
Manual | EN

TS8000
TwinCAT 2 | PLC HVAC

2023-08-31 | Version: 1.2

Table of contents

TS8000 3Version: 1.2

Table of contents
1 Foreword.. 9

1.1 Notes on the documentation ... 9
1.2 For your safety .. 10
1.3 Notes on information security.. 11

2 Introduction ... 12
2.1 Target groups.. 12
2.2 User requirement profile.. 12
2.3 General technical characteristics .. 13

2.3.1 Integration into TwinCAT.. 13
2.3.2 Hardware requirements.. 13
2.3.3 Remanent data... 13
2.3.4 Default values .. 13
2.3.5 Value range monitoring .. 13

3 Function blocks... 14
3.1 HVAC Actuators .. 19

3.1.1 FB_HVAC2PointActuator ... 19
3.1.2 FB_HVAC3PointActuator ... 21
3.1.3 FB_HVACCirculationPump .. 23
3.1.4 FB_HVACCirculationPumpEx .. 26
3.1.5 FB_HVACMotor1Speed ... 37
3.1.6 FB_HVACMotor2Speed ... 41
3.1.7 FB_HVACMotor3Speed ... 47
3.1.8 FB_HVACRedundancyCtrl... 54
3.1.9 FB_HVACRedundancyCtrlEx... 57

3.2 HVAC Analog modules ... 59
3.2.1 FB_HVACAnalogInput ... 59
3.2.2 FB_HVACAnalogOutput... 62
3.2.3 FB_HVACAnalogOutputEx .. 64
3.2.4 FB_HVACAnalogTo3Point ... 68
3.2.5 FB_HVACConfigureKL32xx ... 74
3.2.6 FB_HVACScale.. 78
3.2.7 FB_HVACScale_nPoint ... 80
3.2.8 FB_HVACTemperatureCurve .. 84
3.2.9 FB_HVACTemperatureSensor... 89
3.2.10 FB_HVACTemperatureSensorEx .. 92
3.2.11 FB_HVACTemperatureSensorEx .. 95

3.3 HVAC Room Functions ... 99
3.3.1 Air conditioning... 99
3.3.2 Controller.. 112
3.3.3 Lighting... 116
3.3.4 Sun portection .. 144
3.3.5 Program example... 229
3.3.6 Structures and enumeration... 231
3.3.7 List descriptions ... 237

Table of contents

TS80004 Version: 1.2

3.4 HVAC Controller.. 246
3.4.1 FB_HVAC2PointCtrl... 246
3.4.2 FB_HVACI_CtrlStep... 248
3.4.3 FB_HVACI_CtrlStepEx .. 258
3.4.4 FB_HVACPIDCtrl ... 267
3.4.5 FB_HVACPIDCtrl_Ex... 269
3.4.6 FB_HVACPowerRangeTable... 275
3.4.7 Sequence-Controller .. 287

3.5 HVAC Setpoint modules ... 326
3.5.1 FB_HVACHeatingCurve... 326
3.5.2 FB_HVACHeatingCurveEx .. 328
3.5.3 FB_HVACOutsideTempDamped ... 332
3.5.4 FB_HVACSetpointHeating ... 333
3.5.5 FB_HVACSetpointRamp.. 335
3.5.6 FB_HVACSummerCompensation.. 337

3.6 HVAC Special functions .. 340
3.6.1 FB_HVACAirConditioning2Speed.. 340
3.6.2 FB_HVACAlarm ... 344
3.6.3 FB_HVACAntiBlockingDamper .. 345
3.6.4 FB_HVACAntiBlockingPump ... 347
3.6.5 FB_HVACBlink... 350
3.6.6 FB_HVACCmdCtrl_8 ... 351
3.6.7 FB_HVACCmdCtrlSystem1Stage .. 361
3.6.8 FB_HVACCmdCtrlSystem2Stage .. 369
3.6.9 FB_HVACConvertEnum... 383
3.6.10 FB_HVACEnthalpy... 384
3.6.11 FB_HVACFixedLimit .. 386
3.6.12 FB_HVACFreezeProtectionHeater .. 388
3.6.13 FB_HVACMux8.. 390
3.6.14 FB_HVACMUX_INT_16... 392
3.6.15 FB_HVACMUX_INT_8... 396
3.6.16 FB_HVACMUX_REAL_16 ... 400
3.6.17 FB_HVACMUX_REAL_8 ... 404
3.6.18 FB_HVACOverwriteAnalog .. 407
3.6.19 FB_HVACOverwriteDigital ... 408
3.6.20 FB_HVACPowerMeasurementKL3403 .. 408
3.6.21 FB_HVACPowerMeasurementKL3403Ex.. 411
3.6.22 FB_HVACPriority_INT_16.. 414
3.6.23 FB_HVACPriority_INT_8.. 419
3.6.24 FB_HVACPriority_REAL_16 .. 423
3.6.25 FB_HVACPriority_REAL_8 .. 428
3.6.26 FB_HVACOptimizedOn.. 431
3.6.27 FB_HVACOptimizedOff.. 441
3.6.28 FB_HVACTempChangeFunction ... 452
3.6.29 FB_HVACPWM.. 454
3.6.30 FB_HVACStartAirConditioning... 457

Table of contents

TS8000 5Version: 1.2

3.6.31 FB_HVACSummerNightCooling .. 461
3.6.32 FB_HVACSummerNightCoolingEx .. 464
3.6.33 FB_HVACTimeCon .. 470
3.6.34 FB_HVACTimeConSec.. 471
3.6.35 FB_HVACTimeConSecMs ... 471
3.6.36 FB_HVACWork .. 472

3.7 HVAC Time schedule.. 474
3.7.1 FB_HVACScheduler1ch... 474
3.7.2 FB_HVACScheduler7ch... 477
3.7.3 FB_HVACScheduler7TCHandling ... 481
3.7.4 FB_HVACScheduler28ch... 482
3.7.5 FB_HVACScheduler28TCHandling ... 486
3.7.6 FB_HVACSchedulerSpecialPeriods .. 486
3.7.7 FB_HVACSchedulerPublicHolidays... 489

3.8 HVAC System ... 492
3.8.1 FB_HVACGetSystemTime... 492
3.8.2 FB_HVACNOVRAMDataHandling ... 493
3.8.3 FB_HVACPersistentDataHandling... 497
3.8.4 FB_HVACPersistentDataFileCopy... 499
3.8.5 FB_HVACSetLocalTime... 500
3.8.6 FB_HVACSystemTaskInfo... 502

4 Backup Function blocks... 503
4.1 BackupVar NOVRAM.. 503

4.1.1 FB_HVACNOVRAM_Bool.. 503
4.1.2 FB_HVACNOVRAM_Byte.. 503
4.1.3 FB_HVACNOVRAM_Dint .. 504
4.1.4 FB_HVACNOVRAM_Dword .. 504
4.1.5 FB_HVACNOVRAM_Int... 505
4.1.6 FB_HVACNOVRAM_Lreal... 505
4.1.7 FB_HVACNOVRAM_Real ... 505
4.1.8 FB_HVACNOVRAM_Sint... 506
4.1.9 FB_HVACNOVRAM_Time... 506
4.1.10 FB_HVACNOVRAM_Udint .. 506
4.1.11 FB_HVACNOVRAM_Uint .. 507
4.1.12 FB_HVACNOVRAM_Usint... 507
4.1.13 FB_HVACNOVRAM_Word .. 507

4.2 BackupVar Persistent.. 508
4.2.1 FB_HVACPersistent_Bool ... 508
4.2.2 FB_HVACPersistent_Byte ... 509
4.2.3 FB_HVACPersistent_Dint .. 509
4.2.4 FB_HVACPersistent_Dword .. 509
4.2.5 FB_HVACPersistent_Int... 510
4.2.6 FB_HVACPersistent_Lreal... 510
4.2.7 FB_HVACPersistent_Real ... 510
4.2.8 FB_HVACPersistent_Sint .. 511
4.2.9 FB_HVACPersistent_String ... 511

