elektrostatische Aufladung möglich!

Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

- Beim Umgang mit den Bauteilen ist auf elektrostatische Entladung zu achten; außerdem ist das direkte Berühren der Federkontakte (siehe Abbildung) zu vermeiden.
- Der Kontakt mit hoch isolierenden Stoffen (Kunstfasern, Kunststofffolien etc.) sollte beim gleichzeitigen Umgang mit Komponenten vermieden werden.
- Beim Umgang mit den Komponenten ist auf eine sachgemäße Erdung der Umgebung (Arbeitsplatz, Verpackung und Personen) zu achten.
- Jede Busstation muss auf der rechten Seite mit der Endkappe <u>EL9011</u> oder <u>EL9012</u> abgeschlossen werden, um die Schutzart und den ESD-Schutz zu gewährleisten.

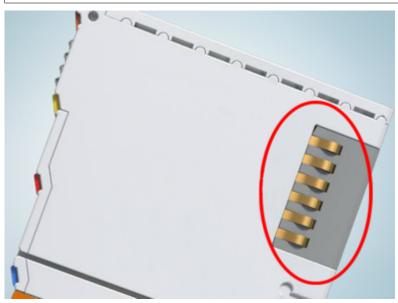


Abb. 15: Federkontakte der Beckhoff I/O-Komponenten

6.2 Tragschienenmontage

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Das Busklemmen-System ist für die Montage in einem Schaltschrank oder Klemmkasten vorgesehen.

Montage

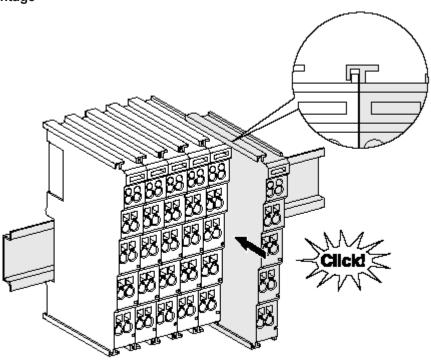


Abb. 16: Montage auf Tragschiene

Die Buskoppler und Busklemmen werden durch leichten Druck auf handelsübliche 35 mm-Tragschienen (Hutschienen nach EN 60715) aufgerastet:

- 1. Stecken Sie zuerst den Feldbuskoppler auf die Tragschiene.
- 2. Auf der rechten Seite des Feldbuskopplers werden nun die Busklemmen angereiht. Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet. Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben, ohne dass Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.

Tragschienenbefestigung

ĺ

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

HINWEIS

Tragschiene erden!

Stellen Sie sicher, dass die Tragschiene ausreichend geerdet ist.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des E-Bus/K-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmenstellen am Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (EL91xx, EL92xx bzw. KL91xx, KL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

Powerkontakt ≟

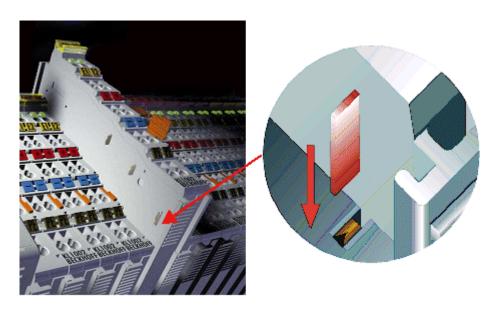


Abb. 17: Linksseitiger Powerkontakt

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag!

HINWEIS

Beschädigung des Gerätes möglich

Beachten Sie, dass aus EMV-Gründen die Erdungskontakte kapazitiv mit der Tragschiene verbunden sind. Das kann bei der Isolationsprüfung zu falschen Ergebnissen und auch zur Beschädigung der Klemme führen (z. B. Durchschlag zur Erdleitung bei der Isolationsprüfung eines Verbrauchers mit 230 V Nennspannung). Klemmen Sie zur Isolationsprüfung die Erdungszuleitung am Buskoppler bzw. der Einspeiseklemme ab! Um weitere Einspeisestellen für die Prüfung zu entkoppeln, können Sie diese Einspeiseklemmen entriegeln und mindestens 10 mm aus dem Verbund der übrigen Klemmen herausziehen.

Demontage

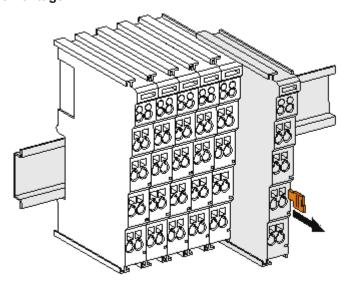


Abb. 18: Demontage von Tragschiene

Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:

- 1. Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
- 2. Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen Sie sie aus dem Busklemmenblock heraus.

6.3 UL-Hinweise

⚠ VORSICHT

Application

The modules are intended for use with Beckhoff's UL Listed EtherCAT System only.

⚠ VORSICHT

Examination

For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire and electrical shock (in accordance with UL508 and CSA C22.2 No. 142).

⚠ VORSICHT

For devices with Ethernet connectors

Not for connection to telecommunication circuits.

Grundlagen

UL-Zertifikation nach UL508. Solcherart zertifizierte Geräte sind gekennzeichnet durch das Zeichen:

6.4 Montagevorschriften für erhöhte mechanische Belastbarkeit

MARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Zusätzliche Prüfungen

Die Klemmen sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung
Vibration	10 Frequenzdurchläufe, in 3-Achsen
	6 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
Schocken	1000 Schocks je Richtung, in 3-Achsen
	25 g, 6 ms

Zusätzliche Montagevorschriften und Hinweise

Für die Klemmen mit erhöhter mechanischer Belastbarkeit gelten folgende zusätzliche Montagevorschriften und Hinweise:

- Die erhöhte mechanische Belastbarkeit gilt für alle zulässigen Einbaulagen.
- Es ist eine Tragschiene nach EN 60715 TH35-15 zu verwenden.
- Der Klemmenstrang ist auf beiden Seiten der Tragschiene durch eine mechanische Befestigung, z.B. mittels einer Erdungsklemme oder verstärkten Endklammer, zu fixieren.
- Die maximale Gesamtausdehnung des Klemmenstrangs (ohne Koppler) beträgt:
 64 Klemmen mit 12 mm, oder 32 Klemmen mit 24 mm Einbaubreite.
- Bei der Abkantung und Befestigung der Tragschiene ist darauf zu achten, dass keine Verformung und Verdrehung dieser Tragschiene auftritt; weiterhin ist kein Quetschen und Verbiegen der Tragschiene zulässig.
- Die Befestigungspunkte der Tragschiene sind in einem Abstand vom 5 cm zu setzen.
- Zur Befestigung der Tragschiene sind Senkkopfschrauben zu verwenden.
- Die freie Leiterlänge zwischen Zugentlastung und Leiteranschluss ist möglichst kurz zu halten; der Abstand zum Kabelkanal ist mit ca.10 cm zu einhalten.

6.5 Anschluss

6.5.1 Anschlusstechnik

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Übersicht

Mit verschiedenen Anschlussoptionen bietet das Busklemmensystem eine optimale Anpassung an die Anwendung:

• Die Klemmen der Serien ELxxxx und KLxxxx mit Standardverdrahtung enthalten Elektronik und Anschlussebene in einem Gehäuse.

- Die Klemmen der Serien ESxxxx und KSxxxx haben eine steckbare Anschlussebene und ermöglichen somit beim Austausch die stehende Verdrahtung.
- Die High-Density-Klemmen (HD-Klemmen) enthalten Elektronik und Anschlussebene in einem Gehäuse und haben eine erhöhte Packungsdichte.

Standardverdrahtung (ELxxxx / KLxxxx)

Abb. 19: Standardverdrahtung

Die Klemmen der Serien ELxxxx und KLxxxx integrieren die schraublose Federkrafttechnik zur schnellen und einfachen Verdrahtung.

Steckbare Verdrahtung (ESxxxx / KSxxxx)

Abb. 20: Steckbare Verdrahtung

Die Klemmen der Serien ESxxxx und KSxxxx enthalten eine steckbare Anschlussebene.

Montage und Verdrahtung werden wie bei den Serien ELxxxx und KLxxxx durchgeführt.

Im Servicefall erlaubt die steckbare Anschlussebene, die gesamte Verdrahtung als einen Stecker von der Gehäuseoberseite abzuziehen.

Das Unterteil kann über das Betätigen der Entriegelungslasche aus dem Klemmenblock herausgezogen werden.

Die auszutauschende Komponente wird hineingeschoben und der Stecker mit der stehenden Verdrahtung wieder aufgesteckt. Dadurch verringert sich die Montagezeit und ein Verwechseln der Anschlussdrähte ist ausgeschlossen.

Die gewohnten Maße der Klemme ändern sich durch den Stecker nur geringfügig. Der Stecker trägt ungefähr 3 mm auf; dabei bleibt die maximale Höhe der Klemme unverändert.

Eine Lasche für die Zugentlastung des Kabels stellt in vielen Anwendungen eine deutliche Vereinfachung der Montage dar und verhindert ein Verheddern der einzelnen Anschlussdrähte bei gezogenem Stecker.

Leiterquerschnitte von 0,08 mm² bis 2,5 mm² können weiter in der bewährten Federkrafttechnik verwendet werden.

Übersicht und Systematik in den Produktbezeichnungen der Serien ESxxxx und KSxxxx werden wie von den Serien ELxxxx und KLxxxx bekannt weitergeführt.

High-Density-Klemmen (HD-Klemmen)

Abb. 21: High-Density-Klemmen

Die Klemmen dieser Baureihe mit 16/32 Klemmstellen zeichnen sich durch eine besonders kompakte Bauform aus, da die Packungsdichte auf 12 mm doppelt so hoch ist wie die der Standard-Busklemmen. Massive und mit einer Aderendhülse versehene Leiter können ohne Werkzeug direkt in die Federklemmstelle gesteckt werden.

Verdrahtung HD-Klemmen

Die High-Density-Klemmen der Serien ELx8xx und KLx8xx unterstützen keine steckbare Verdrahtung.

Ultraschallverdichtete Litzen

Ultraschallverdichtete Litzen

An die Standard- und High-Density-Klemmen können auch ultraschallverdichtete (ultraschallverschweißte) Litzen angeschlossen werden. Beachten Sie die Tabellen zum Leitungsquerschnitt [• 49]!

6.5.2 Verdrahtung

MARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Klemmen für Standardverdrahtung ELxxxx/KLxxxx und für steckbare Verdrahtung ESxxxx/KSxxxx

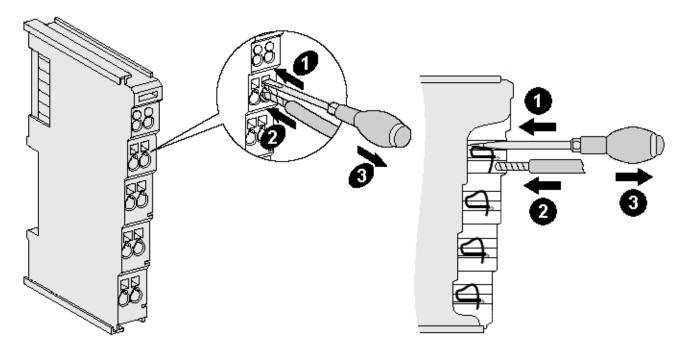


Abb. 22: Anschluss einer Leitung an eine Klemmstelle

Bis zu acht Klemmstellen ermöglichen den Anschluss von massiven oder feindrähtigen Leitungen an die Busklemme. Die Klemmstellen sind in Federkrafttechnik ausgeführt. Schließen Sie die Leitungen folgendermaßen an (vgl. Abb. "Anschluss einer Leitung an eine Klemmstelle":

- 1. Öffnen Sie eine Klemmstelle, indem Sie einen Schraubendreher gerade bis zum Anschlag in die viereckige Öffnung über der Klemmstelle drücken. Den Schraubendreher dabei nicht drehen oder hin und her bewegen (nicht hebeln).
- 2. Der Draht kann nun ohne Widerstand in die runde Klemmenöffnung eingeführt werden.
- 3. Durch Entfernen des Schraubendrehes schließt sich die Klemmstelle automatisch und hält den Draht sicher und dauerhaft fest.

Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle:

Klemmengehäuse	ELxxxx, KLxxxx	ESxxxx, KSxxxx
Leitungsquerschnitt (massiv)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 1,5 mm ²	0,14 1,5 mm ²
Abisolierlänge	8 9 mm	9 10 mm

High-Density-Klemmen (HD-Klemmen [▶ 47]) mit 16/32 Klemmstellen

Bei den HD-Klemmen erfolgt der Leiteranschluss bei massiven Leitern werkzeuglos in Direktstecktechnik, das heißt, der Leiter wird nach dem Abisolieren einfach in die Klemmstelle gesteckt. Das Lösen der Leitung erfolgt, wie bei den Standardklemmen, über die Kontakt-Entriegelung mit Hilfe eines Schraubendrehers. Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle:

Klemmengehäuse	HD-Gehäuse
Leitungsquerschnitt (massiv)	0,08 1,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,25 1,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 0,75 mm ²
Leitungsquerschnitt (ultraschallverdichtete Litze)	nur 1,5 mm² (siehe <u>Hinweis</u> [> 47])
Abisolierlänge	8 9 mm

6.5.3 Schirmung

Schirmung

Encoder, analoge Sensoren und Aktoren sollten immer mit geschirmten, paarig verdrillten Leitungen angeschlossen werden.

6.6 Hinweis zur Spannungsversorgung

MARNUNG

Spannungsversorgung aus SELV- / PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV- / PELV-Stromkreise (Sicherheitskleinspannung, "safety extra-low voltage" / Schutzkleinspannung, "protective extra-low voltage") nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

6.7 Einbaulagen

HINWEIS

Einschränkung von Einbaulage und Betriebstemperaturbereich

Entnehmen Sie den technischen Daten zu einer Klemme, ob sie Einschränkungen bei Einbaulage und/oder Betriebstemperaturbereich unterliegt. Sorgen Sie bei der Montage von Klemmen mit erhöhter thermischer Verlustleistung dafür, dass im Betrieb oberhalb und unterhalb der Klemmen ausreichend Abstand zu anderen Komponenten eingehalten wird, so dass die Klemmen ausreichend belüftet werden!

Optimale Einbaulage (Standard)

Für die optimale Einbaulage wird die Tragschiene waagerecht montiert und die Anschlussflächen der EL-/KL-Klemmen weisen nach vorne (siehe Abb. "Empfohlene Abstände bei Standard-Einbaulage"). Die Klemmen werden dabei von unten nach oben durchlüftet, was eine optimale Kühlung der Elektronik durch Konvektionslüftung ermöglicht. Bezugsrichtung "unten" ist hier die Richtung der Erdbeschleunigung.

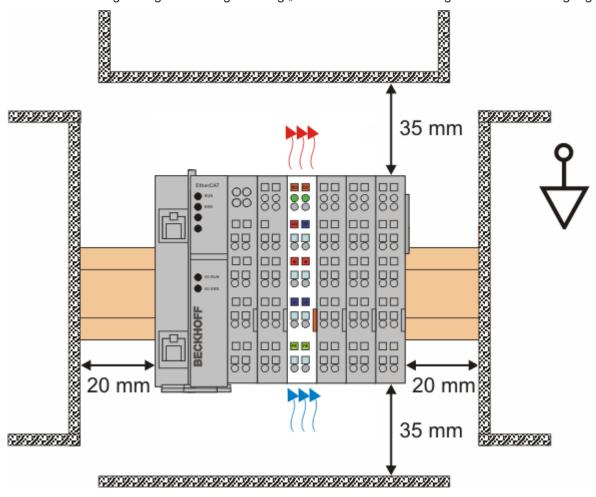


Abb. 23: Empfohlene Abstände bei Standard-Einbaulage

Die Einhaltung der Abstände nach Abb. "Empfohlene Abstände bei Standard-Einbaulage" wird empfohlen.

Weitere Einbaulagen

Alle anderen Einbaulagen zeichnen sich durch davon abweichende, räumliche Lage der Tragschiene aus, siehe Abb. "Weitere Einbaulagen".

Auch in diesen Einbaulagen empfiehlt sich die Anwendung der oben angegebenen Mindestabstände zur Umgebung.

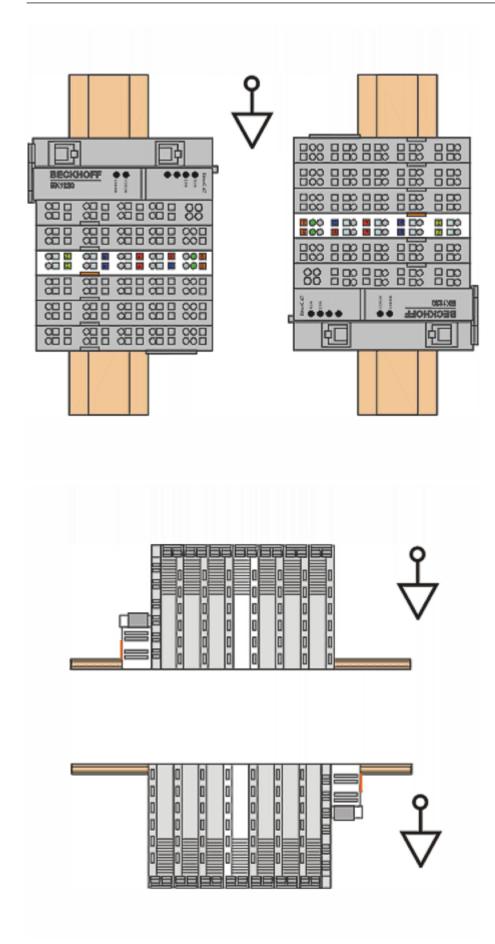


Abb. 24: Weitere Einbaulagen

6.8 Positionierung von passiven Klemmen

Hinweis zur Positionierung von passiven Klemmen im Busklemmenblock

EtherCAT-Klemmen (ELxxxx / ESxxxx), die nicht aktiv am Datenaustausch innerhalb des Busklemmenblocks teilnehmen, werden als passive Klemmen bezeichnet. Diese Klemmen sind an der nicht vorhandenen Stromaufnahme aus dem E-Bus zu erkennen. Um einen optimalen Datenaustausch zu gewährleisten, dürfen nicht mehr als zwei passive Klemmen direkt aneinander gereiht werden!

Beispiele für die Positionierung von passiven Klemmen (hell eingefärbt)

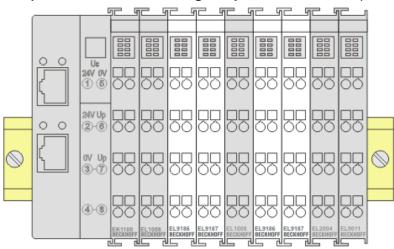


Abb. 25: Korrekte Positionierung

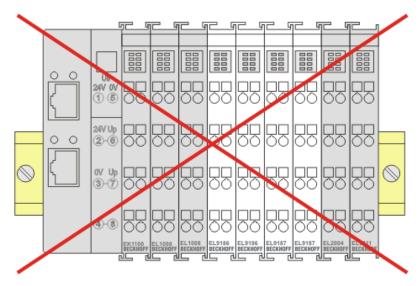


Abb. 26: Inkorrekte Positionierung

6.9 EL5102 - Anschlussbelegung

Abb. 27: EL5102 - Anschlussbelegung

Anschlussbelegung linke Seite (Encoder 1)				
Klemmstelle	Nr.	Kommentar		
A1	1	Encoder-Eingang A1		
B1	2	Encoder-Eingang B1		
C1	3	Encoder-Eingang C1		
Status Input 1	4	Status-Eingang 1 Der Status Input-Eingang ist intern über einen PullUp-Widerstand auf 5 V gelegt. Der Encoder-Störmelde-Ausgang muss das Signal aktiv gegen GND ziehen. Die externe Speisung wird nicht empfohlen. Wird extern gespeist sind max. 5 V gegen GND zulässig.		
+Ue1	5	Encoder-Versorgung (5 V default, parametrierbar 12 V, 24 V)		
-Uo1	6	0 V Encoder-Versorgung		
Latch 1	7	Eingang Latch extern		
n.c.	8	nicht verbunden		
Ā1	9	Encoder Eingang Ā1		
B1	10	Encoder Eingang B1		
Ū1	11	Encoder Eingang C1		
n.c.	12	Klemmstelle nicht beschalten		
+Ue1	13	Encoder-Versorgung (5 V default, parametrierbar 12 V, 24 V)		
-Uo1	14	0 V Encoder-Versorgung		
Gate 1	15	Eingang Gate 1, kann als Gate-Eingang und als Latch extern 2-Eingang für Encoder 1 genutzt werden. Dieser Eingang wird auch als Gate/Latch 1-Eingang bezeichnet.		
n.c.	16	nicht verbunden		

Anschlussbelegung rechte Seite (Encoder 2)				
Klemmstelle	stelle Nr. Kommentar			
A2	1'	Encoder-Eingang A2		
B2	2'	Encoder-Eingang B2		
C2	3'	Encoder-Eingang C2		
Status Input 2	ut 2 4' Status-Eingang 2 Der Status Input-Eingang ist intern über einen PullUp-Widerstand auf 5 V gelegt. Der Encoder-Störmelde- Ausgang muss das Signal aktiv gegen GND ziehen. Die externe Speisung wird nicht empfohlen. Wird extern gespeist sind max. 5 V gegen GND zulässig			
+Ue2	5'	Encoder-Versorgung (5 V default, parametrierbar 12 V, 24 V)		
-Uo2	6'	0 V Encoder-Versorgung		
Latch 2	7'	Eingang Latch extern		
n.c.	8'	nicht verbunden		
Ā2	9'	Encoder Eingang A2		
B2	10'	Encoder Eingang B2		
C 2	11'	Encoder Eingang C2		
n.c.	12'	Klemmstelle nicht beschalten		
+Ue2	13'	Encoder-Versorgung (5 V default, parametrierbar 12 V, 24 V)		
-Uo2	14'	0 V Encoder-Versorgung		
Gate 2	15'	Eingang Gate 2, kann als Gate-Eingang und als Latch extern 2-Eingang für Encoder 2 genutzt werden. Diese Eingang wird auch als Gate/Latch 2-Eingang bezeichnet.		
n.c.	16'	nicht verbunden		

HINWEIS

Geberversorgungsspannung einstellen

- Stellen Sie vor dem Umschalten auf eine höhere Spannung sicher, dass der angeschlossene Encoder den gewählten Spannungsbereich unterstützt!
- Zum Beschreiben von 0x80n1:17 "Supply voltage" müssen Sie in Index <u>0xF008 [▶ 235]</u> "Code word" den Wert 0x72657375 (ASCII: "user") setzen.

6.9.1 RS422-Mode

HINWEIS

Differenzieller und Single-Ended Anschluss

Das RS422-Signal überträgt eine Differenzspannung, dadurch ist das Signal störunempfindlicher im Vergleich zu einem Single-Ended-Signal.

- Soll das Gebersignal über längere Entfernung oder mit höheren Frequenzen übertragen werden, wird ein Encoder mit RS422-Signalen empfohlen.
- Es sollten geschirmte und paarig verdrillte (Twisted Pair) Leitungen verwendet werden.

Anschluss von RS422-Encodern mit oder ohne Nullimpuls

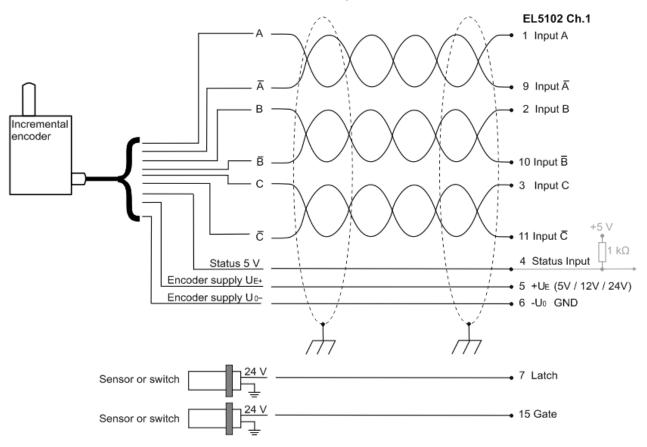


Abb. 28: Anschluss Encoder RS422 - Mode mit Nullimpuls

Hinweise zum Anschluss

• Bei Verwendung eines Encoders ohne Nullimpuls C werden die Klemmstellen für die C-Spur nicht beschaltet.

Anschluss von RS422-Zählern / Impulsgebern mit oder ohne Nullimpuls

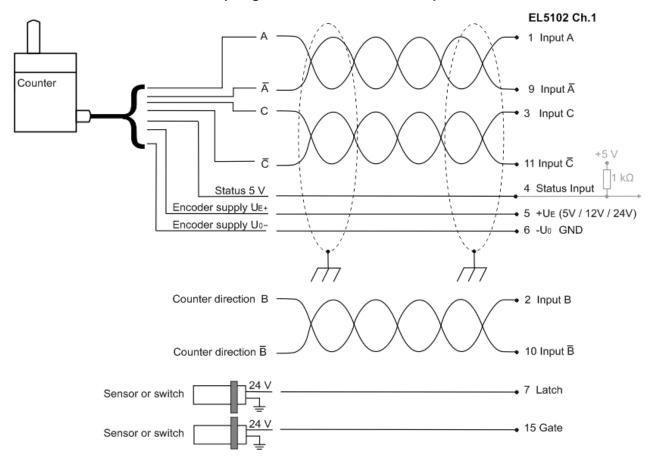


Abb. 29: Anschluss Zähler / Impulsgeber RS422 - Mode mit Nullimpuls

Hinweise zum Anschluss

- Bei Anschluss eines Zählers / Impulsgebers gibt die B-Spur die Zählrichtung vor. Im RS422-Mode wird auf der B-Spur ein differentielles Signal erwartet.
- Bei Verwendung eines Zählers / Impulsgebers ohne Nullimpuls C werden die Klemmstellen für die C-Spur nicht beschaltet.

TTL-Mode 6.9.2

Anschluss von TTL-Encodern mit oder ohne Nullimpuls

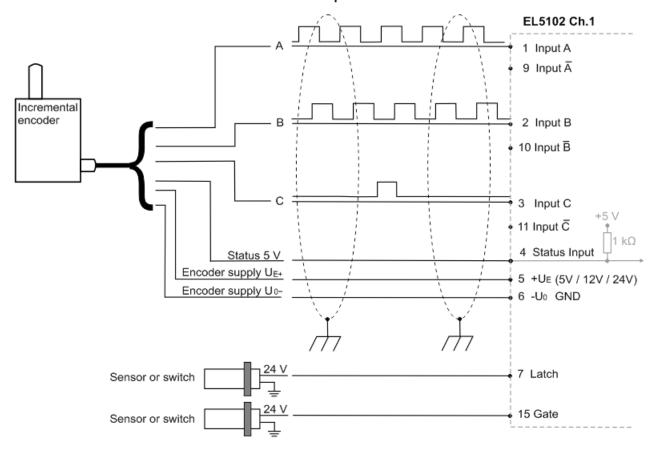


Abb. 30: Anschluss Encoder TTL - Mode mit Nullimpuls

Hinweise zum Anschluss

- Im TTL-Mode werden die inversen Eingänge nicht beschaltet.
- Bei Verwendung eines Encoders ohne Nullimpuls C werden die Klemmstellen für die C-Spur nicht beschaltet.

Anschluss von TTL-Zählern / Impulsgebern mit oder ohne Nullimpuls

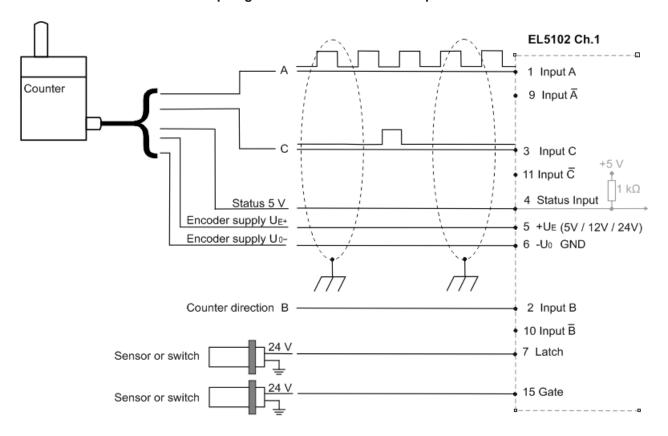


Abb. 31: Anschluss Zähler / Impulsgeber TTL - Mode mit Nullimpuls

Hinweise zum Anschluss

- Im TTL-Mode werden die inversen Eingänge nicht beschaltet.
- Bei Anschluss eines Zählers / Impulsgebers gibt die B-Spur die Zählrichtung vor. Der Eingang B wird nicht beschaltet.
- Bei Verwendung eines Zählers / Impulsgebers ohne Nullimpuls C werden die Klemmstellen für die C-Spur nicht beschaltet.

6.9.3 Open Collector-Mode

Anschluss von Open Collector-Encodern mit oder ohne Nullimpuls

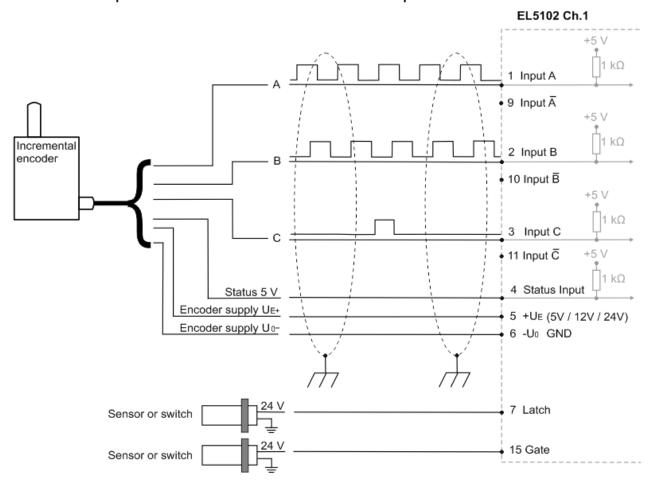


Abb. 32: Anschluss Encoder Open Collector - Mode mit Nullimpuls

Hinweise zum Anschluss

- Im Open Collector-Mode werden die inversen Eingänge nicht beschaltet.
- Bei Verwendung eines Encoders ohne Nullimpuls C werden die Klemmstellen für die C-Spur nicht beschaltet.

EL5102 Ch.1

Anschluss von Open Collector-Zählern / Impulsgebern mit oder ohne Nullimpuls

+5 V 1 Input A Counter 9 Input A +5 V 1 kΩ 3 Input C 11 Input C 4 Status Input Status 5 V Encoder supply UE+ 5 +UE (5V / 12V / 24V) Encoder supply Uo-6 -Uo GND 1 kΩ 2 Input B Counter direction B 10 Input B 7 Latch Sensor or switch 15 Gate Sensor or switch

Abb. 33: Anschluss Zähler / Impulsgeber Open Collector - Mode mit Nullimpuls

Hinweise zum Anschluss

- Im Open Collector-Mode werden die inversen Eingänge nicht beschaltet.
- Bei Anschluss eines Zählers / Impulsgebers gibt die B-Spur die Zählrichtung vor. Der Eingang B wird nicht beschaltet.
- Bei Verwendung eines Zählers / Impulsgebers ohne Nullimpuls C werden die Klemmstellen für die C-Spur nicht beschaltet.

6.10 EL5102 - LEDs

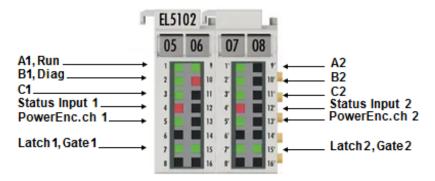


Abb. 34: EL5102 - LEDs

LED:	LEDs linke Seite				
Nr.	Name	Farbe	Beschreibung		
1	A1	grün, rot	grün an	jeweils TRUE Pegel anzeigend	
2	B1 C1		rot an	Es liegt ein Drahtbruch am jeweiligen Eingang vor. Die Diagnose ist nur möglich wenn die folgenden drei Bedingungen erfüllt sind.	
				Der entsprechende Eingang ist differentiell verdrahtet. Entspricht: "Counter mode" 0x8001:1D =0 (Encoder RS422 (diff. Input)) oder "Counter mode" 0x8001:1D =1 (Counter RS422 (diff. Input))	
				Die "Error Detection" des jeweiligen Eingangs ist aktiviert: "Error Detection A" 0x8000:0B = TRUE "Error Detection B" 0x8000:0C = TRUE "Error Detection C" 0x8000:0D = TRUE.	
				• Die differentielle Spannung V _{ID Low} < typ. 0,67 V ist (Änderungen vorbehalten).	
4	Status Input 1	rot		ingang von Drehgeber. Eingang ist intern über ein PullUp Widerstand auf 5 V gelegt. r-Ausgang muss das Signal aktiv gegen GND ziehen.	
			an	Ausgang am Encoder aktiv, es liegt eine Störmeldung am Encoder an oder eine Überspannung am Eingang	
			aus	Ausgang am Encoder nicht aktiv, es liegt keine Störmeldung an	
5	PowerENC.ch1	grün	Geberverso	Geberversorgungsspannung für Kanal 1 ist vorhanden	
7	Latch 1	grün	leuchtet, wenn ein Signal (+24 V) am Latch 1-Eingang anliegt		
9	Run	grün	Diese LED g	gibt den Betriebszustand der Klemme wieder:	
			aus	Zustand der EtherCAT State Machine [> 32]: INIT = Initialisierung der Klemme oder BOOTSTRAP = Funktion für Firmware Updates [> 236] der Klemme	
			blinkend	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox- Kommunikation und abweichende Standard-Einstellungen gesetzt	
			Einzelblitz	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des	
				Sync-Managers [> 113] und der Distributed Clocks.	
				Ausgänge bleiben im sicheren Zustand	
			an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox-und Prozessdatenkommunikation ist möglich	
10	Diag	rot	Initialisierungsprozess aktiv oder Zustand der EtherCAT State Machine: BOOT		
15	Gate 1	grün	leuchtet, wenn ein Signal (+24 V) am Gate 1-Eingang anliegt		

LED:	LEDs rechte Seite				
Nr.	Name	Farbe	Beschreibung		
1	A1	grün, rot	grün an	jeweils TRUE Pegel anzeigend	
1	A2	grün, rot	grün an	jeweils TRUE Pegel anzeigend	
2	B2				Es liegt ein Drahtbruch am jeweiligen Eingang vor. Die Diagnose ist nur möglich
3	C2			wenn die folgenden drei Bedingungen erfüllt sind.	
				Der entsprechende Eingang ist differentiell verdrahtet. Entspricht: "Counter mode" 0x8011:1D =0 (Encoder RS422 (diff. Input)) oder "Counter mode" 0x8011:1D =1 (Counter RS422 (diff. Input))	
				Die "Error Detection" des jeweiligen Eingangs ist aktiviert: "Error Detection A" 0x8010:0B = TRUE "Error Detection B" 0x8010:0C = TRUE "Error Detection C" 0x8010:0D = TRUE.	
				• Die differentielle Spannung V _{ID Low} < typ. 0,67 V ist (Änderungen vorbehalten).	
4	Status Input 2	atus Input 2 rot		ingang von Drehgeber. Eingang ist intern über ein PullUp Widerstand auf 5 V gelegt. -Ausgang muss das Signal aktiv gegen GND ziehen.	
			an	Ausgang am Encoder aktiv, es liegt eine Störmeldung am Encoder an oder eine Überspannung am Eingang	
			aus	Ausgang am Encoder nicht aktiv, es liegt keine Störmeldung an	
5	PowerENC.ch2	grün	Geberversorgungsspannung für Kanal 2 ist vorhanden		
7	Latch 2		leuchtet, wer	nn ein Signal (+24 V) am Latch 2-Eingang anliegt	
15	Gate 2		leuchtet, wer	nn ein Signal (+24 V) am Gate 2-Eingang anliegt	

6.11 Entsorgung

Die mit einer durchgestrichenen Abfalltonne gekennzeichneten Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

7 Inbetriebnahme

7.1 TwinCAT Quickstart

TwinCAT stellt eine Entwicklungsumgebung für Echtzeitsteuerung mit Multi-SPS-System, NC Achsregelung, Programmierung und Bedienung dar. Das gesamte System wird hierbei durch diese Umgebung abgebildet und ermöglicht Zugriff auf eine Programmierumgebung (inkl. Kompilierung) für die Steuerung. Einzelne digitale oder analoge Eingänge bzw. Ausgänge können auch direkt ausgelesen bzw. beschrieben werden, um diese z.B. hinsichtlich ihrer Funktionsweise zu überprüfen.

Weitere Informationen hierzu erhalten Sie unter http://infosys.beckhoff.de:

- EtherCAT Systemhandbuch:
 Feldbuskomponenten → EtherCAT-Klemmen → EtherCAT System Dokumentation → Einrichtung im TwinCAT System Manager
- TwinCAT 2 → TwinCAT System Manager → E/A- Konfiguration
- Insbesondere zur TwinCAT Treiberinstallation:
 Feldbuskomponenten → Feldbuskarten und Switche → FC900x PCI-Karten für Ethernet → Installation

Geräte, d. h. "devices" beinhalten jeweils die Klemmen der tatsächlich aufgebauten Konfiguration. Dabei gibt es grundlegend die Möglichkeit sämtliche Informationen des Aufbaus über die "Scan" - Funktion einzubringen ("online") oder über Editorfunktionen direkt einzufügen ("offline"):

- "offline": der vorgesehene Aufbau wird durch Hinzufügen und entsprechendes Platzieren einzelner Komponenten erstellt. Diese können aus einem Verzeichnis ausgewählt und Konfiguriert werden.
 - Die Vorgehensweise für den "offline" Betrieb ist unter http://infosys.beckhoff.de einsehbar:
 TwinCAT 2 → TwinCAT System Manager → EA Konfiguration → Anfügen eines E/A-Gerätes
- "online": die bereits physikalisch aufgebaute Konfiguration wird eingelesen
 - Sehen Sie hierzu auch unter http://infosys.beckhoff.de:
 Feldbuskomponenten → Feldbuskarten und Switche → FC900x PCI-Karten für Ethernet → Installation → Geräte suchen

Vom Anwender –PC bis zu den einzelnen Steuerungselementen ist folgender Zusammenhang vorgesehen:

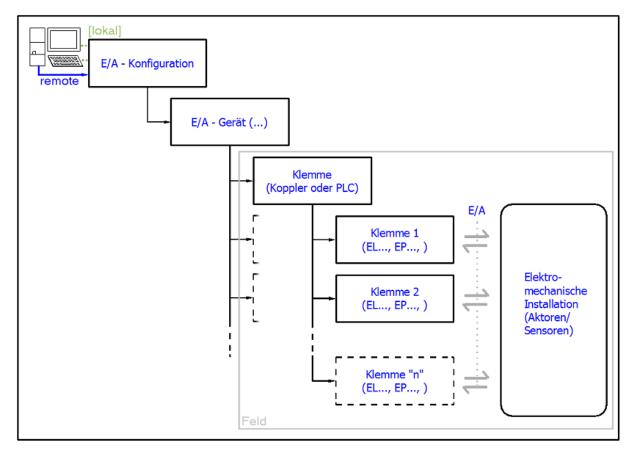


Abb. 35: Bezug von der Anwender Seite (Inbetriebnahme) zur Installation

Das anwenderseitige Einfügen bestimmter Komponenten (E/A – Gerät, Klemme, Box,..) erfolgt bei TwinCAT 2 und TwinCAT 3 auf die gleiche Weise. In den nachfolgenden Beschreibungen wird ausschließlich der "online" Vorgang angewandt.

Beispielkonfiguration (realer Aufbau)

Ausgehend von der folgenden Beispielkonfiguration wird in den anschließenden Unterkapiteln das Vorgehen für TwinCAT 2 und TwinCAT 3 behandelt:

- Steuerungssystem (PLC) CX2040 inkl. Netzteil CX2100-0004
- Rechtsseitig angebunden am CX2040 (E-Bus): $\mathbf{EL1004}$ (4-Kanal-Digital-Eingangsklemme 24 V_{DC})
- Über den X001 Anschluss (RJ-45) angeschlossen: EK1100 EtherCAT-Koppler
- Rechtsseitig angebunden am EK1100 EtherCAT-Koppler (E-Bus):
 EL2008 (8-Kanal-Digital-Ausgangsklemme 24 V_{DC}; 0,5 A)
- (Optional über X000: ein Link zu einen externen PC für die Benutzeroberfläche)

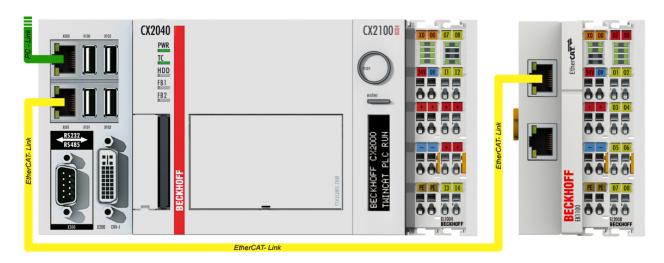


Abb. 36: Aufbau der Steuerung mit Embedded-PC, Eingabe (EL1004) und Ausgabe (EL2008)

Anzumerken ist, dass sämtliche Kombinationen einer Konfiguration möglich sind; beispielsweise könnte die Klemme EL1004 ebenso auch nach dem Koppler angesteckt werden oder die Klemme EL2008 könnte zusätzlich rechts an dem CX2040 angesteckt sein – dann wäre der Koppler EK1100 überflüssig.

7.1.1 TwinCAT 2

Startup

TwinCAT 2 verwendet grundlegend zwei Benutzeroberflächen: den "TwinCAT System Manager" zur Kommunikation mit den elektromechanischen Komponenten und "TwinCAT PLC Control" für die Erstellung und Kompilierung einer Steuerung. Begonnen wird zunächst mit der Anwendung des TwinCAT System Managers.

Nach erfolgreicher Installation des TwinCAT-Systems auf den Anwender-PC der zur Entwicklung verwendet werden soll, zeigt der TwinCAT 2 (System Manager) folgende Benutzeroberfläche nach dem Start:

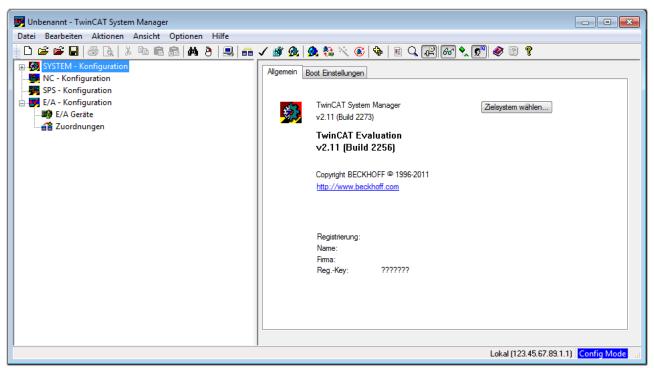


Abb. 37: Initiale Benutzeroberfläche TwinCAT 2

Es besteht generell die Möglichkeit das TwinCAT "lokal" oder per "remote" zu verwenden. Ist das TwinCAT System inkl. Benutzeroberfläche (Standard) auf dem betreffenden PLC installiert, kann TwinCAT "lokal" eingesetzt werden und mit Schritt "Geräte einfügen [68]" fortgesetzt werden.

Ist es vorgesehen, die auf einem PLC installierte TwinCAT Laufzeitumgebung von einem anderen System als Entwicklungsumgebung per "remote" anzusprechen, ist das Zielsystem zuvor bekannt zu machen. Im

Menü unter "Aktionen" → "Auswahl des Zielsystems…", über das Symbol " " oder durch Taste "F8" wird folgendes Fenster hierzu geöffnet:

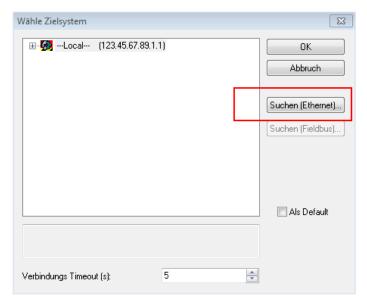


Abb. 38: Wähle Zielsystem

Mittels "Suchen (Ethernet)..." wird das Zielsystem eingetragen. Dadurch wird ein weiterer Dialog geöffnet um hier entweder:

- den bekannten Rechnernamen hinter "Enter Host Name / IP:" einzutragen (wie rot gekennzeichnet)
- einen "Broadcast Search" durchzuführen (falls der Rechnername nicht genau bekannt)
- die bekannte Rechner IP oder AmsNetId einzutragen

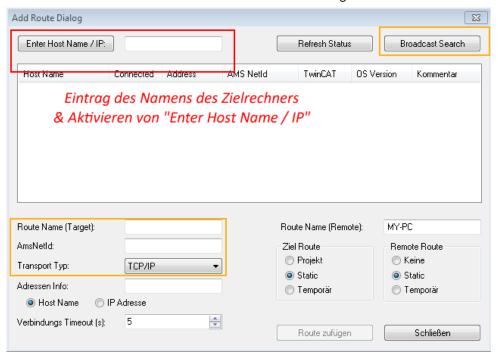
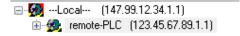



Abb. 39: PLC für den Zugriff des TwinCAT System Managers festlegen: Auswahl des Zielsystems

Ist das Zielsystem eingetragen steht dieses wie folgt zur Auswahl (ggf. muss zuvor das korrekte Passwort eingetragen werden):

Nach der Auswahl mit "OK" ist das Zielsystem über den System Manager ansprechbar.

Geräte einfügen

In dem linksseitigen Konfigurationsbaum der TwinCAT 2 – Benutzeroberfläche des System Managers wird "E/A-Geräte" selektiert und sodann entweder über Rechtsklick ein Kontextmenü geöffnet und

"Geräte Suchen…" ausgewählt oder in der Menüleiste mit

die Aktion gestartet. Ggf. ist zuvor der

TwinCAT System Manager in den "Konfig Modus" mittels oder über das Menü "Aktionen" → "Startet/Restarten von TwinCAT in Konfig-Modus"(Shift + F4) zu versetzen.

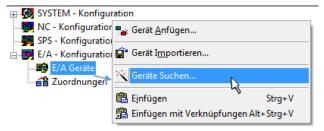


Abb. 40: Auswahl "Gerät Suchen..."

Die darauffolgende Hinweismeldung ist zu bestätigen und in dem Dialog die Geräte "EtherCAT" zu wählen:

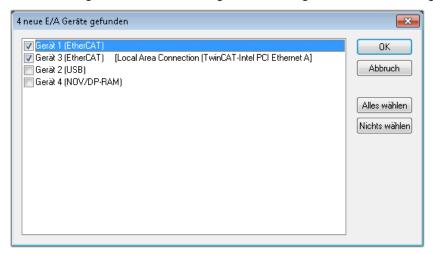


Abb. 41: Automatische Erkennung von E/A-Geräten: Auswahl der einzubindenden Geräte

Ebenfalls ist anschließend die Meldung "nach neuen Boxen suchen" zu bestätigen, um die an den Geräten angebundenen Klemmen zu ermitteln. "Free Run" erlaubt das Manipulieren von Ein- und Ausgangswerten innerhalb des "Config Modus" und sollte ebenfalls bestätigt werden.

Ausgehend von der am Anfang dieses Kapitels beschriebenen <u>Beispielkonfiguration</u> [▶ 64] sieht das Ergebnis wie folgt aus:



Abb. 42: Abbildung der Konfiguration im TwinCAT 2 System Manager

Der gesamte Vorgang setzt sich aus zwei Stufen zusammen, die auch separat ausgeführt werden können (erst das Ermitteln der Geräte, dann das Ermitteln der daran befindlichen Elemente wie Box-Module, Klemmen o. ä.). So kann auch durch Markierung von "Gerät …" aus dem Kontextmenü eine "Suche" Funktion (Scan) ausgeführt werden, die hierbei dann lediglich die darunter liegenden (im Aufbau vorliegenden) Elemente einliest:

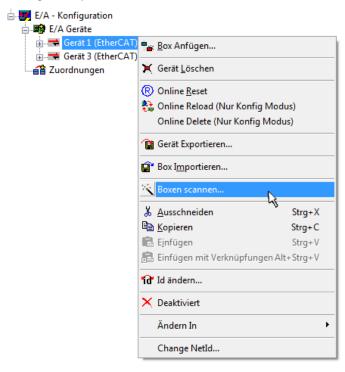


Abb. 43: Einlesen von einzelnen an einem Gerät befindlichen Klemmen

Diese Funktionalität ist nützlich, falls die Konfiguration (d. h. der "reale Aufbau") kurzfristig geändert wird.

PLC programmieren und integrieren

TwinCAT PLC Control ist die Entwicklungsumgebung zur Erstellung der Steuerung in unterschiedlichen Programmumgebungen: Das TwinCAT PLC Control unterstützt alle in der IEC 61131-3 beschriebenen Sprachen. Es gibt zwei textuelle Sprachen und drei grafische Sprachen.

· Textuelle Sprachen

Anweisungsliste (AWL, IL)

- Strukturierter Text (ST)
- · Grafische Sprachen
 - Funktionsplan (FUP, FBD)
 - Kontaktplan (KOP, LD)
 - Freigrafischer Funktionsplaneditor (CFC)
 - Ablaufsprache (AS, SFC)

Für die folgenden Betrachtungen wird lediglich vom strukturierten Text (ST) Gebrauch gemacht.

Nach dem Start von TwinCAT PLC Control wird folgende Benutzeroberfläche für ein initiales Projekt dargestellt:

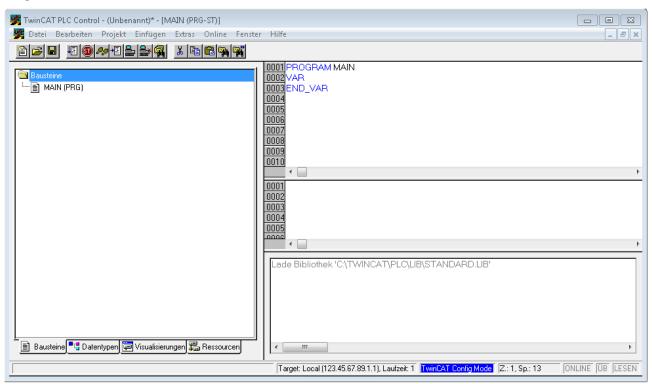


Abb. 44: TwinCAT PLC Control nach dem Start

Nun sind für den weiteren Ablauf Beispielvariablen sowie ein Beispielprogramm erstellt und unter dem Namen "PLC_example.pro" gespeichert worden:

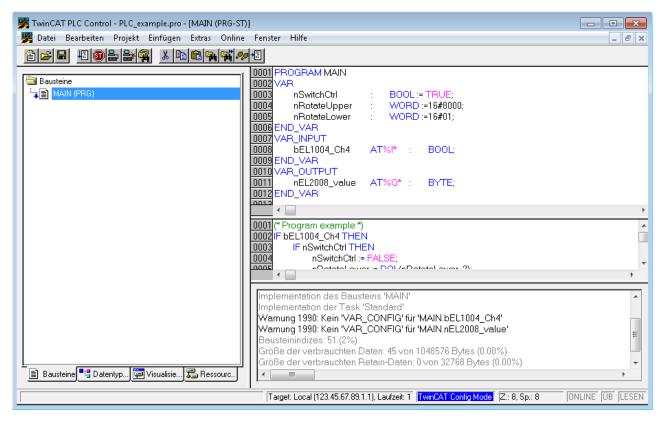


Abb. 45: Beispielprogramm mit Variablen nach einem Kompiliervorgang (ohne Variablenanbindung)

Die Warnung 1990 (fehlende "VAR_CONFIG") nach einem Kompiliervorgang zeigt auf, dass die als extern definierten Variablen (mit der Kennzeichnung "AT%I" bzw. "AT%Q*") nicht zugeordnet sind. Das TwinCAT PLC Control erzeugt nach erfolgreichen Kompiliervorgang eine "*.tpy" Datei in dem Verzeichnis, in dem das Projekt gespeichert wurde. Diese Datei ("*.tpy") enthält u.a. Variablenzuordnungen und ist dem System Manager nicht bekannt, was zu dieser Warnung führt. Nach dessen Bekanntgabe kommt es nicht mehr zu dieser Warnung.

Im **System Manager** ist das Projekt des TwinCAT PLC Control zunächst einzubinden. Dies geschieht über das Kontext Menü der "SPS-Konfiguration" (rechts-Klick) und der Auswahl "SPS-Projekt Anfügen…":

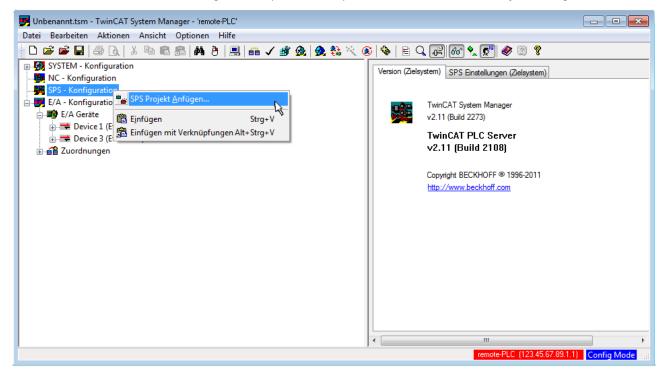


Abb. 46: Hinzufügen des Projektes des TwinCAT PLC Control

Über ein dadurch geöffnetes Browserfenster wird die PLC-Konfiguration "PLC_example.tpy" ausgewählt. Dann ist in dem Konfigurationsbaum des System Managers das Projekt inklusive der beiden "AT"– gekennzeichneten Variablen eingebunden:

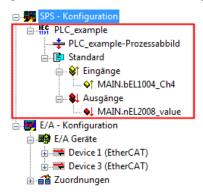


Abb. 47: Eingebundenes PLC-Projekt in der SPS-Konfiguration des System Managers

Die beiden Variablen "bEL1004_Ch4" sowie "nEL2008_value" können nun bestimmten Prozessobjekten der E/A-Konfiguration zugeordnet werden.

Variablen Zuordnen

Über das Kontextmenü einer Variable des eingebundenen Projekts "PLC_example" unter "Standard" wird mittels "Verknüpfung Ändern…" ein Fenster zur Auswahl eines passenden Prozessobjektes (PDOs) geöffnet:

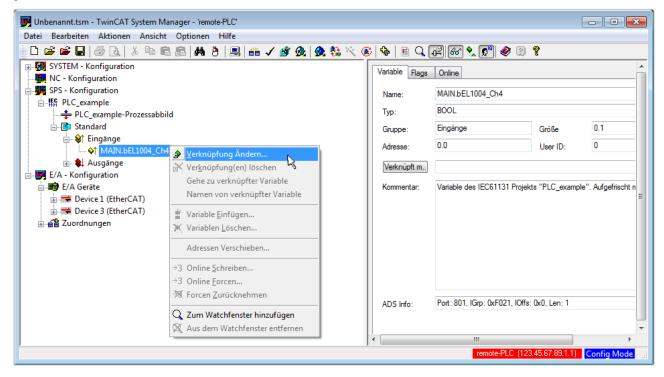


Abb. 48: Erstellen der Verknüpfungen PLC-Variablen zu Prozessobjekten

In dem dadurch geöffneten Fenster kann aus dem SPS-Konfigurationsbaum das Prozessobjekt für die Variable "bEL1004_Ch4" vom Typ BOOL selektiert werden:

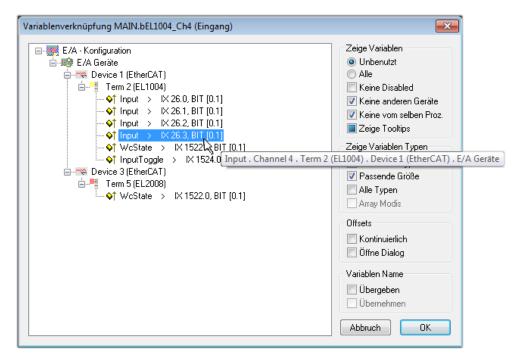


Abb. 49: Auswahl des PDO vom Typ BOOL

Entsprechend der Standarteinstellungen stehen nur bestimmte PDO-Objekte zur Auswahl zur Verfügung. In diesem Beispiel wird von der Klemme EL1004 der Eingang von Kanal 4 zur Verknüpfung ausgewählt. Im Gegensatz hierzu muss für das Erstellen der Verknüpfung der Ausgangsvariablen die Checkbox "Alle Typen" aktiviert werden, um in diesem Fall eine Byte-Variable einen Satz von acht separaten Ausgangsbits zuzuordnen. Die folgende Abbildung zeigt den gesamten Vorgang:

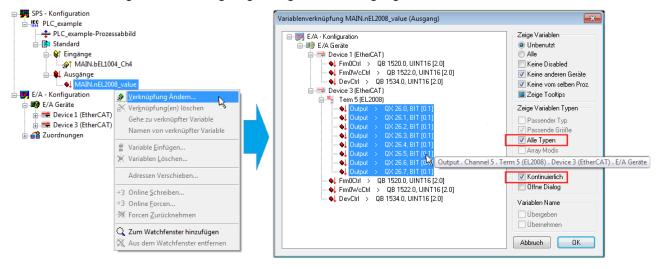


Abb. 50: Auswahl von mehreren PDO gleichzeitig: Aktivierung von "Kontinuierlich" und "Alle Typen"

Zu sehen ist, dass überdies die Checkbox "Kontinuierlich" aktiviert wurde. Dies ist dafür vorgesehen, dass die in dem Byte der Variablen "nEL2008_value" enthaltenen Bits allen acht ausgewählten Ausgangsbits der Klemme EL2008 der Reihenfolge nach zugeordnet werden sollen. Damit ist es möglich, alle acht Ausgänge der Klemme mit einem Byte entsprechend Bit 0 für Kanal 1 bis Bit 7 für Kanal 8 von der PLC im Programm

später anzusprechen. Ein spezielles Symbol () an dem gelben bzw. roten Objekt der Variablen zeigt an, dass hierfür eine Verknüpfung existiert. Die Verknüpfungen können z. B. auch überprüft werden, indem "Goto Link Variable" aus dem Kontextmenü einer Variable ausgewählt wird. Dann wird automatisch das gegenüberliegende verknüpfte Objekt, in diesem Fall das PDO selektiert:

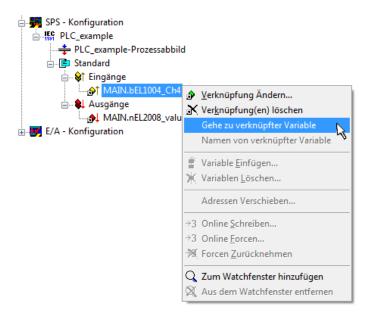


Abb. 51: Anwendung von "Goto Link Variable" am Beispiel von "MAIN.bEL1004_Ch4"

Anschließend wird mittels Menüauswahl "Aktionen" → "Zuordnung erzeugen…" oder über Vorgang des Zuordnens von Variablen zu PDO abgeschlossen.

Dies lässt sich entsprechend in der Konfiguration einsehen:

Der Vorgang zur Erstellung von Verknüpfungen kann auch in umgekehrter Richtung, d. h. von einzelnen PDO ausgehend zu einer Variablen erfolgen. In diesem Beispiel wäre dann allerdings eine komplette Auswahl aller Ausgangsbits der EL2008 nicht möglich, da die Klemme nur einzelne digitale Ausgänge zur Verfügung stellt. Hat eine Klemme ein Byte, Word, Integer oder ein ähnliches PDO, so ist es möglich dies wiederum einen Satz von bit-typisierten Variablen zuzuordnen. Auch hier kann ebenso in die andere Richtung ein "Goto Link Variable" ausgeführt werden, um dann die betreffende Instanz der PLC zu selektieren.

Aktivieren der Konfiguration

Die Zuordnung von PDO zu PLC-Variablen hat nun die Verbindung von der Steuerung zu den Ein- und

Ausgängen der Klemmen hergestellt. Nun kann die Konfiguration aktiviert werden. Zuvor kann mittels (oder über "Aktionen" → "Konfiguration überprüfen…") die Konfiguration überprüft werden. Falls kein Fehler

vorliegt, kann mit (oder über "Aktionen" → "Aktiviert Konfiguration…") die Konfiguration aktiviert werden, um dadurch Einstellungen im System Manger auf das Laufzeitsystem zu übertragen. Die darauffolgenden Meldungen "Alte Konfigurationen werden überschrieben!" sowie "Neustart TwinCAT System in Run Modus" werden jeweils mit "OK" bestätigt.

Einige Sekunden später wird der Realtime Status Echtzeit 0% unten rechts im System Manager angezeigt. Das PLC-System kann daraufhin wie im Folgenden beschrieben gestartet werden.

Starten der Steuerung

Ausgehend von einem remote System muss nun als erstes auch die PLC Steuerung über "Online" \rightarrow "Choose Run-Time System…" mit dem embedded PC über Ethernet verbunden werden:

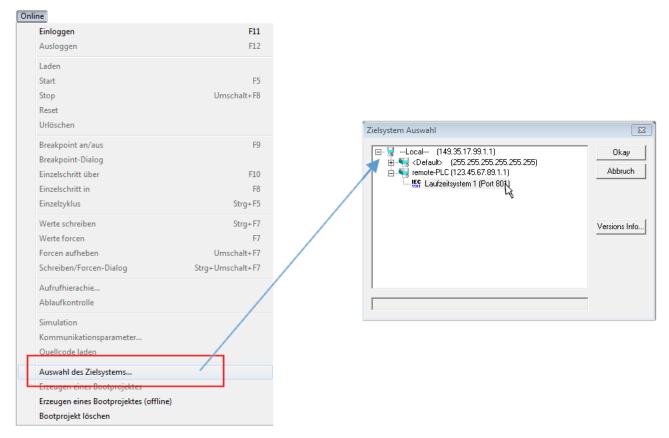


Abb. 52: Auswahl des Zielsystems (remote)

In diesem Beispiel wird das "Laufzeitsystem 1 (Port 801)" ausgewählt und bestätigt. Mittels Menüauswahl

"Online" → "Login", Taste F11 oder per Klick auf wird auch die PLC mit dem Echtzeitsystem verbunden und nachfolgend das Steuerprogramm geladen, um es ausführen lassen zu können. Dies wird entsprechend mit der Meldung "Kein Programm auf der Steuerung! Soll das neue Programm geladen werden?" bekannt gemacht und ist mit "Ja" zu beantworten. Die Laufzeitumgebung ist bereit zum Programstart:

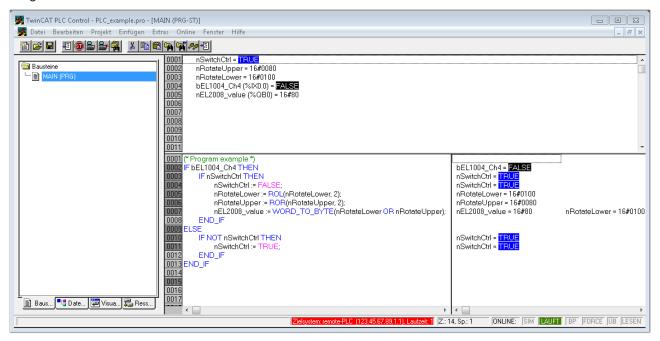


Abb. 53: PLC Control Logged-in, bereit zum Programmstart

Über "Online" → "Run", Taste F5 oder kann nun die PLC gestartet werden.

