BECKHOFF

153000

TwinCAT 2 | PLC HVAC

Supplement |
Building Automation

2023-08-31 | Version: 1.2

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 9
1.1 Notes on the doCUMENTALION ... e e e e e 9
L o Y (o TN | T =Y |V PR SET R PPPPP 10
1.3 Notes on information SECUNITYcooiiiiiiii e e 11

2 12 o T T o N 12
P2 B - o T e | {0 TN o PSPPSR 12
2.2 UsSer requiremMeENnt Profil@..........ooiii oo 12
2.3 General technical CharaCteriStiCScccuuuiiiiiiiiiie e e e e e e e e e 13

2.3.1 Integration iNt0 TWINCAT ... 13
2.3.2 Hardware reqUIrEMENTS.uee i s e s e e e e e e e e e e e aeaeeeeeeeeeeeannees 13
2.3.3 ReEMANENT At@.....eiiiiiieeeeee e e e 13
234 Default ValUES ...t e e e e e e e e 13
2.3.5 Value range MONITOMINGuuiiiiiiiiieee e s e e e e e e e e e aeaaaaeeeeeeeeaeennnns 13

B 1T 4o e T o Lo o3 €= P 14

K Tt B o A O o1 (1 =1 (o] PSPPSR 19
3.1.1 FB_HVACZ2POINTACIUATION ... 19

3.1.2 FB_HVAC3POINTACIUALONuuiiiiiiiiieeee e a e 21

3.1.3 FB_HVACCIrCUIatioNPUMDP ..ot e 23

3.1.4 FB_HVACCIrculationPUMPEXoooiiiiiie e 26

3.1.5 FB_HVACMOOITSPEEAottt e e a e e 37

3.1.6 FB_HVACMOIOr2SPEEA ...ttt ettt e et e e e 41

3.1.7 FB_HVACMOIOr3SPEEMttt e e e e e eeeeaaaaeeas 47

3.1.8 FB_HVACREAUNANCYCHI.....uvuiiiiiiiiieeee et a e e 54

3.1.9 FB_HVACREdAUNAANCYCHIEX. ..ottt 57

3.2 HVAC ANAIOG MOAUIEScooeiiiiiiieeiiiiiie ettt e et e e e ettt e e e e et e e e s ensaeeeesansseeeaesansnneeeesnnsneeeas 59
3.21 FB_HVACANAIOGINDUL ...ttt e e e e e e e e e e e e e aaae s 59

3.2.2 FB_HVACANAIOGOULPUL. ...t e e e e e e e e e e e e e aeee s 62

3.2.3 FB_HVACANAIOGOULPULEXveiiieiiiiiiie ettt e 64

3.24 FB_HVACANAIOGTOZPOINTeiiiiiiiiiie e 68

3.2.5 FB_HVACCONFIGUIEKLI2XXeetiiiiiiiee ettt 74

3.2.6 FB_ HVACSCAIE.cciiiiiiiiie ettt et e e et e e e e nnbae e e e e ennees 78

3.2.7 FB_HVACSCAlE_NPOINT ... 80

3.2.8 FB_HVACTEMPEIAtUIECUIVEceeiiieeeie et ea e e e 84

3.2.9 FB HVACTEMPEratUrESENSOrcciiiieeeeiieeciitie ettt e e e e e e e e e e e e e e e rreaaaaaaee s 89
3.210 FB_HVACTEeMPEratuUreSENSOIEXcooiiiiiiiiieeeie e e e e e e e 92
3.211 FB_HVACTEMPEratuUreSENSOIEXcccoiiiiiiiiiiiiiie et 95

3.3 HVAC ROOM FUNCHONS ...ttt ettt e e e e e e e e e e e e e e ae e e e e e snnsnbenneneeaeaeens 99
3.3.1 AN CONAITIONING ...ttt e s e e e e e e e 99

3.3.2 (070]] (1] 1LY SRR EPT 112

3.3.3 [T o111 a o TSSOSO PRSPPI 116

3.34 S TU gl o o] g (=Tex i o] OO UTPPPPRP 144

3.35 Program @XamMPIE e e et ———————— 229

3.3.6 Structures and ENUMEIatioNooi et e e e e e e e e e 231

3.3.7 LiSt AESCIIPLIONS .t e e e e e e e e e ————— 237
TS8000 Version: 1.2 3

Table of contents BEGKHOFF

K o A O @] 1] 1= PRSP RRR 246
3.4.1 FB_ HVACZ2POINICH ... ettt ettt e e e et e e e e eab e e e e e eraeaeeeaans 246
3.4.2 = o Y AN O [03 (1] 1= o PSP PPEROPRRRR 248
3.4.3 FB_HVACI_CHIISIEPEX ..eeiiiiiiiiiie ettt e e ettt e e e e enteeeeeeanes 258
3.4.4 FB_ HVACPIDCH ...cciiiieiee ettt ettt e e s et e e e e e st e e e e s ensaeaeeeeans 267
3.4.5 FB_HVACPIDCHT _EX...utiiiieiiiiiiee ettt ettt e e et e e e e s st e e e e e annaeaaeeanns 269
3.4.6 FB_HVACPOWErRaNGETabIec.ueiiiiiiiiee e 275
3.4.7 SeqUENCE-CONLIOIIET ... et e aannnes 287

3.5 HVAC SetpOiNt MOTUIESoeeiiiiiie it e e e e e e e e e e et eeeaaae e 326
3.5.1 FB_HVACHEAtINGCUIVE........ ittt e e ee e 326
3.5.2 FB_HVACHEatiNGCUIVEEXeeiiiiiiiieii e 328
3.5.3 FB_HVACOUtSIdeTEMPDAMPETccocoiiiiiiiiieee e a e 332
3.54 FB_HVACSetpointHEatingcooiiiiiiiiiiie e 333
3.5.5 FB_HVACSEtpOINtRAMPuuiiiiiiiiiiieecee e 335
3.5.6 FB_HVACSUMMErCOMPENSAtIONcciiiiiiiiie ittt eeee e 337

3.6 HVAC SpeCial fFUNCHONS ...ttt e e e e e e e e e e e e e eaaaaeens 340
3.6.1 FB_HVACAIrConditioniNg2SPEed.........coiiuiiiiiiiiiiiie ettt snaeee e 340
3.6.2 FB_ HVACAIGIM ...ttt e e e et e e e st e e e e s et e e e s e eabaeeeessbreneeeaans 344
3.6.3 FB_HVACANtBIOCKINGDAMPET ...ttt a e e e e 345
3.6.4 FB_HVACANGBIOCKINGPUMP ...ciiiiiiiie et 347
3.6.5 FB HVACBIINK .. .eeiiiiicieie ettt e e et e e e e st e e e s et e e e e e esbaaeeesssaeaeeeaans 350
3.6.6 FB_HVACCMACHIT 8 ...ttt e et e e e et e e e s sbbe e e e e s enrneaeeeanns 351
3.6.7 FB_HVACCMACHISYStEMISIAgEcc et 361
3.6.8 FB_HVACCMACHISYSteM2Stageccoiiiiiiiei it 369
3.6.9 FB_ HVACCONVEMENUM.......uuiiiiiiiiieie ettt e e e e et eaa e e e 383
3.6.10 FB _HVACENNAIPY ...ttt et e e et e e et e e e e sbaeaeaeanns 384
3.6.11 FB_HVACFIXEALIMILeiiiiiiiiiiiie ettt e e et e e e e snte e e e e s annneaeaeanns 386
3.6.12 FB_HVACFreezeProtectionHeaterc.ouvviiiiiiiiiie e 388
3.6.13 FB_ HVACMUXSooiiiiteiie ettt ettt e et e e e et e e e s et e e e s s anbaeeeessbreeeaeanns 390
3.6.14 FB_HVACMUX _INT 6. ciiiiiiiiiieeiiiiiie ettt e e s st ee e e e s entee e e e s snteeeeesennneaeeeanns 392
3.6.15 FB_HVACMUX INT _8 ... ittt ettt e e st e e e e snte e e e e e annaeeeeeanes 396
3.6.16 FB_HVACMUX REAL_TBeiiiiiiiiiiiie ettt sttt ettt e et e e e s satae e e e s entneneeeanes 400
3.6.17 FB_HVACMUX _REAL_8 ...ttt e ettt e et e e e s antaeeeeeanes 404
3.6.18 FB_HVACOVErWITEANAIOGcoiiiiiiiiie ittt e e e e e e 407
3.6.19 FB_HVACOVErWwriteDiIgitalccccuuiiiiiiiiiiie et e e e enrreeeeeanes 408
3.6.20 FB_HVACPowerMeasurementKL3403oooiiiiiiiiiiiiiiiiiieeeee e 408
3.6.21 FB_HVACPowerMeasurementKL3403EX.........ccuueiiiiiiiiiiieiiiiee e 411
3.6.22 FB_HVACPIONtY INT 16, ittt ettt e et e e e snt e e e e e snnneeeeeanes 414
3.6.23 FB_HVACPIONItY INT _ 8. ittt e et e e e et eeeeanes 419
3.6.24 FB_HVACPIOrity REAL M6oiiiiiiiiiiee et eetiee et ettee e e st e e e s staae e e e s enbneaeeeanes 423
3.6.25 FB_HVACPrOrity REAL_8.....oiiiiiiiiiiie ettt e et e st e e e s ennaeeeeeanes 428
3.6.26 FB_HVACOPHMIZEAON....cciiiiiiiii it e e eeeeanes 431
3.6.27 FB_HVACOPHMIZEAOSTttt e e e reeeeeanes 441
3.6.28 FB_HVACTemMpChangeFuNCHONcccuiiiiiiiieiee et 452
3.6.29 FB _HVACPWNMooiiiitiiie ettt et e et e e e st e e e e et e e e s s aabae e e e s sbreaeaeanns 454
3.6.30 FB_HVACStartAirConditioNinNg.......c.ueiieiiiiiiee ettt e e e e e s enraeeeeeanes 457

4 Version: 1.2 TS8000

BEGKHOFF Table of contents

3.6.31 FB_HVACSUMMErNIghtCOOINGcciiiiiiiiiieeeee e 461
3.6.32 FB_HVACSUMMErNIightCOOlINGEXcoiiuiiiiiiiiiiiee e 464
3.6.33 FB_HVACTIMECON ...ttt ettt et e e e ettt e e e e ent e e e e snntneaeesansaeeeeeanns 470
3.6.34 FB_HVACTIMECONSEC.......uuuiiiiiiiiiiee ettt e e e e e e e e e e e st eeeaaaaaeeeas 471
3.6.35 FB_HVACTIMECONSECMS ..ottt e e e e e e e e eeeeeaeee e as 471
3.6.36 FB_HVACWOIKoiiiiiiiiiii ettt e e et e e e e ettt e e e e s nntaeeeessnnaeeeaeanns 472

3.7 HVAC TiME SCREAUIEueeiieiiieeee ettt e e e e e e e e e e e e e e e e s e e e neraaneeeaaaeeeas 474
3.7.1 FB_HVACSChEAUIEI TCN. ...ttt e et e e e e entreaee e e 474

3.7.2 FB_HVACSCREAUIEITCN ...ttt ae e 477

3.7.3 FB_HVACScheduler7TCHAaNAIINGccooiiviiiieeieiieee ettt 481

3.74 FB_HVACSChEAUIEI28CN.......eeiiiiiieiiee ettt ereeae e 482

3.7.5 FB_HVACSCcheduler28TCHAaNAINGcoiiuiiiieeiiiiiiee et 486

3.7.6 FB_HVACSchedulerSpecialPeriodsccooiiiiiiiiiiieiecciiieeee e 486

3.7.7 FB_HVACSchedulerPubliCHONAAYScuueiiiiiiiiiie e 489

3.8 HVAC SYSIEIM ..ttt ettt e e et e e e ettt e e e e nb e e e e e e nbee e e e e nnees 492
3.8.1 FB_HVACGEtSYSIEMTIMEot 492

3.8.2 FB_HVACNOVRAMDataHANAINGccoiiiiiiiieiiiiiiee ettt 493

3.8.3 FB_HVACPersistentDataHandliNgccueiiiiiiiiiiie e 497

3.84 FB_HVACPersistentDataFileCopyccoiiieiiiieeieee e 499

3.8.5 FB HVACSEILOCAITIME.uuiiiiiiiiieiie et e e e e e e 500

3.8.6 FB_HVACSYSteMTasKINO........coiiiiiiiei e 502

L2 S = = ed [T o 30 T o T2 T o o Lo Y o 1 503
4.1 BackupVar NOVRAMoooii ittt e et e e e et e e e e et e e e e e sab e e e e e esbeeeeeeanseeeaeessreeeeeennsees 503
411 FB_HVACNOVRAM_BOOL........ciiiiiiiiiie ettt e e e st e e e e sntaeeeeeanns 503

4.1.2 FB_HVACNOVRAM_BYLE.. ...ttt e et e e e e enbaeeeeeanes 503

41.3 FB_HVACNOVRAM_DiNt ..ottt e e et e e e s st a e e e s enraeeeenanns 504

4.1.4 FB_HVACNOVRAM_DWOFAoiiiiiiiiiiieeeiitiiiee ettt e e ettt e e s sttee e e e s sntseeeessneeeeeesanseeeaesanns 504

4.1.5 FB_HVACNOVRAM INt..iiiiiiiiiii ettt e et e e e e etaeee e e 505

4.1.6 FB_HVACNOVRAM_LIEAI......uiiiiiiiiiiie ettt ettt e et e e e st e e e e e enreeaaaeanes 505

4.1.7 FB_HVACNOVRAM_REAIoiiiiiiiiiiiii ettt ettt e e enaeee e 505

4.1.8 FB_HVACNOVRAM _SiNt..cciiiiiiiiiiciiiie ettt e e et e e e s st e e e e e sntaeaaaeanns 506

419 FB_HVACNOVRAM _TIME .. .tiiiiee ittt e ettt e e et e e e st e e e s snteaaeessnraeeeeeanns 506
4110 FB_HVACNOVRAM_UINT ..ottt 506
4111 FB_HVACNOVRAM UINt ..oiiiiiiiiiiicie ettt nee e e nnnneeeeas 507
4112 FB_HVACNOVRAM _USINt..cciiiiiiiiiiiiiie ettt enneee s 507
4113 FB_HVACNOVRAM WOIQ ...ttt ettt e s e enanna s 507

4.2 BackupVar Persistent... ... ittt e e e e e e e e 508
4.2.1 FB_HVACPErSISIENT BOOIceeiiiiiiiiiiiiiiceeee et 508

422 FB_HVACPeErsiStent_Byteoooiiiiiiiiii e 509

4.2.3 FB_HVACPeErsistent Dint..........ooooiiiiiiiiiiieeee e 509

4.2.4 FB_HVACPErSIStENT DWOIdcoiiiiiieiiii ittt aa e e 509

425 FB_HVACPeErsIStent INt..... ... e e e e 510

4.2.6 FB_HVACPErSISIENT LI€aAl.......uueiiiiiiiiiiiiiiceeeee e 510

4.2.7 FB_HVACPersistent_Realcooiiiiiiiiii e 510

4.2.8 FB_HVACPeErSIStENt SNt ...t a e e 511

429 FB_HVACPErSISIENT SriNGevveiiiiiiiiiiii ittt 511

TS8000 Version: 1.2 5

Table of contents

BECKHOFF

4210 FB_HVACPersistent StruCt.........cccccceeieeiiiiiiiiiiiiiieeieeeeee e,

4211 FB_HVACPersistent_Time.......cccceeiiiiiiiiiiiiie e

4212 FB_HVACPersistent_ Udint...............ccciiiie,
4213 FB_HVACPersistent_ Uint........cccccviiiiiiiiiiiiiiiiiiieeeeee e,

4214 FB_HVACPersistent_Usint ...
4.2.15 FB_HVACPersistent Word.........cceeeviiiiiiiiiiiiiiiiiieeeeeeeeeeeee,

5 FUNCHIONS ... e
51 F_ROUNALREALooiiiiiiiie ettt
52 F_ROUNALREAL EX ..ottt

6 Enumerations and Structures
E_HVAC2PoiIntActuatorModeooociiiieiiiiiieee e
E_HVAC2POINICHIMOEcoeiiiiiieieeeeeee e
E_HVAC3PoIntActuatorModeccuveeeeiiieeeeieccceeee e
E_HVACACIUAtOrMOAEooiiiiiiiiieiie e
E_HVACAIrConditioning2SpeedModeccceveeiiiiiiieeeiiiiee e
E_HVACANalogOUtputMOde ...
E_HVACANBIOCKINGMOE ...
E_HVACBuUsTerminal_KL32XX........cccciuuuiiiiiiieeeeeecccciiieeee e
E_HVACCHIMOAEoeeeieeiiieiee e
E_HVACCONVECHONMOAEooeeiieieee e
E_HVACDataSeCUrity TYPEccooiiiiiiieeeee et
E_HVACEIMTOrCOUEScoeiiiiiiiieiiiiiie et
E_HVACEXternalMOde...........oooviiiiiieieiceee e
E_HVACExternalRequestModecceeeveiieeiiiiiiiiiiieeeeee e
E_HVACPIANIMOAE ... et
E_HVACPowerMeasurementMode.............ccoeeiiiiiiiiiiiiiiieiiee e
E_HVACReferencingMOdecooeiiiiiiiieiiiiee e
E_HVACRegOULSIETEeMP ...coee et
E_HVACREGPUMPcuiiiiiiiiiiiee et
E_HVACREGVAIVEooiiiiiiiiee e
E_HVACSENSOITYPE ..ttt e e
E_HVACSequenceCtrIModecccuviiiiiiiiiie et
E_HVACSetpointHeatingMode ..o
E_HVACSEtPOINIMOTE.....ceeeiiiiieieieeceeeeeee et
E HVACSHALE oot
E_HVACTemMperatureCuUrVe. ...t
E_HVACTemperatureSensorMode..............ccceeeiiiiiiiiiiiiiieieeeee e
ST_HVAC2PoINtCLISEQUENCE........eeiiiiiiiiiiie e
ST _HVACAQGIregatecceeiiiiiiiie ittt
ST _HVACCMACHH_8Param..........cccoiiiiiiiiiiiiiiiieeee e
ST_HVACCMACH_8Stateeeeeiiiiiiiiiiiieee e
ST _HVACHOIAAYcuviiieeiiiieiee et
ST _HVACI_CH et
ST HVACPEMOA ..ottt e e a e esnaee e an
ST _HVACParameterScale nPoint...........ccevveiiiiiiiiiiiiiiiiiieeeee e,

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35

Version: 1.2

TS8000

BECKHOFF Table of contents

6.36 ST _HVACPOWEIMEASUIEIMENT ...ttt e e e e e e e e e e e e e e e e et eeeaaaeeeas 527
6.37 ST_HVACPOWErMeasuremMeENTEXoooiiiiiiiiiiie e 527
6.38 ST_HVACPOWEIRANGETADIEccciiiiiiiiieiiiiit ettt e e e e e e e e e e e e neees 527
6.39 ST _HVACTIMECNANNENoeeeiiiiiie e e e e e e e e e e e e e e e st ab e e e eaaaeeeas 528
6.40 ST_HVACTempChangeFUNCLONuuiiiiiiie e e e e e e e e e e 529
A 2] 1= Lo SO 530
7.1 Calculation of switching time when changing SEQUENCEcooiiiiiiii i 530
A = - 12 1] o] (S o] (o) =T ! (PRSP 531
7.3 VAR _GLOBAL CONSTANT ...ttt ettt ettt ettt e et e e e et e e e e e e e e e et ae e e e e e abaeeeeasnsbeeeeeeansees 531
7.4 Table of sequence controller operating MOAESuuuiiiiiiiiii e 531

TS8000

Version: 1.2 7

Table of contents BECKHOFF

8 Version: 1.2 TS8000

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwWinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TWinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

—
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TS8000 Version: 1.2 9

Foreword BECKHOFF

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:
1 recommendations for action, assistance or further information on the product.

10 Version: 1.2 TS8000

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TS8000 Version: 1.2 1

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction BEGKHOFF

2 Introduction

Foreword

Comfort, energy efficiency and low operating costs as well as quick return of investment, are demands of
today’s building automation systems. These requirements can be reached by using integrated control system
that can combine all functions of building in to one interoperable platform.

TwinCAT PLC HVAC library includes all needed functionalities for heating, cooling and ventilation systems
and also for room automation controls. These functionalities are available as TwinCAT PLC function blocks
that can be programmed and combined together to reach energy efficient controlling of building. By using
these well tested function blocks, it is easy to realize complex building controls and hence reduce
engineering time. Freely programmable controllers and modular I/O-system from Beckhoff, makes it possible
to reduce life time costs of the control system when demands of the building are changing.

Room automation function blocks for air-conditioning, lighting and shading can be combined in order to
reach energy efficient class A according to EN15232 standard.

This results in the following advantages for the system programmer in creating the system and for the
system operator in running operation:

» Fast creation of system programs.

* Fast parameterization and commissioning of the systems.

» Guarantee of a very large range of system functions at all times.

« Transparency of programs (prerequisite for long-term maintainability and expandability of the systems)
* Once created, good reusability of templates for systems or system subassembilies.

» Easy training of staff.

+ Easy expansion and modification of existing systems.

+ Specifications for a clear, object-oriented structure for the creation of visualization objects in MMI and
SCADA systems.

* Programs are easier to document.

2.1 Target groups

This software library is intended for building automation system partners of Beckhoff Automation GmbH. The
system partners operate in the field of building automation and are concerned with the installation,
commissioning, expansion, maintenance and service of measurement and control systems for the technical
equipment of buildings.

2.2 User requirement profile

The user of this library is required to have basic knowledge of the following.
« TwinCAT PLC Control
» TwinCAT System Manager
* PCs and networks
+ Structure and features of the Beckhoff Embedded PC and its bus terminals
» Technology of heating, ventilation, air conditioning and sanitary systems
» Relevant safety regulations for building technical equipment

12 Version: 1.2 TS8000

BECKHOFF Introduction

2.3 General technical characteristics

2.31 Integration into TwinCAT

Development Environ- |Target System TwinCAT PLC libraries standard TwinCAT PLC

ment to include libraries to include

TwinCAT v2.10 from Build |PC or CX (x86) TcHVAC.lib; TcBase.lib;

1302 CX (ARM) TcFloatPC.lib; TcloFunctions.lib;
TcBaseMath.lib; TcPlcCoupler.lib;
TcMath.lib TcSystem.lib;

TcUtilities.lib
2.3.2 Hardware requirements

The HVAC library is usable on all PC-based hardware platforms. The ideal target platforms for heating,
ventilation, air conditioning and sanitary applications are the Embedded PCs from the CX series.

2.3.3 Remanent data

The controllers have either a NOVRAM and/or a flash for saving remanent data.

For automatic saving after a parameter change the IN_OUT variables are monitored for change of their
values. In the event of a change, an internal variable in the library is triggered, with which the function blocks
FB_HVACNOVRAMDataHandling or FB_HVACPersistentDataHandling are activated.

The IN_OUT variables are saved in a binary file in the flash if eDataSecurityType:=
eHVACDataSecurityType _Persistent. The prerequisite for this is a single instancing of the function block
FB_HVACPersistantDataHandling. Writing of the IN_OUT variables is deactivated if eDataSecurityType:=
eHVACDataSecurity Type_Idle.

Nevertheless, the variables must be allocated or addressed for remanent storage. They will then be saved in
the NOVRAM in the event of a change of value. The prerequisite for this is the instantiation of the
FB_HVACNOVRAMDataHandling function block, as well as an instance of the respective data type that is to
be saved.

Example: an instance of FB_ HVACNOVRAM_Byte must be used in the case of a variable of type BYTE.

NOTICE

Flash destruction

An IN_OUT variable that has been declared as persistent must not be written cyclically if
eDataSecurityType: = eHVACDataSecurityType Persistent, since otherwise the flash will be prematurely
destroyed. Regarding this subject, it is strongly recommended that you read the documentation on the
function blocks FB_HVACNOVRAMDataHandling or FB_HVACPersistentDataHandling and familiarize
yourself with the examples contained in the documentation!

2.3.4 Default values

Default values are declared inside the function block for all system parameters. When the controller is
restarted, a check is made as to whether values already exist in the NOVRAM or flash of the controller. If
values exist in the binary file in flash or NOVRAM, they will be written back automatically to the IN_OUT
variables during the first cycle. Hence, the controller starts automatically with the last saved remanent data.

The default values can be activated at any time by a rising edge at the input variable bSetDefault.

2.3.5 Value range monitoring

A value range is defined for each input parameter of the function block. After the input of a value out of its
premissible range the last valid value is automatically written back by the function block. The attempt to input
an invalid parameter value is indicated by a TRUE at the output variable binvalidParameter. The variable
binvalidParameter can be reset by a rising edge at the input variable bReset.

TS8000 Version: 1.2 13

Function blocks

BECKHOFF

3 Function blocks

Function blocks

HVAC Actuators
Name Description
FB HVAC2PointActuator [»_19] Control two-point valves or two-point dampers

FB HVAC3PointActuator [» 21]

Control three-point valves or three-point dampers

FB HVACCirculationPump [P 23]

Control pumps

FB HVACCirculationPumpEx [» 26]

Control pumps; switch -on conditions of bPump are different in
comparison with FB_HVACCirculationPump

FB HVACMotor1Speed [» 37]

Control a single-speed drive

FB HVACMotor2Speed [» 41]

Control a two-speed drive

FB

HVACMotor3Speed [P 47]

Control a tree-speed drive

FB_ HVACMux8 [P 390]

interpret the FIFO memory of the FB_HVACRedundancyCtrlEx

FB HVACRedundancyCtrl [» 54]

Control a certain of number (e.g. 8 pumps) dependent on working
hours

FB_HVACRedundancyCtrlEx [» 57]

Control a certain of number (e.g. 8 pumps) dependent on working
hours; the working hours have to be specified externally as hourly
values via VAR_INPUT

HVAC Analog modules

Name

Description

FB HVACAnaloglnput [»_59]

Acquisition analog input signal

FB HVACAnalogQutput [»_62]

Control continuous actuators

FB HVACAnalogOutputEx [P 64]

Control continuous actuators with a integrated scale function

FB HVACAnalogTo3Point [P 68]

Convert an analog signal into a three-point step signal

FB_HVACConfigureKL32xx [P 74]

Parameterization the connected analog sensor via TwinCAT PLC

FB HVACScale [» 78]

Scale function block

FB HVACScale nPoint [» 80]

replication characteristic curves

FB HVACTemperatureCurve [P 84]

represent a temperature curve

FB HVACTemperatureSensor [» 89]

Acquisition temperature values in 1/10°C, is matched to the
KL320x bus terminals

FB HVACTemperatureSensorEx [» 92]

Acquisition temperature values in 1/10°C, is matched to the
KL320x bus terminals; without the second order filter, therefore
with a smoothing function

FB HVACTemperatureSensorEx2 [» 951

Acquisition temperature values in 1/10 or 1/100°C, is matched to
the KL320x bus terminals; without the second order filter,
therefore with a smoothing function

HVAC Controller

Name

Description

FB HVAC2PointCtrl [»_246]

2-point controller

FB HVAC2PointCtrISequence [P 290]

2-point sequence controller

FB HVACBasicSequenceCtrl [» 298]

general sequence controller

FB HVACI CtriStep [P 248]

The function block serves the sequential control of power
generators

14

Version: 1.2 TS8000

BECKHOFF

Function blocks

Name

Description

FB HVACI CtrIStepEx [»_258]

The function block serves the sequential control of power
generators

FB HVACMasterSequenceCtr| [» 301]

master controller in a AC-plant

FB HVACPIDCooling [»_303]

PID cooling controller

FB HVACPIDCtrl [»_267]

PID-Controller

FB HVACPIDCtrl Ex [P 269]

PID-Controller extended

FB_HVACPIDDehumidify [P 306]

PID dehumidification controller

FB HVACPIDEnergyRecovery [P 309]

PID heat recovery controller

FB_HVACPIDHumidify [» 313]

PID humidification controller

FB HVACPIDMixedAir [P 317]

PID mixed air chamber controller

FB HVACPIDPreHeating [»_320]

PID pre-heating controller

FB HVACPIDReHeating [P 323]

PID reheating controller

FB HVACPowerRangeTable [P 275]

represents a power range table and serves the sequential control of
power generators such as boilers or refrigeration machines

HVAC Setpoint modules

Name

Description

FB HVACHeatingCurve [F_326]

Calculation the supply temperature depending on the outside
temperature with four bases

FB HVACHeatingCurveEx [» 328]

Calculation the supply temperature depending on the outside
temperature

FB HVACOutsideTempDamped [P 332]

Calculation the damped outside temperature

FB HVACSetpointHeating [» 333]

Control an heating circuit with different operating modes

FB HVACSetpointRamp [P_335]

Moving setpoint ramp

FB HVACSummerCompensation [P 337]

summer compensation

HVAC Special functions

Name

Description

FB_HVACAIirConditioning2Speed [340]

Controls AC-plant with two-speed fans

FB HVACAIlarm [»_344]

alarm function block

FB HVACAntiBlockingDamper [P 345]

prevents the blockage of an damper

FB HVACANtiBlockingPump [» 347]

prevents the blockage of a pump

FB HVACBIink [»_350]

flashing sequence

FB HVACCmdCtrl 8 [»_351]

With the function block can single aggregates of a plant
in a certain order sequentially on or be turned off.
FB_HVACCmACtrl_8 can be used as start condition of a
ventilation system.

FB HVACCmdCtrISystem1Stage [» 361]

system switch one-stage

FB HVACCmdCtrISystem2Stage [» 369]

system switch two-stage

FB HVACConvertEnum [» 383]

converts an Enum into an integer value and vice versa

FB HVACEnthalpy [»_384]

calculate the dew point, the specific enthalpy and the
absolute humidity

FB _HVACFixedLimit [»_386]

Limit value switch

FB HVACFreezeProtectionHeater [P _388]

freeze protection

FB_ HVACMUX INT 16 [P 392]

contains two different types of multiplexers

FB HVACMUX INT 8 [» 396]

contains two different types of multiplexers

TS8000

Version: 1.2 15

Function blocks

BECKHOFF

Name

Description

FB HVACMUX REAL 16 [»_400]

contains two different types of multiplexers

FB_HVACMUX_REAL_8

contains two different types of multiplexers

FB HVACOverwriteAnalog [» 407]

manual overwrite analog

FB_ HVACOverwriteDigital [» 408]

manual overwrite digital

FB HVACPowerMeasurementkKL3403 [» 408]

control a 3-phase power measurement terminal KL/KS
3403

FB HVACPowerMeasurementkKL3403Ex [P 411]

compared with the

FB_HVACPowerMeasurementKL3403 the results are

frequencies of the three phases.

FB HVACPriority INT 16 [r 414]

can be used to prioritise events or as a multiplexer.

FB _HVACPriority INT 8 [» 419]

can be used to prioritise events or as a multiplexer.

FB HVACPriority REAL 16 [P 423]

can be used to prioritise events or as a multiplexer.

FB HVACPriority REAL 8 [P 428]

can be used to prioritise events or as a multiplexer.

FB_ HVACOptimizedOn [» 431]

Turns the heating/cooling on before the building is
occupied with a self adapting timetable

FB_HVACOptimizedOff [» 441]

with a self adapting timetable

FB HVACTempChangeFunctionEntry [» 452]

Entry function for FB_HVACOptimizedOn /
FB_HVACOptimizedOff

FB HVACPWM [»r 454]

PWM

FB_HVACStartAirConditioning [P 457]

start program for an AC-plant

FB HVACSummerNightCooling [P 461]

Summer night cooling

FB HVACSummerNightCoolingEx [» 464]

Summer night cooling

FB HVACTimeCon [» 470]

converts a TIME variable to three UDINT variables
(udiSec, udiMin, udiHour)

FB HVACTimeConSec [» 471]

converts a TIME variable into an UDINT variable
(udiSec)

FB HVACTimeConSecMs [» 471]

converts a TIME variable into two UDINT variables
(udiSec, udiMs)

FB HVACWork [» 472]

working hours counter

HVAC Time schedule

Name

Description

FB HVACSchedulerich [P 474]

Weekly time switch with 1 time switch channel

FB HVACScheduler7ch [P 477]

Weekly time switch with 7 time switch channel

FB HVACScheduler7TCHandling [» 481]

this FB can be used to select and modify an individual line
from the data array of a weekly timer

FB HVACScheduler28ch [P 482]

Weekly time switch with 28 time switch channel

FB HVACScheduler28TCHandling [» 486]

this FB can be used to select and modify an individual line
from the data array of a weekly timer

FB HVACSchedulerSpecialPeriods [» 486]

Yearly timer switch with day, month and exactly time

FB_ HVACSchedulerPublicHolidays [» 489]

Yearly timer switch with day and month

HVAC System

Name

Description

FB HVACGetSystemTime [> 492]

an internal clock can be implemented in the TwinCAT PLC

FB HVACNOVRAMDataHandling [P 493]

FB, it is necessary to start an instance in the main program

16

Version: 1.2

available in LREAL format. The output is extended by the

Turns the heating/cooling off before the building is empty

TS8000

BECKHOFF

Function blocks

Name

Description

FB HVACPersistentDataHandling [» 497]

FB, it is necessary to start an instance in the main program

FB_HVACPersistentDataFileCopy [P 499]

to copy binary data on the local TwinCAT PC or from a remote
TwinCAT PC to the local TwinCAT PC

FB HVACSetLocalTime [P 500]

sets the local Windows system time and the date

FB HVACSystemTaskInfo [P 502]

determines system variables of the task

HVAC Backup Function blocks

Name

Description

FB HVACNOVRAM xyz [P 503]

FBs for standard data types

FB HVACPersistent xyz [» 508]

FBs for standard data types

Room function Lighting

Name

Description

FB BARLightActuator [»_130]

This function block serves to control a conventional light actuator

FB BARLightCircuit [»_133]

This block represents a simple light circuit without a dimming function

FB BARLightCircuitDim [» 134]

This block represents a light circuit with a dimming function.

FB BARAutomaticLight [» 117]

Function block for an automatic light circuit as used in corridors or
sanitary facilities.

FB_BARStairwellAutomatic [P 138]

Function block for a stairwell light circuit.

FB BARTwilightAutomatic [P_140]

Automatic twilight function.

FB BARDaylightControl [»_126]

Daylight switch without dimming.

FB BARConstantLightControl [P _119]

constant light control function block

Room function Shading (see also Overview)

Overview [» 144]

Name

Description

FB BARBIlindPositionEntry [» 160]

Shading protection: Entry of blind-positions

FB BARSunblindEvent [P _197]

This function block serves to preset the position and angle for
any desired event.

FB BARSunblindWeatherProtection [» 218]

weather protection function

FB BARSunblindSwitch [»_206]

manual operating mode

FB BARSunblindScene [203]

manual operating mode with scenes

FB BARSunblindTwilightAutomatic [» 216]

Automatic twilight function.

FB BARSunblindThermoAutomatic [P 209]

Thermo automatic

FB_BARSunProtectionEx [P 221]

Function block for the control of glare protection with the aid
of a louvered blind.

FB BARShadingObjectsEntry [P 182]

Shading correction: imported data objects by FB

FB BARReadShadingObjectsList [P 173]

Shading correction: imported data objects by file

FB BARFacadeElementEntry [P_164]

Shading correction: imported data elements by FB

FB BARReadFacadeElementList [P 168]

Shading correction: imported data elements by file

FB BARShadingCorrection [» 176] /
FB BARShadingCorrectionSouth [» 179]

Shading correction FB

FB BARDelayedHysteresis [P 163]

This function block represents a threshold switch for
brightness

TS8000

Version: 1.2 17

Function blocks

BECKHOFF

Name

Description

FB_BARWithinRangeAzimuth [P 224]

This function block checks whether the current azimuth angle
(horizontal position of the sun) lies within the limits entered

FB BARWithinRangeElevation [P 226]

This function block checks whether the current angle of
elevation (vertical position of the sun) lies within the limits
entered.

FB BARSunblindPrioritySwitch [P 198]

Priority controller for up to 9 positioning telegrams

FB BARSunblindActuator [»_185]/
FB BARSunblindActuatorEx [» 190]

Sunblind Actuator

FB BARSMISunblindActuator [P _196]

SMI Sunblind Actuator

FB BAROollerBlind [» 200]

Rollerblind Actuator

FB _BARSMIRollerBlind [»_202]

SMI Rollerblind Actuator

Room functions controller

Name

Description

FB BARPICtrl [P 112]

Simple PI controller with input via the proportional band

Air conditioning room function

Name Description

FB BAREnergylevel [» 99]

This function block is for the adaptation of the supply of energy for the use
of the building.

FB BARFanCoil [»_101]

hysteresis.

This function block maps a 3-speed fan with the corresponding switching

FB BARFctSelection [» 104]

This function block is for enabling room heating or room cooling.

FB BARSetpointRoom [F_107]

This function block assigns a setpoint for cooling operation and another for
heating operation to each of the four energy levels.

Overview Library version

Date Version

Version

Created with TwinCAT

Remarks

10/29/2008 1.0.0

V2.10.0 (Build 1328)

first Release

10/29/2009 1.1.0

V2.11.0 (Build 1536)

new FBs (FB_HVACRedundancyCtrlEx;
FB_HVACTemperatureSensorEx;
FB_HVACEnthalpy; FB_HVACTimeCon;
FB_HVACTimeConSec; FB_ HVACMux8)

04/12/2010 1.2.7

V2.11.0 (Build 1539)

new FBs (FB_HVACSetLocalTime;
FB_HVACAnalogOutputEx;
FB_HVACConfigureKL32xx;
FB_HVACScale nPoint;
FB_HVACTemperatureCurve)

new Function F_HVACRoundLREAL EX

08/04/2010 1.3.0

V2.11.0 (Build 1547)

new FBs (FB_HVAC2PointCtrISequence;
FB_HVACPowerMeasurementKL3403EX;
FB_HVACScheduler7TCHandling;
FB_HVACScheduler28 TCHandling)

01/13/2011 1.9.0

V2.11.0 (Build 1552)

new FBs (FB_HVACTimeConSecMs;
FB_HVACI_CtrlStep;
FB_HVACPowerRangeTable;
FB_HVACPriority REAL_8;
FB_HVACPriority REAL_16;
FB_HVACPriority INT_16;
FB_HVACPriority INT_8;
FB_HVACMUX_INT_8;

18

Version: 1.2 TS8000

BECKHOFF

Function blocks

Date Version Created with TwinCAT Remarks
Version
FB_HVACMUX_INT_16; FB_HVACMUX__16;
FB_HVACMUX_INT_S8;
FB_HVACCirculationPumpEXx;
FB_HVACHeatingCurveEx)
02/08/2011 1.10.1 V2.11.0 (Build 1552) new FB (FB_HVACConvertEnum)
28/07/2011 1.11.0 V2.11.0 (Build 1552) new FB_HVACSummerNightCoolingEx
05/12/2011 1.11.12 V2.11.0 (Build 2038) new FB_HVACTemperatureSensorEx2
28/12/2011 1.12.0 V2.11.0 (Build 2038) new FB_HVACCmdCtrl_8
30.03.2012 1.13.0 V2.11.0 (Build 2218) including new FBs for Room functions
30.06.2012 1.14.0 V2.11.0 (Build 2224) new FB_HVACI_CtrIStepEx

Also see about this

Overview sun protection [146]

3.1 HVAC Actuators

3.1.1 FB_HVAC2PointActuator
FB HwACZPointActuator

—elataSecurityType bOut—

—bZetDefault by=tate—

—hEnable eStateModedctuator—

—hin bErrarLimit Switchi—

—eCtritodelctuatar blreealidPararmeter—

—bhanSwitch

—bLimitSwitchClose

—bLimitSwitchOpen

—bCtrlvoltage

—bReset

tStrokeTime &

bEnableLlimitSwitch t-

Application

This function block serves to control two-point valves or two-point dampers.

VAR_INPUT

eDataSecurityType

bSetDefault
bEnable
bIn

eCtrlModeActuator

bManSwitch

bLimitSwitchClose
bLimitSwitchOpen

bCtrlVoltage
bReset

: E HVACDataSecurityType;

: BOOL;

: BOOL;

: BOOL;

: E_HVAC2PointActuatorMode;
: BOOL;

: BOOL;

: BOOL;

: BOOL;

: BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurity Type_Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

TS8000

Version: 1.2

19

Function blocks BEGKHOFF

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled by the PLC program with the input variable bEnable. The actuator
always remains closed as long as the function block is not enabled. Output bOut is permanently FALSE.

bIn: in automatic mode the actuator is closed by a FALSE and opened by a TRUE.
eCtrIModeActuator: Enum that defines the operation mode.

bManSwitch: if the two-point drive has a manual/emergency switch in the control cabinet, this can be
connected to the input bManSwitch; the status of the manual/emergency switch will then be monitored. If
bManSwitch = FALSE, then output bOut of the drive will be set to FALSE.

bLimitSwitchClose: actuator feedback TRUE when the actuator is completely closed.
bLimitSwitchOpen: actuator feedback TRUE when the actuator is completely open.

bCtrIVoltage: the parameter bCtrlVoltage serves to check the control voltage. The control voltage is present
if the bCtriVoltage variable is TRUE. The feedback control is suppressed if the control voltage fails.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT

bOut : BOOL;

byState : BYTE;

eStateModeActuator : E_HVAC2PointActuatorMode;
bErrorLimitSwitch : BOOL;

bInvalidParameter : BOOL;

bOut: the actuator is connected to this output (FALSE = closing drive; TRUE = opening drive).

byState: displays the status of the control from the actuator:
byState.0:= Enable

byState.1:= Manual Switch

byState.2:= Enable Feedback Control

byState.3:= Control Voltage

byState.4:= Reset

byState.5:= bOut

eStateModeActuator: indicates in which operation mode the actuator is.

bErrorLimitSwitch: becomes TRUE if no limit switch is triggered after the preset stroke time.
bErrorLimitSwitch is acknowledged with a positive edge on the input bReset.

binvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
bEnablelLimitSwitch : BOOL;
tStrokeTime : TIME;

bEnableLimitSwitch: if the input is TRUE, then the function control of the drive is activated by means of the
limit switches.