Table of contents

TS80006 Version: 1.2

4.2.10 FB_HVACPersistent_Struct ... 512
4.2.11 FB_HVACPersistent_Time... 513
4.2.12 FB_HVACPersistent_Udint .. 513
4.2.13 FB_HVACPersistent_Uint .. 514
4.2.14 FB_HVACPersistent_Usint .. 514
4.2.15 FB_HVACPersistent_Word .. 514

5 Functions ... 516
5.1 F_RoundLREAL .. 516
5.2 F_RoundLREAL_EX ... 516

6 Enumerations and Structures.. 517
6.1 E_HVAC2PointActuatorMode ... 517
6.2 E_HVAC2PointCtrlMode ... 517
6.3 E_HVAC3PointActuatorMode ... 517
6.4 E_HVACActuatorMode ... 517
6.5 E_HVACAirConditioning2SpeedMode .. 518
6.6 E_HVACAnalogOutputMode... 518
6.7 E_HVACAntiBlockingMode ... 518
6.8 E_HVACBusTerminal_KL32xx.. 518
6.9 E_HVACCtrlMode ... 519
6.10 E_HVACConvectionMode... 520
6.11 E_HVACDataSecurityType ... 520
6.12 E_HVACErrorCodes ... 520
6.13 E_HVACExternalMode.. 520
6.14 E_HVACExternalRequestMode .. 521
6.15 E_HVACPlantMode... 521
6.16 E_HVACPowerMeasurementMode... 521
6.17 E_HVACReferencingMode ... 521
6.18 E_HVACRegOutsideTemp.. 521
6.19 E_HVACReqPump.. 521
6.20 E_HVACRegValve .. 522
6.21 E_HVACSensorType .. 522
6.22 E_HVACSequenceCtrlMode ... 522
6.23 E_HVACSetpointHeatingMode ... 523
6.24 E_HVACSetpointMode.. 523
6.25 E_HVACState ... 523
6.26 E_HVACTemperatureCurve.. 524
6.27 E_HVACTemperatureSensorMode... 524
6.28 ST_HVAC2PointCtrlSequence.. 524
6.29 ST_HVACAggregate ... 524
6.30 ST_HVACCmdCtrl_8Param.. 525
6.31 ST_HVACCmdCtrl_8State .. 525
6.32 ST_HVACHoliday.. 525
6.33 ST_HVACI_Ctrl ... 526
6.34 ST_HVACPeriod ... 526
6.35 ST_HVACParameterScale_nPoint.. 526

Table of contents

TS8000 7Version: 1.2

6.36 ST_HVACPowerMeasurement ... 527
6.37 ST_HVACPowerMeasurementEx ... 527
6.38 ST_HVACPowerRangeTable.. 527
6.39 ST_HVACTimeChannel .. 528
6.40 ST_HVACTempChangeFunction .. 529

7 Appendix.. 530
7.1 Calculation of switching time when changing sequence ... 530
7.2 Example project .. 531
7.3 VAR_GLOBAL CONSTANT.. 531
7.4 Table of sequence controller operating modes ... 531

Table of contents

TS80008 Version: 1.2

Foreword

TS8000 9Version: 1.2

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TS800010 Version: 1.2

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TS8000 11Version: 1.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction

TS800012 Version: 1.2

2 Introduction
Foreword

Comfort, energy efficiency and low operating costs as well as quick return of investment, are demands of
today’s building automation systems. These requirements can be reached by using integrated control system
that can combine all functions of building in to one interoperable platform.

TwinCAT PLC HVAC library includes all needed functionalities for heating, cooling and ventilation systems
and also for room automation controls. These functionalities are available as TwinCAT PLC function blocks
that can be programmed and combined together to reach energy efficient controlling of building. By using
these well tested function blocks, it is easy to realize complex building controls and hence reduce
engineering time. Freely programmable controllers and modular I/O-system from Beckhoff, makes it possible
to reduce life time costs of the control system when demands of the building are changing.

Room automation function blocks for air-conditioning, lighting and shading can be combined in order to
reach energy efficient class A according to EN15232 standard.

This results in the following advantages for the system programmer in creating the system and for the
system operator in running operation:

• Fast creation of system programs.
• Fast parameterization and commissioning of the systems.
• Guarantee of a very large range of system functions at all times.
• Transparency of programs (prerequisite for long-term maintainability and expandability of the systems)
• Once created, good reusability of templates for systems or system subassemblies.
• Easy training of staff.
• Easy expansion and modification of existing systems.
• Specifications for a clear, object-oriented structure for the creation of visualization objects in MMI and

SCADA systems.
• Programs are easier to document.

2.1 Target groups
This software library is intended for building automation system partners of Beckhoff Automation GmbH. The
system partners operate in the field of building automation and are concerned with the installation,
commissioning, expansion, maintenance and service of measurement and control systems for the technical
equipment of buildings.

2.2 User requirement profile
The user of this library is required to have basic knowledge of the following.

• TwinCAT PLC Control
• TwinCAT System Manager
• PCs and networks
• Structure and features of the Beckhoff Embedded PC and its bus terminals
• Technology of heating, ventilation, air conditioning and sanitary systems
• Relevant safety regulations for building technical equipment

Introduction

TS8000 13Version: 1.2

2.3 General technical characteristics

2.3.1 Integration into TwinCAT
Development Environ-
ment

Target System TwinCAT PLC libraries
to include

standard TwinCAT PLC
libraries to include

TwinCAT v2.10 from Build
1302

PC or CX (x86)
CX (ARM)

TcHVAC.lib;
TcFloatPC.lib;
TcBaseMath.lib;
TcMath.lib

TcBase.lib;
TcIoFunctions.lib;
TcPlcCoupler.lib;
TcSystem.lib;
TcUtilities.lib

2.3.2 Hardware requirements
The HVAC library is usable on all PC-based hardware platforms. The ideal target platforms for heating,
ventilation, air conditioning and sanitary applications are the Embedded PCs from the CX series.

2.3.3 Remanent data
The controllers have either a NOVRAM and/or a flash for saving remanent data.
For automatic saving after a parameter change the IN_OUT variables are monitored for change of their
values. In the event of a change, an internal variable in the library is triggered, with which the function blocks
FB_HVACNOVRAMDataHandling or FB_HVACPersistentDataHandling are activated.

The IN_OUT variables are saved in a binary file in the flash if eDataSecurityType:=
eHVACDataSecurityType_Persistent. The prerequisite for this is a single instancing of the function block
FB_HVACPersistantDataHandling. Writing of the IN_OUT variables is deactivated if eDataSecurityType:=
eHVACDataSecurityType_Idle.

Nevertheless, the variables must be allocated or addressed for remanent storage. They will then be saved in
the NOVRAM in the event of a change of value. The prerequisite for this is the instantiation of the
FB_HVACNOVRAMDataHandling function block, as well as an instance of the respective data type that is to
be saved.
Example: an instance of FB_HVACNOVRAM_Byte must be used in the case of a variable of type BYTE.

NOTICE
Flash destruction
An IN_OUT variable that has been declared as persistent must not be written cyclically if
eDataSecurityType: = eHVACDataSecurityType_Persistent, since otherwise the flash will be prematurely
destroyed. Regarding this subject, it is strongly recommended that you read the documentation on the
function blocks FB_HVACNOVRAMDataHandling or FB_HVACPersistentDataHandling and familiarize
yourself with the examples contained in the documentation!

2.3.4 Default values
Default values are declared inside the function block for all system parameters. When the controller is
restarted, a check is made as to whether values already exist in the NOVRAM or flash of the controller. If
values exist in the binary file in flash or NOVRAM, they will be written back automatically to the IN_OUT
variables during the first cycle. Hence, the controller starts automatically with the last saved remanent data.