7.1.2 TwinCAT 3

Startup

TwinCAT 3 stellt die Bereiche der Entwicklungsumgebung durch das Microsoft Visual-Studio gemeinsam zur Verfügung: in den allgemeinen Fensterbereich erscheint nach dem Start linksseitig der Projektmappen-Explorer (vgl. "TwinCAT System Manager" von TwinCAT 2) zur Kommunikation mit den elektromechanischen Komponenten.

Nach erfolgreicher Installation des TwinCAT-Systems auf den Anwender PC der zur Entwicklung verwendet werden soll, zeigt der TwinCAT 3 (Shell) folgende Benutzeroberfläche nach dem Start:

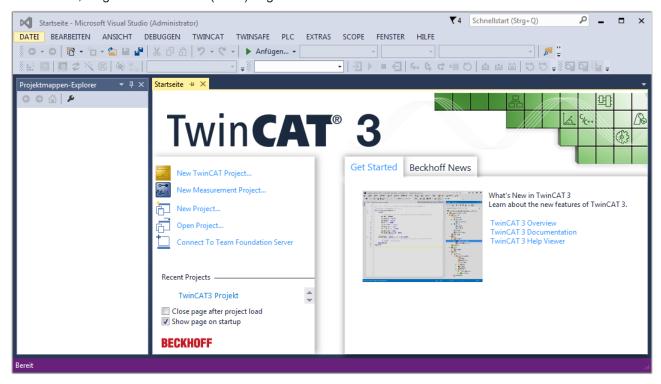


Abb. 54: Initale Benutzeroberfläche TwinCAT 3

Zunächst ist die Erstellung eines neues Projekt mittels New TwinCAT Project... (oder unter "Datei"—"Neu"—"Projekt...") vorzunehmen. In dem darauf folgenden Dialog werden die entsprechenden Einträge vorgenommen (wie in der Abbildung gezeigt):

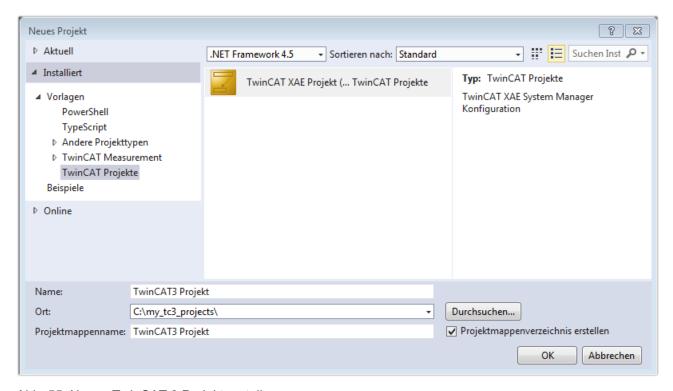


Abb. 55: Neues TwinCAT 3 Projekt erstellen

Im Projektmappen-Explorer liegt sodann das neue Projekt vor:

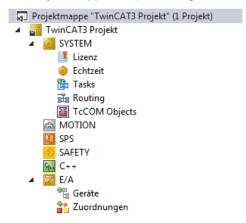


Abb. 56: Neues TwinCAT 3 Projekt im Projektmappen-Explorer

Es besteht generell die Möglichkeit das TwinCAT "lokal" oder per "remote" zu verwenden. Ist das TwinCAT System inkl. Benutzeroberfläche (Standard) auf dem betreffenden PLC (lokal) installiert, kann TwinCAT "lokal" eingesetzt werden und mit Schritt "Geräte einfügen [• 79]" fortgesetzt werden.

Ist es vorgesehen, die auf einem PLC installierte TwinCAT Laufzeitumgebung von einem anderen System als Entwicklungsumgebung per "remote" anzusprechen, ist das Zielsystem zuvor bekannt zu machen. Über das Symbol in der Menüleiste:

wird das pull-down Menü aufgeklappt:

und folgendes Fenster hierzu geöffnet:

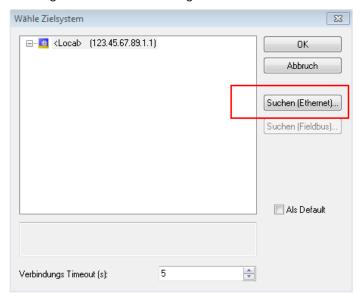


Abb. 57: Auswahldialog: Wähle Zielsystem

Mittels "Suchen (Ethernet)…" wird das Zielsystem eingetragen. Dadurch wird ein weiterer Dialog geöffnet um hier entweder:

- den bekannten Rechnernamen hinter "Enter Host Name / IP:" einzutragen (wie rot gekennzeichnet)
- einen "Broadcast Search" durchzuführen (falls der Rechnername nicht genau bekannt)
- die bekannte Rechner IP oder AmsNetId einzutragen



Abb. 58: PLC für den Zugriff des TwinCAT System Managers festlegen: Auswahl des Zielsystems

Ist das Zielsystem eingetragen, steht dieses wie folgt zur Auswahl (ggf. muss zuvor das korrekte Passwort eingetragen werden):


```
□--- -- (147.99.12.34.1.1)
---- remote-PLC (123.45.67.89.1.1)
```

Nach der Auswahl mit "OK" ist das Zielsystem über das Visual Studio Shell ansprechbar.

Geräte einfügen

In dem linksseitigen Projektmappen-Explorer der Benutzeroberfläche des Visual Studio Shell wird innerhalb des Elementes "E/A" befindliche "Geräte" selektiert und sodann entweder über Rechtsklick ein Kontextmenü

geöffnet und "Scan" ausgewählt oder in der Menüleiste mit die Aktion gestartet. Ggf. ist zuvor der

TwinCAT System Manager in den "Konfig Modus" mittels oder über das Menü "TWINCAT" → "Restart TwinCAT (Config Mode)" zu versetzen.

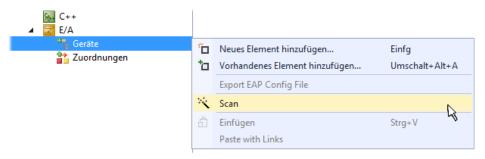


Abb. 59: Auswahl "Scan"

Die darauffolgende Hinweismeldung ist zu bestätigen und in dem Dialog die Geräte "EtherCAT" zu wählen:

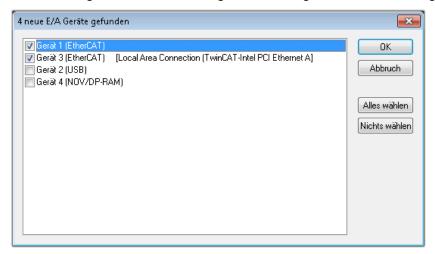


Abb. 60: Automatische Erkennung von E/A-Geräten: Auswahl der einzubindenden Geräte

Ebenfalls ist anschließend die Meldung "nach neuen Boxen suchen" zu bestätigen, um die an den Geräten angebundenen Klemmen zu ermitteln. "Free Run" erlaubt das Manipulieren von Ein- und Ausgangswerten innerhalb des "Config Modus" und sollte ebenfalls bestätigt werden.

Ausgehend von der am Anfang dieses Kapitels beschriebenen <u>Beispielkonfiguration</u> [▶ 64] sieht das Ergebnis wie folgt aus:

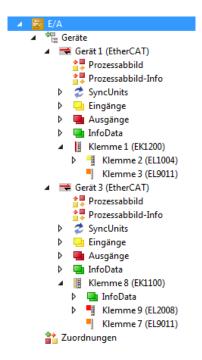


Abb. 61: Abbildung der Konfiguration in VS Shell der TwinCAT 3 Umgebung

Der gesamte Vorgang setzt sich aus zwei Stufen zusammen, die auch separat ausgeführt werden können (erst das Ermitteln der Geräte, dann das Ermitteln der daran befindlichen Elemente wie Box-Module, Klemmen o. ä.). So kann auch durch Markierung von "Gerät …" aus dem Kontextmenü eine "Suche" Funktion (Scan) ausgeführt werden, die hierbei dann lediglich die darunter liegenden (im Aufbau vorliegenden) Elemente einliest:

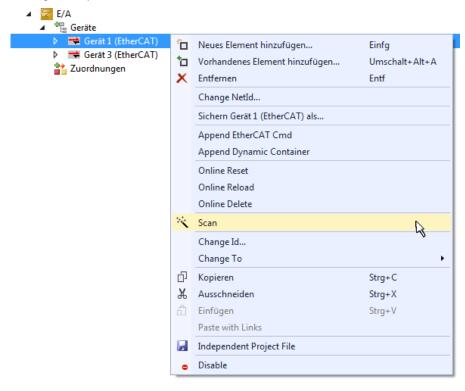


Abb. 62: Einlesen von einzelnen an einem Gerät befindlichen Klemmen

Diese Funktionalität ist nützlich, falls die Konfiguration (d. h. der "reale Aufbau") kurzfristig geändert wird.

PLC programmieren

TwinCAT PLC Control ist die Entwicklungsumgebung zur Erstellung der Steuerung in unterschiedlichen Programmumgebungen: Das TwinCAT PLC Control unterstützt alle in der IEC 61131-3 beschriebenen Sprachen. Es gibt zwei textuelle Sprachen und drei grafische Sprachen.

· Textuelle Sprachen

- Anweisungsliste (AWL, IL)
- Strukturierter Text (ST)

· Grafische Sprachen

- Funktionsplan (FUP, FBD)
- Kontaktplan (KOP, LD)
- Freigrafischer Funktionsplaneditor (CFC)
- Ablaufsprache (AS, SFC)

Für die folgenden Betrachtungen wird lediglich vom strukturierten Text (ST) Gebrauch gemacht.

Um eine Programmierumgebung zu schaffen, wird dem Beispielprojekt über das Kontextmenü von "SPS" im Projektmappen-Explorer durch Auswahl von "Neues Element hinzufügen…." ein PLC Unterprojekt hinzugefügt:

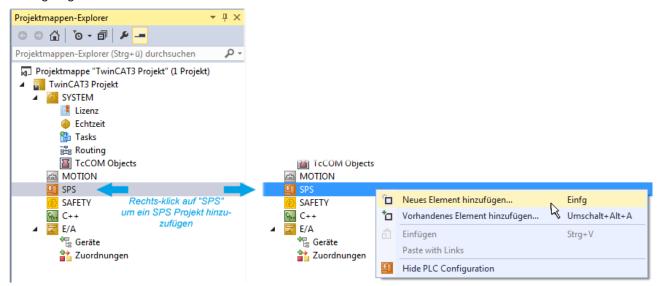


Abb. 63: Einfügen der Programmierumgebung in "SPS"

In dem darauf folgenden geöffneten Dialog wird ein "Standard PLC Projekt" ausgewählt und beispielsweise als Projektname "PLC_example" vergeben und ein entsprechendes Verzeichnis ausgewählt:

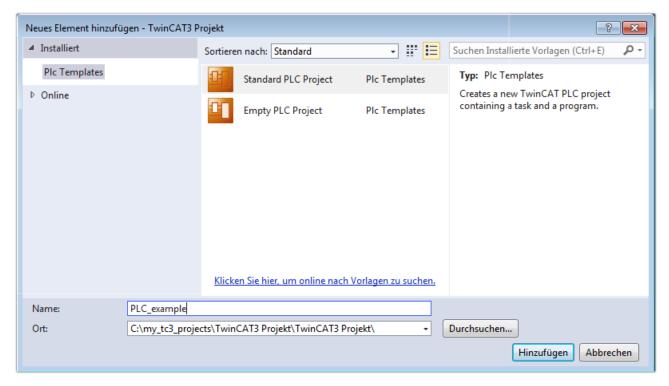


Abb. 64: Festlegen des Namens bzw. Verzeichnisses für die PLC Programmierumgebung

Das durch Auswahl von "Standard PLC Projekt" bereits existierende Programm "Main" kann über das "PLC_example_Project" in "POUs" durch Doppelklick geöffnet werden. Es wird folgende Benutzeroberfläche für ein initiales Projekt dargestellt:

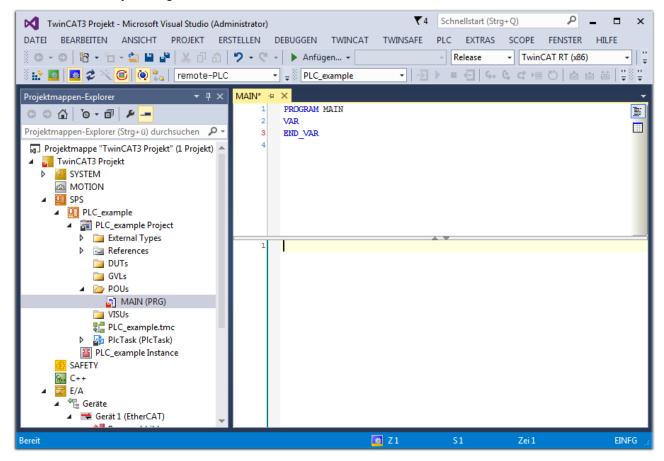


Abb. 65: Initiales Programm "Main" des Standard PLC Projektes

Nun sind für den weiteren Ablauf Beispielvariablen sowie ein Beispielprogramm erstellt worden:

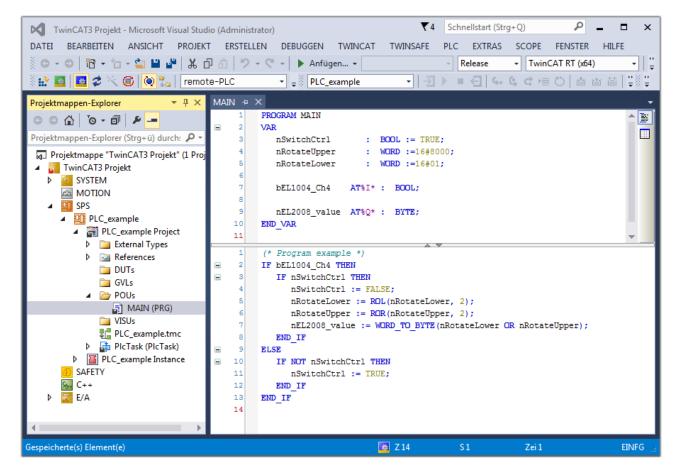


Abb. 66: Beispielprogramm mit Variablen nach einem Kompiliervorgang (ohne Variablenanbindung)

Das Steuerprogramm wird nun als Projektmappe erstellt und damit der Kompiliervorgang vorgenommen:

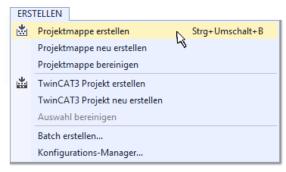


Abb. 67: Kompilierung des Programms starten

Anschließend liegen in den "Zuordnungen" des Projektmappen-Explorers die folgenden – im ST/ PLC Programm mit "AT%" gekennzeichneten Variablen vor:

Variablen Zuordnen

Über das Menü einer Instanz – Variablen innerhalb des "SPS" Kontextes wird mittels "Verknüpfung Ändern…" ein Fenster zur Auswahl eines passenden Prozessobjektes (PDOs) für dessen Verknüpfung geöffnet:

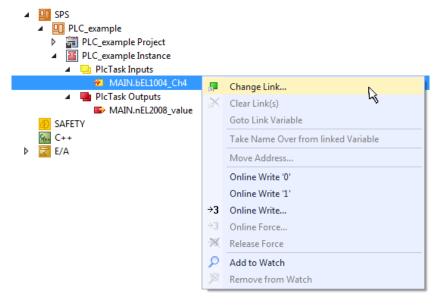


Abb. 68: Erstellen der Verknüpfungen PLC-Variablen zu Prozessobjekten

In dem dadurch geöffneten Fenster kann aus dem SPS-Konfigurationsbaum das Prozessobjekt für die Variable "bEL1004 Ch4" vom Typ BOOL selektiert werden:

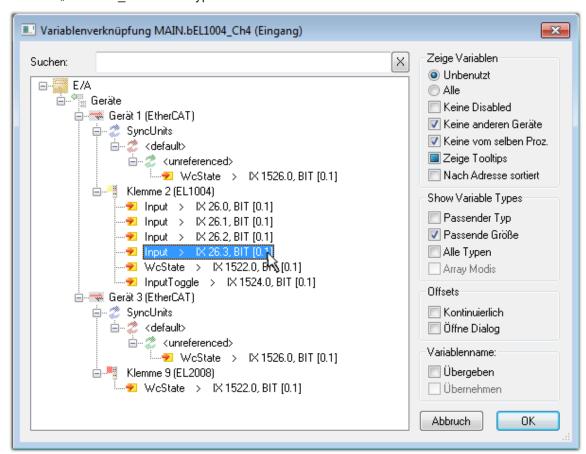


Abb. 69: Auswahl des PDO vom Typ BOOL

Entsprechend der Standarteinstellungen stehen nur bestimmte PDO-Objekte zur Auswahl zur Verfügung. In diesem Beispiel wird von der Klemme EL1004 der Eingang von Kanal 4 zur Verknüpfung ausgewählt. Im Gegensatz hierzu muss für das Erstellen der Verknüpfung der Ausgangsvariablen die Checkbox "Alle Typen" aktiviert werden, um in diesem Fall eine Byte-Variable einen Satz von acht separaten Ausgangsbits zuzuordnen. Die folgende Abbildung zeigt den gesamten Vorgang:

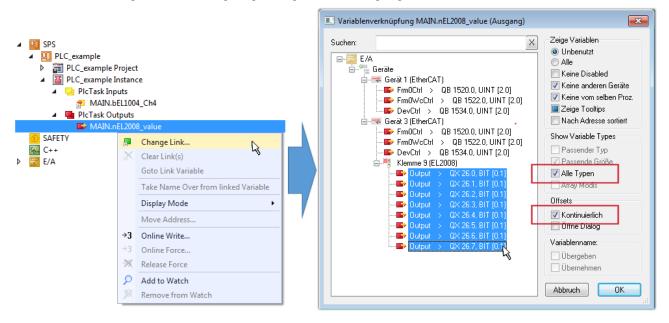


Abb. 70: Auswahl von mehreren PDO gleichzeitig: Aktivierung von "Kontinuierlich" und "Alle Typen"

Zu sehen ist, dass überdies die Checkbox "Kontinuierlich" aktiviert wurde. Dies ist dafür vorgesehen, dass die in dem Byte der Variablen "nEL2008_value" enthaltenen Bits allen acht ausgewählten Ausgangsbits der Klemme EL2008 der Reihenfolge nach zugeordnet werden sollen. Damit ist es möglich, alle acht Ausgänge der Klemme mit einem Byte entsprechend Bit 0 für Kanal 1 bis Bit 7 für Kanal 8 von der PLC im Programm

später anzusprechen. Ein spezielles Symbol () an dem gelben bzw. roten Objekt der Variablen zeigt an, dass hierfür eine Verknüpfung existiert. Die Verknüpfungen können z. B. auch überprüft werden, indem "Goto Link Variable" aus dem Kontextmenü einer Variable ausgewählt wird. Dann wird automatisch das gegenüberliegende verknüpfte Objekt, in diesem Fall das PDO selektiert:

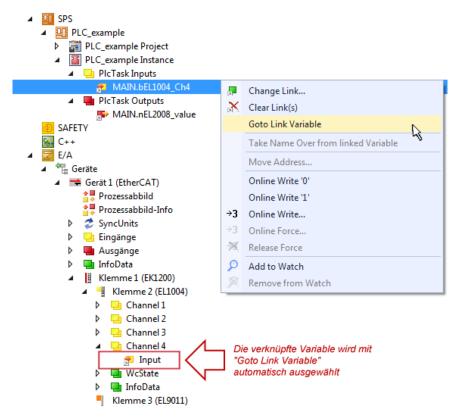


Abb. 71: Anwendung von "Goto Link Variable" am Beispiel von "MAIN.bEL1004 Ch4"

Der Vorgang zur Erstellung von Verknüpfungen kann auch in umgekehrter Richtung, d. h. von einzelnen PDO ausgehend zu einer Variablen erfolgen. In diesem Beispiel wäre dann allerdings eine komplette Auswahl aller Ausgangsbits der EL2008 nicht möglich, da die Klemme nur einzelne digitale Ausgänge zur Verfügung stellt. Hat eine Klemme ein Byte, Word, Integer oder ein ähnliches PDO, so ist es möglich dies wiederum einen Satz von bit-typisierten Variablen zuzuordnen. Auch hier kann ebenso in die andere Richtung ein "Goto Link Variable" ausgeführt werden, um dann die betreffende Instanz der PLC zu selektieren.

Hinweis zur Art der Variablen-Zuordnung

Diese folgende Art der Variablen Zuordnung kann erst ab der TwinCAT Version V3.1.4024.4 verwendet werden und ist ausschließlich bei Klemmen mit einem Mikrocontroller verfügbar.

In TwinCAT ist es möglich eine Struktur aus den gemappten Prozessdaten einer Klemme zu erzeugen. Von dieser Struktur kann dann in der SPS eine Instanz angelegt werden, so dass aus der SPS direkt auf die Prozessdaten zugegriffen werden kann, ohne eigene Variablen deklarieren zu müssen.

Beispielhaft wird das Vorgehen an der EL3001 1-Kanal-Analog-Eingangsklemme -10...+10 V gezeigt.

- Zuerst müssen die benötigten Prozessdaten im Reiter "Prozessdaten" in TwinCAT ausgewählt werden.
- 2. Anschließend muss der SPS Datentyp im Reiter "PLC" über die Check-Box generiert werden.
- 3. Der Datentyp im Feld "Data Type" kann dann über den "Copy"-Button kopiert werden.

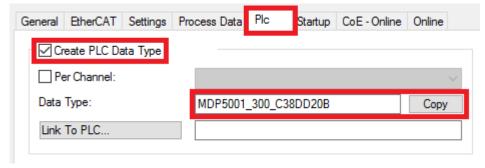


Abb. 72: Erzeugen eines SPS Datentyps

4. In der SPS muss dann eine Instanz der Datenstruktur vom kopierten Datentyp angelegt werden.

```
MAIN - X

1     PROGRAM MAIN
2     VAR
3     EL3001 : MDP5001_300_C38DD20B;
4     END_VAR
```

Abb. 73: Instance_of_struct

- 5. Anschließend muss die Projektmappe erstellt werden. Das kann entweder über die Tastenkombination "STRG + Shift + B" gemacht werden oder über den Reiter "Erstellen"/ "Build" in TwinCAT.
- 6. Die Struktur im Reiter "PLC" der Klemme muss dann mit der angelegten Instanz verknüpft werden.

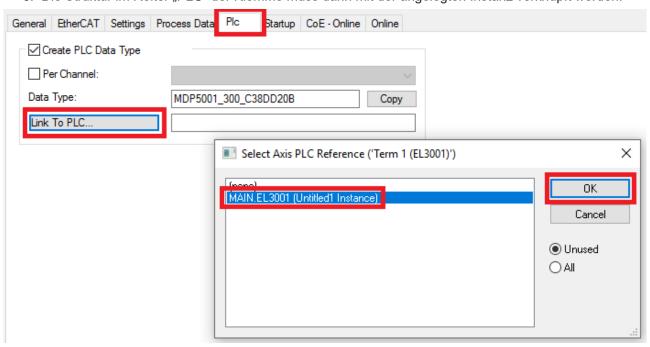


Abb. 74: Verknüpfung der Struktur

7. In der SPS können die Prozessdaten dann über die Struktur im Programmcode gelesen bzw. geschrieben werden.

```
MAIN*
      -6
          PROGRAM MAIN
     1
     2
          VAR
     3
              EL3001 : MDP5001_300_C38DD20B;
     5
              nVoltage: INT;
     6
          END VAR
     1
          nVoltage := EL3001.MDP5001_300_Input.
     2
                                                    MDP5001_300_AI_Standard_Status
     3
                                                    MDP5001_300_AI_Standard_Value
```

Abb. 75: Lesen einer Variable aus der Struktur der Prozessdaten

Aktivieren der Konfiguration

Die Zuordnung von PDO zu PLC Variablen hat nun die Verbindung von der Steuerung zu den Ein- und

Ausgängen der Klemmen hergestellt. Nun kann die Konfiguration mit oder über das Menü unter "TWINCAT" aktiviert werden, um dadurch Einstellungen der Entwicklungsumgebung auf das Laufzeitsystem zu übertragen. Die darauf folgenden Meldungen "Alte Konfigurationen werden überschrieben!" sowie "Neustart TwinCAT System in Run Modus" werden jeweils mit "OK" bestätigt. Die entsprechenden Zuordnungen sind in dem Projektmappen-Explorer einsehbar:

```
✓ Tuordnungen

PLC_example Instance - Gerät 3 (EtherCAT) 1

PLC_example Instance - Gerät 1 (EtherCAT) 1
```

Einige Sekunden später wird der entsprechende Status des Run Modus mit einem rotierenden Symbol unten rechts in der Entwicklungsumgebung VS Shell angezeigt. Das PLC System kann daraufhin wie im Folgenden beschrieben gestartet werden.

Starten der Steuerung

Entweder über die Menüauswahl "PLC" → "Einloggen" oder per Klick auf ist die PLC mit dem Echtzeitsystem zu verbinden und nachfolgend das Steuerprogramm zu geladen, um es ausführen lassen zu können. Dies wird entsprechend mit der Meldung "Kein Programm auf der Steuerung! Soll das neue Programm geladen werden?" bekannt gemacht und ist mit "Ja" zu beantworten. Die Laufzeitumgebung ist

bereit zum Programmstart mit Klick auf das Symbol , Taste "F5" oder entsprechend auch über "PLC" im Menü durch Auswahl von "Start". Die gestartete Programmierumgebung zeigt sich mit einer Darstellung der Laufzeitwerte von einzelnen Variablen:

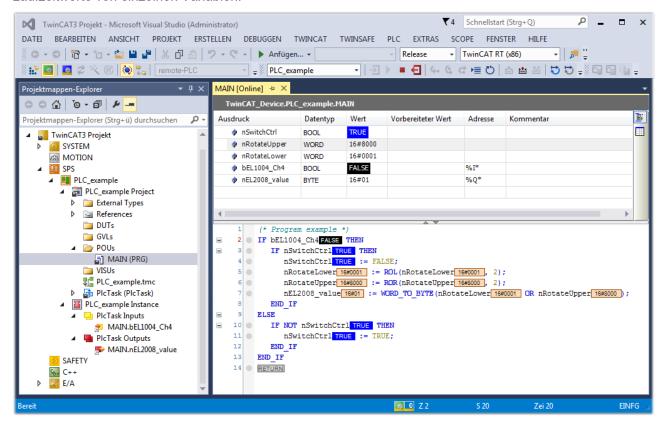


Abb. 76: TwinCAT 3 Entwicklungsumgebung (VS Shell): Logged-in, nach erfolgten Programmstart

Die beiden Bedienelemente zum Stoppen und Ausloggen führen je nach Bedarf zu der gewünschten Aktion (entsprechend auch für Stopp "umschalt-Taste + F5" oder beide Aktionen über das "PLC" Menü auswählbar).

7.2 TwinCAT Entwicklungsumgebung

Die Software zur Automatisierung TwinCAT (The Windows Control and Automation Technology) wird unterschieden in:

- TwinCAT 2: System Manager (Konfiguration) & PLC Control (Programmierung)
- TwinCAT 3: Weiterentwicklung von TwinCAT 2 (Programmierung und Konfiguration erfolgt über eine gemeinsame Entwicklungsumgebung)

Details:

- TwinCAT 2:
 - Verbindet E/A-Geräte und Tasks variablenorientiert
 - Verbindet Tasks zu Tasks variablenorientiert
 - Unterstützt Einheiten auf Bit-Ebene
 - Unterstützt synchrone oder asynchrone Beziehungen
 - · Austausch konsistenter Datenbereiche und Prozessabbilder
 - Datenanbindung an NT-Programme mittels offener Microsoft Standards (OLE, OCX, ActiveX, DCOM+, etc.).
 - Einbettung von IEC 61131-3-Software-SPS, Software- NC und Software-CNC in Windows NT/ 2000/XP/Vista, Windows 7, NT/XP Embedded, CE
 - · Anbindung an alle gängigen Feldbusse
 - · Weiteres...

Zusätzlich bietet:

- TwinCAT 3 (eXtended Automation):
 - Visual-Studio®-Integration
 - · Wahl der Programmiersprache
 - Unterstützung der objektorientierten Erweiterung der IEC 61131-3
 - Verwendung von C/C++ als Programmiersprache für Echtzeitanwendungen
 - Anbindung an MATLAB®/Simulink®
 - · Offene Schnittstellen für Erweiterbarkeit
 - Flexible Laufzeitumgebung
 - Aktive Unterstützung von Multi-Core- und 64-Bit-Betriebssystemen
 - Automatische Codegenerierung und Projekterstellung mit dem TwinCAT Automation Interface
 - · Weiteres...

In den folgenden Kapiteln wird dem Anwender die Inbetriebnahme der TwinCAT Entwicklungsumgebung auf einem PC System der Steuerung sowie die wichtigsten Funktionen einzelner Steuerungselemente erläutert.

Bitte sehen Sie weitere Informationen zu TwinCAT 2 und TwinCAT 3 unter http://infosys.beckhoff.de/.

7.2.1 Installation der TwinCAT Realtime-Treiber

Um einen Standard Ethernet Port einer IPC-Steuerung mit den nötigen Echtzeitfähigkeiten auszurüsten, ist der Beckhoff Echtzeit-Treiber auf diesem Port unter Windows zu installieren.

Dies kann auf mehreren Wegen vorgenommen werden.

A: Über den TwinCAT Adapter-Dialog

Im System Manager ist über Options → Show realtime Kompatible Geräte die TwinCAT-Übersicht über die lokalen Netzwerkschnittstellen aufzurufen.

Abb. 77: Aufruf im System Manager (TwinCAT 2)

Unter TwinCAT 3 ist dies über das Menü unter "TwinCAT" erreichbar:

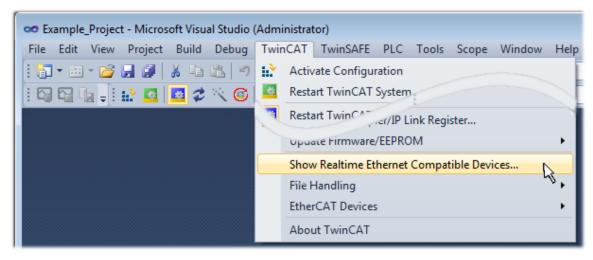


Abb. 78: Aufruf in VS Shell (TwinCAT 3)

B: Über TcRteInstall.exe im TwinCAT-Verzeichnis

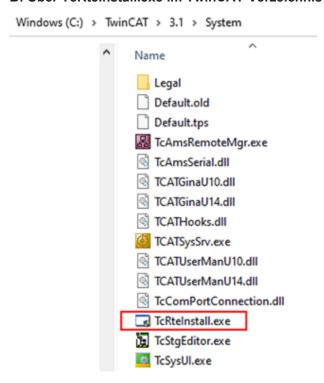


Abb. 79: TcRteInstall.exe im TwinCAT-Verzeichnis

In beiden Fällen erscheint der folgende Dialog:

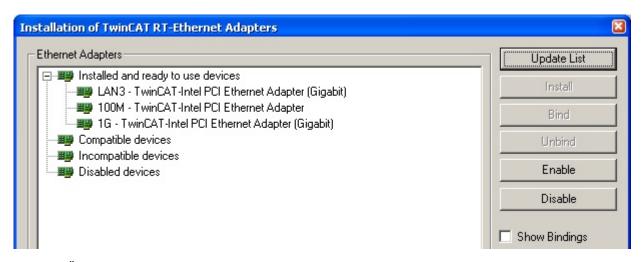


Abb. 80: Übersicht Netzwerkschnittstellen

Hier können nun Schnittstellen, die unter "Kompatible Geräte" aufgeführt sind, über den "Install" Button mit dem Treiber belegt werden. Eine Installation des Treibers auf inkompatiblen Devices sollte nicht vorgenommen werden.

Ein Windows-Warnhinweis bezüglich des unsignierten Treibers kann ignoriert werden.

Alternativ kann auch wie im Kapitel Offline Konfigurationserstellung, Abschnitt "Anlegen des Geräts EtherCAT" [▶ 100] beschrieben, zunächst ein EtherCAT-Gerät eingetragen werden, um dann über dessen Eigenschaften (Karteireiter "Adapter", Button "Kompatible Geräte…") die kompatiblen Ethernet Ports einzusehen:

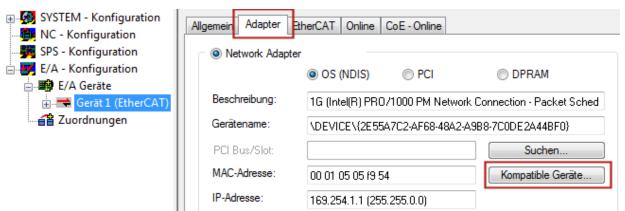


Abb. 81: Eigenschaft von EtherCAT-Gerät (TwinCAT 2): Klick auf "Kompatible Geräte..." von "Adapter"

TwinCAT 3: Die Eigenschaften des EtherCAT-Gerätes können mit Doppelklick auf "Gerät .. (EtherCAT)" im Projektmappen-Explorer unter "E/A" geöffnet werden:

Nach der Installation erscheint der Treiber aktiviert in der Windows-Übersicht der einzelnen Netzwerkschnittstelle (Windows Start → Systemsteuerung → Netzwerk)

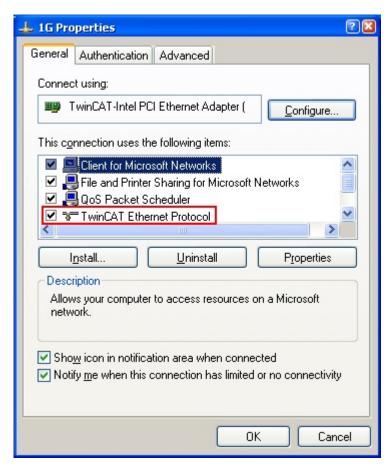


Abb. 82: Windows-Eigenschaften der Netzwerkschnittstelle

Eine korrekte Einstellung des Treibers könnte wie folgt aussehen:

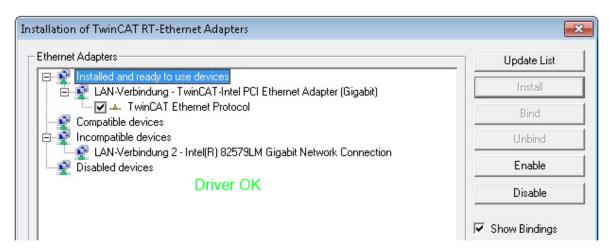
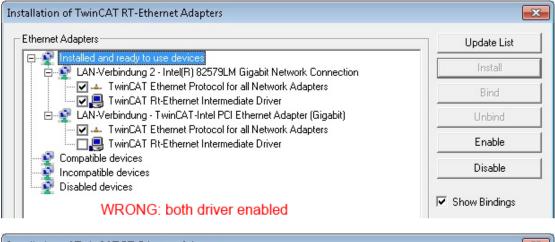
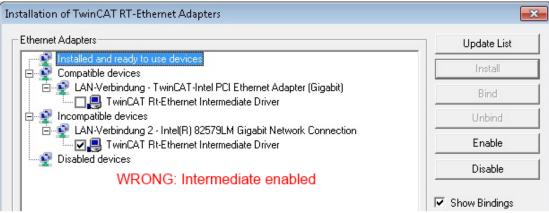




Abb. 83: Beispielhafte korrekte Treiber-Einstellung des Ethernet Ports

Andere mögliche Einstellungen sind zu vermeiden:

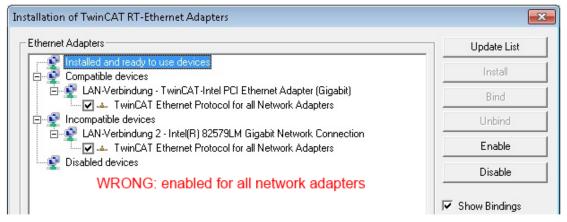


Abb. 84: Fehlerhafte Treiber-Einstellungen des Ethernet Ports

IP-Adresse des verwendeten Ports

IP-Adresse/DHCP

In den meisten Fällen wird ein Ethernet-Port, der als EtherCAT-Gerät konfiguriert wird, keine allgemeinen IP-Pakete transportieren. Deshalb und für den Fall, dass eine EL6601 oder entsprechende Geräte eingesetzt werden, ist es sinnvoll, über die Treiber-Einstellung "Internet Protocol TCP/IP" eine feste IP-Adresse für diesen Port zu vergeben und DHCP zu deaktivieren. Dadurch entfällt die Wartezeit, bis sich der DHCP-Client des Ethernet Ports eine Default-IP-Adresse zuteilt, weil er keine Zuteilung eines DHCP-Servers erhält. Als Adressraum empfiehlt sich z. B. 192.168.x.x.

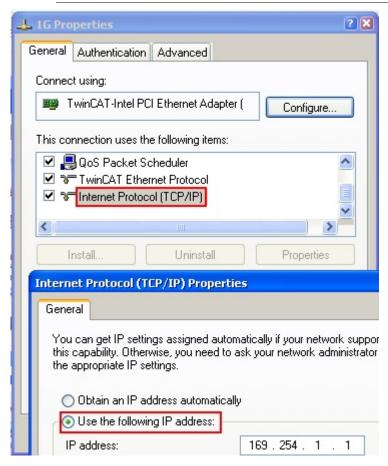


Abb. 85: TCP/IP-Einstellung des Ethernet Ports

7.2.2 Hinweise zur ESI-Gerätebeschreibung

Installation der neuesten ESI-Device-Description

Der TwinCAT EtherCAT-Master/System Manager benötigt zur Konfigurationserstellung im Online- und Offline-Modus die Gerätebeschreibungsdateien der zu verwendeten Geräte. Diese Gerätebeschreibungen sind die so genannten ESI (EtherCAT-Slave Information) in Form von XML-Dateien. Diese Dateien können vom jeweiligen Hersteller angefordert werden bzw. werden zum Download bereitgestellt. Eine *.xml-Datei kann dabei mehrere Gerätebeschreibungen enthalten.

Auf der Beckhoff Website werden die ESI für Beckhoff EtherCAT-Geräte bereitgehalten.

Die ESI-Dateien sind im Installationsverzeichnis von TwinCAT abzulegen.

Standardeinstellungen:

- TwinCAT 2: C:\TwinCAT\IO\EtherCAT
- TwinCAT 3: C:\TwinCAT\3.1\Config\lo\EtherCAT

Beim Öffnen eines neuen System Manager-Fensters werden die Dateien einmalig eingelesen, wenn sie sich seit dem letzten System Manager-Fenster geändert haben.

TwinCAT bringt bei der Installation den Satz an Beckhoff-ESI-Dateien mit, der zum Erstellungszeitpunkt des TwinCAT Builds aktuell war.

Ab TwinCAT 2.11 / TwinCAT 3 kann aus dem System Manager heraus das ESI-Verzeichnis aktualisiert werden, wenn der Programmier-PC mit dem Internet verbunden ist; unter

TwinCAT 2: Options → "Update EtherCAT Device Descriptions"

TwinCAT 3: TwinCAT → EtherCAT Devices → "Update Device Descriptions (via ETG Website)..."

Hierfür steht der TwinCAT ESI Updater [▶ 99] zur Verfügung.

ESI

Zu den *.xml-Dateien gehören die so genannten *.xsd-Dateien, die den Aufbau der ESI-XML-Dateien beschreiben. Bei einem Update der ESI-Gerätebeschreibungen sind deshalb beide Dateiarten ggf. zu aktualisieren.

Geräteunterscheidung

EtherCAT-Geräte/Slaves werden durch vier Eigenschaften unterschieden, aus denen die vollständige Gerätebezeichnung zusammengesetzt wird. Beispielsweise setzt sich die Gerätebezeichnung "EL2521-0025-1018" zusammen aus:

- Familienschlüssel "EL"
- Name "2521"
- Typ "0025"
- · und Revision "1018"

Abb. 86: Gerätebezeichnung: Struktur

Die Bestellbezeichnung aus Typ + Version (hier: EL2521-0025) beschreibt die Funktion des Gerätes. Die Revision gibt den technischen Fortschritt wieder und wird von Beckhoff verwaltet. Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn z. B. in der Dokumentation nicht anders angegeben. Jeder Revision zugehörig ist eine eigene ESI-Beschreibung. Siehe weitere Hinweise [▶ 11].

Online Description

Wird die EtherCAT Konfiguration online durch Scannen real vorhandener Teilnehmer erstellt (s. Kapitel Online Erstellung) und es liegt zu einem vorgefundenen Slave (ausgezeichnet durch Name und Revision) keine ESI-Beschreibung vor, fragt der System Manager, ob er die im Gerät vorliegende Beschreibung verwenden soll. Der System Manager benötigt in jedem Fall diese Information, um die zyklische und azyklische Kommunikation mit dem Slave richtig einstellen zu können.

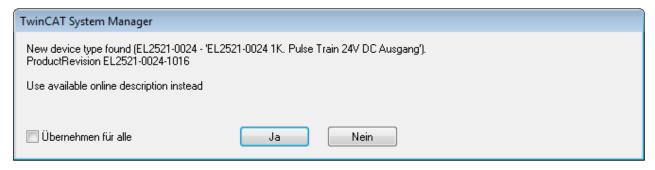


Abb. 87: Hinweisfenster OnlineDescription (TwinCAT 2)

In TwinCAT 3 erscheint ein ähnliches Fenster, das auch das Web-Update anbietet:

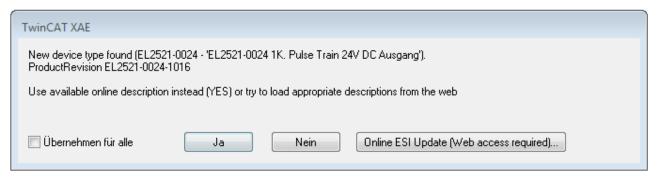


Abb. 88: Hinweisfenster OnlineDescription (TwinCAT 3)

Wenn möglich, ist das Yes abzulehnen und vom Geräte-Hersteller die benötigte ESI anzufordern. Nach Installation der XML/XSD-Datei ist der Konfigurationsvorgang erneut vorzunehmen.

HINWEIS

Veränderung der "üblichen" Konfiguration durch Scan

- ✓ für den Fall eines durch Scan entdeckten aber TwinCAT noch unbekannten Geräts sind zwei Fälle zu unterscheiden. Hier am Beispiel der EL2521-0000 in der Revision 1019:
- a) für das Gerät EL2521-0000 liegt überhaupt keine ESI vor, weder für die Revision 1019 noch für eine ältere Revision. Dann ist vom Hersteller (hier: Beckhoff) die ESI anzufordern.
- b) für das Gerät EL2521-0000 liegt eine ESI nur in älterer Revision vor, z. B. 1018 oder 1017. Dann sollte erst betriebsintern überprüft werden, ob die Ersatzteilhaltung überhaupt die Integration der erhöhten Revision in die Konfiguration zulässt. Üblicherweise bringt eine neue/größere Revision auch neue Features mit. Wenn diese nicht genutzt werden sollen, kann ohne Bedenken mit der bisherigen Revision 1018 in der Konfiguration weitergearbeitet werden. Dies drückt auch die Beckhoff Kompatibilitätsregel aus.

Siehe dazu insbesondere das Kapitel "<u>Allgemeine Hinweise zur Verwendung von Beckhoff EtherCAT IO-Komponenten</u>" und zur manuellen Konfigurationserstellung das Kapitel "<u>Offline Konfigurationserstellung</u> [• 100]".

Wird dennoch die Online Description verwendet, liest der System Manager aus dem im EtherCAT-Slave befindlichen EEPROM eine Kopie der Gerätebeschreibung aus. Bei komplexen Slaves kann die EEPROM-Größe u. U. nicht ausreichend für die gesamte ESI sein, weshalb im Konfigurator dann eine *unvollständige* ESI vorliegt. Deshalb wird für diesen Fall die Verwendung einer offline ESI-Datei vorrangig empfohlen.

Der System Manager legt bei "online" erfassten Gerätebeschreibungen in seinem ESI-Verzeichnis eine neue Datei "OnlineDescription0000…xml" an, die alle online ausgelesenen ESI-Beschreibungen enthält.

OnlineDescriptionCache000000002.xml

Abb. 89: Vom System Manager angelegt OnlineDescription.xml

Soll daraufhin ein Slave manuell in die Konfiguration eingefügt werden, sind "online" erstellte Slaves durch ein vorangestelltes ">" Symbol in der Auswahlliste gekennzeichnet (siehe Abbildung *Kennzeichnung einer online erfassten ESI am Beispiel EL2521*).

Abb. 90: Kennzeichnung einer online erfassten ESI am Beispiel EL2521

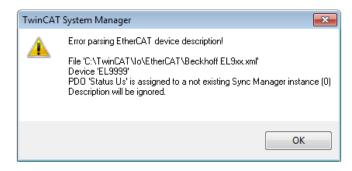
Wurde mit solchen ESI-Daten gearbeitet und liegen später die herstellereigenen Dateien vor, ist die OnlineDescription....xml wie folgt zu löschen:

- · alle System Managerfenster schließen
- · TwinCAT in Konfig-Mode neu starten
- "OnlineDescription0000...xml" löschen
- TwinCAT System Manager wieder öffnen

Danach darf diese Datei nicht mehr zu sehen sein, Ordner ggf. mit <F5> aktualisieren.

OnlineDescription unter TwinCAT 3.x

Zusätzlich zu der oben genannten Datei "OnlineDescription0000...xml" legt TwinCAT 3.x auch einen so genannten EtherCAT-Cache mit neuentdeckten Geräten an, z. B. unter Windows 7 unter


C:\User\[USERNAME]\[AppData\Roaming\Beckhoff\TwinCAT3\Components\Base\EtherCATCache.xml (Spracheinstellungen des Betriebssystems beachten!)

Diese Datei ist im gleichen Zuge wie die andere Datei zu löschen.

Fehlerhafte ESI-Datei

Liegt eine fehlerhafte ESI-Datei vor die vom System Manager nicht eingelesen werden kann, meldet dies der System Manager durch ein Hinweisfenster.

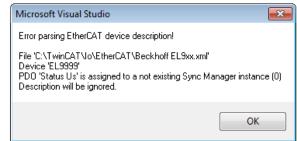


Abb. 91: Hinweisfenster fehlerhafte ESI-Datei (links: TwinCAT 2; rechts: TwinCAT 3)

Ursachen dafür können sein

- Aufbau der *.xml entspricht nicht der zugehörigen *.xsd-Datei → prüfen Sie die Ihnen vorliegenden Schemata
- Inhalt kann nicht in eine Gerätebeschreibung übersetzt werden → Es ist der Hersteller der Datei zu kontaktieren

7.2.3 TwinCAT ESI Updater

Ab TwinCAT 2.11 kann der System Manager bei Online-Zugang selbst nach aktuellen Beckhoff ESI-Dateien suchen:

Abb. 92: Anwendung des ESI Updater (>=TwinCAT 2.11)

Der Aufruf erfolgt unter:

"Options" → "Update EtherCAT Device Descriptions".

Auswahl bei TwinCAT 3:

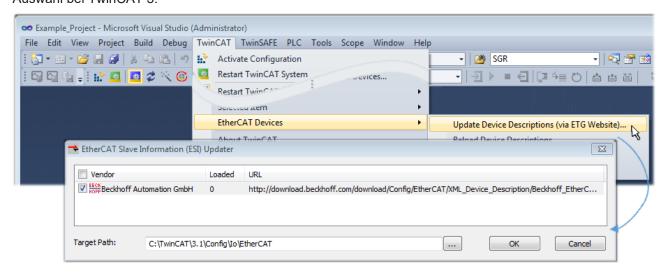


Abb. 93: Anwendung des ESI Updater (TwinCAT 3)

Der ESI Updater ist eine bequeme Möglichkeit, die von den EtherCAT Herstellern bereitgestellten ESIs automatisch über das Internet in das TwinCAT-Verzeichnis zu beziehen (ESI = EtherCAT slave information). Dazu greift TwinCAT auf die bei der ETG hinterlegte zentrale ESI-ULR-Verzeichnisliste zu; die Einträge sind dann unveränderbar im Updater-Dialog zu sehen.

Der Aufruf erfolgt unter:

"TwinCAT" → "ÉtherCAT Devices" → "Update Device Description (via ETG Website)…".

7.2.4 Unterscheidung Online / Offline

Die Unterscheidung Online / Offline bezieht sich auf das Vorhandensein der tatsächlichen I/O-Umgebung (Antriebe, Klemmen, EJ-Module). Wenn die Konfiguration im Vorfeld der Anlagenerstellung z. B. auf einem Laptop als Programmiersystem erstellt werden soll, ist nur die "Offline-Konfiguration" möglich. Dann müssen alle Komponenten händisch in der Konfiguration z. B. nach Elektro-Planung eingetragen werden.

Ist die vorgesehene Steuerung bereits an das EtherCAT-System angeschlossen, alle Komponenten mit Spannung versorgt und die Infrastruktur betriebsbereit, kann die TwinCAT Konfiguration auch vereinfacht durch das so genannte "Scannen" vom Runtime-System aus erzeugt werden. Dies ist der so genannte Online-Vorgang.

In jedem Fall prüft der EtherCAT-Master bei jedem realen Hochlauf, ob die vorgefundenen Slaves der Konfiguration entsprechen. Dieser Test kann in den erweiterten Slave-Einstellungen parametriert werden. Siehe hierzu den Hinweis "Installation der neuesten ESI-XML-Device-Description" [▶ 95].

Zur Konfigurationserstellung

- muss die reale EtherCAT-Hardware (Geräte, Koppler, Antriebe) vorliegen und installiert sein.
- müssen die Geräte/Module über EtherCAT-Kabel bzw. im Klemmenstrang so verbunden sein wie sie später eingesetzt werden sollen.

- müssen die Geräte/Module mit Energie versorgt werden und kommunikationsbereit sein.
- · muss TwinCAT auf dem Zielsystem im CONFIG-Modus sein.

Der Online-Scan-Vorgang setzt sich zusammen aus:

- Erkennen des EtherCAT-Gerätes [105] (Ethernet-Port am IPC)
- <u>Erkennen der angeschlossenen EtherCAT-Teilnehmer [• 106]</u>. Dieser Schritt kann auch unabhängig vom vorangehenden durchgeführt werden.
- <u>Problembehandlung</u> [▶ 109]

Auch kann der Scan bei bestehender Konfiguration [▶ 110] zum Vergleich durchgeführt werden.

7.2.5 OFFLINE Konfigurationserstellung

Anlegen des Geräts EtherCAT

In einem leeren System Manager Fenster muss zuerst ein EtherCAT-Gerät angelegt werden.

Abb. 94: Anfügen eines EtherCAT Device: links TwinCAT 2; rechts TwinCAT 3

Für eine EtherCAT I/O Anwendung mit EtherCAT-Slaves ist der "EtherCAT" Typ auszuwählen. "EtherCAT Automation Protocol via EL6601" ist für den bisherigen Publisher/Subscriber-Dienst in Kombination mit einer EL6601/EL6614 Klemme auszuwählen.

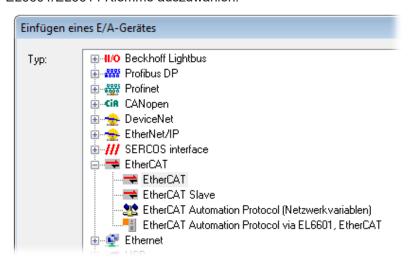


Abb. 95: Auswahl EtherCAT Anschluss (TwinCAT 2.11, TwinCAT 3)

Diesem virtuellen Gerät ist dann ein realer Ethernet Port auf dem Laufzeitsystem zuzuordnen.

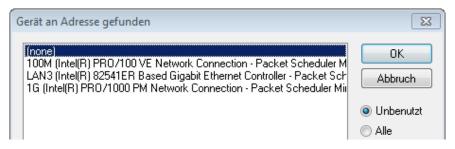


Abb. 96: Auswahl Ethernet Port

Diese Abfrage kann beim Anlegen des EtherCAT-Gerätes automatisch erscheinen, oder die Zuordnung kann später im Eigenschaftendialog gesetzt/geändert werden; siehe Abb. "Eigenschaften EtherCAT-Gerät (TwinCAT 2)".

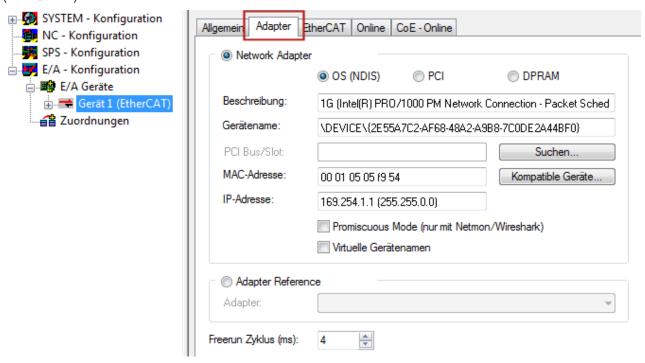
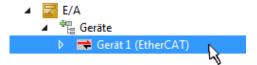



Abb. 97: Eigenschaften EtherCAT-Gerät (TwinCAT 2)

TwinCAT 3: Die Eigenschaften des EtherCAT-Gerätes können mit Doppelklick auf "Gerät .. (EtherCAT)" im Projektmappen-Explorer unter "E/A" geöffnet werden:

Auswahl des Ethernet-Ports

Es können nur Ethernet-Ports für ein EtherCAT-Gerät ausgewählt werden, für die der TwinCAT-Realtime-Treiber installiert ist. Dies muss für jeden Port getrennt vorgenommen werden. Siehe dazu die entsprechende Installationsseite [> 89].

Definieren von EtherCAT-Slaves

Durch Rechtsklick auf ein Gerät im Konfigurationsbaum können weitere Geräte angefügt werden.

Abb. 98: Anfügen von EtherCAT-Geräten (links: TwinCAT 2; rechts: TwinCAT 3)

Es öffnet sich der Dialog zur Auswahl des neuen Gerätes. Es werden nur Geräte angezeigt für die ESI-Dateien hinterlegt sind.

Die Auswahl bietet auch nur Geräte an, die an dem vorher angeklickten Gerät anzufügen sind - dazu wird die an diesem Port mögliche Übertragungsphysik angezeigt (Abb. "Auswahldialog neues EtherCAT-Gerät", A). Es kann sich um kabelgebundene Fast-Ethernet-Ethernet-Physik mit PHY-Übertragung handeln, dann ist wie in Abb. "Auswahldialog neues EtherCAT-Gerät" nur ebenfalls kabelgebundenes Geräte auswählbar. Verfügt das vorangehende Gerät über mehrere freie Ports (z. B. EK1122 oder EK1100), kann auf der rechten Seite (A) der gewünschte Port angewählt werden.

Übersicht Übertragungsphysik

- "Ethernet": Kabelgebunden 100BASE-TX: Koppler, Box-Module, Geräte mit RJ45/M8/M12-Anschluss
- "E-Bus": LVDS "Klemmenbus", EtherCAT-Steckmodule (EJ), EtherCAT-Klemmen (EL/ES), diverse anreihbare Module

Das Suchfeld erleichtert das Auffinden eines bestimmten Gerätes (ab TwinCAT 2.11 bzw. TwinCAT 3).

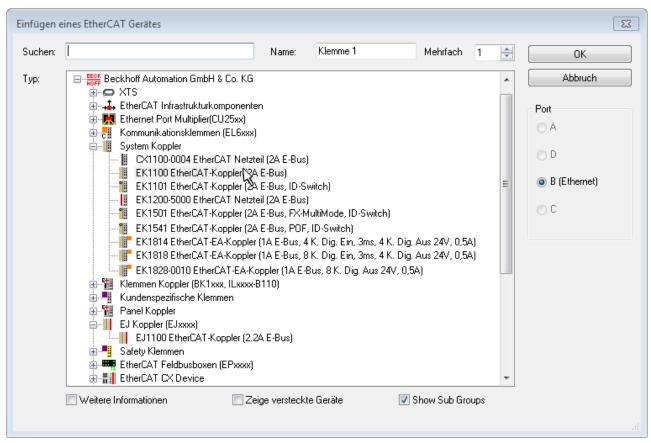


Abb. 99: Auswahldialog neues EtherCAT-Gerät

Standardmäßig wird nur der Name/Typ des Gerätes als Auswahlkriterium verwendet. Für eine gezielte Auswahl einer bestimmen Revision des Gerätes kann die Revision als "Extended Information" eingeblendet werden.

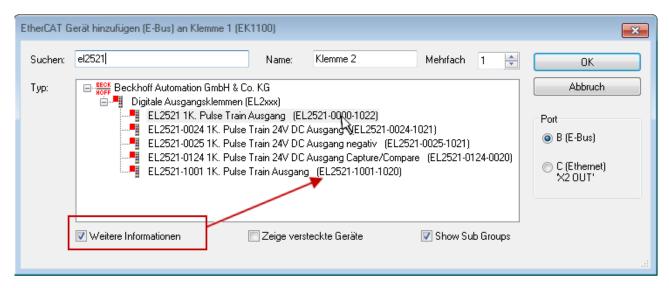


Abb. 100: Anzeige Geräte-Revision

Oft sind aus historischen oder funktionalen Gründen mehrere Revisionen eines Gerätes erzeugt worden, z. B. durch technologische Weiterentwicklung. Zur vereinfachten Anzeige (s. Abb. "Auswahldialog neues EtherCAT-Gerät") wird bei Beckhoff Geräten nur die letzte (=höchste) Revision und damit der letzte Produktionsstand im Auswahldialog angezeigt. Sollen alle im System als ESI-Beschreibungen vorliegenden Revisionen eines Gerätes angezeigt werden, ist die Checkbox "Show Hidden Devices" zu markieren, s. Abb. "Anzeige vorhergehender Revisionen".

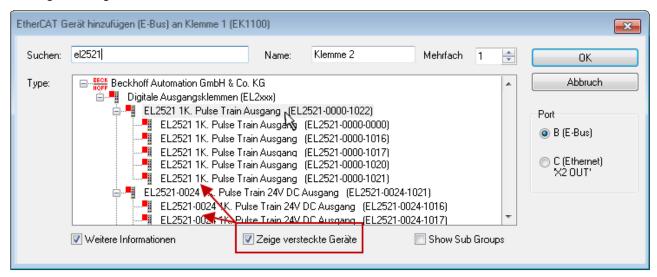


Abb. 101: Anzeige vorhergehender Revisionen

Geräte-Auswahl nach Revision, Kompatibilität

Mit der ESI-Beschreibung wird auch das Prozessabbild, die Art der Kommunikation zwischen Master und Slave/Gerät und ggf. Geräte-Funktionen definiert. Damit muss das reale Gerät (Firmware wenn vorhanden) die Kommunikationsanfragen/-einstellungen des Masters unterstützen. Dies ist abwärtskompatibel der Fall, d. h. neuere Geräte (höhere Revision) sollen es auch unterstützen, wenn der EtherCAT-Master sie als eine ältere Revision anspricht. Als Beckhoff-Kompatibilitätsregel für EtherCAT-Klemmen/ Boxen/ EJ-Module ist anzunehmen:

Geräte-Revision in der Anlage >= Geräte-Revision in der Konfiguration

Dies erlaubt auch den späteren Austausch von Geräten ohne Veränderung der Konfiguration (abweichende Vorgaben bei Antrieben möglich).

Beispiel

In der Konfiguration wird eine EL2521-0025-**1018** vorgesehen, dann kann real eine EL2521-0025-**1018** oder höher (-**1019**, -**1020**) eingesetzt werden.

```
Name
(EL2521-0025-1018)
Revisior
```

Abb. 102: Name/Revision Klemme

Wenn im TwinCAT-System aktuelle ESI-Beschreibungen vorliegen, entspricht der im Auswahldialog als letzte Revision angebotene Stand dem Produktionsstand von Beckhoff. Es wird empfohlen, bei Erstellung einer neuen Konfiguration jeweils diesen letzten Revisionsstand eines Gerätes zu verwenden, wenn aktuell produzierte Beckhoff-Geräte in der realen Applikation verwendet werden. Nur wenn ältere Geräte aus Lagerbeständen in der Applikation verbaut werden sollen, ist es sinnvoll eine ältere Revision einzubinden.

Das Gerät stellt sich dann mit seinem Prozessabbild im Konfigurationsbaum dar und kann nur parametriert werden: Verlinkung mit der Task, CoE/DC-Einstellungen, PlugIn-Definition, StartUp-Einstellungen, ...