20 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BECKHOFF Function blocks

tStrokeTime: in order to set the function control correctly, the stroke time of the drive from fully closed to
fully opened drive must be entered here (0s..3600s). The variable is saved persistently. Preset to 200 s.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.2 FB_HVAC3PointActuator

FB _HWAC3FointActuator

—eDatasecurityType bOpen—
—hSetDefault bClogel—
—bEnable byState—
—bAutoOpen eSstateModeActuator—
—bAutoClose bErrarFeedh—
—eCtritodeActuatar hlrvalidFParameter—
—hkdanSwitch

—tFeedh

—bCtrvoltage

—hReset

bEnableFeedbCtrl &
thlin*'alueFeedb =
rhlax’alueFeedh =
rHysteresisFeedhb &
t=trokeTime =

Application

This function block is used to control three-point valves or three-point dampers with or without continuous
position feedback.

The function block is often used in conjunction with the function block FB_ HVACAnalogTo3Point. [68]

VAR_INPUT

eDataSecurityType : E HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;

bAutoOpen : BOOL;

bAutoClose : BOOL;

eCtrlModeActuator : E HVAC3PointActuatorMode;
bManSwitch : BOOL;

rFeedb : REAL;

bCtrlvVoltage : BOOL;

bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurity Type_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

TS8000 Version: 1.2 21

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_ Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled by the PLC program with the input variable bEnable. The three-point
actuator always remains fully closed as long as the function block is not enabled. Output bClose is
permanently TRUE.

bAutoOpen / bAutoClose: in automatic mode, the three-point actuator is controlled by the input variables
bAutoClose and bAutoOpen.

eCtrIModeActuator: Enum that defines the operation mode.

bManSwitch: if the three-point actuator has a manual/emergency switch in the control cabinet, this can be
connected to the input bManSwitch; the status of the manual/emergency switch will then be monitored. If
bManSwitch = FALSE, then output bOut of the drive will be set to FALSE.

rFeedb: analog position feedback from the actuator (0%..100%).

bCtrlVoltage: parameter to check the control voltage. The control voltage is present if the bCtrlVoltage
variable is TRUE. The feedback control is suppressed if the control voltage fails.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT

bOpen : BOOL;

bClose : BOOL;

byState : BYTE;

eStateModeActuator : E HVAC3PointActuatorMode;
bErrorFeedb : BOOL;

bInvalidParameter : BOOL;

bOpen: the signal for the opening drive of the three-point actuator is connected to this output.
bClose: the signal for the closing drive of the three-point actuator is connected to this output.

byState: displays the state of the control from the actuator:
byState.0:= Enable

byState.1:= Manual Switch

byState.2:= Enable Feedback Control

byState.3:= Control Voltage

byState.4:= Reset

eStateModeActuator: indicates in which operation mode the actuator is.

bErrorFeedb: when setting the output bClose, the position of the drive must have decreased within the time
tStrokeTime by at least the amount of rHysteresisFeedb.

When setting the output bOpenthe position of the drive must have increased within the time {Stroke Time at
least by the amount of rHysteresisFeedb.

If the actual position is not within the tolerance range after a positioning command within the specified time,
this is signaled with TRUE at the output bErrorFeedb. Both outputs bOpenand bClosebecome FALSE. The
fault is acknowledged by a positive edge on the input bReset.

blnvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
bEnableFeedbCtrl : BOOL;
rMinValueFeedb : REAL;
rMaxValueFeedb : REAL;
rHysteresisFeedb : REAL;
tStrokeTime : TIME;

22 Version: 1.2 TS8000

BEGKHOFF Function blocks

bEnableFeedbCtrl: if the input is TRUE, then the control of the feedback signal is enabled. The variable is
saved persistently.

rMinValueFeedb: serves to scale the analog position feedback. rMinValueFeedb contains the value of the
analog signal when the actuator is fully closed (0%..100%). The variable is saved persistently. Preset to 0.

rMaxValueFeedb: serves to scale the analog position feedback. rMaxValueFeedb contains the value of the
analog signal when the actuator is fully open (0%..100%). The variable is saved persistently. Preset to 0.

rHysteresisFeedb: due to the stroke time of the drive, the position feedback always lags in the case of a
jump in the position setpoint. Using the variable rHysteresisFeedbCltrl, a range is specified within which the
position setpoint of the actuator can deviate from the feedback signal without the feedback control
(bErrorFeedb) being triggered (0%..100%). The variable is saved persistently. Preset to 10.

tStrokeTime: due to the lagging of the actual position in relation to the set position, the activation of the
feedback control in the event of the maximum permissible difference being exceeded is delayed by the
variable tStrokeTime [s]. If the actuator is fully closed and receives a setpoint step-change of 100 %, at least
the stroke time of the drive over its entire travel path should be entered as a time (0s..3600s). The variable is
saved persistently. Preset to 200 s.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.3 FB_HVACCirculationPump

FB HwACCirculationPump
—elataSecurityType bFurmpr—
—bZetDefault by=tate—
—bEnahle bStateManSwitch—
—bAuto bReqOutsideTermp—
—eCtiModeActuator bRegalver—
—rOutsideTemp estateModeActuator—
—alvePosition bErrarFumpProtec—
—bFeedbPump bErrarPumpFesdb—
—bPumpFrotec bErrorGeneral—
—bAntiBlacking byErrar—
—bhanzwitch blnvalidFarameter—
—bCtrvoltage
—bReset
—tStopDelay &

—tFeedbPurmpDelay &
—rOutzideTermpLimit &
—ralePositionLimit &
—eReqlutsideTemp &
—eRegvalve &
Application

This function block serves to control pumps in HVAC systems.

VAR_INPUT

eDataSecurityType : E HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;

bAuto : BOOL;

eCtrlModeActuator : E HVACActuatorMode;
rOutsideTemp : REAL;

rValvePosition : REAL;

bFeedbPump : BOOL;

bPumpProtec : BOOL;

bAntiBlocking : BOOL;

TS8000 Version: 1.2 23

Function blocks BEGKHOFF

bManSwitch : BOOL;
bCtrlvVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.
bEnable: the function block is enabled if bEnable = TRUE.

bAuto: input for the request from the automatic program. The request is overridden by eCtriModeActuator.
eCtrIModeActuator: Enum that defines the operation mode.

rOutsideTemp: input for transmitting the outside temperature value.

rValvePosition: if there is a control valve in the hydraulic circuit of the pump, the position of the control valve
must be applied here.

bFeedbPump: this input is for displaying the operating message in a visualization system and for monitoring
the pump function.

bPumpProtec: a pump error message is connected to the input bPumpProtec. There is a pump error if the
input bPumpProtec is FALSE. The output bPump becomes FALSE in the event of a fault. The pump can only
be restarted after an acknowledgment on the input bReset.

bAntiBlocking: input for transferring the anti-blocking request, i.e. if TRUE the request is active.

bManSwitch: if the pump has a manual/emergency switch in the control cabinet, this can be connected to
the input bManSwitch; the status of the manual/emergency switch will then be monitored. If bManSwitch =
FALSE, then output bPump is disabled. The output bPump can only be switched on if bManSwitch = TRUE
(quiescent current principle).

bCtriVoltage: in order to suppress a torrent of messages, the error message from bPumpProtec is only
acquired if the input bCtriVoltage is TRUE.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT

bPump : BOOL;
byState : BYTE;
bStateManSwitch : BOOL;
bRegOutsideTemp : BOOL;
bRegValve : BOOL;
eStateModeActuator : E_HVACActuatorMode;
bErrorPumpProtec : BOOL;
bErrorPumpFeedb : BOOL;
bErrorGeneral : BOOL;
byError : BYTE;
bInvalidParameter : BOOL;

24 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

bPump: output variable for controlling a pump.

byState: output of the pump state as byte.
byState.0 := bEnable

byState.1 := bPump

byState.2 := bReqOutside Temp

byState.3 := bReqValve

byState.4 := bAntiblocking

byState.5 := bFeedbPump

byState.6 := NOT bManSwitch

byState.7 := bCtrIVoltage

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

bReqOutsideTemp: if the condition to request the pump depending on the outside temperature is TRUE,
the output variable bReqOutside Temp becomes TRUE.

bReqgValve: if the condition for requesting the pump depending on the valve position is reached, the variable
bReqValve becomes TRUE.

eStateModeActuator: indicates in which operation mode the actuator is.
bErrorPumpProtec: error from the pump.

bErrorPumpFeedb: if the input bFeedbPump does not go TRUE within the time of {FeedbPumpDelay
(tFeedbPumpDelay must be > t#0s) after setting the output bPump, this is recognized as a fault and this
output is set to TRUE and the output bPump to FALSE. The error message must be acknowledged with
bReset.

bErrorGeneral: there is a general error.

byError: output of the errors as byte.
byError.1 := binvalidParameter
byError.2 := bErrorGeneral

byError.3 := bErrorPumpProtec
byError.4 := bErrorPumpFeedb

binvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT

tStopDelay : TIME;

tFeedbPumpDelay : TIME;
rOutsideTempLimit : REAL;
rValvePositionLimit : REAL;

eReqOutsideTemp : E_HVACReqOutsideTemp;
eReqgValve : E HVACRegValve;

tStopDelay: the time tStopDelay [s] delays the switching off of the pump after the switch-on conditions are
no longer fulfilled. The variable is saved persistently. Preset to 0 s.

tFeedbPumpDelay: the monitoring function of the pump feedback message [s] is only active if
tFeedbPumpDelay is > t#0s. If tFeedbPumpDelay = t#0s the monitoring function is deactivated (0s..3600s).
The variable is saved persistently. Preset to 0 s.

rOutsideTempLimit: value [°C] above or below which the pump is switched on or off depending on the
outside temperature (-60 °C..60 °C). The variable is saved persistently. Preset to 10 °C.

rValvePositionLimit: threshold value for the position of a control valve associated with a pump, from which
the pump should switch on automatically, e.g. heater pump (0%..100%). The variable is saved persistently.
Preset to 3%.

eReqOutsideTemp: depending on the outside temperature, the pump can be compulsorily switched on, e.g.
for frost protection purposes when the temperature limit value rOutside TempLimit is undershot. The
prerequisite is that bEnable = TRUE and that the pump is in automatic mode. The variable is saved
persistently.

TS8000 Version: 1.2 25

Function blocks BEGKHOFF

Manual off overrides the frost protection function!

eReqValve: depending on the position of the valve associated with the pump, the pump can be switched on
when the threshold value rValvePositionLimit is exceeded. The ENUM activates the switch-on via the valve
position. In addition, the ENUM determines whether the temperature-dependent and valve position-
dependent switch-on conditions are ORed or ANDed together.

The table below shows a summary of all possible combinations:

eReqOutsideTemp eReqValve Function Application
OTLowerLimit NoRequest outsidetemp lower limit
OTLowerLimit OrValvePosHigherLimit |outsidetemp OR valve Heating circuit, air heater
higher limit
OTLowerLimit AndValvePosHigherLimit |outsidetemp AND valve
higher limit
OTHigherLimit NoRequest outsidetemp higher limit
OTHigherLimit OrValvePosHigherLimit |outsidetemp OR valve
higher limit
OTHigherLimit AndValvePosHigherLimit |outsidetemp AND valve |Cooler pump
higher limit
NoRequest NoRequest no request Primary pump
NoRequest OrValvePosHigherLimit |valve higher limit
NoRequest AndValvePosHigherLimit |not valid

By means of various combinations of the two variables, eReqOutside Temp and eReqValve, this function
block can be adapted to the requirements of a heating circuit, an air heater, an air cooler or a feed pump.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.4 FB_HVACCirculationPumpEx

FB_HWVACCirculationPumpEx
—elataSecurityType bPump—
—bSetDefault bystate—
—bEnakle bRegExternal—
—bExternal bReqgOutzideTemp—
—eCtriModeActuator bRegValel—
—rOutzideTemp bStateManSwitch—
—rvalvePosition udiSecHT_StopDelay—
—bFeedbPump udiSecHT_FeedbPumpDelay—
—bPumpProtec eStateModeActuator—
—|bManSwitch BError—
—bCirfVoltage byError—
—bReset BErrorPumpProtec—
—udiSecStopDelay & bErrorFeedb—
—udiSecFeedbPumpDelay t- binvalidParameter—
—rOutzideTempHighLimit &

—rOutsideTempLowLimit &
—r'valvePositionLimitCn &
—r'valvePositionLimitO ff &
—eRegPump
Application

This function block serves to control pumps in HVAC systems.

26 Version: 1.2 TS8000

BEGKHOFF Function blocks

The following switch-on conditions must first be fulfilled in order to control the pump via bPump:
bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch = TRUEANDbCIrIVoltage = TRUE
If one of the switch-on conditions is not fulfilled, then the output bPump is constantly FALSE.

On the basis of the following diagrams it can be seen how the output bPump is controlled depending on the
Enum eReqPump, the input bExternal, the outside temperature rOutSide Temp and the valve position
rValvePosition. The switch-on conditions mentioned above must be fulfilled for this, and one of the two
operation modes eHVACActuatorMode _Auto BMS or eHVACActuatorMode Auto OP must be preselected.

eHVACReqPump_No (0)

r S Cl
bE:nemalg‘t H f—i i—t_
hRqummala_'ll n 1 H_
S

NI o
ST] | I B W S

TS8000 Version: 1.2 27

BECKHOFF

Function blocks

eHVACReqPump_OT_LL (1)

“CA

rOutsideTempHighLimit

rOutsideTempLowLimit

bReqOutsideTemp |

bExternal EI

| 1
1 |

bReqExternal g j_r_rll

| |

I 1 |

I 1 |

|

11 |

A

bPump a

eHVACReqPump_OT_HL(2)

/

rOutside TempHighLimit

rOutside TempLowLimit

bReqOutsideTemp ;

eHVACReqPump_VP (3)

WalvePositionLimitOn

rValvePositionLimitOff

bRegValve |

TS8000

Version: 1.2

28

Function blocks

BECKHOFF

_VP (4)

T_LL_ OR_VP

eHVACReqPump O

Y Wl

ARSI TLL o[
3
00 0 N A
I .4 R B O T A 1 D I B
AHH 11— T-C |-
e e o
TEE 2 T8¢ e FTF g
31 ¢ 35 : £ ¢
g g 3 £:z %%

$¢ 7 2

P (5)

OR_V

L

_OT_H

eHVACReqPump

rOutsideTempHighLimit

rOutsideTempLowLimit

bReqOutsideTemp a

rValvePositionLimitOn

rValvePasitionLimitOff

bReqExternal 1 [

29

Version: 1.2

TS8000

Function blocks BEGKHOFF

eHVACReqPump_OT_LL_AND_VP ()

°c rOutsideTemp
“‘III [I
rOutsideTempHighLimit
rOutside TempLowLimit -,
I (I
1 [I [
bReqCutsideTemp g I g Sy >
%‘IIII [I 1}4Ivel;a#i{jlnl t
RN el o
ValvePositionLimitOn I i i
rWalvePositionLimitOff Ly -
T AT 1 11 i
XIIIII e e
1||IIII L1 11 L1101
bReqValve o |\ ' L0 | 1| >
‘iiiiii oot gt
[I I rrntni
I [IHII [
I.'lEItEI'Hﬂl“n L I —
[I I et
hRquxtemﬂla piiNg N L L !
T | | I [71 | ._
Trrrnr I 10 1rnnl t
‘IIIIII I et
[I I rrntni
bPumpa_ll [— |
| | |] | T1 | '_
[l I [FTTnr t

rOutsideTempHighLimit

rOutsideTempLowLimit

bReqOutsideTemp a

Y
rValvePositionLimitOn
rValvePositionLimitOff
bRegValve § =
IR IR R
“IIIIII [I I A
bEuternal:-l -i !! ! ! ! !i_LL
I A [I I I N
bRqulternala = | | | | || I
| | | | | h"
I I I I %
‘IIIIII [I I I N
1IIIIII [I I A
bPump 4 lii I I
HEEE [R II.;

eHVACRegPump_No: there is no request on the part of the Enum to control the pump

eHVACReqPump_OT_LL: the outside temperature (OT = rOutside Temp) must be lower than
rOutside TempLowLimit (LL = Lower Limit)

30 Version: 1.2

TS8000

BEGKHOFF Function blocks

eHVACReqPump_OT_HL: the outside temperature (OT = rOutside Temp) must be higher than
rOutside TempHighLimit (HL = Higher Limit)

eHVACRegPump_VP: the valve position (VP = rValvePosition) must be larger than rValvePositionLimitOn

eHVACRegPump_OT_LL_OR_VP: the outside temperature (OT = rOutside Temp) must be lower than
rOutside TempLowLimit (LL = Lower Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACRegPump_OT_HL_OR_VP: the outside temperature (OT = rOutside Temp) must be higher than
rOutside TempHighLimit (HL = Higher Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_LL_AND_VP: the outside temperature (OT = rOutside Temp) must be lower than
rOutside TempLowLimit (LL = Lower Limit) AND the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACRegPump_OT_HL_AND_VP: the outside temperature (OT = rOutside Temp) must be higher than
rOutside TempHighLimit (HL = Higher Limit) AND the valve position (VP = rValvePosition) must be larger
than rValvePositionLimitOn

The output bPump switches itself off, after the switch-on conditions are no longer fulfilled, depending on the
Enum eReqPump, the input bExternal, the outside temperature rOutSide Temp or the valve position
rValvePosition, with a delay set by the time udiSecStopDelay.

@ DbError goes TRUE if bErrorPumpProtec is TRUE. However, only the fault bErrorPumpProtec leads
to the deactivation of the output bPump. If the error message bErrorFeedb is also to lead to the

1 switch-off of the pump, then the variable must be ANDed with the output bPump after calling the
function block. The error message bErrorFeedb is active only in the operation mode
eHVACActuatorMode Auto BMS OR eHVACActuatorMode_Auto_OP and only if the time
udiSecFeedbPumpDelay is greater than 0.

TS8000 Version: 1.2 31

Function blocks

BECKHOFF

Example anti-blocking protection

foR_TrigSetDefault

fbCirculationPumpEx bReady —————

R_TRIG

CLK H Qf— SetDefault

foCirculationPumpEx

FB_HVACCirculationPumpEx

eDataSecurityType BPump
SetDefault {bSetDefault byState

bEnable bEnable bReqgExternal

bExternal bExternal bReqgQutsideTemp
eCtriModeActuator eCirIModeActuator bReqgValve
rOutsideTemp rOutsideTemp bStateManSwitch

rValvePosition

rValvePosition

bFeedbPump bFeedbPump
bPumpProtec bPumpProtec
bManSwitch bManSwitch
bCtriVoltage bCtriVoltage
bReset

bReset
udiSecStopDelay

udiSecFeedbPumpDelay

udiSecStopDelay &

rOutsideTempHighLimit

udiSecFeedbPumpDelay &

rOutsideTempHighLimit =

rOutsideTempLowLimit

rOutsideTempLowLimit =

byState

bRegExternal

bRegOutsideTemp

bRegWalve
bStateManSwitch

udiSecRT_StopDelay

udiSecRT_StopDelay |

udiSecRT_FeedbPumpDelay

udiSecRT_FeedbPumpDelay |

eStateModeActuator eStateModeAciuator |
bError bError
byError byError
bErrorPumpProtec bErrorPumpProtec
bErrorFeedb bErrorFeedb

blnvalidParameter

binvalidParameter

F udiSecStopDelay
= udiSecFeedbPumpDelay

bPump

rvalvePositionLimitOn rvalvePositionLimitOn = = rOutsideTempHighLimit
rValveP ositionLimitOf rvalvePositionLimitOff = F rOutsideTempLowLimit
eReqPump eReqPump & F ralvePositionLimitOn
P valvePositionLimitOff
= eRegPump
foHVACARtiBlockingPump
FB_HVACAntiBlockingPump
eDataSecurityType eDataSecurityType qut
SetDefault bSetDefault bOutAndAntiBlocking
TRUE | bEnable bQAntiBlocking
——bDisable blnvalidParameter
bin ¥ gAntiBlockingMode
dtSystemtime dtSystemTime F iHoursDowntime
bReset bReset E iDayWeekly
eAntiBlockingMode eAntiBlockingMode & B iHour|
iHoursDowntime iHoursDowntime E iMinute

| iDayWeekly iDaywWeekly =
iHour iHour &
iMinute iMinute &=
iLengthimpulse iLenghtimpulse =

Application example

= iLenghtimpulse

bAntiBlocking
binvalidParameter_

The application example shows the function block FB_HVACirculationPumpEx. The example is illustrated in
the programming languages ST and CFC. The program example P_CFC_CirculationPumpEx.PRG for the
CFC programming languages can be found in the folder Language CFC > Actuator, the program example
P_ST_CirculationPumpEx.PRG for the ST programming languages in the folder Language Structur Text

> Actuator.

Download Required library
TcHVAC.pro [P 531] TcHVAC.lib
VAR_INPUT

eDataSecurityType E_HVACDataSecurityType;

bSetDefault BOOL;

bEnable BOOL;

bExternal BOOL;

eCtrlModeActuator E_HVACActuatorMode;

rOutsideTemp REAL;

rValvePosition REAL;

bFeedbPump BOOL;

bPumpProtec BOOL;

32 Version: 1.2 TS8000

BECKHOFF Function blocks

bManSwitch : BOOL;
bCtrlvVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the bPump output is
constant FALSE.

bExternal: the output bPump can be switched on or off directly via the input bExternal. The following
conditions must be fulfilled for this: bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch =
TRUEANDAbCIrIVoltage = TRUEANDeCtrIModeActuator =

eHVACActuatorMode _Auto BMSOReHVACActuatorMode _Auto OPANDeReqPump=eHVACRequestPump
_NoRequest. Otherwise bExternal depending on bReqOutside Temp and bReqgValve controls the output
bPump, see application [» 26].

bExternal is only active in the operation mode

eHVACActuatorMode _Auto BMSOReHVACActuatorMode Auto_OP.

eCtriIModeActuator: Enum that defines the operation mode. The following operation modes are supported
by the function block FB_HVACCirculationPumpEx: eHVACActuatorMode Auto BMS,
eHVACActuatorMode _Auto OP, eHVACActuatorMode Speed1 BMS, eHVACActuatorMode Speed1_OP,
eHVACActuatorMode Off BMS, eHVACActuatorMode Off OP.

The two operation modes eHVACActuatorMode Auto BMS, eHVACActuatorMode Auto OP mean that the
function block is in automatic mode.

The output bPump can be switched on directly via the two operation modes
eHVACACctuatorMode_Speed1_BMS, eHVACActuatorMode_Speed1_OP if the following conditions are met:
bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch = TRUEANDbCtrlVoltage = TRUE

The operation modes eHVACActuatorMode Off BMS, eHVACActuatorMode Off OP set the output bPump
to FALSE.

If an incorrect variable value is present at eCtriModeActuator, then the last valid variable value is taken. The
status of the Enum eCtrIModeActuator is output via eStateModeActuator.

rOutsideTemp: input for transmitting the outside temperature value. Depending on the outside temperature,
the pump can be switched on if the temperature falls below or exceeds the limit values
rOutside TempLowlLimit / rOutside TempHighLimit. This depends on the Enum eReqPump to request the

pump, see application [P 26].
rOutside Temp is only active in eHVACActuatorMode _Auto BMSOReHVACActuatorMode_Auto_OP mode.

rValvePosition: input for transmitting the valve position of the control loop. Depending on the position of the
valve rValvePosition associated with the pump, the pump can be switched on when the threshold value
rValvePositionLimitOn is exceeded. This depends on the Enum eReqPump to request the pump, see
application [P 26].

rValvePosition is only active in the operation mode
eHVACActuatorMode _Auto BMSOReHVACActuatorMode Auto_OP.

TS8000 Version: 1.2 33

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

bFeedbPump: feedback from the pump or a relay contact that the pump is switched on. If the output bPump
= TRUE, then the input bFeedbPump must be TRUE within the time specification udiSecFeedbPumpDelay
and must remain so until bPump = FALSE. This error is otherwise indicated via the output variable
bErrorFeedb. After the rectification of the fault it must be acknowledged at the input bReset. The error
message bErrorFeedb has no influence on the control of the output bPump.

bFeedbPump is only active in the operation mode

eHVACActuatorMode _Auto BMSOReHVACActuatorMode _Auto_OP and if the time
udiSecFeedbPumpDelay is greater than 0.

If there is no feedback on the pump status, but the function is still implemented, a TRUE must not be
permanently applied to the input bFeedbPump. This would lead in the switched-off state to an error:
bErrorFeedb = TRUE. In this case the output bPump should be applied to the input bFeedbPump.

bPumpProtec: the motor protection for the pump is connected to the input bPumpProtec. There is a pump
error if the input bPumpProtec is FALSE. If there is an error, the output bPump goes FALSE and the error is
displayed by means of the variable bErrorPumpProtec. The output bPump can only be switched on if
bPumpProtec = TRUE (quiescent current principle). After the rectification of the fault it must be
acknowledged at the input bReset.

bManSwitch: if the pump has a manual / emergency switch, this can be connected to the input bManSwitch.
The state of the manual / emergency switch is monitored. If bManSwitch = FALSE, then output bPump is
disabled. The output bPump can only be switched on if bManSwitch = TRUE (quiescent current principle).
The state of bManSwitch is indicated by the output variable bStateManSwitch.

bCtriVoltage: the control voltage monitoring is applied to the input bCtr/Voltage. If bCtrIVoltage = FALSE,
the bPump output is constant FALSE. In order to suppress a torrent of messages, the fault messages
bPumpProtec, bErrorFeedb and bError are only acquired if the input bCtriVoltage is TRUE.

bReset: acknowledgment input in the case of a fault following its rectification.

VAR_OUTPUT

bPump : BOOL;

byState : BYTE;

bRegExternal : BOOL; //Request External

bReqgOutsideTemp : BOOL; //Request Outside Temperature
bRegValve : BOOL; //Request Valve

bStateManSwitch : BOOL;

udiSecRT StopDelay : UDINT; //Second Remaining Time Stop Delay
udiSecRT FeedbPumpDelay : UDINT; //Second Remaining Time Feedback Pump Delay
eStateModeActuator : E_HVACActuatorMode;

bError : BOOL;

byError : BYTE;

bErrorPumpProtec : BOOL;

bErrorFeedb : BOOL;

bInvalidParameter : BOOL;

bPump: output variable for controlling a pump. To control the pump via bPump the following conditions must
first be fulfilled: bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch =
TRUEANDAbCIrIVoltage = TRUE. If these conditions are satisfied, the pump can be switched on directly via
the operation mode eCtriModeActuator or via various options in automatic mode, see Application [»_26].

The output bPump switches itself off after the switch-on conditions are no longer fulfilled depending, on the
Enum eReqPump, the input bExternal, the outside temperature rOutSide Temp or the valve position
rValvePosition, with a delay set by the time udiSecStopDelay.

byState: pump state output
byState.0 := bEnable;

byState.1 := bPump;

byState.2 := bReqEXxternal,
byState.3 := bReqOutside Temp;
byState.4 := bReqValve;
byState.5 := bFeedbPump;
byState.6 := NOTbManSwitch;
byState.7 := bCtrlVoltage;

bReqgExternal: If the condition bExternal = TRUE to switch on the pump via bPump is fulfilled, the output
variable bReqExternal becomes TRUE. All switch-on conditions and the use of the output bReqExternal to

control bPump are described in the Application [P 26].

34 Version: 1.2 TS8000

BEGKHOFF Function blocks

bReqOutsideTemp: if the condition is achieved for requesting the pump via bPump depending on the
outside temperature rOutside Temp, the output variable bReqOutside Temp becomes TRUE. All switch-on

conditions and the use of the output bReqOutside Temp to control bPump are described in the Application
[»_26].

bReqValve: if the condition is achieved for requesting the pump via bPump depending on the valve position
rValvePosition, the output variable bReqValve becomes TRUE. All switch-on conditions and the use of the

output bReqValve to control bPump are described in the Application [»_26].

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated. bStateManSwitch = NOT bManSwitch

udiSecRT_StopDelay: if the eHVACActuatorMode Auto BMSOReHVACActuatorMode Auto _OP operation
mode is selected, the output bPump is switched off after the switch-on conditions are no longer fulfilled,
depending on the Enum eReqPump, the input bExternal, the outside temperature rOutSide Temp or the valve
position rValvePosition after udiSecRT_StopDelay has elapsed. The output is given in seconds.

udiSecRT_FeedbPumpDelay: if the output bPump = TRUE, then the input bFeedbPump must be TRUE
within the time udiSecRT_FeedbPumpDelay and must remain so until bPump = FALSE. Otherwise this error
is indicated via the output variable bErrorFeedb.

udiSecRT_FeedbPumpDelay is only active in the operation mode

eHVACActuatorMode_Auto_ BMSOReHVACActuatorMode_Auto_OP and if the time
udiSecFeedbPumpDelay is greater than 0. The output is given in seconds.

eStateModeActuator: indicates the operation mode of the function block. eStateModeActuator is equal to
eCtrIModeActuator.

bError: bError becomes TRUE if bErrorPumpProtec is TRUE. However, only the fault bErrorPumpProtec
leads to the deactivation of the output bPump. If the fault message bErrorFeedb is also to lead to the switch-
off of the pump, then the variable must be ANDed with the output bPump after calling the function block.

byError: output of the errors as byte.
byError.1 := binvalidParameter
byError.2 := bError

byError.3 := bErrorPumpProtec
byError.4 := bErrorFeedb

bErrorPumpProtec: the motor protection for the pump is connected to the input bPumpProtec. There is a
pump error if the input bPumpProtec is FALSE. If there is an error, the output bPump goes FALSE and the
error is displayed by means of the variable bErrorPumpProtec. The output bPump can only be switched on if
bPumpProtec = TRUE (quiescent current principle). After the rectification of the fault it must be
acknowledged at the input bReset.

bErrorFeedb: if the output bPump = TRUE, then the input bFeedbPump must be TRUE within the time
udiSecFeedbPumpDelay and must remain so until bPump = FALSE. This error is otherwise indicated via the
output variable bErrorFeedb. After the rectification of the fault it must be acknowledged at the input bReset.
The error message bErrorFeedb has no influence on the control of the output bPump.

bErrorFeedb is only active in the operation mode

eHVACActuatorMode Auto BMSOReHVACActuatorMode Auto_OP and if the time
udiSecFeedbPumpDelay is greater than 0.

bInvalidParameter: becomes TRUE if an error occurred during the plausibility check of the following
variables: rOutside TempHighLimit, rOutside TempLowLimit, rValvePositionLimitOn, rValvePositionLimitOff
The message must be acknowledged with bReset.

VAR_IN_OUT

udiSecStopDelay : UDINT;
udiSecFeedbPumpDelay : UDINT;
rOutsideTempHighLimit : REAL;
rOutsideTempLowLimit : REAL;
rValvePositionLimitOn : REAL;
rValvePositionLimitOff : REAL;

eRegPump : E HVACRegPump;

TS8000 Version: 1.2 35

Function blocks BEGKHOFF

udiSecStopDelay: the time udiSecStopDelay [s] delays the switching off of the pump after the switch-on
conditions are no longer fulfilled. It is input in seconds (0s..4294967s). If the operation mode
eHVACActuatorMode _Auto BMS OR eHVACActuatorMode _Auto OP is selected, the output bPump is
switched off after the switch-on conditions are no longer fulfilled depending on the Enum eReqPump, the
input bExternal, the outside temperature rOutSide Temp or the valve position rValvePosition after the time
udiSecStopDelay has elapsed. The data is given in seconds. The variable is saved persistently. Preset to 0.

udiSecFeedbPumpDelay: if the output bPump = TRUE, then the input bFeedbPump must be TRUE within
the time udiSecFeedbPumpDelay and must remain so until bPump = FALSE. Otherwise this error is
indicated via the output variable bErrorFeedb (0s..4294967s).

udiSecFeedbPumpDelay is only active in the operation mode eHVACActuatorMode Auto BMS OR
eHVACActuatorMode Auto OP and if the time udiSecFeedbPumpDelay is greater than 0. The input is given
in seconds. The variable is saved persistently. Preset to 0.

rOutsideTempHighLimit: value above which the pump is switched on or off depending on the outside
temperature rOutsideTemp and the Enum eReqPump (-60 °C..60 °C), see Application [>_26].

rOutside TempHighLimit is only active in the operation mode eHVACActuatorMode _Auto_BMS OR
eHVACACctuatorMode _Auto _OP.

If there is an incorrect variable value at rOutside TempHighLimit, then the last valid variable value is taken.
binvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 4.

rOutsideTempLowLimit: value below which the pump is switched on or off depending on the outside
temperature rOutside Temp and the Enum eReqPump (-60 °C..60 °C), see Application [»_26].

rOutside TempLowLimit is only active in the operation mode eHVACActuatorMode _Auto BMS OR
eHVACActuatorMode Auto_OP.

If there is an incorrect variable value at rOutside TempLowLimit, then the last valid variable value is taken.
binvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 1.

rValvePositionLimitOn: threshold value for the position of a control valve rValvePosition associated with
the pump from which the pump should switch on automatically if exceeded, e.g. heater pump (0%..100%),
see Application [P 26].

rValvePositionLimitOn is only active in the operation mode eHVACActuatorMode Auto BMS OR
eHVACActuatorMode _Auto _OP.

rValvePositionLimitOn must not be smaller than rValvePositionLimitOff. Otherwise the last valid variable
value is taken and binvalidParameter is set.

If there is an incorrect variable value at rValvePositionLimit, then the last valid variable value is taken.
binvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 5.

rValvePositionLimitOff: threshold value for the position of a control valve rValvePosition associated with
the pump from which the pump is to switch off automatically if the value falls below, e.g. heater pump
(0%..100%), see Application [P 26].

rValvePositionLimitOff is only active in the operation mode eHVACActuatorMode Auto BMS OR
eHVACActuatorMode _Auto OP.

rValvePositionLimitOff must not be greater than rValvePositionLimitOn. Otherwise the last valid variable
value is taken and blnvalidParameter is set.

If there is an incorrect variable value at rValvePositionLimit, then the last valid variable value is taken.
binvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 1.

eReqPump: using the Enum eRegPump, switch-on conditions or combinations of switch-on conditions can
be set for switching on the pump.
The switch-on conditions are as follows:

- depending on the outside temperature, the pump can be switched on if the temperature falls below or
exceeds the limit values rOutside TempLowLimit / rOutside TempHighLimit.

- depending on the position of the valve rValvePosition associated with the pump, the pump can be switched
on when the threshold value rValvePositionLimitOn is exceeded.

In addition, the Enum combinations can be used to specify whether the temperature-dependent and valve-
position-dependent switch-on conditions are ORed or ANDed together.

36 Version: 1.2 TS8000

BEGKHOFF Function blocks

The following switch-on conditions or combinations of switch-on condition can be set via the Enum in order
to control the output bPump:

eHVACReqPump_No: there is no request on the part of the Enum to control the pump

eHVACRegPump_OT_LL: the outside temperature (OT = rOutside Temp) must be lower than
rOutside TempLowLimit (LL = Lower Limit)

eHVACReqPump_OT_HL: the outside temperature (OT = rOutside Temp) must be higher than
rOutside TempHighLimit (HL = Higher Limit)

eHVACRegPump_VP: the valve position (VP = rValvePosition) must be larger than rValvePositionLimitOn

eHVACReqPump_OT_LL_OR_VP: the outside temperature (OT = rOutside Temp) must be lower than
rOutside TempLowLimit (LL = Lower Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACRegPump_OT_HL_OR_VP: the outside temperature (OT = rOutside Temp) must be higher than
rOutside TempHighLimit (HL = Higher Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_LL_AND_VP: the outside temperature (OT = rOutside Temp) must be lower than
rOutside TempLowLimit (LL = Lower Limit) AND the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_HL_AND_VP: the outside temperature (OT = rOutside Temp) must be higher than
rOutside TempHighLimit (HL = Higher Limit) AND the valve position (VP = rValvePosition) must be larger
than rValvePositionLimitOn

Preconditions for the use of the Enum eReqPump are that bEnable = TRUEANDbErrorPumpProtec =
FALSEANDbManSwitch = TRUEANDbCItrIVoltage = TRUEANDeCtrIModeActuator =
eHVACActuatorMode Auto BMSOReHVACActuatorMode Auto_OP.

If there is an incorrect variable value at eReqPump, then the last valid variable value is
taken.blnvalidParameter will be set in the event of an incorrect parameter entry.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.5 FB_HVACMotor1Speed

FB_HWACMotarl Speed
“eDatasecurity Type bhMotor—
—“bSetDefault byState—
—bEnahle bStateAuto—
—bAuto bStateRepairSwitch—
—eCtritodedctuatar bStateManSwitch—
—“bMatorProtec eStateModeActuatar—
“bFeedbCantactor bErrarGeneral—
—bFeedbFrocess byErrar—
—bRepairSwitch bErrartotorpratec—
—bhanSwitch bErrarFeedbContactar—
~bCtrVoltage bErrarFeedbProcess—
—bReset binvalidFarameter—
“tStantDelay &
tStopDelay &=
—t0elayFeedbContactar &
—tFeedbPracessTimer &
—tDelayFeedbPracess &

TS8000 Version: 1.2 37

Function blocks BEGKHOFF

Application

This function block serves to control a single-stage drive in HVAC systems. It is suitable for fans.

Application example

Download Required library
TcHVAC.pro [P 531] TcHVAC.lib
VAR_INPUT

eDataSecurityType : E_HVACDataSecurityType;

bSetDefault : BOOL;

bEnable : BOOL;

bAuto : BOOL;

eCtrlModeActuator : E_HVACActuatorMode;

bMotorProtec : BOOL;

bFeedbContactor : BOOL;

bFeedbProcess : BOOL;

bRepairSwitch : BOOL;

bManSwitch : BOOL;

bCtrlvoltage : BOOL;

bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the drive will be switched off
via the specified time variable {StopDelay.

bAuto: bAuto is only active if the operation mode eCtrIModeActuator is either
eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto OP.

If the input variable bAuto = TRUE, then the function block is instructed that the drive should run. If bAuto =
FALSE, the drive will be switched off with a delay specified in the time variable {StopDelay.

eCtrIModeActuator: Enum that specifies the operation mode of the motor. In the event of an incorrect entry,
operation continues internally with the last valid operating mode. This is eHVACActuatorMode Auto BMS in
the case of initial commissioning. blnvalidParameter will be set in the event of an incorrect parameter entry.

bMotorProtec: input for the motor protection. There is a motor protection fault if the input bMotorProtec =
FALSE (quiescent current principle). In the event of a fault, the output bMotor = FALSE; the fault is indicated
at the output of the function block by bErrorMotorprotec. The motor can only be restarted if the fault has
been rectified and acknowledged at the input bReset.

bFeedbContactor: feedback from the power section of the motor. The operating feedback is present if the
input bFeedbContactor = TRUE. If, after switching on the motor, this feedback is not present after the time
delay set by tDelayFeedbContactor, the output bErrorFeedbContactor is set in order to indicate the fault. The

38 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

output bMotor becomes FALSE in the event of a fault. The motor can only be restarted if the fault has been
rectified and acknowledged at the input bReset. If no feedback from the power section of the motor is
present, the output variable bMotor must be applied to the input bFeedbContactor.

d If no feedback from the power section of the motor is present, the output variable bMotor must be
1 applied to the input bFeedbContactor. See application example

bFeedbProcess: a process feedback signal, for example from a v-belt monitor or a flow monitor can be
connected to the input bFeedbProcess. The process feedback is present if the input bFeedbProcess = TRUE
(quiescent current principle). If, in the start-up phase after switching on the motor, the process feedback is
not present after the time set by tFeedbProcessTimer, the drive switches off and indicates a fault at the
output bErrorFeedbProcess. The motor can only be restarted if the fault has been rectified and
acknowledged at the input bReset. In order to avoid undesired switching off of the drive during operation due
to the process monitoring, e.g. in the event of short-term pressure fluctuations, the triggering of the input
bFeedbProcess can be delayed by the time tDelayFeedbProcess.

bRepairSwitch: the state of the repair switch is monitored with the input bRepairSwitch. The motor can only
be switched on if bRepairSwitch= TRUE (quiescent current principle). If the repair switch is switched off,
bRepairSwitch = FALSE and the output bMotor becomes FALSE.

bManSwitch: the state of the manual/emergency switch is monitored with the input bManSwitch. The motor
can only be switched on if bManSwitch = TRUE (quiescent current principle). If the manual/emergency
switch is switched off, bManSwitch= FALSE and the output bMotor becomes FALSE.

bCtriVoltage: the control voltage is monitored with the input bCtriVoltage. The motor can only be switched
on if bCtrlVoltage = TRUE (quiescent current principle). If the control voltage is switched off, bCtrlVoltage= =
FALSE and the output bMotor becomes FALSE. In order to avoid a torrent of error messages if the control
voltage fails, the error messages of the function block are suppressed. If the control voltage is restored, the
error messages are enabled again.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT

bMotor : BOOL;
byState 3 BTG 2
bStateAuto : BOOL;
bStateRepairSwitch : BOOL;
bStateManSwitch : BOOL;
eStateModeActuator : E HVACActuatorMode;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorMotorprotec : BOOL;
bErrorFeedbContactor : BOOL;
bErrorFeedbProcess : BOOL;
bInvalidParameter : BOOL;

bMotor: output variable for controlling a 1-stage motor.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable;

byState.1 := bMotor;

byState.2 := bStateAuto;

byState.5 := bStateRepairSwitch;

byState.6 := bStateManSwitch;

byState.7 := bCtrIVoltage;

bStateAuto: indicates the state for automatic preselection if the operation mode eCtriModeActuator is either
eHVACACctuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP and stage 1 was activated via the input
variable bAuto.

bStateRepairSwitch: status message of the repair switch. TRUE indicates that the repair switch is switched
off.