The default values can be activated at any time by a rising edge at the input variable bSetDefault.

2.3.5 Value range monitoring
A value range is defined for each input parameter of the function block. After the input of a value out of its
premissible range the last valid value is automatically written back by the function block. The attempt to input
an invalid parameter value is indicated by a TRUE at the output variable bInvalidParameter. The variable
bInvalidParameter can be reset by a rising edge at the input variable bReset.

Function blocks

TS800014 Version: 1.2

3 Function blocks
Function blocks

HVAC Actuators

Name Description
FB_HVAC2PointActuator [} 19] Control two-point valves or two-point dampers

FB_HVAC3PointActuator [} 21] Control three-point valves or three-point dampers

FB_HVACCirculationPump [} 23] Control pumps

FB_HVACCirculationPumpEx [} 26] Control pumps; switch -on conditions of bPump are different in
comparison with FB_HVACCirculationPump

FB_HVACMotor1Speed [} 37] Control a single-speed drive

FB_HVACMotor2Speed [} 41] Control a two-speed drive

FB_HVACMotor3Speed [} 47] Control a tree-speed drive

FB_HVACMux8 [} 390] interpret the FIFO memory of the FB_HVACRedundancyCtrlEx

FB_HVACRedundancyCtrl [} 54] Control a certain of number (e.g. 8 pumps) dependent on working
hours

FB_HVACRedundancyCtrlEx [} 57] Control a certain of number (e.g. 8 pumps) dependent on working
hours; the working hours have to be specified externally as hourly
values via VAR_INPUT

HVAC Analog modules

Name Description
FB_HVACAnalogInput [} 59] Acquisition analog input signal

FB_HVACAnalogOutput [} 62] Control continuous actuators

FB_HVACAnalogOutputEx [} 64] Control continuous actuators with a integrated scale function

FB_HVACAnalogTo3Point [} 68] Convert an analog signal into a three-point step signal

FB_HVACConfigureKL32xx [} 74] Parameterization the connected analog sensor via TwinCAT PLC

FB_HVACScale [} 78] Scale function block

FB_HVACScale_nPoint [} 80] replication characteristic curves

FB_HVACTemperatureCurve [} 84] represent a temperature curve

FB_HVACTemperatureSensor [} 89] Acquisition temperature values in 1/10°C, is matched to the
KL320x bus terminals

FB_HVACTemperatureSensorEx [} 92] Acquisition temperature values in 1/10°C, is matched to the
KL320x bus terminals; without the second order filter, therefore
with a smoothing function

FB_HVACTemperatureSensorEx2 [} 95] Acquisition temperature values in 1/10 or 1/100°C, is matched to
the KL320x bus terminals; without the second order filter,
therefore with a smoothing function

HVAC Controller

Name Description
FB_HVAC2PointCtrl [} 246] 2-point controller

FB_HVAC2PointCtrlSequence [} 290] 2-point sequence controller

FB_HVACBasicSequenceCtrl [} 298] general sequence controller

FB_HVACI_CtrlStep [} 248] The function block serves the sequential control of power
generators

Function blocks

TS8000 15Version: 1.2

Name Description
FB_HVACI_CtrlStepEx [} 258] The function block serves the sequential control of power

generators
FB_HVACMasterSequenceCtrl [} 301] master controller in a AC-plant

FB_HVACPIDCooling [} 303] PID cooling controller

FB_HVACPIDCtrl [} 267] PID-Controller

FB_HVACPIDCtrl_Ex [} 269] PID-Controller extended

FB_HVACPIDDehumidify [} 306] PID dehumidification controller

FB_HVACPIDEnergyRecovery [} 309] PID heat recovery controller

FB_HVACPIDHumidify [} 313] PID humidification controller

FB_HVACPIDMixedAir [} 317] PID mixed air chamber controller

FB_HVACPIDPreHeating [} 320] PID pre-heating controller

FB_HVACPIDReHeating [} 323] PID reheating controller

FB_HVACPowerRangeTable [} 275] represents a power range table and serves the sequential control of
power generators such as boilers or refrigeration machines

HVAC Setpoint modules

Name Description
FB_HVACHeatingCurve [} 326] Calculation the supply temperature depending on the outside

temperature with four bases
FB_HVACHeatingCurveEx [} 328] Calculation the supply temperature depending on the outside

temperature
FB_HVACOutsideTempDamped [} 332] Calculation the damped outside temperature

FB_HVACSetpointHeating [} 333] Control an heating circuit with different operating modes

FB_HVACSetpointRamp [} 335] Moving setpoint ramp

FB_HVACSummerCompensation [} 337] summer compensation

HVAC Special functions

Name Description
FB_HVACAirConditioning2Speed [} 340] Controls AC-plant with two-speed fans

FB_HVACAlarm [} 344] alarm function block

FB_HVACAntiBlockingDamper [} 345] prevents the blockage of an damper

FB_HVACAntiBlockingPump [} 347] prevents the blockage of a pump

FB_HVACBlink [} 350] flashing sequence

FB_HVACCmdCtrl_8 [} 351] With the function block can single aggregates of a plant
in a certain order sequentially on or be turned off.
FB_HVACCmdCtrl_8 can be used as start condition of a
ventilation system.

FB_HVACCmdCtrlSystem1Stage [} 361] system switch one-stage

FB_HVACCmdCtrlSystem2Stage [} 369] system switch two-stage

FB_HVACConvertEnum [} 383] converts an Enum into an integer value and vice versa

FB_HVACEnthalpy [} 384] calculate the dew point, the specific enthalpy and the
absolute humidity

FB_HVACFixedLimit [} 386] Limit value switch

FB_HVACFreezeProtectionHeater [} 388] freeze protection

FB_HVACMUX_INT_16 [} 392] contains two different types of multiplexers

FB_HVACMUX_INT_8 [} 396] contains two different types of multiplexers

Function blocks

TS800016 Version: 1.2

Name Description
FB_HVACMUX_REAL_16 [} 400] contains two different types of multiplexers
FB_HVACMUX_REAL_8 contains two different types of multiplexers
FB_HVACOverwriteAnalog [} 407] manual overwrite analog

FB_HVACOverwriteDigital [} 408] manual overwrite digital

FB_HVACPowerMeasurementKL3403 [} 408] control a 3-phase power measurement terminal KL/KS
3403

FB_HVACPowerMeasurementKL3403Ex [} 411] compared with the
FB_HVACPowerMeasurementKL3403 the results are
available in LREAL format. The output is extended by the
frequencies of the three phases.

FB_HVACPriority_INT_16 [} 414] can be used to prioritise events or as a multiplexer.

FB_HVACPriority_INT_8 [} 419] can be used to prioritise events or as a multiplexer.

FB_HVACPriority_REAL_16 [} 423] can be used to prioritise events or as a multiplexer.

FB_HVACPriority_REAL_8 [} 428] can be used to prioritise events or as a multiplexer.

