Trademarks
Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE® and XFC® are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending
The EtherCAT Technology is covered, including but not limited to the following German patent applications and patents: DE10304637, DE102004044764, DE102005009224, DE102007017835 with corresponding applications or registrations in various other countries.

Disclaimer
The documentation has been prepared with care. The products described are, however, constantly under development. For that reason the documentation is not in every case checked for consistency with performance data, standards or other characteristics. In the event that it contains technical or editorial errors, we retain the right to make alterations at any time and without warning. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Copyright
© Beckhoff Automation GmbH
The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Create document</td>
</tr>
<tr>
<td>1.1</td>
<td>Add FC1121 description</td>
</tr>
<tr>
<td>1.2</td>
<td>Editorial changes</td>
</tr>
</tbody>
</table>
CONTENTS

1. Introduction 5
2. Hardware 6
 2.1 FC1100 | PCI EtherCAT slave card 6
 2.2 FC1121 | PCIe EtherCAT slave card 6
3. Software 8
 3.1 TwinCAT 8
 3.1.1 Configure Slave System 8
 3.1.2 Configure Master System 9
 3.2 Slave Sample Code 11
 3.2.1 Driver installation 11
 3.2.2 Slave Software 12

Appendix 13
Support and Service 13
Beckhoff’s branch offices and representatives 13
Beckhoff Headquarters 13
Beckhoff Support 13
Beckhoff Service 13
EtherCAT Technology Group (ETG) Headquarters 13
FIGURES

Figure 1: Hardware Schema .. 6
Figure 2: FC1121 BAR0 memory mapping ... 7
Figure 3: Select EtherCAT Slave .. 8
Figure 4: Add Process Data Manually ... 8
Figure 5: Create Variable Link ... 9
Figure 6: Add FC1100 EtherCAT Slave ... 9
Figure 7: Import PDO Configuration ... 10
Figure 8: Import PDO Configuration Dialog .. 10
Figure 9: Select corresponding Slave from tsm file ... 10
Figure 10: Driver Installation Window ... 11
Figure 11: Select Driver Location .. 11
Figure 12: Windows Device Manager .. 12
TABLES

Table 1: FC11xx comparison .. 5
Table 2: FC1100 PCI values ... 6
Table 3: FC1121 PCIe values .. 7
Table 4: FC1121 information block values .. 7
Table 5: FC1121 function block description ... 7
1 Introduction
This document contains a software installation and configuration guideline for the fieldbus cards FC1100 and FC1121 with TwinCAT and the SlaveStackCode. Furthermore all required information are provided to develop a new driver for these fieldbus cards. The basic information about the fieldbus cards are listed in Table 1.

<table>
<thead>
<tr>
<th>Technical data</th>
<th>FC1100</th>
<th>FC1121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface to the PC</td>
<td>PCI</td>
<td>PCIe</td>
</tr>
<tr>
<td>EtherCAT Slave Controller</td>
<td>ET1100</td>
<td>FPGA-based</td>
</tr>
<tr>
<td>RAM</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SYNC manager</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>FMMUs</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
2 Hardware

The hardware design focused to create an easy communication interface to an EtherCAT network.

The complete local memory area of the ESC (EtherCAT Slave Controller) is mapped to the memory range of the slave card. In case of the FC1100 the AL Event Interrupt is mapped to the PCI bus on interrupt line INTA.

2.1 FC1100 | PCI EtherCAT slave card

The PCI ID values of the FC1100 are listed in Table 2. The ET1100 (see type and revision register for detailed information) chip is used to access the EtherCAT network. The address range of the ET1100 is mapped to the memory specified by Base Address Registers 2 (BAR2) of the PCI device.

NOTE: The low nibble of BAR2 contains configuration bits

The AL Event (PDI IRQ) is mapped to INTA of the PCI bus.

Table 2: FC1100 PCI values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeviceID</td>
<td>0x1100</td>
</tr>
<tr>
<td>VendorID</td>
<td>0x15ec</td>
</tr>
</tbody>
</table>

Figure 1 shows the hardware structure of the FC1100 slave card.

2.2 FC1121 | PCIe EtherCAT slave card

The PCIe ID values of the FC1121 are listed in Table 3. An FPGA based EtherCAT Slave Controller (ESC) is used to access the EtherCAT network. For ESC specific information (e.g. type and revision) see the corresponding ESC registers readout by an EtherCAT master or configuration tool.

The address range of the IPCore need to be determined by the information and function description located at the beginning of BAR0 (Figure 2: FC1121 BAR0 memory mapping). The address is BAR0 plus the offset specified in the EtherCAT slave function block (Function type 0x0002).
Table 3: FC1121 PCIe values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeviceID</td>
<td>0x5000</td>
</tr>
<tr>
<td>VendorID</td>
<td>0x15ec</td>
</tr>
</tbody>
</table>

The content of FC1121 BAR0 is shown in Figure 2.

![Figure 2: FC1121 BAR0 memory mapping](image)

The information block content of the FC1121 is shown in Table 4.

