BECKHOFF New Automation Technology

Documentation | EN KL6021-0023 and KL6023

Serial interface terminal and wireless adaptor for EnOcean radio technology

2022-09-15 | Version: 2.1

Table of contents

1	Fore	oreword				
	1.1	Notes on the documentation	5			
	1.2	Safety instructions	. 6			
	1.3	Documentation issue status	. 7			
2	Prod	uct overview	. 8			
	2.1	KL6021-0023 - Introduction	. 8			
	2.2	KL6021-0023 - Technical Data	. 9			
	2.3	KL6023 - Introduction	10			
	2.4	KL6023 - Technical Data	11			
	2.5	Basic Function Principles	12			
3	Mour	nting and wiring	14			
	3.1	Instructions for ESD protection	14			
	3.2	Installation on mounting rails	15			
	3.3	Disposal	17			
	3.4	Connection of the wireless adapter	18			
4	KS20	000 Configuration Software	19			
	4.1	KS2000 - Introduction	19			
	4.2	Parameterization with KS2000	20			
	4.3	Register	22			
	4.4	Settings	22			
	4.5	Process data	23			
5	Prog	ramming	25			
	5.1	TwinCAT libraries	25			
6	Acce	ss from the user program	26			
	6.1	Process image	26			
6.2 Control and status byte		Control and status byte	26			
6.3 Register overview			28			
6.4 Register description						
	6.5	Examples of Register Communication	30			
		6.5.1 Example 1: Reading the firmware version from register 9	30			
		6.5.2 Example 2: Writing to an user register	30			
7	Арре	endix	34			
	7.1	Beckhoff Identification Code (BIC)	34			
	7.2	Support and Service	36			

BECKHOFF

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] and XPlanar[®] are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

EtherCAT[®] is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Description of instructions

In this documentation the following instructions are used. These instructions must be read carefully and followed without fail!

▲ DANGER

Serious risk of injury!

Failure to follow this safety instruction directly endangers the life and health of persons.

WARNING

Risk of injury!

Failure to follow this safety instruction endangers the life and health of persons.

Personal injuries!

Failure to follow this safety instruction can lead to injuries to persons.

NOTE

Damage to environment/equipment or data loss

Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.

Tip or pointer

This symbol indicates information that contributes to better understanding.

1.3 Documentation issue status

Version	Comment
2.1	Chapter Technical data updated
	Chapter Instructions for ESD protection added
	Chapter <i>Disposal</i> added
	Chapter Beckhoff Identification Code (BIC) added
	Links to TwinCAT libraries updated
	Document structure updated
	New title page
2.0	Migration
1.1	Mounting description expanded
	 Information on basic function principles expanded
	Introduction to the KL6023 added
1.0	 Description of the KL6023 (wireless adapter for EnOcean radio technology) added
	Wiring instructions added
	 Description of the KS2000 configuration software added
	Technical data added
0.1	First preliminary version

Firmware and hardware versions

Documentation	KL6021-0023		KL6023	
Version	Firmware	Hardware	Firmware	Hardware
2.1	5D	04	1A	02
2.0	5D	03	1A	02
1.1	5D	01	1A	01
1.0	5A	00	1A	00
0.1	5A	00	-	-

The firmware and hardware versions (delivery state) of the terminal can be found in the serial number printed on the side.

Syntax of the serial number

Structure of the serial number: WW YY FF HH

WW - week of production (calendar week) YY – year of production FF - firmware version HH - hardware version Example with serial number 12 06 3A 02:

12 - week of production 12

- 06 year of production 2006
- 3A firmware version 3A
- 02 hardware version 02

2 **Product overview**

2.1 KL6021-0023 - Introduction

Fig. 1: KL6021-0023 - Serial interface terminal for the connection of the KL6023 wireless adapter

The KL6021-0023 serial interface connects the wireless adapter via an RS485 signal. The KL6023 wireless adapter operates as an EnOcean radio receiver and receives the radio signals from EnOcean sensors.

Contact assignment

Terminal point	Name	Signal
1	TxD+	Signal line (Transmit Data)
5	TxD-	Signal line (Transmit Data)
2	RxD+	Signal line (Receive Data)
6	RxD-	Signal line (Receive Data)
3	GND	Ground for the KL6023 (bridged internally with terminal point 7)
7	GND	Ground for the KL6023 (bridged internally with terminal point 3)
4	+5 V	Supply voltage for the KL6023 (bridged internally with terminal point 8)
8	+5 V	Supply voltage for the KL6023 (bridged internally with terminal point 4)

LEDs

LED	Color	Mean	Meaning			
RUN	green	This LED indicates the terminal's operating state:				
		on	on normal operation			
		off	A watchdog timer overflow has occurred. The RUN LED goes out if no process data is transmitted to the terminal from the Bus Coupler for 100 ms.			
TxD	green	State of the transmit signal line				
RxD	green	State of the receive signal line				