FB_HVACOptimizedOn [} 431] Turns the heating/cooling on before the building is
occupied with a self adapting timetable

FB_HVACOptimizedOff [} 441] Turns the heating/cooling off before the building is empty
with a self adapting timetable

FB_HVACTempChangeFunctionEntry [} 452] Entry function for FB_HVACOptimizedOn /
FB_HVACOptimizedOff

FB_HVACPWM [} 454] PWM

FB_HVACStartAirConditioning [} 457] start program for an AC-plant

FB_HVACSummerNightCooling [} 461] Summer night cooling

FB_HVACSummerNightCoolingEx [} 464] Summer night cooling

FB_HVACTimeCon [} 470] converts a TIME variable to three UDINT variables
(udiSec, udiMin, udiHour)

FB_HVACTimeConSec [} 471] converts a TIME variable into an UDINT variable
(udiSec)

FB_HVACTimeConSecMs [} 471] converts a TIME variable into two UDINT variables
(udiSec, udiMs)

FB_HVACWork [} 472] working hours counter

HVAC Time schedule

Name Description
FB_HVACScheduler1ch [} 474] Weekly time switch with 1 time switch channel

FB_HVACScheduler7ch [} 477] Weekly time switch with 7 time switch channel

FB_HVACScheduler7TCHandling [} 481] this FB can be used to select and modify an individual line
from the data array of a weekly timer

FB_HVACScheduler28ch [} 482] Weekly time switch with 28 time switch channel

FB_HVACScheduler28TCHandling [} 486] this FB can be used to select and modify an individual line
from the data array of a weekly timer

FB_HVACSchedulerSpecialPeriods [} 486] Yearly timer switch with day, month and exactly time

FB_HVACSchedulerPublicHolidays [} 489] Yearly timer switch with day and month

HVAC System

Name Description
FB_HVACGetSystemTime [} 492] an internal clock can be implemented in the TwinCAT PLC

FB_HVACNOVRAMDataHandling [} 493] FB, it is necessary to start an instance in the main program

Function blocks

TS8000 17Version: 1.2

Name Description
FB_HVACPersistentDataHandling [} 497] FB, it is necessary to start an instance in the main program

FB_HVACPersistentDataFileCopy [} 499] to copy binary data on the local TwinCAT PC or from a remote
TwinCAT PC to the local TwinCAT PC

FB_HVACSetLocalTime [} 500] sets the local Windows system time and the date

FB_HVACSystemTaskInfo [} 502] determines system variables of the task

HVAC Backup Function blocks

Name Description
FB_HVACNOVRAM_xyz [} 503] FBs for standard data types

FB_HVACPersistent_xyz [} 508] FBs for standard data types

Room function Lighting

Name Description
FB_BARLightActuator [} 130] This function block serves to control a conventional light actuator

FB_BARLightCircuit [} 133] This block represents a simple light circuit without a dimming function

FB_BARLightCircuitDim [} 134] This block represents a light circuit with a dimming function.

FB_BARAutomaticLight [} 117] Function block for an automatic light circuit as used in corridors or
sanitary facilities.

FB_BARStairwellAutomatic [} 138] Function block for a stairwell light circuit.

FB_BARTwilightAutomatic [} 140] Automatic twilight function.

FB_BARDaylightControl [} 126] Daylight switch without dimming.

FB_BARConstantLightControl [} 119] constant light control function block

Room function Shading (see also Overview)

Overview [} 144]

Name Description
FB_BARBlindPositionEntry [} 160] Shading protection: Entry of blind-positions

FB_BARSunblindEvent [} 197] This function block serves to preset the position and angle for
any desired event.

FB_BARSunblindWeatherProtection [} 218] weather protection function

FB_BARSunblindSwitch [} 206] manual operating mode

FB_BARSunblindScene [} 203] manual operating mode with scenes

FB_BARSunblindTwilightAutomatic [} 216] Automatic twilight function.

FB_BARSunblindThermoAutomatic [} 209] Thermo automatic

FB_BARSunProtectionEx [} 221] Function block for the control of glare protection with the aid
of a louvered blind.

FB_BARShadingObjectsEntry [} 182] Shading correction: imported data objects by FB

FB_BARReadShadingObjectsList [} 173] Shading correction: imported data objects by file

FB_BARFacadeElementEntry [} 164] Shading correction: imported data elements by FB

FB_BARReadFacadeElementList [} 168] Shading correction: imported data elements by file

FB_BARShadingCorrection [} 176] /
FB_BARShadingCorrectionSouth [} 179]

Shading correction FB

FB_BARDelayedHysteresis [} 163] This function block represents a threshold switch for
brightness

Function blocks

TS800018 Version: 1.2

Name Description
FB_BARWithinRangeAzimuth [} 224] This function block checks whether the current azimuth angle

(horizontal position of the sun) lies within the limits entered
FB_BARWithinRangeElevation [} 226] This function block checks whether the current angle of

elevation (vertical position of the sun) lies within the limits
entered.

FB_BARSunblindPrioritySwitch [} 198] Priority controller for up to 9 positioning telegrams

FB_BARSunblindActuator [} 185]/
FB_BARSunblindActuatorEx [} 190]

Sunblind Actuator

FB_BARSMISunblindActuator [} 196] SMI Sunblind Actuator

FB_BARollerBlind [} 200] Rollerblind Actuator

FB_BARSMIRollerBlind [} 202] SMI Rollerblind Actuator

Room functions controller

Name Description
FB_BARPICtrl [} 112] Simple PI controller with input via the proportional band

Air conditioning room function

Name Description
FB_BAREnergyLevel [} 99] This function block is for the adaptation of the supply of energy for the use

of the building.
FB_BARFanCoil [} 101] This function block maps a 3-speed fan with the corresponding switching

hysteresis.
FB_BARFctSelection [} 104] This function block is for enabling room heating or room cooling.

FB_BARSetpointRoom [} 107] This function block assigns a setpoint for cooling operation and another for
heating operation to each of the four energy levels.

Overview Library version

Date Version Created with TwinCAT
Version

Remarks

10/29/2008 1.0.0 V2.10.0 (Build 1328) first Release
10/29/2009 1.1.0 V2.11.0 (Build 1536) new FBs (FB_HVACRedundancyCtrlEx;

FB_HVACTemperatureSensorEx;
FB_HVACEnthalpy; FB_HVACTimeCon;
FB_HVACTimeConSec; FB_HVACMux8)

04/12/2010 1.2.7 V2.11.0 (Build 1539) new FBs (FB_HVACSetLocalTime;
FB_HVACAnalogOutputEx;
FB_HVACConfigureKL32xx;
FB_HVACScale_nPoint;
FB_HVACTemperatureCurve)
new Function F_HVACRoundLREAL_EX

08/04/2010 1.3.0 V2.11.0 (Build 1547) new FBs (FB_HVAC2PointCtrlSequence;
FB_HVACPowerMeasurementKL3403Ex;
FB_HVACScheduler7TCHandling;
FB_HVACScheduler28TCHandling)

01/13/2011 1.9.0 V2.11.0 (Build 1552) new FBs (FB_HVACTimeConSecMs;
FB_HVACI_CtrlStep;
FB_HVACPowerRangeTable;
FB_HVACPriority_REAL_8;
FB_HVACPriority_REAL_16;
FB_HVACPriority_INT_16;
FB_HVACPriority_INT_8;
FB_HVACMUX_INT_8;

Function blocks

TS8000 19Version: 1.2

Date Version Created with TwinCAT
Version

Remarks

FB_HVACMUX_INT_16; FB_HVACMUX__16;
FB_HVACMUX_INT_8;
FB_HVACCirculationPumpEx;
FB_HVACHeatingCurveEx)

02/08/2011 1.10.1 V2.11.0 (Build 1552) new FB (FB_HVACConvertEnum)
28/07/2011 1.11.0 V2.11.0 (Build 1552) new FB_HVACSummerNightCoolingEx
05/12/2011 1.11.12 V2.11.0 (Build 2038) new FB_HVACTemperatureSensorEx2
28/12/2011 1.12.0 V2.11.0 (Build 2038) new FB_HVACCmdCtrl_8
30.03.2012 1.13.0 V2.11.0 (Build 2218) including new FBs for Room functions
30.06.2012 1.14.0 V2.11.0 (Build 2224) new FB_HVACI_CtrlStepEx

Also see about this
2 Overview sun protection [} 146]

3.1 HVAC Actuators

3.1.1 FB_HVAC2PointActuator

Application

This function block serves to control two-point valves or two-point dampers.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bIn : BOOL;
eCtrlModeActuator : E_HVAC2PointActuatorMode;
bManSwitch : BOOL;
bLimitSwitchClose : BOOL;
bLimitSwitchOpen : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Function blocks

TS800020 Version: 1.2

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled by the PLC program with the input variable bEnable. The actuator
always remains closed as long as the function block is not enabled. Output bOut is permanently FALSE.

