**BECKHOFF** New Automation Technology

Documentation | EN KL6831, KL6841 Master Terminals for SMI Bus



2020-12-08 | Version: 2.0.0

# Table of contents

| 1 | Fore        | Foreword5                                                       |     |  |  |  |  |
|---|-------------|-----------------------------------------------------------------|-----|--|--|--|--|
|   | 1.1         | 1 Notes on the documentation                                    |     |  |  |  |  |
|   | 1.2         | Safety instructions                                             | 6   |  |  |  |  |
|   | 1.3         | Documentation issue status                                      | 7   |  |  |  |  |
| 2 | Prod        | uct overview                                                    | 8   |  |  |  |  |
|   | 2.1         | KL6831, KL6841 - Introduction                                   | 8   |  |  |  |  |
|   | 2.2         | KL6831, KL6841 - Diagnostic LEDs                                | . 9 |  |  |  |  |
|   | 2.3         | Technical data                                                  | 10  |  |  |  |  |
| 3 | Mour        | nting and wiring                                                | 11  |  |  |  |  |
|   | 3.1         | Instructions for ESD protection                                 | 11  |  |  |  |  |
|   | 3.2         | Installation on mounting rails                                  | 11  |  |  |  |  |
|   | 3.3         | Installation instructions for enhanced mechanical load capacity | 15  |  |  |  |  |
|   | 3.4         | Connection                                                      | 15  |  |  |  |  |
|   |             | 3.4.1 Connection system                                         | 15  |  |  |  |  |
|   |             | 3.4.2 Wiring                                                    | 18  |  |  |  |  |
|   |             | 3.4.3 Shielding                                                 | 19  |  |  |  |  |
|   | 3.5         | KL6831, KL6841 - Connection                                     | 20  |  |  |  |  |
| 4 | SMI.        |                                                                 | 21  |  |  |  |  |
|   | 4.1         | SMI - Overview                                                  | 21  |  |  |  |  |
|   | 4.2         | Introduction to SMI                                             | 21  |  |  |  |  |
|   | 4.3         | Principle of operation                                          | 22  |  |  |  |  |
|   | 4.4         | Notes for commissioning with DI1 and DI2                        | 22  |  |  |  |  |
| 5 | KS20        | 000 Configuration software                                      | 23  |  |  |  |  |
|   | 5.1         | KS2000 - Introduction                                           | 23  |  |  |  |  |
|   | 5.2         | Parameterization of the KL6831, KL6841 with KS2000              | 25  |  |  |  |  |
|   | 5.3         | Register                                                        | 27  |  |  |  |  |
|   | 5.4         | Settings                                                        | 28  |  |  |  |  |
|   |             | 5.4.1 Device settings                                           | 29  |  |  |  |  |
|   |             | 5.4.2 Options                                                   | 32  |  |  |  |  |
|   | 5.5         | Process data                                                    | 33  |  |  |  |  |
| 6 | Acce        | Access from the user program                                    |     |  |  |  |  |
|   | 6.1         | Register overview                                               | 35  |  |  |  |  |
|   | 6.2         | Register description                                            | 36  |  |  |  |  |
| 7 | Programming |                                                                 |     |  |  |  |  |
|   | 7.1         | TwinCAT libraries                                               | 38  |  |  |  |  |
| 8 | Appe        | endix                                                           | 39  |  |  |  |  |
|   | 8.1         | Support and Service                                             | 39  |  |  |  |  |
|   |             |                                                                 |     |  |  |  |  |

# BECKHOFF

# 1 Foreword

### **1.1** Notes on the documentation

### Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

### Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

### Trademarks

Beckhoff<sup>®</sup>, TwinCAT<sup>®</sup>, EtherCAT<sup>®</sup>, EtherCAT G<sup>®</sup>, EtherCAT G10<sup>®</sup>, EtherCAT P<sup>®</sup>, Safety over EtherCAT<sup>®</sup>, TwinSAFE<sup>®</sup>, XFC<sup>®</sup>, XTS<sup>®</sup> and XPlanar<sup>®</sup> are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

### **Patent Pending**

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.



EtherCAT<sup>®</sup> is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

### Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

### 1.2 Safety instructions

### **Safety regulations**

Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

### **Exclusion of liability**

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

#### **Personnel qualification**

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

#### **Description of instructions**

In this documentation the following instructions are used. These instructions must be read carefully and followed without fail!

▲ DANGER

### Serious risk of injury!

Failure to follow this safety instruction directly endangers the life and health of persons.

### **WARNING**

### Risk of injury!

Failure to follow this safety instruction endangers the life and health of persons.

### **Personal injuries!**

Failure to follow this safety instruction can lead to injuries to persons.

### NOTE

### Damage to environment/equipment or data loss

Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.



### Tip or pointer

This symbol indicates information that contributes to better understanding.

### **1.3 Documentation issue status**

| Version | Comment                                                    |
|---------|------------------------------------------------------------|
| 2.0.0   | Migration                                                  |
|         | Structure update                                           |
|         | Chapter <i>Product overview</i> updated,                   |
|         | <ul> <li>SMI Power LED added</li> </ul>                    |
|         | <ul> <li>Links to the TwinCAT libraries updated</li> </ul> |
|         | <ul> <li>Corrections in chapter Technical Data</li> </ul>  |
|         | Chapter Notes on ESD protection added                      |
|         | Update chapter Connection system -> Connection             |
|         | Chapter Notes on commissioning with DI1 and DI2 updated    |
|         | Chapter KS200 configuration software added                 |
|         | Chapter Access from the user program added                 |
| 1.1.0   | Chapter Register description updated                       |
|         | Chapter Principle of operation corrected                   |
| 1.0.0   | First release                                              |
| 0.0.x   | Internal versions for product management and development   |

### Firmware and hardware versions

| Documentation | KL6831   |          | KL6841   |          |  |
|---------------|----------|----------|----------|----------|--|
| Version       | Firmware | Hardware | Firmware | Hardware |  |
| 2.0.0         | 1D       | 02       | 1D       | 02       |  |
| 1.1.0         | 1C       | 00       | 1C       | 00       |  |
| 1.0.0         | 1C       | 00       | 1C       | 00       |  |

The firmware and hardware versions (delivery state) can be found in the serial number printed on the side of the terminal.

### Syntax of the serial number

Structure of the serial number: WW YY FF HH

WW - week of production (calendar week) YY - year FF - firmware version HH - hardware version

Example with ser. no.: 44 13 B1 00:

44 - week of production 4413 - year of production 20131C - firmware version 1C

00 - hardware version 00

# 2 **Product overview**

### 2.1 KL6831, KL6841 - Introduction



Fig. 1: KL6831

The SMI master terminals KL6831 and KL6841 enable direct connection to the SMI bus system.

The automation of roller shutters and sun blinds in building automation is simplified with the SMI-Bus system (Standard Motor Interface). With SMI drives roller shutters can drive to precise positions and blind drives can drive to angular positions with an accuracy of a degree. The SMI drives can return actual positions, error messages and service information to the SMI master terminal.

The KL6831 is designed for installations with 24 V LoVo SMI drives, the KL6841 for installations with 230  $V_{AC}$  SMI drives.

### NOTE

### Application of the KL6831 and KL6841

The KL6831 and KL6841 may only be operated at the designated SMI drives. Interchanging of 24 V LoVo SMI drives and 230  $V_{AC}$  SMI drives or mixed operation is not permitted, since it may lead to malfunctions and destruction of modules.

The wiring effort is reduced compared with standard drives, since each SMI master terminal can control up to 16 SMI drives.

Further information on the SMI bus and SMI drives are provided by the SMI Group under <u>http://standard-motor-interface.com</u>.

The KL6831 and KL6841 contain an integrated power supply unit for the electrically isolated SMI power supply. No further components are required for the operation of SMI drives. The KL6831 and KL6841 operate fieldbus-independent.

The <u>TwinCAT PLC Lib SMI</u> library, which is available free of charge (see TwinCAT Information System), is used to control the SMI master terminals directly from the PLC program. In addition, high-performance PLC function blocks for room automation according to VDI 3813 are available in the TwinCAT library <u>TS8040</u> (TwinCAT 2) / <u>TF8040</u> (TwinCAT 3).

### Support for KL6831 and KL6841

The KL6831 and KL6841 are only supported in conjunction with the TwinCAT library for the SMI master terminal!

If the KL6831 or KL6841 are used under another control system than TwinCAT, Bus Couplers (BK) are not supported.

In this case a Bus Terminal controller (BC or BX) would be required!