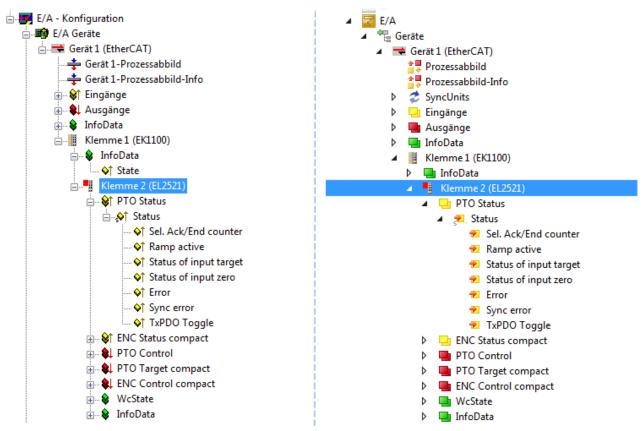


Abb. 103: EtherCAT Klemme im TwinCAT-Baum (links: TwinCAT 2; rechts: TwinCAT 3)

7.2.6 ONLINE Konfigurationserstellung

Erkennen / Scan des Geräts EtherCAT

Befindet sich das TwinCAT-System im CONFIG-Modus, kann online nach Geräten gesucht werden. Erkennbar ist dies durch ein Symbol unten rechts in der Informationsleiste:

- bei TwinCAT 2 durch eine blaue Anzeige "Config Mode" im System Manager-Fenster: Config Mode".
- bei der Benutzeroberfläche der TwinCAT 3 Entwicklungsumgebung durch ein Symbol 🧧 .

TwinCAT lässt sich in diesem Modus versetzen:

- TwinCAT 2: durch Auswahl von aus der Menüleiste oder über "Aktionen" → "Starten/Restarten von TwinCAT in Konfig-Modus"
- TwinCAT 3: durch Auswahl von aus der Menüleiste oder über "TWINCAT" →
 "Restart TwinCAT (Config Mode)"

Online Scannen im Config Mode

1

Die Online-Suche im RUN-Modus (produktiver Betrieb) ist nicht möglich. Es ist die Unterscheidung zwischen TwinCAT-Programmiersystem und TwinCAT-Zielsystem zu beachten.

Das TwinCAT 2-Icon () bzw. TwinCAT 3-Icon () in der Windows Taskleiste stellt immer den TwinCAT-Modus des lokalen IPC dar. Im System Manager-Fenster von TwinCAT 2 bzw. in der Benutzeroberfläche von TwinCAT 3 wird dagegen der TwinCAT-Zustand des Zielsystems angezeigt.

Abb. 104: Unterscheidung Lokalsystem/ Zielsystem (links: TwinCAT 2; rechts: TwinCAT 3)

Im Konfigurationsbaum bringt uns ein Rechtsklick auf den General-Punkt "I/O Devices" zum Such-Dialog.

Abb. 105: Scan Devices (links: TwinCAT 2; rechts: TwinCAT 3)

Dieser Scan-Modus versucht nicht nur EtherCAT-Geräte (bzw. die als solche nutzbaren Ethernet-Ports) zu finden, sondern auch NOVRAM, Feldbuskarten, SMB etc. Nicht alle Geräte können jedoch automatisch gefunden werden.

Abb. 106: Hinweis automatischer GeräteScan (links: TwinCAT 2; rechts: TwinCAT 3)

Ethernet Ports mit installierten TwinCAT Realtime-Treiber werden als "RT-Ethernet" Geräte angezeigt. Testweise wird an diesen Ports ein EtherCAT-Frame verschickt. Erkennt der Scan-Agent an der Antwort, dass ein EtherCAT-Slave angeschlossen ist, wird der Port allerdings gleich als "EtherCAT Device" angezeigt.

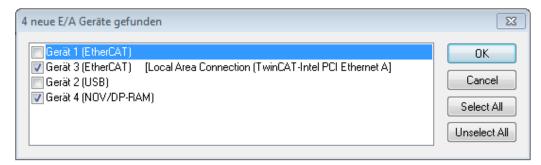


Abb. 107: Erkannte Ethernet-Geräte

Über entsprechende Kontrollkästchen können Geräte ausgewählt werden (wie in der Abb. "Erkannte Ethernet-Geräte" gezeigt ist z. B. Gerät 3 und Gerät 4 ausgewählt). Für alle angewählten Geräte wird nach Bestätigung "OK" im nachfolgenden ein Teilnehmer-Scan vorgeschlagen, s. Abb. "Scan-Abfrage nach dem automatischen Anlegen eines EtherCAT-Gerätes".

Auswahl des Ethernet-Ports

Es können nur Ethernet-Ports für ein EtherCAT-Gerät ausgewählt werden, für die der TwinCAT-Realtime-Treiber installiert ist. Dies muss für jeden Port getrennt vorgenommen werden. Siehe dazu die entsprechende Installationsseite [> 89].

Erkennen/Scan der EtherCAT Teilnehmer

Funktionsweise Online Scan

Beim Scan fragt der Master die Identity Informationen der EtherCAT-Slaves aus dem Slave-EEPROM ab. Es werden Name und Revision zur Typbestimmung herangezogen. Die entsprechenden Geräte werden dann in den hinterlegten ESI-Daten gesucht und in dem dort definierten Default-Zustand in den Konfigurationsbaum eingebaut.

Abb. 108: Beispiel Default-Zustand

HINWEIS

Slave-Scan in der Praxis im Serienmaschinenbau

Die Scan-Funktion sollte mit Bedacht angewendet werden. Sie ist ein praktisches und schnelles Werkzeug, um für eine Inbetriebnahme eine Erst-Konfiguration als Arbeitsgrundlage zu erzeugen. Im Serienmaschinebau bzw. bei Reproduktion der Anlage sollte die Funktion aber nicht mehr zur Konfigurationserstellung verwendet werden sondern ggf. zum Vergleich [* 110] mit der festgelegten Erst-Konfiguration.

Hintergrund: da Beckhoff aus Gründen der Produktpflege gelegentlich den Revisionsstand der ausgelieferten Produkte erhöht, kann durch einen solchen Scan eine Konfiguration erzeugt werden, die (bei identischem Maschinenaufbau) zwar von der Geräteliste her identisch ist, die jeweilige Geräterevision unterscheiden sich aber ggf. von der Erstkonfiguration.

Beispiel

Firma A baut den Prototyp einer späteren Serienmaschine B. Dazu wird der Prototyp aufgebaut, in TwinCAT ein Scan über die IO-Geräte durchgeführt und somit die Erstkonfiguration "B.tsm" erstellt. An einer beliebigen Stelle sitzt dabei die EtherCAT-Klemme EL2521-0025 in der Revision 1018. Diese wird also so in die TwinCAT-Konfiguration eingebaut:

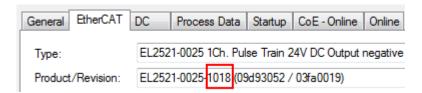


Abb. 109: Einbau EtherCAT-Klemme mit Revision -1018

Ebenso werden in der Prototypentestphase Funktionen und Eigenschaften dieser Klemme durch die Programmierer/Inbetriebnehmer getestet und ggf. genutzt d. h. aus der PLC "B.pro" oder der NC angesprochen. (sinngemäß gilt das gleiche für die TwinCAT 3-Solution-Dateien).

Nun wird die Prototypenentwicklung abgeschlossen und der Serienbau der Maschine B gestartet, Beckhoff liefert dazu weiterhin die EL2521-0025-0018. Falls die Inbetriebnehmer der Abteilung Serienmaschinenbau immer einen Scan durchführen, entsteht dabei bei jeder Maschine wieder ein eine inhaltsgleiche B-Konfiguration. Ebenso werden eventuell von A weltweit Ersatzteillager für die kommenden Serienmaschinen mit Klemmen EL2521-0025-1018 angelegt.

Nach einiger Zeit erweitert Beckhoff die EL2521-0025 um ein neues Feature C. Deshalb wird die FW geändert, nach außen hin kenntlich durch einen höheren FW-Stand **und eine neue Revision** -1019. Trotzdem unterstützt das neue Gerät natürlich Funktionen und Schnittstellen der Vorgängerversion(en), eine Anpassung von "B.tsm" oder gar "B.pro" ist somit nicht nötig. Die Serienmaschinen können weiterhin mit "B.tsm" und "B.pro" gebaut werden, zur Kontrolle der aufgebauten Maschine ist ein <u>vergleichernder Scan</u> [• 110] gegen die Erstkonfiguration "B.tsm" sinnvoll.

Wird nun allerdings in der Abteilung Seriennmaschinenbau nicht "B.tsm" verwendet, sondern wieder ein Scan zur Erstellung der produktiven Konfiguration durchgeführt, wird automatisch die Revision **-1019** erkannt und in die Konfiguration eingebaut:

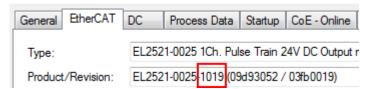


Abb. 110: Erkennen EtherCAT-Klemme mit Revision -1019

Dies wird in der Regel von den Inbetriebnehmern nicht bemerkt. TwinCAT kann ebenfalls nichts melden, da ja quasi eine neue Konfiguration erstellt wird. Es führt nach der Kompatibilitätsregel allerdings dazu, dass in diese Maschine später keine EL2521-0025-**1018** als Ersatzteil eingebaut werden sollen (auch wenn dies in den allermeisten Fällen dennoch funktioniert).

Dazu kommt, dass durch produktionsbegleitende Entwicklung in Firma A das neue Feature C der EL2521-0025-1019 (zum Beispiel ein verbesserter Analogfilter oder ein zusätzliches Prozessdatum zur Diagnose) gerne entdeckt und ohne betriebsinterne Rücksprache genutzt wird. Für die so entstandene neue Konfiguration "B2.tsm" ist der bisherige Bestand an Ersatzteilgeräten nicht mehr zu verwenden.

Bei etabliertem Serienmaschinenbau sollte der Scan nur noch zu informativen Vergleichszwecken gegen eine definierte Erstkonfiguration durchgeführt werden. Änderungen sind mit Bedacht durchzuführen!

Wurde ein EtherCAT-Device in der Konfiguration angelegt (manuell oder durch Scan), kann das I/O-Feld nach Teilnehmern/Slaves gescannt werden.

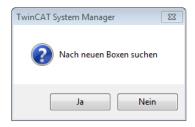


Abb. 111: Scan-Abfrage nach automatischem Anlegen eines EtherCAT-Gerätes (links: TC2; rechts TC3)

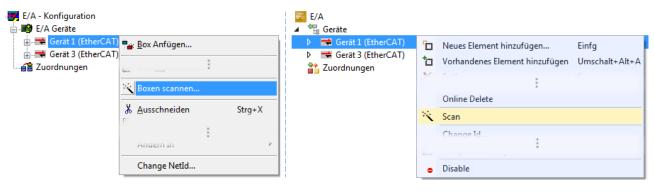


Abb. 112: Manuelles Scannen nach Teilnehmern auf festgelegtem EtherCAT Device (links: TC2; rechts TC3)

Im System Manager (TwinCAT 2) bzw. der Benutzeroberfläche (TwinCAT 3) kann der Scan-Ablauf am Ladebalken unten in der Statusleiste verfolgt werden.

Abb. 113: Scanfortschritt am Beispiel von TwinCAT 2

Die Konfiguration wird aufgebaut und kann danach gleich in den Online-Zustand (OPERATIONAL) versetzt werden.

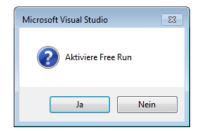


Abb. 114: Abfrage Config/FreeRun (links: TC2; rechts TC3)

Im Config/FreeRun-Mode wechselt die System Manager Anzeige blau/rot und das EtherCAT-Gerät wird auch ohne aktive Task (NC, PLC) mit der Freilauf-Zykluszeit von 4 ms (Standardeinstellung) betrieben.

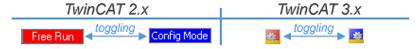


Abb. 115: Anzeige des Wechsels zwischen "Free Run" und "Config Mode" unten rechts in der Statusleiste

Abb. 116: TwinCAT kann auch über einen Button in diesen Zustand versetzt werden (links: TC2; rechts TC3)

Das EtherCAT-System sollte sich danach in einem funktionsfähigen zyklischen Betrieb nach Abb. Beispielhafte Online-Anzeige befinden.

Abb. 117: Beispielhafte Online-Anzeige

Zu beachten sind

- · alle Slaves sollen im OP-State sein
- · der EtherCAT-Master soll im "Actual State" OP sein
- "Frames/sec" soll der Zykluszeit unter Berücksichtigung der versendeten Frameanzahl sein
- es sollen weder übermäßig "LostFrames"- noch CRC-Fehler auftreten

Die Konfiguration ist nun fertig gestellt. Sie kann auch wie im <u>manuellen Vorgang [▶ 100]</u> beschrieben verändert werden.

Problembehandlung

Beim Scannen können verschiedene Effekte auftreten.

- es wird ein unbekanntes Gerät entdeckt, d. h. ein EtherCAT-Slave für den keine ESI-XML-Beschreibung vorliegt.
 - In diesem Fall bietet der System Manager an, die im Gerät eventuell vorliegende ESI auszulesen. Lesen Sie dazu das Kapitel "Hinweise zu ESI/XML".
- · Teilnehmer werden nicht richtig erkannt

Ursachen können sein

- fehlerhafte Datenverbindungen, es treten Datenverluste w\u00e4hrend des Scans auf
- Slave hat ungültige Gerätebeschreibung

Es sind die Verbindungen und Teilnehmer gezielt zu überprüfen, z. B. durch den Emergency Scan. Der Scan ist dann erneut vorzunehmen.

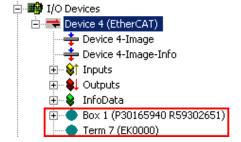


Abb. 118: Fehlerhafte Erkennung

Im System Manager werden solche Geräte evtl. als EK0000 oder unbekannte Geräte angelegt. Ein Betrieb ist nicht möglich bzw. sinnvoll.

Scan über bestehender Konfiguration

HINWEIS

Veränderung der Konfiguration nach Vergleich

Bei diesem Scan werden z. Z. (TwinCAT 2.11 bzw. 3.1) nur die Geräteeigenschaften Vendor (Hersteller), Gerätename und Revision verglichen! Ein "ChangeTo" oder "Copy" sollte nur im Hinblick auf die Beckhoff IO-Kompatibilitätsregel (s. o.) nur mit Bedacht vorgenommen werden. Das Gerät wird dann in der Konfiguration gegen die vorgefundene Revision ausgetauscht, dies kann Einfluss auf unterstützte Prozessdaten und Funktionen haben.

Wird der Scan bei bestehender Konfiguration angestoßen, kann die reale I/O-Umgebung genau der Konfiguration entsprechen oder differieren. So kann die Konfiguration verglichen werden.

Abb. 119: Identische Konfiguration (links: TwinCAT 2; rechts TwinCAT 3)

Sind Unterschiede feststellbar, werden diese im Korrekturdialog angezeigt, die Konfiguration kann umgehend angepasst werden.

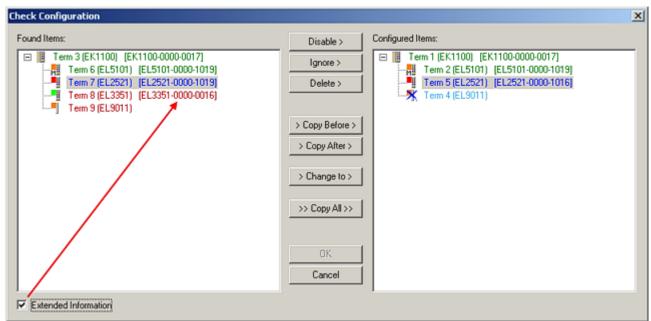


Abb. 120: Korrekturdialog

Die Anzeige der "Extended Information" wird empfohlen, weil dadurch Unterschiede in der Revision sichtbar werden.

Farbe	Erläuterung			
grün	Dieser EtherCAT-Slave findet seine Entsprechung auf der Gegenseite. Typ und Revision stimmen überein.			
blau	Dieser EtherCAT-Slave ist auf der Gegenseite vorhanden, aber in einer anderen Revision. Diese andere Revision kann andere Default-Einstellungen der Prozessdaten und andere/zusätzliche Funktionen haben. Ist die gefundene Revision > als die konfigurierte Revision, ist der Einsatz unter Berücksichtigung der Kompatibilität möglich.			
	Ist die gefundene Revision < als die konfigurierte Revision, ist der Einsatz vermutlich nicht möglich. Eventuell unterstützt das vorgefundene Gerät nicht alle Funktionen, die der Master von ihm aufgrund der höheren Revision erwartet.			
hellblau	Dieser EtherCAT-Slave wird ignoriert (Button "Ignore")			
rot	Dieser EtherCAT-Slave ist auf der Gegenseite nicht vorhanden			
	 Er ist vorhanden, aber in einer anderen Revision, die sich auch in den Eigenschaften von der angegebenen unterscheidet. Auch hier gilt dann das Kompatibilitätsprinzip: Ist die gefundene Revision > als die konfigurierte Revision, ist der Einsatz unter Berücksichtigung der Kompatibilität möglich, da Nachfolger- Geräte die Funktionen der Vorgänger-Geräte unterstützen sollen. 			
	Ist die gefundene Revision < als die konfigurierte Revision, ist der Einsatz vermutlich nicht möglich. Eventuell unterstützt das vorgefundene Gerät nicht alle Funktionen, die der Master von ihm aufgrund der höheren Revision erwartet.			

Geräte-Auswahl nach Revision, Kompatibilität

Mit der ESI-Beschreibung wird auch das Prozessabbild, die Art der Kommunikation zwischen Master und Slave/Gerät und ggf. Geräte-Funktionen definiert. Damit muss das reale Gerät (Firmware wenn vorhanden) die Kommunikationsanfragen/-einstellungen des Masters unterstützen. Dies ist abwärtskompatibel der Fall, d. h. neuere Geräte (höhere Revision) sollen es auch unterstützen, wenn der EtherCAT-Master sie als eine ältere Revision anspricht. Als Beckhoff-Kompatibilitätsregel für EtherCAT-Klemmen/ Boxen/ EJ-Module ist anzunehmen:

Geräte-Revision in der Anlage >= Geräte-Revision in der Konfiguration

Dies erlaubt auch den späteren Austausch von Geräten ohne Veränderung der Konfiguration (abweichende Vorgaben bei Antrieben möglich).

Beispiel

In der Konfiguration wird eine EL2521-0025-**1018** vorgesehen, dann kann real eine EL2521-0025-**1018** oder höher (-**1019**, -**1020**) eingesetzt werden.

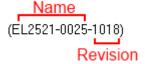


Abb. 121: Name/Revision Klemme

Wenn im TwinCAT-System aktuelle ESI-Beschreibungen vorliegen, entspricht der im Auswahldialog als letzte Revision angebotene Stand dem Produktionsstand von Beckhoff. Es wird empfohlen, bei Erstellung einer neuen Konfiguration jeweils diesen letzten Revisionsstand eines Gerätes zu verwenden, wenn aktuell produzierte Beckhoff-Geräte in der realen Applikation verwendet werden. Nur wenn ältere Geräte aus Lagerbeständen in der Applikation verbaut werden sollen, ist es sinnvoll eine ältere Revision einzubinden.

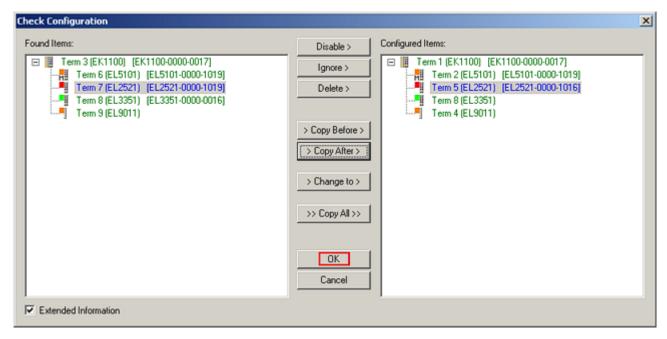


Abb. 122: Korrekturdialog mit Änderungen

Sind alle Änderungen übernommen oder akzeptiert, können sie durch "OK" in die reale *.tsm-Konfiguration übernommen werden.

Change to Compatible Type

TwinCAT bietet mit "Change to Compatible Type…" eine Funktion zum Austauschen eines Gerätes unter Beibehaltung der Links in die Task.

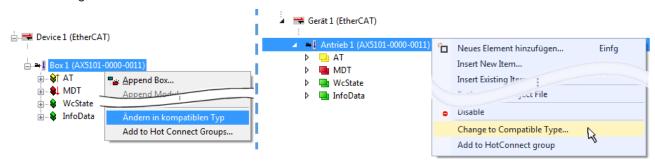


Abb. 123: Dialog "Change to Compatible Type..." (links: TwinCAT 2; rechts TwinCAT 3)

Folgende Elemente in der ESI eines EtherCAT-Teilenhmers werden von TwinCAT verglichen und als gleich vorausgesetzt, um zu entscheiden, ob ein Gerät als "kompatibel" angezeigt wird:

- Physics (z.B. RJ45, Ebus...)
- FMMU (zusätzliche sind erlaubt)
- · SyncManager (SM, zusätzliche sind erlaubt)
- EoE (Attribute MAC, IP)
- · CoE (Attribute SdoInfo, PdoAssign, PdoConfig, PdoUpload, CompleteAccess)
- FoE
- PDO (Prozessdaten: Reihenfolge, SyncUnit SU, SyncManager SM, EntryCount, Entry.Datatype)

Bei Geräten der AX5000-Familie wird diese Funktion intensiv verwendet.

Change to Alternative Type

Der TwinCAT System Manager bietet eine Funktion zum Austauschen eines Gerätes: Change to Alternative Type

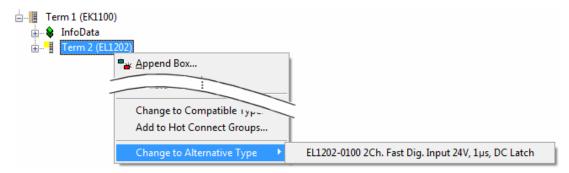


Abb. 124: TwinCAT 2 Dialog Change to Alternative Type

Wenn aufgerufen, sucht der System Manager in der bezogenen Geräte-ESI (hier im Beispiel: EL1202-0000) nach dort enthaltenen Angaben zu kompatiblen Geräten. Die Konfiguration wird geändert und gleichzeitig das ESI-EEPROM überschrieben - deshalb ist dieser Vorgang nur im Online-Zustand (ConfigMode) möglich.

7.2.7 EtherCAT-Teilnehmerkonfiguration

Klicken Sie im linken Fenster des TwinCAT 2 System Managers bzw. bei der TwinCAT 3 Entwicklungsumgebung im Projektmappen-Explorer auf das Element der Klemme im Baum, die Sie konfigurieren möchten (im Beispiel: Klemme 3: EL3751).

Abb. 125: "Baumzweig" Element als Klemme EL3751

Im rechten Fenster des System Managers (TwinCAT 2) bzw. der Entwicklungsumgebung (TwinCAT 3) stehen Ihnen nun verschiedene Karteireiter zur Konfiguration der Klemme zur Verfügung. Dabei bestimmt das Maß der Komplexität eines Teilnehmers welche Karteireiter zur Verfügung stehen. So bietet, wie im obigen Beispiel zu sehen, die Klemme EL3751 viele Einstellmöglichkeiten und stellt eine entsprechende Anzahl von Karteireitern zur Verfügung. Im Gegensatz dazu stehen z. B. bei der Klemme EL1004 lediglich die Karteireiter "Allgemein", "EtherCAT", "Prozessdaten" und "Online" zur Auswahl. Einige Klemmen, wie etwa die EL6695 bieten spezielle Funktionen über einen Karteireiter mit der eigenen Klemmenbezeichnung an, also "EL6695" in diesem Fall. Ebenfalls wird ein spezieller Karteireiter "Settings" von Klemmen mit umfangreichen Einstellmöglichkeiten angeboten (z. B. EL3751).

Karteireiter "Allgemein"

Abb. 126: Karteireiter "Allgemein"

Name Name des EtherCAT-Geräts

ld Laufende Nr. des EtherCAT-Geräts

Typ Typ des EtherCAT-Geräts

Kommentar Hier können Sie einen Kommentar (z. B. zum Anlagenteil) hinzufügen.

Disabled Hier können Sie das EtherCAT-Gerät deaktivieren.

Symbole erzeugen Nur wenn dieses Kontrollkästchen aktiviert ist, können Sie per ADS auf diesen

EtherCAT-Slave zugreifen.

Karteireiter "EtherCAT"



Abb. 127: Karteireiter "EtherCAT"

Typ Typ des EtherCAT-Geräts

Product/Revision Produkt- und Revisions-Nummer des EtherCAT-Geräts

Auto-Inkrement-Adresse des EtherCAT-Geräts. Die Auto-Inkrement-Adresse Auto Inc Adr.

kann benutzt werden, um jedes EtherCAT-Gerät anhand seiner physikalischen

Position im Kommunikationsring zu adressieren. Die Auto-Inkrement-

Adressierung wird während der Start-Up-Phase benutzt, wenn der EtherCAT-Master die Adressen an die EtherCAT-Geräte vergibt. Bei der Auto-Inkrement-Adressierung hat der erste EtherCAT-Slave im Ring die Adresse 0000_{hex} und für jeden weiteren Folgenden wird die Adresse um 1 verringert (FFFF_{hex}, FFFE_{hex}

usw.).

EtherCAT Adr. Feste Adresse eines EtherCAT-Slaves. Diese Adresse wird vom EtherCAT-

> Master während der Startup-Phase vergeben. Um den Default-Wert zu ändern, müssen Sie zuvor das Kontrollkästchen links von dem Eingabefeld markieren. Name und Port des EtherCAT-Geräts, an den dieses Gerät angeschlossen ist.

Vorgänger Port

Falls es möglich ist, dieses Gerät mit einem anderen zu verbinden, ohne die Reihenfolge der EtherCAT-Geräte im Kommunikationsring zu ändern, dann ist

dieses Kombinationsfeld aktiviert und Sie können das EtherCAT-Gerät

auswählen, mit dem dieses Gerät verbunden werden soll.

Weitere Einstellungen Diese Schaltfläche öffnet die Dialoge für die erweiterten Einstellungen.

Der Link am unteren Rand des Karteireiters führt Sie im Internet auf die Produktseite dieses EtherCAT-Geräts.

Karteireiter "Prozessdaten"

Zeigt die (Allgemeine Slave PDO-) Konfiguration der Prozessdaten an. Die Eingangs- und Ausgangsdaten des EtherCAT-Slaves werden als CANopen Prozess-Daten-Objekte (Process Data Objects, PDO) dargestellt. Falls der EtherCAT-Slave es unterstützt, ermöglicht dieser Dialog dem Anwender ein PDO über PDO-Zuordnung auszuwählen und den Inhalt des individuellen PDOs zu variieren.

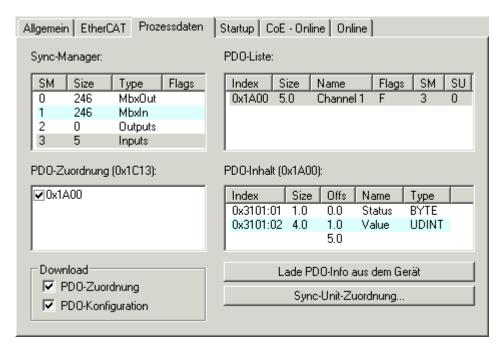


Abb. 128: Karteireiter "Prozessdaten"

Die von einem EtherCAT-Slave zyklisch übertragenen Prozessdaten (PDOs) sind die Nutzdaten, die in der Applikation zyklusaktuell erwartet werden oder die an den Slave gesendet werden. Dazu parametriert der EtherCAT-Master (Beckhoff TwinCAT) jeden EtherCAT-Slave während der Hochlaufphase, um festzulegen, welche Prozessdaten (Größe in Bit/Bytes, Quellort, Übertragungsart) er von oder zu diesem Slave übermitteln möchte. Eine falsche Konfiguration kann einen erfolgreichen Start des Slaves verhindern.

Für Beckhoff EtherCAT-Slaves EL, ES, EM, EJ und EP gilt im Allgemeinen:

- Die vom Gerät unterstützten Prozessdaten Input/Output sind in der ESI/XML-Beschreibung herstellerseitig definiert. Der TwinCAT EtherCAT-Master verwendet die ESI-Beschreibung zur richtigen Konfiguration des Slaves.
- Wenn vorgesehen, können die Prozessdaten im System Manager verändert werden. Siehe dazu die Gerätedokumentation.
 - Solche Veränderungen können sein: Ausblenden eines Kanals, Anzeige von zusätzlichen zyklischen Informationen, Anzeige in 16 Bit statt in 8 Bit Datenumfang usw.
- Die Prozessdateninformationen liegen bei so genannten "intelligenten" EtherCAT-Geräten ebenfalls im CoE-Verzeichnis vor. Beliebige Veränderungen in diesem CoE-Verzeichnis, die zu abweichenden PDO-Einstellungen führen, verhindern jedoch das erfolgreiche Hochlaufen des Slaves. Es wird davon abgeraten, andere als die vorgesehene Prozessdaten zu konfigurieren, denn die Geräte-Firmware (wenn vorhanden) ist auf diese PDO-Kombinationen abgestimmt.

Ist laut Gerätedokumentation eine Veränderung der Prozessdaten zulässig, kann dies wie folgt vorgenommen werden, s. Abb. *Konfigurieren der Prozessdaten*.

- · A: Wählen Sie das zu konfigurierende Gerät
- B: Wählen Sie im Reiter "Process Data" den Input- oder Output-Syncmanager (C)
- · D: die PDOs können an- bzw. abgewählt werden
- H: die neuen Prozessdaten sind als link-fähige Variablen im System Manager sichtbar Nach einem Aktivieren der Konfiguration und TwinCAT-Neustart (bzw. Neustart des EtherCAT-Masters) sind die neuen Prozessdaten aktiv.
- E: wenn ein Slave dies unterstützt, können auch Input- und Output-PDO gleichzeitig durch Anwahl eines so genannten PDO-Satzes ("Predefined PDO-settings") verändert werden.

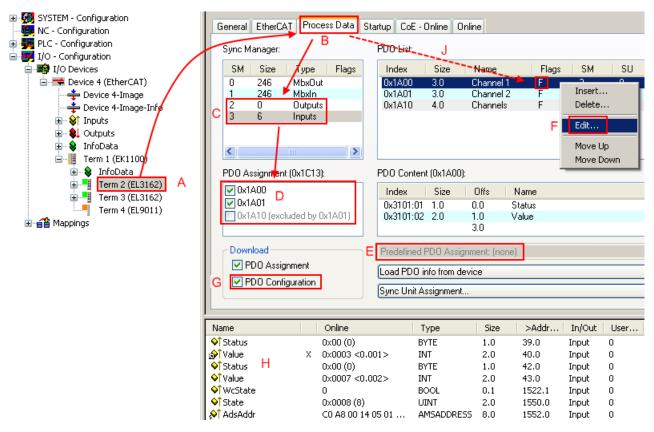


Abb. 129: Konfigurieren der Prozessdaten

Manuelle Veränderung der Prozessdaten

In der PDO-Übersicht kann laut ESI-Beschreibung ein PDO als "fixed" mit dem Flag "F" gekennzeichnet sein (Abb. *Konfigurieren der Prozessdaten*, J). Solche PDOs können prinzipiell nicht in ihrer Zusammenstellung verändert werden, auch wenn TwinCAT den entsprechenden Dialog anbietet ("Edit"). Insbesondere können keine beliebigen CoE-Inhalte als zyklische Prozessdaten eingeblendet werden. Dies gilt im Allgemeinen auch für den Fall, dass ein Gerät den Download der PDO-Konfiguration "G" unterstützt. Bei falscher Konfiguration verweigert der EtherCAT-Slave üblicherweise den Start und Wechsel in den OP-State. Eine Logger-Meldung wegen "invalid SM cfg" wird im System Manager ausgegeben: Diese Fehlermeldung "invalid SM IN cfg" oder "invalid SM OUT cfg" bietet gleich einen Hinweis auf die Ursache des fehlgeschlagenen Starts.

Eine <u>detaillierte Beschreibung</u> [▶ 121] befindet sich am Ende dieses Kapitels.

Karteireiter "Startup"

Der Karteireiter *Startup* wird angezeigt, wenn der EtherCAT-Slave eine Mailbox hat und das Protokoll *CANopen over EtherCAT* (CoE) oder das Protokoll *Servo drive over EtherCAT* unterstützt. Mit Hilfe dieses Karteireiters können Sie betrachten, welche Download-Requests während des Startups zur Mailbox gesendet werden. Es ist auch möglich neue Mailbox-Requests zur Listenanzeige hinzuzufügen. Die Download-Requests werden in derselben Reihenfolge zum Slave gesendet, wie sie in der Liste angezeigt werden.

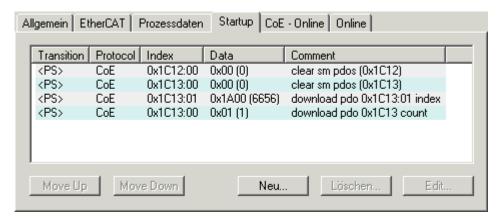


Abb. 130: Karteireiter "Startup"

Spalte	Beschreibung	
Transition Übergang, in den der Request gesendet wird. Dies kann entweder		
	der Übergang von Pre-Operational to Safe-Operational (PS) oder	
	der Übergang von Safe-Operational to Operational (SO) sein.	
	Wenn der Übergang in "<>" eingeschlossen ist (z. B. <ps>), dann ist der Mailbox Request fest und kann vom Anwender nicht geändert oder gelöscht werden.</ps>	
Protokoll	Art des Mailbox-Protokolls	
Index	Index des Objekts	
Data	Datum, das zu diesem Objekt heruntergeladen werden soll.	
Kommentar	Beschreibung des zu der Mailbox zu sendenden Requests	

Move Up	Diese Schaltfläche bewegt den markierten Request in der Liste um eine Position nach oben.
Move Down	Diese Schaltfläche bewegt den markierten Request in der Liste um eine Position nach unten.
New	Diese Schaltfläche fügt einen neuen Mailbox-Download-Request, der währen des Startups gesendet werden soll hinzu.
Delete	Diese Schaltfläche löscht den markierten Eintrag.
Edit	Diese Schaltfläche editiert einen existierenden Request.

Karteireiter "CoE - Online"

Wenn der EtherCAT-Slave das Protokoll *CANopen over EtherCAT* (CoE) unterstützt, wird der zusätzliche Karteireiter *CoE - Online* angezeigt. Dieser Dialog listet den Inhalt des Objektverzeichnisses des Slaves auf (SDO-Upload) und erlaubt dem Anwender den Inhalt eines Objekts dieses Verzeichnisses zu ändern. Details zu den Objekten der einzelnen EtherCAT-Geräte finden Sie in den gerätespezifischen Objektbeschreibungen.

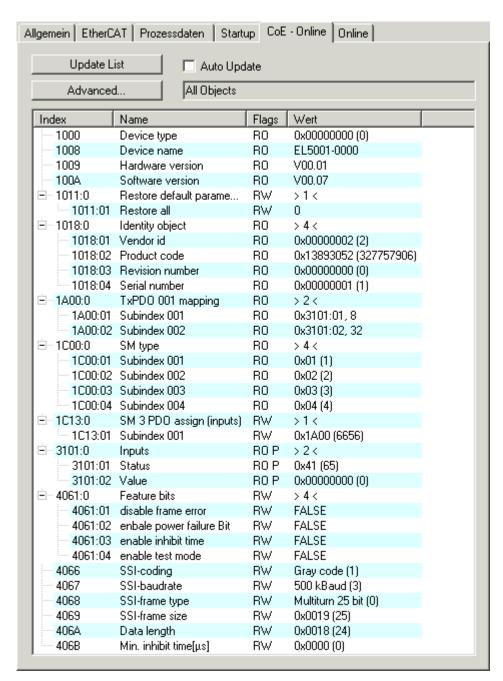


Abb. 131: Karteireiter "CoE - Online"

Darstellung der Objekt-Liste

Spalte	Beschrei	Beschreibung		
Index	Index und	Index und Subindex des Objekts		
Name	Name de	Name des Objekts		
Flags	RW	Das Objekt kann ausgelesen und Daten können in das Objekt geschrieben werden (Read/Write)		
	RO	Das Objekt kann ausgelesen werden, es ist aber nicht möglich Daten in das Objekt zu schreiben (Read only)		
	Р	Ein zusätzliches P kennzeichnet das Objekt als Prozessdatenobjekt.		
Wert	Wert des	Wert des Objekts		

Update List Auto Update Die Schaltfläche *Update List* aktualisiert alle Objekte in der Listenanzeige Wenn dieses Kontrollkästchen angewählt ist, wird der Inhalt der Objekte

automatisch aktualisiert.

Advanced

Die Schaltfläche *Advanced* öffnet den Dialog *Advanced Settings*. Hier können Sie festlegen, welche Objekte in der Liste angezeigt werden.

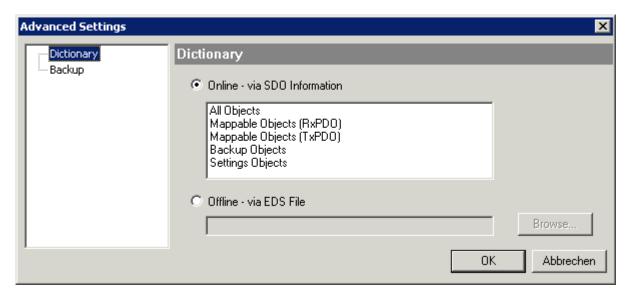


Abb. 132: Dialog "Advanced settings"

Online - über SDO-Information Wenn dieses Optionsfeld angewählt ist, wird die Liste der im Objektverzeichnis des Slaves enthaltenen Objekte über SDO-Information

aus dem Slave hochgeladen. In der untenstehenden Liste können Sie festlegen welche Objekt-Typen hochgeladen werden sollen.

Offline - über EDS-Datei

Wenn dieses Optionsfeld angewählt ist, wird die Liste der im

Objektverzeichnis enthaltenen Objekte aus einer EDS-Datei gelesen, die der

Anwender bereitstellt.

Karteireiter "Online"

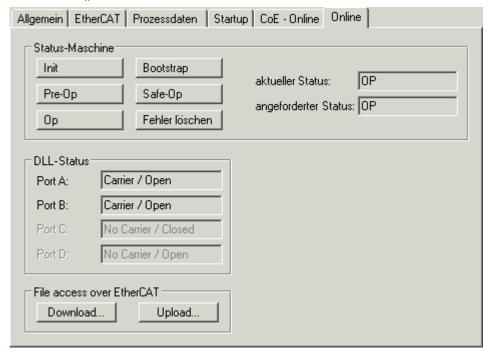


Abb. 133: Karteireiter "Online"

Status Maschine

Init Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Init* zu setzen.Pre-Op Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Pre-Operational*

zu setzen.

Op Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Operational* zu

setzen.

Bootstrap Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status *Bootstrap* zu

setzen.

Safe-Op Diese Schaltfläche versucht das EtherCAT-Gerät auf den Status Safe-Operational

zu setzen.

Fehler löschen Diese Schaltfläche versucht die Fehleranzeige zu löschen. Wenn ein EtherCAT-

Slave beim Statuswechsel versagt, setzt er eine Fehler-Flag.

Beispiel: ein EtherCAT-Slave ist im Zustand PREOP (Pre-Operational). Nun fordert der Master den Zustand SAFEOP (Safe-Operational) an. Wenn der Slave nun beim Zustandswechsel versagt, setzt er das Fehler-Flag. Der aktuelle Zustand wird nun als ERR PREOP angezeigt. Nach Drücken der Schaltfläche *Fehler löschen* ist das Fehler-Flag gelöscht und der aktuelle Zustand wird wieder als PREOP angezeigt.

Aktueller Status Zeigt den aktuellen Status des EtherCAT-Geräts an.

Angeforderter Status Zeigt den für das EtherCAT-Gerät angeforderten Status an.

DLL-Status

Zeigt den DLL-Status (Data-Link-Layer-Status) der einzelnen Ports des EtherCAT-Slaves an. Der DLL-Status kann vier verschiedene Zustände annehmen:

Status	Beschreibung
No Carrier / Open	Kein Carrier-Signal am Port vorhanden, der Port ist aber offen.
No Carrier / Closed	Kein Carrier-Signal am Port vorhanden und der Port ist geschlossen.
Carrier / Open	Carrier-Signal ist am Port vorhanden und der Port ist offen.
Carrier / Closed	Carrier-Signal ist am Port vorhanden, der Port ist aber geschlossen.

File Access over EtherCAT

Download Mit dieser Schaltfläche können Sie eine Datei zum EtherCAT-Gerät schreiben. **Upload** Mit dieser Schaltfläche können Sie eine Datei vom EtherCAT-Gerät lesen.

Karteireiter "DC" (Distributed Clocks)

Abb. 134: Karteireiter "DC" (Distributed Clocks)

Betriebsart Auswahlmöglichkeiten (optional):

• FreeRun

SM-Synchron

• DC-Synchron (Input based)

DC-Synchron

Erweiterte Einstellungen... Erweiterte Einstellungen für die Nachregelung der echtzeitbestimmenden

TwinCAT-Uhr

Detaillierte Informationen zu Distributed Clocks sind unter http://infosys.beckhoff.de angegeben:

Feldbuskomponenten → EtherCAT-Klemmen → EtherCAT System Dokumentation → Distributed Clocks

7.2.7.1 Detaillierte Beschreibung des Karteireiters "Prozessdaten"

Sync-Manager

Listet die Konfiguration der Sync-Manager (SM) auf.

Wenn das EtherCAT-Gerät eine Mailbox hat, wird der SM0 für den Mailbox-Output (MbxOut) und der SM1 für den Mailbox-Intput (MbxIn) benutzt.

Der SM2 wird für die Ausgangsprozessdaten (Outputs) und der SM3 (Inputs) für die Eingangsprozessdaten benutzt.

Wenn ein Eintrag ausgewählt ist, wird die korrespondierende PDO-Zuordnung in der darunter stehenden Liste PDO-Zuordnung angezeigt.

PDO-Zuordnung

PDO-Zuordnung des ausgewählten Sync-Managers. Hier werden alle für diesen Sync-Manager-Typ definierten PDOs aufgelistet:

- Wenn in der Sync-Manager-Liste der Ausgangs-Sync-Manager (Outputs) ausgewählt ist, werden alle RxPDOs angezeigt.
- Wenn in der Sync-Manager-Liste der Eingangs-Sync-Manager (Inputs) ausgewählt ist, werden alle TxPDOs angezeigt.

Die markierten Einträge sind die PDOs, die an der Prozessdatenübertragung teilnehmen. Diese PDOs werden in der Baumdarstellung des System-Managers als Variablen des EtherCAT-Geräts angezeigt. Der Name der Variable ist identisch mit dem Parameter Name des PDO, wie er in der PDO-Liste angezeigt wird. Falls ein Eintrag in der PDO-Zuordnungsliste deaktiviert ist (nicht markiert und ausgegraut), zeigt dies an, dass dieser Eintrag von der PDO-Zuordnung ausgenommen ist. Um ein ausgegrautes PDO auswählen zu können, müssen Sie zuerst das aktuell angewählte PDO abwählen.

Aktivierung der PDO-Zuordnung

- ✓ Wenn Sie die PDO-Zuordnung geändert haben, muss zur Aktivierung der neuen PDO-Zuordnung
- a) der EtherCAT-Slave einmal den Statusübergang PS (von Pre-Operational zu Safe-Operational) durchlaufen (siehe Karteireiter Online [▶ 119])
- b) der System-Manager die EtherCAT-Slaves neu laden

PDO-Liste

Liste aller von diesem EtherCAT-Gerät unterstützten PDOs. Der Inhalt des ausgewählten PDOs wird der Liste PDO-Content angezeigt. Durch Doppelklick auf einen Eintrag können Sie die Konfiguration des PDO ändern.

Spalte	Bes	Beschreibung		
Index	Inde	Index des PDO.		
Size	Grö	ße des PDO in Byte.		
Name	Wei	Name des PDO. Wenn dieses PDO einem Sync-Manager zugeordnet ist, erscheint es als Variable des Slaves mit diesem Parameter als Namen.		
Flags	F	Fester Inhalt: Der Inhalt dieses PDO ist fest und kann nicht vom System-Manager geändert werden.		
	M	Obligatorisches PDO (Mandatory). Dieses PDO ist zwingend Erforderlich und muss deshalb einem Sync-Manager Zugeordnet werden! Als Konsequenz können Sie dieses PDO nicht aus der Liste <i>PDO-Zuordnungen</i> streichen		
SM	Sync-Manager, dem dieses PDO zugeordnet ist. Falls dieser Eintrag leer ist, nimmt dieses PDO nicht am Prozessdatenverkehr teil.			
SU	Sync-Unit, der dieses PDO zugeordnet ist.			

PDO-Inhalt

Zeigt den Inhalt des PDOs an. Falls das Flag F (fester Inhalt) des PDOs nicht gesetzt ist, können Sie den Inhalt ändern.

Download

Falls das Gerät intelligent ist und über eine Mailbox verfügt, können die Konfiguration des PDOs und die PDO-Zuordnungen zum Gerät herunter geladen werden. Dies ist ein optionales Feature, das nicht von allen EtherCAT-Slaves unterstützt wird.

PDO-Zuordnung

Falls dieses Kontrollkästchen angewählt ist, wird die PDO-Zuordnung die in der PDO-Zuordnungsliste konfiguriert ist beim Startup zum Gerät herunter geladen. Die notwendigen, zum Gerät zu sendenden Kommandos können in auf dem Karteireiter <u>Startup</u> [▶ 116] betrachtet werden.

PDO-Konfiguration

Falls dieses Kontrollkästchen angewählt ist, wird die Konfiguration des jeweiligen PDOs (wie sie in der PDO-Liste und der Anzeige PDO-Inhalt angezeigt wird) zum EtherCAT-Slave herunter geladen.

7.2.8 NC - Konfiguration (Motion)

Installation der neuesten XML-Device-Description

Stellen Sie sicher, dass Sie die entsprechende aktuellste XML-Device-Description in TwinCAT installiert haben. Diese kann im Download-Bereich auf der <u>Beckhoff Website</u> heruntergeladen und entsprechend der Installationsanweisungen installiert werden.

Nachfolgend wird die Achsen-Konfiguration und Verknüpfung im TwinCAT System Manager (Config mode) am Beispiel der EL5151 beschrieben. Gehen Sie bitte wie folgt vor:

Hinzufügen eines Motion-Elements

Klicken Sie mit der rechten Maustaste auf Motion

Wählen Sie im Pull-down Menü Neues Element hinzufügen... (Abb. Motion, Element hinzufügen).

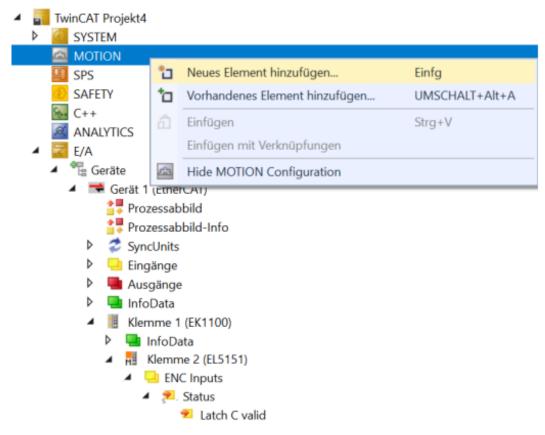


Abb. 135: Motion, Element hinzufügen

Wählen sie den Konfigurations-Typ NC/PTP NCI Configuration.

Bennen Sie die Task und bestätigen Sie mit OK (Abb. Typ auswählen, Task benennen und bestätigen)

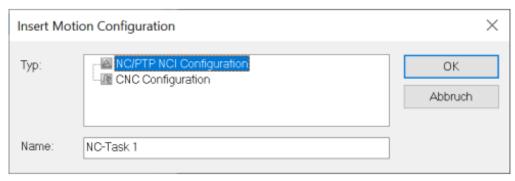


Abb. 136: Typ auswählen, Task benennen und bestätigen

EL5102

Einfügen einer Achse

Klicken Sie mit der rechten Maustaste auf Achsen

Wählen Sie im Pull-down Menü Neues Element hinzufügen (Abb. Achse einfügen).

Abb. 137: Achse einfügen

Wählen Sie einen Namen für die Axe

Wählen Sie den Typ Encoder Achse und bestätigen Sie mit OK (Abb. Achse benennen und Typ auswählen)

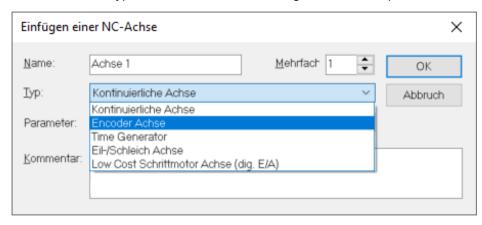


Abb. 138: Achse benennen und Typ auswählen

Verknüpfung des Encoders

Nach der Anwahl des Karteireiters *NC-Encoder* wählen Sie im Pulldow-Menü *Typ* den *Encoder an KL5101/Kl5111/IP5109/EL5101/EL5151/Profil MDP 511* (Abb. *Auswahl des Encoders*)

Klicken Sie den Button Verknüpft mit...

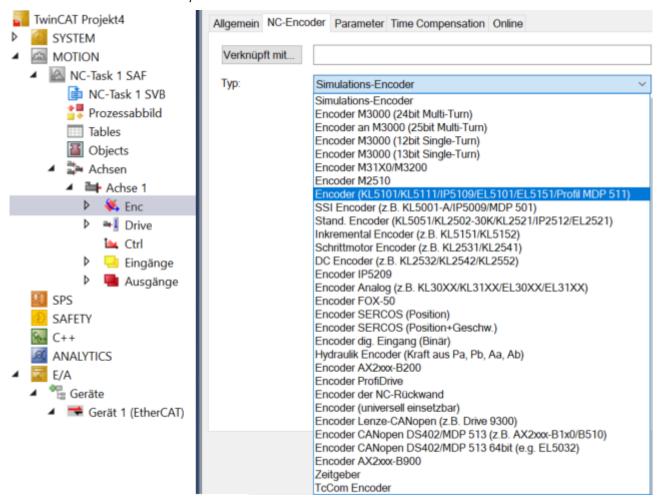


Abb. 139: Auswahl des Encoders

Wählen Sie die Klemme EL5151 und bestätigen Sie mit OK (Abb. Encoder-Klemme auswählen und bestätigen)



Abb. 140: Encoder-Klemme auswählen und bestätigen

Anzeige der verknüpften Ein- und Ausgänge

Die entsprechenden Eingänge und Ausgänge der EL5151 sind nun mit der NC-Task verknüpft (Abb. *Verknüpfte Ein- und Ausgänge der EL5151 mit der NC-Task*)

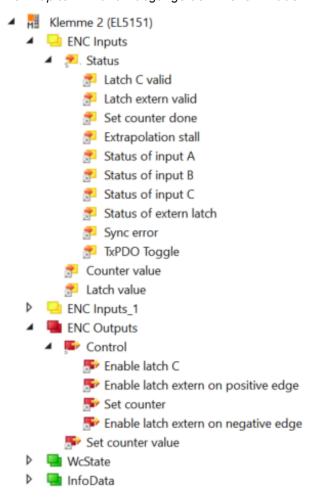


Abb. 141: Verknüpfte Ein- und Ausgänge der EL5151 mit der NC-Task

7.3 Allgemeine Inbetriebnahmehinweise für einen EtherCAT-Slave

In dieser Übersicht werden in Kurzform einige Aspekte des EtherCAT-Slave Betriebs unter TwinCAT behandelt. Ausführliche Informationen dazu sind entsprechenden Fachkapiteln z.B. in der <u>EtherCAT-Systemdokumentation</u> zu entnehmen.

Diagnose in Echtzeit: WorkingCounter, EtherCAT State und Status

Im Allgemeinen bietet ein EtherCAT-Slave mehrere Diagnoseinformationen zur Verarbeitung in der ansteuernden Task an.

Diese Diagnoseinformationen erfassen unterschiedliche Kommunikationsebenen und damit Quellorte und werden deshalb auch unterschiedlich aktualisiert.

Eine Applikation, die auf die Korrektheit und Aktualität von IO-Daten aus einem Feldbus angewiesen ist, muss die entsprechend ihr unterlagerten Ebenen diagnostisch erfassen.

EtherCAT und der TwinCAT System Manager bieten entsprechend umfassende Diagnoseelemente an. Die Diagnoseelemente, die im laufenden Betrieb (nicht zur Inbetriebnahme) für eine zyklusaktuelle Diagnose aus der steuernden Task hilfreich sind, werden im Folgenden erläutert.

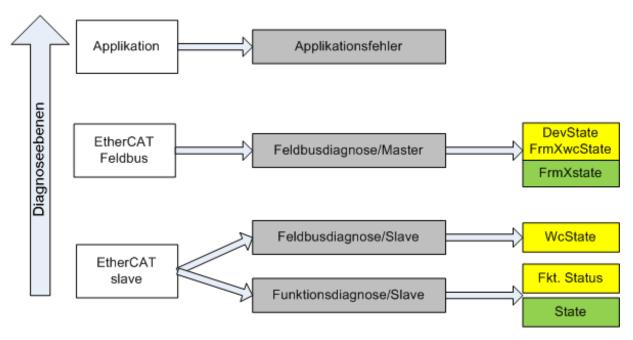


Abb. 142: Auswahl an Diagnoseinformationen eines EtherCAT-Slaves

Im Allgemeinen verfügt ein EtherCAT-Slave über

 slave-typische Kommunikationsdiagnose (Diagnose der erfolgreichen Teilnahme am Prozessdatenaustausch und richtige Betriebsart)
 Diese Diagnose ist für alle Slaves gleich.

als auch über

 kanal-typische Funktionsdiagnose (geräteabhängig), siehe entsprechende Gerätedokumentation

Die Farbgebung in Abb. *Auswahl an Diagnoseinformationen eines EtherCAT-Slaves* entspricht auch den Variablenfarben im System Manager, siehe Abb. *Grundlegende EtherCAT-Slave Diagnose in der PLC*.

Farbe	Bedeutung
gelb	Eingangsvariablen vom Slave zum EtherCAT-Master, die in jedem Zyklus aktualisiert werden
rot	Ausgangsvariablen vom Slave zum EtherCAT-Master, die in jedem Zyklus aktualisiert werden
grün	Informationsvariabeln des EtherCAT-Masters, die azyklisch aktualisiert werden, d. h. in einem Zyklus eventuell nicht den letztmöglichen Stand abbilden. Deshalb ist ein Auslesen solcher Variablen über ADS sinnvoll.

In Abb. *Grundlegende EtherCAT Slave Diagnose in der PLC* ist eine Beispielimplementation einer grundlegenden EtherCAT-Slave Diagnose zu sehen. Dabei wird eine Beckhoff EL3102 (2 kanalige analoge Eingangsklemme) verwendet, da sie sowohl über slave-typische Kommunikationsdiagnose als auch über kanal-spezifische Funktionsdiagnose verfügt. In der PLC sind Strukturen als Eingangsvariablen angelegt, die jeweils dem Prozessabbild entsprechen.



Abb. 143: Grundlegende EtherCAT-Slave Diagnose in der PLC

Dabei werden folgende Aspekte abgedeckt:

Kennzeichen	Funktion	Ausprägung	Anwendung/Auswertung
А	Diagnoseinformationen des EtherCAT-Masters		Zumindest der DevState ist in der PLC zyklusaktuell auszuwerten.
	zyklisch aktualisiert (gelb) oder azyklisch bereitgestellt (grün).		Die Diagnoseinformationen des EtherCAT-Masters bieten noch weitaus mehr Möglichkeiten, die in der EtherCAT-Systemdokumentation behandelt werden. Einige Stichworte:
			CoE im Master zur Kommunikation mit/über die Slaves
			Funktionen aus TcEtherCAT.lib
			OnlineScan durchführen
В	Im gewählten Beispiel (EL3102) umfasst die EL3102 zwei analoge Eingangskanäle, die einen eigenen Funktionsstatus zyklusaktuell übermitteln.	die Bitdeutungen sind der Gerätedokumentation zu entnehmen andere Geräte können mehr oder keine slave-typischen Angaben liefern	Damit sich die übergeordnete PLC- Task (oder entsprechende Steueranwendungen) auf korrekte Daten verlassen kann, muss dort der Funktionsstatus ausgewertet werden. Deshalb werden solche Informationen zyklusaktuell mit den Prozessdaten bereitgestellt.
С	Für jeden EtherCAT-Slave mit zyklischen Prozessdaten zeigt der Master durch einen so genannten WorkingCounter an, ob der Slave erfolgreich und störungsfrei am zyklischen Prozessdatenverkehr teilnimmt. Diese elementar wichtige Information wird deshalb im System Manager zyklusaktuell 1. am EtherCAT-Slave als auch inhaltsidentisch	WcState (Working Counter) 0: gültige Echtzeitkommunikation im letzten Zyklus 1: ungültige Echtzeitkommunikation ggf. Auswirkung auf die Prozessdaten anderer Slaves, die in der gleichen SyncUnit liegen	Damit sich die übergeordnete PLC- Task (oder entsprechende Steueranwendungen) auf korrekte Daten verlassen kann, muss dort der Kommunikationsstatus des EtherCAT-Slaves ausgewertet werden. Deshalb werden solche Informationen zyklusaktuell mit den Prozessdaten bereitgestellt.
	als Sammelvariable am EtherCAT- Master (siehe Punkt A) zur Verlinkung bereitgestellt.		
D	Diagnoseinformationen des EtherCAT- Masters, die zwar am Slave zur Verlinkung dargestellt werden, aber tatsächlich vom Master für den jeweiligen Slave ermittelt und dort dargestellt werden. Diese Informationen haben keinen Echtzeit- Charakter weil sie • nur selten/nie verändert werden, außer beim Systemstart • selbst auf azyklischem Weg ermittelt werden (z.B. EtherCAT- Status)	State aktueller Status (INITOP) des Slaves. Im normalen Betriebszustand muss der Slave im OP (=8) sein. AdsAddr Die ADS-Adresse ist nützlich, um aus der PLC/Task über ADS mit dem EtherCAT-Slave zu kommunizieren, z.B. zum Lesen/Schreiben auf das CoE. Die AMS-NetID eines Slaves entspricht der AMS-NetID des EtherCAT-Masters, über den port (= EtherCAT Adresse) ist der einzelne Slave ansprechbar.	Informationsvariabeln des EtherCAT-Masters, die azyklisch aktualisiert werden, d.h. in einem Zyklus eventuell nicht den letztmöglichen Stand abbilden. Deshalb ist ein Auslesen solcher Variablen über ADS möglich.

HINWEIS

Diagnoseinformationen

Es wird dringend empfohlen, die angebotenen Diagnoseinformationen auszuwerten um in der Applikation entsprechend reagieren zu können.

CoE-Parameterverzeichnis

Das CoE-Parameterverzeichnis (CanOpen-over-EtherCAT) dient der Verwaltung von Einstellwerten des jeweiligen Slaves. Bei der Inbetriebnahme eines komplexeren EtherCAT-Slaves sind unter Umständen hier Veränderungen vorzunehmen. Zugänglich ist es über den TwinCAT System Manager, s. Abb. *EL3102, CoE-Verzeichnis*:

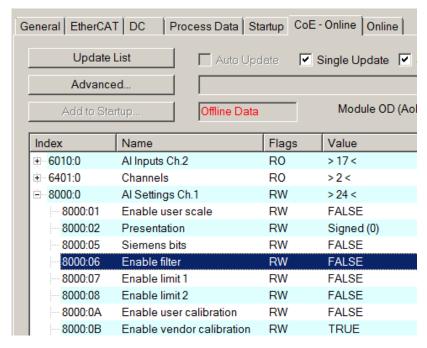


Abb. 144: EL3102, CoE-Verzeichnis

EtherCAT-Systemdokumentation

1

Es ist die ausführliche Beschreibung in der <u>EtherCAT-Systemdokumentation</u> (EtherCAT Grundlagen --> CoE Interface) zu beachten!

Einige Hinweise daraus in Kürze:

- Es ist geräteabhängig, ob Veränderungen im Online-Verzeichnis slave-lokal gespeichert werden. EL-Klemmen (außer den EL66xx) verfügen über diese Speichermöglichkeit.
- Es ist vom Anwender die StartUp-Liste mit den Änderungen zu pflegen.

Inbetriebnahmehilfe im TwinCAT System Manager

In einem fortschreitenden Prozess werden für EL/EP-EtherCAT-Geräte Inbetriebnahmeoberflächen eingeführt. Diese sind im TwinCAT System Manager ab TwinCAT 2.11R2 verfügbar. Sie werden über entsprechend erweiterte ESI-Konfigurationsdateien in den System Manager integriert.

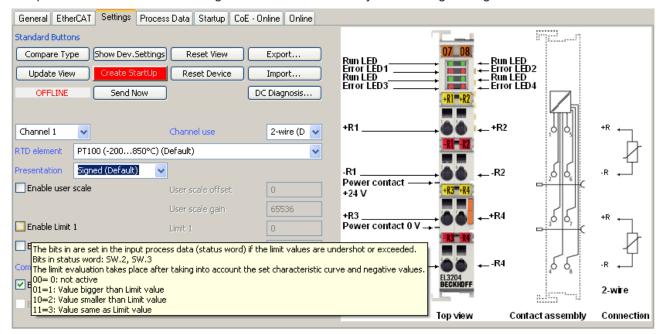


Abb. 145: Beispiel Inbetriebnahmehilfe für eine EL3204

Diese Inbetriebnahme verwaltet zugleich

- · CoE-Parameterverzeichnis
- DC/FreeRun-Modus
- die verfügbaren Prozessdatensätze (PDO)

Die dafür bisher nötigen Karteireiter "Process Data", "DC", "Startup" und "CoE-Online" werden zwar noch angezeigt, es wird aber empfohlen die automatisch generierten Einstellungen durch die Inbetriebnahmehilfe nicht zu verändern, wenn diese verwendet wird.

Das Inbetriebnahme-Tool deckt nicht alle möglichen Einsatzfälle eines EL/EP-Gerätes ab. Sind die Einstellmöglichkeiten nicht ausreichend, können vom Anwender wie bisher DC-, PDO- und CoE-Einstellungen manuell vorgenommen werden.

EtherCAT State: automatisches Default-Verhalten des TwinCAT System Managers und manuelle Ansteuerung

Ein EtherCAT-Slave hat für den ordnungsgemäßen Betrieb nach der Versorgung mit Betriebsspannung die Status

- INIT
- PREOP
- SAFEOP
- OP

zu durchlaufen. Der EtherCAT-Master ordnet diese Zustände an in Abhängigkeit der Initialisierungsroutinen, die zur Inbetriebnahme des Gerätes durch die ES/XML und Anwendereinstellungen (Distributed Clocks (DC), PDO, CoE) definiert sind. Siehe dazu auch Kapitel "Grundlagen der Kommunikation, EtherCAT State Machine [•32]". Der Hochlauf kann je nach Konfigurationsaufwand und Gesamtkonfiguration bis zu einigen Sekunden dauern.