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

TS8000 Version: 1.2 39

Function blocks BEGKHOFF

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorMotorprotec, bErrorFeedbContactor or bErrorFeedbProcess = = TRUE. The output bMotor is then set
to FALSE and is only enabled again when the fault has been rectified and acknowledged via bReset.

byError: returns all error messages and warnings of the function block.
byError.1 := blnvalidParameter;

byError.2 := bErrorGeneral,

byError.3 := bErrorMotorprotec;

byError.4 .= bErrorFeedbContactor;

byError.5 := bErrorFeedbProcess;

bErrorMotorprotec: error motor protection, see input variable bMotorProtec.

bErrorFeedbContactor: power section feedback error, see input variable bFeedbContactor.

d If no feedback from the power section of the motor is present, the output variable bMotor must be
1 applied to the input bFeedbContactor. See application example

bErrorFeedbProcess: process feedback error, see input variable bFeedbackProcess.

binvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrIModeActuator, tStartDelay, tStopDelay, tDelayFeedbContactor, tFeedbProcessTimer or
tDelayFeedbProcess. An incorrect parameter specification does not lead to a standstill of the function block;
see description of variables. After rectifying the incorrect parameter entry, the message binvalidParameter
must be acknowledged via bReset.

VAR_IN_OUT

tStartDelay : TIME;
tStopDelay : TIME;
tDelayFeedbContactor : TIME;
tFeedbProcessTimer : TIME;
tDelayFeedbProcess : TIME;

tStartDelay: the start-up of the motor after enabling and switching on via the operation mode of the motor is
delayed by the time tStartDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tStopDelay: the switching off of the motor via the operation mode of the motor is delayed by the time
tStopDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. blnvalidParameter will be set in the event of an incorrect
parameter entry.

tDelayFeedbContactor: time delay [ms] of the feedback of the power section after switching on the motor. If
this time has elapsed and bFeedbContactor = FALSE, then this is fed back to the controller via the error
message bErrorFeedbContactor (100ms..3600ms). The variable is saved persistently. Preset to 100 ms.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tFeedbProcessTimer: time delay of the process feedback bFeedbProcess [s] after switching on the motor.
If this time has elapsed and bFeedbProcess = FALSE, then this is fed back to the controller via the error
message bErrorFeedbProcess (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbProcess: in order to avoid undesired switching off of the drive during operation due to the
process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering of the
input bFeedbProcess can be delayed by the time tDelayFeedbProcess (0s..3600s). The variable is saved

40 Version: 1.2 TS8000

BECKHOFF

Function blocks

persistently. Preset to 0

S.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter

entry.

Documents about this

example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.6 FB_HVACMotor2Speed

elatasecurityType
bSetDefault

bEnable
bAutaSpead]
bAutoSpeed?
eCtriModeictuator
bMotarProtecSpeedt
bMotarProtecspesd?

bFeedbProcess
bRepairswitch
bhanSwitch
bCtrlvaltage
bReset
t=tartDelay &
t=topDelay &

tDelaySpeed] &

FB HwACMotorZSpeed

bFeedbCantactorSpeed?
bFeedbhContactorspead?
bErrorMotarprotecSpeed] —
bErrorMotarprotecSpeed2—
bErrorFeedbContactorSpeedl—
bErrorFeedbContactorSpeed2—

tDelayFeedbContactorSpeed] &
tDelayFeedbContactorSpeeds &
tFeedbFProcessTimer &
tDelayFeedbProcess »

tDelay=peedi ToSpeed? &
tDelaySpeed2ToSpeed] &

bMotarspeed!—
btatorSpeed2—
byState—
bStatefutoSpeed!—
bStatelfutoSpeed—
bStateRepairSwitch—
bStateManSwitch—
eStateModeActuatar—
bErrarGeneral—
byErrar—

bErrorFeedbProcess—
blrvalidPararmeter—

Application

This function block serves to control a two-stage drive in HVAC systems. The function block always runs in
stage 1, the lower power stage. It cannot be switched on directly in stage 2. In the event of a restart,
disablement, an error or switching off of the motor via the operation mode, restart of the motor is blocked for
the duration of tDelaySpeed2ToSpeed1.

Application example

Download Required library
TcHVAC.pro [» 531] TcHVAC.lib
VAR_INPUT

eDataSecurityType : E HVACDataSecurityType;

bSetDefault : BOOL;

bEnable : BOOL;

bAutoSpeedl : BOOL;

bAutoSpeed2 : BOOL;

eCtrlModeActuator : E_HVACActuatorMode;

bMotorProtecSpeedl : BOOL;

bMotorProtecSpeed?2 : BOOL;

bFeedbContactorSpeedl : BOOL;

bFeedbContactorSpeed2 : BOOL;

TS8000 Version: 1.2 41

Function blocks BEGKHOFF

bFeedbProcess : BOOL;
bRepairSwitch : BOOL;
bManSwitch : BOOL;
bCtrlvVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurity Type_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the drive will be switched off
in the respective switch-on stage with a delay specified in the time variable tStopDelay. If an enable is
present, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1.

bAutoSpeed1: bAutoSpeed1 is only active if the operation mode eCtriModeActuator is either
eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP.

If the input variables bAutoSpeed1 = TRUE and bAutoSpeed2 = FALSE, the function block is instructed that
the drive should run at speed 1. If bAutoSpeed1 = FALSE, the drive will be switched off with a delay
specified in the time variable tStopDelay.

bAutoSpeed2: bAutoSpeed? is only active if the operation mode eCtriModeActuator is either
eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP.

If the input variable bAutoSpeed1 and bAutoSpeed2 = TRUE, the function block is instructed to run the drive
in at speed 2. If bAutoSpeed1 andbAutoSpeed?2 = FALSE, the drive is switched off with a delay specified in
the time variable tStopDelay.

eCtrIModeActuator: Enum that specifies the operation mode of the motor. In the event of an incorrect entry,
operation continues internally with the last valid operating mode. This is eHVACActuatorMode Auto BMS in
the case of initial commissioning. blnvalidParameter will be set in the event of an incorrect parameter entry.

bMotorProtecSpeed1: input for motor protection speed 1. There is a motor protection fault if the input
bMotorProtecSpeed1 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed?2 are all FALSE; the fault is indicated at the output of the function block by
bErrorMotorprotecSpeed1. The motor can only be restarted if the fault has been rectified and acknowledged
at the input bReset.

bMotorProtecSpeed2: input for motor protection speed 2. There is a motor protection fault if the input
bMotorProtecSpeed?2 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed?2 are all FALSE; the fault is indicated at the output of the function block by
bErrorMotorprotecSpeed2. The motor can only be restarted if the fault has been rectified and acknowledged
at the input bReset.

bFeedbContactorSpeed1: feedback from the power section of the motor for speed 1. The operating
feedback is present if the input bFeedbContactorSpeed1 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed1, the output
bErrorFeedbContactorSpeed1 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed?2 are all FALSE. The motor can only be restarted if the fault has been

42 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BECKHOFF

Function blocks

rectified and acknowledged at the input bReset. If no feedback from the power section of the motor is
present for speed 1, the output variable bMotorSpeed1 must be applied to the input

bFeedbContactorSpeed1.

If no feedback from the power section of the motor is present, the output variable bMotorSpeed1

must be applied to the input bFeedbContactorSpeed1. See application example

bFeedbContactorSpeed2: feedback from the power section of the motor for speed 2. The operating
feedback is present if the input bFeedbContactorSpeed2 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed?2, the output
bErrorFeedbContactorSpeed? is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed?2 are all FALSE. The motor can only be restarted if the fault has been
rectified and acknowledged at the input bReset. If no feedback from the power section of the motor is
present for speed 2, the output variable bMotorSpeed2 must be applied to the input

bFeedbContactorSpeed?2.

If no feedback from the power section of the motor is present, the output variable bMotorSpeed?2

must be applied to the input bFeedbContactorSpeed2. See application example

bFeedbProcess: a process feedback signal, for example from a v-belt monitor or a flow monitor can be
connected to the input bFeedbProcess. The process feedback is present if the input bFeedbProcess = TRUE
(quiescent current principle). If, in the start-up phase after switching on the motor, the process feedback is
not present after the time set by tFeedbProcessTimer, the drive switches off and indicates a fault at the
output bErrorFeedbProcess. The motor can only be restarted if the fault has been rectified and

acknowledged at the input bReset. In order to avoid undesired switching off of the drive during operation due
to the process monitoring bFeedbProcess, €.g. in the event of short-term pressure fluctuations, the triggering
of the input bFeedbProcess can be delayed by the time tDelayFeedbProcess.

The process feedback is active if either bMotorSpeed1 or bMotorSpeed2 = TRUE.

bRepairSwitch: the state of the repair switch is monitored with the input bRepairSwitch. The motor can only
be switched on if bRepairSwitch = TRUE (quiescent current principle). If the repair switch is switched off,
bRepairSwitch = FALSE, the outputs bMotorSpeed1 and bMotorSpeed? are all FALSE. If the state of the
repair switch is TRUE, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1.

bManSwitch: the state of the manual/emergency switch is monitored with the input bManSwitch. The motor
can only be switched on if bManSwitch = TRUE (quiescent current principle). If the manual/emergency
switch is switched off, bManSwitch= FALSE, the outputs bMotorSpeed1 and bMotorSpeed?2 are both FALSE.
If the state of the manual/emergency switch is TRUE, a restart of the motor is blocked for the duration of
tDelaySpeed2ToSpeed1.

bCtriVoltage: the control voltage is monitored with the input bCtriVoltage. The motor can only be switched
on if bCtrlVoltage = TRUE (quiescent current principle). If the control voltage is switched off, bCtr/Voltage=
FALSE, the outputs bMotorSpeed1 and bMotorSpeed?2 are both FALSE. In order to avoid a torrent of error
messages if the control voltage fails, the error messages of the function block are suppressed. If the control
voltage is restored, the error messages are enabled again. If control voltage is present, a restart of the motor
is blocked for the duration of tDelaySpeed2ToSpeed1.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT

bMotorSpeedl : BOOL;
bMotorSpeed2 : BOOL;
byState : BYTE;
bStateAutoSpeedl : BOOL;
bStateAutoSpeed2 : BOOL;
bStateRepairSwitch : BOOL;
bStateManSwitch : BOOL;
eStateModeActuator : E_HVACActuatorMode;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorMotorprotecSpeedl : BOOL;
bErrorMotorprotecSpeed2 : BOOL;
bErrorFeedbContactorSpeedl : BOOL;

TS8000

Version: 1.2 43

Function blocks BEGKHOFF

bErrorFeedbContactorSpeed2 : BOOL;
bErrorFeedbProcess : BOOL;
bInvalidParameter : BOOL;

bMotorSpeed1: output variable for controlling speed 1 of the two-speed drive.
bMotorSpeed2: output variable for controlling speed 2 of the two-speed drive.

byState: status byte indicating the operating state of the function block
byState.0 := bEnable;

byState.1 := bMotorSpeed1;

byState.2 := bMotorSpeed2;

byState.3 := bStateAutoSpeed1;

byState.4 := bStateAutoSpeed?2;

byState.5 := bStateRepairSwitch;

byState.6 := bStateManSwitch;

byState.7 := bCtrlVoltage

bStateAutoSpeed1: indicates the state for automatic preselection speed 1 if the operation mode
eCtrIModeActuator is either eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP and speed
1 was activated via the input variable bAutoSpeed1.

bStateAutoSpeed2: indicates the state for automatic preselection speed 2 if the operation mode
eCtrIModeActuator is either eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP and speed
2 was activated via the input variable bAutoSpeed?.

bStateRepairSwitch: status message of the repair switch. TRUE indicates that the repair switch is switched
off.

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorMotorprotecSpeed1, bErrorMotorprotecSpeed2, bErrorFeedbContactorSpeed1,
bErrorFeedbContactorSpeed?2 or bErrorFeedbProcess = TRUE. The outputs bMotorSpeed1 and
bMotorSpeed?2 are then set to FALSE and are only enabled again when the fault has been rectified and
acknowledged via bReset. After rectification of the fault a restart of the motor is blocked for the duration of
tDelaySpeed2ToSpeed1.

byError: returns all error messages and warnings of the function block.
byError.1 := bilnvalidParameter;

byError.2 := bErrorGeneral,

byError.3 := bErrorMotorprotecSpeed1,

byError.4 := bErrorMotorprotecSpeed?2 ;

byError.5 := bErrorFeedbContactorSpeed1 ;

byError.6 := bErrorFeedbContactorSpeed?;

byError.7 := bErrorFeedbProcess;

bErrorMotorprotecSpeed1: error motor protection, see input variable bMotorProtecSpeed1.
bErrorMotorprotecSpeed2: error motor protection, see input variable bMotorProtecSpeed?2.

bErrorFeedbContactorSpeed1: power section feedback error, see input variable bFeedbContactorSpeed1

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed1

must be applied to the input bFeedbContactorSpeed1. See application example

bErrorFeedbContactorSpeed2: power section feedback error, see input variable bFeedbContactorSpeed2

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed?2

must be applied to the input bFeedbContactorSpeed2. See application example

44 Version: 1.2 TS8000

BEGKHOFF Function blocks

bErrorFeedbProcess: process feedback error, see input variable bFeedbackProcess

binvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrIModeActuator, tStartDelay, tStopDelay, tDelayFeedbContactorSpeed1, tDelayFeedbContactorSpeed?2,
tFeedbProcessTimer,tDelayFeedbProcess, tDelaySpeed1 or tDelaySpeed1ToSpeed2. An incorrect
parameter specification does not lead to a standstill of the function block; see description of variables. After
rectifying the incorrect parameter entry, the message binvalidParameter must be acknowledged via bReset.

VAR_IN_OUT

tStartDelay : TIME;
tStopDelay : TIME;
tDelayFeedbContactorSpeedl : TIME;
tDelayFeedbContactorSpeed2 : TIME;
tFeedbProcessTimer : TIME;
tDelayFeedbProcess : TIME;
tDelaySpeedl : TIME;
tDelaySpeedlToSpeed2 : TIME;
tDelaySpeed2ToSpeedl : TIME;

tStartDelay: the start-up of the motor after enabling and switching on via the operation mode of the motor is
delayed by the time tStartDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. blnvalidParameter will be set in the event of an incorrect
parameter entry.

tStopDelay: the switching off of the motor in the respective switch-on stage, either by switching the enable
bEnable to FALSE, or by switching off via the operation mode eCtriModeActuator , or in automatic operation
mode by switching the input variables bAutoSpeed1 and bAutoSpeed?2 to FALSE, is delayed by the time
tStopDelay [s]. Once the delayed switch-off of the motor has been activated it can no longer be canceled
(0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. blnvalidParameter will be set in the event of an incorrect
parameter entry.

tDelayFeedbContactorSpeed1: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed1 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed1 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbContactorSpeed2: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed?2 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed2 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect
parameter entry.

tFeedbackProcessTimer: time delay [s]of the process feedback bFeedbProcess [s] after start-up phase of
the motor. If this time has elapsed and bFeedbProcess = FALSE, then this is fed back to the controller via
the error message bErrorFeedbProcess (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbProcess: in order to avoid undesired switching off of the drive during operation due to the
process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering of the
input bFeedbProcess can be delayed by the time tDelayFeedbProcess (0s..3600s). The variable is saved
persistently. Preset to O s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

TS8000 Version: 1.2 45

Function blocks BEGKHOFF

tDelaySpeed1: time delay [s] for the start-up phase of the motor in speed 1 (1s..3600s). The variable is
saved persistently. Preset to 3s.

After this time has elapsed, the motor can be switched from the first to the second speed if the operating
mode for speed 2 is selected.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed1ToSpeed2: time delay for the motor switchover phase from speed 1 to speed 2, so that both
outputs bMotorSpeed1 and bMotorSpeed?2 are FALSE for a short while (100ms..10s). The variable is saved
persistently. Preset to 250 ms. The time delay serves to protect the motor windings.

If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed2ToSpeed1: time delay [s] for the motor switchover phase from speed 2 to speed 1
(1s..3600s). The variable is saved persistently. Preset to 10 s. In this phase both outputs bMotorSpeed?1 and
bMotorSpeed?2 are FALSE for the time tDelaySpeed2ToSpeed1 in order to reduce the speed of the motor
when switching to speed 1.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

46 Version: 1.2 TS8000

BECKHOFF

Function blocks

3.1.7 FB_HVACMotor3Speed

FB HwACMotordSpeed

elatasecurityType
bSetDefault

bEnable

bAutaSpead]
bAutoSpeed?
bAutoSpeedd
eCtriModeActuatar
bMotarProtecSpeedt
bMotarProtecspesd?
bMotorPratecSpeeds
bFeedbContactorspeed?
bFeedbContactorspead?

bFeedbProcess
bRepairSwitch
bhanSwitch
bCtrlvoltage
bReset
t=tartDelay &
t=topDelay &

tDelayzpeed] &
tDelayspead’ &

bFeedbContactorspead3

bhotorSpeed?
bMatorSpeed2
bMatorSpeed3
witate
bStatefutoSpeedl
bStatefutoSpeed?
bStatefutospesds
bStateRepairSwitch
bStateMan3witch
eStateModefctuatar
bErrarGeneral
whrror

bErrorMotorprotecSpeed?
bErrortotorprotecSpeed2
bErrartdotarprotecspeed3

bErorFeedbContactorSpeed?
bErarFeedbContactorspeed:
bErrarFeedbContactorspeed3

tDelayFeedbContactorSpeed? &
tDelayFeedbContactorSpeedz &
tDelayFeedbContactorSpeed3 &
tFeedbFProcessTimer &
tDelayFeedbProcess &=

tDelaySpeed! ToSpeed2ToSpeeds &
tDelaySpeeddToSpeed] &
tDelaySpeediToSpeed? &

bhErrarFeedbFrocess
hlrvalidParameter

Application

This function block serves to control a three-speed drive in HVAC systems. The function block always runs in
step 1, the lowest power step, and switches to step 2 or step 3 depending on requirements. It cannot be
switched on directly in step 2 or 3. In the event of a restart, disablement, an error or switching off of the
motor via the operation mode, restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1 +

tDelaySpeed3ToSpeed?2.

Application example

Download

Required library

TcHVAC.pro [P 531]

TcHVAC.lib

VAR_INPUT

eDataSecurityType
bSetDefault

bEnable

bAutoSpeedl
bAutoSpeed2
bAutoSpeed3
eCtrlModeActuator
bMotorProtecSpeedl
bMotorProtecSpeed2
bMotorProtecSpeed3
bFeedbContactorSpeedl
bFeedbContactorSpeed?2

: E_HVACDataSecurityType;
: BOOL;

: BOOL;

: BOOL;

: BOOL;

: BOOL;

: E_HVACActuatorMode;
: BOOL;

: BOOL;

: BOOL;

: BOOL;

: BOOL;

TS8000

Version: 1.2

47

Function blocks BEGKHOFF

bFeedbContactorSpeed3 : BOOL;
bFeedbProcess : BOOL;
bRepairSwitch : BOOL;
bManSwitch : BOOL;
bCtrlvVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the drive is switched off with
a delay specified in the time variable tStopDelay at the respective switch-on stage.

If an enable is present, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1 +
tDelaySpeed3ToSpeed?2.

bAutoSpeed1: bAutoSpeed1 is only active if the operation mode eCtriModeActuator is either
eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP.

If the input variables bAutoSpeed1 = TRUE, bAutoSpeed?2 = FALSE and bAutoSpeed3 = FALSE, then the
function block is instructed that the drive should run at speed 1.

If bAutoSpeed1 = FALSE, the drive will be switched off with a delay specified in the time variable tStopDelay.

bAutoSpeed2: bAutoSpeed? is only active if the operation mode eCtriModeActuator is either
eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP.

If the input variables bAutoSpeed1 = TRUE, bAutoSpeed2 = TRUE and bAutoSpeed3 = FALSE, then the
function block is instructed that the drive should run at speed 2.

If bAutoSpeed1 and bAutoSpeed2 = FALSE, the drive will be switched off with a delay specified in the time
variable tStopDelay.

bAutoSpeed3: bAutoSpeed3 is only active if the operation mode eCtriModeActuator is either
eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto OP.

If the input variables bAutoSpeed1 = TRUE, bAutoSpeed2 = TRUE and bAutoSpeed3 = TRUE, then the
function block is instructed that the drive should run at speed 3.

If bAutoSpeed1, bAutoSpeed?2 and bAutoSpeed3 = FALSE, the drive will be switched off with a delay
specified in the time variable tStopDelay.

eCtrIModeActuator: Enum that specifies the operation mode of the motor. In the event of an incorrect entry,
operation continues internally with the last valid operating mode. This is eHVACActuatorMode _Auto BMS in
the case of initial commissioning. binvalidParameter will be set in the event of an incorrect parameter entry.

bMotorProtecSpeed1: input for motor protection speed 1. There is a motor protection fault if the input
bMotorProtecSpeed1 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE; the fault is indicated at the output of the
function block by bErrorMotorprotecSpeed1. The motor can only be restarted if the fault has been rectified
and acknowledged at the input bReset.

48 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

bMotorProtecSpeed2: input for motor protection speed 2. There is a motor protection fault if the input
bMotorProtecSpeed?2 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE; the fault is indicated at the output of the
function block by bErrorMotorprotecSpeed2. The motor can only be restarted if the fault has been rectified
and acknowledged at the input bReset.

bMotorProtecSpeed3: input for motor protection speed 3. There is a motor protection fault if the input
bMotorProtecSpeed3 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE; the fault is indicated at the output of the
function block by bErrorMotorprotecSpeed3. The motor can only be restarted if the fault has been rectified
and acknowledged at the input bReset.

bFeedbContactorSpeed1: feedback from the power section of the motor for speed 1. The operating
feedback is present if the input bFeedbContactorSpeed1 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed1, the output
bErrorFeedbContactorSpeed1 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. The motor can only be restarted if the
fault has been rectified and acknowledged at the input bReset. If no feedback from the power section of the
motor is present for speed 1, the output variable bMotorSpeed1 must be applied to the input
bFeedbContactorSpeed1.

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed1

must be applied to the input bFeedbContactorSpeed1. See application example

bFeedbContactorSpeed2: feedback from the power section of the motor for speed 2. The operating
feedback is present if the input bFeedbContactorSpeed2 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed2, the output
bErrorFeedbContactorSpeed? is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. The motor can only be restarted if the
fault has been rectified and acknowledged at the input bReset. If no feedback from the power section of the
motor is present for speed 2, the output variable bMotorSpeed2 must be applied to the input
bFeedbContactorSpeed?2.

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed2

must be applied to the input bFeedbContactorSpeed2. See application example

bFeedbContactorSpeed3: feedback from the power section of the motor for speed 3. The operating
feedback is present if the input bFeedbContactorSpeed3 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed3, the output
bErrorFeedbContactorSpeed3 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed?2 and bMotorSpeed3 are all FALSE. The motor can only be restarted if the
fault has been rectified and acknowledged at the input bReset. If no feedback from the power section of the
motor is present for speed 3, the output variable bMotorSpeed3 must be applied to the input
bFeedbContactorSpeed3.

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed3

must be applied to the input bFeedbContactorSpeed3. See application example

bFeedbProcess: a process feedback signal, for example from a v-belt monitor or a flow monitor can be
connected to the input bFeedbProcess. The process feedback is present if the input bFeedbProcess = TRUE
(quiescent current principle). If, in the start-up phase after switching on the motor, the process feedback is
not present after the time set by tFeedbProcessTimer, the drive switches off and indicates a fault at the
output bErrorFeedbProcess. The motor can only be restarted if the fault has been rectified and
acknowledged at the input bReset. In order to avoid undesired switching off of the drive during operation due
to the process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering
of the input bFeedbProcess can be delayed by the time tDelayFeedbProcess.

The process feedback is active if either bMotorSpeed1, bMotorSpeed?2 or bMotorSpeed3 = TRUE.

TS8000 Version: 1.2 49

BECKHOFF

Function blocks

bRepairSwitch: the state of the repair switch is monitored with the input bRepairSwitch. The motor can only
be switched on if bRepairSwitch = TRUE (quiescent current principle). If the repair switch is switched off,
bRepairSwitch = FALSE, the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. If
the state of the repair switch is TRUE, a restart of the motor is blocked for the duration of
tDelaySpeed2ToSpeed1 + tDelaySpeed3ToSpeed?.

bManSwitch: the state of the manual/emergency switch is monitored with the input bManSwitch. The motor
can only be switched on if bManSwitch = TRUE (quiescent current principle). If the manual/emergency
switch is switched off, bManSwitch= FALSE, the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3
are all FALSE. If the state of the manual/emergency switch is TRUE, a restart of the motor is blocked for the
duration of tDelaySpeed2ToSpeed1 + tDelaySpeed3ToSpeed?.

bCtriVoltage: the control voltage is monitored with the input bCtriVoltage. The motor can only be switched
on if bCtrIVoltage = TRUE (quiescent current principle). If the control voltage is switched off, bCtr/Voltage=
FALSE, the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. In order to avoid a
torrent of error messages if the control voltage fails, the error messages of the function block are
suppressed. If the control voltage is restored, the error messages are enabled again. If control voltage is
present, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed? +

tDelaySpeed3ToSpeed? .

bReset: input for acknowledgement of faults via a rising edge.

VAR_OUTPUT

bMotorSpeedl : BOOL;
bMotorSpeed2 : BOOL;
bMotorSpeed3 : BOOL;
wState : WORD;
bStateAutoSpeedl : BOOL;
bStateAutoSpeed2 : BOOL;
bStateAutoSpeed3 : BOOL;
bStateRepairSwitch : BOOL;
bStateManSwitch : BOOL;
eStateModeActuator : E _HVACActuatorMode;
bErrorGeneral : BOOL;
wError : WORD;
bErrorMotorprotecSpeedl : BOOL;
bErrorMotorprotecSpeed2 : BOOL;
bErrorMotorprotecSpeed3 : BOOL;
bErrorFeedbContactorSpeedl : BOOL;
bErrorFeedbContactorSpeed2 : BOOL;
bErrorFeedbContactorSpeed3 : BOOL;
bErrorFeedbProcess : BOOL;
bInvalidParameter : BOOL;

bMotorSpeed1: output variable for controlling speed 1 of the three-speed drive.

bMotorSpeed2: output variable for controlling speed 2 of the three-speed drive.

bMotorSpeed3: output variable for controlling speed 3 of the three-speed drive.

wState: statusword indicating the operating state of the function block.

wState.0 := bEnable;

wState.1 := bMotorSpeed1;
wState.2 ;= bMotorSpeed?2;
wState.3 ;= bMotorSpeed3;
wState.4 :
wState.5 :

bStateAutoSpeed1;
bStateAutoSpeed?2;

wState.6 := bStateAutoSpeed3;
wState.7 = bStateRepairSwitch;
wState.8 := bStateManSwitch;
wState.9 := bCtrlVoltage;

bStateAutoSpeed1: indicates the state for automatic preselection speed 1 if the operation mode
eCtrIModeActuator is either eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto OP and speed
1 was activated via the input variable bAutoSpeed1.

bStateAutoSpeed2: indicates the state for automatic preselection speed 2 if the operation mode
eCtrIModeActuator is either eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP and speed
2 was activated via the input variable bAutoSpeed?.

50 Version: 1.2 TS8000

BEGKHOFF Function blocks

bStateAutoSpeed3: indicates the state for automatic preselection speed 3 if the operation mode
eCtrIModeActuator is either eHVACActuatorMode Auto BMS or eHVACActuatorMode Auto_OP and speed
3 was activated via the input variable bAutoSpeed3.

bStateRepairSwitch: status message of the repair switch. TRUE indicates that the repair switch is switched
off.

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorMotorprotecSpeed1, bErrorMotorprotecSpeed2, bErrorMotorprotecSpeed3,
bErrorFeedbContactorSpeed1, bErrorFeedbContactorSpeed2, bErrorFeedbContactorSpeed23 or
bErrorFeedbProcess = TRUE. The outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are then set
to FALSE and are only enabled again when the fault has been rectified and acknowledged via bReset. After
rectification of the fault a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1 +
tDelaySpeed3ToSpeed?2.

wError: returns all error messages and warnings of the function block.
wError.1 := binvalidParameter;

wError.2 := bErrorGeneral,

wError.3 := bErrorMotorprotecSpeed1,

wError.4 := bErrorMotorprotecSpeed?2;

wError.5 := bErrorMotorprotecSpeed3,;

wError.6 := bErrorFeedbContactorSpeed1;

wError.7 := bErrorFeedbContactorSpeed2;

wError.8 := bErrorFeedbContactorSpeed3;

wError.9 := bErrorFeedbProcess;

bErrorMotorprotecSpeed1: error motor protection, see input variable bMotorProtecSpeed1.
bErrorMotorprotecSpeed2: error motor protection, see input variable bMotorProtecSpeed?.
bErrorMotorprotecSpeed3: error motor protection, see input variable bMotorProtecSpeed3.

bErrorFeedbContactorSpeed1: power section feedback error, see input variable bFeedbContactorSpeed1

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed1

must be applied to the input bFeedbContactorSpeed1. See application example

bErrorFeedbContactorSpeed2: power section feedback error, see input variable bFeedbContactorSpeed?2

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed?2

must be applied to the input bFeedbContactorSpeed2. See application example

bErrorFeedbContactorSpeed3: power section feedback error, see input variable bFeedbContactorSpeed3

d If no feedback from the power section of the motor is present, the output variable bMotorSpeed3

must be applied to the input bFeedbContactorSpeed3. See application example

bErrorFeedbProcess: process feedback error, see input variable bFeedbackProcess

bIinvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrIModeActuator, tStartDelay, tStopDelay, tDelayFeedbContactorSpeed1, tDelayFeedbContactorSpeed?2,
tDelayFeedbContactorSpeed3,tFeedbProcessTimer,tDelayFeedbProcess, tDelaySpeed1, tDelaySpeed?,
tDelaySpeed1ToSpeed2ToSpeed3, tDelaySpeed2ToSpeed1 or tDelaySpeed3ToSpeed2. An incorrect
parameter specification does not lead to a standstill of the function block; see description of variables. After
rectifying the incorrect parameter entry, the message blnvalidParameter must be acknowledged via bReset.

TS8000 Version: 1.2 51

Function blocks

BECKHOFF

VAR_IN_OUT

tStartDelay : TIME;
tStopDelay : TIME;
tDelayFeedbContactorSpeedl : TIME;
tDelayFeedbContactorSpeed2 : TIME;
tDelayFeedbContactorSpeed3 : TIME;
tFeedbProcessTimer : TIME;
tDelayFeedbProcess : TIME;
tDelaySpeedl : TIME;
tDelaySpeed2 : TIME;
tDelaySpeedlToSpeed2ToSpeed3 : TIME;
tDelaySpeed2ToSpeedl : TIME;
tDelaySpeed3ToSpeed2 : TIME;

tStartDelay: the start-up of the motor after enabling and switching on via the operation mode of the motor is
delayed by the time tStartDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect
parameter entry.

tStopDelay: the switching off of the motor in the respective switch-on stage, either by switching the enable
bEnable to FALSE, or by switching off via the operation mode eCtriModeActuator , or in automatic operation
mode by switching the input variables bAutoSpeed1, bAutoSpeed2 and bAutoSpeed3 to FALSE, is delayed
by the time tStopDelay [s]. Once the delayed switch-off of the motor has been activated it can no longer be
canceled (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbContactorSpeed1: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed1 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed1 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, operation continues with the default value. binvalidParameter will be set in the event of an
incorrect parameter entry.

tDelayFeedbContactorSpeed2: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed2 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed2 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbContactorSpeed3: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed3 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed3 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tFeedbackProcessTimer: time delay [s]of the process feedback bFeedbProcess [s] after start-up phase of
the motor. If this time has elapsed and bFeedbProcess = FALSE, then this is fed back to the controller via
the error message bErrorFeedbProcess (0s..3600s). The variable is saved persistently. Preset to 0 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbProcess: in order to avoid undesired switching off of the drive during operation due to the
process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering of the
input bFeedbProcess can be delayed by the time tDelayFeedbProcess (0s..3600s). The variable is saved
persistently. Preset to O s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

52 Version: 1.2 TS8000

BEGKHOFF Function blocks

tDelaySpeed1: time delay [s] for the start-up phase of the motor in speed 1 (1s..3600s). The variable is
saved persistently. Preset to 3s.

After this time has elapsed, the motor can be switched from the first to the second speed if the operating
mode for speed 2 is selected.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed2: time delay [s] for the start-up phase of the motor in speed 2 (1s..3600s). The variable is
saved persistently. Preset to 3s.

After this time has elapsed, the motor can be switched from the second to the third speed if the operation
mode for speed 3 is selected.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed1ToSpeed2ToSpeed3: time delay for the motor switchover phase from speed 1 to speed 2 or
from speed 2 to speed 3, so that the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are FALSE
for a short while (1s..3600s). The variable is saved persistently. Preset to 250 ms. The time delay serves to
protect the motor windings.

If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed2ToSpeed1: time delay [s] for the motor switchover phase from speed 2 to speed 1
(1s..3600s). The variable is saved persistently. Preset to 10 s. In this phase the outputs bMotorSpeed1,
bMotorSpeed2 and bMotorSpeed3 are set to FALSE for the duration of tDelaySpeed2ToSpeed1in order to
reduce the speed of the motor when switching to speed 1.

If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed3ToSpeed2: time delay [s] for the motor switchover phase from speed 3 to speed 2
(1s..3600s). The variable is saved persistently. Preset to 10 s. In this phase the outputs bMotorSpeed1,
bMotorSpeed2 and bMotorSpeed3 are FALSE for the time tDelaySpeed3ToSpeed? in order to reduce the
speed of the motor when switching to speed 2.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

TS8000 Version: 1.2 53

Function blocks BEGKHOFF

3.1.8 FB_HVACRedundancyCtrl

FB HWACRedundancyCirl
elatasecurityType b1 —
bhSetDefault b2 —
iCountCtel hCa—
bEn1 b4 —
bERZ bCs—
bEnr3 bGE—
bEn4 b7 —
bERS bCE—
bhEnkE eErrorCode—
bhEn? bErrorGeneral—
hEna blrvalidParameter—
bhFeedBack
bFeedBack?
bFeedBack3
bFeedBackd
bFeedBacks
bFeedBackB
bFeedBack?
hFeedBacks
bForceChange
dtSystemnTime
bSysTakt1Hz
bResetAllHours
bResetAlCounter
bReset
tHours b
uiCount b
tCwerlaplActuator &
uitblaxOnlevel &=
thoF eedbActuator &=

Application

This function block serves to control a certain number of actuators, e.g. of pumps, from a pool of 8 actuators.
From all enabled actuators, the logic searches for those with the shortest runtimes and switches them on
according to the runtime order. This continues until the number specified via iCountCitrl is reached. The
actuators are routed internally via a FIFO memory so that they can be switched off again in the same order.
Changeover during operation can be performed with the time specification uiMaxOnLevel or by the trigger
bForceChnage. The actuator that has been switched on longest is switched off, and the one with the shortest
runtime is switched on. In order to avoid a hydraulic stroke in the pumps, an overlap time can be set via
tOverlap1Actuator. This time is only valid for the case when a change between two actuators takes place.

To determine the running times, the function block FB HVACWork [P 472] is instantiated internally and the IN-
OUT variables are passed on externally (rHours and uiCount). The recording of the operating time is
controlled by the Feedback inputs. If no feedback signal from the actuator is available, the actuator output
must be fed back to the feedback input.

VAR_INPUT

VAR_INPUT

eDataSecurityType : E HVACDataSecurityType;
bSetDefault : BOOL;

iCountCtrl : INT;

bEnl - bEn8 : BOOL;

bFeedBackl - bFeedBack8 : BOOL;

bForceChange : BOOL;

dtSystemTime : DT;

54 Version: 1.2 TS8000

BEGKHOFF Function blocks

bSysTaktlHz : BOOL;
bResetAllHours : BOOL;
bResetAllCounter : BOOL;
bReset : BOOL;

eDataSecurity Type:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_ldle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.
iCountCtrl: number of actuators to be switched on (0..8).
bEn1 - 8: enables the corresponding actuator.

bFeedBack1 - 8: operating feedback from the actuator. Evaluation only takes place if tNoFeedbActuator >
t#0s .

bForceChange: a positive edge at the input switches off the first actuator in the FIFO and switches on the
actuator from the pool that has the shortest runtime.

dtSystemTime: system time.

bSysTakt1Hz: 1 Hz clock signal as a replacement for dtSystemTime; if dtSystemTime is not available, or
does not change its value for longer than 2 s, then the clock signal is used as a replacement.

bResetAllHours: resets all operating hours counters.
bResetAllCounter: resets all switch-on counters.

bReset: acknowledge input in the event of a fault.

VAR_IN_OUT

rHours : REAL;
uiCount : UINT;
tOverlaplActuator : TIME;
uiMaxOnLevel : UINT;
tNoFeedbActuator : TIME;

rHours[1..8]: operating hours [h] with a resolution of 1/100 hours (internally with 1 s). The variable is saved
persistently.

uiCount[1..8]: switch-on cycle counter. The variable is saved persistently.

tOverlap1Actuator: overlap time for the case where an exchange between two actuators takes place
(Oms..1min). The variable is saved persistently. Preset to 20 s.

uiMaxOnLevel: max. time in hours [h] that an actuator may be switched on (0h..1000h). Forces an actuator
change only if an actuator is available to be switched on. The variable is saved persistently. Preset to 200 h.

TS8000 Version: 1.2 55

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

tNoFeedbActuator: time that is allowed to elapse before the lack of an operating feedback from the actuator
leads to bErrorGeneral = TRUE (0ms..60s). There is no evaluation if the time = 0. The variable is saved
persistently. Presetto 3 s

VAR_OUTPUT

bOl - bO8 : BOOL;

eErrorCode : E HVACErrorCodes;
bErrorGeneral : BOOL;
bInvalidParameter : BOOL;

bQ1 - 8: actuator on signal.

eErrorCode: indicates which actuator has not returned an operating feedback within the prespecified
timespan. The detection of this error group is activated by a time greater than 0 in the variable
tNoFeedbActuator. eHVACErrorCodes Error_NoFeedbackActuator1 := 15,

eHVACErrorCodes _Error_NoFeedbackActuator2 := 16,

eHVACErrorCodes Error_NoFeedbackActuator3 := 17,

eHVACErrorCodes Error_NoFeedbackActuator4 := 18,

eHVACErrorCodes Error_NoFeedbackActuator5 := 19,

eHVACErrorCodes _Error_NoFeedbackActuator6 := 20,
eHVACErrorCodes_Error_NoFeedbackActuator7 := 21,
eHVACErrorCodes _Error NoFeedbackActuator8 := 22,

bErrorGeneral: error during evaluation of the operating feedback.

binvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827 .zip)

56 Version: 1.2 TS8000

BEGKHOFF Function blocks

3.1.9 FB_HVACRedundancyCtriEx

FE_HWACRedundancyCtrlEx
eDatasecurityType O
hSetDefault b2 -
iCountCtrl hCE-
bEn1 b4
bEnR2 bGs—
bEnR3 bGE—
bEn4 bG7 -
bERS bCE-
bhEnkE artFiFo-
hEn? eErrorCode—
hEn2 hErorGeneral—
bFeedBackl blnvalidParameter—
bFeedBack?
bFeedBack3
bFeedBackd
bFeedBacks
bFeedBacks
bhFeedBack?
hFeedBacks
bForceChange
bReset
rHours1
rHoursZ?
rHours3
rHoursd
tHourss
rHoursh
rHours?
rHoursd
tCwerlaplActuator &=
LitlaxOnlevel =
thoFeedbActuator &

Application

This function block serves to control a certain number of actuators, e.g. of pumps, from a pool of 8 actuators.
From all enabled actuators, the logic searches for those with the shortest runtimes and switches them on
according to the runtime order. This continues until the number specified via iCountCitrl is reached. The
actuators are routed internally via a FIFO memory so that they can be switched off again in the same order.
Changeover during operation can be performed with the time specification uiMaxOnLevel or by the trigger
bForceChnage. The actuator that has been switched on longest is switched off, and the one with the shortest
runtime is switched on. In order to avoid a hydraulic stroke in the pumps, an overlap time can be set via
tOverlap1Actuator. This time is only valid for the case when a change between two actuators takes place.

In contrast to the FB_ HVACRedundancyCtrl [P 54] no internal timer is used for the determination of the
running times, but the times must be applied as hourly values from outside as Var_Input.