Without TwinCAT PLC, the KL6831 or KL6841 are not supported at an Embedded PC (CX).

### 2.2 KL6831, KL6841 - Diagnostic LEDs

The LEDs indicate the operating state of the KL6831 and KL6841.



Fig. 2: LEDs, from hardware 03 with additional SMI Power LED (left), up to hardware 02 (right)

| LED                                 | Color | State and significance                                                     |                          |                        |  |  |
|-------------------------------------|-------|----------------------------------------------------------------------------|--------------------------|------------------------|--|--|
|                                     |       | On                                                                         | Off                      | Flashes                |  |  |
| Run-LED                             | green | K-bus communication is OK                                                  | No K-bus communication   | K-bus<br>communication |  |  |
| Send LED                            | green | SMI telegrams are sent                                                     | No sending               | Sending active         |  |  |
| + 24 V Power LED                    | green | Power supply OK                                                            | No 24 V power supply     | -                      |  |  |
| Input LED1                          | green | DI 1 is switched on or was<br>active and has not yet been<br>acknowledged. | DI 1 is switched off     | -                      |  |  |
| Error LED                           | red   | Hardware error                                                             | No error                 | -                      |  |  |
| Receive LED                         | green | SMI telegrams are received                                                 | No reception             | Reception active       |  |  |
| SMI Power LED<br>(from hardware 03) | green | SMI power supply OK                                                        | SMI power supply missing | -                      |  |  |
| Input LED2                          | green | DI 2 is switched on or was active and has not yet been acknowledged.       | DI 2 is switched off     | -                      |  |  |

### Meaning of the LED displays

# 2.3 Technical data

| Technical data                                         | KL6831 KL6841                                                                                                                                                 |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels                                     | 1                                                                                                                                                             |
| Number of SMI slaves                                   | 16 max.                                                                                                                                                       |
| Electrical isolation (K-bus / SMI bus)                 | 1500 V                                                                                                                                                        |
| Bit width in the K-bus I/O                             | 2 x 22 bytes input and output data, 1 x 16 bit control/status word                                                                                            |
| Bit width in the input process image                   | 22 bytes of input data, 16 bits each for control word and status word                                                                                         |
| Bit width in the output process image                  | 22 bytes of output data, 16 bits each for control word and status word                                                                                        |
| Configuration                                          | Via function blocks of the TwinCAT automation software                                                                                                        |
| Special features                                       | 2 digital inputs for simplified commissioning, TwinCAT library available, can only be used with Beckhoff controller                                           |
| Power supply for the electronics                       | via the K-bus                                                                                                                                                 |
| Current consumption from K-bus                         | typically 55 mA                                                                                                                                               |
| Short-circuit strength                                 | yes, automatic re-starting                                                                                                                                    |
| Input voltage                                          | 24 V <sub>DC</sub> (-15%/+ 20%)                                                                                                                               |
| Isolation voltage                                      | SMI bus / K-bus: permanent 1500 $V_{AC}$ SMI bus / 24 $V_{DC}$ power supply: permanent 1500 $V_{AC}$ K-bus / 24 $V_{DC}$ power supply: permanent 500 $V_{AC}$ |
| SMI                                                    | standard-compliant, open circuit voltage approx. 18 $V_{\mbox{\tiny DC}}$                                                                                     |
| Data transfer rates                                    | 2400 baud                                                                                                                                                     |
| SMI system                                             | LoVo 230 V <sub>AC</sub>                                                                                                                                      |
| Resistance to overvoltage (effective)                  | permanent 275 V <sub>AC</sub>                                                                                                                                 |
| Weight                                                 | approx. 80 g                                                                                                                                                  |
| Dimensions (W x H x D)                                 | approx. 15 mm x 100 mm x 70 mm                                                                                                                                |
| Mounting [▶ 11]                                        | on 35 mm mounting rail conforms to EN 60715                                                                                                                   |
| Power dissipation                                      | 0.5 W + power dissipation caused by the connected SMI slaves                                                                                                  |
| Permissible ambient temperature range during operation | 0 °C + 55 °C                                                                                                                                                  |
| Permissible ambient temperature range during storage   | -25 °C + 85 °C                                                                                                                                                |
| Permissible relative air humidity                      | 95 %, no condensation                                                                                                                                         |
| Vibration / shock resistance                           | conforms to EN 60068-2-6/EN 60068-2-27,                                                                                                                       |
|                                                        | see also Installation instructions for enhanced mechanical load                                                                                               |
|                                                        | capacity [▶ 15]                                                                                                                                               |
| EMC immunity / emission                                | conforms to EN 61000-6-2 / EN 61000-6-4                                                                                                                       |
| Protection class                                       | IP20                                                                                                                                                          |
| Installation position                                  | variable                                                                                                                                                      |
| Approval                                               | CE                                                                                                                                                            |

# 3 Mounting and wiring

### 3.1 Instructions for ESD protection

### NOTE

### Destruction of the devices by electrostatic discharge possible!

The devices contain components at risk from electrostatic discharge caused by improper handling.

- Please ensure you are electrostatically discharged and avoid touching the contacts of the device directly.
- Avoid contact with highly insulating materials (synthetic fibers, plastic film etc.).
- Surroundings (working place, packaging and personnel) should by grounded probably, when handling with the devices.
- Each assembly must be terminated at the right hand end with an <u>EL9011</u> or <u>EL9012</u> bus end cap, to ensure the protection class and ESD protection.



Fig. 3: Spring contacts of the Beckhoff I/O components

### 3.2 Installation on mounting rails

### 

### Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!

### Assembly



Fig. 4: Attaching on mounting rail

The bus coupler and bus terminals are attached to commercially available 35 mm mounting rails (DIN rails according to EN 60715) by applying slight pressure:

- 1. First attach the fieldbus coupler to the mounting rail.
- 2. The bus terminals are now attached on the right-hand side of the fieldbus coupler. Join the components with tongue and groove and push the terminals against the mounting rail, until the lock clicks onto the mounting rail.

If the terminals are clipped onto the mounting rail first and then pushed together without tongue and groove, the connection will not be operational! When correctly assembled, no significant gap should be visible between the housings.

### •

### Fixing of mounting rails

The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At
the installation, the locking mechanism of the components must not come into conflict with the fixing bolts of the mounting rail. To mount the mounting rails with a height of 7.5 mm under the terminals and couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).

### Disassembly



Fig. 5: Disassembling of terminal

Each terminal is secured by a lock on the mounting rail, which must be released for disassembly:

- 1. Pull the terminal by its orange-colored lugs approximately 1 cm away from the mounting rail. In doing so for this terminal the mounting rail lock is released automatically and you can pull the terminal out of the bus terminal block easily without excessive force.
- 2. Grasp the released terminal with thumb and index finger simultaneous at the upper and lower grooved housing surfaces and pull the terminal out of the bus terminal block.

#### **Connections within a bus terminal block**

The electric connections between the Bus Coupler and the Bus Terminals are automatically realized by joining the components:

- The six spring contacts of the K-Bus/E-Bus deal with the transfer of the data and the supply of the Bus Terminal electronics.
- The power contacts deal with the supply for the field electronics and thus represent a supply rail within the bus terminal block. The power contacts are supplied via terminals on the Bus Coupler (up to 24 V) or for higher voltages via power feed terminals.



#### Power Contacts

During the design of a bus terminal block, the pin assignment of the individual Bus Terminals must be taken account of, since some types (e.g. analog Bus Terminals or digital 4-channel Bus Terminals) do not or not fully loop through the power contacts. Power Feed Terminals (KL91xx, KL92xx or EL91xx, EL92xx) interrupt the power contacts and thus represent the start of a new supply rail.

#### **PE power contact**

The power contact labeled PE can be used as a protective earth. For safety reasons this contact mates first when plugging together, and can ground short-circuit currents of up to 125 A.





Fig. 6: Power contact on left side

### NOTE

### Possible damage of the device

Note that, for reasons of electromagnetic compatibility, the PE contacts are capacitatively coupled to the mounting rail. This may lead to incorrect results during insulation testing or to damage on the terminal (e.g. disruptive discharge to the PE line during insulation testing of a consumer with a nominal voltage of 230 V). For insulation testing, disconnect the PE supply line at the Bus Coupler or the Power Feed Terminal! In order to decouple further feed points for testing, these Power Feed Terminals can be released and pulled at least 10 mm from the group of terminals.

### **A WARNING**

### **Risk of electric shock!**

The PE power contact must not be used for other potentials!

