Functional description

TF5200 | TC3 CNC
Online tool compensation

Version 1.0
Date 19.02.2020

BECKHOFF
Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT technology is patent protected, in particular by the following applications and patents:
with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilisation of this document as well as the communication of its contents to others without express authorisation are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
General and safety instructions

Icons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Please read the (safety) instructions carefully and comply with them at all times.

Icons in explanatory text

- Indicates an action.
- Indicates an action statement.

<table>
<thead>
<tr>
<th>▲ DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute danger to life!</td>
</tr>
<tr>
<td>If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life and health.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>▲ CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal injury and damage to machines!</td>
</tr>
<tr>
<td>If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage to machines.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction or error</td>
</tr>
<tr>
<td>This icon describes restrictions or warns of errors.</td>
</tr>
</tbody>
</table>

- Tips and other notes
 This icon indicates information to assist in general understanding or to provide additional information.

General example

Example that clarifies the text.

NC programming example

Programming example (complete NC program or program sequence) of the described function or NC command.

- Specific version information
 Optional or restricted function. The availability of this function depends on the configuration and the scope of the version.
Table of contents

Notes on the documentation .. 3
General and safety instructions ... 4

1 Overview ... 8

2 Description ... 9
 2.1 Programming ... 9
 2.2 Wear compensation of tool radius ... 11
 2.3 Wear compensation of tool length ... 15
 2.3.1 Inclined grinding disc .. 18
 2.4 Wear compensation in tool direction .. 19
 2.5 Wear compensation in direction of surface normal ... 22
 2.6 Special settings in tool data .. 25
 2.7 Connection to PLC ... 26
 2.7.1 Channel-specific connection ... 26
 2.7.2 Axis-specific connection ... 28
 2.8 Special V.G. variables for OTC .. 30
 2.9 Connecting to external tool management .. 31

3 Parameter .. 32
 3.1 Overview ... 32
 3.2 Description .. 32

4 Support and Service .. 34

Index ... 35
List of figures

Fig. 1 Grinding a contour ... 9
Fig. 2 Wear compensation of tool radius .. 11
Fig. 3 Contour of the NC program wr_quad_disc.nc 13
Fig. 4 Description of RADIUS function 15
Fig. 5 Wear compensation of tool length 16
Fig. 6 Description of LENGTH function 17
Fig. 7 Inclined grinding disc .. 18
Fig. 8 Wear compensation in tool direction 19
Fig. 9 Grinding disc setting B=0 .. 20
Fig. 10 Grind disc setting B=90 .. 20
Fig. 11 Description of TOOL_DIR function 21
Fig. 12 Wear in surface normal direction .. 22
Fig. 13 Description of SURF_NORM_DIR function 24
1 Overview

Task
With certain processes such as grinding, the length or the radius of the tool must be continuously corrected to compensate for wear.

Wear compensation depends on the path covered.

Characteristics
Wear compensation can only be enabled with tool type 2 (grinding tool). If a different tool type is used, error message P-ERR-21391 is output.

Wear compensation can be used for 4 processing types and 3 different modes.

Parametrisation
Wear compensation is activated and deactivated from the NC program. The wear constant can be parameterised both from the NC program and using preset parameters in the tool list P-TOOL-00030.

Further parameters in this context are described in the chapter Parameter [32].

Programming
The following NC command is provided to program online tool compensation in the NC program. Parameterisation can be programmed in advance or in combination with #OTC ON.

For further details on the above command, see the section Programming [9].

Links to other documents
For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for the Programming Manual or P-AXIS-00001 for an axis parameter.

For technical reasons, these links only function in the Online Help (HMTL5, CHM) but not in pdf files since pdfs do not support cross-linking.
2 Description

Task

With certain processes such as grinding, the length or the radius of the tool must be continuously corrected to compensate for wear.

Wear compensation depends on the path covered. In addition, compensation can be influenced by the PLC.

