
Manual | EN

TE1400
TwinCAT 3 | Target for Simulink®

2024-01-04 | Version: 2.1.1

Table of contents

TE1400 3Version: 2.1.1

Table of contents
1 Foreword.. 7

1.1 Notes on the documentation ... 7
1.2 For your safety .. 7
1.3 Notes on information security.. 9

2 Overview .. 10

3 Up to version 1.2.xxxx.x ... 12
3.1 Installation ... 12
3.2 Licenses .. 14
3.3 Quickstart .. 15
3.4 TwinCAT Library in Simulink® .. 18
3.5 Parameterization of the code generation in Simulink.. 21

3.5.1 Module generation (Tc Build) ... 22
3.5.2 Data exchange (Tc Interfaces)... 26
3.5.3 External mode (Tc External Mode) .. 30
3.5.4 Advanced settings (Tc Advanced) ... 33

3.6 Application of modules in TwinCAT .. 39
3.6.1 Parameterization of a module instance.. 39
3.6.2 Executing the generated module under TwinCAT ... 41
3.6.3 Calling the generated module from a PLC project .. 43
3.6.4 Using the ToFile block.. 48
3.6.5 Signal access via TwinCAT 3 Scope .. 54

3.7 FAQ... 55
3.7.1 Does code generation work even if I integrate S-Functions into my model? 55
3.7.2 Why do FPU/SSE exceptions occur at runtime in the generated TwinCAT module, but not

in the Simulink model? ... 55
3.7.3 After updating TwinCAT and/or TE1400 I get an error message for an existing model... 56
3.7.4 Why do the parameters of the TcCOM instance not always change after a "Reload TMC/

TMI" operation?.. 56
3.7.5 After a "Reload TMC/TMI" error "Source File <path> to deploy to target not found......... 57
3.7.6 Why do I have a ClassID conflict when I start TwinCAT?.. 58
3.7.7 Why can the values transferred via ADS differ from values transferred via output map-

ping? .. 58
3.7.8 Are there limitations with regard to executing modules in real-time?............................... 58
3.7.9 Which files are created automatically during code generation and publishing?............... 59
3.7.10 How do I resolve data type conflicts in the PLC project? ... 60
3.7.11 Why are the parameters of the transfer function block in the TwinCAT display not identical

to the display in Simulink?.. 61
3.7.12 Why does my code generation/publish process take so long? .. 61

3.8 Examples .. 61
3.8.1 TemperatureController_minimal .. 62
3.8.2 Temperature Controller .. 68
3.8.3 SFunStaticLib... 77
3.8.4 SFunWrappedStaticLib .. 83
3.8.5 Module generation Callbacks... 88

Table of contents

TE14004 Version: 2.1.1

4 From version 2.x.xxxx.x ... 89
4.1 Installation ... 89
4.2 Licenses .. 92
4.3 Setting up driver signing.. 93

4.3.1 User certificates for delivery without test mode.. 96
4.4 Quick start ... 102
4.5 TwinCAT Library in Simulink® .. 108

4.5.1 TwinCAT Input and Output modules .. 109
4.5.2 TwinCAT Environment View .. 116
4.5.3 TwinCAT File Writer ... 116

4.6 Overview of automatically generated files... 117
4.7 Parameterization of the code generation in Simulink® ... 121

4.7.1 Overview table of all configuration parameters .. 124
4.7.2 Parameterization of the code generation via an m-file... 131
4.7.3 Bundling of several models in one TwinCAT driver ... 133
4.7.4 Sharing created TwinCAT objects.. 135
4.7.5 Creation of versioned drivers ... 137
4.7.6 Configuration of data access to data of a TcCOM object... 143
4.7.7 Shared memory between TcCOM instances ... 150
4.7.8 Creating a module with OEM license query ... 156
4.7.9 Integration of own C/C++ code .. 158
4.7.10 Configuration of the TMX file properties... 159
4.7.11 Multitask, Concurrent Execution and OpenMP .. 159
4.7.12 Symbol Properties and Attribute Pragmas ... 166
4.7.13 Available placeholders ... 172
4.7.14 Working with callbacks... 182

4.8 Application of modules in TwinCAT .. 183
4.8.1 Working with the TcCOM module .. 183
4.8.2 Working with the PLC library.. 203
4.8.3 Debugging.. 214
4.8.4 Connecting to External mode... 217
4.8.5 Exception handling... 220
4.8.6 Using Realtime Monitor time stamps ... 230

4.9 FAQ... 230
4.9.1 Change model parameters at runtime.. 230
4.9.2 Build of a sample fails .. 231
4.9.3 Problems with the block diagram representation in TwinCAT XAE 231
4.9.4 Can I use TE1400 version 1.2.x and version 2.x at the same time?.............................. 232
4.9.5 What is the difference between "Build" and "Generate code"?...................................... 232
4.9.6 I can't change the parameters of a module in TwinCAT .. 232
4.9.7 Mapping is lost with Reload TMI/TMC ... 232
4.9.8 Integrating the block diagram controls in .NET .. 233
4.9.9 Observable signals in the TwinCAT block diagram.. 235
4.9.10 Using Simulink® Strings... 236
4.9.11 Are there limitations with regard to executing modules in real-time?............................. 238
4.9.12 Message: Failed to copy repository ... 239

Table of contents

TE1400 5Version: 2.1.1

4.10 Samples .. 239
4.10.1 TwinCAT Automation Interface: use in MATLAB®... 240
4.10.2 Integrating the block diagram controls .. 242
4.10.3 Try out created TwinCAT objects yourself ... 244

Table of contents

TE14006 Version: 2.1.1

Foreword

TE1400 7Version: 2.1.1

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TE14008 Version: 2.1.1

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TE1400 9Version: 2.1.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TE140010 Version: 2.1.1

2 Overview
TE1400 TwinCAT Target for Simulink®

With the TwinCAT 3 Target for Simulink® it is possible to make models developed in Simulink® usable in
TwinCAT 3. Various toolboxes such as SimScape™ or Stateflow™ or DSP System Toolbox™ can be
integrated in Simulink®. Embedded MATLAB® function blocks are also supported. The models are
automatically transcoded in C/C++ code with the aid of the Simulink Coder™ and transformed into TwinCAT
objects with TwinCAT 3 Target for Simulink®. These TwinCAT objects can then be executed in real-time in
the TwinCAT runtime. These TwinCAT objects can be TcCOM objects for direct instantiation and linking with
real-time tasks or function blocks for instantiation and processing in a PLC project.

Areas of application and application examples

The areas of application of TwinCAT Target for Simulink® can be summarized by the following keywords:

• Rapid Control Prototyping
• Real-time simulation
• SiL (Software in the Loop) simulation
• HiL (Hardware in the Loop) simulation
• Model-based design
• Model-based monitoring

The following application examples are intended to illustrate possible areas of application:

• Example 1: Rapid Control Prototyping
During the simulation development stage in Simulink®, a controller is implemented as a Simulink®

model, which is integrated into the simulation model of the control loop via model referencing. This
enables the closed control loop to be designed and tested in a simulation (Model in the Loop
simulation (MiL)). Before the controller model is compiled unchanged into a TwinCAT module via
mouse click, which then operates as real-time controller for an actual system. Since standard Simulink®

function blocks are used as inputs and outputs, they can be used in the higher-level Simulink® model
as well as in the module generated later in TwinCAT.

• Example 1a: Real-time simulation of a controlled system
The controlled system is also implemented as a Simulink® model, which is integrated into the model of
the closed control loop via Model Referencing. The TcCOM module generated from this is used to
perform a real-time simulation, in which a controller implemented in IEC61131-3, C++ or Simulink® can
be tested.

• Example 2: Real-time simulation of a machine/Virtual commissioning
A TcCOM module is generated from a machine model created in Simulink®. This can be used to test a
PLC program in real-time, before the actual machine is connected (virtual commissioning). Depending
on the configuration, SiL or HiL simulations can be performed in this way. See also Overview.

• Example 2a: SiL simulation of plant components
According to VDI/VDE 3693 Part 1, Software in the loop (SiL) is defined as a stage following MiL
simulation, in which the control code is available as series code. The series code can be executed in
an emulated controller, for testing against a system simulation model.
According to this definition, there are two options for a SiL simulation of systems (components) with
TwinCAT:

◦ The system model remains in Simulink® and uses ADS to communicate with the series code,
which is executed in the TwinCAT runtime. See also TE1410 Interface for MATLAB Simulink.

◦ The system model is also compiled into a TcCOM module and executed in real-time (see example
1a).

• Example 2b: HiL simulation of system components
According to VDI/VDE 3693 Part 1, Hardware in the loop (HiL) is defined as an advanced testing stage,
in which the actual target control code is tested on an actual controller against a system model. The
latter is executed in a simulation tool, which acts as a bus device and therefore uses the actual
communication networks of the automation system for communication with the actual controller.
Based on this definition, the model of the system or the system components is converted to TcCOM
modules and executed on a second Industrial PC, taking into account the real-time requirements. The

Overview

TE1400 11Version: 2.1.1

function Overview is used to configure this IPC such that it makes the mirrored process image
available to the actual controller. In this way, it is possible to use the actual controller and the actual
configuration to communicate with the "simulation IPC" in hard real-time.

• Example 3: Model-based monitoring of system components
In many cases, measured variables are of interest that are not directly accessible or would result in
excessive effort/costs. By using a physically representative model with measurable input variables,
non-measurable variables can still be determined. An example is temperature measurement at
locations that are inaccessible, such as the permanent magnet temperature in an electric motor. Based
on a thermal model of the motor, the temperature can be estimated by means of secondary parameters
such as electric current, rotational speed and cooling temperature.

Further Information

Technical short videos

• TwinCAT Target for Simulink

Product descriptions

• https://www.beckhoff.com/TE1400

Customer application videos

• Overview of customer applications

• Success Story Vintecc bv

• Success Story Magway

Website for MATLAB® and Simulink® with TwinCAT 3: http://www.beckhoff.com/matlab

https://vimeo.com/546350677
https://www.beckhoff.com/TE1400
https://vimeo.com/546065184
https://vimeo.com/546070456
https://vimeo.com/546065775
http://www.beckhoff.com/matlab

Up to version 1.2.xxxx.x

TE140012 Version: 2.1.1

3 Up to version 1.2.xxxx.x
TE1400 Target for Simulink® versions lower than 1.2.xxxx.x support MATLAB R2010b to MATLAB R2019a.

TE1400 Target for Simulink® versions higher than 2.x.xxxx.x support MATLAB R2019a and higher.

3.1 Installation
System requirements

Initially, the same requirements apply to the target for MATLAB®/Simulink® as for TwinCAT 3 C/C++. For a
detailed description of the TwinCAT 3 C/C++ requirements, please refer to Chapter 4, "Requirements", of the
TwinCAT 3 C++ manual.

In the following sections, these requirements are only referred to briefly, not in detail.

On the engineering PC
• Microsoft Visual Studio 2010 (with Service Pack 1), 2012, 2013, 2015 or 2017 Professional, Premium,

Ultimate or Community Edition
◦ Installation under Windows always with right-click run as admin…
◦ For Visual Studio 2015 check the Visual C++ checkbox during installation
◦ For Visual Studio 2017, manually select "Desktop development with C++"

• Microsoft "Windows Driver Kit" version 7.1.0 (only required for TwinCAT versions older than TwinCAT
3 build 4024.0)

◦ It is sufficient to install the "Build Environments".
◦ Set the environment variable (variable name WINDDK7, variable value <Installation directory> e.g.

C:\WinDDK\7600.16385.1)
• TwinCAT 3 XAE

On the runtime PC
• IPC or Embedded CX PC with Microsoft operating system based on "Windows NT kernel" (Win XP,

Win 7 and corresponding embedded versions, Win 10)
• TwinCAT 3 XAR

◦ TwinCAT 3.0 only supports 32-bit operating systems on the target
◦ TwinCAT 3.1 supports 32-bit and 64-bit operating systems. If the target is a x64 system, the

created drivers must be signed. The TE1400 supports OS driver signing. See "x64: driver signing"
in the TwinCAT 3 C++ manual

In addition to the above requirements, which originate from the requirements of TwinCAT 3 C/C++, the
following requirements apply to the engineering PC:

• MATLAB®/Simulink® R2010b up to and including R2019a. As of and including R2019a, the use of
TE1400 version 2.x.xxxx.x is recommended.

• Simulink CoderTM (in MATLAB® versions prior to R2011a: Real-Time Workshop®)
• MATLAB CoderTM (in MATLAB® versions prior to R2011a: part of the Real-Time Workshop®)
• Installing the TE1400 Target for MATLAB®/Simulink®

Setup instructions
ü Install one of the supported Visual Studio versions, if not already installed. Pay attention to the

installation of the C++ components.
1. Start TwinCAT 3 Setup, if it does not already exist.

ð If a Visual Studio and a TwinCAT installation already exists but the Visual Studio version does not
meet the requirements mentioned above (e.g. Visual Studio Shell or Visual Studio without Visual C+
+), you first have to install a suitable Visual Studio version (install Visual C++, if necessary). Then run
TwinCAT 3 Setup to integrate TwinCAT 3 into the new (or modified) Visual Studio version.

Up to version 1.2.xxxx.x

TE1400 13Version: 2.1.1

2. If necessary, install the Microsoft Windows Driver Kit (see Installation "Microsoft Windows Driver Kit
(WDK)" in the TwinCAT 3 C/C++ manual).
The order in which the Windows Driver Kit was installed is irrelevant.

3. If you do not have a MATLAB® installation on your system, install it. The order in which MATLAB® was
installed is irrelevant.

4. Start the setup TE1400-TargetForMatlabSimulink to install the TE1400.
The TE1400 is installed in the TwinCAT folder, i.e. it is separate from the MATLAB® installation. A
MATLAB® version that exists on the system can be linked to the TE1400 according to point 6.

5. Start MATLAB® as administrator and execute %TwinCAT3Dir%..\Functions\TE1400-
TargetForMatlabSimulink\SetupTwinCatTarget.p in MATLAB®.

ð A setup window opens. See the following section.

• The p-file links the MATLAB® version used to the TE1400. If a new MATLAB® version is installed on the
system, the p-file must be executed in the new version.

• If a new TE1400 version is installed on top of an existing TE1400 version, the p-file should also be run
again.

User Account Control
If MATLAB® is executed in a system with activated User Account Control (UAC) without
administrator rights, the MATLAB® path cannot be stored permanently. In this case,
SetupTwinCatTarget.p must be executed every time MATLAB® is started, since otherwise some
files required for generating TwinCAT modules cannot be found.

Driver signing for targets with x64 operating system
To use an x64-operating system as runtime PC, the drivers must be signed. Details can be found in
the TC3 C++ manual under Driver signing.

https://infosys.beckhoff.com/content/1033/tc3_c/18014405288250507.html?id=1578739564348626858

Up to version 1.2.xxxx.x

TE140014 Version: 2.1.1

3.2 Licenses
Two licenses are required to use the full functionality of the TE1400 Target for MATLAB®/Simulink® (see
Ordering and activation of TwinCAT 3 standard licenses).

Required licenses for TE1400

TE1400: TC3 Target-For-Matlab-Simulink (module generator license)

This license is required for the engineering system for the module generation from MATLAB®/Simulink®.
For testing purposes, the module generator of the TE1400 can be used in demo mode without a license.

A fully functional 7-day trial license is not available for this product.

Restrictions in the demo version

The module generator has the following restrictions without a license.

Allowed are models with maximum :

• 100 function blocks
• 5 input signals
• 5 output signals

Modules created with a demo license may only be used for non-commercial purposes!

TC1320/TC1220: TC3 [PLC /] C++ / MatSim (runtime license)

The license TC1320 (or TC1220 with PLC license) is required to start a TwinCAT configuration with a
module generated from Simulink®. Without activated license, the module and consequently the TwinCAT
system cannot be started. In this case you get error messages relating to the license violation. You can
generate a 7-day trial license, which enables initial tests without purchasing the license.

Up to version 1.2.xxxx.x

TE1400 15Version: 2.1.1

3.3 Quickstart
Configuration of the Simulink® model

The coder settings can be accessed via the Model Explorer in the View menu of the Simulink environment,
via Code Generation (previously Real-Time Workshop) > Options in the Tools menu, or via the
Configuration Parameters dialog. In the tree view, select Configuration -> Code Generation. Then, open
the General tab and select TwinCAT.tlc as "System target file". Alternatively, use the Browse button to open
a selection window and select TwinCAT Target as target system.

In addition, a fixed-step solver must be configured in the solver settings, to ensure real-time capability of the
Simulink model.

Generating a TcCOM module from Simulink

Generation of the C++ code or the TcCOM module can be started with the Build button (or Generate code)
in the lower section of the window for the code generator options. If the option Publish module is activated
under TC Build (default setting), the build process for generating executable files starts immediately after the
C++ code has been generated, and a TcCOM module is created. Otherwise, the module generator stops
after the C++ code and the project file for Visual Studio™ has been generated. For further information please
refer to Publish Module [} 22].

Integration of the module in TwinCAT 3

After module export with "Publish"

If the option Publish Module was enabled before the module was generated, the module will already be
available in compiled form. A TwinCAT Module Class (TMC file) was created during this process and can be
instantiated directly in the project. A TwinCAT Module Instance (TMI) is referred to as TcCOM object or
module instance below.

Up to version 1.2.xxxx.x

TE140016 Version: 2.1.1

Instances of the generated module can be integrated in a TwinCAT3 project any number of times. TcCOM
objects are usually appended to the node TcCOM Objects via the Add New Item context menu. A selection
list of the modules that are available on the system can be obtained via this option. The modules generated
by Simulink can be found under TE1400 Module Vendor > Generated Modules.

Compiling the code without "Publish"

If the option Publish Module was disabled prior to the module generation, the C/C++ code pertaining to the
module still has to be compiled, before it can be executed.

The C++ project can be inserted into the TwinCAT project via Add Existing Item in the context menu of the
C++ node. The C++ project file is located in the Build directory "<MODELNAME>_tct" and has the name of
the module with the file extension .vcxproj. The module can then be created in the TwinCAT development
environment (XAE):

Up to version 1.2.xxxx.x

TE1400 17Version: 2.1.1

Multiple instances of the module can be created via the context menu of the parent node of the C++ project.
These are listed under the project node. Further information about the build process of C++ projects in the
TwinCAT development environment (XAE) and about the instantiation of modules created in this way can be
found in section "Creating a TwinCAT3 C++ project".

Cyclic call by a real-time task

Up to version 1.2.xxxx.x

TE140018 Version: 2.1.1

Under the Context tab of the module instance, you will find all the contexts of the module, which have to be
assigned to a real-time task. If Depend on: Task Properties are assigned automatically to tasks for which
the cycle time and the priority match the displayed values. If there are no matching tasks or if the setting
Depend on: Manual Config was selected, tasks can be created under System Configuration -> Task
Management. Further information on cyclic calling of module instances can be found in section "Cyclic Call
[} 41]".

Data exchange with other modules or fieldbus devices

The process images of the module inputs and outputs can be expanded below the module instance node in
the TwinCAT development environment. Here you will find all ports that have been defined in the Simulink
model with the aid of the function blocks In1 and Out1 (components of the standard Simulink library). All
signals within this process images can be linked to signals of another process images via the Change Link
context menu.

3.4 TwinCAT Library in Simulink®
In Simulink®, TwinCAT-specific input and output function blocks can (not mandatory) be used to define the
signals/buses connected to these function blocks as inputs or outputs in the subsequent TcCOM in
TwinCAT. A common way is to use the standard input ports (In) and output ports (Out) of Simulink®. This is
usually also the best practice way, unless the additional functions of the TwinCAT-specific input and output
function blocks described below are required.

The TwinCAT-specific input and output function blocks can be found in the
Library Browser under Beckhoff TwinCAT Target.

If you use the input and output function blocks provided by Beckhoff, you will benefit from the following
additional functionalities, compared to the standard Simulink® input and output ports:

• You can also define signals and buses from subsystems directly as inputs or outputs for TcCOM,
without first transferring the signals/buses from the subsystem to the top system.

Up to version 1.2.xxxx.x

TE1400 19Version: 2.1.1

• You can (not mandatory) store an automatic mapping to other TcCOM or I/Os in the function block
parameters, so that the mapping is executed directly and automatically when the TcCOM is
instantiated.

• You can use initial values for inputs. To do this, set the Value of the Tc Module Inputs to any value.

When using automatic mapping, please note that if the TcCOM is instantiated more than once in TwinCAT,
you will end up with a mapping conflict which you must resolve by manual mapping. This option is therefore
not recommended for multiple instantiations.

In addition to TwinCAT-specific input and output function blocks, a TwinCAT Environment View Block is also
provided. This can be used in the Simulink® environment to simply display TwinCAT and TE1400 versions on
the system.

Example

A Simulink® model is created, which outputs two negated inputs. An input is placed in a subsystem, see
figure below.

The inputs and outputs of the model are automatically mapped to digital inputs and outputs via the properties
of the TC Modules Input and Output. The necessary tree items can be found in TwinCAT 3 by selecting the
desired input or output and then copying the string in the Variable tab under Full Name.

Up to version 1.2.xxxx.x

TE140020 Version: 2.1.1

A list of shortcuts for quick access can be found in the documentation of the Automation Interface > API >
ITcSysManager > ITcSysmanager::LookupTreeItem.

When the Simulink® model described above is compiled and integrated into TwinCAT 3, a mapping to the
corresponding inputs and outputs is automatically created. The automatically generated mappings are
marked with a blue symbol to distinguish them from manual mapping, while manual mapping symbols
appear white.

Up to version 1.2.xxxx.x

TE1400 21Version: 2.1.1

3.5 Parameterization of the code generation in Simulink
Within MATLAB® Simulink® a wide range of configuration setting options for the TcCOM module to be
generated are available. To this end the tree structure under Code Generation is extended with the entries
Tc Build, Tc Interfaces, Tc External Mode and Tc Advanced. Many parameters can be modified in TwinCAT
3 at the module instance level; see Application of modules in TwinCAT [} 39].

Up to version 1.2.xxxx.x

TE140022 Version: 2.1.1

The corresponding setting options are described below.

Tooltips
Hover with the cursor over the text fields of the dialog boxes to bring up a detailed description of the
option as a tooltip (pop-up window).

3.5.1 Module generation (Tc Build)
The Publish mechanism can be used to compile TwinCAT C++ projects for several TwinCAT platforms and
export them to a central Publish directory. In the first step, the modules for all selected platforms are built.
Then, all files required for instantiation and execution of the module under TwinCAT 3 are copied to the
Publish directory.
The section "Export TC3 modules" under TC3 Engineering > C/C++ > Modules Handling describes how
the publish mechanism is applied to TC3 C++ modules. The following section describes how Simulink has to
be configured in order to export TwinCAT modules directly after the code has been generated with the aid of
the Publish mechanism.

Publish directory

The files relating to exported modules are copied to the directory
%TwinCat3Dir%CustomConfig\Modules\<MODULENAME>\. To instantiate the module on another
development PC, this folder can be copied to the appropriate directory on the other computer.

Application

It makes sense to publish modules only once they have reached a stage at which they are only rarely
modified, and if they are used in several TwinCAT projects. Otherwise, it may be more efficient to integrate
the whole C++ project in the TwinCAT project, e.g. if the Simulink model is still under development and
regular modifications are therefore to be expected, or if the module is only used in a special TwinCAT
project.

Up to version 1.2.xxxx.x

TE1400 23Version: 2.1.1

Configuration in Simulink

The publish mechanism can be configured at Tc Build: (Export options for TwinCAT modules)

Publish module:
• disabled: The module generator is stopped once the C++ project has been generated. The generated

C++ project has to be compiled manually, so that the module can be executed in TwinCAT 3. This can
be done directly from the TwinCAT development environment, once the generated C++ project has
been integrated into the TwinCAT project.

• enabled: "Publish" is executed automatically, once the C++ project has been generated. The module is
then available on the development PC in compiled form for all TwinCAT projects and can be
instantiated directly in the TwinCAT development environment (XAE). The other Publish settings relate
to the target platforms for which the module is intended. Due to the sequential building for the different
platforms, these settings can have a significant effect on the module generation duration.

"Generate code only" option
The option Generate code only (in the Build process part of the window for the Code Generation
settings) has no function, because the TwinCAT Publish mechanism is used instead of the MATLAB
Make mechanism.

Platform toolset:

Enables selection of a certain platform toolset (compiler) for building the module drivers. The options
available for selection depend on the VisualStudio versions installed on the system. If Auto is selected, a
compiler is selected automatically.

Publish configuration:

Select Debug here in order to enable debugging of the exported block diagram in TwinCAT 3. If no
debugging is required, e.g. in a release version, Release can be selected here.

• Publish binaries for platform „<PLATFORMNAME>“:
◦ Select all TwinCAT platforms on which the module is intended to run. The drivers are then built

successively for all selected platforms.

Up to version 1.2.xxxx.x

TE140024 Version: 2.1.1

• Lowest compatible TwinCAT build:
◦ Enter the build number of the oldest TwinCAT version, with which the module is still to be

compatible. If the module is subsequently used with an older TwinCAT version, it may fail to start.
Also, the generated code may be uncompilable, if the SDK of an older TwinCAT version is used.
The following table provides an overview of main TwinCAT version-dependent properties of the
generated module:

Property TC3 Build Description
Large DataAreas < 4018 DataAreas > 16 MB are not supported

>= 4018 DataAreas > 16 MB utilize the data areas of several DataArea IDs, using
the "OBJDATAAREA_SPAN_xxx" macros.

Project
subdirectory"_Mod
uleInstall"

< 4018 During instantiation of a module that was a previously exported via
"Publish", only the TMC description is imported into the TwinCAT
project. The module instance still refers to files within the Publish
directory [} 22]. To load the TwinCAT project on other development
computer, the Publish directories of the modules in use have to be
copied manually into to the corresponding directories of the other
computers. Otherwise the project cannot be activated, and the block
diagram is not displayed.

>= 4018 During instantiation of an exported module, all associated files are
copied to subdirectory "_ModuleInstall" of the project directory.
The project can now be opened on another development PC (even if it is
compressed as an archive), without having to copy additional files
manually.

Another advantage is that the files in the Publish directory [} 22] are now
completely decoupled from the TwinCAT project. The module
description, which is part of the TwinCAT project after it is instantiated,
and the associated files (e.g. the drivers) are kept consistent. Files in the
Publish directory can be overwritten, while the project uses a different
version of the module up to "Reload TMC" and can still be re-activated
on a target system.

PreCodeGeneration / PostCodeGeneration / PostPublish callback:

MATLAB functions can be entered here, which are called before and after the code generation, or after
Publish: (callback sequence)

Up to version 1.2.xxxx.x

TE1400 25Version: 2.1.1

To execute model- or module-specific actions, the structure cgStruct can be accessed here. It contains the
following subelements:

Name Value Comment
ModelName Name of the Simulink model
StartTime Return value of the MATLAB function "now ()" at the start

of the code generation
BuildDirectory Current build directory From "PostCodeGeneration"
ModuleName Name of the generated TwinCAT module From "PostCodeGeneration"
ModuleClassId ClassId of the generated TwinCAT module From "PostCodeGeneration"
<UserDefined> Additional custom fields can be added to the structure, in

order to transfer additional information to subsequent
callbacks.

For example, in the simplest case additional information could then be output between the individual module
generation phases:

See also: Callback samples [} 62]

Signing Certificate for x64 Windows Loader:

Up to version 1.2.xxxx.x

TE140026 Version: 2.1.1

Defines the certificate used for signing of the driver for the "TwinCAT RT (x64)" platform. The default value $
(TWINCATTESTCERTIFICATE) refers to the environment variable TWINCATTESTCERTIFICATE, which is
described under "Driver signing" (TC3 Engineering > C/C++ >Preparation). Alternatively, the certificate
name can be entered directly here, or different placeholders can be used, depending on the desired signing
behavior:

Value Behavior
$<ENVIRONMENT
VARIABLE>

This placeholder is resolved at an early stage during code generation. The
value is written into the generated C++ project. If the specified environment
variable is not found, the code generation process terminates with a
corresponding error message.

$(ENVIRONMENT VARIABLE) This placeholder is not resolved until the generated C++ project is built. If
the environment variable is not found, only a warning appears. The x64
driver can then still be built, although it cannot be loaded by the Windows
loader on a target system.

CertificateName The name of the certificate is written into the generated C++ project.
If the field remains empty, only a warning appears. The x64 driver can then
still be built, although it cannot be loaded by the Windows loader on a target
system.

3.5.2 Data exchange (Tc Interfaces)

Configuration in Simulink

Depending on the Simulink model, there are several groups of internal variables in addition to the input and
output variables. ADS access and the process image type can be configured as required. These settings
affect how the variables are linked with other process images in the TwinCAT development environment, and
how they can exchange data. The following groups can be configured:

Group Description
Input Model inputs
Output Model outputs
Parameter Model-specific parameters: Parameters of Simulink blocks that can be "set"
BlockIO Global output signals of Simulink blocks: Internal signals for which a "test point" was set or

which were declared as global due to code optimizations of the code generator.
ContState Continuous state variables
DWork Time-discrete state variables

On the configuration page TC Interface in the coder settings, there are several possible settings for each of
these variable groups. The options available for selection depend on the group, i.e. not all the described
options are available in all cases:

Parameter Options
GROUP access
(checkbox)

TRUE The module enables access to variables of this group.
FALSE The module denies access to variables of this group.

ADS access Only relevant if "GROUP access"=TRUE
No ADS access No ADS access
ReadOnly_NoSymbols No ADS write access,

ADS communication is only possible via the Index group and
the Index Offset information

ReadWrite_NoSymbols Full ADS access,
ADS communication is only possible via the Index group and
the Index Offset information

ReadOnly_CreateSymbol
s

No ADS write access,
ADS symbol information is generated

Up to version 1.2.xxxx.x

TE1400 27Version: 2.1.1

Parameter Options
ReadWrite_CreateSymb
ols

Full ADS access,
ADS symbol information is generated

Process image Only relevant if "GROUP access"=TRUE
No DataArea Link to DataArea or I/O: no

Link to DataPointer: no
Standard DataArea Link to DataArea or I/O: no

Link to DataPointer: yes
Input-Destination
DataArea

Link to DataArea or I/O: yes
Link to DataPointer: yes

Output-Source DataArea Link to DataArea or I/O: yes
Link to DataPointer: yes

Internal DataArea Link to DataArea or I/O: no
Link to DataPointer: no

Retain DataArea Enables linking to a "retain handler" (see retain data [} 27]) for
remanent data management.

The above setting options can be realized in the following mask via the corresponding drop-down lists.

The restore default settings option can be used to undo all changes and reset the default settings. The
default settings are shown in the diagram above.

3.5.2.1 Retain data
This section describes the option to make data available even after an ordered or spontaneous system
restart. The NOV-RAM of a device is used for this purpose. The EL6080 cannot be used for these retain
data, because the corresponding data must first be transferred, which leads to corresponding runtimes.
The following section describes the retain handler, which stores data and makes them available again, and
the application of the different TwinCAT 3 programming languages.

Up to version 1.2.xxxx.x

TE140028 Version: 2.1.1

Configuring a retain device
1. The retain data are stored and made available by a retain handler, which is part of the NOV-DP-RAM

device in the IO section of the TwinCAT solution. Create a NOV-RAM DP Device in the IO area of the

Solution.
2. Create one or more Retain Handler below this device.

Storage location: NOVRAM

3. Configure the NOV-DP RAM device. In the Generic NOV-DP-RAM Device tab, use Search... to define
the area to be used.

4. An additional retain directory for the symbols is created in the TwinCAT boot directory.

Using the retain handler with a PLC project

In a PLC project the variables are either created in a VAR RETAIN section or identified with the attribute
TcRetain.
PROGRAM MAIN
VAR RETAIN
 l: UINT;
 k: UINT;
END_VAR
VAR

Up to version 1.2.xxxx.x

TE1400 29Version: 2.1.1

 {attribute ‘TcRetain’:=’1’}
 m: UINT;
 x: UINT;
END_VAR

Corresponding symbols are created after a "Build".
The assignment to the retain handler of the NOV-DP-RAM device is done in column Retain Hdl.

If self-defined data types (DUTs) are used as retain, the data types must be available in the TwinCAT type
system. You can either use the option Convert to Global Type or you can create structures directly as
STRUCT RETAIN . However, the Retain Handler then handles all occurrences of the structure.
Retain data cannot be used for POUs (function blocks) as a whole. However, individual elements of a POU
can be used.

Using the retain handler with a C++ module

In a C++ module a data area of type Retain Source is created, which contains the corresponding symbols.

At the instances of the C++ module, a retain handler of the NOV-DP-RAM device to be used for this data
area is defined in column Retain Hdl.

Up to version 1.2.xxxx.x

TE140030 Version: 2.1.1

Conclusions

When a retain handler is selected as target in the respective project, the symbols under retain handler and a
mapping are created automatically after a "Build".

3.5.3 External mode (Tc External Mode)
Simulink offers various execution modes. In addition to "Normal mode", in which the Simulink model is
calculated directly in the Simulink environment, an "External mode" is available. In this mode Simulink only
acts as a graphical interface, without performing calculations in the background. Once the model with the
corresponding settings has been converted into a TcCOM module, Simulink can link to the instantiated
TcCOM object that is currently running in the TwinCAT real-time environment. In this case the internal
module signals are transferred to Simulink via ADS, where they can be recorded or shown with the
corresponding Simulink blocks. Parameters that were modified in Simulink can be written online into the
TcCOM object. However, such an online parameter modification is only possible for parameters that are
defined as "tunable".

Configuration of the module generator

An External Mode connection is only possible if the generated module supports it. To this end External
Mode must be activated in the settings for the Simulink Coder under TC External Mode before the module
is generated:

Up to version 1.2.xxxx.x

TE1400 31Version: 2.1.1

In addition, there is a button for preconfiguring the "External Mode" connection. For information on
configuring the "External Mode" connection see section "Establishing a connection". Further parameters
under this tab are:

Parameter Description Default value
Allow real-time execution
commands via External Mode

Defines the default value of the module parameter
[} 31] "AllowExecutionCommands", which specifies
whether the module should process start and stop
commands from Simulink.
Special behavior of this parameter: The module
parameter "AllowExecutionCommands" is ReadOnly,
if the value is FALSE. In this case the code is
optimized in terms of the execution time and therefore
does not contain the code sections for processing
start/stop commands.

FALSE

By default wait on External Mode
start command

Default value of the module parameter [} 31]
"WaitForStartCommand"

FALSE

Module parameter

For configuring the behavior in external mode (on the XAE side) the parameter External Mode is defined as
a structure in generated modules, which contains the following elements:

Parameter Description Default value
Activated ReadOnly. Determines whether the generated module

supports the external mode.
Setting the module
generator

AllowExecutionCommand
s

Only relevant if "Activated"=TRUE.
ReadOnly if the default value is FALSE, since in this
case the code sections are not included in the generated
code. That is, this parameter can disable the processing
of start and stop commands, but it cannot enable it, if it
was not created during code generation.

Setting the module
generator

TRUE Enables Simulink to start and
stop the module execution via
the "External Mode"
connection.

FALSE Start and stop commands are
ignored in the module.

Up to version 1.2.xxxx.x

TE140032 Version: 2.1.1

Parameter Description Default value
WaitForStartCommand Only relevant if "Activated" is TRUE and

"AllowExecutionCommands" is TRUE
Setting the module
generator

TRUE When TwinCAT has started
the module is not executed
automatically but waits for the
start command from Simulink.

FALSE The module starts
immediately with the assigned
TwinCAT task. (default)

For further information on adapting the module parameters in XAE see section "Parameterization of the
generated module".

Establish connection from Simulink®

The "External Mode" connection can be started from Simulink via the Connect to Target icon, which
appears in the Simulink toolbar when External mode is selected:

If connection data are missing or incorrect, the following dialogs are displayed one after the other, so that the
user can reconfigure the connection:

The first dialog box shows a list of target systems, the second box shows a list of the available module
instances on the selected target system. In the following dialog the user can specify whether the new
connection data should be stored. Once the connection data have been stored, the connection is established
automatically, if the connection data point to a valid and suitable module.
The stored connection data can be modified at any time in the coder settings via the button Setup ADS
Connection under TC External Mode.

Up to version 1.2.xxxx.x

TE1400 33Version: 2.1.1

Transfer of the calculation results for "minor time steps"

Under certain circumstances, signal values transferred via ADS may differ from the values that were copied
to other process images via "output mapping". See Transfer of the calculation results for "minor time steps"
[} 58].

Parameterization in TwinCAT

Large models necessitate communication of large data volumes between TwinCAT and Simulink. This takes
place via ADS. On the TwinCAT side, buffers are created as part of the process. The buffers can be adapted
for incoming and outgoing data (default: 10,000 bytes), and the timeout threshold can be adjusted (default:
3.0 seconds).

3.5.4 Advanced settings (Tc Advanced)
The advanced settings can be used to set parameters that affect the execution and call behavior of the
module and also the display and properties of the exported block diagram:

Up to version 1.2.xxxx.x

TE140034 Version: 2.1.1

Execution behavior of the generated module

In TwinCAT 3, a Simulink module can be called directly from a cyclical real-time task or from another
TwinCAT module, e.g. a PLC. The behavior of the generated module class can be parameterized in Simulink
under Tc Advanced. To specify individual module instances behavior that differs from the class behavior, the
execution type can be adjusted in the TwinCAT 3 development environment via the TcCOM parameter list in
the Parameter (Init) tab or via the parameter range of the block diagram.

Configuration of the default settings in Simulink

Up to version 1.2.xxxx.x

TE1400 35Version: 2.1.1

The default values of the call parameters can be configured in the Simulink coder settings, in order to reduce
the parameterization effort for the individual objects (module instances):

Task assignment

The assignment type for a TwinCAT task can be defined under Task assignment.

"Depend On" setting Description
Manual Config The tasks can be assigned manually in the context table, by selecting or

entering the object IDs of the tasks in the Task column. The selected tasks
must meet all the criteria that were configured via the "Call parameters"

Parent Object Can only be used if the parent node of the module instance is a task in the
project tree. In this case, the parent object is used as cyclic caller of the
module.

Task Properties The tasks are automatically assigned to the module when the cycle time and
the priority correspond to the values specified in Simulink. If there is no
corresponding task, new tasks can be created and parameterized as
required under the node "System Configuration -> Task Management".

If the Task properties option is active, the priority of the corresponding task must be specified.

Cyclic call

If the value "CyclicTask" was set for the call parameter "CallBy", all task cycle times are verified when the
module starts. The conditions for the cycle times of the associated tasks can be specified via the call
parameter "Step size". If all cycle times meet their conditions, the module can start. Otherwise the module
start and the TwinCAT runtime terminate with corresponding error messages.

Call from another TwinCAT module

Up to version 1.2.xxxx.x

TE140036 Version: 2.1.1

If the call parameter "CallBy" was set to the value "Module", the assigned tasks do not call the module
automatically. To call the generated TcCOM module via another module instead, the interfaces of that
module can be accessed. This can be done from a C++-module or from a TwinCAT PLC, as shown in
"Calling the generated module from a PLC project [} 43]".

Execution order

In modules that were created with TE1400 from version 1.1, an execution order can be specified, in order to
optimize the jitter and the response times for the respective application. Older versions use always the order
"StateUpdateAfterOutputMapping". The following table illustrates the advantages and disadvantages of the
supported call sequences:

• IoAtTaskBegin

- Longest response time of all options
+ Smallest possible jitter in response time

• StateUpdateAfterOutputMapping

+ Shortest response time
o Average jitter in response time

Results from "Minor Time Steps" are transferred via ADS
Signal values transferred via ADS may differ from the values that were copied to other process
images via "output mapping". The reason is that "State update" may overwrite values, depending on
the selected solver. For further information see Transfer of the results from "Minor Time Steps"
[} 58].