# 3.3 Installation instructions for enhanced mechanical load capacity

### **WARNING**

### Risk of injury through electric shock and damage to the device!

Bring the Bus Terminal system into a safe, de-energized state before starting mounting, disassembly or wiring of the Bus Terminals!

#### Additional checks

The terminals have undergone the following additional tests:

| Verification                          | Explanation                                                  |  |  |  |
|---------------------------------------|--------------------------------------------------------------|--|--|--|
| Vibration 10 frequency runs in 3 axes |                                                              |  |  |  |
|                                       | 6 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude    |  |  |  |
|                                       | 60.1 Hz < f < 500 Hz acceleration 5 $g$ , constant amplitude |  |  |  |
| Shocks                                | 1000 shocks in each direction, in 3 axes                     |  |  |  |
|                                       | 25 g, 6 ms                                                   |  |  |  |

#### Additional installation instructions

For terminals with enhanced mechanical load capacity, the following additional installation instructions apply:

- The enhanced mechanical load capacity is valid for all permissible installation positions
- Use a mounting rail according to EN 60715 TH35-15
- Fix the terminal segment on both sides of the mounting rail with a mechanical fixture, e.g. an earth terminal or reinforced end clamp
- The maximum total extension of the terminal segment (without coupler) is: 64 terminals (12 mm mounting with) or 32 terminals (24 mm mounting with)
- Avoid deformation, twisting, crushing and bending of the mounting rail during edging and installation of the rail
- The mounting points of the mounting rail must be set at 5 cm intervals
- · Use countersunk head screws to fasten the mounting rail
- The free length between the strain relief and the wire connection should be kept as short as possible. A distance of approx. 10 cm should be maintained to the cable duct.

### 3.4 Connection

### 3.4.1 Connection system

### **WARNING**

### Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!

#### Overview

The bus terminal system offers different connection options for optimum adaptation to the respective application:

• The terminals of ELxxxx and KLxxxx series with standard wiring include electronics and connection level in a single enclosure.

- The terminals of ESxxxx and KSxxxx series feature a pluggable connection level and enable steady wiring while replacing.
- The High Density Terminals (HD Terminals) include electronics and connection level in a single enclosure and have advanced packaging density.

### Standard wiring (ELxxxx / KLxxxx)



Fig. 7: Standard wiring

The terminals of ELxxxx and KLxxxx series have been tried and tested for years. They feature integrated screwless spring force technology for fast and simple assembly.

### Pluggable wiring (ESxxxx / KSxxxx)



Fig. 8: Pluggable wiring

The terminals of ESxxxx and KSxxxx series feature a pluggable connection level.

The assembly and wiring procedure is the same as for the ELxxxx and KLxxxx series.

The pluggable connection level enables the complete wiring to be removed as a plug connector from the top of the housing for servicing.

The lower section can be removed from the terminal block by pulling the unlocking tab.

Insert the new component and plug in the connector with the wiring. This reduces the installation time and eliminates the risk of wires being mixed up.

The familiar dimensions of the terminal only had to be changed slightly. The new connector adds about 3 mm. The maximum height of the terminal remains unchanged.

A tab for strain relief of the cable simplifies assembly in many applications and prevents tangling of individual connection wires when the connector is removed.

Conductor cross sections between 0.08 mm<sup>2</sup> and 2.5 mm<sup>2</sup> can continue to be used with the proven spring force technology.

The overview and nomenclature of the product names for ESxxxx and KSxxxx series has been retained as known from ELxxxx and KLxxxx series.

### **High Density Terminals (HD Terminals)**



Fig. 9: High Density Terminals

The terminals from these series with 16 terminal points are distinguished by a particularly compact design, as the packaging density is twice as large as that of the standard 12 mm bus terminals. Massive conductors and conductors with a wire end sleeve can be inserted directly into the spring loaded terminal point without tools.



### Wiring HD Terminals

The High Density Terminals of the ELx8xx and KLx8xx series doesn't support pluggable wiring.

### Ultrasonically "bonded" (ultrasonically welded) conductors



### Ultrasonically "bonded" conductors

It is also possible to connect the Standard and High Density Terminals with ultrasonically "bonded" (ultrasonically welded) conductors. In this case, please note the tables concerning the wire-size width!

# **BECKHOFF**

### 3.4.2 Wiring

### 

### Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!

### Terminals for standard wiring ELxxxx/KLxxxx and for pluggable wiring ESxxxx/KSxxxx



Fig. 10: Connecting a cable on a terminal point

Up to eight terminal points enable the connection of solid or finely stranded cables to the bus terminal. The terminal points are implemented in spring force technology. Connect the cables as follows:

- 1. Open a terminal point by pushing a screwdriver straight against the stop into the square opening above the terminal point. Do not turn the screwdriver or move it alternately (don't toggle).
- 2. The wire can now be inserted into the round terminal opening without any force.
- 3. The terminal point closes automatically when the pressure is released, holding the wire securely and permanently.

See the following table for the suitable wire size width.

| Terminal housing                                    | ELxxxx, KLxxxx           | ESxxxx, KSxxxx           |  |
|-----------------------------------------------------|--------------------------|--------------------------|--|
| Wire size width (single core wires)                 | 0.08 2.5 mm <sup>2</sup> | 0.08 2.5 mm <sup>2</sup> |  |
| Wire size width (fine-wire conductors)              | 0.08 2.5 mm <sup>2</sup> | 0,08 2.5 mm <sup>2</sup> |  |
| Wire size width (conductors with a wire end sleeve) | 0.14 1.5 mm <sup>2</sup> | 0.14 1.5 mm <sup>2</sup> |  |
| Wire stripping length                               | 8 9 mm                   | 9 10 mm                  |  |

### High Density Terminals (<u>HD Terminals [▶ 17]</u>) with 16 terminal points

The conductors of the HD Terminals are connected without tools for single-wire conductors using the direct plug-in technique, i.e. after stripping the wire is simply plugged into the terminal point. The cables are released, as usual, using the contact release with the aid of a screwdriver. See the following table for the suitable wire size width.

# BECKHOFF

| Terminal housing                                     | High Density Housing      |  |  |
|------------------------------------------------------|---------------------------|--|--|
| Wire size width (single core wires)                  | 0.08 1.5 mm <sup>2</sup>  |  |  |
| Wire size width (fine-wire conductors)               | 0.25 1.5 mm <sup>2</sup>  |  |  |
| Wire size width (conductors with a wire end sleeve)  | 0.14 0.75 mm <sup>2</sup> |  |  |
| Wire size width (ultrasonically "bonded" conductors) | only 1.5 mm <sup>2</sup>  |  |  |
| Wire stripping length                                | 8 9 mm                    |  |  |

### 3.4.3 Shielding



### Shielding

Encoder, analog sensors and actors should always be connected with shielded, twisted paired wires.

### 3.5 KL6831, KL6841 - Connection



Fig. 11: KL6831

| Terminal point       | No. | Connection for                                                                         |
|----------------------|-----|----------------------------------------------------------------------------------------|
| + 24 V <sub>DC</sub> | 1   | 24 V supply voltage                                                                    |
| Input 1              | 2   | 24 V digital input for executing freely definable SMI commands, default:               |
|                      |     | Rising edge: all SMI drives are started up<br>Falling edge: all SMI drives are stopped |
| SMI+                 | 3   | SMI bus line I+                                                                        |
| SMI-                 | 4   | SMI bus line I-                                                                        |
| 0 V                  | 5   | Ground                                                                                 |
| Input 2              | 6   | 24 V digital input for executing freely definable SMI commands, default:               |
|                      |     | Rising edge: all SMI drives are shut down<br>Falling edge: all SMI drives are stopped  |
| SMI+                 | 7   | SMI bus line I+                                                                        |
| SMI-                 | 8   | SMI bus line I-                                                                        |

### Input 1 and input 2

The digital inputs Input 1 and Input 2 (terminal points 2 and 6) only work if the 24 V supply voltage is connected and the K-bus voltage supplied is switched on.

### Input 1 and input 2, effect on automatic mode

The digital inputs Input 1 and Input 2 (terminal points 2 and 6) have priority over automatic control through the PLC program. If the digital inputs are operated, other PLC-controlled SMI commands are blocked. To enable them a rising edge is required at the bResetInactiveProcessImage input of FB\_KL6831KL6841Communication. See documentation <u>TwinCAT PLC Lib:SMI</u>.