Wear compensation is activated and deactivated from the NC program. The wear constant can be parameterised both from the NC program and using preset parameters in the tool list P-TOOL-00030.

Rapid traversing blocks have no wear.

It is assumed that the entire width of the lateral surface of the grinding disc is in contact.

![Diagram of grinding process](image)

Fig. 1: Grinding a contour

Tool type

Wear compensation can only be enabled with tool type 2 (grinding tool). If a different tool type is used, error message P-ERR-21391 is output.

Processing types

Online wear compensation can be used for 4 processing types and 3 different modes.

1. Radius compensation (only in combination with active TRC) for processing contours in the plane (2.5 D)
2. Length compensation for processing surfaces (surface grinding, 2.5 D)
3. Compensation in tool direction for any orientation (5-axis)
4. Compensation in direction of surface normal (5-axis)

Modes

1. Continuous (dependent on motion path traversed)
2. Discrete (discrete wear compensation via PLC)
3. Automatic, combination of discrete and continuous

Discrete additive wear values which are assigned by the PLC are adjusted over several cycles.

2.1 Programming

The following NC command is provided to program online tool compensation in the NC program. Parametrisation can be programmed in advance or in combination with #OTC ON:
When OTC is deselected with #OTC OFF, the amount of wear (discrete and/or continuous) is included in the calculation for the current tool.
2.2 Wear compensation of tool radius

Grinding a contour

Use tool radius wear compensation (radius compensation) by preference to grind a contour at the same time as tool radius compensation.

Grinding disc wear in the direction of the disc radius can be compensated continuously or discretely.

In the radius compensation processing type, wear is only considered for active tool radius compensation (TRC).

The figure below shows the tool radius wear:

![Diagram showing tool radius wear](image)

Fig. 2: Wear compensation of tool radius

- The start-up movement in relation to the equidistant path after selecting TRC (G41/G42) is considered without wear.
- Motion after deselecting TRC (G40) is also without wear.
General #OTC programming example

<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N10</td>
<td>F10000</td>
<td>(Data set selection for grinding wheel)</td>
</tr>
<tr>
<td>N20</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>N30</td>
<td>G0 X0 Y0 Z0</td>
<td></td>
</tr>
<tr>
<td>N40</td>
<td>#OTC[RADIUS, AUTO]</td>
<td>(define OTC processing type + mode)</td>
</tr>
<tr>
<td>N50</td>
<td>#OTC ON</td>
<td>(select OTC)</td>
</tr>
<tr>
<td>N60</td>
<td>G41 G01 X50</td>
<td>(select TRC, wear-free movement)</td>
</tr>
<tr>
<td>N70</td>
<td>X1000</td>
<td></td>
</tr>
<tr>
<td>N80</td>
<td>G40 X50</td>
<td>(deselect TRC with path motion to reduce TRC)</td>
</tr>
<tr>
<td>N90</td>
<td>#OTC OFF</td>
<td>(deselect OTC)</td>
</tr>
<tr>
<td>N100</td>
<td>G00 X50</td>
<td></td>
</tr>
<tr>
<td>N199</td>
<td>M30</td>
<td></td>
</tr>
</tbody>
</table>
OTC with discrete compensation

%wr_quad_disc.nc
N20 G17 G90
N22 D1 G25 (Linear transition block)
N40 G1 X0 Y0 Z0 F600
N50 #OTC ON[RADIUS DISC]
N55 G42
N60 G1 X2
N70 G1 X102
N80 G26 Y100 (Circular transition block)
N90 X2
N95 Y0
N100 G40 G1 X0
N110 #OTC OFF
N99999 M30

Legend:

Green: Path contour with active TRC without OTC offset

Black: Path contour with **negative** value for OTC radius offset

Red: Path contour with **positive** value for OTC radius offset

Fig. 3: Contour of the NC program wr_quad_disc.nc
Explanation to the figure above (the discrete OTC offset applied is 2 mm)

1. G25 is active in the contour bend. The contour path at this point is not continuous. The predefined OTC offset is applied to another axis over several cycles.
2. The TRC inserts a circular transition because of G26. But the OTC offset is so large that the increase in offset is unable to keep up with the continuous change in the contour.
3. The OTC offset lags behind considerably.
4. Increase the OTC offset
5. Decrease the positive OTC offset and increase the negative OTC offset

The tool radius is influenced by the PLC.