VAR_INPUT

eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;

iCountCtrl : INT;

bEnl - DbEnS8 : BOOL;

bFeedBackl - bFeedBack8 : BOOL;

bForceChange : BOOL;

rHoursl-rHours8 : REAL;

TS8000 Version: 1.2 57

Function blocks BEGKHOFF

eDataSecurity Type:if eDataSecurityType:= eHVACDataSecurityType _Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: g™ https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.
iCountCtrl : number of actuators to be switched on
bEn1 - 8: enables the corresponding actuator.

bFeedBack1 - 8: operating feedback from the actuator. Evaluation only takes place if {tNoFeedbActuator >
t#0s .

bForceChange: a positive edge at the input switches off the first actuator in the FIFO and switches on the
actuator from the pool that has the shortest runtime.

rHours: operating hours

VAR_IN_OUT

tOverlaplActuator : TIME;
uiMaxOnLevel : UINT;
tNoFeedbActuator : TIME;

tOverlap1Actuator: overlap time for the case where an exchange between two actuators takes place
(Oms..1min). The variable is saved persistently. Preset to 20 s.

uiMaxOnLevel: max. time in hours that an actuator may be switched on (Oh..1000h). Forces an actuator
change only if an actuator is available to be switched on. The variable is saved persistently. Preset to 200 h.

tNoFeedbActuator: time that is allowed to elapse before the lack of an operating feedback from the actuator
leads to bErrorGeneral = TRUE (Oms..60s). There is no evaluation if the time = 0. The variable is saved
persistently. Presetto 3 s

VAR_OUTPUT

bQl - bQ8 : BOOL;

arrFiFo : Array[l..8] of INT;
eErrorCode : E_HVACErrorCodes;
bErrorGeneral : BOOL;

bInvalidParameter : BOOL;
bQ1 - 8: actuator on signal.

arrFiFo: table containing the information showing which actuator is switched on (actuator number). The
order specifies the switch-off sequence. arFifo[1] = no. of the actuator that will be switched off next.

eErrorCode: indicates which actuator has not returned an operating feedback within the prespecified
timespan. The detection of this error group is activated by a time greater than 0 in the variable
tNoFeedbActuator. eHVACErrorCodes _Error NoFeedbackActuator1 := 15,

eHVACErrorCodes _Error_NoFeedbackActuator? := 16,
eHVACErrorCodes Error NoFeedbackActuator3 := 17,

58 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BECKHOFF

Function blocks

eHVACErrorCodes _Error_NoFeedbackActuator4 := 18,
eHVACErrorCodes_Error_NoFeedbackActuator5 := 19,
eHVACErrorCodes Error_NoFeedbackActuator6 := 20,
eHVACErrorCodes_Error_NofFeedbackActuator7 := 21,
eHVACErrorCodes _Error_NoFeedbackActuator8 := 22,

bErrorGeneral: error during evaluation of the operating feedback.

binvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2 HVAC Analog modules

3.2.1 FB_HVACAnaloglnput

bSetDefault
iHaw'alue
tTaskCycleTime
tCtrCycleTime
bEnablelimitCtr
bCtrlvoltage
bReset
iHighRange &
iLowRange =
tHighRange &
tLowRange &
tHighLirnit &
rLowLimit =
tFilterTime &
roffset =

FB HwWACAnaloglnput
elatasecurityType

rPresentvalue
byState

bErrar

eErrorCode
bErrarHighLirnit
bErrorLowLirnit
bErarGeneral
byErrar
blrvalidFarameter

Application

This function block serves the acquisition and scaling of analog input signals. Using the KL30xx, KL31xx und
KL32xx terminals, the standard signals 0-20 mA, 4—-20 mA, 0—10 V and 10-5000 Ohms can be acquired and
converted to physical values.

VAR_INPUT

eDataSecurityType
bSetDefault
iRawValue
tTaskCycleTime
tCtrlCycleTime
bEnablelLimitCtrl
bCtrlvoltage
bReset

: E_HVACDataSecurityType;
: BOOL;
: INT;

g Il 2
: TIME;
: BOOL;
: BOOL;
: BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurity Type_Persistent, the persistent
VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main

program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

TS8000

Version: 1.2

59

Function blocks BEGKHOFF

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

iRawValue: the raw value is transferred from the terminal to the function block with the parameter
iRawValue.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtriCycleTime: cycle time with which the function block is processed. This must be greater than or equal to
the TaskCycleTime. The function block uses this input value to calculate internally whether the state and the
output values have to be updated in the current cycle.

bEnableLimitCtrl: limit value monitoring is only activated if the variable bEnableLimitCtrl is TRUE. This way,
limit value monitoring can be delayed with a timer until the heating or air conditioning system is in a
controlled state. In the case of air conditioning systems, this is usually enabled by the system start program.
See also FB_HVACStartAirConditioning regarding this point.

bCtrlVoltage: by means of checking the sensor supply voltage with the input bCtriVoltage, error messages
are suppressed if the supply voltage to the sensors is absent. If the sensor supply voltage is present, a
TRUE is present at the input bCtr/Voltage.

bReset: acknowledge input in the event of an error. In addition the 2nd order filter can be synchronized via
this input to the present measuring signal, so that this can be output at rPresentValue.

VAR_OUTPUT

rPresentValue : REAL;

byState : BYTE;

bError : BOOL;

eErrorCode : E HVACErrorCodes;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bErrorGeneral : BOOL;

byError : BYTE;
bInvalidParameter : BOOL;

rPresentValue: determined output value.

byState: state of the function block.
byState.1:= TRUE, limit value monitoring is activated.
byState.7:= TRUE, sensor voltage supply is present.

bError: the variable bError becomes TRUE in the event of an internal error in the function block.
eErrorCode : contains the specific error code related to the bError.

bErrorHighLimit: TRUE if the upper limit value is reached.

bErrorLowLimit: TRUE if the lower limit value is reached.

bErrorGeneral: TRUE if a single error message from the process is present.

byError: output of the errors as byte.
byError.0:= bError
byError.1:= blnvalidParameter

60 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

byError.2:= bErrorGeneral
byError.3:= bErrorLowLimit is TRUE if the lower limit value is undershot.
byError.4:= bErrorHighLimit is TRUE if the upper limit value is exceeded.

binvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT

iHighRange : INT;
iLowRange : INT;
rHighRange : REAL;
rLowRange : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
tFilterTime : TIME;
rOffset : REAL;

iHighRange: upper raw value of the input variable iRawValue. The variable is saved persistently. Preset to
32767.

iLowRange: lower raw value of the input variable iRawValue. The variable is saved persistently. Preset to 0.
rHighRange: the upper scaled measured value. The variable is saved persistently. Preset to 100.
rLowRange: the lower scaled measured value. The variable is saved persistently. Preset to 0.

rHighLimit: if the scaled measured value is larger than the upper limit value rHighLimit, an impermissibly
high measured value can be reached. The function block indicates this error by setting the variable
bErrHighLimit to TRUE. The variable is saved persistently. Preset to 100.

rLowLimit: if the scaled measured value is smaller than the lower limit value rLowLimit, an impermissibly
low measured value can be reached. The function block indicates this error by setting the variable
bErrLowLimit to TRUE. The variable is saved persistently. Preset to 0.

tFilterTime: to avoid large fluctuations and jumps in the measuring signal, the function block is provided with
two 1st order filters. Both filters work with the same time constant. The filter constants are determined by the
variable tFilterTime [s] (0..3600). The variable is saved persistently. Preset to 2 s.

rOffset: with this offset the linear equation determined by means of the two conversion points is shifted
parallel upwards or downwards. The variable is saved persistently. Preset to 0.

With the two value pairs iHighRange/rHighRange and iLowRange/rLowRange a linear conversion of the raw
value into the physical unit takes place.iHighRange and iLowRange correspond to the raw values. rHighLimit
and rLowLimit correspond to the scaled values in the physical unit of the signal to be measured.

The output value is given by:

rPresentValue = [{ (rHighRange - rLowRange) / (iHighRange - iLowRange) } x (iRawValue - iHighRange] +
rHighRange + rOffset

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

TS8000 Version: 1.2 61

Function blocks BEGKHOFF

3.2.2 FB_HVACAnalogOutput

FBE_HvACAnalogOutput

—elataSecuntyType Y —
—b=etDefault i Terminal—
—bEnahle eStateModeAnalogOuput—
—rSetpoint bManualMode—
—bCtrvoltage byState—
—eCtritodeAnalogOuput bErrarFeedb—
= hanual bErrarGeneral—
—rFeedb byError—
—bFrost blrvalidFarameter—
—bReset

rtRangeHigh &=
rtRangelow &
bDirection &
bEnableFeedbCtrl &
rHysteresisFeadbCtrl &
tDelayFeadhCtrl &=

Application

This function block serves to control continuous actuators, such as valves or dampers, with positional
feedback.

VAR_INPUT

eDataSecurityType : E _HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;

rSetpoint : REAL;

bCtrlVoltage : BOOL;
eCtrlModeAnalogOutput : E_HVACAnalogOutputMode;
rYManual : REAL;

rFeedb : REAL;

bFrost : BOOL;

bReset : BOOL;

eDataSecurity Type:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If the function block is not enabled the value zero
is output at the output rY.

62 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

rSetpoint: the setpoint for the analog output is transferred to the function block with the variable rSetpoint.

bCtrlVoltage: the control voltage is present if the bCtr/Voltage variable is TRUE. The feedback control is
deactivated in the event of failure of the control voltage so that no false alarms occur.

eCtrIModeAnalogOutput: Enum that defines the operation mode.
TYPE E_HVACAnalogOutputMode :

(

eHVACAnalogOutputMode Auto_BMS := 0,
eHVACAnalogOutputMode _Manual_ BMS = 1,
eHVACAnalogOutputMode Auto OP := 2,
eHVACAnalogOutputMode Manual OP := 3

);

END_TYPE

rYManual: analog input value, which is relayed to the output rY in manual mode.
rFeedb: analog position feedback from the actuator.

bFrost: this input serves to protect an air heater against frost. As soon as the input bFrost is TRUE, rY is set
to the maximum size (rRangeHigh) and iYTerminal to 32767. The outputs rY and iYTerminal remain set until
the input bFrost is FALSE again.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT

rY : REAL;

iYTerminal : INT;
eStateModeAnalogOutput : E _HVACAnalogOutputMode;
bManualMode : BOOL;

byState : BYTE;

bErrorFeedb : BOOL;

bErrorGeneral : BOOL;

byError : BYTE;

bInvalidParameter : BOOL;

rY: indicates the current magnitude of the control signal in %.

iYTerminal: represents the size of the output signal scaled to the value range 0 to 32767.
eStateModeAnalogOutput: Enum that indicates the operation mode.

bManualMode: the analog output is in manual operation mode.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable;

byState.1 := bManualMode;

byState.2 := bFrost;

byState.7 = bCtrIVoltage;

bErrorFeedb: error feedback signal.
bErrorGeneral: this is a collective message for all function block errors.

byError: supplies all error messages and warnings.
byError.1 := binvalidParameter

byError.2 := bErrorGeneral

byError.3 := bErrorFeedb

binvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT

rRangeHigh : REAL;
rRangeLow : REAL;
bDirection : BOOL;
bEnableFeedbCtrl : BOOL;
rHysteresisFeedbCtrl : REAL;
tDelayFeedbCtrl : TIME;

TS8000 Version: 1.2 63

Function blocks BEGKHOFF

rRangeHigh/rRangeLow: these two variables define the value range of rY (0%..100%). The variable is
saved persistently.

Example: rSetpoint = 100, rRangeLow = 0, rRangeHigh = 200,
==>rY =50
==>rYTerminal = 16384

rSetpoint = 200, rRangeLow = 0, rRangeHigh = 200,
==>rY =100
==>rYTerminal = 32767

bDirection: the output signal of rY is inverted by the variable bDirection. FALSE corresponds to the direct
control direction. The variable is saved persistently.

bEnableFeedbCtrl: continuous actuators often have positional feedback. The function of the actuator is
monitored by means of the positional feedback. Positional feedback monitoring is activated if the variable
bEnableFeedbCtrl is TRUE. The variable is saved persistently.

rHysteresisFeedbCtrl: due to the stroke time of typical drives used in heating and air conditioning systems,
the feedback signal always lags in the case of a setpoint step-change for the position of the actuator. Using
the variable rHysteresisFeedbCtrl, a range is specified within which the position setpoint rY of the actuator
may deviate from the feedback signal (0..32767). The variable is saved persistently.

tDelayFeedbCitrl: if the difference between the set position and the actual position of the actuator is greater
than +/- rHysteresisFeedbCtrl, then the response of the output bErrorFeedb is delayed by the time of the
timer tDelayFeedbCltrl [s] (0s..50s). The variable is saved persistently.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2.3 FB_HVACAnalogOutputEx

FB_HvACAnalogOutputEx
—eDatasSecurityType Y
—bSetDefault if Terminal—
—bEnahle eStateModefnalogOutput—
—r=etpoint banualiode—
—bCtrlvoltage by=State—
—eCtiModeAnalogOutput bErarFeedb—
—r¥hanual bErrarGeneral—
—tFeedb byErrar—
—bFrost blnvalidFarameter—
—bReset
2 &
mlEANS
=iV e
=¥l B
—bDirection &

—bEnableFeadhCti t=
—tHysteresisFeedhCtrl &
—tDelayFeedbCirl &

Application

This function block is used to control continuous actuators such as valves or dampers with a positional
feedback.

Compared to FB_ HVACAnalogOutput, a scaling function is integrated in this function block. The function is:
y=m*x +b.

64 Version: 1.2 TS8000

BEGKHOFF Function blocks

Application example:
Damper actuator operating range 2-10 V with the KL4404 (signal voltage 0-10 V)

rX1=0iY1=6553
rX2 =100iY2 = 32767

[}

g —
> 4ol
T%g = A5 A
S |x |=

g o =
mn@‘-‘é 100 32767 Yo—
=T

2,0 0 6553 Y1-C

| >
X Xz
0 100

rSetpoint [%]

VAR_INPUT

eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;

rSetpoint : REAL;

bCtrlVoltage : BOOL;
eCtrlModeAnalogOutput E HVACAnalogOutputMode;
rYManual : REAL;

rFeedb : REAL;

bFrost : BOOL;

bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType _Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

TS8000 Version: 1.2 65

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If the function block is not enabled the value zero
is output at the output rY.

rSetpoint: the setpoint for the analog output is transferred to the function block with the variable rSetpoint.

bCtriVoltage: the control voltage is present if the bCtrlVoltage variable is TRUE. The feedback control is
deactivated in the event of failure of the control voltage so that no false alarms occur.

eCtrIModeAnalogOutput: Enum that defines the operation mode.
TYPE E_HVACAnalogOutputMode :

(

eHVACAnalogOutputMode Auto_BMS := 0,
eHVACAnalogOutputMode Manual BMS := 1,
eHVACAnalogOutputMode Auto_OP := 2,
eHVACAnalogOutputMode _Manual_OP := 3

);

END_TYPE

rYManual: analog input value, which is relayed to the output rY in manual mode.
rFeedb: analog position feedback from the actuator.

bFrost: this input serves to protect an air heater against frost. As soon as the input bFrost is TRUE, rY is set
to the maximum size (rRangeHigh) and iYTerminal to 32767. The outputs rY and iYTerminal remain set until
the input bFrost is FALSE again.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT

ryY : REAL;

iYTerminal : INT;
eStateModeAnalogOutput : E_HVACAnalogOutputMode;
bManualMode : BOOL;

byState : BYTE;

bErrorFeedb : BOOL;

bErrorGeneral : BOOL;

byError : BYTE;

bInvalidParameter : BOOL;

rY: indicates the current magnitude of the control signal in % (0%..100%).

iYTerminal: represents the size of the output signal scaled to the value range 0 to 32767.
eStateModeAnalogOutput: Enum that indicates the operation mode.

bManualMode: the analog output is in manual operation mode.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable;

byState.1 := bManualMode;

byState.2 := bFrost;

byState.7 := bCtrlVoltage;

bErrorFeedb: error feedback signal.

bErrorGeneral: this is a collective message for all function block errors.

66 Version: 1.2 TS8000

BEGKHOFF Function blocks

byError: supplies all error messages and warnings.
byError.1 := binvalidParameter

byError.2 := bErrorGeneral

byError.3 := bErrorFeedb

binvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT

rX2 : REAL;
rX1 : REAL;
ivY2 : INT;
ivl : INT;
bDirection : BOOL;
bEnableFeedbCtrl : BOOL;
rHysteresisFeedbCtrl : REAL;
tDelayFeedbCtrl : TIME;

rX2: upper limit value on the X axis (-32767..32767). The variable is saved persistently.
rX1: lower limit value on the X axis (-32767..32767). The variable is saved persistently.
rY2: upper limit value on the Y axis (0..32767). The variable is saved persistently.
rY1: lower limit value on the Y axis (0..32767). The variable is saved persistently.

bDirection: the output signal of rY is inverted by the variable bDirection. FALSE corresponds to the direct
control direction. The variable is saved persistently.

bEnableFeedbCtrl: continuous actuators often have positional feedback. The function of the actuator is
monitored by means of the positional feedback. Positional feedback monitoring is activated if the variable
bEnableFeedbCtrl is TRUE. The variable is saved persistently.

rHysteresisFeedbCtrl: due to the stroke time of typical drives used in heating and air conditioning systems,
the feedback signal always lags in the case of a setpoint step-change for the position of the actuator. Using
the variable rHysteresisFeedbCtrl, a range is specified within which the position setpoint rY of the actuator
may deviate from the feedback signal (0..32767). The variable is saved persistently.

tDelayFeedbCtrl: if the difference between the set position and the actual position of the actuator is greater
than +/- rHysteresisFeedbCtrl, then the response of the output bErrorFeedb is delayed by the time of the
timer tDelayFeedbCtrl (0s..50s). The variable is saved persistently.

TS8000 Version: 1.2 67

Function blocks BEGKHOFF

3.2.4 FB_HVACAnalogTo3Point

FB_ HwACAnalogTa3Paint

—elataSecurityType bOpen—
—b=etDefault bClose—
—bEnahle bystate—
—r=etpoint tPosition—
—rFeedb bErrarGeneral—
—bLirmitSwitchOpen byError—
—bLimitSwitchClose bErrarLimit Zwitch—
—bCtrlvoltage blnvalidParameter—
—bReset

tTaskCycleTime
thinSetpoint &
thlaxSetpoint &
tThreshold =
rTolerance &=
tFausehin &
tFPauseMay &
tinterval e
tStrokeTime =
tSwitchOverDeadTime &
eFeferancingMode &

Application

This function block serves to convert an analog signal into a three-point step signal. Hence three-point
dampers or valves can be controlled by a controller with a continuous control signal. The function block
FB_HVACAnalogTo3Point works with or without a continuous positional feedback signal from the drive.

68 Version: 1.2 TS8000

BECKHOFF

Function blocks

Example: three-point actuator without feedback and limit switch

T#500ms tSwitchOverDeadTime
| eHVACReferencingMode_Emulation eReferencingMode |
fhAnalogTo3Point
FB_HVACAnalogTo3Point
eDataSecurityType eDataSecurityType bOpen bOpen
bSetDefault bSetDefault bClose| bClose
bEnable bEnable byState byState
rSetpoint rSetpoint rPosition rPosition
—rFeedb bErrorGeneral bErrorGeneral
TRUE bLimitSwitchOpen byError byError
TRUE bLimitSwitchClose bErrorLimitSwitch) bErrorLimitSwitch
bCtlVoltage bCulVoltage blnvalidParameter blnvalidParameter
bReset bR.eset & rhVinSetpoint
| P ST System.tTaskCycleTime tTaskCycleTime - rhaxSetpoint
MinSetpoint rMinSetpoint * 1Threshold
MaxSetpoint rMaxSetpoint & = rTolerance
rThreshold rThreshold = - tPauseMin
rTolerance rTolerance & P tPauseMax
tPanseMin tPauseMin = P tlnterval
tPauseMax tPanseMax = & tStrokeTime
tlnterval tInterval = B tSwitchOverDeadTime
tStrokeTime tStrokeTime ™ I eReferencingMode
| tSwitchOverDeadTime tSwitchOverDeadTime &
| eReferencingMode eReferencingMode
VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rSetpoint : REAL;
rFeedb : REAL;
bLimitSwitchOpen : BOOL;
bLimitSwitchClose : BOOL;
bCtrlvoltage : BOOL;
bReset : BOOL;
tTaskCycleTime : TIME;

eDataSecurity Type:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

TS8000 Version: 1.2 69

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

bEnable: the function block is enabled if bEnable = TRUE. If control voltage is present and there are no
errors and bEnable = FALSE, then the output bClose = is TRUE and the output bOpen is FALSE. If the
reference mode eReferencingMode = eHVACReferencingMode Emulation, then the output bClose remains
set until either the limit switch is reached, the enable signal is present again or there is an error.

If the reference mode eReferencingMode = eHVACReferencingMode AnalogFeedback, then the output
bClose remains set until either the enable signal is present again, or there is a fault or rFeedback =
rMinSetpoint.

rSetpoint: the setpoint for the position of the damper or the valve is transferred to the function block with the
variable rSetpoint. The parameters rMaxSetpoint and rMinSetpoint define the value range of rSetpoint.

If an incorrect variable value is present at rSetpoint, then the last valid variable value is used, if available. If
there is no valid, last value, then work continues internally with rMinSetpoint. binvalidParameter is set if the
variable value is incorrect, the function block continues to operate normally.

rFeedb: the input variable rFeedb is only active if the referencing mode of the function block
eReferencingMode = eHVACReferencingMode AnalogFeedback. The actual position of the drive is fed back
with the scaled input signal rFeedb. The scaling of rFeedb must correspond to the scaling of rSetpoint. The
parameters rMaxSetpoint and rMinSetpoint define the value range of rFeedb. rFeedb is returned to the
controller via the output variable rPosition.

If there is an incorrect variable value at rFeedb, then the last valid variable value is taken, if available. If there
is no valid, last value, then work continues internally with rMinSetpoint. binvalidParameter is set if the
variable value is incorrect, the function block continues to operate normally.

bLimitSwitchOpen/bLimitSwitchClose: if the three-point actuator has limit switches, these can be
connected to the inputs bLimitSwitchOpen and bLimitSwitchClose.

The limit switches are used by the function block in the referencing mode eReferencingMode =
eHVACReferencingMode _Emulation for referencing. Depending on the direction of driving, the currently
calculated position rPosition is automatically set to the corresponding value of rMaxSetpoint/rMinSetpoint by
a falling edge on one of the two inputs bLimitSwitchOpen/bLimitSwitchClose. This also takes place when the
drive is at a standstill..

Regardless of which referencing mode the function block is in, the associated output bOpenor bClose
remains TRUE after the respective limit position switch has been reached.

The limit switches must be connected to the function block as break contacts. If none exist, a TRUE must be
applied to the two inputs bLimitSwitchOpen/bLimitSwitchClose.

bCtriVoltage: a check via the input variable bCtr/Voltage is made of whether control voltage is present. Both
outputs bOpen and bClose are set to FALSE in the event of failure of the control voltage. Since many error
messages are based on the quiescent current principle, there would be a torrent of error messages following
failure of the control voltage. Therefore all error messages are suppressed in the event of a control voltage
failure in the FB_HVACAnalogTo3Point.

The control voltage is present if a TRUE is present at input bCtriVoltage.

bReset: acknowledge input in the event of a fault.

tTaskCycleTime: cycle time with which the function block is called. This corresponds to the task cycle time
of the calling task if the function block is called in every cycle.

If an incorrect time value of T#0s is applied to tTaskCycleTime, then tTaskCycleTime is internally set to
T#1ms. binvalidParameter is set if the variable value is incorrect.

VAR_OUTPUT

bOpen : BOOL;
bClose : BOOL;
byState : BYTE;
rPosition : REAL;
bErrorGeneral : BOOL;
byError : BYTE;

bErrorLimitSwitch : BOOL;
bInvalidParameter : BOOL;

bOpen: output for opening the three-point actuator.
bClose: output for closing the three-point actuator.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable
byState.1 := bOpen

70 Version: 1.2 TS8000

BEGKHOFF Function blocks

byState.2 := bClose

byState.3 := bLimitSwitchOpen
byState.4 := bLimitSwitchClose
byState.7 := bCtrlVoltage

rPosition: with rPosition either the measured or the calculated position of the drive is fed back to the
controller.

If eReferencingMode = eHVACReferencingMode AnalogFeedback, then rFeedb is returned to the controller
via the output variable rPosition. If rFeedb > rMaxSetpoint, then rPosition = rMaxSetpoint and
binvalidParameter is set. If rFeedb < rMinSetpoint, then rPosition = rMinSetpoint and binvalidParameter is
set.

If eReferencingMode = eHVACReferencingMode_Emulation, then the actual position of the drive will be
emulated on the basis of a calculation and fed back to the controller via rPosition.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as bErrorGeneralLimitSwitch =
TRUE. The outputs bOpen and bClose are then set to FALSE and are only enabled again when the error
has been rectified and acknowledged via bReset.

byError: returns all error messages and warnings of the function block
byError.1:= bilnvalidParameter

byError.2:= bErrorGeneral

byError.3:= bErrorLimitSwitch

bErrorLimitSwitch: becomes TRUE if both limit switches are activated simultaneously or if ((rMaxSetpoint -
rThreshold) < rSetpoint) and bOpen = TRUE) or if ((rMinSetpoint + rThreshold) > rSetpoint) and bClose =
TRUE). The error bErrorLimitSwitch can only occur if eReferencingMode = eEmulation.

binvalidParameter: indicates that an incorrect parameter is present at one of the variables rMinSetpoint,
rMaxSetpoint, rThreshold, rTolerance, tPauseMin, tPauseMax, tinterval, tStrokeTime,
tSwitchOverDeadTime, eReferencingMode, rSetpoint or rFeedback. An incorrect parameter entry does not
lead to a standstill of the function block; see description of variables. After rectifying the incorrect parameter
entry, the message blnvalidParameter must be acknowledged via bReset.

VAR_IN_OUT
VAR_IN_OUT

rMinSetpoint : REAL;
rMaxSetpoint : REAL;
rThreshold : REAL;
rTolerance : REAL;
tPauseMin : TIME;
tPauseMax : TIME;
tInterval : TIME;
tStrokeTime : TIME;
tSwitchOverDeadTime : TIME;
eReferencingMode : E HVACReferencingMode;

rMinSetpoint/rMaxSetpoint: the parameters rMaxSetpoint (0..32767) and rMinSetpoint (0..32767) define
the value range of rSetpoint . rMaxSetpoint must be greater than rMinSetpoint. In addition, the two variables
rMaxSetpoint and rMinSetpoint are included in the calculation of the variable pulse-pause modulation, see
Figure 1.1.

If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, operation continues with the preset value. binvalidParameter is set if the parameter is
incorrect, the function block continues to operate normally. The variables are stored persistently.
rMinSetpoint preset to 0. rMaxSetpoint preset to 100.

rThreshold/rTolerance: if the difference between the position setpoint rSetpoint and the calculated or
measured actual position value rPosition of the actuator is greater than the threshold value set by the
variable rThreshold (0.001..32767), then the function block begins to correct the position by cycling the
outputs bOpen or bClose, depending on the control deviation value. Correction continues until the deviation
is smaller than the value rTolerance (0.001..32767). A hysteresis loop for the opening and closing movement
of the drive is defined by the value of rThreshold — rTolerance . This is necessary in order to prevent the
drive reacting to the smallest changes of the control value. Wear on the drive and the relay is thus reduced.
rThreshold must be greater than rTolerance.

rSetpoint - rPosition > = rThreshold control of bOpen

rPosition- rSetpoint > = rThreshold control of bClose

TS8000 Version: 1.2 71

Function blocks BEGKHOFF

If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the preset value is used. binvalidParameter is set if the parameter is incorrect, the function
block continues to operate normally. The variables are stored persistently. rThreshold preset to 5.0.
rTolerance preset to 2.0.

tPauseMin/tPauseMax/tinterval: a variable pulse/pause modulation for cycling the three-point actuator can
be set with the parameters tPauseMin [s] (0..3600), tPauseMax [s] (0..3600)and tinterval [s] (0..3600). The
pause length is defined as a function of the control deviation by the parameters tPauseMin and tPauseMax.
In the case of a small deviation the pause time is long in relation to the interval time. Analogously, the pause
time is short if the deviation is large. The effective driving speed of the three-point actuator is thus higher for
larger control deviations than it is for smaller ones; see following fig. The following condition must be fulfilled
in any case: tPauseMin < tPauseMax < tinterval

If a wrong variable value is present, then the last valid variable value is used, if available. If there is no valid
last value, then the preset value is used. blnvalidParameter is set if the parameter is incorrect, the function
block continues to operate normally. The variables are stored persistently. tPauseMin preset to 2s.
tPauseMax preset to 8s. tinterval preset to 10s.

tStrokeTime: the variable tStroke Time specifies the complete stroke time of the drive. If the drive has no
continuous position feedback, the actual position of the drive will be emulated on the basis of a calculation.
For this reason the precise input of the total stroke time of the actuator is important. The following condition
must be met in any case: tStrokeTime > tinterval

If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, then the preset value is used. binvalidParameter is set if the parameter is incorrect, the
function block continues to operate normally. The variable is saved persistently. Preset to 200 s.

tSwitchOverDeadTime: dwell time at a change of direction (0..3600). During this time, both outputs are
reset.

If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the preset value is used. binvalidParameter is set if the parameter is incorrect, the function
block continues to operate normally. The variable is saved persistently. Preset to 500 ms.

eReferencingMode: Enum via which the referencing mode of the function block is specified.

Depending on the equipment of the actuator used, the position is referenced depending on
eReferencingMode.

If eReferencingMode = eHVACReferencingMode Emulation, then the position of the actuator is calculated
on the basis of the control of bOpen and bClose by means of tStroke Time. However, as the operating hours
of the three-point valve or three-point damper increase, deviations could occur due to mechanical
inaccuracies in the drive. In order to achieve automatic matching of the actual and calculated positions, one
of the outputs bOpen or bClose will be set to TRUE upon reaching the calculated position rPosition of
rMaxSetpoint or rMinSetpoint and it is correspondingly given the value of the parameter rMaxSetpoint or
rMinSetpoint. A falling edge on the signal inputs bLimitSwitchOpenand bLimitSwitchClose is used to
reference the position of the drive to rMaxSetpoint or rMinSetpoint. After reaching the respective limit switch,
the corresponding output bOpenor bClose will remain set to TRUE.

If eReferencingMode = eHVACReferencingMode AnalogFeedback the position of the drive is transferred by
means of the signal rFeedback. After reaching the respective limit switch, the corresponding output bOpenor
bClose will remain set to TRUE.

If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, then the preset value is used. binvalidParameter is set if the parameter is incorrect, the
function block continues to operate normally. The variable is saved persistently. Preset to 0.

72 Version: 1.2 TS8000

BEGKHOFF Function blocks

Fig. 1.1

tPauselnterval

tPauseMax —
H'*-._‘H
"h-,‘ "
—
"'h..,-.‘-_
"1‘.,__‘-“‘ -
. —
tPauseMin
>
rhdinSat int Aaw S ~atvaint riControlNeviation
rivitEloet i1 FVIASELIPOINT PRt evigtion
F rSetpoint == rPosition THEN

rControlDeviation := rSetpoint — rPosition;

F rSetpoint < rPosition THEN
rControlDeviation := rPosition — rSetpoint;
ND IF
bClose/bOpen A
1
tPauselnterval
]
0 - >
) tinterval -
Example
tinterval 120 seconds
tPauseMin 10 seconds
tPauseMax 60 seconds
rSetpoint 100%
rPosition 50%
tPauselnterval / bClose OR bOpen 35 seconds/85 seconds
rSetpoint 50%
rPosition 25%
tPauselnterval / bClose OR bOpen 47.5 seconds/72.5 seconds

Documents about this
example_persistent_e.zip (Resources/zip/11659714827 .zip)

TS8000 Version: 1.2 73

Function blocks BEGKHOFF

3.2.5 FB_HVACConfigureKL32xx

FR_HWAC ConfigurekL3 2w
—byStatus kL3I 2mx hReady—
—iDatalnkL3IZum byutStatus —
—{bESetSensor ioutDatalnf—
—hScanSensar by Gl kL3 2w —
—eSensorType iDataoutkL 3 2m—
—tTimeCut eBusTerminalkL3Zwo—
eStatusScan3ensorType—
hErrorzenerali—
hyErrar—
hErrorCommunication—
hErrarBusTerminalMotSupported—
hErrarSensorType—
hErrorsScanSensor—

Application

With the function block FB_HVACConfigureKL32xx, the type of sensor of a channel of the KL3201/02/04, the
KL3208-0010 or the KL3228 can be set from the PLC. To do this, the variables byStatusKL32xx,
iDatalnKL32xx, byCtrIKL32xx and iDataOutKL32xx must be linked in the TwinCAT System Manager with the
variables Status, Data In, Control and Data Out of a channel of the KL3201/02/04 or the KL3228.

The resistor elements specified in Table 1 can be selected with the Enum eSensorType.

The KS2000 configuration software is no longer needed for setting the temperature sensor.

® When measuring resistances from 10 to 5000 Q with the KL32xx, 1 digit = 0.5 Q, i.e. the indicated
raw value must be divided by 2 in the PLC. Example: 2500 Q would be represented in the controller

1 by a raw value of 5000. The raw value must be divided by 2 in the PLC in order to arrive at the
ohmic value of 2500 Q.

@® The measurement of resistances from 10 to 10000 Q is possible only with the special terminal
KL320x-0027. Exclusively the resistance measurement 10...10000 Q can be performed on this
1 special terminal.

d The EL3692 EtherCAT Terminal is a resistance measurement terminal that covers the measuring
1 range up to 10 MQ.

Application example

Download Required library
TcHVAC.pro [» 531] TcHVAC.lib
VAR_INPUT

byStatusKL32xx : BYTE;

iDataInKL32xx : INT;

bSetSensor : BOOL;

bScanSensor : BOOL;

eSensorType : E_HVACSensorType;

tTimeOut : TIME;

byStatusKL32xx: the status byte (Status) of the Bus Terminal must be assigned here in the TwinCAT
System Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor. If scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor,
then this is indicated with a TRUE on bReady and byOutStatus := byStatusKL32xx. If scanning or setting is
activated, bReady = FALSE, then the value of byStatusKL32xx present before activation is output on
byOutStatus.

74 Version: 1.2 TS8000

BEGKHOFF Function blocks

iDatalnKL32xx: the raw value (Data In) of the Bus Terminal must be assigned here in the TwinCAT System
Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor. If scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor,
then this is indicated with a TRUE on bReady and iOutDataln := iDatalnKL32xx . If scanning or setting is
activated, bReady = FALSE, then the value of iDatalnKL32xx present before activation is output on
iOutDataln.

bSetSensor: the type of sensor specified on the Enum eSensorType is set in the Bus Terminal with a rising
edge on bSetSensor. If the procedure has been concluded, scanning is activated internally in the function
block and the type of sensor that has been set is indicated via the Enum eStatusScanSensorType.

bScanSensor: the scanning of the respective channel of the Bus Terminal is activated by a rising edge on
bScanSensor. The type of sensor that has been set is indicated via the Enum eStatusScanSensorType.

eSensorType: Enum with which the sensor type for the respective channel is specified for setting via
bSetSensor.

tTimeOut: specifies the time until the abortion of the function and bErrorCommunication goes TRUE. If no
time is specified, then T#5s is used internally in the function block.

VAR_OUTPUT

bReady : BOOL;

byOutStatus : BYTE;

iOutDataln : INT;

byCtrlKL32xx : BYTE;
iDataOutKL32xx : INT;
eBusTerminalKL32xx : E HVACBusTerminal KL32xx;
eStatusScanSensorType : E_HVACSensorType;
bErrorGeneral : BOOL;

byError : BYTE;
bErrorCommunication : BOOL;
bErrorBusTerminalNotSupported: BOOL;
bErrorSensorType : BOOL;
bErrorScanSensor : BOOL;

bReady: if the function block is activated via a rising edge on bSetSensor/bScanSensor, then bReady goes
FALSE. If scanning or the setting of the type of sensor has been concluded, then bReady goes TRUE.

byOutStatus: if scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor,
then this is indicated with a TRUE on bReady and byOutStatus := byStatusKL32xx. If scanning or setting is
activated, bReady = FALSE, then the value of byStatusKL32xx present before activation is output on
byOutStatus.

iOutDataln: if scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor, then
this is indicated with a TRUE on bReady and iOutDataln := iDatalnKL32xx . If scanning or setting is
activated, bReady = FALSE, then the value of iDatalnKL32xx present before activation is output on
iOutDataln.

byCtrIKL32xx: the control byte (control) of the Bus Terminal must be assigned here in the TwinCAT System
Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor.

iDataOutKL32xx: the data output (Data Out) of the Bus Terminal must be assigned here in the TwinCAT
System Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor.

eBusTerminalKL32xx: Enum that displays the type of Bus Terminal if the function block has been activated
with a rising edge on bSetSensor/bScanSensor.

eStatusScanSensorType: Enum that displays the type of sensor for the respective channel if the function
block has been activated with a rising edge on bSetSensor/bScanSensor.

bErrorGeneral: goes TRUE as soon as either bErrorCommunication, bErrorBusTerminalNotSupported,
bErrorSensorType or bErrorScanSensor is TRUE.

TS8000 Version: 1.2 75

BECKHOFF

Function blocks

byError: returns all error messages and warnings of the function block
byError.2 := bErrorGeneral,

byError.3 ;= bErrorCommunication;

byError.4 := bErrorBusTerminalNotSupported,

byError.5 := bErrorSensorType;

byError.6 := bErrorScanSensor;

bErrorCommunication: goes TRUE if, for example, the variables byCtrIKL32xx, iDataOutKL32xx,
byStatusKL32xx and iDatalnKL32xx have not been assigned to a channel of the Bus Terminal.
Communication to the Bus Terminal is then interrupted during scanning or the setting of the type of sensor.
bErrorCommunication likewise goes TRUE if the tTimeOut time is not sufficient when scanning or setting the
sensor type.

bErrorBusTerminalNotSupported: becomes TRUE if the Bus Terminal is not supported by the function
block.

bErrorSensorType: becomes TRUE if the type of sensor specified at eSensorType is not supported by the
Bus Terminal.

bErrorScanSensor: becomes TRUE if, when scanning, the type of sensor is not supported by the Bus
Terminals specified in the Enum eBusTerminalKL32xx.

Table 1: Table 1: types of sensor selectable via the Enum eTemperatureCharacteristic

Sen- |KL3201/2/4-0 |KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0

sor 000 010 012 014 016 020

type
Raw Raw Raw Raw Raw Raw
value value value value value value

PT100 |x 1/10° x 110 ° |x 1/10 ° x 110° |x 110° x 1/10 °
C C C C C C

PT200 |x 110 ° x 110 ° |x 1/10 ° x 110 ° |x 110 ° |x 110 °
C C C C C C

PT500 |x 110 ° |x 110 ° |x 110 ° |x 110 ° |x 110 ° |x 1/10 °
C C C C C C

PT100 |x 110 ° |x 110 ° |x 110 ° |x 110 ° |x 110 ° |x 110 °

0 C C C C C C

Ni100 |x 1/10° |x 110 ° |x 1/10° |x 110 ° |x 110 ° |x 110 °
C C C C C C

Ni120 |x 110 ° |x 110 ° |x 110 ° |x 110 ° |x 110 ° |x 110 °
C C C C C C

Ni100 |x 1710 ° |x 110 ° |x 110 ° |x 110 ° |x 110 ° |x 110 °

0(DIN) C C C C C C

Ni100 not not not not not not

0(Tk50|suppo suppo suppo suppo suppo suppo

00,LS) |rted rted rted rted rted rted

Resist |x X X X X X

ance

measu

remen

t10...

1200

Q

Resist |x X X X X X

ance

measu

remen

t10...

5000

Q

76 Version: 1.2

BECKHOFF

Function blocks

Sen- |KL3201/2/4-0 |KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0
sor 000 010 012 014 016 020
type
Raw Raw Raw Raw Raw Raw
value value value value value value
PT100 |x 1/10 ° x 110 ° |x 1/10° |x 110° |x 110° x 1/10 °
C C C C C C
PT200 |x 110 ° x 110 ° |x 1/10 ° x 110 ° |x 110 ° |x 110 °
C C C C C C
Resist not not not not not not
ance |suppo suppo suppo suppo suppo suppo
measu rted rted rted rted rted rted
remen
t10...
10000
Q
Sensor|KL3201/2/4-00 |KL3201/2/4-00 |KL3201/2/4-00 KL3201/2/4-00 |[KL3228 KL3208-0010
type |23 25 29 31
Raw Raw Raw Raw Raw Raw
value value value value value value
PT100 |x 1/10° X 110 ° |x 1/10° |x 1/10 ° |not not
C C C C suppor suppor
ted ted
PT200 |x 110 ° |x 110 ° |x 110 ° |x 1/10 ° |not not
C C C C suppor suppor
ted ted
PT500 |x 110 ° |x 110 ° |x 110 ° |x 1/10 ° |not not
C C C C suppo suppo
rted rted
PT100 |x 1/10° |x 110 ° |x 1/10° |x 1/10 ° |x 110 ° |x 1/100
0 C C C C C °C
Ni100 |x 1710 ° |x 110 ° |x 110 ° |x 1/10 ° |not not
C C C C suppo suppo
rted rted
Ni120 |x 1/10° |x 110 ° |x 110 ° |x 1/10 ° |not not
C C C C suppo suppo
rted rted
Ni100 |x 1710 ° |x 110 ° |x 1710 ° |x 110 ° |x 110 ° |x 1/100
0(DIN) C C C C C °C
Ni100 not not X 1/10 ° |not X 110 ° |x 1/100
0(Tk50|suppo suppo C suppo C °C
00,LS) rted rted rted
Resist |x X X X not not
ance suppo suppo
measu rted rted
remen
t10 ...
1200
Q
Resist |x X X X not not
ance suppo suppo
measu rted rted
remen
t10...
5000
Q
TS8000 Version: 1.2

Function blocks

BECKHOFF

Sen- |KL3201/2/4-0 [KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0 KL3201/2/4-0
sor 000 010 012 014 016 020
type
Raw Raw Raw Raw Raw Raw
value value value value value value
PT100 |x 1/10 ° x 110 ° |x 1/10° |x 110° |x 110° x 1/10 °
C C C C C C
PT200 x 110 ° x 110 ° |x 1/10 ° x 110 ° |x 110 ° |x 1/10 °
C C C C C C
Resist not not not not not not
ance |suppo suppo suppo suppo suppo suppo
measu rted rted rted rted rted rted
remen
t10...
10000
Q
3.2.6 FB_HVACScale
FB_HvACScale
—eDataSecurityType racaledvalue
—bSetDefault
—rRawData

rRawlat alowOffLimit e
tRawDataHighOffLimit &
tScaleDatalowOfLimit e
r>caleDataHighOffLimnit &

Application

A raw analog value is scaled to the specified measuring range and returned as the function value. If the raw
value extends beyond the upper or lower measuring range, the corresponding limit value is output. There
must be a difference of at least 0.01 between the upper and lower limit values for the raw data. If this is not
the case, the lower limit value is output. The difference between the limits is necessary so as to avoid
division by zero during the internal calculation of the linear equation.