Auch der EtherCAT-Master selbst muss beim Start diese Routinen durchlaufen, bis er in jedem Fall den Zielzustand OP erreicht.

Der vom Anwender beabsichtigte, von TwinCAT beim Start automatisch herbeigeführte Ziel-State kann im System Manager eingestellt werden. Sobald TwinCAT in RUN versetzt wird, wird dann der TwinCAT EtherCAT-Master die Zielzustände anfahren.

Standardeinstellung

Standardmäßig ist in den erweiterten Einstellungen des EtherCAT-Masters gesetzt:

- EtherCAT-Master: OP
- · Slaves: OP

Diese Einstellung gilt für alle Slaves zugleich.

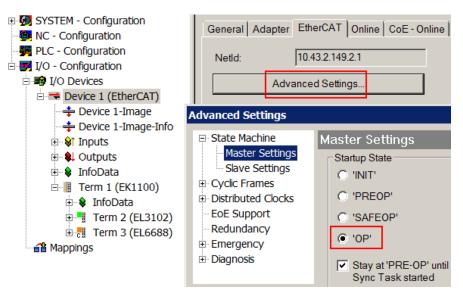


Abb. 146: Default Verhalten System Manager

Zusätzlich kann im Dialog "Erweiterte Einstellung" beim jeweiligen Slave der Zielzustand eingestellt werden, auch dieser ist standardmäßig OP.

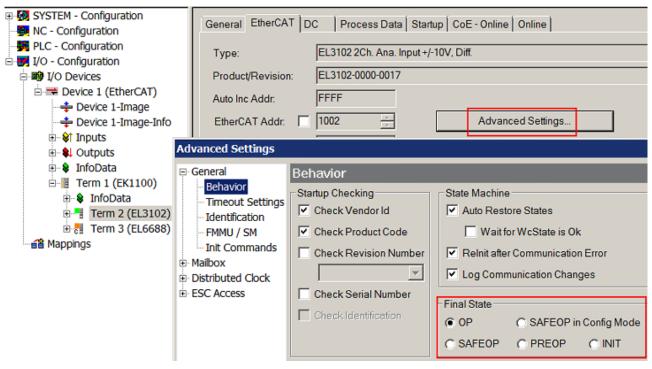


Abb. 147: Default Zielzustand im Slave

Manuelle Führung

Aus bestimmten Gründen kann es angebracht sein, aus der Anwendung/Task/PLC die States kontrolliert zu fahren, z. B.

- · aus Diagnosegründen
- · kontrolliertes Wiederanfahren von Achsen
- · ein zeitlich verändertes Startverhalten ist gewünscht

Dann ist es in der PLC-Anwendung sinnvoll, die PLC-Funktionsblöcke aus der standardmäßig vorhandenen *TcEtherCAT.lib* zu nutzen und z. B. mit *FB EcSetMasterState* die States kontrolliert anzufahren.

Die Einstellungen im EtherCAT-Master sind dann sinnvollerweise für Master und Slave auf INIT zu setzen.

Version: 1.4.0

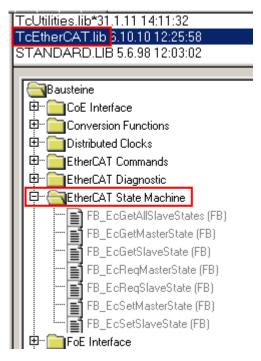


Abb. 148: PLC-Bausteine

Hinweis E-Bus-Strom

EL/ES-Klemmen werden im Klemmenstrang auf der Hutschiene an einen Koppler gesetzt. Ein Buskoppler kann die an ihm angefügten EL-Klemmen mit der E-Bus-Systemspannung von 5 V versorgen, i.d.R. ist ein Koppler dabei bis zu 2 A belastbar. Zu jeder EL-Klemme ist die Information, wie viel Strom sie aus der E-Bus-Versorgung benötigt, online und im Katalog verfügbar. Benötigen die angefügten Klemmen mehr Strom als der Koppler liefern kann, sind an entsprechenden Positionen im Klemmenstrang Einspeiseklemmen (z. B. EL9410) zu setzen.

Im TwinCAT System Manager wird der vorberechnete theoretische maximale E-Bus-Strom als Spaltenwert angezeigt. Eine Unterschreitung wird durch negativen Summenbetrag und Ausrufezeichen markiert, vor einer solchen Stelle ist eine Einspeiseklemme zu setzen.

General Adapter EtherCAT Online CoE - Online						
Netld:	10.43.2.149.2.1			Advanced	Settings	
Number	Box Name	Address	Туре	In Size	Out S	E-Bus (
1 1	Term 1 (EK1100)	1001	EK1100	·		
1 2	Term 2 (EL3102)	1002	EL3102	8.0		1830
3	Term 4 (EL2004)	1003	EL2004		0.4	1730
4	Term 5 (EL2004)	1004	EL2004		0.4	1630
- 5	Term 6 (EL7031)	1005	EL7031	8.0	8.0	1510
- 6	Term 7 (EL2808)	1006	EL2808		1.0	1400
1 7	Term 8 (EL3602)	1007	EL3602	12.0		1210
8	Term 9 (EL3602)	1008	EL3602	12.0		1020
-1 9	Term 10 (EL3602)	1009	EL3602	12.0		830
10	Term 11 (EL3602)	1010	EL3602	12.0		640
11	Term 12 (EL3602)	1011	EL3602	12.0		450
12	Term 13 (EL3602)	1012	EL3602	12.0		260
13	Term 14 (EL3602)	1013	EL3602	12.0		70
cii 14	Term 3 (EL6688)	1014	EL6688	22.0		-240!

Abb. 149: Unzulässige Überschreitung E-Bus Strom

Ab TwinCAT 2.11 wird bei der Aktivierung einer solchen Konfiguration eine Warnmeldung "E-Bus Power of Terminal..." im Logger-Fenster ausgegeben:

Message

E-Bus Power of Terminal 'Term 3 (EL6688)' may to low (-240 mA) - please check!

Abb. 150: Warnmeldung E-Bus-Überschreitung

HINWEIS

Fehlfunktion möglich!

Die E-Bus-Versorgung aller EtherCAT-Klemmen eines Klemmenblocks muss aus demselben Massepotential erfolgen!

8 EL5102 - Inbetriebnahme

8.1 Übersicht Funktionen EL5102

Die EL5102 bietet einen breiten Funktionsumfang. Die nachfolgende Tabelle gibt einen Überblick der zur Verfügung gestellten Funktionen. Die genaue Beschreibung ist den einzelnen Kapiteln zu entnehmen.

Für die Nutzung der erweiterten Funktionen sind die entsprechenden Funktionen über die "Predefined PDO Assignment" auszuwählen. Die Zuordnung ist dem Kapitel "<u>Prozessdaten [▶ 136]</u>" zu entnehmen.

Basis-Funktionen	Beschreibung
Auswahl Encodertyp [▶ 152]	Es können Encoder oder Zähler/Impulsgeber mit den Signalpegel nach RS422, TTL oder OpenCollector ausgewählt werden.
Geberbetriebsspannung [▶ 153]	Die Encoderversorgung kann separat für jeden Kanal wahlweise auf 5 V_{DC} , 12 V_{DC} oder 24 V_{DC} eingestellt werden.
Auswertung des Zählerwerts [▶ 153]	Das Eingangssignal kann in 4-fach, 2-fach oder 1-fach Auswertung erfolgen.
Zählergrenzen [▶ 154]	Es kann der Wertebereich festgelegt werden, innerhalb dessen gezählt wird.
Zählerüberlauf / Zählerunterlauf [▶ 198]	Wird die Zählgrenze über- oder unterschritten, wird dieses in einem separaten Prozessdatum angezeigt.
Zählrichtung [▶ 156]	Die Zählrichtung kann an die Anwendung angepasst werden.
Zählrichtungsumkehr [▶ 161]	Es kann die Zählrichtung und eine Zählrichtungsumkehr detektiert und über die Prozessdaten ausgegeben werden. Diese Funktion kann auch zur <u>Stillstandsüberwachung [** 162]</u> genutzt werden.
Zählerstand reset [▶ 158] Erlaubt einen wiederkehrenden Reset des Zählerstandes über den Nullimpuls C (positiv/negativ) am Latch extern-Eingang.	
Zählerstand setzen [▶ 159]	Der Zählerstand kann zur Laufzeit auf einen vorgegebenen Zählerwert über eine SPS Variable, den Nullimpuls C oder eine Flanke (positiv/negativ) am Latch extern-Eingang gesetzt werden.
Zählerstand speichern [▶ 164]	Der aktuelle Zählerstand kann, unabhängig von der Zykluszeit, in einem separaten Prozessdatum über eine Flanke (positiv/negativ) am Latch extern- und Gate/Latch-Eingang oder den Nullimpulse C gespeichert werden.
	Es kann parametriert werden, ob die Funktion bei jeder externen Flanke oder nur einmalig nach jeder Aktivierung ausgeführt wird.
	Durch die Nutzung beider Latch-Eingänge kann auch eine <u>Werkstückmessung [▶ 167]</u> realisiert werden.
Zählerstand sperren [▶ 168]	Der Zählerstand kann über eine Flanke (positiv/negativ) am Gate-Eingang oder eine SPS Variable gesperrt werden.

Erweiterte Funktionen	Beschreibung
Frequenzmessung [• 169]	Die mittlere Frequenz des Eingangssignals innerhalb eines vorgegebenen Zeitfensters kann direkt ausgegeben werden.
Periodendauermessung [▶ 171]	Die Periodendauer der letzten Periode innerhalb des SPS-Zyklus kann direkt ausgegeben werden.
Geschwindigkeits-, Drehzahlberechnung [▶ 172]	Die mittlere Geschwindigkeit bzw. Drehzahl des Eingangssignals innerhalb eines vorgegebenen Zeitfensters kann direkt ausgegeben werden.
Duty Cycle Messung [▶ 174]	Das Verhältnis der Impulsdauer t_{ON} zu Periodendauer T im letzten SPS Zyklus kann direkt ausgegeben werden.
<u>Timestamp</u> [▶ 177]	Es kann je ein Zeitstempel (Timestamp), basierend auf dem Distributed-Clocks-System (DC), für den letzten Zählimpuls, den Nullimpuls und die Latch extern- und Latch extern 2-Eingänge ausgegeben werden.
Mikroinkremente [▶ 175]	Erlaubt zwischen den gezählten Encoderinkrementen zusätzliche Inkremente (256 Schritte) zu interpolieren und somit die Auflösung des Zählwertes zu erhöhen.
Einstellbare Störimpulsfilter [> 179]	Um Störungen zu unterdrücken, kann für die Eingangssignale jeweils ein Filter eingestellt werden.
Diagnosedaten [▶ 188]	Über "DiagMessages" werden an den EtherCAT Master / TwinCAT Fehlermeldungen mitgeteilt.

Prozessdaten	Beschreibung
Betriebsmodi [▶ 146]	Der Umfang der Prozessdaten kann über das "Predefined PDO Assignment" ausgewählt werden.
Detriessart Syriering Tital	Neben der framegetriggerten Betriebsart (SM-Betrieb) kann die Arbeitsweise auch durch die Distributed Clocks synchronisiert werden.

Beschreibung der Eingänge	Beschreibung
Nullimpuls C [▶ 182]	Bei Inkremental-Encodern wird eine volle Umdrehung durch eine Sondermarke den Nullimpuls C gekennzeichnet. Dieser kann genutzt werden zum Reset, Setzen und Speichern des Zählerstands.
Latch extern [▶ 184]	Es wird ein Latch-Eingang, für 24 V_{DC} -Signale mit einer min. Pulsdauer von t_{ON} > 1 μ s, zur Verfügung gestellt. Dieser kann genutzt werden zum Reset, Setzen und Speichern des Zählerstands.
Gate/Latch [186]	Es wird ein externer Gate-Eingang, für 24 V_{DC} -Signale mit einer min. Pulsdauer von $t_{ON} > 1$ μ s, zur Verfügung gestellt. Dieser kann genutzt werden zum Reset, Setzen und Speichern des Zählerstands.
Status Input [> 187]	Besitzt der Encoder einen Störmeldeausgang, so kann dieser ausgewertet werden.

8.2 Prozessdaten

8.2.1 Sync Manager (SM)

Der Umfang der angebotenen Prozessdaten kann über den Reiter "Process Data" verändert werden (siehe folgende Abb. *Karteireiter Prozessdaten SM3, EL5102 (default)*).

Eine detaillierte Beschreibung zur Einstellung der Prozessdaten finden Sie im Kapitel <u>EtherCAT</u> <u>Teilnehmerkonfiguration [* 114]</u>.

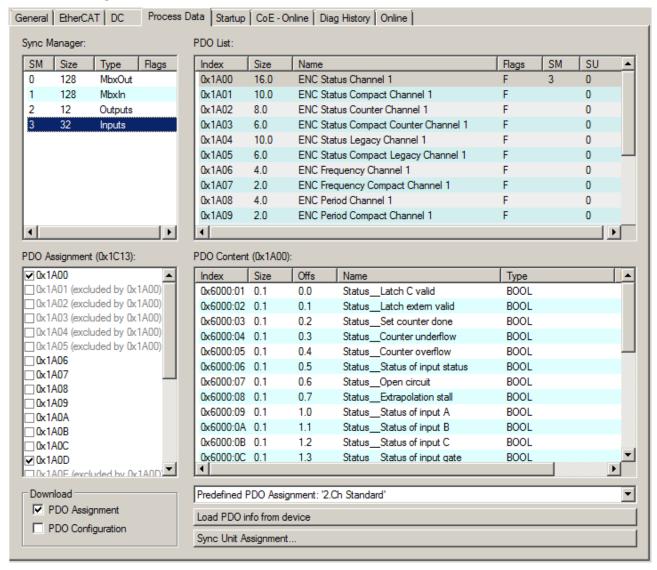


Abb. 151: EL5102 - Karteireiter Prozessdaten SM3 (default)

8.2.2 PDO - Zuordnung

Die EL5102 bietet einen großen Umfang an Funktionen und somit auch ein großen Umfang an Prozessdaten.

8.2.2.1 SM3 - Inputs (0x1A00 .. 0x1A19)

Channel 1 (0x1A00 .. 0x1A0C):

0x1A00 - ENC Status Channel 1 (16.0)		
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)	
0x6000:01 ▶ 208 - Status_Latch C valid (0.1)	0x1A01 [▶ 222] - ENC Status Compact Channel 1 (10.0) 0x1A02 [▶ 223] - ENC Status Counter Channel 1 (8.0) 0x1A03 [▶ 223] - ENC Status Compact Counter Channel 1 (6.0) 0x1A04 [▶ 224] - ENC Status Legacy Channel 1 (10.0) 0x1A05 [▶ 225] - ENC Status Compact Legacy Channel 1 (6.0)	

0x1A01 - ENC Status Compact Channel 1 (10.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6000:01 [▶ 208] - Status_Latch C valid (0.1) 0x6000:02 [▶ 208] - Status_Latch extern valid (0.1) 0x6000:03 [▶ 208] - Status_Set counter done (0.1) 0x6000:04 [▶ 208] - Status_Counter underflow (0.1) 0x6000:05 [▶ 208] - Status_Counter overflow (0.1) 0x6000:06 [▶ 208] - Status_Status of input status (0.1) 0x6000:07 [▶ 208] - Status_Dopen circuit (0.1) 0x6000:08 [▶ 208] - Status_Extrapolation stall (0.1) 0x6000:09 [▶ 208] - Status_Status of input A (0.1) 0x6000:0A [▶ 208] - Status_Status of input B (0.1) 0x6000:0B [▶ 208] - Status_Status of input B (0.1) 0x6000:0C [▶ 208] - Status_Status of input gate (0.1) 0x6002:0D [▶ 209] - Status_Status Diag (0.1) 0x6002:0D [▶ 209] - Status_Status TxPDO State (0.1) 0x6002:0F [▶ 209] - Status_Input cycle counter (0.2) 0x6002:11 [▶ 209] - Status_Software gate valid (0.1) 0x6002:12 [▶ 209] - Status_Status of extern Latch (0.1) 0x6002:13 [▶ 209] - Status_Status of extern Latch (0.1) 0x6002:15 [▶ 209] - Status_Counter value out of range (0.1) 0x6000:11 [▶ 208] - Counter value (2.0) 0x6000:12 [▶ 208] - Latch value (2.0) 0x6000:22 [▶ 208] - Latch value 2 (2.0)	0x1A00 [▶ 221] - ENC Status Channel 1 (16.0) 0x1A02 [▶ 223] - ENC Status Counter Channel 1 (8.0) 0x1A03 [▶ 223] - ENC Status Compact Counter Channel 1 (6.0) 0x1A04 [▶ 224] - ENC Status Legacy Channel 1 (10.0) 0x1A05 [▶ 225] - ENC Status Compact Legacy Channel 1 (6.0)

0x1A02 - ENC Status Counter Channel 1 (8.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6000:03 [▶ 208] - Status_Set counter done (0.1)	0x1A00 [▶ 221] - ENC Status Channel 1 (16.0)
0x6002:0D [> 209] - Status_Status Diag (0.1) 0x6002:0E [> 209] - Status Status TxPDO State (0.1)	0x1A01 [▶ 222] - ENC Status Compact Channel 1 (10.0)
0x6002:0F [▶ 209] - Status_Input cycle counter (0.2)	0x1A03 [▶ 223] - ENC Status Compact Counter Channel 1 (6.0)
0x6002:11 [▶ 209] - Status_Software gate valid (0.1)	0x1A04 [▶ 224] - ENC Status Legacy Channel 1 (10.0)
0x6000:11 [▶ 208] - Counter value (4.0)	0x1A05 [▶ 225] - ENC Status Compact Legacy Channel 1 (6.0)

0x1A03 - ENC Status Compact Counter Channel 1 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
0x6000:03 [▶_208] - Status_Set counter done (0.1)	0x1A00 [▶ 221] - ENC Status Channel 1 (16.0)
0x6002:0D [> 209] - Status_Status Diag (0.1)	0x1A01 [▶ 222] - ENC Status Compact Channel 1 (10.0)
0x6002:0E [▶ 209] - Status_Status TxPDO State (0.1) 0x6002:0F [▶ 209] - Status_Input cycle counter (0.2)	0x1A02 [▶ 223] - ENC Status Counter Channel 1 (8.0)
0x6002:11 [▶ 209] - Status_Software gate valid (0.1)	0x1A04 [▶ 224] - ENC Status Legacy Channel 1 (10.0)
<u>0x6000:11 [▶ 208]</u> - Counter value (2.0)	0x1A05 [▶ 225] - ENC Status Compact Legacy Channel 1 (6.0)

0x1A04 - ENC Status Legacy Channel 1 (10.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6000:01 [▶ 208] - Status_Latch C valid (0.1) 0x6000:02 [▶ 208] - Status_Latch extern valid (0.1) 0x6000:03 [▶ 208] - Status_Set counter done (0.1) 0x6000:04 [▶ 208] - Status_Counter underflow (0.1) 0x6000:05 [▶ 208] - Status_Counter overflow (0.1) 0x6000:06 [▶ 208] - Status_Status of input status (0.1) 0x6000:07 [▶ 208] - Status_Dependence of input (0.1) 0x6000:08 [▶ 208] - Status_Extrapolation stall (0.1) 0x6000:09 [▶ 208] - Status_Status of input A (0.1) 0x6000:0A [▶ 208] - Status_Status of input B (0.1) 0x6000:0B [▶ 208] - Status_Status of input gate (0.1) 0x6000:0D [▶ 208] - Status_Status of extern Latch(0.1) 0x6000:0E [▶ 208] - Status_Sync error (0.1) 0x6000:0F [▶ 208] - Status_Status TxPDO State (0.1) 0x6000:10 [▶ 208] - Status_Status_TxPDO Toggle (0.1)	0x1A00 [▶ 221] - ENC Status Channel 1 (16.0) 0x1A01 [▶ 222] - ENC Status Compact Channel 1 (10.0) 0x1A02 [▶ 223] - ENC Status Counter Channel 1 (8.0) 0x1A03 [▶ 223] - ENC Status Compact Counter Channel 1 (6.0) 0x1A05 [▶ 225] - ENC Status Compact Legacy Channel 1 (6.0)
0x6000:11 [▶ 208] - Counter value (4.0) 0x6000:12 [▶ 208] - Latch value (4.0)	

0x1A05 - ENC Status Compact Legacy Channel 1 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6000:01 [▶ 208] - Status_Latch C valid (0.1) 0x6000:02 [▶ 208] - Status_Latch extern valid (0.1) 0x6000:03 [▶ 208] - Status_Set counter done (0.1) 0x6000:04 [▶ 208] - Status_Counter underflow (0.1) 0x6000:05 [▶ 208] - Status_Counter overflow (0.1) 0x6000:06 [▶ 208] - Status_Status of input status (0.1) 0x6000:07 [▶ 208] - Status_Den circuit (0.1) 0x6000:08 [▶ 208] - Status_Extrapolation stall (0.1) 0x6000:09 [▶ 208] - Status_Status of input A (0.1) 0x6000:0A [▶ 208] - Status_Status of input B (0.1) 0x6000:0B [▶ 208] - Status_Status of input gate (0.1) 0x6000:0D [▶ 208] - Status_Status of input gate (0.1) 0x6000:0D [▶ 208] - Status_Status of extern Latch(0.1) 0x6000:0E [▶ 208] - Status_Sync error (0.1) 0x6000:0F [▶ 208] - Status_Status TxPDO State (0.1) 0x6000:10 [▶ 208] - Status_Status TxPDO Toggle (0.1) 0x6000:11 [▶ 208] - Counter value (2.0) 0x6000:12 [▶ 208] - Latch value (2.0)	0x1A00 [▶ 221] - ENC Status Channel 1 (16.0) 0x1A01 [▶ 222] - ENC Status Compact Channel 1 (10.0) 0x1A02 [▶ 223] - ENC Status Counter Channel 1 (8.0) 0x1A03 [▶ 223] - ENC Status Compact Counter Channel 1 (6.0) 0x1A04 [▶ 224] - ENC Status Legacy Channel 1 (10.0)

0x1A06 - ENC Frequency Channel 1 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
0x6000:13 [▶ 208] - Frequency value (4.0)	0x1A07 [▶ 225] - ENC Frequency Compact Channel 1 (2.0)

0x1A07 - ENC Frequency Compact Channel 1 (2.0)	
Inhalt	Ausgeschlossene PDOs
Index - Name Größe (Byte.Bit)	Index Name Größe (Byte.Bit)
<u>0x6000:13 [▶ 208]</u> - Frequency value (2.0)	0x1A06 [▶ 225] - ENC Frequency Channel 1 (4.0)

0x1A08 - ENC Period Channel 1 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
0x6000:14 [▶ 208] - Period value (4.0)	0x1A09 [▶ 226] - ENC Period Compact Channel 1 (2.0)

0x1A09 - ENC Period Compact Channel 1 (2.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
0x6000:14 [▶ 208] - Period value (2.0)	0x1A08 [▶ 225] - ENC Period Channel 1 (4.0)

0x1A0A - ENC Duty Cycle Channel 1 (6.0)		
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)	
0x6000:23 [▶ 208] - Duty cycle (2.0)	-	
<u>0x6000:24 [▶ 208]</u> - Duty cycle min (2.0)		
<u>0x6002:25 [▶ 208]</u> - Duty cycle max (2.0)		

0x1A0B - ENC Timestamp Channel 1 (32.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
0x6000:16 [▶ 208] - Timestamp (8.0)	0x1A0C [▶ 226] - ENC Timestamp Compact Channel 1 (16.0)
<u>0x6000:1F [</u> ▶ <u>208]</u> - Timestamp C (8.0)	
0x6000:20 [▶ 208] - Timestamp latch (8.0)	
0x6000:21 [▶ 208] - Timestamp latch 2 (8.0)	

0x1A0C - ENC Timestamp Compact Channel 1 (16.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
<u>0x6000:16 [▶ 208]</u> - Timestamp (4.0)	0x1A0B [▶ 226] - ENC Timestamp Channel 1 (32.0)
<u>0x6000:1F [</u> ▶ <u>208]</u> - Timestamp C (4.0)	
0x6000:20 [▶ 208] - Timestamp latch (4.0)	
0x6000:21 [▶ 208] - Timestamp latch 2 (4.0)	

Channel 2 (0x1A0D .. 0x1A19):

0x1A0D - ENC Status Channel 2 (16.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6010:01 [▶ 208] - Status_Latch C valid (0.1) 0x6010:02 [▶ 208] - Status Latch extern valid (0.1)	0x1A0E [▶ 228] - ENC Status Compact Channel 2 (10.0)
0x6010:03 [▶ 208] - Status_Eatth extern valid (0.1)	0x1A0F [> 229] - ENC Status Counter Channel 2 (8.0)
0x6010:04 [> 208] - Status_Counter underflow (0.1)	0x1A10 [▶ 229] - ENC Status Compact Counter Channel 2 (6.0)
0x6010:05 [▶ 208] - Status_Counter overflow (0.1) 0x6010:06 [▶ 208] - Status_Status of input status (0.1)	0x1A11 [▶ 230] - ENC Status Legacy Channel 2 (10.0)
0x6010:07 [▶ 208] - Status_Open circuit (0.1)	0x1A12 [▶ 231] - ENC Status Compact Legacy Channel 2 (6.0)
0x6010:08 [▶ 208] - Status_Extrapolation stall (0.1) 0x6010:09 [▶ 208] - Status Status of input A (0.1)	
0x6010:0A [▶ 208] - Status_Status of input B (0.1)	
0x6010:0B [▶ 208] - Status_Status of input C (0.1) 0x6010:0C [▶ 208] - Status Status of input gate (0.1)	
0x6012:0D [> 209] - Status_Status Diag (0.1)	
0x6012:0E [▶ 209] - Status_Status TxPDO State (0.1) 0x6012:0F [▶ 209] - Status Input cycle counter (0.2)	
0x6012:11 [▶ 209] - Status_Software gate valid (0.1)	
0x6012:12 [▶ 209] - Status_Latch extern 2 valid (0.1) 0x6012:13 [▶ 209] - Status Direction inversion detected (0.1)	
0x6012:14 [▶ 209] - Status_Status of extern Latch (0.1)	
0x6012:15 [▶ 209] - Status_Counter value out of range (0.1)	
0x6010:11 [▶ 208] - Counter value (4.0) 0x6010:12 [▶ 208] - Latch value (4.0)	
0x6010:121 200] - Latch value (4.0) 0x6010:22 ▶ 208] - Latch value 2 (4.0)	

0x1A0E - ENC Status Compact Channel 2 (10.0)	
Inhalt Index - Name Größe (Byte Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte Bit)
Name Größe (Byte.Bit)	Index - Name Größe (Byte.Bit) 0x1A0D [▶ 227] - ENC Status Channel 2 (10.0) 0x1A0F [▶ 229] - ENC Status Counter Channel 2 (8.0) 0x1A10 [▶ 229] - ENC Status Compact Counter Channel 2 (6.0) 0x1A11 [▶ 230] - ENC Status Legacy Channel 2 (10.0) 0x1A12 [▶ 231] - ENC Status Compact Legacy Channel 2 (6.0)
0x6010:0A [▶ 208] - Status_Status of input B (0.1) 0x6010:0B [▶ 208] - Status_Status of input C (0.1) 0x6010:0C [▶ 208] - Status_Status of input gate (0.1) 0x6012:0D [▶ 209] - Status_Status Diag (0.1) 0x6012:0F [▶ 209] - Status_Status TxPDO State (0.1) 0x6012:0F [▶ 209] - Status_Input cycle counter (0.2) 0x6012:11 [▶ 209] - Status_Software gate valid (0.1) 0x6012:12 [▶ 209] - Status_Latch extern 2 valid (0.1) 0x6012:13 [▶ 209] - Status_Direction inversion detected (0.1) 0x6012:14 [▶ 209] - Status_Status of extern Latch (0.1) 0x6012:15 [▶ 209] - Status_Counter value out of range (0.1)	
0x6010:11 [▶ 208] - Counter value (2.0) 0x6010:12 [▶ 208] - Latch value (2.0) 0x6010:22 [▶ 208] - Latch value 2 (2.0)	

0x1A0F - ENC Status Counter Channel 2 (8.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6010:03 [▶ 208] - Status_Set counter done (0.1)	0x1A0D [▶ 227] - ENC Status Channel 2 (10.0)
0x6012:0D [209] - Status_Status Diag (0.1)	0x1A0E [▶ 228] - ENC Status Compact Channel 2 (10.0)
0x6012:0E [▶ 209] - Status_Status TxPDO State (0.1) 0x6012:0F [▶ 209] - Status_Input cycle counter (0.2)	0x1A10 [▶ 229] - ENC Status Compact Counter Channel 2 (6.0)
0x6012:11 [▶ 209] - Status_Software gate valid (0.1)	<u>0x1A11 [▶ 230]</u> - ENC Status Legacy Channel 2 (10.0)
0x6010:11 [▶ 208] - Counter value (4.0)	0x1A12 [> 231] - ENC Status Compact Legacy Channel 2 (6.0)

0x1A10 - ENC Status Compact Counter Channel 2 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6010:03 [▶ 208] - Status_Set counter done (0.1)	0x1A0D [▶ 227] - ENC Status Channel 2 (10.0)
0x6012:0D [▶ 209] - Status_Status Diag (0.1) 0x6012:0E [▶ 209] - Status Status TxPDO State (0.1)	0x1A0E [▶ 228] - ENC Status Compact Channel 2 (10.0)
0x6012:0F [> 209] - Status_Input cycle counter (0.2)	0x1A0F [▶ 229] - ENC Status Counter Channel 2 (8.0)
0x6012:11 [▶ 209] - Status_Software gate valid (0.1)	0x1A11 [▶ 230] - ENC Status Legacy Channel 2 (10.0)
<u>0x6010:11 [▶ 208]</u> - Counter value (2.0)	0x1A12 [▶ 231] - ENC Status Compact Legacy Channel 2 (6.0)

0x1A11 - ENC Status Legacy Channel 2 (10.0)	
Inhalt	Ausgeschlossene PDOs
Index - Name Größe (Byte.Bit)	Index - Name Größe (Byte.Bit)
0x6010:01 [▶ 208] - Status_Latch C valid (0.1) 0x6010:02 [▶ 208] - Status_Latch extern valid (0.1) 0x6010:03 [▶ 208] - Status_Set counter done (0.1) 0x6010:04 [▶ 208] - Status_Counter underflow (0.1) 0x6010:05 [▶ 208] - Status_Counter overflow (0.1) 0x6010:06 [▶ 208] - Status_Status of input status (0.1) 0x6010:07 [▶ 208] - Status_Open circuit (0.1) 0x6010:08 [▶ 208] - Status_Extrapolation stall (0.1) 0x6010:09 [▶ 208] - Status_Status of input A (0.1)	0x1A0D [▶ 227] - ENC Status Channel 2 (10.0) 0x1A0E [▶ 228] - ENC Status Compact Channel 2 (10.0) 0x1A0F [▶ 229] - ENC Status Counter Channel 2 (8.0) 0x1A10 [▶ 229] - ENC Status Compact Counter Channel 2 (6.0) 0x1A12 [▶ 231] - ENC Status Compact Legacy Channel 2 (6.0)
0x6010:0A [▶ 208] - Status_Status of input B (0.1) 0x6010:0B [▶ 208] - Status_Status of input C (0.1) 0x6010:0C [▶ 208] - Status_Status of input gate (0.1) 0x6010:0D [▶ 208] - Status_Status of extern Latch(0.1) 0x6010:0E [▶ 208] - Status_Sync error (0.1) 0x6010:0F [▶ 208] - Status_Status TxPDO State (0.1) 0x6010:10 [▶ 208] - Status_Status TxPDO Toggle (0.1) 0x6010:11 [▶ 208] - Counter value (4.0) 0x6010:12 [▶ 208] - Latch value (4.0)	

0x1A12 - ENC Status Compact Legacy Channel 2 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x6010:01 [▶ 208] - Status_Latch C valid (0.1) 0x6010:02 [▶ 208] - Status_Latch extern valid (0.1) 0x6010:03 [▶ 208] - Status_Set counter done (0.1) 0x6010:04 [▶ 208] - Status_Counter underflow (0.1) 0x6010:05 [▶ 208] - Status_Counter overflow (0.1) 0x6010:06 [▶ 208] - Status_Status of input status (0.1) 0x6010:07 [▶ 208] - Status_Open circuit (0.1) 0x6010:08 [▶ 208] - Status_Extrapolation stall (0.1) 0x6010:09 [▶ 208] - Status_Status of input A (0.1) 0x6010:08 [▶ 208] - Status_Status of input B (0.1)	0x1A0D [▶ 227] - ENC Status Channel 2 (10.0) 0x1A0E [▶ 228] - ENC Status Compact Channel 2 (10.0) 0x1A0F [▶ 229] - ENC Status Counter Channel 2 (8.0) 0x1A10 [▶ 229] - ENC Status Compact Counter Channel 2 (6.0) 0x1A11 [▶ 230] - ENC Status Legacy Channel 2 (10.0)
0x6010:0B [▶ 208] - Status_Status of input C (0.1) 0x6010:0C [▶ 208] - Status_Status of input gate (0.1) 0x6010:0D [▶ 208] - Status_Status of extern Latch(0.1) 0x6010:0E [▶ 208] - Status_Sync error (0.1) 0x6010:0F [▶ 208] - Status_ Status TxPDO State (0.1) 0x6010:10 [▶ 208] - Status_ Status TxPDO Toggle (0.1) 0x6010:11 [▶ 208] - Counter value (2.0) 0x6010:12 [▶ 208] - Latch value (2.0)	

0x1A13 - ENC Frequency Channel 2 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
0x6010:13 [▶ 208] - Frequency value (4.0)	0x1A14 [▶ 231] - ENC Frequency Compact Channel 2 (2.0)

0x1A14 - ENC Frequency Compact Channel 2 (2.0)		
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)	
0x6010:13 [▶ 208] - Frequency value (2.0)	0x1A13 [▶ 231] - ENC Frequency Channel 2 (4.0)	

0x1A15 - ENC Period Channel 2 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
0x6010:14 [▶ 208] - Period value (4.0)	0x1A16 [▶ 232] - ENC Period Compact Channel 2 (2.0)

0x1A16 - ENC Period Compact Channel 2 (2.0)	
	Ausgeschlossene PDOs
Index - Name Größe (Byte.Bit)	Index Name Größe (Byte.Bit)
<u>0x6010:14 [▶ 208]</u> - Period value (2.0)	0x1A15 [▶ 231] - ENC Period Channel 2 (4.0)

0x1A17 - ENC Duty Cycle Channel 2 (6.0)		
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)	
0x6010:23 [▶ 208] - Duty cycle (2.0)	-	
0x6010:24 [▶ 208] - Duty cycle min (2.0)		
0x6010:25 [▶ 208] - Duty cycle max (2.0)		

0x1A18 - ENC Timestamp Channel 2 (32.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
<u>0x6010:16 [▶ 208]</u> - Timestamp (8.0)	0x1A19 [▶ 142] - ENC Timestamp Compact Channel 2 (16.0)
0x6010:1F [> 208] - Timestamp C (8.0)	
0x6010:20 [> 208] - Timestamp latch (8.0)	
0x6010:21 [▶ 208] - Timestamp latch 2 (8.0)	

0x1A19 - ENC Timestamp Compact Channel 2 (16.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index Name Größe (Byte.Bit)
<u>0x6010:16</u> [▶ <u>208</u>] - Timestamp (4.0)	0x1A18 [▶ 232] - ENC Timestamp Channel 2 (32.0)
0x6010:1F [▶ 208] - Timestamp C (4.0)	
0x6010:20 [▶ 208] - Timestamp latch (4.0)	
<u>0x6010:21 [</u> ▶ <u>208</u>] - Timestamp latch 2 (4.0)	

8.2.2.2 SM2 - Outputs (0x1600 .. 0x160B)

Channel 1 (0x1600 .. 0x1605):

0x1600 - ENC Control Channel 1 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7000:01 [▶ 209] - Control_Enable latch C (0.1) 0x7000:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1) 0x7000:03 [▶ 209] - Control_Set counter (0.1) 0x7000:04 [▶ 209] - Control_Enable latch extern on negative edge (0.1) 0x7000:08 [▶ 209] - Control_Set counter on latch C (0.1) 0x7000:09 [▶ 209] - Control_Set software gate (0.1) 0x7000:0A [▶ 209] - Control_Set counter on latch extern on positive edge (0.1) 0x7000:0B [▶ 209] - Control_Set counter on latch extern on negative edge (0.1)	0x1601 [▶ 214] - ENC Control Compact Channel 1 (4.0) 0x1602 [▶ 214] - ENC Control Counter Channel 1 (6.0) 0x1603 [▶ 214] - ENC Control Compact Counter Channel 1 (4.0) 0x1604 [▶ 215] - ENC Control Legacy Channel 1 (6.0) 0x1605 [▶ 215] - ENC Control Compact Legacy Channel 1 (4.0)
0x7000:0C [▶209] - Control_Enable latch extern 2 on positive edge (0.1) 0x7000:0D [▶209] - Control_Enable latch extern 2 on negative edge (0.1)	
<u>0x7000:11 [▶ 209]</u> - Set counter value (4.0)	

0x1601 - ENC Control Compact Channel 1 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7000:01 [▶ 209] - Control_Enable latch C (0.1) 0x7000:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1)	0x1600 [▶ 213] - ENC Control Channel 1 (6.0) 0x1602 [▶ 214] - ENC Control Counter Channel 1 (6.0)
0x7000:03 [▶ 209] - Control_Set counter (0.1) 0x7000:04 [▶ 209] - Control_Enable latch extern on negative edge (0.1)	0x1603 [▶ 214] - ENC Control Compact Counter Channel 1 (4.0)
0x7000:08 [▶209] - Control_Set counter on latch C (0.1) 0x7000:09 [▶209] - Control_Set software gate (0.1) 0x7000:0A [▶209] - Control_Set counter on latch extern on positive edge	0x1604 [▶ 215] - ENC Control Legacy Channel 1 (6.0)
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	0x1605 [▶215] - ENC Control Compact Legacy Channel 1 (4.0)
0x7000:0C [▶ 209] - Control_Enable latch extern 2 on positive edge (0.1) 0x7000:0D [▶ 209] - Control_Enable latch extern 2 on negative edge (0.1)	
<u>0x7000:11 [▶ 209]</u> - Set counter value (2.0)	

0x1602 - ENC Control Counter Channel 1 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7000:03 [▶ 209] - Control_Set counter (0.1)	0x1600 [▶ 213] - ENC Control Channel 1 (6.0)
0x7000:09 [▶ 209] - Control_Set software gate (0.1) 0x7000:11 [▶ 209] - Set counter value (4.0)	0x1601 [▶ 214] - ENC Control Compact Channel 1 (4.0)
	0x1603 [▶ 214] - ENC Control Compact Counter Channel 1 (4.0)
	0x1604 [▶ 215] - ENC Control Legacy Channel 1 (6.0)
	0x1605 [▶ 215] - ENC Control Compact Legacy Channel 1 (4.0)

0x1603 - ENC Control Compact Counter Channel 1 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7000:03 [▶ 209] - Control_Set counter (0.1)	0x1600 [▶ 213] - ENC Control Channel 1 (6.0)
0x7000:09 [▶ 209] - Control_Set software gate (0.1)	0x1601 [▶ 214] - ENC Control Compact Channel 1 (4.0)
0x7000:11 [▶ 209] - Set counter value (2.0)	0x1602 [▶ 214] - ENC Control Counter Channel 1 (6.0)
	0x1604 [▶ 215] - ENC Control Legacy Channel 1 (6.0)
	0x1605 [▶ 215] - ENC Control Compact Legacy Channel 1 (4.0)

0x1604 - ENC Control Legacy Channel 1 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7000:01 [▶ 209] - Control_Enable latch C (0.1)	0x1600 [▶ 213] - ENC Control Channel 1 (6.0)
0x7000:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1) 0x7000:03 [▶ 209] - Control_Set counter (0.1)	0x1601 [▶ 214] - ENC Control Compact Channel 1 (4.0)
0x7000:03 [▶203] - Control_Set counter (0.1) 0x7000:04 [▶203] - Control_Enable latch extern on negative edge (0.1)	0x1602 [▶ 214] - ENC Control Counter Channel 1 (6.0)
0x7000:11 [▶ 209] - Set counter value (4.0)	0x1603 [▶ 214] - ENC Control Compact Counter Channel 1 (4.0)
	0x1605 [▶ 215] - ENC Control Compact Legacy Channel 1 (4.0)

0x1605 - ENC Control Compact Legacy Channel 1 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7000:01 [▶ 209] - Control_Enable latch C (0.1)	0x1601 [▶ 214] - ENC Control Compact Channel 1 (4.0)
0x7000:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1) 0x7000:03 [▶ 209] - Control Set counter (0.1)	0x1602 [▶ 214] - ENC Control Counter Channel 1 (6.0)
0x7000:04 [▶ 209] - Control_Enable latch extern on negative edge (0.1) 0x7000:11 [▶ 209] - Set counter value (2.0)	0x1603 [▶ 214] - ENC Control Compact Counter Channel 1 (4.0)
	0x1604 [▶215] - ENC Control Legacy Channel 1 (6.0)
	0x1605 [▶ 215] - ENC Control Compact Legacy Channel 1 (4.0)

Channel 2 (0x1606 .. 0x160B):

0x1606 - ENC Control Channel 2 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7010:01 [▶ 209] - Control_Enable latch C (0.1) 0x7010:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1) 0x7010:03 [▶ 209] - Control_Set counter (0.1) 0x7010:04 [▶ 209] - Control_Enable latch extern on negative edge (0.1) 0x7010:08 [▶ 209] - Control_Set counter on latch C (0.1) 0x7010:09 [▶ 209] - Control_Set software gate (0.1) 0x7010:0A [▶ 209] - Control_Set counter on latch extern on positive edge (0.1)	0x1607 [▶216] - ENC Control Compact Channel 2 (4.0) 0x1608 [▶216] - ENC Control Counter Channel 2 (6.0) 0x1609 [▶216] - ENC Control Compact Counter Channel 2 (4.0) 0x160A [▶217] - ENC Control Legacy Channel 2 (6.0) 0x160B [▶217] - ENC Control Compact Legacy Channel 2
0x7010:0B [▶ 209] - Control_Set counter on latch extern on negative edge (0.1) 0x7010:0C [▶ 209] - Control_Enable latch extern 2 on positive edge (0.1) 0x7010:0D [▶ 209] - Control_Enable latch extern 2 on negative edge (0.1)	(4.0)
<u>0x7010:11 [▶ 209]</u> - Set counter value (4.0)	

0x1607 - ENC Control Compact Channel 2 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7010:01 [▶ 209] - Control_Enable latch C (0.1) 0x7010:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1)	0x1606 [▶ 215] - ENC Control Channel 2 (6.0)
0x7010:02 1 2091 - Control_Enable later extern on positive edge (0.1) 0x7010:03 [▶ 209] - Control_Set counter (0.1)	0x1608 [216] - ENC Control Counter Channel 2 (6.0)
0x7010:04 [▶ 209] - Control_Enable latch extern on negative edge (0.1) 0x7010:08 [▶ 209] - Control_Set counter on latch C (0.1)	0x1609 [▶216] - ENC Control Compact Counter Channel 2 (4.0)
0x7010:09 [> 209] - Control_Set software gate (0.1)	0x160A [▶ 217] - ENC Control Legacy Channel 2 (6.0)
<u>0x7010:0A [▶ 209]</u> - Control_Set counter on latch extern on positive edge (0.1)	0x160B [▶ 217] - ENC Control Compact Legacy Channel 2
0x7010:08 [▶ 209] - Control_Set counter on latch extern on negative edge (0.1)	(4.0)
0x7010:0C [▶209] - Control_Enable latch extern 2 on positive edge (0.1) 0x7010:0D [▶209] - Control_Enable latch extern 2 on negative edge (0.1)	
0x7010:11 [▶ 209] - Set counter value (2.0)	

0x1608 - ENC Control Counter Channel 2 (6.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7010:03 [▶ 209] - Control_Set counter (0.1) 0x7010:09 [▶ 209] - Control_Set software gate (0.1) 0x7010:11 [▶ 209] - Set counter value (4.0)	0x1606 [▶ 215] - ENC Control Channel 2 (6.0)
	0x1607 [▶ 216] - ENC Control Compact Channel 2 (4.0)
	0x1609 [▶216] - ENC Control Compact Counter Channel 2 (4.0)
	0x160A [▶217] - ENC Control Legacy Channel 2 (6.0)
	0x160B [▶217] - ENC Control Compact Legacy Channel 2 (4.0)

0x1609 - ENC Control Compact Counter Channel 2 (4.0)	
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)
0x7010:03 [▶ 209] - Control_Set counter (0.1) 0x7010:09 [▶ 209] - Control_Set software gate (0.1) 0x7010:11 [▶ 209]- Set counter value (2.0)	0x1606 [▶ 215] - ENC Control Channel 2 (6.0)
	0x1607 [▶ 216] - ENC Control Compact Channel 2 (4.0)
	0x1608 [▶216] - ENC Control Counter Channel 2 (6.0)
	0x160A [> 217] - ENC Control Legacy Channel 2 (6.0)
	0x160B [▶ 217] - ENC Control Compact Legacy Channel 2 (4.0)

0x160A - ENC Control Legacy Channel 2 (6.0)			
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)		
0x7010:01 [▶ 209] - Control_Enable latch C (0.1)	0x1606 [▶ 215] - ENC Control Channel 2 (6.0)		
0x7010:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1) 0x7010:03 [▶ 209] - Control Set counter (0.1)	0x1607 [▶ 216] - ENC Control Compact Channel 2 (4.0)		
0x7010:04 [▶ 209] - Control_Enable latch extern on negative edge (0.1)	0x1608 [▶ 216] - ENC Control Counter Channel 2 (6.0)		
0x7010:11 [▶ 209] - Set counter value (4.0)	0x1609 [▶ 216] - ENC Control Compact Counter Channel 2 (4.0)		
	0x160B [▶ 217] - ENC Control Compact Legacy Channel 2 (4.0)		

0x160B - ENC Control Compact Legacy Channel 2 (4.0)			
Inhalt Index - Name Größe (Byte.Bit)	Ausgeschlossene PDOs Index - Name Größe (Byte.Bit)		
0x7010:02 [▶ 209] - Control_Enable latch extern on positive edge (0.1) 0x7010:03 [▶ 209] - Control_Set counter (0.1) 0x7010:04 [▶ 209] - Control_Enable latch extern on negative edge (0.1) 0x7010:11 [▶ 209] - Set counter value (2.0)	0x1606 [▶ 215] - ENC Control Channel 2 (6.0)		
	0x1607 [▶ 216] - ENC Control Compact Channel 2 (4.0)		
	0x1608 [▶ 216] - ENC Control Counter Channel 2 (6.0)		
	0x1609 [▶ 216] - ENC Control Compact Counter Channel 2 (4.0)		
	0x160A [▶ 217] - ENC Control Legacy Channel 2 (6.0)		

8.2.3 Predefined PDO Assignment

Eine vereinfachte Auswahl der Prozessdaten ermöglicht das "Predefined PDO Assignment". Am unteren Teil des Prozessdatenreiters wählen Sie die gewünschte Funktion aus. Es werden dadurch alle benötigten PDOs automatisch aktiviert, bzw. die nicht benötigten deaktiviert.

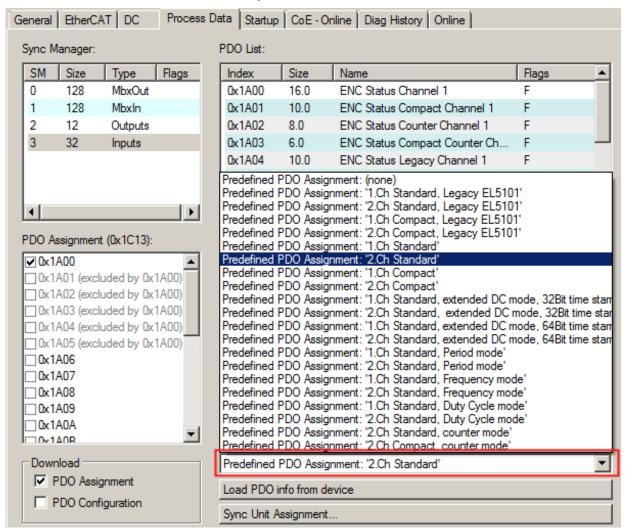


Abb. 152: EL5102 - Prozessdaten, Predefined PDO (Default: 2.Ch Standard)

Es stehen 20 PDO-Zuordnungen in den Modi Legacy, Standard, Compact und Counter zur Auswahl.

Hinweis zur Nutzung der Zeitstempelfunktion

Um die Zeitstempelfunktion nutzen zu können, muss die Klemme im Betriebsmodus "DC Synchron" oder "DC-Synchron (input based)" betrieben werden.

Predefined PDO Assignments für den Legacy-mode

Predefined PDO Assignment	PDO-Zuordnung	
1.Ch Standard, Legacy EL5101	SM3:	
	0x1A04 [▶ 138] - ENC Status Legacy Channel 1 (10.0)	
	SM2:	
	0x1604 [▶ 143] - ENC Control Legacy Channel 1 (6.0)	
2.Ch Standard, Legacy EL5101	SM3:	
	0x1A04 [▶ 138] - ENC Status Legacy Channel 1 (10.0)	
	0x1A11 [▶ 141] - ENC Status Legacy Channel 2 (10.0)	
	SM2:	
	0x1604 [▶ 143] - ENC Control Legacy Channel 1 (6.0)	
	0x160A [▶ 145] - ENC Control Legacy Channel 2 (6.0)	
1.Ch Compact, Legacy EL5101	SM3:	
	0x1A05 [▶ 138] - ENC Status Compact Legacy Channel 1 (6.0)	
	SM2:	
	0x1605 [▶ 143] - ENC Control Compact Legacy Channel 1 (4.0)	
2.Ch Compact, Legacy EL5101	SM3:	
	0x1A05 [▶ 138] - ENC Status Compact Legacy Channel 1 (6.0)	
	0x1A12 [▶ 141] - ENC Status Compact Legacy Channel 2 (6.0)	
	SM2:	
	0x1605 [▶ 143] - ENC Control Compact Legacy Channel 1 (4.0)	
	0x160B [▶ 145] - ENC Control Compact Legacy Channel 2 (4.0)	

Predefined PDO Assignments für den Compact-mode

Predefined PDO Assignment	PDO-Zuordnung	
1.Ch Compact	SM3:	
	0x1A01 [▶ 137] - ENC Status Compact Channel 1 (10.0)	
	SM2:	
	0x1601 [▶ 143] - ENC Control Compact Channel 1 (4.0)	
2.Ch Compact	SM3:	
	0x1A01 [▶ 137] - ENC Status Compact Channel 1 (10.0)	
	0x1A0E [▶ 140] - ENC Status Compact Channel 2 (10.0)	
	SM2:	
	0x1601 [▶ 143] - ENC Control Compact Channel 1 (4.0)	
	0x1607 [▶ 144] - ENC Control Compact Channel 2 (4.0)	

Predefined PDO Assignments für den Standard-mode

Predefined PDO Assignment	PDO-Zuordnung
1.Ch Standard	SM3:
	0x1A00 [▶_137] - ENC Status Channel 1 (16.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
2.Ch Standard	SM3:
	0x1A00 [▶ 137] - ENC Status Channel 1 (16.0) 0x1A0D [▶ 140] - ENC Status Channel 2 (16.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
	0x1606 [▶ 144] - ENC Control Channel 2 (6.0)
1.Ch Standard, extended DC mode,	SM3:
32Bit time stamp	0x1A00 [▶ 137] - ENC Status Channel 1 (16.0)
	0x1A06 [▶ 139] - ENC Frequency Channel 1 (4.0)
	0x1A08 [▶ 139] - ENC Period Channel 1 (4.0)
	0x1A0A [▶ 139] - ENC Duty cycle Channel 1 (6.0) 0x1A0C [▶ 139] - ENC Timestamp Compact Channel 1 (16.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
2.Ch Standard, extended DC mode,	SM3:
32Bit time stamp	0x1A00 [▶ 137] - ENC Status Channel 1 (16.0)
	0x1A06 [▶ 139] - ENC Frequency Channel 1 (4.0)
	0x1A08 [▶ 139] - ENC Period Channel 1 (4.0)
	0x1A0A [▶ 139] - ENC Duty cycle Channel 1 (6.0)
	0x1A0C [▶ 139] - ENC Timestamp Compact Channel 1 (16.0)
	0x1A0D [▶ 140] - ENC Status Channel 2 (16.0)
	0x1A13 [▶ 141] - ENC Frequency Channel 2 (4.0)
	0x1A15 [▶ 142] - ENC Period Channel 2 (4.0) 0x1A17 [▶ 142] - ENC Duty cycle Channel 2 (6.0)
	0x1A17 [▶ 142] - ENC Timestamp Compact Channel 2 (16.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
	0x1606 [144] - ENC Control Channel 2 (6.0)
1.Ch Standard, extended DC mode,	SM3:
64Bit time stamp	0x1A00 [▶ 137] - ENC Status Channel 1 (16.0)
	0x1A06 [▶ 139] - ENC Frequency Channel 1 (4.0)
	0x1A08 [▶ 139] - ENC Period Channel 1 (4.0) 0x1A0A [▶ 139] - ENC Duty cycle Channel 1 (6.0)
	0x1A0A [▶ 139] - ENC Duty cycle Channel 1 (8.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
2.Ch Standard, extended DC mode,	SM3:
64Bit time stamp	0x1A00 [▶ 137] - ENC Status Channel 1 (16.0)
	0x1A06 [▶ 139] - ENC Frequency Channel 1 (4.0)
	0x1A08 [▶ 139] - ENC Period Channel 1 (4.0)
	0x1A0A [▶ 139] - ENC Duty cycle Channel 1 (6.0)
	<u>0x1A0B</u> [▶ <u>139</u>] - ENC Timestamp Channel 1 (32.0))
	0x1A0D [▶ 140] - ENC Status Channel 2 (16.0)
	0x1A13 [▶ 141] - ENC Frequency Channel 2 (4.0) 0x1A15 [▶ 142] - ENC Period Channel 2 (4.0)
	<u>0x1A15 ▶ 142 </u> - ENC Period Channel 2 (4.0) <u>0x1A17 [▶ 142]</u> - ENC Duty cycle Channel 2 (6.0)
	0x1A17 142 - ENG Buty dyale Griannel 2 (0.0) 0x1A18 [▶ 142] - ENC Timestamp Channel 2 (32.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
	0x1606 [▶ 144] - ENC Control Channel 2 (6.0)

Predefined PDO Assignment	PDO-Zuordnung
1.Ch Standard, Period mode	SM3:
	<u>0x1A00 [▶ 137]</u> - ENC Status Channel 1 (16.0)
	<u>0x1A08 [▶ 139]</u> - ENC Period Channel 1 (4.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
2.Ch Standard, Period mode	SM3:
	0x1A00 [137] - ENC Status Channel 1 (16.0)
	<u>0x1A08 [▶ 139]</u> - ENC Period Channel 1 (4.0)
	<u>0x1A0D [</u> ▶ <u>140]</u> - ENC Status Channel 2 (16.0)
	<u>0x1A15 [▶ 142]</u> - ENC Period Channel 2 (4.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
1010111	0x1606 [▶ 144] - ENC Control Channel 2 (6.0)
1.Ch Standard, Frequency mode,	SM3: 0x1A00 [▶_137] - ENC Status Channel 1 (16.0)
	<u>0x1A06 [▶ 139]</u> - ENC Status Channel 1 (16.0)
	SM2: <u>0x1600 [▶ 142]</u> - ENC Control Channel 1 (6.0)
2.Ch Standard, Frequency mode,	SM3:
2.Cit Standard, Frequency mode,	0x1A00 [▶ 137] - ENC Status Channel 1 (16.0)
	0x1A06 [▶ 139] - ENC Frequency Channel 1 (4.0)
	0x1A0D [I 140] - ENC Status Channel 2 (16.0)
	<u>0x1A13 [▶ 141]</u> - ENC Status Channel 2 (4.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
	0x1606 [▶ 144] - ENC Control Channel 2 (6.0)
1.Ch Standard, Duty cycle mode,	SM3:
	0x1A00 [▶ 137] - ENC Status Channel 1 (16.0)
	0x1A0A [▶ 139] - ENC Duty cycle Channel 1 (6.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
2.Ch Standard, Duty cycle mode,	SM3:
	<u>0x1A00 [▶ 137]</u> - ENC Status Channel 1 (16.0)
	<u>0x1A0A [▶ 139]</u> - ENC Duty cycle Channel 1 (6.0)
	<u>0x1A0D [▶ 140]</u> - ENC Status Channel 2 (16.0)
	<u>0x1A17 [▶ 142]</u> - ENC Duty cycle Channel 2 (6.0)
	SM2:
	0x1600 [▶ 142] - ENC Control Channel 1 (6.0)
	0x1606 [▶ 144] - ENC Control Channel 2 (6.0)

Predefined PDO Assignments für den Counter-mode

Predefined PDO Assignment	PDO-Zuordnung	
2.Ch Standard, Counter mode,	SM3:	
	0x1A02 [▶ 138] - ENC Status Counter Channel 1 (8.0)	
	0x1A0F [▶ 140] - ENC Status Counter Channel 2 (8.0)	
	SM2:	
	0x1602 [▶ 143] - ENC Control Counter Channel 1 (6.0)	
	0x1608 [▶ 144] - ENC Control Counter Channel 2 (6.0)	
2.Ch Compact, Counter mode,	SM3:	
	0x1A03 [▶ 138] - ENC Status Compact Counter Channel 1 (6.0)	
	0x1A10 [▶ 141] - ENC Status Compact Counter Channel 2 (6.0)	
	SM2:	
	0x1603 [▶ 143] - ENC Control Compact Counter Channel 1 (4.0)	
	0x1609 [▶ 144] - ENC Control Compact Counter Channel 2 (4.0)	

8.2.4 Betriebsart - Synchronität

Die Klemme kann in drei verschiedenen Betriebsarten betrieben werden. In Abhängigkeit von der Betriebsart werden die Prozessdaten von der Klemme zu verschiedenen Zeiten synchronisiert und dem EtherCAT-Frame bereitgestellt. Weitergehende Informationen sind in der EtherCAT System-Dokumentation dem Kapitel Distributed Clocks -> <u>Grundlagen</u> zu entnehmen.

Im Karteireiter "DC" stehen folgende Betriebsarten zur Auswahl:

Operation mode	Beschreibung
FreeRun / SM Synchron	Zyklischer, Frame-getriggerter Austausch der Prozessdaten. Ein Ethernet- Frame löst die Prozessdatenbereitstellung für den nächsten abholenden Frame aus.
DC-Synchron	Zyklisch konstante Zählerstandermittlung durch die integrierte Distributed Clocks-Einheit. Die Konfiguration entspricht einer Ausgangsbaugruppe. Das lokale SYNC-Event wird kurz nach der Passage des EtherCAT-Frames ausgelöst. Dadurch werden die eben angelieferten Ausgangsdaten sofort ausgegeben.
DC-Synchron (input based)	Zyklisch konstante Zählerstandermittlung durch die integrierte Distributed Clocks-Einheit. Die Konfiguration entspricht einer Eingangsbaugruppe. Das lokale SYNC-Event wird vor dem EtherCAT-Frame ausgelöst. Dadurch stehen aktuelle Eingangsdaten zum Weitertransport zur Verfügung.

8.2.5 EtherCAT Zykluszeit

Die EtherCAT-Zykluszeit ist abhängig von der Auswahl der zu übertragenden Prozessdaten. Die folgende Tabelle gibt eine Übersicht über die empfohlene Zykluszeit in Abhängigkeit des "Predefined PDO Assignment". Die Angaben beziehen sich jeweils auf ein Vielfaches der über den TwinCAT Master einzustellenden "Base Time". Die tatsächlich funktionierenden minimalen Zykluszeiten können im Einzelfall abweichen. Wird eine schnellere Zykluszeit verwendet, ist durch das Prozessdatum 0x6002:0F "Input Cycle Counter" zu überwachen, wann neue Prozessdaten geliefert werden.