# BECKHOFF



Fig. 12: KL6831 connection example



Fig. 13: KL6841 connection example

### 4.2 Introduction to SMI

The automation of roller shutters and sun blinds in building automation is simplified with the **SMI**-Bus system (**Standard Motor Interface**). With SMI drives roller shutters can drive to precise positions and blind drives can drive to angular positions with an accuracy of a degree. The SMI drives can return actual positions, error messages and service information to the SMI master terminal.

Major European manufacturers have formed the *SMI Standard Motor Interface* e.V. and developed the digital interface. Drives are controlled by means of telegrams via this uniform interface. Using standard commands, functions can be implemented that are not so easy to realize with conventional drives. Examples are the precise movement to positions, the feedback of the current position and diagnosis. For the adjustment of louvers in shading systems, for example, angular resolutions of 2° can be achieved. Adjustment of the louvers in relation to the position of the sun is thus possible for constant light control.

For mains-voltage drives, the drive and controller are connected via a five-core cable for power supply and data transmission. Distances of up to 350 m between controller and drive are possible. The connecting cables are reverse-polarity protected to prevent damage to the drive in case of incorrect connection. Up to 16 drives can be connected in parallel and addressed individually. SMI drives are available for mains voltage (230  $V_{AC}$ ) and for low voltage (24  $V_{DC}$ ).

In order to ensure the compatibility of the SMI products with one another, all products that are to be marked with the SMI logo must be certified. A positive certification can be read on the SMI Group's homepage (<u>www.standard-motor-interface.com</u>). Further information on the SMI-Bus and SMI drives can also be found there.

### 4.3 **Principle of operation**

The two SMI master terminals KL6831 and KL6841 enable the operation of 16 SMI drives (blinds/roller shutters) per terminal and support the complete SMI functionality. Ready-made function blocks are used to realize up, down and stop commands, travel to any position, adjustment of the slat angle and feedback on the current position of the motor/blind in the PLC user program. The SMI master terminals implement the process data (movement commands in the PLC program) in the SMI protocol, including level conversion. The terminals require an external 24  $V_{DC}$  supply. The K-bus, the 24 V supply and the SMI connections are electrically isolated from each other.

### Addressing of the SMI drives and programming of the SMI master terminal

Addressing of the SMI drives and programming of the SMI master terminal is described in the software documentation in the Beckhoff Information System:

TwinCAT 2: <u>TwinCAT PLC Lib: SMI</u> TwinCAT 3: <u>TwinCAT 3 PLC Lib: Tc2\_SMI</u>

### 4.4 Notes for commissioning with DI1 and DI2

The behavior of the digital inputs DI1 and DI2 can be modified via the library blocks. To support commissioning the following default behavior is assigned.

| Digital input       | SMI command                                                        |  |  |  |
|---------------------|--------------------------------------------------------------------|--|--|--|
| Rising edge at DI1  | All SMI drives travel UP on rising edge at DI1 (factory setting)   |  |  |  |
| Falling edge at DI1 | All SMI drives stop on falling edge at DI1 (factory setting)       |  |  |  |
| Rising edge at DI2  | All SMI drives travel DOWN on rising edge at DI2 (factory setting) |  |  |  |
| Falling edge at DI2 | All SMI drives stop on falling edge at DI2 (factory setting)       |  |  |  |

### Input 1 and input 2, effect on automatic mode

The digital inputs Input 1 and Input 2 (terminal points 2 and 6) have priority over automatic control through the PLC program. If the digital inputs are operated, other PLC-controlled SMI commands are blocked. To enable them a rising edge is required at the bResetInactiveProcessImage input of FB\_KL6831KL6841Communication. See documentation <u>TwinCAT PLC Lib:SMI</u>.

### Addressing and behavior of DI1 and DI2 with KS2000

The inputs DI1 and DI can be addressed and configured with the KS2000 software via the Device Settings and Options dialogs (see <u>Settings [> 28]</u>).

# 5 KS2000 Configuration software

### 5.1 KS2000 - Introduction

The KS2000 configuration software permits configuration, commissioning and parameterization of bus couplers, of the affiliated bus terminals and of Fieldbus Box Modules. The connection between bus coupler / Fieldbus Box Module and the PC is established by means of the serial configuration cable or the fieldbus.



Fig. 14: KS2000 configuration software

### Configuration

You can configure the Fieldbus stations with the Configuration Software KS2000 offline. That means, setting up a terminal station with all settings on the couplers and terminals resp. the Fieldbus Box Modules can be prepared before the commissioning phase. Later on, this configuration can be transferred to the terminal station in the commissioning phase by means of a download. For documentation purposes, you are provided with the breakdown of the terminal station, a parts list of modules used and a list of the parameters you have modified. After an upload, existing fieldbus stations are at your disposal for further editing.

### Parameterization

KS2000 offers simple access to the parameters of a fieldbus station: specific high-level dialogs are available for all bus couplers, all intelligent bus terminals and Fieldbus Box modules with the aid of which settings can be modified easily. Alternatively, you have full access to all internal registers of the bus couplers and intelligent terminals. Refer to the register description for the meanings of the registers.

### Commissioning

The KS2000 software facilitates commissioning of machine components or their fieldbus stations: Configured settings can be transferred to the fieldbus modules by means of a download. After a *login* to the terminal station, it is possible to define settings in couplers, terminals and Fieldbus Box modules directly *online*. The same high-level dialogs and register access are available for this purpose as in the configuration phase.

The KS2000 offers access to the process images of the bus couplers and Fieldbus Box modules.

- Thus, the coupler's input and output images can be observed by monitoring.
- Process values can be specified in the output image for commissioning of the output modules.

All possibilities in the *online mode* can be used in parallel with the actual fieldbus mode of the terminal station. The fieldbus protocol always has the higher priority in this case.

### 5.2 Parameterization of the KL6831, KL6841 with KS2000

Connect the configuration interface of your Fieldbus Coupler with the serial interface of your PC via the configuration cable and start the *KS2000* Configuration Software.

It is also possible to configure the terminal via the PLC with the function block FB\_KL6831KL6841Config.



Click on the *Login* button. The configuration software will now load the information for the connected fieldbus station.

In the example shown, this is

- a BK1120 Bus Coupler for Ethernet
- a KL1xx2 digital input terminal
- a KL6831 SMI master terminal
- a KL6841 SMI master terminal
- a KL9010 Bus End Terminal



#### Fig. 15: Display of the fieldbus station in KS2000

The left-hand KS2000 window displays the terminals of the fieldbus station in a tree structure. The right-hand KS2000 window contains a graphic display of the fieldbus station terminals.

In the tree structure of the left-hand window, click on the plus-sign next to the terminal whose parameters you wish to change (item 2 and 3 in the example).



Fig. 16: KS2000 branches for channel 1 of the KL6831 and KL6841

The branches Register, Settings and ProcData are displayed for the KL6831 and KL6841:

- Register [) 27] enables direct access to the KL6831/KL6841 registers.
- Dialog masks for the parameterization of the KL6831/KL6841 can be found under <u>Settings [> 28]</u>.
- <u>ProcData [} 33]</u> shows the process data for the KL6831/KL6841.

### 5.3 Register

Under *Register* you can directly access the registers of the dimmer terminal. The meaning of the register is explained in the register overview [ $\triangleright$  35].

The following image shows the registers of the KL6831.