2.2 KL6021-0023 - Technical Data

Technical data	KL6021-0023
Number of inputs	1, for wireless adapter (EnOcean radio technology)
Cable impedance	approx. 120 Ω
Connecting cable to KL6023 wireless adapter	2 twisted pairs
Length of connection to KL6023 wireless adapter	max. 300 m
Bit width in process image	11 x 8 bit user data, 1 x 8 bit control/status
Power supply for the electronics	via the K-bus
Current consumption via K-bus	typically 65 mA
Weight	approx. 60 g
Dimensions (W x H x D)	approx. 15 mm x 100 mm x 70 mm
Mounting [▶ 15]	on 35 mm mounting rail according to EN 60715
Permissible ambient temperature range during operation	0 °C + 55 °C
Permissible ambient temperature range during storage	-25 °C + 85 °C
Permissible relative air humidity	95 %, no condensation
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP20
Mounting position	variable
Approvals/markings*	CE

*) Real applicable approvals/markings see type plate on the side (product marking).

Supported EnOcean telegrams

Telegram	RORG	ORG	Communication
RPS	F6	05	Repeated Switch Communication
1BS	D5	06	1 Byte Communication
4BS	A5	07	4 Byte Communication

2.3 KL6023 - Introduction

Fig. 2: KL6023 - Wireless Adapter for EnOcean radio technology

The KL6023 Wireless Adapter receives signals from battery-less sensors with EnOcean technology. These signals are converted by the Wireless Adapter to a RS485 signal and directly processed further by the KL6021-0023 serial Bus Terminal. With a radio signal range of at least 30 m, the wiring of buildings can be simplified significantly.

Fig. 3: Application

The status LEDs of the Wireless Adapter are helpful during commissioning. The LEDs indicate all telegrams they receive as faulty or faultless. With a maximum distance of 300 m between the receiver and the Bus Terminal station, it is possible to place the receivers at any radio-technically favorable location within a building. The system does not stipulate a maximum number of transmitters per receiver unit. In practice, between 25 and 100 transmitters per receiver are used.

2.4 KL6023 - Technical Data

Technical data	KL6023 (Wireless Adapter for EnOcean radio technology)
Connection	2 twisted pairs, direct to Bus Terminal KL6021-0023
Power supply	via KL6021-0023 Bus Terminal (with electrical isolation)
Length of connecting cable to the KL6021-0023	max. 300 m
Configuration	not required
Frequency band	868.35 MHz
Transfer range	In open spaces: approx. 300 m Inside buildings: approx. 30 m
Radio telegram	depending on sensor type: - 32 bit sensor identification number - number of user bytes is not limited
Receiving aerial	integrated in the housing
Housing	Box: Polystyrene (grey) with M16 PG threaded fitting for cable connection Cover: polycarbonate (transparent)
Weight	approx. 55 g
Dimensions (W x H x D)	approx. 52 mm x 50 mm x 35.5 mm (without PG threaded fitting)
Permissible ambient temperature range during operation	0 °C + 55 °C
Permissible ambient temperature range during storage	-25 °C + 85 °C
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP66
Mounting position	variable
Approvals/markings*	CE

*) Real applicable approvals/markings see type plate on the side (product marking).

Supported EnOcean telegrams

Telegram	RORG	ORG	Communication	
RPS	F6	05	Repeated Switch Communication	
1BS	D5	06	1 Byte Communication	
4BS	A5	07	4 Byte Communication	

2.5 Basic Function Principles

The <u>KL6021-0023</u> [\blacktriangleright 8] serial communication terminal connects the <u>KL6023</u> [\blacktriangleright 10] EnOcean receiver module with the Beckhoff Bus Terminal system. EnOcean (<u>http://www.enocean.de</u>) permits radio transmission without either batteries or an external power supply to the transmitter.

Fig. 4: KL6021-0023 and KL6023

Approval of EnOcean radio technology

NOTE

Nature and source of the danger

The KL6032 EnOcean receiver module can be operated in the following countries without registration and fees.

Permission for use in other countries must be clarified explicitly!

- European union
- Switzerland

Reading received telegrams

When the KL6021-0023 has received new telegrams it indicates this by setting the bit <u>SB.2</u> [\blacktriangleright <u>27</u>] in the status byte to 1. Reading out received telegrams is initiated through bit <u>CB.0</u> [\blacktriangleright <u>27</u>] in the control byte being inverted by the higher-level controller. The change from 0 to 1 or from 1 to 0 always causes the next telegram in the memory to be displayed in the process data. The value of the bit <u>CB.0</u> [\blacktriangleright <u>27</u>] is adopted by <u>SB.0</u> [\blacktriangleright <u>27</u>] as acknowledgement.

The leading synchronization byte and the closing checksum are part of the EnOcean standard, and the KL6021-0023 filters them out of the telegram, so that the displayed data starts with the <u>telegram header</u> $[\blacktriangleright 13]$ and ends with the <u>status field $[\blacktriangleright 13]$ </u>.