EL5102 Predefined PDO Assignment	EtherCAT Zykluszeit		
	Minimale	Maximale	
1. Ch. Standard Legacy EL5101	typ. 76,6 µs	typ. 125 µs	
2. Ch. Standard Legacy EL5101	typ. 125 µs	typ. 200 µs	
1. Ch. Compact Legacy EL5101	typ. 71,4 µs	typ. 125 µs	
2. Ch. Compact Legacy EL5101	typ. 125 µs	typ. 200 µs	
1. Ch. Standard	typ. 76,6 µs	typ. 125 µs	
2. Ch. Standard	typ. 125 µs	typ. 214,2 µs	
1. Ch. Compact	typ. 76,6 µs	typ. 150 µs	
2. Ch. Compact	typ. 125 µs	typ. 214,5 µs	
1. Ch. Standard, extended DC mode, 32Bit time stamp	typ. 125 µs	typ. 200 µs	
2. Ch. Standard, extended DC mode, 32Bit time stamp	typ. 187,5 μs	typ. 300 µs	
1. Ch. Standard, extended DC mode, 64Bit time stamp	typ. 125 µs	typ. 200 µs	
2. Ch. Standard, extended DC mode, 64Bit time stamp	typ. 200 µs	typ. 300 µs	
1. Ch. Standard, Period mode	typ. 83,3 µs	typ. 150 µs	
2. Ch. Standard, Period mode	typ. 125 µs	typ. 250 µs	
1. Ch. Standard, Frequency mode	typ. 83,3 µs	typ. 150 µs	
2. Ch. Standard, Frequency mode	typ. 125 µs	typ. 250 µs	
1. Ch. Standard, Duty Cycle mode	typ. 100 µs	typ. 150 µs	
2. Ch. Standard, Duty cycle mode	typ. 142,8 µs	typ. 250 µs	
2. Ch. Standard, counter mode	typ. 125 µs	typ. 200 µs	
2. Ch. Compact, counter mode	typ. 125 µs	typ. 200 µs	

8.2.6 "Legacy EL5101"-Mode

Das Prozessabbild der Klemme basiert auf dem MDP511 Profil. Dieses Profil wurde für eine verbesserte Funktionalität im Bereich der Status Bits erweitert. Die Klemme stellt in den jeweiligen "Predefined PDO Assignments" unterschiedliche Status Informationen zur Verfügung. Ein kompatibles Prozessabbild zu der EL5101 wird über "Legacy EL5101"-Mode bereitgestellt. Das Prozessabbild der Klemme außerhalb des "Legacy EL5101"-Mode unterscheidet sich über folgende Status Bits im PDO Assignment:

EL5101		EL5102, EL5112			
"Standard /			"Legacy EL5101"-Mode (Ch.1 n=0, Ch.2 n=1)		dard / Compact / counter"-Mode th.2 n=1)
0x6010:0D	Status_Status of extern Latch	0x60n0:0D	Status_Status of extern Latch	0x60n2:0D	Status_Status Diag
0x6010:0E	Status_Sync error	0x60n0:0E	Status_Sync error	0x60n2:0E	Status_Status TxPDO State
0x6010:0F	Status_Status TxPDO State	0x60n0:0F	Status_Status TxPDO State	0x60n2:0F	Status_Status Input cycle counter
0x6010:10	Status_Status TxPDO Toggle	0x60n0:10	Status_Status TxPDO Toggle	0x60n2:10	-
-	-	-	-	0x60n2:14	Status_Status of extern Latch

Durch den "Legacy EL5101"-Mode wird die Verwendung von bestehenden Funktionsblöcken, welche die geänderten Status-Bits nutzen, ermöglicht.

EL5102 und EL5112 in Verbindung mit älteren TwinCAT Versionen

Ab TwinCAT Version 3.1 Build 4024 können alle Predefined PDOs der EL5102 und EL5112 automatisch zur NC verknüpft werden. Bei älteren TwinCAT Versionen ist der "Legacy EL5101"-Mode zu nutzen. Die damit verbundenen Einschränkungen im Funktionsumfang sind zu beachten.

Funktionskompatibilität zu EL5101

Die EL5102 und EL5112 stellen keine Funktionskompatibilität zur EL5101 dar. Interne Berechnungsverfahren sowie Timings können sich unterscheiden. Eine Kompatibilität zu bestehenden Projekten ist im Einzelfall zu prüfen.

Einschränkungen "Legacy EL5101"-Mode

Folgende Tabelle gibt eine Übersicht der zur Verfügung stehenden Funktionen im "Legacy EL5101"-Mode:

Funktion	"Legacy"-Mode	
Zählerstand setzen über	SPS Variable	JA
	Nullimpuls C	Nein
	Latch-Eingang	Nein
Zählerstand Reset über	Nullimpuls C	JA
	Latch-Eingang	JA
Zählerstand speichern über	Nullimpuls C	JA
	Latch-Eingang	JA
	Gate-Eingang/Latch extern 2	Nein
Zählerstand sperren über	SPS Variable	Nein
	Gate-Eingang/Latch extern 2	JA
Zählrichtung detektieren	Nein	
Zählrichtungsumkehr detektieren	Nein	
Frequenzberechnung	Nein	
Periodendauerberechnung	Nein	
Duty cycle Auswertung	Nein	
Mikroinkremente	Nein	
Zeitstempelfunktion	Nein	
Filterfunktion	JA	
Plausibilitätsprüfung	JA	

8.3 Basisfunktionen

8.3.1 Zählerstand (Counter Value)

Der Zählerstand wird in Index 0x60n0:11 "Counter value" angezeigt. Er gibt den aktuellen Zählerwert in der Klemme an. Diesen können Sie durch die folgenden Einstellungen an die Anwendung anpassen.

- <u>Auswahl Encodertyp</u> [▶ 152] (Counter mode)
- Auswertung des Zählerwerts [153] (Evaluation mode)
- <u>Bestimmung der Zählergrenzen [• 154]</u> (Reset counter value / Limit counter value)
- <u>Zählrichtungsumkehr</u> [▶ 156] (Reversion of rotation)

8.3.1.1 Auswahl Encodertyp (Counter mode)

Um eine korrekte Erfassung des Zählerwertes zu gewährleisten, müssen Sie zunächst den passenden Encodertyp auswählen.

Die Auswahl des angeschlossenen Encoders erfolgt über Index 0x80n1:1D "Counter mode". Erläuterungen zu den unterstützen Encoder- und Signaltypen finden Sie im Kapitel "Unterstützte Encoder / Signaltypen".

Auswahl des Encoders über Index 0x80n1:1D "Counter mode" (n=0 für Ch.1, n=1 für Ch.2, abhängig von der Anzahl der Kanäle)		
Wert	Bedeutung	
0: Encoder RS422 (diff. input)	RS422 Encoder mit oder ohne Nullimpuls	
1: Counter RS422 (diff. input)	RS422 Zähler/Impulsgeber, mit oder ohne Nullimpuls, Richtungsvorgabe über Spur B	
2: Encoder TTL (single ended)	TTL Encoder mit oder ohne Nullimpuls	
3: Counter TTL (single ended)	TTL Zähler/Impulsgeber mit oder ohne Nullimpuls, Richtungsvorgabe über Spur B	
4: Encoder open collector	Open Collector Encoder mit oder ohne Nullimpuls	
5: Counter open collector	Open Collector Zähler/Impulsgeber mit oder ohne Nullimpuls, Richtungsvorgabe über Spur B	

Im Folgenden werden die Einstellungen unter den Subindizes 0, 2 und 4 allgemein als "Encoder" und die Einstellung unter den Subindizes 1, 3 und 5 allgemein als "Zähler/Impulsgeber" bezeichnet.

Anschalten der Fehlererkennung der C-Spur

Im Auslieferungszustand ist die Fehlererkennung auf der C-Spur ausgeschaltet, der Index 0x80n0:0D "Error detection C" ist per default FALSE.

Wird ein Encoder oder Zähler/Impulsgeber mit Nullimpuls C verwendet, so kann am Modul der Index 0x80n0:0D "Error detection C" auf TRUE gesetzt werden. Über die entsprechende LED wird dann auch der Fehlerfall angezeigt.

8.3.1.2 Geberbetriebsspannung (Supply voltage)

Die Geberversorgung wird intern aus den 24 V der Powerkontakte erzeugt. In Index 0x80n1:17 "Supply voltage" kann die Geberversorgung eingestellt werden. Voreingestellt ist eine Betriebsspannung von 5 V_{DC} . Es können Spannungswerte 5 V_{DC} , 12 V_{DC} und 24 V_{DC} ausgewählt werden. Die Einstellungen erfolgen für jeden Kanal separat.

Es gelten folgende Toleranzen

Spannungsbereich	Toleranz
5 V _{DC}	+/- 5 % (4,75 V 5,25 V)
12 V _{DC}	+/- 10 % (10,8 V 13,2 V)
24 V _{DC}	-15 % bis +20 % (20,4 V 28,8 V)

HINWEIS

Geberversorgungsspannung einstellen

- Stellen Sie vor dem Umschalten auf eine h\u00f6here Spannung sicher, dass der angeschlossene Encoder den gew\u00e4hlten Spannungsbereich unterst\u00fctzt!
- Zum Beschreiben von 0x80n1:17 "Supply voltage" müssen Sie in Index <u>0xF008 [▶ 235]</u> "Code word" den Wert 0x72657375 (ASCII: "user") setzen.

8.3.1.3 Auswertung des Zählerwerts

Die Auswertung des Zählerwerts (Counter value) wird über Index 0x80n0:06 "Evaluation mode" festgelegt.

- Auswertung der Eingangssignale (Index 0x80n0:06 "Evaluation mode"): Das Eingangssignal kann in 4-fach, 2-fach oder 1-fach Auswertung erfolgen.
 - 1 fach Auswertung: es werden die steigenden Flanken an Spur A gezählt.
 - 2 fach Auswertung: es werden die steigenden und fallenden Flanken an Spur A gezählt.
 - 4 fach Auswertung: es werden die steigenden und fallenden Flanken an Spur A und Spur B gezählt.

Im Auslieferungszustand ist die 4-fach Auswertung ausgewählt, da diese die höchste Auflösung des Eingangssignals ermöglicht.

8.3.1.4 Bestimmung der Zählergrenzen (Reset counter value / Limit counter value)

Zählergrenzen im Auslieferungszustand

Im Auslieferungszustand zählt der Zählerstand (Counter Value) in dem Bereich von 0 bis zur maximalen Zählertiefe. Bei Überschreiten der maximalen Zählertiefe (Counter overflow) beginnt der Zähler wieder von Null hochzuzählen. Die Überschreitung des Zählers wird über die Bits "Counter overflow" angezeigt (vgl. Kapitel Bestimmung der Zählergrenzen (Reset counter value / Limit counter value [• 155])).

PDO Assignment "Standard": 0 bis 2³²-1

PDO Assignment "Compact": 0 bis 2¹⁶-1

Bei Unterschreitung des Zählers, wird bei der maximalen Zählertiefe weitergezählt, auch wenn z. B. in Index 0x80n0:02 "Enable extern reset" aktiviert ist. Die Unterschreitung wird mit dem entsprechenden "Counter underflow"-Bit gekennzeichnet.

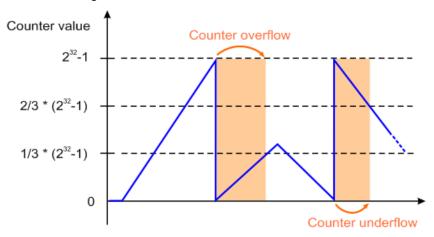


Abb. 153: Über- und Unterschreitung der Zählergrenzen im Auslieferungszustand

Zählergrenzen mit festgelegtem Wertebereich

Soll nur in einem festgelegten Wertebereich gezählt werden, so können die Zählergrenzen angepasst werden.

Zählergrenzen einstellen

Zum Beschreiben von Index 0x80n1:1B "Reset counter value" und Index 0x80n1:1A "Limit counter value" muss in <u>0xF008 [▶235]</u> "Code word" der Wert 0x72657375 (ASCII: "user") gesetzt sein.

- Geben Sie die untere Zählergrenze in Index 0x80n1:1B "Reset counter value" ein.
- Geben Sie die obere Z\u00e4hlergrenze in Index 0x80n1:1A "Limit counter value" an.

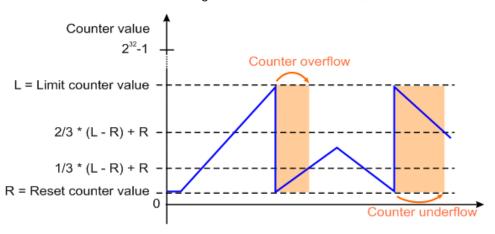


Abb. 154: Über- und Unterschreiten der Zählergrenzen mit festgelegtem Wertebereich

Zählergrenzen

- - Die untere Zählergrenze Index 0x80n1:1B "Reset counter value" muss immer kleiner sein als die obere Zählergrenze 0x80n1:1A "Limit counter value". Ist dies nicht der Fall, wird der zuletzt eingegeben Wert nicht übernommen.
 - Ist die untere Z\u00e4hlergrenze in Index 0x80n1:1B "Reset counter value" > 0 kann die Motion Control Anwendung (NC/CNC) nur in einem begrenzten Bereich genutzt werden.

Wird der Zähler zur Laufzeit auf einen Zählerstand außerhalb der Zählergrenzen parametriert, so wird dieser Zählerstand übernommen. Das Überschreiten der Zählergrenze wird über die Prozessdaten in Index 0x60n2:15 "Counter value out of range" angezeigt.

Beispiel:

In 0x70n0:11 "Set counter value" ist ein Wert parametriert, der außerhalb der Zählergrenzen liegt und das "Set counter"-Bit in Index 0x70n0:03 ist aktiviert.

- → Der in Index 0x70n0:11 vorgegebene Wert wird übernommen.
- → Das "Counter value out of range"-Bit in Index 0x60n2:15 wird gesetzt.

Werden die Zählergrenzen so parametriert, dass der aktuelle Zählerstand außerhalb dieser liegt, so wird das Unter- bzw. Überschreiten der Zählergrenze ebenfalls über die Prozessdaten in Index 0x60n2:15 "Counter value out of range" angezeigt.

Überlauf (Counter overflow) und Unterlauf (Counter underflow) der Zählergrenzen

Ein Über- oder Unterlauf der Zählergrenzen wird über die Prozessdaten 0x60n0:04 "Counter underflow" bzw. 0x60n0:05 "Counter overflow" angezeigt.

- Das "Counter underflow"- Bit in Index 0x60n0:04 wird gesetzt, wenn ein Unterlauf 0x80n1:1B "Reset counter value" → 0x80n1:1A "Limit counter value" eintritt.
 - \circ Mit den voreingestellten Parametern entspricht dies "..00 \rightarrow ..FF" Es wird zurückgesetzt, wenn 2/3 des Zählbereichs unterschritten werden.
 - · Bei Zählgrenzen mit festgelegten Werteberich entspricht das: 2/3 * ("Limit counter value" - "Reset counter value") + "Reset counter value"
- Das "Counter overflow"" Bit 0x60n0:05 wird gesetzt, wenn ein Überlauf 0x80n1:1A "Limit counter value" → 0x80n1:1B "Reset counter value" eintritt.
 - Mit Default-ParameternFF → ..00" Es wird zurückgesetzt, wenn 1/3 des Zählbereiches überschritten werden.
 - Bei Zählgrenzen mit festgelegten Werteberich entspricht das: 1/3 * ("Limit counter value" - "Reset counter value") + "Reset counter value"

Beispiel 1:

0x80n1:1A "Limit counter value" = $2^{12}-1 = 4095$

0x80n1:1B "Reset counter value" = 0

"Counter underflow" Bit wird zurückgesetzt wenn: 2/3 * 4095 = 2730 erreicht ist.

"Counter overflow" Bit wird zurückgesetzt wenn: 1/3 * 4095 = 1365 erreicht ist.

Beispiel 2:

0x80n1:1A "Limit counter value" = 212-1 = 4095

0x80n1:1B "Reset counter value" = 400

"Counter underflow" Bit wird zurückgesetzt, wenn: 2/3 * (4095-400) +400 = 2463 erreicht ist.

"Counter overflow" Bit wird zurückgesetzt, wenn: 1/3 * (4095-95) +400 = 1232 erreicht ist.

8.3.1.5 Zählrichtungsumkehr (Reversion of rotation)

- **Bei einem Encoder** wird die Zählrichtung durch die Phasenlage der Signale an Spur A und Spur B vorgegeben.
 - Vorwärts (cw): Signal an Spur A ist 90° voreilend gegenüber Spur B
 - Rückwärts (ccw): Signal an Spur A ist 90° nacheilend gegenüber Spur B

Um die Zählrichtung an die Anwendung anzupassen, kann diese Logik durch das Setzten des Bits in Index 0x80n0:0E "Reversion of rotation" invertiert werden.

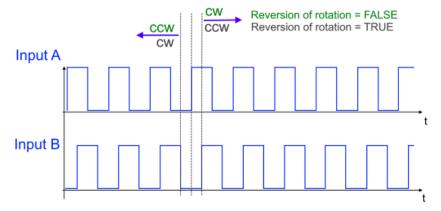


Abb. 155: Zählrichtungsumkehr (Index 0x80n0:0E "Reversion of rotation") bei einem Encoder

- Bei einem Zähler/Impulsgeber wird die Zählrichtung durch den Pegel an Spur B vorgeben.
 - · Vorwärts (cw): LOW-Pegel an Spur B oder Eingang offen
 - · Rückwärts (ccw): HIGH-Pegel an Spur B

Das Setzen des Bits in Index 0x80n0:0E "Reversion of rotation" invertiert auch hier die Logik der Zählrichtung. Eine Übersicht der resultierenden Zählrichtung ist in der folgenden Tabelle dargestellt.

Über das Prozessdatum 0x60n0:0A "Status of input B" wird der aktuelle Pegel am Eingang B angezeigt.

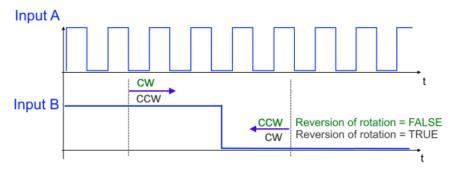


Abb. 156: Zählrichtungsumkehr (Index 0x80n0:0E "Reversion of rotation") bei einem Zähler/Impulsgeber

0x80n1:1D "Counter mode"	Pegel am Eingang Spur B	0x80n0:0E "Reversion of rotation"	Resultierende Zählrichtung
1: Counter RS422	Eingang offen / LOW Pegel	FALSE	Positiv
(diff. input)		TRUE	Negativ
	RS422 Signalpegel	FALSE	Negativ
		TRUE	Positiv
3: Counter TTL	Eingang offen / LOW Pegel,	FALSE	Positiv
(Single-Ended)	Spannungspegel < 0,8 V	TRUE	Negativ
	TTL Spannungspegel	FALSE	Negativ
	2,0 V bis 6,0 V, mit min. 2,1 mA Strom	TRUE	Positiv
5: Counter open collector		FALSE	Positiv
	Spannungspegel < 0,8 V	TRUE	Negativ
	Open Collector Spannungspegel	FALSE	Negativ
	2,0 V bis 6,0 V, mit min. 2,1 mA Strom	TRUE	Positiv

Status LED Eingang B als Counter RS422 (diff. Input)

Ist im Counter mode "RS422 (diff. Input)" der Eingang der Spur B offen, so wird ein Drahtbruch detektiert und die Status LED des Eingangs B leuchtet rot. Die Fehlererkennung und Meldung über die LED kann über Index 0x80n0:0C "Error detection B" ausgeschaltet werden.

8.3.2 Zählerstand reset

Ein wiederkehrendes Rücksetzen des Zählerstandes (Index <u>0x60n0:11 [▶ 208]</u> "Counter value") auf "0" kann erfolgen durch:

- Eingang Nullimpuls C: [▶ 158] eine positive Flanke am Nullimpuls C Eingang ("Enable C reset")
- Eingang Latch: [▶ 158] eine Flanke (positiv/negativ) am Latch extern-Eingang ("Enable extern reset")

Die Einstellungen werden in den Konfigurationsdaten vorgenommen, dadurch ist eine erneute Aktivierung, nach Ausführung des Resets, nicht notwendig.

Eine gleichzeitige Aktivierung der Funktionen "Enable C reset" (Index <u>0x80n0:01 [▶ 204]</u>) und "Enable extern reset" (Index 0x80n0:02) ist nicht möglich.

Zählerstand Reset über den Eingang Nullimpuls C (Enable C reset)

Der Zählerstand kann zu jeder vollen Umdrehung des Gebers über den Nullimpuls C auf den im Index 0x80n1:1B [▶ 206] "Reset counter value" vorgegebenen Wert gesetzt werden.

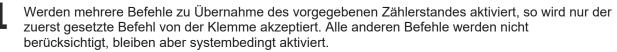
- Vorgabe des Reset-Wertes über Index 0x80n1:1B [▶ 206] "Reset counter value" (Default: 0)
- Zu Aktivierung dieser Funktion setzen Sie das Bit im Index 0x80n0:01 [▶ 204] "Enable C reset".
- Es erfolgt keine Statusmeldung über die Prozessdaten.

Zählerstand Reset über den Latch extern-Eingang (Enable extern reset)

Der Zählerstand kann über den Latch extern-Eingang auf "0" gesetzt werden.

- Vorgabe des Reset-Wertes über Index 0x80n1:1B [▶ 206] "Reset counter value", (Default: 0)
- Zur Aktivierung dieser Funktion setzen Sie das Bit im Index 0x80n0:02 [▶ 204] "Enable extern reset".
- Legen Sie über Index <u>0x80n0:10 [▶ 204]</u> "Extern reset polarity" fest, bei welcher Flanke der Latch extern-Eingang aktiv ist.
 - 0: "Fall" mit fallender Flanke wird der Zähler auf "0" gesetzt
 - 1: "Rise" mit steigender Flanke wird der Zähler auf "0" gesetzt

Es erfolgt keine Statusmeldung über die Prozessdaten.



8.3.3 Zählerstand setzen

Der Zählerstand (Counter value) kann zur Laufzeit auf einen vorgegebenen Zählerwert gesetzt und damit zur Synchronisation mit anderen Prozessen genutzt werden. Die Vorgabe kann wie folgt aktiviert werden:

- <u>SPS Variable:</u> [▶ <u>159</u>] der Zählerstand kann aus der SPS Anwendung heraus gesetzt werden (Set counter value)
- Eingang Nullimpuls C: [▶ 159] über den Nullimpuls C des Encoders (Set counter on latch C)
- <u>Eingang Latch:</u> [• 160] eine positive oder negative Flanke am Latch extern Eingang (Set counter on latch extern on positive/negative edge)

Mehrfachaktivierung von "Set counter on …"

- Der Zählerstand wird bei dem zuerst aktivierten Ereignis, auf den vorgegebenen Zählerstand gesetzt und über das Bit "Set counter done" (Index 0x60n0:03) [• 208] bestätigt.
- Eine erneute Aktivierung der Zählerwertvorgabe kann erst erfolgen, wenn alle aktivierten Befehle zur Übernahme des Zählerstandes deaktiviert wurden. Dies wird bestätigt, indem das "Set counter done"-Bit (Index 0x60n0:03) auf FALSE gesetzt wird.

Zählerstand setzen über eine SPS Variable (Set counter value)

Der Zählerstand kann zur Laufzeit über die Prozessdaten auf einen vorgegebenen Zählerwert gesetzt werden (0x70n0:03 "Set counter"). In der SPS kann dieses Bit z. B. mit einem digitalen Eingang verknüpft, oder auch direkt als Variable genutzt werden.

- Vorgabe des Zählerwerts über den Index 0x70n0:11 "Set counter value"
- Aktivierung der Zählwertvorgabe über die SPS Variable: Index 0x70n0:03 "Set counter"
- Zur Bestätigung wird das "Set counter done"- Bit in Index 0x60n0:03 auf TRUE gesetzt.
- Eine erneute Aktivierung der Zählwertvorgabe kann erst erfolgen, wenn der Index 0x70n0:03 "Set counter" FALSE gesetzt wurde.

Zählerstand setzen über den Eingang Nullimpuls C (Set counter on Latch C)

Der Zählerstand kann zur Laufzeit über die Prozessdaten durch den Nullimpuls C auf einen vorgegebenen Zählerwert gesetzt werden.

- Zählwertvorgabe über Index 0x70n0:11 [▶ 209] "Set counter value"
- · Aktivierung der Zählwertvorgabe über den Nullimpuls C:
 - Index 0x70n0:08 [▶ 209] "Set counter on latch C" = TRUE
 Beim nächsten Nullimpuls wird der Zählerwert (Counter value) auf den in Index 0x70n0:11 [▶ 209] (Set counter value) vorgegebenen Zählerwert gesetzt.
- Zur Bestätigung wird das "Set counter done"- Bit in Index 0x60n0:03, auf TRUE gesetzt.
- Eine erneute Aktivierung der Zählwertvorgabe über den Nullimpuls C kann erst erfolgen, wenn das "Set counter on latch C"-Bit in Index 0x70n0:08 auf FALSE gesetzt wurde.

Zählerstand setzen über den Latch extern-Eingang (Set counter on latch extern on positive/negative edge)

Der Zählerstand kann zur Laufzeit über die Prozessdaten durch die positive oder negative Flanke am Latch extern-Eingang auf einen vorgegebenen Zählerstand gesetzt werden.

- Zählwertvorgabe über Index 0x70n0:11 "Set counter value"
- · Aktivierung der Zählwertvorgabe über
 - die positive Flanke am Latch extern-Eingang: Index 0x70n0:0A "Set counter on latch extern on positive edge"
 - die negative Flanke am Latch extern-Eingang: Index 0x70n0:0B "Set counter on latch extern on negative edge"
- Bei gesetztem Bit (TRUE) im Index 0x70n0:0A oder 0x070n0:0B wird bei der nächsten steigenden oder fallenden Flanke am Latch extern-Eingang der Zählerstand (Counter value) auf den vorgegebenen Zählerwert (Set counter value) gesetzt.
- Zur Bestätigung wird das "Set counter done"- Bit (Index 0x60n0:03) auf TRUE gesetzt.
- Eine erneute Aktivierung der Zählwertvorgabe kann erst erfolgen, wenn Index 0x70n0:0A/0B "Set counter on latch extern on positive/negative edge" auf FALSE gesetzt wurde.

8.3.4 Zählrichtung detektieren

Die Klemme kann über Index 0x80n1:1C "Direction inversion hysteresis" wie folgt parametriert werden:

• Zählrichtung detektieren [• 161]: positive Drehrichtung wird als "0" und eine negative Drehrichtung als "1" in den Prozessdaten über Index 0x60n2:13 "Direction inversion detected" ausgegeben.

Oder

• <u>Zählrichtungsumkehr detektieren:</u> [▶ 162] wird eine Drehrichtungsumkehr detektiert, wird dies in den Prozessdaten über Index 0x60n2:13 "Direction inversion detected" ausgegeben. Diese Funktion kann auch zur Stillstandüberwachung [▶ 162] genutzt werden.

Zählrichtung detektieren

- Setzen der Hysterese, über Index 0x80n1:1C "Direction inversion hysteresis" = 0
- Für die Detektion der Zählrichtung wird der Positionswert vom letzten SPS Zyklus (pos 1) von dem Positionswert des aktuellen SPS Zyklus (pos 2) subtrahiert.
- Das Resultat wird beim nächste SPS Zyklus über Index 0x60n2:13 "Direction inversion detected" ausgegeben. Dabei wird ein positives Ergebnis als positive Drehrichtung interpretiert (0x60n2:13 "Direction inversion detected" = 0), ein negatives als negative Drehrichtung (0x60n2:13 "Direction inversion detected" = 1).

0x80n1:1C "Direction inversion hysteresis" = 0				
Positionsänderung	Drehrichtung	0x60n2:13 "Direction inversion detected"		
pos 2 – pos 1 > 0	Positive Drehrichtung (CW)	0		
pos 2 – pos 1 < 0	Negative Drehrichtung (CCW)	1		
pos 2 – pos 1 = 0	Keine Änderung der Drehrichtung	Keine Statusänderung		
Überlauf / Counter overflow	Keine Änderung der Drehrichtung	Keine Statusänderung		
Unterlauf / Counter underflow	Keine Änderung der Drehrichtung	Keine Statusänderung		

- Beim hochstarten der Klemme wird im ersten SPS Zyklus von einer positiven Drehrichtung ausgegangen (0x60n2:13 "Direction inversion detected" = 0), da hier zunächst ein zweiter Positionswert für die Berechnung fehlt.
- Wird ein Überlauf (0x60n0:05 "Counter overflow") oder Unterlauf (0x60n0:04 "Counter underflow") des Zählerstandes detektiert, so wird das Ergebnis für den nächsten SPS Zyklus intern korrigiert, siehe folgende Abb. (A).
- Wird der Zählerstand über die C-Spur oder den Eingang Latch extern geändert [▶ 159] und führt dies zu einem negativen Positionssprung, so wird dies über das Prozessdatum 0x60n2:13 "Direction inversion detected" angezeigt, siehe folgende Abb. (B)
- Wird die Zählrichtungsumkehr [156] (Index 0x80n0:0E "Reversion of rotation" = TRUE) aktiviert, so ändert sich auch die Logik der Detektion der Drehrichtung.

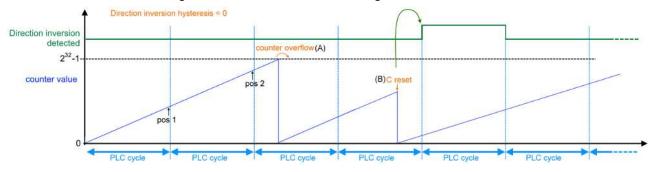


Abb. 157: Detektion der Zählrichtung

Zählrichtungsumkehr detektieren

- Eingabe der Hysterese in Anzahl Inkremente, über Index 0x80n1:1C "Direction inversion hysteresis".
 Es ist ein Wert > 0 zu wählen.
- Wird eine Richtungsumkehr detektiert, so wertet ein interner Zähler die direkt hintereinander detektierten Flanken für jede Drehrichtung aus und vergleicht diese mit der in Index 0x80n1:1C eingegebene Anzahl.
- Überschreitet der Zählerwert den in Index 0x80n1:1C eingegebenen Wert, so wird beim nächsten SPS Zyklus das Bit in Index 0x60n2:13 "Direction inversion detected" gesetzt. Das Bit bleibt nur für einen Zyklus aktiv.
- Wird innerhalb des nächsten Zyklus eine weitere Drehrichtungsumkehr erkannt, so bleibt das Bit aktiv.
- Die Hysterese wird für jeden SPS Zyklus separat betrachtet, der Zähler wird somit für jeden Zyklus neu gestartet. Es findet keine SPS-Zyklusübergreifende Überwachung statt.
- Wird die <u>Zählrichtungsumkehr</u> [• <u>156</u>] (Index 0x80n0:0E "Reversion of rotation" = TRUE) aktiviert, so ändert sich auch die Logik der Detektion der Drehrichtung.
- Treten mehrere Richtungsänderungen innerhalb eines SPS Zyklus auf, so wird lediglich angezeigt, dass mindestens eine Drehrichtungsänderung detektiert wurde.

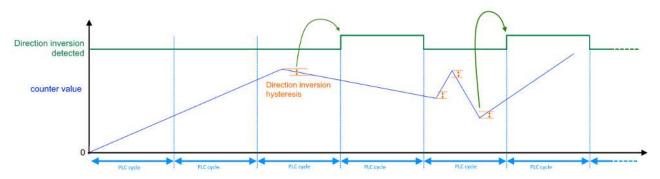


Abb. 158: Detektion der Zählrichtungsumkehr

Stillstandsüberwachung

Die Detektion der Richtungsumkehr kann auch zur Stillstandsüberwachung genutzt werden. Wird ein nahezu konstanter Zählerwert erwartet, so kann über die Hysterese (Index 0x80n1:1C) überwacht werden, ob sich der Wert innerhalb des Fensters befindet. Ein leichtes Zittern des Zählwertes wird somit noch als zulässiger Wert akzeptiert. Bei einer Überschreitung wird beim nächsten SPS Zyklus das Bit 0x60n2:13 "Direction inversion detected" gesetzt.

- Ändert sich die Richtung innerhalb der in Index 0x80n1:1C angegebenen Hysterese [Anzahl Inkremente] erneut, wird kein Richtungswechsel angezeigt (Stillstand) s. folgende Abb. (A).
- Wird nach einem Richtungswechsel die in Index 0x80n1:1C angegebene Hysterese [Anzahl Inkremente] überschritten, wird der Richtungswechsel im nächsten Zyklus durch Setzen des "Direction inversion detected"-Bits in Index 0x60n2:13 angezeigt s. folgende Abb. (B).

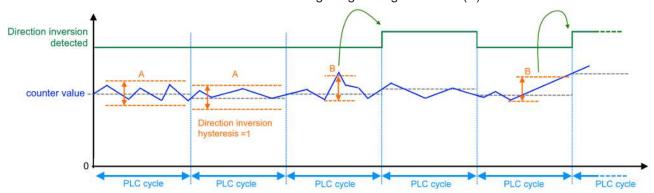


Abb. 159: Stillstandsüberwachung mit Hysterese und Detektion der Zählrichtungsumkehr

Wegdriften des Zählwertes

Überwachung des Zählwertes in der SPS.

Die zuverlässige Erkennung eines wegdriftenden Zählwertes kann nur bei einem Wert in Index 0x80n1:1C "Direction inversion hysteresis" von "1" gewährleistet werden. Oder eine Zusätzliche

8.3.5 Zählerstand speichern

Die Latch Funktion ermöglicht das Abspeichern des aktuellen Zählerstandes in einem separaten Prozessdatum, unabhängig von der Zykluszeit. Der Gate/Latch-Eingang kann als zweiter externer Latch-Eingang, mit einem separaten Prozessdatum, parametriert werden. Die Latch Funktion kann wie folgt ausgelöst werden:

- <u>Eingang Latch:</u> [• <u>165</u>] positive/negative Flanke am Latch-Eingang (Enable latch extern on positive/negative edge)
- <u>Eingang Gate/Latch [• 166]</u>: positive/negative Flanke am Gate/Latch-Eingang (Enable latch extern 2 on positive/negative edge)
- Eingang Nullimpuls C: [▶ 167] über den Nullimpuls C (Enable latch C)

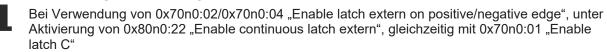
Über Index <u>0x80n0:22 [▶ 204]</u> "Enable continuous latch extern" und <u>0x80n0:23 [▶ 204]</u> "Enable continuous latch extern 2" kann parametriert werden, ob die Funktion bei jeder parametrierten externen Flanke am Latch-Eingang oder nur einmalig nach jeder Aktivierung ausgeführt wird.

Durch die Nutzung zweier unabhängiger Latch-Eingänge kann eine <u>Werkstückmessung</u> [▶ 167] realisiert werden.

Mehrfachaktivierung der Latch-Funktion

Werden mehrere Befehle gleichzeitig zum Speichern des Zählerwerts im Prozessdatum "Latch value" (Index 0x60n0:12 [▶ 208]) aktiviert, so wird nur der zuerst gesetzte Befehl von der Klemme akzeptiert.

- Der Zählerstand wird bei dem nächsten auftretenden Ereignis im "Latch value" (Index 0x60n0:12) gespeichert und mit dem entsprechenden Bit bestätigt.
- · Alle weiteren aktivierten Ereignisse werden ignoriert.
- Eine erneute Aktivierung der Zählwertspeicherung kann erst erfolgen, wenn alle aktivierten Befehle zum Latchen des Wertes deaktiviert wurden. Dies gilt auch, wenn diese nach der Bestätigung durch das auftretende Ereignis aktiviert wurden.



Zählerstand speichern über eine positive/negative Flanke am Latch-Eingang (Enable latch extern on positive/negative edge)

- Speichern des Zählerstands am Latch extern-Eingang über:
 - Index 0x70n0:02 [▶ 209] "Enable latch extern on positive edge" = TRUE
 Beim ersten externen Latchimpuls mit positiver Flanke wird der aktuelle Zählerwert in Index 0x60n0:12 [▶ 208] "Latch value" gespeichert.
 - Index 0x70n0:04 [▶ 209] "Enable latch extern on negative edge" = TRUE
 Beim ersten externen Latchimpuls mit negativer Flanke wird der aktuelle Z\u00e4hlerwert in Index 0x60n0:12 [▶ 208] "Latch value" gespeichert.
 - Gleichzeitige Aktivierung von 0x70n0:02 und 0x70n0:04
 beim ersten externen Latchimpuls, unabhängig von der Polarität der Flanke, wird der aktuelle Zählerwert in Index 0x60n0:12 "Latch value" gespeichert.
- Festlegung ob eine erneute Aktivierung des Befehls zum Speichern des Zählerwerts erforderlich ist über:
 - "Enable continuous latch extern" Index 0x80n0:22 [▶ 204] = FALSE
 Die folgenden Impulse am Latch extern-Eingang haben bei gesetztem Bit in Index 0x70n0:02 oder 0x70n0:04 keinen Einfluss auf den Latch-Wert in Index 0x60n0:12 "Latch value".

 Erst, wenn Index 0x60n0:02 [▶ 208] "Latch extern valid" FALSE ist, kann ein neuer Zählerwert auf den Latch-Eingang in Index 0x60n0:12 "Latch value" geschrieben werden
 - "Enable continuous latch extern" Index <u>0x80n0:22 [▶ 204]</u> = TRUE
 Der Zählerwert wird bei jeder parametrierten Flanke am Latch extern-Eingang in Index 0x60n0:12 "Latch value" geschrieben.
 Eine erneute Aktivierung des Index 0x70n0:02 oder 0x70n0:04 entfällt.
- Das Speichern des Zählwerts im Index 0x60n0:12 "Latch value" wird über das "Latch extern valid"-Bit (Index 0x60n0:02) bestätigt.
- Der Status des Latch extern-Eingangs kann über Index <u>0x60n2:14 [▶ 209]</u> "Status of extern latch" erfasst werden.

Gleichzeitige Aktivierung von "Enable continuous latch extern" u. "Enable latch C"

- Es wird nur das erste Ereignis, entweder pos./neg. Flanke am Latch extern-Eingang oder der Nullimpuls C, in Index 0x60n0:12 "Latch value" geschrieben.
- Das Speichern des Z\u00e4hlwertes wird jeweils \u00fcber Index 0x60n0:02 "Latch extern valid" oder Index 0x60n0:01 [▶ 208] "Latch C valid" best\u00e4tigt.
- Alle weiteren Flanken am Latch extern-Eingang werden ignoriert.
- Eine erneute Aktivierung der Zählwertspeicherung kann erst erfolgen, wenn alle aktivierten Befehle zum Latchen des Wertes deaktiviert wurden.

Zählerstand speichern über eine positive/negative Flanke am Gate/Latch-Eingang (Enable latch extern 2 on positive/negative edge)

Die Klemme bietet die Möglichkeit den Gate/Latch-Eingang als einen zweiten Latch-Eingang (Latch extern 2) zu nutzen. Dazu sollte das Gate deaktiviert werden.

Deaktivierung des Gates

Setzen Sie das "Gate polarity" Bit (Index <u>0x80n0:04 [▶ 204]</u>) auf "0 – Disable gate", um den Latch extern 2-Eingang nutzen zu können, ohne den Zählerstand nach dem Latch-Ereignis zu sperren.

- Speichern des Zählerstands am Latch extern 2-Eingang über:
 - Index 0x70n0:0C [▶ 209] "Enable latch extern 2 on positive edge" = TRUE
 Beim ersten externen Impuls mit positiver Flanke am Gate/Latch-Eingang wird der aktuelle
 Zählerwert in Index 0x60n0:22 [▶ 208] "Latch value 2" gespeichert.
 - Index 0x70n0:0D [▶ 209] "Enable latch extern 2 on negative edge" = TRUE
 Beim ersten externen Impuls mit negativer Flanke am Gate/Latch-Eingang wird der aktuelle
 Zählerwert in Index 0x60n0:22 "Latch value 2" gespeichert.
 - Gleichzeitige Aktivierung von 0x70n0:0C und 0x70n0:0D
 Beim ersten Impuls am Gate/Latch-Eingang, unabhängig von der Polarität der Flanke, wird der aktuelle Zählerwert in Index 0x60n0:22 "Latch value 2" gespeichert.
- Festlegung ob eine erneute Aktivierung des Befehls zum Speichern des Zählerwerts erforderlich ist über:
 - ∘ "Enable continuous latch extern 2" Index <u>0x80n0:23 [▶ 204]</u> = FALSE Die folgenden Impulse am Gate/Latch-Eingang haben bei gesetztem Bit in Index 0x70n0:0C oder 0x70n0:0D keinen Einfluss auf den Latch-Wert in Index 0x60n0:22 "Latch value 2". Erst, wenn Index <u>0x60n2:12 [▶ 209]</u> "Latch extern 2 valid" FALSE ist, kann ein neuer Zählerwert auf den Gate/Latch-Eingang in Index 0x60n0:22 "Latch value 2" geschrieben werden.
 - "Enable continuous latch extern 2" Index <u>0x80n0:23 [▶ 204]</u> = TRUE
 Der Zählerwert wird bei jeder parametrierten Flanke am Gate/Latch-Eingang in Index 0x60n2:12 "Latch value 2" geschrieben.
 Eine erneute Aktivierung des Index 0x70n0:0C oder 0x70n0:0D entfällt.
- Der Status des Gate/Latch-Eingangs kann über Index <u>0x60n0:0C [▶ 208]</u> "Status of input gate" erfasst werden.
- Das Speichern des Zählerwerts im Index 0x60n0:22 "Latch value 2" wird über das Bit 0x60n2:12 "Latch extern 2 valid" bestätigt.

•

Gleichzeitige Nutzung von Gate und Latch extern 2

Bei Verwendung von Index <u>0x80n0:04 [▶ 204]</u> "Gate polarity" (1 = "Enable pos. gate") und gleichzeitiger Aktivierung von Index <u>0x70n0:0C [▶ 209]</u> "Enable latch extern 2 on positive edge" wird bei positiver Flanke am Gate/Latch-Eingang der aktuelle Zählerwert zunächst in Index <u>0x60n0:22</u> [▶ 208] "Latch value 2" gespeichert. Danach wird der Zählerstand gesperrt.

Dasselbe gilt für die Verwendung von Index 0x80n0:04 "Gate polarity" (2 = "Enable neg. gate") und gleichzeitiger Aktivierung von Index 0x70n0:0D [▶ 209] "Enable latch extern 2 on negative edge" bei negativer Flanke am Gate/Latch-Eingang.

Zählerstand speichern über den Eingang Nullimpuls C (Enable latch C)

Der Zählerstand kann zur Laufzeit über die Prozessdaten durch den Nullimpuls in "Latch value" (Index 0x60n0:12 [▶ 208]) gespeichert werden.

- Die Funktion wird aktiviert, indem das Bit in "Enable Latch C" (Index <u>0x70n0:01 [▶ 209]</u>) auf TRUE gesetzt wird.
- Bei dem nächsten Nullimpuls am Eingang C wird der aktuelle Zählerwert in "Latch value" (Index 0x60n0:12) gespeichert. Die folgenden Impulse haben keinen Einfluss auf den Latch-Wert.
- Das "Latch C valid"- Bit (Index 0x60n0:01 [▶ 208]) wird auf TRUE gesetzt.
- Erst wenn der Wert des "Enable Latch C"-Bit (Index 0x70n0:01) und des "Latch C valid"-Bit (Index 0x60n0:01) FALSE sind, kann nach erneuter Aktivierung von "Enable Latch C" (Index 0x70n0:01) ein neuer Zählerwert auf den Latch-Eingang geschrieben werden.

Werkstückmessung

Mit Hilfe der zwei Latch-Funktionen (Latch extern und Latch extern 2) können Werkstücke oder Abstände zwischen zwei Werkstücken erfasst werden. Um die Latch extern 2-Funktion zu nutzen, sollte das Gate deaktiviert werden über Index 0x80n0:04 [▶ 204] "Gate polarity" ("Disable gate" = 0).

Je nach Aktivierung der Indizes, kann der Zählerstand über eine steigende oder fallende Flanke gespeichert werden.

"Continuous latch" bei Werkstückmessung

Um eine Überschreibung des gespeicherten Wertes zu verhindern, ist es empfehlenswert für die Werkstückmessung die Einstellung in Index <u>0x80n0:22 [▶ 204]</u> "Enable continuous latch extern" auf FALSE zu setzen.

Beispielhafter Ablauf einer Werkstückmessung

- Index 0x70n0:02 [▶ 209] "Enable latch extern on positive edge" = TRUE: beim ersten Impuls mit positiver Flanke am Latch extern-Eingang wird der aktuelle Zählerwert in Index 0x60n0:12 [▶ 208] "Latch value" gespeichert.
- Das Speichern des Zählwerts in Index 0x60n0:12 "Latch value" wird über das Bit <u>0x60n0:02 [▶ 208]</u> "Latch extern valid" bestätigt.
- Index <u>0x70n0:0D</u> [▶ <u>209</u>] "Enable latch extern 2 on negative edge" = TRUE: beim ersten externen Impuls mit negativer Flanke am Gate/Latch-Eingang wird der aktuelle Zählerwert in Index <u>0x60n0:22</u> [▶ <u>208</u>] "Latch value 2" gespeichert.
- Das Speichern des Zählerwerts im Index 0x60n0:22 "Latch value 2" wird über das "Latch extern 2 valid"-Bit in Index 0x60n2:12 bestätigt.
- Das Ende der Messung wird über die beiden aktivierten Bits in Index 0x60n0:02 "Latch extern valid" und Index 0x60n2:12 "Latch extern 2 valid" bestätigt.
- Die Werkstücklänge kann aus der Differenz der beiden Werte "Latch value" und "Latch value 2" berechnet werden.
- Eine erneute Werkstückmessung kann gestartet werden, nachdem die Bits in Index 0x70n0:02 "Enable latch extern on positive edge" und 0x70n0:0D "Enable latch extern 2 on negative edge" deaktiviert wurden.

8.3.6 Zählerstand sperren

Die Gate Funktion ermöglicht das Sperren des Zählers (0x60n0:11 [▶ 208]).

Der Zähler sperrt beim ersten Impuls am Gate/Latch-Eingang. Nachfolgende Impulse haben keinen Einfluss auf den Zählerstand. Dadurch kann ein Zeitfenster definiert werden, indem Zählsignale erfasst werden. Die Gate Funktion kann ausgelöst werden durch:

- Eingang Gate: [168] eine positive / negative Flanke am Gate/Latch-Eingang (Enable pos./neg. gate),
- <u>SPS Variable:</u> [• <u>168]</u> der Zähler kann aus der SPS Anwendung heraus gesperrt werden (Set software gate).

Der Gate/Latch-Eingang kann auch als zweiter Latch-Eingang (Latch extern 2) genutzt werden.

Zählerstand sperren über eine positive/negative Flanke am Eingang Gate (Enable pos./neg. gate)

- Über Index <u>0x80n0:04</u> [▶ <u>204</u>] "Gate polarity" kann der Pegel am Gate-Eingang festgelegt werden, bei dem der Zählerstand zur Laufzeit gesperrt wird.
 - 0: Disable gate
 Der Gate/Latch-Eingang ist deaktiviert. Er kann weiterhin als Latch extern 2-Eingang genutzt werden.
 - 1: Enable pos. gate
 Der Zählerstand wird mit HIGH-Pegel am Gate/Latch-Eingang gesperrt.
 - 2: Enable neg. gate
 Der Zählerstand wird mit LOW-Pegel am Gate/Latch-Eingang gesperrt.
- Über das Prozessdatum <u>0x60n0:0C [▶ 208]</u> "Status of input gate" wird der aktuelle Pegel am Gate-Eingang angezeigt.

Gleichzeitige Nutzung von Gate und Latch extern 2

Bei Verwendung von Index <u>0x80n0:04</u> [▶ <u>204</u>] "Gate polarity" (1 = "Enable pos. gate") und gleichzeitiger Aktivierung von Index <u>0x70n0:0C</u> [▶ <u>209</u>] "Enable latch extern 2 on positive edge" wird bei positiver Flanke am Gate/Latch-Eingang der aktuelle Zählerwert zunächst in Index <u>0x60n0:22</u> [▶ <u>208</u>] "Latch value 2" gespeichert. Danach wird der Zählerstand gesperrt.

Dasselbe gilt für die Verwendung von Index 0x80n0:04 "Gate polarity" (2 = "Enable neg. gate") und gleichzeitiger Aktivierung von Index <u>0x70n0:0D [▶ 209]</u> "Enable latch extern 2 on negative edge" bei negativer Flanke am Gate/Latch-Eingang.

Zählerstand sperren über eine SPS Variable (Set software gate)

Der Zählerstand kann aus der SPS Anwendung heraus gesperrt werden.

- Index <u>0x70n0:09</u> [▶ <u>209</u>] "Set software gate" = TRUE Der Zähler ist gesperrt.
- Zur Bestätigung wird das "Software gate valid"- Bit (0x60n2:11 [▶ 209]) auf TRUE gesetzt.
- Index 0x70n0:09 "Set software gate" = FALSE Der Zähler ist entsperrt.

8.4 Erweiterte Funktionen

8.4.1 Frequenzmessung

Neben dem reinen Zählwert kann auch der Frequenzwert (Frequency value) berechnet und ausgegeben werden. Für die Messwertermittlung gelten folgende Grenzwerte:

Messwert-	Messwertgrenze		Bemerkung
ausgabe	Untere	Obere	
Frequency value	0,095 Hz	5 MHz	Bei 4-fach Auswertung Signaltyp: RS422 (diff. Input)
	0,095 Hz	1 MHz	Bei 4-fach Auswertung Signaltyp: TTL (single ended), open collector
	0,095 Hz	100 kHz	Bei 4-fach Auswertung Signaltyp: open collector

Ablauf Frequenzmessung (Frequency value)

Die Frequenz berechnet sich aus der Anzahl der Inkremente bzw. Positionswertänderungen in einem Zeitintervall. Das Ergebnis wird über die Prozessdaten in Index <u>0x60n0:13 [▶ 208]</u> "Frequency value" ausgegeben.

Frequenz =	Anzahl Perioden / Zeitintervall
Anzahl Perioden	Es wird die Anzahl ganzer Perioden auf Spur A im Zeitfenster (0x80n0:11 [> 204]) gemessen. Die Zählung wird mit der ersten steigenden Flanke im Zeitfenster (Index 0x80n0:11 "Frequency window") gestartet.
Zeitintervall	Die Zeitmessung wird mit der ersten steigenden Flanke auf Spur A im Bereich des "Frequency window" gestartet und mit der letzten fallenden Flanke innerhalb des "Frequency window" beendet. Die Zeitmessung wird mit einer Auflösung von 10 ns durchgeführt.
	Sonderfall: Wird innerhalb des Zeitfensters (Frequency window) keine volle Periode gemessen, wird ein weiteres Zeitfenster gestartet. Die maximale Zeitmessung zum Erfassen einer ganzen Periode ist über die Wartezeit (Frequency wait time) begrenzt.

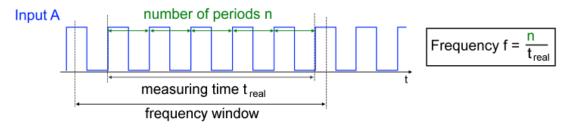


Abb. 160: Frequenzmessung - "Frequency value"

- Auswahl des Frequenzfensters in Index 0x80n0:11 "Frequency window", Default-Wert 10 ms. Beachten Sie die untenstehenden Hilfestellungen zur richtigen Wahl des Zeitfensters.
- "Frequency scaling" (Index <u>0x80n0:13 [▶ 204]</u>) gibt die Auflösung der ausgegebenen Frequenz an. Der Default-Wert beträgt 0,01 Hz. Die Frequenz kann auch in der Einheit 1 Hz (0x80n0:13 "Frequency scaling" auf 1_{dez} setzen) ausgegeben werden. Sind anderweitige Auflösungen gewünscht, kann die Umrechnung über <u>0x80n0:1D [▶ 204]</u> "Frequency numerator" erfolgen.
- Über "Frequency value" (Index <u>0x60n0:13 [▶ 208]</u>) wird der berechnete Frequenzwert in den Prozessdaten ausgegeben.
- Die Berechnung wird azyklisch und ohne Bezug zum Distributed Clock-System ausgeführt und ist somit von der Betriebsart unabhängig.
- Ein Sperren des Zählerwertes über das Gate, ein C-Reset oder externer Reset haben keinen Einfluss auf die Frequenzberechnung.

Richtige Wahl des Zeitfensters:

Das Zeitfenster für die Frequenzmessung ist im Auslieferungszustand auf 10 ms eingestellt.

Die Genauigkeit und Größe der ermittelten Frequenz hängt von der Größe des Zeitfensters (0x80n0:11 [\(\bullet \) 204] "Frequency window") ab, diese ist Applikationsspezifisch zu wählen. Hier sollte mindestens die doppelte Periodendauer der minimal zu messenden Frequenz eingetragen werden.

$$Zeitfenster \ge 2 * \frac{1}{f_{min}}$$

Bei konstanten Geschwindigkeiten wählen Sie ein größeres Zeitfenster, damit eine möglichst gute Mittelwertbildung erfolgen kann.

Treten jedoch vermehrt positive oder negative Beschleunigungen auf, wählen Sie das Zeitfenster kleiner, um auf die geänderten Positionswerte schneller reagieren zu können. Alternativ dazu kann bei wechselnden Geschwindigkeiten auch die Periodendauermessung genutzt werden.

Sonderfall Frequenzmessung

Wird Innerhalb des Zeitfensters "Frequency window" (s. folgenden Abb. (1)), keine volle Periode detektiert, wird ein weiteres Zeitfenster "Frequency window" (s. folgende Abb. (2)) gestartet, um mindestens eine volle Periode aufzunehmen. Dies geschieht solange, bis die maximale Wartezeit (0x80n0:17 [▶ 204] "Frequency wait time") abgelaufen ist. Bis dahin wird der letzte gültige Wert im Index 0x60n0:13 [▶ 208] "Frequency value" ausgegeben.

Wird innerhalb der Wartezeit keine volle Periode detektiert, so wird die Messung verworfen und die Ausgabe in Index 0x60n0:13 "Frequency value" auf "0" gesetzt.

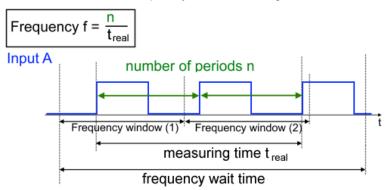


Abb. 161: Frequenzmessung außerhalb des Frequenzfensters mit Wartezeit

Unterschied Frequenz- und Periodendauermessung

Die Periodendauer wird für jeden Zyklus neu ermittelt und in den Prozessdaten ausgegeben. Die Frequenzmessung stellt immer eine Mittelung der gemessenen Perioden über ein Zeitfenster dar. Somit ist der "Period value" ein aktueller Wert und der "Frequency value" ein gemittelter Wert.

8.4.2 Periodendauermessung

Neben dem reinen Zählwert kann auch die Periodendauer (Period value) berechnet und ausgegeben werden. Für die Messwertermittlung gelten folgende Grenzwerte:

Messwert- Messwertgrenze		tgrenze	Bemerkung	
ausgabe	Untere	Obere		
Period value	0,20 µs	21 s	Bei 4-fach Auswertung, Signaltyp: RS422 (diff. Input)	
	1 µs	21 s	Bei 4-fach Auswertung, Signaltyp: TTL (single ended), open collector	

Ablauf Periodendauermessung (Period value)

- Bei der Periodendauermessung wird die Zeit zwischen zwei positiven Flanken von Eingang A, mit einer Auflösung von 10 ns gemessen.
- Es wird jeweils die letzte Periode innerhalb des SPS-Zyklus betrachtet und als separates Prozessdatum in Index 0x60n0:14 [▶ 208] "Period value" ausgegeben.
- "Period scaling" (Index 0x80n0:14) gibt die Auflösung der ausgegebenen Periodendauer an. Der Default-Wert beträgt 10 ns. Die Periodendauer kann auch in der Einheit 100 ns (0x80n0:14 "Period scaling" auf 100_{dez} setzen) oder 500 ns (0x80n0:14 "Period scaling" auf 500_{dez} setzen) ausgegeben werden.

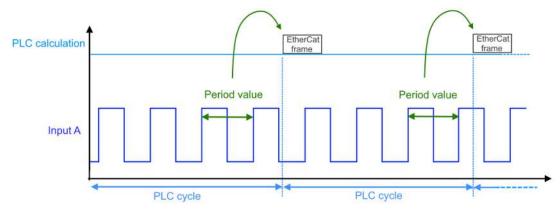


Abb. 162: Periodendauermessung

- Wird Innerhalb eines SPS Zyklus keine volle Periode detektiert (zwei positive Flanken von Eingang A), so wird der letzte gültige Wert ausgegeben.
- Die Messung der Periode wird Zyklusübergreifend weiter fortgeführt. Sobald ein neuer Wert vorliegt, wird das Prozessdatum in Index 0x60n0:14 [▶ 208] "Period value" aktualisiert.
- Wird innerhalb von 21 s keine volle Periode detektiert, so wird die Messung verworfen und die Ausgabe in Index 0x60n0:14 [> 208] "Period value" wird auf den Maximalwert 2147483648 gesetzt.

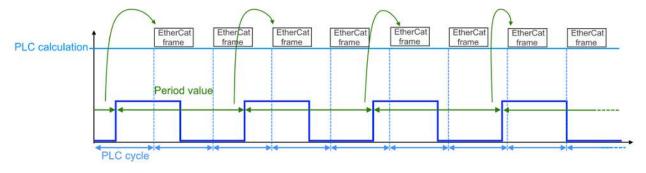


Abb. 163: Periodendauermessung langer Perioden

•

Unterschied Frequenz- und Periodendauermessung

Die Periodendauer wird für jeden Zyklus neu ermittelt und in den Prozessdaten ausgegeben. Die Frequenzmessung stellt immer eine Mittelung der gemessenen Perioden über ein Zeitfenster dar. Somit ist der "Period value" ein aktueller Wert und der "Frequency value" ein gemittelter Wert.

8.4.3 Geschwindigkeits-, Drehzahlberechnung

Neben dem reinen Zählerwert kann auch eine Geschwindigkeits- und Drehzahlmessung durchgeführt werden. Die Messwertermittlung erfolgt über Parametrierung der Frequenzwerte. Es gelten folgende Grenzwerte:

Messwertausgabe Messwertgrenze		enze	Bemerkung
	Untere	Obere	
Frequency value	0,095 Hz	5 MHz	Bei 4-fach Auswertung Signaltyp: RS422 (diff. Input)
	0,095 Hz	1 MHz	Bei 4-fach Auswertung Signaltyp: TTL (single ended)
	0,095 Hz	100 kHz	Bei 4-fach Auswertung Signaltyp: open collector

Die Frequenzmessung erfolgt wie in obenstehendem Kapitel "Frequenzmessung (Frequency value)" beschrieben. Zusätzlich kann eine Umrechnung des Frequenzwertes über die beiden Indizes <u>0x80n0:1D</u> [<u>▶ 204]</u> "Frequency numerator" und <u>0x80n0:1E</u> [<u>▶ 204]</u> "Frequency denominator" erfolgen.

Index (hex)	Name	Bedeutung	Default
		,	0x0000001 (1 _{dez})
		,	0x0000001 (1 _{dez})

So kann für eine Geschwindigkeitsmessung die Frequenz applikationsspezifisch normiert werden. Die Ausgabe des Messwertes in den Prozessdaten erfolgt weiterhin über "Frequency value" (Index 0x60n0:13 [*\ \) 208]).

Der berechnete Messwert steht im folgenden Verhältnis zu Frequenz:

$$Messwertermittlung = Frequency \, value * \frac{Frequency \, numerator}{Frequency \, denominator}$$

Beispiel Geschwindigkeitsberechnung in m/s

- Ein 200 mm Verfahrweg entspricht einer vollen mechanischen Umdrehung eines Encoders.
- Der Encoder hat eine 12 Bit Auflösung, d. h. 4096 Striche, dies entspricht 4096 Perioden auf Spur A.

Der Geschwindigkeitsmesswert bestimmt sich wie folgt:

$$v\left[\frac{mm}{s}\right] = Frequency value \frac{Perioden}{s} * \frac{200}{4096} \frac{mm}{Perioden}$$

$$v\left[\frac{m}{s}\right] = Frequency \ value \frac{Perioden}{s} * \frac{200}{4096} \frac{mm}{Perioden} * \frac{1}{1000} \frac{m}{mm}$$

Index (hex)	Name	Bsp. Geschwindigkeit in m/s	Bemerkung
00110112 [7 201]	Frequency numerator	0x00000C8 (200 _{dez})	Verfahrweg, Umrechnung in m über "Frequency denominator"
00110112 20 1	Frequency denominator		Angabe der Anzahl der Perioden über den Verfahrweg und Umrechnung des Verfahrwegs in m

Beispiel Berechnung der Drehzahl f_{rot} in Umdrehungen/s

- Nach einer vollen Umdrehung ergibt sich, bei einer 4-fach Auswertung (0x80n0:06 [204] "Evaluation mode"), ein Zählerwert von 16384 Inkrementen. Dies entspricht 4096 Perioden auf Spur A.
- Für die Umrechnung der Zeiteinheit in Minuten kann "Frequency numerator" genutzt werden. Dabei ist die Skalierung des Frequenzwertes (0x80n0:13 [▶ 204] "Frequency scaling") zu beachten:

Umrechnung in Minuten in Abhängigkeit von "Frequency scaling"						
Index (hex) Eintrag Index (hex) Eintrag						
0x80n0:13 [▶ 204] Frequency scaling	equency scaling 100 _{dez} : 0.01 Hz 0x80n0:1D [204] Frequency numerator	0x00001770 (6000 _{dez})				
	1 _{dez} : 1 Hz		0x0000003C (60 _{dez})			

$$f_{rot}\left[\frac{Umdrehungen}{s}\right] = Frequency\ value \\ \frac{Perioden}{s} * \frac{6000}{4096} \\ \frac{Umdrehungen}{Perioden}$$

$$f_{rot}\left[\frac{Umdrehungen}{min}\right] = Frequency \ value \\ \frac{Perioden}{s} * 60 \\ \frac{s}{min} * \\ \frac{6000}{4096} \\ \frac{Umdrehungen}{Perioden}$$

	Bsp. Drehzahl f _{rot} in U/min	Bemerkung
80n0:1D [▶ 204] Frequency numerator	0x0001770 (6000 _{dez})	Ausgabe des Wertes in 0,01 U/min
80n0:1E [▶ 204] Frequency denominator	0x0001000 (4096 _{dez})	Umrechnungsfaktor in Perioden / m

8.4.4 Duty Cycle Auswertung

Der Duty Cycle beschreibt das Verhältnis der Impulsdauer t_{on} zu Periodendauer T.

Duty Cycle [0,01 %] = Impulsdauer t_{ON} / Periodendauer T * 100

Es stehen folgende Prozessdaten zur Verfügung:

Index (hex)	Name	Bedeutung	Default
60n0:23	Duty cycle	Verhältnis Impulsdauer t_{on} zu Periodendauer T. Ausgabe erfolgt in 1/100	0x0000 (0 _{dez})
60n0:24	Duty cycle min		0x2710 (10000 _{dez})
60n0:25	Duty cycle max	Größter gemessener Duty cycle Wert während der aktuellen Messung	0x0000 (0 _{dez})

Der Ablauf der Duty Cycle Messung ist wie folgt:

- die Impulsdauer t_{ON} wird gemessen. Dies ist die Zeit zwischen der steigenden und der fallenden Flanke von Eingang A.
- die Periodendauer T wird gemessen. Dies ist die Zeit zwischen zwei positiven Flanken von Eingang A.
- die Zeitmessungen erfolgen mit einer Auflösung von 10 ns.
- Es wird jeweils die letzte Periode innerhalb des SPS-Zyklus betrachtet und als separates Prozessdatum in Index 0x60n0:23 "Duty cycle" ausgegeben.
- Die Ausgabe erfolgt als 1/100 des Messwertes.
- Die Duty Cycle Messung liefert im RS422 Modus bis 1 MHz valide Ergebnisse mit einer Genauigkeit von typ. 1 % 2 %. Bei Eingangsfrequenzen > 1 MHz können größere Messfehler auftreten.