| Beckhoff KS2000                                                                                  |        |        |       |                     |             |           |
|--------------------------------------------------------------------------------------------------|--------|--------|-------|---------------------|-------------|-----------|
| Project Online Options Help                                                                      |        |        |       |                     |             |           |
|                                                                                                  | ۱      |        |       |                     |             |           |
| E Pos 0: BK1120-0000 (BK1120)                                                                    |        |        |       |                     |             |           |
| Pos 1: KL1xx2-0000 (2 channel dig. input)                                                        |        |        |       |                     |             |           |
| Pos 2: KL6831-0000 (1 channel communication)                                                     |        |        |       |                     |             | - Evit    |
| E & Channel 1                                                                                    |        |        | Re    | gister              |             | <u> </u>  |
| Register                                                                                         | Offset | HEX    | UINT  | BIN                 | Description | ▲         |
| tettings                                                                                         | 000    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
| Process Data                                                                                     | 001    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
| Pos 3: KL6841-0000 (1 channel communication)                                                     | 002    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
| Pos 4: KL9010-0000 (End terminal)                                                                | 003    | 0x0000 | 0     | 0000 0000 0000 0000 |             |           |
|                                                                                                  | 004    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 005    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 006    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 007    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 008    | 0x1AAF | 6831  | 0001 1010 1010 1111 |             |           |
|                                                                                                  | 009    | 0x3144 | 12612 | 0011 0001 0100 0100 |             |           |
|                                                                                                  | 010    | 0x0430 | 1072  | 0000 0100 0011 0000 |             |           |
|                                                                                                  | 011    | 0x01C0 | 448   | 0000 0001 1100 0000 |             |           |
|                                                                                                  | 012    | 0xC0C0 | 49344 | 1100 0000 1100 0000 |             |           |
|                                                                                                  | 013    | 0x0001 | 1     | 0000 0000 0000 0001 |             |           |
|                                                                                                  | 014    | 0x0002 | 2     | 0000 0000 0000 0010 | )           |           |
|                                                                                                  | 015    | 0x7F80 | 32640 | 0111 1111 1000 0000 | )           |           |
|                                                                                                  | 016    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 017    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 018    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 019    | 0x0000 | 0     | 0000 0000 0000 0000 | )           |           |
|                                                                                                  | 020    | 0x0000 | 0     |                     | )           |           |
|                                                                                                  | 021    | 0x0000 | 0     |                     | )           |           |
|                                                                                                  | 022    | 0x0000 | 0     |                     | )           |           |
|                                                                                                  | 023    | 0x0000 | 0     |                     | )           |           |
|                                                                                                  | 024    | 0x0000 | 0     |                     | )           |           |
|                                                                                                  | 025    | 0x0000 | 0     |                     | ]           |           |
|                                                                                                  | 026    | UXUUUU | U     |                     | J           | Z Refresh |
|                                                                                                  |        |        |       |                     |             |           |
| Online<br>Check diagnostic data<br>Check diagnostic data is OK<br>Check diagnostic data finished |        |        |       |                     |             |           |
| Status                                                                                           |        |        |       | Online              | 3/16/2017   | 1:03 PM   |
|                                                                                                  |        |        |       | ,                   |             |           |

Fig. 17: Register view example: KL6831 in KS2000

### 5.4 Settings

Two dialog masks for parameterization of the KL6831/KL6841 are available under Settings:

- 1. <u>Device settings [▶ 29]</u>
  - Different address types can be selected to search for SMI devices.
  - The main SMI commands are available for manual control

| Device Settings Options |                                                                               |                                |
|-------------------------|-------------------------------------------------------------------------------|--------------------------------|
| Devices                 | Adress Type                                                                   |                                |
|                         | Broadcast     C Address:                                                      | 0                              |
|                         | O Group: □ 0 □ 1 □ 2 □ 3 O Slave ld:                                          | 0 dec                          |
|                         | □ 4 □ 5 □ 6 □ 7                                                               | 0x0 hex                        |
|                         | □ 8 □ 9 □ 10 □ 11                                                             | 1 - Dunkermotoren GmbH         |
|                         | 🗖 12 🗖 13 🗖 14 🗖 15                                                           |                                |
|                         | Commands                                                                      |                                |
|                         | Up Step Up Read Pos Drive Pos D                                               | rive Pos1 Read Pos1 Write Pos1 |
|                         | 10 Degree 32767                                                               | 32767                          |
|                         | Stop % 50 %                                                                   | % 50 %                         |
|                         | Down Step         Down         0 % -> Top         D           100 % -> Bottom | rive Pos2 Read Pos2 Write Pos2 |
|                         | 10 Degree                                                                     | 32767                          |
|                         |                                                                               | % 50 %                         |
| Scan Devices by address |                                                                               |                                |

Fig. 18: KL6831/KL6841 - device settings via KS2000

### 2. Options [) 32]

• For setting the behavior of the digital inputs DI1 and DI2.

| Position:                                                                                                                                                                                                                                                                                                                                                                         | 2           |               | Ch             | annel:        | 1           |                                                              |       | Offset:                       | 0 [Byte]   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|----------------|---------------|-------------|--------------------------------------------------------------|-------|-------------------------------|------------|
| Туре:                                                                                                                                                                                                                                                                                                                                                                             | KL6831-0000 |               | Fir            | mware:        | 1D (0       | )x3144)                                                      |       | Format:                       | Intel      |
| Device Settings                                                                                                                                                                                                                                                                                                                                                                   | Options     | 11 and DI2 ca | an he modified | via the follo | wing table  |                                                              |       |                               |            |
| The behavior of the digital inputs DI1 and DI2 can be modified via the following table.<br>The digital inputs DI1 and DI2 (terminal points 2 and 6) have priority over automatic control<br>through the PLC program. If the digital inputs are operated, the respective LED to the bus<br>terminal is set. In addition, all SMI commands that are called by the PLC, are blocked. |             |               |                |               |             | Run-LED<br>Send-LED<br>+24 V Power-LE<br>Input-LED1<br>+24 V |       | or-LED<br>ut-LED2<br>vt -LED2 |            |
|                                                                                                                                                                                                                                                                                                                                                                                   | 5           | SMI com       | nand on e      | vent (to a    | ll SMI devi | es)                                                          |       |                               |            |
| Even                                                                                                                                                                                                                                                                                                                                                                              | t nothing   | up            | down           | stop          | pos1        | pos2                                                         | DI1   | <b>00 ←</b> □2                | 2 20 06    |
| K-Bus watchd                                                                                                                                                                                                                                                                                                                                                                      | og 📀        | 0             | 0              | 0             | 0           | 0                                                            |       | San San                       |            |
| DI1 rising edg                                                                                                                                                                                                                                                                                                                                                                    | e C         | ۲             | 0              | 0             | 0           | 0                                                            | SMI + | <b>ö öl</b> ← sw              | I• ,5€, -  |
| DI1 falling edg                                                                                                                                                                                                                                                                                                                                                                   | je 🔿        | 0             | 0              | ۲             | 0           | 0                                                            |       | She and                       | SMI        |
| DI2 rising edg                                                                                                                                                                                                                                                                                                                                                                    | je O        | 0             | ۲              | 0             | 0           | 0                                                            | SMI   | SM                            | I - device |
| DI2 falling ed                                                                                                                                                                                                                                                                                                                                                                    | je O        | 0             | 0              | ۲             | 0           | 0                                                            |       | RA4831<br>BECKHOFF            |            |
| Default Va                                                                                                                                                                                                                                                                                                                                                                        | lues        |               |                |               |             |                                                              |       |                               |            |

Fig. 19: KL6831/KL6841 - setting the behavior of the digital inputs for event

### 5.4.1 Device settings

#### Searching for devices by address

| Position:       | 2                                                                          | Channel:                                                                                                                     | 1                                                                                                                                                   | Offset:                          | 0 [Byte]                                                                                    |
|-----------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|
| Туре:           | KL6841-0000                                                                | Firmware:                                                                                                                    | 1D (0x3144)                                                                                                                                         | Format:                          | Intel                                                                                       |
| Device Settings | Options s<br>s<br>rice #13 (646)<br>rice #14 (652)<br>rice #15 (132551771) | Device Infos<br>Adress 14<br>Slave Id: 652 dec<br>Commands<br>Up Step Up<br>10 Degree<br>Stop<br>Down Step Down<br>10 Degree | Ox28C         hex           Read Pos         Drive Po           32767         %           %         50           0 % -> Top         100 % -> Bottom | Manufacturer Code 9 - Gerhard Ge | siger GmbH & Co. KG<br>s1 Write Pos1<br>32767<br>% 50 %<br>s2 Write Pos2<br>32767<br>% 50 % |
| Scan Dev        | vices by address                                                           |                                                                                                                              |                                                                                                                                                     |                                  |                                                                                             |

Fig. 20: KL6831/KL6841 - Searching for devices by address

Clicking the *Searching for devices by address* button triggers a search for devices with a short address (0... 15). The results are shown in the dialog box (see image above). Devices without an address are not displayed.

The *Device information* field shows the address, the slave ID and the manufacturer code for the selected device.

### Address type

| Adress Type |                     |                      |                        |
|-------------|---------------------|----------------------|------------------------|
| Broadcast   |                     | C Address:           | 0 🔽                    |
| C Group:    | □ □ □ 1 □ 2 □ 3     | C Slave Id:          | 0 dec                  |
|             | □ 4 □ 5 □ 6 □ 7     |                      | 0x0 hex                |
|             | 🗖 8 🗖 9 🗖 10 🗖 11   | O Manufacturer Code: | 1 - Dunkermotoren GmbH |
|             | 🗖 12 🔲 13 🔲 14 🔲 15 |                      |                        |

Fig. 21: KL6831, KL6841 - selecting the address type with KS2000

The individual modes of addressing are described below. Note that not every command supports all addressing modes.