=cale Data
m
Sl e DataHigh OFf Li mit

ScaleDataLow OFf Li mit

2 Raw Data
RawData High OFf Li mit

R D=t Lo OFF Li mit

VAR_INPUT

eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;

rRawData : REAL;

78 Version: 1.2

TS8000

BEGKHOFF Function blocks

eDataSecurity Type:if eDataSecurityType [P 520]:= eHVACDataSecurityType Persistent, the persistent
VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

rRawData: raw value from the terminal.

VAR_OUTPUT

rScaledValue : REAL;

rScaledValue: scaled value.

VAR_IN_OUT

rRawDataLowOffLimit : REAL;
rRawDataHighOffLimit : REAL;
rScaleDataLowOffLimit : REAL;
rScaleDataHighOffLimit : REAL;

rRawDataLowOffLimit: lower limit from raw value. Preset to 0.
rRawDataHighOffLimit: upper limit from raw value. Preset to 32767.
rScaleDataLowOffLimit: lower limit of the scaled measured value. Preset to 0.

rScaleDataHighOffLimit: upper limit of the scaled measured value. Preset to 100.

Example in FBD:

_thHYACSCale
FBE_HWACScale
(—eDataSecurityType rscaledvalue—— ScaledWalue=71.58635

b3etDefault{bSetDefault
23486 7T qrRawData

rRawDatalowOfLimit=0rRawDatalowCOfLimit &
tRawDataHighOffLimit=32767 rRawDataHighOffLimit &
rscaleDatalowOffLimit=0—rScaleDatalowOffLimit &
racaleDataHighOffLimit=100—rScaleDataHighOfLimit =

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

TS8000 Version: 1.2 79

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

3.2.7 FB_HVACScale_nPoint

FB_HWACScale_nPoint

—r Y —
—stParameterScale_nFPaoint stStateParameterScale_nPoint—
hErrorMumberofPoint—

hErrarParameter—

UiErrorPositions_Parameter—

Application

Curves can be reproduced in the PLC with the function block FB_HVACScale nPoint. These can be, for
example, positive or negative temperature coefficients (PTC/NTC). The analog raw resistance value of a
PTC/NTC is applied to the input rX and output as a temperature value via the output rY. The individual
parameters and the number of individual points of the X-Y axis of the characteristic curve are specified with
the structure stParameterScale _nPoint.

The KL32xx Bus Terminals can be used to display analog raw resistance values in the PLC. Detailed

information can be found in the documentation on FB_HVACConfigureKL32xx [P 74].

® When measuring resistances from 10 to 5000 Q with the KL32xx, 1 digit = 0.5 Q, i.e. the indicated
raw value must be divided by 2 in the PLC. Example: 2500 Q would be represented in the controller

1 by a raw value of 5000. The raw value must be divided by 2 in the PLC in order to arrive at the
ohmic value of 2500 Q.

@ The measurement of resistances from 10 to 10000 Q is possible only with the special terminal
KL320x-0027. Exclusively the resistance measurement 10...10000 Q can be performed on this
1 special terminal.

hd The EL3692 EtherCAT Terminal is a resistance measurement terminal that covers the measuring
1 range up to 10 MQ.

Application example

Download Required library
TcHVAC.pro [P 531] TcHVAC.lib
VAR_INPUT

rX : REAL;

stParameterScale nPoint: ST HVACParameterScale nPoint;

rX: raw value that scales to the indicated measured value of the structure stParameterScale _nPoint and is
output via rY. The raw value can be, for example, the raw resistance value of the KL32xx. The terminal must
be set to resistance measurement for this. Detailed information on the procedure can be found in the

documentation FB_ HVACConfigureKL32xx [» 74].

stParameterScale_nPoint: structure via which the individual points of the X-Y coordinates are given their
valency. Regardless of which curve is to be reproduced, the following conditions must be met: either
stParameterScale _nPoint.rX[1] < stParameterScale_nPoint.rX[2] < stParameterScale_nPoint.rX[n] OR
stParameterScale_nPoint.rX[1] > stParameterScale_nPoint.rX[2] > stParameterScale_nPoint.rX[n].
stParameterScale _nPoint.iNumberOfPoint must not be smaller than 2 OR larger than

g_iMaxNoOfScale nPoint(60).

stParameterScale _nPoint.rX[1..iNumberOfPoint] - array which contains the valence of the single points of
the X axis. The number of points specified depends on iNumberOfPoint.
stParameterScale_nPoint.rY[1..iNumberOfPoint] - array containing the valency of the individual points on
the Y axis. The number of points specified depends on iNumberOfPoint.

80 Version: 1.2 TS8000

BEGKHOFF Function blocks

VAR_OUTPUT

rY : REAL;
stStateParameterScale nPoint: ST HVACParameterScale nPoint;
bErrorNumberOfPoint : BOOL;

bErrorParameter : BOOL;

uiErrorPositionX Parameter : INT;

rY: rYis the scaled temperature value of the specified raw value rX.

stStateParameterScale_nPoint: state of the structure stParameterScale _nPoint. If bErrorNumberOfPoint or
bErrorParamter = TRUE, the status of the individual parameters in the structure
stStateParameterScale _nPoint = 0. If stParameterScale _nPoint.iNumberofPoint = 20, the individual
parameters of stStateParameterScale _nPoint.rX[1..20] / stStateParameterScale _nPoint.rY[1..20] are
displayed, from 21 to 60 the status = 0.

bErrorNumberOfPoint: If iNumberOfPoint < 2 or iNumberOfPoint > g_iMaxNoOfScale _nPoint, then
bErrorNumberOfPoint = TRUE and 0 is output at the output variable rY. If the error has been rectified, then
bErrorNumberOfPoint goes FALSE.

bErrorParameter: when parameterizing the structure stScale TemperatureCharacteristic care must be taken
that either

stParameterScale _nPoint.rX[1] > stParameterScale _nPoint.rX[2] > stParameterScale_nPoint.rX[n] OR
stParameterScale _nPoint.rX[1] < stParameterScale _nPoint.rX[2] < stParameterScale_nPoint.rX[n].

If this is not adhered to, bErrorParameter goes TRUE. If the error has been rectified, then bErrorParameter
goes FALSE. The exact field position in the array stParameterScale nPoint.rX[uiErrorPositionX_Parameter]
is specified via the output variables uiErrorPositionX_Parameter.

uiErrorPositionX_Parameter: if bErrorParameter = TRUE, then the exact field position in the array
stParameterScale_nPoint.rX[uiErrorPositionX_Parameter] at which the error has occurred is indicated by
uiErrorPositionX_Parameter.

VAR_GLOBAL CONSTANT
g_iMaxNoOfScale nPoint: INT := 60;

g_iMaxNoOfScale_nPoint: global constant that specifies the maximum number of points of the XY
coordinates of the structure SST HVACParameterScale nPoint [P 526].

Formulas for the linear equation, two-point form:
m = gradient
m=(Y2-Y1)/(X2-X1)

m = (stParameterScale_nPoint.rY[2] - stParameterScale_nPoint.rY[1]) /
(stParameterScale_nPoint.rX[2] - stParameterScale_nPoint.rX[1])

Y=Y1+m*(X-X1)

rY =rY[1] + m * (rX - stParameterScale_nPoint.rX[1]

TS8000 Version: 1.2 81

Function blocks

BECKHOFF

Example curve 1 with calculation

stParameterScale_nPoint.iNumberOfPoint

stParameterScale_nPoint.rX][...]
stParameterScale nPoint.rY]..]

IF rX < rX[4] THEN

rY = rY[4):
°C rY A END_IF

rY[E]

YRl - ————
| | IF rX > rX[1] THEN
: I rY 1= rY[1];
L
' |

Y[R F————— +—+ ——
| |

______ | s
FY[1] 7 | | | C
FX[4] FX[3] e o

iNumberOfPoint = 4
rX[4] = rX[3] = eX[2] < rX[1]

Fig. 1: FB_HVACScale_nPoint_2

m = rM = slope

X=rX=1199.8

X2 = stParameterScale_nPoint.rxX[2] = 1209
X3 = stParameterScale_nPoint.rX[3] = 1163
Y2 = stParameterScale_nPoint.rY[2] = 20
Y3 = stParameterScale_nPoint.rY[3] = 21

m = (Y3-Y2)/(X3-X2)

rM = (stParameterScale_nPoint.rY[3] - stParameterScale_nPoint.rY[2]) /
(stParameterScale_nPoint.rX[3] - stParameterScale_nPoint.rX[2])

rM = (21 -20) /(1163 - 1209) = -0.02174
Y=Y2+m*(X-X2)
rY = stParameterScale_nPoint.rY[2] + rM * (rX - stParameterScale_nPoint.rX[2])

ry =20 +-0.02174 * (1199.8 - 1209) = 20.2

82 Version: 1.2

TS8000

BECKHOFF

Function blocks

Example curve 2 with calculation

stParameterScale_nPoint.iNumberOfPoint

stParameterScale_nPoint.rx[...]
stParameterScale nPoint.rY[...]

IF rX = rX[4] THEN

Y =rY[4]
“CIY A EN D_iF
T 4 I S S S S S S i
IFrX=rX[1] THEN
=Y 1]
END_IF
Ey--—-t-—-—————-—-—-

Y= —f————t

Rl

-
rX[1] rX[2] rX[3]) rX[4] X1

iNumberOfPoint = 4
rX[1] = rX[2] = rX[3] = rX[4]

m = rM = slope

X=rX=1124

X3 = stParameterScale_nPoint.rX[2] = 1112
X4 = stParameterScale_nPoint.rX[3] = 1142
Y3 = stParameterScale_nPoint.rY[2] = 20
Y4 = stParameterScale_nPoint.rY[3] = 25

m = (Y4 - Y3) / (X4 - X3)

rM = (stParameterScale_nPoint.rY[4] - stParameterScale_nPoint.rY[3]) /

(stParameterScale_nPoint.rX[4] - stParameterScale_nPoint.rX[3])
rM = (25-20) /1142 - 1112) = 0.166
Y=Y3+m*(X-X3)

rY = stParameterScale_nPoint.rY[3] + rM * (rX - stParameterScale_nPoint.rX[3])

rY=20+0.166 * (1124 - 1112) = 21.992

TS8000 Version: 1.2

83

Function blocks

BECKHOFF

Example curve 3

IF X < rX[1] THEN
rY :=rY[1];
END_IF

rx[3]

stParameterScale_nPoint.iNumberOfPoint
stParameterScale _nPoint.rX]...]
stParameterScale_nPoint.ry[...]

>y

rx[1] rX[2]

rY[6]

rX[1] = rX[2] = rX[3] = rX[4] = rX[5] = rX[6] IF rX = rX[6] THEN

iNumberOfPoint = 6

rY = rY[B];
END IF

3.2.8 FB_HVACTemperatureCurve

eTemperatureCumne

FB_HYACTemperature Cure
stParameterScale_nPoint—

Application

A temperature curve stored internally in the function block is selected from Tables 1 and 2 via the Enum
eTemperatureCurve and output via the structure stParameterScale _nPoint. Characteristic curves can then
be reproduced with this structure in conjunction with the function block FB_HVACScale nPoint [80]. In order
to arrive at the raw resistance value of a sensor, the KL32xx Bus Terminals must be set to resistance
measurement; see FB HVACConfigureKL32xx [»_74].

® When measuring resistances from 10 to 5000 Q with the KL32xx, 1 digit = 0.5 Q, i.e. the indicated
raw value must be divided by 2 in the PLC. Example: 2500 Q would be represented in the controller
1 by a raw value of 5000. The raw value must be divided by 2 in the PLC in order to arrive at the

ohmic value of 2500 Q.

@® The measurement of resistances from 10 to 10000 Q is possible only with the special terminal
1 KL320x-0027. Exclusively the resistance measurement 10...10000 Q can be performed on this

special terminal.

84

Version: 1.2

TS8000

BEGKHOFF Function blocks

d The EL3692 EtherCAT Terminal is a resistance measurement terminal that covers the measuring

range up to 10 MQ.

Application example

Download Required library
TcHVAC.pro [r 531] TcHVAC.Iib
VAR_INPUT

eTemperatureCurve : E HVACTemperatureCurve;

eTemperatureCurve: Enum via which a temperature curve stored internally in the function block can be
selected from Tables 1 and 2.

VAR_OUTPUT

stParameterScale nPoint : ST_HVACParameterScale nPoint;

stParameterScale_nPoint: structure containing the number of points and their valence of the X-Y
coordinates. stParameterScale_nPoint contains the characteristic curves stored in the tables 1 and 2
depending on the specification via the Enum eTemperatureCurve.

Example:

eTemperatureCurve = eHVACTemperatureCurve_Ni1000Tk5000_TCR
stParameterScale_nPoint.iNumberOfPoint := 56;
stParameterScale_nPoint.rX[1] := 790.8;
stParameterScale_nPoint.rY[1] := -50.0;
stParameterScale_nPoint.rX[2] := 826.8;
stParameterScale_nPoint.rY[2] := -40.0;

stParameterScale_nPoint.rX[56] :=1625.4;
stParameterScale_nPoint.rY[56] := 120.0;
stParameterScale_nPoint.rX[57] :=0;
stParameterScale_nPoint.rY[57] := 0;

.stParameterScaIe_nPoint.rX[60] :=0;
stParameterScale_nPoint.rY[60] := 0;

Table 2: Table 1: specified temperature curves, selectable via the Enum e TemperatureCurve

S+S S+S S+S S+S S+S S+S
S+8 Sensor Sensor Sensor Sensor Sensor Sensor
Sensor type type type type type type
type 1.8K3 A1 |22K3 A1 3.3K3 A1 |NI1000 PT1000 Ni1000/
1K3 A1 NTC 1.8 NTC 2.2 NTC 3 DIN DIN TCR
NTC 1 kOhm kOhm kOhm (LAN1)
kOhm Ni1000Tk5
000
eHVACTe |NTC1k_3_ |[NTC1k8_3 NTC2k2_3 NTC3k3_3 |Ni1000_DI Pt1000_DI [Ni1000Tk5
mpera- A1 _A1 _A1 _A1 N N 000_TCR
tureChar-
acteristic_
°C Q Q Q Q Q Q Q
-50 32886 743 803 790.8
-40 18641 791 843 826.8

TS8000 Version: 1.2 85

Function blocks

BECKHOFF

S+S S+S S+S S+S S+S S+S
S+S Sensor Sensor Sensor Sensor Sensor Sensor
Sensor type type type type type type
type 1.8K3 A1 |2.2K3 A1 [3.3K3 A1 |NI1000 PT1000 Ni1000/
1K3 A1 NTC 1.8 NTC 2.2 NTC 3 DIN DIN TCR
NTC 1 kOhm kOhm kOhm (LAN1)
kOhm Ni1000Tk5
000
eHVACTe |NTC1k_3_ |INTC1k8_3 [NTC2k2_3 |NTC3k3_3 |Ni1000_DI |Pt1000_DI |Ni1000Tk5
mpera- A1 _A1 _A1 _A1 N N 000_TCR
tureChar-
acteristic_
°C Q Q Q Q Q Q Q
- 30 11130 21695 27886 53093 842 882 871.7
-20 6777 12987 16502 29125 893 922 913.4
-15 5341 10153 12844 21887 920 941 934.7
-10 4247 8011 10070 16599 946 961 956.2
-5 3390 6347 8134 12698 973 980 978
0 2728 5071 6452 9795 1000 1000 1000
1 2613 4851 6164 9309 1004.4
2 2503 4640 5891 8849 1008.9
3 2399 4441 5631 8415 1013.3
4 2300 4252 5384 8005 1017.8
5 2205 4071 5150 7617 1028 1020 1022.3
6 2115 3899 4927 7251 1026.7
7 2030 3738 4715 6905 1031.2
8 1948 3582 4513 6575 1035.8
9 1870 3434 4321 6265 1040.3
10 1796 3294 4138 5971 1056 1039 1044.8
11 1724 3158 3964 5691 1049.3
12 1656 3029 3797 5427 1053.9
13 1590 2905 3639 5177 1058.4
14 1528 2788 3488 4938 1063
15 1469 2677 3345 4713 1084 1058 1067.6
16 1412 2570 3207 4500 1072.2
17 1358 2468 3076 4298 1076.8
18 1306 2371 2952 4104 1081.4
19 1256 2277 2832 3922 1086
20 1209 2189 2719 3747 1112 1078 1090.7
21 1163 2103 2610 3582 1095.3
22 1120 2023 2506 3426 1100
23 1078 1945 2407 3277 1104.6
24 1038 1871 2289 3135 1109.3
25 1000 1800 2200 3000 1142 1098 1114
26 963 1732 2115 2872 1120
27 928 1667 2034 2750 1123.4
28 894 1604 1957 2634 1128.1
29 862 1545 1883 2522 1132.9
30 831 1488 1812 2417 1171 1117 1137.6
35 694 1235 1500 1960 1200 1136 1161.5
40 583 1031 1248 1597 1230 1155 1185.7
86 Version: 1.2 TS8000

BECKHOFF

Function blocks

S+S S+S S+S S+S S+S S+S
S+S Sensor Sensor Sensor Sensor Sensor Sensor
Sensor type type type type type type
type 1.8K3 A1 |2.2K3 A1 [3.3K3 A1 |NI1000 PT1000 Ni1000/
1K3 A1 NTC 1.8 NTC 2.2 NTC 3 DIN DIN TCR
NTC 1 kOhm kOhm kOhm (LAN1)
kOhm Ni1000Tk5
000

eHVACTe |NTC1k_3_ |INTC1k8_3 [NTC2k2_3 |NTC3k3_3 |Ni1000_DI |Pt1000_DI |Ni1000Tk5

mpera- A1 _A1 _A1 _A1 N N 000_TCR

tureChar-

acteristic_

°C Q Q Q Q Q Q Q

45 491 865 1043 1310 1261 1175 1210.2

50 416 729 876 1081 1291 1194 1235

55 354 616 738 896 1322 1213 1260.1

60 302 524 626 746 1353 1232 1285.4

65 259 447 532 625 1385 1252 1311.1

70 223 383 454 526 1417 1271 13371

75 192 329 390 444 1450 1290 1363.5

80 167 284 335 346 1483 1309 1390.1

85 145 246 289 321 1516 1328 1417 1

90 127 214 251 275 1549 1347 1444 .4

95 111 187 218 236 1584 1366 1472

100 97 163 190 204 1618 1385 1500

105 88 143 167 176 1528.3

110 76 126 146 138 1688 1423 1557

115 111 120 1586

120 99 105 1760 1461 1625.4

125 88 92

130 80 1833 1498

140 62 64 1909 1536

150 50 50 1987 1573

160 2066 1611

170 2148 1648

180 2232 1685

190 1722

200 1758

210 1795

220 1832

230 1868

240 1905

250 1941

260 1977

270 2013

280 2049

290 2085

300 2121

310 2156

320 2191

330 2227

TS8000 Version: 1.2 87

Function blocks BEGKHOFF

S+S S+S S+S S+S S+S S+S
S+8 Sensor Sensor Sensor Sensor Sensor Sensor
Sensor type type type type type type
type 1.8K3 A1 |2.2K3 A1 |3.3K3 A1 |NI1000 PT1000 Ni1000/
1K3 A1 NTC 1.8 NTC 2.2 NTC 3 DIN DIN TCR
NTC 1 kOhm kOhm kOhm (LAN1)
kOhm Ni1000Tk5
000
eHVACTe |NTC1k_3_ |[NTC1k8_3 NTC2k2_3 NTC3k3_3 |Ni1000_DI Pt1000_DI |Ni1000Tk5
mpera- A1 _A1 _A1 _A1 N N 000_TCR
tureChar-
acteristic_
°C Q Q Q Q Q Q Q
340 2262
350 2297
360 2332
370 2367
380 2401
390 2436
400 2470

Table 3: Table 2: specified temperature curves, selectable via the Enum e TemperatureCurve

Thermokon
Thermokon Sensor type
Sensor type
Ni1000 Tk5000
NTC 1.8 kOhm
eHVACTemperatureCharacteris- |[NTC1K8 Ni1000Tk5000
tic
°C Q Q
- 50 790.88
-40 830.83
- 30 24500 871.69
- 20 14000 913.48
-10 8400 956.24
0 5200 1000
10 3330 1044.79
20 2200 1090.65
25 1800 1113.99
30 1480 1137.61
40 1040 1185.71
50 740 1234.97
60 540 1285.44
70 402 1337.14
80 306 1390.12
90 240 1444.39
100 187 1500
110 149 1556.98
120 118 1615.36
130 95 1675.18
140 77 1736.47
150 64 1799.26

88 Version: 1.2 TS8000

BECKHOFF Function blocks

3.29 FB_HVACTemperatureSensor

FB HwACTemperatureSensor
—elataSecurityType rPresentvalue—
—b=etDefault bErrarGeneral—
—iRaw'alue byErrar—
—byStatusRawhalue bErrarshortCircuit—
—tTaskCycleTime bErrarBrokenSensor—
—tCtCycleTime bErrorHighLimit—
—bEnableLimit Ctrl bErrarLowLimit—
—bReset bEmarCycleTime—
—rOffset & blnvalidParameter—
—rHighLimit &

—rLowLimnit &
—rReplacementvalue =
—tFilterTime &
—eTemperatureSensoriode &

Application

This function block serves the acquisition and further processing of temperature values for sensor types
PT100, PT200, PT1000, NI100, NI120 and NI1000. The function block FB_HVACTemperatureSensor is
matched to the KL320x Bus Terminals. These Bus Terminals can either be ordered preconfigured or set to
the corresponding sensor types in the software.

VAR_INPUT

eDataSecurityType : E HVACDataSecurityType;
bSetDefault : BOOL;

iRawValue : INT;

byStatusRawValue : BYTE;

tTaskCycleTime : TIME;

tCtrlCycleTime : TIME;

bEnableLimitCtrl : BOOL;

bReset : BOOL;

eDataSecurity Type:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.
iRawValue: raw value of the temperature sensor in 1/10 °C from the Bus Terminal.

byStatusRawValue: status byte of the temperature sensor from the Bus Terminal. Serves for error
diagnosis, e.g. wire break or short circuit.

TS8000 Version: 1.2 89

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task. tTaskCycle Time must be longer than T#0ms.

tCtriCycleTime: the variable {CtrICycle Time specifies the cycle time with which the 2nd order filter is
processed internally. The cycle time tCtriCycle Time must be greater than or equal to {TaskCycleTime. If this
is not the case, an error bErrorCycle Time occurs and either the replacement value rReplacementValue or
the last valid measured value will be output at rPresentValue, depending on the mode
eTemperatureSensorMode that is set.

bEnableLimitCtrl: enables rHighLimit and rLowLimit for limit monitoring

bReset: acknowledge input in the event of an error. In addition the 2nd order filter can be synchronized via
this input to the present measuring signal, so that this can be output at rPresentValue.

VAR_OUTPUT

rPresentValue : REAL;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorShortCircuit : BOOL;
bErrorBrokenSensor : BOOL;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bErrorCycleTime : BOOL;
bInvalidParameter : BOOL;

rPresentValue: temperature output variable with one decimal place, rPresentValue = (iRawValue / 10.0) +
rOffset, if bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue depends on the operation
mode e TemperatureSensorMode.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorHighLimit, bErrorLowLimit, bErrorCycle Time, bErrorShortCircuit or bErrorBrokenSensor = TRUE. The
value of the output variable rPresentValue is then dependent on the operation mode
eTemperatureSensorMode and is enabled once the error has been rectified and, depending on the operation
mode, acknowledged with bReset.

byError: returns all error messages and warnings,
byError.1 := binvalidParameter

byError.2 := bErrorGeneral

byError.3 := bErrorHighLimit

byError.4 .= bErrorLowLimit

byError.5 := bErrorShortCircuit

byError.6 := bErrorBrokenSensor

byError.7 := bErrorCycleTime

bErrorShortCircuit: error, short circuit at the connected temperature sensor. After rectification of the error,
acknowledgment depends on the operation mode.

bErrorBrokenSensor: error, wire break in the connected temperature sensor. After rectification of the error,
acknowledgment depends on the operation mode.

bErrorHighLimit: warning upper limit value exceeded; becomes TRUE if rPresentValue >= rHighLimit. The
warning that the upper limit value has been exceeded can only be acknowledged if rPresentValue <=
rHighLimit - 1.0 for a time duration of 5 seconds.

bErrorLowLimit: warning lower limit value undershot; becomes TRUE if rPresentValue <= rLowLimit. The
warning that the lower limit value has been undershot can only be acknowledged if rPresentValue >=
rLowLimit + 1.0 for a time duration of 5 seconds

bErrorCycleTime: error caused by an incorrect time input at the input variables tTaskCycle Time and
tCtriCycle Time, which must be acknowledged after rectification of the error.

binvalidParameter: indicates that an incorrect parameter is present at one of the variables rOffset,
rHighLimit, rLowLimit, rReplacementValue, tFilterTime and e TemperatureSensorMode. An incorrect
parameter specification does not lead to a standstill of the function block; see description of variables. After
rectifying the incorrect parameter entry, the message blnvalidParameter must be acknowledged via bReset.

90 Version: 1.2 TS8000

BEGKHOFF Function blocks

VAR_IN_OUT

rOffset : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
rReplacementValue : REAL;
tFilterTime : TIME;

eTemperatureSensorMode : E_HVACTemperatureSensorMode;

rOffset: temperature compensation in Kelvin (-50..+50), rPresentValue = (iRawValue / 10.0) + rOffset. The
variable is saved persistently. Preset to 0.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used.

binvalidParameter will be set in the event of an incorrect parameter entry.

rHighLimit: upper limit (-250..+850), if rPresentValue >= rHighLimit, then the output bErrorHighLimit is set.
rHighLimit must be greater than rLowLimit. The variable is saved persistently. Preset to 120.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect
parameter entry.

rLowLimit: lower limit (-250..+850), if rPresentValue <= rLowLimit, then the output bErrorLowLimit is set.
The variable is saved persistently. Preset to -60.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

rReplacementValue: replacement value (-250..+850), that is output at rPresentValue in the case of the
errors bErrorShortCircuit and bErrorBrokenSensor, if the selected operation mode
eTemperatureSensorMode = eHVACTemperatureSensorMode ReplacementValue or
eTemperatureSensorMode = eHVACTemperatureSensorMode _AutoResetReplacementValue. The variable
is saved persistently. Preset to O..

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. blnvalidParameter will be set in the event of an incorrect
parameter entry.

tFilterTime: filter constant (1ms..100s). To avoid large fluctuations and jumps in the measuring signal, the
function block is provided with a 2nd order filter. Upon a restart of the controller, or following correction of the
error bErrorShortCircuit or bErrorBrokenSensor, the 2nd order filter is synchronized immediately and
additionally after 2 seconds with the present measuring signal, so that the latter is output at rPresentValue.
The measuring signal can be synchronized via the input bReset during running operation. The variable is
saved persistently. Preset to 10 s.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

eTemperatureSensorMode: Enum that specifies the operation mode of the function block. The variable is
saved persistently. Preset to 3%.

eTemperatureSensorMode = eHVACTemperatureSensorMode ReplacementValue: if bErrorShortCircuit or
bErrorBrokenSensor = TRUE, then rPresentValue = rReplacementValue. After correction of the error, the
function block must be acknowledged with a rising edge at the input variable bReset.

eTemperatureSensorMode = eHVACTemperatureSensorMode_LastValue: if bErrorShortCircuit or
bErrorBrokenSensor = TRUE, then the last valid temperature value that was present 10 seconds previously
is output at rPresentValue. After correction of the error, it must be acknowledged with a rising edge at the
input variable bReset.

eTemperatureSensorMode = eHVACTemperatureSensorMode AutoResetReplacementValue : if
bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue = rReplacementValue. The function
block acknowledges itself automatically following correction of the error.

eTemperatureSensorMode = eHVACTemperatureSensorMode_AutoResetLastValue: if bErrorShortCircuit or
bErrorBrokenSensor = TRUE, then the last valid temperature value that was present 10 seconds previously
is output at rPresentValue. The function block acknowledges itself automatically following correction of the
error.

TS8000 Version: 1.2 91

Function blocks BEGKHOFF

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter will be set in the event of an incorrect parameter
entry.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2.10 FB_HVACTemperatureSensorEx

FB_HWACTemperatureSensorEx
—elDataSecurityType rPresentvalue—
—{bESetDefault hErrorGenerall—
—hEnahle bvError—
—iRawialue hErrorsSensor—
—hyStatusRawialue hErrarHighLimmit—
—hEnableLimittrl hErrorLowLimit—
—hReszet hinvalidParameter—
—roffset &

—rHighLimit =

—{rLawLirnit e
—rReplacementvalue &
—rSmoothFactor &
—eTemperatureSensoriode &

Application

This function block is used for the acquisition and subsequent processing of temperature values, e.g. for the
sensor types PT100, PT200, PT1000, NI100, NI120, NI11000, NI1000Tk5000. The function block
FB_HVACTemperatureSensorEx is tailored to the Bus Terminals KL3201/02/04 and KL3228. These Bus
Terminals can either be ordered preconfigured or set to the corresponding sensor types by software.

The raw temperature value is transferred to the function block in 1/10 °C via the input variable iRawValue
and output as a floating point number via rPresentValue.iRawValue can, for example, be linked directly to
the raw temperature value of the following Bus Terminals: KL3201/02/04 and KL3228.

The output value rPresentValue depends on the following smoothing function:
:=((/10 +) - rPresentValueOld) / + rPresentValueOld; rPresentValue iRawValue rOffset rSmoothFactor

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error has
been corrected and bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

The status of the connected temperature sensor is monitored via the input variable byStatusRawValue and
returned to the controller via the variable bErrorSensor in the event of an error. byStatusRawValue can, for
example, be linked directly to the status byte of the following Bus Terminals: KL3201/02/04 and KL3228.
rHighLimit/rLowLimit can be used to specify temperature limit values.

Unlike FB HVACTemperatureSensor [P_89], this function block has the input variable bEnable, which is useful
when the sensor characteristic curves in the Bus Terminals KL3201/02/04 and KL3228 are to be adjusted
from the PLC via the function block FB HVACConfigureKL32xx [P _74]. In this function block the second order
filter in FB_ HVACTemperatureSensor [P _89] is replaced by the smoothing function described above. The
output bErrorSensor is new and replaces the two outputs bErrorShortCircuit/bErrorBrokenSensor. These
outputs continue to be available in the error byte byError.

Application example

Download Required library
TcHVAC.pro [r 531] TcHVAC.lib

92 Version: 1.2 TS8000

BEGKHOFF Function blocks

VAR_INPUT

eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;

iRawValue : INT;

byStatusRawValue : BYTE;

bEnableLimitCtrl : BOOL;

bReset : BOOL;

eDataSecurity Type:if eDataSecurityType:= eHVACDataSecurityType _Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the value of
rReplacementValue is output at the rPresentValue output. All error messages and b/nvalidParameter are set
to FALSE. If bEnable goes TRUE, then rPresentValue = rPresentValueOld for one PLC cycle.

iRawValue: raw value of the temperature sensor in 1/10 °C from the Bus Terminal.

byStatusRawValue: status byte of the temperature sensor from the Bus Terminal. Serves for error
diagnosis, e.g. wire break or short circuit. If the KL32xx is set to resistance measurement (Q) there is no
error diagnosis.

bEnableLimitCtrl: enables rHighLimit and rLowLimit for limit monitoring

bReset: acknowledgement input in the event of an error with rising edge from bReset. Depending on
operation mode eTemperatureSensorMode, errors are acknowledged either with bReset or automatically.

VAR_OUTPUT

rPresentValue : REAL;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorSensor : BOOL;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bInvalidParameter : BOOL;

rPresentValue: temperature output variable with one decimal place.
The value for rPresentValue is calculated and output according to the following formula:

rPresentValue := ((iRawValue | 10 + rOffset) - rPresentValueOld) / rSmoothFactor + rPresentValueOld;

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error is
rectified and bErrorSensor = FALSE, then for one PLC cycle rPresentValue = rPresentValueOld.

If bErrorSensor = TRUE, then the value of rPresentValue depends on the operation mode
eTemperatureSensorMode.

TS8000 Version: 1.2 93

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorHighLimit, bErrorLowLimit or bErrorSensor = = TRUE. The value of the output variable rPresentValue
is then dependent on the operation mode e TemperatureSensorMode and is enabled once the error has been
rectified and, depending on the operation mode e TemperatureSensorMode, acknowledged with bReset.

byError: returns all error messages and warnings,
byError.1 .= binvalidParameter

byError.2 := bErrorGeneral

byError.3 := bErrorHighLimit

byError.4 ;= bErrorLowLimit

byError.5 := bErrorShortCircuit

byError.6 := bErrorBrokenSensor

byError.7 := bErrorSensor

byError.5 := bErrorShortCircuit: error, short circuit at the connected temperature sensor. After the error has
been rectified, the message is either acknowledged with bReset or automatically, depending on the
operation mode eTemperatureSensorMode.

byError.6 := bErrorBrokenSensor:error, wire break at the connected temperature sensor. Once the fault has
been corrected, the message is acknowledged either with bReset or automatically, depending on mode
eTemperatureSensorMode.

bErrorSensor: becomes TRUE, if byError.5/bErrorShortCircuit or byError.6/bErrorBrokenSensor = TRUE.
Once the fault has been corrected, the message is acknowledged either with bReset or automatically,
depending on mode eTemperatureSensorMode. If bErrorSensor = TRUE, the error has been corrected and
bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

bErrorHighLimit: warning upper limit value exceeded; becomes TRUE if rPresentValue >= rHighLimit. The
warning that the upper limit value has been exceeded can only be acknowledged if rPresentValue <=
rHighLimit - 1.0 for a time duration of 5 seconds. Depending on mode e TemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

bErrorLowLimit: warning lower limit value undershot; becomes TRUE if rPresentValue <= rLowLimit. The
warning that the lower limit value has been undershot can only be acknowledged if rPresentValue >=
rLowLimit + 1.0 for a time duration of 5 seconds. Depending on mode e TemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

binvalidParameter: indicates that an incorrect parameter is present at one of the variables rHighLimit,
rLowLimit, rSmoothFactor or e TemperatureSensorMode. An incorrect parameter specification does not lead
to a standstill of the function block; see description of variables. Once the incorrect parameter specification
has been corrected, the message blnvalidParameter is acknowledged either with bReset or automatically,
depending on mode eTemperatureSensorMode.

VAR_IN_OUT

rOffset : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
rReplacementValue : REAL;
rSmoothFactor : REAL;

eTemperatureSensorMode: E HVACTemperatureSensorMode;

rOffset: temperature compensation in Kelvin, rPresentValue = (iRawValue / 10.0) + rOffset. The variable is
saved persistently. Preset to 0.

rHighLimit: upper limit value. If rPresentValue >= rHighLimit, then the output bErrorHighLimit is set.
rHighLimit must be greater than rLowLimit. The variable is saved persistently. Preset to 120.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter is set if the parameter is incorrect.

rLowLimit: lower limit. The output bErrorLowLimit is set if rPresentValue <= rLowLimit. The variable is saved
persistently. Preset to -60.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. binvalidParameter is set if the parameter is incorrect.

94 Version: 1.2 TS8000

BECKHOFF Function blocks

rReplacementValue: replacement value that is output at rPresentValue in the case of the errors
bErrorShortCircuit and bErrorBrokenSensor, if the selected operation mode eTemperatureSensorMode =
eHVACTemperatureSensorMode _ReplacementValue or e TemperatureSensorMode =
eHVACTemperatureSensorMode AutoResetReplacementValue. The variable is saved persistently. Preset
to 0.

rSmoothFactor: smoothing factor (>=1) for the output value rPresentValue. The variable is saved
persistently. Preset to 100.

According to the following formula the value for rPresentValue is calculated and output:

rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor + rPresentValueOld;
rPresentValueOld is the value of rPresentValue, which was output one PLC cycle before.

If -fSmoothFactor = 1, then rPresentValue:= ((iRawValue | 10 + rOffset)

If there is an incorrect variable value at rSmoothFactor, then the last valid variable value is used, if available.
If there is no valid last value, then the default value is used. binvalidParameter is set if the parameter is
incorrect.

eTemperatureSensorMode: Enum, via which the operation mode of the function block is specified.
eTemperatureSensorMode = eHVACTemperatureSensorMode _ReplacementValue: if bErrorSensor =
TRUE, then rPresentValue = rReplacementValue. After the error has been corrected, the function block must
be acknowledged by a rising edge at the input variable bReset.

eTemperatureSensorMode = eHVACTemperatureSensorMode LastValue: if bErrorSensor = TRUE, then the
last valid temperature value that was present 10 seconds before is output at the output variable
rPresentValue. After the error has been corrected, it must be acknowledged by a rising edge at the input
variable bReset.

eTemperatureSensorMode = eHVACTemperatureSensorMode _AutoResetReplacementValue: if
bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue = rReplacementValue. After the
error has been corrected, the function block acknowledges itself automatically.

eTemperatureSensorMode = eHVACTemperatureSensorMode AutoResetlLastValue: if bErrorSensor =
TRUE, then the last valid temperature value that was present 10 seconds before is output at the output
variable rPresentValue. After the error has been corrected, the function block acknowledges itself
automatically.

If there is an incorrect variable value at e TemperatureSensorMode, the default value is used.
binvalidParameter is set if an incorrect parameter is specified.

The variable is saved persistently. Preset to 3%.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2.11 FB_HVACTemperatureSensorEx

FEB_HVACTemperatureSensorEx2
—eDataSecurtyType rPresentValue—
—bSetDefault bErrorGeneral—
—bEnable udiError—
—iRawValue bErrorSensor—
—byStatusRawValue bErrorHighLimit—
—iConversionFactor bErrorLowLimit—
—bEnableLimitCtri bErrorConversionFactor—
—bReset blnvalidParameter—
—riOffset t-

—rHighLimit t-

—rLowLimit &
—rReplacementValue t
—rSmoothFactor t-
—iTemperatureSensorMode &

TS8000 Version: 1.2 95

Function blocks BEGKHOFF

Application

This function block is used for the acquisition and subsequent processing of temperature values, e.g. for the
sensor types PT100, PT200, PT1000, NI100, NI120, NI1000, NI1000Tk5000. The function block
FB_HVACTemperatureSensorEx2 is tailored to the Bus Terminals KL3201/02/04, KL3222, KL3228 and
KL3208-0010. These Bus Terminals can either be ordered preconfigured or set to the corresponding sensor
types by software.

The raw temperature value is transferred to the function block in 1/10 °C or 1/100 °C via the input variable
iRawValue and output as a floating point number via rPresentValue. iRawValue can, for example, be linked
directly to the raw temperature value of the following Bus Terminals: KL3201/02/04, KL3222, KL3228 and
KL3208-0010.

The output value rPresentValue depends on one of the following two smoothing functions:

= 0: := ((/ iConversionFactor rPresentValue iRawValue 10 +) - rPresentValueOld) / + rPresentValueOld;
rOffset rSmoothFactor

=1::=((/ iConversionFactor rPresentValue iRawValue 100 +) - rPresentValueOld) / + rPresentValueOld;
rOffset rSmoothFactor

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error has
been corrected and bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

The status of the connected temperature sensor is monitored via the input variable byStatusRawValue and
returned to the controller via the variable bErrorSensor in the event of an error. byStatusRawValue can, for
example, be linked directly to the status byte of the following Bus Terminals: KL3201/02/04, KL3222, KL3228
and KL3208-0010.

rHighLimit/rLowLimit can be used to specify temperature limit values.

Unlike FB_ HVACTemperatureSensor [P_89], this function block has the input variable bEnable, which is useful
when the sensor characteristic curves in the Bus Terminals KL3201/02/04, KL3222, KL3228 and
KL3208-0010 are to be adjusted from the PLC via the function block FB_HVACConfigureKL32xx [»_74]. In this
function block the second order filter in FB_ HVACTemperatureSensor [P 89] is replaced by the smoothing
function described above. The output bErrorSensor is new and replaces the two outputs bErrorShortCircuit/
bErrorBrokenSensor. These outputs continue to be available in the error byte udiError.

Unlike FB HVACTemperatureSensorEx [P 92], sensors with the raw temperature value 1/10 or 1/100 °C can
be transferred on this function block.

Application example

Download Required library
TcHVAC.pro [531] TcHVAC.lib
VAR_INPUT

eDataSecurityType : E HVACDataSecurityType;

bSetDefault : BOOL;

bEnable : BOOL;

iRawValue : INT;

byStatusRawValue : BYTE;

iConversionFactor : INT; 0.1

bEnablelLimitCtrl : BOOL;

bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType _Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

96 Version: 1.2 TS8000

BEGKHOFF Function blocks

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the value of
rReplacementValue is output at the rPresentValue output. All error messages and blnvalidParameter are set
to FALSE. If bEnable goes TRUE, then rPresentValue = rPresentValueOld for one PLC cycle.

iRawValue: raw value of the temperature sensor either in 1/10 or 1/100 °C from the Bus Terminal.

byStatusRawValue: status byte of the temperature sensor from the Bus Terminal. Serves for error
diagnosis, e.g. wire break or short circuit. If the KL32xx is set to resistance measurement (Q) there is no
error diagnosis.

iConversionFactor: conversion factor for the output value rPresentValue.

iConversionFactor = 0: rPresentValue := ((iIRawValue | 10 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

iConversionFactor = 1: rPresentValue := ((iRawValue | 100 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

If a value outside its range of 0 to 1 is specified at iConversionFactor, this is signaled by
bErrorConversionFactor = TRUE.

bEnableLimitCtrl: enables rHighLimit and rLowLimit for limit monitoring

bReset: acknowledgement input in the event of an error with rising edge from bReset. Depending on mode
iTemperatureSensorMode, errors are acknowledged either with bReset or automatically.