Longer telegrams

If the telegram from an EnOcean transmitter consists of more than 4 data bytes, it cannot be transferred in a single K-bus cycle. In that case, the KL6021-0023 sets bit <u>SB.1 [\triangleright 27]</u> in the status byte in the next read cycle, placing the next data block from the telegram into the process data.

Faulty telegrams

The KL6021-0023 calculates the checksum for every EnOcean telegram that is received. If this does not agree with the checksum that has been transmitted the terminal sets bit <u>SB.6 [\triangleright 27]</u> in the status byte. A telegram is not then placed into the data memory, and is lost.

Data memory overflow

If the telegrams received by the KL6021-0023 are not read by the higher-level controller, the terminal's receive memory will overflow, and it will set bit <u>SB.3 [> 27]</u> in the status byte. It is also possible for a telegram only to be partially written into the memory. This will automatically cause an error in the checksum, and it will be displayed and handled accordingly.

Protocol

The following table illustrates the general structure of an EnOcean telegram:

Bit 7	Bit 0	Description	Description			
	Sync_Byte1 (0xA5)	Synchronization	Synchronization byte			
	Sync_Byte0 (0x5A)					
H_Seq	Length	Header	H_Seq (3 bit)			
		identification	0 unknown transmitter ID received			
			 1 known transmitter ID received 			
			2 new transmitter learnt			
			Length (5 bit)			
			 Number of byte following the header (here: 11) 			
ORG		Telegram type	Telegram type			
	Data Byte 3		Data byte			
	Data Byte 2		-			
	Data Byte 1					
	Data Byte 0					
	ID Byte 3	32 bit transmitte	32 bit transmitter ID			
	ID Byte 2					
	ID Byte 1					
ID Byte 0						
Status		Status field	Status field			
Check Sum		Checksum (LSE including the sy	Checksum (LSB resulting from the addition of all bytes, not including the synchronization byte or the checksum itself)			

3 Mounting and wiring

3.1 Instructions for ESD protection

NOTE

Destruction of the devices by electrostatic discharge possible!

The devices contain components at risk from electrostatic discharge caused by improper handling.

- Please ensure you are electrostatically discharged and avoid touching the contacts of the device directly.
- Avoid contact with highly insulating materials (synthetic fibers, plastic film etc.).
- Surroundings (working place, packaging and personnel) should by grounded probably, when handling with the devices.
- Each assembly must be terminated at the right hand end with a KL9010 bus end terminal, to ensure the protection class and ESD protection.

Fig. 5: Spring contacts of the Beckhoff I/O components

BECKHOFF

3.2 Installation on mounting rails

Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!

Assembly

Fig. 6: Attaching on mounting rail

The bus coupler and bus terminals are attached to commercially available 35 mm mounting rails (DIN rails according to EN 60715) by applying slight pressure:

- 1. First attach the fieldbus coupler to the mounting rail.
- 2. The bus terminals are now attached on the right-hand side of the fieldbus coupler. Join the components with tongue and groove and push the terminals against the mounting rail, until the lock clicks onto the mounting rail.

If the terminals are clipped onto the mounting rail first and then pushed together without tongue and groove, the connection will not be operational! When correctly assembled, no significant gap should be visible between the housings.

Fixing of mounting rails

The locking mechanism of the terminals and couplers extends to the profile of the mounting rail. At the installation, the locking mechanism of the components must not come into conflict with the fixing bolts of the mounting rail. To mount the mounting rails with a height of 7.5 mm under the terminals and couplers, you should use flat mounting connections (e.g. countersunk screws or blind rivets).

Disassembly

Fig. 7: Disassembling of terminal

Each terminal is secured by a lock on the mounting rail, which must be released for disassembly:

- 1. Pull the terminal by its orange-colored lugs approximately 1 cm away from the mounting rail. In doing so for this terminal the mounting rail lock is released automatically and you can pull the terminal out of the bus terminal block easily without excessive force.
- 2. Grasp the released terminal with thumb and index finger simultaneous at the upper and lower grooved housing surfaces and pull the terminal out of the bus terminal block.

Connections within a bus terminal block

The electric connections between the Bus Coupler and the Bus Terminals are automatically realized by joining the components:

- The six spring contacts of the K-Bus/E-Bus deal with the transfer of the data and the supply of the Bus Terminal electronics.
- The power contacts deal with the supply for the field electronics and thus represent a supply rail within the bus terminal block. The power contacts are supplied via terminals on the Bus Coupler (up to 24 V) or for higher voltages via power feed terminals.

Power Contacts

During the design of a bus terminal block, the pin assignment of the individual Bus Terminals must be taken account of, since some types (e.g. analog Bus Terminals or digital 4-channel Bus Terminals) do not or not fully loop through the power contacts. Power Feed Terminals (KL91xx, KL92xx or EL91xx, EL92xx) interrupt the power contacts and thus represent the start of a new supply rail.