The following types of device addressing are available:

Broadcast

A broadcast always addresses all devices, irrespective of the address set at the device.

Group addressing

Each device that is to be controlled via group addressing must have an address from 0 to 15. Use the checkboxes to select the addresses of the devices to be accessed.

Example: The drives with addresses 1, 4, 7 and 12 are to be accessed

| Group: | □ 0      | <b>⊠</b> 1 | □ 2         | Π3   |
|--------|----------|------------|-------------|------|
|        | ☑ 4      | 5          | <b>□</b> 6  | 7    |
|        | <b>8</b> | F 9        | l 10        | 🗖 11 |
|        | 🗹 12     | l 13       | <b>□</b> 14 | l 15 |

Fig. 22: Example for group addressing with KS2000

### Individual addressing

#### • by address

Each SMI device can be assigned an address from 0 to 15. Since each address should only be assigned once, each SMI device can be addressed individually.

The address is stored in the SMI device and must be correctly set again when exchanging the drive.

This address is also occasionally called the slave address. The slave address must not be confused with the slave ID (see below).

• via slave ID

The device manufacturers store a unique 32-bit number in each SMI device. The slave ID, also referred to as key ID, can be used for addressing a device.

With some SMI devices the slave ID is printed on the name plate or is made visible by a label on the cable.

Most read commands do not support addressing by Slave ID.

#### Addressing by manufacturer code

All devices from a manufacturer are always addressed by this addressing.

SMI defines a manufacturer code for each manufacturer. The manufacturer code is permanently stored in the SMI device and cannot be changed. Often abbreviated as M-ID.

With some SMI devices the manufacturer code is printed on the name plate or is made visible by a label on the cable.

#### Commands



Fig. 23: KL6831, KL6841 - entering commands via KS2000 (default settings)

• Up Step / Down Step

Enables motor travel up / down by a specified angle.

In the listbox below, angles between 2 and 510 degrees can be specified (default: 10). Since the SMI standard reduces the accuracy to a resolution of 2 degrees, the angles are specified in 2-degree steps.

• Up / Down

enables motor movement to the upper / lower end position.

• Stop

stops the motor operation.

Read Pos

Reads the current position from the drive. The position value is shown below the button as an absolute value and in percent.

• The value = 0 (0 %) corresponds to the upper end position

# BECKHOFF

• The value = 65535 (100 %) corresponds to the lower end position.

Drive Pos

The drive travels to a specified position value. The position value is specified via the input fields, either as an absolute value or in percent.

### Drive Pos1 / Drive Pos2

The drive travels to the fixed position *Pos1 / Pos2* that is configured on the motor side.

#### Read Pos1 / Read Pos2

Reads the fixed position *Pos1 / Pos2* that is configured on the motor side and shows it as an absolute value and in percent.

- The value = 0 (0 %) corresponds to the upper end position
- The value = 65535 (100 %) corresponds to the lower end position.

### • Write Pos1 / Write Pos2

The position value for the fixed position *Pos1 / Pos2* is specified via the input fields, either as an absolute value or in percent.

### 5.4.2 Options

Use the *Options* dialog to specify commands that are executed for all SMI devices when the corresponding event occurs.



### Input 1 and input 2, effect on automatic mode

The digital inputs Input 1 and Input 2 (terminal points 2 and 6) have priority over automatic control through the PLC program. If the digital inputs are operated, other PLC-controlled SMI commands are blocked. To enable them a rising edge is required at the bResetInactiveProcessImage input of FB\_KL6831KL6841Communication. See documentation <u>TwinCAT PLC Lib:SMI</u>.

| Device Settings Options                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                |                 |             |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-----------------|-------------|------|
| The behavior of the d                                                                                                                                                                                                                                                            | igital inputs DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 and DI2 c | an be modified | d via the follo | wing table. |      |
| The digital inputs DI1 and DI2 (terminal points 2 and 6) have priority over automatic control through the PLC program. If the digital inputs are operated, the respective LED to the bus terminal is set. In addition, all SMI commands that are called by the PLC, are blocked. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                |                 |             |      |
| Event                                                                                                                                                                                                                                                                            | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MI com      | nand on e      | vent (to a      | II SMI devi | es)  |
| K-Bus watchdon                                                                                                                                                                                                                                                                   | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0           | 00000          | C               | 0           | 0002 |
| DI1 rising edge                                                                                                                                                                                                                                                                  | , in the second s |             | ~              | ~               | ~           | ~    |
| DI1 falling edge                                                                                                                                                                                                                                                                 | č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ö           |                | ē               |             | č    |
| DI2 rising edge                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0           | ē              | 0               | 0           | ò    |
| DI2 falling edge                                                                                                                                                                                                                                                                 | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0           | 0              |                 | 0           | ō    |
| Default Values                                                                                                                                                                                                                                                                   | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                |                 |             |      |

Fig. 24: KL6831/KL6841 - Setting options with KS2000 (default settings)

| Event            | Description                                       |
|------------------|---------------------------------------------------|
| K-bus watchdog   | The terminal is no longer addressed by the K-bus. |
| DI1 rising edge  | A rising edge is present at input DI1.            |
| DI1 falling edge | A falling edge is present at input DI1.           |
| DI2 rising edge  | A rising edge is present at input DI2.            |
| DI2 falling edge | A falling edge is present at input DI2.           |

| SMI commands | Description                                                                        |
|--------------|------------------------------------------------------------------------------------|
| none         | No command is executed.                                                            |
| Up           | All drives drive travel to the upper end position.                                 |
| Down         | All drives drive travel to the lower end position.                                 |
| Stop         | The motor operation is stopped.                                                    |
| To Pos1      | The drive travels to the fixed position Pos1 that is configured on the motor side. |
| To Pos2      | The drive travels to the fixed position Pos2 that is configured on the motor side. |

### **Default values**

Use the *Defaults* button to restore the default settings (see image above).

### 5.5 Process data

| Г | Proces  | s Data (Hex.) -1 |           |            |         |           |        |              |     |
|---|---------|------------------|-----------|------------|---------|-----------|--------|--------------|-----|
|   | Pos     | Туре             | I-Address | Value      | Bitsize | O-Address | Value  | Bitsize      | •   |
|   | 2       | KL6831-0000      |           |            |         |           |        |              |     |
|   |         | Channel 1        |           |            |         |           |        |              |     |
|   |         | <b>♦</b> †State  | 0.0       | 0x0000     | 16      |           |        |              |     |
|   |         | 🔷 Data In 0      | 2.0       | 2 0x00     | 8       |           |        |              |     |
|   |         | 📢 Data In 1      | 3.0       | 🔂 0x00     | 8       |           |        |              |     |
|   |         | 💜 Data In 2      | 4.0       | 0x00       | 8       |           |        |              |     |
|   |         | 💜 Data In 3      | 5.0       | 0x00       | 8       |           |        |              |     |
|   |         | 💜 Data In 4      | 6.0       | 0x00       | 8       |           |        |              |     |
|   |         | 🔷 Data In 5      | 7.0       | 0x00       | 8       |           |        |              |     |
|   |         | 🔷 Data In 6      | 8.0       | 0x00       | 8       |           |        |              |     |
|   |         | 💜 Data In 7      | 9.0       | 0x00       | 8       |           |        |              |     |
|   |         | 💜 Data In 8      | 10.0      | 0x00       | 8       |           |        |              |     |
|   |         | 🗣 Data In 9      | 11.0      | 0x00       | 8       |           |        |              |     |
|   |         | 🗣 Data In 10     | 12.0      | 0x00       | 8       |           |        |              |     |
|   |         | 🔷 Data In 11     | 13.0      | 0x00       | 8       |           |        |              |     |
|   |         | 💜 Data In 12     | 14.0      | 0x00       | 8       |           |        |              |     |
|   |         | 🔷 Data In 13     | 15.0      | 0x00       | 8       |           |        |              |     |
|   |         | 🔷 Data In 14     | 16.0      | 0x00       | 8       |           |        |              |     |
|   |         | 💜 Data In 15     | 17.0      | 0x00       | 8       |           |        |              |     |
|   |         | 🔷 Data In 16     | 18.0      | 0x00       | 8       |           |        |              |     |
|   |         | 💜 Data In 17     | 19.0      | 0x00       | 8       |           |        |              |     |
|   |         | 📢 Data In 18     | 20.0      | 0x00       | 8       |           |        |              |     |
|   |         | 🔍 Data In 19     | 21.0      | 0x00       | 8       |           |        |              |     |
|   |         | ♦TData In 20     | 22.0      | 0x00       | 8       |           |        |              |     |
|   |         | ♦ Data In 21     | 23.0      | 0x00       | 8       |           |        |              |     |
|   |         | Ctrl             |           |            |         | 0.0       | 0x0000 | 0 16         |     |
|   |         | Data Out 0       |           |            |         | 2.0       | 0x00   | 8            |     |
|   |         | Data Out 1       |           |            |         | 3.0       | 0x00   | 8            |     |
|   |         | Data Out 2       |           |            |         | 4.0       | 0x00   | 8            | τl. |
|   | •       | Data Out 3       |           |            |         | 5.0       | 0v00   | <b>↓ ▶ [</b> | -   |
|   |         | ~ .              |           |            |         |           |        |              |     |
| Г | History | 2.1              |           |            |         |           |        |              |     |
|   |         |                  |           |            |         |           |        |              |     |
|   |         |                  |           |            |         |           |        |              |     |
|   |         |                  |           |            |         |           |        |              |     |
|   |         |                  |           |            |         |           |        |              |     |
|   |         |                  |           | Setti      | ngs     |           |        | ×            |     |
| _ | Value-  | 2.2              | _         | - Di       | enlau   |           |        |              |     |
|   | value   |                  | Setting   | 38         | spidy   |           | OK     |              |     |
|   | Decima  | a lo             |           | <u> </u>   | Hexade  | cimal L   |        |              |     |
|   |         |                  |           | <b>)</b> 0 | Decimal |           | Cance  | 4            |     |
|   |         |                  |           |            |         | -         |        |              |     |
|   | nexade  | ecimal Joxoo     |           | 0          | Binary  |           |        |              |     |
|   |         |                  |           |            |         |           |        |              |     |
|   | Binaru  | 0000.0000        | 1         |            |         |           |        |              |     |
|   | annary  | 100000000        |           |            |         |           |        |              |     |