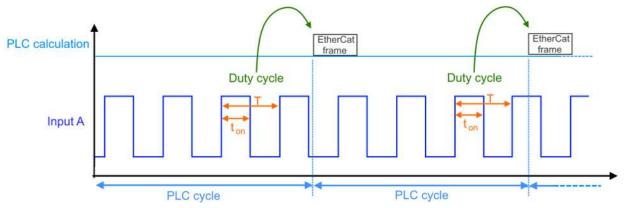


Abb. 164: Duty Cycle Messung

Der Kleinste und der Größte gemessene Duty cycle Wert können über das Command Objekt in Index 0xFB00:01 "Request" zurückgesetzt werden.

0xFB00:01 "Request"	Beschreibung
0x9130	Setzen des Index 0x6000:24 "Duty cycle min" für Kanal 1 auf Null
0x9140	Setzen des Index 0x6000:25 "Duty cycle max" für Kanal 1 auf Null
0x9131	Setzen des Index 0x6010:24 "Duty cycle min" für Kanal 2 auf Null
0x9141	Setzen des Index 0x6010:25 "Duty cycle max" für Kanal 2 auf Null

8.4.5 Mikroinkremente

Die Funktion "Mikroinkremente" bietet die Möglichkeit zwischen den gezählten Encoder-Inkrementen zusätzliche Inkremente zu interpolieren und somit die Auflösung des Zählwertes zu erhöhen.

Funktionsprinzip Mikroinkremente

Die folgende Abbildung zeigt das Funktionsprinzip der Mikroinkremente. Diese basiert auf der Interpolation von Inkrementen (orange) innerhalb real gemessener Encoder-Inkremente (blau). Für die vereinfachte Darstellung sind zwischen den Encoder-Inkrementen lediglich vier Mikroinkremente dargestellt. Es wird auf Basis der internen Periodendauermessung die aktuelle Geschwindigkeit gemessen und die Mikroinkremente entsprechend interpoliert. Die Interpolationsauflösung beträgt 8 Bit, dies entspricht 256 Werten. Somit nähert sich der Zählerwert mit Mikroinkrementen der realen Achsposition sehr gut an. Dies ist insbesondere bei langsamen Geschwindigkeiten hilfreich, da ein Encoder mit geringer Auflösung durch eingeschaltete Mikroinkremente so zu einem hochauflösenden Achsgeber wird.

Beispiel:

- Encoder mit 1.024 Strichen
- · 4-fach Auswertung
- · eingeschalteten Mikroinkrementen 8 Bit

1024 Striche * 4-fach Auswertung * 256 Mikroinkremente = 1.048.567 Striche

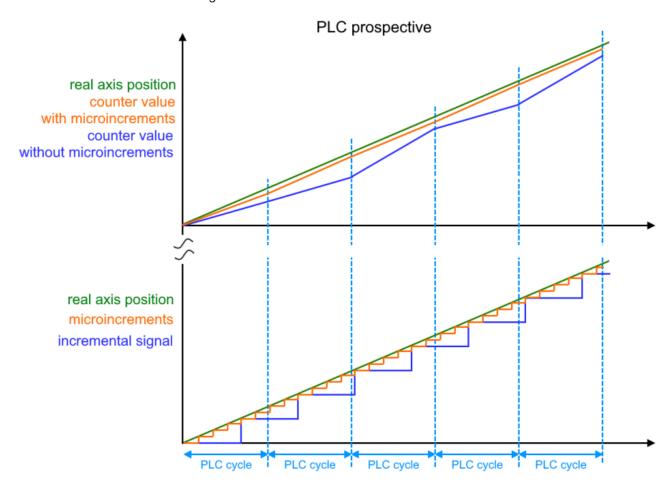


Abb. 165: Funktionsprinzip Mikroinkremente

DC Betriebsart für Mikroinkremente

Um die Funktion Mikroinkremente sinnvoll nutzen zu können, sollte die Klemme im Betriebsmodus "DC synchron" oder "DC synchron (input based)" betrieben werden. Durch die Distributed-Clocks-Technologie wird der Zählerstand zyklisch konstant ermittelt.

Ablauf Mikroinkremente

- Aktivierung der Mikroinkremente über den Index 0x80n0:0A "Enable micro increments"
- Die Mikroinkremente werden dabei in den letzten 8 Bit des Zählwertes Index 0x60n0:11 "Counter value" dargestellt.
- Dabei sollte die Periodendauer des Eingangssignals > 1,34 µs betragen, so dass die Mikroinkremente noch berechnet werden können. Ist dies nicht der Fall wird die Überschreitung durch Index 0x60n0:08 "Extrapolation stall" in den Prozessdaten angezeigt.
- Wenn das Bit "Extrapolation stall" = TRUE ist, werden die 8 Bit der Mikroinkremente im "Counter value" auf null gesetzt.

8.4.6 Zeitstempelfunktion

Der Zeitstempel wird durch die Distributed-Clocks-Technologie im EtherCAT System ermöglicht. Mithilfe dieser lokalen Uhr kann die Datenerfassung synchronisiert werden.

Die EL5102 bietet einen Zeitstempel auf folgende Eingangssignale an:

- die letzte Zähleränderung im SPS Zyklus [▶ 177]
- <u>Eingang Nullimpuls C: [* 177]</u>
 beim Speichern des Zählerstandes auf die positive Flanke des Nullimpulses C
- Eingang Latch: [▶ 178]
 beim Speichern des Zählerstandes auf die ausgewählte Flanke des Latch -Eingangs
- <u>Eingang Gate/Latch</u>: [) 178]
 beim Speichern des Zählerstandes auf die ausgewählte Flanke des Gate/Latch-Eingangs

Hinweis zur Nutzung der Zeitstempelfunktion

Um die Zeitstempelfunktion nutzen zu können, muss die Klemme im Betriebsmodus "DC Synchron" oder "DC-Synchron (input based)" betrieben werden.

Der Zeitstempel ist in einem Umfang von 64 Bit, optional auch mit nur 32 Bit verfügbar. Die Zeitstempel sind in den folgenden "Predefined PDO Assignment [*) 148]" enthalten:

Predefined PDO Assignment
.Ch Standard, extended DC mode, 64 Bit time stamp
2.Ch Standard, extended DC mode, 64 Bit time stamp
.Ch Standard, extended DC mode, 32 Bit time stamp
2.Ch Standard, extended DC mode, 32 Bit time stamp

Diese können auch als optionale PDOs kanalweise ab- oder angewählt werden.

PDO Zuordnung	Name	Beschreibung
0x1A0B [▶ 139]	ENC Timestamp Channel 1	Enthält Zeitstempel im 64 Bit Umfang für Kanal 1
0x1A0C [▶ 139]	ENC Timestamp Compact Channel 1	Enthält Zeitstempel im 32 Bit Umfang für Kanal 1
0x1A18 [▶ 142]	ENC Timestamp Channel 2	Enthält Zeitstempel im 64 Bit Umfang für Kanal 2
0x1A19 [▶_142]	ENC Timestamp Compact Channel 2	Enthält Zeitstempel im 32 Bit Umfang für Kanal 2

Zeitstempel auf die letzte Zähleränderung im SPS Zyklus

Das Prozessdatum Index <u>0x60n0:16 [▶ 208]</u> "Timestamp" gibt den Zeitstempel des letzten registrierten Zählimpulses im SPS Zyklus an. Dies bedeutet, je nach <u>Auswahl der Zählerauswertung [▶ 153]</u> (Index <u>0x80n0:06 [▶ 204]</u> "Evaluation mode") wird der Zeitstempel ausgegeben auf:

0x80n0:06 "Evaluat	ion mode"	0x60n0:16 "Timestamp"
0	4-fold (default)	letzte steigende oder fallende Flanke an Spur A oder Spur B
1	1-fold	letzte steigende Flanke an Spur A
2	2-fold	letzte steigende oder fallende Flanke an Spur A

Zeitstempel auf Eingang Nullimpuls C

Das Prozessdatum Index <u>0x60p0:1F</u> [▶ <u>208</u>] "Timestamp C" gibt den Zeitstempel der letzten registrierten positiven Flanke des Nullimpulses C, beim Speichern des Zählerstandes, aus.

Parametrierung des Nullimpuls C-Eingangs		0x60p0:1F: "Timestamp C" gibt den Zeitstempel auf:
0x70p0:01	Enable Latch C	die positive Flanke des Nullimpuls C, bei der der Zählerstand in Index
		0x60p0:12 [▶ 208] "Latch value" gespeichert wurde
Abhängig von der Anzahl der Kanäle gilt: p = 0 für Ch1, p = 1 für Ch2)		

Zeitstempel auf den Latch extern-Eingang

Das Prozessdatum Index <u>0x60p0:20 [▶ 208]</u> "Timestamp latch" gibt den Zeitstempel auf die ausgewählte Flanke des Latch extern-Eingangs an. Dies bedeutet, je nach Parametrierung des Latch extern-Eingangs, ist der Zeitstempel gültig für:

Parametrierung des Latch-Eingangs		0x60p0:20 "Timestamp latch" gibt den Zeitstempel auf:
0x70p0:02 [▶ 209]		die letzte steigende Flanke am Latch extern-Eingang, bei der der Zählerstand in Index 0x60p0:12 [> 208] "Latch value" gespeichert wurde
0x70p0:04 [▶ 209]	Enable Latch extern on negative edge	die letzte fallende Flanke am Latch extern-Eingang, bei der der Zählerstand in Index 0x60p0:12 "Latch value" gespeichert wurde
Abhängig von der Anzahl der Kanäle gilt: p = 0 für Ch1, p = 1 für Ch2)		

Zeitstempel auf Eingang Gate/Latch

Das Prozessdatum <u>0x60p0:21 [▶ 208]</u> "Timestamp latch 2" gibt den Zeitstempel auf die ausgewählte Flanke des Gate/Latch-Eingangs an. Der Gate/Latch-Eingang kann auch als Latch extern 2-Eingang genutzt werden. Je nach Parametrierung des Latch extern 2-Eingangs ist der Zeitstempel gültig für:

Parametrierung des Latch 2- Eingangs		0x60p0:21 "Timestamp latch 2" gibt den Zeitstempel auf:
0x70p0:0C [▶ 209]		die letzte steigende Flanke am Gate/Latch-Eingang, bei dem der Zählerstand in Index 0x60p0:22 [> 208] "Latch value 2" gespeichert wurde
0x70p0:0D [▶ 209]	Enable Latch extern 2 on negative edge	die letzte fallende Flanke am Gate/Latch-Eingang, bei dem der Zählerstand in Index 0x60p0:22 "Latch value 2" gespeichert wurde
Abhängig von der Anzahl der Kanäle gilt: p = 0 für Ch1, p = 1 für Ch2)		

178 Version: 1.4.0 EL5102

8.4.7 Einstellbare Störimpulsfilter

Eingangsfilter dienen zur Störunterdrückung an den Encoder- und Digitaleingängen. Verschiedene Filterfrequenzen können anwendungsspezifisch parametrieret werden.

Dabei unterliegen die einzelnen Eingänge folgenden Filterfrequenzen:

Eingänge	Max. empfohlene Filterfrequenz
Encoder-Eingänge: Spur A, Spur B, Spur C	RS422-Mode: 5 MHz
	TTL-Mode: 1 MHz
	Open Collector: 100 kHz
Latch-Eingang	1 MHz
Gate/Latch-Eingang	1 MHz
Status Input-Eingang	100 kHz (nicht einstellbar)

Ablauf Filterfunktion

- · Das Filter ist im Auslieferungszustand deaktiviert.
- Über den Index 0x80n0:08 "Disable filter" = FALSE kann das Filter aktiviert werden.
- Über Index 0x80n1:19 "Filter settings" wird das Filter parametriert. Es stehen folgende Filterfrequenzen zur Verfügung:

Index 0x80n1:19 "Filter settings"		Default Parameter für 0x80n1:1D "Counter mode"		
Einstellung	Bedeutung	Einstellung	Bedeutung	
10 _{dez} : 10 kHz	10 kHz Filter			
25 _{dez} : 25 kHz	25 kHz Filter			
50 _{dez} : 50 kHz	50 kHz Filter			
100 _{dez} : 100 kHz	100 kHz Filter	0x80n1:1D "Cour	nter mode"	
		4 _{dez}	Encoder open collector	
		5 _{dez}	Counter open collector	
250 _{dez} : 250 kHz	250 kHz Filter			
500 _{dez} : 500 kHz	500 kHz Filter			
1000 _{dez} : 1 MHz	1 MHz Filter	0x80n1:1D "Cour	0x80n1:1D "Counter mode"	
		2 _{dez}	Encoder TTL (single ended)	
		3_{dez}	Counter TTL (single ended)	
2500 _{dez} : 2.5 MHz	2,5 MHz Filter			
5000 _{dez} : 5 MHz	5 MHz Filter	0x80n1:1D "Cour	0x80n1:1D "Counter mode"	
		O _{dez}	Encoder RS422 (diff. Input)	
		1 _{dez}	Counter RS422 (diff. Input)	

- Wird das Filter < 1 MHz parametriert, ist dieser auch für die Eingänge "Latch" und "Gate" aktiv.
- Wird bei aktiviertem Filter (0x80n0:08 und 0x80n1:19) eine Frequenzüberschreitung festgestellt, so wird ein Zähler im Index 0xA0n0:16 inkrementiert.

Index (hex)	Name	Beschreibung
0xA0n0:14	Filter violation counter extern latch	Zähler der Filterfrequenzüberschreitung des Latch extern- Eingangs
0xA0n0:15	Filter violation counter input gate	Zähler der Filterfrequenzüberschreitung des Gate-Eingangs
0xA0n0:16	Filter violation counter	Zähler der Filterfrequenzüberschreitung auf den Encoder- Eingangssignalen beim aktivierten Filter

Die internen Fehlerzähler können wie folgt zurückgesetzt werden:

• Übergang der Klemme vom Status "PREOP" nach "OP"

oder

• Im Command Objekt "0xFB00:01 Request" folgenden Eintrag eingeben

0xFB000:01 "Request"	Beschreibung
0x9152	Setzen des internen Fehlerzählers für 0xA000:14 "Filter violation counter extern latch" für Kanal 1 auf Null
0x9153	Setzen des internen Fehlerzählers für 0xA000:15 "Filter violation counter input gate" für Kanal 1 auf Null
0x9154	Setzen des internen Fehlerzählers für 0xA000:16 "Filter violation counter" für Kanal 1 auf Null
0x9162	Setzen des internen Fehlerzählers für 0xA010:14 "Filter violation counter extern latch" für Kanal 2 auf Null
0x9163	Setzen des internen Fehlerzählers für 0xA010:15 "Filter violation counter input gate" für Kanal 2 auf Null
0x9164	Setzen des internen Fehlerzählers für 0xA010:16 "Filter violation counter" für Kanal 2 auf Null

HINWEIS

Schnelle Digitale Eingänge – Beeinflussung durch störende Geräte

Beachten Sie, dass die Eingangsbeschaltung nur eine sehr geringe Filterung aufweist. Sie ist auf schnelle Signalübertragung vom Eingang zur Auswerteeinheit optimiert. Schnelle Pegeländerungen/Pulse im µs-Bereich und/oder hochfrequente Störsignale von Geräten (z. B. Proportionalventilen, Schrittmotor- oder DC-Motor-Endstufen) treffen also nahezu ungefiltert/ungedämpft an der Auswerteeinheit ein. Diese Störungen können fälschlicherweise als Signal erfasst werden.

- Um Störungen zu unterdrücken, kann ein zusätzlicher Eingangsfilter parametriert werden.
- Weiterhin werden eine EMV-gerechte Verkabelung und der Einsatz von getrennten Netzteilen für die Klemme und die Störungen verursachenden Geräte empfohlen.

8.4.8 Plausibilitätsprüfung

Die Plausibilitätsprüfung der Eingangssignale dient als erweiterte Diagnose um Störsignale zu erkennen und die dadurch verursachten Sprünge im Zählerwert zu identifizieren und zu unterdrücken.

Funktionsprinzip Plausibilitätsprüfung

Die Rechtecksignale eines Inkrementalencoder mit Spur A und Spur B sind jeweils um 90° phasenverschoben. Dadurch sind nur bestimmte Übergänge im Signalverlauf zugelassen bzw. "plausibel", so darf z. B. bei einer steigenden A-Flanke das Signal auf Spur B nicht ebenfalls steigen.

Diese Plausibilität des Signalverlaufs wird in der Klemme geprüft. Treten nicht gültige Signalübergänge auf, so werden diese, bei aktivierter Plausibilitätserkennung, erkannt und entsprechend dargestellt.

Ablauf Plausibilitätsprüfung

- Aktivierung der Plausibilitätsprüfung über Index 0x80n0:21 "Enable encoder plausibility check"
- · Wird ein Plausibilitätsfehler erkannt, so wird dieser wie folgt dargestellt:

Fehlerdiagnose	Beschreibung
DiagMessage, Typ "Fehler", Text-ID 0x8312	Encoder Plausibilitätsfehler (Kanal n)
0xA0n0:13 "Encoder plausibility error counter"	Fehlerzähler wird inkrementiert, wenn ein Plausibilitätsfehler erkannt wird
0x60n2:0E TxPDO State = 1	Die zugehörigen TxPDO Daten sind nicht gültig

Der Fehlerzähler der Plausibilitätsfehler kann wie folgt zurückgesetzt werden:

Übergang von PREOP nach OP

Oder

• Im Command Objekt in Index 0xFB00:01 "Request" folgenden Eintrag eingeben

0xFB001:01 "Request"	Beschreibung	
0x9151	Setzen des internen Fehlerzählers 0xA000:13 "Encoder plausibility error counter" für Kanal 1 auf Null	
0x9161	Setzen des internen Fehlerzählers 0xA010:13 "Encoder plausibility error counter" für Kanal 2 auf Null	

8.5 Eingänge

Funktionen der Eingänge

Die Tabelle gibt einen kurzen Überblick über die Funktionen der Eingänge. Lesen Sie die genaue Beschreibung der Funktionen in den jeweiligen Kapiteln.

Zählerstand	SPS Variable	Nullimpuls C [▶ 182] (Latch C)	Latch-Eingang [▶ 184] (Latch extern)	Gate/Latch-Eingang (Latch extern 2 [▶ 186])
<u>Setzen [</u> ▶ <u>159]</u>	Setzen aktivieren: 0x70n0:03 "Set counter" = TRUE auf den Wert: 0x70n0:11 "Set counter value"	Setzen aktivieren: 0x70n0:08 "Set counter on latch C" = TRUE auf den Wert: 0x70n0:11 "Set counter value"	Setzen aktivieren: 0x70n0:0A/0B "Set counter on latch extern on positive/negative edge" = TRUE auf den Wert: 0x70n0:11 "Set counter value"	-
Reset [▶ 158]	-	Reset aktivieren: 0x80n0:01 "Enable C reset" auf den Wert: 0x80n1:1B "Reset counter value"	Reset aktivieren: 0x80n0:02 "Enable extern reset" auf den Wert: 0x80n1:1B "Reset counter value"	-
Speichern [▶ 164]	-	Speichern aktivieren: 0x70n0:01 "Enable latch C" = TRUE Aktuellen Zählerwert speichern in: 0x60n0:12 "Latch value"	Speichern aktivieren: 0x70n0:02/04 "Enable latch extern on positive/ negative edge" = TRUE Aktuellen Zählerwert speichern in: 0x60n0:12 "Latch value"	Speichern über Latch extern 2-Eingang aktivieren: 0x70n0:0C/0D "Enable latch extern 2 on positive/ negative edge" = TRUE Aktuellen Zählerwert speichern in: 0x60n0:22 "Latch value 2"
<u>Sperren [▶ 168]</u>	Sperren: 0x70n0:09 "Set software gate" = TRUE	-	-	Sperren aktivieren mit HIGH-Pegel: 0x80n0:04 "Gate polarity" = 1 mit LOW-Pegel: 0x80n0:04 "Gate polarity" = 2

8.5.1 Eingang Nullimpuls C

Bei Inkremental-Encodern wird eine volle Umdrehung durch eine Sondermarke den Nullimpuls C gekennzeichnet. Dieser Impuls kann in der Klemme wie folgt genutzt werden:

- Zählerstand Reset: [▶ 182] der Zählerstand wird auf den, in Index 0x80n1:1B [▶ 206] "Reset counter value" eingestellten Wert (Default-Einstellung: "0") zurückgesetzt (Enable C reset)
- Zählerstand setzen: [183] der Zählerstand wird auf einen vorgegebenen Zählerwert gesetzt (Set counter on Latch C)
- Zählerstand speichern: [▶ 183] der Zählerstand wird im Latch Register gespeichert (Enable latch C)

Über das Prozessdatum <u>0x60n0:0B</u> [▶ <u>208</u>] "Status of Input C" wird der aktuelle Pegel am Nullimpuls-C-Eingang angezeigt.

Status of Input C

Der Nullimpuls C hat je nach Umdrehungsgeschwindigkeit, nur eine kurze Pulsdauer. Aufgrund der zyklischen Abfrage, kann es vorkommen, dass der HIGH-Pegel des Nullimpulses ggf. nicht deckungsgleich in das Prozessdatum 0x60n0:0B [▶ 208] "Status of Input C" übertragen wird.

Zählerstand Reset über den Eingang Nullimpuls C (Enable C reset)

Der Zählerstand kann zu jeder vollen Umdrehung des Gebers über den Nullimpuls C auf den im Index 0x80n1:1B [▶ 206] "Reset counter value" vorgegebenen Wert gesetzt werden.

- Vorgabe des Reset-Wertes über Index 0x80n1:1B [▶ 206] "Reset counter value" (Default: 0)
- Zu Aktivierung dieser Funktion setzen Sie das Bit im Index 0x80n0:01 [▶ 204] "Enable C reset".
- · Es erfolgt keine Statusmeldung über die Prozessdaten.

Zählerstand setzen über den Eingang Nullimpuls C (Set counter on Latch C)

Der Zählerstand kann zur Laufzeit über die Prozessdaten durch den Nullimpuls C auf einen vorgegebenen Zählerwert gesetzt werden.

- Zählwertvorgabe über Index 0x70n0:11 [▶ 209] "Set counter value"
- · Aktivierung der Zählwertvorgabe über den Nullimpuls C:
 - Index <u>0x70n0:08 [▶ 209]</u> "Set counter on latch C" = TRUE
 Beim nächsten Nullimpuls wird der Zählerwert (Counter value) auf den in Index <u>0x70n0:11 [▶ 209]</u> (Set counter value) vorgegebenen Zählerwert gesetzt.
- Zur Bestätigung wird das "Set counter done"- Bit in Index 0x60n0:03, auf TRUE gesetzt.
- Eine erneute Aktivierung der Zählwertvorgabe über den Nullimpuls C kann erst erfolgen, wenn das "Set counter on latch C"-Bit in Index 0x70n0:08 auf FALSE gesetzt wurde.

Mehrfachaktivierung von "Set counter on …"

Werden mehrere Befehle zu Übernahme des vorgegebenen Zählerstandes aktiviert, so wird nur der zuerst gesetzte Befehl von der Klemme akzeptiert. Alle anderen Befehle werden nicht berücksichtigt, bleiben aber systembedingt aktiviert.

- Der Zählerstand wird bei dem zuerst aktivierten Ereignis, auf den vorgegebenen Zählerstand gesetzt und über das Bit "Set counter done" (Index 0x60n0:03) [• 208] bestätigt.
- Eine erneute Aktivierung der Zählerwertvorgabe kann erst erfolgen, wenn alle aktivierten Befehle zur Übernahme des Zählerstandes deaktiviert wurden. Dies wird bestätigt, indem das "Set counter done"-Bit (Index 0x60n0:03) auf FALSE gesetzt wird.

Zählerstand speichern über den Eingang Nullimpuls C (Enable latch C)

Der Zählerstand kann zur Laufzeit über die Prozessdaten durch den Nullimpuls in "Latch value" (Index 0x60n0:12 [▶ 208]) gespeichert werden.

- Die Funktion wird aktiviert, indem das Bit in "Enable Latch C" (Index <u>0x70n0:01 [▶ 209]</u>) auf TRUE gesetzt wird.
- Bei dem nächsten Nullimpuls am Eingang C wird der aktuelle Zählerwert in "Latch value" (Index 0x60n0:12) gespeichert. Die folgenden Impulse haben keinen Einfluss auf den Latch-Wert.
- Das "Latch C valid"- Bit (Index <u>0x60n0:01</u> [▶ <u>208]</u>) wird auf TRUE gesetzt.
- Erst wenn der Wert des "Enable Latch C"-Bit (Index 0x70n0:01) und des "Latch C valid"-Bit (Index 0x60n0:01) FALSE sind, kann nach erneuter Aktivierung von "Enable Latch C" (Index 0x70n0:01) ein neuer Zählerwert auf den Latch-Eingang geschrieben werden.

Mehrfachaktivierung der Latch-Funktion

Werden mehrere Befehle gleichzeitig zum Speichern des Zählerwerts im Prozessdatum "Latch value" (Index 0x60n0:12 [> 208]) aktiviert, so wird nur der zuerst gesetzte Befehl von der Klemme akzeptiert.

- Der Zählerstand wird bei dem nächsten auftretenden Ereignis im "Latch value" (Index 0x60n0:12) gespeichert und mit dem entsprechenden Bit bestätigt.
- · Alle weiteren aktivierten Ereignisse werden ignoriert.
- Eine erneute Aktivierung der Zählwertspeicherung kann erst erfolgen, wenn alle aktivierten Befehle zum Latchen des Wertes deaktiviert wurden. Dies gilt auch, wenn diese nach der Bestätigung durch das auftretende Ereignis aktiviert wurden.

8.5.2 Eingang Latch (Latch extern)

Die Klemme stellt einen Latch-Eingang (Latch extern), für 24 V_{DC} -Signale mit einer min. Pulsdauer von $t_{ON} > 1 \mu s$, zur Verfügung. Dieser kann wie folgt genutzt werden:

- Zählerstand reset [▶ 184]: den Zählerstand auf den in Index 0x80n1:1B "Reset counter value" gesetzten Wert (Default-Einstellung: "0") zurück setzen (Enable extern reset)
- <u>Zählerstand setzen [▶ 184]</u>: den Zählerstand über eine positive oder negative Flanke auf einen vorgegebenen Zählerwert setzen (Set counter on latch extern on positive/negative edge)
- <u>Zählerstand speichern [▶ 185]</u>: den Zählerstand, in einem separaten Prozessdatum, über eine positive oder negative Flanke speichern (Enable latch extern on positive/negative edge)

Zählerstand Reset über den Latch extern-Eingang (Enable extern reset)

Der Zählerstand kann über den Latch extern-Eingang auf "0" gesetzt werden.

- Vorgabe des Reset-Wertes über Index 0x80n1:1B [▶ 206] "Reset counter value", (Default: 0)
- Zur Aktivierung dieser Funktion setzen Sie das Bit im Index 0x80n0:02 [▶ 204] "Enable extern reset".
- Legen Sie über Index <u>0x80n0:10 [▶ 204]</u> "Extern reset polarity" fest, bei welcher Flanke der Latch extern-Eingang aktiv ist.
 - o 0: "Fall" mit fallender Flanke wird der Zähler auf "0" gesetzt
 - 1: "Rise" mit steigender Flanke wird der Zähler auf "0" gesetzt

Es erfolgt keine Statusmeldung über die Prozessdaten.

Zählerstand setzen über den Latch extern-Eingang (Set counter on latch extern on positive/negative edge)

Der Zählerstand kann zur Laufzeit über die Prozessdaten durch die positive oder negative Flanke am Latch extern-Eingang auf einen vorgegebenen Zählerstand gesetzt werden.

- Zählwertvorgabe über Index 0x70n0:11 "Set counter value"
- · Aktivierung der Zählwertvorgabe über
 - die positive Flanke am Latch extern-Eingang: Index 0x70n0:0A "Set counter on latch extern on positive edge"
 - die negative Flanke am Latch extern-Eingang: Index 0x70n0:0B "Set counter on latch extern on negative edge"
- Bei gesetztem Bit (TRUE) im Index 0x70n0:0A oder 0x070n0:0B wird bei der nächsten steigenden oder fallenden Flanke am Latch extern-Eingang der Zählerstand (Counter value) auf den vorgegebenen Zählerwert (Set counter value) gesetzt.
- Zur Bestätigung wird das "Set counter done"- Bit (Index 0x60n0:03) auf TRUE gesetzt.
- Eine erneute Aktivierung der Zählwertvorgabe kann erst erfolgen, wenn Index 0x70n0:0A/0B "Set counter on latch extern on positive/negative edge" auf FALSE gesetzt wurde.

Zählerstand speichern über eine positive/negative Flanke am Latch-Eingang (Enable latch extern on positive/negative edge)

- Speichern des Zählerstands am Latch extern-Eingang über:
 - Index 0x70n0:02 [▶ 209] "Enable latch extern on positive edge" = TRUE
 Beim ersten externen Latchimpuls mit positiver Flanke wird der aktuelle Zählerwert in Index 0x60n0:12 [▶ 208] "Latch value" gespeichert.
 - Index 0x70n0:04 [▶ 209] "Enable latch extern on negative edge" = TRUE
 Beim ersten externen Latchimpuls mit negativer Flanke wird der aktuelle Z\u00e4hlerwert in Index 0x60n0:12 [▶ 208] "Latch value" gespeichert.
 - Gleichzeitige Aktivierung von 0x70n0:02 und 0x70n0:04
 beim ersten externen Latchimpuls, unabhängig von der Polarität der Flanke, wird der aktuelle Zählerwert in Index 0x60n0:12 "Latch value" gespeichert.
- Festlegung ob eine erneute Aktivierung des Befehls zum Speichern des Zählerwerts erforderlich ist über:
 - "Enable continuous latch extern" Index <u>0x80n0:22</u> [> <u>204</u>] = FALSE
 Die folgenden Impulse am Latch extern-Eingang haben bei gesetztem Bit in Index 0x70n0:02 oder 0x70n0:04 keinen Einfluss auf den Latch-Wert in Index 0x60n0:12 "Latch value".

 Erst, wenn Index <u>0x60n0:02</u> [> <u>208</u>] "Latch extern valid" FALSE ist, kann ein neuer Zählerwert auf den Latch-Eingang in Index 0x60n0:12 "Latch value" geschrieben werden
 - "Enable continuous latch extern" Index 0x80n0:22 [▶ 204] = TRUE
 Der Zählerwert wird bei jeder parametrierten Flanke am Latch extern-Eingang in Index 0x60n0:12 "Latch value" geschrieben.
 Eine erneute Aktivierung des Index 0x70n0:02 oder 0x70n0:04 entfällt.
- Das Speichern des Zählwerts im Index 0x60n0:12 "Latch value" wird über das "Latch extern valid"-Bit (Index 0x60n0:02) bestätigt.
- Der Status des Latch extern-Eingangs kann über Index <u>0x60n2:14 [▶ 209]</u> "Status of extern latch" erfasst werden.

8.5.3 Eingang Gate/Latch

Die Klemme stellt einen externen Gate/Latch-Eingang, für 24 V_{DC} -Signale mit einer min. Pulsdauer von $t_{ON} > 1 \mu s$, zur Verfügung. Dieser kann wie folgt genutzt werden:

- <u>Zählerstand sperren:</u> [► <u>186</u>] den Zählerstand über eine positive oder negative Flanke sperren (Enable pos/neg. gate)
- <u>Zählerstand speichern: [* 186]</u> den Zählerstand, in einem separaten Prozessdatum, über eine positive oder negative Flanke speichern (Enable latch extern 2 on positive/negative edge)

Zählerstand sperren über eine positive/negative Flanke am Eingang Gate (Enable pos./neg. gate)

- Über Index <u>0x80n0:04</u> [▶ <u>204</u>] "Gate polarity" kann der Pegel am Gate-Eingang festgelegt werden, bei dem der Zählerstand zur Laufzeit gesperrt wird.
 - 0: Disable gate
 Der Gate/Latch-Eingang ist deaktiviert. Er kann weiterhin als Latch extern 2-Eingang genutzt werden.
 - 1: Enable pos. gate
 Der Zählerstand wird mit HIGH-Pegel am Gate/Latch-Eingang gesperrt.
 - 2: Enable neg. gate
 Der Zählerstand wird mit LOW-Pegel am Gate/Latch-Eingang gesperrt.
- Über das Prozessdatum <u>0x60n0:0C [▶ 208]</u> "Status of input gate" wird der aktuelle Pegel am Gate-Eingang angezeigt.

Zählerstand speichern über eine positive/negative Flanke am Gate/Latch-Eingang (Enable latch extern 2 on positive/negative edge)

Die Klemme bietet die Möglichkeit den Gate/Latch-Eingang als einen zweiten Latch-Eingang (Latch extern 2) zu nutzen. Dazu sollte das Gate deaktiviert werden.

Deaktivierung des Gates

Setzen Sie das "Gate polarity" Bit (Index <u>0x80n0:04 [▶ 204]</u>) auf "0 – Disable gate", um den Latch extern 2-Eingang nutzen zu können, ohne den Zählerstand nach dem Latch-Ereignis zu sperren.

- Speichern des Zählerstands am Latch extern 2-Eingang über:
 - Index 0x70n0:0C [▶ 209] "Enable latch extern 2 on positive edge" = TRUE
 Beim ersten externen Impuls mit positiver Flanke am Gate/Latch-Eingang wird der aktuelle
 Zählerwert in Index 0x60n0:22 [▶ 208] "Latch value 2" gespeichert.
 - Index 0x70n0:0D [▶ 209] "Enable latch extern 2 on negative edge" = TRUE
 Beim ersten externen Impuls mit negativer Flanke am Gate/Latch-Eingang wird der aktuelle
 Zählerwert in Index 0x60n0:22 "Latch value 2" gespeichert.
 - Gleichzeitige Aktivierung von 0x70n0:0C und 0x70n0:0D
 Beim ersten Impuls am Gate/Latch-Eingang, unabhängig von der Polarität der Flanke, wird der aktuelle Zählerwert in Index 0x60n0:22 "Latch value 2" gespeichert.
- Festlegung ob eine erneute Aktivierung des Befehls zum Speichern des Z\u00e4hlerwerts erforderlich ist \u00fcber:
 - ∘ "Enable continuous latch extern 2" Index <u>0x80n0:23 [▶ 204]</u> = FALSE Die folgenden Impulse am Gate/Latch-Eingang haben bei gesetztem Bit in Index 0x70n0:0C oder 0x70n0:0D keinen Einfluss auf den Latch-Wert in Index 0x60n0:22 "Latch value 2". Erst, wenn Index <u>0x60n2:12 [▶ 209]</u> "Latch extern 2 valid" FALSE ist, kann ein neuer Zählerwert auf den Gate/Latch-Eingang in Index 0x60n0:22 "Latch value 2" geschrieben werden.
 - "Enable continuous latch extern 2" Index <u>0x80n0:23 [▶ 204]</u> = TRUE
 Der Zählerwert wird bei jeder parametrierten Flanke am Gate/Latch-Eingang in Index 0x60n2:12 "Latch value 2" geschrieben.
 Eine erneute Aktivierung des Index 0x70n0:0C oder 0x70n0:0D entfällt.

- Der Status des Gate/Latch-Eingangs kann über Index <u>0x60n0:0C [▶ 208]</u> "Status of input gate" erfasst werden.
- Das Speichern des Zählerwerts im Index 0x60n0:22 "Latch value 2" wird über das Bit 0x60n2:12 "Latch extern 2 valid" bestätigt.

Gleichzeitige Nutzung von Gate und Latch extern 2

Bei Verwendung von Index 0x80n0:04 [204] "Gate polarity" (1 = "Enable pos. gate") und gleichzeitiger Aktivierung von Index 0x70n0:0C [209] "Enable latch extern 2 on positive edge" wird bei positiver Flanke am Gate/Latch-Eingang der aktuelle Zählerwert zunächst in Index 0x60n0:22 [208] "Latch value 2" gespeichert. Danach wird der Zählerstand gesperrt.

Dasselbe gilt für die Verwendung von Index 0x80n0:04 "Gate polarity" (2 = "Enable neg. gate") und gleichzeitiger Aktivierung von Index 0x70n0:0D [▶ 209] "Enable latch extern 2 on negative edge" bei negativer Flanke am Gate/Latch-Eingang.

Mehrfachaktivierung der Latch-Funktion

Werden mehrere Befehle gleichzeitig zum Speichern des Zählerwerts im Prozessdatum "Latch value" (Index <u>0x60n0:12</u> [▶ <u>208]</u>) aktiviert, so wird nur der zuerst gesetzte Befehl von der Klemme akzeptiert.

- Der Zählerstand wird bei dem nächsten auftretenden Ereignis im "Latch value" (Index 0x60n0:12) gespeichert und mit dem entsprechenden Bit bestätigt.
- · Alle weiteren aktivierten Ereignisse werden ignoriert.
- Eine erneute Aktivierung der Zählwertspeicherung kann erst erfolgen, wenn alle aktivierten Befehle zum Latchen des Wertes deaktiviert wurden. Dies gilt auch, wenn diese nach der Bestätigung durch das auftretende Ereignis aktiviert wurden.

8.5.4 Eingang "Status Input"

Besitzt der Encoder einen Störmelde- oder Statusausgang, so kann dieser an den "Status Input"-Eingang der Klemme angeschlossen und ausgewertet werden. Der Eingang ist 5 V kompatibel.

Handelsüblich ist der Störmelde- oder Statusausgang am Encoder mit einer negativen Logik ausgeführt. Dieser wird wie folgt von der Klemme angezeigt:

Encoder	EL5102		
Störmeldeausgang	"Status Input"-Eingang (0x60n0:06 "Status of in- put status")	Status Input LED	Bedeutung
HIGH Pegel / Ausgang offen	TRUE	Aus	z. B. Encoder in Ordnung
LOW Pegel / PullDown - Pegel wird aktiv auf LOW gezogen	FALSE	Rot	z. B. Encoder gestört

Liegt eine Überspannung an dem Eingang "Status Input" an, so wird diese wie folgt angezeigt:

Fehlerdiagnose bei Überspannung an Eingang Status Input an Kanal n	Anzeige
DiagMassage, Typ "Error", Text-ID 0x8315	Error status input (channel n)
0xA0n0:05 "Error input status"	TRUE
LED: Status Input Ch. n	Rot

HINWEIS

Beschaltung "Status Input"-Eingang

In der Klemme ist der "Status Input"-Eingang intern über einen Pull-Up-Widerstand (1 kOhm) auf 5 V gelegt. Der Encoder-Ausgang muss das Signal aktiv gegen GND ziehen. Der Widerstand ist dabei so zu dimensionieren, dass er < 120 Ohm beträgt.

Die externe Speisung wird nicht empfohlen. Wird extern gespeist sind max. 5 V gegen GND zulässig.

8.6 Diagnose

8.6.1 Diagnose - Grundlagen zu Diag Messages

Mit *DiagMessages* wird ein System der Nachrichtenübermittlung vom EtherCAT Slave an den EtherCAT Master/TwinCAT bezeichnet. Die Nachrichten werden vom Gerät im eigenen CoE unter 0x10F3 abgelegt und können von der Applikation oder dem System Manager ausgelesen werden. Für jedes im Gerät hinterlegtes Ereignis (Warnung, Fehler, Statusänderung) wird eine über einen Code referenzierte Fehlermeldung ausgegeben.

Definition

Das System *DiagMessages* ist in der ETG (<u>EtherCAT Technology Group</u>) in der Richtlinie ETG.1020, Kap. 13 "Diagnosis Handling" definiert. Es wird benutzt, damit vordefinierte oder flexible Diagnosemitteilungen vom EtherCAT-Slave an den Master übermittelt werden können. Das Verfahren kann also nach ETG herstellerübergreifend implementiert werden. Die Unterstützung ist optional. Die Firmware kann bis zu 250 DiagMessages im eigenen CoE ablegen.

Jede DiagMessage besteht aus

- · Diag Code (4 Byte)
- Flags (2 Byte; Info, Warnung oder Fehler)
- Text-ID (2 Byte; Referenz zum erklärenden Text aus der ESI/XML)
- Zeitstempel (8 Byte, lokale Slave-Zeit oder 64-Bit Distributed-Clock-Zeit, wenn vorhanden)
- dynamische Parameter, die von der Firmware mitgegeben werden

In der zum EtherCAT-Gerät gehörigen ESI/XML-Datei werden die DiagMessages in Textform erklärt: Anhand der in der DiagMessage enthaltenen Text-ID kann die entsprechende Klartextmeldung in den Sprachen gefunden werden, die in der ESI/XML enthalten sind. Üblicherweise sind dies bei Beckhoff-Produkten deutsch und englisch.

Der Anwender erhält durch den Eintrag *NewMessagesAvailable* Information, dass neue Meldungen vorliegen.

DiagMessages können im Gerät bestätigt werden: die letzte/neueste unbestätigte Meldung kann vom Anwender bestätigt werden.

Im CoE finden sich sowohl die Steuereinträge wie die History selbst im CoE-Objekt 0x10F3:

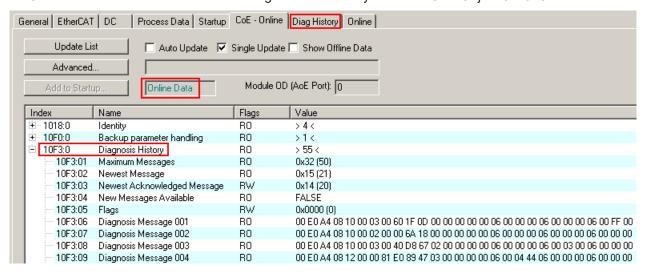


Abb. 166: DiagMessages im CoE

Unter 0x10F3:02 ist der Subindex der neuesten *DiagMessage* auslesbar.

Unterstützung zur Inbetriebnahme

Das System der DiagMesssages ist vor allem während der Anlageninbetriebnahme einzusetzen. Zur Online-Diagnose während des späteren Dauerbetriebs sind die Diagnosewerte z. B. im StatusWord des Gerätes (wenn verfügbar) hilfreich.

Implementierung TwinCAT System Manager

Ab TwinCAT 2.11 werden DiagMessages, wenn vorhanden, beim Gerät in einer eigenen Oberfläche angezeigt. Auch die Bedienung (Abholung, Bestätigung) erfolgt darüber.

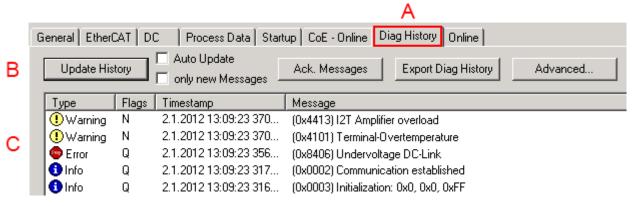


Abb. 167: Implementierung DiagMessage-System im TwinCAT System Manager

Im Reiter Diag History (A) sind die Betätigungsfelder (B) wie auch die ausgelesene History (C) zu sehen. Die Bestandteile der Message:

- Info/Warning/Error
- Acknowledge-Flag (N = unbestätigt, Q = bestätigt)
- · Zeitstempel
- Text-ID
- · Klartext-Meldung nach ESI/XML Angabe

Die Bedeutung der Buttons ist selbsterklärend.

DiagMessages im ADS Logger/Eventlogger

Ab TwinCAT 3.1 build 4022 werden von einer Klemme abgesetzte DiagMessages auch im TwinCAT ADS Logger gezeigt. Da nun IO-übergreifend DiagMessages an einem Ort dargestellt werden, vereinfacht dies die Inbetriebnahme. Außerdem kann die Logger-Ausgabe in eine Datei gespeichert werden – somit stehen die DiagMessages auch langfristig für Analysen zur Verfügung.

DiagMessages liegen eigentlich nur lokal im CoE 0x10F3 in der Klemme vor und können bei Bedarf manuell z. B. über die oben genannte DiagHistory ausgelesen werden.

Bei Neuentwicklungen sind die EtherCAT-Klemmen standardmäßig so eingestellt, dass sie das Vorliegen einer DiagMessage über EtherCAT als Emergency melden; der Eventlogger kann die DiagMessage dann abholen. Die Funktion wird in der Klemme über 0x10F3:05 aktiviert, deshalb haben solche Klemmen folgenden Eintrag standardmäßig in der StartUp-Liste:

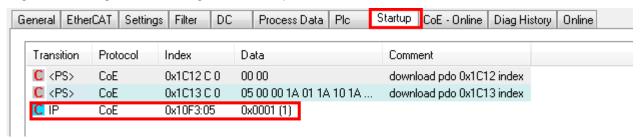


Abb. 168: StartUp-Liste

Soll die Funktion ab Gerätestart deaktiviert werden weil z. B. viele Meldungen kommen oder der EventLogger nicht genutzt wird, kann der StartUp-Eintrag gelöscht oder auf 0 gesetzt werden. Der Wert kann dann bei Bedarf später aus der PLC per CoE-Zugriff wieder auf 1 gesetzt werden.

Nachrichten in die PLC einlesen

- In Vorbereitung -

Interpretation

Zeitstempel

Der Zeitstempel wird aus der lokalen Uhr der Klemme zum Zeitpunkt des Ereignisses gewonnen. Die Zeit ist üblicherweise die Distributed-Clocks-Zeit (DC) aus Register x910.

Bitte beachten: die DC-Zeit wird in der Referenzuhr gleich der lokalen IPC/TwinCAT-Zeit gesetzt, wenn EtherCAT gestartet wird. Ab diesem Moment kann die DC-Zeit gegenüber der IPC-Zeit divergieren, da die IPC-Zeit nicht nachgeregelt wird. Es können sich so nach mehreren Wochen Betrieb ohne EtherCAT Neustart größere Zeitdifferenzen entwickeln. Als Abhilfe kann die sog. Externe Synchronisierung der DC-Zeit genutzt werden, oder es wird fallweise eine manuelle Korrekturrechnung vorgenommen: die aktuelle DC-Zeit kann über den EtherCAT Master oder durch Einsicht in das Register x901 eines DC-Slaves ermittelt werden.

Aufbau der Text-ID

Der Aufbau der MessageID unterliegt keiner Standardisierung und kann herstellerspezifisch definiert werden. Bei Beckhoff EtherCAT-Geräten (EL, EP) lautet er nach **xyzz** üblichwerweise:

х	у	zz
0: Systeminfo	0: System	Fehlernummer
1: Info	1: General	
2: reserved	2: Communication	
4: Warning	3: Encoder	
8: Error	4: Drive	
	5: Inputs	
	6: I/O allgemein	
	7: reserved	

Beispiel: Meldung 0x4413 --> Drive Warning Nummer 0x13

Übersicht Text-IDs

Spezifische Text-IDs sind in der Gerätedokumentation aufgeführt.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x0001	Information	System	No error	Kein Fehler
0x0002	Information	System	Communication established	Verbindung aufgebaut
0x0003	Information	System	Initialisation: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1000	Information	System	Information: 0x%X, 0x%X, 0x%X	allgemeine Information, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x1012	Information	System	EtherCAT state change Init - PreOp	
0x1021	Information	System	EtherCAT state change PreOp - Init	
0x1024	Information	System	EtherCAT state change PreOp - Safe-Op	
0x1042	Information	System	EtherCAT state change SafeOp - PreOp	
0x1048	Information	System	EtherCAT state change SafeOp - Op	
0x1084	Information	System	EtherCAT state change Op - SafeOp	
0x1100	Information	Allgemein	Detection of operation mode completed: 0x%X, %d	Erkennung der Betriebsart beendet
0x1135	Information	Allgemein	Cycle time o.k.: %d	Zykluszeit o.k.
0x1157	Information	Allgemein	Data manually saved (ldx: 0x%X, Subldx: 0x%X)	Daten manuell gespeichert
0x1158	Information	Allgemein	Data automatically saved (ldx: 0x%X, Subldx: 0x%X)	Daten automatisch gespeichert
0x1159	Information	Allgemein	Data deleted (ldx: 0x%X, Subldx: 0x%X)	Daten gelöscht
0x117F	Information	Allgemein	Information: 0x%X, 0x%X, 0x%X	Information
0x1201	Information	Kommunikation	Communication re-established	Kommunikation zur Feldseite wiederhergestellt Die Meldung tritt auf, wenn z.B. im Betrieb die Spannung der Powerkontakte entfernt und wieder angelegt wurde.
0x1300	Information	Encoder	Position set: %d, %d	Position gesetzt - StartInputhandler
0x1303	Information	Encoder	Encoder Supply ok	Encoder Netzteil OK
0x1304	Information	Encoder	Encoder initialization successfully, channel: %X	Encoder Initialisierung erfolgreich abgeschlossen
0x1305	Information	Encoder	Sent command encoder reset, channel: %X	Sende Kommando Encoder Reset
0x1400	Information	Drive	Drive is calibrated: %d, %d	Antrieb ist kalibriert
0x1401	Information	Drive	Actual drive state: 0x%X, %d	Aktueller Status des Antriebs
0x1705	Information		CPU usage returns in normal range (< 85%)	Prozessorauslastung ist wieder im normalen Bereich
0x1706	Information		Channel is not in saturation anymore	Kanal ist nicht mehr in Sättigung
0x1707	Information		Channel is not in overload anymore	Kanal ist nicht mehr überlastet
0x170A	Information		No channel range error anymore	Es liegt kein Messbereichsfehler mehr vor
0x170C	Information		Calibration data saved	Abgleichdaten wurden gespeichert
0x170D	Information		Calibration data will be applied and saved after sending the command "0x5AFE"	Abgleichdaten werden erst nach dem Senden des Kommandos "0x5AFE" übernommen und gespeichert

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x2000	Information	System	%s: %s	
0x2001	Information	System	%s: Network link lost	Netzwerk Verbindung verloren
0x2002	Information	System	%s: Network link detected	Netzwerk Verbindung gefunden
0x2003	Information	System	%s: no valid IP Configuration - Dhcp client started	Ungültige IP Konfiguration
0x2004	Information	System	%s: valid IP Configuration (IP: %d.%d.%d.%d) assigned by Dhcp server %d.%d.%d.%d	Gültige, vom DHCP-Server zugewiesene IP- Konfiguration
0x2005	Information	System	%s: Dhcp client timed out	Zeitüberschreitung DHCP-Client
0x2006	Information	System	%s: Duplicate IP Address detected (%d.%d.%d.%d)	Doppelte IP-Adresse gefunden
0x2007	Information	System	%s: UDP handler initialized	UDP-Handler initialisiert
0x2008	Information	System	%s: TCP handler initialized	TCP-Handler initialisiert
0x2009	Information	System	%s: No more free TCP sockets available	Keine freien TCP Sockets verfügbar

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4000	Warnung		Warning: 0x%X, 0x%X, 0x%X	allgemeine Warnung, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x4001	Warnung	System	Warning: 0x%X, 0x%X, 0x%X	
0x4002	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d API:%dms) from %d. %d.%d.%d successful	
0x4003	Warnung	System	%s: %s Connection Close (IN:%d OUT:%d) from %d.%d.%d.%d successful	
0x4004	Warnung	System	%s: %s Connection (IN:%d OUT: %d) with %d.%d.%d.%d timed out	
0x4005	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Error: %u)	
0x4006	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Input Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4007	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (Output Data Size expected: %d Byte(s) received: %d Byte(s))	
0x4008	Warnung	System	%s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d. denied (RPI:%dms not supported -> API:%dms)	
0x4101	Warnung	Allgemein	Terminal-Overtemperature	Übertemperatur. Die Innentemperatur der Klemme überschreitet die parametrierte Warnschwelle.
0x4102	Warnung	Allgemein	Discrepancy in the PDO-Configuration	Die ausgewählten PDOs passen nicht zur eingestellten Betriebsart.
				Beispiel: Antrieb arbeitet im Velocity-Mode. Das Velocity-PDO ist jedoch nicht in die PDOs gemapped.
0x417F	Warnung	Allgemein	Warnung: 0x%X, 0x%X, 0x%X	
0x428D	Warnung	Allgemein	Challenge is not Random	
0x4300	Warnung	Encoder	Subincrements deactivated: %d, %d	Subinkremente deaktiviert (trotz aktivierter Konfiguration)
0x4301	Warnung	Encoder	Encoder-Warning	Allgemeiner Encoderfehler
0x4302	Warnung	Encoder	Maximum frequency of the input signal is nearly reached (channel %d)	Maximale Frequenz des Eingangssignals ist bald erreicht
0x4303	Warnung	Encoder	Limit counter value was reduced because of the PDO configuration (channel %d)	Limit-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4304	Warnung	Encoder	Reset counter value was reduced because of the PDO configuration (channel %d)	Reset-Zählergrenze wurde aufgrund der PDO- Konfiguration reduziert (Kanal %d)
0x4400	Warnung	Drive	Drive is not calibrated: %d, %d	Antrieb ist nicht kalibriert
0x4401	Warnung	Drive	Starttype not supported: 0x%X, %d	Starttyp wird nicht unterstützt
0x4402	Warnung	Drive	Command rejected: %d, %d	Kommando abgewiesen
0x4405	Warnung	Drive	Invalid modulo subtype: %d, %d	Modulo-Subtyp ungültig
0x4410	Warnung	Drive	Target overrun: %d, %d	Zielposition wird überfahren
0x4411	Warnung	Drive	DC-Link undervoltage (Warning)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4412	Warnung	Drive	DC-Link overvoltage (Warning)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x4413	Warnung	Drive	I2T-Model Amplifier overload (Warning)	Der Verstärker wir außerhalb der Spezifikation betrieben Der IOT Machall der Norden int felerte
0.4444	10/2002	Delive	IOT Madal Materia visita d	Das I2T-Modell des Verstärkers ist falsch parametriert
0x4414	Warnung	Drive	I2T-Model Motor overload (Warning)	Der Motor wird außerhalb der parametrierten Nennwerte betrieben.
				Das I2T-Modell des Motors ist falsch parametriert.

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x4415	Warnung	Drive	Speed limitation active	Die maximale Drehzahl wird durch die parametrierten Objekte (z. B. velocity limitation, motor speed limitation) begrenzt. Die Warnung wird ausgegeben, wenn die Sollgeschwindigkeit größer ist, als eines der parametrierten Begrenzungen.
0x4416	Warnung	Drive	Step lost detected at position: 0x%X%X	Schrittverlust erkannt
0x4417	Warnung	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Warnschwelle.
0x4418	Warnung	Drive	Limit: Current	Limit: Strom wird limitiert
0x4419	Warnung	Drive	Limit: Amplifier I2T-model exceeds 100%	Die Schwellwerte für den maximalen Strom wurden überschritten.
0x441A	Warnung	Drive	Limit: Motor I2T-model exceeds 100%	Limit: Motor I2T-Modell übersteigt 100%
0x441B	Warnung	Drive	Limit: Velocity limitation	Die Schwellwerte für die maximale Drehzahl wurden überschritten.
0x441C	Warnung	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x4600	Warnung	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich
0x4610	Warnung	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich
0x4705	Warnung		Processor usage at %d %	Prozessorauslastung bei %d %
0x470A	Warnung		EtherCAT Frame missed (change Settings or DC Operation Mode or Sync0 Shift Time)	EtherCAT Frame verpasst (Einstellungen, DC Operation Mode oder Sync0 Shift Time ändern)

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8000	Fehler	System	%s: %s	
0x8001	Fehler	System	Error: 0x%X, 0x%X, 0x%X	allgemeiner Fehler, Parameter je nach Ereignis. Interpretation siehe Gerätedokumentation.
0x8002	Fehler	System	Communication aborded	Kommunikation abgebrochen
0x8003	Fehler	System	Configuration error: 0x%X, 0x%X,	allgemeine, Parameter je nach Ereignis.
			0x%X	Interpretation siehe Gerätedokumentation.
0x8004	Fehler	System	%s: Unsuccessful FwdOpen- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8005	Fehler	System	%s: FwdClose-Request sent to %d.%d.%d.%d (%s)	
0x8006	Fehler	System	%s: Unsuccessful FwdClose- Response received from %d.%d. %d.%d (%s) (Error: %u)	
0x8007	Fehler	System	%s: Connection with %d.%d.%d. %d (%s) closed	
0x8100	Fehler	Allgemein	Status word set: 0x%X, %d	Fehlerbit im Statuswort gesetzt
0x8101	Fehler	Allgemein	Operation mode incompatible to PDO interface: 0x%X, %d	Betriebsart inkompatibel zum PDO-Interface
0x8102	Fehler	Allgemein	Invalid combination of Inputs and Outputs PDOs	Ungültige Kombination von In- und Output PDOs
0x8103	Fehler	Allgemein	No variable linkage	Keine Variablen verknüpft
0x8104	Fehler	Allgemein	Terminal-Overtemperature	Die Innentemperatur der Klemme überschreitet die parametrierte Fehlerschwelle. Das Aktivieren der Klemme wird unterbunden.
0x8105	Fehler	Allgemein	PD-Watchdog	Die Kommunikation zwischen Feldbus und Endstufe wird durch einen Watchdog abgesichert. Sollte die Feldbuskommunikation abbrechen, wird die Achse automatisch gestoppt. • Die EtherCAT-Verbindung wurde im Betrieb
				unterbrochen Der Master wurde im Betrieb in den Config-Mode geschaltet
0x8135	Fehler	Allgemein	Cycletime has to be a multiple of 125 µs	Die IO- oder NC-Zykluszeit ist nicht ganzzahlig durch 125µs teilbar.
0x8136	Fehler	Allgemein	Configuration error: invalid sampling rate	Konfigurationsfehler: Ungültige Samplingrate
0x8137	Fehler	Allgemein	Elektronisches Typenschild: CRC-Fehler	Inhalt des Speicher des externen Typenschildes nicht gültig.
0x8140	Fehler	Allgemein	Sync Error	Echtzeitverletztung
0x8141	Fehler	Allgemein	Sync%X Interrupt lost	Sync%X Interrupt fehlt
0x8142	Fehler	Allgemein	Sync Interrupt asynchronous	Sync Interrupt asynchron
0x8143	Fehler	Allgemein	Jitter too big	Jitter Grenzwertüberschreitung
0x817F	Fehler	Allgemein	Error: 0x%X, 0x%X, 0x%X	
0x8200	Fehler	Kommunikation	Write access error: %d, %d	Fehler beim Schreiben
0x8201	Fehler	Kommunikation	No communication to field-side (Auxiliary voltage missing)	 Es ist keine Spannung an den Powerkontakten angelegt Ein Firmware Update ist fehlgeschlagen
0x8281	Fehler	Kommunikation	Ownership failed: %X	Liii i iiiiware Opuate ist leiligeschlagen
0x8282	Fehler	Kommunikation	To many Keys founded	
0x8283	Fehler	Kommunikation	Key Creation failed: %X	
0x8284	Fehler	Kommunikation	Key loading failed	
0x8285	Fehler	Kommunikation	Reading Public Key failed: %X	
0x8286	Fehler	Kommunikation	Reading Public EK failed: %X	
0x8287	Fehler	Kommunikation	Reading PCR Value failed: %X	
0x8288	Fehler	Kommunikation	Reading Certificate EK failed: %X	
0x8289	Fehler	Kommunikation	Challenge could not be hashed: %X	
0x828A	Fehler	Kommunikation	Tickstamp Process failed	
0x828B	Fehler	Kommunikation	PCR Process failed: %X	
0x828C	Fehler	Kommunikation	Quote Process failed: %X	
0x82FF	Fehler	Kommunikation	Bootmode not activated	Bootmode nicht aktiviert
0x8300	Fehler	Encoder	Set position error: 0x%X, %d	Fehler beim Setzen der Position

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8301	Fehler	Encoder	Encoder increments not configured: 0x%X, %d	Enkoderinkremente nicht konfiguriert
0x8302	Fehler	Encoder	Encoder-Error	Die Amplitude des Resolvers ist zu klein.
0x8303	Fehler	Encoder	Encoder power missing (channel %d)	Encoderspannung nicht vorhanden (Kanal %d)
0x8304	Fehler	Encoder	Encoder communication error, channel: %X	Encoder Kommunikationsfehler
0x8305	Fehler	Encoder	EnDat2.2 is not supported, channel: %X	EnDat2.2 wird nicht unterstützt
0x8306	Fehler	Encoder	Delay time, tolerance limit exceeded, 0x%X, channel: %X	Laufzeitmessung, Toleranz überschritten
0x8307	Fehler	Encoder	Delay time, maximum value exceeded, 0x%X, channel: %X	Laufzeitmessung, Maximalwert überschritten
0x8308	Fehler	Encoder	Unsupported ordering designation, 0x%X, channel: %X (only 02 and 22 is supported)	Falsche EnDat Bestellbezeichnung
0x8309	Fehler	Encoder	Encoder CRC error, channel: %X	Encoder CRC Fehler
0x830A	Fehler	Encoder	Temperature %X could not be read, channel: %X	Temperatur kann nicht gelesen werden
0x830C	Fehler	Encoder	channel. %X	CRC Fehler festgestellt. Überprüfen Sie den Übertragungsweg und das CRC Polynom
0x830D	Fehler	Encoder	Encoder Watchdog Error, channel. %X	Der Sensor hat nicht innerhalb einer vordefinierten Zeitspanne geantwortet
0x8310	Fehler	Encoder	Initialisation error	Initialisierungsfehler
0x8311	Fehler	Encoder	Maximum frequency of the input signal is exceeded (channel %d)	Maximale Frequenz des Eingangssignals ist überschritten (Kanal %d)
0x8312	Fehler	Encoder	Encoder plausibility error (channel %d)	Encoder Plausibilitätsfehler (Kanal %d)
0x8313	Fehler	Encoder	Configuration error (channel %d)	Konfigurationsfehler (Kanal %d)
0x8314	Fehler	Encoder	Synchronisation error	Synchronisierungsfehler
0x8315	Fehler	Encoder	Error status input (channel %d)	Fehler Status-Eingang (Kanal %d)
0x8400	Fehler	Drive	Incorrect drive configuration: 0x%X, %d	Antrieb fehlerhaft konfiguriert
0x8401	Fehler	Drive	Limiting of calibration velocity: %d, %d	Begrenzung der Kalibrier-Geschwindigkeit
0x8402	Fehler	Drive	Emergency stop activated: 0x%X, %d	Emergency-Stop aktiviert
0x8403	Fehler	Drive	ADC Error	Fehler bei Strommessung im ADC
0x8404	Fehler	Drive	Overcurrent	Überstrom Phase U, V, oder W
0x8405	Fehler	Drive	Invalid modulo position: %d	Modulo-Position ungültig
0x8406	Fehler	Drive	DC-Link undervoltage (Error)	Die Zwischenkreisspannung der Klemme unterschreitet die parametrierte Mindestspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8407	Fehler	Drive	DC-Link overvoltage (Error)	Die Zwischenkreisspannung der Klemme überschreitet die parametrierte Maximalspannung. Das Aktivieren der Endstufe wird unterbunden.
0x8408	Fehler	Drive	I2T-Model Amplifier overload (Error)	Der Verstärker wir außerhalb der Spezifikation betrieben
				Das I2T-Modell des Verstärkers ist falsch parametriert
0x8409	Fehler	Drive	I2T-Model motor overload (Error)	Der Motor wird außerhalb der parametrierten Nennwerte betrieben.
				Das I2T-Modell des Motors ist falsch parametriert.
0x840A	Fehler	Drive	Overall current threshold exceeded	Summenstrom überschritten
0x8415	Fehler	Drive	Invalid modulo factor: %d	Modulo-Faktor ungültig
0x8416	Fehler	Drive	Motor-Overtemperature	Die Innentemperatur des Motors übersteigt die parametrierte Fehlerschwelle. Der Motor bleibt sofort stehen. Das Aktivieren der Endstufe wird unterbunden.
0x8417	Fehler	Drive	Maximum rotating field velocity exceeded	Drehfeldgeschwindigkeit übersteigt den von Dual Use (EU 1382/2014) vorgeschriebenen Wert.
0x841C	Fehler	Drive	STO while the axis was enabled	Es wurde versucht die Achse zu aktivieren, obwohl die Spannung am STO-Eingang nicht anliegt.
0x8550	Fehler	Inputs	Zero crossing phase %X missing	Nulldurchgang Phase %X fehlt
0x8551	Fehler	Inputs	Phase sequence Error	Drehrichtung Falsch

Text-ID	Тур	Ort	Text Message	Zusätzlicher Kommentar
0x8552	Fehler	Inputs	Overcurrent phase %X	Überstrom Phase %X
0x8553	Fehler	Inputs	Overcurrent neutral wire	Überstrom Neutralleiter
0x8581	Fehler	Inputs	Wire broken Ch %D	Leitungsbruch Ch %d
0x8600	Fehler	Allgemein IO	Wrong supply voltage range	Versorgungsspannung im falschen Bereich
0x8601	Fehler	Allgemein IO	Supply voltage to low	Versorgungsspannung zu klein
0x8602	Fehler	Allgemein IO	Supply voltage to high	Versorgungsspannung zu groß
0x8603	Fehler	Allgemein IO	Over current of supply voltage	Überstrom der Versorgungsspannung
0x8610	Fehler	Allgemein IO	Wrong output voltage range	Ausgangsspannung im falschen Bereich
0x8611	Fehler	Allgemein IO	Output voltage to low	Ausgangsspannung zu klein
0x8612	Fehler	Allgemein IO	Output voltage to high	Ausgangsspannung zu groß
0x8613	Fehler	Allgemein IO	Over current of output voltage	Überstrom der Ausgangsspannung
0x8700	Fehler		Channel/Interface not calibrated	Kanal/Interface nicht abgeglichen
0x8701	Fehler		Operating time was manipulated	Betriebslaufzeit wurde manipuliert
0x8702	Fehler		Oversampling setting is not possible	Oversampling Einstellung nicht möglich
0x8703	Fehler		No slave controller found	Kein Slave Controller gefunden
0x8704	Fehler		Slave controller is not in Bootstrap	Slave Controller ist nicht im Bootstrap
0x8705	Fehler		Processor usage to high (>= 100%)	Prozessorauslastung zu hoch (>= 100%)
0x8706	Fehler		Channel in saturation	Kanal in Sättigung
0x8707	Fehler		Channel overload	Kanalüberlastung
0x8708	Fehler		Overloadtime was manipulated	Überlastzeit wurde manipuliert
0x8709	Fehler		Saturationtime was manipulated	Sättigungszeit wurde manipuliert
0x870A	Fehler		Channel range error	Messbereichsfehler des Kanals
0x870B	Fehler		no ADC clock	Kein ADC Takt vorhanden
0xFFFF	Information		Debug: 0x%X, 0x%X, 0x%X	Debug: 0x%X, 0x%X, 0x%X

8.6.2 **Diagnose EL5102**

Die EL5102 bietet folgende Diagnosemöglichkeiten:

- <u>Überlauf und Unterlauf der Zählergrenzen [▶ 198]</u>
- RS422 Drahtbruch- und Kurzschlusserkennung (open circuit) [▶ 199]
- <u>Überwachung der Geberbetriebsspannung [▶ 200]</u>
- <u>Eingang Status Input Diagnose</u> [▶ 200]
- Plausibilitätsprüfung [▶ 201]
- Filterfrequenzüberschreitung [> 202]

8.6.2.1 Über- und Unterlauf der Zählergrenzen

Überlauf (Counter overflow) und Unterlauf (Counter underflow) der Zählergrenzen

Ein Über- oder Unterlauf der Zählgrenzen wird über die Prozessdaten 0x60n0:04 "Counter underflow" bzw. 0x60n0:05 "Counter overflow" angezeigt.