PE power contact

The power contact labeled PE can be used as a protective earth. For safety reasons this contact mates first when plugging together, and can ground short-circuit currents of up to 125 A.

BECKHOFF

Fig. 8: Power contact on left side

NOTE

Possible damage of the device

Note that, for reasons of electromagnetic compatibility, the PE contacts are capacitatively coupled to the mounting rail. This may lead to incorrect results during insulation testing or to damage on the terminal (e.g. disruptive discharge to the PE line during insulation testing of a consumer with a nominal voltage of 230 V). For insulation testing, disconnect the PE supply line at the Bus Coupler or the Power Feed Terminal! In order to decouple further feed points for testing, these Power Feed Terminals can be released and pulled at least 10 mm from the group of terminals.

▲ WARNING

Risk of electric shock!

The PE power contact must not be used for other potentials!

3.3 Disposal

Products marked with a crossed-out wheeled bin shall not be discarded with the normal waste stream. The device is considered as waste electrical and electronic equipment. The national regulations for the disposal of waste electrical and electronic equipment must be observed.

BECKHOFF

3.4 Connection of the wireless adapter

A WARNING

Risk of electric shock and damage of device!

Bring the bus terminal system into a safe, powered down state before starting installation, disassembly or wiring of the bus terminals!

Fig. 9: Connection of the wireless adapter

KL6021-0023		KL6023 – Wireless adapter		
Signal	Terminal point no.	Signal	Terminal point no.	
RxD+	2	RxD+	1	
RxD-	6	RxD-	2	
GND	3 or 7	GND	3	
5 V	4 or 8	5 V	4	

4 KS2000 Configuration Software

4.1 KS2000 - Introduction

The <u>KS2000</u> configuration software permits configuration, commissioning and parameterization of bus couplers, of the affiliated bus terminals and of Fieldbus Box Modules. The connection between bus coupler / Fieldbus Box Module and the PC is established by means of the serial configuration cable or the fieldbus.

Fig. 10: KS2000 configuration software

Configuration

You can configure the Fieldbus stations with the Configuration Software KS2000 offline. That means, setting up a terminal station with all settings on the couplers and terminals resp. the Fieldbus Box Modules can be prepared before the commissioning phase. Later on, this configuration can be transferred to the terminal station in the commissioning phase by means of a download. For documentation purposes, you are provided with the breakdown of the terminal station, a parts list of modules used and a list of the parameters you have modified. After an upload, existing fieldbus stations are at your disposal for further editing.

Parameterization

KS2000 offers simple access to the parameters of a fieldbus station: specific high-level dialogs are available for all bus couplers, all intelligent bus terminals and Fieldbus Box modules with the aid of which settings can be modified easily. Alternatively, you have full access to all internal registers of the bus couplers and intelligent terminals. Refer to the register description for the meanings of the registers.

Commissioning

The KS2000 software facilitates commissioning of machine components or their fieldbus stations: Configured settings can be transferred to the fieldbus modules by means of a download. After a *login* to the terminal station, it is possible to define settings in couplers, terminals and Fieldbus Box modules directly *online*. The same high-level dialogs and register access are available for this purpose as in the configuration phase.

The KS2000 offers access to the process images of the bus couplers and Fieldbus Box modules.

- Thus, the coupler's input and output images can be observed by monitoring.
- Process values can be specified in the output image for commissioning of the output modules.

All possibilities in the *online mode* can be used in parallel with the actual fieldbus mode of the terminal station. The fieldbus protocol always has the higher priority in this case.

4.2 Parameterization with KS2000

Connect the configuration interface of your Fieldbus Coupler with the serial interface of your PC via the configuration cable and start the *KS2000* Configuration Software.

Click on the *Login* button. The configuration software will now load the information for the connected fieldbus station. In the example shown, this is

- a BK2020 Lightbus Coupler
- a KL1xx2 Digital Input Terminal
- a KL6021-0023 serial interface terminal (RS485 for EnOcean receiver KL6023)
- a KL9010 Bus End Terminal

K52000			
III Project Online Options Help			_ 8 ×
Pos 0: BK2020 () Pos 1: KL1xx2-0000 (2 channel dig. input) Pos 2: KL6021-0023 (1 channel communication) Pos 3: KL9010-0000 (End terminal)	Lightbus CYC ERR WD I/O RUN I/O ERR I CZCZ XX ERR I I I I I I I I I I I I I		
Check discretio data . OK	i L	<u>7</u>	
Velcome to KS2000 !			
Status	Online	03.12.2002	13:10 //.

Fig. 11: Display of the fieldbus station in KS2000

The left-hand KS2000 window displays the terminals of the fieldbus station in a tree structure. The right-hand KS2000 window contains a graphic display of the fieldbus station terminals.

In the tree structure of the left-hand window, click on the plus-sign next to the terminal whose parameters you wish to change (item 2 in the example).