Fig. 25: KL6831/KL6841 - displaying the process data (Data In) with KS2000

- 1. The field Process Data (hex.) shows the status byte (Status), the control byte (Ctrl) and the process data (Data) in a tree structure.
- 2. The spectacles indicate the data currently
  - graphically displayed in the *History* field.
  - The current input value for the selected data is displayed numerically in the Value field.
- 3. Click the *Settings* set the numerical display format in the *Process Data* field to hexadecimal, decimal or binary for all values.

# BECKHOFF

| Process D        | ata (Hex.)     |           |           |         |             |                      |         |    |
|------------------|----------------|-----------|-----------|---------|-------------|----------------------|---------|----|
| Pos Ty           | /pe            | I-Address | Value     | Bitsize | O-Address   | Value                | Bitsize |    |
|                  | 📢 Data In 21   | 23.0      | 0x00      | 8       |             |                      |         |    |
|                  | <b>♦</b> ↓Ctrl |           |           |         | 0.0         | 0x0000               | 16      |    |
|                  | 🗣 Data Out 0   |           |           |         | 2.0         | 0x00                 | 8       |    |
|                  | Data Out 1     |           |           |         | 3.0         | 60 <sup>°</sup> 0x75 | 8       |    |
|                  | 🗣 Data Out 2   |           |           |         | 4.0         | 0x00                 | 8       |    |
|                  | 🗣 Data Out 3   |           |           |         | 5.0         | 0x00                 | 8       |    |
|                  | 🗣 Data Out 4   |           |           |         | 6.0         | 0x00                 | 8       |    |
|                  | 🗣 Data Out 5   |           |           |         | 7.0         | 0x00                 | 8       |    |
|                  | 🗣 Data Out 6   |           |           |         | 8.0         | 0x00                 | 8       |    |
|                  | 🗣 Data Out 7   |           |           |         | 9.0         | 0x00                 | 8       |    |
|                  | 🗣 Data Out 8   |           |           |         | 10.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 9   |           |           |         | 11.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 10  |           |           |         | 12.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 11  |           |           |         | 13.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 12  |           |           |         | 14.0        | 0x00                 | 8       |    |
|                  | Data Out 13    |           |           |         | 15.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 14  |           |           |         | 16.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 15  |           |           |         | 17.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 16  |           |           |         | 18.0        | 0x00                 | 8       |    |
|                  | Data Out 17    |           |           |         | 19.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 18  |           |           |         | 20.0        | 0x00                 | 8       |    |
|                  | Data Out 19    |           |           |         | 21.0        | 0x00                 | 8       |    |
|                  | Data Out 20    |           |           |         | 22.0        | 0x00                 | 8       |    |
|                  | 🗣 Data Out 21  |           |           |         | 23.0        | 0x00                 | 8       | Ţ  |
| •                |                |           |           |         |             |                      |         | Ċ, |
|                  |                |           |           |         |             |                      |         |    |
| History <b>D</b> |                |           |           |         |             |                      |         |    |
|                  |                |           |           |         |             |                      |         |    |
|                  |                |           |           |         |             |                      |         |    |
|                  |                |           |           |         |             |                      |         |    |
|                  |                |           |           | Setting | 15          |                      |         | X  |
|                  |                |           |           |         |             |                      |         |    |
| Value            |                |           | Cattinger |         | ay          |                      | OK      |    |
| Decimal          | 117 4          |           | Settings  | ⊕ F     | lexadecimal |                      | UK      |    |
|                  |                |           | 6         |         | )i1         |                      | Cancel  |    |
|                  |                |           |           | 1105    | Pecimai     |                      |         |    |
| Hexadecin        | nal 0x75       |           |           | O B     | )<br>inary  |                      |         |    |
|                  |                |           |           |         |             |                      |         |    |
|                  |                |           |           |         |             |                      |         |    |
| Binary           | 0111 0101      |           |           |         |             |                      |         |    |

Fig. 26: KL6831/KL6841 - displaying the process data (Data Out) with KS2000

- 4. in the Value field you can change the output values indicated by the spectacles via the fader. The current value is shown in decimal, hexadecimal and binary format.
- 5. The History field shows the history of the output value.
- 6. Click the Settings set the numerical display format in the Process Data field to hexadecimal, decimal or binary for all values.

### **▲ CAUTION**

### Danger for persons, the environment or devices!

Note that changing initial values (forcing them) can have a direct effect on your automation application. Only modify these output values if you are certain that the state of your equipment permits it, and that there will be no risk to people or to the machine!

# 6 Access from the user program

### 6.1 Register overview

The registers are used for the parameterization of the interface terminals. They can be read or written by means of register communication.

| Register no.      | Comment                      |           | Default value | Default value         |     | Memory |
|-------------------|------------------------------|-----------|---------------|-----------------------|-----|--------|
| R0                | reserved                     |           | 0x0000        | 0 <sub>dec</sub>      | -   | -      |
|                   |                              |           |               |                       |     |        |
| R5                | reserved                     |           | 0x0000        | 0 <sub>dec</sub>      | -   | -      |
| <u>R6 [• 36]</u>  | Diagnostic reg               | jister    | variable      | variable              | R   | RAM    |
| <u>R7 [• 36]</u>  | Command reg                  | jister    | 0x0000        | 0 <sub>dec</sub>      | R/W | RAM    |
| <u>R8 [• 36]</u>  | Terminal type                | KL6831    | 0x1AAF        | 6831 <sub>dec</sub>   | R   | ROM    |
|                   |                              | KL6841    | 0x1AB9        | 6841 <sub>dec</sub>   | R   | ROM    |
| <u>R9 [• 36]</u>  | Firmware vers                | ion       | variable      | variable              | R   | ROM    |
| R10               | reserved                     |           | 0x0000        | 0 <sub>dec</sub>      | -   | -      |
|                   |                              |           |               |                       |     |        |
| R15               | reserved                     |           | 0x0000        | 0 <sub>dec</sub>      | -   | -      |
| R16               | Hardware vers                | sion      | e.g. 0x0000   | e.g. 0 <sub>dec</sub> |     | EEPROM |
| R17               | reserved                     |           | 0x0000        | 0 <sub>dec</sub>      | -   | -      |
|                   |                              |           |               |                       |     |        |
| R28               | reserved                     |           | 0x0000        | 0 <sub>dec</sub>      | -   | -      |
| R29               | Terminal type identification | - special | 0x0000        | 0 <sub>dec</sub>      | R   | EEPROM |
| R30               | reserved                     |           | 0x0000        | -                     | -   | -      |
| <u>R31 [▶ 36]</u> | Code word reg                | gister    | 0x0000        | 0 <sub>dec</sub>      | R/W | RAM    |
| R32               | Feature regist               | er        | 0x0000        | 0 <sub>dec</sub>      | R/W | EEPROM |
| <u>R33 [• 37]</u> | Watchdog reg                 | ister     | variable      | variable              | R/W | RAM    |
| <u>R34 [• 37]</u> | Watchdog reg                 | ister     | variable      | variable              | R/W | RAM    |
| <u>R35 [• 36]</u> | Watchdog register            |           | variable      | variable              | R/W | RAM    |
| <u>R36 [• 37]</u> | DI register                  |           | variable      | variable              | R/W | RAM    |
|                   | ····                         |           |               |                       |     |        |
| <u>R47 [) 37]</u> | DI register                  |           | variable      | variable              | R/W | RAM    |
|                   |                              |           |               |                       |     |        |
| R63               | reserved                     |           | 0x0000        | 0 <sub>dec</sub>      | -   | -      |

### 6.2 Register description

All registers can be read or written via register communication. They are used for parameterizing the terminals.