• StateUpdateBeforeOutputUpdate

o Average response time
- largest jitter in the response time, since dependent on execution times for "State update" and "Output
update

Step size adjustment (step size)

The behavior of the TcCOM that was generated with regard to the step size (corresponding to the cycle time
in TwinCAT) is defined here.

• RequireMatchingTaskCycleTime
The module expects the "Fixed Step Size" specified in Simulink as cycle time for the allocated task. If
another cycle time is set, the TcCOM start sequence is aborted with an error message. Multitasking
modules expect that all allocated tasks were configured with the associated Simulink sample time.

• UseTaskCycleTime
The module enables cycle times, which differ from the "Fixed Step Size" specified in Simulink. In
multitasking modules, all task cycle times must match the corresponding Simulink sample times. If the
cycle time deviates from the Simulink sample time, a warning is issued in TwinCAT indicating the
deviation.

• UseModelStepSize
The module uses the sample time set in Simulink for all internal calculations. This setting is primarily
intended for use in simulations within the TwinCAT environment and can be used for accelerated or
slowed-down simulation.

Auto start cyclic execution

Up to version 1.2.xxxx.x

TE1400 37Version: 2.1.1

If this option is enabled (default), the TcCOM module is set to OP state on startup, and the generated model
code is executed directly. If this option is disabled, the module is also set to OP state, but the model code is
not executed. In the instantiated module this option can be found in the “Parameter (init)” tab and in the
parameter range of the block diagram under "Module parameters" as variable "ExecuteModelCode", where it
can also be adjusted.

Adapting the display, debugging and parameterizability

Modules generated from Simulink offer a wide range of options for parameterizing the module and model
parameters, even after code generation and instantiation. The parameterization options can be adjusted
before the code generation, so that in the development phase debugging options are enabled and
parameters of masked subsystems are resolved, which are to be hidden in the release version. The use of
modules in TwinCAT 3 requires a display that can be configured according to requirements. For example,
debugging information can be included in the block diagram export.

The following coder parameters enable adaptation of the block diagram export, the parameter and signal
representation, and advanced functions:

Parameters Description Default
value

Monitoring execution
times

TRUE The execution times of the TC module are calculated and
made available as ADS variable for monitoring.

FALSE

FALSE Calculation of execution times disabled.
Export block diagram TRUE The Simulink block diagram is exported and displayed in

XAE under its "Block Diagram" tab once the module has
been instantiated.

TRUE

FALSE The Simulink block diagram is not exported, and the
"Block Diagram" tab is not displayed in XAE.

Resolve masked
Subsystems

Only relevant if "Export block diagram"=TRUE. FALSE

Up to version 1.2.xxxx.x

TE140038 Version: 2.1.1

Parameters Description Default
value

TRUE Masked subsystems are dissolved. All contents of
masked subsystems are visible to users of the generated
module in XAE.

FALSE Masked subsystems are not resolved. The contents of the
masked subsystems are not visible to users of the
generated module.

Access to
VariableGroup, not
referenced by any
block

Assign to
parent
block

Variables of this group, which belong to a block within an
unresolved subsystem, are assigned to the next higher,
visible subsystem.

Hide in
block
diagram

Variables of this group, which cannot be allocated to a
Simulink block, are not displayed in the block diagram.

Hide, No
access

Variables of this group, which cannot be allocated to a
Simulink block, are hidden and made inaccessible. This is
only possible, if "No DataArea" was selected for the
process image of this variable group (configuration in
Simulink [} 26]).

Export block diagram
debug information

TRUE Debugging information generated for the block diagram
enables allocation of row numbers in the generated code
to displayed blocks. Required for debugging [} 197].

TRUE

FALSE No debugging information is generated
Show parameter table
in XAE

TRUE The "Parameter (Init)" tab is displayed in XAE and
enables parameterization of the module via the parameter
list.

TRUE

FALSE The "Parameter (Init)" tab is not displayed in XAE.
Use original input and
output block names

FALSE Inputs and outputs of the module have the names that
were created by the Simulink Coder as variable names.
Spaces and special characters are not allowed.

FALSE

TRUE Inputs and outputs of the module have the names that
were used in the Simulink model. The names may include
spaces and special characters.

Set testpoints at
Simulink Scope signals
before code generation

Scope blocks are ignored by the Simulink coder, i.e. the
signals are generally not available in the generated
TwinCAT module and cannot be displayed. To force the
generation of variables for these signals, test points can
be defined in the Simulink model.
This parameter can be used to automatically create test
points for all scope input signals.

Maximum number of
visible array elements

Specifies the maximum number of array elements to be
displayed in the TwinCAT development environment.
Larger arrays cannot be opened, and the elements cannot
be linked individually, for example.

Hide Datatypes defined in TMC

In each TMC file the required data types are specified and notified in the system through import in TwinCAT
3. The data types are assigned a unique GUID. Accordingly, the GUID remains unchanged if a TMC file is
re-imported in which a data type has not changed. If enums or structures are used, for example, changes
(e.g. additional model parameters in a structure) may result in the data type name of the modified data type
and the previous data type being identical, with different GUIDs. This unique assignment via GUIDs is not
available in the PLC, where the data type name is used for identification. If a TcCOM instance is called from
the PLC, a mechanism must be provided that prevents this kind of ambiguity.

Up to version 1.2.xxxx.x

TE1400 39Version: 2.1.1

The Hide Data Types defined in TMC ensures that the last imported TMC or its data type names and data
types are used for the PLC. Any existing data type names with other data types are hidden for the PLC. See
also How do I resolve data type conflicts in the PLC project? [} 60].

Skip caller verification

This option disables queries when calling a TcCOM from the PLC, see Calling the generated module from a
PLC project [} 43]. This leads to faster processing of the module call. On the other hand, the user must
make sure that the call is executed correctly and from the correct context.

This option should only be activated if it is necessary for performance reasons, and if the project has
previously been tested with activated queries.

PLC Function Block

The POU type for calling a Simulink object from the PLC can be defined in more detail here. A more detailed
description can be found under "Calling the generated module from a PLC project [} 43]".

OEM license check

Optionally, a generated TcCOM can be linked to an OEM license. This OEM license is checked when
starting TcCOM (besides the Beckhoff runtime license TC1220 or TC1320) in TwinCAT 3. If no valid license
is available, the module does not start up and an error message appears.

How to create and manage OEM certificates can be found under TwinCAT3 > TE1000 XAE > Technologies
> Security Management.

In Simulink, you can insert the OEM License Check by naming your OEM ID and your license ID or multiple
license IDs to be queried. You can find your OEM ID in the Security Management Console (Extended Info
activated). The license ID can be viewed by double-clicking on the corresponding license entry in TwinCAT
under System > License. Both IDs are also included in the generated License Request File when a Request
File is generated with your OEM license.

Note GUID form
The IDs to be entered must be transferred as a string in GUID form, i.e. in Simulink the data must
be entered in quotation marks. No spaces are allowed in the specifications.

Sample entry:

OEM ID: '{B0D1D1B7-99AB-681G-F452-F4B3F1A993C0}'

License ID: 'Name1,{6B4BD993-B7C3-4B72-B3D1-681FE7DDF3D1}'

3.6 Application of modules in TwinCAT
The data of modules exported from Simulink are stored in directory
%TwinCat3Dir\CustomConfig\Modules\<MODULENAME>\%, and from where they can be copied to any
number of development PCs with TwinCAT XAE. A Simulink license is not required on these systems.
TwinCAT nevertheless offers further extensive parameterization options for the generated modules. Cyclic
execution of TcCOM modules through calls via a task and calls of modules from a PLC project are described
below.

3.6.1 Parameterization of a module instance

Parameter representation in XAE

The block diagram in the Browser Parameters tab:

Up to version 1.2.xxxx.x

TE140040 Version: 2.1.1

In general, TcCOM modules can be parameterized via the parameter list under the Parameter (Init) tab in
the TwinCAT 3 development environment (XAE). Simulink modules can also be parameterized via the block
diagram, if block diagram export is enabled in the Simulink coder settings under Tc Advanced.

Module- and model-specific parameters

The parameter list contains module- and model-specific parameters. Examples of module-specific
parameters are "Call Parameter [} 41]" or "External Mode Parameter [} 30]". In the block diagram these
parameters are only shown in the parameter section (on the right-hand side of the window) if the top level of
the block diagram ("<root>“) is selected.
Model-specific parameters are defined as "tunable" parameters in the Simulink blocks. The parameter list
displays them as a structure.

In the block diagram these model parameters are assigned to a block or indeed several blocks. The values
can be adjusted when the corresponding block is selected. The parameter values (startup, prepared or
online) can then be adjusted in the drop-down menu of the property table or in the parameter window directly
in the block diagram:

Hover with the mouse over the name of the drop-down menu (in this case ModelParameters.Kp) to show its
ADS information as a tooltip. Right-click on the name to copy the ADS symbol information to the clipboard.

Access to the model-specific parameters is only possible, if

• the Simulink optimization option Inline parameters is disabled, or workspace variables were selected
as model parameters in the advanced options under Inline parameters

Up to version 1.2.xxxx.x

TE1400 41Version: 2.1.1

• ADS access to parameters is enabled under Tc interfaces (Data exchange (Tc Interfaces) [} 26]).

"Default", "Startup", "Online" and "Prepared"

The following value types can be found in the drop-down menu of the Property table of the block diagram:

• Default values are the parameter values during code generation. They are invariably stored in the
module description file and enable the manufacturing settings to be restored after parameter changes.

• Startup values are stored in the TwinCAT project file and downloaded to the module instance as soon
as TwinCAT starts the module instance.
Startup values for the input process image can also be specified in Simulink® modules. This allows the
module to be started with non-zero input values, without the need for linking the inputs with other
process images. Internal signals and output signals have no starting values, since they would, in any
case, be overwritten in the first cycle.

• Online values are only available if the module was started on the target system. They show the
current parameter value in the running module. This value can also be changed during runtime.
Although in this case the corresponding input field has to be enabled via the context menu, in order to
prevent accidental inputs.

• Prepared values can be specified whenever online values are available. They can be used to save
various values, in order to write them consistently to the module. If prepared values have been
specified, they are displayed in a table below the block diagram. The buttons to the right of the list can
be used to download prepared values as online values and/or save them as starting value, or delete
them.

3.6.2 Executing the generated module under TwinCAT
In TwinCAT 3, a TcCOM module can be called directly from a cyclical real-time task or from another module,
e.g. a PLC. To specify the behavior of the individual module instances, the method of execution can be
defined in the TwinCAT 3 development environment.

Context settings

A list of all Simulink sample times for the module can be found under the Context tab of the module
instance. If "SingleTasking" is selected in the solver settings of the Simulink model, the number of tasks is
limited to 1:

Up to version 1.2.xxxx.x

TE140042 Version: 2.1.1

For each of the contexts listed in the table a task has to be specified, through which the module is to be
called. The task assignment varies, depending on the settings under "Depend On":

"Depend On" setting Description
Manual Config The tasks can be assigned manually in the context table, by selecting or

entering the object IDs of the tasks in the Task column. The selected tasks
must meet all the criteria that were configured via the "Call parameters".

Parent Object Can only be used if the parent node of the module instance is a task in the
project tree. In this case, the parent object is used as cyclic caller of the
module.

Task Properties The tasks are automatically assigned to the module when the cycle time and
the priority correspond to the values specified in Simulink. If there is no
corresponding task, new tasks can be created and parameterized as
required under the node "System Configuration -> Task Management".

Configuration in XAE

Parameters that affect the behavior of Simulink module execution are:

Parameter Options / description
CallBy Task The module automatically appends itself to the tasks specified in the

context settings [} 41], when TwinCAT is switched to Run mode. The
tasks call the module cyclically until TwinCAT is stopped.

Modules The module is not called directly by the assigned tasks, but it can be
called from the PLC or another module. Important: The calling module
must be assigned the same task as the TcCOM objects to be called.

Step size RequireMatchingT
askCycleTime

The module expects the "Fixed Step Size" specified in Simulink as cycle
time for the allocated task. Multitasking modules expect that all allocated
tasks were configured with the associated Simulink sample time.
Otherwise the module (and TwinCAT) cannot be started. The start
sequence is then aborted with corresponding error messages.

UseTaskCycleTim
e

The module enables cycle times, which differ from the "Fixed Step Size"
specified in Simulink. In multitasking modules, all task cycle times must
match the corresponding Simulink sample times.

UseModelStepSiz
e

The module uses the SampleTime set in Simulink for all internal
calculations. This setting is primarily intended for use in simulations
within the TwinCAT environment.

ExecutionSeq
uence

This parameter is only available in modules that were generated with TE1400 Version 1.1 or
higher. It can be used to adjust the order of the calculation and communication process, in
order to optimize jitter and reaction time for the respective application. Modules generated
with TE1400 version 1.0 always use the order "StateUpdateAfterOutputMapping". The
differences between the different options are described under "order of execution [} 36]".
IOAtTaskbeginn Execution order:

Input mapping -> Output mapping -> State update -> Output update ->
External mode processing -> ADS access

StateupdateAfter
OutputMapping

Execution order:
Input mapping -> Output update -> Output mapping -> State update ->
External mode processing -> ADS access

StateupdateBefor
eOutpunkUpdate

Execution order:
Input mapping -> State update -> Output update -> Output mapping ->
External mode processing -> ADS access

Access to these parameter in the TwinCAT development environment (XAE) is provided via the object node
under the following tabs:

• Parameter (Init) :

Up to version 1.2.xxxx.x

TE1400 43Version: 2.1.1

• Block diagram :

If none of these tabs are displayed, the Simulink coder settings need to be adjusted for parameter
representation in XAE.

3.6.3 Calling the generated module from a PLC project
If the call parameter "CallBy" was set to the value "Module", the assigned tasks do not call the module
automatically. To call the generated TcCom module via another module instead, the interfaces of that
module can be accessed. This can be done from a C++ module or, as shown below, from the TwinCAT PLC.
A PLCopen XML file is generated during code generation. This file can be found in the build directory
<MODEL_DIRECTORY>\<MODEL_NAME>_tct and - if the module was exported via the Publish step - also
in the Publish directory [} 22] of the module. The file contains POUs that simplify calling a Simulink object
from the PLC by encapsulating the handling of the interface pointers. The POUs can be imported via Import
PLCopenXML in the context menu of a PLC project node.

The following descriptions apply from version 1.2.1216.0 of TE1400!

Configuration in Simulink

In the settings under Tc Advanced, CallBy is initially set to Module (can be changed later in TwinCAT
Engineering).

Up to version 1.2.xxxx.x

TE140044 Version: 2.1.1

The parameter Skip caller verification is visible from TE1400 version 1.2.1230.

The parameter PLC Function Block (TcCOM wrapper) is available from TE1400 version 1.2.1216.0:

The following options are available for selection:

Option Description
None No PLCopen XML file is generated
Generic FB only Only the function block FB_TcMatSimObject (see also here), which applies to all

modules generated with TE1400 and data types used by it, is generated. The data
exchange takes place via generic methods. The user must know module-specific data
such as byte-sizes, parameter index offsets or DataArea IDs.
Version note: Up to and including TE1400 1.2.1216.0, this generic FB can only be
used in a meaningful way, if an FB derived from it is implemented, which deals with
the initialization of internal variables.
From version 1.2.1217.0 additional methods are available, which enable direct
initialization, i.e. without derived FB.

Module specific FB In addition to the generic FB_TcMatSimObject, the module-specific function block
FB_<ModuleName> and associated data types are generated. The structure of the
input and output variables exactly matches the structure of the corresponding data
areas of the module. For exchanging data, the input and output variables can be
assigned directly, without having to explicitly specify the size of the data areas or the
DataArea IDs, for example.

Module specific FB
with properties for
all parameters

The module-specific function block FB_<ModuleName> is assigned additional
properties. Based on these properties, module parameters can be read and also
written, if appropriate. For each module parameter the function block is assigned two
properties: "PrameterName_Startup" and "ParameterName_Online".

Up to version 1.2.xxxx.x

TE1400 45Version: 2.1.1

The module-specific function block

FB_<ModuleName> is derived from FB_TcMatSimObject and provides the methods and properties
described above. In addition, the following properties are implemented:

Public Properties:

Method Data type Description
InitData ST_<ModuleName

>_InitData
Stores the startup values of the module parameters for
initializing a module instance. During module state
transitions the values are transferred to the module from
INIT to PREOP via SetObjState(). Required for dynamic
instantiation.

<ParameterName>_Startup <ParameterType> Available for all parameters, if the coder is configured
accordingly. Enables transparent access to the
corresponding element of the InitData structure (read/
write).

<ParameterName>_Online HRESULT Available for all parameters, if the coder is configured
accordingly. Reads or writes the online values of the
corresponding module parameter.

Notes regarding FB with properties for all parameters

If Process image is set to Internal DataArea under Tc Interfaces in the Parameter access area, a property
is created for all parameters. These must then be read and written as an entity:
PROGRAM MAIN
VAR
// declare function block (details see below)
fbControl : FB_TctSmplTempCtrl(oid := 16#01010010);
// local PLC variable
ModelParameters : P_TctSmplTempCtrl_T;
END_VAR

// read all model parameters
ModelParameters := fbControl.ModelParameters_Online;
// change value
ModelParameters.Kp := 20;
// write all model parameters
fbControl.ModelParameters_Online := ModelParameters;

If Process image is set to No DataArea under Tc Interfaces in the Parameter access area, a separate
property is created for each model parameter. These can then be read and written directly without a local
PLC variable.
Fb<ModelName>.ModelParameters_<ParameterName>_Online

Referencing a static module instance:

The FB can be used to access module instances previously created in the XAE, e.g. under System >
TcCOM Objects. For this static case, the object ID of the corresponding module instance must be
transferred during declaration of the FB instance:
fbStatic : FB_<ModuleName>(oid:=<ObjectId>);

The object ID can be found in the instance of TcCOM under the Object tab.

Sample code

The following code sample illustrates the application of a module-specific function block in a simple PLC
program in ST code, using an object of module class "TempContr" with ObjectID 0x01010010 as an
example:
PROGRAM MAIN
VAR
// declare function block with ID of referenced Object
fbTempContr : FB_TempContr(oid:= 16#01010010);
// input process image variable
nInputTemperature AT%I* : INT;
// output process image variable
bHeaterOn AT%Q* : BOOL;

Up to version 1.2.xxxx.x

TE140046 Version: 2.1.1

END_VAR
IF (fbTempContr.State = TCOM_STATE.TCOM_STATE_OP) THEN
// set input values
fbTempContr.stInput.FeedbackTemp := nInputTemperature;
// execute module code
fbTempContr.Execute();
// get output values
bHeaterOn := fbTempContr.stOutput.HeaterOn;
END_IF

Generating and referencing a dynamic module instance:

If <ObjectId> = 0, the FB attempts to generate an instance of the TcCom module dynamically:
fbDynamic : FB_<ModuleName>(oid:=0);

In this case, the module instance does not appear in the XAE configuration tree, but only appears at runtime
(i.e. after the initialization of the PLC instance) in the "Project Objects" table of the System >
TcCOM Objects node.

A prerequisite for dynamic instantiation of a TcCOMmodule if that the corresponding "Class Factory" is
loaded. To this end, the Load checkbox (or the TC Loader checkbox if the "TwinCAT Loader" is used) must
be set for the "Class Factory" of the module under the Class Factories tab of the System >
TcCOM Objects node. The name of the "Class Factory" of a TcCOM module generated from Simulink
usually matches the module name, although the ClassFactory name is limited to fewer characters.

A further condition for dynamic instantiation of a module is adequate availability of dynamic memory. To this
end, the ADS router memory must be set to an adequate size.
Sample code:
PROGRAM MAIN
VAR
// declare function block
fbTempContr_Dyn : FB_TempContr(oid:= 0);
// input process image variable
nInputTemperature AT%I* : INT;
// output process image variable
bHeaterOn AT%Q* : BOOL;
// reset error code and reinitialize Object
bReset: BOOL;
// initialization helpers
stInitData : ST_TempContr_InitData;
bInitialized : BOOL;
END_VAR
IF (NOT bInitialized) THEN
stInitData := fbTempContr_Dyn.InitData; // read default parameters
// adapt required parameters:
stInitData.ContextInfoArr_0_TaskOid := 16#02010020; // oid of the plc task
stInitData.ContextInfoArr_0_TaskCycleTimeNs := 10 * 1000000; // plc task cycle time in ns
stInitData.ContextInfoArr_0_TaskPriority := 20; // plc task priority
stInitData.CallBy := TctModuleCallByType.Module;
stInitData.StepSize := TctStepSizeType.UseTaskCycleTime;
// set init data, copied to module the next time it switches from INIT to PREOP:
fbTempContr_Dyn.InitData := stInitData;
bInitialized := TRUE;
ELSIF (fbTempContr_Dyn.State<TCOM_STATE.TCOM_STATE_OP) THEN
// try to change to OP mode
fbTempContr_Dyn.State := TCOM_STATE.TCOM_STATE_OP;
ELSIF (NOT fbTempContr_Dyn.Error) THEN
// set input values
fbTempContr_Dyn.stInput.FeedbackTemp := nInputTemperature;
// execute module code
fbTempContr_Dyn.Execute();
// get output values
bHeaterOn := fbTempContr_Dyn.stOutput.HeaterOn;
END_IF

IF (bReset) THEN
IF (fbTempContr_Dyn.Error) THEN
fbTempContr_Dyn.ResetHresult();
END_IF
fbTempContr_Dyn.State := TCOM_STATE.TCOM_STATE_INIT;
END_IF

Up to version 1.2.xxxx.x

TE1400 47Version: 2.1.1

Task context setting

The PLC task from which the call is made must be configured in the context settings [} 41] of a static
module instance.

The object ID of the PLC task must be transferred to a dynamic module instance via the InitData structure. If
available, the corresponding InitData element can be set via the property
"ContextInfoArr_<contextId>_TaskOid_Startup".

When the TcCOM module is called, a context verification is performed. An error message is displayed if the
context is not correct. This verification takes time and is performed with each call. For this reason, the
verification can be deactivated via the checkbox Skip caller verification in the Tc Advanced dialog, see
Skip caller verification [} 39].

Import of several PLCopen-XML: FB_TcMatSimObject

The generic function block FB_TcMatSimObject is identical for all modules generated with TE1400 (from
V1.2.12016.0). Even if it is used for different modules, it only has to be imported once into the PLC
project.

Description of the function block:

Public Methods

Method Return data type Description
Execute HRESULT Copies the data of the InputDataArea structures from the

FB to the module instance (of the object), calls the cyclic
methods of the object and copies the data from the
output data areas back into the corresponding data
structures of the FB

GetObjPara HRESULT Reads parameter values from the object via PID
(Parameter ID = ADS Index Offset)

SetObjPara HRESULT Writes parameter values to the object via PID
(Parameter ID = ADS Index Offset)

ResetHresult Acknowledges error codes that have occurred during
initialization of the FB or when calling "Execute()".

SaveOnlineParametersForInit HRESULT Reads the current online values of the parameters from
the object and saves them in the parameter structure
after the FB variable pInitData, if it exists

SetObjState HRESULT Tries to bring the TCOM_STATE of the object to the
required target state, step-by-step

AssignClassId From TE1400 1.2.1217.0:
Sets the expected class ID for the case of referencing a
static object. This is compared with the class ID of the
referenced module to avoid problems due to
incompatibilities. If no class ID is assigned, this
compatibility check is omitted.
To generate a dynamic object, the class ID must be
defined via this method.

SetInitDataInfo From TE1400 1.2.1217.0:
Transfers the pointer to the InitData structure to be used.
This structure must be created when dynamic objects
are used. It must be initialized with parameters, as
required. For static objects, this structure is optional. It

Up to version 1.2.xxxx.x

TE140048 Version: 2.1.1

Method Return data type Description
enables subsequent re-initialization of the object. In this
case, the structure may also be initialized by calling
"SaveOnlineParametersForInit".

SetDataAreaInfo From TE1400 1.2.1217.0:
Transfers the pointer to an array of DataArea information
of type ST_TcMatSimObjectDataAreaInfo, and the
number of elements in that array. This information is
required for cyclic data exchange within the "Execute"
method.

Public Properties

Method Data type Description
ClassId CLSID Returns the ClassId of the module
Error BOOL Returns TRUE if a pending error requires

acknowledgement
ErrorCode HRESULT Returns the current error code
State TCOM_STATE Returns the current TCOM_STATE of the object, or tries

to bring it into the target state, step-by-step

Referencing a module instance

Just like the module-specific FB derived from it, FB_TcMatSimObject can be instantiated with the object ID of
a static module instance or with 0:
fbStatic : FB_TcMatSimObject(oid:=<ObjectId>); // Referenz auf statisches TcCom-Objekt

fbDynamic : FB_TcMatSimObject(oid:=0); // Erzeugen eines dynamisches TcCom-Objektes

3.6.4 Using the ToFile block
The ToFile block from the Simulink default library can be used to log signals in a MAT file. From within a
created TcCOM, this block can still be used from the TwinCAT runtime.

For file system access from the real-time, an additional TcCOM "TcExtendedFilewriter“ is created and linked
to the TcCOM with the ToFile block (referred to as Simulink TcCOM below). The TcExtendedFilewriter then
receives the data from the assigned TcCOM and writes it to a MAT file (mat4).

The settings in Simulink and TwinCAT are described step by step below, based on an example.

Configuration in the Simulink model

A model with a sine and a cosine source serves as a simple example. Each signal is to be logged with a
ToFile block.

Up to version 1.2.xxxx.x

TE1400 49Version: 2.1.1

To enable code generation for the ToFile blocks, the format must be set to Array:

Up to version 1.2.xxxx.x

TE140050 Version: 2.1.1

The model is now ready for code generation.

Configuration in TwinCAT

To write from the generated Simulink TcCOM, the TcCOM TcExtendedFilewriter installed with the TE1400 is
required. It accepts data from the Simulink object and stores the data in the file system. The module can be
found in the TcCOM browser under Beckhoff Automation -> Extended File Access -> TcExtendedFileWriter:

Up to version 1.2.xxxx.x

TE1400 51Version: 2.1.1

Initially, both TcCOMs are instantiated. Both objects can be linked to a joint task or separate task. In order to
establish a link between the two objects, the ObjectID of the TcExtendedFilewriter instance is communicated
to the Simulink TcCOM.

The ObjectID can be found under the Object tab.

Up to version 1.2.xxxx.x

TE140052 Version: 2.1.1

The ObjectID is then inserted under the "Parameters (Init)" tab of the Simulink TcCOM for the parameter
ExtendedFileAccessOID:

It is possible to link several Simulink TcCOMs with one TcExtendedFileWriter instance. Ensure that filename
conflicts are avoided. Several TcExtendedFileWriter instances can be used in parallel. For example, each
Simulink TcCOM with a ToFile block can use its own TcExtendedFileWriter instance.

Parameterization of the TcExtendedFileWriter instance

The behavior of the object can be adapted under the Parameter (init) tab of the TcExtendedFileWriter
instance.

Timeout:

A timeout can be set

Working directory:

If a relative path is used in the ToFile block, e.g. /logData, the full path is resolved via the Working Directory
parameter.

Number of Files:

It is possible to limit the number of files. If the parameter is 0, limitation is inactive.

Max File Size:

Once the specified file size (default: 1 MB) has been reached, the file is closed and a new file is opened, in
order to ensure that the logged data can be accessed while the module is running.

Internal Buffer Size:

Up to version 1.2.xxxx.x

TE1400 53Version: 2.1.1

A buffer with the size InternalBufferSize is created on the TwinCAT side, from which the data is then written.

Segment Size:

With each write command of the TcExtendedFileWriter instance, a segment with the size SegmentSize is
written from the internal buffer to the specified file. The maximum theoretically possible data rate for writing is
composed of the SegmentSize and the cycle time of the TcExtendetFileWriter (the TcExtendedFileWriter
instance does not have to have the same cycle time as the assigned Simulink TcCOM module). However, be
aware that a write command may not yet be complete when the next cycle starts. If this is the case, the write
command is suspended in this cycle. It is therefore a best case assessment.

The TwinCAT project can now be activated.

Once the specified file size (default: 1 MB) has been reached, the file is closed and a new file is opened, in
order to ensure that the logged data can be accessed while the module is running (in the diagram:
*_part1.mat and *_part2.mat are completed, while writing of *_part3.mat is still in progress):

The TcExtendedFilewriter object has a Pause input to prevent continuous writing. If the input is set to TRUE,
the file currently in use for write access is closed, and all further incoming data is discarded. If the input is set
to FALSE again, a new file for logging incoming data is opened.

The closed files can be opened as usual in MATLAB:

The plot shows the expected sine wave:

Up to version 1.2.xxxx.x

TE140054 Version: 2.1.1

3.6.5 Signal access via TwinCAT 3 Scope
TwinCAT 3 Scope enables access to all variable groups for which at least read ADS access was enabled,
see Tc Interfaces [} 26] in Simulink. To use the Target Browser for configuring the Scope, the option …
_CreateSymbols must be selected under Tc Interfaces in Simulink. Without the corresponding symbol
information, the signals to be captured have to be configured manually in Scope via Index group and Index
offset.

Alternatively, Scope can be started via the corresponding icon directly from the TwinCAT development
environment (XAE). In the drop-down window of the block diagram browser, the button Show in Scope is
shown for each available signal when the module instance runs on the target system.

The signals can also be conveniently dragged into the Scope configuration using the right mouse button
(drag & drop) from the drop-down menu (bar on the right in the diagram above) or from the blue signal lines
in the block diagram (main window in the diagram above). The right mouse button can also be used to drag
a whole block into the Scope configuration, in order to record all inputs and outputs for this function block.

Up to version 1.2.xxxx.x

TE1400 55Version: 2.1.1

3.7 FAQ

3.7.1 Does code generation work even if I integrate S-Functions
into my model?

S-Functions can be integrated into Simulink® models, which can then be built for use in the TwinCAT
runtime.

There are various workflows, which are based on different circumstances. The most common four cases are
briefly explained here, and the appropriate solution for integration into the code generation process is shown.

Case 1: I have access to the source code used in the S-Function.

In this case, the location of the source code can be specified in the S-Function. The code generation process
can be started directly without any further steps. The source code is found and compiled for use in TwinCAT.

Case 2: I have an inlined S-Function (TLC file)

In this case, the code generation process can be started directly without any further steps, since the code of
the S-Function to be inserted is contained in the TLC file. How to create a TLC file for an S-function can be
found in the documentation of The MathWorks®: https://de.mathworks.com/help/simulink/sfg/how-to-
implement-s-functions.html

Case 3: I have a compiled MEX file without access to the source code

In this case, a function was created by third parties and compiled as a MEX file. The source code or the TLC
file was not included, e.g. to protect intellectual property. In this case, the third party supplying the MEX file
must compile the source code as a TwinCAT-capable library, so that this library can be linked in real-time. A
guide can be found under Samples: SFunStaticLib [} 77].

Case 4: I integrate a MEX library, whose source code I do not have, into my S-Function (whose
source code is available).

In this case, too, the third party supplying the MEX file must compile the source code as a TwinCAT-
compatible library. A guide can be found under Samples: SFunWrappedStaticLib [} 83].

3.7.2 Why do FPU/SSE exceptions occur at runtime in the
generated TwinCAT module, but not in the Simulink model?

In the default settings, Simulink may treat floating point exceptions differently than TwinCAT 3.

In order to adjust the behavior for floating point exceptions between Simulink and TwinCAT, in the Signals
box under Model Configuration Parameters in Simulink in section Diagnostics >Data Validity you can
choose between:

• Division by singular matrix: error
• Inf or NaN block output: error

To debug an SSE exception in TwinCAT, please use the C++ debugger, see Debug [} 197] in the TE1400
documentation. Provided you have built your model as a "debug" module with the C++ debugger activated, it
is sufficient to attach to the process after TwinCAT has started, if the exception occurs during the initial
cycles. In many cases the SSE exception occurs directly in the first cycle. In this case, a division by zero can
occur quickly if certain signals are initialized with zero.
Another way to encounter SSE exceptions is to disable floating point exceptions. These can be deactivated
in the System Manager under Tasks (uncheck the floating point exceptions checkbox). This setting then
applies to all modules that are addressed by this task. If an exception occurs, a NaN is generated and no
error is output.

https://de.mathworks.com/help/simulink/sfg/how-to-implement-s-functions.html
https://de.mathworks.com/help/simulink/sfg/how-to-implement-s-functions.html

Up to version 1.2.xxxx.x

TE140056 Version: 2.1.1

NOTICE
Deactivating floating point exceptions
NaN values may only be used in other PLC libraries, in particular as control values in functions for Motion
Control and for drive control, if they are expressly approved! Otherwise, NaN values can lead to potentially
dangerous malfunctions!

3.7.3 After updating TwinCAT and/or TE1400 I get an error
message for an existing model.

Description of the situation:

You have already successfully converted a Simulink model into a TcCOM. You have then carried out an
update of the TwinCAT XAE and/or the TE1400. You now want to recompile the Simulink model (e.g. you
have used a new TE1400 feature, changed something on the model, or you have not changed anything).
Now you receive error messages during publishing.

Possible cause and solution:

A folder named <modelname>_tct already exists in the Build directory, see Which files are created
automatically during code generation and publishing? [} 59]. This order was created with the sources of the
previous software version(s). Under certain circumstances, conflicts may arise at this point if a new software
release triggers a new publishing process that wants to store the sources in the same folder.

A simple solution is to delete the corresponding folder, so that all sources are reconfigured with the current
version of all components when you build the module.

3.7.4 Why do the parameters of the TcCOM instance not always
change after a "Reload TMC/TMI" operation?

Observation:

TwinCAT 3 contains an existing instance of a TcCOM object.
As already explained, the model parameters, e.g. the parameters of a PID controller, can be modified in
TwinCAT via the exported block diagram or via the Parameter (init) tab of the TcCOM object outside of
Simulink. If you change your Simulink model in Simulink and create a new TcCOM object, you can, of
course, update this via the call reload TMC/TMI by right-clicking on the corresponding TcCOM object in
TwinCAT. In this case all links are preserved, as long as the process image remains unchanged.

A distinction is made between two different cases

• Only model parameters were modified in Simulink, e.g. PID control parameters
• Model parameters were modified, and further structural changes were made in the model

In the former case you will note that the parameters of your TcCOM object have not changed after the call
Reload TMC/TMI. The startup values are taken from the previous TcCOM instance, so that your settings
from TwinCAT for this module instance are not lost. To load the model parameters from Simulink, you can
select them by navigating to the ModelParameters dropdown menu in the right part of the block diagram
window: right-click on Startup value or Prepared and select Insert default value. The default values are
loaded from the TMC file, so that the parameter settings are taken from Simulink.

Up to version 1.2.xxxx.x

TE1400 57Version: 2.1.1

Alternatively, you can delete the old TcCOM object and insert the new TcCOM object. In this case all
previous model parameters are lost, and the newly added object has the same model parameters as the
corresponding Simulink model.

If additional changes were made apart from the model parameters, the model code also changes, which
means retention of the previous model parameters settings is only possible to a limited degree. In this case
the TwinCAT module parameters from the previous instance are retained, and the System Manager is still
able to assign them unambiguously.

3.7.5 After a "Reload TMC/TMI" error "Source File <path> to deploy
to target not found

When you perform a TMC/TMI reload, make sure you use the TMC file from the Publish directory:
%TwinCAT3Dir%\CustomConfig\Modules\<MODULENAME>, not the file from the Build directory in folder
<MODULENAME>_tct.

If you use the TMC file from the Build directory, TwinCAT cannot find the corresponding driver and you get
the error message shown in the heading when you start TwinCAT.

Up to version 1.2.xxxx.x

TE140058 Version: 2.1.1

3.7.6 Why do I have a ClassID conflict when I start TwinCAT?
The class ID establishes a unique relationship between the tmc file and the associated real-time driver.

If you have created a TcCOM module from Simulink® with the TE1400 and have instantiated it in a TwinCAT
project, the class ID is anchored in the TcCOM instance and the instance expects a corresponding driver
with this class ID. Now go back to Simulink® and create a new TcCOM with the same name as the already
instantiated module. A new tmc file and new drivers will be stored in the Publish directory with a new class
ID. If you now activate the TwinCAT configuration without informing TwinCAT that the class ID has changed,
you will see the following behavior:

Behavior for TwinCAT version < 4018:

You will get an error message informing you that the class IDs do not match.

Behavior for TwinCAT version ≥ 4018

The driver from the _ModulInstall project folder, which matches the existing instance in the TwinCAT project,
is used. The behavior of the module instance remains unchanged for the TwinCAT project.

Important: The lowest compatible TwinCAT build ≥ 4018 must also be entered under Tc Build in order for
the latter behavior to occur. See also Module generation (Tc Build) [} 22].

Solution:

To be able to use the behavior of the newly generated TcCOM module in your TwinCAT project, you can
right-click on the corresponding instance of TcCOM and select TMI/TMC-File -> Reload TMI/TMC File. Now
select the tmc file in your Publish directory and confirm with OK. If you call the module from the PLC and
have imported the PLCopen.xml file for this purpose, you must reimport it and select Replace the existing
object in the dialog box.

3.7.7 Why can the values transferred via ADS differ from values
transferred via output mapping?

Transfer of the results for "minor time steps'

Depending on the configured processing sequence [} 41] of the module instance, the transferred ADS values
may differ from the expected values. Differences may occur if the time-continuous state variables are
updated after the "output mapping", in order to obtain the shortest response time:

Task cycle time
Input mapping Output update Output

mapping
State update External mode

processing
ADS access

Signal values transferred via ADS may differ from the values that were copied to other process images via
"output mapping". The reason is that some values are overwritten in a state update. In other words: The
transferred values are the result of the calculations within subordinate time steps of the solver that was used
("minor time steps"), while during "output mapping" the results of higher-level time steps are copied.
This also applies for data that are transferred via External Mode [} 30].

3.7.8 Are there limitations with regard to executing modules in real-
time?

Not all access operations that are possible in Simulink® under non-real-time conditions can be performed in
the TwinCAT real-time environment. Known limitations are described below.

• Direct file access:: No direct access to the file system of the IPC can be realized from the TwinCAT
runtime. An exception is the Simulink® sink function block "To File". As described under Using the
ToFile block [} 48], the TcExtendedFileWriter module that realizes the file access can be instantiated in
TwinCAT.

Up to version 1.2.xxxx.x

TE1400 59Version: 2.1.1

• Direct hardware access: Direct access to devices/interfaces requires a corresponding driver, e.g.
RS232, USB, network card, ... It is not possible to access the device drivers of the operating system
from the real-time context. At present it is therefore not easily possible to establish an RS232
communication for non-real-time operation with the Instrument Controller ToolboxTM and then use this
directly in the TwinCAT runtime. However, TwinCAT offers a wide range of communication options for
linking external devices, see TwinCAT 3 Connectivity TF6xxx.

• Access to the operating system API: The API of the operating system cannot be used directly from
the TwinCAT runtime. An example is the integration of windows.h in C/C++ code. This is integrated by
the Simulink Coder® if the FFTW implementation of the FFT block from the DSP Systems ToolboxTM is
used (but not with the Radix 2 implementation), for example.

3.7.9 Which files are created automatically during code generation
and publishing?

Files are created in two separate folders as soon as you start the build process from Simulink. Which files
are created depends on the selected configuration.

Publish directory: %TwinCATDir%\CostumConfig\Modules\

All the files required for instantiation of the TcCOM in TwinCAT are stored in this directory.

File Purpose
<ModelName>.tmc TwinCAT module class file
<ModelName>_ModuleInfo.xml Block diagram information and summary of the

engineering system versions (Matlab version, TC
version, …)

<ModelName>_PlcOpenPOUs.xml Optional file. Can be included for the call of TcCOM
from the PLC, see Calling the generated module
from a PLC project [} 43].