bIn: in automatic mode the actuator is closed by a FALSE and opened by a TRUE.

eCtrlModeActuator: Enum that defines the operation mode.

bManSwitch: if the two-point drive has a manual/emergency switch in the control cabinet, this can be
connected to the input bManSwitch; the status of the manual/emergency switch will then be monitored. If
bManSwitch = FALSE, then output bOut of the drive will be set to FALSE.

bLimitSwitchClose: actuator feedback TRUE when the actuator is completely closed.

bLimitSwitchOpen: actuator feedback TRUE when the actuator is completely open.

bCtrlVoltage: the parameter bCtrlVoltage serves to check the control voltage. The control voltage is present
if the bCtrlVoltage variable is TRUE. The feedback control is suppressed if the control voltage fails.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bOut : BOOL;
byState : BYTE;
eStateModeActuator : E_HVAC2PointActuatorMode;
bErrorLimitSwitch : BOOL;
bInvalidParameter : BOOL;

bOut: the actuator is connected to this output (FALSE = closing drive; TRUE = opening drive).

byState: displays the status of the control from the actuator:
byState.0:= Enable
byState.1:= Manual Switch
byState.2:= Enable Feedback Control
byState.3:= Control Voltage
byState.4:= Reset
byState.5:= bOut

eStateModeActuator: indicates in which operation mode the actuator is.

bErrorLimitSwitch: becomes TRUE if no limit switch is triggered after the preset stroke time.
bErrorLimitSwitch is acknowledged with a positive edge on the input bReset.

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
bEnableLimitSwitch : BOOL;
tStrokeTime : TIME;

bEnableLimitSwitch: if the input is TRUE, then the function control of the drive is activated by means of the
limit switches.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 21Version: 1.2

tStrokeTime: in order to set the function control correctly, the stroke time of the drive from fully closed to
fully opened drive must be entered here (0s..3600s). The variable is saved persistently. Preset to 200 s.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.2 FB_HVAC3PointActuator

Application

This function block is used to control three-point valves or three-point dampers with or without continuous
position feedback.
The function block is often used in conjunction with the function block FB_HVACAnalogTo3Point. [} 68]

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bAutoOpen : BOOL;
bAutoClose : BOOL;
eCtrlModeActuator : E_HVAC3PointActuatorMode;
bManSwitch : BOOL;
rFeedb : REAL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800022 Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled by the PLC program with the input variable bEnable. The three-point
actuator always remains fully closed as long as the function block is not enabled. Output bClose is
permanently TRUE.

bAutoOpen / bAutoClose: in automatic mode, the three-point actuator is controlled by the input variables
bAutoClose and bAutoOpen.

eCtrlModeActuator: Enum that defines the operation mode.

bManSwitch: if the three-point actuator has a manual/emergency switch in the control cabinet, this can be
connected to the input bManSwitch; the status of the manual/emergency switch will then be monitored. If
bManSwitch = FALSE, then output bOut of the drive will be set to FALSE.

rFeedb: analog position feedback from the actuator (0%..100%).

bCtrlVoltage: parameter to check the control voltage. The control voltage is present if the bCtrlVoltage
variable is TRUE. The feedback control is suppressed if the control voltage fails.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bOpen : BOOL;
bClose : BOOL;
byState : BYTE;
eStateModeActuator : E_HVAC3PointActuatorMode;
bErrorFeedb : BOOL;
bInvalidParameter : BOOL;

bOpen: the signal for the opening drive of the three-point actuator is connected to this output.

bClose: the signal for the closing drive of the three-point actuator is connected to this output.

byState: displays the state of the control from the actuator:
byState.0:= Enable
byState.1:= Manual Switch
byState.2:= Enable Feedback Control
byState.3:= Control Voltage
byState.4:= Reset

eStateModeActuator: indicates in which operation mode the actuator is.

bErrorFeedb: when setting the output bClose, the position of the drive must have decreased within the time
tStrokeTime by at least the amount of rHysteresisFeedb.
When setting the output bOpenthe position of the drive must have increased within the time tStrokeTime at
least by the amount of rHysteresisFeedb.
If the actual position is not within the tolerance range after a positioning command within the specified time,
this is signaled with TRUE at the output bErrorFeedb. Both outputs bOpenand bClosebecome FALSE. The
fault is acknowledged by a positive edge on the input bReset.

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
bEnableFeedbCtrl : BOOL;
rMinValueFeedb : REAL;
rMaxValueFeedb : REAL;
rHysteresisFeedb : REAL;
tStrokeTime : TIME;

Function blocks

TS8000 23Version: 1.2

bEnableFeedbCtrl: if the input is TRUE, then the control of the feedback signal is enabled. The variable is
saved persistently.

rMinValueFeedb: serves to scale the analog position feedback. rMinValueFeedb contains the value of the
analog signal when the actuator is fully closed (0%..100%). The variable is saved persistently. Preset to 0.

rMaxValueFeedb: serves to scale the analog position feedback. rMaxValueFeedb contains the value of the
analog signal when the actuator is fully open (0%..100%). The variable is saved persistently. Preset to 0.

rHysteresisFeedb: due to the stroke time of the drive, the position feedback always lags in the case of a
jump in the position setpoint. Using the variable rHysteresisFeedbCtrl, a range is specified within which the
position setpoint of the actuator can deviate from the feedback signal without the feedback control
(bErrorFeedb) being triggered (0%..100%). The variable is saved persistently. Preset to 10.

tStrokeTime: due to the lagging of the actual position in relation to the set position, the activation of the
feedback control in the event of the maximum permissible difference being exceeded is delayed by the
variable tStrokeTime [s]. If the actuator is fully closed and receives a setpoint step-change of 100 %, at least
the stroke time of the drive over its entire travel path should be entered as a time (0s..3600s). The variable is
saved persistently. Preset to 200 s.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.3 FB_HVACCirculationPump

Application

This function block serves to control pumps in HVAC systems.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bAuto : BOOL;
eCtrlModeActuator : E_HVACActuatorMode;
rOutsideTemp : REAL;
rValvePosition : REAL;
bFeedbPump : BOOL;
bPumpProtec : BOOL;
bAntiBlocking : BOOL;

Function blocks

TS800024 Version: 1.2

bManSwitch : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE.

bAuto: input for the request from the automatic program. The request is overridden by eCtrlModeActuator.

eCtrlModeActuator: Enum that defines the operation mode.

rOutsideTemp: input for transmitting the outside temperature value.

rValvePosition: if there is a control valve in the hydraulic circuit of the pump, the position of the control valve
must be applied here.

bFeedbPump: this input is for displaying the operating message in a visualization system and for monitoring
the pump function.

bPumpProtec: a pump error message is connected to the input bPumpProtec. There is a pump error if the
input bPumpProtec is FALSE. The output bPump becomes FALSE in the event of a fault. The pump can only
be restarted after an acknowledgment on the input bReset.

bAntiBlocking: input for transferring the anti-blocking request, i.e. if TRUE the request is active.

bManSwitch: if the pump has a manual/emergency switch in the control cabinet, this can be connected to
the input bManSwitch; the status of the manual/emergency switch will then be monitored. If bManSwitch =
FALSE, then output bPump is disabled. The output bPump can only be switched on if bManSwitch = TRUE
(quiescent current principle).

bCtrlVoltage: in order to suppress a torrent of messages, the error message from bPumpProtec is only
acquired if the input bCtrlVoltage is TRUE.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bPump : BOOL;
byState : BYTE;
bStateManSwitch : BOOL;
bReqOutsideTemp : BOOL;
bReqValve : BOOL;
eStateModeActuator : E_HVACActuatorMode;
bErrorPumpProtec : BOOL;
bErrorPumpFeedb : BOOL;
bErrorGeneral : BOOL;
byError : BYTE;
bInvalidParameter : BOOL;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 25Version: 1.2

bPump: output variable for controlling a pump.