Requirements: After the ControlUnit OTCRadiusOffset is active, the OTC radius offset can then be programmed for the build in use accordingly. This value is then added to each cycle perpendicular to the programmed contour.

For CNC Build >= V2.11.2800:

```
gpCh[channel_idx]^\.bahn_mc_control.otc_radius_offset
```
where channel_idx = [0..HLI_SYS_CH_MAXIDX]

For CNC Build < V2.11.2800:

```
pMC[channel_idx]^\.addr^.MCControlBahn_Data.MCControlSGN32Unit_OTCRadiusOffset
```
where channel_idx = [1.. HLI_SYS_CHNMAX]

PLC access for CNC Build >= V2.11.2800

```gl
(* enable online tool compensation control unit *)
gpCh[0]^\.bahn_mc_control.otc_radius_offset.enable_w := TRUE;

(* write radius offset in the first channel *)
gpCh[0]^\.bahn_mc_control.otc_radius_offset.command_w := OTC_Offset;
```

PLC access for CNC build < V2.11.2800

```gl
(* enable online tool compensation control unit *)
pMC[1]^\.addr^.MCControlBahn_Data.MCControlSGN32Unit_OTCRadiusOffset.X_Enable := TRUE;

(* write radius offset in the first channel *)
```

A continuous contour path is recommended because changing the orientation of the predefined offset is not applied to the axis all at once but is distributed over several cycles.

On selection, the commands G41/G42 and #OTC ON can be swapped. On deselection, the sequence G40 before #OTC OFF must be maintained. The TRC modes G138/G139 make a path motion between the two commands absolutely necessary.

The functionality of the RADIUS type is shown by the example of the G17 plane:
2.3 Wear compensation of tool length

Grinding a surface

When the tool length is compensated (length compensation), wear is compensated in the direction of the 3rd main axis. This can take place both continuously and discretely. This procedure is used in particular for processing surfaces (surface grinding).
Fig. 5: Wear compensation of tool length

Tool length wear

```
...  
N30 D1 (Select data set for grinding disc)  
N40 G00 X0 Y0 Z0  
N50 #OTC ON [LENGTH] (Select OTC)  
N60 G1 X1000 F10000  
N70 #OTC OFF (Deselect OTC)  
...  
```
Distributing continuous wear on 2 main axes depends on the inclination of the grinding disc as described in Section Inclined grinding disc [18].

The LENGTH operation mode is shown in the figure below:

Fig. 6: Description of LENGTH function
2.3.1 Inclined grinding disc

Inclined grinding

The incline of the grinding disc is only entered in the tool list (P-TOOL-00032) to grind inclined surfaces. Here the complete lateral surface of the grinding disc is also in contact.

The figure below shows the orientation of the tilt angle using the example of the G17 plane:

Fig. 7: Inclined grinding disc
Tool orientation is determined by the disc tilt angle. This tool orientation can then be used to apply the resulting wear proportionately to the main axes.

In the figure above, wear is included in the calculation of the X and Z axes.

2.4 Wear compensation in tool direction

Grinding a surface

This compensation type is used to compensate for wear in the tool direction. This can take place both continuously and discretely.