<ModelName>.sys In the subdirectories TwinCAT RT (x64) and
TwinCAT RT (x86). Real-time driver of the created
module.

<ModelName>.pdb In all subdirectories. Debug information file.
<ModelName>.dll In the subdirectories TwinCAT UM (x64) and

TwinCAT UM (x86). Driver for the user-mode runtime.

To use the TcCOM described in this directory on other engineering systems, the entire folder can be copied
to the appropriate folder on the engineering system.

Build directory

The Build directory is usually the current matlab path, which is active at the start of the build process. Two
subdirectories are created in the Build directory. On the one hand, the Simulink Coder creates the directory
slprj, in which Simulink stores specific cache files, on the other hand the TE1400 creates a directory
<ModelName>_tct, in which all the important resources are combined.

File Purpose
Subfolder html
<ModelName>_codegen_rpt.html

Summary of code generation and publishing process
in html format.

*.cpp and *.h Source code of automatic code generation
<ModelName>.vcxproj Visual Studio project of automatic code generation.

Can be included in the TwinCAT C++ node as an
existing project and published from there.

<ModelName>_PublishLog.txt Text file with Publish log.
<ModelName>_ModuleInfo.xml Block diagram information and summary of the

engineering system versions (Matlab version, TC
version, …)

https://www.beckhoff.com/de-de/produkte/automation/twincat/tfxxxx-twincat-3-functions/tf6xxx-connectivity/

Up to version 1.2.xxxx.x

TE140060 Version: 2.1.1

File Purpose
<ModelName>_PlcOpenPOUs.xml Optional file. Can be included for the call of TcCOM

from the PLC, see Calling the generated module
from a PLC project [} 43].

The files stored in the Build directory are suitable for transfer to other engineering systems, just like the files
in the Publish directory. On the corresponding engineering systems, the publish process must then be
performed manually via the C++ area in TwinCAT. In addition to the resources for the publish process, all
other relevant data for tracing the origin of the generated source code (without Matlab or Simulink source
code) can be found here.

3.7.10 How do I resolve data type conflicts in the PLC project?
If inputs, outputs, parameters or state variables of a Simulink model are changed, the corresponding data
types in the TwinCAT module generated from it also change. After the update, the data types have the same
name but a different GUID. The type system of the TwinCAT development environment (XAE) can manage
several data types of the same name with different GUID. However, a PLC project is not allowed to have
several data types with the same name.

Especially after a module instance has been updated via "Reload TMC", several data types of the same
name may exist in the type system, of which typically only the type related to the currently instantiated
module class should be used. In some cases the user has the specify manually which of the data types
should be available in the PLC project, particularly if PLC function blocks generated by the TE1400 are used.

To this end, the data type editor can be started via the context menu of the type to be used in the table
SYSTEM > Data types:

By adding Datatype Hides, you can selectively exclude obsolete data types from being used in PLC
projects:

Up to version 1.2.xxxx.x

TE1400 61Version: 2.1.1

3.7.11 Why are the parameters of the transfer function block in the
TwinCAT display not identical to the display in Simulink?

The Simulink Coder® generates real-time capable code; all transfer function representations are transformed
into the state-space representation. Accordingly, the matrices of the state-space representation (A, B, C, D)
are used in the code generated by the Simulink Coder®, which in turn can be displayed and modified in
TwinCAT 3.

In MATLAB the transformation of the transfer function representations into the state-space representation
can take place via the function [A,B,C,D] = tf2ss(NUM,DEN), for example.

3.7.12 Why does my code generation/publish process take so long?
The entire process of generating instantiable TcCOM modules runs through two phases. code generation
and the publish process. The diagnostic viewer of Simulink® shows:

##

You can use the C++ project TctSmplTempCtrl.vcxproj to build the TcCOM module manually with
Microsoft VisualStudio.
Necessary source and project files have been generated successfully.
Duration of the code generation (HH:MM:SS): 00:00:15
Publishing TcCOM module ##
Configuration: "Debug" ### Platform(s): "TwinCAT RT (x86); TwinCAT RT (x64)"
TwinCAT SDK: "C:\TwinCAT\3.1\SDK\"
Platform Toolset: "Microsoft Visual C++ 2015 (V14.0)" (Automatically selected)
Now you can instantiate the generated module in TwinCAT3 on the target platform(s) "TwinCAT RT
(x86);TwinCAT RT (x64)".
Publish procedure completed successfully for TwinCAT RT (x86);TwinCAT RT (x64)
Duration of code generation and build (HH:MM:SS): 00:00:24
Generating code generation report

Notes on the duration of the code generation

The duration of the code generation depends to a large extent on the individual model and is made up of the
code generation of the Simulink Coder and the code generation for the TcCOM framework. Accordingly, the
TE1400 only has influence on the TcCOM framework.

If large parameter lists, e.g. look-up tables, are marked as tunable, the look-up table is entered in the tmc
file to be generated, which may result in extended code generation duration.

Notes on the duration of the publish process

The Publish process consists of compiling the C/C++ code with the MS Visual C++ compiler, linking, and
copying the module files to the Publish directory (<TwinCAT folder>\3.1\CustomConfig\Modules).
Accordingly, the compiler performance is crucial for this step. It depends on the compiler version and the
settings (e.g. debug or release).

In Simulink® under Tc Build it is possible to compile binaries for different target systems. These are created
in a successive process. If you want to build a large model, it is advisable to focus on the platform(s) that you
will actually use later.

3.8 Examples
Example models for generating TcCom modules:

Example Topics Description
TemperatureController_minimal
[} 62]

• Basic principles A very simple temperature
controller that covers the basics.

Up to version 1.2.xxxx.x

TE140062 Version: 2.1.1

Example Topics Description
TemperatureController [} 68] • Parameter access

• Using bus objects
• Using test points
• Using referenced models
• Using external mode
• Generating TwinCAT modules

from subsystems

A very simple temperature
controller with PWM output.
Provides a quick overview of how
to use the module generator. Also
uses Simulink BusObjects
(structures) for an output and
includes a test point, which affects
the accessibility of internal signals
vie ADS. ExternalMode is also
used in the example.

SFunStaticLib [} 77] • SFunction
• Static library

Generates TwinCAT modules from
Simulink models with SFunctions
that are provided by third parties
without source code.

SFunWrappedStaticLib [} 83] • SFunction
• Static library

Generates TwinCAT modules from
Simulink models with SFunctions,
for which the source code is
available, but is dependent on
static libraries.

Examples for module generation callbacks [} 24]:

Example Topics Description
Packaging module files into ZIP
archives [} 88]

• PostPublish callback
• Archiving generated module files

This simple example illustrates the
automatic archiving of generated
module files.

3.8.1 TemperatureController_minimal

Description

The following example shows the basics of generating a TwinCAT module from a Simulink model.

Overview of project directory

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539966475/.zip contains
all the files required for reproducing this example:

TctSmplMinTempCtrl.mdl Simulink much of a simple PI temperature controller.

TctSmplTempCtrlParameters.mat Contains all the necessary model parameters.
TctSmplMinCtrlSysPT2.mdl Simulink model of a simple PT2 controlled system (not used in the

following description)
_PrecompiledTcComModules This subdirectory contains readily compiled TwinCAT modules that

were generated from the enclosed Simulink models. They enable the
integration of a module in TwinCAT to be tested, without having to

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539966475.zip

Up to version 1.2.xxxx.x

TE1400 63Version: 2.1.1

generate the module first. They can be used in situations where a
MATLAB license is not yet available, for example. A quick reference
guide for module installation on the development PC is also enclosed.
Info: To start the module on an x64 target system, the system must be
switched to test mode!

_PreviousSimulinkVersions The MDL files described above are stored in the file format of the
current Simulink version. This subdirectory contains the models in the
file format of elder Simulink versions.

Generating a TwinCAT module
1. Open TctSmplMinTempCtrl.mdl in Simulink
2. Start Model Explorer
3. Under Configuration -> Code Generation, select the System target file TwinCAT.tlc - either key in

manually or use the Find button:

4. Close Model Explorer

Up to version 1.2.xxxx.x

TE140064 Version: 2.1.1

5. Start code generation via the Simulink menu item Tools->Code Generation-> Build Model or via the
toolbar icon Incremental build

ð The progress of the code generation is shown in the MATLAB command window.

Using the generated TwinCAT module

Open the TwinCAT development environment and create a new TwinCAT project. Expand node System in
the Solution Explorer. Select the menu item Add new item in the context menu of node TcCOM Objects.
The following dialog is displayed:

Up to version 1.2.xxxx.x

TE1400 65Version: 2.1.1

Select the generated module from the group Custom Modules -> Simulink generated modules. If XAE
was started before the end of the code generation, first press the Reload button.

Add a new task using the context menu of the node System ->Tasks and configure the new task with the
default parameters of the generated module:

• Priority: 5
• Cycle Time: 5 ms

Up to version 1.2.xxxx.x

TE140066 Version: 2.1.1

The module (with its default settings) should then have been configured automatically for attaching to this
task. To verify this, select the object node Object1 (TctSmplTempCt) and open the Context tab. The
Result table should contain the object ID and the object name of the task, as shown in the figure below:

Up to version 1.2.xxxx.x

TE1400 67Version: 2.1.1

The configuration is now completed and can be activated on the target system.

1. Select the target system, the current configuration should be activated.
2. If there is no license, activate a free trial license in order to execute the modules generated with Simulink

(TC1320 or TC1220) on the target system.
3. Activate the configuration on your target system. Confirm the question to overwrite the current

configuration, and start the TwinCAT system.
4. The status symbol on the target should change its colors to green (running).

Up to version 1.2.xxxx.x

TE140068 Version: 2.1.1

5. If the Block Diagram tab was selected, the block diagram state changes to "Online", and the Properties
table shows some online values.

3.8.2 Temperature Controller

Description

The following example extends the basics, shown in example "TemperatureController_minimal" by the
following subjects:

• Parameter access [} 69]

• Using Bus Objects [} 71]

• Using Test Points [} 72]

• Using Referenced Models [} 74]

• Using External Mode [} 76]

• Generating TwinCAT modules from SubSystems [} 77]

Overview of project directory

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539964811/.zip contains
all the files for this example:

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539964811.zip

Up to version 1.2.xxxx.x

TE1400 69Version: 2.1.1

TctSmplTempCtrl.mdl More advanced (but still very simple) temperature controller.

TctSmplCtrlSysPT2.mdl Simple PT2 model for the controlled system.
TctSmplClosedLoopCtrl.mdl Model of a closed control loop, which was implemented through

referencing of the controller models and the controlled system.
TctSmplTempCtrlParameters.mat Contains all the necessary model parameters.
TctSmplTempCtrlBusObjects.mat Contains all the required Simulink BusObjects (structure definitions).
_PrecompiledTcComModules This subdirectory contains readily compiled TwinCAT modules that

were generated from the enclosed Simulink models. They enable the
integration of a module in TwinCAT to be tested, without having to
generate the module first. They can be used in situations where a
MATLAB license is not yet available, for example. A quick reference
guide for module installation on the development PC is also enclosed.
Info: To start the module on an x64 target system, the system must be
switched to test mode!

_PreviousSimulinkVersions The MDL files described above are stored in the file format of the
current Simulink version. This subdirectory contains the models in the
file format of elder Simulink versions.

Parameter access

TctSmplTempCtrl.mdl has no embedded parameter values (inline parameters), i.e. the parameter values are
stored in the corresponding model parameter structure. In addition, under the tab TCT Advanced of the
coder settings, the module generator is configured such that ADS access to the parameters and generation
of ADS symbols is allowed. ADS access is then possible from TwinCAT Scope View or other ADS clients.

Up to version 1.2.xxxx.x

TE140070 Version: 2.1.1

The Block diagram tab in TwinCAT XAE is an ADS client. Access to its parameter depends on these
settings.

If the option Inline parameters is activated without further configurations, all parameter values in the
generated module codes are fixed. The Configure... button next to Inline parameters can be used to open
a configurator, in which you can select the variables of the MATLAB working area that are to remain
configurable in the generated module:

In the sample shown, only the workspace variables Kp and Tn remain configurable, which means that only
the Simlulink block parameters that depend on these parameters are configurable. The parameter structure
is reduced to these two elements.

Up to version 1.2.xxxx.x

TE1400 71Version: 2.1.1

For further information on parameter inlining, see
Simulink documentation.

Using bus objects

Simulink BusObjects enable access to TwinCAT modules generated in Simulink via structured symbols. This
sample contains a predefined BusObject called MonitoringSignalsType. It is an output structure, i.e. it
assigns the signals it contains to a PLC module.
The configuration of a BusObject is started by double-clicking on the BusCreator block. To start the Bus
Editor, click the Edit button in the Welcome screen, as shown in the figure below. Further information on
using BusObjects can be found in the Simulink documentation.

https://de.mathworks.com/help/rtw/ug/inlining-parameters.html
https://de.mathworks.com/help/simulink/slref/interface-specification-using-bus-objects.html

Up to version 1.2.xxxx.x

TE140072 Version: 2.1.1

During instantiation of the generated module in a TwinCAT project, the specified BusObject is imported into
the TwinCAT project as a global TwinCAT data type. This data type is used by the generated module itself
for displaying the output structure, although it can also be used by other modules, such as a PLC, for
example, which are linked to this output structure.

Using test points

In Simulink you can specify test points on signals for monitoring by Simulink "Floating Scope", for example. If
the TwinCAT Target module generator is used, signals with such test points are invariably declared as
member variable for the generated TwinCAT module. This enables ADS access to the signal. For more
information on test points, see Simulink documentation.
In this sample, the Model Explorer is used to define a test point for the control difference e:

https://de.mathworks.com/help/simulink/ug/working-with-test-points.html

Up to version 1.2.xxxx.x

TE1400 73Version: 2.1.1

To enable ADS access, enable internal block output in the code settings under the TCT Advanced tab:

In this way you can use TwinCAT Scope View to access the signal with test points and some other block
output variables when the generated TwinCAT module is executed.

Up to version 1.2.xxxx.x

TE140074 Version: 2.1.1

Using referenced models

Open the model TctSmplClosedLoopCtrl.mdl, which contains two model references. Referenced models are
the temperature controller described above and a simple P-T2 model of a temperature control system.

Up to version 1.2.xxxx.x

TE1400 75Version: 2.1.1

Such model referencing has several advantages, both in general and in combination with TwinCAT Target.
Two basic options for structured modelling and, particularly in this example, for controller design are:

Simulation for optimizing the
controller:

Optimization of the controller design based on simulation of the
control loop with MATLAB/Simulink, followed by transfer of the
optimized controller into the real-time environment of TwinCAT
3. Thanks to the use of standard Simulink input and output
blocks for the definition of the TwinCAT module process images,
no changes in the controller model are required before module
generation commences.

Reuse and faster creation of models: A model can be referenced several times in one or several
higher-level models. In this way, the models can be divided into
reusable functional units, similar to text programming languages,
where the code is structured into functions or methods. This
improves the readability of complex models.
The generated code of referenced models is compiled into static
libraries, which are only updated if the referenced model was
modified since the last code generation. This can speed up the
development of complex models, if parts that are only rarely
modified are stored in referenced models.
In this example, model generation can be started for a control
loop model, and a real-time control loop simulation can be
executed in the TwinCAT runtime.

Note on licenses:

The control loop model of this example can only be compiled
into a TwinCAT module with a valid TwinCAT Target license
(TE1400). Otherwise, this model exceeds the limits for
unlicensed models.

Up to version 1.2.xxxx.x

TE140076 Version: 2.1.1

Using external mode

The temperature controller model TctSmplTempCtrl.mdl has been preconfigured so that ExternalMode
connections are permitted:

Because of these configurations, you can use the Connect to Target icon in the Simulink toolbar to
establish a connection with the generated temperature controller via ExternalMode. The module must have
been previously generated and started on a TwinCAT system and an ADS route must have been configured
between your development system and the corresponding target system. A number of dialogs are displayed
to help you navigate to the desired module instance.

You can now use the Scope block in Simulink to monitor the real-time signals of the generated and now
connected TwinCAT module. You can also change the value of the Internal Setpoint block, for example. As
soon as the parameter change is confirmed, it is downloaded directly to the target module. This is only
possible for adjustable parameters if the model parameters are not inlined (see "Parameter access [} 69]").

https://de.mathworks.com/help/control/ug/generalized-matrices-and-models.html

Up to version 1.2.xxxx.x

TE1400 77Version: 2.1.1

Generating TwinCAT modules from subsystems

Creating a TwinCAT module in a Simulink subsystem, instead of the entire model, via the subsystem context
menu:

3.8.3 SFunStaticLib

Use cases

Encapsulating own code within static libraries can be useful to

• speed up module generation, if the code contains algorithms, which are not changed frequently
• deliver TwinCAT Target compatible SFunction algorithms to customers, without the need to hand out

the source code but only the compiled libraries

Description

The following example illustrates how TwinCAT modules are generated using SFunctions from Simulink
models, for which no source code is available. In this case, the SFunction functionality can be integrated into
the generated TwinCAT module via static libraries. However, this presupposes that suitable libraries are
available for all TwinCAT platforms, for which the module is to be created.
The following diagram illustrates the typical workflow when using third-party algorithms in a user-created
Simulink model:

Up to version 1.2.xxxx.x

TE140078 Version: 2.1.1

In this example, the source code for the "algorithm development side" is available and can be compiled for all
TwinCAT platforms. It shows how

• SFunctions are generated with suitable TwinCAT libraries
• such libraries are made available (e.g. to customers)
• such libraries are used in own models

Project directory overview

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539910283/.zip contains
all the files necessary to reproduce this example:

TctSmplSFunStaticLib.mdl contains the model that references the SFunction.
BuildLibsAndSFunction.m contains an M-script that creates the static library for all currently

available TwinCAT platforms and creates the SFunction.
OpenLibProject.m contains an M-script that defines the MATLAB build environment

for Visual Studio, such as MATLAB Include and library
directories. The static library is then opened in Microsoft Visual
Studio 2010 with the predefined environment variables.

Subdirectory SFunLibProject contains the SFunction project.
Subdirectory BuildScripts contains several M-scripts for "BuildLibsAndSFunction.m" and

"OpenLibProject.m".

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539910283.zip

Up to version 1.2.xxxx.x

TE1400 79Version: 2.1.1

_PrecompiledTcComModules This subdirectory contains readily compiled TwinCAT modules
that were generated from the enclosed Simulink models. They
enable the integration of a module in TwinCAT to be tested,
without having to generate the module first. They can be used in
situations where a MATLAB license is not yet available, for
example. A quick reference guide for module installation on the
development PC is also enclosed.
Info: To start the module on an x64 target system, the system
must be switched to test mode!

_PreviousSimulinkVersions The MDL files described above are stored in the file format of
the current Simulink version. This subdirectory additionally
contains the models in the file format elder Simulink versions.

Build SFunction and appropriate static link libraries

Build requirements

It is recommended to have TwinCAT 3 installed on your system to build the binaries, but not required.
Requirements are:

Windows Driver Kit installed on your system and the environment
variable WinDDK set to its path.

TwinCAT SDK installed on your system and the environment
variable TwinCatSdk set to its path.

For more information about this requirement, see the system requirements in the TwinCAT 3 documentation.

Creating binary files manually

The binary files can be created manually with Visual Studio. To do this, execute OpenLibProject.m. This
prepares the required environment variables and opens the SFunction project in Visual Studio. Create a
project for all platforms that should be supported.

TwinCAT xx(xxx) Creates the platform-specific static library, which is linked to the
generated TwinCAT module.

Win32 Creates the .MEXW32 SFunction for running the simulation of
the model with Simulink in 32-bit MATLAB. It can only be
created if Visual Studio was started from 32-bit MATLAB.

x64 Creates the .MEXW64 SFunction for running the simulation of
the model with Simulink in 64-bit MATLAB. It can only be
created if Visual Studio was started from 64-bit MATLAB. In
order to create the MEX files used in this example for 32- and
64-bit MATLAB, Visual Studio must be started from both
MATLAB versions.

Up to version 1.2.xxxx.x

TE140080 Version: 2.1.1

Build the binaries via build script

Alternatively to the manual build procedure, in order to speed up the build procedure for a quick overview,
run BuildLibsAndSFunction.m. This prepares the build environment variables and invokes MSBUILD
multiple times to build the .LIB and .MEXWxx files for each TwinCAT platform and for the current MATLAB
platform architecture (32 or 64 Bit). To build the MEX files of this example for 32 and 64 Bit MATLAB
BuildLibsAndSFunction.m has to be executed with both MATLAB variants.
After the build procedure, all the build output files are copied to the subfolder
LibProject\TctSample_SFunLib\BuildOutput. All necessary binaries are additionally copied to
LibProject\TctSample_SFunLib\LibPackage.

Deliver the binaries

LibProject\TctSample_SFunLib\LibPackage is the folder which can be delivered to customers who want to
use the now built - TwinCAT Target compatible - SFunction. Copy the content of this folder to the users
system, more precisely to the folder %TwinCat3Dir%Functions\TE1400-TargetForMatlabSimulink\Libraries. If
BuildLibsAndSFunction.m was used for building the binaries, this has already been done for the local
system. The content of this folder should be:

Subfolders TwinCAT xx (xxx) contain the static link libraries for different TwinCAT
platforms. These are used when generating TwinCAT
modules from appropriate Simulink models.

Subfolders Win32 / Win64 contain the MEX files (and optionally some static link
libraries) for the different MATLAB platform
architectures (32 and/or 64 Bit). Either subfolder
Win32 or Win64 is added to the MATLAB path when
setting up TwinCAT Target via
SetupTwinCatTarget.m. Thus, SFunction MEX files
are found by MATLAB can be used directly from this
location.

Run simulation

To check if everything works, open "TctSmplSFunWrappedStaticLib.mdl" and start simulation. If the
simulation starts without error messages, everything is prepared as needed.

Generate TwinCAT module

Configuring a model

The general settings for generating a TwinCAT module must be set, e.g. a fixed-step solver must be
configured, and the system target file "TwinCAT.tlc" must be selected under the "General" tab in the model
coder settings. For further information on the general configuration of the TwinCAT module generator see
Quickstart.
In addition, the code generator must know which static libraries have to be linked to the generated code and
where to find them. Enter this information in the corresponding option fields of the Simulink coder, as shown
in the figures below.

Up to version 1.2.xxxx.x

TE1400 81Version: 2.1.1

Up to version 1.2.xxxx.x

TE140082 Version: 2.1.1

The Include folder should already have been created automatically by TwinCAT Target. The Libraries setting
must contain the names of the static libraries to be linked.

Background information for these settings:

In this example (and in most other cases) there are several instances of these libraries in the specified
folders. MSBUILD decides which version is linked to the module when the generated TwinCAT module
binary files are linked.

How to use this example as a template

The following list provides a short overview of the easiest way, to create an own TwinCAT Target compatible
SFunction:

1. Copy the sample folder
2. Replace the MDL file by your own
3. Rename the VCXPROJ file to the desired name of your SFunction
4. Copy your source files to the directory where the VCXPROJ file is located
5. Adapt the scripts BuildLibsAndSFunction.m and OpenLibProject.m to the new project name
6. Open the VCXPROJ file using OpenLibProject.m

Up to version 1.2.xxxx.x

TE1400 83Version: 2.1.1

7. Remove the existing CPP files from the project
8. Add your own CPP files to the project
9. Adapt the DEF file contents to the new project name

10. If necessary, add include directories, dependency directories and libraries to the compiler and linker
settings

11. Build the project (for different platforms and/or configurations)
12. Close the VCXPROJ file
13. Run BuildLibsAndSFunction.m

3.8.4 SFunWrappedStaticLib

Use cases

Encapsulating own code within static libraries can be useful to

• speed up module generation, if the code contains algorithms, which are not changed frequently
• deliver TwinCAT Target compatible SFunction algorithms to customers, without the need to hand out

the source code but only the compiled libraries

Description

The following example shows the configuration of the module generator when using Sfunctions that depend
on statically linked libraries. For this type of code integration, a suitable library must be available for all
TwinCAT platforms for which the module is to be created.
The following diagram illustrates the typical workflow when using third-party algorithms in a custom Simulink
model:

In this example, the source code for the "algorithm development side" is available and can be compiled for all
TwinCAT platforms. It shows how

• dependent libraries are created

Up to version 1.2.xxxx.x

TE140084 Version: 2.1.1

• such libraries are made available (e.g. to customers)
• such libraries are used in own models

Overview of project directory

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539911947/.zip contains
all the files necessary to reproduce this example:

TctSmplSFunWrappedStaticLib.mdl contains the model that references the SFunction.
TctSample_SFunLibWrapper.cpp must be present on the target system. Contains the source code of

the SFunction.
StaticLib.cpp Simple example of source code of a static library.
BuildLibsAndSFunction.m contains an M-script that creates the static library for all currently

available TwinCAT platforms and creates the SFunction.
OpenLibProject.m contains an M-script that defines the MATLAB build environment

for Visual Studio, such as MATLAB Include and library directories.
The static library is then opened in Microsoft Visual Studio 2010
with the predefined environment variables.

Subdirectory LibProject contains the static library.
Subdirectory BuildScripts contains several M-scripts for "BuildLibsAndSFunction.m" and

"OpenLibProject.m".
_PrecompiledTcComModules This subdirectory contains readily compiled TwinCAT modules that

were generated from the enclosed Simulink models. They enable
the integration of a module in TwinCAT to be tested, without having
to generate the module first. They can be used in situations where
a MATLAB license is not yet available, for example. A quick
reference guide for module installation on the development PC is
also enclosed.
Attention: To start the module on an x64 target system, the
system must be switched to test mode!

_PreviousSimulinkVersions The MDL files described above are stored in the file format of the
current Simulink version. This subdirectory contains the models in
the file format of elder Simulink versions

Create SFunction and corresponding statically linked libraries

Build requirements

It is recommended to have TwinCAT 3 installed on your system to build the binaries, but not required.
Requirements are:

Windows Driver Kit installed on your system and the environment
variable WinDDK set to its path.

TwinCAT SDK installed on your system and the environment
variable TwinCatSdk set to its path.

For more information about this requirement, see the system requirements in the TwinCAT 3 documentation.

Creating static libraries manually

The static libraries can be created manually with Visual Studio. To do this, execute OpenLibProject.m. This
prepares the required environment variables and opens the SFunction project in Visual Studio. Create a
project for all platforms that should be supported. The output file for all platforms is a static library:

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/1539911947.zip

Up to version 1.2.xxxx.x

TE1400 85Version: 2.1.1

Build the static link libraries via build script

Alternatively to the manual build procedure, run BuildLibsAndSFunction.m. This prepares the build
environment and invokes MSBUILD multiple times to build the lib files for each platform.. Afterwards, all the
build output files are copied to the subfolder LibProject\TctSample_WrappedStaticLib\BuildOutput. The .LIB
files, which are necessary to build the SFunction and the generated TwinCAT modules are additionally
copied to LibProject\TctSample_WrappedStaticLib\LibPackage.

Deliver the static libraries

LibProject\TctSample_WrappedStaticLib\LibPackage is the folder which can be delivered to users, which
want to use this library inside their own - TwinCAT Target compatible - SFunctions. Copy the content of this
folder to the users system, more precisely to the folder %TwinCat3Dir%Functions\TE1400-
TargetForMatlabSimulink\Libraries. This is also done by BuildLibsAndSFunction.m for the local system. The
content of this folder should be:

Subfolders TwinCAT xx (xxx) contain the static link libraries for different TwinCAT
platforms. These are used when generating a
TwinCAT module from an appropriate Simulink
model.

Subfolders Win32 / Win64 contain the static link libraries for the different
MATLAB platform architectures (32 and/or 64 Bit).
These are used when generating a TwinCAT module
from an appropriate Simulink model.
To build the libraries for this example for 32 and 64
Bit MATLAB BuildLibsAndSFunction.m has to be
executed with both MATLAB variants.

Compile mex file code

Before the SFunction can be used inside the Simulink model, it has to be built, too. Of course this can be
done manually, as in any other SFunction. However, the MEX compiler has to be advised to link the static
library to the SFunction.
When executing BuildLibsAndSFunction.m, this is also done automatically. Afterwards the file
"SFunStaticLib.mexw32" should be located inside your working folder.
To check if everything works, open "TctSmplSFunWrappedStaticLib.mdl" and start simulation. If the
simulation starts without error messages, everything is prepared as needed.

Generating a TwinCAT module

Configuring a model

The general settings for generating a TwinCAT module must be set, e.g. a fixed-step solver must be
configured, and the system target file "TwinCAT.tlc" must be selected under the "General" tab in the model
coder settings. For further information on the general configuration of the TwinCAT module generator see
Quickstart [} 15].
In addition, the code generator must know which static libraries have to be linked to the generated code and

Up to version 1.2.xxxx.x

TE140086 Version: 2.1.1

where to find them. Enter this information in the corresponding option fields of the Simulink coder, as shown
in the figures below.

Up to version 1.2.xxxx.x

TE1400 87Version: 2.1.1

The Include folder should already have been created automatically by TwinCAT Target. The Libraries setting
must contain the names of the static libraries to be linked.

Background information for these settings:

In this example (and in most other cases) there are several instances of these libraries in the specified
folders. MSBUILD decides which version is linked to the module when the generated TwinCAT module
binary files are linked.

How to use this example as a template

The following list provides a short overview of the easiest way, to create an own TwinCAT Target compatible
SFunction dependency:

1. Copy the sample folder
2. Replace the MDL file by your own
3. Rename the VCXPROJ file to the desired name of your SFunction
4. Copy your source files to the directory where the VCXPROJ file is located
5. Adapt the scripts BuildLibsAndSFunction.m and OpenLibProject.m to the new project name
6. Open the VCXPROJ file using OpenLibProject.m
7. Remove the existing CPP files from the project
8. Add your own CPP files to the project
9. If necessary, add include directories, dependency directories and libraries to the compiler and linker

settings
10. Build the project (for different platforms and/or configurations)

Up to version 1.2.xxxx.x

TE140088 Version: 2.1.1

11. Close the VCXPROJ file
12. Run BuildLibsAndSFunction.m

3.8.5 Module generation Callbacks

Examples for module generation callbacks [} 24]:

Example Topics Description
Packaging module files into ZIP
archives [} 88]

• PostPublish callback
• Archiving generated module files

This simple example illustrates the
automatic archiving of generated
module files.

3.8.5.1 Packaging module files into ZIP archives
Callbacks can be used to store generated module files in as a ZIP archive, for example. First create the
directory C:\MyGeneratedTcComModules, then copy the following command in the PostPublish callback
field of the code generator settings of the Simulink model under Tc Build:
zip(fullfile('C:
\MyGeneratedTcComModules',cgStruct.ModuleName),'*',fullfile(getenv('TwinCat3Dir'),'CustomConfig','Mo
dules',cgStruct.ModuleName))

From version 2.x.xxxx.x

TE1400 89Version: 2.1.1

4 From version 2.x.xxxx.x
• TE1400 Target for Simulink® versions lower than 1.2.xxxx.x support MATLAB R2010b to MATLAB

R2019a.
• TE1400 Target for Simulink® versions higher than 2.x.xxxx.x support MATLAB R2019a and higher.
• The installations for both versions can be used in parallel on one engineering system.

• Compatibility of the created modules: see Mapping is lost with Reload TMI/TMC [} 232].

4.1 Installation
System requirements

In the following, a distinction is made between the engineering PC and the runtime PC. The following
definition applies: Simulink® models or MATLAB® functions are converted into TwinCAT objects on the
engineering PC by using TwinCAT Target for Simulink® or Target for MATLAB® respectively. Likewise, a
TwinCAT solution can, but does not have to, be created on this PC, which uses the created objects. The
created TwinCAT solution is then loaded from the engineering PC to a runtime PC in the TwinCAT runtime
environment for execution of the project.

On the engineering PC
• MATLAB R2019a or higher

◦ Simulink® and Simulink CoderTM Toolbox for using Target for Simulink®

◦ MATLAB® and MATLAB CoderTM Toolbox for using Target for MATLAB®

• Visual Studio 2017 or higher (Professional, Ultimate or equivalent edition)
◦ During installation, the option Desktop development with C++ must be selected manually. The

option can also be installed later.

◦ The Visual Studio version must be supported by the TwinCAT XAE setup, see here.
• TwinCAT 3.1.4024.7 or higher

◦ Install TwinCAT 3 XAE or Full Setup only after Visual Studio has been installed with Desktop
development with C++.

• TwinCAT Tools for MATLAB® and Simulink® setup

On the runtime PC
• Supported operating systems

◦ Windows 7, Windows 10, Windows Server (32-bit and 64-bit)
◦ TwinCAT/BSD®

• TwinCAT XAR version 3.1.4024.7 or higher

Built objects can be easily forwarded
TwinCAT objects built on an engineering PC (or Build Server) can be easily forwarded to other
people. They only need the TwinCAT XAE development environment in order to use the created
objects (TcCOM or PLC function blocks) in a TwinCAT solution.

Installation
ü Install one of the supported Visual Studio versions, if not already installed. Note the installation of the

Desktop development with C++ option.
1. Start TwinCAT 3 XAE or Full Setup, if it is not already present.

If a Visual Studio and a TwinCAT installation are already present but the Visual Studio version does not
meet the requirements mentioned above (e.g. TwinCAT XAE Shell or Visual Studio without C++ option),
you need to install a suitable Visual Studio version first (install C++ option, if necessary). Then run
TwinCAT 3 setup to integrate TwinCAT 3 into the new (or modified) Visual Studio version.

2. If you have not yet installed MATLAB® on your system, install it. The order in which MATLAB® has been
installed is irrelevant.

https://infosys.beckhoff.com/content/1033/tc3_installation/179467147.html?id=4514876775714218857

From version 2.x.xxxx.x

TE140090 Version: 2.1.1

3. Start TwinCAT Tools for MATLAB® and Simulink® setup to install the TE1400.

ð The TE1400 is installed in the TwinCAT folder structure, i.e. it is separate from the MATLAB®

installation.
4. Start MATLAB® as administrator and run

%TwinCAT3Dir%.. \Functions\TE14xx-ToolsForMatlabAndSimulink\SetupTE14xx.p in MATLAB®.
ð A setup window opens. See the following section.

Initial setup of the software (Common Settings dialog)

Run SetupTE14xx.p

After executing the p-file (see step 4 under Installation), a dialog opens in which you can save general
default settings. These settings then apply system-wide, i.e. for all installed MATLAB® versions.

You can make the settings at this time or make/change them at a later time.

The following setting options are available in the dialog:

• VendorName
• GroupName (MATLAB®) and
• GroupName (Simulink®)

These settings influence the hierarchy in which the generated TwinCAT objects are sorted. See diagram
below.

There you can see the entries:
• VendorName "TE140x Module Vendor"
• GroupName "TE140x"

◦ "MATLAB Modules" for MATLAB® and
◦ "Simulink Modules" for Simulink®

From version 2.x.xxxx.x

TE1400 91Version: 2.1.1

In the described dialog under the Build tab, you can store a default certificate for driver signing. The setup
options for driver signing are explained in full in the chapter Setting up driver signing [} 93].

Entering a certificate at this point is optional and not mandatory.

Run SetupTE14xx.p "silent"

If you want to execute the p-file without this dialog, you can use the following command:
SetupTE140x('Silent', true);
This sets the default values of the dialog.

Change the software setup

To change the default settings of the TwinCAT target, you can access a dialog in the MATLAB® Console as
follows:
TwinCAT.ModuleGenerator.Settings.Edit

Here you are offered various entries that you can store as default values.

From version 2.x.xxxx.x

TE140092 Version: 2.1.1

Accept changes
1. Enter the new default settings in the dialog box.
2. Confirm with the Save button.
3. Restart MATLAB®.
ð The changes have been adopted.

4.2 Licenses
Two licenses are required to use the full functionality of the TE1400 TwinCAT Target for Simulink®. On the
one hand, the TE1400 engineering license for creating TwinCAT objects from Simulink® and, on the other
hand, a runtime license for executing these objects during the TwinCAT runtime.

Engineering license

The license TE1400 Target for Simulink® is required for the engineering system for creating TcCOM and
PLC function blocks from Simulink®. For testing purposes, the product can be used in demo mode without a
license as a demo version.

From version 2.x.xxxx.x

TE1400 93Version: 2.1.1

A 7-day trial license with full functionality is not available for this product.

Restrictions in the demo version

Without valid TE1400 license models are allowed with maximum:

• All cpp and header files from Simulink Coder™ (incl. dependent libraries) must not exceed 100 kB in
total.

• 5 input signals
• 5 output signals

Modules created with a demo license may only be used for non-commercial purposes!

Runtime license

A runtime license is required to start a TwinCAT configuration containing one or more TwinCAT objects
generated from Simulink®.

Required licenses for execution are:
TF1400 TwinCAT 3 Runtime for MATLAB®/Simulink® and TC1300 TwinCAT 3 C++. Both licenses are
included in the TC1320 and TC1220 license bundles. TC1320 bundles TC1300 and TF1400 licenses (C++
and MATLAB®/Simulink® Runtime). TC1220 bundles the TC1200, TC1300 and TF1400 licenses (PLC, C++
and MATLAB®/Simulink® Runtime).

License TF1400 License only from TwinCAT 3.1.4026.0
The TF1400 license is only supported from TwinCAT 3.1.4026.0. For earlier versions only the
license bundles TC1220 or TC1320 are available. The license bundles are still supported with build
4026 and higher. The TF1400 license is only required if the TwinCAT 3 C++ license is already
available on the target system via a license.

Without activated license, the module and consequently the TwinCAT system cannot be started.

You can generate a 7-day trial license for the named runtime licenses, which allows initial testing without
purchasing the license.

4.3 Setting up driver signing
Create an OEM certificate level 2

TwinCAT objects generated from MATLAB® or Simulink® are based on a tmx driver (TwinCAT Module
Executable), as are TwinCAT C++ objects. These drivers must be signed with an OEM certificate level 2, so
that it can be loaded on the runtime PC during the TwinCAT runtime.

See the following links for detailed documentation on how to create an OEM certificate for driver signing.

• General documentation on OEM certificates

https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_security_management/2408886027.html&id=

From version 2.x.xxxx.x

TE140094 Version: 2.1.1

• Application-related documentation for tmx driver signing

The most important facts in brief:
• You can create your own certificate. To do this, go to Visual Studio at:

Menu bar > TwinCAT > Software Protection...
• You need an OEM certificate Crypto Version 2 (option: Sign TwinCAT C++ executables (*.tmx)).
• All drivers (for 32-bit and for 64-bit operating systems) must be signed.
• Drivers can also be created without signing and signed afterwards.
• For testing purposes in the development phase, a non-countersigned certificate is sufficient.
• Countersigned certificates can be ordered free of charge from Beckhoff (TC0008).

Use of an OEM level 2 certificate for driver signing

To sign tmx drivers, you need a certificate and a password associated with the certificate.

Handling of the certificate

There are four possible variants for signing tmx drivers.

Variant 1: System-wide default certificate for TwinCAT C++ and TE14xx

You can set a default certificate on an engineering PC, which is always used for TwinCAT C++, Target for
MATLAB® and Target for Simulink®, unless you explicitly specify a different certificate.

For this variant, you use a Windows environment variable. Create a new environment variable at User >
Variables with:

Variable: TcSignTwinCatCertName

Value: Name of the desired certificate

Available certificates can be found at TwinCAT\3.1\CustomConfig\Certificates.

Variant 2: System-wide default certificate for TE14xx

You can set a default certificate in your MATLAB® environment, which is always used for Target for
MATLAB® and Target for Simulink® (not TwinCAT C++), unless you explicitly specify a different certificate.