VAR_OUTPUT

rPresentValue : REAL;
bErrorGeneral : BOOL;
udiError : UDINT;
bErrorSensor : BOOL;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bErrorConversionFactor: BOOL;
bInvalidParameter : BOOL;

rPresentValue: temperature output variable with two decimal places.
The value for rPresentValue is calculated and output according to the following formula:

iConversionFactor = 0: rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

iConversionFactor = 1: rPresentValue := ((iRawValue | 100 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error is
corrected and bErrorSensor = FALSE, then for one PLC cycle rPresentValue = rPresentValueOld.

If bErrorSensor = TRUE, then the value of rPresentValue depends on the operation mode
iTemperatureSensorMode.

TS8000 Version: 1.2 97

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorHighLimit, bErrorLowLimit or bErrorSensor = = TRUE. The value of the output variable rPresentValue
is then dependent on the operation mode iTemperatureSensorMode and is enabled once the error has been
rectified and, depending on the operation mode iTemperatureSensorMode, acknowledged with bReset.

udiError: returns all error messages and warnings,
udiError.1 := bilnvalidParameter

udiError.2 := bErrorGeneral

udiError.3 := bErrorHighLimit

udiError.4 := bErrorLowLimit

udiError.5 := bErrorShortCircuit

udiError.6 := bErrorBrokenSensor

udiError.7 := bErrorSensor

udiError.8 := bErrorConversionFactor

byError.5 := bErrorShortCircuit: error, short circuit at the connected temperature sensor. After the error has
been corrected, the message is either acknowledged with bReset or automatically, depending on the
operation mode iTemperatureSensorMode.byError.6 := bErrorBrokenSensor:error, wire break at the
connected temperature sensor. Once the fault has been corrected, the message is acknowledged either with
bReset or automatically, depending on mode iTemperatureSensorMode.

bErrorSensor: becomes TRUE, if byError.5 / bErrorShortCircuit or byError.6 | bErrorBrokenSensor = TRUE.
Once the fault has been corrected, the message is acknowledged either with bReset or automatically,
depending on mode iTemperatureSensorMode. If bErrorSensor = TRUE, the error has been corrected and
bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

bErrorHighLimit: warning upper limit value exceeded; becomes TRUE if rPresentValue >= rHighLimit. The
warning that the upper limit value has been exceeded can only be acknowledged if rPresentValue <=
rHighLimit - 1.0 for a time duration of 5 seconds. Depending on mode iTemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

bErrorLowLimit: warning lower limit value undershot; becomes TRUE if rPresentValue <= rLowLimit. The
warning that the lower limit value has been undershot can only be acknowledged if rPresentValue >=
rLowLimit + 1.0 for a time duration of 5 seconds. Depending on mode iTemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

bErrorConversionFactor: if a value outside its range of 0 to 1 is specified at iConversionFactor, this is
signaled by bErrorConversionFactor = TRUE. The message need not be acknowledged after rectifying the
cause.

binvalidParameter: indicates that an incorrect parameter is present at one of the variables rHighLimit,
rLowLimit, rSmoothFactor, iConversionFactor or iTemperatureSensorMode. An incorrect parameter
specification does not lead to a standstill of the function block; see description of variables. Once the
incorrect parameter specification has been corrected, the message binvalidParameter is acknowledged
either with bReset or automatically, depending on mode iTemperatureSensorMode.

VAR_IN_OUT

rOffset : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
rReplacementValue : REAL;
rSmoothFactor : REAL;

iTemperatureSensorMode: INT;
rOffset: temperature compensation in Kelvin. The variable is saved persistently. Preset to 0.

rHighLimit: upper limit value. The variable is saved persistently. Preset to 120.

If rPresentValue >= rHighLimit, then the output bErrorHighLimit is set. rHighLimit must be greater than
rLowLimit.

If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, then the default value is used. binvalidParameter is set if the parameter is incorrect.

rLowLimit: lower limit. The variable is saved persistently. Preset to -60.

If rPresentValue <= rLowLimit, then the output bErrorLowLimit is set.

If an incorrect variable value is present, then the last valid variable value is taken, if available. If there is no
valid last value, then the default value is used. binvalidParameter is set if the parameter is incorrect.

98 Version: 1.2 TS8000

BECKHOFF Function blocks

rReplacementValue: replacement value that is output at rPresentValue in the case of the errors
bErrorShortCircuit and bErrorBrokenSensor, if the selected operation mode iTemperatureSensorMode = 0 or
iTemperatureSensorMode = 2.

The variable is saved persistently. Preset to 0.

rSmoothFactor: smoothing factor (>=1) for the output value rPresentValue.
The variable is saved persistently. Preset to 100.

The value for rPresentValue is calculated and output according to the following formula:

iConversionFactor = 0: rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

iConversionFactor = 1: rPresentValue := ((iRawValue | 100 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle.

If an incorrect variable value is present at rSmoothFactor , then the last valid variable value is taken, if
available. If there is no valid last value, then the default value is used. blnvalidParameter is set if the
parameter is incorrect.

iTemperatureSensorMode: specifies the operation mode of the function block.

iTemperatureSensorMode = 0: if bErrorSensor = TRUE, then rPresentValue = rReplacementValue. After the
error has been corrected, the function block must be acknowledged by a rising edge at the input variable
bReset.

iTemperatureSensorMode = 1: if bErrorSensor = TRUE, then the last valid temperature value that was
present 10 seconds before is output at the output variable rPresentValue. After the error has been corrected,
it must be acknowledged by a rising edge at the input variable bReset.

iTemperatureSensorMode = 2: if bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue =
rReplacementValue. After the error has been corrected, the function block acknowledges itself automatically.
iTemperatureSensorMode = 3: if bErrorSensor = TRUE, then the last valid temperature value that was
present 10 seconds before is output at the output variable rPresentValue. After the error has been corrected,
the function block acknowledges itself automatically.

If there is an incorrect variable value at iTemperatureSensorMode, the default value is used.
binvalidParameter is set if the parameter is incorrect.

The variable is saved persistently. Preset to 3%.

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3 HVAC Room Functions

3.3.1 Air conditioning

3.3.1.1 FB_BAREnergyLevel
FB_BAREnergyLevel

—eDatasecurityType eEnergyLevel—

—bSetDefault bStateProtection—

—bEnahle bStateEconomy—

—bind o bStateFreComfort—

—bFratection bStateComfortf—

—bEcanomy

—bPraCormfort

—bCormfart

—eCtriMode &

TS8000 Version: 1.2 99

Function blocks BEGKHOFF

Application

This function block is for the adaptation of the supply of energy for the use of the building. The type of room
utilization is set by the BMS. The longer a building or room is not used, the further the energy level can be
lowered. The energy level currently selected by the function block is transferred to the room temperature
controller.

Protection:

This operation mode is activated in the case of long absence times e.g. during works holidays or also when a
window is open. The energy level is very low and serves only to protect the building from damage caused by
frost or overheating.

Economy:

The Economy energy level is used for the economy mode. Economy mode is activated, for example, at night
by a timer switch schedule.

PreComfort:

The PreComfort energy level is for an unused room which, however, can be occupied again shortly. The
standby mode is frequently activated by a timer schedule.

Comfort:
If the room is occupied, it is in Comfort mode. Comfort mode can be activated by a timer switch schedule or
by presence recognition.

VAR_INPUT

eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;

bWindow : BOOL;

bProtection : BOOL;

bEconomy : BOOL;

bPreComfort : BOOL;

bComfort : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurity Type_Persistent, the persistent

VAR _IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.
bEnable: The function block is activated by a TRUE at this input.

bWindow: The window contact is connected to this input. TRUE means that the window is OPEN. FALSE
means that the window is CLOSED.

bProtection: Protection mode is activated with the input bProtection. Protection mode is active if the input is
TRUE.

bEconomy: economy mode is activated with the input bEconomy. Economy mode is active if the input is
TRUE.

100 Version: 1.2 TS8000

BEGKHOFF Function blocks

bPreComfort: The Pre-comfort level is activated with this input. The Pre-comfort level is active if the input is
TRUE.

bComfort: The Comfort level is activated with this input if the room is occupied.

VAR_OUTPUT

eEnergyLevel : E BAREnergyLevel;
bStateProtection : BOOL;
bStateEconomy : BOOL;
bStatePreComfort : BOOL;
bStateComfort : BOOL;

eEnergyLevel: this output contains the current energy level.

bStateProtection: the state of the bProtection input is relayed to the outside in the operation modes
eBAREnergylLevel AUTO_Il and eBAREnergyLevel AUTO_II.

bStateEconomy: the state of the bEconomy input is relayed to the outside in the operation modes
eBAREnergylLevel AUTO_I and eBAREnergyLevel AUTO_II.

bStatePreComfort: The state of the bPreComfort input is relayed to the outside in the operation modes
eBAREnergyLevel AUTO | and eBAREnergyLevel AUTO II.

bStateComfort: the state of the bComfort input is relayed to the outside in the operation modes
eBAREnergylLevel AUTO_I and eBAREnergyLevel AUTO_II.

VAR_IN_OUT
eCtrlMode : E_BAREnergyLevel;

eCtrIMode: Using this ENUM the operation mode can be preselected from the building management level.
The variable is saved persistently. Preset to automatic.

3.31.2 FB_BARFanCoil

FE_BARFanCail
—elataSecurityType bStageOff—
—bZetDefault bStageduto—
—bEnahle bStagedl—
—eCtiFct bStagel2—
—r=etpoint bStagel3—
—tFRoomTemp bFanCoilActive—
—bStagelp bPresence—
—bStageDown by=tate—
—istagehdanual byErrar—
—bReset udiZecRT_MINPowerOnTime—
—tDeviation=WW_Stageldl & udiRT_TimeFeriod—
—tDeviationxyy_ Stageld2 & blrwalidFarameter—
—tDeviationxyy Stageld3d &
—tHysteresisRange &
—udiZecMINFowerOnTime =
—iFctiModeFanCoil &
—udiTimePeriod &

Application

The function block maps a 3-speed fan with the corresponding switching hysteresis, which is the same for all
three speeds. The speed is set stepwise via the control deviation of the actual room temperature value from
the set room temperature value. Furthermore there is a possibility to manually override the fan controller via
the iStageManual or bStageUp or bStageDown input. A minimum switch-on time can be set via the
udiSecMINPowerOnTime input, which is then valid for each stage.

TS8000 Version: 1.2 101

Function blocks BEGKHOFF

VAR_INPUT

eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;
eCtrlFct : E BARCtrlFct;
rSetpoint : REAL;
rRoomTemp : REAL;
bStageUp : BOOL;
bStageDown : BOOL;
iStageManual : INT;

bReset : BOOL;

eDataSecurity Type:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: The function block is activated if the variable bEnable is TRUE. No fan stage is activated with a
FALSE.

eCtrlFct: this input is connected to the eCtriFct output of the FB_BARFctSelection. This information is
important in order to know whether the plant is in heating or cooling mode. In automatic mode the fan stages
are only activated, for example, if according to the control deviation the requirement for heating is active and
the system is in heating mode, or if according to the control deviation the requirement for cooling is active
and the system is in cooling mode.

rSetpoint: input for the set temperature.

rRoomTemp: input for the room temperature.

bStageUp: Local adjustment of the fan stage, stepwise increase by push button.
bStageDown: Local adjustment of the fan stage, stepwise decrease by push button.

iStageManual: The manual fan stage canl/is set centrally via this input.
iStageManual: = 0 corresponds to fan stage OFF

iStageManual: = 1 corresponds to fan stage AUTO

iStageManual: = 2 corresponds to fan stage01 active

iStageManual: = 3, corresponds to fan stage02 active

iStageManual: = 4, corresponds to fan stage03 active

bReset: Acknowledge input in case of a fault or an incorrect parameter.

VAR_OUTPUT

bStageOff : BOOL;
bStageAuto : BOOL;
bStagell : BOOL;
bStage02 : BOOL;
bStage03 : BOOL;
bFanCoilActive : BOOL;
bPresence : BOOL;
byState 3 BTG 2
byError : BYTE;

102 Version: 1.2 TS8000

BEGKHOFF Function blocks

udiSecRT MINPowerOnTime: UDINT;
udiRT TimePeriod : UDINT;
bInvalidParameter : BOOL;

bStageOff: TRUE, fan stages are switched off.
bStageAuto: TRUE, fan controller is in automatic mode.
bStage01: TRUE, fan stage01 active.

bStage02: TRUE, fan stage02 active.

bStage03: TRUE, fan stage03 active.

bFanCoilActive: TRUE if one of the three fan stages is active. This output can be/is used to enable
controllers in order to avoid a build up of heat or cold.

bPresence: TRUE means that presence was detected via the bStageUp, bStageDown or iStageManual
inputs.

byState: indicates the state of the fan controller.
byState.0:= function block is activated
byState.3:= manual fan stage setting is active
byState.4:= bReset

byState.5:= fan stage01 active

byState.6:= fan stage02 active

byState.7:= fan stage03 active

byError: output of the errors as byte.
byError.1:= binvalidParameter

udiSecRT_MINPowerOnTime: Indicates the remaining time of the minimum switch-on time.
udiRT_TimePeriod: Indicates the remaining time of the manual override.

binvalidParameter: Indicates that an incorrect input parameter is present. blnvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT

rDeviationXW Stage0l : REAL;
rDeviationXW Stage02 : REAL;
rDeviationXW Stage03 : REAL;
rHysteresisRange : REAL;
udiSecMINPowerOnTime : UDINT;
iFctModeFanCoil : INT;
udiTimePeriod : UDINT;

rDeviationXW_Stage01: limit value of the control deviation for fan stage01. The variable is saved
persistently. Preset to 0.7.

rDeviationXW_Stage02: limit value of the control deviation for fan stage02. The variable is saved
persistently. Preset to 1.7.

rDeviationXW_Stage03: limit value of the control deviation for fan stage03. The variable is saved
persistently. Preset to 2.1.

rHysteresisRange: hysteresis range that is placed around the limit value.

Example: a limit value of 0.7 and a hysteresis range of 0.2 results in the fan stage01 being switched on at a
control deviation > 0.8.

And at a control deviation < 0.6 the fan stage01 is switched off.

The variable is saved persistently. Preset to 0.2.

udiSecMINPowerOnTime: Minimum switch-on time that a fan must run for in a stage before switching to a
different stage or switching off. Input in seconds (e.g. 120 corresponds to 120 s). The variable is saved
persistently. Preset to 120 s.

iFctModeFanCoil: The user has the possibility to activate the fan controller for heating mode or cooling
mode or both modes via the valence of this variable. Valid values are 1, 2 or 3. Other values are invalid and
binvalidParameter is set to TRUE. The variable is saved persistently. Preset to 3%.

TS8000 Version: 1.2 103

Function blocks

BECKHOFF

Cooling Heating Valence

0 1 1 (= fan controller active in heating
mode)

1 0 2 (= fan controller active in cooling
mode)

1 1 3 (= fan controller active in heating
mode and cooling mode)

udiTimePeriod: Timeframe during which the manual override is active in case of presence. Specified in

minutes

Fig. 1: representation of the fan control with the default parameters

Stufe I

3.3.1.3

21K

' Stufen

20K

Heizen

§
i
i
§
¥
|

|
Stufe | | Hei|zen

FB_BARFctSelection

hSetDefault
bhEnahle
bFipeSystem

bDewPaint
tRoomTemp
stSetpoint

FB_BARFctSelection

eDataSecurityType eCtrlFct

uiRegHeating
uiRegCoaling
udiRT_ChangeCwearDelay

bFeedbHeatMedium
bFeedhCoolbdedium

udiChangeOverDelay &

Stufe Il Kuhlen

+ 2 +3 At

104

Version: 1.2

TS8000

BEGKHOFF Function blocks

Application

This function block is for enabling room heating or room cooling. It can be used for 2-pipe systems
(changeover) or 4-pipe systems.

In the case of a 4-pipe system the changeover from heating to cooling operation takes place automatically
on the basis of a comparison of the setpoint for the room temperature with the actual value for the room
temperature.

Sketch:

Y [%e]

uiRegHeating

P
219 24 rRoomTemp [FC]

In the case of a 2-pipe system the heating operation or cooling operation may only be enabled when heating
or cooling medium is present. The room temperature controller gets this information from the primary units.

In both 2-pipe and 4-pipe systems the changeover between heating operation and cooling operation can be
delayed by a timer. The input variable udiChangeOverDelay must be greater than zero for this.

The following tables describe the interrelationship between the inputs and the eCtrlFct output of the
FB_BARFctSelection function block.

in the 2-pipe system
bEnable bPipeSystem bFeedbHeat bFeedbCool interim result bDewPoint eCtrlFct

Medium Medium
0 0 0 0 OFF TRUE / OFF
FALSE
1 0 0 0 Heating TRUE / Heating
FALSE
1 0 0 1 Cooling TRUE OFF
FALSE Cooling
1 0 1 0 Heating TRUE / Heating
FALSE
1 0 1 1 Heating TRUE / Heating
FALSE
in the 4-pipe system
bEnable bPipeSystem T_Room <= T_Room > interim result bDewPoint eCtrlFct
Tsetpoint Tsetpoint
0 1 0 0 OFF TRUE / OFF
FALSE
1 1 0 1 Cooling TRUE OFF
FALSE Cooling

TS8000 Version: 1.2 105

Function blocks BEGKHOFF

1 1 1 0 Heating TRUE / Heating
FALSE

1 1 1 1 Heating TRUE / Heating
FALSE

VAR_INPUT

eDataSecurityType: E HVACDataSecurityType;

bSetDefault : BOOL;

bEnable : BOOL;

bPipeSystem : BOOL;

bFeedbHeatMedium : BOOL;
bFeedbCoolMedium : BOOL;

bDewPoint : BOOL;
rRoomTemp : REAL;
stSetpoint : ST_BARSetpointRoom;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurity Type_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: TRUE enables the function block. If FALSE the function block is disabled and eCtriFct :=
eHVACCtriIFct_Off.

bPipeSystem: FALSE means that a 2-pipe system is present. TRUE means that a 4-pipe system is present.
bFeedbHeatMedium: Signal from the power generation or distribution that heating medium is available.
bFeedbCoolMedium: Signal from the power generation or distribution that cooling medium is available.

bDewPoint: the dew point sensor is connected to this input. If this is triggered the cooling control function is
deactivated and eCltriFct := eHVACCtriFct_Off is set.

rRoomTemp: This input variable transfers the current room temperature to the function block.

stSetpoint: STRUCTURE containing the setpoints for the individual energy levels.

VAR_OUTPUT

eCtrlFct : E BARCtrlFct;
uiRegHeating : UINT;
uiRegCooling : UINT;

udiRT ChangeOverDelay: UDINT;

eCtrlFct: This output contains the current control function.

uiReqgHeating: is 1 if the room/zone requests heating energy. It is 0 if there is no heating requirement.
uiReqCooling: is 1 if the room/zone requests cooling energy. It is 0 if there is no cooling requirement.

udiRT_ChangeOverDelay: Indicates the time remaining until the active control function is changed over.

VAR_IN_OUT

uiChangeOverDelay : UINT;

106 Version: 1.2 TS8000

BECKHOFF

Function blocks

uiChangeOverDelay: changeover time between the control functions. Must be specified in seconds. If the

input is greater than 0 it will always be observed. The variable must be 0 if there is to be no changeover time
between the control functions. The variable is saved persistently. Preset to 0.

3.314 FB_BARSetpointRoom

FB BARSetpointRoom
elatasecurityType stSetpaint—
b=etDefault blnvalidParameter—
bEnable
tSetpointshiftHeat
tSetpoint=hiftCool
roetpointzhitUser
bReset
rsetpointComfortHeat &
rsetpointPreComfortHeat &
rsetpointEconomyHeat &
rmetpointFrotectionHeat &
tSetpointComfortCool &
tSetpointFreComfotCool &
rsetpointEconomyCool &
rsetpointProtectionCool &

Application

The function block FB_BARSetpointRoom assigns setpoints for cooling and heating operation to each of the
energy levels Protection, Economy, PreComfort and Comfort. In connection with the function block
FB_BAREnergyLevel the room temperature controllers are assigned an energetically optimum setpoint in
accordance with the use of the room and the selected heating or cooling operation.

rY [%] neutral

A zone

Heating Cooling

100

G0
$T0700° 2

0

0 12 15 19 21 24 28 35 40 X [°C)
The resulting setpoint for the different energy levels is made up of:
1. the base setpoint value
2. the local setpoint value shift (not in the case of the Protection setpoints)
3. the central setpoint value shift (not in the case of the Protection setpoints)

The local shift due to a room setpoint generator and also the remote adjustment of the setpoints by a
building management system only affect the Comfort and PreComfort energy levels.

TS8000 Version: 1.2 107

Function blocks BEGKHOFF

Lo 3]
g o = 5 I g &
23 = S & 3 2] 5 a&
&5 & et = o =] o =1 51
5 DR & ” m —_ = 3 3
e om = @ O = o % S
5 B = 2 L (s = 0 i
8= E & S o s &9
g8 S 8 g 5 & = o %
56— 8 o g a 2 a —F
o] a O @ i
12 15 19 21 Basic Setpoints 24 28 35 40
| I
| + lokale 4L |
| Sollwertverschiebung |
| +/- SetpointShiftUser +/- |
| I
| zentrale |
| +/- Sollwertverschiebung +/- I
| SetpointShiftHeat |
| |
| SetpointShiftCool |
| I
Y Y v ¥ Yy v Y
Setpoint for Heating/Cooling
VAR_INPUT
eDataSecurityType : E HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;

rSetpointShiftHeat: REAL;
rSetpointShiftCool: REAL;
rSetpointShiftUser: REAL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.
bEnable: The function block is activated if the variable bEnable is TRUE.

108 Version: 1.2 TS8000

BEGKHOFF Function blocks

rSetpointShiftHeat: The rSetpointShiftHeat variable is used for the adaptation of the ComfortHeating
setpoint of the building management system.

If the ComfortHeating setpoint is raised, then the setpoints for the ComfortCooling and PreComfortCooling
are also increased.

Example:

Energy Protectio Economy PreComf Comfort Comfort PreComf Economy Protectio

levels nHeating Heating ortHeatin Heating Cooling ortCoolin Cooling nCooling
9 9

Base 12 15 19 21 24 28 35 40

setpoint

value

[*C]

Setpoint +3 - - - +3 +3 +3 - -

ShiftHeat

(K]

Resulting 12 15 19 24 27 31 35 40

setpoint

[°C]

A lowering of the ComfortHeating setpoint affects only the ComfortHeating and PreComfortHeating setpoints.
Example:

Energy Protectio Economy PreComf Comfort Comfort PreComf Economy Protectio

levels nHeating Heating ortHeatin Heating Cooling ortCoolin Cooling nCooling
g g

Base 12 15 19 21 24 28 35 40

setpoint

value

[°C]

Setpoint -3 - - -3 -3 - - - -

ShiftHeat

(K]

Resulting 12 15 16 18 24 28 35 40

setpoint

[°C]

rSetpointShiftCool: The rSetpointShiftCoolvariable is used for the adaptation of the ComfortCooling
setpoint of the building management system.

If the ComfortCooling setpoint is raised, then the setpoint for the PreComfortCooling is also raised.
Example:

Energy Protectio Economy PreComf Comfort Comfort PreComf Economy Protectio

levels nHeating Heating ortHeatin Heating Cooling ortCoolin Cooling nCooling
9 9

Base 12 15 19 21 24 28 35 40

setpoint

value

[*C]

Setpoint +3 - - - - +3 +3 - -

ShiftCool

(K]

Resulting 12 15 19 21 27 31 35 40

setpoint

[*C]

TS8000 Version: 1.2 109

Function blocks BEGKHOFF

A lowering of the ComfortCooling setpoint only affects the ComfortCooling. The PreComfortCooling is not
changed.
Example:

Energy Protectio Economy PreComf Comfort Comfort PreComf Economy Protectio

levels nHeating Heating ortHeatin Heating Cooling ortCoolin Cooling nCooling
9 9

Base 12 15 19 21 24 28 35 40

setpoint

value

[*C]

Setpoint -3 - - - - -3 - - -

ShiftCool

[K]

Resulting 12 15 19 21 21 28 35 40

setpoint

[*C]

If the setpoint of the PreComfort energy level is shifted beyond the setpoint of the Economy level, then the
setpoint of the Economy level adopts the value of the PreComfort level.

Example:

Energy Protectio Economy PreComf Comfort Comfort PreComf Economy Protectio

levels nHeating Heating ortHeatin Heating Cooling ortCoolin Cooling nCooling
9 g

Base 12 15 19 21 24 28 35 40

setpoint

value

[°C]

Setpoint +8 - - - - +8 +8 - -

ShiftCool

(K]

Resulting 12 15 19 21 32 36 36 40

setpoint

[°C]

rSetpointShiftUser: The variable rSetpointShiftUser is used for local setpoint shifting of the user.
A positive value of rSetpointShiftUser affects the setpoint of ComfortHeating, ComfortCooling and
PreComfortColling.

Example:

Energy Protectio Economy PreComf Comfort Comfort PreComf Economy Protectio

levels nHeating Heating ortHeatin Heating Cooling ortCoolin Cooling nCooling
9 g

Base 12 15 19 21 24 28 35 40

setpoint

value

[°C]

Setpoint +3 - - - +3 +3 +3 - -

ShiftUser

(K]

Resulting 12 15 19 24 27 31 35 40

setpoint

[*C]

A negative value of rSetpointShiftUser affects the setpoints of PreComfortHeating, ComfortHeating and
ComfortCooling.
Example:

110 Version: 1.2 TS8000

BEGKHOFF Function blocks

Energy Protectio Economy PreComf Comfort Comfort PreComf Economy Protectio

levels nHeating Heating ortHeatin Heating Cooling ortCoolin Cooling nCooling
9 9

Base 12 15 19 21 24 28 35 40

setpoint

value

[°C]

Setpoint -3 - - -3 -3 -3 - - -

ShiftUser

(K]

Resulting 12 15 16 18 21 28 35 40

setpoint

[°C]

bReset: Acknowledge input in case of a fault or an incorrect parameter.

VAR_OUTPUT

stSetpoint : ST _BARSetpointRoom;
bInvalidParameter: BOOL;

stSetpoint: Structure containing the setpoints for all energy levels.

binvalidParameter: Indicates that an incorrect input parameter is present. blnvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT

rSetpointComfortHeat : REAL;
rSetpointPreComfortHeat : REAL;
rSetpointEconomyHeat : REAL;
rSetpointProtectionHeat : REAL;
rSetpointComfortCool : REAL;
rSetpointPreComfortCool : REAL;
rSetpointEconomyCool : REAL;
rSetpointProtectionCool : REAL;

rSetpointComfortHeat: Setpoint for the Comfort heating energy level. The variable is saved persistently.
Preset to 21.0.

rSetpointPreComfortHeat: Setpoint for the PreComfort heating energy level. The variable is saved
persistently. Preset to 19.0.

rSetpointEconomyHeat: Setpoint for the Economy heating energy level. The variable is saved persistently.
Preset to 15.0.

rSetpointProtectionHeat: Setpoint for the Protection heating energy level. The variable is saved
persistently. Preset to 12.0.

rSetpointComfortCool: Setpoint for the Comfort cooling energy level. The variable is saved persistently.
Preset to 24.0.

rSetpointPreComfortCool: Setpoint for the PreComfort cooling energy level. The variable is saved
persistently. Preset to 28.0.

rSetpointEconomyCool: Setpoint for the Economy cooling energy level. The variable is saved persistently.
Preset to 35.0.

rSetpointProtectionCool: Setpoint for the Protection cooling energy level. The variable is saved
persistently. Preset to 40.0.

TS8000 Version: 1.2 111

Function blocks BEGKHOFF

3.3.2 Controller

3.3.21 FB_BARPICtrl

Simple PI controller. The control gain has no influence on the I-component.

FB_BARPICtrl
eDataSecuntyType Y
bSetDefault =
bEnable rEMin
W rEMax
rx bARWY
tTaskCycleTime bMaxLimit
uiCtriCycleCall bMinLirmit
bSync bError
bDirection t udiErrorld
rAp b t= bDirection
tTn & b rXp
rYMin & = tTn
rfMax & Y Min
reyncValue & B Y Max

E rSyncValue

This PI controller does not work directly with a gain factor K, but instead calculates this internally from the
so-called proportional band (input rXp) in relation to the control value limits (rYmin and rYmax), from which
K, is then determined internally.

Inputs/outputs

VAR_INPUT

eDataSecurityType: E HVACDataSecurityType;
bSetDefault : BOOL;

bEnable : BOOL;

rw : REAL;

rX : REAL;

tTaskCycleTime : TIME;

uiCtrlCycleCall : UINT;

bSync : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

112 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_ Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.
bEnable: controller activation

rW : setpoint.

rX : actual value.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

uiCtriCycleCall : call cycle of the function block as a multiple of the cycle time. . A zero entry is
automatically interpreted as uiCtrICycleCall =1.

Example: tTaskCycleTime = 20ms, uiCtrICycleCall =10 -> The control algorithm is called every 200 ms. Thus
the outputs are also updated only every 200 ms.

bSync: a rising edge at this input sets the (internal) I-component such that rSyncValue is output at the
control value output. If the I-component is deactivated by {Tnh=0ms, however, then this command is ignored.

VAR_OUTPUT

rY : REAL;
rE : REAL;
bARW : BOOL;

bMaxLimit : BOOL;
bMinLimit : BOOL;
bError : BOOL;
udiErrorId: UDINT;

rY : control value.

rE : control deviation (calculation dependent on control direction [»_116])

rEMin : lower control deviation limit value, which results from the input proportional band.
rEMax : upper control deviation limit value, which results from the input proportional band.
bARW: anti-Reset-Windup function is active.

bMaxLimit : the control value has reached its upper limit value.

bMinLimit : the control value has reached its lower limit value.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [» 237].

VAR_IN_OUT

bDirection : BOOL;
rXp : REAL;
tTn : TIME;
rYMin : REAL;
rYMax : REAL;
rSyncValue : REAL;

bDirection: the control direction [P_116] of the controller can be changed with the parameter bDirection. If
bDirection is TRUE, then the direct control direction is active for cooling operation of the controller. If
bDirection is FALSE, then the indirect control direction of the controller is activated for heating operation. The
variable is saved persistently. Preset to FALSE.

rXp: proportional band. This defines the internal proportional factor, see below. The proportionality factor or
gain affects only the P-part. The variable is saved persistently. Preset to 100.0.

TS8000 Version: 1.2 113

Function blocks BEGKHOFF

tTn: integral action time in seconds. The I-part corrects the residual control deviation following correction of
the P-part. The smaller tTi is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger {Ti-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. A zero value at
this input deactivates the I-component. The variable is saved persistently. Preset to 30 s.

rYMin / rYMax: limiting the working range of the controller. Several other function blocks, e.g. sequencers,
require a symmetrical control range (-100 to +100). In the case of a cascade structure, the working range of
the master controller determines the setpoint of the slave controller. For example, 15° to 25° as the limitation
of the supply air set value for an exhaust/supply air cascade control. The variable is saved persistently.
Preset to 0.0 or 100.0 respectively.

rSyncValue: a rising edge at this input bSync sets the control value rY to this value. In addition, the I-
component is changed internally. If the I-component doesn't exist (PD controller), the D-component is
changed. The variable is saved persistently. Preset to 0.0.

Functional description

Step response of a simple PI controller, where the control gain has no influence on the integral component.
Response of output Y(t) to a control deviation jump by E: when the control deviation jumps by E, output Y
first jumps to K.*E by the proportional component and then grows by a further E in each interval T,.

Note: the controller is designed in such a way that the controller starts at 0, i.e. without the K,*E jump, after
a PLC reset or restart.

(BB B

Ke*E

E(t)

¥

|
|
|
|
I
|
|
|
T . :

Basic function

A TRUE signal at the bEnable input activates the function block. The internal control algorithm is now
processed. The input value uiCtriCycleCall specifies the number of PLC cycles after which the internal
control algorithm is processed. If uiCtrICycleCall =1, then the new calculation takes place in each PLC cycle;
if, conversely, it is set to 100, then a new calculation of the output values takes place only every 100 PLC
cycles. The PLC cycle time is also accounted for in the control value calculation. An incorrect input value
leads to incorrect calculation.

The inputs rW (setpoint), rX (actual value), rXp (proportional band) and rTn (integral action time) are the
input values of the Pl controller. They are used in each calculation cycle for the determination of the output
values rY (control value) and rE (control deviation). The control value can additionally be limited by the inputs
rYMin and rYMax.

Setting via the proportional band

The adjustment of the gain factor K, of a controller often harbors the difficulty for the user that there is no
size reference to the application. If a heating controller normally operates within the two-figure range, then a
flow rate controller can accept values in the five-figure range. It therefore makes sense to represent the K;

114 Version: 1.2 TS8000

BEGKHOFF Function blocks

factor in such a way that it has a reference to the possible control deviation and change of control value. The
P-part of the controller is regarded for the dimensioning of the K, factor.
The equation for this is:

* Control value = control deviation x gain factor— Y=E*K,

this relationship also applies to the changes in the control deviation and the control value:

+ Change in control value = change in control deviation ¢ gain factor— AY=AE*K,

Referenced to the minimum and maximum value of the control value, Y, and Y ..:
* Yina Y min= (E(Y mad-E(Y i) " K;

This difference, E(Ynax)-E(Ymin), is called the proportional band (Xp). Transposed, the equation is then:
* K= (Y Y min) Xy

The following diagram clarifies the functional interrelationship:

Y Iy ;-’,"
Ymax 'r’f
Ymin =
,f‘ff - Xp >
E(len) E(Ymax] E

The proportional band X, therefore indicates the size of the range of the control deviation that leads to an
output of Y., to Y., from the controller.

A smaller X leads to a steeper function and thus to an increase of the Kp factor. However, the control
deviation limit values E(Y .,)-E(Y) are shifted:

v |
YH'IEI:IC J’r
Ymin 1 P
7 —Xp—
E(len} E{Ymax} E

TS8000 Version: 1.2 115

Function blocks BEGKHOFF

Control direction
Control direction

If bDirection = FALSE, the control direction of the controller is reversed so that a control deviation of less
than O causes a change in the control value in the positive direction. This is achieved by a negative
calculation of the control deviation:

bDirection rE (control deviation) Control direction
TRUE IrX-IrW (actual value-set value) direct (cooling)
FALSE IrW-IrX (set value-actual value) indirect (heating)

Anti-Reset-Windup (ARW)

If the controller “runs” into this limit, then the I-component is held internally at the final value. If this were not
done, then the I-component could adopt very large values without hindrance during the limit case, which
would first have to be eliminated again in case of reversal of the direction of action of the controller. This
function is called “Anti-Reset-Windup” (ARW). The output bARW is set if this function is active.

Special case: Th=0 as switch-off of the I-component

From the above step response diagram it can be seen that the influence of the I-component becomes all the
weaker, the larger the integral action time T, is set. As the integral action time approaches infinity, the
influence of the I-component is virtually zero. Conversely, an increasingly smaller integral action time allows
the influence of the I-component to grow; at T,=0 the control value would approach infinity. However, this
special case is used to cut off the I-component. This is an internally formed exception, since the integral
action time belongs directly to the I-component and should also figuratively result in switch-off due to the
zero entry.

Synchronization

A positive edge on bSync sets the controller output rY directly to rSyncValue, provided that the controller has
been activated by a TRUE signal on bEnable. If this is not the case the positive edge on bSync is ignored.

Error case/function block not activated

If the controller is incorrectly parameterized processing is stopped, the bError output is set and the

corresponding error ID is output at udiErrorID, see error codes [P 237]. The function block is also stopped if
the input bEnable is not set. In both cases the outputs are set as follows:

rY 0.0
rE 0.0
bARW FALSE
bMaxLimit FALSE
bMinLimit FALSE

Documents about this
example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.3 Lighting

3.3.31 Lighting functions — overview

The lighting is subdivided into two different function groups, which can be combined to form arbitrary
solutions:

e User functions
e Actuator functions

116 Version: 1.2 TS8000

BEGKHOFF Function blocks

The user functions are control and closed loop circuits, which, served by the sensor functions, each output
a light value.

FB BARLightCircuit [»_133] - simple light switching circuit without dimming function.

FB BARLightCircuitDim [»_134] - simple light switching circuit with dimming function.

FB BARAutomaticLight [P_117] - presence-controlled automatic light with switch-off delay.

FB BARStairwellAutomatic [P_138] - stairwell lighting with early warning sequence.

FB BARTwilightAutomatic [P_140] - twilight automatic.

FB BARDaylightControl [»_126] - daylight control without dimming procedures

FB BARConstantLightControl [P_119] - constant light regulation with continuous output of analog values.

The group of actuator functions is currently represented by only one function block.

FB BARLightActuator [P_130] - output of a preset proportional dimming value via a ramp function. Output is
alternatively in percent, INTEGER or BOOL. This function block likewise encompasses a light scene memory
of 21 adjustable dimming values.

3.3.3.2 FB_BARAutomaticLight

Function block for an automatic light circuit as used in corridors or sanitary facilities.

FB_BARAutomaticLight

—eDataSecuntyType IrDimyaluef—
—uiLightCtrilode uiRemainingHoldTime—
—bSwitch bErrar—
—uiHoldTime & udiErrarld—

IronDimYalue &
IrfanualDimValue &

Fig. 2: FB_BARAutomaticLight

The function block knows 3 different modes, which can be set via the input uiLightCtriMode:
» Automatic mode
* Manual On mode
* Manual Off mode
The automatic light circuit is active in automatic mode (uiLightCtriMode=0). A positive edge on bSwitch sets

the output IrDimValue to the value entered under IrManualDimValue. A negative edge starts the holding time
generator. If the hold time uiHoldTime [s] has expired, the output IrDimValue is reset to 0.0.

TS8000 Version: 1.2 117

Function blocks BEGKHOFF

light value

[%] &

TONMDIMVEIIE e o ———————————————————————————————— — — — — — — — _

time:

uiHold Time [s]

A
Y

bSwitch
IrDimValue

The sequence can be restarted at any time:

Start
automatic-light

l .

Restart during hold-time

Y

uiHold Time [s]

bSwitch
IrDimValue

In the manual operation modes the input bSwitch has no function: with uiLightCtrIMode=1 the output value
IrDimValue is constantly set to IrManualDimValue and with uiLightCtrIMode=2 constantly set to 0.0.
Changing to manual mode resets any hold time that had started up to that point.

VAR_INPUT

eDataSecurityType: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;

bSwitch : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurity Type_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

uiLightCtrIMode : operation mode.

118 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

» 0: automatic mode; the automatic light circuit is active and reacts to the input bSwitch.

* 1: Manual On; the automatic light circuit is inactive - the output IrDimValue is set constantly to
IrManualDimValue.

+ 2: Manual Off; the automatic light circuit is inactive - the output IrDimValue is set constantly to 0.0.

bSwitch: a rising edge switches the light on in automatic mode (uiLightCtrIMode=0), a falling edge starts the
holding time generator. This input has no function in manual operation mode (uiLightCtriMode=1 or 2).

VAR_OUTPUT

lrDimValue : LREAL;
uiRemainingHoldTime: UINT;
bError : BOOL;
udiErrorId : UDINT;

IrDimValue : output dimming value for the lighting in percent.

uiRemainingTimeHold : remaining hold time in seconds. If the light is off or if manual operation mode is
active, then this output is "0". With a rising edge on bSwitch in automatic mode, this output initially indicates
the complete number of seconds of the hold time (uiHoldTime), in order to illustrate the countdown of the
hold time, starting with a falling edge on bSwitch. This output is 0 as long as no countdown of the time is
taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [P 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ .zip.
uiHoldTime : UINT;

lrOnDimValue : LREAL;
lrManualDimValue : LREAL;

uiHoldTime : hold time [s] of the automatic light controller after a falling edge on bSwitch.
IrOnDimValue : on dimming value in automatic mode (uiLightCtriMode=0).

IrManualDimValue : output dimming value in Manual On mode (uiLightCtriMode=1).

3.3.3.3 FB_BARConstantLightControl

The constant light regulation function block controls the lighting when the room is occupied such that the
lighting intensity does not fall below a preset minimum. This ensures adequate lighting whilst at the same
time minimizing energy consumption.

The constant light regulation is enabled when the room is entered or by a rising edge on the input
bPresence. Optionally the constant light regulation can also be operated by a button. A short pulse on the
input bToggle enables the constant light regulation or switches it off, depending on the current state. If many
constant light controllers are to be switched on by a central command, for example on an office floor, this can
be realized with the input bCentralOn. A central command to switch off can be connected to the input
bCentral Off.

Actuating the button on bToggle for a longer period manually changes the setpoint value for the room
brightness. Upon a falling edge on bToggle the current room brightness value is saved as a setpoint. The
rate of change when manually increasing or decreasing the room brightness can be set by means of a
parameter.

TS8000 Version: 1.2 119

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

The manually set setpoint value for the constant light regulation is retained until the next time the lighting is
switched off. On restarting the controller by a rising edge on bPresence, a rising edge on bCentralOn or a
pulse on bToggle, the last manually selected setpoint or the value of uiSetpoint/Value is adopted, depending
on the setting of the parameter binitialMode.

In automatic mode the lighting is switched on only if the room brightness lies below an adjustable hysteresis
value (uiTargetRange). As the outdoor brightness increases, the constant light controller reduces the artificial
light portion until a minimum load control value IrMinDimValue lies at the output of the controller IrDimValue.
Subsequently, the controller switches the lighting off following a time delay with the timer uiOffDelay.