Fig. 8: Wear compensation in tool direction

OTC grinding with kinematic type 4

```
... N30 D1            (Select record for grinding disc)
N40 G00 X0 Y0 Z300 B0
N50 #KIN ID[4]
N50 #TRAFO ON
N60 G00 B45
N70 G01 X100 Z50 F1000
N80 #OTC ON [TOOL_DIR, DISC] (Select OTC)
N90 $FOR P1=0, 20, 1
N100 G91 G01 X10 Z-10 F2000
N110 X-10 Z10
N120 $ENDFOR
N120 #OTC OFF        (deselect OTC)
N130 #TRAFO OFF
...```

Online tool compensation
TF5200 | TC3 CNC
Version 1.0
Programming kinematic parameters

Fig. 9: Grinding disc setting B=0

Fig. 10: Grinding disc setting B=90
The figure below shows the function of TOOL_DIR:

#OTC [TOOL_DIR CONT/DISC/AUTO]

Fig. 11: Description of TOOL_DIR function
2.5 Wear compensation in direction of surface normal

Grinding a surface

This compensation type compensates for wear in surface normal direction. The surface normal direction is calculated in the CNC based on the tool direction vector and the path tangent vector.

Fig. 12: Wear in surface normal direction
OTC grinding with kinematic type 4

N30 D1 (Select record for grinding disc)
N40 G00 X0 Y0 Z300 B0
N50 #KIN ID[4]
N50 #TRAFO ON
N60 G00 B0
N70 G01 X100 Z50 F1000
N80 #OTC ON [SURF_NORM_DIR, DISC] (Select OTC)
N85 #HSC ON[BSPLINE_PATH_DEV 5 MERGE = 0]
N90 $FOR P1=0, 5, 1
N100 G91 G01 X3 Z-3 F2000
N110 X2 Z-2
N120 X5 Z-2
N130 X5 Z-1
N140 X5
N150 X5 Z-1
N160 X5 Z-2
N170 X2 Z-2
N180 X3 Z-3
N190 X-3 Z3 F2000
N200 X-2 Z2
N210 X-5 Z2
N220 X-5 Z1
N230 X-5
N240 X-5 Z1
N250 X-5 Z2
N260 X-2 Z2
N270 X-3 Z3
N280 $ENDFOR
N290 #HSC OFF
N300 #OTC OFF (Deselect OTC)
N310 #TRAFO OFF
M30
Fig. 13: Description of SURF_NORM_DIR function
2.6 Special settings in tool data

Definition of tool type and wear parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>wz[1].gueltig</td>
<td>1</td>
</tr>
<tr>
<td>wz[1].typ</td>
<td>2</td>
</tr>
<tr>
<td>wz[1].mass_einheit</td>
<td>0</td>
</tr>
<tr>
<td>wz[1].laenge</td>
<td>500000</td>
</tr>
<tr>
<td>wz[1].radius</td>
<td>300000</td>
</tr>
<tr>
<td>wz[1].ax_versatz[0]</td>
<td>0</td>
</tr>
<tr>
<td>wz[1].ax_versatz[1]</td>
<td>0</td>
</tr>
<tr>
<td>wz[1].ax_versatz[2]</td>
<td>0</td>
</tr>
</tbody>
</table>

...  

wz[1].grinding_wear_const   100000
wz[1].grinding_max_infeed   200000
wz[1].grinding_disc_tilt_angle  0

The disc tilt angle must be entered as a function of the mechanical construction.

- **Unassigned data are assigned the value 0 by default.**

  Consequence: If the tool type is not assigned Type 2, the error P-ERR-21391 is generated when #OTC ON is programmed.

  If grinding_max_infeed is not set, no discrete offset can be applied.

  The following also applies: if grinding_wear_const is not set, it is not possible to calculate the continuous offset depending on the path.


### 2.7 Connection to PLC

#### 2.7.1 Channel-specific connection

The build-specific definitions apply to the following descriptions of the control units:

- **CNC Version >= V2.11.2800:** channel_idx = [0..HLI_SYS_CH_MAXIDX]
- **CNC Version < V2.11.2800:** channel_idx = [1.. HLI_SYS_CHNMAX]

#### 2.7.1.1 Adding wear radius

The interface can only be used with the RADIUS processing type and DISC or AUTO mode.

<table>
<thead>
<tr>
<th>OTC radius offset</th>