byState: output of the pump state as byte.
byState.0 := bEnable
byState.1 := bPump
byState.2 := bReqOutsideTemp
byState.3 := bReqValve
byState.4 := bAntiblocking
byState.5 := bFeedbPump
byState.6 := NOT bManSwitch
byState.7 := bCtrlVoltage

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

bReqOutsideTemp: if the condition to request the pump depending on the outside temperature is TRUE,
the output variable bReqOutsideTemp becomes TRUE.

bReqValve: if the condition for requesting the pump depending on the valve position is reached, the variable
bReqValve becomes TRUE.

eStateModeActuator: indicates in which operation mode the actuator is.

bErrorPumpProtec: error from the pump.

bErrorPumpFeedb: if the input bFeedbPump does not go TRUE within the time of tFeedbPumpDelay
(tFeedbPumpDelay must be > t#0s) after setting the output bPump, this is recognized as a fault and this
output is set to TRUE and the output bPump to FALSE. The error message must be acknowledged with
bReset.

bErrorGeneral: there is a general error.

byError: output of the errors as byte.
byError.1 := bInvalidParameter
byError.2 := bErrorGeneral
byError.3 := bErrorPumpProtec
byError.4 := bErrorPumpFeedb

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
tStopDelay : TIME;
tFeedbPumpDelay : TIME;
rOutsideTempLimit : REAL;
rValvePositionLimit : REAL;
eReqOutsideTemp : E_HVACReqOutsideTemp;
eReqValve : E_HVACReqValve;

tStopDelay: the time tStopDelay [s] delays the switching off of the pump after the switch-on conditions are
no longer fulfilled. The variable is saved persistently. Preset to 0 s.

tFeedbPumpDelay: the monitoring function of the pump feedback message [s] is only active if
tFeedbPumpDelay is > t#0s. If tFeedbPumpDelay = t#0s the monitoring function is deactivated (0s..3600s).
The variable is saved persistently. Preset to 0 s.

rOutsideTempLimit: value [°C] above or below which the pump is switched on or off depending on the
outside temperature (-60 °C..60 °C). The variable is saved persistently. Preset to 10 °C.

rValvePositionLimit: threshold value for the position of a control valve associated with a pump, from which
the pump should switch on automatically, e.g. heater pump (0%..100%). The variable is saved persistently.
Preset to 3%.

eReqOutsideTemp: depending on the outside temperature, the pump can be compulsorily switched on, e.g.
for frost protection purposes when the temperature limit value rOutsideTempLimit is undershot. The
prerequisite is that bEnable = TRUE and that the pump is in automatic mode. The variable is saved
persistently.

Function blocks

TS800026 Version: 1.2

NOTICE
Manual off overrides the frost protection function!

eReqValve: depending on the position of the valve associated with the pump, the pump can be switched on
when the threshold value rValvePositionLimit is exceeded. The ENUM activates the switch-on via the valve
position. In addition, the ENUM determines whether the temperature-dependent and valve position-
dependent switch-on conditions are ORed or ANDed together.

The table below shows a summary of all possible combinations:

eReqOutsideTemp eReqValve Function Application
OTLowerLimit NoRequest outsidetemp lower limit
OTLowerLimit OrValvePosHigherLimit outsidetemp OR valve

higher limit
Heating circuit, air heater

OTLowerLimit AndValvePosHigherLimit outsidetemp AND valve
higher limit

OTHigherLimit NoRequest outsidetemp higher limit
OTHigherLimit OrValvePosHigherLimit outsidetemp OR valve

higher limit
OTHigherLimit AndValvePosHigherLimit outsidetemp AND valve

higher limit
Cooler pump

NoRequest NoRequest no request Primary pump
NoRequest OrValvePosHigherLimit valve higher limit
NoRequest AndValvePosHigherLimit not valid

By means of various combinations of the two variables, eReqOutsideTemp and eReqValve, this function
block can be adapted to the requirements of a heating circuit, an air heater, an air cooler or a feed pump.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.4 FB_HVACCirculationPumpEx

Application

This function block serves to control pumps in HVAC systems.

Function blocks

TS8000 27Version: 1.2

The following switch-on conditions must first be fulfilled in order to control the pump via bPump:

bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch = TRUEANDbCtrlVoltage = TRUE

If one of the switch-on conditions is not fulfilled, then the output bPump is constantly FALSE.

On the basis of the following diagrams it can be seen how the output bPump is controlled depending on the
Enum eReqPump, the input bExternal, the outside temperature rOutSideTemp and the valve position
rValvePosition. The switch-on conditions mentioned above must be fulfilled for this, and one of the two
operation modes eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP must be preselected.

Function blocks

TS800028 Version: 1.2

Function blocks

TS8000 29Version: 1.2

Function blocks

TS800030 Version: 1.2

eHVACReqPump_No: there is no request on the part of the Enum to control the pump

eHVACReqPump_OT_LL: the outside temperature (OT = rOutsideTemp) must be lower than
rOutsideTempLowLimit (LL = Lower Limit)

Function blocks

TS8000 31Version: 1.2

eHVACReqPump_OT_HL: the outside temperature (OT = rOutsideTemp) must be higher than
rOutsideTempHighLimit (HL = Higher Limit)

eHVACReqPump_VP: the valve position (VP = rValvePosition) must be larger than rValvePositionLimitOn

eHVACReqPump_OT_LL_OR_VP: the outside temperature (OT = rOutsideTemp) must be lower than
rOutsideTempLowLimit (LL = Lower Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_HL_OR_VP: the outside temperature (OT = rOutsideTemp) must be higher than
rOutsideTempHighLimit (HL = Higher Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_LL_AND_VP: the outside temperature (OT = rOutsideTemp) must be lower than
rOutsideTempLowLimit (LL = Lower Limit) AND the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_HL_AND_VP: the outside temperature (OT = rOutsideTemp) must be higher than
rOutsideTempHighLimit (HL = Higher Limit) AND the valve position (VP = rValvePosition) must be larger
than rValvePositionLimitOn

The output bPump switches itself off, after the switch-on conditions are no longer fulfilled, depending on the
Enum eReqPump, the input bExternal, the outside temperature rOutSideTemp or the valve position
rValvePosition, with a delay set by the time udiSecStopDelay.

bError goes TRUE if bErrorPumpProtec is TRUE. However, only the fault bErrorPumpProtec leads
to the deactivation of the output bPump. If the error message bErrorFeedb is also to lead to the
switch-off of the pump, then the variable must be ANDed with the output bPump after calling the
function block. The error message bErrorFeedb is active only in the operation mode
eHVACActuatorMode_Auto_BMS OR eHVACActuatorMode_Auto_OP and only if the time
udiSecFeedbPumpDelay is greater than 0.

Function blocks

TS800032 Version: 1.2

Example anti-blocking protection

Application example

The application example shows the function block FB_HVACirculationPumpEx. The example is illustrated in
the programming languages ST and CFC. The program example P_CFC_CirculationPumpEx.PRG for the
CFC programming languages can be found in the folder Language CFC > Actuator, the program example
P_ST_CirculationPumpEx.PRG for the ST programming languages in the folder Language Structur Text
> Actuator.