Fig. 12: KS2000 branch for channel 1 of the KL6021-0023

For the KL6021-0023, the branches *Register*, *Settings* and *ProcData* are displayed:

- <u>Register [) 22]</u> permits direct access to the registers of the KL6021-0023.
- There are no dialog masks to be found for parameterizing the KL6021-0023 under Settings, since no terminal-specific settings are required.
- <u>ProcData [) 23]</u> displays the KL6021-0023 process data.

4.3 Register

Under *Register* you can directly access the registers of the KL6021-0023. The meaning of the register is explained in the <u>Register Overview</u> [▶ 28].

K52000		_ 🗆 🗡
📲 Project Online Options Help		
De: 8 📕 😹 🖉 🍳	1 9	
		E và L
⊕ Pos 1: KL1xx2-0000 (2channel dig. input)	Register	
🚊 – Pos 2: KL6021-0023 (1 channel communication)		
🖻 ··· Channel 1		
Register		
Settings	008 0x1785 6021 0001 0111 1000 0101	
ProcData	009 0x3542 13634 0011 0101 0100 0010	
Pos 3: KL9010-0000 (End terminal)	010 0x0230 560 0000 0010 0011 0000	
	011 0x0160 352 0000 0001 0110 0000	
	012 0x6060 24672 0110 0000 0110 0000	
	021 0x0000 0 0000 0000 0000 0000	
	022 0x0000 0 0000 0000 0000 0000 0000	
	023 0x0000 0 0000 0000 0000 0000	
	024 0x0000 0 0000 0000 0000 0000 0000	
	025 0x0000 0 0000 0000 0000 0000 0000	
		Defrech
		Henesu
Online		
Check diagnostic data OK		
Resume ohne Fehler		
Status	01.12.2003	3:10 //.

Fig. 13: Register view in KS2000

4.4 Settings

No terminal-specific settings are necessary for the KL6021-0023 and the KL6023.

D 1.

4.5 Process data

The Status byte (Status), the Control byte (Ctrl) and the process data (Data) are displayed in a tree structure under *Process Data*.

FIOCE	ss uala						
Pos	Туре	I-Address	Value	Bitsize	O-Address	Value	Bitsize
2	📲 KL6021-0023						
	😵 Channel 1						
	💜 Ser. State	0.0	0×00	8			
	💜 Data In O	1.0 (ഹ ് OxOO	8			
	💜 Data In 1	2.0	0×00	8			
	📢 Data In 2	3.0	0×00	8			
	📢 Data In 3	4.0	0×00	8			
	📢 Data In 4	5.0	0×00	8			
	📢 Data In 5	6.0	0×00	8			
	📢 Data In 6	7.0	0×00	8			
	💜 Data In 7	8.0	0×00	8			
	📢 Data In 8	9.0	0×00	8			
	📢 Data In 9	10.0	0×00	8			
	📢 Data In 10	11.0	0×00	8			
	🗣 Ser, Ctrl				0.0	0x00	8
	🌖 Data Out 0				1.0	0x00	8
	🗣 Data Out 1				2.0	0x00	8
	🗣 Data Out 2				3.0	0x00	8
	🌖 Data Out 3				4.0	0x00	8
	🌖 Data Out 4				5.0	0x00	8
	🗣 Data Out 5				6.0	0x00	8
	🗣 Data Out 6				7.0	0x00	8
	🗣 Data Out 7				8.0	0x00	8
	🌖 Data Out 8				9.0	0x00	8
	🗣 Data Out 9				10.0	0×00	8
	🗣 Data Out 10				11.0	0×00	8

Fig. 14: Process Data

The spectacles mark the data that are currently graphically displayed in the History field.

Fig. 15: History field

The current input value is displayed numerically in the Value field.

Value (hex)	
<u>S</u> ettings	

Fig. 16: Value field

Output values can be modified through direct input or by means of the fader control.

Fig. 17: Value field

Changing output values (forcing)

Note that changing output values (forcing) can have a direct effect on your automation application. Only change these output values if you are certain that the state of your system permits it, and that there will be no risk to people or to the machine!

After pressing the *Settings* button you can set the format of the numerical display to hexadecimal, decimal or binary.

Settings	×
Display G Hexadecimal C Decimal C Binary	OK Cancel

Fig. 18: Settings

5 Programming

5.1 TwinCAT libraries

Software documentation in the Beckhoff Information System:

TwinCAT 2: TwinCAT 2 | PLC Lib: TcEnOcean

TwinCAT 3: TwinCAT 3 | PLC Lib: Tc2_EnOcean

6 Access from the user program

6.1 Process image

The KL6021-0023 is represented in the process image with 12 bytes of input data and 12 bytes of output data. These are organized as follows:

Byte offset	Format	Input data	Output data
0	Byte	Status byte (<u>SB [▶ 26]</u>)	Control byte (<u>CB [▶ 26]</u>)
1	Byte	DataIn0	DataOut0
2	Byte	DataIn1	DataOut1
3	Byte	DataIn2	DataOut2
4	Byte	DataIn3	DataOut3
5	Byte	DataIn4	DataOut4
6	Byte	DataIn5	DataOut5
7	Byte	DataIn6	DataOut6
8	Byte	DataIn7	DataOut7
9	Byte	DataIn8	DataOut8
10	Byte	DataIn9	DataOut9
11	Byte	DataIn10	DataOut10

6.2 Control and status byte

Register communication

Control byte (for register communication)

The control byte (CB) is located in the <u>output image [\blacktriangleright 26]</u>, and is transmitted from the controller to the terminal.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	R/W	Reg. no.					