<th>Description</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The tool radius can be adapted by setting the wear offset depending on wear.</td>
<td>The wear offset is not output in a cycle in the CNC. Instead it is output over several cycles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ST path</th>
<th><strong>CNC Version &gt;= V2.11.2800:</strong> gpCh[channel_idx [26]].bahn_mc_control.otc_radius_offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>CNC Version &lt; V2.11.2800:</strong> pMC[channel_idx [26]].addr.MCControlBahn_Data.MCControlSGN32Unit_OTCRadiusOffset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CNC build</th>
<th>&gt;= V2.11.2800</th>
<th>&lt; V2.11.2800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
<td>MC_CONTROL_SGN32_UNIT</td>
<td>MCControlSGN32Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanded, requested and return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST element</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data type</th>
<th>DINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>0.1 µm</td>
</tr>
<tr>
<td>Value range</td>
<td>[-P-TOOL-00031, P-TOOL-00031]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redirection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST element</td>
<td>enable_w</td>
</tr>
<tr>
<td></td>
<td>X_Enable</td>
</tr>
</tbody>
</table>
2.7.1.2 Adding wear in tool direction

If the TOOL_DIR processing type is used, it is possible to use automatic continuous wear compensation and influencing via PLC interface. The mode must be DISC or AUTO.

In the third axis (axis_idx = 3) an offset value can be written in the tool direction. The PLC input of the first two axes is ignored. All the axes in the following sequence can be influenced as usual by the PLC.

<table>
<thead>
<tr>
<th>OTC offset in surface normal direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Special features</td>
</tr>
<tr>
<td>ST path</td>
</tr>
<tr>
<td><strong>CNC Version &gt;= V2.11.2800:</strong></td>
</tr>
<tr>
<td><strong>CNC Version &lt; V2.11.2800:</strong></td>
</tr>
<tr>
<td>CNC build</td>
</tr>
<tr>
<td>Data type</td>
</tr>
<tr>
<td>Commanded, requested and return value</td>
</tr>
<tr>
<td>ST element</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Data type</td>
</tr>
<tr>
<td>Unit</td>
</tr>
<tr>
<td>Value range</td>
</tr>
<tr>
<td>Redirection</td>
</tr>
<tr>
<td>ST element</td>
</tr>
</tbody>
</table>
2.7.2 Axis-specific connection

The build-specific definitions apply to the following descriptions of the control units:

**CNC Version >= V2.11.2800:** axis_idx = [0..HLI_SYS_AX_MAXIDX]

**CNC Version < V2.11.2800:** axis_idx = [1.. HLI_SYS_AXMAX]

2.7.2.1 Adding wear in axis direction

The interface can be used with both for RADIUS or LENGTH processing types. The mode must be DISC or AUTO.

### OTC offset

<table>
<thead>
<tr>
<th>Description</th>
<th>The wear offset is set, wear in the direction of this axis can be compensated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special features</td>
<td>The wear offset is distributed by the CNC over several cycles.</td>
</tr>
</tbody>
</table>

**ST path**

**CNC Version >= V2.11.2800:**