- Das "Counter underflow"- Bit in Index 0x60n0:04 wird gesetzt, wenn ein Unterlauf 0x80n1:1B "Reset counter value" → 0x80n1:1A "Limit counter value" eintritt. Mit Default-Parametern entspricht dies "..00 → ..FF"
 - Es wird zurückgesetzt, wenn 2/3 des Zählbereichs unterschritten werden.
- Das "Counter overflow" Bit 0x60n0:05 wird gesetzt, wenn ein Überlauf 0x80n1:1A "Limit counter value"
 → 0x80n1:1B "Reset counter value" eintritt. Mit Default-Parametern "..FF → ..00"
 Es wird zurückgesetzt, wenn 1/3 des Zählbereiches überschritten werden.

8.6.2.2 RS422 - Drahtbruch- und Kurzschlusserkennung (open circuit)

In den RS422 (differentieller Input) Modi ist es möglich einen Drahtbruch und Kurzschluss an den einzelnen Encoder-Eingängen zu erkennen.

- Im Drahtbruchfall, z. B. zwischen dem Eingang A und Eingang A,
 - ∘ beträgt die Differenzspannung V_{ID} nahezu 0 V,
 - · dies führt zu einem Fehler mit niedriger Differenzspannung.
- Beim Kurzschlussfall, z. B. zwischen dem Eingang A und Eingang Ā, ähnelt das Fehlerverhalten dem Drahtbruch, dies führt ebenfalls zu einer Fehlererkennung.

Aktivierung der Fehlererkennung je Kanal					
Index (hex)	Name	Beschrei	Beschreibung		
80n0:0B*	n0:0B* Error detection A		Drahtbruch- und Kurzschlusserkennung für Encoder-Eingang A aktiviert		
		FALSE	Drahtbruch- und Kurzschlusserkennung für Encoder-Eingang A deaktiviert		
80n0:0C* Error detection B		TRUE	Drahtbruch- und Kurzschlusserkennung für Encoder-Eingang B aktiviert		
		FALSE	Drahtbruch- und Kurzschlusserkennung für Encoder-Eingang B deaktiviert		
80n0:0D*	Error detection C	TRUE	Drahtbruch- und Kurzschlusserkennung für Encoder-Eingang C aktiviert		
		FALSE	Drahtbruch- und Kurzschlusserkennung für Encoder-Eingang C deaktiviert		
*) abhängig vo	*) abhängig von der Anzahl der Kanäle (n = 0 für Kanal 1 und n = 1 für Kanal 2)				

Fehlererkennung am Beispiel eines Drahtbruches oder Kurzschlusses zwischen den Eingängen A und Ā.				
Fehlerdiagnose	Anzeige	Beschreibung		
LED A1	Grün	Ein TRUE Pegel liegt an		
	Rot	Ein Fehler (open circuit) wurde detektiert		
0x60n0:07 "Open circuit"	TRUE	Sammelfehlermeldung für "Open circuit" Es ist ein Drahtbruch oder Kurzschluss an einem der Encoder-Eingängen aufgetreten		
	FALSE	Es liegt kein "Open circuit" - Fehler vor.		
0x60n0:0F "TxPDO State"	TRUE	Positionsdaten sind ungültig.		
	FALSE	Positionsdaten sind gültig.		
0xA0n0:01 "Error A"	TRUE	Ein "Open circuit" - Fehler (Drahtbruch oder Kurzschluss) an Encoder-Eingang A ist aufgetreten.		
	FALSE	Es liegt kein "Open circuit" - Fehler vor.		
DiagMessage (ab FW02)	Text-ID: 0x831B	Kabelbruch oder Kurzschluss Spur A (Kanal n)		

Fehler-Bits bei Drahtbruch an einem Encoder-Eingang nicht dauerhaft gesetzt

Liegt ein Drahtbruch nur an einem Encoder-Eingang (z. B. nur Spur A) vor, kann es in Einzelfällen dazu führen, dass die Differenzspannung (V_{ID}), aufgrund der anliegenden Common-Mode-Spannung (V_{CM}), über dem Grenzbereich (V_{IDLow}) liegt. Dadurch wird der Fehler nicht eindeutig identifiziert.

Die entsprechenden Fehler-Bits ("Open circuit" und "Error A") stehen dadurch nicht dauerhaft an!

8.6.2.3 Überwachung der Geberbetriebsspannung

Eine fehlende Geberbetriebsspannung wird dargestellt durch:

Fehlerdiagnose	Anzeige	Beschreibung
LED Power ENC. Ch.1	grün	Geberversorgungsspannung ist vorhanden
	aus	Geberversorgungsspannung nicht vorhanden
0xA0n0:04 "Field power failure"	TRUE	Geberversorgungsspannung nicht vorhanden
	FALSE	Geberversorgungsspannung ist vorhanden
DiagMessage, Text-ID	0x8303	Geberversorgungspannung nicht vorhanden

HINWEIS

Geberbetriebsspannung erzeugt aus den 24 V_{DC} - Powerkontakten

Die Geberbetriebsspannung wird aus den 24 V_{DC} der Powerkontakte erzeugt. Bei fehlender Versorgung der Powerkontakte kann somit keine Geberbetriebsspannung zur Verfügung gestellt werden.

8.6.2.4 Eingang Status Input Diagnose

Besitzt der Encoder einen Störmelde- oder Statusausgang, so kann dieser an den "Status Input"-Eingang der Klemme angeschlossen und ausgewertet werden. Der Eingang ist 5 V kompatibel.

Handelsüblich ist der Störmelde- oder Statusausgang am Encoder mit einer negativen Logik ausgeführt. Dieser wird wie folgt von der Klemme angezeigt:

Encoder	EL5102			
Störmeldeausgang	"Status Input"-Eingang (0x60n0:06 "Status of in- put status")	Status Input LED	Bedeutung	
HIGH Pegel / Ausgang offen	TRUE	Aus	z. B. Encoder in Ordnung	
LOW Pegel / PullDown - Pegel wird aktiv auf LOW gezogen	FALSE	Rot	z. B. Encoder gestört	

Liegt eine Überspannung an dem Eingang "Status Input" an, so wird diese wie folgt angezeigt:

Fehlerdiagnose bei Überspannung an Eingang Status Input an Kanal n	Anzeige
DiagMassage, Typ "Error", Text-ID 0x8315	Error status input (channel n)
0xA0n0:05 "Error input status"	TRUE
LED: Status Input Ch. n	Rot

200 Version: 1.4.0 EL5102

8.6.2.5 Plausibilitätsprüfung

Die Plausibilitätsprüfung der Eingangssignale dient als erweiterte Diagnose um Störsignale zu erkennen und die dadurch verursachten Sprünge im Zählerwert zu identifizieren und zu unterdrücken.

Funktionsprinzip Plausibilitätsprüfung

Die Rechtecksignale eines Inkrementalencoder mit Spur A und Spur B sind jeweils um 90° phasenverschoben. Dadurch sind nur bestimmte Übergänge im Signalverlauf zugelassen bzw. "plausibel", so darf z. B. bei einer steigenden A-Flanke das Signal auf Spur B nicht ebenfalls steigen.

Diese Plausibilität des Signalverlaufs wird in der Klemme geprüft. Treten nicht gültige Signalübergänge auf, so werden diese, bei aktivierter Plausibilitätserkennung, erkannt und entsprechend dargestellt.

Ablauf Plausibilitätsprüfung

- Aktivierung der Plausibilitätsprüfung über Index 0x80n0:21 "Enable encoder plausibility check"
- · Wird ein Plausibilitätsfehler erkannt, so wird dieser wie folgt dargestellt:

Fehlerdiagnose	Beschreibung
DiagMessage, Typ "Fehler", Text-ID 0x8312	Encoder Plausibilitätsfehler (Kanal n)
0xA0n0:13 "Encoder plausibility error counter"	Fehlerzähler wird inkrementiert, wenn ein Plausibilitätsfehler erkannt wird
0x60n2:0E TxPDO State = 1	Die zugehörigen TxPDO Daten sind nicht gültig

Der Fehlerzähler der Plausibilitätsfehler kann wie folgt zurückgesetzt werden:

Übergang von PREOP nach OP

Oder

• Im Command Objekt in Index 0xFB00:01 "Request" folgenden Eintrag eingeben

0xFB001:01 "Request"	Beschreibung
	Setzen des internen Fehlerzählers 0xA000:13 "Encoder plausibility error counter" für Kanal 1 auf Null
	Setzen des internen Fehlerzählers 0xA010:13 "Encoder plausibility error counter" für Kanal 2 auf Null

8.6.2.6 Überschreiten der Filterfrequenz

Eingangsfilter dienen zur Störunterdrückung an den Encoder- und Digitaleingängen. Verschiedene Filterfrequenzen können anwendungsspezifisch parametrieret werden.

Dabei unterliegen die einzelnen Eingänge folgenden Filterfrequenzen:

Eingänge	Max. empfohlene Filterfrequenz
Encoder-Eingänge: Spur A, Spur B, Spur C	RS422-Mode: 5 MHz
	TTL-Mode: 1 MHz
	Open Collector: 100 kHz
Latch-Eingang	1 MHz
Gate/Latch-Eingang	1 MHz
Status Input-Eingang	100 kHz (nicht einstellbar)

• Wird bei aktiviertem Filter (0x80n0:08 und 0x80n1:19) eine Frequenzüberschreitung festgestellt, so wird ein Zähler im Index 0xA0n0:16 inkrementiert.

Index (hex)	Name	Beschreibung
0xA0n0:14	Filter violation counter extern latch	Zähler der Filterfrequenzüberschreitung des Latch extern- Eingangs
0xA0n0:15	Filter violation counter input gate	Zähler der Filterfrequenzüberschreitung des Gate-Eingangs
0xA0n0:16	Filter violation counter	Zähler der Filterfrequenzüberschreitung auf den Encoder- Eingangssignalen beim aktivierten Filter

HINWEIS

Parametrierung der Störimpulsfilterfunktion beachten

Beachten Sie die Beschreibung und Hinweise zur Parametrierung im Kapitel <u>Einstellbare Störimpulsfilter [* 179]</u>.

8.7 EL5102 - Objektbeschreibung und Parametrierung

EtherCAT ESI Device Description (XML)

1

Die Darstellung entspricht der Anzeige der CoE-Objekte aus der EtherCAT ESI Device Description(XML). Es wird empfohlen, die entsprechende aktuellste XML-Datei im Download-Bereich auf der Beckhoff Webseite herunterzuladen und entsprechend der Installationsanweisungen zu installieren.

HINWEIS

Parametrierung über das CoE-Verzeichnis (CAN over EtherCAT)

Die Parametrierung des EtherCAT Geräts wird über den CoE - Online Reiter (mit Doppelklick auf das entsprechende Objekt) bzw. über den Prozessdatenreiter (Zuordnung der PDOs) vorgenommen. Eine ausführliche Beschreibung finden Sie in der EtherCAT System-Dokumentation im Kapitel "EtherCAT Teilnehmerkonfiguration".

Beachten Sie bei Verwendung/Manipulation der CoE-Parameter die allgemeinen CoE-Hinweise im Kapitel "<u>CoE-Interface</u>" der EtherCAT System-Dokumentation:

- StartUp-Liste führen für den Austauschfall
- Unterscheidung zwischen Online/Offline Dictionary,
- Vorhandensein aktueller XML-Beschreibung
- "CoE-Reload" zum Zurücksetzen der Veränderungen

8.7.1 Restore Objekt

Index 1011 Restore default parameters

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	Restore default parameters [> 249]	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01	SubIndex 001	Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	RW	0x0000000 (0 _{dez})

8.7.2 Konfigurationsdaten

Index 80n0 ENC Settings 0 Ch.n (für n = 0 [Kanal 1], n = 1 [Kanal 2])

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
30n0:0	ENC Settings 0 Ch.n	Maximaler Subindex	UINT8	RO	0x23 (35 _{dez})
30n0:01	Enable C reset [182]	Ein Reset des Zählers erfolgt über den C-Eingang.	BOOLEAN	RW	0x00 (0 _{dez})
30n0:02	Enable extern reset [▶ 184]	Ein Reset des Zählers erfolgt über den externen Latch Eingang (24 V)	BOOLEAN	RW	0x00 (0 _{dez})
30n0:04	Gate polarity [▶ 186]	0: Disable gate 1: Enable pos. gate (Gate sperrt mit HIGH-Pegel) 2: Enable neg. gate (Gate sperrt mit LOW-Pegel)	BIT2	RW	0x01 (1 _{dez})
30n0:06	Evaluation mode [▶ 153]	0: 4-fold (Vierfachauswertung) 1: 1-fold (Einfachauswertung) 2: 2-fold (Zweifachauswertung	BIT2	RW	0x00 (0 _{dez})
30n0:08	Disable filter [▶ 179]	0: Aktiviert Eingangsfilter (nur Eingänge A, /A, B, /B, C, /C) 1: Deaktiviert Eingangsfilter Bei aktiviertem Filter muss eine Signalflanke mind. 2,4 µs anliegen um als Inkrement gezählt zu werden.	BOOLEAN	RW	0x01 (1 _{dez})
80n0:0A	Enable micro increments [▶ 175]	Bei Aktivierung interpoliert die EL5102 im DC-Modus zwischen die ganzzahligen Encoder-Inkremente Microinkremente hinein. Zur Anzeige werden die jeweils unteren 8 Bit des Counter-Value benutzt. Aus einem 32-Bit-Zähler wird so ein 24+8 Bit Zähler, aus einem 16-Bit-Zähler ein 8+8 Bit Zähler.	BOOLEAN	RW	0x00 (0 _{dez})
80n0:0B	Error detection A	Ein Drahtbruch- oder Kurzschluss auf der A-Spur wird im Index 0x60n0:07 [** 208] und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist.	BOOLEAN	RW	0x01 (1 _{dez})
80n0:0C	Error detection B	Ein Drahtbruch- oder Kurzschluss auf der B-Spur wird im Index 0x6000:07 [**\) 208] und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet.	BOOLEAN	RW	0x01 (1 _{dez})
80n0:0D	Error detection C	Ein Drahtbruch- oder Kurzschluss auf der C-Spur wird im Index 0x60n0:07 [** 208] und als Prozessdatum angezeigt. Diagnose ist nur möglich, wenn der entsprechende Eingang differentiell verdrahtet ist.	BOOLEAN	RW	0x00 (0 _{dez})
30n0:0E	Reversion of rotation [▶ 156]	Aktiviert die Drehrichtungsumkehr	BOOLEAN	RW	0x00 (0 _{dez})
80n0:10	Extern reset polarity [▶ 184]	O: Fall (mit der fallenden Flanke wird der Zähler auf null gesetzt) 1: Rise (mit der steigenden Flanke wird der Zähler auf null gesetzt)	BIT1	RW	0x01 (1 _{dez})
80n0:11	Frequency window [▶ 169]	Dies ist die minimale Zeit, über die die Frequenz ermittelt wird, Standardwert 10 ms [Auflösung: 1 µs]. Die Frequenz wird berechnet aus der Anzahl Inkremente (Positionsänderungen) im Zeitintervall "Frequency window". Die ermittelte Frequenz wird in Index 0x60n0:13 [▶ 208] und als Prozessdatum ausgegeben. Die Frequenzberechnung wird lokal ausgeführt und nutzt keine Distributed-Clocks-Funktion.	UINT16	RW	0x2710 (10000 _{dez})
80n0:13	Frequency scaling [> 169]	Skalierung der Frequenzmessung (durch diesen Wert muss dividiert werden, damit man die Einheit in Hz erhält): 100: "0,01 Hz" (default)	UINT32	RW	0x00000064 (100 _{dez})
		1: "1 Hz"			
80n0:14	Period scaling	Auflösung der Periodendauer im Prozessdatum: 10: "10 ns" Periodendauerwert ist Vielfaches von 10 ns 100: "100 ns" Periodendauerwert ist Vielfaches von 100 ns 500: "500 ns" Periodendauerwert ist Vielfaches von 500 ns	UINT32	RW	0x000000A (10 _{dez})

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
80n0:17	Frequency Wait Time [• 169]	Wartezeit [ms] der Frequenzmessung Wird innerhalb des Zeitfensters <u>Frequency window</u> [▶ 170] keine volle Periode detektiert, wird ein weiteres Zeitfenster "Frequency window" gestartet, um mindestens eine volle Periode aufzunehmen. Dies geschieht solange, bis die maximale Wartezeit "Frequency wait time" abgelaufen ist. Hier sollte mindestens die doppelte Periodendauer der minimal zu messenden Frequenz eingetragen werden. t >= 2* (1 / f _{min})	UINT16	RW	0x53E2 (21474 _{dez})
80n0:1D	Frequency numerator [12]	Frequenz Zählerwert, Skalierung der Frequenz	UINT32	RW	0x00000001 (1 _{dez})
80n0:1E	Frequency denominator [172]	Frequenz Nennerwert, dient zur Skalierung der Frequenz und zur Geschwindigkeitsberechnung (Inkremente / Einheit).	UINT32	RW	0x00000001 (1 _{dez})
80n0:21	Enable encoder plausibility check [▶ 201]	Aktivierung der Plausibilitätsprüfung	BOOLEAN	RW	0x01 (0 _{dez})
80n0:22	Enable continuous latch extern [• 185]	FALSE: Die folgenden Impulse am Latch-Eingang haben bei gesetztem Bit in Index 0x70n0:02 oder 0x70n0:04 keinen Einfluss auf den Latch-Wert in Index 0x60n0:12 "Latch value". TRUE: Der Zählerwert wird bei jeder parametrierten Flanke am Latch-Eingang in Index 0x60n0:12 "Latch value" geschrieben. Eine erneute Aktivierung des Index 0x70n0:02 oder 0x70n0:04 entfällt.	BOOLEAN	RW	0x00 (0 _{dez})
80n0:23	Enable continuous latch extern [▶ 186] 2	FALSE: Die folgenden Impulse am Latch extern 2-Eingang haben bei gesetztem Bit in Index 0x70n0:0C oder 0x70n0:0D keinen Einfluss auf den Latch-Wert in Index 0x60n0:22 "Latch value 2". TRUE: Der Zählerwert wird bei jeder parametrierten Flanke am Latch extern 2-Eingang in Index 0x60n0:22 "Latch value 2" geschrieben. Eine erneute Aktivierung des Index 0x70n0:02 oder 0x70n0:04 entfällt.	BOOLEAN	RW	0x00 (0 _{dez})

Index 80n1 ENC Settings 1 Ch.n (für n = 0 [Kanal 1], n = 1 [Kanal 2])

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
80n1:0	ENC Settings 1 Ch.n	Maximaler Subindex	UINT8	RO	0x1D (29 _{dez})
80n1:17	Supply voltage [\(\bullet \) 153]	Einstellung der Geberversorgung $50_{dez}: 5.0 \text{ V (default)}$ $120_{dez}: 12.0 \text{ V}$ $240_{dez}: 24.0 \text{ V}$	UINT32	RW	0x0000032 (50 _{dez})
80n1:19	Filter settings [▶ 179]	Filtereinstellungen: 10 _{dez} : 10 kHz 25 _{dez} : 25 kHz 50 _{dez} : 50 kHz 100 _{dez} : 50 kHz 250 _{dez} : 50 kHz 100 _{dez} : 600 kHz 250 _{dez} : 500 kHz 500 _{dez} : 500 kHz 1000 _{dez} : 1 MHz 2500 _{dez} : 2,5 MHz 5000 _{dez} : 5 MHz (default)	UINT32	RW	0x00001388 (5000 _{dez})
80n1:1A	Limit counter value [▶ 154]	Gibt den Wert für die obere Zählergrenze an.	UINT32	RW	0xFFFFFFF (-1 _{dez})
80n1:1B	Reset counter value [▶ 154]	Gibt den Wert für die untere Zählergrenze an.	UINT32	RW	0x0000000 (0 _{dez})
80n1:1C	Direction inversion hysteresis [* 161]	Eingabe der Hysterese in Anzahl der Inkremente. Es ist ein Wert > 0 zu wählen. Überschreitet der Zählerwert den Wert, wird im nächsten SPS Zyklus das Bit in Index 0x60n2:13 "Direction inversion detected" gesetzt.	UINT8	RW	0x0A (10 _{dez})
80n1:1D	Counter mode [▶ 152]	0: Encoder RS422 (diff. Input) 1: Counter RS422 (diff. Input) 2: Encoder TTL (single ended) 3: Counter TTL (single ended) 4: Encoder open collector 5: Counter open collector	UINT32	RW	0x0000000 (0 _{dez})

8.7.3 Kommando-Objekt

Index FB00 RMB Command

Index (hex)	Name	Bedeutu	ing	Datentyp	Flags	Default
FB00:0	RMB Command	Max. Sul	oindex	UINT8	RO	0x03 (3 _{dez})
FB00:01	Request	I	Request-Objekt können Kommandos an me abgesetzt werden. Befehl:	OCTET- STRING[2]	RW	{0}
		Rücksetz	en Duty cycle min./max: [▶ 174]			
		0x9130	Index 0x6000:24 "Duty cycle min" für Kanal 1 auf null setzen			
		0x9131	Index 0x6010:24 "Duty cycle min" für Kanal 2 auf null setzen			
		0x9140	Index 0x6000:25 "Duty cycle max" für Kanal 1 auf null setzen	_		
		0x9141	Index 0x6010:25 "Duty cycle max" für Kanal 2 auf null setzen	_		
		<u>Rücksetz</u> [▶ 201]:	en der Fehlerzähler für Plausibilitätsfehler			
		0x9151	Index 0xA000:13 "Encoder plausibility error counter" für Kanal 1 auf null setzen			
		0x9161	Index 0xA010:13 "Encoder plausibility error counter" für Kanal 2 auf null setzen			
		Rücksetz	en der internen Fehlerzähler [▶ 179]:			
		0x9152	Index 0xA000:14 "Filter violation counter extern latch" für Kanal 1 auf null setzen			
		0x9153	Index 0xA000:15 "Filter violation counter input gate" für Kanal 1 auf null setzen			
		0x9154	Index 0xA000:16 "Filter violation counter" für Kanal 1 auf null setzen			
		0x9162	Index 0xA010:14 "Filter violation counter extern latch" für Kanal 2 auf null setzen			
		0x9163	Index 0xA010:15 "Filter violation counter input gate" für Kanal 2 auf null setzen			
		0x9164	Index 0xA010:16 "Filter violation counter" für Kanal 2 auf null setzen		RO	
FB00:02	Status	Status de	es aktuell ausgeführten Kommandos	UINT8		0x00 (0 _{dez})
		0: Komm	ando fehlerfrei ausgeführt			
		255: Kon	nmando wird ausgeführt			
FB00:03	Response	Optional	er Rückgabewert des Kommandos	OCTET- STRING[4]	RO	{0}

8.7.4 Eingangsdaten

Index 60n0 ENC Inputs Ch.n (für n = 0 [Kanal 1], n = 1 [Kanal 2])

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60n0:0	ENC Inputs Ch.n	Maximaler Subindex	UINT8	RO	0x25 (37 _{dez})
60n0:01	Latch C valid [▶ 183]	Zählerstand wurde mit dem Nullimpuls C-Eingang gespeichert.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:02	Latch extern valid [▶ 185]	Zählerstand wurde über den Latch extern-Eingang gespeichert.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:03	Set counter done [▶ 183]	Zähler wurde gesetzt.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:04	Counter underflow [▶ 198]	Die untere Zählergrenze wurde unterschritten. Das Bit wird zurückgesetzt, wenn der Zählerstand 2/3 des Zählbereichs unterschritten hat.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:05	Counter overflow [▶ 198]	Die obere Zählergrenze wurde überschritten. Das Bit wird zurückgesetzt, wenn der Zählerstand 1/3 des Zählbereichs überschritten hat.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:06	Status of input status [▶ 187]	Zustand des Status-Eingangs, (Störmeldeeingang "Input 1")	BOOLEAN	RO	0x00 (0 _{dez})
60n0:07	Open circuit	Zeigt einen Drahtbruch an. Konfiguration über Index 0x80n0:0A, 0x80n0:0B, 0x80n0:0C [▶ 204]	BOOLEAN	RO	0x00 (0 _{dez})
60n0:08	Extrapolation stall	Der extrapolierte Teil des Zählers ist ungültig. Die zur Nutzung der Mikroinkremente [• 175] benötigte Mindestgeschwindigkeit wurde unterschritten.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:09	Status of input A	Status von Eingang A	BOOLEAN	RO	0x00 (0 _{dez})
60n0:0A	Status of input B	Status von Eingang B	BOOLEAN	RO	0x00 (0 _{dez})
60n0:0B	Status of input C	Status von Eingang C	BOOLEAN	RO	0x00 (0 _{dez})
60n0:0C	Status of input gate [• 186]	Zustand des Gate-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
60n0:0D	Status of extern latch [▶_185]	Nur im Legacy mode: Zustand des Latch extern-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
60n0:0E	Sync Error	Nur im Legacy mode: Das Sync error Bit wird nur für den DC Mode benötigt und zeigt an, ob im abgelaufenen Zyklus ein Synchronisierungsfehler aufgetreten ist.	BOOLEAN	RO	0x00 (0 _{dez})
		Das bedeutet, ein SYNC-Signal wurde in der Klemme ausgelöst, es lagen aber keine neuen Prozessdaten vor (0 = ok, 1 = nok).			
60n0:0F	TxPDO State	Nur im Legacy mode: Gültigkeit der Daten der zugehörigen TxPDO (0 = valid, 1 = invalid).	BOOLEAN	RO	0x00 (0 _{dez})
60n0:10	TxPDO Toggle	Nur im Legacy mode: Der TxPDO Toggle wird vom Slave getoggelt, wenn die Daten der zugehörigen TxPDO aktualisiert wurden.	BOOLEAN	RO	0x00 (0 _{dez})
60n0:11	Counter value [152]	Wert des Zählerstandes	UINT32	RO	0x00000000 (0 _{dez})
60n0:12	Latch value [▶ 185]	Latch-Wert	UINT32	RO	0x0000000 (0 _{dez})
60n0:13	Frequency value [• 169]	Frequenz (Einstellung der Skalierung in Index 0x80n0:13 [▶ 204])	UINT32	RO	0x0000000 (0 _{dez})
60n0:14	Period value [▶ 171]	Periodendauer (Einstellung der Skalierung in Index 0x80n0:14 [▶ 204])	UINT32	RO	0x0000000 (0 _{dez})
60n0:16	Timestamp [▶ 177]	Zeitstempel der letzten Zähleränderung	UINT64	RO	
60n0:1F	Timestamp C [▶ 177]	Zeitstempel der letzten registrierten positiven Flanke des Nullimpulses C	UINT64	RO	
60n0:20	Timestamp latch [▶ 178]	Zeitstempel der letzten Flanke (abhängig von der Parametrierung des Latch-Eingangs) am Latch extern.	UINT64	RO	
60n0:21	Timestamp latch 2 [▶ 178]	Bei Nutzung des Gate/Latch-Eingangs als Latch extern 2- Eingang: Zeitstempel der letzten Flanke (abhängig von der Parametrierung des Gate/Latch-Eingangs) am Latch extern 2-Eingang.	UINT64	RO	
60n0:22	Latch value 2 [▶ 178]	Latch-Wert des Latch extern 2-Eingangs (Gate-Eingang wird als 2. Latch-Eingang genutzt)	UINT32	RO	0x0000000 (0 _{dez})
60n0:23	Duty cycle [▶ 174]	gibt das Verhältnis Impulsdauer/Periodendauer an.	UINT16	RO	0x0000 (0 _{dez})
60n0:24	Duty cycle min	Kleinster gemessener Duty cycle Wert	UINT16	RO	0x0000 (0 _{dez})
60n0:25	Duty cycle max	Höchster gemessener Duty cycle Wert	UINT16	RO	0x0000 (0 _{dez})

Index 60n2 ENC Inputs status Ch. n (für n = 0 [Kanal 1], n = 1 [Kanal 2])

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
60n2:0	ENC Inputs status Ch. n	Maximaler Subindex	UINT8	RO	0x15 (21 _{dez})
60n2:0D	Diag	Zeigt an, dass eine neue Meldung in der "Diag History" bereit steht	BOOLEAN	RO	0x00 (0 _{dez})
60n2:0E	TxPDO State	Gültigkeit der Daten der zugehörigen TxPDO (0 = valid, 1 = invalid)	BOOLEAN	RO	0x00 (0 _{dez})
60n2:0F	Input cycle counter	2-Bit Zähler zu Synchronisierung (inkrementiert nur wenn ein neuer Wert vorliegt)	BIT2	RO	0x00 (0 _{dez})
60n2:11	Software gate valid	0: Zähler entsperrt (Index <u>0x70n0:09</u> [▶ <u>209</u>] "Set software gate" = FALSE)	BOOLEAN	RO	0x00 (0 _{dez})
		1: Zähler ist gesperrt (Index 0x70n0:09 "Set software gate" = TRUE)			
60n2:12	Latch extern 2 valid [▶ 186]	0: Ein neuer Zählerwert kann in Index <u>0x60n0:22 [▶ 208]</u> "Latch value 2" gespeichert werden.	BOOLEAN	RO	0x00 (0 _{dez})
		1: Es werden keine weiteren Zählerwerte in 0x60n0:22 "Latch value 2" gespeichert.			
60n2:13	Direction inversion detected [• 161]	Zeigt die Umkehr der Zählrichtung an.	BOOLEAN	RO	0x00 (0 _{dez})
60n2:14	Status of extern latch [• 185]	Der Zustand des ext. Latch extern-Eingangs	BOOLEAN	RO	0x00 (0 _{dez})
60n2:15	Counter value out of range [> 154]	Zeigt an, dass der Zählerwert außerhalb der parametrierten Zählergrenzen liegt.	BOOLEAN	RO	0x00 (0 _{dez})

8.7.5 Ausgangsdaten

Index 70n0 ENC Outputs Ch.n (für n = 0 [Kanal 1], n = 1 [Kanal 2])

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
70n0:0	ENC Outputs Ch.n	Maximaler Subindex	UINT8	RO	0x11 (17 _{dez})
70n0:01	Enable latch C [▶ 183]	Das Speichern über den Nullimpuls C-Eingang aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
70n0:02	Enable latch extern on positive edge [185]	Das Speichern über den Latch extern-Eingang mit positiver Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
70n0:03	Set counter [▶ 159]	Zählerstand setzen	BOOLEAN	RO	0x00 (0 _{dez})
70n0:04	Enable latch extern on negative edge [185]	Das Speichern über den Latch extern-Eingang mit negativer Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
70n0:08	Set counter on latch C [▶ 183]	Aktivierung der Zählerwertvorgabe über den Nullimpuls C-Eingang	BOOLEAN	RO	0x00 (0 _{dez})
70n0:09	Set software gate [▶ 168]	Sperrt den Zähler über eine SPS Variable 0: Zähler ist entsperrt 1: Zähler ist gesperrt	BOOLEAN	RO	0x00 (0 _{dez})
70n0:0A	Set counter on latch extern on positive edge [▶ 184]	Aktiviert die Zählerwertvorgabe über eine positive Flanke am Latch extern-Eingang. Der Zählerwert wird in Index 0x70n0:11 "Set counter value" vorgegeben.	BOOLEAN	RO	0x00 (0 _{dez})
70n0:0B	Set counter on latch extern on negative edge [* 184]	Aktiviert die Zählerwertvorgabe über eine negative Flanke am Latch extern-Eingang. Der Zählerwert wird in Index 0x70n0:11 "Set counter value" vorgegeben.	BOOLEAN	RO	0x00 (0 _{dez})
70n0:0C	Enable latch extern 2 on positive edge [▶ 186]	Das Speichern über den Gate/Latch-Eingang mit positiver Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
70n0:0D	Enable latch extern 2 on negative edge [▶ 186]	Das Speichern über den Gate/Latch-Eingang mit negativer Flanke aktivieren.	BOOLEAN	RO	0x00 (0 _{dez})
70n0:11	Set counter value [▶ 184]	Der über "Set counter" (Index 0x70n0:03) zu setzende Zählerstand.	UINT32	RO	0x00000000 (0 _{dez})

8.7.6 Informations-/Diagnosedaten (kanalspezifisch)

Index A0n0 ENC Diag data Ch. n (für n = 0 [Kanal 1], n = 1 [Kanal 2])

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
A0n0:0	ENC Diag data Ch.n	Maximaler Subindex	UINT8	RO	0x16 (22 _{dez})
A0n0:01	Error A	Ein "open circuit" Fehler an Eingang A liegt an	BOOLEAN	RO	0x00 (0 _{dez})
A0n0:02	Error B	Ein "open circuit" Fehler an Eingang B liegt	BOOLEAN	RO	0x00 (0 _{dez})
A0n0:03	Error C	Ein "open circuit" Fehler an Eingang Nullimpuls C liegt an	BOOLEAN	RO	0x00 (0 _{dez})
A0n0:04	Field power failure	Geberversorgungsspannung nicht vorhanden	BOOLEAN	RO	0x00 (0 _{dez})
A0n0:05	Error Input status	Über-/Unterspannung am Status Input-Eingang (Störmeldeeingang)	BOOLEAN	RO	0x00 (0 _{dez})
A0n0:13	Encoder plausibility error counter	Anzahl der detektierten Plausibilitätsfehler	UINT16	RO	0x0000 (0 _{dez})
A0n0:14	Filter violation counter extern latch	Anzahl der detektierten Filterüberschreitungen am Latch-Eingang	UINT16	RO	0x0000 (0 _{dez})
A0n0:15	Filter violation counter input gate	Anzahl der detektierten Filterüberschreitungen am Gate/ Latch-Eingang	UINT16	RO	0x0000 (0 _{dez})
A0n0:16	Filter violation counter	Anzahl der detektierten Filterüberschreitungen an den Encoder-Eingängen	UINT16	RO	0x0000 (0 _{dez})

8.7.7 Informations-/Diagnostikdaten (gerätespezifisch)

Index 10F3 Diagnosis History

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F3:0	Diagnosis History	Maximaler Subindex	UINT8	RO	0x15 (21 _{dez})
10F3:01	Maximum Messages	Maximale Anzahl der gespeicherten Nachrichten Es können maximal 16 Nachrichten gespeichert werden.	UINT8	RO	0x00 (0 _{dez})
10F3:02	Newest Messages	Subindex der neuesten Nachricht	UINT8	RO	0x00 (0 _{dez})
10F3:03	Newest Acknowledged Messages	Subindex der letzten bestätigten Nachricht	UINT8	RW	0x00 (0 _{dez})
10F3:04	New Messages Available	Zeigt an, wenn eine neue Nachricht verfügbar ist	BOOLEAN	RO	0x00 (0 _{dez})
10F3:05	Flags	ungenutzt	UINT16	RW	0x0000 (0 _{dez})
10F3:06	Diagnosis Message 001	Nachricht 1	OCTET- STRING[20]	RO	{0}
10F3:15	Diagnosis Message 016	Nachricht 16	OCTET- STRING[20]	RO	{0}

Index 10F8 Actual Time Stamp

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F8:0	Actual Time Stamp	Zeitstempel	UINT64	RO	

8.7.8 Standardobjekte

Die Standardobjekte haben für alle EtherCAT-Slaves die gleiche Bedeutung.

Index 1000 Device type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1000:0	Device type	Geräte-Typ des EtherCAT-Slaves:	UINT32		0x01FF1389
		Das Lo-Word enthält das verwendete CoE Profil (5001).			(33493897 _{dez})
		Das Hi-Word enthält das Modul Profil entsprechend des Modular Device Profile.			

210 Version: 1.4.0 EL5102

Index 1008 Device name

Index (he	ex) Name	Bedeutung	Datentyp	Flags	Default
1008:0	Device name	Geräte-Name des EtherCAT-Slave	STRING	RO	EL5102

Index 1009 Hardware version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1009:0	Hardware version	Hardware-Version des EtherCAT-Slaves	STRING	RO	09

Index 100A Software version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version des EtherCAT-Slaves	STRING	RO	10

Index 100B Bootloader version

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
100B:0	Bootloader version	Bootloader Version	STRING	RO	

Index 1018 Identity

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1018:0	Identity	Informationen, um den Slave zu identifizieren	UINT8	RO	0x04 (4 _{dez})
1018:01	Vendor ID	Hersteller-ID des EtherCAT-Slaves	UINT32	RO	0x00000002 (2 _{dez})
1018:02	Product code	Produkt-Code des EtherCAT-Slaves	UINT32	RO	0x13EE3052 (334377042 _{dez}
1018:03	Revision	Revisionsnummer des EtherCAT-Slaves:	UINT32	RO	0x00000000
		Das Low-Word (Bit 0-15) kennzeichnet die Sonderklemmennummer.			(O _{dez})
		Das High-Word (Bit 16-31) verweist auf die Gerätebeschreibung.			
1018:04	Serial number	Seriennummer des EtherCAT-Slaves:	UINT32	RO	0x00000000
		Low-Word			(O _{dez})
		 Das Low-Byte (Bit 0-7) des Low-Words enthält das Produktionsjahr. 			
		 Das High-Byte (Bit 8-15) des Low-Words enthält die Produktionswoche. 			
		Das High-Word (Bit 16-31) ist 0.			

Index 10F0 Backup parameter handling

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F0:0	Backup parameter handling	Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1 _{dez})
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT-Slaves	UINT32		0x00000000 (0 _{dez})

Index 1400 ENC RxPDO-Par Control Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC RxPDO-Par Control Ch.1	PDO Parameter RxPDO 1	UINT8	RO	0x06 (6 _{dez})
1400:06		iner entra die ren 200 (maest der ren 20 mapping objette)	OCTET- STRING[6]		01 16 02 16 03 16 04 16 05 16

Index 1401 ENC RxPDO-Par Control Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1401:0	ENC RxPDO-Par Control Compact Ch.1	PDO Parameter RxPDO 2	UINT8	RO	0x06 (6 _{dez})
1401:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 2 übertragen werden dürfen	OCTET- STRING[2]		00 16 02 16 03 16 04 16 05 16

Index 1402 ENC RxPDO-Par Control Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC RxPDO-Par Control Counter Ch.1	PDO Parameter RxPDO 3	UINT8	RO	0x06 (6 _{dez})
1402:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 3 übertragen werden dürfen	OCTET- STRING[6]		00 16 01 16 03 16 04 16 05 16

Index 1403 ENC RxPDO-Par Control Compact Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1403:0	ENC RxPDO-Par Control Compact Counter Ch.1	PDO Parameter RxPDO 4	UINT8	RO	0x06 (6 _{dez})
1403:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 4 übertragen werden dürfen	OCTET- STRING[2]		00 16 01 16 02 16 04 16 05 16

Index 1404 ENC RxPDO-Par Control Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1404:0	ENC RxPDO-Par Control Legacy Ch.1	PDO Parameter RxPDO 5	UINT8	RO	0x06 (6 _{dez})
1404:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 5 übertragen werden dürfen	OCTET- STRING[6]		00 16 01 16 02 16 03 16 05 16

Index 1405 ENC RxPDO-Par Control Compact Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC RxPDO-Par Control Compact Legacy Ch.1	PDO Parameter RxPDO 6	UINT8	RO	0x06 (6 _{dez})
1405:06		· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[6]		00 16 01 16 02 16 03 16 04 16

Index 1406 ENC RxPDO-Par Control Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1406:0	ENC RxPDO-Par Control Ch.2	PDO Parameter RxPDO 7	UINT8	RO	0x06 (6 _{dez})
1406:06		Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 7 übertragen werden dürfen	OCTET- STRING[6]		07 16 08 16 09 16 0A 16 0B 16

Index 1407 ENC RxPDO-Par Control Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1407:0	ENC RxPDO-Par Control Compact Ch.2	PDO Parameter RxPDO 8	UINT8	RO	0x06 (6 _{dez})
1407:06	Exclude RxPDOs	Hier sind die RxPDOs (Index der RxPDO Mapping Objekte) angegeben, die nicht zusammen mit RxPDO 8 übertragen werden dürfen	OCTET- STRING[2]		06 16 08 16 09 16 0A 16 0B 16

212 Version: 1.4.0 EL5102

Index 1408 ENC RxPDO-Par Control Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC RxPDO-Par Control Counter Ch.2	PDO Parameter RxPDO 9	UINT8	RO	0x06 (6 _{dez})
1408:06		· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[6]		06 16 07 16 09 16 0A 16 0B 16

Index 1409 ENC RxPDO-Par Control Compact Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1409:0	ENC RxPDO-Par Control Compact Counter Ch.2	PDO Parameter RxPDO 10	UINT8	RO	0x06 (6 _{dez})
1409:06	Exclude RxPDOs	iner ema are rail 200 (mask as rail 20 mapping 02)eme)	OCTET- STRING[2]		06 16 07 16 08 16 0A 16 0B 16

Index 140A ENC RxPDO-Par Control Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
140A:0	ENC RxPDO-Par	PDO Parameter RxPDO 11	UINT8	RO	0x06 (6 _{dez})
	Control Legacy Ch.2				
140A:06	Exclude RxPDOs	· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[6]		06 16 07 16 08 16 09 16 0B 16

Index 140B ENC RxPDO-Par Control Compact Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC RxPDO-Par Control Compact Legacy Ch.2	PDO Parameter RxPDO 12	UINT8	RO	0x06 (6 _{dez})
140B:06	Exclude RxPDOs	· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[6]		06 16 07 16 08 16 09 16 0A 16

Index 1600 ENC RxPDO-Map Control Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1600:0	ENC RxPDO-Map Control Ch.1	PDO Mapping RxPDO 1	UINT8	RO	0x0D (13 _{dez})
1600:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Ctrl))	UINT32	RO	0x7000:01, 1
1600:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1600:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set Counter))	UINT32	RO	0x7000:03, 1
1600:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1600:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1600:06	SubIndex 006	6. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x08 (Set Counter on latch C))	UINT32	RO	0x7000:08, 1
1600:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x09 (Set software gate))	UINT32	RO	0x7000:09, 1
1600:08	SubIndex 008	8. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0A (Set counter on latch extern on positive edge))	UINT32	RO	0x7000:0A, 1
1600:09	SubIndex 009	9. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0B (Set counter on latch extern on negative edge))	UINT32	RO	0x7000:0B, 1
1600:0A	SubIndex 010	10. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0C (Enable latch extern 2 on positive edge))	UINT32	RO	0x7000:0C, 1
1600:0B	SubIndex 011	11. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0D (Enable latch extern 2 on negative edge))	UINT32	RO	0x7000:0D, 1
1600:0C	SubIndex 012	12. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1600:0D	SubIndex 013	13. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 32

Index 1601 ENC RxPDO-Map Control Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1601:0	ENC RxPDO-Map Control Compact Ch.1	PDO Mapping RxPDO 2	UINT8	RO	0x0D (13 _{dez})
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Ctrl))	UINT32	RO	0x7000:01, 1
1601:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1601:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set Counter))	UINT32	RO	0x7000:03, 1
1601:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1601:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1601:06	SubIndex 006	6. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x08 (Set Counter on latch C))	UINT32	RO	0x7000:08, 1
1601:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x09 (Set software gate))	UINT32	RO	0x7000:09, 1
1601:08	SubIndex 008	8. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0A (Set counter on latch extern on positive edge))	UINT32	RO	0x7000:0A, 1
1601:09	SubIndex 009	9. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0B (Set counter on latch extern on negative edge))	UINT32	RO	0x7000:0B, 1
1601:0A	SubIndex 010	10. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0C (Enable latch extern 2 on positive edge))	UINT32	RO	0x7000:0C, 1
1601:0B	SubIndex 011	11. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x0D (Enable latch extern 2 on negative edge))	UINT32	RO	0x7000:0D, 1
1601:0C	SubIndex 012	12. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1601:0D	SubIndex 013	13. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1602 ENC RxPDO-Map Control Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1602:0	ENC RxPDO-Map Control Counter Ch.1	PDO Mapping RxPDO 3	UINT8	RO	0x06 (6 _{dez})
1602:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1602:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set Counter))	UINT32	RO	0x7000:03, 1
1602:03	SubIndex 003	3. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1602:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x09 (Set software gate))	UINT32	RO	0x7000:09, 1
1602:05	SubIndex 005	5. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1602:06	SubIndex 006	6. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 32

Index 1603 ENC RxPDO-Map Control Compact Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1603:0	ENC RxPDO-Map Control Compact Counter Ch.1	PDO Mapping RxPDO 4	UINT8	RO	0x06 (6 _{dez})
1603:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1603:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set Counter))	UINT32	RO	0x7000:03, 1
1603:03	SubIndex 003	3. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1603:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x09 (Set software gate))	UINT32	RO	0x7000:09, 1
1603:05	SubIndex 005	5. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1603:06	SubIndex 006	6. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1604 ENC RxPDO-Map Control Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1604:0	ENC RxPDO-Map Control Legacy Ch.1	PDO Mapping RxPDO 5	UINT8	RO	0x07 (7 _{dez})
1604:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Ctrl))	UINT32	RO	0x7000:01, 1
1604:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1604:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set Counter))	UINT32	RO	0x7000:03, 1
1604:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1604:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1604:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1604:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 32

Index 1605 ENC RxPDO-Map Control Compact Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1605:0	ENC RxPDO-Map Control Legacy Ch.1	PDO Mapping RxPDO 6	UINT8	RO	0x07 (7 _{dez})
1605:01	SubIndex 001	1. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x01 (Ctrl))	UINT32	RO	0x7000:01, 1
1605:02	SubIndex 002	2. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7000:02, 1
1605:03	SubIndex 003	3. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x03 (Set Counter))	UINT32	RO	0x7000:03, 1
1605:04	SubIndex 004	4. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7000:04, 1
1605:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1605:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1605:07	SubIndex 007	7. PDO Mapping entry (object 0x7000 (ENC Outputs Ch.1), entry 0x11 (Set counter value))	UINT32	RO	0x7000:11, 16

Index 1606 ENC RxPDO-Map Control Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1606:0	ENC RxPDO-Map Control Ch.2	PDO Mapping RxPDO 7	UINT8	RO	0x0D (13 _{dez})
1606:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x01 (Ctrl))	UINT32	RO	0x7010:01, 1
1606:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7010:02, 1
1606:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x03 (Set Counter))	UINT32	RO	0x7010:03, 1
1606:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7010:04, 1
1606:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1606:06	SubIndex 006	6. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x08 (Set Counter on latch C))	UINT32	RO	0x7010:08, 1
1606:07	SubIndex 007	7. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x09 (Set software gate))	UINT32	RO	0x7010:09, 1
1606:08	SubIndex 008	8. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x0A (Set counter on latch extern on positive edge))	UINT32	RO	0x7010:0A, 1
1606:09	SubIndex 009	9. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x0B (Set counter on latch extern on negative edge))	UINT32	RO	0x7010:0B, 1
1606:0A	SubIndex 010	10. PDO Mapping entry 0x7010 (ENC Outputs Ch.2), entry 0x0C (Enable latch extern 2 on positive edge))	UINT32	RO	0x7010:0C, 1
1606:0B	SubIndex 011	11. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x0D (Enable latch extern 2 on negative edge))	UINT32	RO	0x7010:0D, 1
1606:0C	SubIndex 012	12. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1606:0D	SubIndex 013	13. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 32

Index 1607 ENC RxPDO-Map Control Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1607:0	ENC RxPDO-Map Control Compact Ch.2	PDO Mapping RxPDO 8	UINT8	RO	0x0D (13 _{dez})
1607:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x01 (Ctrl))	UINT32	RO	0x7010:01, 1
1607:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7010:02, 1
1607:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x03 (Set Counter))	UINT32	RO	0x7010:03, 1
1607:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7010:04, 1
1607:05	SubIndex 005	5. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1607:06	SubIndex 006	6. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x08 (Set Counter on latch C))	UINT32	RO	0x7010:08, 1
1607:07	SubIndex 007	7. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x09 (Set software gate))	UINT32	RO	0x7010:09, 1
1607:08	SubIndex 008	8. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x0A (Set counter on latch extern on positive edge))	UINT32	RO	0x7010:0A, 1
1607:09	SubIndex 009	9. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x0B (Set counter on latch extern on negative edge))	UINT32	RO	0x7010:0B, 1
1607:0A	SubIndex 010	10. PDO Mapping entry 0x7010 (ENC Outputs Ch.2), entry 0x0C (Enable latch extern 2 on positive edge))	UINT32	RO	0x7010:0C, 1
1607:0B	SubIndex 011	11. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x0D (Enable latch extern 2 on negative edge))	UINT32	RO	0x7010:0D, 1
1607:0C	SubIndex 012	12. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1607:0D	SubIndex 013	13. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 16

Index 1608 ENC RxPDO-Map Control Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1608:0	ENC RxPDO-Map Control Counter Ch.2	PDO Mapping RxPDO 9	UINT8	RO	0x06 (6 _{dez})
1608:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1608:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x03 (Set Counter))	UINT32	RO	0x7010:03, 1
1608:03	SubIndex 003	3. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1608:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x09 (Set software gate))	UINT32	RO	0x7010:09, 1
1608:05	SubIndex 005	5. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1608:06	SubIndex 006	6. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 32

Index 1609 ENC RxPDO-Map Control Compact Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1609:0	ENC RxPDO-Map Control Compact Counter Ch.2	PDO Mapping RxPDO 10	UINT8	RO	0x06 (6 _{dez})
1609:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1609:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x03 (Set Counter))	UINT32	RO	0x7010:03, 1
1609:03	SubIndex 003	3. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1609:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x09 (Set software gate))	UINT32	RO	0x7010:09, 1
1609:05	SubIndex 005	5. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1609:06	SubIndex 006	6. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 16

Index 160A ENC RxPDO-Map Control Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
160A:0	ENC RxPDO-Map Control Legacy Ch.2	PDO Mapping RxPDO 11	UINT8	RO	0x07 (7 _{dez})
160A:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x01 (Ctrl))	UINT32	RO	0x7010:01, 1
160A:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7010:02, 1
160A:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x03 (Set Counter))	UINT32	RO	0x7010:03, 1
160A:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7010:04, 1
160A:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
160A:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
160A:07	SubIndex 007	7. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 32

Index 160B ENC RxPDO-Map Control Compact Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
160B:0	ENC RxPDO-Map Control Compact Legacy Ch.2	PDO Mapping RxPDO 12	UINT8	RO	0x07 (7 _{dez})
160B:01	SubIndex 001	1. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x01 (Ctrl))	UINT32	RO	0x7010:01, 1
160B:02	SubIndex 002	2. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x02 (Enable latch extern on positive edge))	UINT32	RO	0x7010:02, 1
160B:03	SubIndex 003	3. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x03 (Set Counter))	UINT32	RO	0x7010:03, 1
160B:04	SubIndex 004	4. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x04 (Enable latch extern on negative edge))	UINT32	RO	0x7010:04, 1
160B:05	SubIndex 005	5. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
160B:06	SubIndex 006	6. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
160B:07	SubIndex 007	7. PDO Mapping entry (object 0x7010 (ENC Outputs Ch.2), entry 0x11 (Set counter value))	UINT32	RO	0x7010:11, 16

Index 1800 ENC TxPDO-Par Status Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1800:0	ENC TxPDO-Par Status Ch.1	PDO Parameter TxPDO 1	UINT8	RO	0x06 (6 _{dez})
1800:06	Exclude TxPDOs		OCTET- STRING[14]		01 1A 02 1A 03 1A 04 1A 05 1A

Index 1801 ENC TxPDO-Par Status Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1801:0	ENC TxPDO-Par Status Compact Ch.1	PDO Parameter TxPDO 2	UINT8	RO	0x06 (6 _{dez})
1801:06		Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 2 übertragen werden dürfen	OCTET- STRING[14]		00 1A 02 1A 03 1A 04 1A 05 1A

Index 1802 ENC TxPDO-Par Status Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1802:0	ENC TxPDO-Par Status Counter Ch.1	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6 _{dez})
1802:06	I .	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 3 übertragen werden dürfen	OCTET- STRING[14]		00 1A 01 1A 03 1A 04 1A 05 1A

Index 1803 ENC TxPDO-Par Status Compact Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1803:0	ENC TxPDO-Par Status Compact Counter Ch.1	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6 _{dez})
1803:06	Exclude TxPDOs	· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]		00 1A 01 1A 02 1A 04 1A 05 1A

Index 1804 ENC TxPDO-Par Status Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Par Status Legacy Ch.1	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6 _{dez})
1804:06		· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]		00 1A 01 1A 02 1A 03 1A 05 1A

Index 1805 ENC TxPDO-Par Status Compact Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1805:0	ENC TxPDO-Par Status Compact Legacy Ch.1	PDO Parameter TxPDO 6	UINT8	RO	0x06 (6 _{dez})
1805:06	Exclude TxPDOs	· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]		00 1A 01 1A 02 1A 03 1A 04 1A

Index 1806 ENC TxPDO-Par Frequency Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Par Frequency Ch.1	PDO Parameter TxPDO 7	UINT8	RO	0x06 (6 _{dez})
1806:06		· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]		07 1A 00 00 00 00 00 00 00 00

Index 1807 ENC TxPDO-Par Frequency Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1807:0	ENC TxPDO-Par Frequency Compact Ch.1	PDO Parameter TxPDO 8	UINT8	RO	0x06 (6 _{dez})
1807:06	Exclude TxPDOs		OCTET- STRING[14]		06 1A 00 00 00 00 00 00 00 00

Index 1808 ENC TxPDO-Par Period Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1808:0	ENC TxPDO-Par Period Ch.1	PDO Parameter TxPDO 9	UINT8	RO	0x06 (6 _{dez})
1808:06	Exclude TxPDOs	· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]		09 1A 00 00 00 00 00 00 00 00

Index 1809 ENC TxPDO-Par Period Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC TxPDO-Par Period Compact Ch.1	PDO Parameter TxPDO 10	UINT8	RO	0x06 (6 _{dez})
1809:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 10 übertragen werden dürfen	OCTET- STRING[14]		08 1A 00 00 00 00 00 00 00 00

218 Version: 1.4.0 EL5102

Index 180B ENC TxPDO-Par Timestamp Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
180B:0	ENC TxPDO-Par Timestamp Ch.1	PDO Parameter TxPDO 11	UINT8	RO	0x06 (6 _{dez})
180B:06		iner emia are im 200 (maex acr im 20 mapping objects)	OCTET- STRING[14]		0C 1A 00 00 00 00 00 00 00 00

Index 180C ENC TxPDO-Par Timestamp Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
180C:0	ENC TxPDO-Par Timestamp Compact Ch.1	PDO Parameter TxPDO 12	UINT8	RO	0x06 (6 _{dez})
180C:06	Exclude TxPDOs		OCTET- STRING[14]		0B 1A 00 00 00 00 00 00 00 00

Index 180D ENC TxPDO-Par Status Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
180D:0	ENC TxPDO-Par Status Ch.2	PDO Parameter TxPDO 13	UINT8	RO	0x06 (6 _{dez})
180D:06	Exclude TxPDOs		OCTET- STRING[14]		0E 1A 0F 1A 10 1A 11 1A 12 1A

Index 180E ENC TxPDO-Par Status Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
180E:0	ENC TxPDO-Par Status Compact Ch.2		UINT8	RO	0x06 (6 _{dez})
180E:06	Exclude TxPDOs		OCTET- STRING[14]		0D 1A 0F 1A 10 1A 11 1A 12 1A

Index 180F ENC TxPDO-Par Status Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
180F:0	ENC TxPDO-Par Status Counter Ch.2	PDO Parameter TxPDO 15	UINT8	RO	0x06 (6 _{dez})
180F:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 15 übertragen werden dürfen	OCTET- STRING[14]		0D 1A 0E 1A 10 1A 11 1A 12 1A

Index 1810 ENC TxPDO-Par Status Compact Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1810:0	ENC TxPDO-Par Status Compact Counter Ch.2	PDO Parameter TxPDO 16	UINT8	RO	0x06 (6 _{dez})
1810:06	Exclude TxPDOs	· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]		0D 1A 0E 1A 0F 1A 11 1A 12 1A

Index 1811 ENC TxPDO-Par Status Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC TxPDO-Par Status Legacy Ch.2	PDO Parameter TxPDO 17	UINT8	RO	0x06 (6 _{dez})
1811:06	Exclude TxPDOs		OCTET- STRING[14]		0D 1A 0E 1A 0F 1A 10 1A 12 1A

Index 1812 ENC TxPDO-Par Status Compact Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1812:0	ENC TxPDO-Par Status Compact Legacy Ch.2	PDO Parameter TxPDO 18	UINT8	RO	0x06 (6 _{dez})
1812:06	Exclude TxPDOs		OCTET- STRING[14]		0D 1A 0E 1A 0F 1A 10 1A 11 1A

Index 1813 ENC TxPDO-Par Frequency Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Par Frequency Ch.2	PDO Parameter TxPDO 19	UINT8	RO	0x06 (6 _{dez})
1813:06		· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]	RO	14 1A 00 00 00 00 00 00 00 00