The switching on again of the lighting as the outdoor brightness decreases is delayed with the timer
uiOnDealy.

In order to avoid unpleasant visible changes in the brightness, the rate of change of the control signal is
retarded with the parameter uiControlRampTime.

For maintenance and test purposes the automatic constant light regulation can be deactivated and the
lighting can be switched on and off in manual mode. This deactivates the edge detection at the inputs
bCentrolOn,bCentalOff and bToggle.

FBE_BARConstantLightContral

—elataSecuntyType IrCimValuer—
—uiLightCtrilMode bControlActive—
—bSwitch bAdjustedSetpointActive—
—bFresence uiAdjustedSetpoint—
—bCentralCn diActDeviation—
—bCentral Off bError—
—uiBrightness udiErrorld—
—uiSetpoint

—uiSwitchOverTime &
—uiAdjustRampTime &
—bPresenceOnActive &=
—binitialMode &=
—uiTargetRange &
uiControlRampTime &
—uidnDelay t
—uiOfiDelay t
—IrflinDimValue &
—IrilaxDimValue =
—IrStatDimValue &
IrflanualDimValue &=

Fig. 3: FB_BARConstantLightControl

The function block knows 3 different modes, which can be set via the input uiLightCtriMode:
« Automatic mode
* Manual On mode
* Manual Off mode

Automatic mode

In automatic mode the control can be activated or deactivated in three different ways:

120 Version: 1.2 TS8000

BEGKHOFF Function blocks

1. Via the input bSwitch: a short TRUE signal (shorter than uiSwitchOverTime in milliseconds) at bSwitch
activates the constant light regulation if it had been inactive beforehand. Another short signal at
bSwitch deactivates the constant light regulation again. A long TRUE signal on bSwitch switches the
function block to setpoint adjustment mode; this is described below.

2. Via the input bPresence: switching on via this input must be explicitly enabled by a TRUE signal on
bPresenceOnActive (VAR_IN_OUT). A rising edge then activates the control, while a falling edge
always deactivates the control independent of the state of bPresenceOnActive.

3. The control is explicitly switched on and off via TRUE edges on the inputs bCentralOn and
bCentralOff, independent of the previous state of the control. These inputs do not have an override
function: for example, if switching off has taken place via bCentral Off, bSwitch can be used to switch
on again at any time.

The light output value IrDimValue is initially set in the active state to the start value IrStartDimValue. After
that an actual value/setpoint value comparison takes place continuously. If the actual room value
uiBrightness [lux] thereby leaves the target range uiTargetRange [lux] around the setpoint value
uiSetpointValue [lux], then this is counteracted by dimming the lighting up or down. The control always
operates with a constant, parameterizable dimming ramp uiRamptime [s], which indicates the time of a
complete dimming process from 0% to 100%. The control target values are likewise constant: 0% for
dimming down and 100% for dimming up. In the inactive state the light output value IrDimValue is set to 0.0.

TS8000 Version: 1.2 121

Function blocks BEGKHOFF

outside-brighiness $

flux]

daylight

time

A

room-brighiness
ulActualLightValue

s resulting rocom-brightness
L

setpoint-value target-range

: uiTargetRange

|
|
wiSetpointValue I |
N TR
| | Lo
| | Lo
| | Lo
| | | | ;
| | | | time
: : - >
| | L=~
| ®! ®
| | [
| | l
| | I
IrDimmValue | | }
I I I
1Gﬂ ______ T __________ _L___fﬁ__r'___ _______ 1— _________
| - e |
|] |
| ' | control
| |
| |
| |
| |
|
I o
| ~
T
- " v
G B time
- \.
a e
|p—————uiCantrolRampTims ——————— | [——————uiControlRampTime ——————j-

The outside-brightness rises and thus the room-
brightness. Because the room-brightness is sill

Initial situation: the roomebrightness is well-regulated, @
within the target-range, the contrel will not react.

The outside-brighiness decreases and thus the
room-brghtness. Because the room-brightness is
still within the target-range, the sontral will not ® The outside-brightness continues ko rise and the

react. measured room-brightness leaves the largel-
range. The control starts its ramp = due to the

The cutside-brighiness decreases further and the lowver slope of the ramp, the control cnly succeds

reom-brightness leaves the target range. The in damping the gain of rcom-brightness.

control starts its ramp - due to the lower slope of

the ramp, the cuntrpl only succeds in damping The cutside-brightness does not increase any

the loss of oom+-brightness. more. The control-ramp is now able to

The outside-brighiness does not decrease any compensate the room-brightness.

more. The controbramp is now able to
compensate the room-brighiness. @

@ ® 800

The target-range is reached again.
Because the outside-brightress is now lower than
in section 1, the electrical dim-value iz higher.

@ The target-range is reached again,

Switch-on and switch-off delay, minimum output value

122 Version: 1.2 TS8000

BEGKHOFF Function blocks

If the outdoor brightness increases, then less and less artificial light is necessary in order to obtain the
desired total brightness. If the outdoor brightness is sufficient, the lighting can also be switched off
completely.

However, switch-on and switch-off processes can be perceived as distracting, as can very low output
dimming values. Therefore a switch-on and switch-off delay uiOnDelay/uiOffDelay can be defined in the
function block around a lower limit value IrMinDimValue. If the internally determined output value sinks below
this minimum value, then the output remains at this minimum for the time uiOffDelay [s]. Only after that is 0.0
output at the output IrDimValue. If in the reverse case switching off to 0.0 has taken place, then if artificial
light is required this is only switched on after the expiry of uiOnDelay [s] and then to the value
IrMinDimValue. The following diagram is intended to clarify the behavior:

The yellow areas indicate the ranges where the outdoor brightness permits the lighting to be dimmed down;
in the blue areas, conversely, the outdoor brightness alone is not sufficient to obtain the desired room
brightness. In the white areas the output control value IrDimValue is appropriate for the lighting conditions.

Irlim\Vaue

[%]

PrdinDinVage— —————— = —: _______________
|
|
i T o

A - - — |- sl time
ubrHDegetel] UiDfDslay uidnDelay | [uidnDelay

@ @ ® @ ® ®

Thie waiting time to tum off the light inside is
The light value outside is sufficient. so the light started again. This time, it is bright encugh
@ inside the room will be dimmed. oulside for such a long time, that the lamp is
twrned off,

M short span of time with lower brightness outside

i i i s time |
o urn off the light begins, But before this time is Wil ok Yokt s s 6 gl

elapsed |1 gets dark outside, Thus the light-value
inside the room will be increased.

At the beginning of this section, the waiting time @

Only if the time of lower brightness outside,
@ wOnDelay, is exceaded, the light inside the room

.) . will be turned on again.
The light outside is sufficient again, After & while,
it gets brighter. The light ingide will be dimmead.

Manual adjustment of the setpoint

In order to be able to adapt the light control to personal brightness needs, there is an option to increase or
decrease the setpoint value. A long TRUE signal on bSwitch (longer than uiSwitchOverTime in milliseconds)
switches the function block to the dimming mode and the light is dimmed up if it had been dimmed down in
the preceding dimming mode and vice versa. If bSwitch resets to FALSE, then the brightness value now
measured on uiBrightness is adopted as the new setpoint value to which control is to take place.

Manual mode

In the manual operation modes the inputs bSwitch, bCentralOn and bCentral Off have no function: with
uiLightCtriMode=1 the output value IrDimValue is constantly set to IrManualDimValue and with
uiLightCtriMode=2 it is set constantly to 0.0.

Changing to manual mode resets any control process that had previously started. On re-entering
automatic mode the output value is 0.0 and the control must be restarted./rDimValue

TS8000 Version: 1.2 123

Function blocks BEGKHOFF

VAR_INPUT

eDataSecurityType: E HVACDataSecurityType;
uiLightCtrlMode : UINT;

bSwitch : BOOL;

bPresence : BOOL;

bCentralOn : BOOL;

bCentralOff : BOOL;

uiBrightness : UINT; (*lux*)
uiSetpoint : UINT; (*lux*)

eDataSecurityType:if eDataSecurityType:= eDataSecurity Type_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_ HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

uiLightCtrIMode : operation mode.

« 0: Automatic mode; the commands bSwitch, bCentralOn and bCentral Off are executable and can be
used to switch the controller on and off.

» 1: Manual On mode; constant light regulation is inactive — the value IrManualDimValue is output
without a delay at the output IrDimValueOut, all other command inputs are ineffective.

» 2: Manual Off mode; constant light regulation is inactive — the value 0.0 is output without a delay at the
output IrDimValueOut, all other command inputs are ineffective.

bSwitch : positive edges on this input switch the control on and off alternately. When switching off the output
IrDimValue is set to 0.0. This command input is active only in automatic mode (uiLightCtriMode=0).

bPresence : a continuous TRUE signal on this input activates the control if the presence function is
activated by bPresenceOnActive=TRUE (VAR_IN_OUT). Conversely, a falling edge on this input always
deactivates the control. This command input is active only in automatic mode (uiLightCtriMode=0).

bCentralOn : a positive edge on this input switches the control on. This command input is active only in
automatic mode (uiLightCtriMode=0).

bCentralOff : a positive edge on this input switches the control off and sets the output IrDimValue to 0.0.
This command input is active only in automatic mode (uiLightCtrIMode=0).

uiBrightness : actual light value [lux].

uiSetpointValue : light setpoint [lux].

VAR_OUTPUT

lrDimValue : LREAL;
bControlActive : BOOL;

bAdjustedSetpointActive: BOOL;

uiAdjustedSetpoint : UINT;

diActDeviation : DINT;

bError : BOOL;

udiErrorId : UDINT;

IrDimValue : light output value, 0..100%.

124 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

bControlActive : this output is TRUE if the function block is in automatic mode and the control is activated.
This is intended to serve as an additional feedback signal if switch-on has taken place but the control outputs
a light value of IrDimValue=0.0.

bAdjustedSetpointActive : if the control is active and the setpoint value has been manually adjusted (see
above), then the state of this output changes to TRUE in order to indicate that the setpoint value on the input
uiSetpointValue is no longer active.

uiAdjustedSetpoint : this output indicates the active setpoint value if this has been manually adjusted
(bAdjustedSetpointActive = TRUE). This output is set to 0 if no manually adjusted setpoint value is active.

diActDeviation : current control deviation in lux. This output indicates a valid value only if the function block
is in automatic mode and activated. Otherwise 0.0 is output.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [P 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ .zip.

uiSwitchOverTime : UINT;
uiAdjustRampTime : UINT;
bPresenceOnActive : BOOL;
bInitialMode : BOOL;
uiTargetRange : UINT;
uiControlRampTime : UINT;
uiOnDelay : UINT;
uiOffDelay : UINT;
1rMinDimValue : LREAL;
lrMaxDimValue : LREAL;
lrStartDimValue : LREAL;
lrManualDimValue : LREAL;

uiSwitchOverTime : switching time in milliseconds for the input bSwitch for the recognition of short and long
signals. (short signal: switch-on/switch-off function; long signal: dimming function)

uiAdjustRampTime : ramp time in seconds with which the setpoint value is changed during manual
adjustment.

bPresenceOnActive : if this input is TRUE, then the control is activated by a positive edge on bPresence if
the function block is in automatic mode (uiLightCtrIMode = 0).

bInitialMode : a TRUE signal on this input makes the function block begin with the setpoint value on
uiSetpoint each time it is activated. If on the other hand this input is FALSE, then the setpoint value that was
last active — i.e. including manually adjusted setpoint values — is adopted on activation of the function block.

uiTargetRange : target range around the setpoint value in which no further control is to take place.
uiControlRampTime : ramp time in seconds (time required to dim from 0% to 100%).
uiOnDelay : switch-on delay in seconds around the minimum value IrMinDimValue.

uiOffDelay : switch-off delay in seconds around the minimum value IrMinDimValue.

IrMinDimValue : lower limit value for dimming, see introduction [»_119].

IrMaxDimValue : upper limit to which the output IrDimValue can be controlled.
IrStartDimValue : value to which the light should jump on activating the control.

IrManualDimValue : output dimming value in Manual On mode (uiLightCtriMode=1).

TS8000 Version: 1.2 125

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

BECKHOFF

3.3.34 FB_BARDaylightControl

Daylight switch. Unlike the constant light regulation [»_119], this automatic control operates not with dimming
values, but merely switches the light on or off depending on the measured brightness.

—eDataSecurntyType
uiLightCtrilMode
—bSwitch
—bCentralCn
—bCentral Off
—uiBrightness
—uiSwitchOnValue &=
—uiSwitchOffOffset &
—uiLightOnTime &
—uionDelay &
—uiOfiDelay b

FB _BARDaylightControl

IrCim\yalue—

bOnF—
uiRemainingOnDelay—
uiRemainingOfDelay—
uiPreCnValuep—
uiLightGain—
uiSwitchOff\Valuep—
bControlActive—
bError—

udiErrorld

Fig. 4: FB_BARDaylightControl

The function block knows 3 different modes, which can be set via the input uiLightCtriMode:

¢ Automatic mode
e Manual On mode
¢ Manual Off mode

Automatic mode

If the brightness in the room, uiBrightness, falls below the value uiSwitchOnValue [lux] for the time
uiOnDelay [s], then the light is switched on. There is now a delay, uiLightOnTime, to allow the lamps reach
their full luminosity. The measured brightness in the room — assuming constant outdoor brightness — is
then higher than before switching on by the amount of the increase in brightness. Switching the lighting off
again makes sense only after the outdoor brightness has significantly increased again. This limit value is
calculated from the light switch-on value plus the brightness increase plus the parameter uiSwitchOffOffset.
If an increase in the outdoor brightness causes the room brightness to exceed this determined re-switch-off
value for the duration of uiOffDelay [s], then the lighting is switched off again.

126

Version: 1.2 TS8000

BEGKHOFF Function blocks

Outside brightress
[lux]

time

Brightness
[lux] ‘-

65535 ——————— Fo————

I
I
I
|
|
' A
| 1
| : I
| | | e I Calculated brighiness
: | | UiSwitchOfOffset : it
| | r i
I b 2 : !
[| |
' | | Calculated brightness |
: [| increase |
| | |
I | |
I | |
I i |
| | |
: Calculated brightness |
| increase Y :
' |
! |
' |
I
|

time

lg——+—————ight is switched on———+———»

)

! i i
On-telay Waiting-time Off-delay
wOnDelay [s] wiightOnTime [s] uiOfDelay [s]
Meﬁ?;g‘:ﬁ;?;g"mﬁs light switch-on value datanniqed _ra—sv.'itr:hoﬂ value
uiBrightness wiSwifchOnVaiua uiSwitchOffValue

TS8000 Version: 1.2 127

Function blocks BEGKHOFF

After the waiting-time is elapsed, the light gain will be caloulated as the difference
The outside-brightness decreases and with it the batween the actual measured brightness and the light-value, which was memaorised
@ measured brightness inside the room. The value falls @ before the light was tumed on. The determined re-switch-off value®

below wiSwitchOnValue. wewitchOffValue is then calculafed according fo the formua:

The measured brightness inside the room remains below light switch-on value + calculated brightness increase + wiswilchOfOffsat

the light switch-cn value wiSwitchOnValue for the ime

L v [l Outside the room it gets brighter again. Thus the measured rcom-brightness
increases as well and exceeds the previously determined re-switch-off value.

First the function-bock memorises the measured
brightress inside the room (without lighting). Afterwvards

the light is turned on. In order to judge the increase in The brightness inside the room remains above the re-switch-off value
light intensity, a time delay of wlightOnTime in @ far the time wiCfDelgy [s]

milliseconds is allowed to elapsa
During this phase, the external brightness is
assumed constant.

Before the re-switch-off value wiSwitchOffValue is re- The Lighting is switched off. Thus the brighiness inside the room is
catculated in the next phase, it will be set fo 65535, the decreased by the light-gain,

maximurm value for s data-type. This prevents the

lighting to be turned off by its own kight-increase.

Manual mode

In the manual operation modes, the bSwitch, bCentralOn and bCentralOff inputs have no function: with
uiLightCtriMode=1, the output value bOn is set to TRUE and with uiLightCtriMode=2 to FALSE.

A change to manual mode resets a previously started control. On re-entering automatic mode the
output value bOn is FALSE and the control must be restarted.

VAR_INPUT

eDataSecurityTyp: E HVACDataSecurityType;
uiLightCtrlMode : UINT;

bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;
uiBrightness : UINT;

eDataSecurity Type:if eDataSecurityType:= eDataSecurityType Persistent, the persistent VAR _IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_ Persistent. It would lead to early wear of the flash
memory.

uiLightCtrIMode : operation mode.

» 0: Automatic mode; the commands bSwitch, bCentralOn and bCentral Off are executable and can be
used to switch the controller on and off.

* 1: Manual On mode; constant light regulation is inactive — the value IrManualDimValue is output
without a delay at the output IrDimValueOut, all other command inputs are ineffective.

+ 2: Manual Off mode; constant light regulation is inactive — the value 0.0 is output without a delay at the
output IrDimValueOut, all other command inputs are ineffective.

bSwitch : positive edges on this input switch the control on and off alternately. When switching off the output
IrDimValue is set to 0.0. This command input is active only in automatic mode (uiLightCtriMode=0).

128 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BECKHOFF

bCentralOn : a positive edge on this input switches the control on. This command input is active only in
automatic mode (uiLightCtrIMode=0).

Function blocks

bCentralOff : a positive edge on this input switches the control off and sets the output IrDimValue to 0.0.
This command input is active only in automatic mode (uiLightCtriMode=0).

uiBrightness : actual light value [lux].

VAR_OUTPUT

lrDimValue : LREAL;
bOn : BOOL;
uiRemainingOnDelay: UINT;
uiRemainingOffDel : UINT;
uiPreOnValue : UINT;
uiLightGain : UINT;
uiSwitchOffvalue : UINT;
bControlActive : BOOL;
bError : BOOL;
udiErrorId : UDINT;

IrDimValue : in order to keep this function the same as the other light user functions, a light output value
exists here too in the form of a floating point number in percent, even though the light is only switched on or
off. This means: light off: IrDimValue = 0.0, light on: IrDimValue = 100.0.

bOn : switching output for the lighting.

uiRemainingOnDelay : countdown of the switch-on delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

uiRemainingOffDelay : countdown of the switch-off delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

uiPreOnValue : measured light value immediately before switching the lighting on. This output is "0" if the
controller is switched off or in manual mode.

uiLightGain : calculated brightness increase after switching on the lighting and waiting for the expiry of the
waiting time uiFullLightTime. This output is "0" if the controller is switched off or in manual mode.

uiSwitchOffValue : determined re-switch-off value, wherein the measured brightness must be larger. During
the waiting phase (uiLightOnTime) this value jumps to 65535 in order to avoid the light switching off during
this time. This output is "0" if the controller is switched off or in manual mode.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [P 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ .zip.

uiSwitchOnvValue : UINT;
uiSwitchOffOffset: UINT;
uiLightOnTime : UINT;
uiOnDelay : UINT;
uiOffDelay : UINT;

uiSwitchOnValue : light switch-on value. The lighting is switched on after the expiry of the switch-on delay if
the outdoor brightness is lower than this value.

uiSwitchOffOffset : if the light is switched on for the time uiLightOnTime (see above), the light switch-off
value is calculated from the currently measured luminous intensity plus this value.

TS8000 Version: 1.2 129

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

uiLightOnTime : the lighting does not reach its true switch-on value immediately. In order to judge the
increase in light intensity, this time delay in milliseconds is allowed to elapse before the increase and the
light switch-off value that depends on it are calculated.

uiOnDelay : switch-on delay in seconds. Constant switching on and off of the lighting is perceived as very
distracting. If the outdoor brightness sinks in such a manner that the constant light regulation needs to be
switched on for support, then this should take place only after this time delay.

uiOffDelay : switch-off delay in seconds. If the outdoor brightness increases in such a manner that the
constant light regulation needs to be switched off, then this should take place only after this time delay in
order to mask out short-term fluctuations.

3.3.3.5 FB_BARLightActuator

This function block serves to control a conventional light actuator. The outputs cover the value ranges
0..100%, 0..32767 and On/Off.

On top of that the function block contains a scene memory in which up to 21 different light values can be
saved.

FB _BARLightActuator
—eDataSecurityType IrDimYalue—
—IrTargetValue IDimValuer—
—usiSelectScene bOn—
—bCallScene bSceneMode—
—bStopScene bError—
—bSaveScene udiErrorld—
—uiSecDimTime &

—arrLightScenes =

In principle the function block passes the values on the input IrTargetValue through to the output IrDimValue.
Conversely, a positive edge on the input bCallScene sets the output to the light value that is saved in the
scene table arrLightScenes under the index usiSelectedScene. The output bSceneMode then changes to
TRUE. If the scene index usiSelectedScene changes, then the newly selected scene value is adopted only
on another positive edge on bCallScene. The scene mode is quit again by a change of value on the input
IrTargetValue or a positive edge on bStopScene. The output bSceneMode goes back to FALSE and the
output IrDimValue once again follows the input IrTargetValue. A TRUE signal on bSaveScene saves the
current light output value into the scene table arrLightScenes under the index usiSelectedScene.

The light output value IrDimValue always follows the target values specified to it via a ramp. As in the case of
the user function FB_BARLightCircuitDim [»_134], this is defined by a ramp time — in this case uiSecDimTime
— which indicates the time interval in seconds that the light output value should require in order to change by
100%.

130 Version: 1.2 TS8000

BECKHOFF Function blocks

light value
iFr.Dr'm Value
(%]
1DEI--———;:-|— ——————
—+arget valug-——————————————————————————— — = | —
Fstart value — :
0 |-""__H I =
|== uiSecDimTime [s] > time
light value
iFrDimVaIue
[%]
100 N -0
—start value e —
: s ver target value-
0 } ﬁh““-l -
i= uiSecDimTime [s] =| time

Since the light sensor function block FB_BARLightCircuitDim [P_134] also contains a ramp function for
presetting the target value, the light actuator function described here is called the "secondary dimtime" -
uiSecDimTime.

If both have different values, then the longer ramp time is always the relevant one:

Example1:

FB_BAFRLightCircuitDim FB BARLightActuator
—eDataSecuntyType IrDimalue —eDataSecurity Type IrCim\alue—
—uiLightCirilMade hLight——l—IrTarget"u'aIue iDim\alue—
—bSwitch bErrar— —usiSelectedScene bOn—
—hkCentralCn uiErrorld— —hCallScens bSceneMode—
—bCentral Of —hStopScens bError—
—uiSwitchOverTime &= —hSaveScens udiErrorld—

uiDimRampTime & uiSecDimTime &
—uiCycleDelay & —arrLightScenes b+
—IrinDimYalue &
—IrlaxDim\alue &
—IrianualDim\alue »

In this constellation the function block FB_BARLightCircuitDim [»_134] will change its output value IrDimValue
from 0% to 100% in 10 s. However, the function block FB_BARLightActuator can follow these continuously
changing setpoint values only with a ramp time of 20 s (related to a change from 0% to 100%). Therefore
this is ultimately the resulting ramp time.

TS8000 Version: 1.2 131

Function blocks BEGKHOFF

Example2:

FB BARLightCircuitDim FB BARLightActuator
—eDataSecuntyType IrDimY alue —eDataSecurityType IrCim\alue—
—uiLightCtrilMade hLight——l—IrTarget"u"aIue iDim\alue—
—bSwitch bErrar— —usiSelectedScene bOn—
—kCentralCn uErrorld— —hCallScens bSceneMode—
—bCentral Of —hStopScens bErrar—
—uiSwitchOverTime &= —hSaveScene udiErrorld—

uiDimRampTime & uiSecDimTime &
—uiCycleDelay & —arrLightScenes b
—IrlinDimY alue &
—IrilaxDim‘alue &
—Iranuallim\alue »

Conversely the function block FB_BARLightActuator could follow much faster here with a ramp time of 10 s.
However, since the dimming function block FB BARLightCircuitDim [P _134] presets its setpoints in this
example only with a ramp time of 20 s, this longer time is also relevant in this case.

It must be noted in this example that a short button press on the function block FB_BARLightCircuitDim
immediately changes the output IrDimValue to the internally-saved value (see FB BARLightCircuitDim
[»_134]). Hence, the ramp time on the FB_BARLightActuator is then relevant.

VAR_INPUT

eDataSecurityType: E HVACDataSecurityType;
lrTargetValue : LREAL;

usiSelectedScene : USINT;

bCallScene : BOOL;

bStopScene : BOOL;

bSaveScene : BOOL;

eDataSecurity Type:if eDataSecurityType:= eDataSecurityType Persistent, the persistent VAR _IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

IrTargetValue : target value of light output in 0..100%;

usiSelectedScene : selected lighting scene, 0..20;

bCallScene : sets the output value, controlled by a ramp, to the light value entered in the index
usiSelectedScene (arrLightScenes).

132 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

bStopScene : resets the output value to the value IrTargetValue. The change is likewise controlled by a
ramp.

bSaveScene : saves the current light value at the output IrDimvalue in the light value table arrLightScenes
under the index usiSelectedScene.

VAR_OUTPUT

lrDimValue: LREAL;
iDimValue : INT;

bOn : BOOL;
bSceneMode: BOOL;
bError : BOOL;

udiErrorId: UDINT;

IrDimValue : output light value in 0..100%.

iDimValue : output light value in 0..32767.

bOn : output light status: IrDimmValue=0.0 => bOn=FALSE - IrDimmValue>0.0 => bOn=TRUE.

bSceneMode : the function block presently outputs a scene value and not the value IrTargetValue on the
input.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [» 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ .zip.

uiSecDimTime : UINT;
arrLightScenes : ARRAY[0..20] OF LREAL;

uiSecDimTime : ramp time in seconds. This is the time that the light actuator function requires in order to
regulate from 0..100%.

arrLightScenes : table of saved light values.

3.3.3.6 FB_BARLightCircuit

This function block represents a simple light switching circuit without a dimming function.

FB_BARLightCircuit
—uiLightCtriMode IrDimValue—
—hSwitch bLight—
—hCentralOn bErrar—
—hCentral Off udiErrarld—

The function block knows 3 different modes, which can be set via the input uiLightCtrIMode:
+ Automatic mode
* Manual On mode
* Manual Off mode

TS8000 Version: 1.2 133

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

In automatic mode (uiLightCtriMode=0) the function block can be controlled via the inputs bSwitch,
bCentralOff and bCentralOn. A rising edge on bCentralOff switches the output IrDimValue to 0.0, while a
rising edge on bCentralOn sets the output to 100.0. Rising edges on bSwitch make the output IrDimValue
change each time between 0.0 and 100.0.

In manual operation modes, when uiLightCtriMode=1, the output value IrDimValueOut is constantly set to the
value 700.0 and when uiLightCtriMode=2, the output value is constantly set to the value 0.0.

VAR_INPUT

uiLightCtrlMode: UINT;
bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;

uiLightCtrIMode : operation mode.

+ 0: automatic mode, the output value IrDimmValue can be influenced by the command inputs bSwitch,
bCentralOn and bCentralOff.

* 1: Manual On mode; the value 100.0 is output without a delay at the output IrDimValueOut, all other
command inputs are ineffective.

+ 2: Manual Off mode; the value 0.0 is output without a delay at the output IrDimValueOut, all other
command inputs are ineffective.

bSwitch: rising edges on bSwitch make the output IrDimValue change each time between 0.0 and 100.0.
bCentralOn: switches the output IrDimValueOut to 100.0.
bCentral Off: switches the output IrDimValueOut to 0.0.

(
All switching commands, bSwitch, bCentralOn and bCentralOff are effective only in automatic
mode.

VAR_OUTPUT

lrDimValue : LREAL;

bLight : BOOL;

bError : BOOL;

udiErrorId : UDINT;

IrDimValue : light output value in percent 0.0, if the light is switched off and 100.0 if the light is switched on.
bLight : FALSE, if I'DimmValue = 0.0, otherwise TRUE.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [» 237].

3.3.3.7 FB_BARLightCircuitDim

This function block represents a light switching circuit with a dimming function.

134 Version: 1.2 TS8000

BEGKHOFF Function blocks

FBE_BARLightCircuitDim

—elataSecuntyType IrCimYaluer—
—uiLightCtriMode bLight—
—bSwitch bError—
—bCentralOn udiErrorld—
—bCentral Off

uiSwitchOverTime =
uiDimRampTime &
uiCycleDelay =
IrfinDimyalue &
—IrfflaxDimValue &
IfdanualDimValue &

The function block knows 3 different modes, which can be set via the input uiLightCtriMode:
» Automatic mode
* Manual On mode
+ Manual Off mode

In automatic mode (uiLightCtriMode=0) the function block can be controlled via the inputs bSwitch,
bCentralOff and bCentralOn. Whereas the output IrDimValue is set to 0.0 or to the value reached before the
last switch-off by rising edges on bCentralOff and bCentralOn, the behavior of the input bSwitch depends on
the duration of the signal. A short TRUE signal that is shorter than uiSwitchOverTime in milliseconds
switches the output IrDimValue. If the output IrDimValue is initially larger than 0.0, then it is switched to 0 and
the previous value is saved. If on the other hand it is 0.0, then the output is set to the previously internally
saved value. This saved value is set to the maximum value in the switch-on state of the program, see below.
Unlike in the case of the inputs bCentralOff and bCentralOn, the falling edge triggers the switching event
here. A long TRUE signal on bSwitch starts the dimming process. In principle dimming takes place only
between the set minimum and maximum values (IrMinDimValue and IrMaxDimValue). The dimming ramp is
defined in seconds by uiRampTime. This dimming time refers to the dimming range from 0 to 100 per cent,
even if the limits IrMinDimValue and IrMaxDimValue are set differently. If the output value IrDimmValue
reaches one of the limits without bSwitch resetting to FALSE, then it remains there for the time uiCycleDelay
in milliseconds, before dimming takes place again to the other limit value.

Exception: a uiCycleDelay value of 0 is not interpreted as an immediate dimming direction reversal, but
instead deactivates this. Only another long TRUE signal on bSwitch starts the dimming in the opposite
direction.

TS8000 Version: 1.2 135

Function blocks BEGKHOFF

IrDimYalue
ui deDThy
- msec] |
: uiCycleDelay - |
| msec) |
| |
| |
- —-{ ——— — IrMinDimValue — — — — — e | e e e
| |
| '
|
j— uiSwitchOverTime
+ _..1 | [msac] l
|
bSwitch H H
L
Il I
= [[
11 I
. - < uiSwitchOverTime
bCentralOon H inoperable l } H [msec)

bCentral Off

H inoperable H

® @ ® 1®

Dimming:

With a TRUE-signal at the input bSwitch longer than wiSwitchOverTime, the output rlDimmValue will be
initially set to /riMinValue. Afterwards the dimming-cycle begins and IrDimmValue will be continuously
increased until it reaches the maximum value rMaxValue. With bSwitch still set to TRUE it will remain at
this level for uiCycleDelay in milliseconds before the output is decreased. When IrDimm Value reaches
IrhinVaiue, it will remain there again for uiCycleDelay in milliseconds. Then the dimming cycle starts
again. A falling edge al bSwitch stops the dimming cycle. During the whole dimming-cycle, which means,
that hSwitch is set to TRUE, the inputs bCentralOn and bCentralOff will be inoperable.

Switching:

@ Rising edges at bCentralOff and bCentralOn will switch the output IrDimValue to 0 respectively to the last
saved value. Rising edges at bSwitch will also toggle the output /rDimValue between 0 and the last saved
value, but only, if the signal is shorter than uiSwitchOverTime in milliseconds. Otherwise the dimming-
cycle will begin.

Another long-signal at bSwitch lets the dimming-cycle starl again. Because the light was previously
@ switched off {(rDimmValue=0.0) the output IrDimm Value will be set to the minimum-value first, before the
cycle begins. The dimming will be stopped with a falling edge at bSwitch,

@ If the dimming is started again, the cycle will bagin with the last saved value. The dim-diraction will be
inverted.

In manual operation modes, when uiLightCtriMode=1, the output value IrDimValueOut is constantly set to the
value IrManualDimValue and when uiLightCtrIMode=2, the output value is constantly set to 0.0.

VAR_INPUT

eDataSecurityType: E HVACDataSecurityType;
uiLightCtrlMode : UINT;

bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurity Type_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

136 Version: 1.2 TS8000

BEGKHOFF Function blocks

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiLightCtrIMode : operation mode.

+ 0: automatic mode, the output value IrDimmValue can be influenced by the command inputs bSwitch,
bCentralOn and bCentral Off

* 1: Manual On mode; the value IrManualDimValue is output without a delay at the output
IrDimValueOut, all other command inputs are ineffective.

+ 2: Manual Off mode; the value 0.0 is output without a delay at the output /rDimValueOut, all other
command inputs are ineffective.

bSwitch: a short TRUE signal that is shorter than uiSwitchOverTime in milliseconds switches the output
IrDimValue. If the output IrDimValue is initially larger than 0.0, then it is switched to 0 and the previous value
is saved. If on the other hand it is 0.0, then the output is set to the previously internally saved value. This
saved value is set to the maximum value in the switch-on state of the program, see below.

A long TRUE signal that is longer than uiSwitchOverTime in milliseconds starts the dimming process,
wherein the dimming direction changes if two long signals follow one another on the input bSwitch.

bCentralOn: switches the output /rDimValueOut to the previously saved (at the last switch-off) dimming
value, see bSwitch.

bCentralOff: switches the output IrDimValueOut to 0.0.

o
All switching commands, bSwitch, bCentralOn and bCentralOff are effective only in automatic
mode.

VAR_OUTPUT

lrDimValue : LREAL;
bLight : BOOL;
bError : BOOL;
udiErrorId : UDINT;

IrDimValue : light output value; can adopt values between IrMinDimValue and IrMaxDimValue, see
VAR_IN_OUT, but maximally 0..100%.

bLight : FALSE, if 'DimmValue = 0.0, otherwise TRUE.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [» 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input

TS8000 Version: 1.2 137

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

variables, they would not be able to write a reference variable.

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ .zip.

uiSwitchOverTime : UINT;

uiDimRampTime : UINT;
uiCycleDelay : UINT;
lrMinDimValue : LREAL;
lrMaxDimValue : LREAL;

lrManualDimValue : LREAL;
uiSwitchOverTime : switching time in milliseconds from button to dimming mode.
uiDimRampTime : ramp time in seconds (time required to dim from 0% to 100%).

uiCycleDelay : switching time in milliseconds of the automatic change between dimming up and dimming
down. The automatic change is inactive if this value is zero.

IrDimMinValue : minimum light value in % that can be reached by dimming.
IrDimMaxValue : maximum light value in %.

IrManualDimValue : output dimming value in Manual On mode (uiLightCtriMode=1).

3.3.3.8 FB_BARStairwellAutomatic

Function block for a stairwell light circuit.

FBE_BARStairwellAutomatic

—elataSecuntyType IrDimYalue—
—uiLightCtriMode bOn—
—bSwitch uiRemainingHoldTimer—
—uiHoldTime & bError—
—uiFulseTimeOn & udiErrorld—

—uiPulseTimeOff &
uiumberPulses &

Fig. 5: FB_BARStairwellAutomatic

The function block knows 3 different modes, which can be set via the input uiLightCtrIMode:

+ Automatic mode

* Manual On mode

* Manual Off mode
The stairwell control is active in automatic mode (uiLightCtriMode=0). A positive edge on bSwitch initially
only switches the light on (output bOn). A negative edge starts the holding time generator. If the hold time
uiHoldTime [s] has expired, a flash sequence with a number of flash pulses programmable by

uiNumberPulses begins as a warning of the impending switch-off. These pulses have an on-time of
uiPulseTimeOn [ms] and an off-time of uiPulse TimeOff [ms].

138 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

A Logical value uiNumberPulses

TRUE4+—————— < il + Iy
FALSE -
——uiHoldTime [s]4|-| |H| |-|—|-| time:
uiPulse TimeOn uiPulsa Time Off
bSwitch [s] s
bOn

The sequence can be restarted at any time:

start restart during hold- restart during
stairwell automatic time prewarn

B S
] 1NN

lqur' Hold Time [s]m--| l«-ua'HoId Time [s }-l

bSwitch
bOn

In the manual operation modes the input bSwitch has no function: with uiLightCtrIMode=1 the output value
bOn is constantly set to TRUE and with uiLightCtrIMode=2 it is constantly set to FALSE.
Changing to manual mode resets any lighting sequence that had started up to that point.

VAR_INPUT

eDataSecurityType: E _HVACDataSecurityType;
uiLightCtrlMode : UINT;
bSwitch : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

TS8000 Version: 1.2 139

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

uiLightCtriIMode : operation mode.
« 0: automatic mode; the stairwell circuit is active and reacts to the input bSwitch.
* 1: Manual On mode; the stairwell circuit is inactive - the output bOn is set constantly to TRUE.
+ 2: Manual Off mode; the stairwell circuit is inactive - the output bOn is set constantly to FALSE.

bSwitch: a rising edge switches the light on in automatic mode (uiLightCtriMode=0), a falling edge starts the
holding time generator. This input has no function in manual operation mode (uiLightCtriMode=1 or 2).

VAR_OUTPUT

lrDimValue : LREAL;
bOn : BOOL;
uiRemainingHoldTime: UINT;
bError : BOOL;
udiErrorId : UDINT;

IrDimValue : in order to keep this function the same as the other light user functions, a light output value
exists here too in the form of a floating point number in percent, even though the light is only switched on or
off. This means: light off: IrDimValue = 0.0, light on: IrDimValue = 100.0.

bOn : switching output for the lighting.

uiRemainingTimeHold: remaining hold time in seconds. If the light is off or if manual operation mode is
active, then this output is "0". With a rising edge on bSwitch in automatic mode, this output initially indicates
the complete number of seconds of the hold time (uiHold Time), in order to illustrate the countdown of the
hold time, starting with a falling edge on bSwitch. This output is 0 as long as no countdown of the time is
taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [» 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: = https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/ .zip.

uiHoldTime : UINT;
uiPulseTimeOn : UINT;
uiPulseTimeOff : UINT;
uiNumberPulses : UINT;

uiHoldTime : hold time [s] of the stairwell controller after a falling edge on bSwitch.
uiPulseTimeOn: ON-time of the early warning pulses in milliseconds.
uiPulseTimeOff: OFF-time of the early warning pulses in milliseconds.

uiNumberPulses: number of early warning pulses.

3.3.3.9 FB_BARTwilightAutomatic

Twilight automatic

140 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BECKHOFF Function blocks

FB _BARTwilightAutomatic

—eDataSecurityType IrDimYalue—
—uiLightCtrilMode uiRemainingOnDelay—
—bSwitch uiRemainingOffDelay—
—bCentralCn bControlActive—
—kCentral Of bErrar—
—uiBrightness udiErrarldf—

—uiSwitchOnValue &
—uiSwitchOffValue &
—uidnDelay &
—uiOfiDelay &
—IrlDimOnYalue &
—IrCimOfYalue &
—IrflanualDimyalue &

Fig. 6: FB_BARTwilightAutomatic

The function block knows 3 different modes, which can be set via the input uiLightCtrIMode:
» Automatic mode
* Manual On mode
* Manual Off mode

Automatic mode

In automatic mode a positive edge on bSwitch activates the twilight automatic, if it had been inactive
beforehand. A further edge on bSwitch deactivates the twilight automatic again. The automatic function is
explicitly switched on and off with bCentralOn and bCentralOff, independent of the previous state of the
automatic function. If the twilight automatic is activated, then the function block switches the output
IrDimValue to the switch-on value IrDimValueOn when the brightness falls below a switch-on threshold value
uiSwitchOnValue for an entered delay time uiOnDelay. Conversely, if a switch-off threshold value
uiSwitchOffValue is exceeded for an entered time delay uiOffDelay, then the output is switched to the value
IrDimValueOff. In the inactive state the light output value IrDimValue is set to 0.0.

Manual mode

In the manual operation modes the inputs bSwitch, bCentralOn and bCentralOff have no function: with
uiLightCtriMode=1 the output value IrDimValue is constantly set to IrManualDimValue and with
uiLightCtrIMode=2 it is constantly set to 0.0.

Switch-on and switch-off delay

The switch-on and switch-off delays written in automatic mode are always run through irrespective of the
state of the automatic function (active or inactive) and the operating mode, i.e. the timers are not reset by
these operating states.

VAR_INPUT

eDataSecurityTyp: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;

bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;
uiBrightness : UINT;

TS8000 Version: 1.2 141

Function blocks BEGKHOFF

eDataSecurityType:if eDataSecurityType:= eDataSecurityType Persistent, the persistent VAR _IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: g™ https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType Persistent. It would lead to early wear of the flash
memory.

uiLightCtrIMode : operation mode.

» 0: Automatic mode; the commands bSwitch, bCentralOn and bCentral Off are executable and can be
used to switch the twilight automatic on and off.

* 1: Manual On mode; twilight automatic is inactive — the value IrManualDimValue is output without a
delay at the output IrDimValueOut, all other command inputs are ineffective.

+ 2: Manual Off mode; twilight automatic is inactive — the value 0.0 is output without a delay at the output
IrDimValueOut, all other command inputs are ineffective.

bSwitch : positive edges on this input switch the twilight automatic on and off alternately. When switching off
the output IrDimValue is set to 0.0. This command input is active only in automatic mode
(uiLightCtrIMode=0).

bCentralOn : a positive edge on this input switches the twilight automatic on. This command input is active
only in automatic mode (uiLightCtriMode=0).

bCentralOff : a positive edge on this input switches the twilight automatic off and sets the output IrDimValue
to 0.0. This command input is active only in automatic mode (uiLightCtriMode=0).

uiBrightness : actual light value [lux].