Key

Bit	Name	Description			
CB.7	RegAccess	1 _{bin} Register communication switched on			
CB.6	R/W	0 _{bin} Read access			
		1 _{bin} Write access			
CB.5 to	Reg. no.	Register number:			
CB.0		er the number of the <u>register [▶ 28]</u> that you want to read or write here.			

Status byte (for register communication)

The status byte (SB) is located in the input image [\blacktriangleright 26], and is transmitted from the terminal to the controller.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	R/W	Reg. no.					

BECKHOFF

Key

Bit	Name	Desc	escription				
SB.7	RegAccess	1 _{bin}	Acknowledgment for register access				
SB.6	R	0 _{bin}	Read access				
SB.5 to SB.0	Reg. no.	Numb	er of the register that was read or written.				

Process data during the register communication

The process data that is displayed is set to zero during the register communication!

Process data mode

Control byte in process data mode

The control byte (CB) is located in the <u>output image [\ge 26]</u>, and is transmitted from the controller to the terminal.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	-	-	-	-	-	-	NextTelegramReq

Key

Bit	Name	Desc	escription				
CB.7	RegAccess	0 _{bin}	Register communication off (process data mode)				
CB.6 to CB.1	-	0 _{bin}	reserved				
CB.0	NextTelegramReq	0/1 _{bin}	By inverting this bit, the next EnOcean telegram in the input memory of the KL6021-0023 is copied into the process data.				

Status byte in process data mode

The status byte (SB) is located in the <u>input image [▶ 26]</u>, and is transmitted from the terminal to the controller.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	Error	-	-	BufferFull	NewTelegram	SameTelegram	NextTelegramAck

Key

Bit	Name	Description	
SB.7	RegAccess	0 _{bin}	Acknowledgment for process data mode
SB.6	Error	1 _{bin}	The EnOcean telegram presently displayed in the process data of the KL6021-0023 has an incorrect checksum.
SB.5	-	0 _{bin}	reserved
SB.4	-	0 _{bin}	reserved
SB.3	BufferFull	1 _{bin}	The receive memory of the KL6021-0023 is full.
SB.2	NewTelegram	1 _{bin}	There is at least one new EnOcean telegram in the receive memory of the KL6021-0023.
SB.1	SameTelegram	1 _{bin}	The data currently displayed belongs to the same EnOcean telegram as the data previously displayed, because the telegram contains more than 4 data bytes.
SB.0	NextTelegramAck	0/1 _{bin}	Acknowledgement of having copied the EnOcean telegram into the process
			data. The bit adopts the value of the control bit <u>CB.0 [\blacktriangleright 27]</u> when the telegram has been copied into the process data.

6.3 Register overview

These registers are used to parameterize the terminal KL6021. They can be read or written by means of the register communication.

Register no.	Comment	Default value		R/W	Memory
R0	reserved	-	-	-	-
R5	reserved	-	-	-	-
<u>R6 [▶ 29]</u>	Diagnostic register	0x0000	O _{dec}	R	RAM
<u>R7 [) 29]</u>	Command register	0x0000	O _{dec}	R/W	RAM
<u>R8 [} 29]</u>	Terminal type	0x1785	6021 _{dec}	R	ROM
<u>R9 [▶ 29]</u>	Firmware version	e.g. 0x3541	e.g. 13633 _{dec}	R	ROM
R10	Multiplex shift register	0x0230	560 _{dec}	R	ROM
R11	Signal channels	0x0160	352 _{dec}	R	ROM
R12	Minimum data length	0x6060	24672 _{dec}	R	ROM
R13	Data structure	0x0002	2 _{dec}	R	ROM
R14	reserved	-	-	-	-
R15	Alignment register	typically 0x7F80	typically 32640 _{dec}	R/W	RAM
<u>R16 [▶ 29]</u>	Hardware version number	e.g. 0x0000	e.g. 0 _{dec}	R/W	SEEPROM
R17	reserved	-	-	-	-
R28	reserved	-	-	-	-
<u>R29 [▶ 29]</u>	Terminal type - special identification	0x0017	23 _{dec}	R	ROM
R30	reserved	-	-	-	-
<u>R31 [▶ 29]</u>	Code word register	0x0000	O _{dec}	R/W	RAM
<u>R32 [▶ 29]</u>	Feature register	0x0000	O _{dec}	R/W	SEEPROM
R33	reserved	-	-	-	-
R34	reserved	-	-	-	-
<u>R35 [▶ 29]</u>	Number of data bytes sent to the Bus Coupler	0x000B	11 _{dec}	R	ROM
R36	reserved	-	-	-	-
R63	reserved	-	-	-	-

6.4 Register description

The registers are used to parameterize the terminal. They can be read or written by means of the register communication.