Index 1814 ENC TxPDO-Par Frequency Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1	ENC TxPDO-Par Frequency Compact Ch.2	PDO Parameter TxPDO 20	UINT8	RO	0x06 (6 _{dez})
1814:06	Exclude TxPDOs		OCTET- STRING[14]	RO	13 1A 00 00 00 00 00 00 00 00

Index 1815 ENC TxPDO-Par Period Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1815:0	ENC TxPDO-Par Period Ch.2	PDO Parameter TxPDO 21	UINT8	RO	0x06 (6 _{dez})
1815:06		· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]	RO	16 1A 00 00 00 00 00 00 00 00

Index 1816 ENC TxPDO-Par Period Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Par Period Compact Ch.2	PDO Parameter TxPDO 22	UINT8	RO	0x06 (6 _{dez})
1816:06	Exclude TxPDOs	· · · · · · · · · · · · · · · · · · ·	OCTET- STRING[14]	RO	15 1A 00 00 00 00 00 00 00 00

Index 1818 ENC TxPDO-Par Timestamp Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1818:0	ENC TxPDO-Par Timesptamp Ch.2	PDO Parameter TxPDO 23	UINT8	RO	0x06 (6 _{dez})
1818:06	Exclude TxPDOs	iner entra are the per (mask as: the period expense)	OCTET- STRING[14]	RO	19 1A 00 00 00 00 00 00 00 00

Index 1819 ENC TxPDO-Par Timestamp Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1819:0	ENC TxPDO-Par Timesptamp Compact Ch.2	PDO Parameter TxPDO 24	UINT8	RO	0x06 (6 _{dez})
1819:06	Exclude TxPDOs	Hier sind die TxPDOs (Index der TxPDO Mapping Objekte) angegeben, die nicht zusammen mit TxPDO 24 übertragen werden dürfen	OCTET- STRING[14]		18 1A 00 00 00 00 00 00 00 00

220 Version: 1.4.0 EL5102

Index 1A00 ENC TxPDO-Map Status Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	ENC TxPDO-Map Status Ch.1	PDO Mapping TxPDO 1	UINT8	RO	0x19 (25 _{dez})
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A00:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
1A00:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A00:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A00:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A00:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A00:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A00:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C, 1
1A00:0D	SubIndex 013	13. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0D (Diag))	UINT32	RO	0x6002:0D, 1
1A00:0E	SubIndex 014	14. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0E (TxPDO State))	UINT32	RO	0x6002:0E, 1
1A00:0F	SubIndex 015	15. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0F (Input cycle counter))	UINT32	RO	0x6002:0F, 2
1A00:10	SubIndex 016	16. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x11 (Software gate valid))	UINT32	RO	0x6002:11, 1
1A00:11	SubIndex 017	17. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x12 (Latch extern 2 valid))	UINT32	RO	0x6002:12, 1
1A00:12	SubIndex 018	18. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x13 (Direction inversion detected))	UINT32	RO	0x6002:13, 1
1A00:13	SubIndex 019	19. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x14 (Status of extern latch))	UINT32	RO	0x6002:14, 1
1A00:14	SubIndex 020	20. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x15 (Counter value out of range))	UINT32	RO	0x6002:15, 1
1A00:15	SubIndex 021	21. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A00:16	SubIndex 022	22. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A00:17	SubIndex 023	23. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32
1A00:18	SubIndex 024	24. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 32
1A00:19	SubIndex 025	25. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x22 (Latch value 2))	UINT32	RO	0x6000:22, 32

Index 1A01 ENC TxPDO-Map Status Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	ENC TxPDO-Map Status Ch.1	PDO Mapping TxPDO 2	UINT8	RO	0x19 (25 _{dez})
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A01:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A01:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A01:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C, 1
1A01:0D	SubIndex 013	13. PDO Mapping entry (object 0x6002(ENC Inputs status Ch.1) entry 0x0D (Diag))	UINT32	RO	0x6002:0D, 1
1A01:0E	SubIndex 014	14. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0E (TxPDO State))	UINT32	RO	0x6002:0E, 1
1A01:0F	SubIndex 015	15. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0F (Input cycle counter))	UINT32	RO	0x6002:0F, 2
1A01:10	SubIndex 016	16. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x11 (Software gate valid))	UINT32	RO	0x6002:11, 1
1A01:11	SubIndex 017	17. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x12 (Latch extern 2 valid))	UINT32	RO	0x6002:12, 1
1A01:12	SubIndex 018	18. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x13 (Direction inversion detected))	UINT32	RO	0x6002:13, 1
1A01:13	SubIndex 019	19. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x14 (Status of extern latch))	UINT32	RO	0x6002:14, 1
1A01:14	SubIndex 020	20. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x15 (Counter value out of range))	UINT32	RO	0x6002:15, 1
1A01:15	SubIndex 021	21. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A01:16	SubIndex 022	22. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A01:17	SubIndex 023	23. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
1A01:18	SubIndex 024	24. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16
1A01:19	SubIndex 025	25. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x22 (Latch value 2))	UINT32	RO	0x6000:22, 16

Index 1A02 ENC TxPDO-Map Status Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	ENC TxPDO-Map Status Counter Ch.1	PDO Mapping TxPDO 3	UINT8	RO	0x0B (11 _{dez})
1A02:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A02:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A02:03	SubIndex 003	3. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A02:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A02:05	SubIndex 005	5. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0D (Diag))	UINT32	RO	0x6002:0D, 1
1A02:06	SubIndex 006	6. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0E (TxPDO State))	UINT32	RO	0x6002:0E, 1
1A02:07	SubIndex 007	7. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0F (Input cycle counter))	UINT32	RO	0x6002:0F, 2
1A02:08	SubIndex 008	8. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x11 (Software gate valid))	UINT32	RO	0x6002:11, 1
1A02:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A02:0A	SubIndex 010	10. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1A02:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32

Index 1A03 ENC TxPDO-Map Status Compact Counter Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	ENC TxPDO-Map Status Compact Counter Ch.1	PDO Mapping TxPDO 4	UINT8	RO	0x0B (11 _{dez})
1A03:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A03:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A03:03	SubIndex 003	3. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A03:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A03:05	SubIndex 005	5. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0D (Diag))	UINT32	RO	0x6002:0D, 1
1A03:06	SubIndex 006	6. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0E (TxPDO State))	UINT32	RO	0x6002:0E, 1
1A03:07	SubIndex 007	7. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x0F (Input cycle counter))	UINT32	RO	0x6002:0F, 2
1A03:08	SubIndex 008	8. PDO Mapping entry (object 0x6002 (ENC Inputs status Ch.1), entry 0x11 (Software gate valid))	UINT32	RO	0x6002:11, 1
1A03:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A03:0A	SubIndex 010	10. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1A03:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16

Index 1A04 ENC TxPDO-Map Status Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A04:0	ENC TxPDO-Map Status Legacy Ch.1	PDO Mapping TxPDO 5	UINT8	RO	0x12 (18 _{dez})
1A04:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A04:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A04:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A04:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A04:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A04:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
1A04:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A04:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A04:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A04:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A04:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A04:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C, 1
1A04:0D	SubIndex 013	13. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A04:0E	SubIndex 014	14. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0E (Sync error))	UINT32	RO	0x6000:0E, 1
1A04:0F	SubIndex 015	15. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0F (TxPDO State))	UINT32	RO	0x6000:0F, 1
1A04:10	SubIndex 016	16. PDO Mapping entry (object 0x6002 (ENC Inputs Ch.1), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6000:10, 1
1A04:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 32
1A04:12	SubIndex 018	18. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 32

Index 1A05 ENC TxPDO-Map Status Compact Legacy Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	ENC TxPDO-Map Status Compact Legacy Ch.1	PDO Mapping TxPDO 6	UINT8	RO	0x12 (18 _{dez})
1A05:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x01 (Latch C valid))	UINT32	RO	0x6000:01, 1
1A05:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x02 (Latch extern valid))	UINT32	RO	0x6000:02, 1
1A05:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x03 (Set counter done))	UINT32	RO	0x6000:03, 1
1A05:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x04 (Counter underflow))	UINT32	RO	0x6000:04, 1
1A05:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x05 (Counter overflow))	UINT32	RO	0x6000:05, 1
1A05:06	SubIndex 006	6. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x06 (Status of input status))	UINT32	RO	0x6000:06, 1
1A05:07	SubIndex 007	7. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x07 (Open circuit))	UINT32	RO	0x6000:07, 1
1A05:08	SubIndex 008	8. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6000:08, 1
1A05:09	SubIndex 009	9. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x09 (Status of input A))	UINT32	RO	0x6000:09, 1
1A05:0A	SubIndex 010	10. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0A (Status of input B))	UINT32	RO	0x6000:0A, 1
1A05:0B	SubIndex 011	11. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0B (Status of input C))	UINT32	RO	0x6000:0B, 1
1A05:0C	SubIndex 012	12. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0C (Status of input gate))	UINT32	RO	0x6000:0C, 1
1A05:0D	SubIndex 013	13. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0D (Status of extern latch))	UINT32	RO	0x6000:0D, 1
1A05:0E	SubIndex 014	14. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0E (Sync error))	UINT32	RO	0x6000:0E, 1
1A05:0F	SubIndex 015	15. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x0F (TxPDO State))	UINT32	RO	0x6000:0F, 1
1A05:10	SubIndex 016	16. PDO Mapping entry (object 0x6002 (ENC Inputs Ch.1), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6000:10, 1
1A05:11	SubIndex 017	17. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x11 (Counter value))	UINT32	RO	0x6000:11, 16
1A05:12	SubIndex 018	18. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x12 (Latch value))	UINT32	RO	0x6000:12, 16

Index 1A06 ENC TxPDO-Map Frequency Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Map Frequency Ch.1	PDO Mapping TxPDO 7	UINT8	RO	0x01 (1 _{dez})
1A06:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x13 (Frequency value))	UINT32	RO	0x6000:13, 32

Index 1A07 ENC TxPDO-Map Frequency Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A07:0	ENC TxPDO-Map Frequency Compact Ch.1	PDO Mapping TxPDO 8	UINT8	RO	0x01 (1 _{dez})
1A07:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x13 (Frequency value))	UINT32	RO	0x6000:13, 16

Index 1A08 ENC TxPDO-Map Period Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A08:0	ENC TxPDO-Map Period Ch.1	PDO Mapping TxPDO 9	UINT8	RO	0x01 (1 _{dez})
1A08:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x14 (Period value))	UINT32	RO	0x6000:14, 32

Index 1A09 ENC TxPDO-Map Period Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Map Period Compact Ch.1	PDO Mapping TxPDO 10	UINT8	RO	0x01 (1 _{dez})
1A09:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x14 (Period value))	UINT32	RO	0x6000:14, 32

Index 1A0A ENC TxPDO-Map Duty cycle Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0A:0	ENC TxPDO-Map Duty cycle Ch.1	PDO Mapping TxPDO 11	UINT8	RO	0x03 (3 _{dez})
1A0A:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x23 (Duty cycle))	UINT32	RO	0x6000:23, 16
1A0A:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x24 (Duty cycle min))	UINT32	RO	0x6000:24, 16
1A0A:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x24 (Duty cycle max))	UINT32	RO	0x6000:25, 16

Index 1A0B ENC TxPDO-Map Timestamp Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0B:0	ENC TxPDO-Map Timestamp Ch.1	PDO Mapping TxPDO 12	UINT8	RO	0x04 (4 _{dez})
1A0B:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 64
1A0B:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x1F (Timestamp C))	UINT32	RO	0x6000:1F, 64
1A0B:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x20 (Timestamp latch))	UINT32	RO	0x6000:20, 64
1A0B:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x21 (Timestamp latch 2))	UINT32	RO	0x6000:21, 64

Index 1A0C ENC TxPDO-Map Timestamp Compact Ch.1

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0C:0	ENC TxPDO-Map Timestamp Compact Ch.1	PDO Mapping TxPDO 13	UINT8	RO	0x04 (4 _{dez})
1A0C:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x16 (Timestamp))	UINT32	RO	0x6000:16, 32
1A0C:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x1F (Timestamp C))	UINT32	RO	0x6000:1F, 32
1A0C:03	SubIndex 003	3. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x20 (Timestamp latch))	UINT32	RO	0x6000:20, 32
1A0C:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (ENC Inputs Ch.1), entry 0x21 (Timestamp latch 2))	UINT32	RO	0x6000:21, 32

Index 1A0D ENC TxPDO-Map Status Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0D:0	ENC TxPDO-Map Status Ch.2	PDO Mapping TxPDO 14	UINT8	RO	0x19 (25 _{dez})
1A0D:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x01 (Latch C valid))	UINT32	RO	0x6010:01, 1
1A0D:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x02 (Latch extern valid))	UINT32	RO	0x6010:02, 1
1A0D:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A0D:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x04 (Counter underflow))	UINT32	RO	0x6010:04, 1
1A0D:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x05 (Counter overflow))	UINT32	RO	0x6010:05, 1
1A0D:06	SubIndex 006	6. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x06 (Status of input status))	UINT32	RO	0x6010:06, 1
1A0D:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x07 (Open circuit))	UINT32	RO	0x6010:07, 1
1A0D:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6010:08, 1
1A0D:09	SubIndex 009	9. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2),entry 0x09 (Status of input A))	UINT32	RO	0x6010:09, 1
1A0D:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0A (Status of input B))	UINT32	RO	0x6010:0A, 1
1A0D:0B	SubIndex 011	11. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0B (Status of input C))	UINT32	RO	0x6010:0B, 1
1A0D:0C	SubIndex 012	12. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0C (Status of input gate))	UINT32	RO	0x6010:0C, 1
1A0D:0D	SubIndex 013	13. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0D (Diag))	UINT32	RO	0x6012:0D, 1
1A0D:0E	SubIndex 014	14. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0E (TxPDO State))	UINT32	RO	0x6012:0E, 1
1A0D:0F	SubIndex 015	15. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0F (Input cycle counter))	UINT32	RO	0x6012:0F, 2
1A0D:10	SubIndex 016	16. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x11 (Software gate valid))	UINT32	RO	0x6012:11, 1
1A0D:11	SubIndex 017	17. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x12 (Latch extern 2 valid))	UINT32	RO	0x6012:12, 1
1A0D:12	SubIndex 018	18. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x13 (Direction inversion detected))	UINT32	RO	0x6012:13, 1
1A0D:13	SubIndex 019	19. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x14 (Status of extern latch))	UINT32	RO	0x6012:14, 1
1A0D:14	SubIndex 020	20. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x15 (Counter value out of range))	UINT32	RO	0x6012:15, 1
1A0D:15	SubIndex 021	21. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A0D:16	SubIndex 022	22. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A0D:17	SubIndex 023	23. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 32
1A0D:18	SubIndex 024	24. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x12 (Latch value))	UINT32	RO	0x6010:12, 32
1A0D:19	SubIndex 025	25. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x22 (Latch value 2))	UINT32	RO	0x6010:22, 32

Index 1A0E ENC TxPDO-Map Status Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0E:0	ENC TxPDO-Map Status Compact Ch.2	PDO Mapping TxPDO 15	UINT8	RO	0x19 (25 _{dez})
1A0E:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x01 (Latch C valid))	UINT32	RO	0x6010:01, 1
1A0E:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x02 (Latch extern valid))	UINT32	RO	0x6010:02, 1
1A0E:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A0E:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x04 (Counter underflow))	UINT32	RO	0x6010:04, 1
1A0E:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x05 (Counter overflow))	UINT32	RO	0x6010:05, 1
1A0E:06	SubIndex 006	6. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x06 (Status of input status))	UINT32	RO	0x6010:06, 1
1A0E:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x07 (Open circuit))	UINT32	RO	0x6010:07, 1
1A0E:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6010:08, 1
1A0E:09	SubIndex 009	9. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2),entry 0x09 (Status of input A))	UINT32	RO	0x6010:09, 1
1A0E:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0A (Status of input B))	UINT32	RO	0x6010:0A, 1
1A0E:0B	SubIndex 011	11. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0B (Status of input C))	UINT32	RO	0x6010:0B, 1
1A0E:0C	SubIndex 012	12. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0C (Status of input gate))	UINT32	RO	0x6010:0C, 1
1A0E:0D	SubIndex 013	13. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0D (Diag))	UINT32	RO	0x6012:0D, 1
1A0E:0E	SubIndex 014	14. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0E (TxPDO State))	UINT32	RO	0x6012:0E, 1
1A0E:0F	SubIndex 015	15. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0F (Input cycle counter))	UINT32	RO	0x6012:0F, 2
1A0E:10	SubIndex 016	16. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x11 (Software gate valid))	UINT32	RO	0x6012:11, 1
1A0E:11	SubIndex 017	17. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x12 (Latch extern 2 valid))	UINT32	RO	0x6012:12, 1
1A0E:12	SubIndex 018	18. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x13 (Direction inversion detected))	UINT32	RO	0x6012:13, 1
1A0E:13	SubIndex 019	19. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x14 (Status of extern latch))	UINT32	RO	0x6012:14, 1
1A0E:14	SubIndex 020	20. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x15 (Counter value out of range))	UINT32	RO	0x6012:15, 1
1A0E:15	SubIndex 021	21. PDO Mapping entry (3 bits align)	UINT32	RO	0x0000:00, 3
1A0E:16	SubIndex 022	22. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A0E:17	SubIndex 023	23. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 16
1A0E:18	SubIndex 024	24. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x12 (Latch value))	UINT32	RO	0x6010:12, 16
1A0E:19	SubIndex 025	25. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x22 (Latch value 2))	UINT32	RO	0x6010:22, 16

Index 1A0F ENC TxPDO-Map Status Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A0F:0	ENC TxPDO-Map Status Counter Ch.2	PDO Mapping TxPDO 16	UINT8	RO	0x0B (11 _{dez})
1A0F:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A0F:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A0 F:03	SubIndex 003	3. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A0F:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A0F:05	SubIndex 005	5. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0D (Diag))	UINT32	RO	0x6012:0D, 1
1A0F:06	SubIndex 006	6. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0E (TxPDO State))	UINT32	RO	0x6012:0E, 1
1A0F:07	SubIndex 007	7. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0F (Input cycle counter))	UINT32	RO	0x6012:0F, 2
1A0F:08	SubIndex 008	8. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x11 (Software gate valid))	UINT32	RO	0x6012:11, 1
1A0F:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A0F:0A	SubIndex 010	10. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1A0F:0B	SubIndex 011	11. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 32

Index 1A10 ENC TxPDO-Map Status Compact Counter Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A10:0	ENC TxPDO-Map Status Compact Counter Ch.2	PDO Mapping TxPDO 17	UINT8	RO	0x0B (11 _{dez})
1A10:01	SubIndex 001	1. PDO Mapping entry (2 bits align)	UINT32	RO	0x0000:00, 2
1A10:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A10:03	SubIndex 003	3. PDO Mapping entry (4 bits align)	UINT32	RO	0x0000:00, 4
1A10:04	SubIndex 004	4. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A10:05	SubIndex 005	5. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0D (Diag))	UINT32	RO	0x6012:0D, 1
1A10:06	SubIndex 006	6. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0E (TxPDO State))	UINT32	RO	0x6012:0E, 1
1A10:07	SubIndex 007	7. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x0F (Input cycle counter))	UINT32	RO	0x6012:0F, 2
1A10:08	SubIndex 008	8. PDO Mapping entry (object 0x6012 (ENC Inputs status Ch.2), entry 0x11 (Software gate valid))	UINT32	RO	0x6012:11, 1
1A10:09	SubIndex 009	9. PDO Mapping entry (8 bits align)	UINT32	RO	0x0000:00, 8
1A10:0A	SubIndex 010	10. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1A10:0B	SubIndex 011	11. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 16

Index 1A11 ENC TxPDO-Map Status Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A11:0	ENC TxPDO-Map Status Legacy Ch.2	PDO Mapping TxPDO 18	UINT8	RO	0x12 (18 _{dez})
1A11:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x01 (Latch C valid))	UINT32	RO	0x6010:01, 1
1A11:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x02 (Latch extern valid))	UINT32	RO	0x6010:02, 1
1A11:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A11:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x04 (Counter underflow))	UINT32	RO	0x6010:04, 1
1A11:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x05 (Counter overflow))	UINT32	RO	0x6010:05, 1
1A11:06	SubIndex 006	6. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x06 (Status of input status))	UINT32	RO	0x6010:06, 1
1A11:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x07 (Open circuit))	UINT32	RO	0x6010:07, 1
1A11:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6010:08, 1
1A11:09	SubIndex 009	9. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2),entry 0x09 (Status of input A))	UINT32	RO	0x6010:09, 1
1A11:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0A (Status of input B))	UINT32	RO	0x6010:0A, 1
1A11:0B	SubIndex 011	11. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0B (Status of input C))	UINT32	RO	0x6010:0B, 1
1A11:0C	SubIndex 012	12. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0C (Status of input gate))	UINT32	RO	0x6010:0C, 1
1A11:0D	SubIndex 013	13. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0D (Status of extern latch))	UINT32	RO	0x6010:0D, 1
1A11:0E	SubIndex 014	14. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0E (Sync error))	UINT32	RO	0x6010:0E, 1
1A11:0F	SubIndex 015	15. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0F (TxPDO State))	UINT32	RO	0x6010:0F, 1
1A11:10	SubIndex 016	16. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6010:10, 1
1A11:11	SubIndex 017	17. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 32
1A11:12	SubIndex 018	18. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x12 (Latch value))	UINT32	RO	0x6010:12, 32

Index 1A12 ENC TxPDO-Map Status Compact Legacy Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A12:0	ENC TxPDO-Map Status Compact Legacy Ch.2	PDO Mapping TxPDO 19	UINT8	RO	0x12 (18 _{dez})
1A12:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x01 (Latch C valid))	UINT32	RO	0x6010:01, 1
1A12:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x02 (Latch extern valid))	UINT32	RO	0x6010:02, 1
1A12:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x03 (Set counter done))	UINT32	RO	0x6010:03, 1
1A12:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x04 (Counter underflow))	UINT32	RO	0x6010:04, 1
1A12:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x05 (Counter overflow))	UINT32	RO	0x6010:05, 1
1A12:06	SubIndex 006	6. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x06 (Status of input status))	UINT32	RO	0x6010:06, 1
1A12:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x07 (Open circuit))	UINT32	RO	0x6010:07, 1
1A12:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x08 (Extrapolation stall))	UINT32	RO	0x6010:08, 1
1A12:09	SubIndex 009	9. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2),entry 0x09 (Status of input A))	UINT32	RO	0x6010:09, 1
1A12:0A	SubIndex 010	10. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0A (Status of input B))	UINT32	RO	0x6010:0A, 1
1A12:0B	SubIndex 011	11. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0B (Status of input C))	UINT32	RO	0x6010:0B, 1
1A12:0C	SubIndex 012	12. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0C (Status of input gate))	UINT32	RO	0x6010:0C, 1
1A12:0D	SubIndex 013	13. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0D (Status of extern latch))	UINT32	RO	0x6010:0D, 1
1A12:0E	SubIndex 014	14. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0E (Sync error))	UINT32	RO	0x6010:0E, 1
1A12:0F	SubIndex 015	15. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x0F (TxPDO State))	UINT32	RO	0x6010:0F, 1
1A12:10	SubIndex 016	16. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6010:10, 1
1A12:11	SubIndex 017	17. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x11 (Counter value))	UINT32	RO	0x6010:11, 16
1A12:12	SubIndex 018	18. PDO Mapping entry (object object 0x6010 (ENC Inputs Ch.2), entry 0x12 (Latch value))	UINT32	RO	0x6010:12, 16

Index 1A13 ENC TxPDO-Map Frequency Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Map Frequency Ch.2	PDO Mapping TxPDO 20	UINT8	RO	0x01 (1 _{dez})
1A13:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x13 (Frequency value))	UINT32	RO	0x6010:13, 32

Index 1A14 ENC TxPDO-Map Frequency Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A14:0	ENC TxPDO-Map Frequency Compact Ch.2	PDO Mapping TxPDO 21	UINT8	RO	0x01 (1 _{dez})
1A14:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x13 (Frequency value))	UINT32	RO	0x6010:13, 16

Index 1A15 ENC TxPDO-Map Period Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A15:0	ENC TxPDO-Map Period Ch.2	PDO Mapping TxPDO 22	UINT8	RO	0x01 (1 _{dez})
1A15:01		1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x14 (Period value))	UINT32	RO	0x6010:14, 32

Index 1A16 ENC TxPDO-Map Period Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
	ENC TxPDO-Map Period Compact Ch.2	PDO Mapping TxPDO 23	UINT8	RO	0x01 (1 _{dez})
1A16:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x14 (Period value))	UINT32	RO	0x6010:14, 16

Index 1A17 ENC TxPDO-Map Duty cycle Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A17:0	ENC TxPDO-Map Duty cycle Ch.2	PDO Mapping TxPDO 24	UINT8	RO	0x03 (3 _{dez})
1A17:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x23 (Duty cycle))	UINT32	RO	0x6010:23, 16
1A17:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x24 (Duty cycle min))	UINT32	RO	0x6010:24, 16
1A17:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x24 (Duty cycle max))	UINT32	RO	0x6010:25, 16

Index 1A18 ENC TxPDO-Map Timestamp Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A18:0	ENC TxPDO-Map Timestamp Ch.2	PDO Mapping TxPDO 25	UINT8	RO	0x04 (4 _{dez})
1A18:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x16 (Timestamp))	UINT32	RO	0x6010:16, 64
1A18:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x1F (Timestamp C))	UINT32	RO	0x6010:1F, 64
1A18:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x20 (Timestamp latch))	UINT32	RO	0x6010:20, 64
1A18:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x21 (Timestamp latch 2))	UINT32	RO	0x6010:21, 64

Index 1A19 ENC TxPDO-Map Timestamp Compact Ch.2

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1A19:0	ENC TxPDO-Map Timestamp Compact Ch.2	PDO Mapping TxPDO 25	UINT8	RO	0x04 (4 _{dez})
1A19:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x16 (Timestamp))	UINT32	RO	0x6010:16, 32
1A19:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x1F (Timestamp C))	UINT32	RO	0x6010:1F, 32
1A19:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x20 (Timestamp latch))	UINT32	RO	0x6010:20, 32
1A19:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (ENC Inputs Ch.2), entry 0x21 (Timestamp latch 2))	UINT32	RO	0x6010:21, 32

Index 1C00 Sync manager type

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4 _{dez})
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1 _{dez})
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2 _{dez})
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3 _{dez})
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4 _{dez})

Index 1C12 RxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x02 (2 _{dez})
1C12:01	SubIndex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632 _{dez})
1C12:02	SubIndex 002	2. zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1606 (5638 _{dez})

232 Version: 1.4.0 EL5102

Index 1C13 TxPDO assign

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x02 (2 _{dez})
1C13:01	SubIndex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656 _{dez})
1C13:02	SubIndex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A0D (6669 _{dez})

Index 1C32 SM output parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32 _{dez})
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1 _{dez})
		0: Free Run			
		1: Synchron with SM 2 Event			
		2: DC-Mode - Synchron with SYNC0 Event			
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x000F4240
		Free Run: Zykluszeit des lokalen Timers			(1000000 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x0807
	supported	Bit 0 = 1: Free Run wird unterstützt			(2055 _{dez})
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC-Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08)			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x000101D0 (66000 _{dez})
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:07	Minimum delay time	Min. Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (000000 _{dez})
1C32:08	Command	Mit diesem Eintrag kann eine Messung der real benötigten Prozessdatenbereitstellungszeit durchgeführt werden.	UINT16	RW	0x0000 (0 _{dez})
		0: Messung der lokalen Zykluszeit wird gestoppt			
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C32:03, 0x1C32:05, 0x1C32:06, 0x1C32:09, 0x1C33:03 [▶ 234], 0x1C33:06, 0x1C33:09 [▶ 234] werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt.			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (0 _{dez})
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC-Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C32:0D	Shift too short counter	SYNC1 Event (nur im DC-Mode)	UINT16	RO	0x0000 (0 _{dez})
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC-Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index 1C33 SM input parameter

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32 _{dez})
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34 _{dez})
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x000F4240
		Free Run: Zykluszeit des lokalen Timers			(1000000 _{dez})
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C33:04	Sync modes	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x0807
	supported	Bit 0: Free Run wird unterstützt			(2055 _{dez})
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 0x1C32:08 [▶ 233] oder 0x1C33:08)			
1C33:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x000101D0
			02		(66000 _{dez})
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x000101D0 (66000 _{dez})
1C33:07	Minimum delay time	Min. Zeit zwischen SYNC1 Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x0000000 (00000 _{dez})
1C33:08	Command	Mit diesem Eintrag kann eine Messung der real benötigten Prozessdatenbereitstellungszeit durchgeführt werden.	UINT16	RW	0x0000 (0 _{dez})
		0: Messung der lokalen Zykluszeit wird gestoppt			
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 0x1C32:03 [▶ 233], 0x1C32:05 [▶ 233], 0x1C32:06 [▶ 233], 0x1C32:09 [▶ 233], 0x1C33:03, 0x1C33:06, 0x1C33:09 werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt.			
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0 _{dez})
1C33:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC-Mode)	UINT16	RO	0x0000 (0 _{dez})
1C33:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0 _{dez})
1C33:0D	Shift too short counter	Anzahl zu kurzer Abstände zwischen SYNC0 und SYNC1 Event (nur im DC-Mode)	UINT16	RO	0x0000 (0 _{dez})
1C33:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC-Mode)	BOOLEAN	RO	0x00 (0 _{dez})

Index F000 Modular device profile

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular device profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Module index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
F000:02	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0002 (2 _{dez})

Index F008 Code word

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F008:0	Code word	reserviert	UINT32	RW	0x00000000
					(O _{dez})

Index F010 Module list

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
F010:0	Module list	Maximaler Subindex	UINT8	RW	0x02 (2 _{dez})
F010:01	SubIndex 001	reserviert	UINT32	RW	0x000001FF (511 _{dez})
F010:02	SubIndex 002	reserviert	UINT32	RW	0x000001FF (511 _{dez})

9 Anhang

9.1 EtherCAT AL Status Codes

Detaillierte Informationen hierzu entnehmen Sie bitte der vollständigen EtherCAT-Systembeschreibung.

9.2 Firmware Kompatibilität

Beckhoff EtherCAT-Geräte werden mit dem aktuell verfügbaren letzten Firmware-Stand ausgeliefert. Dabei bestehen zwingende Abhängigkeiten zwischen Firmware und Hardware; eine Kompatibilität ist nicht in jeder Kombination gegeben. Die unten angegebene Übersicht zeigt auf welchem Hardware-Stand eine Firmware betrieben werden kann.

Anmerkung

- Es wird empfohlen, die für die jeweilige Hardware letztmögliche Firmware einzusetzen
- Ein Anspruch auf ein kostenfreies Firmware-Update bei ausgelieferten Produkten durch Beckhoff gegenüber dem Kunden besteht nicht.

HINWEIS

Beschädigung des Gerätes möglich!

Beachten Sie die Hinweise zum Firmware Update auf der gesonderten Seite [236].

Wird ein Gerät in den BOOTSTRAP-Mode zum Firmware-Update versetzt, prüft es u. U. beim Download nicht, ob die neue Firmware geeignet ist.

Dadurch kann es zur Beschädigung des Gerätes kommen! Vergewissern Sie sich daher immer, ob die Firmware für den Hardware-Stand des Gerätes geeignet ist!

EL5102			
Hardware (HW)	Firmware	Revision Nr.	Release-Datum
01 - 05*	01	EL5102-0000-0016	2020/06
	02	EL5102-0000-0017	2023/09
	03		2024/03
	04*		2025/02

^{*)} Zum Zeitpunkt der Erstellung dieser Dokumentation ist dies der aktuelle kompatible Firmware/Hardware-Stand. Überprüfen Sie auf der Beckhoff Webseite, ob eine aktuellere <u>Dokumentation</u> vorliegt.

9.3 Firmware Update EL/ES/ELM/EM/EP/EPP/ERPxxxx

Dieses Kapitel beschreibt das Geräte-Update für Beckhoff EtherCAT-Slaves der Serien EL/ES, ELM, EM, EK, EP, EPP und ERP. Ein FW-Update sollte nur nach Rücksprache mit dem Beckhoff Support durchgeführt werden.

HINWEIS

Nur TwinCAT 3 Software verwenden!

Ein Firmware-Update von Beckhoff IO Geräten ist ausschließlich mit einer TwinCAT 3-Installation durchzuführen. Es empfiehlt sich ein möglichst aktuelles Build, kostenlos zum Download verfügbar auf der Beckhoff-Website.

Zum Firmware-Update kann TwinCAT im sog. FreeRun-Modus betrieben werden, eine kostenpflichtige Lizenz ist dazu nicht nötig.

Das für das Update vorgesehene Gerät kann in der Regel am Einbauort verbleiben; TwinCAT ist jedoch im FreeRun zu betreiben. Zudem ist auf eine störungsfreie EtherCAT Kommunikation zu achten (keine "LostFrames" etc.).

Andere EtherCAT-Master-Software wie z. B. der EtherCAT-Konfigurator sind nicht zu verwenden, da sie unter Umständen nicht die komplexen Zusammenhänge beim Update von Firmware, EEPROM und ggf. weiteren Gerätebestandteilen unterstützen.

Speicherorte

In einem EtherCAT-Slave werden an bis zu drei Orten Daten für den Betrieb vorgehalten:

 Jeder EtherCAT-Slave hat eine Gerätebeschreibung, bestehend aus Identität (Name, Productcode), Timing-Vorgaben, Kommunikationseinstellungen u. a.
 Diese Gerätebeschreibung (ESI; EtherCAT-Slave Information) kann von der Beckhoff Website im Downloadbereich als Zip-Datei heruntergeladen werden und in EtherCAT-Mastern zur Offline-

Downloadbereich als <u>Zip-Datei</u> heruntergeladen werden und in EtherCAT-Mastern zur Offline-Konfiguration verwendet werden, z. B. in TwinCAT.

Vor allem aber trägt jeder EtherCAT-Slave seine Gerätebeschreibung (ESI) elektronisch auslesbar in einem lokalen Speicherchip, dem einem sog. **ESI-EEPROM**. Beim Einschalten wird diese Beschreibung einerseits im Slave lokal geladen und teilt ihm seine Kommunikationskonfiguration mit, andererseits kann der EtherCAT-Master den Slave so identifizieren und u. a. die EtherCAT Kommunikation entsprechend einrichten.

HINWEIS

Applikationsspezifisches Beschreiben des ESI-EEPROM

Die ESI wird vom Gerätehersteller nach ETG-Standard entwickelt und für das entsprechende Produkt freigegeben.

- Bedeutung für die ESI-Datei: Eine applikationsseitige Veränderung (also durch den Anwender) ist nicht zulässig.
- Bedeutung für das ESI-EEPROM: Auch wenn technisch eine Beschreibbarkeit gegeben ist, dürfen die ESI-Teile im EEPROM und ggf. noch vorhandene freie Speicherbereiche über den normalen Update-Vorgang hinaus nicht verändert werden. Insbesondere für zyklische Speichervorgänge (Betriebsstundenzähler u. ä.) sind dezidierte Speicherprodukte wie EL6080 oder IPC-eigener NOVRAM zu verwenden.
 - Je nach Funktionsumfang und Performance besitzen EtherCAT-Slaves einen oder mehrere lokale Controller zur Verarbeitung von IO-Daten. Das darauf laufende Programm ist die so genannte Firmware im Format *.efw.
 - In bestimmten EtherCAT-Slaves kann auch die EtherCAT Kommunikation in diesen Controller integriert sein. Dann ist der Controller meist ein so genannter **FPGA**-Chip mit der *.rbf-Firmware.

Kundenseitig zugänglich sind diese Daten nur über den Feldbus EtherCAT und seine Kommunikationsmechanismen. Beim Update oder Auslesen dieser Daten ist insbesondere die azyklische Mailbox-Kommunikation oder der Registerzugriff auf den ESC in Benutzung.

Der TwinCAT System Manager bietet Mechanismen, um alle drei Teile mit neuen Daten programmieren zu können, wenn der Slave dafür vorgesehen ist. Es findet üblicherweise keine Kontrolle durch den Slave statt, ob die neuen Daten für ihn geeignet sind, ggf. ist ein Weiterbetrieb nicht mehr möglich.

Vereinfachtes Update per Bundle-Firmware

Bequemer ist der Update per sog. **Bundle-Firmware**: hier sind die Controller-Firmware und die ESI-Beschreibung in einer *.efw-Datei zusammengefasst, beim Update wird in der Klemme sowohl die Firmware, als auch die ESI verändert. Dazu ist erforderlich

- dass die Firmware in dem gepackten Format vorliegt: erkenntlich an dem Dateinamen der auch die Revisionsnummer enthält, z. B. ELxxxx-xxxx REV0016 SW01.efw
- dass im Download-Dialog das Passwort=1 angegeben wird. Bei Passwort=0 (default Einstellung) wird nur das Firmware-Update durchgeführt, ohne ESI-Update.
- dass das Gerät diese Funktion unterstützt. Die Funktion kann in der Regel nicht nachgerüstet werden, sie wird Bestandteil vieler Neuentwicklungen ab Baujahr 2016.

Nach dem Update sollte eine Erfolgskontrolle durchgeführt werden

- ESI/Revision: z. B. durch einen Online-Scan im TwinCAT ConfigMode/FreeRun dadurch wird die Revision bequem ermittelt
- Firmware: z. B. durch einen Blick ins Online-CoE des Gerätes

HINWEIS

Beschädigung des Gerätes möglich!

- ✓ Beim Herunterladen von neuen Gerätedateien ist zu beachten
- a) Das Herunterladen der Firmware auf ein EtherCAT-Gerät darf nicht unterbrochen werden.
- b) Eine einwandfreie EtherCAT-Kommunikation muss sichergestellt sein, CRC-Fehler oder LostFrames dürfen nicht auftreten.
- c) Die Spannungsversorgung muss ausreichend dimensioniert, die Pegel entsprechend der Vorgabe sein.
- ⇒ Bei Störungen während des Updatevorgangs kann das EtherCAT-Gerät ggf. nur vom Hersteller wieder in Betrieb genommen werden!

9.3.1 Gerätebeschreibung ESI-File/XML

HINWEIS

ACHTUNG bei Update der ESI-Beschreibung/EEPROM

Manche Slaves haben Abgleich- und Konfigurationsdaten aus der Produktion im EEPROM abgelegt. Diese werden bei einem Update unwiederbringlich überschrieben.

Die Gerätebeschreibung ESI wird auf dem Slave lokal gespeichert und beim Start geladen. Jede Gerätebeschreibung hat eine eindeutige Kennung aus Slave-Name (9-stellig) und Revision-Nummer (4-stellig). Jeder im System Manager konfigurierte Slave zeigt seine Kennung im EtherCAT-Reiter:

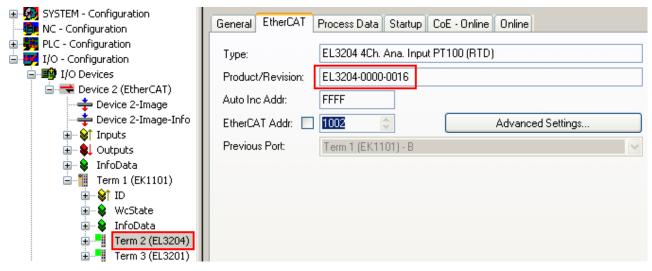


Abb. 169: Gerätekennung aus Name EL3204-0000 und Revision -0016

Die konfigurierte Kennung muss kompatibel sein mit der tatsächlich als Hardware eingesetzten Gerätebeschreibung, d. h. der Beschreibung die der Slave (hier: EL3204) beim Start geladen hat. Üblicherweise muss dazu die konfigurierte Revision gleich oder niedriger der tatsächlich im Klemmenverbund befindlichen sein.

Weitere Hinweise hierzu entnehmen Sie bitte der EtherCAT System-Dokumentation.

Update von XML/ESI-Beschreibung

Die Geräterevision steht in engem Zusammenhang mit der verwendeten Firmware bzw. Hardware. Nicht kompatible Kombinationen führen mindestens zu Fehlfunktionen oder sogar zur endgültigen Außerbetriebsetzung des Gerätes. Ein entsprechendes Update sollte nur in Rücksprache mit dem Beckhoff Support ausgeführt werden.

Anzeige der Slave-Kennung ESI

Der einfachste Weg die Übereinstimmung von konfigurierter und tatsächlicher Gerätebeschreibung festzustellen, ist im TwinCAT-Modus Config/FreeRun das Scannen der EtherCAT-Boxen auszuführen:

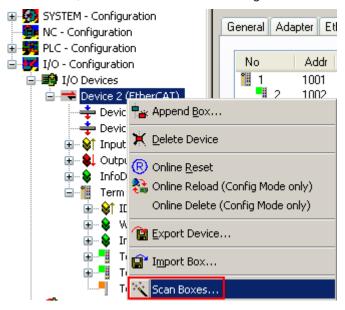


Abb. 170: Rechtsklick auf das EtherCAT-Gerät bewirkt das Scannen des unterlagerten Feldes

Wenn das gefundene Feld mit dem konfigurierten übereinstimmt, erscheint

Abb. 171: Konfiguration identisch

ansonsten erscheint ein Änderungsdialog, um die realen Angaben in die Konfiguration zu übernehmen.

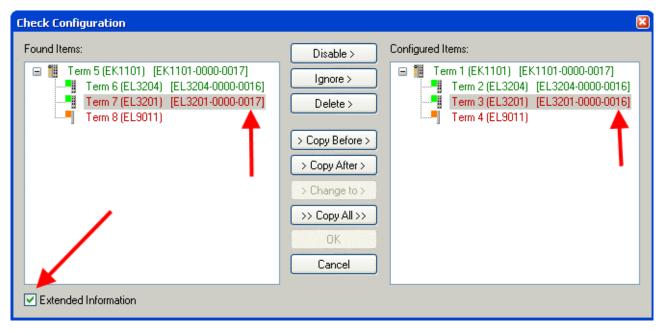


Abb. 172: Änderungsdialog

In diesem Beispiel in Abb. Änderungsdialog. wurde eine EL3201-0000-**0017** vorgefunden, während eine EL3201-0000-**0016** konfiguriert wurde. In diesem Fall bietet es sich an, mit dem *Copy Before*-Button die Konfiguration anzupassen. Die Checkbox *Extended Information* muss gesetzt werden, um die Revision angezeigt zu bekommen.

Änderung der Slave-Kennung ESI

Die ESI/EEPROM-Kennung kann unter TwinCAT wie folgt aktualisiert werden:

- · Es muss eine einwandfreie EtherCAT-Kommunikation zum Slave hergestellt werden
- Der State des Slave ist unerheblich
- Rechtsklick auf den Slave in der Online-Anzeige führt zum Dialog EEPROM Update, Abb. EEPROM Update

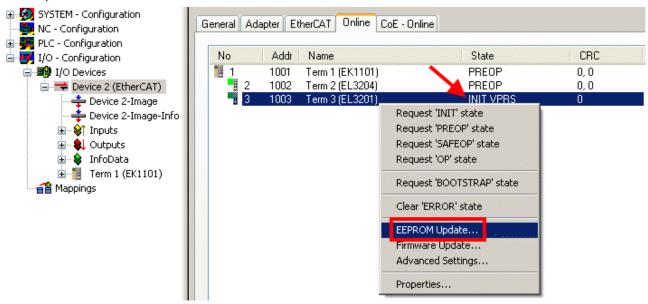


Abb. 173: EEPROM Update

Im folgenden Dialog wird die neue ESI-Beschreibung ausgewählt, s. Abb. *Auswahl des neuen ESI*. Die CheckBox *Show Hidden Devices* zeigt auch ältere, normalerweise ausgeblendete Ausgaben eines Slave.

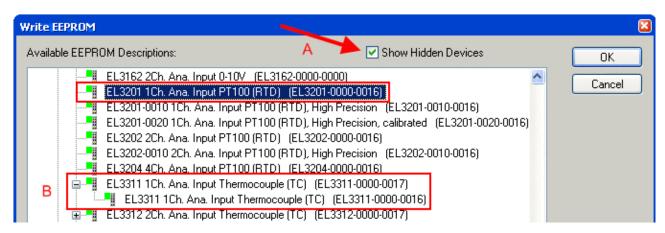


Abb. 174: Auswahl des neuen ESI

Ein Laufbalken im System Manager zeigt den Fortschritt - erst erfolgt das Schreiben, dann das Veryfling.

Die meisten EtherCAT-Geräte lesen eine geänderte ESI-Beschreibung umgehend bzw. nach dem Aufstarten aus dem INIT ein. Einige Kommunikationseinstellungen wie z. B. Distributed Clocks werden jedoch erst bei PowerOn gelesen. Deshalb ist ein kurzes Abschalten des EtherCAT-Slave nötig, damit die Änderung wirksam wird.

9.3.2 Erläuterungen zur Firmware

Versionsbestimmung der Firmware

Versionsbestimmung mit dem TwinCAT System Manager

Der TwinCAT System Manager zeigt die Version der Controller-Firmware an, wenn der Slave online für den Master zugänglich ist. Klicken Sie hierzu auf die E-Bus-Klemme deren Controller-Firmware Sie überprüfen möchten (im Beispiel Klemme 2 (EL3204) und wählen Sie den Karteireiter *CoE-Online* (CAN over EtherCAT).

CoE-Online und Offline-CoE

Es existieren zwei CoE-Verzeichnisse:

- online: es wird im EtherCAT-Slave vom Controller angeboten, wenn der EtherCAT-Slave dies unterstützt. Dieses CoE-Verzeichnis kann nur bei angeschlossenem und betriebsbereitem Slave angezeigt werden.
- offline: in der EtherCAT Slave Information ESI/XML kann der Default-Inhalt des CoE enthalten sein. Dieses CoE-Verzeichnis kann nur angezeigt werden, wenn es in der ESI (z. B. "Beckhoff EL5xxx.xml") enthalten ist.

Die Umschaltung zwischen beiden Ansichten kann über den Button *Advanced* vorgenommen werden.

In Abb. *Anzeige FW-Stand EL3204* wird der FW-Stand der markierten EL3204 in CoE-Eintrag 0x100A mit 03 angezeigt.

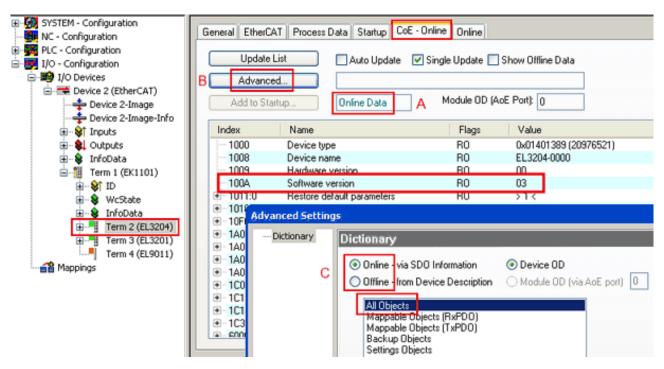


Abb. 175: Anzeige FW-Stand EL3204

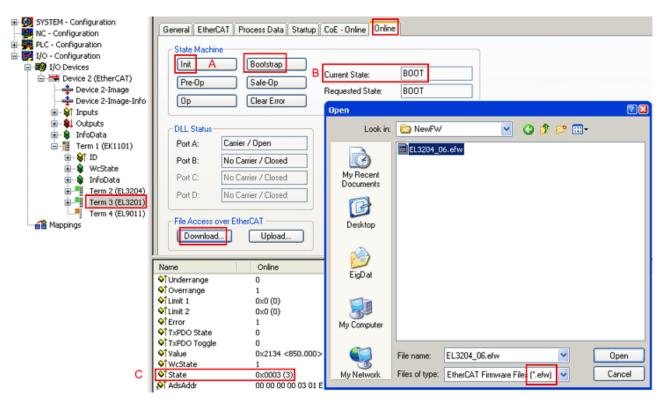
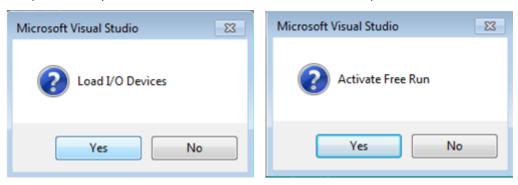
TwinCAT 2.11 zeigt in (A) an, dass aktuell das Online-CoE-Verzeichnis angezeigt wird. Ist dies nicht der Fall, kann durch die erweiterten Einstellungen (B) durch *Online* und Doppelklick auf *All Objects* das Online-Verzeichnis geladen werden.

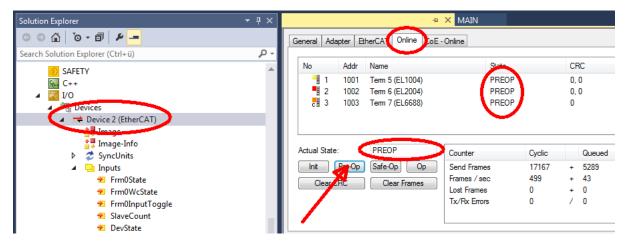
9.3.3 Update Controller-Firmware *.efw

CoE-Verzeichnis

Das Online-CoE-Verzeichnis wird vom Controller verwaltet und in einem eigenen EEPROM gespeichert. Es wird durch ein FW-Update im Allgemeinen nicht verändert.

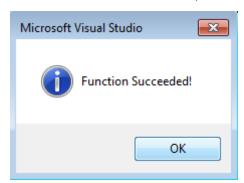
Um die Controller-Firmware eines Slave zu aktualisieren, wechseln Sie zum Karteireiter *Online*, s. Abb. *Firmware Update*.


Abb. 176: Firmware Update

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen. Gültig für TwinCAT 2 und 3 als EtherCAT-Master.

• TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.


EtherCAT-Master in PreOP schalten

- Slave in INIT schalten (A)
- · Slave in BOOTSTRAP schalten

- · Kontrolle des aktuellen Status (B, C)
- · Download der neuen *efw-Datei, abwarten bis beendet. Ein Passwort wird in der Regel nicht benötigt.

- · Nach Beendigung des Download in INIT schalten, dann in PreOP
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!)
- Im CoE 0x100A kontrollieren ob der FW-Stand korrekt übernommen wurde.

9.3.4 FPGA-Firmware *.rbf

Falls ein FPGA-Chip die EtherCAT-Kommunikation übernimmt, kann ggf. mit einer *.rbf-Datei ein Update durchgeführt werden.

- · Controller-Firmware für die Aufbereitung der E/A-Signale
- FPGA-Firmware für die EtherCAT-Kommunikation (nur für Klemmen mit FPGA)

Die in der Seriennummer der Klemme enthaltene Firmware-Versionsnummer beinhaltet beide Firmware-Teile. Wenn auch nur eine dieser Firmware-Komponenten verändert wird, dann wird diese Versionsnummer fortgeschrieben.

Versionsbestimmung mit dem TwinCAT System-Manager

Der TwinCAT System Manager zeigt die Version der FPGA-Firmware an. Klicken Sie hierzu auf die Ethernet-Karte Ihres EtherCAT-Stranges (im Beispiel Gerät 2) und wählen Sie den Karteireiter *Online*.

Die Spalte *Reg:0002* zeigt die Firmware-Version der einzelnen EtherCAT-Geräte in hexadezimaler und dezimaler Darstellung an.

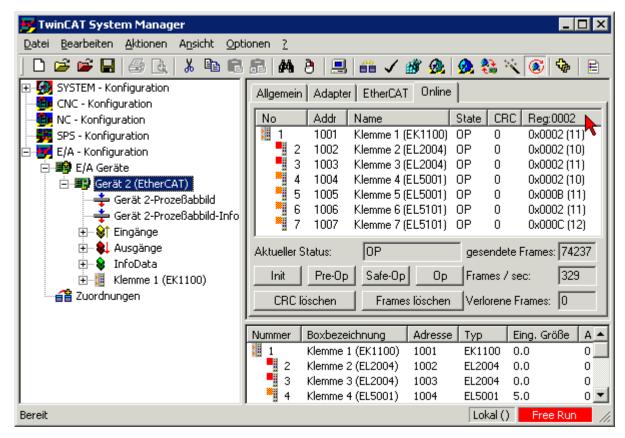


Abb. 177: Versionsbestimmung FPGA-Firmware

Falls die Spalte *Reg:0002* nicht angezeigt wird, klicken sie mit der rechten Maustaste auf den Tabellenkopf und wählen im erscheinenden Kontextmenü, den Menüpunkt *Properties*.

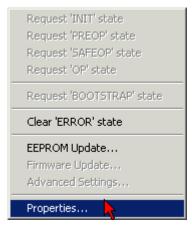


Abb. 178: Kontextmenu Eigenschaften (Properties)

In dem folgenden Dialog *Advanced Settings* können Sie festlegen, welche Spalten angezeigt werden sollen. Markieren Sie dort unter *Diagnose/***Online Anzeige** das Kontrollkästchen vor *'0002 ETxxxx Build'* um die Anzeige der FPGA-Firmware-Version zu aktivieren.

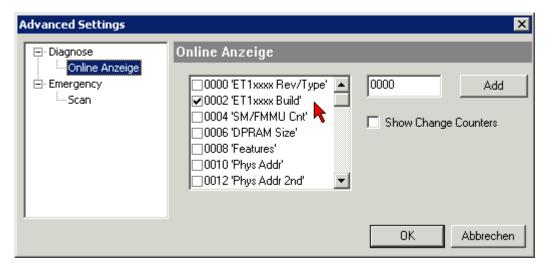


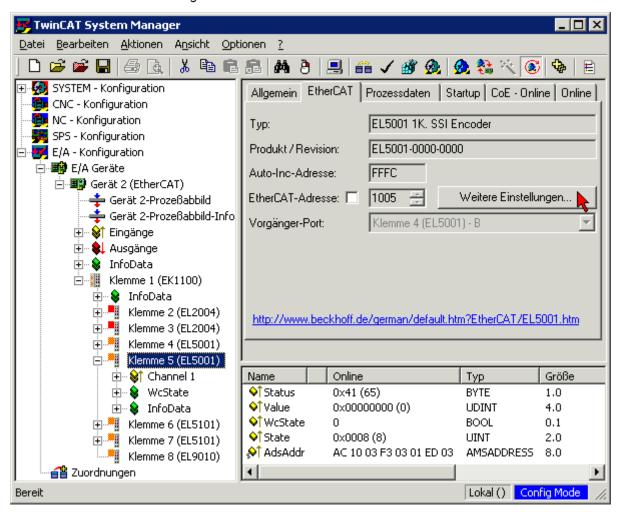
Abb. 179: Dialog Advanced settings

Update

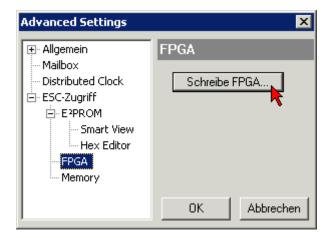
Für das Update der FPGA-Firmware

- eines EtherCAT-Kopplers, muss auf diesem Koppler mindestens die FPGA-Firmware-Version 11 vorhanden sein.
- einer E-Bus-Klemme, muss auf dieser Klemme mindestens die FPGA-Firmware-Version 10 vorhanden sein.

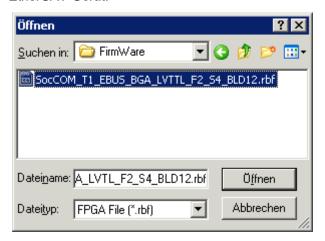
Ältere Firmware-Stände können nur vom Hersteller aktualisiert werden!


Update eines EtherCAT-Geräts

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen:


 TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1 ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.

 Wählen Sie im TwinCAT System Manager die Klemme an, deren FPGA-Firmware Sie aktualisieren möchten (im Beispiel: Klemme 5: EL5001) und klicken Sie auf dem Karteireiter EtherCAT auf die Schaltfläche Weitere Einstellungen:



 Im folgenden Dialog Advanced Settings klicken Sie im Menüpunkt ESC-Zugriff/E²PROM/FPGA auf die Schaltfläche Schreibe FPGA:

 Wählen Sie die Datei (*.rbf) mit der neuen FPGA-Firmware aus und übertragen Sie diese zum EtherCAT-Gerät:

- · Abwarten bis zum Ende des Downloads
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!). Um die neue FPGA-Firmware zu aktivieren ist ein Neustart (Aus- und Wiedereinschalten der Spannungsversorgung) des EtherCAT-Geräts erforderlich
- · Kontrolle des neuen FPGA-Standes

HINWEIS

Beschädigung des Gerätes möglich!

Das Herunterladen der Firmware auf ein EtherCAT-Gerät dürfen Sie auf keinen Fall unterbrechen! Wenn Sie diesen Vorgang abbrechen, dabei die Versorgungsspannung ausschalten oder die Ethernet-Verbindung unterbrechen, kann das EtherCAT-Gerät nur vom Hersteller wieder in Betrieb genommen werden!

9.3.5 Gleichzeitiges Update mehrerer EtherCAT-Geräte

Die Firmware von mehreren Geräten kann gleichzeitig aktualisiert werden, ebenso wie die ESI-Beschreibung. Voraussetzung hierfür ist, dass für diese Geräte die gleiche Firmware-Datei/ESI gilt.

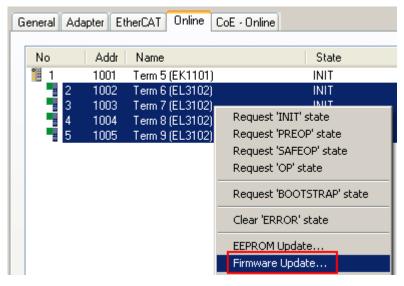


Abb. 180: Mehrfache Selektion und FW-Update

Wählen Sie dazu die betreffenden Slaves aus und führen Sie das Firmware-Update im BOOTSTRAP Modus wie o. a. aus.

9.4 Wiederherstellen des Auslieferungszustandes

Um bei EtherCAT-Geräten ("Slaves") den Auslieferungszustand (Werkseinstellungen) der CoE-Objekte wiederherzustellen, kann per EtherCAT-Master (z. B. TwinCAT) das CoE-Objekt Restore default parameters, Subindex 001 verwendet werden (s. Abb. Auswahl des PDO, Restore default parameters)

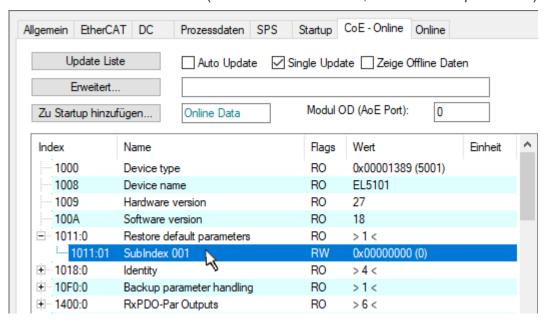


Abb. 181: Auswahl des PDO Restore default parameters

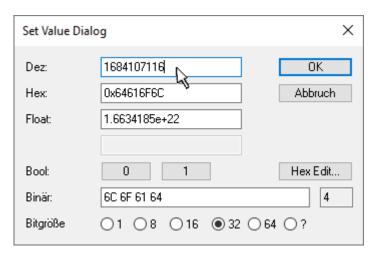


Abb. 182: Eingabe des Restore-Wertes im Set Value Dialog

Durch Doppelklick auf *SubIndex 001* gelangen Sie in den Set Value -Dialog. Tragen Sie im Feld *Dec* den Reset-Wert **1684107116** oder alternativ im Feld *Hex* den Wert **0x64616F6C** ein (ASCII: "load") und bestätigen Sie mit OK (Abb. *Eingabe des Restore-Wertes im Set Value Dialog*).

- Alle veränderbaren CoE-Einträge werden auf die Default-Werte zurückgesetzt.
- Die Werte k\u00f6nnen nur erfolgreich zur\u00fcckgesetzt werden, wenn der Reset auf das Online-CoE, d. h. auf dem Slave direkt angewendet wird. Im Offline-CoE k\u00f6nnen keine Werte ver\u00e4ndert werden.
- TwinCAT muss dazu im Zustand RUN oder CONFIG/Freerun befinden, d. h. EtherCAT Datenaustausch findet statt. Auf fehlerfreie EtherCAT-Übertragung ist zu achten.
- Es findet keine gesonderte Bestätigung durch den Reset statt. Zur Kontrolle kann zuvor ein veränderbares Objekt umgestellt werden.
- Dieser Reset-Vorgang kann auch als erster Eintrag in die StartUp-Liste des Slaves mit aufgenommen werden, z. B. im Statusübergang PREOP->SAFEOP oder, wie in Abb. CoE-Reset als StartUp-Eintrag, bei SAFEOP->OP

Alle Backup-Objekte werden so in den Auslieferungszustand zurückgesetzt.

Alternativer Restore-Wert

Bei einigen Klemmen älterer Bauart (FW Erstellung ca. vor 2007) lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen: Dezimalwert: 1819238756, Hexadezimalwert: 0x6C6F6164

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung!

9.5 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- · Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com
Internet: www.beckhoff.com

Trademark statements $Beckhoff^{\scriptsize @}, \ TwinCAT^{\scriptsize @}, \ TC/BSD^{\scriptsize @}, \ TC/BSD^{\scriptsize @}, \ EtherCAT^{\scriptsize @}, \ EtherCAT \ G^{\scriptsize @}, \ EtherCAT \ G10^{\scriptsize @}, \ EtherCAT \ P^{\scriptsize @}, \ Safety \ over \ EtherCAT^{\scriptsize @}, \ TwinSAFE^{\scriptsize @}, \ XTS^{\scriptsize @} \ and \ XPlanar^{\scriptsize @} \ are \ registered \ trademarks \ of \ and \ licensed \ by \ Beckhoff \ Automation \ GmbH.$ Third-party trademark statements DeviceNet and EtherNet/IP are trademarks of ODVA, Inc. DSP System Toolbox, Embedded Coder, MATLAB, MATLAB Coder, MATLAB Compiler, MathWorks, Predictive Maintenance Toolbox, Simscape, Simscape™ Multibody™, Simulink, Simulink Coder, Stateflow and ThingSpeak are registered trademarks of The MathWorks, Inc. EnDat is a trademark of Dr. Johannes Heidenhain GmbH.

Microsoft, Microsoft Azure, Microsoft Edge, PowerShell, Visual Studio, Windows and Xbox are trademarks of the Microsoft group of companies.

Mehr Informationen: www.beckhoff.com/el5102

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