Open the Common Settings dialog [} 90] mentioned above with TwinCAT.ModuleGenerator.Settings.Edit
and enter the desired default certificate under Build> Certificate name for TwinCAT signing. This
certificate is stored in your user directory as default and is used by all MATLAB® versions on your system as
default.

Variant 3: Certificate in the configuration of the Simulink® model

You can explicitly name a certificate for each build operation. For Variant 3 you do not have to make any
further settings in advance. Before each build process, you can define a certificate of your choice for
precisely this build process.

Target for Simulink®: TC Build > Certificate for TwinCAT signing

Target for MATLAB®: Property SignTwinCatCertName

Variant 4: Build without certificate and sign later with TcSignTool

You can build without a certificate and sign afterwards with the TcSignTool. For Variant 4 you can use the
TcSignTool.

The TcSignTool is a command line program located in the path ..\TwinCAT\3.1\sdk\Bin\. For
example, open the command prompt and execute tcsigntool sign /? to display the help.

https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_c/6778770443.html&id=

From version 2.x.xxxx.x

TE1400 95Version: 2.1.1

Operating TcSignTool from MATLAB®

From MATLAB®, the tool can be started with the command system() or with !.

Sample call for signing a tmx driver for TwinCAT:
TcSignTool sign /f "C:\TwinCAT\3.1\CustomConfig\Certificates\ MyCertificate.tccert" /p MyPassword
"C:\TwinCAT\3.1\Repository\TE140x Module Vendor\ModulName\0.0.0.1\TwinCAT RT (x64)\MyDriver.tmx"

Handling the certificate password

The password is only entered directly at Variant 4 of the certificate handling. For Variants 1 to 3, the
associated password must be entered in addition to the certificate. For security reasons, the password
should not be entered in the source code in the Simulink® model or in the MATLAB® code. With the
TcSignTool you can store obfuscated passwords belonging to your certificates in the registry of the Windows
operating system. This means that the password for a specific certificate is known in the operating system
(for the corresponding user) and is used automatically.

The password is stored with the following call:
tcsigntool grant /f "C:\TwinCAT\3.1\CustomConfig\Certificates\MyCertificate.tccert" /p MyPassword

The obfuscated password is stored in the registry under:
HKEY_CURRENT_USER\SOFTWARE\Beckhoff\TcSignTool\

The password is deleted with the following call:
tcsigntool grant /f "C:\TwinCAT\3.1\CustomConfig\Certificates\MyCertificate.tccert" /r

Behavior of the TwinCAT runtime

If a TwinCAT object created from MATLAB® or Simulink® with a signed driver is used in a TwinCAT Solution
and loaded onto a target system with Activate Configuration, the following must be observed:

Each TwinCAT runtime (XAR) has its own white list of trusted certificates. If the certificate used for signing is
not included in this white list, the driver will not be loaded. A corresponding error message is output in
TwinCAT Engineering (XAE).

The error message contains the instruction to execute a registry file, which was automatically created on the
target system, on the target system as administrator. This process adds the used certificate to the white list.

From version 2.x.xxxx.x

TE140096 Version: 2.1.1

Registry file is only dependent on the OEM certificate
The registry file can also be used on other target systems. It only contains information about the
OEM certificate used and is not target system dependent.

If you use a non-countersigned OEM certificate for signing, you must also put your target system into test
mode. To do this, run the following command as an administrator on the target system:
bcdedit /set testsigning yes

If you are using a countersigned OEM certificate, this step is not necessary.

4.3.1 User certificates for delivery without test mode
System requirements
- Min. TwinCAT 3.1 Build 4024
- Min. Windows 10 or TwinCAT/BSD (on the target system)

With TwinCAT Build 4024, Beckhoff offers existing customers the issuing of a "TwinCAT 3 OEM user
certificate", which can be used for signing TMX files created with TwinCAT 3 in C++.

• This certificate requires secure validation of the applicant data, since it is used in the Windows
environment. TwinCAT 3 user certificates must therefore be officially ordered for validation of the
address and contact data, and are only issued to existing Beckhoff customers.

• Order number: TC0008
• The issuing of this TwinCAT 3 user certificate is free of charge.
• Directory for saving the certificate: C:\TwinCAT\3.1\CustomConfig\Certificates

The TwinCAT 3 user certificate is not required for using the TwinCAT 3 TMX files
The TwinCAT 3 user certificate is used exclusively for the one-time signing of the TMX files and is
not required for the use of the TMX files signed with it.

On which computers is the TwinCAT 3 user certificate TC0008 required?
The TwinCAT 3 user certificate should be located exclusively on the engineering computer on which
the TMX files are signed - i.e. NOT on each target system.

Validity of the TwinCAT 3 user certificate

The validity of the TwinCAT 3 user certificate is limited to two years for security reasons.

What happens if the certificate has expired?
You can no longer sign new TMX files.
However, the use of already signed TMX files is still possible without any restrictions.

You can apply for a renewal of your certificate before the expiry of the two years (and even after that).

To extend a TwinCAT 3 user certificate, the same process applies as for requesting a new certificate. In this
case, the certificate must also be ordered (the order numbers for a certificate extension are the same as for
a new certificate request).

In contrast to a new certificate, you do not generate a new OEM Certificate Request File but send your
existing certificate to the Beckhoff certificate section for renewal. Please notify us in the email that this is a
certificate extension and not a new issue. Otherwise, the same criteria apply regarding the content of the
email as for the application for a new certificate.

The existing certificate receives a new expiration date, is then re-signed and is valid for another 2 years.

The newly signed certificate is thus fully compatible with the original version.

From version 2.x.xxxx.x

TE1400 97Version: 2.1.1

4.3.1.1 Request TwinCAT 3 user certificate

Overview of the ordering and validation process

An official order is required to request a TwinCAT user certificate.

• Order number: TC0008 (TwinCAT 3 Certificate Extended Validation)
• The issuing (and renewal) of a TwinCAT 3 user certificate is free of charge.
• Since a TwinCAT 3 user certificate is a digital ID card, verification of the inquirer's contact data is

required according to the usual market standards.
• A TwinCAT 3 user certificate is therefore only issued to existing Beckhoff customers.

Overview of the ordering and validation process

Your email address must be a company email account (freemailers such as GMail or similar are not
permitted) and correspond with the company name of the inquirer.

1. Contact your Beckhoff sales contact and announce the request of a TwinCAT 3 OEM certificate. Order
"TC0007" or "TC0008".

2. Important: as the inquirer, please provide your contact details as the delivery address (= contact name
and email address) and the area of use of the certificate (company name, address).

3. The contact details provided in the order will be verified and you (the inquirer named in the delivery
address) will be contacted by Beckhoff Sales.

4. When requesting a new OEM certificate, Creation of the Certificate Request file for TC0008 [} 97].
5. Determine the "File Fingerprint" of the OEM certificate file using TwinCAT Engineering (see

Determining the file fingerprint of the OEM certificate file [} 100]). Please inform the Beckhoff sales
contact of this File Fingerprint as part of your contact data verification. The transmission of the File
Fingerprint must be done by a different communication channel than the one used for sending the
OEM certificate request file.

6. Now send the "OEM certificate file" to the Beckhoff sales contact.
7. After signing the certificate file at the Beckhoff headquarters, you will receive it by e-mail from your

contact person.

Please note that it may take a few days to validate your contact details and issue the certificate.

4.3.1.2 Creation of the Certificate Request file for TC0008

System requirements
- Min. TwinCAT 3.1 Build 4024
- Min. Windows 10 or TwinCAT/BSD (on the target system)

1. Call up the Software Protection configurator. To do this, select the menu item Software Protection in
the main menu below the item TwinCAT:

From version 2.x.xxxx.x

TE140098 Version: 2.1.1

2. In the window that opens, select the Certificates tab.
Click Create New....:

3. The Create OEM Certificate input window opens:

4. Enter the required data:
• Enter your company name in the OEM Name text field. The name must have a clear reference to your

company or your business unit.

From version 2.x.xxxx.x

TE1400 99Version: 2.1.1

• Enter a Unique Name. The "OEM Unique Name" must be a unique name that uniquely identifies the
owner of the certificate worldwide, preferably the URL of your company's website or your email
address. The email address must be a company email address, i.e. it must be possible to assign it
unambiguously to your company.

• Check the checkbox Sign TwinCAT C++ executables:

If you only want to sign TwinCAT driver software with this certificate, uncheck the other two
checkboxes. (These are only used in the PLC area)

• Make sure that Crypto version 2 (for the encrypted content of the certificate content) is set. (standard
setting)

5. Once you have entered the data, click Start and select a directory to save the file.
You can simply accept the suggested directory "c:\twincat\3.1\customconfig\certificates". You
need the newly created file in this directory in order to be able to read out the "File Fingerprint" for
this file [} 100] in a subsequent step.
ð A dialog for selecting a password for the OEM Private Key opens.

6. Issue a password for the OEM Private Key.

Important: Password security!
Be sure to use a strong password for your certificate!
Protect your password with suitable measures so that it cannot fall into unauthorized hands!

Password cannot be restored if lost
Beckhoff is unable to recover or reset your password. If you forget or lose the password for your
certificate, you can no longer use it and have to request a new certificate.

From version 2.x.xxxx.x

TE1400100 Version: 2.1.1

7. Confirm the password by entering it again and close the dialog with OK.

ð The file is saved.

The "Certificate Request File" generated in this way must now be signed by the Beckhoff certificate section
in order to be valid. The procedure is described in chapter Requesting a certificate [} 97].

4.3.1.3 Determining the file fingerprint of the OEM certificate file
You need this functionality to request a TwinCAT OEM Certificate Extended Validation (TC0008).

System requirements
This functionality requires TwinCAT 3.1 Build 4024 of higher.

The OEM Certificate Request File becomes the TwinCAT OEM certificate once it is signed by
Beckhoff. The files do not differ except for this signature. For this reason, the term "TwinCAT OEM
certificate file" is used for both file versions in the following sections.

Reading the "file fingerprint" of an OEM certificate file via TwinCAT 3 Engineering

For this function it is necessary that the OEM certificate file is located in this directory: "c:
\twincat\3.1\customconfig\certificates".

This directory contains your OEM certificate, if you already have a certificate and want to renew it.

If you did not change the suggested directory when creating the "OEM Certificate Request File", the file is
already in this directory.

Procedure:

From version 2.x.xxxx.x

TE1400 101Version: 2.1.1

1. Call up the TwinCAT 3 Software Protection configurator.

2. Select the Certificates tab.
3. Check the Extended Info checkbox.
4. In the window scroll to the right until you see the Fingerprint column. (As an alternative, you can

simply double-click the certificate line. The Fingerprint file is then displayed in a pop-up window:

The shortcut [Ctrl] + [C] can be used to copy the fingerprint data from the message window to the
Windows clipboard.

4.3.1.4 Saving the signed TwinCAT user certificate
Recommended directory for saving the certificate: C:\TwinCAT\3.1\CustomConfig\Certificates

System requirements
- Min. TwinCAT 3.1 Build 4024
- Min. Windows 10 or TwinCAT/BSD (on the target system)

From version 2.x.xxxx.x

TE1400102 Version: 2.1.1

The TwinCAT 3 user certificate is not required for using the TwinCAT 3 TMX files
The TwinCAT 3 user certificate is used exclusively for the one-time signing of the TMX files and is
not required for the use of the TMX files signed with it.

On which computers is the TwinCAT 3 user certificate TC0008 required?
The TwinCAT 3 user certificate should be located exclusively on the engineering computer on which
the TMX files are signed - i.e. NOT on each target system.

4.4 Quick start
Starting with a simple Simulink® model
ü Feel free to use our built-in samples for first steps with the TwinCAT Target for Simulink®. The MATLAB®

Command Window provides a list of available samples via
TwinCAT.ModuleGenerator.Samples.List

1. For example, select the SimpleTemperatureController and start the sample using the Start link in
the Command Window.

ð In the following, the Quick start is executed along this sample.
2. Start at the beginning by selecting the button Open the model in the Live Script.
ð For the further configuration steps in Simulink® you can simply click the next button in the Live Script.

Beginner video
The following video (only available in English) can also be used as an introduction: TwinCAT Target
for Simulink®

The configuration steps in Simulink®

1. Select a fixed-step solver. To do this, go to the Configuration Parameters of the model.

https://vimeo.com/546350677
https://vimeo.com/546350677

From version 2.x.xxxx.x

TE1400 103Version: 2.1.1

2. Select the system target file to "TwinCatGrt.tlc".

Optional: Under Optimization, set the parameter Default parameter behavior to Tunable so that you can
continue to change model parameters in TwinCAT. See also Parameterization of a module instance [} 185].
3. Save your changes in the Simulink® model.
4. Start code generation via the Simulink CoderTM App.

Insert TcCOM in TwinCAT
1. Open TwinCAT (TwinCAT XAE or TwinCAT in a Visual Studio environment).
2. Instantiate a new TcCOM object.

From version 2.x.xxxx.x

TE1400104 Version: 2.1.1

3. Select the desired object.

4. Create a cyclic task.

5. Assign the created task to your TcCOM instance.

Note that the cycle time of the task and the SampleTime in Simulink® (here 5 ms) match.

From version 2.x.xxxx.x

TE1400 105Version: 2.1.1

6. Activate the configuration.

Configure and link TcCOM instance

The data exchange of the TcCOM instance takes place via mappings of the process image. Simulink® inputs
and Simulink® outputs are automatically mapped as inputs or outputs in the process image and can be linked
to I/O or other objects.

In the Parameters (Init) area of the TcCOM instance, you can optionally configure the instance differently
than specified when it was created from Simulink®.

From version 2.x.xxxx.x

TE1400106 Version: 2.1.1

For example, you can set the parameter Kp to "52" here. The TcCOM module would then use this value as
the startup value for this instance.

Insert as PLC function block

The PLC library used in the following is only available if the following parameters are set in Simulink®:

If these options have not been set, this can be done subsequently without using Simulink® and the TwinCAT
Target for Simulink®. See Create and install PLC library [} 206].

Brief overview of action steps PLC library/function block
• Create PLC in TwinCAT:

• Add PLC library:

From version 2.x.xxxx.x

TE1400 107Version: 2.1.1

• Select PLC library and view content:

• Use the function block from the library in the PLC:

From version 2.x.xxxx.x

TE1400108 Version: 2.1.1

Calling a TcCOM object also possible from the PLC
In addition to the variant described here, you can also call an instance of a TcCOM from the PLC.
See Applying the TcCOM Wrapper FB [} 209].

4.5 TwinCAT Library in Simulink®
Specific blocks for the TwinCAT Target for Simulink® are located in the Library Browser > Beckhoff
TwinCAT Target area.

From version 2.x.xxxx.x

TE1400 109Version: 2.1.1

4.5.1 TwinCAT Input and Output modules
TwinCAT-specific input and output function blocks can optionally be used in Simulink®. Another valid way is
to use the standard input ports (In) and output ports (Out) of Simulink®. This is usually also the best practice
way, unless the additional functions of the TwinCAT input and output modules described below are required.

From version 2.x.xxxx.x

TE1400110 Version: 2.1.1

Additional functions of the TC Module blocks

If you use the input function blocks (TC Module Input) and output function blocks (TC Module Output)
provided by Beckhoff, you will benefit from the following additional functionalities, compared to the standard
Simulink® input and output ports:

• You can also define signals and buses from subsystems directly as inputs or outputs for TcCOM,
without first transferring the signals/buses from the subsystem to the top system. Sample: Subsystem
inputs and outputs [} 111].

• You can optionally store an automatic mapping to other TcCOM or I/Os in the block parameters so that
the mapping is executed automatically directly when the TcCOM is instantiated, see Automatic
mapping [} 111].

• You can select individually between Mapping and DataPointer for the connection type of each
TC Module Inputs/Outputs. You can make all Standard Input Ports accessible via mapping, for
example, and make others accessible via the TC Module Inputs via DataPointer, see DataArea or
DataPointer [} 113].
Sample: Shared memory between TcCOM instances [} 150].

• You can influence the Symbol Name, i.e. change the name and hierarchy of the input or output in the
process image, for example, see Symbol Name [} 114].

• You can equip signals and buses with specific Symbol Properties, see Symbol properties [} 114].
• You can use initial values for inputs. To do this, set the Value of the TC Module Inputs to any value,

see Initial values [} 115].

From version 2.x.xxxx.x

TE1400 111Version: 2.1.1

Initial values can also be implemented for Standard Input Ports, see Option Input: Initial values
under TC TcCom Interfaces [} 143].

When using automatic mapping, please note that if the TcCOM is instantiated more than once in TwinCAT,
you will end up with a mapping conflict which you must resolve by manual mapping. This option is therefore
not recommended for multiple instantiations.

4.5.1.1 Subsystem inputs and outputs

Creating a TcCOM input/output from a Simulink® subsystem

A Simulink® model is created, which outputs two negated inputs. An input is placed in a subsystem, see
figure below.

According to the described property of the TC Module Input/Output blocks, the TC Module Input in the
Simulink® subsystem in TwinCAT is also included in the process image of the TcCOM. Thus, it is not
necessary to route to the top level of the Simulink® model, as is the case with standard in-ports or out-ports.

4.5.1.2 Automatic mapping
The inputs and outputs of the Simulink® model are automatically mapped to digital inputs and outputs in the
following. This means that after instantiation of the TcCOM in a TwinCAT project, the mappings are created
automatically. Manual linking is no longer necessary.

Navigate to the parameter Link to TwinCAT XAE tree item identifier in the Block Parameters of the Tc
Module In or Tc Module Out under Advanced. You can either enter the Tree Item Identifier and the data
type manually, or select them from Simulink® via a browser.

By selecting the Link button a new dialog opens. You can now load an existing TwinCAT project (Select
Project) and browse the existing inputs or outputs or you can create a new project (New Project) and
automatically scan the EtherCAT fieldbus in the new project to link it with the detected I/Os.

ü Create a new project and display and select inputs and outputs of the target:
1. Create a new project.

From version 2.x.xxxx.x

TE1400112 Version: 2.1.1

2. For this purpose, select a memory path of the new TwinCAT project to be created.
3. Select the target to which you want to download the project.
4. Automatically scan the I/O tree of the target.
ð All inputs and outputs of the target are displayed and can be selected.

By selecting the input or output you want to link, the tree item identifier is automatically set and the
appropriate data type is automatically entered in Simulink®.

If the Simulink® model described above is compiled into a TcCOM and integrated in a TwinCAT 3 Solution, a
mapping to the inputs and outputs selected in Simulink® is automatically created.
Coloring of the symbols for differentiation:
the automatically generated mappings are provided with a blue symbol, while manual mapping symbols are
displayed white.

From version 2.x.xxxx.x

TE1400 113Version: 2.1.1

4.5.1.3 DataArea or DataPointer
By default, "DataArea (InputDst)" is selected as Input connection type at generated TwinCAT module.
This means that a TC Module Input is created as Input Destination DataArea and a TC Module Output
accordingly as Output Source DataArea.

Alternatively, "DataPointer" can also be selected here, see Shared memory between TcCOM instances
[} 150].

From version 2.x.xxxx.x

TE1400114 Version: 2.1.1

If the Simulink® model shown above is created with the Target for Simulink®, 2 inputs and 2 outputs appear
in the process image on the TcCOM instance if "mapping" is selected as Input connection type at
generated TcCOM module.

4.5.1.4 Symbol properties

You can define specific symbol properties for the TC Module In/Out blocks, see Symbol Properties and
Attribute Pragmas [} 166].

Sample: OPC.UA.DA.=1

Restriction
The symbol name must not be nested when using symbol properties.

4.5.1.5 Symbol Name
You can change the name and thus the display of the symbol in the process image at Symbol name.

In the following sample, a TC Module Input is nested in two subsystems. The default name resolution is (as
can be seen to the right of the name symbol) <Subsystem>.<Subsystem>.<TcModuleName>.

From version 2.x.xxxx.x

TE1400 115Version: 2.1.1

The process image looks like this:

Especially in cases where there is very deep nesting, it may be desirable to shorten the symbol name. You
therefore have the option of entering the symbol name manually as text, e.g. 'Subsystem.InputValue'.

4.5.1.6 Initial values
In addition to data type, dimension and SampleTime, an optional Value field is editable in addition to the
standard Simulink® in-port and out-port. This field allows you to specify an initial value for the input (only
available for TC Module Input). If the input in TwinCAT is not linked to a corresponding output, the value
entered here is used as the input value.

From version 2.x.xxxx.x

TE1400116 Version: 2.1.1

4.5.2 TwinCAT Environment View
Drag the TwinCAT Environment View into your Simulink® environment to directly get the available TwinCAT
XAE version and the currently installed TE1400 version displayed, for example for support cases.

4.5.3 TwinCAT File Writer
The TwinCAT File Writer block writes .mat files from the TwinCAT environment. The block only fulfills this
function if the Simulink® model has already been transferred to a TcCOM or FB and is executed in a
TwinCAT Runtime. If the Simulink® model is executed in Simulink®, this block has no function.

Parameter Description Note
Port data type Data type of the incoming signal Support is offered for:

• Integer Types
• float
• double
• boolean
• enums
• bus objects

Port dimension Dimensionality of the incoming
signal

-1 -> Inherit
Otherwise [1.2], [1.5], ..., for
example

SampleTime Block Sample Time in seconds -1 -> Inherit

From version 2.x.xxxx.x

TE1400 117Version: 2.1.1

Parameter Description Note
file name File name of the .mat file Full path or relative path possible.

Relative path relative to
TwinCAT\3.1\Boot.

Maximum file byte size Maximum size (in bytes) of
the .mat file. When this size is
reached, the current file is closed
and a new one is started.

0 -> Maximum due to file format

Maximum file count Maximum number of .mat files to
write.

0 -> Infinite files. If the maximum is
reached, old files are overwritten,
starting with _part0.mat.

Pause writing files Pauses writing Parameters on the TcCOM
Write simulation time with data Writes per date a structure with 2

fields, "time" and "data".
Expose Pause as block input Creates an input via which the

TwinCAT File Writer can be
paused.

4.6 Overview of automatically generated files
When a build process is initiated, some files and folders are created automatically. "Where are the files
located?", "What can be done with them?" and "What do the files mean?" These questions are answered
below.

What are the categories of automatically generated files?

• Source code is generated [} 117].

• Log files are generated [} 119].

• The TwinCAT objects, drivers (*.tmx) and description files (*.tmc, *.library, ...) are created [} 120].

All files created by the TwinCAT Target are summarized in the current MATLAB® path in the folder
<SimulinkModelName>_tcgrt. The folder is located next to the slprj folder generated by MathWorks®.

Generated source code

The central file for the source code is <SimulinkModelName>.vcxproj and is located in the
<SimulinkModelName>_tcgrt folder. The file opens a TwinCAT C++ project, which can be used to inspect
the generated source code, to subsequently build TwinCAT objects or also for debugging in TwinCAT
[} 214].

From version 2.x.xxxx.x

TE1400118 Version: 2.1.1

With regard to the build option from the generated TwinCAT C++ project, it is worth knowing that you can
switch off the publish step, i.e. building for the configured platforms, in Simulink®.

You can achieve code generation without build in Simulink® by deselecting Run the publish step
after project generation. The publish step contains the build of the TwinCAT objects for the selected
platforms (TwinCAT RT x86, x64 ...).

From version 2.x.xxxx.x

TE1400 119Version: 2.1.1

Further useful information:

• Pack-and-go with the Target for Simulink®
• Continuous Integration

Generated log files

The generated log files are summarized in the subfolder log. The log files created are the first place to look
when debugging.

This folder contains up to three log files. The main point of contact is the summary of all logs in the file
<ModelName>_ModuleGenerationLog.txt.

From version 2.x.xxxx.x

TE1400120 Version: 2.1.1

Beckhoff Support requires log file
If you require assistance from our support team, please send at least the following file from the log
folder: <ModelName>_ModuleGenerationLog.txt

The structure of the ModuleGenerationLog is divided into several segments that represent different steps of
the TwinCAT Target. The steps are displayed with ### in the log.

Sample:
2023-10-18 14:48:37: ### Starting build procedure for: SimpleTempCtrl
2023-10-18 14:48:43: ### Save TLC export
2023-10-18 14:48:47: ### Export block diagram
2023-10-18 14:48:47: Block diagram export succeeded
2023-10-18 14:48:48: ### Export TwinCAT C++ project
2023-10-18 14:48:53: ### Save project
2023-10-18 14:48:53: The TwinCAT C++ project "C:
\Users\xyz\Documents\MATLAB\TE14xxSamples\2023-10-18_13-58_SimpleTemperatureController\SimpleTempCtr
l_tcgrt\SimpleTempCtrl.vcxproj" was generated successfully

If no warnings or errors occur in the steps, no entries are usually made for the steps performed. In some
cases, explicit reference is made to created files, such as the vcxproj file created in the sample above.
Reference is also made to other log files for more detailed information, see the following sample:
2023-10-18 14:48:53: ### Publish TMX
2023-10-18 14:48:53: Configuration: "Release"
2023-10-18 14:48:53: Platform(s): "TwinCAT RT (x86);TwinCAT RT (x64);TwinCAT OS (x64)"
2023-10-18 14:48:53: TwinCAT SDK: "C:\TwinCAT\3.1\SDK\" (Version 3.1.4024.50)
2023-10-18 14:48:53: Platform Toolset: V142 (Automatically selected)
2023-10-18 14:48:53: Microsoft (R) Build Engine version 16.11.2+f32259642 for .NET Framework
2023-10-18 14:48:53: Copyright (C) Microsoft Corporation. All rights reserved.
2023-10-18 14:49:06: Publish procedure completed successfully
2023-10-18 14:49:06: See log file "C:
\Users\xyz\Documents\MATLAB\TE14xxSamples\2023-10-18_13-58_SimpleTemperatureController\SimpleTempCtr
l_tcgrt\log\SimpleTempCtrl_PublishLog.txt" for details

If warnings or errors occur, these are displayed in the ModuleGenerationLog. The detailed logs, on the other
hand, contain all the outputs of the step performed. For example, warnings can be seen here in the signature
verification area of the created tmx files:
2023-10-18 14:49:06: ### Publish summary
2023-10-18 14:49:06: Configuration: "Release"
2023-10-18 14:49:06: Platform(s): "TwinCAT RT (x86);TwinCAT RT (x64);TwinCAT OS (x64)"
2023-10-18 14:49:06: TwinCAT SDK: "C:\TwinCAT\3.1\SDK\" (Version 3.1.4024.50)
2023-10-18 14:49:06: Platform Toolset: V142 (Automatically selected)
2023-10-18 14:49:06: Vendor name: TE140x Module Vendor
2023-10-18 14:49:06: Library name: SimpleTempCtrl
2023-10-18 14:49:06: Library version: 2.0.1.24
2023-10-18 14:49:06: Local installation folder: "C:\TwinCAT\3.1\Repository\TE140x Module
Vendor\SimpleTempCtrl\2.0.1.24"
2023-10-18 14:49:06: TMX archive: -
2023-10-18 14:49:06: Signatures:
2023-10-18 14:49:06: File 'C:\TwinCAT\3.1\Repository\TE140x Module
Vendor\SimpleTempCtrl\2.0.1.24\TwinCAT RT (x86)\SimpleTempCtrl.tmx' has signature.
2023-10-18 14:49:06: issuer TestSign123 (x.yz@beckhoff.com), certificate expires on 08/15/2025
2023-10-18 14:49:06: Warning: Signature found, but OEM certificate was not signed by Beckhoff.
Driver can only be used in test mode.
2023-10-18 14:49:06: File 'C:\TwinCAT\3.1\Repository\TE140x Module
Vendor\SimpleTempCtrl\2.0.1.24\TwinCAT RT (x64)\SimpleTempCtrl.tmx' has signature.
2023-10-18 14:49:06: issuer TestSign123 (x.yz@beckhoff.com), certificate expires on 08/15/2025
2023-10-18 14:49:06: Warning: Signature found, but OEM certificate was not signed by Beckhoff.
Driver can only be used in test mode.
2023-10-18 14:49:06: File 'C:\TwinCAT\3.1\Repository\TE140x Module
Vendor\SimpleTempCtrl\2.0.1.24\TwinCAT OS (x64)\SimpleTempCtrl.tmx' has signature.
2023-10-18 14:49:06: issuer TestSign123 (x.yz@beckhoff.com), certificate expires on 08/15/2025

Created TwinCAT objects

After a successful build, the binary files and description files created, which can be re-used in TwinCAT XAE,
are stored in the so-called Engineering Repository, i.e. on the engineering PC at:

%TwinCATInstallDir% \3.1\Repository\<Vendor>\<ModelName>\<Version>\

From version 2.x.xxxx.x

TE1400 121Version: 2.1.1

• <ModelName>.tmc: Description file of the TcCOM object (object class)
• <ModelName>.tml: Library file: Can be used like .library file.
• <ModelName>.library: TwinCAT PLC library file
• Deploy\<ModelName>_ModuleInfo.xml: Module information, e.g. block diagram
• <Platform>\<ModelName>.tmx: Driver file

Distribution of TwinCAT objects to other XAE systems: If the folder at <ModelName> level is copied to other
PCs with TwinCAT XAE in the local Engineering Repositories, their users can use the created TwinCAT
objects in their TwinCAT Solutions.

Compare also Sharing created TwinCAT objects [} 135].

Additional Notes

Description of the generated C++ files and binary files

Versioned C++ projects

4.7 Parameterization of the code generation in Simulink®
Within Simulink® a large number of settings can be made for the configuration of the TwinCAT objects to be
generated (TcCOM and function blocks). For this purpose the tree structure under Code Generation is
extended by several entries (see entries starting with TC) as soon as you have selected the TwinCatGrt.tlc
as System target file.

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/831432715.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/6777687691.html&id=

From version 2.x.xxxx.x

TE1400122 Version: 2.1.1

Configure View

Due to the wide range of configuration options, it is possible to switch the view. After installation, the
configuration level is set to Standard, which displays only the most frequently used parameters. You can also
increase the configuration level to Advanced to be able to make significantly more settings.

Use the MATLAB® Command Window to set the view:
TwinCAT.ModuleGenerator.Settings.Change('ConfigurationLevel', 'Advanced')

TwinCAT.ModuleGenerator.Settings.Change('ConfigurationLevel', 'Standard')

The setting made is initially only temporary. To save them, use the Save command:
TwinCAT.ModuleGenerator.Settings.Save;

If you run the code generation and build process on different systems, make sure that the configuration level
is identical on both systems.

Overview of the configuration parameters

An overview of all configuration parameters can be found in the documentation in section Overview table of
all configuration parameters [} 124].

Read the tooltips
Hover with the cursor over the text fields of the dialog boxes to bring up a detailed description of the
option as a tooltip.

Change the software setup

To change the default settings of the TwinCAT target, you can access a dialog in the MATLAB® Console as
follows:

From version 2.x.xxxx.x

TE1400 123Version: 2.1.1

TwinCAT.ModuleGenerator.Settings.Edit

Here you are offered various entries that you can store as default values.

Accept changes
1. Enter the new default settings in the dialog box.
2. Confirm with the Save button.
3. Restart MATLAB®.
ð The changes have been adopted.

Change configurations after build

Many settings selected in the Configuration parameters can be changed again in TwinCAT 3 at the level of
the TcCOM instances, so that, for example, it is defined for the class of a model that it is to be called via a
cyclic task, but the individual instance can also be configured subsequently for calling from the PLC.

From version 2.x.xxxx.x

TE1400124 Version: 2.1.1

4.7.1 Overview table of all configuration parameters
An overview of all configuration parameters is given below. The configuration parameters are visible or
invisible depending on the set configuration level in the UI of Simulink®. If you configure the module
generator via an m-file [} 131], the configuration level has no influence.

A brief description is given for each parameter and in some cases reference is made to other sections of the
documentation for more detailed information. The categorization is based on the representation in the UI. In
the UI, the display name is used. If you use the module generator via an m-file, the column "Name" is crucial.

Category Name Displayname Default Description
TC General Generate Generate TwinCAT

C++ Project
TRUE Generate a TwinCAT C++ project.

If unset, only code artifacts will be
generated which can get used to
generate C++ projects later
[} 131].

FullPath TwinCAT C++ Project
Path

Full path to the generated
VCXPROJ file (e. g. "C:
\Temp\MyGeneratedProject.vcxpr
oj")

LowestCompati
bleTcBuild

Lowest compatible
TwinCAT version
(build number)

$<TwinCAT:Ver
sion:BUILD>

The lowest TwinCAT build
number the generated C++
project and its modules and POUs
are to be compatible with.

ClassFactoryNa
me

Class factory name $<Project:Name
>

Name of the generated C++-
Project, Name of the TcCOM
classfactory and tmx-file name

ProductName Product name $<ModuleGener
ator:ProductId>
$<ModuleGener
ator:Version:MA
JOR.MINOR>

Product name, used e.g. for the
module driver description and the
module TMC description [} 159].

Copyright Copyright notice Copyright
$<VendorName
>
$<LocalDateTi
me:%Y>

Copyright notice of the generated
module driver file [} 159]

Description Driver description TwinCAT
executable file,
generated by
TwinCAT
$<ModuleGener
ator:ProductId>

Driver description [} 159]

VendorName Vendor name TE140x Module
Vendor

Module vendor name, used as the
company name of the generated
executables in the repository
[} 120] and the major module
group as shown in the TwinCAT
XAE module dialog [} 90].

VersionSrc Version source file $<LatestTMFile
>

Path to an existing TMC, TML or
XML file containing the previous
version value [} 137].

IncrementVersi
on

Version part for
increment

Revision The part of the version number
that is to be incremented [} 137].

DrvFileVersion Driver file version $<VersionFrom
File>

Executable file version and library
version. [} 137]

From version 2.x.xxxx.x

TE1400 125Version: 2.1.1

Category Name Displayname Default Description
DrvProductVers
ion

Driver product version $<DrvFileVersio
n>

Product version [} 137]

CodeGenPlace
holders

Code generation
placeholders

Define custom placeholders

UseDataExcha
ngeModules

Load
DataExchangeModule
s

0 Manually set
DataExchangeModule
dependency (currently no need to
set manually)

MaxVisibleArra
yElements

Maximum number of
visible array elements

200U Specifies the maximum number of
array elements to be displayed in
the TwinCAT XAE. In the
TwinCAT XAE, larger arrays
cannot get expanded and linked
to by its individual items

CreateUniqueE
numItemNames

Create unique item
names for
enumeration types

1 Create unique item names for
enumeration types.

DataTypeTmcFi
les

Data type import TMC
files

TMC file(s) containing additional
type definitions for code
generation

TC Build PreferToolArchi
tectureX64

Prefer X64 build tools TRUE Prefer X64 compiler and linker.
Useful for complex source files,
where X86 tools may run out of
heap space.

Verbosity Codegeneration and
build verbosity

Normal Verbosity level of code generation
and build output messages. Silent
and Detailed are other possible
values.

Publish Run the publish step
after project
generation

TRUE Start the build procedure after
code generation for all selected
platforms. The generated module
binaries and module descpription
files will get copied to the "publish
folder". Published modules are
automatically located by the XAE
and can get instantiated in all
TwinCAT 3 projects. If unset, the
module generation process will be
stopped after code generation. To
instantiate in a TwinCAT3 project,
the generated C++ project needs
to be inserted and built from.

PublishPlatform
toolset

Platform Toolset Auto Choose Platform Toolset to build
binaries.

PublishConfigur
ation

Build configuration Release Build configuration to build
binaries.

PublishTcRTx8
6

TwinCAT RT (x86) TRUE Publish binaries for platform
'TwinCAT RT (x86).'

PublishTcRTx6
4

TwinCAT RT (x64) TRUE Publish binaries for platform
'TwinCAT RT (x64).'

PublishTcOSx6
4

TwinCAT OS (x64) TRUE Publish binaries for platform
'TwinCAT OS (x64)' (e.g.
TwinCAT/BSD)

ForceRebuildFo
rPublish

Always rebuild all
source files on publish

FALSE Always rebuild all source files on
publish

From version 2.x.xxxx.x

TE1400126 Version: 2.1.1

Category Name Displayname Default Description
SignTwinCatCe
rtName

Certificate name for
TwinCAT signing

Certificate name for TwinCAT
signing with OEM Certificate level
2. [} 93]

TmxInstall Install TMX TRUE Install all generated TwinCAT
Objects on local XAE (fill local
Engineering Repository [} 120]).

TmxArchive TMX Archive Name of an optional archive
containing all files required to use
the generated TwinCAT Objects
on another TwinCAT development
system. [} 135]

MsBuildPublish
Properties

MsBuild publish
properties

Set additional MsBuild publish
properties.

MsBuildProjPro
perties

MsBuild project
properties

Set additional MsBuild project
properties.

PreCodeGener
ationCallbackFc
n

Pre code generation
callback function

The defined MATLAB® function is
called before code generation
[} 182].

PostCodeGener
ationCallbackFc
n

Post code generation
callback function

The defined MATLAB® function is
called after code generation
[} 182].

PostPublishCall
backFcn

Post publish callback
function

The defined MATLAB® function is
called after publish [} 182].

TC PLC library LibCatPath PLC library category
description file

$<ProjectDir>\
$<Name>.libcat
.xml

Path to the PLC library category
description file

LibraryCategori
es

PLC library categories $<VendorName
>

Define PLC library category
hierarchy. Default only one
hierarchy level = vendor. List
separated with | possible:
<MainCategory>|
<SubCategory1>|…

GeneratePlcLib
rary

Generate a PLC
library

FALSE Generate a PLC library with POUs.
[} 206] Define containing POUs
with parameter TcComWrapperFb
and PlcFb>General>Generate.

InstallPlcLibrary Install the generated
PLC library

FALSE Install the generated PLC library
for use in the local TwinCAT XAE/
PLC [} 206].

PlcTypePrefixe
s

Type Prefixes Define custom type prefixes

PlcVarPrefixes Variable Prefixes `PVOID=p \|
BOOL=b \|
BOOL32=b \|
DATE=d \|
TIME_OF_DAT
E=td \| TIME=t
\| LTIME=t \|
GUID=n`

Define custom variable prefixes.

TC License OemId ID of OEM ID of OEM. Required for OEM
Licence checks [} 156]

From version 2.x.xxxx.x

TE1400 127Version: 2.1.1

Category Name Displayname Default Description
OemLicenses IDs of OEM Licenses IDs of OEM Licenses. Multiple IDs

may be inserted as a comma
separated list. "{GUID},{GUID}"
[} 156]

TC TcCom
General

Generate Generate TcCOM
Module (TwinCAT
Module Class)

TRUE Generate a TcCOM module class
for the model.

OnlineChange Online change
support

FALSE Allow to switch between different
TcCOM module versions without
switching TwinCAT runtime to
config mode [} 141].

ModuleProperti
es

TMC Properties Additional properties added to the
module description in the TMC
file: Name1=Value1|
Name2=Value2|...

GroupName GroupName TE140x\|
Simulink
Modules

Minor module group name in the
TwinCAT XAE module dialog

GroupDisplayN
ame

GroupDisplayName $<GroupName> Minor module group description in
the TwinCAT XAE module dialog

GroupIcon GroupIcon $<TE140x:Icon
>

Optional module group icon in the
TwinCAT XAE module dialog

ModuleIcon ModuleIcon $<TE140x:Icon
>

Optional module icon in the
TwinCAT XAE module dialog

InitExceptionHa
ndling

Floating point
exception handling
during initialization

CallerException
s

Configures how to throw,
suppress or handle floating point
exceptions during initialization
[} 220].

UpdateExceptio
nHandling

Floating point
exception handling
during update

CallerException
s

Configures how to throw,
suppress or handle floating point
exceptions during cyclic execution
[} 220].