```
gpAx[axis_idx [28]].^ipo_mc_control.otc_offset
```

**CNC Version < V2.11.2800:**

```
pAC[axis_idx [28]].^addr^.McControlIpo_Data.MCControlSGN32Unit_OTCOffset
```

**CNC build**

<table>
<thead>
<tr>
<th>&gt;= V2.11.2800</th>
<th>&lt; V2.11.2800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
<td>MC_CONTROL_SGN32_UNIT</td>
</tr>
</tbody>
</table>

**Commanded, requested and return value**

<table>
<thead>
<tr>
<th>ST element</th>
<th>.command_w</th>
<th>.request_r</th>
<th>.state_r</th>
<th>.D_Command</th>
<th>.D_Request</th>
<th>.D_State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
<td>DINT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>0.1 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value range</td>
<td>[-P-TOOL-00031, P-TOOL-00031]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redirection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST element</td>
<td>.enable_w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X_Enable</td>
</tr>
</tbody>
</table>
### 2.7.2.2 Adding wear in surface normal direction

When the SURF_NORM ORI processing type is used, it is possible to use automatic continuous wear compensation and influencing via the PLC interface. The mode must be DISC or AUTO. The surface normal is approximated based on the current tool orientation and path tangent (cf. RADIUS type). For a continuous change in direction of the surface normal vector, the contour and orientation should be steady at all times.

The input of the first 3 axes is ignored. All the axes in the following sequence can be influenced as usual by the PLC.

<table>
<thead>
<tr>
<th>OTC offset in tool direction</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td><strong>Special features</strong></td>
</tr>
</tbody>
</table>
| **ST path** | **CNC Version >= V2.11.2800:** \( gpAx[axis_idx [28]]^.ipo_mc_control.otc_offset \)  
**CNC Version < V2.11.2800:** \( pAC[axis_idx [28]]^.addr^.McControlIpo_Data.MCControlSGN32Unit_OTCOffset \) |
| **CNC build** | >= V2.11.2800 | < V2.11.2800 |
| **Data type** | MC_CONTROL_SGN32_UNIT | MCControlSGN32Unit |
| **Commanded, requested and return value** | |
| **ST element** | .command_w | .D_Command |
| | .request_r | .D_Request |
| | .state_r | .D_State |
| **Data type** | DINT |
| **Unit** | 0.1 µm |
| **Value range** | [-P-TOOL-00031, P-TOOL-00031] |
| **Redirection** | |
| **ST element** | .enable_w | .X_Enable |
2.8 Special V.G. variables for OTC

Reading wear values

Current tool wear can be read after processing with the following variables.

With radius compensation processing type in [mm] or [inch]:

- Total radius wear, discrete + continuous wear
  
  \[ \text{V.G.WZ\_AKT.WEAR\_RADIUS} \]

- Continuous radius wear
  
  \[ \text{V.G.WZ\_AKT.WEAR\_RADIUS\_CONT} \]

With length compensation processing type in [mm] or [inch]:

- Wear in axis with index \(<\text{idx}\)>
  
  \[ \text{V.G.WZ\_AKT.WEAR[<\text{idx}>]} \]

or

- Wear in axis with name \(<\text{axis\_name}>\)
  
  \[ \text{V.G.WZ\_AKT.WEAR.<axis\_name>} \]

The current wear value is supplied after deselecting OTC. The wear value refers to the wear which occurred between selecting and deselecting OTC.

If OTC is selected and deselected repeated in the same NC program, the above variables refer to the accumulated wear.

Writing/reading wear constant

The wear constant is defined as default in the tool data. It can also be read or written in the NC program by the variable \( \text{V.G.WZ\_AKT.WEAR\_CONST} \) in \([0.1 \ \mu\text{m}/\text{m}]\):

Status query: OTC active

The OTC state can be determined in the NC program. To do this, the NC program

\[ \text{V.G.OTC\_ACTIVE} \]

of the Boolean type must be readable in the NC program.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>While OTC is active, \text{V.G.WZ_AKT} \text{ wear values are not up-to-date. They are only updated after OTC (#OTC OFF) is deselected.}</td>
</tr>
</tbody>
</table>


2.9 Connecting to external tool management

Tool data

The external tool management system must provide the following data to the CNC when a grinding tool is changed (see [FCT-C10//section Tool data]):

- Type: Tool type 2 for grinding tool