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bExternal : BOOL;
eCtrlModeActuator : E_HVACActuatorMode;
rOutsideTemp : REAL;
rValvePosition : REAL;
bFeedbPump : BOOL;
bPumpProtec : BOOL;

Function blocks

TS8000 33Version: 1.2

bManSwitch : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the bPump output is
constant FALSE.

bExternal: the output bPump can be switched on or off directly via the input bExternal. The following
conditions must be fulfilled for this: bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch =
TRUEANDbCtrlVoltage = TRUEANDeCtrlModeActuator =
eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OPANDeReqPump=eHVACRequestPump
_NoRequest. Otherwise bExternal depending on bReqOutsideTemp and bReqValve controls the output
bPump, see application [} 26].
bExternal is only active in the operation mode
eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP.

eCtrlModeActuator: Enum that defines the operation mode. The following operation modes are supported
by the function block FB_HVACCirculationPumpEx: eHVACActuatorMode_Auto_BMS,
eHVACActuatorMode_Auto_OP, eHVACActuatorMode_Speed1_BMS, eHVACActuatorMode_Speed1_OP,
eHVACActuatorMode_Off_BMS, eHVACActuatorMode_Off_OP.
The two operation modes eHVACActuatorMode_Auto_BMS, eHVACActuatorMode_Auto_OP mean that the
function block is in automatic mode.
The output bPump can be switched on directly via the two operation modes
eHVACActuatorMode_Speed1_BMS, eHVACActuatorMode_Speed1_OP if the following conditions are met:
bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch = TRUEANDbCtrlVoltage = TRUE
The operation modes eHVACActuatorMode_Off_BMS, eHVACActuatorMode_Off_OP set the output bPump
to FALSE.
If an incorrect variable value is present at eCtrlModeActuator, then the last valid variable value is taken. The
status of the Enum eCtrlModeActuator is output via eStateModeActuator.

rOutsideTemp: input for transmitting the outside temperature value. Depending on the outside temperature,
the pump can be switched on if the temperature falls below or exceeds the limit values
rOutsideTempLowLimit / rOutsideTempHighLimit. This depends on the Enum eReqPump to request the
pump, see application [} 26].
rOutsideTemp is only active in eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP mode.

rValvePosition: input for transmitting the valve position of the control loop. Depending on the position of the
valve rValvePosition associated with the pump, the pump can be switched on when the threshold value
rValvePositionLimitOn is exceeded. This depends on the Enum eReqPump to request the pump, see
application [} 26].
rValvePosition is only active in the operation mode
eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800034 Version: 1.2

bFeedbPump: feedback from the pump or a relay contact that the pump is switched on. If the output bPump
= TRUE, then the input bFeedbPump must be TRUE within the time specification udiSecFeedbPumpDelay
and must remain so until bPump = FALSE. This error is otherwise indicated via the output variable
bErrorFeedb. After the rectification of the fault it must be acknowledged at the input bReset. The error
message bErrorFeedb has no influence on the control of the output bPump.
bFeedbPump is only active in the operation mode
eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP and if the time
udiSecFeedbPumpDelay is greater than 0.
If there is no feedback on the pump status, but the function is still implemented, a TRUE must not be
permanently applied to the input bFeedbPump. This would lead in the switched-off state to an error:
bErrorFeedb = TRUE. In this case the output bPump should be applied to the input bFeedbPump.

bPumpProtec: the motor protection for the pump is connected to the input bPumpProtec. There is a pump
error if the input bPumpProtec is FALSE. If there is an error, the output bPump goes FALSE and the error is
displayed by means of the variable bErrorPumpProtec. The output bPump can only be switched on if
bPumpProtec = TRUE (quiescent current principle). After the rectification of the fault it must be
acknowledged at the input bReset.

bManSwitch: if the pump has a manual / emergency switch, this can be connected to the input bManSwitch.
The state of the manual / emergency switch is monitored. If bManSwitch = FALSE, then output bPump is
disabled. The output bPump can only be switched on if bManSwitch = TRUE (quiescent current principle).
The state of bManSwitch is indicated by the output variable bStateManSwitch.

bCtrlVoltage: the control voltage monitoring is applied to the input bCtrlVoltage. If bCtrlVoltage = FALSE,
the bPump output is constant FALSE. In order to suppress a torrent of messages, the fault messages
bPumpProtec, bErrorFeedb and bError are only acquired if the input bCtrlVoltage is TRUE.

bReset: acknowledgment input in the case of a fault following its rectification.

VAR_OUTPUT
bPump : BOOL;
byState : BYTE;
bReqExternal : BOOL; //Request External
bReqOutsideTemp : BOOL; //Request Outside Temperature
bReqValve : BOOL; //Request Valve
bStateManSwitch : BOOL;
udiSecRT_StopDelay : UDINT; //Second Remaining Time Stop Delay
udiSecRT_FeedbPumpDelay : UDINT; //Second Remaining Time Feedback Pump Delay
eStateModeActuator : E_HVACActuatorMode;
bError : BOOL;
byError : BYTE;
bErrorPumpProtec : BOOL;
bErrorFeedb : BOOL;
bInvalidParameter : BOOL;

bPump: output variable for controlling a pump. To control the pump via bPump the following conditions must
first be fulfilled: bEnable = TRUEANDbErrorPumpProtec = FALSEANDbManSwitch =
TRUEANDbCtrlVoltage = TRUE. If these conditions are satisfied, the pump can be switched on directly via
the operation mode eCtrlModeActuator or via various options in automatic mode, see Application [} 26].
The output bPump switches itself off after the switch-on conditions are no longer fulfilled depending, on the
Enum eReqPump, the input bExternal, the outside temperature rOutSideTemp or the valve position
rValvePosition, with a delay set by the time udiSecStopDelay.

byState: pump state output
byState.0 := bEnable;
byState.1 := bPump;
byState.2 := bReqExternal;
byState.3 := bReqOutsideTemp;
byState.4 := bReqValve;
byState.5 := bFeedbPump;
byState.6 := NOTbManSwitch;
byState.7 := bCtrlVoltage;

bReqExternal: If the condition bExternal = TRUE to switch on the pump via bPump is fulfilled, the output
variable bReqExternal becomes TRUE. All switch-on conditions and the use of the output bReqExternal to
control bPump are described in the Application [} 26].

Function blocks

TS8000 35Version: 1.2

bReqOutsideTemp: if the condition is achieved for requesting the pump via bPump depending on the
outside temperature rOutsideTemp, the output variable bReqOutsideTemp becomes TRUE. All switch-on
conditions and the use of the output bReqOutsideTemp to control bPump are described in the Application
[} 26].

bReqValve: if the condition is achieved for requesting the pump via bPump depending on the valve position
rValvePosition, the output variable bReqValve becomes TRUE. All switch-on conditions and the use of the
output bReqValve to control bPump are described in the Application [} 26].

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated. bStateManSwitch = NOT bManSwitch

udiSecRT_StopDelay: if the eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP operation
mode is selected, the output bPump is switched off after the switch-on conditions are no longer fulfilled,
depending on the Enum eReqPump, the input bExternal, the outside temperature rOutSideTemp or the valve
position rValvePosition after udiSecRT_StopDelay has elapsed. The output is given in seconds.

udiSecRT_FeedbPumpDelay: if the output bPump = TRUE, then the input bFeedbPump must be TRUE
within the time udiSecRT_FeedbPumpDelay and must remain so until bPump = FALSE. Otherwise this error
is indicated via the output variable bErrorFeedb.
udiSecRT_FeedbPumpDelay is only active in the operation mode
eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP and if the time
udiSecFeedbPumpDelay is greater than 0. The output is given in seconds.

eStateModeActuator: indicates the operation mode of the function block. eStateModeActuator is equal to
eCtrlModeActuator.

bError: bError becomes TRUE if bErrorPumpProtec is TRUE. However, only the fault bErrorPumpProtec
leads to the deactivation of the output bPump. If the fault message bErrorFeedb is also to lead to the switch-
off of the pump, then the variable must be ANDed with the output bPump after calling the function block.

byError: output of the errors as byte.
byError.1 := bInvalidParameter
byError.2 := bError
byError.3 := bErrorPumpProtec
byError.4 := bErrorFeedb

bErrorPumpProtec: the motor protection for the pump is connected to the input bPumpProtec. There is a
pump error if the input bPumpProtec is FALSE. If there is an error, the output bPump goes FALSE and the
error is displayed by means of the variable bErrorPumpProtec. The output bPump can only be switched on if
bPumpProtec = TRUE (quiescent current principle). After the rectification of the fault it must be
acknowledged at the input bReset.

bErrorFeedb: if the output bPump = TRUE, then the input bFeedbPump must be TRUE within the time
udiSecFeedbPumpDelay and must remain so until bPump = FALSE. This error is otherwise indicated via the
output variable bErrorFeedb. After the rectification of the fault it must be acknowledged at the input bReset.
The error message bErrorFeedb has no influence on the control of the output bPump.
bErrorFeedb is only active in the operation mode
eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP and if the time
udiSecFeedbPumpDelay is greater than 0.

bInvalidParameter: becomes TRUE if an error occurred during the plausibility check of the following
variables: rOutsideTempHighLimit, rOutsideTempLowLimit, rValvePositionLimitOn, rValvePositionLimitOff
The message must be acknowledged with bReset.