AdditionalInclud
eFiles

Additional include files Additional files required to be
included after rtwtypes.h

TC TcCom
License

OemLicenses IDs of OEM License $<Project:Oem
Licenses>

IDs of OEM Licenses. Multiple IDs
may be inserted as a comma
separated list. "{GUID},{GUID}"
[} 156]

TC TcCom
Wrapper

TcComWrapper
Fb

TcCom Wrapper FB FALSE Generate a PLC Functionblock
simplifying the interaction
between a PLC and an instance of
the generated TcCOM module
[} 209]

TcComWrapper
FbProperties

TcCom Wrapper FB
properties

FALSE Generate properties for accessible
data in the referenced TcCOM
object [} 209]

TcComWrapper
FbPropertyMoni
toring

TcCom Wrapper FB
property monitoring

NoMonitoring NoMonitoring: Online values of
properties are not monitored in
the PLC online view, CyclicUpdate:
Update property values in the PLC
online view cyclically,
ExecutionUpdate: Update

From version 2.x.xxxx.x

TE1400128 Version: 2.1.1

Category Name Displayname Default Description
property values in the PLC online
view when the property getter or
setter is called [} 209]

TC TcCom
Additional
settings

ModuleCaller Default module caller CyclicTask CyclicTask: Call module via
TwinCAT Task. Module: Cal
module from another TwinCAT
module (see e.g. TcCOM-
Wrapper-FB).

CallerVerificatio
n

Verify caller Default Verify the caller context to prevent
concurrent execution of the model
code and corresponding
DataArea mappings. Skip
verification to reduce the
execution time.

StepSizeAdapta
tion

Default StepSize
adaptation mode

RequireMatchin
gTaskCycleTim
e

Configure how to handle
differences between the default
model step size(s) and the cycle
time of the assigned task(s).

ExecutionSequ
ence

Default execution
sequence

UpdateBeforeO
utputMapping

Configure the execution order of
input mapping, model code
execution and output mapping.

ExecuteModelC
ode

Execute model code
after startup

TRUE Start cyclic execution of the model
code after startup by default. If
FALSE, Module Parameter
Execute needs to be set to TRUE
to start execution of code.

BlockDiagramE
xport

Export BlockDiagram TRUE Export graphical block diagram
information for monitoring and
optional debugging on the
generated TwinCAT module in
TwinCAT XAE [} 193]

ResolveMasked
Subsystems

Resolve Masked
Subsystems

FALSE Resolve masked subsystems in
the block diagram

ExtendSignalRe
solution

Extended resolution of
signals in block
diagram

FALSE Intensified search for assignments
of variables and block diagram
signals (blue signals). This option
increases the build time. [} 235]

BlockDiagramV
ariableAccess

Access to
VariableGroup not
referenced by any
block

AssignToParent Variables from a block within an
unresolved subsystem are either
assigned to the next higher visible
block or hidden in the block
diagram.

BlockDiagramD
ebugInfoExport

Export BlockDiagram
debug info

TRUE Export additional information
required to debug the module
using the block diagram [} 197].

TC TcCom
Interfaces

ExecutionInfoO
utput

Create ExecutionInfo
output

FALSE Create additional output
DataAreas containing execution
and exception information
[} 220].

MonitorExecutio
nTime

Monitor execution
time

FALSE Calculate and expose the
execution time of the module as
an ADS variable for monitoring
purposes.

From version 2.x.xxxx.x

TE1400 129Version: 2.1.1

Category Name Displayname Default Description
InputDataAcces
s

Input: Data Access Input
Destination
DataArea

Defines how the input variables
are exposed in TwinCAT [} 143].

InputCreateSy
mbols

Input: Create ADS
Symbols

TRUE Create ADS symbol information
for the input variables [} 143]

InputInitValues Input: Initial values FALSE Create module parameters for the
input variables to allow definition
of initial values [} 143]

InputProperties Input: TMC Properties Additional properties added to
the Input symbol description in
the TMC file. [} 166]

OutputDataAcc
ess

Output: Data Access Output Source
DataArea

Defines how the output variables
are exposed in TwinCAT [} 143].

OutputCreateSy
mbols

Output: Create ADS
Symbols

TRUE Create ADS symbol information
for the output variables [} 143].

OutputPropertie
s

Output: TMC
Properties

Additional properties added to
the Output symbol description in
the TMC file. [} 166]

ParametersDat
aAccess

Parameters: Data
Access

Internal
DataArea

Defines how the model parameter
variables are exposed in TwinCAT
[} 143]

ParametersCre
ateSymbols

Parameters: Create
ADS Symbols

TRUE Create ADS symbol information
for the model parameter variables
[} 143].

ParametersInitV
alues

Parameters: Initial
values

TRUE Create module parameters for the
model parameter variables to
allow definition of initial values
[} 143].

ParametersPro
perties

Parameters: TMC
Properties

Additional properties added to
the Parameters symbol
description in the TMC file. [} 166]

BlockIoDataAcc
ess

BlockIO: Data Access Internal
DataArea

Defines how the BlockIO variables
are exposed in TwinCAT [} 143]

BlockIoCreateS
ymbols

BlockIO: Create ADS
Symbols

TRUE Create ADS symbol information
for the BlockIO variables [} 143].

BlockIoProperti
es

BlockIO: TMC
Properties

Additional properties added to
the BlockIO symbol description in
the TMC file. [} 166]

ContStateData
Access

ContState: Data
Access

Internal
DataArea

Defines how the continuous state
variables are in TwinCAT [} 143]

ContStateCreat
eSymbols

ContState: Create
ADS Symbols

TRUE Create ADS symbol information
for the continuous state variables
[} 143].

ContStatePrope
rties

ContState: TMC
Properties

Additional properties added to
the ContState symbol description
in the TMC file. [} 166]

DWorkDataAcc
ess

DWork: Data Access Internal
DataArea

Defines how the DWork variables
are exposed in TwinCAT [} 143]

From version 2.x.xxxx.x

TE1400130 Version: 2.1.1

Category Name Displayname Default Description
DWorkCreateSy
mbols

DWork: Create ADS
Symbols

TRUE Create ADS symbol information
for the DWork variables [} 143].

DWorkPropertie
s

DWork: TMC
Properties

Additional properties added to
the DWork symbol description in
the TMC file. [} 166]

DataStoreData
Access

DataStore: Data
Access

None Defines how the DataStore
variables are exposed in TwinCAT
[} 143]

DataStoreCreat
eSymbols

DataStore: Create
ADS Symbols

TRUE Create ADS symbol information
for the DataStore variables
[} 143].

DataStoreRead
Only

DataStore: Read Only FALSE Restrict ADS access to be read
only for the DataStore variables
[} 143].

DataStorePrope
rties

DataStore: TMC
Properties

Additional properties added to
the DataStore symbol description
in the TMC file. [} 166]

SymbolProperti
es

Additional TMC
Symbol Properties

Additional properties added to
specific symbol descriptions in the
TMC file. [} 166]

VariableSymbol
Mapping

Mapping between
variable names and
ADS symbol names

Identical Defines the TwinCAT symbol
names for the generated C/C++
variables. 'Identical': Symbol name
equals variable name, 'Classic':
Use symbol names known from
TE1400 Release 1.2.x.x [} 143]

TC TcCom
External Mode

ExtModeRtAllo
wExecutionCo
mmands

Allow RealTime
execution commands
via External Mode

FALSE Allow to start and stop model
code execution via External Mode
[} 217].

ExtModeRtWait
ForStart

Wait for RealTime
execution start
command via External
Mode

FALSE Wait for External Mode [} 217]
connection before starting model
code execution.

ExtModeRtAllo
wForParameter
Change

Allow to change
parameters via
External Mode

FALSE Allow to change parameter online
values via External Mode [} 217].

TC PlcFb
General

Generate Generate TwinCAT
PLC Function Block

TRUE Generate a PLC-FB for the model
[} 213].

InitExceptionHa
ndling

Floating point
exception handling
during initialization

CallerException
s

Configures how to throw,
suppress, or handle floating point
exceptions during initialization
[} 220].

UpdateExceptio
nHandling

Floating point
exception handling
during update

CallerException
s

Configures how to throw,
suppress, or handle floating point
exceptions during cyclic execution
[} 220].

TC PlcFb
License

OemLicenses IDs of OEM License $<Project:Oem
Licenses>

IDs of OEM Licenses. Multiple IDs
may be inserted as a comma
seperated list. "{GUID},{GUID}"
[} 156]

From version 2.x.xxxx.x

TE1400 131Version: 2.1.1

Category Name Displayname Default Description
TC PlcFb
Additional
settings

MonitorExecutio
nTime

Monitor
ExecutionTime

FALSE Calculate and expose the
execution times of TwinCAT
modules as an ADS variable for
monitoring purposes.

PlcFb-
>Interface

InputAttributes Input variables: PLC
Attributes

Additional attributes added to the
PLC FB Input variables.

OutputAttribute
s

Output variables: PLC
Attributes

Additional attributes added to the
PLC FB Input variables.

TC PlcFb
External Mode

ExtModeRtAllo
wExecutionCo
mmands

Allow RealTime
execution commands
via External Mode

FALSE Allow to start and stop model
code execution via External Mode
[} 217].

ExtModeRtWait
ForStart

Wait for RealTime
execution start
command via External
Mode

FALSE Wait for External Mode
connection before starting model
code execution [} 217].

ExtModeRtAllo
wForParameter
Change

Allow to change
parameters via
External Mode

FALSE Allow to change parameter online
values via External Mode [} 217].

4.7.2 Parameterization of the code generation via an m-file
There are two ways to parameterize the code generation via an m-file (or mlx-file):

• via model-specific Simulink® parameters with set_param
• via an instance of the module generator TwinCAT.ModuleGenerator

Configuration via Simulink® parameters

With set_param you can assign specific parameters to an object in Simulink®. If you configure the module
generator with set_param, it will be stored accordingly in the Simulink® model.

To structure the configuration parameters [} 124] no namespace can be used here, therefore a prefix is set
to the configuration parameters. The parameter name ("Name" column in the configuration parameter
[} 124] table) is preceded by Project_, TcCom_ or TcPlcFb_ depending on the level.

• Project_ prefix: For all parameters that are grouped in the presentation of the configuration
parameters in the tabs TC General, TC Build, TC PLC Library and TC License.

• TcCom_ prefix: For all parameters grouped in the presentation of the configuration parameters in the
tabs TC TcCom.

• TcPlcFb_ prefix: For all parameters grouped in the presentation of the configuration parameters in the
tabs TC PlcFb.

You can also find out the exact parameter name by using the search function in the Simulink® model.

From version 2.x.xxxx.x

TE1400132 Version: 2.1.1

Sample
% load Simulink model
controller = load_system('TempCtrl.mdl');

% configure TwinCatGrt
set_param(controller,'SystemTargetFile','TwinCatGrt.tlc');

% set project specific parameters
set_param(controller,'TcProject_VendorName','CompanyName');
set_param(controller,'TcProject_GeneratePlcLibrary','on');
set_param(controller,'TcCom_OnlineChange','on');
set_param(controller,'TcPlcFb_MonitorExecutionTime','on');

% build the model
slbuild(controller);

% save and close the model
close_system(controller,1);

Configuration via the module generator

Parameter settings like in the sample above can also be made via the module generator. Thus, the settings
do not remain in the Simulink® model, but in the instance of the module generator.

For this purpose, only the SystemTargetFile is defined for the Simulink® model and the parameter
TcProject_Generate is switched off. This will only generate Code Artifacts, but no TwinCAT C++ project will
be derived and accordingly not compiled. The code artifacts are stored in the current MATLAB® path in the
folder <ModelName>_tcgrt.

From version 2.x.xxxx.x

TE1400 133Version: 2.1.1

Export of the block diagram
At the level of the Simulink® model, you should also decide whether you want to export the block
diagram. In the following steps you will work on the Code Artifacts and no longer on the Simulink®

model.

You can specify the Code Artifacts folder afterwards to load a ProjectExport configuration to the
TwinCAT.Modulgenerator. Here you can then make your settings and compile the project.

Sample
% load Simulink model
controller = load_system('TempCtrl.mdl');

% configure TwinCatGrt
set_param(controller,'SystemTargetFile','TwinCatGrt.tlc');

% disable generation of C++ project files for each model (suppresses build)
set_param(controller,'TcProject_Generate','off');

% create code artifacts
slbuild(controller);

% save and close the model
close_system(controller,1);

% find the code artifacts in the existing code generation directories
controllerBuildDir = fullfile(pwd,'TempCtrl_tcgrt');

% load existing export configurations
controllerCfg = TwinCAT.ModuleGenerator.ProjectExportConfig.Load(controllerBuildDir);

% show complete configuration in MATALB Command Window
controllerCfg

% set project specific parameters
controllerCfg.Project.VendorName = "Company";
controllerCfg.Project.GeneratePlcLibrary = true;
controllerCfg.ClassExportCfg{1}.TcCom.OnlineChange = true;
controllerCfg.ClassExportCfg{1}.PlcFb.MonitorExecutionTime = true;

% set generate to true
controllerCfg.Project.Generate = true;

% instantiate and run the project exporter
TwinCAT.ModuleGenerator.ProjectExporter(controllerCfg);

Application examples

The separation of the code generation process into the steps (1) creation of the Code Artifacts and (2)
configuration of the module generator and creation of the TwinCAT objects, can be helpful in different
scenarios:

• You do not want to save the module generator settings in each Simulink® model.

• You want to merge several Simulink® models into one project. [} 133] This combines all models in
one driver and in one PLC library. Sample:
TwinCAT.ModuleGenerator.Samples.Start('Combine_Modules')

• You are working with a Build Server or with a CI/CD system. Sample:
TwinCAT.ModuleGenerator.Samples.Start('Continuous Integration')

4.7.3 Bundling of several models in one TwinCAT driver
Automatically generated code from Simulink® models and MATLAB® functions can be bundled into a single
C++ project. After the build process, all bundled objects are then available in one driver.

From version 2.x.xxxx.x

TE1400134 Version: 2.1.1

Advantages of bundling

When a PLC library is created, all created objects are then listed as a function block (FB) in this library.
Although only one driver and one tmc file are created, all modules can still be instantiated individually at
System > TcCOM, i.e. from the user's point of view in TwinCAT XAE nothing changes with regard to the use
of the TcCOM objects. Using the PLC library increases the clarity.

Advantages of bundling in one driver:
• The number of files in the repository directory is significantly reduced. This also means that fewer files

have to be copied to other engineering systems in order to make a large number of modules available
on engineering systems.

• The management of different versions is simplified, as interacting modules can be exchanged in a
bundle, so that no version conflicts arise.

NOTICE
Simulink CoderTM does not support namespaces
If data types or functions with the same naming are defined in multiple models, the build process fails
because the definitions are in the same namespace.

Procedure
1. Disable "Run the publish step after project generation" in Simulink®. This will abort after the code

generation and the created C++ project will not be compiled.
2. When bundling multiple modules, simply use the generated folders <modelname>_tcgrt, which are

placed in the current MATLAB® path.
3. Load, bundle and configure export configurations (<modelname>_tcgrt) in a project using

ModuleGenerator.
4. Create an export project.

In the following, this is exemplified by the bundling of 2 export configurations:
% find the code artifacts in the existing code generation directories
controllerBuildDir = fullfile(pwd,'TempCtrl_tcgrt');
ctrlsystemBuildDir = fullfile(pwd,'TempCtrlSysPT2_tcgrt');
% load existing export configurations
controllerCfg = TwinCAT.ModuleGenerator.ProjectExportConfig.Load(controllerBuildDir);
ctrlsystemCfg = TwinCAT.ModuleGenerator.ProjectExportConfig.Load(ctrlsystemBuildDir);
% create a new project export configuration
combinedCfg =
TwinCAT.ModuleGenerator.ProjectExportConfig('FullPath',fullfile(pwd,'TempCtrlLib','TempCtrlLib.vcxpr

From version 2.x.xxxx.x

TE1400 135Version: 2.1.1

oj'));
% add the loaded class export configurations to the new project configuration
combinedCfg.AddClassExportConfig(controllerCfg.ClassExportCfg{1});
combinedCfg.AddClassExportConfig(ctrlsystemCfg.ClassExportCfg{1});
% ...
% additinal class export configurations can be added here, loaded from
% - Simulink code generation directories (as described)
% - MATLAB code generation directories (from MATLAB Coder with TE1401) in the same way
% turn on generation and installation of the PLC library
combinedCfg.Project.GeneratePlcLibrary = true; % generate a PLC Lib true/false
combinedCfg.Project.InstallPlcLibrary = true; % install the PLC lib on local system true/false
% instantiate and run the project exporter
TwinCAT.ModuleGenerator.ProjectExporter(combinedCfg);

Sample code in MATLAB®

Open the appropriate sample with:
TwinCAT.ModuleGenerator.Samples.Start('Combine_Modules')

4.7.4 Sharing created TwinCAT objects
Often the colleagues who create TwinCAT objects (TcCOM and/or PLC library) from Simulink® or MATLAB®

are not the ones who implement the created modules into a TwinCAT configuration and create the machine
code.

In order to be able to work with the created TwinCAT objects in TwinCAT XAE, they must be available in the
repository folder on the local engineering PC and the PLC library must be installed in the local PLC Library
Repository. Manual copying to engineering PCs is error-prone. It is therefore strongly recommended to
create a so-called TMX archive and share it with colleagues who want to use the created modules.

What is a TMX archive?

The TMX archive is an archive of all necessary files, which are required for the use of TcCOM and PLC
libraries in a TwinCAT Engineering. The archive contains all compiled drivers, description files (e.g. for the
block diagram in TwinCAT), the tmc file for TcCOM or the tml or library file for the PLC.

A TMX archive only needs to be copied to any path on an engineering PC and executed. It is a self-
extracting archive, which then automatically copies all files to the correct location.

The files of the model SimpleTempCtrl in version 0.0.0.2 from the Vendor TE140x Module Vendor must be
located at this position, for example:

How do I create a TMX archive?

From version 2.x.xxxx.x

TE1400136 Version: 2.1.1

You can specify the path and name of the TMX archive under TC Build to have it created with the next build.

You can also use placeholders for the path and name as shown in the sample above. Result of this setting is
e.g. a TMX archive 2021-11-04-172921-SimpleTempCtrl0.0.0.3.exe (new build, therefore revision
incremented).

How do I use a TMX archive?

You can then copy the TMX archive to any path on an engineering PC and execute it. This will copy the files
in the archive to the correct location in your repository. (self-extracting zip). If you want to use not only the
TcCOM modules in the archive on the engineering PC, but also the PLC library, this must still be installed via
the PLC - Library Repository.

Alternatively, you can also use the Command Prompt. Call the help of the TmxPackageInstaller via:
<tmxarchive>.exe /?

From version 2.x.xxxx.x

TE1400 137Version: 2.1.1

For example, to unpack a TMX archive and install the PLC library it contains in the local TwinCAT
Engineering, execute the following command in the command line:
<tmxarchive>.exe /plclib:install

What software do I need on the TwinCAT Engineering PC?

On the engineering PC on which you want to use the already compiled TwinCAT objects to implement them
in a TwinCAT configuration, you only need a TwinCAT XAE installation.

You do not need a full Visual Studio on this engineering PC (the XAE shell of the TwinCAT XAE
setup is sufficient) nor do you need a MATLAB® installation.

In some cases it is necessary to install the so-called DataExchange modules on the engineering PC, so that
you can use TwinCAT objects created on another system.

These cases are:

• The created module was created with the "External Mode" option.

• The created module uses the TwinCAT File Writer [} 116] or MAT file logging.
• The created module contains function blocks from TE1410 TwinCAT Interface for MATLAB®/Simulink®.

In all other cases the created TwinCAT objects have no dependency to the DataExchange modules.

The DataExchange modules setup is part of the TE14xx toolForMatlabAndSimulink setup and is installed
by default.

The DataExchange modules setup is also copied to the following folder, so that the employee who has
installed the TE14xx-ToolsForMatlabAndSimulink setup can distribute the DataExchange modules setup to
the relevant colleagues.

<TwinCATInstallDir>\TwinCAT\Functions\TE14xx-
ToolsForMatlabAndSimulink\TE140x\SDK

Continuous Integration with the Target for Simulink® or Target for MATLAB®

Tips for setting up a CI/CD pipeline are compiled in the following sample:
TwinCAT.ModuleGenerator.Samples.Start('Continuous Integration')

4.7.5 Creation of versioned drivers
Each object created from Simulink® contains version information. Accordingly, you can build several versions
of a Simulink® model and instantiate the created modules version-selectively in TwinCAT.

From version 2.x.xxxx.x

TE1400138 Version: 2.1.1

Define revision control in Simulink®

Before creating a PLC function block or a TcCOM object, you can define the version of the TcCOM and the
created PLC library under TC General with the entries "Version source file" and "Version part for increment".

Automatic version increments

The basic version on which a version update is to be created is specified via "Version source file". In the
standard case $<LatestTMFile> is specified there. This searches for the last available version of the model
on the local engineering PC and then uses this as the basis for the version increment.

The version number consists of four digits, e.g. 1.0.3.2 or 2.12.123.14. Each digit can be incremented
separately according to the scheme: <Major>.<Minor>.<Build>.<Revision>

For example, if the last version of a model named "MyModelXY" on the engineering PC is found to be
1.2.12.4 and the increment is set to "Revision", a version 1.2.12.5 is created.

If "None" is selected, no version update takes place and the last version on the engineering PC is
overwritten.

Default of a fixed version number

If a version is to be specified in Simulink®, this can be done via DrvFileVersion. Simply enter the target
version in the input field.

From version 2.x.xxxx.x

TE1400 139Version: 2.1.1

In the Engineering Repository, a folder is created under the model name for each version created. Each
version folder then contains the corresponding drivers and TwinCAT files. See also TwinCAT objects [} 120].

Presetting of a version number via an external file

You can also use an external file to specify a version. For example, this is a common method when using
build agents at Continuous Integration.

For configuration in Simulink® set TC General Version part for increment to "None" and specify the full path
to your version file at Version source file.

From version 2.x.xxxx.x

TE1400140 Version: 2.1.1

Structure of the external file:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <appSettings>
 <add key="major" value="1" />
 <add key="minor" value="3" />
 <add key="build" value="1301" />
 <add key="revision" value="267" />
 </appSettings>
</configuration>

Use versioned models in TwinCAT XAE

All models available in the Engineering Repository can also be instantiated in any available version. To do
this, navigate through the tree as usual to find the TcCOM of your choice. In the last hierarchical level, you
can now also select the version of the TcCOM.

As an example, two versions (0.0.0.4 and 0.0.0.5) of SimpleTempCtrl are available here:

From version 2.x.xxxx.x

TE1400 141Version: 2.1.1

Online Change of a TcCOM during TwinCAT Run
ü To switch between different versions of a TcCOM during operation, the corresponding interface must be

implemented.
1. To do this, select the checkbox for Online change support under the tab TC TcCom General in

Simulink®.

Online Change for PLC function block
If you use the function block (PLC-FB) in a versioned PLC library, you do not have to check the
checkbox Online change support. The Online Change process then runs via the PLC-specific
mechanism.

From version 2.x.xxxx.x

TE1400142 Version: 2.1.1

In addition, created TcCOM data areas must be compatible with each other. If Online change support is
activated, the last hierarchical level is more strictly differentiated in the Insert TcCom Object dialog. Only
Online Change compatible TcCOM are combined.

The following shows that versions 0.0.0.1 and 0.0.0.3 or 0.0.0.4 and 0.0.0.5 are compatible for Online
Change. However, not 0.0.0.3 to 0.0.0.4 or 0.0.0.2.

From version 2.x.xxxx.x

TE1400 143Version: 2.1.1

In order to better ensure the compatibility of the Data Areas, it is possible, for example, to keep the
parameters, Block I/O, ContState and DWork of a model not in an internal Data Area, but as module
parameters. This means that only the inputs and outputs as Data Area are relevant for the compatibility of
the TcCOM versions.

2. To perform the Online Change in TwinCAT XAE, use the tree item TcCOM Modules and navigate to the
Online Changable Objects tab.

3. Select a version of your choice from the drop-down menu at Online Version (only compatible versions
are displayed).

4. Right-click on the line of the object and select Apply changed online object versions to activate the
new version of the TcCOM.

ð Details can also be found in this TwinCAT C++ documentation.

4.7.6 Configuration of data access to data of a TcCOM object
In the TC TcCom Interface area, you configure the way in which data of certain variable groups can be
accessed. ADS access and the process image type can be configured as required. These settings affect
how the variables in a group are linked with other process images in the TwinCAT development
environment, and how they can exchange data.

Variable groups

Depending on the Simulink® model, there are several groups of internal variables in addition to the input and
output variables.

The following groups can be configured:

Group Description Naming of the
DataArea (default)

Naming of the DataArea
("classic" option)

Input Model inputs <ModelName>_U Input
Output Model outputs <ModelName>_Y Output

https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_c/6777821323.html&id=

From version 2.x.xxxx.x

TE1400144 Version: 2.1.1

Group Description Naming of the
DataArea (default)

Naming of the DataArea
("classic" option)

BlockIO Global output signals of Simulink®

blocks: internal signals for which a
"test point" has been defined.

<ModelName>_B BlockIO

Parameters Model-specific parameters:
Parameters of Simulink® blocks that
are tunable.

<ModelName>_P Model parameters

ContState Continuous state variables <ModelName>_X ContStates
DWork Time-discrete state variables <ModelName>_DW DWork
DataStore Data Store Memory <ModelName>_DW_<Da

taStoreName>
<ModelName>_DW_<Dat
aStoreName>

Under TC TcCom Interface, the option Mapping between variable names and ADS symbols can be used
to influence the naming of the DataAreas. By default, they are given the same name as the associated C++
variable. This is specified by the Simulink CoderTM. With the "Classic" setting, the names are abbreviated to
that of the variable group, as known from earlier TE1400 versions 1.2.x. The inputs are then combined, for
example, in the DataArea "Input" and not in "<ModelName>_U".

TcCOM with multiple task contexts
If a TcCOM is created that has more than one task context (see Multitask, Concurrent Execution
and OpenMP [} 159]), the DataAreas are automatically separated. There are several inputs or
Dwork DataAreas, for example.

From version 2.x.xxxx.x

TE1400 145Version: 2.1.1

Configuration interface in Simulink®

The Data Access can be defined individually for each variable group named above. Selection options for
DataAreas and module parameters are summarized in the following table:

Data Access Access via
ADS

Access via mapping Access via Data
Pointer

None No No No
Module parameters Yes No No
Input Destination DataArea Yes Yes (with Output Source) Yes
Output Source DataArea Yes Yes (with Input Destination) Yes

From version 2.x.xxxx.x

TE1400146 Version: 2.1.1

Data Access Access via
ADS

Access via mapping Access via Data
Pointer

Internal DataArea Yes No No
Standard DataArea Yes No Yes
Retain Source DataArea Yes Yes (with Retain Handler) No

Unlike DataAreas, Module parameters are not intended for cyclic (process) data exchange with other
modules or I/Os. They are generally read or written asynchronously, e.g. via ADS. The parameters on the
Parameters (Init) tab have an initial value that can be configured in the project and is written when the
TcCOM instance is started. The parameters on Parameter (Online) on the other hand, have no configurable
initial value and are typically used to monitor internal states.

DataAreas can be found on the TcCOM instance on the DataArea tab. The exact type of the DataArea is
also displayed here. Internal DataAreas are not created as process data image in the development
environment.

Properties of the parameterization

The access via ADS is usually ReadOnly. Only the Inputs and Parameters groups can also be written via
ADS.

Independently of this, it is possible to set for each group whether ADS symbol information (Create ADS
Symbols) should be created for the respective group. If no ADS symbol information is available, the data
can only be accessed by ADS via IndexGroup and IndexOffset.

Via the option "Input: Initial values" you get an entry under "Parameter (Init)" in addition to the DataArea
(for the cyclic data exchange). This way initial values for inputs can be realized. These values apply if the
corresponding inputs have not been linked. Without these parameters, unlinked input values are always 0.

Via the option "Parameter: Initial values", the parameters of the Simulink® model are also created as
module parameters (structure <ModelName>_P) in addition to the DataArea setting.

From version 2.x.xxxx.x

TE1400 147Version: 2.1.1

Special case: DataArea for model parameters
If the code interface is set to Reusable function [} 191] (default), then no DataArea is created for
model parameters, since the parameters are kept global for this case and thus shared between
multiple instances. If "Parameter: Initial values" is selected, the parameter
"<ModelParameterName>_Sharing" is created in addition to the entry for the model parameters at
Parameter (Init). This parameter can only be set to "Define" for an instance of this TcCOM module
class.
All further instances must use "Inherit". Since all instances share the parameters in this case, they
all work with the parameter set in the "Definer". The model parameter settings of the other instances
are ignored.
See also Parameterization of several module instances [} 191].

Monitor Execution Time: Creates a module parameter at Parameter (Online) and in the block diagram
(right side). The execution time of the TcCOM can be read via this parameter. The measurement is updated
with each call of the TcCOM, so that, for example, the execution time can be tracked precisely for each call
via the TwinCAT Scope.

Create ExecutionInfo output: Creates an additional Output Source DataArea with information about the
module call, see Exception handling [} 220].

DataStores: Variables from a Data Store Memory Block are stored in DWork by default. You can create an
additional addressing of these variables when you create a DataArea for DataStores. No DataArea is
created by default. For an example, see Shared memory between TcCOM instances [} 150].

Further Descriptions:

• Structure of a TcCOM: Description of the TcCOM properties

• Properties of DataAreas

• Using a RetainDataArea with the NOV-RAM: RetainDataArea

• You can use DataPointer e.g. via the TC Module Input and TC Module Output blocks, see Shared
memory between TcCOM instances [} 150].

4.7.6.1 Best practice: access to TcCOM data

Introduction

The section Configuration of data access to data of a TcCOM object [} 143] described how to set data
access to a TcCOM in TC TcCom Interfaces in the configuration parameters of a Simulink® model. In the
following, advantages and disadvantages and also application scenarios as well as useful hints are
given as to when which type of data access to a TcCOM may be useful.

Access via ADS

Properties
• On-demand data exchange
• Asynchronous communication
• Threadsafe
• Time of reading or writing not determined

Use Cases
• Read or write access from outside the TwinCAT runtime, e.g. from an HMI. Read and write model

parameters or read internal signals.
• Access from inside the TwinCAT runtime to the TcCOM, if the writing software module (other TcCOM

or PLC) is not called in the same task context. Thus, the data exchange is thread-safe. It can be used
when a software module supplies parameter sets to different software modules in various contexts.

Notes

https://infosys.beckhoff.com/content/1033/tc3_c/2491072779.html?id=4761190534720832718
https://infosys.beckhoff.com/content/1033/tc3_c/721896587.html?id=5609621283810317970
https://infosys.beckhoff.com/content/1033/tc3_c/1072415243.html?id=397368936229972793

From version 2.x.xxxx.x

TE1400148 Version: 2.1.1

• If several parameters are to be changed or read simultaneously, an ADS sum command should be
used. Otherwise it cannot be guaranteed that separate ADS read or write commands are all processed
consistently in one task cycle.

• These properties also apply if the data access via the network is to be made via OPC UA and not via
ADS.

Access via mapping

Properties
• Cyclic data exchange
• Threadsafe
• Time of data exchange determined

Use Cases
• Cyclic data exchange between different software modules, especially for data that changes every task

cycle.

Notes
• Even values that have not been changed are copied in each task cycle. Therefore, it is advisable to

keep the input and output mapping DataAreas small and limit them to the essentials. Large Simulink®

bus structures as input where only a few elements change cyclically should be avoided here.
• The time of the data exchange is determined and can be specified in Simulink® under Configuration

Parameters -> TC TcCom Additional settings -> Default execution sequence.
• Defining model parameters as Input Destination DataArea only makes sense if the parameters change

cyclically (in which case it should first be checked whether the parameter cannot be better mapped as
a model input) or the number of parameters is so small that the overhead of cyclic copying does not
interfere.

Access via Data Pointer

Properties
• On-demand data exchange
• Not threadsafe
• Time of reading or writing determined (shared memory area)
• Local copy of the data in each instance
• Flexible linking of DataArea and Data Pointer in XAE

Use Cases
• Shared memory area of several TcCOM, for example for variables in the DataStore. TcCOM instances

can share a common memory area with each other via Data Pointer data.

Data Pointer example
An example can be found here: Shared memory between TcCOM instances [} 150].

Exported Global/Imported external

Properties
• On-demand data exchange
• Not threadsafe
• Time of reading or writing determined (shared memory area)
• No local copies of the data in each instance

• Only modules, bundled in the same driver [} 133], can access the global variable.

Use Cases

From version 2.x.xxxx.x

TE1400 149Version: 2.1.1

• Shared memory area for several TcCOM. Also suitable for large variables.

Example for Exported Global/Imported external
An example can be found here: Shared memory between TcCOM instances [} 150].

Special case: Interaction via the TcCOM Wrapper FB

The TcCOM Wrapper FB (see Applying the TcCOM Wrapper FB [} 209]) simplifies the interaction between
PLC and TcCOM. This FB primarily enables, with little programming effort, the cyclic execution of the linked
TcCOM object from the PLC code, including the exchange of input and output data. However, it also allows
simple acyclic access to the object's parameters and, if required, flexible access to the DataAreas as well.

The wrapper provides the ITcADI interface (see ADI Interface [} 213]) on the one hand and (optionally)
properties on the function block (see FB properties [} 212]) on the other. The TcCOM Wrapper FB should be
called in the same context as the TcCOM.

Function block properties
• Access to module parameters only
• No access to DataAreas. Note: By default, model parameters are created both as DataArea and as

module parameters.
• Simple access to module parameters by name
• Not threadsafe

ITcADI interface
• Efficient and flexible access to all DataAreas (also subareas of a DataArea)
• Access only via DataArea number and ByteOffset
• No type information (type cast is to be realized by the user)
• The pointer must be fetched and released every task cycle
• No access to module parameters
• Not threadsafe

Changes persist

Above, it was described how data can be changed in a TcCOM instance at TwinCAT runtime. If TwinCAT is
restarted, these changes will be lost unless further recovery measures have been taken. The default
behavior of a TcCOM is that when a TcCOM instance is started, the parameterization is performed according
to its Startup Values.

In addition, remanent variables can be defined that retain their value beyond the usual program runtime.
Remanent variables can be declared as RETAIN variables or even more strictly as PERSISTENT variables.

More information about remanent data (Persistent and Retain) in the TwinCAT PLC: Link

In the following three ways are described in which values can be restored after restarting TwinCAT.

1) Startup values

See Parameterization of a module instance [} 185] for differentiation between Online, Prepared, Default and
Startup Values.

TwinCAT 3 XAE necessary
Startup values are changed in the TwinCAT configuration, i.e. in the engineering. Changes can be
entered here. However, the change must be compiled and downloaded to the runtime system.

If online values are changed during runtime, you can read the current online values via ADS, for example.
This can be done, for example, with the TE1410 TwinCAT Interface for MATLAB®/Simulink®. The read values
can then be entered as new startup values in the TwinCAT configuration.

Use the Automation Interface example for this purpose:

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/2528803467.html&id=

From version 2.x.xxxx.x

TE1400150 Version: 2.1.1

TwinCAT.ModuleGenerator.Samples.Show('AutomationInterface')

In the example, a live script is used to show different functions. The section Read and write parameter online
values via ADS describes how to read and write online values from a TcCOM. The section Read and change
parameter startup value describes how to read and also write startup values.

The new startup values are entered in the TwinCAT configuration on the engineering system. To make the
changes available on the runtime system, you must activate the configuration on the system. You can also
realize this with the Automation Interface (sysManager.ActivateConfiguration). You can either
restart the system directly via Automation Interface (sysManager.StartRestartTwinCAT), or you can let
the system run without restarting. At the next start of TwinCAT, the startup values are set and the TcCOM
starts up with the new startup values.

2) Retain Data

At TC TcCom Interfaces [} 143] you can create the model parameters (and also other groups) as DataArea of
type Retain Source DataArea. You can then create a retain handler in the TwinCAT configuration and
connect it to the DataArea. For details see NOV-RAM and Retain Handler.

NOV RAM necessary
To work with the Retain Handler, you need an IPC/CX with built-in NOV-RAM. The use of an
EtherCAT Terminal with NOV-RAM (e.g. EL6080) is not supported.

3) Persistent Data

You can access persistent data in the TwinCAT 3 PLC without TwinCAT XAE and without NOV-RAM.

TwinCAT 3 PLC runtime required
To use persistent data, you must declare variables as persistent in the PLC.

Persistent data can only be created in the PLC. Therefore, use the PLC to define the data you want to
persist. Work with the TcCOM Wrapper FB [} 209], for example, to read data from the TcCOM and persist
them via the persistent PLC variable. Create a state machine for starting the TcCOM object after a TwinCAT
restart in order to write the persisted data back into the TcCOM object before it is called again in the code.

4.7.7 Shared memory between TcCOM instances
In some applications it may be advantageous for TcCOM instances to share a memory area, so that certain
structures/variables are defined once in an object and all other objects reference this memory location.

To achieve this, you can follow two different paths in TwinCAT:

• Linking TcCOM instances in TwinCAT with data pointers [} 150]

• Use of global variables (Exported Global/Imported External) [} 154]

In the remainder of this chapter, both paths will be described.

While with data pointers you are more flexible in linking the data, when using global variables you have the
advantage that the structure/variable exists only once in memory. For data pointers, a local copy of the data
is held in each TcCOM instance.

NOTICE
Data transmission not threadsafe
Use data pointers and global variables with caution. The data exchange is not threadsafe. Therefore, we
strongly recommend to run all involved TcCOM instances in the same task context.

Linking TcCOM instances in TwinCAT with data pointers

The following describes how you can specifically use a shared memory area between TcCOM instances via
data pointer.

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/1072415243.html&id=397368936229972793

From version 2.x.xxxx.x

TE1400 151Version: 2.1.1

As described in section Configuration of data access to data of a TcCOM object [} 143], you can make
DataAreas accessible via DataPointer. Input Destination DataArea, Output Source DataArea and Standard
DataArea are accessible via DataPointer. In principle, you can create any variable group, model parameter,
DWork, BlockIO, etc. as a standard DataArea and thus make it accessible as Data Pointer.

Objective

In the following, we will show you how to make a specific subrange of variables accessible via DataPointer
and not the entire variable group range at once. The basic concept is based on the use of data store memory
blocks in Simulink®.

Model with DataStore

A Data Store Memory block is created in a model "DataStoreObject". In this sample with only one variable of
type double. This variable is read with a Data Store Read, multiplied by an input and set to an output.

At TC TcCom Interface, the option DataStore: Data Access is changed from None to Standard DataArea and
the Simulink® model is compiled into a TcCOM. If the object is instantiated in TwinCAT, the following
representation is obtained:

From version 2.x.xxxx.x

TE1400152 Version: 2.1.1

The DataStore DataArea is now displayed in the process image and contains a variable of type LREAL,
which can be accessed via DataPointer.

Model with DataPointer

In a second Simulink® model, a double value is generated by a clock and this is set to the TC Module Output
[} 109].

From version 2.x.xxxx.x

TE1400 153Version: 2.1.1

In the configuration of the TC Module Output, the connection type is set to DataPointer and the data type is
set to double.

If this model is compiled into a TcCOM object, the following representation is obtained in TwinCAT:

The name of the TC Module Output "PtrToMyDataStore" of type LREAL is now displayed under Data
Pointer. This can now be linked by double-clicking on the DataStoreObject_DW_MyDataStore.

Both TcCOM instances should be called in the same task because the communication is not threadsafe.

If different tasks are used, the user must ensure that data is consistent and is read or written at
appropriate times.

From version 2.x.xxxx.x

TE1400154 Version: 2.1.1

The behavior of the sample here is shown in the graphic below.
If the input In1 of the DataStore model is manually set to 1 and the output Out1 is observed via the TwinCAT
Scope, an increasing straight line is seen. This means that the increasing value from the clock is written to
the DataStore of the DataStoreObject-TcCOM via pointer.