The behavior in conjunction with a K-bus watchdog (R33 ... R35) and the behavior of the inputs DI1 and DI2 (R36 ... R47) can be modified via <u>library blocks [▶ 38]</u>.

### **R6: diagnostic register**

| Bit     | Descrip          | Description                                              |                  |  |  |
|---------|------------------|----------------------------------------------------------|------------------|--|--|
| R6.5-15 | -                | reserved                                                 | -                |  |  |
| R6.4    | 1 <sub>bin</sub> | Buffer is full                                           | 0 <sub>bin</sub> |  |  |
| R6.3    | 1 <sub>bin</sub> | An overrun error has occurred                            | 0 <sub>bin</sub> |  |  |
| R6.2    | 1 <sub>bin</sub> | A framing error has occurred                             | 0 <sub>bin</sub> |  |  |
| R6.1    | 1 <sub>bin</sub> | A parity error has occurred                              | 0 <sub>bin</sub> |  |  |
| R6.0    | 1 <sub>bin</sub> | The receive buffer has overflowed, incoming data is lost | 0 <sub>bin</sub> |  |  |

### **R7: command register**



### User code word

For the following commands to be executed, it is first necessary for the user code word, 0x1235, to be entered into register R31 [ $\triangleright$  36].

### **Command 0x7000: Restore Factory Settings**

Entering 0x7000 in register R7 restores the delivery state for the following registers:

<u>R33, 34 and 35 [) 37]</u>: No SMI command with K-bus watchdog <u>R36, 37 and 38 [) 37]</u>: All SMI drives travel UP on rising edge at DI1 <u>R39, 40 and 41: [) 37]</u> All SMI drives stop on falling edge at DI1 <u>R42, 43 and 44 [) 37]</u>: All SMI drives travel DOWN on rising edge at DI2 <u>R45, 46 and 47 [) 37]</u>: All SMI drives stop on falling edge at DI2

### **R8: terminal type**

The terminal name is contained in register R8: KL6831: 0x1AAF (6831 $_{dec}$ ) KL6841: 0x1AB9 (6841 $_{dec}$ )

### **R9: firmware version**

Register R9 contains the ASCII coding of the terminal's firmware version, e.g. **0x3143 = '1C'**. The **'0x31'** corresponds here to the ASCII character **'1'**, while the **'0x43'** represents the ASCII character **'C'**. This value cannot be changed.

### **R16: hardware version number**

Register R16 contains the hardware version of the terminal.

### R31-R47: user registers

### R31: code word register

• If you write values into the user registers without first entering the user code word (0x1235) into the code word register, the terminal will not accept the supplied data.

• If you write values into the user registers and have previously entered the user code word (0x1235) in the code word register, these values are written into the RAM registers and in the EEPROM registers and are therefore retained if the terminal is restarted.

The code word is reset if the terminal is restarted.

#### R32: feature register

The feature register R32 is not occupied.

### R33, R34 and R35: watchdog

The R33, 34 and 35 determine the behavior of the terminal in the event of a K-bus watchdog.

The factory setting is: No SMI command if the K-bus watchdog is triggered.

The behavior can be changed via the library blocks.

#### R36 to R47: Behavior of DI1 and DI2

The behavior of the digital inputs DI1 and DI2 can be modified via the library function blocks.

| Digital input       | SMI command                                                        |
|---------------------|--------------------------------------------------------------------|
| Rising edge at DI1  | All SMI drives travel UP on rising edge at DI1 (factory setting)   |
| Falling edge at DI1 | All SMI drives stop on falling edge at DI1 (factory setting)       |
| Rising edge at DI2  | All SMI drives travel DOWN on rising edge at DI2 (factory setting) |
| Falling edge at DI2 | All SMI drives stop on falling edge at DI2 (factory setting)       |

# 7 Programming

### 7.1 TwinCAT libraries

Software documentation in the Beckhoff Information System:

TwinCAT 2: TwinCAT 2 PLC Lib: SMI

TwinCAT 3: TwinCAT 3 PLC Lib: Tc2\_SMI

# 8 Appendix

### 8.1 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

### Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: <u>https://www.beckhoff.com/english/beckhoff/world.htm</u>

You will also find further documentation for Beckhoff components there.

### **Beckhoff Support**

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- · design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

| Hotline: | +49 5246 963 157     |
|----------|----------------------|
| Fax:     | +49 5246 963 9157    |
| e-mail:  | support@beckhoff.com |

### **Beckhoff Service**

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- · repair service
- · spare parts service
- hotline service

| Hotline: | +49 5246 963 460     |
|----------|----------------------|
| Fax:     | +49 5246 963 479     |
| e-mail:  | service@beckhoff.com |

### **Beckhoff Headquarters**

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

| Phone:  | +49 5246 963 0           |
|---------|--------------------------|
| Fax:    | +49 5246 963 198         |
| e-mail: | info@beckhoff.com        |
| web:    | https://www.beckhoff.com |

# List of illustrations

| Fig. 1  | ł   | KL6831                                                                                 | 8  |
|---------|-----|----------------------------------------------------------------------------------------|----|
| Fig. 2  | l   | LEDs, from hardware 03 with additional SMI Power LED (left), up to hardware 02 (right) | 9  |
| Fig. 3  | 9   | Spring contacts of the Beckhoff I/O components                                         | 11 |
| Fig. 4  | A   | Attaching on mounting rail                                                             | 12 |
| Fig. 5  | [   | Disassembling of terminal                                                              | 13 |
| Fig. 6  | F   | Power contact on left side                                                             | 14 |
| Fig. 7  | S   | Standard wiring                                                                        | 16 |
| Fig. 8  | F   | Pluggable wiring                                                                       | 16 |
| Fig. 9  | ŀ   | High Density Terminals                                                                 | 17 |
| Fig. 10 | 0 ( | Connecting a cable on a terminal point                                                 | 18 |
| Fig. 1  | 1 ł | KL6831                                                                                 | 20 |
| Fig. 12 | 2 ł | KL6831 connection example                                                              | 21 |
| Fig. 13 | 3 ł | KL6841 connection example                                                              | 21 |
| Fig. 14 | 4 ł | KS2000 configuration software                                                          | 23 |
| Fig. 1  | 5[  | Display of the fieldbus station in KS2000                                              | 25 |
| Fig. 16 | 6 ł | KS2000 branches for channel 1 of the KL6831 and KL6841                                 | 26 |
| Fig. 17 | 7 F | Register view example: KL6831 in KS2000                                                | 27 |
| Fig. 18 | 8 ł | KL6831/KL6841 - device settings via KS2000                                             | 28 |
| Fig. 19 | 9 ł | KL6831/KL6841 - setting the behavior of the digital inputs for event                   | 28 |
| Fig. 20 | 0 ł | KL6831/KL6841 - Searching for devices by address                                       | 29 |
| Fig. 2  | 1 ł | KL6831, KL6841 - selecting the address type with KS2000                                | 29 |
| Fig. 22 | 2 E | Example for group addressing with KS2000                                               | 30 |
| Fig. 23 | 3 ł | KL6831, KL6841 - entering commands via KS2000 (default settings)                       | 30 |
| Fig. 24 | 4 ł | KL6831/KL6841 - Setting options with KS2000 (default settings)                         | 32 |
| Fig. 2  | 5 ł | KL6831/KL6841 - displaying the process data (Data In) with KS2000                      | 33 |
| Fig. 26 | 6 ł | KL6831/KL6841 - displaying the process data (Data Out) with KS2000                     | 34 |

More Information: **beckhoff.de/KL6831/** 

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