VAR_OUTPUT

lrDimValue : LREAL;
uiRemainingOnDelay : UINT;
uiRemainingOffDelay: UINT;

bControlActive : BOOL;
bError : BOOL;
udiErrorId : UDINT;

IrDimValue : light output value, 0..100%.

uiRemainingOnDelay : countdown of the switch-on delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

uiRemainingOffDelay : countdown of the switch-off delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

bControlActive : this output is TRUE if the function block is in automatic mode and the twilight automatic is
activated. This is intended to serve as an additional feedback signal if switch-on has taken place but the
control outputs a light value of IrDimValue=0.0.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [» 237].

142 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

o Note If an error should occur, then this automatic function is deactivated and position and angle are
set to 0. This means that if a priority controller is in use, another function with a lower priority (see

1 Overview) automatically takes over control of the blind. In the case of a direct connection,
conversely, the blind will drive to position/angle 0.

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: g™ https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ .zip.

uiSwitchOnvValue : UINT;
uiSwitchOffvalue : UINT;
uiOnDelay : UINT;
uiOffDelay : UINT;
lrDimOnValue : LREAL;
1rDimOffVvalue : LREAL;

lrManualDimValue : LREAL;

uiSwitchOnValue: switch-on threshold. This is compared with the brightness value at the input uiBrightness.
This value must be greater than the output threshold value uiSwitchOffValue.

uiSwitchOffValue: switch-off threshold. This is compared with the brightness value at the input uiBrightness.
uiOnDelay: switch-on delay in seconds.

uiOffDelay: switch-off delay in seconds.

IrDimOnValue : switch-on light value in %.

IrDimOffValue : switch-off light value in %.

IrManualDimValue : output dimming value in Manual On mode (uiLightCtriMode=1).

Documents about this

example_persistent_e.zip (Resources/zip/11659714827.zip)
example_persistent_e.zip (Resources/zip/11659714827.zip)

TS8000 Version: 1.2 143

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

3.34 Sun portection

3.3.41 Overview shading

144 Version: 1.2 TS8000

BECKHOFF

Function blocks

Shading - overview

Colour key
s yalid for the whole building
mmm valid for a facade

s yalid for a (room) group

Weather protection
FB BARSunblindWeatherProtection

Maintenance position
FB BARSunblindEvent

Manual operation
FB BARSunblindSwitch

or

Manual eperation with
scene selection and

programming
FB BARSunblindScene

Automatic twilight function

FE BARZSunblindTwilightAutomatic
Thermo-automatic function
FB BARSunblindThermoAutomatic

Automatic sun protection
FB BARSunProtectionEx

Owerview of automatic sun protection
{shading correction)

Positioning telegram
ST BARSunblind

Positioning telegram
ST BARSunblind

Positioning telegram
ST BARSunblind

Paositioning telegram
ST BARSunblind

Positioning telegram
ST BARSunblind

Paositioning telegram
ST BARSunblind

Parking position

FB BARSunblindEvent

Positioning telegram
ST BARSunblind

Priority controller
FB BARSunblindPrioritySwitch

Prio1-input

Prio2-input

Prio3-input

Priod-input

Priog-input

PrioG-input

Prio7-input

Positioning telegram
ST BARSunblind

Blind -actuator
FB BARSunblindActuator

TS8000 Version: 1.2 145

Function blocks

BECKHOFF

3.34.2 Overview sun protection

Overview of automatic sun protection

Colour key
valid far the whole building
s valid for a facade

valid for a (room) group

Entry of shading objects
FB BARShadingObjectsEntry
or
FB BARReadShadingCbiectsList

Entry of facade elements

FB BARFacadeElementEntry

ar
FB BARReadFacadeElementList

External brightness check

with delay and hysteresis
FB BARDelayedHysteresis

Check of valid position of the sun

Sun direction range (azimuth angle)
FB BaRWithinRangeAzimuth

bout

Check of valid position of the sun

Sun height range (angle of
elevation)

FB BARWithinRangeElevation

BOUT |

Shading correction
of a window group
FB BARShadingCorrection
shading objects

. facade-elements pGroupMotShaded |

Automatic sun protection
FB BARSunProtectionEx

b Enable positioning=telegramm

146

Version: 1.2

TS8000

BEGKHOFF Function blocks

3.343 Sun protection: basic principles and definitions

The direct incidence of daylight is regarded as disturbing by persons in rooms. On the other hand, however,
people perceive natural light to be more pleasant in comparison with artificial light. Two options for glare
protection are to be presented here:

« Lamella setpoint tracing
* Height adjustment

Lamella setpoint tracing

A louvered blind that can be adjusted offers the option of intelligent sun protection here. The position of the
slats is cyclically adapted to the current position of the sun, so that no direct daylight enters through the
blinds, but as much diffuse daylight can be utilized as possible.

—_—

S diffuse

daylight

The illustration shows that diffuse light can still enter from underneath, whereas no further direct daylight, or
theoretically only a single ray, can enter. The following parameters are necessary for the calculation of the
slat angle:

« the current sun elevation (angle of elevation)
« the position of the sun, i.e. the azimuth angle
+ the facade orientation

the slat width

« the slat spacing

The effective angle of elevation is calculated from the first three of the parameters listed above:

If the facade orientation and the position of the sun (azimuth) are equal, then the effective angle is equal to
the current angle of elevation.

However, if the sunlight falls at an angle onto the facade as seen from the sun direction, the effective angle
is larger for the same angle of elevation.

The following three pictures illustrate the relationship between the effective angle of elevation and the
dimensions of the blind and how the resulting slat angle A changes:

TS8000 Version: 1.2 147

Function blocks BEGKHOFF

Lamellenwinkel

louvre at an angle of A=0

R — louvre width— - —- — —-—. =)
I |
| | _EL
| | s
: ; a
! | g
| i B
H i (=3
| | a
| | !
h P e R S L et Mot
|

A = louvre-angle — in this drawing A<0Q

-Buneds aunnor

€ = height of the sun (elevation)

I{_

louvre-positioning at noon

A = louvre-angle — in this drawing: A=0

¢ = height of the sun (elevation)

—fupmeds aianop - =

|-=:-

148 Version: 1.2 TS8000

BECKHOFF Function blocks

Height adjustment

With a high position of the sun at midday, the direct rays of sunlight do not penetrate into the full depth of the
room. If direct rays of sunlight in the area of the window sill are regarded as uncritical, the height of the sun
protection can be adapted automatically in such a way that the rays of sunlight only ever penetrate into the
room up to an uncritical depth.

uncritical
depth

In order to be able to calculate at any time the appropriate blind height that guarantees that the incidence of
sunlight does not exceed a certain value, the following values are necessary.

Required for the calculation of the respective blind height:
* Sun elevation
* Window height
+ Distance between the window and the floor

The following illustration shows where these parameters are to be classified:

TS8000 Version: 1.2 149

Function blocks BEGKHOFF

£ = height of the sun (Elevation)

window height M _ ___.

Distance
hetween
the window
land the floor

i i
le—resulting light incidence—si
' |

Influence of the facade inclination

In both of the methods of sun protection described, it was assumed that the facade and thus the windows
are perpendicular to the ground. In the case of an inclined facade, however, the incidence of light changes
such that this influence will also be taken into account. The facade inclination is defined as follows:

150 Version: 1.2 TS8000

BEGKHOFF Function blocks

facade inclination: ¢ = 0°

facade inclination: ¢ < 0° ' = If
?}.

facade inclination: ¢ > 0°

TS8000 Version: 1.2 151

Function blocks BEGKHOFF

3.344 Shading correction: basic principles and definitions

The shading correction can be used in conjunction with the automatic sun function or lamella setpoint
tracing. The function checks whether a window or a window group that is assigned to a room, for example, is
temporarily placed in the shade by surrounding buildings or parts of its own building. Sun shading for
windows that stand in the shadow of surrounding buildings or trees is not necessary and may even be
disturbing under certain circumstances. On the basis of data entered regarding the facade and its
surroundings, the shading correction determines which parts of the front are in the shade. Hence, it is then
possible to decide whether the sun protection should be active for individual windows or window groups.
Apart from the current position of the sun, the shading of the individual windows depends on three things:

+ the orientation of the facade
« the position of the windows
+ the positioning of the shading objects

The following illustrations are intended to describe these interrelationships and to present the parameters to
be entered.

Orientation of the facade

Observation from above

N A N

Pu=(0,0,0}

shading object 4

o = azimuth-angle
B = facade-orientation

For the pure observation of the shadow thrown on the facade, a two-dimensional coordinate system is
ultimately required, therefore the X and Y axis were placed on the facade. The zero point is thereby at the
bottom left on the base, as if one were regarding the facade from the front. For the calculation of the shading
objects the Z component is then also added. Its axis points from away the facade and has the same zero
point as the X and Y axis.

In the northern hemisphere, the horizontal sun position (azimuth angle) is determined from the north
direction by definition. The facade orientation is likewise related to north, wherein the following applies to the
line of sight from a window in the facade:

Line of sight Facade orientation
North B=0°
East B=90°

152 Version: 1.2 TS8000

BEGKHOFF Function blocks

Line of sight Facade orientation
South B=180°
West B=270°

In the southern hemisphere is the sun path is the other way round: although it also rises in the east, ad
midday it is in the north. The facade orientation is adjusted to this path:

Line of sight Facade orientation
South B=0°
East =90°
North 3=180°
West B=270°

SA 5

E W
N

Pe=(0,0,0}

sunbeam

shading object -

o = azimuth-angle
> B = facade-arientation

o

For convenience, the other explanations refer to the northern hemisphere. For the later parameterization

(FEB_BARShadingCorrection [P_176] / FB BARShadingCorrectionSouth [P_179]) only the corresponding facade
orientation is necessary anyway, which can be taken from the respective valid table - northern or southern
hemisphere.

The following two illustrations are intended to further clarify the position of the point of origin P, as well as the
orientation of the coordinate system:

TS8000 Version: 1.2 153

Function blocks BEGKHOFF

Observation from the side

y.l’\

£ = sun position (elevation)

P:=(0.0,0)

facade to be examined shaded ohject

The sun elevation can be represented using this illustration: by definition this is 0° at sunrise (horizontal
incidence of light) and can reach maximally 90°, but this applies only to places within the Tropic of Cancer
and the Tropic of Capricorn.

Observation from the front

Ny

facade to be examined

Py=(0,0,0}
OF:

Here, the position of the point of origin, P,, at the bottom left base point of the facade is once more very
clear. Beyond that the X-Y orientation is illustrated, which is important later for the entry of the window
elements.

Position of the windows

The position of the windows is defined by the specification of their bottom left corner in relation to the facade
coordinate system. Since a window lies flat on the facade, the entry is restricted to the X and Y coordinates.

154 Version: 1.2 TS8000

Function blocks

BECKHOFF

[}
Y
window window window window
16 26 16 4.6
window window window
1.5 2.5 4.5
window window window
1,4 2.4 34
_— - -
A Ciwindow34)
window window window wiEvdow
1.3 23 3.3 4.3
—
w_
2
o
- window window window window
- 1.2 2.2 5.2 4.2
e
X
&)
wimvdow windo winedow
1.1 3 4.1
* -
P,=(0,0,0)

The width and height must additionally be specified.

TS8000 Version: 1.2 155

Function blocks BEGKHOFF

*

!

le———————JyBilay mopuim
|

C4 04*_

|
window widlh—:s-!
I

=

Cr=corner n

The position of each window corner on the facade is determined internally from the values entered. A
window is considered to be in the shade if all corners lie in the shade.

Positioning of the shading objects

When describing the shading objects, distinction is made between angular objects (building, column) and
objects that are approximately spherical (e.g. trees). Angular objects can be categorized according to the

shadow they cast into square, shadow-casting facades, wherein one must consider which ones cast the
main shadows over the course of the day:

156 Version: 1.2 TS8000

BEGKHOFF Function blocks

Morning/noon

B = facade orientation

Z
5S4 X

Ss shading object S,

Sa

\ \

sun at noon

In the morning and around noon, the shadows are mainly cast by the sides S, and S,; S, and S; need not be
considered if they are not higher.

TS8000 Version: 1.2 157

Function blocks BEGKHOFF

Afternoon/evening

=

B = facade-orientation

P:=(0,0,0)

Z ; .
g i # e
B S, shadingobject S, r f{ff’
Evening-sun v i S, _ﬁ;;_,d-fﬂ"'f

afternoon-sun

In the afternoon and in the evening too, the total shade can be determined alone by the observation of S,
and S;. In this case it is therefore sufficient to specify S, and S; as shadow casters. The entry is made on the
basis of the four corners or their coordinates in relation to the zero point of the facade:

158 Version: 1.2 TS8000

BEGKHOFF Function blocks

oo Po=(P2x,P2y,Paz) P3=(Pax,P3y,P3)

shading object P2-P3: upper corners of the shading plane

In this sketch only the upper points, P, and P, are illustrated due to the plan view. The lower point P, lies
underneath P, and P, lies underneath P;.

The input of shadow-casting sphere elements is done by entering the center of the sphere and its radius:

TS8000 Version: 1.2 159

Function blocks BEGKHOFF

Sphere elements

A "classification" of the sphere element as in the case of the angular building is of course unnecessary, since
the shadow cast by a sphere changes only its direction, but not its size.

3.34.5 FB_BARBIlindPositionEntry

This function block serves for the input of interpolation points for the function block FB_ BARSunProtectionEx
[»_221], if this should be operated in the height positioning mode with the help of a table, see E BARPosMode

»_233].

FB_BARBlindPositionEntry
eDataSecurntyType bWalid—
—bSetDefault udiErrorld—
—IrSunElevation? &= stBlindPositionTable—
—uiBlindPosition? &
—IrSunElevationg &=
—uiBlindPosition2 &
—IrSunkElevation3 &
—uiBlindPosition3 &
—IrSunElevationd =
uiBlindPositiond &=

Fig. 7: FB_BARBIindPositionEntry

160 Version: 1.2 TS8000

BEGKHOFF Function blocks

In addition to the operation modes "Fixed blind height" and "Maximum light incidence", the function block

FB BARSunProtectionEx [P 221] also offers the possibility to control the blind height in relation to the position
of the sun by means of table entries. By entering several interpolation points, the blind height relative to the
respective sun position is calculated by linear interpolation. However, since incorrectly entered values can
lead to malfunctions in FB_ BARSunProtectionEx [P 221], this function block is to be preceded by the function
block FB_BARBIindPositionEntry. Four interpolation points can be parameterized on this function block,
whereby a missing entry is evaluated as a zero entry.

The function block does not sort the values entered independently, but instead ensures that the positions of
the sun entered in the respective interpolation points are entered in ascending order. Unintentional
erroneous entries are noticed faster as a result.

The values chosen for rSunElevation1... rSunElevation4 must be unique, for example, the following situation
must be avoided:

[rSunElevation1 = 10 ; uiBlindPosition1 = 50] and simultaneously [rSunElevation2 = 10 ; uiBlindPosition2 =
30].

This would mean that there would be two different target values for one and the same value, which does not
allow a unique functional correlation to be established.

In addition, the entries for the position of the sun and blind height must lie within the valid range.
Mathematically this means that the following conditions must be satisfied:

» rSunElevation1 < rSunElevation2 < rSunElevation3 < rSunElevation4 - (values ascending and unequal)
» 0 =rSunElevation< 90 (in degrees - range of validity of source values)
» 0 <uiBlindPosition< 100 (in percent - range of validity of target values)

The function block checks the values entered for these conditions and outputs an error code [P 237] if they
are not met. In addition, the output bValid is set to FALSE.

Furthermore the function block independently ensures that the boundary areas are filled out: internally,
another interpolation point is set up at rSunElevation = 0 with uiBlindPosition1and another one above
rSunElevation4 at rSunElevation = 90 with uiBlindPosition4. This ensures that a sensible target value exists
for all valid input values 0 <rSunElevations 90 without the user having to assign an entry for rSunElevation =
0 and rSunElevation = 90:

BlindPosition [%]
A

an —

80—

FB_BARBIlindPositionEntry

—eDataSecurityType bWalid— Liin
—bSetDefault udiErrord— 60
10.0IrSunElevation &= stBlindPositionTable—

g80—uiBlindPosition? &= 50 |
20.0qIrSunElevation2 & %
70-uiBlindPosition? = 40
30.0IrSunElevation3 &
50-uiBlindPosition3 =
40.0IrSunElevationd &= 20
20—uiBlindPositiond &=

30+

10

o
-

T T T]
50 60 70 BO 80 sunElevation []

The actual number of interpolation points transferred to the function block FB_ BARSunProtectionEx [P 221]
thus increases to 6, see ST BARBIindPositionTable [P 234].

The interpolation of the values takes place in the glare protection function block.

VAR_INPUT
eDataSecurityType: E HVACDataSecurityType;
bSetDefault : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType Persistent, the persistent VAR _IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

TS8000 Version: 1.2 161

Function blocks BEGKHOFF

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

VAR_OUTPUT
bvalid : BOOL;
uiErrorId : UDINT;

stBlindPositionTable: ST BARBlindPositionTable;
bValid: this output will be TRUE as long as the entries correspond to the criteria listed above.

uiErrorld: contains the error code, if the entries should not correspond to the criteria listed above. See error
codes [P 237].

stBlindPositionTable : transfer structure of the interpolation points, see ST BARBIlindPositionTable [» 234].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: = https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ .zip.

rSunElevationl : REAL;;
uiBlindPositionl : UINT;
rSunElevation2 : REAL;
uiBlindPosition2 : UINT;
rSunElevation3 : REAL;
uiBlindPosition3 : UINT;
rSunElevation4 : REAL;

uiBlindPositiond4 : UINT;

rSunElevation1: position of the sun of the 1st interpolation point (0°..90°).
uiBlindPosition1: blind position (closing degree) of the 1st interpolation point (0%..100%).
rSunElevation2: position of the sun of the 2nd interpolation point (0°..90°).
uiBlindPosition2: blind position (closing degree) of the 2nd interpolation point (0%..100%).
rSunElevation3: position of the sun of the 3rd interpolation point (0°..90°).
uiBlindPosition3: blind position (closing degree) of the 3rd interpolation point (0%..100%).
rSunElevation4: position of the sun of the 4th interpolation point (0°..90°).

uiBlindPosition4: blind position (closing degree) of the 4th interpolation point (0%..100%).

162 Version: 1.2 TS8000

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

BEGKHOFF Function blocks

3.3.4.6 FB_BARDelayedHysteresis

This function block represents a threshold switch for brightness. The switch-on and switch-off behavior can
additionally be delayed.

FBE_BARDelayedHysteresis
—elataSecuntyType bOut—
—usiBrightness bError—
usionValue & udiErrorld—
—usiOffValue &
uidnDelay b

—uiOffDelay &

VAR_INPUT

eDataSecurityType : E HVACDataSecurityType;
uiBrightness : UINT;

eDataSecurity Type:if eDataSecurityType:= eDataSecurityType Persistent, the persistent VAR _IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: ¢ https://infosys.beckhoff.com/content/1033/tcpliclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiBrightness: outdoor brightness in lux.

VAR_OUTPUT
bOut : BOOL;
bError : BOOL;

udiErrorId : UDINT;
bOut: binary delayed output of the threshold switch.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorld : contains the error code if the values entered should be erroneous. See error codes [» 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: g™ https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/ zip.

TS8000 Version: 1.2 163

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks BEGKHOFF

uiOnvValue : UINT;
uiOffvalue : UINT;
uiOnDelay : UINT;
uiOnDelay : UINT;

uiOnValue: switch-on threshold value in lux. This must be greater than the switch-off threshold value
usiOffValue.

uiOffValue: switch-off threshold value in lux. This must be smaller than the switch-on threshold value
usiOnValue.

uiOnDelay: switch-on delay in seconds.

uiOffDelay: switch-off delay in seconds.

3.3.4.7 FB_BARFacadeElementEntry

This function block serves the administration of all facade elements (windows) in a facade, which are saved

globally in a list of facade elements [P 237]. It is intended to facilitate the input of the element information -
also with regard to the use of the target visualization. A schematic representation of the objects with

description of the coordinates is shown in Shading correction: principles and definitions [»_152].

FB_BARFacadeElementEntry

—1Column IrCormerdX—
—IRow IrCormerdy —
—bWrite IrComer3x—
—bRead IrCormneray —
—usiGroup IrCarnerd X—
—IrComer1X IrCormerdyY —
—IrCormerTy bV alid—
—IrWindow\Width udiErrorld—
—IWindowHeight

—arrfFacadeElement =

The facade elements are declared in the global variables as a two-dimensional field above the window
columns and rows:
VAR GLOBAL

arrFacadeElement : ARRAY[1l..iColumnsPerFacade, 1..iRowsPerFacade] OF ST BARFacadeElement;
END VAR

Each individual element arrFacadeElement carries the information for one facade element
(ST_BARFacadeElement [P 235]). The information includes the group assignment, the dimensions (width,
height) and the coordinates of the corners. The function block thereby accesses this field directly via the IN-
OUT variable arrFacadeElement.

d The fact that the coordinates of corners 2 to 4 are output values arises from the fact that they are
1 formed from the input parameters and are to be available for use in a visualization.

164 Version: 1.2 TS8000

BEGKHOFF Function blocks

¥ R

Cz CS

C.=corner n

Fx
Cy C43F-

|
window widlh—:s-!
I

_K
e e
!
e———ybiay mopuim
|

=

All data in meters!

IrCorner2X = IrCorner1X

IrCorner2Y = IrCorner1Y + IrWindowHeight (window height)
IrCorner3X = IrCorner1X + IrWindowWidth (window width)
IrCorner3Y = IrCorner2Y

IrCornerdX = IrCorner1X + IrWindowWidth (window width)
IrCorner4Y = IrCorner1Y

The function block is used in three steps:
* Read
* Change
* Write

Read
With the entries in iColumn and iRow the corresponding element is selected from the list
arrFacadeElement[iColumn,iRow]. A rising edge on bRead reads the following data from the list element:
» usiGroup Group membership,
 IrCorner1X X-coordinate of corner 1 in meters
* IrCorner1Y Y-coordinate of corner 1 in meters
* IrWindowWidth Window width in meters
+ IrWindowHeight Window height in meters
These are then assigned to the corresponding input variables of the function block, which uses them to
calculate the coordinates of corners 2-4 as output variables in accordance with the correlation described

above. It is important here that the input values are not overwritten in the reading step. Hence, all values can
initially be displayed in a visualization.

Change

In a next program step the listed input values can then be changed. The values entered are constantly
checked for plausibility. The output bValid indicates whether the values are valid (bValid=TRUE). If this is not

the case, a corresponding error code [P 237] is output at the output udiErrorld. See also below "Errors
(bValid=FALSE)".

TS8000 Version: 1.2 165

Function blocks BEGKHOFF

Write

The parameterized data are written to the list element with the index nld upon a positive edge on bWrite,
regardless of whether they represent valid values or not. Therefore the element structure

ST BARFacadeElement [P 235] also contains a plausibility bit, bValue, that relays precisely this information to
the function block FB_BARShadingCorrection [P_176] / FB BARShadingCorrectionSouth [P_179] and prevents
incorrect calculations there.

Error (bValid=FALSE)

The function block FB BARShadingCorrection [P_176] / FB BARShadingCorrectionSouth [P_179], which judges
whether all windows in a group are shaded, will only perform its task if all windows in the examined group
have valid entries.

This means:

 usiGroup must be greater than 0

* IrCorner1X must be greater than or equal to 0.0
* IrCorner1Y must be greater than or equal to 0.0
* IrWindowWidth must be greater than O

+ IrWindowHeight must be greater than 0

If one of these criteria is not met, this is interpreted as an incorrect entry and bValid is set to FALSE at the
function block output of FB_ BARFacadeElementEntry and in the window element ST BARFacadeElement
[»235].

If, on the other hand, all entries of a facade element are zero, it is regarded as a valid, deliberately omitted
facade element:

166 Version: 1.2 TS8000

BEGKHOFF Function blocks

')

window window window window
16 2.8 3.8 4.6

windaw window window
1.5 2.5 4.5

Windong il o wimdow
14 24 34

window window windaw window
1,3 23 3.3 4.3

window window window window
1.2 22 32 4.2

window window window
1,1 ani 41

K—.—-

In the case of a facade of 6x4 windows, the elements window (2.1), window (3.5) and window (4.4) would be
empty elements here.

VAR_INPUT
eDataSecurityType: E HVACDataSecurityType;
iColumn : INT;
iRow : INT;
bWrite : BOOL;
bRead : BOOL;
usiGroup : USINT;
lrCornerlX : LREAL;
lrCornerlY : LREAL;
lrWindowWidth : LREAL;
lrWindowHeight : LREAL;

iColumn: column index of the selected component on the facade. This refers to the selection of a field
element of the array stored in the IN-OUT variable arrFacadeElement.

iRow: ditto row index.iRow and iColumn must not be zero! This arises from the field definition, see above.

bRead: with a positive edge at this input, the information of the selected element,
arrFacadeElement[iColumn,iRow] is read into the function block and assigned to the input variables
usiGroup to rWindowHeight. This gives rise to the output variables rCorner2X to rCorner4Y. If data are
already present on the inputs usiGroup to rWindowHeight at time of reading, then the data previously read
are immediately overwritten with these data.

bWrite: a positive edge writes the entered as well as calculated values into the selected field element
arrFacadeElement[iColumn,iRow].

TS8000 Version: 1.2 167

Function bl

ocks

BECKHOFF

usiGroup:

group membership.

IrCorner1X: X-coordinate of corner 1 in meters.

IrCorner1Y: Y-coordinate of corner 1 in meters.

IrWindowWidth: window width in meters.

IrWindowHeight: window height in meters.

VAR_OUTPUT

lrCorner2X : LREAL;
lrCorner2Y : LREAL;
lrCorner3X : LREAL;
lrCorner3Y : LREAL;
lrCorner4X : LREAL;
lrCorner4Y : LREAL;
bvalid : BOOL;
udiErrorId : UDINT;

IrCorner2X: determined X-coordinate of corner 2 of the window in meters
IrCorner2Y: determined Y-coordinate of corner 2 of the window in meters
IrCorner3X: determined X-coordinate of corner 3 of the window in meters
IrCorner3Y: determined Y-coordinate of corner 3 of the window in meters
IrCorner4X: determined X-coordinate of corner 4 of the window in meters

IrCorner4Y: determined Y-coordinate of corner 4 of the window in meters

bValid: result verification for the entered values.

. See "Info" above.

. See "Info" above.

. See "Info" above.

. See "Info" above.

. See "Info" above.

. See "Info" above.

udiErrorld: contains the error code if the values entered are not OK. See error codes [237].

VAR_IN_OUT

lement : ARRAY[1l..iColumnsPerFacade, 1l..iRowsPerFacade] OF ST BARFacadeElement;

arrFacadeE

arrFacadeElement: list of facade elements [P 237].

3.3.4.8

FB_BARReadFacadeElementList

With the help of this function block, data for facade elements (windows) can be imported from a pre-defined
Excel table in csv format into the List of facade elements [P 237]. In addition the imported data are checked

for plausibi

lity and errors are written to a log file.

FBE_BARReadFacadeElementList

—bStart bBusy
—sDataFile bErrar
—sLogFile udiErrorld
—sMetld uAmountOfSetsREead

arrFacadeElement &

VAR_INPUT

bStart : BOOL;
sDataFile : STRING;
sLogFile : STRING;
sNetId : STRING;

bStart: a TRUE edge on this input starts the reading process.

168

Version: 1.2

TS8000

BEGKHOFF Function blocks

sDataFile: contains the path and file name of the file to be opened. This must have been saved in Excel as
file type "CSV (comma-separated values) (*.csv)". If the file is opened with a simple text editor, then the
values must be displayed separated by semicolons. Example of an entry: sDataFile:= 'C:
\Projects\FacadeElements.csv'

sLogFile: ditto log file for the accumulating errors. This file is overwritten each time the function block is
activated, so that only current errors are contained.

sNetld: a string can be entered here with the AMS Net ID of the TwinCAT computer on which the files are to
be written/read. If it is to be run on the local computer, an empty string can be entered.

@ The data can be saved only on the control computer itself and on the computers that are connected
by ADS to the control computer. Links to local hard disks in this computer are possible, but not to
1 connected network hard drives.

VAR_OUTPUT

bBusy : BOOL;

bError : BOOL;

udiErrorId : UDINT;

uiAmountOfSetsRead: UINT;
bBusy: this output is TRUE as long as elements are being read from the file.

bError: this output is switched to TRUE if the parameters entered are erroneous or if an error has occurred
while writing to or reading from the file.

udiErrorld: contains the error code of the error that occurred last. See Error codes [P 237] or ADS_Error
codes.

uiAmountOfSetsRead: number of data sets read

VAR_IN_OUT

arrFacadeElement : ARRAY[1l..iColumnsPerFacade, 1..iRowsPerFacade] OF ST BARFacadeElement;

arrFacadeElement: list of facade elements [P 237].

Excel table

The following example shows the Excel table with the entries of the window elements.
All text fields are freely writable, important are the green marked fields, where each line indicates a data set.
The following rules are to be observed:

» A data set must always start with a'@'".

* The indices IndexColumn and IndexRow must lie within the defined limits, see List of facade elements

[» 237]. These indices directly describe the facade element in the list arrFacadeElements to which the
data from the set are saved.

* Window width and window height must be greater than zero
* The corner coordinates P1x and P1y must be greater than or equal to zero.
» Each window element must be assigned to a group 1...255.
» For system-related reasons the total size of the table may not exceed 65534 bytes.
» This must have been saved in Excel as file type "CSV (comma-separated values) (*.csv)".
It is not necessary to describe all window elements that would be possible by definition or declaration. Before

the new list is read in, the function block deletes the entire old list in the program. All elements that are not
described by entries in the Excel table then have pure zero entries and are thus marked as non-existent and

also non-evaluable, since the function block for shading correction, FB_BARSunProtectionEx [P 221], does not
accept elements with the group entry '0".

TS8000 Version: 1.2 169

Function blocks

BECKHOFF

Iz_l] EM_FacadeElements.xls

it
2
3
4
5
6
7
)
9

Log file

B

Number Description

Text

1 Description

2 Description

3 Description
4 Description
5 Description

6 Description

7 Description

8 Description

9 Description
10 Description
11 Description
12 Description
13 Description
14 Description
15 Description
16 Description
17 Description
18 Description
19 Description
20 Description
21 Description
22 Description
23 Description
24 Description
25 Description
26 Description
27 Description
28 Description
29 Description
30 Description
31 Description
32 Description
33 Description
34 Description
35 Description
36 Description
37 Description
38 Description
39 Description
40 Description

HEHBEDBHEEEBHEOHEHHEEEHHEEIEEDEEDDOEBEEEDDEDAEEEBEEOEDBEDOEED

IndexColumn IndexRow Window-Width Window-Height Plx
(Floar)

(Axis)

D

u‘.:lOD'\-JCI‘!U'!.h-wOI-ISLDOD\-.ICrlU'!thHEwmﬂmlﬂthHEtﬂmﬂmLﬂthH

=
=

E F

[m]

I I R = = = = T T e T T = T = T T e e S e e e e e e e I R N = = e i e =

1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2

[m]

G

1,3
1,3
1,3
13
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
13
1,3
1,3
1,3
1,3
1,3
1,3
13
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3

H

[m]

1,5
0
4,4
6,1
7.8
9,5

11,2

12,9

14,6

16,3
15
07
44
6,1
7.8
9,5

11,2

12,9

14,6

16,3
15
7
4,4
6,1
7,8
9,5

11,2

12,9

14,6

16,3
15
a7
4,4
6,1
7.8
9,5

11,2

12,9

14,6

16,3

Ply
[m]

e I I B R N B B R N O - T T T T R T R R R O T T T R o]

10
10
10
10
10
10
10
10
10
10

1
Group

L Lhbnbnbnn nbn 0 bn B B B B BB R R W W W W W W W W oW W R R R OR R MM KRR R

Each time the reading function block is restarted, the log file is rewritten and the old contents are deleted. If
there is no log file, it will be automatically created first. The log file then contains either an OK message or a
list of all errors that have occurred. Errors connected with the opening, writing or closing of the log file itself
cannot be written at the same time. Therefore the output udiErrorld of the reading function block must also
always be observed, since it displays the last error code. Since the log file is always closed last during the
reading process, a corresponding alarm is ensured in the event of an error.

170

Version: 1.2

TS8000

BECKHOFF Function blocks

Program sample

00| FPROGRAM ReadFacadeElements
0002{VAR
0003 binit BOOL
0004 itRead R_TRIG
0005 fbReadFacadeElementList - FB_BARReadFacadeElementList
0006 arrFacadeElement ARRAY[1_ iColumnsPerFacade, 1..iIRowsPerFacade] OF ST_BARFacadeElement
0oo7
000s bBusy BOOL
0009 bError BOOL
0010 udiErrorld UDIMT
0011 uiAmountOfSetsRead UINT
0012[EMD_WAR
O0479
| %

| TRUE | blnit |

rtRead
F_TRIG
[bInit ——{CLK H Q fbReadFacadeElementList
FB_BARReadFacadeElementList
hStart hBusy hBusy
'C:\Projekte\FacadeElements.csv F—sDataFile bError] bError
C:\Projekte\Logfile ttt |———sLogFile udiErrorld udiErrorld |
} shletld uiAmountOfSetsRead uiAmountOfSetsRead |
arnFacadeElement ——————{arFacadeElement & t- arrFacadeElement

In this sample the variable binit is initially set to TRUE when the PLC starts. Hence, the input bStart on the
function block foReadFacadeElementList receives a once-only rising edge that triggers the reading process.
The file "FacadeElements.csv" is read, which is located in the folder "C:\Projects\". The log file "Logfile.txt" is
then saved in the same folder. If this log file does not yet exist it will be created, otherwise the existing
contents are overwritten. Reading and writing take place on the same computer on which the PLC is located.
This is defined by the input sNet/D =" (=local). All data are written to the list arrFacadeElement declared in
the program. The output bBusy is set to TRUE as long as reading and writing is in progress. The error that
occurred last is indicated on udiErrorld; bError is then TRUE. The number of found and read data rows is
displayed at uiAmountOfSetsRead for verification purposes.

The errors marked were "built into" the following Excel list. This gives rise to the log file shown:

TS8000 Version: 1.2 171

Function blocks

BECKHOFF

IZII_'] EM_FacadeElements.csv

1
2
3
4
5
i)
7
8
)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
27
28
29
30
31
32
23
34
25
36
37
38
29
40
41
42

43
-
45
46

B

.Number .Description

Text
1 Description
2 Description
3 Description
4 Description
5 Description
& Description
7 Description
8 Description
9 Description
10 Description
11 Description
12 Description
13 Description
14 Description
15 Description
16 Description
17 Description
18 Description
19 Description
20 Description

31 Description
32 Description
33 Description
34 Description
35 Description
36 Description
37 Description
38 Description
39 Description
40 Description

Datei

| €

MEEEEDEETEDREEEDEDEEDEEBD

mEEEEDEEE D@

[LogFacadena |

Bearbeiten

[Axis)

F G
IndexColumn IndexRow .Window-Width Window-Height P1x
[m] [m] [m]
1 1,2 1,3
1 1,2 1.3
1 1,2 1,3
1 1,2 1,3
1 1,2 1,3
1 0 1.3
1 1,2 1,3
1 1,2 1,3
1 1,2 1,3
1 1,2 1.3
2 1= 1,3
2 1,2 1,3
2 1,2 13
2 1,2 1.3
2 1,2 1,3
2 1,2 1,3
2 1,2 13
2 1,2 1,3
2 1,2 1,3
2 1,2 1,3
3 1, 1,3
3 1,2 1,3
3 1,2 1,3
3 1,2 1.3
3 1,2 1,3
3 1,2 1,3
3 1,2 1,3
3 1,2 1.3
3 1,2 1,3
3 1,2 1,3

D

= =
W0 o= R W R L= T = B~ TN [= R, B O S O = - T T T = (R B R PV R = B]

[
[=]

Format Ansicht

E

{Floor)

5

H

1,5
2,7
a4
6,1
7.8
9,5

11,2

12,9

14,6

16,3

2,7
a4
a4
7,3
9,5

11,2

12,9

14,6

16,3

44
6,1
7,3
9,5

11,2

12,3

14,6

16,3

Ply
[m]

I - R R O T R L R R R e R R R R I T

e B R N RN N = N

1
Group

W w nnnbnnbnbn bl b0 MR R R R R

]] W W W 2 W W

|ndex—Ermr in Data-Set #2
Validation-Error in Data-Set #6, Errorld=32796
Validation-Error in Data-Set #22, Errorld=32794

Validation-Error in Data-Set #24. Errorld=32793

The first error is in data set 2 and is an index error, since "0" is not permitted.
The next error in data set 6 was found after validation of the data with the internally used function

blockFB_BARShadingObjectsEntry [P _182] and therefore was assigned an error number, which is broken

down in more detail in error codes [P 237]. The third and the fourth errors likewise occurred after the internal
validation. Important here it that the data set numbers (in this case 22 and 24) do not go by the numbers

entered in the list, but by the actual sequential numbers: only 30 data sets were read in here.

172

Version: 1.2

TS8000

BECKHOFF Function blocks

3.34.9 FB_BARReadShadingObjectsList

With the help of this function block, data for shading objects can be imported from a pre-defined Excel table

in csv format into the list of shading objects [P _237]. In addition the imported data are checked for plausibility
and errors are written to a log file.

FB _BARReadShadingObjectslList
—bStart bBusyr—
—sDataFile bError—
—sLogFile udiErrorld—
—shetld uiAmountOfSetsRead—
arrshadingObject &

VAR_INPUT

bStart : BOOL;

sDataFile : STRING;
sLogFile : STRING;
sNetId : STRING;

bStart: a TRUE edge on this input starts the reading process.

sDataFile: contains the path and file name of the file to be opened. This must have been saved in Excel as
file type "CSV (comma-separated values) (*.csv)". If the file is opened with a simple text editor, then the
values must be displayed separated by semicolons. Example of an entry: sDataFile:= 'C:
\Projects\ShadingObjects.csv'

sNetld: a string can be entered here with the AMS Net ID of the TwinCAT computer on which the files are to
be written/read. If it is to be run on the local computer, an empty string can be entered.

@ The data can be saved only on the control computer itself and on the computers that are connected
by ADS to the control computer. Links to local hard disks in this computer are possible, but not to
1 connected network hard drives.

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

uiAmountOfSetsRead; UINT;
bBusy: this output is TRUE as long as elements are being read from the file.

bError: this output is switched to TRUE if the parameters entered are erroneous or if an error has occurred
while writing to or reading from the file.

udiErrorld: contains the error code of the error that occurred last. See Error codes [P 237] or ADS_Error
codes.

uiAmountOfSetsRead: number of data sets read.

VAR_IN_OUT

arrShadingObject : ARRAY[1..iShadingObjects] OF ST BARShadingObject;

arrShadingObject: list of shading objects [» 237].

Excel table

The following example shows the Excel table with the entries of the window elements.

All text fields are freely writable, important are the fields marked in green, where each row indicates a data
set. The columns G to J have a different meaning depending on whether the type rectangle or sphere is
concerned. The columns K to M are to be left empty in the case of spheres. With regard to the rectangle

TS8000 Version: 1.2 173

BECKHOFF

Function blocks

coordinates, only the relevant data are entered and the remainder are internally calculated, see

FB BARShadingObjectsEntry [»_182].
The following rules are to be observed:

» A data set must always start with a'@'.

« The month entries must not be 0 and not be greater than 12, all other combinations are possible.
Examples:
Start=1, End=1: shading in January.
Start=1, End=5: shading from the beginning of January to the end of May.
Start=11, End=5: shading from the beginning of November to the end of May (of the following year).

* Window width and window height must be greater than zero

* The z-coordinates P1z and P3z or Mz must be greater than zero.

* The radius must be greater than zero.

» For system-related reasons the total size of the table may not exceed 65534 bytes.

« This must have been saved in Excel as file type "CSV (comma-separated values) (*.csv)".

It is not necessary to describe all shading objects that are possible per facade. Only those contained in the
list ultimately take effect.

(H] DE_ShadingObjects.csv
A B C D E F G H 1 J K It M

1 Mumber Description Type Begin End Plx/Mx Ply/My Plz/Mz P2y/R P3x Py P3z

2 0- Tetragon (Month) (Month) [m] [m] [m] [m] [m] [m] [m]

3 1- Globe

4 Text

5 1 Description @ 1] i 2 -94,75 0 36,06 11 -70,71 11 68,59
8 2 Description |@ a il 2 -23,33 a 3.9 10,5 -3,54 10,5 22,62
7 3 Description @ 1] 1 2 62,23 a 0 1447 62,23 1447 8
8 4 Description @ 1] il 2 46 a 13 1447 62,23 1447 8
9 5 Description @ a 1 2 46 a 13 14,47 46 14,47 38,89
10 6 Description @ 0 it 2] 0 14 9 35 9 14
11 7 Description @ 1] 1 2 0 0 14 9,8 16 9,8 14
12 8 Description @ a il 2 23,6 0 14 9,8 25 9,8 14
13 9 Description @ a i 2 27,8 0 14 9,8 35 9,8 14
14

15 10 Description @ 1 1 2 27 15 40 (3]

16 11 Description |@ 1 1 2 38 15 36 [i]

17 12 Description @ 1 1 2 -14 4 4 1,5

18 13 Description |@ 1 1 2 -6,5 [i] [i] 3,2

19 14 Description |@ 1 1 2 -7 9 5] 1,2

20 15 Description |@ 1 1 2 -1 5] 8 3,2

21 16 Description @ 1 1 2 -1 9 a 1,2

Log file

Each time the reading function block is restarted, the log file is rewritten and the old contents are deleted. If
there is no log file, it will be automatically created first. The log file then contains either an OK message or a
list of all errors that have occurred. However, errors connected with the opening, writing or closing of the log
file itself cannot be written at the same time. Therefore the output udiErrorld of the reading function block
must also always be observed, since it displays the last error code. Since the log file is always closed last
during the reading process, a corresponding alarm is ensured in the event of an error.

174 Version: 1.2 TS80