Read access via TC Module Input
Read access to a DataArea can be realized via DataPointer using the TC Module Input.

Local data copy in each module
The Simulink CoderTM generates the C/C++ code in such a way that local variables are created for
the TC Module Input and TC Module Output and thus each module instance contains a local copy
of the data. Accordingly, the memory requirements of the project increase with each instance.

Use of global variables (Exported Global/Imported External)

The following describes how to create a global variable in TcCOM using the Storage Classes in Simulink®

and reference it in other TcCOM.

Objective

A Simulink® parameter GlobalParams is created, which contains a structure of 3 elements. The goal is to
define this structure via a TcCOM object and to instantiate further TcCOM objects that access this structure
via shared memory area, so that changes in the defining TcCOM arrive directly in all connected TcCOM
instances.

Modeling in Simulink®

Two Simulink® models are created:

1. "DataDefiner" model
2. "DataUser" model

Furthermore, a Simulink® bus is defined and created as a Simulink® parameter named GlobalParam. The
DataDefiner model determines the content of GlobalParam at the end, while the DataUser models only read
the content.

From version 2.x.xxxx.x

TE1400 155Version: 2.1.1

Note that the Storage Class definition of GlobalParam is set differently for the DataDefiner and DataUser
below. For the DataDefiner, the Storage Class is set to Exported Global, while for the DataDefiner, the
Storage Class is set to Imported Extern.

The following script bundles the two described Simulink® models into one driver, cf. Bundling of several
models in one TwinCAT driver [} 133].
thisDir = fileparts(mfilename("fullpath"));

% model names
mdlNames = ["DataDefiner","DataUser"];
codeDirectories = fullfile(thisDir,strcat(mdlNames,'_tcgrt'));
isParamDefiner = [true,false];

% instantiate project configuration
projCfg = TwinCAT.ModuleGenerator.ProjectExportConfig('FullPath',fullfile(thisDir,'TcCppProj','DataS
haringModules.vcxproj'));

regenerate = false;
for i=1:length(mdlNames)
 % generate code for the models (only if the code directory doesn't exist) -
> remove the directory to rebuild specific models
 if regenerate || ~isfolder(codeDirectories(i))

 % load the model and apply basic settings
 mdl = load_system(mdlNames(i));
 set_param(mdl,'SystemTargetFile','TwinCatGrt.tlc');
 set_param(mdl,'CodeInterfacePackaging','C++ class');
 set_param(mdl,'TcCom_TcComWrapperFb','off');
 set_param(mdl,'TcProject_Generate','off');
 set_param(mdl,'SolverType','Fixed-step');

 % adapt the storage class of the shared parameter structure
 if isParamDefiner(i)
 GlobalParam.CoderInfo.StorageClass = "ExportedGlobal";
 else
 GlobalParam.CoderInfo.StorageClass = "ImportedExtern";
 end

 % generate code and close the model
 slbuild(mdl);
 close_system(mdl,0);
 end

From version 2.x.xxxx.x

TE1400156 Version: 2.1.1

 % add the class export configuration to the "global" project export configuration
 mdlProjCfg = TwinCAT.ModuleGenerator.ProjectExportConfig.Load(codeDirectories(i));
 clsCfg = mdlProjCfg.ClassExportCfg{1};
 projCfg.AddClassExportConfig(clsCfg)
end

% generate and build the project
TwinCAT.ModuleGenerator.ProjectExporter(projCfg);

Configuration in TwinCAT XAE
ü Create one instance of the DataDefiner in the TwinCAT XAE (more are not allowed!). On the other hand,

you can create as many DataUser instances as you like.
1. Set Parameter (Init) > Parameter GlobalParam_sharing for the DataDefiner to "Define".
2. Set Parameter (Init) > Parameter GlobalParam_sharing for all DataUsers to "Inherit".
3. Create a task.
4. Assign this task to all created instances.

5. Activate the project.
ð Change the values of GlobalParam in the DataDefiner, e.g. via the Block Diagram, and observe the

direct effect on the DataUser instances.

4.7.8 Creating a module with OEM license query

Why couple an own license to a module?

If a TwinCAT object, in addition to the TwinCAT licenses, is also bound to an OEM license, a binding of this
TwinCAT object to a hardware can thereby be realized, so that the application is protected against cloning.
In addition, functionalities of an application can be licensed to end customers via this route.

For more information, see Software Protection / Own OEM Licenses.

Configuration in Simulink®

• Switch to the Advanced configuration level:
TwinCAT.ModuleGenerator.Settings.Change('ConfigurationLevel', 'Advanced')

• Enter your OEM ID and the OEM license(s) you are requesting:

https://infosys.beckhoff.com/content/1033/tc3_security_management/2409177739.html?id=6627577469256608808

From version 2.x.xxxx.x

TE1400 157Version: 2.1.1

If the module is created with the above settings and instantiated in TwinCAT, a valid OEM license must be
present in addition to a valid TwinCAT license (TC1220, TC1320) so that TwinCAT can be activated.

To note for license dongles

The following should be noted when using the OEM license for the target system on a dongle:

ü Do you use an instance of a TcCOM?
1. Set the Init Sequence on the object instance to P.

2. Note that you cannot use active mappings in this case. It is advised to use the TcCOM wrapper FB or to
call the module from TwinCAT C++.

3. Activate the configuration.

From version 2.x.xxxx.x

TE1400158 Version: 2.1.1

4. After TwinCAT is in run mode, switch the TcCOM object to OP state, e.g. via the XAE (see graphic
below), via the TcCOM wrapper FB or via ADS.

ð The license will be checked and accepted (if valid) when booting into the OP-State.
ü Do you use the TcCOM wrapper FB from the created PLC library and reference a static TcCOM

instance?
1. Set the Init Sequence on the object instance to P (see above).
2. Use the TcCOM wrapper FB to switch the referenced TcCOM to OP.
ð The license will be checked and accepted (if valid) when booting into the OP-State.
ü When do you not need to pay attention to anything else?
1. If you use the PLC-FB from the created PLC library.
2. If you create a TcCOM dynamically with the TcCOM wrapper FB.

4.7.9 Integration of own C/C++ code
The TwinCAT Target for Simulink® also supports the integration of own C/C++ code in Simulink®.
MathWorks® offers several possibilities for this, for example the way via the S Function Builder.

Note that you set the language to "Inherit from model". You can also include libraries as long as they are
platform independent and available as source code. For example, the inclusion of a precompiled DLL is not
possible.

From version 2.x.xxxx.x

TE1400 159Version: 2.1.1

4.7.10 Configuration of the TMX file properties
You can parameterize the entries in the TMX file (TwinCAT Module Executable) from Simulink®. To do this,
switch to Advanced mode:
TwinCAT.ModuleGenerator.Settings.Change('ConfigurationLevel', 'Advanced')

Relationship of TMX properties (left) to parameters in Simulink® (right)

File description -> Description

File Version -> DrvFileVersion

Product name -> ProductName

Product version -> DrvProductVersion

Copyright -> Copyright

Note: $< > describes placeholders [} 172]. For example, DrvProductVersion is set to the value in
DrvFileVersion which in turn gets the value from Version Source File.

4.7.11 Multitask, Concurrent Execution and OpenMP
In Simulink® you can configure your models to run on Multicore Target systems. Further details can be found
in the MathWorks® documentation. Beckhoff targets usually offer a multi-core architecture, which can be
used efficiently with TwinCAT 3. This is also possible with the TwinCAT Target for Simulink® as shown
below.

A distinction is made in this description between Multitask, Concurrent Execution and OpenMP.

• With Multitask [} 161], a TcCOM object is created which has several tasks available. All tasks must
run on the same core. It is not parallelized.

• With Concurrent Execution [} 163], a TcCOM object is also created with multiple tasks that can be
distributed on different cores. Calculations can actually be executed in parallel.

• With OpenMP [} 164], a TcCOM object is created with a task context. In addition, multiple JobTasks
distributed on different cores can execute the code fragments generated as OpenMP code in parallel.

Multitask and Concurrent Execution

The following multirate system in Simulink® is considered for the descriptions of the options Multitask and
Concurrent Execution. The model has an explicit and an implicit rate transition.

https://de.mathworks.com/help/simulink/multicore-processor-targets.html?s_tid=CRUX_topnav

From version 2.x.xxxx.x

TE1400160 Version: 2.1.1

Go to Configuration Parameters and select Solver. Here you can choose between:

• Treat each discrete rate as separate task
• Allow tasks to execute concurrently on target

From version 2.x.xxxx.x

TE1400 161Version: 2.1.1

Treat each discrete rate as separate task: Multitask

If a TcCOM object is created with the Treat each discrete rate as separate task option enabled, you will get
an object to which you can assign multiple task contexts. 3 tasks in this case.

The inputs, outputs and all other DataAreas are divided into the different contexts, so there are 3 Input
DataAreas and 3 Output DataAreas in this case.

From version 2.x.xxxx.x

TE1400162 Version: 2.1.1

In this case, the cyclic tasks must all be placed on the same core. There is no parallel processing of the
tasks.

The advantage over a TcCOM with only one task interface is that now not all calculations have to be
completed within the fastest task cycle time (see Scheduling). If the above Simulink model were created with
default setting without Treat each discrete rate as separate task, only one task with 10 ms (fastest task)
would be linkable. This means that all calculations must be completed within this time. By distributing to
multiple tasks on the same core, this rule is disabled because tasks can interrupt each other (see Priorities).

Properties:
• No function block is supported in the PLC.
• The TwinCAT Usermode Runtime is not supported.
• All tasks are assigned to the same core.
• The fastest task must be assigned the highest priority (smallest priority value). The second fastest task

the second highest priority and so on.

Scheduling Details:

The graphic below describes an example of how the computing times can be distributed. The hatched areas
indicate that a task may not work during this time due to a higher priority task. The full blue area indicates
that the task is working. Note that the surfaces have only been subsequently overlaid on the real-time
monitor image to aid comprehension and are not real images.

• Task 2, Task 3, and Task 4 are executed sequentially on the same core in Tick 1. The execution of
Task 2 and Task 3 runs without interruption. The execution of Task 4 is interrupted by the higher
priority Task 2 in the transition to Tick 2.

• Task 2 is executed first in Tick 2. The execution of Task 4 is resumed after Task 2 is completed.
• Task 2 starts again and Task 3 follows in Tick 3.

From version 2.x.xxxx.x

TE1400 163Version: 2.1.1

If cycle time overruns occur and scheduling cannot be adhered to, the execution of the respective task
context is skipped until all relevant contexts are in the appropriate state. In the TcCOM object this behavior
can be observed via the online parameter SkippedExecutionCount.

Allow tasks to execute concurrently on target: Concurrent Execution

If a TcCOM object is created with the Allow tasks to execute concurrently on target option enabled, you will
get an object to which you can assign multiple task contexts. In this case, as in the example above, 3 tasks.

Again, the DataAreas are separated into the different contexts. The difference to the multitask object is that
you can now distribute the tasks to different cores so that the processing is actually parallelized.

Properties:
• No function block is supported in the PLC.
• The TwinCAT Usermode Runtime is supported.
• Tasks can be assigned to different cores.
• The fastest task must be assigned the highest priority (smallest priority value). The second fastest task

the second highest priority and so on.

Scheduling Details:

The graphic below describes an example of how the computing times can be distributed. The full blue area
indicates that the task is working. Note that the surfaces have only been subsequently overlaid on the real-
time monitor image to aid comprehension and are not real images.

From version 2.x.xxxx.x

TE1400164 Version: 2.1.1

• Task 2, Task 3 and Task 4 are executed in parallel on different cores in Tick 1. The execution of Task 1
must be completed by the start of Tick 2.

• Task 2 is executed again in tick 2. Task 3 and Task 4 may continue to work. The execution of Task 2
and Task 3 must be completed by the start of Tick 3.

• Task 2 and task 3 are executed again in tick 3. Task 4 may continue to work. The execution of Task 2
and Task 4 must be completed by the start of Tick 4.

If cycle time overruns occur and scheduling cannot be adhered to, the execution of the respective task
context is skipped until all relevant contexts are in the appropriate state. In the TcCOM object this behavior
can be observed via the online parameter SkippedExecutionCount.

OpenMP

The Simulink CoderTM or the MATLAB CoderTM can generate openMP code. Please refer to the MathWorks®
documentation for the exact cases in which this happens.

The following is an example using a MATLAB® Function in Simulink®. A MATLAB® example can be found in
conjunction with the TE1401 TwinCAT Target for MATLAB® in the examples:
TwinCAT.ModuleGenerator.Samples.Start('Code parallelization with OpenMP').

https://de.mathworks.com/help/simulink/multicore-processor-targets.html?s_tid=CRUX_topnav
https://de.mathworks.com/help/simulink/multicore-processor-targets.html?s_tid=CRUX_topnav

From version 2.x.xxxx.x

TE1400 165Version: 2.1.1

The parfor command is used to parallelize the FOR loop in the MATLAB® function. In this case, the number
of parallel workers is limited to 4.
function y = MyFunction(u) %#codegen

A = ones(20,50);
t = 42;

parfor (i = 1:10,4)
 A(i,1) = A(i,1) + t;
end

y = A(1,4) + u;

No special settings regarding openMP have to be made for the TwinCAT target. You generate your TwinCAT
objects as usual. The Simulink Coder compiles this code into openMP code, so that the C/C++ code is
parallelized accordingly. The Embedded Coder is not required for this feature.

In the TwinCAT XAE you can now instantiate the created TcCOM or the PLC-FB and configure it
accordingly. As usual, the object instance offers only a cyclic task interface under the Context tab. A Task 2
with 200 ms cycle time is created and assigned to the object in this example.

There is a parameter JobPoolID under Parameter (Init). Here, as far as known from the C/C++ code, it is
also shown how many workers can work in parallel. A JobPool is an organization unit for JobTasks, which
can be created in the Tasks node.

https://de.mathworks.com/help/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html

From version 2.x.xxxx.x

TE1400166 Version: 2.1.1

Accordingly, an object of type TcJobPool must be added under TcCOM Objects with "Add new item". Under
Parameter (Init) on the TcJobPool object, the JobPoolId is to be entered and a group of JobTasks is to be
referenced. First define how many JobTasks the pool should combine and then select the JobTasks with the
drop-down menu.

Under System > Realtime you can distribute JobTasks to different cores.

Execution in the configuration shown above then takes place as follows. Task 2 is executed on core 4 and
cyclically drives the openmp object. The code fragments generated as openMP code can then outsource
tasks to the configured JobTasks via the JobPool. When the JobTasks have finished their calculations, all
partial results are bundled again and Task 2 on core 4 executes the code to the end.

4.7.12 Symbol Properties and Attribute Pragmas

What are properties and attributes?

For TcCOM objects, you can assign properties to all definitions, e.g. DataAreas, DataTypes, SubItems, etc.
A property is defined as a name-value pair. Any additional information can be included.

Attributes are usually used in the PLC in the declaration part and can also bind any additional information to
a variable, for example. Please refer to the PLC documentation for a list of PLC attributes.

Many TwinCAT functions use attributes and properties. Examples are:

• TwinCAT OPC-UA
◦ {attribute 'OPC.UA.DA' := '1'}

◦ {attribute 'OPC.UA.DA.Access' := '1'}

• Analytics Logger
◦ {attribute 'TcAnalytics'}

• JSON Library Tc3_JsonXml
• …

Attributes and properties can also be defined by the user and used for own applications.

How do I use symbol properties and attributes together with the TwinCAT target?

It is possible to assign properties to ADS symbols with the TwinCAT target. ADS symbols are to be
understood in the sense of variables.

(TcCOM) TMC Properties

In Simulink® you can freely assign Properties as a string in the Configuration Parameters under TC TcCom
Interface. Properties can be defined for the DataArea:

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529567115.html?id=4387941847224221434
https://infosys.beckhoff.com/content/1033/tf6100_tc3_opcua/8841529355.html?id=4478860371526898910
https://infosys.beckhoff.com/content/1033/tf3500_tc3_analytics_logger/4580023947.html?id=3693494190364807089
https://infosys.beckhoff.com/content/1033/tcplclib_tc3_jsonxml/3664756363.html?id=8630987200663348652

From version 2.x.xxxx.x

TE1400 167Version: 2.1.1

• Input: TMC Properties
• Output: TMC Properties
• Parameters: TMC Properties
• BlockIO: TMC Properties
• ContState: TMC Properties
• DWork: TMC Properties
• DataStore: TMC Properties

In addition, you can use the Additional TMC Symbol Properties field to assign properties independently of
the DataArea.

The following notation is used for DataArea specific TMC properties:

From version 2.x.xxxx.x

TE1400168 Version: 2.1.1

SymbolName1:PropertyName1=Value1

Sample: FeedbackTemp:OPC.UA.DA=1

If several properties are to be assigned, they must be separated with |:
SymbolName1:PropertyName1=Value1|SymbolName2:PropertyName2=Value2

Sample: HeaterOn:OPC.UA.DA=1|HeaterOn:OPC.UA.DA.Access=3

wildcards can be used from MATLAB R2020b:
*:PropertyName1=Value1

The * character is used as a wildcard and in this sample assigns the PropertyName1 with Value1 to all
symbols in the DataArea. Substrings can also be combined with wildcards. The following sample assigns the
specified property to all symbols that begin with Sum.
Sum*:OPC.UA.DA=1

The same structure must be used in the Additional TMC Symbol Properties field. However, the DataArea
must be added for addressing.
DataAreaName1.SymbolName1:PropertyName1=Value1

Sample: TempCtrl_B.current:OPC.UA.DA=1

PLC Attributes

The same procedure as for TcCOM applies to the PLC-FB [} 213], but there only possible for the inputs and
outputs. When using the TcCOM-Wrapper-FB [} 209] a TcCOM is referenced, so that you make the
configuration according to TMC Properties.

The configuration for the PLC-FB is done under TC PlcFb Interface.

From version 2.x.xxxx.x

TE1400 169Version: 2.1.1

Sample code in MATLAB®

Open the appropriate sample with: TwinCAT.ModuleGenerator.Samples.Start('Simulink
TMC Symbol Properties')

What are properties and attributes used for?

An example is the use of attributes in the PLC or Symbol Properties for TcCOM in connection with
TwinCAT 3 OPC-UA. See the OPC-UA list of attributes.

The following example shows how all input variables of the Input DataArea and only the signal e from the
BlockIO DataArea are provided with the OPC-UA data access property. The wildcard * is used for the input
DataArea.

https://infosys.beckhoff.com/content/1033/tf6100_tc3_opcua/8841529355.html?id=4478860371526898910

From version 2.x.xxxx.x

TE1400170 Version: 2.1.1

You have to select TwinCAT 3 C++ (TMI) - Filtered on the right side under Type in the OPC-UA configurator,
so that only the symbols with the corresponding property are displayed in the server. If you want to see all
symbols in the server, simply select TwinCAT 3 C++ (TMI) - All at this point. Then all symbols will be
displayed, regardless of the properties. Also select the TMI file of the TcCOM on the TwinCAT Target Device
as SymbolFile (Boot\TMI Folder).

From version 2.x.xxxx.x

TE1400 171Version: 2.1.1

Connect to the OPC-UA Server with a client to inspect the namespace. Here the OPC-UA Sample Client of
TwinCAT 3 was used. You can see that only those symbols are displayed in the server that have been
explicitly assigned the OPC.UA.DA=1 property.

From version 2.x.xxxx.x

TE1400172 Version: 2.1.1

4.7.13 Available placeholders
Placeholders are used in the Target for Simulink® configuration to reduce configuration effort and increase
clarity. Placeholders are specified in the configuration with $<PlaceholderName>.

From version 2.x.xxxx.x

TE1400 173Version: 2.1.1

What are placeholders?

Placeholders can be used to specify the value of a configuration parameter abstractly as a variable. Specific
placeholders exist at the level of the target (module generator), the project and the modules (TcCOM and
PLC FB). Furthermore, the configuration parameter itself is also a placeholder, so you can reuse it.

Example:

In the above graphic, the driver product version is specified with the placeholder $<DrvFileVersion>. This
placeholder points to the driver file version entry, which in turn is occupied by the placeholder
$<VersionFromFile>. The placeholder $<VersionFromFile> assumes the version value, where the source of
the version value is defined with the version source file parameter.

Why do we need placeholders?

Placeholders allow us to define a parameter value and reuse it in many places in the configuration, or to set
them in a chain dependency in relation to each other (see example above).

Overview of available placeholders

Placeholders from the group of configuration parameters

Category Name Displayname Default Description
TC General Generate Generate TwinCAT

C++ Project
TRUE Generate a TwinCAT C++ project.

If unset, only code artifacts will be
generated which can get used to
generate C++ projects later
[} 131].

From version 2.x.xxxx.x

TE1400174 Version: 2.1.1

Category Name Displayname Default Description
FullPath TwinCAT C++ Project

Path
Full path to the generated
VCXPROJ file (e. g. "C:
\Temp\MyGeneratedProject.vcxpr
oj")

LowestCompati
bleTcBuild

Lowest compatible
TwinCAT version
(build number)

$<TwinCAT:Ver
sion:BUILD>

The lowest TwinCAT build
number the generated C++
project and its modules and POUs
are to be compatible with.

ClassFactoryNa
me

Class factory name $<Project:Name
>

Name of the generated C++-
Project, Name of the TcCOM
classfactory and tmx-file name

ProductName Product name $<ModuleGener
ator:ProductId>
$<ModuleGener
ator:Version:MA
JOR.MINOR>

Product name, used e.g. for the
module driver description and the
module TMC description [} 159].

Copyright Copyright notice Copyright
$<VendorName
>
$<LocalDateTi
me:%Y>

Copyright notice of the generated
module driver file [} 159]

Description Driver description TwinCAT
executable file,
generated by
TwinCAT
$<ModuleGener
ator:ProductId>

Driver description [} 159]

VendorName Vendor name TE140x Module
Vendor

Module vendor name, used as the
company name of the generated
executables in the repository
[} 120] and the major module
group as shown in the TwinCAT
XAE module dialog [} 90].

VersionSrc Version source file $<LatestTMFile
>

Path to an existing TMC, TML or
XML file containing the previous
version value [} 137].

IncrementVersi
on

Version part for
increment

Revision The part of the version number
that is to be incremented [} 137].

DrvFileVersion Driver file version $<VersionFrom
File>

Executable file version and library
version. [} 137]

DrvProductVers
ion

Driver product version $<DrvFileVersio
n>

Product version [} 137]

CodeGenPlace
holders

Code generation
placeholders

Define custom placeholders

UseDataExcha
ngeModules

Load
DataExchangeModule
s

0 Manually set
DataExchangeModule
dependency (currently no need to
set manually)

MaxVisibleArra
yElements

Maximum number of
visible array elements

200U Specifies the maximum number of
array elements to be displayed in
the TwinCAT XAE. In the
TwinCAT XAE, larger arrays
cannot get expanded and linked
to by its individual items

From version 2.x.xxxx.x

TE1400 175Version: 2.1.1

Category Name Displayname Default Description
CreateUniqueE
numItemNames

Create unique item
names for
enumeration types

1 Create unique item names for
enumeration types.

DataTypeTmcFi
les

Data type import TMC
files

TMC file(s) containing additional
type definitions for code
generation

TC Build PreferToolArchi
tectureX64

Prefer X64 build tools TRUE Prefer X64 compiler and linker.
Useful for complex source files,
where X86 tools may run out of
heap space.

Verbosity Codegeneration and
build verbosity

Normal Verbosity level of code generation
and build output messages. Silent
and Detailed are other possible
values.

Publish Run the publish step
after project
generation

TRUE Start the build procedure after
code generation for all selected
platforms. The generated module
binaries and module descpription
files will get copied to the "publish
folder". Published modules are
automatically located by the XAE
and can get instantiated in all
TwinCAT 3 projects. If unset, the
module generation process will be
stopped after code generation. To
instantiate in a TwinCAT3 project,
the generated C++ project needs
to be inserted and built from.

PublishPlatform
toolset

Platform Toolset Auto Choose Platform Toolset to build
binaries.

PublishConfigur
ation

Build configuration Release Build configuration to build
binaries.

PublishTcRTx8
6

TwinCAT RT (x86) TRUE Publish binaries for platform
'TwinCAT RT (x86).'

PublishTcRTx6
4

TwinCAT RT (x64) TRUE Publish binaries for platform
'TwinCAT RT (x64).'

PublishTcOSx6
4

TwinCAT OS (x64) TRUE Publish binaries for platform
'TwinCAT OS (x64)' (e.g.
TwinCAT/BSD)

ForceRebuildFo
rPublish

Always rebuild all
source files on publish

FALSE Always rebuild all source files on
publish

SignTwinCatCe
rtName

Certificate name for
TwinCAT signing

Certificate name for TwinCAT
signing with OEM Certificate level
2. [} 93]

TmxInstall Install TMX TRUE Install all generated TwinCAT
Objects on local XAE (fill local
Engineering Repository [} 120]).

TmxArchive TMX Archive Name of an optional archive
containing all files required to use
the generated TwinCAT Objects
on another TwinCAT development
system. [} 135]

MsBuildPublish
Properties

MsBuild publish
properties

Set additional MsBuild publish
properties.

MsBuildProjPro
perties

MsBuild project
properties

Set additional MsBuild project
properties.

From version 2.x.xxxx.x

TE1400176 Version: 2.1.1

Category Name Displayname Default Description
PreCodeGener
ationCallbackFc
n

Pre code generation
callback function

The defined MATLAB® function is
called before code generation
[} 182].

PostCodeGener
ationCallbackFc
n

Post code generation
callback function

The defined MATLAB® function is
called after code generation
[} 182].

PostPublishCall
backFcn

Post publish callback
function

The defined MATLAB® function is
called after publish [} 182].

TC PLC library LibCatPath PLC library category
description file

$<ProjectDir>\
$<Name>.libcat
.xml

Path to the PLC library category
description file

LibraryCategori
es

PLC library categories $<VendorName
>

Define PLC library category
hierarchy. Default only one
hierarchy level = vendor. List
separated with | possible:
<MainCategory>|
<SubCategory1>|…

GeneratePlcLib
rary

Generate a PLC
library

FALSE Generate a PLC library with POUs.
[} 206] Define containing POUs
with parameter TcComWrapperFb
and PlcFb>General>Generate.

InstallPlcLibrary Install the generated
PLC library

FALSE Install the generated PLC library
for use in the local TwinCAT XAE/
PLC [} 206].

PlcTypePrefixe
s

Type Prefixes Define custom type prefixes

PlcVarPrefixes Variable Prefixes `PVOID=p \|
BOOL=b \|
BOOL32=b \|
DATE=d \|
TIME_OF_DAT
E=td \| TIME=t
\| LTIME=t \|
GUID=n`

Define custom variable prefixes.

TC License OemId ID of OEM ID of OEM. Required for OEM
Licence checks [} 156]

OemLicenses IDs of OEM Licenses IDs of OEM Licenses. Multiple IDs
may be inserted as a comma
separated list. "{GUID},{GUID}"
[} 156]

TC TcCom
General

Generate Generate TcCOM
Module (TwinCAT
Module Class)

TRUE Generate a TcCOM module class
for the model.

OnlineChange Online change
support

FALSE Allow to switch between different
TcCOM module versions without
switching TwinCAT runtime to
config mode [} 141].

ModuleProperti
es

TMC Properties Additional properties added to the
module description in the TMC
file: Name1=Value1|
Name2=Value2|...

GroupName GroupName TE140x\|
Simulink
Modules

Minor module group name in the
TwinCAT XAE module dialog

From version 2.x.xxxx.x

TE1400 177Version: 2.1.1

Category Name Displayname Default Description
GroupDisplayN
ame

GroupDisplayName $<GroupName> Minor module group description in
the TwinCAT XAE module dialog

GroupIcon GroupIcon $<TE140x:Icon
>

Optional module group icon in the
TwinCAT XAE module dialog

ModuleIcon ModuleIcon $<TE140x:Icon
>

Optional module icon in the
TwinCAT XAE module dialog

InitExceptionHa
ndling

Floating point
exception handling
during initialization

CallerException
s

Configures how to throw,
suppress or handle floating point
exceptions during initialization
[} 220].

UpdateExceptio
nHandling

Floating point
exception handling
during update

CallerException
s

Configures how to throw,
suppress or handle floating point
exceptions during cyclic execution
[} 220].

AdditionalInclud
eFiles

Additional include files Additional files required to be
included after rtwtypes.h

TC TcCom
License

OemLicenses IDs of OEM License $<Project:Oem
Licenses>

IDs of OEM Licenses. Multiple IDs
may be inserted as a comma
separated list. "{GUID},{GUID}"
[} 156]

TC TcCom
Wrapper

TcComWrapper
Fb

TcCom Wrapper FB FALSE Generate a PLC Functionblock
simplifying the interaction
between a PLC and an instance of
the generated TcCOM module
[} 209]

TcComWrapper
FbProperties

TcCom Wrapper FB
properties

FALSE Generate properties for accessible
data in the referenced TcCOM
object [} 209]

TcComWrapper
FbPropertyMoni
toring

TcCom Wrapper FB
property monitoring

NoMonitoring NoMonitoring: Online values of
properties are not monitored in
the PLC online view, CyclicUpdate:
Update property values in the PLC
online view cyclically,
ExecutionUpdate: Update
property values in the PLC online
view when the property getter or
setter is called [} 209]

TC TcCom
Additional
settings

ModuleCaller Default module caller CyclicTask CyclicTask: Call module via
TwinCAT Task. Module: Cal
module from another TwinCAT
module (see e.g. TcCOM-
Wrapper-FB).

CallerVerificatio
n

Verify caller Default Verify the caller context to prevent
concurrent execution of the model
code and corresponding
DataArea mappings. Skip
verification to reduce the
execution time.

StepSizeAdapta
tion

Default StepSize
adaptation mode

RequireMatchin
gTaskCycleTim
e

Configure how to handle
differences between the default
model step size(s) and the cycle
time of the assigned task(s).

From version 2.x.xxxx.x

TE1400178 Version: 2.1.1

Category Name Displayname Default Description
ExecutionSequ
ence

Default execution
sequence

UpdateBeforeO
utputMapping

Configure the execution order of
input mapping, model code
execution and output mapping.

ExecuteModelC
ode

Execute model code
after startup

TRUE Start cyclic execution of the model
code after startup by default. If
FALSE, Module Parameter
Execute needs to be set to TRUE
to start execution of code.

BlockDiagramE
xport

Export BlockDiagram TRUE Export graphical block diagram
information for monitoring and
optional debugging on the
generated TwinCAT module in
TwinCAT XAE [} 193]

ResolveMasked
Subsystems

Resolve Masked
Subsystems

FALSE Resolve masked subsystems in
the block diagram

ExtendSignalRe
solution

Extended resolution of
signals in block
diagram

FALSE Intensified search for assignments
of variables and block diagram
signals (blue signals). This option
increases the build time. [} 235]

BlockDiagramV
ariableAccess

Access to
VariableGroup not
referenced by any
block

AssignToParent Variables from a block within an
unresolved subsystem are either
assigned to the next higher visible
block or hidden in the block
diagram.

BlockDiagramD
ebugInfoExport

Export BlockDiagram
debug info

TRUE Export additional information
required to debug the module
using the block diagram [} 197].

TC TcCom
Interfaces

ExecutionInfoO
utput

Create ExecutionInfo
output

FALSE Create additional output
DataAreas containing execution
and exception information
[} 220].

MonitorExecutio
nTime

Monitor execution
time

FALSE Calculate and expose the
execution time of the module as
an ADS variable for monitoring
purposes.

InputDataAcces
s

Input: Data Access Input
Destination
DataArea

Defines how the input variables
are exposed in TwinCAT [} 143].

InputCreateSy
mbols

Input: Create ADS
Symbols

TRUE Create ADS symbol information
for the input variables [} 143]

InputInitValues Input: Initial values FALSE Create module parameters for the
input variables to allow definition
of initial values [} 143]

InputProperties Input: TMC Properties Additional properties added to
the Input symbol description in
the TMC file. [} 166]

OutputDataAcc
ess

Output: Data Access Output Source
DataArea

Defines how the output variables
are exposed in TwinCAT [} 143].

OutputCreateSy
mbols

Output: Create ADS
Symbols

TRUE Create ADS symbol information
for the output variables [} 143].

From version 2.x.xxxx.x

TE1400 179Version: 2.1.1

Category Name Displayname Default Description
OutputPropertie
s

Output: TMC
Properties

Additional properties added to
the Output symbol description in
the TMC file. [} 166]

ParametersDat
aAccess

Parameters: Data
Access

Internal
DataArea

Defines how the model parameter
variables are exposed in TwinCAT
[} 143]

ParametersCre
ateSymbols

Parameters: Create
ADS Symbols

TRUE Create ADS symbol information
for the model parameter variables
[} 143].

ParametersInitV
alues

Parameters: Initial
values

TRUE Create module parameters for the
model parameter variables to
allow definition of initial values
[} 143].

ParametersPro
perties

Parameters: TMC
Properties

Additional properties added to
the Parameters symbol
description in the TMC file. [} 166]

BlockIoDataAcc
ess

BlockIO: Data Access Internal
DataArea

Defines how the BlockIO variables
are exposed in TwinCAT [} 143]

BlockIoCreateS
ymbols

BlockIO: Create ADS
Symbols

TRUE Create ADS symbol information
for the BlockIO variables [} 143].

BlockIoProperti
es

BlockIO: TMC
Properties

Additional properties added to
the BlockIO symbol description in
the TMC file. [} 166]

ContStateData
Access

ContState: Data
Access

Internal
DataArea

Defines how the continuous state
variables are in TwinCAT [} 143]

ContStateCreat
eSymbols

ContState: Create
ADS Symbols

TRUE Create ADS symbol information
for the continuous state variables
[} 143].

ContStatePrope
rties

ContState: TMC
Properties

Additional properties added to
the ContState symbol description
in the TMC file. [} 166]

DWorkDataAcc
ess

DWork: Data Access Internal
DataArea

Defines how the DWork variables
are exposed in TwinCAT [} 143]

DWorkCreateSy
mbols

DWork: Create ADS
Symbols

TRUE Create ADS symbol information
for the DWork variables [} 143].

DWorkPropertie
s

DWork: TMC
Properties

Additional properties added to
the DWork symbol description in
the TMC file. [} 166]

DataStoreData
Access

DataStore: Data
Access

None Defines how the DataStore
variables are exposed in TwinCAT
[} 143]

DataStoreCreat
eSymbols

DataStore: Create
ADS Symbols

TRUE Create ADS symbol information
for the DataStore variables
[} 143].

DataStoreRead
Only

DataStore: Read Only FALSE Restrict ADS access to be read
only for the DataStore variables
[} 143].

From version 2.x.xxxx.x

TE1400180 Version: 2.1.1

Category Name Displayname Default Description
DataStorePrope
rties

DataStore: TMC
Properties

Additional properties added to
the DataStore symbol description
in the TMC file. [} 166]

SymbolProperti
es

Additional TMC
Symbol Properties

Additional properties added to
specific symbol descriptions in the
TMC file. [} 166]

VariableSymbol
Mapping

Mapping between
variable names and
ADS symbol names

Identical Defines the TwinCAT symbol
names for the generated C/C++
variables. 'Identical': Symbol name
equals variable name, 'Classic':
Use symbol names known from
TE1400 Release 1.2.x.x [} 143]

TC TcCom
External Mode

ExtModeRtAllo
wExecutionCo
mmands

Allow RealTime
execution commands
via External Mode

FALSE Allow to start and stop model
code execution via External Mode
[} 217].

ExtModeRtWait
ForStart

Wait for RealTime
execution start
command via External
Mode

FALSE Wait for External Mode [} 217]
connection before starting model
code execution.

ExtModeRtAllo
wForParameter
Change

Allow to change
parameters via
External Mode

FALSE Allow to change parameter online
values via External Mode [} 217].

TC PlcFb
General

Generate Generate TwinCAT
PLC Function Block

TRUE Generate a PLC-FB for the model
[} 213].

InitExceptionHa
ndling

Floating point
exception handling
during initialization

CallerException
s

Configures how to throw,
suppress, or handle floating point
exceptions during initialization
[} 220].

UpdateExceptio
nHandling

Floating point
exception handling
during update

CallerException
s

Configures how to throw,
suppress, or handle floating point
exceptions during cyclic execution
[} 220].

TC PlcFb
License

OemLicenses IDs of OEM License $<Project:Oem
Licenses>

IDs of OEM Licenses. Multiple IDs
may be inserted as a comma
seperated list. "{GUID},{GUID}"
[} 156]

TC PlcFb
Additional
settings

MonitorExecutio
nTime

Monitor
ExecutionTime

FALSE Calculate and expose the
execution times of TwinCAT
modules as an ADS variable for
monitoring purposes.

PlcFb-
>Interface

InputAttributes Input variables: PLC
Attributes

Additional attributes added to the
PLC FB Input variables.

OutputAttribute
s

Output variables: PLC
Attributes

Additional attributes added to the
PLC FB Input variables.

TC PlcFb
External Mode

ExtModeRtAllo
wExecutionCo
mmands

Allow RealTime
execution commands
via External Mode

FALSE Allow to start and stop model
code execution via External Mode
[} 217].

ExtModeRtWait
ForStart

Wait for RealTime
execution start
command via External
Mode

FALSE Wait for External Mode
connection before starting model
code execution [} 217].

From version 2.x.xxxx.x

TE1400 181Version: 2.1.1

Category Name Displayname Default Description
ExtModeRtAllo
wForParameter
Change

Allow to change
parameters via
External Mode

FALSE Allow to change parameter online
values via External Mode [} 217].

Placeholders at target level (module generator)

Placeholders from this group can be used at target/project and module level.

Placeholder name Description
ModuleGenerator:ProductName Product name of the module generator
ModuleGenerator:Version Version of the module generator
TwinCAT:Version Version of local TwinCAT installation
UsablePlatformToolsets Available and supported platform toolsets
LocalDateTime:Format Actual local time as string where Format must be

defined like the format string for std::put_time (e.g.
'%Y-%m-%d')

UtcDateTime:Format Actual UTC time as string where Format must be
defined like the format string for std::put_time (e.g.
'%Y-%m-%d')

EnvironmentVarName Any environment variable defined for the system, the
current user or the current process (MATLAB®).

Placeholders at project level

Placeholders from this group can be used at project and module level.

Placeholder name Description
Project:Name Name of the project file (without directory and

extension)
Project:Dir Project file directory
Project:Ext Project file extension
Project:Path Full project file path
Project:Guid Project GUID
Project:LibraryID LibraryID of the generated repository driver
Project:VendorName Company name part of the LibraryID
Project:DriverName Driver name part of the LibraryID
Project:DrvFileVersion Version part of the LibraryID
Project:LatestTMFile Path to an existing corresponding TML or TMC file

with the highest library version (searching project
directory and repository)

Project:LatestTMFile:Repository Path to an existing corresponding TML or TMC file
with the highest library version (searching only
repository)

Project:LatestTMFile:ProjectDir Path to an existing corresponding TML or TMC file
with the highest library version (searching only
project directory)

Project:VersionFromFile Version read from file defined by "VersionSrc"

Placeholders at module level (TcCOM and PLC FB)

Placeholders from this group can only be used at module level.

Placeholder name Description
Module:Name Name of the TcCom module or PLC FB
Module:ClsId Class ID of the TcCom module (TcCom only)
Module:ContextCount Number of task contexts

From version 2.x.xxxx.x

TE1400182 Version: 2.1.1

Placeholder name Description
Module:ClassName Name of the TcCom module
Module:CppClassFileName Name of the corresponding .h and .cpp files
Module:ModelName Name of the corresponding Simulink Model (TE1400

only)
Module:MFileName Name of the corresponding M-File (TE1401 only)
Module:FileFilterName Visual Studio project filter name

4.7.14 Working with callbacks
There are three different callback functions:

• Pre code generation callback function: Callback before the model is converted to C++ code.
• Post code generation callback function: Callback after the model has been converted to C++ code.
• Post publish callback function: Callback after the created C++ project has been built for the

configured platforms.