R6: Diagnostic register

Status byte <u>SB [▶ 26]</u> is placed into register R6.

R7: Command register

No commands are implemented in this terminal.

R8: Terminal description

The name of the terminal is contained in register R8. KL6021: 0x1785 (6021_{dec})

R9: Firmware version

Register R9 contains the ASCII coding of the terminal's firmware version, e.g. **0x3541 = '5A'**. The **'0x35'** corresponds here to the ASCII character **'5'**, while the **'0x41'** represents the ASCII character **'A'**. This value cannot be changed.

R16: Hardware version number

Register R16 contains the hardware version of the terminal; this value cannot be changed.

R29: Terminal type - special identification

The name of the special type of the terminal is contained in register R29. KL6021-0023: 0x0017 (0023_{dec})

R31: Code word register

- If you write values into the user registers without first entering the user code word (0x1235) into the code word register, the terminal will not accept the supplied data.
- If you write values into the user registers and have previously entered the user code word (0x1235) in the code word register, these values are stored in the RAM registers and in the SEEPROM registers and are therefore retained when the terminal is restarted.

The code word is reset when the terminal is restarted.

R32: Feature register

The feature register specifies the terminal's configuration. There are no configurations that can be made for this terminal.

R35: Number of data bytes sent to the Bus Coupler

Register R35 indicates the number of data bytes that transmitted to the Bus Coupler. This value cannot be changed.

6.5 Examples of Register Communication

The numbering of the bytes in the examples corresponds to the display without word alignment.

6.5.1 Example 1: Reading the firmware version from register 9

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0x89 (1000 1001 _{bin})	0xXX	0xXX

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 not set means: reading the register.
- Bits 0.5 to 0.0 specify the register number 9 with 00 1001_{bin}.
- The output data word (byte 1 and byte 2) has no meaning during read access. To change a register, write the required value into the output word.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DataIN1, high byte	Byte 2: DataIN1, low byte
0x89	0x33	0x41

Explanation:

- The terminal returns the value of the control byte as a receipt in the status byte.
- The terminal returns the firmware version 0x3341 in the input data word (byte 1 and byte 2). This is to be interpreted as an ASCII code:
 - ASCII code 0x33 represents the digit 3
 - ASCII code 0x41 represents the letter A The firmware version is thus 3A.

6.5.2 Example 2: Writing to an user register

Code word

In normal mode all user registers are read-only with the exception of Register 31. In order to deactivate this write protection you must write the code word (0x1235) into Register 31. If a value other than 0x1235 is written into Register 31, write protection is reactivated. Please note that changes to a register only become effective after restarting the terminal (power-off/power-on).

I. Write the code word (0x1235) into register 31.

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0xDF (1101 1111 _{bin})	0x12	0x35

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 set means: writing to the register.
- Bits 0.5 to 0.0 specify the register number 31 with 01 1111_{bin}.

 The output data word (byte 1 and byte 2) contains the code word (0x1235) for deactivating write protection.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DatalN1, high byte	Byte 2: DatalN1, low byte	
0x9F (1001 1111 _{bin})	0xXX	0xXX	

Explanation:

- The terminal returns a value as a receipt in the status byte that differs only in bit 0.6 from the value of the control byte.
- The input data word (byte 1 and byte 2) is of no importance after the write access. Any values still displayed are invalid!

II. Read Register 31 (check the set code word)

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0x9F (1001 1111 _{bin})	0xXX	0xXX

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 not set means: reading the register.
- Bits 0.5 to 0.0 specify the register number 31 with 01 1111_{bin}.
- The output data word (byte 1 and byte 2) has no meaning during read access.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DatalN1, high byte	Byte 2: DatalN1, low byte
0x9F (1001 1111 _{bin})	0x12	0x35

Explanation:

- The terminal returns the value of the control byte as a receipt in the status byte.
- The terminal returns the current value of the code word register in the input data word (byte 1 and byte 2).

III. Write to Register 32 (change contents of the feature register)

Output data

Byte 0: Control byte	Byte 1: DatalN1, high byte	Byte 2: DataIN1, low byte
0xE0 (1110 0000 _{bin})	0x00	0x02

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 set means: writing to the register.
- Bits 0.5 to 0.0 indicate register number 32 with 10 0000_{bin}.
- The output data word (byte 1 and byte 2) contains the new value for the feature register.

Observe the register description!

The value of 0x0002 given here is just an example!

The bits of the feature register change the properties of the terminal and have a different meaning, depending on the type of terminal. Refer to the description of the feature register of your terminal (chapter *Register description*) regarding the meaning of the individual bits before changing the values.