- wear_const: Wear constant
- disc_tilt_angle: Grinding disc tilt angle
- ext_discret_limit: Maximum discrete input by the PLC

When the grinding tool is replaced, the CNC informs the external tool management system of the wear:

The wear data sent includes the following:

- wear_radius, total wear consisting of discrete and continuous wear
- wear_radius_cont, continuous wear

This wear data is generated from the time when the tool is replaced. The values must be taken over by the external tool management and are used internally to recalculate the tool geometric data (radius, length).

Unassigned data are assigned the value 0 by default.

Consequence: If the tool type is not assigned Type 2, the error P-ERR-21391 is generated when #OTC ON is programmed.

If grinding_max_infeed is not set, no discrete offset can be applied.

The following also applies: if grinding_wear_const is not set, it is not possible to calculate the continuous offset depending on the path.
3 Parameter

3.1 Overview

<table>
<thead>
<tr>
<th>ID</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TOOL-00001</td>
<td>typ</td>
<td>Tool type</td>
</tr>
<tr>
<td>P-TOOL-00030</td>
<td>grinding_wear_const</td>
<td>Wear constant</td>
</tr>
<tr>
<td>P-TOOL-00031</td>
<td>grinding_max_infeed</td>
<td>Maximum discrete input</td>
</tr>
<tr>
<td>P-TOOL-00032</td>
<td>grinding_tilt_angle</td>
<td>Grinding disc tilt angle</td>
</tr>
</tbody>
</table>

3.2 Description

P-TOOL-00001 Type

Description
This parameter is assigned to distinguish between tool types.

Parameter
wz[i].typ

Data type
UNS16

Data range
0: Milling tool
1: Turning tool
2: Grinding tool

Dimension
----

Default value
0

Remarks
Parameterisation example: Tool 5 is a milling tool
wz[5].typ 0

P-TOOL-00030 Wear constant

Description
The wear constant is used to calculate continuous tool wear. Alternatively, it can also be defined in the NC program (#OTC [...]).

Parameter
wz[i].grinding_wear_const

Data type
REAL64

Data range
0 ≤ grinding_wear_const

Dimension
0.1µm/m

Default value
0

Remarks
The wear constant should contain relatively small values. There is no special dynamic consideration based on the actual wear values.

P-TOOL-00031 Maximum discrete infeed

Description
The maximum discrete infeed defines the greatest relative change which is assignable by the PLC.

Parameter
wz[i].grinding_max_infeed

Data type
REAL64

Data range
MIN(SGN32) ≤ grinding_max_infeed ≤ MAX(SGN32)

Dimension
0.1µm

Default value
0

Remarks
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Grinding disc tilt angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The parameter defines the angle between the centre line of the grinding disc and the 3rd main axis for tilted grinding discs.</td>
</tr>
<tr>
<td>Parameter</td>
<td>wz[j].grinding_tilt_angle</td>
</tr>
<tr>
<td>Data type</td>
<td>REAL64</td>
</tr>
<tr>
<td>Data range</td>
<td>-45° ≤ grinding_tilt_angle ≤ 45°</td>
</tr>
<tr>
<td>Dimension</td>
<td>0.0001°</td>
</tr>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Remarks</td>
<td>See also</td>
</tr>
</tbody>
</table>

See also
- Special V.G. variables for OTC [30]
4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- Support
- design, programming and commissioning of complex automation systems
- and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157
E-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- on-site service
- repair service
- spare parts service
- hotline service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
E-mail: service@beckhoff.com

Further Support and Service addresses can be found on our website at http://www.beckhoff.de.

Beckhoff headquarters

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
E-mail: info@beckhoff.com

The addresses of Beckhoff’s branch offices and representatives round the world can be found on the internet pages:
http://www.beckhoff.de

You will also find further documentation for Beckhoff components there.
# Index

## P

<table>
<thead>
<tr>
<th>P-TOOL-00001</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TOOL-00030</td>
<td>32</td>
</tr>
<tr>
<td>P-TOOL-00031</td>
<td>32</td>
</tr>
<tr>
<td>P-TOOL-00032</td>
<td>33</td>
</tr>
</tbody>
</table>