Enter the name of your created MATLAB® function here to call it.

Your MATLAB® function is passed the ProjectExporter object as a transfer parameter:
function MyCallback(obj)
…
return

The object contains the current configuration of the build in its properties.
ProjectExporter with properties:
ProjectGenerator: [1×1 TwinCAT.ModuleGenerator.ProjectGenerator]
Configuration: [1×1 TwinCAT.ModuleGenerator.ProjectExportConfig]

From version 2.x.xxxx.x

TE1400 183Version: 2.1.1

Project: [1×1 TwinCAT.ModuleGenerator.Project]
State: [1×1 struct]
ClassExporters: {[1×1 TwinCAT.ModuleGenerator.Simulink.ModelExporter]}
AdditionalExports: [1×1 containers.Map]

Sample code in MATLAB®

Open the appropriate sample with:
TwinCAT.ModuleGenerator.Samples.Start('Callbacks')

4.8 Application of modules in TwinCAT
TcCOM and function blocks created with the Target for Simulink® can be used seamlessly in TwinCAT XAE.

The only requirement for use on any TwinCAT XAE system is the use of TwinCAT XAE version 3.1.4024.7
and higher. MATLAB®, a full Visual Studio installation, etc. are not necessary, since you work with objects
and description files already compiled for TwinCAT. Simply copy the Engineering Repository folder to the
engineering system of your choice. Compare TwinCAT objects [} 120]. Always keep the folder structure:
%TwinCATInstallDir% \3.1\Repository\<TE140x Module Vendor>\<ModelName>\<Version>\.

4.8.1 Working with the TcCOM module

Insert TcCOM in TwinCAT
1. Open TwinCAT (TwinCAT XAE or TwinCAT in a Visual Studio environment).
2. Instantiate a new TcCOM object.

3. Select the desired object.

From version 2.x.xxxx.x

TE1400184 Version: 2.1.1

4. Create a cyclic task.

5. Assign the created task to your TcCOM instance.

Note that the cycle time of the task and the SampleTime in Simulink® (here 5 ms) match.

6. Activate the configuration.

From version 2.x.xxxx.x

TE1400 185Version: 2.1.1

4.8.1.1 Parameterization of a module instance

Given is an instance of a TcCOM, in which tabs can parameters be found?

You can view and change parameters in Parameter (Init), Parameter (Online) and around Block Diagram. In
Data Area you can see the created DataAreas and their contents (parameter name and data type), but you
cannot manually change any values here via the XAE.

See also Best practice: access to TcCOM data [} 147] for ways to access data on a TcCOM.

Default, Startup, Online and Prepared values

Parameters can have different states/properties. These are defined below:

From version 2.x.xxxx.x

TE1400186 Version: 2.1.1

• Default values are the parameter values during code generation (as they were set in Simulink®). They
are stored unchangeably in the module description file (*.tmc), i.e. the description of the module class.

• Startup values are stored in the TwinCAT project file and written to the module instance. The startup
values are located accordingly on the target system and define the values at the start of the module
instance.

• Online values are only available if the TcCOM instance was started on the target system. They show
the current parameter value in the running module. This value can also be changed during runtime.

• Prepared values can be specified whenever online values are available. With its help, several
parameter values can be changed and written to the module at the same time.

Parameterization of a module instance

Example setting in TC TcCom Interface

To explain the parameterization of a module instance, a module with the following properties is assumed.

Properties of the TcCOM based on these settings:
• The structure of the model parameters <ModelName>_P is created as module parameters, because

Parameters: Initial Values is enabled. As DataArea the model parameters are accessible if Code
Interface packaging is not set to Reusable function.

From version 2.x.xxxx.x

TE1400 187Version: 2.1.1

Enter model parameters as tunable
The Simulink CoderTM model parameters are set as "inlined" as the default behavior. This means
that the object memory used is smaller and the generated code is optimized in terms of runtime, but
often only a few parameters can be changed at runtime with this setting.
Use the Configuration Parameter under Optimization > Default parameter behavior "Tunable" so
that you can parameterize your model at runtime.

• BlockIO is created as a standard DataArea and is therefore visible in the process image of the TcCOM
and can be linked via DataPointer.

• Create ExecutionInfo output is enabled, accordingly there is another DataArea of type Output Source
with the execution information of the instance.

• Create ADS Symbols is enabled on all DataAreas, so all parameters in the DataAreas are accessible
by ADS symbol name.

• Module parameters are created for the inputs of the model, because Input: Initial Values is enabled.

For a description of the setting options, see Configuration of data access to data of a TcCOM object [} 143].

Possible parameter settings in Parameter (Init)

Module parameters can be found in Parameter (Init), which do not change cyclically but can be changed
acyclically. No online values can be seen in Config mode, or when the TcCOM is not started.

Define Startup Values

Startup Values can be set in the Parameter (Init) representation or in the Block Diagram representation
(see in the following chapter). To do this, select the entry in the Value column that you want to adjust on the
module instance and enter a value. The value set in this way is only available in the project file in the XAE at
this time. Activate Configuration loads the set value (with the overall project) to the target system.

Settings such as the ModuleCaller, StepSizeAdaption or ExecutionSequence cannot be changed at runtime
of the module, but they can only be defined as startup values. Other module parameters such as Execute or
the model parameters can also be changed online.

Change values online

From version 2.x.xxxx.x

TE1400188 Version: 2.1.1

If the TcCOM module is active, you can use Show Online Values to make the current values of the instance
visible. You can enter a new value in the Value column, making it a Prepared Value. If the Prepared Value is
not yet loaded on the target system, the field with deviation between Value and Online appears with red
marking. Once all changes have been made, you can right-click at the structure level and use "Download" to
set the prepared values in the target system. Note that this does not change the startup value of the instance
on the target system. To do this, you must first activate the current configuration on the target system.
Likewise, you can use "Upload" to set the current Online Values as Startup Values in the project. Again, the
change is not active on the runtime system until the project is compiled and downloaded, see Best practice:
access to TcCOM data [} 147].

Possible parameter settings in Block Diagram

All parameters in the parameter range (right side of the window) are only displayed in the TwinCAT 3 block
diagram if you are in the top level of the block diagram ("<root>"). If you are in a subsystem or if you have
selected a block, only the parameters of the active block are displayed.

In the block diagram you have the possibility to read and write online values as well as to change Startup
Values.

From version 2.x.xxxx.x

TE1400 189Version: 2.1.1

Select a block with a yellow dot in the lower left corner. If you click directly on the yellow dot, a context menu
opens in which you can see the online values of the block and also change them. If you change a value, it
will be entered in the Prepared list. When you have made all the changes, you can write the prepared values
to the target system. You can select in the Prepared list whether you want to set the prepared values as
Online and/or Startup values.

You can also go over the parameter list in the right area of the block diagram and change values here. Find
the parameter you want to change and click the down arrow on the right side of the list. Here you can make
changes in the editable fields. If you move the mouse pointer over the parameter name (TempCtrl_P.Kp in
the following diagram), the ADS address information is displayed. By right-clicking on the parameter name,
you can copy the parameter's ADS address information to the clipboard.

From version 2.x.xxxx.x

TE1400190 Version: 2.1.1

You can also change entire structures. Select the <ModelName>_P structure, for example, i.e. the structure
that contains all model parameters, and select the downward pointing arrow here. A context menu appears
by right-clicking on Startup Values, for example. Here you can set all current online values of the structure
as Startup Values, or you can reset the startup list to the default values.

Interaction with DataAreas

You cannot change DataAreas via the XAE. You can only see the DataArea type (see Type column) and
deduce which interaction options are possible with the DataArea, see Configuration of data access to data of
a TcCOM object [} 143].

Via the CS column you can see whether ADS symbol names are to be generated for this DataArea. CS is
editable by the user. If CS is enabled, you can use the Target Browser, for example, to search for the ADS
symbols and include them in a scope configuration. If CS is disabled, you can only access the DataArea data
via Index Group and Index Offset. Index Group is the Object ID of the instance (see Object tab) and Index
Offset is displayed in the CD / Elements column.

From version 2.x.xxxx.x

TE1400 191Version: 2.1.1

For more information on interacting with DataAreas, see Configuration of data access to data of a TcCOM
object [} 143] and Best practice: access to TcCOM data [} 147].

4.8.1.2 Parameterization of several module instances
In the above section it was described that an instance of a TcCOM can be parameterized in TwinCAT, even
deviating from the parameters in Simulink®.

If several instances of a TcCOM are used in a TwinCAT Solution, different options exist with regard to the
individual parameterization of the instances. To implement the following three options, you must use the
Code interface packaging setting in Simulink®.

Make sure that the setting Default parameter behavior is set to Tunable under Optimization.

From version 2.x.xxxx.x

TE1400192 Version: 2.1.1

ü All instances should have the same parameters.
1. Set the parameter to "Reusable function". This is the default value when selecting the target

TwinCatGrt.tlc.
2. Create several instances of your TcCOM in TwinCAT.
3. Under Parameters (Init), configure the <ModelName>_P_Sharing parameter to define or inherit. Define

specifies the parameterization of all dependent instances configured with inherit.
ð Only one instance with define may be configured.
ü It should be possible to parameterize each instance individually.
1. Set the parameter to "C++ class".
2. Create several instances of your TcCOM in TwinCAT.
ð No <ModelName>_P_Sharing parameter is generated. Each instance can be parameterized individually.
ü Only one instance should be allowed in the project.
1. Set the parameter to "Nonreusable function".

ð If you create several instances of your TcCOM in TwinCAT, you receive an error message when
activating the solution.

ð Whether an instance of a TcCOM can be instantiated multiple times can be seen in the
TC3 BlockDiagram.

2. To do this, go to the parameter range on the right. Under Block Identification a parameter
"SingleInstance" is visible.

ð The value False means multi-instantiable. Accordingly, True means one instantiation.

From version 2.x.xxxx.x

TE1400 193Version: 2.1.1

Settings also apply to the use of the PLC function blocks
The setting of the Code Interface Packaging has the same meaning for the use of the TcCOM as
well as for the use of the PLC function blocks.

Open sample for parameterization
In MATLAB®, open the Multi Instance sample: TwinCAT.ModuleGenerator.Samples.
Start('Multi_Instance')

4.8.1.3 Working with the block diagram in TwinCAT

4.8.1.3.1 Simulink®-TcCOM
If a TwinCAT object was created with the TwinCAT Target for Simulink® and the block diagram export was
executed in the process, the block diagram of the Simulink® model can be displayed as a control in the
TwinCAT XAE.

4.8.1.3.1.1 Using the block diagram
The block diagram export can be configured during generation of a TcCOM module from MATLAB® or
Simulink®. If the export was enabled, the block diagram can be found in the TwinCAT development
environment under the "Block Diagram" tab of the module instance.

Using shortcuts, drag & drop and a context menu you can navigate through the hierarchy of the TcCOM
module, view parameter values, display signals values and obtain optional additional debug information.

Shortcut functions:

Shortcut Function
Space Zoom to current size of the block diagram tab

From version 2.x.xxxx.x

TE1400194 Version: 2.1.1

Shortcut Function
Backspace Switch to the next higher hierarchical level
ESC Switch to the next higher hierarchical level
CTRL + "+" Zoom in
CTRL + "-" Zoom out
F5 Attach Debugger

(System- > Real-Time -> C++ Debugger -> Enable C++
Debugger must be activated)

Context menu functions:

4.8.1.3.1.2 Display signal curves
For verification and troubleshooting it is often helpful to display signal curves. The block diagram offers the
following options:

Display signal curves in the block diagram

The block diagram offers an option to display signal curves in a window. To this end, drag and drop a signal
or block into a free area of the block diagram.

From version 2.x.xxxx.x

TE1400 195Version: 2.1.1

Create a scope in the block diagram

After the drop, a scope window opens in the block diagram.

Display the scope in the block diagram

The title bar of the scope window offers the following options:

Close window

Keep window in the foreground across all block diagram hierarchies

Minimize window to the title bar

From version 2.x.xxxx.x

TE1400196 Version: 2.1.1

Displaying the scope in the block diagram control [} 242] requires a Scope View Professional
(TE1300) license. No Scope View Professional license is required in TwinCAT XAE.

When creating a scope window in the block diagram for a Simulink® bus, all signals of the bus are directly
displayed in the scope window.

The scope window in the block diagram can be used for a quick overview. For more detailed analyzes, it is
advisable to analyze the signals in a TwinCAT Measurement project.

Display signal curves in TwinCAT 3 Scope

If the drop is not made to the block diagram control but to an Axis Group in a TwinCAT Measurement project,
the signal is added there.

Add a signal in a TwinCAT 3 Scope

4.8.1.3.1.3 Module parameterization in the block diagram
To parameterize a TcCOM instance, the parameter window can be used directly in the block diagram. In
addition, the Property table can be used, which can be expanded or collapsed on the right-hand edge of the
block diagram. A basic distinction is made between different parameter values:

"Default", "Startup", "Online" and "Prepared"

The following value types can be found in the drop-down menu of the Property table of the block diagram:

• Default values are the parameter values during code generation. They are invariably stored in the
module description file and enable the manufacturing settings to be restored after parameter changes.

• Startup values are stored in the TwinCAT project file and downloaded to the module instance as soon
as TwinCAT starts the module instance.
Startup values for the input process image can also be specified in Simulink® modules. This allows the
module to be started with non-zero input values, without the need for linking the inputs with other
process images. Internal signals and output signals have no starting values, since they would, in any
case, be overwritten in the first cycle.

• Online values are only available if the module was started on the target system. They show the
current parameter value in the running module. This value can also be changed during runtime.
Although in this case the corresponding input field has to be enabled via the context menu, in order to
prevent accidental inputs.

• Prepared values can be specified whenever online values are available. They can be used to save
various values, in order to write them consistently to the module. If prepared values have been
specified, they are displayed in a table below the block diagram. The buttons to the right of the list can
be used to download prepared values as online values and/or save them as starting value, or delete
them.

Parameterization in the block diagram

Parameterizable blocks are marked with a yellow box in the block diagram.

From version 2.x.xxxx.x

TE1400 197Version: 2.1.1

Double-clicking on the block or a single click on the yellow box brings up a window with the parameters that
can be changed.

If a value is changed, it can be applied with the following keyboard commands:

CTRL + Enter Set online value directly
SHIFT + Enter Set startup value
Enter Set prepared value

The icons in the title bar have the following functions:

Close window

Keep window in the foreground across all block diagram hierarchical levels

Keep window open at the current block diagram hierarchical level

Minimize window to title bar

4.8.1.3.1.4 Debug
Different ways are available to find errors within a TcCOM module created with MATLAB®/Simulink®, or to
analyze the behavior of the module within the overall architecture of the TwinCAT project.

From version 2.x.xxxx.x

TE1400198 Version: 2.1.1

Debugging in the block diagram

If the block diagram was exported during generation of the TcCOM module, it can be displayed in the
TwinCAT development environment and used for debugging within the corresponding module instance, for
example. To do so, the block diagram uses the Microsoft Visual Studio debugger, which can be linked with
the TwinCAT runtime via the TwinCAT debugger port. Attach the debugger as described in the C++ section
under Debugging.

Prerequisites for debugging within the block diagram are:

• The C/C++ source code of the TcCOM module must be present on the engineering systems, and the
Visual Studio debugger must be able to find it. Ideally, debugging should take place on the system on
which the code was generated. If the module was created on another system, the associated C/C++
source code can usually be made known by integrating the Visual Studio project into the TwinCAT C++
section. The file <ModelName>.vcxproj is located in the build directory, see Which files are created
automatically during code generation and publishing? [} 59]

• The module must have been created with the Debug configuration. When publishing takes place
directly after the code generation, select the Debug setting in the Module generation (Tc Build) [} 22]
section under publish configuration. When publishing the module from the C++ section in TwinCAT,
the debugger in the C++ node of the solution must be enabled; see C/C++ documentation, Debugging.

• During code generation, the options Export block diagram and Export block diagram debug
information must be enabled in the coder settings under Tc Advanced.

• In the TwinCAT project, the debugger port must be enabled, as described in TwinCAT 3 C++ Enable
C++ debugger.

Setting breakpoints in the block diagram
1. After attaching the debugger to the TwinCAT runtime, the possible breakpoints are assigned to the

blocks in the block diagram and represented as points. Clicking on the desired breakpoint activates it, so
that execution of the module instance is stopped next time the associated function block is executed. The
color of the point provides information about the current state of the breakpoint:
• Gray: breakpoint inactive
• Red: breakpoint active. The program is stopped next time this function block is executed
• Yellow dot in the middle: breakpoint hit. Program execution is currently stopped at this point
• Blue dot in the middle: breakpoint hit (as yellow), but in a different instance of the module.

•

From version 2.x.xxxx.x

TE1400 199Version: 2.1.1

2. Additional information, such as the corresponding C++ code section, can be found in the tooltip for the
breakpoint:

Breakpoints are not always assigned to a single function block. In many cases, the functions of
several blocks are consolidated in a code section or even a line in the underlying C++ code. This
means that several blocks can share the same breakpoint. Therefore, activation of a breakpoint in
the block diagram may also result in changes in the point display in other blocks.

Evaluating exceptions

If exceptions occur during processing of a TcCOM module, such as division by zero, the point at which the
exception occurred can be shown in the block diagram. To this end, the TcCOM module must meet the
above requirements, and the C++ debugger must be enabled in the TwinCAT project (TwinCAT 3 C++
Enable C++ debugger). After the debugger has been attached, which may be done before the exception has
occurred or indeed after, the block that caused the exception is highlighted in the block diagram, provided
the line of code responsible for the exception can be allocated to a block. The name of the function block is
shown in red, and the function block itself is marked in bold.

From version 2.x.xxxx.x

TE1400200 Version: 2.1.1

Manual evaluation of exceptions without source code

Even if the module source code is not available on the engineering system or the C++ debugger was not
activated, you can highlight the error location in the block diagram once an exception has occurred.

Typically, an error message will always be generated when an error occurs, indicating the source file and the
line in the source code. In many cases, this information can be used to allocate an exception to a block in the
block diagram. To do this, you can proceed as follows:

ü A prerequisite for highlighting the error location within the block diagram is that debug information was
generated (option Export block diagram debug information in the coder settings under Tc
Advanced).

From version 2.x.xxxx.x

TE1400 201Version: 2.1.1

3. From the context menu of the block diagram select the entry Provide exception data:

4. In the dialog that opens, enter the source code file and line number provided in the error message:

From version 2.x.xxxx.x

TE1400202 Version: 2.1.1

5. The name of the function block associated with the line number is displayed in red, and the function
block itself is marked in bold:

4.8.1.4 Online change of TcCOM at runtime
With the "Online Change" you can exchange TcCOM objects at runtime, i.e. without TwinCAT stop, on a
runtime PC.

For a description of the Online Change for TcCOM, see: Creation of versioned drivers [} 137].

Open sample in MATLAB®

Open a sample in MATLAB® with:
TwinCAT.ModuleGenerator.Samples.Start('OnlineChange_TemperatureController
')

4.8.1.5 To File Block and MAT-file logging
You can configure your Simulink® models to generate MAT files on the file system of the runtime PC in the
form of a TcCOM object in TwinCAT runtime.

Observe write permissions on the runtime PC
Note the write permissions on the path you want to write to.

MAT-file logging

Configuration from Simulink®:

• Enable MAT-file logging at Code Generation > Interface > MAT-file logging, see MathWorks®
documentation.

• Enable Code Generation > TC General > Load DataExchangeModules.

If a TcCOM object is created with these settings and activated in a TwinCAT configuration on a runtime
system, model signals are saved in a MAT file according to the properties specified by MathWorks®.

https://de.mathworks.com/help/rtw/ref/mat-file-logging.html
https://de.mathworks.com/help/rtw/ref/mat-file-logging.html

From version 2.x.xxxx.x

TE1400 203Version: 2.1.1

The MAT file is created on the file system of the runtime PC in the TwinCAT boot directory.

To File Block

Configuration in Simulink®:

• Enable MAT-file logging at Code Generation > Interface > MAT-file logging.
• Enable Code Generation > TC General > Load DataExchangeModules.
• In the ToFile Block specify the fullpath, e.g. C:\Logs\MyLog.mat. If you only specify the file name the

MAT-file will be created in the TwinCAT boot directory.
• Select in the Block Parameters of the To File Block Save format: Array.

If a TcCOM object is created with these settings and activated in a TwinCAT configuration on a runtime
system, a MAT file is created at the configured position.

• The MAT-file is filled with new data at runtime and grows in its required memory size accordingly over
time.

• The terminate method to complete the MAT file is performed in the Transition Preop Init. To do this,
either move the TcCOM object to the Init state or set the TwinCAT Runtime to Config mode.

NOTICE
Sufficient storage space
Note that you must keep enough storage space on the target system to avoid unpredictable behavior of the
runtime PC.

TwinCAT File Writer

You can precisely control data logging at runtime with the TwinCAT File Writer. The TwinCAT File Writer can
terminate file packages of defined size and generate a specified set of files on the runtime system. Thus,
there is no danger of reaching the limit of the target system memory.

• Maximum size of .mat files adjustable
• Maximum number of .mat files adjustable
• Optionally pause writing via a TcCOM module parameter
• Does not support all data types

Documentation of the block can be found here [} 116].

4.8.1.6 Calling the TcCOM from the PLC

Please go to section Applying the TcCOM Wrapper FB [} 209].

4.8.2 Working with the PLC library
In addition to the TcCOM object, a PLC library can also be created. This PLC library contains two different
types of function blocks:

• The function block FB_<modelname> in the folder POU contains the full functionality of the Simulink®

model, i.e. the source code is directly anchored in the FB. This FB is called PLC-FB in the following.
• The subfolder POU/TcCOM Wrapper contains FBs that are wrappers for a TcCOM object, i.e. the

functionality is not directly in the FB but is outsourced to an instance of a TcCOM. The wrappers are
called TcCOM-Wrapper-FB in the following.

Brief overview
• Create PLC project:

From version 2.x.xxxx.x

TE1400204 Version: 2.1.1

• Load PLC library:

• View content of the PLC library:

From version 2.x.xxxx.x

TE1400 205Version: 2.1.1

• Instantiate function block FB_<modelname> (PLC-FB [} 213]) and use in PLC code:

• Alternatively: use TcCOM Wrapper FB [} 209] and use it in the PLC code:

From version 2.x.xxxx.x

TE1400206 Version: 2.1.1

4.8.2.1 Create and install PLC library

Configure the content of the PLC library

As described at Working with the PLC library [} 203], the PLC library can contain different function blocks.

• The function block FB_<modelname> in the folder POU contains the full functionality of the Simulink®

model, i.e. the source code is directly anchored in the FB. This FB is called PLC-FB in the following.
• The subfolder POU/TcCOM Wrapper contains FBs that are wrappers for a TcCOM object, i.e. the

functionality is not directly in the FB but is outsourced to an instance of a TcCOM. The wrappers are
called TcCOM-Wrapper-FB in the following.

In the following, you will learn how to configure the two function blocks and how to install the PLC library
created.

4.8.2.1.1 Create and configure the PLC-FB
Navigate to Configuration Parameters > Code Generation > TC PlcFb General.

Check the checkbox Generate TwinCAT PLC Function Block here. In the standard configuration, the
checkbox is checked.

The further settings concern the handling of floating point exceptions for the PLC-FB. These must be made
separately to the settings for the TcCOM object, see Exception handling [} 220].

4.8.2.1.2 Create and configure the TcCOM-Wrapper-FB
Navigate to Configuration Parameters > Code Generation > TC TcCom Wrapper.

Check the checkbox TcCom Wrapper FB here. The checkbox is unchecked in the standard configuration.

From version 2.x.xxxx.x

TE1400 207Version: 2.1.1

You can use the checkbox TcCom Wrapper FB properties to configure whether the module parameters on
the FB are to be created as properties. See Configuration of data access to data of a TcCOM object [} 143],
especially Parameter: Initial values.

You can learn how to apply the generated wrapper here: Applying the TcCOM Wrapper FB [} 209].

Sample

By setting the Parameter: Initial Values under Tc TcCom Interfaces, the model parameters are created as
module parameters (switched on by default). Now create the "TcCom Wrapper FB" with the option "TcCom
Wrapper FB properties". Set the property monitoring to "CyclicUpdate" to see the value change of the
property directly in the online view.

Then you can access the module parameters as follows, for example:
PROGRAM MAIN
VAR

 // dynamic instance: create TcCOM from PLC
 InitStrDyn : ST_FB_TempCtrl_TcCOM_InitStruct_InitStruct := (
 TaskOid:= 16#02010030, // take TaskOID of PlcTask
 eModuleCaller:= ModuleCaller.Module); // set module caller to "call by module
"
 fbTempCtrDyn : FB_TempCtrl_TcCOM_InitStruct(InitStrDyn);

 Outputs : ExtY_TempCtrl_T; // input
 Inputs : ExtU_TempCtrl_T; // output
 Parameters : P_TempCtrl_T; // parameter

 bChange: BOOL;
END_VAR

fbTempCtrDyn(TempCtrl_U := Inputs, TempCtrl_Y => Outputs);

IF bChange THEN

From version 2.x.xxxx.x

TE1400208 Version: 2.1.1

 Parameters.Kp := 10;
 fbTempCtrDyn.TempCtrl_P := Parameters;
END_IF

In the "advanced" configuration level, the monitoring attribute of the properties can also be specified. In the
default case, "No Monitoring" is set, i.e. no attribute is set.

Setting in Simulink® Attribute on property
ExecutionUpdate {attribute 'monitoring' := 'variable'}
CyclicUpdate {attribute 'monitoring' := 'call'}

Monitoring attributes influence the visibility of the attribute values in the online view, i.e. when you have
logged into the PLC and want to monitor the current values of the properties on the FB.

• No Monitoring: the values are not visible in the online view.
• Cyclic Update: the values of the properties are updated and displayed cyclically.

In the logged-in state in the PLC additional code is executed.
• Execution Update: the values of the properties are only updated in the online view if getter/setter

methods for the properties are called in the execution code. This quickly leads to irritation and is
only relevant in rare cases.

No TcCOM Wrapper for Online Change-capable modules
If the TcCOM is Online Change-capable, no TcCOM-Wrapper-FB is generated, since the version of
the PLC library and the version of the TcCOM object must always match, which cannot be
guaranteed for the Online Change of the TcCOM.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529692299.html?id=4605893368754947126

From version 2.x.xxxx.x

TE1400 209Version: 2.1.1

4.8.2.1.3 Configuring and installing the PLC library

Configuring the type and variable prefixes

You can configure your individual type and variable prefixes to be used in the created PLC library at Code
Generation > TC PLC Library. By default, the variable prefixes are generated according to this convention
(see Identifiers for variables and intances).

Enter the desired prefixes as pipe-seperated list.

Installing the PLC library

As described above, you can configure which function blocks (PLC-FB [} 206] and/or TcCOM-Wrapper-FB
[} 206]) should be included in your PLC library. In order to use the created function blocks in the PLC, the
corresponding PLC library must be installed on your TwinCAT engineering system.

Situation 1:
ü You use the Target for Simulink® on the same PC on which you want to program your PLC.
1. Create a PLC library and install it directly on your local engineering system from Simulink®.
2. To do this, select the appropriate checkboxes at TC PLC Library:
ð After a successful build, the new version of the PLC library is directly available in the local TwinCAT

XAE.

Situation 2:
ü You want to use the PLC library on any TwinCAT XAE systems.

1. Create a TMX archive [} 135].

2. Copy the TMX archive [} 135] to a TwinCAT engineering system of your choice.

3. Install the PLC library when unpacking the TMX archive [} 135].
ð The library contained in the archive is available in TwinCAT XAE.

4.8.2.2 Applying the TcCOM Wrapper FB
There are two ways to call a TcCOM object from the PLC:

1. Referencing a static object instance

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/12073947403.html&id=3338831657965116106

From version 2.x.xxxx.x

TE1400210 Version: 2.1.1

2. Dynamic instantiation of an object from the PLC
ð For both ways the TcCOM Wrapper function block from the generated PLC library is used.

Configuration of the TcCOM Wrapper function block in Simulink®

Navigate to Configuration Parameters > Code Generation > TC TcCom Wrapper. Check the TcCom
Wrapper FB checkbox here. The checkbox is unchecked in the standard configuration. You can use the
TcCom Wrapper FB properties checkbox to configure whether the model parameters on the function block
are to be created as properties.

In the "advanced" configuration level, the monitoring attribute of the properties can also be specified. In the
default case, "No Monitoring" is set, i.e. no attribute is set.

Setting in Simulink® Attribute on property
ExecutionUpdate {attribute 'monitoring' := 'variable'}
CyclicUpdate {attribute 'monitoring' := 'call'}

Monitoring attributes influence the visibility of the attribute values in the online view, i.e. when you have
logged into the PLC and want to monitor the current values of the properties on the FB.

• No Monitoring: the values are not visible in the online view.
• Cyclic Update: the values of the properties are updated and displayed cyclically.

In the logged-in state in the PLC additional code is executed.
• Execution Update: the values of the properties are only updated in the online view if getter/setter

methods for the properties are called in the execution code. This quickly leads to irritation and is
only relevant in rare cases.

See also Create and install PLC library [} 206] or Create the TcCOM-Wrapper-FB for further details.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529692299.html?id=4605893368754947126

From version 2.x.xxxx.x

TE1400 211Version: 2.1.1

Create instance of the TcCOM Wrapper function block
1. Create a PLC project.
2. Add the desired library under References.

ð Under Pous/TcCOM Wrapper you get a function block that you can instantiate in the PLC. In addition,
necessary data types are created in the Duts folder.

Version 1: referencing a static module instance

The function block can be used to access module instances previously created in the XAE, e.g. under
System > TcCOM Objects. For this static case, the object ID of the corresponding module instance must be
transferred during declaration of the function block instance. See red area in graphic below.

• The instance of the TcCOM object and the calling PLC must run in the same task.
• On the instance of the TcCOM object, make sure that under Parameter (Init) the entry

ModuleCaller is set to Module and not to CyclicTask.
• In this case, the required memory for the TcCOM is obtained from the non paged pool of the

system.

Version 2: dynamic instantiation and referencing from the PLC

The function block can also be used in such a way that a TcCOM object is generated from the PLC and
linked to the wrapper. In the graphic below, this is the green area as a minimum example and the blue area
with extended parameterization.

From version 2.x.xxxx.x

TE1400212 Version: 2.1.1

• The TaskOid of the PLC task must be used to specify the real-time task in which the wrapper is
called.

• The ModuleCaller must also be set to Module here (via the Init structure).
• In this case, the required memory for the TcCOM is obtained from the router memory.

Graphic in the web browser view
Right-click on the image and select "open image in new tab" to better read the image.

The source code for the graph shown above is available in MATLAB® via the Command Window:
TwinCAT.ModuleGenerator.Samples.Start('TcComWrapper TemperatureController')

Working with the properties of the TcCOM Wrapper FB

Properties on the FB provide an easy way to interact with module parameters of a TcCOM, see also Best
Practice: access to TcCOM data [} 147].

Sample

By setting the Parameter: Initial Values under Tc TcCom Interfaces, the model parameters are created as
module parameters (switched on by default). Now create the "TcCom Wrapper FB" with the option "TcCom
Wrapper FB properties". Set the property monitoring to "CyclicUpdate" to see the value change of the
property directly in the online view.

Then you can access the module parameters as follows, for example:
PROGRAM MAIN
VAR

 // dynamic instance: create TcCOM from PLC
 InitStrDyn : ST_FB_TempCtrl_TcCOM_InitStruct_InitStruct := (
 TaskOid:= 16#02010030, // take TaskOID of PlcTask
 eModuleCaller:= ModuleCaller.Module); // set module caller to "call by module
"
 fbTempCtrDyn : FB_TempCtrl_TcCOM_InitStruct(InitStrDyn);

 Outputs : ExtY_TempCtrl_T; // input
 Inputs : ExtU_TempCtrl_T; // output
 Parameters : P_TempCtrl_T; // parameter

 bChange: BOOL;
END_VAR

fbTempCtrDyn(TempCtrl_U := Inputs, TempCtrl_Y => Outputs);

IF bChange THEN

From version 2.x.xxxx.x

TE1400 213Version: 2.1.1

 Parameters.Kp := 10;
 fbTempCtrDyn.TempCtrl_P := Parameters;
END_IF

Working with the ADI Interface

 WARNING
Unrestricted read and write access
You get a pointer to the memory area of a DataArea via the ITc_ADI interface. Accordingly, you can read
and write there without any restrictions.

The following is a sample of how to access the DataArea of the BlockIO in read-only mode:
stInitTemp : ST_Funktionsblock_SimpleTempCtrl_TcCOM_InitStruct := (nOid := 16#01010010);
FunktionsblockTempCtr : Funktionsblock_SimpleTempCtrl_TcCOM_InitStruct(stInitTemp);
stTempCtr_BlockIO : ST_B_SimpleTempCtrl_T;
pStTempCtr_BlockIO : POINTER TO ST_B_SimpleTempCtrl_T;
hr : HRESULT;

(* read data are via ADI Interface *)
// get a pointer to Data Area
hr := FunktionsblockTempCtr.ipADI.GetImagePtr(size := SIZEOF(stTempCtr_BlockIO), offs := 0, adi_x :=
 2, ppData := ADR(pStTempCtr_BlockIO));
IF hr = 0 THEN
 // copy data to a local variable
 MEMCPY(ADR(stTempCtr_BlockIO), pStTempCtr_BlockIO, SIZEOF(stTempCtr_BlockIO));
 // always release the pointer!
 FunktionsblockTempCtr.ipADI.ReleaseImagePtr(pData := pStTempCtr_BlockIO);
END_IF;

Among other things, adi_x and offs are passed to the GetImagePtr method. These determine the
DataArea itself, in this case DataArea number 2 (SimpleTempCtrl_B), and the data area in the area to be
read/written, in this case without offset and the total size of the DataArea (i.e. the entire DataArea).

When writing, the source and destination must be swapped accordingly at MEMCPY in the above sample.

For further instructions on how to interact with the TcCOM, refer to Best Practice: access to TcCOM data
[} 147].

4.8.2.3 Using the PLC function block (PLC-FB)
The application of the PLC function block (PLC-FB, FB_<modelname>) in the PLC library is focused on its
simple application. This is also accompanied by a few restrictions compared to the TcCOM (or the PLC
Wrapper FB).

Application

From version 2.x.xxxx.x

TE1400214 Version: 2.1.1

Create one or more instances of the PLC-FB from the created PLC library. When writing the source code,
the IntelliSense is available so that you can conveniently see the expected inputs and outputs.

If bus objects have been used as inputs or outputs in Simulink®, these data types are automatically defined
as structures in the PLC library.

Restrictions

The PLC-FB does not allow access to the model parameters via properties at the function block. However,
there are two ways to change the model parameters:

• About the External mode [} 217]

• When using reusable code [} 191], a TcCOM instance can define the parameters. All instances of the
PLC-FB are automatically set to "inherit" and adopt the parameters of the default TcCOM instance.

Also, the PLC-FB does not contain a block diagram [} 193] in TwinCAT XAE. Debugging of the function
block is done via the TwinCAT C++ Debugger, as described here [} 214] or via External mode.

4.8.2.3.1 Online Change of the PLC library
While TwinCAT is in run mode, you can exchange the PLC library version in TwinCAT XAE and load it into
the running application via Online Change. This means that all function blocks in a PLC library can be
updated without a TwinCAT restart.

Step-by-step procedure:
1. Create a first PLC library version with the TwinCAT Target for Simulink®.
2. Include this PLC library version in a PLC project.
3. Activate your TwinCAT configuration with the first PLC library version (e.g. version 0.0.0.1).
4. Adapt your Simulink® model and create a PLC library version (0.0.0.2) from it.
5. Select the newly created PLC library version in the PLC at References (you may have to install the new

library on the XAE system).
6. Select Build > Build Solution to rebuild the project.

7. Select Login > Login with online change (more information in the PLC documentation).

4.8.3 Debugging
In addition to debugging via the External Mode [} 217] and via the Block Diagram in TwinCAT XAE [} 197],
you can also use the C++ project created for debugging in the classic way.

Step-by-step procedure:
1. Make sure that your TwinCAT application has been activated with the C++ debugger enabled.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/25280357234359665547.html?id=2368606987045525316

From version 2.x.xxxx.x

TE1400 215Version: 2.1.1

2. Open the C++ project created during code generation that belongs to the module you want to debug.
The project can be found in the folder <SimulinkModelName>_tcgrt, which is created in the current
MATLAB® path when you start the code generation process.

3. In this folder, search for the file <SimulinkModelName>.vcxproj.
You can open the <SimulinkModelName>.vcxproj in Visual Studio alone or also add the vcxproj file in
your TwinCAT Solution under C++ with "Add existing Item".

From version 2.x.xxxx.x

TE1400216 Version: 2.1.1

4. Select Debug > Attach to Process in the menu bar and select "TwinCAT XAE" as Connection Type and
your desired target system under Connection target. Then select Attach.

From version 2.x.xxxx.x

TE1400 217Version: 2.1.1

5. Set breakpoints in your C++ code and step through your code as usual. Tip: when executing the code,
the step function is used, which you can find in the folder Simulink > Sources >
<SimulinkModelName>.cpp.

4.8.4 Connecting to External mode
You can connect from your Simulink® environment to a running TcCOM object or an instance of the PLC
function block in the TwinCAT XAR via External mode.

Restriction on code interface packaging
The code interface packaging defines the behavior for multiple instances of a created class in
TwinCAT [} 191]. If the External mode is to be used, the setting C++ Class is not allowed.

From version 2.x.xxxx.x

TE1400218 Version: 2.1.1

Simulation time in Simulink® set to "inf"
Set the Simulink® simulation time to "inf". For operation in TwinCAT, it makes no sense to stop the
execution of the module after a defined time.

ü Code generation settings in Simulink®

1. Under Code Generation > Interface, set the External mode parameter.
• Note the following for Code interface packaging:

◦ Nonreusable function: allowed
◦ Reusable function: allowed, set multi-instance code error diagnostic to None
◦ C++ Class: not allowed

2. Define the permissions of the External mode (separately adjustable for TcCOM and PlcFb).
ð Shown in the following screenshot as an example for TcCOM.

From version 2.x.xxxx.x

TE1400 219Version: 2.1.1

ü Connect to a runtime object with the External mode
3. Open the External mode control panel.
4. Select Connect.

From version 2.x.xxxx.x

TE1400220 Version: 2.1.1

5. Select the connected target and object instance.

ð After selecting OK, you will be connected to the object. The Connect button on the External mode
control panel has changed to Disconnect and you can see the simulation time transferred from the
target in Simulink®.

As can be seen in the above graphic for selecting the object in a target, the External mode is available for
TcCOM instances as well as for PLC-FB instances.

Bidirectional ADS route required
For the External mode, a bidirectional ADS route is necessary. Unidirectional routes cause a
timeout in communication.

4.8.5 Exception handling
When processing the C++ code autogenerated from MATLAB® or Simulink® in TwinCAT, floating point
exceptions can occur at runtime, for example if an unexpected value is passed into a function during
programming. The handling of such exceptions is described below.

What is a floating point exception?

A floating point exception occurs when an arithmetically not exactly executable operation is instructed in the
floating point unit of the CPU. IEEE 754 defines these cases: inexact, underflow, overflow, divide-by-zero,
invalid-operation. If one of these cases occurs, a status flag is set, which indicates that the arithmetic
operation cannot be executed exactly. It is further defined that each arithmetic operation must return a result
– one that in the majority of cases leads to the possibility of ignoring the exception.