Input data (response from the Bus Terminal)

Byte 0: Status byte	Byte 1: DatalN1, high byte	Byte 2: DataIN1, low byte
0xA0 (1010 0000 _{bin})	0xXX	0xXX

Explanation:

- The terminal returns a value as a receipt in the status byte that differs only in bit 0.6 from the value of the control byte.
- The input data word (byte 1 and byte 2) is of no importance after the write access. Any values still displayed are invalid!

IV. Read register 32 (check changed feature register)

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0xA0 (1010 0000 _{bin})	0xXX	0xXX

Explanation:

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 not set means: reading the register.
- Bits 0.5 to 0.0 indicate register number 32 with 10 0000_{bin}.
- The output data word (byte 1 and byte 2) has no meaning during read access.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DataIN1, high byte	Byte 2: DataIN1, low byte
0xA0 (1010 0000 _{bin})	0x00	0x02

Explanation:

- The terminal returns the value of the control byte as a receipt in the status byte.
- The terminal returns the current value of the feature register in the input data word (byte 1 and byte 2).

V. Write register 31 (reset code word)

Output Data

Byte 0: Control byte	Byte 1: DataOUT1, high byte	Byte 2: DataOUT1, low byte
0xDF (1101 1111 _{bin})	0x00	0x00

- Bit 0.7 set means: Register communication switched on.
- Bit 0.6 set means: writing to the register.
- Bits 0.5 to 0.0 specify the register number 31 with 01 1111_{bin}.
- The output data word (byte 1 and byte 2) contains 0x0000 for reactivating write protection.

Input Data (answer of the Bus Terminal)

Byte 0: Status byte	Byte 1: DataIN1, high byte	Byte 2: DataIN1, low byte
0x9F (1001 1111 _{bin})	0xXX	0xXX

- The terminal returns a value as a receipt in the status byte that differs only in bit 0.6 from the value of the control byte.
- The input data word (byte 1 and byte 2) is of no importance after the write access. Any values still displayed are invalid!

7 Appendix

7.1 Beckhoff Identification Code (BIC)

The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016.

Fig. 19: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

- · on the packaging unit
- directly on the product (if space suffices)
- on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling and product management.

Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it.

Following information is possible, positions 1 to 4 are always present, the other according to need of production:

Posi- tion	Type of information	Explanation	Data identifier	Number of digits incl. data identifier	Example
1	Beckhoff order number	Beckhoff order number	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Unique serial number, see note below	SBTN	12	SBTNk4p562d7
3	Article description	Beckhoff article description, e.g. EL1008	1K	32	<mark>1K</mark> EL1809
4	Quantity	Quantity in packaging unit, e.g. 1, 10, etc.	Q	6	Q1
5	Batch number	Optional: Year and week of production	2P	14	2P401503180016
6	ID/serial number	Optional: Present-day serial number system, e.g. with safety products	51S	12	<mark>51S</mark> 678294
7	Variant number	Optional: Product variant number on the basis of standard products	30P	32	30PF971, 2*K183

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

Structure of the BIC

Example of composite information from positions 1 to 4 and with the above given example value on position 6. The data identifiers are highlighted in bold font:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Accordingly as DMC:

Fig. 20: Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

An important component of the BIC is the Beckhoff Traceability Number (BTN, position 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC.

NOTE

This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information.

7.2 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: <u>https://www.beckhoff.com</u>

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline:	+49 5246 963 157
Fax:	+49 5246 963 9157
e-mail:	support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- on-site service
- repair service
- · spare parts service
- hotline service

Hotline:	+49 5246 963 460
Fax:	+49 5246 963 479
e-mail:	service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

Phone:	+49 5246 963 0
Fax:	+49 5246 963 198
e-mail:	info@beckhoff.com
web:	https://www.beckhoff.com

Table of figures

Fig. 1	KL6021-0023 - Serial interface terminal for the connection of the KL6023 wireless adapter	8
Fig. 2	KL6023 - Wireless Adapter for EnOcean radio technology	10
Fig. 3	Application	10
Fig. 4	KL6021-0023 and KL6023	12
Fig. 5	Spring contacts of the Beckhoff I/O components	14
Fig. 6	Attaching on mounting rail	15
Fig. 7	Disassembling of terminal	16
Fig. 8	Power contact on left side	17
Fig. 9	Connection of the wireless adapter	18
Fig. 10	KS2000 configuration software	19
Fig. 11	Display of the fieldbus station in KS2000	21
Fig. 12	KS2000 branch for channel 1 of the KL6021-0023	21
Fig. 13	Register view in KS2000	22
Fig. 14	Process Data	23
Fig. 15	History field	23
Fig. 16	Value field	23
Fig. 17	Value field	24
Fig. 18	Settings	24
Fig. 19	BIC as data matrix code (DMC, code scheme ECC200)	34
Fig. 20	Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294	35

More Information: www.beckhoff.com/KL6xxx

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