Table 4: FC1121 information block values

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01:0x00</td>
<td>Type of function</td>
<td>0x0001</td>
</tr>
<tr>
<td>0x03:0x02</td>
<td>Revision of function</td>
<td>0x0001</td>
</tr>
<tr>
<td>0x04</td>
<td>Number of function blocks</td>
<td>Depends Configuration</td>
</tr>
<tr>
<td>0x05</td>
<td>Creation day</td>
<td>Depends on creation date</td>
</tr>
<tr>
<td>0x06</td>
<td>Creation month</td>
<td>Depends on creation date</td>
</tr>
<tr>
<td>0x07</td>
<td>Creation year</td>
<td>Depends on creation date</td>
</tr>
<tr>
<td>0x0b:0x08</td>
<td>Identifier 1</td>
<td>0x0000:88a4</td>
</tr>
<tr>
<td>0x0f:0x0c</td>
<td>Identifier 2</td>
<td>"CCAT"</td>
</tr>
</tbody>
</table>

The function block content of the FC1121 is shown in Table 5.

Table 5: FC1121 function block description

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>ESC value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01:0x00</td>
<td>Type of function</td>
<td>0x0002</td>
</tr>
<tr>
<td>0x03:0x02</td>
<td>Revision of function</td>
<td></td>
</tr>
<tr>
<td>0x05:0x04</td>
<td>Parameter of function</td>
<td></td>
</tr>
<tr>
<td>0x07:0x06</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0x0b:0x08</td>
<td>Base address offset of function</td>
<td>Offset to BAR0</td>
</tr>
<tr>
<td>0x0f:0x0c</td>
<td>Size of function on bytes</td>
<td></td>
</tr>
</tbody>
</table>
3 Software

By default two software solutions are provided:

- TwinCAT (http://www.beckhoff.com/TwinCAT)
- SlaveStackCode (http://www.ethercat.org/memberarea/stack_code.aspx)

Both solutions are Windows-based and don’t support any kind of synchronization.

3.1 TwinCAT

Since TwinCAT version 2.11 R2 it is possible to make PLC data accessible by an EtherCAT master via the EtherCAT network. The available process data size depends on the used ESC (see 2 Hardware).

3.1.1 Configure Slave System

The following steps describe how to configure the slave system with TwinCAT and the slave card installed in PCI or PCIe port.

Start TwinCAT software, scan for new “I/O Devices” and select “EtherCAT Slave” (see Figure 3: Select EtherCAT Slave).

The process data can be added by right mouse click on the corresponding node (see Figure 4: Add Process Data Manually). If a PLC project is already added to the System Manager project which contains user defined structs these are also selectable.

If the PLC project is available the linking between the PLC data and the defined process data is done by right mouse click on the variable and select “Change Link” (see Figure 5: Create Variable Link).
Save the configuration in a tsm-file. This file can be used to provide the PDO setup to the Master configuration.

3.1.2 Configure Master System

In this description the FC1100 is referenced, the configuration for the FC1121 is equal.

Create a new TwinCAT System Manager configuration. Append a new FC1100 EtherCAT Slave (see Figure 6: Add FC1100 EtherCAT Slave).

Import the PDO Configuration from the previous stored tsm file (see Figure 7: Import PDO Configuration).
The tsm file needs to be loaded to get the required information.

Select FC1100 card with PDOs
3.2 Slave Sample Code

The SlaveStackCode since provides the possibility to create a PC-based slave application without the TwinCAT software.

To get this slave application running the FC11xx driver need to be installed (3.2.1 Driver installation). This driver creates a black channel between device memory in kernel layer and the application in the user layer.

3.2.1 Driver installation

After plugin the FC11xx EtherCAT PCI Slave card the driver installation window (see Figure 10: Driver Installation Window) will be appear. If a driver is already installed, then open this window from the Windows Device Manager dialog.

![Figure 10: Driver Installation Window](image)

Select driver source path from a specific location (see Figure 11) and choose the path where the files “FC11xx.inf” and “TcMM.sys” are located.

![Figure 11: Select Driver Location](image)

After successful installation the device “FC1100 PCI Driver for ET9300” is listed in the Windows Device Manager (see Figure 12).

In case of the FC1121 card the name “FC1121 PCI Driver for ET9300” is shown.
The EtherCAT Slave Controller (ESC) is now accessible by using the library TcHelper.dll.

3.2.2 Slave Software

In case that the SSC Tool is used create an FC1100 based project (selectable in the “new project dialog”). Otherwise enable “FC1100_HW” in the file ecat_def.h.

Note: When using the FC1121 slave card, the settings for “FC1100” apply as well.

If the slave application is executed on a Windows 32-bit platform, then the library “TcHelper” can be used. For all other platforms/operating systems a new library needs to be created (refer to 2 Hardware).
Appendix

Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff’s branch offices and representatives
Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!
The addresses of Beckhoff’s branch offices and representatives round the world can be found on her internet pages: http://www.beckhoff.com
You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters
Beckhoff Automation GmbH
Eiserstr. 5
33415 Verl
Germany
phone: + 49 (0) 5246/963-0
fax: + 49 (0) 5246/963-198
e-mail: info@beckhoff.com
web: www.beckhoff.com

Beckhoff Support
Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:
world-wide support
design, programming and commissioning of complex automation systems
and extensive training program for Beckhoff system components
hotline: + 49 (0) 5246/963-157
fax: + 49 (0) 5246/963-9157
e-mail: support@beckhoff.com

Beckhoff Service
The Beckhoff Service Center supports you in all matters of after-sales service:
on-site service
repair service
spare parts service
hotline service
hotline: + 49 (0) 5246/963-460
fax: + 49 (0) 5246/963-479
e-mail: service@beckhoff.com

EtherCAT Technology Group (ETG) Headquarters
Phone: +49 (911) 540 5620
Fax: +49 (911) 540 5629
Email: info@ethercat.org
Internet: www.ethercat.org