For example, a division by zero results in +inf or -inf. If a value is divided by inf in the further code, this
results in zero, so that no consequential problems are to be expected. However, if inf is multiplied or other
arithmetic operations are performed with inf, these are invalid operations, whose result is represented as a
Not-a-Number (NaN).

From version 2.x.xxxx.x

TE1400 221Version: 2.1.1

How does the TwinCAT Runtime react in case of exceptions?

TwinCAT C++ Debugger not active
The following explanations only apply if the C++ debugger is not activated on the TwinCAT runtime
system. When the C++ debugger is enabled, exceptions are caught by the debugger and can be
handled, see Debugging [} 214].

Default behavior

Default setting in TwinCAT is that at "divide-by-zero" and "invalid-operation" the execution of the program is
stopped and TwinCAT issues an error message.

Task setting: Floating Point Exceptions

This default setting can be changed on the level of each TwinCAT task. If the checkbox "Floating Point
Exception" is unchecked, an exception does not lead to a TwinCAT stop and no error message is issued.
This setting is then valid for all objects that are called by this task. As a consequence, care must be taken in
the application that NaN and inf values are handled accordingly in the program code.

Check for NaN and Inf

If, for example, a NaN is passed on via mapping to a TwinCAT object that has activated floating point
exceptions, an arithmetic operation with NaN naturally leads to an exception in this object and subsequently
to a TwinCAT stop. Therefore, NaN or inf must be checked directly after mapping. In the PLC, corresponding
functions are available in the Tc2_Utilities library, e.g. LrealIsNaN.

Try-Catch statement

Another way to handle exceptions is to embed them in a try-catch statement. In the PLC the instructions
__TRY, __CATCH, __FINALLY, __ENDTRY are available for this purpose. If floating point exceptions are enabled
on the calling task and an exception occurs within the Try-Catch, it is caught in the Catch branch and can be
handled. Accordingly, no variables are set to inf or NaN in this approach. However, it is also important to
note that the code in the Try branch is run through only up to the point of the exception and then a jump is
made to the Catch branch. In the application code, it should be noted that internal states in the Try branch
may not be consistent.

Dump Files

From TwinCAT 3.1.4024.22 (XAR), dump files can be created at runtime in case of exceptions in the TcCOM
object.

Specification of the behavior in the event of exceptions on object level

In addition to the option to influence behavior in the event of exceptions at task level, the behavior can also
be specified at TwinCAT object level, i.e. the generated TcCOM or the generated PLC function block (PLC-FB
[} 213]).

On the object level, a wealth of possibilities can be realized with the TwinCAT Target for Simulink®. Basically,
however, all the options presented below are based on the above principles.

Definition of the object behavior in case of occurring exceptions

A total of 9 different settings are available.

• CallerExceptions (default): Exceptions are triggered as configured at the calling task.
• ThrowExceptions: Exceptions in the TwinCAT object are triggered in any case, regardless of how the

task is configured.
◦ An exception causes a TwinCAT error message and a TwinCAT stop

• SuppressExceptions: Exceptions are not triggered, regardless of how the task is configured.
◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states can be NaN or inf.

• LogExceptions: Exceptions are triggered, but do not lead to a TwinCAT stop.

https://infosys.beckhoff.com/content/1033/tcplclib_tc2_utilities/index.html
https://infosys.beckhoff.com/index.php?content=../content/1033/tc3_plc_intro/2529187211.html&id=
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529187211.html?id=168247378739040458

From version 2.x.xxxx.x

TE1400222 Version: 2.1.1

◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states can be NaN or inf.
◦ The ExecutionInfo output is filled with information about an exception in the current cycle. If

several exceptions occur in one cycle, only the first exception is displayed at the output. When the
TwinCAT object is called again, the information is reset.

• LogAndHold: Exceptions are triggered. The execution of the TwinCAT object is stopped.
◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states can be NaN or inf.
◦ The ExecutionInfo output is filled with information about an exception in the current cycle. If

several exceptions occur in one cycle, only the first exception is displayed at the output. When the
TwinCAT object is called again, the information is reset.

◦ The execution of the TwinCAT object is stopped after an exception occurs. TwinCAT itself remains
in run mode. Restart execution: ReleaseObjectStop [} 226].

• LogAndCatch: Exceptions are caught with try-catch in the TwinCAT object. The execution of the
TwinCAT object is stopped.

◦ An exception does not cause a TwinCAT stop.
◦ Outputs or internal states cannot contain NaN or inf.
◦ The ExecutionInfo output is filled with information about an exception in the current cycle.
◦ The execution of the code ends at the point of the exception. From there, the program jumps to the

catch junction, i.e. internal states can be inconsistent.
◦ The execution of the TwinCAT object is stopped after an exception occurs. TwinCAT itself remains

in run mode. Restart execution: ReleaseObjectStop [} 226].
• LogAndDump, LogHoldAndDump and LogCatchAndDump

◦ Behavior like LogExceptions
◦ Additionally a dump file is stored on the runtime system in the TwinCAT folder Boot. For more on

dump files, see here [} 230].

Version recommendation for 64-bit target systems
When using the "LogExceptions", "LogAndHold", "LogAndDump", LogHoldAndDump" settings, it is
recommended to use XAR version of at least 3.1.4024.35 and TE1400 version of at least 2.4.2.0.

<< Setting for TcCOM >>

You can define the behavior of a TcCOM object when exceptions occur under TC TcCOM General in the
Code Generation Settings in Simulink®. The behavior must be defined separately for the initialization phase
of the TcCOM and for the runtime phase (update phase).

From version 2.x.xxxx.x

TE1400 223Version: 2.1.1

If you are working with an already compiled TcCOM in TwinCAT, you can also change the settings on the
object instance afterwards. To do this, use the Parameters (init) tab and select Show hidden Parameters.

<< Setting for PLC-FB >>

The settings for the PLC-FB (PLC function block FB_<ModelName> in the PLC library) must be made
independently of the settings for the TcCOM object at TC PlcFb General. A subsequent adaptation of the
exception options when using the function block in TwinCAT is not provided.

Note that the other PLC function block FB_<ModelName>_TcCOM is a wrapper for a TcCOM object and
therefore the exception settings from the TcCOM area are valid when it is used.

From version 2.x.xxxx.x

TE1400224 Version: 2.1.1

Optional ExecutionInfo Output

If exceptions are handled at object level, it makes sense to make corresponding information about occurred
exceptions accessible at the object output. This output can be used to query whether an exception has
occurred, what kind of exception it was, whether a dump file has been written, etc.

<< Setting for TcCOM >>

You can activate an additional "ExecutionInfo" output for the TcCOM object via the TC TcCom Interface
entry.

From version 2.x.xxxx.x

TE1400 225Version: 2.1.1

The ExecutionInfo output is a structure with the following entries:

ExecutionInfo structure

Entry Data type Meaning
CycleCount ULINT Current cycle count (independent

of an exception)
ExceptionCount ULINT Number of exceptions that have

occurred so far
ActException TcMgSdk.ExceptionInfo More detailed explanation of the

current exception (only first
exception in the current cycle)

TcMgSdk.ExceptionInfo

Entry Data type Meaning
ExceptionCode DINT Exception code
TmxName STRING(127) Name of the tmx driver that threw

the exception.
TmxVersion ARRAY[0..3] OF UDINT Version of the tmx driver that threw

the exception.
InstructionAddr UDINT Relative address in memory;

location where the exception
occurred.

ReturnAddr ARRAY[0..3] OF UDINT Return addresses

From version 2.x.xxxx.x

TE1400226 Version: 2.1.1

Entry Data type Meaning
DumpCreated BOOLEAN TRUE if a dump file was created

for the exception.

With the InstructionAddr it is possible to judge if the exception with the given ExceptionCode always occurs
at the same place in the source code. If the InstructionAddr is the same for repeating exceptions, it always
occurs at the same point in the code. Via ReturnAddr you can see where the calls came from that led to the
location of the exception. So you can judge if the call that leads to the exception always takes the same call
path. If the code is called from outside the Tmx driver, there is a 0 in ReturnAddr.

Exception code Meaning
0xC000008E Divide by zero
0xC000008F Inexact result
0xC0000090 Invalid operation

If you use the TcCOM Wrapper FB [} 209], the ExecutionInfo structure is available at the function block. Note
that according to the TwinCAT programming conventions the entries carry prefixes corresponding to the data
type.

<< Setting for PLC-FB >>

The PLC-FB always contains nExceptionCount and stActiveException as properties according to the
above definition. I.e. no checkbox has to be set separately to get these properties. The only parameter that is
not available in comparison to the TcCOM is the cycle count, since this can be implemented very easily in
the PLC itself if required.

Handle execution stop of a TwinCAT object

LogAndHold and LogHoldAndDump

In the event of an exception, execution of the code in the TcCOM object or PLC function block (PLC-FB)
concerned is stopped by setting the Execute parameter to FALSE.

<< Setting for TcCOM >>

The parameter Execute can be read or written from the XAE and via ADS.

In the XAE, you can display and change the online values of the TcCOM object under Parameters (Init).

From version 2.x.xxxx.x

TE1400 227Version: 2.1.1

In the block diagram the parameter is offered to you under Module parameters.

From version 2.x.xxxx.x

TE1400228 Version: 2.1.1

If you move the mouse over the Execute name in the change dialog, you will be shown the ADS address of
the parameter, as with all other parameters. This allows you to set the parameter also by ADS.

By right-clicking on the name Execute you can also save the ADS symbol information to the clipboard. This
also applies to all other parameters.

From version 2.x.xxxx.x

TE1400 229Version: 2.1.1

If you use the TcCOM Wrapper FB, you can change the Execute parameter by writing to the bExecute
property.

<< Setting for PLC-FB >>

The Execute parameter is available on the FB as property bExecute with read and write rights. Use this
property to restart the execution of the FB.

LogAndCatch and LogCatchAndDump

In addition to the parameter Execute, the online parameter Initialized also changes to FALSE in the case of
LogAndCatch and LogCatchAndDump. The module must be reinitialized before the module can perform a
calculation again. This is necessary because internal states, due to the termination of code execution at the
point of the exception, can be inconsistent.

<< Setting for TcCOM >>

Reinitialization can only be performed by returning the TcCOM object to the "Init" state and moving it to OP
again. At runtime, only TcCOM objects that have no mappings can be shut down, otherwise active mappings
would block the shutdown. A new initialization is only possible in the case of active mappings on the TcCOM
by restarting the entire TwinCAT runtime. It is therefore recommended to use the TcCOM Wrapper FB
[} 209]. This can be used to call the TcCOM from the PLC and does not require any mappings to access its
inputs and outputs. Accordingly, the TcCOM object can also be reinitialized during runtime.

Property settings for the TcCOM Wrapper FB
In the following sample code properties, e.g. bExecute, are read. Create the TcCOM Wrapper FB
with TcCom Wrapper FB properties set and with the "CyclicUdate" option for the properties so that
the code below matches the wrapper.

PROGRAM MAIN
VAR
 stInitTemp : ST_FB_SimpleTempCtrl_TcCOM_InitStruct := (nOid := 16#01010010);
 fbTempCtr : FB_SimpleTempCtrl_TcCOM_InitStruct(stInitTemp);
 Inputs : ST_ExtU_SimpleTempCtrl_T;
 Outputs : ST_ExtY_SimpleTempCtrl_T;
 ExecutionOut : ST_ExecutionInfo2;
END_VAR

// check if TcCOM is in OP mode and all set
IF fbTempCtr.bExecute = TRUE AND fbTempCtr.bInitialized = TRUE AND fbTempCtr.nObjectState = TCOM_STA
TE.TCOM_STATE_OP THEN

 // call the module
 fbTempCtr(stSimpleTempCtrl_U := Inputs, stSimpleTempCtrl_Y => Outputs, stExecutionInfo => Execut
ionOut);

 // handle exceptions
 IF ExecutionOut.ActException.ExceptionCode <> 0 THEN
 // collect exception information
 (* *)

 // reinit TcCOM
 fbTempCtr.Reinit(stReInit := stInitTemp);
 END_IF

 END_IF

Note that the ReInit method is executed synchronously, i.e. depending on the cycle time and the time
required to reinitialize, cycle overruns may occur.

From version 2.x.xxxx.x

TE1400230 Version: 2.1.1

<< Setting for PLC-FB >>

You can use the property bInitialized on the FB to check whether the stored module is not (no longer)
initialized. You have read-only access here. Reinitialization is currently not possible via a method on the FB.
The PLC runtime, alternatively the entire TwinCAT runtime, must be restarted.

Dump files

Writing the dump file may take a few cycles. It is best to use a separate task for the TcCOM object or the
PLC-FB in question that does not block any important tasks.

Dump files are only written with a TwinCAT XAR version >= 3.1.4024.22, otherwise you get a corresponding
warning.

In the case of LogAndDump the execution of the code is continued cyclically after the occurrence of an
exception, accordingly exceptions can occur cyclically which could lead to persistent cycle timeouts.
Therefore, the online value of the parameter UpdateExceptionHandling is set to LogExceptions after the
dump file has been written, i.e. the writing of dump files is deactivated, but can subsequently be switched on
again, e.g. by ADS or intervention via the XAE under parameter (Init).

The created dump file is stored on the runtime PC in the boot folder and can be copied from there to another
PC for analysis. If you use a TwinCAT version lower than 3.1.4024.x you can open the dump files with
WinDbg and start your analysis.

4.8.6 Using Realtime Monitor time stamps
MATLAB® commands, such as tic and toc, are popular ways to analyze the performance of code sections in
MATLAB®. These commands are not usable in this form during TwinCAT runtime.

For this purpose, TwinCAT provides the TwinCAT Realtime Monitor, which evaluates time stamps in the
source code and displays them for analysis. Setting Realtime Monitor time stamps is supported in MATLAB®

code, i.e. the time stamps are set in MATLAB® and can be evaluated by the Realtime Monitor after code
generation and instantiation in TwinCAT. Running time stamps in MATLAB® results in output to the
MATLAB® console.

Class: TwinCAT.ModuleGenerator.Realtime.LogMark

Methods: Start, Stop and Mark

MATLAB® documentation: doc("TwinCAT.ModuleGenerator.Realtime.LogMark")

Example in MATLAB®

TwinCAT.ModuleGenerator.Samples.Start("BaseStatisticsLogMark")

Use of the time stamps is limited to MATLAB® code and requires appropriate embedding in MATLAB®

function blocks for use in Simulink®.

4.9 FAQ

4.9.1 Change model parameters at runtime
Can I change model parameters during runtime in TwinCAT?

Yes, please note the following settings:

• Optimization > Default parameter behavior: Tunable
If the parameter is set in this way, model parameters can be set at runtime. See also Parameterization
of a module instance [} 186].

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

From version 2.x.xxxx.x

TE1400 231Version: 2.1.1

• Interface > Code interface packaging
You have the options "Nonreusable function", "Reusable function" and "C++ Class" here. The settings
affect whether you can instantiate multiple instances of a TcCOM in TwinCAT and whether you can
then also set their model parameters individually or dependent on each other. See also
Parameterization of several module instances [} 191].

4.9.2 Build of a sample fails
All samples supplied (list by TwinCAT.ModuleGenerator.Samples.List in the MATLAB® Command
Window) have been checked by tests at Beckhoff Automation. If a build of a sample still does not run
successfully, it is likely that something needs to be adjusted during setup on your engineering PC.

ü To test the platform toolset without the influence of MATLAB® please create a TwinCAT Versioned C++
project in TwinCAT (open TwinCAT in Visual Studio) .

1. Right-click Add New Item on C++ Tree Item.
2. Then select TwinCAT Module Class with Cyclic Caller.

ð A C++ project appears in the TwinCAT Tree under C++.
3. Build the C++ project and view the Output Window in TwinCAT.

ð The output window should return "1 succeeded" for the build process. If this is not the case, check
whether you have installed the Desktop development with C++ option in Visual Studio.

4.9.3 Problems with the block diagram representation in TwinCAT
XAE

TcCOM modules created with the TwinCAT Target for Simulink® version 2.x.xxxx.x and higher require a TC3
BlockDiagram version 1.4.1419.0 and higher for correct display in TwinCAT XAE.

Where can I find the version of the TC3 BlockDiagram?

• Under Programs and Features in the Control Panel > Beckhoff TwinCAT 3 BlockDiagram.
• In the block diagram in TwinCAT XAE > right-click in the window > About TC3 BlockDiagram.

If your TwinCAT XAE installation contains an earlier version of the TC3 BlockDiagram:

• Can you install the TwinCAT Tools for MATLAB and Simulink setup. This includes a new TC3
BlockDiagram version.

• You can contact Beckhoff support to request a separate TC3 BlockDiagram setup.

From version 2.x.xxxx.x

TE1400232 Version: 2.1.1

4.9.4 Can I use TE1400 version 1.2.x and version 2.x at the same
time?

Yes, this is possible. Simply install both products on your system and select the appropriate target to
differentiate between the two versions.

TwinCatGrt.tlc for version 2.x and TwinCAT.tlc for 1.2.x

4.9.5 What is the difference between "Build" and "Generate code"?
In the Simulink CoderTM App, you can choose between "Build" and "Generate Code":

If you have set TwinCatGrt.tlc as target, both options have the same function, because the TwinCatGrt.tlc
does not run through the makefile of MathWorks®.

If you do not want to run the build process, but only generate the C++ code, uncheck the checkbox Run the
publish step after project generation under TC Build.

What is the difference between "Build" and "Publish"?

"Publish" refers to the successive execution of the build process for specific TwinCAT platforms. From
Simulink®, the corresponding binaries are then created one after the other for the platforms activated under
TC Build, so that it can be decided afterwards for which target platform the compiled functions are to be
used.

4.9.6 I can't change the parameters of a module in TwinCAT
"Inlined" is set in the TwinCarGrt.tlc as the default value for the parameter Default parameter behavior.
Change this to "Tunable" or configure which parameters should be marked as "Tunable" via the button
configure..

4.9.7 Mapping is lost with Reload TMI/TMC
Challenge:

You have already TcCOM objects in your TwinCAT solution, which you have created with the Target for
Simulink® version 1.2.xxxx.x. You now want to create a new TcCOM object with the Target for Simulink®

version 2.x.x.x and replace the newly created TcCOM with Reload TMI/TMC File... in your existing TwinCAT
solution.

In the default settings, you lose the mapping information by doing this.

Solution:

Under TC TcCOM Interface, set the "mapping between variable names and ADS symbol names" to "Classic"
and use this to create the new TcCOM object.

From version 2.x.xxxx.x

TE1400 233Version: 2.1.1

This means that the mapping is retained if you now replace your old TcCOM object in TwinCAT with Reload
TMI/TMC File....

4.9.8 Integrating the block diagram controls in .NET
The option displaying the block diagram in the TwinCAT XAE environment can also be integrated in separate
visualizations.

A sample program can be downloaded here: https://infosys.beckhoff.com/content/1033/
te1400_tc3_target_Matlab/Resources/11697311755/.zip

ü The following steps are required:
1. Create a new Windows Forms application.
2. Add TwinCAT.BlockDiagram.dll to the toolbox.

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/11697311755.zip
https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/11697311755.zip

From version 2.x.xxxx.x

TE1400234 Version: 2.1.1

3. To do this, select the Choose Items... entry in the context menu.

4. Navigate to TwinCAT.Blockdiagram.dll, which can be found under <TwinCAT installation
path>\3.1\Components\TcBlockDiagram.

From version 2.x.xxxx.x

TE1400 235Version: 2.1.1

5. Add a TcBlockdiagram control instance to the Windows Forms object using drag and drop
(BlockDiagramBrowser or BlockDiagramTcComObjectbrowser).

4.9.9 Observable signals in the TwinCAT block diagram
Which settings influence the number of "blue signals" in the TwinCAT block diagram?

Basically the TwinCAT Target for Simulink® needs a variable in the C/C++ code, which can be assigned to
the signal in the block diagram. If a signal in the block diagram is not marked in blue, it means that either no
variable exists (because it was dropped during code generation due to optimization of the code) or the
variable could not be assigned.

To suppress omission of variables by code optimization, you can use Test Points in Simulink®: see
Configure Signals as Test Points in the Simulink® documentation.

At TC TcCom Additional settings you can also set the entry Extended resolution of signals in block
diagram. If this entry is active, an intensified search for assignments of variables and signals is performed.
Note that this search takes time, so exporting the block diagram will take longer.

From version 2.x.xxxx.x

TE1400236 Version: 2.1.1

4.9.10 Using Simulink® Strings
Simulink® strings are explicitly allowed and can be used with the TwinCAT Target for Simulink®.

Restriction

Depending on the MATLAB® release version, code interface packaging setting and the set C/C++ standard,
the Simulink CoderTM compiles a Simulink® string into the std::string data type. If this Simulink® string is
then used as a model input or model output, please note that these entries cannot be linked to other objects
in TwinCAT by mapping. Mapping in TwinCAT assumes a static data type size, which is not the case with
std::string.

Handling in TwinCAT

So that you can still use the inputs and outputs, it is recommended that the PLC-FB (no mappings
necessary) or the TcCOM Wrapper FB are used. For the standard inputs and outputs of the FBs, the
Simulink® string entries are not displayed in either case. These are to be set separately via getter and setter
methods on the FB.

Simulink® bus with Simulink® strings: restricted use
The following situation is currently not supported: a Simulink® string cannot be used in a Simulink®

bus that serves as input or output of the model if it is mapped as std::string by the Simulink
CoderTM.

Example

Let's take the following Simulink® model with a mixture of string and non-string inputs and outputs.

From version 2.x.xxxx.x

TE1400 237Version: 2.1.1

When this model is compiled with MATLAB R2022a and "C++ Class" code interface packaging, the data type
std::string is generated by the Simulink CoderTM. In the following figure, it can be seen that the string
inputs and outputs are not present in the process image in TwinCAT.
Only the non-string inputs and outputs are present in the process image.

To be able to write and read the strings, either the TcCOM Wrapper FB or the PLC FB must be used.
Corresponding getter and setter methods are automatically created at the function blocks.

From version 2.x.xxxx.x

TE1400238 Version: 2.1.1

Sample code using the PLC-FB:
VAR
 fbStringSample : FB_string_sample;

 myStringIn : T_MaxString;
 myStringOut1 : T_MaxString;
 myStringOut2 : T_MaxString;
 nSize : ULINT;
 nSize2: ULINT;
 fIn : LREAL;
 fOut : LREAL;
END_VAR

// put sting input
fbStringSample.put_StringInput(c_str := ADR(myStringIn));

// call function
fbStringSample(fNonStringInput := fIn, fNonStringOut3 => fOut);

// get string outputs
nSize := SIZEOF(myStringOut1);
fbStringSample.get_StringOut1(c_str := ADR(myStringOut1), size := nSize); // size in VAR IN OUT!

nSize2 := SIZEOF(myStringOut2);
fbStringSample.get_StringOut2(c_str := ADR(myStringOut2), size := nSize2);

4.9.11 Are there limitations with regard to executing modules in real-
time?

Not all access operations that are possible in Simulink® under non-real-time conditions can be performed in
the TwinCAT real-time environment. Known limitations are described below:

• Direct file access:: No direct access to the file system of the IPC can be realized from the TwinCAT
runtime. For writing .mat files please use the TwinCAT File Writer block instead of the ToFile block of
Simulink®.

• Direct hardware access: Direct access to devices/interfaces requires a corresponding driver, e.g.
RS232, USB, network card, ...
It is not possible to access the device drivers of the operating system from the real-time context. At
present it is therefore not easily possible to establish an RS232 communication for non-real-time
operation with the Instrument Controller ToolboxTM and then use this directly in the TwinCAT runtime.
However, TwinCAT offers a wide range of communication options for linking external devices, see
TwinCAT 3 Connectivity TF6xxx.

https://www.beckhoff.com/de-de/produkte/automation/twincat/tfxxxx-twincat-3-functions/tf6xxx-connectivity/

From version 2.x.xxxx.x

TE1400 239Version: 2.1.1

• Access to the operating system API: The API of the operating system cannot be used directly from
the TwinCAT runtime. An example is the integration of windows.h in C/C++ code. This is integrated by
the Simulink CoderTM if the FFTW implementation of the FFT block from the DSP Systems ToolboxTM is
used (but not with the Radix 2 implementation), for example.

• Precompiled libraries: It is possible that during code generation by the Simulink CoderTM no platform-
independent C/C++ code is generated, but precompiled libraries are included. In these cases, no real-
time execution in TwinCAT is possible.

4.9.12 Message: Failed to copy repository
After activating the TwinCAT Configuration the following error message appears in TwinCAT XAE?

Failed to copy repository file ...

The cause is usually that no or not all files, especially the TMX drivers, were found in your engineering
repository. The TwinCAT XAE tries to copy the driver to the XAR system but does not find the correct file
(check if you have a driver for the target platform of the selected XAR system in the engineering repository).

Consequential error in the Error dialog in XAE is for example:

'TCOM Server' (10): Error loading repository driver 'C:\TwinCAT\3.1\Boot\Repository\<model
vendor>\<model name>\<version>\<tmx-name>' - hr = 0xc0000225

Since the TMX file could not be copied to the XAR system, it could not be loaded. Another consequential
error is a link error "Could not link external function".

ü Information and remedy for this error pattern:
1. What is the Engineering Repository and where can I find it?

ð See automatically created files [} 120].
2. How do I ensure that when copying compiled models to other XAE systems, all necessary files are

always transferred and the folder structure remains correct?

ð See TMX archive [} 135].

4.10 Samples
Samples provided by Beckhoff Automation are installed on your system with the TwinCAT Tools for
MATLAB® and Simulink® setup.

You can use the following command to display all available samples:
TwinCAT.ModuleGenerator.Samples.List

From version 2.x.xxxx.x

TE1400240 Version: 2.1.1

You can access the samples by clicking on the blue start link. To do this, the sample code is copied to your
user directory so that you do not change the original sample. You can work with the copy of the sample
accordingly and try it out.

Also available for displaying and starting individual samples:
TwinCAT.ModuleGenerator.Samples.Show(SampleName)

TwinCAT.ModuleGenerator.Samples.Start(SampleName)

The argument SampleName is to be passed as a string, e.g.:
TwinCAT.ModuleGenerator.Samples.Start(‘SimpleTemperatureController’)

Spaces in the SampleName are to be replaced with underline in the argument, e.g. "Combine Modules" ->
TwinCAT.ModuleGenerator.Samples.Start('Combine_Modules').

4.10.1 TwinCAT Automation Interface: use in MATLAB®

Short description of the Automation Interface

TwinCAT XAE configurations can be automatically generated and edited via programming/script codes using
the TwinCAT Automation Interface. The automation of a TwinCAT configuration is available thanks to so-
called Automation Interfaces, which can be accessed via all COM-capable programming languages (e.g. C+
+ or .NET) and also via dynamic script languages such as Windows PowerShell, IronPython or even the
(obsolete) Vbscript. Use from the MATLAB® environment is also possible.

Detailed documentation of the product can be found here: TwinCAT Automation Interface

Use in MATLAB®

The Automation Interface can be made visible in MATLAB® through the command NET.addAssembly. This
will enable you to use the interfaces (Automation Interface API) described in the product documentation. You
can also find many programming samples for use from C# and PowerShell (Automation Interface
Configuration).

In order to simplify the entry from MATLAB® for you, you can find below a sample implementation for
MATLAB® on the basis of a MATLAB® class, which you can use, modify and expand.

https://infosys.beckhoff.com/content/1033/tc3_automationinterface/45035996516387723.html?id=7264759537875803520
https://infosys.beckhoff.com/content/1033/tc3_automationinterface/63050395025936267.html?id=4055881424125395371
https://infosys.beckhoff.com/content/1033/tc3_automationinterface/243194380120724235.html?id=4247991296720270509
https://infosys.beckhoff.com/content/1033/tc3_automationinterface/243194380120724235.html?id=4247991296720270509

From version 2.x.xxxx.x

TE1400 241Version: 2.1.1

4.10.1.1 Sample: Tc3AutomationInterface

Overview

The sample code consists of two m-files:

• Tc3AutomationInterface.m: MATLAB® class that implements several frequently used methods.
• Tc3AutomationInterfaceGuide.mlx: MATLAB live script that calls the MATLAB® class as an example.

Call sample with MATLAB®

The TwinCAT Tool for MATLAB® and Simulink® Setup installs the sample on your system. Call the
sample with the MATLAB® Command Window:
TwinCAT.ModuleGenerator.Samples.Start('AutomationInterface').

The MATLAB® script

The MATLAB® script provides a sample of how you can generate a TwinCAT solution, scan the EtherCAT
master for I/Os, instantiate two TcCOM modules, link them and activate the project on a target.

In order to be able to run the script, the two TcCOMs used must be present in your publish directory
%TwinCATDir%\\CustomConfig\Modules\. For this, download the Temperature Controller sample from the
TE1400 | Target for MATLAB®/Simulink®. Then copy the file folder from the directory .
\TE1400Sample_TemperatureController_PrecompiledTcComModules\Actual TwinCAT versions\ into the
publish directory.

Run the m-file Tc3AutomationInterface_Testbench.m. The latest Visual Studio instance available on your
system is opened in the background and the TwinCAT solution is configured, saved and activated.

The MATLAB® class

The properties

All variables and interfaces belonging to the instance of the class are contained in the properties of the
Tc3AutomationInterface class. Hence, several TwinCAT solutions can be built up in a MATLAB® script by
generating an instance of the class for each solution. There are then no overlaps.

The constructor

function this = Tc3AutomationInterface

The constructor loads all necessary assemblies and, if successful, sets the AssembliesLoaded property to
TRUE. The loaded assemblies are:

• EnvDTE and EnvDTE80: libraries for the Visual Studio Core Automation. Necessary for the
configuration of Visual Studio.

• TCatSysManagerLib: TwinCAT Automation Interface library for the configuration of a TwinCAT solution
in Visual Studio.

• TwinCAT.Ads: ADS library, e.g. for reading and changing the XAR state.
• System.Xml: library for parsing XML files.

Selected methods of the class

function TcComObject = CreateTcCOM(this, Modelname)

Use the MATLAB® help functions in order to view the function and the parameters of the method.

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_matlab/45035996367654923.html?id=4700106595671081860

From version 2.x.xxxx.x

TE1400242 Version: 2.1.1

A link to the Beckhoff Infosys is also offered with some methods. These refer to documentation examples
from the TwinCAT Automation Interface documentation, so that you can directly view a comparison of the
implementation in MATLAB®, C# and PowerShell. You can also find a link to the Beckhoff Infosys in the
comment in some sections, allowing you to view the source of the information.

The CreateTcCOM method initially begins with the parsing of the <modelname>.tmc file, from which the
ClassID, the task cycle time and the task priority are extracted with System.Xml. A corresponding TcCOM is
then instantiated and one (or more) associated tasks generated with the Automation Interface. Finally, the
task is/tasks are assigned to the TcCOM.

function ActivateOnDevice(this, AmsNetId)

TwinCAT ADS is used in order to query or change the current status of a TwinCAT runtime, e.g. config or
run. In the ActivateOnDevice method the XAR is initially switched to the config mode with the specified
AmsNetId and the current TwinCAT configuration is then activated and the system started. Pauses are
entered between the individual steps, as this procedure may need a little time.

Static methods

Static methods are also available even without an instance of the class.

function vsVersions = GetInstalledVisualStudios

A function that detects and lists the Visual Studio installations available on the system via the Register Key
entries is prepared here. The implementation is limited to VS 2010 to VS 2017.

Documents about this
2 AutomationInterfaceMATLAB (Resources/zip/5776206091.zip)

4.10.2 Integrating the block diagram controls
The control that displays the block diagram in the TwinCAT XAE environment can also be integrated as a
control in your own visualizations.

The following steps are required:

1. Create a new Windows Forms application.
2. Add TwinCAT.BlockDiagram.dll to the toolbox:

From version 2.x.xxxx.x

TE1400 243Version: 2.1.1

3. To do this, select the "Choose Items..." entry in the context menu.

4. Navigate to TwinCAT.Blockdiagram.dll, which can be found under <TwinCAT installation
path>\3.1\Components\TcBlockDiagram.

From version 2.x.xxxx.x

TE1400244 Version: 2.1.1

5. Add a TcBlockdiagram control instance to the Windows Forms object using drag and drop.

4.10.3 Try out created TwinCAT objects yourself
ü You don't have MATLAB® or simply want to try out compiled TwinCAT objects with the TwinCAT Target

for Simulink®?
Then follow the description below.

1. https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/14632780043/.zip
2. Unzip the ZIP and execute the tmx archive.

ð The zip contains two tmx-archive [} 135] as executables.
3. Execute these.

ð This unpacks the TwinCAT objects into the correct TwinCAT path (Engineering Repository).
4. Open XAE and create instances.

ð You can now create new TcCOM objects in TwinCAT 3. You can find the two objects under "TE140x
Module Vendor" - TE140x - Simulink Modules.

5. Create the instances and assign a TwinCAT task.
6. Activate the configuration.
7. Include the certificate used for signing in the trust list of the target.

ð The target system must load the tmx files used. These bear a signature, created with an OEM
certificate. The OEM certificate used is probably not yet on the target system in the white list.

8. Add the certificate to the white list accordingly [} 95].
9. Activate the configuration.
ð After activating the configuration, you can observe the behavior of the objects and change parameters in

the block diagram [} 193].

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_Matlab/Resources/14632780043.zip

From version 2.x.xxxx.x

TE1400 245Version: 2.1.1

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/te1400

mailto:info@beckhoff.de?subject=TE1400
https://www.beckhoff.com
https://www.beckhoff.com/te1400

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Up to version 1.2.xxxx.x
	3.1 Installation
	3.2 Licenses
	3.3 Quickstart
	3.4 TwinCAT Library in Simulink®
	3.5 Parameterization of the code generation in Simulink
	3.5.1 Module generation (Tc Build)
	3.5.2 Data exchange (Tc Interfaces)
	3.5.2.1 Retain data

	3.5.3 External mode (Tc External Mode)
	3.5.4 Advanced settings (Tc Advanced)

	3.6 Application of modules in TwinCAT
	3.6.1 Parameterization of a module instance
	3.6.2 Executing the generated module under TwinCAT
	3.6.3 Calling the generated module from a PLC project
	3.6.4 Using the ToFile block
	3.6.5 Signal access via TwinCAT 3 Scope

	3.7 FAQ
	3.7.1 Does code generation work even if I integrate S-Functions into my model?
	3.7.2 Why do FPU/SSE exceptions occur at runtime in the generated TwinCAT module, but not in the Simulink model?
	3.7.3 After updating TwinCAT and/or TE1400 I get an error message for an existing model.
	3.7.4 Why do the parameters of the TcCOM instance not always change after a "Reload TMC/TMI" operation?
	3.7.5 After a "Reload TMC/TMI" error "Source File <path> to deploy to target not found
	3.7.6 Why do I have a ClassID conflict when I start TwinCAT?
	3.7.7 Why can the values transferred via ADS differ from values transferred via output mapping?
	3.7.8 Are there limitations with regard to executing modules in real-time?
	3.7.9 Which files are created automatically during code generation and publishing?
	3.7.10 How do I resolve data type conflicts in the PLC project?
	3.7.11 Why are the parameters of the transfer function block in the TwinCAT display not identical to the display in Simulink?
	3.7.12 Why does my code generation/publish process take so long?

	3.8 Examples
	3.8.1 TemperatureController_minimal
	3.8.2 Temperature Controller
	3.8.3 SFunStaticLib
	3.8.4 SFunWrappedStaticLib
	3.8.5 Module generation Callbacks
	3.8.5.1 Packaging module files into ZIP archives

	4 From version 2.x.xxxx.x
	4.1 Installation
	4.2 Licenses
	4.3 Setting up driver signing
	4.3.1 User certificates for delivery without test mode
	4.3.1.1 Request TwinCAT 3 user certificate
	4.3.1.2 Creation of the Certificate Request file for TC0008
	4.3.1.3 Determining the file fingerprint of the OEM certificate file
	4.3.1.4 Saving the signed TwinCAT user certificate

	4.4 Quick start
	4.5 TwinCAT Library in Simulink®
	4.5.1 TwinCAT Input and Output modules
	4.5.1.1 Subsystem inputs and outputs
	4.5.1.2 Automatic mapping
	4.5.1.3 DataArea or DataPointer
	4.5.1.4 Symbol properties
	4.5.1.5 Symbol Name
	4.5.1.6 Initial values

	4.5.2 TwinCAT Environment View
	4.5.3 TwinCAT File Writer

	4.6 Overview of automatically generated files
	4.7 Parameterization of the code generation in Simulink®
	4.7.1 Overview table of all configuration parameters
	4.7.2 Parameterization of the code generation via an m-file
	4.7.3 Bundling of several models in one TwinCAT driver
	4.7.4 Sharing created TwinCAT objects
	4.7.5 Creation of versioned drivers
	4.7.6 Configuration of data access to data of a TcCOM object
	4.7.6.1 Best practice: access to TcCOM data

	4.7.7 Shared memory between TcCOM instances
	4.7.8 Creating a module with OEM license query
	4.7.9 Integration of own C/C++ code
	4.7.10 Configuration of the TMX file properties
	4.7.11 Multitask, Concurrent Execution and OpenMP
	4.7.12 Symbol Properties and Attribute Pragmas
	4.7.13 Available placeholders
	4.7.14 Working with callbacks

	4.8 Application of modules in TwinCAT
	4.8.1 Working with the TcCOM module
	4.8.1.1 Parameterization of a module instance
	4.8.1.2 Parameterization of several module instances
	4.8.1.3 Working with the block diagram in TwinCAT
	4.8.1.3.1 Simulink®-TcCOM
	4.8.1.3.1.1 Using the block diagram
	4.8.1.3.1.2 Display signal curves
	4.8.1.3.1.3 Module parameterization in the block diagram
	4.8.1.3.1.4 Debug

	4.8.1.4 Online change of TcCOM at runtime
	4.8.1.5 To File Block and MAT-file logging
	4.8.1.6 Calling the TcCOM from the PLC

	4.8.2 Working with the PLC library
	4.8.2.1 Create and install PLC library
	4.8.2.1.1 Create and configure the PLC-FB
	4.8.2.1.2 Create and configure the TcCOM-Wrapper-FB
	4.8.2.1.3 Configuring and installing the PLC library

	4.8.2.2 Applying the TcCOM Wrapper FB
	4.8.2.3 Using the PLC function block (PLC-FB)
	4.8.2.3.1 Online Change of the PLC library

	4.8.3 Debugging
	4.8.4 Connecting to External mode
	4.8.5 Exception handling
	4.8.6 Using Realtime Monitor time stamps

	4.9 FAQ
	4.9.1 Change model parameters at runtime
	4.9.2 Build of a sample fails
	4.9.3 Problems with the block diagram representation in TwinCAT XAE
	4.9.4 Can I use TE1400 version 1.2.x and version 2.x at the same time?
	4.9.5 What is the difference between "Build" and "Generate code"?
	4.9.6 I can't change the parameters of a module in TwinCAT
	4.9.7 Mapping is lost with Reload TMI/TMC
	4.9.8 Integrating the block diagram controls in .NET
	4.9.9 Observable signals in the TwinCAT block diagram
	4.9.10 Using Simulink® Strings
	4.9.11 Are there limitations with regard to executing modules in real-time?
	4.9.12 Message: Failed to copy repository

	4.10 Samples
	4.10.1 TwinCAT Automation Interface: use in MATLAB®
	4.10.1.1 Sample: Tc3AutomationInterface

	4.10.2 Integrating the block diagram controls
	4.10.3 Try out created TwinCAT objects yourself

		documentation@beckhoff.com
	2024-01-04T12:18:20+0100
	Beckhoff Automation, Verl
	Documentation Publishing