VAR_IN_OUT
udiSecStopDelay : UDINT;
udiSecFeedbPumpDelay : UDINT;
rOutsideTempHighLimit : REAL;
rOutsideTempLowLimit : REAL;
rValvePositionLimitOn : REAL;
rValvePositionLimitOff : REAL;
eReqPump : E_HVACReqPump;

Function blocks

TS800036 Version: 1.2

udiSecStopDelay: the time udiSecStopDelay [s] delays the switching off of the pump after the switch-on
conditions are no longer fulfilled. It is input in seconds (0s..4294967s). If the operation mode
eHVACActuatorMode_Auto_BMS OR eHVACActuatorMode_Auto_OP is selected, the output bPump is
switched off after the switch-on conditions are no longer fulfilled depending on the Enum eReqPump, the
input bExternal, the outside temperature rOutSideTemp or the valve position rValvePosition after the time
udiSecStopDelay has elapsed. The data is given in seconds. The variable is saved persistently. Preset to 0.

udiSecFeedbPumpDelay: if the output bPump = TRUE, then the input bFeedbPump must be TRUE within
the time udiSecFeedbPumpDelay and must remain so until bPump = FALSE. Otherwise this error is
indicated via the output variable bErrorFeedb (0s..4294967s).
udiSecFeedbPumpDelay is only active in the operation mode eHVACActuatorMode_Auto_BMS OR
eHVACActuatorMode_Auto_OP and if the time udiSecFeedbPumpDelay is greater than 0. The input is given
in seconds. The variable is saved persistently. Preset to 0.

rOutsideTempHighLimit: value above which the pump is switched on or off depending on the outside
temperature rOutsideTemp and the Enum eReqPump (-60 °C..60 °C), see Application [} 26].
rOutsideTempHighLimit is only active in the operation mode eHVACActuatorMode_Auto_BMS OR
eHVACActuatorMode_Auto_OP.
If there is an incorrect variable value at rOutsideTempHighLimit, then the last valid variable value is taken.
bInvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 4.

rOutsideTempLowLimit: value below which the pump is switched on or off depending on the outside
temperature rOutsideTemp and the Enum eReqPump (-60 °C..60 °C), see Application [} 26].
rOutsideTempLowLimit is only active in the operation mode eHVACActuatorMode_Auto_BMS OR
eHVACActuatorMode_Auto_OP.
If there is an incorrect variable value at rOutsideTempLowLimit, then the last valid variable value is taken.
bInvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 1.

rValvePositionLimitOn: threshold value for the position of a control valve rValvePosition associated with
the pump from which the pump should switch on automatically if exceeded, e.g. heater pump (0%..100%),
see Application [} 26].
rValvePositionLimitOn is only active in the operation mode eHVACActuatorMode_Auto_BMS OR
eHVACActuatorMode_Auto_OP.
rValvePositionLimitOn must not be smaller than rValvePositionLimitOff. Otherwise the last valid variable
value is taken and bInvalidParameter is set.
If there is an incorrect variable value at rValvePositionLimit, then the last valid variable value is taken.
bInvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 5.

rValvePositionLimitOff: threshold value for the position of a control valve rValvePosition associated with
the pump from which the pump is to switch off automatically if the value falls below, e.g. heater pump
(0%..100%), see Application [} 26].
rValvePositionLimitOff is only active in the operation mode eHVACActuatorMode_Auto_BMS OR
eHVACActuatorMode_Auto_OP.
rValvePositionLimitOff must not be greater than rValvePositionLimitOn. Otherwise the last valid variable
value is taken and bInvalidParameter is set.
If there is an incorrect variable value at rValvePositionLimit, then the last valid variable value is taken.
bInvalidParameter will be set in the event of an incorrect parameter entry. The variable is saved persistently.
Preset to 1.

eReqPump: using the Enum eReqPump, switch-on conditions or combinations of switch-on conditions can
be set for switching on the pump.
The switch-on conditions are as follows:

- depending on the outside temperature, the pump can be switched on if the temperature falls below or
exceeds the limit values rOutsideTempLowLimit / rOutsideTempHighLimit.

- depending on the position of the valve rValvePosition associated with the pump, the pump can be switched
on when the threshold value rValvePositionLimitOn is exceeded.

In addition, the Enum combinations can be used to specify whether the temperature-dependent and valve-
position-dependent switch-on conditions are ORed or ANDed together.

Function blocks

TS8000 37Version: 1.2

The following switch-on conditions or combinations of switch-on condition can be set via the Enum in order
to control the output bPump:

eHVACReqPump_No: there is no request on the part of the Enum to control the pump

eHVACReqPump_OT_LL: the outside temperature (OT = rOutsideTemp) must be lower than
rOutsideTempLowLimit (LL = Lower Limit)

eHVACReqPump_OT_HL: the outside temperature (OT = rOutsideTemp) must be higher than
rOutsideTempHighLimit (HL = Higher Limit)

eHVACReqPump_VP: the valve position (VP = rValvePosition) must be larger than rValvePositionLimitOn

eHVACReqPump_OT_LL_OR_VP: the outside temperature (OT = rOutsideTemp) must be lower than
rOutsideTempLowLimit (LL = Lower Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_HL_OR_VP: the outside temperature (OT = rOutsideTemp) must be higher than
rOutsideTempHighLimit (HL = Higher Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_LL_AND_VP: the outside temperature (OT = rOutsideTemp) must be lower than
rOutsideTempLowLimit (LL = Lower Limit) AND the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_HL_AND_VP: the outside temperature (OT = rOutsideTemp) must be higher than
rOutsideTempHighLimit (HL = Higher Limit) AND the valve position (VP = rValvePosition) must be larger
than rValvePositionLimitOn

Preconditions for the use of the Enum eReqPump are that bEnable = TRUEANDbErrorPumpProtec =
FALSEANDbManSwitch = TRUEANDbCtrlVoltage = TRUEANDeCtrlModeActuator =
eHVACActuatorMode_Auto_BMSOReHVACActuatorMode_Auto_OP.
If there is an incorrect variable value at eReqPump, then the last valid variable value is
taken.bInvalidParameter will be set in the event of an incorrect parameter entry.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.5 FB_HVACMotor1Speed

Function blocks

TS800038 Version: 1.2

Application

This function block serves to control a single-stage drive in HVAC systems. It is suitable for fans.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bAuto : BOOL;
eCtrlModeActuator : E_HVACActuatorMode;
bMotorProtec : BOOL;
bFeedbContactor : BOOL;
bFeedbProcess : BOOL;
bRepairSwitch : BOOL;
bManSwitch : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the drive will be switched off
via the specified time variable tStopDelay.

bAuto: bAuto is only active if the operation mode eCtrlModeActuator is either
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.
If the input variable bAuto = TRUE, then the function block is instructed that the drive should run. If bAuto =
FALSE, the drive will be switched off with a delay specified in the time variable tStopDelay.

eCtrlModeActuator: Enum that specifies the operation mode of the motor. In the event of an incorrect entry,
operation continues internally with the last valid operating mode. This is eHVACActuatorMode_Auto_BMS in
the case of initial commissioning. bInvalidParameter will be set in the event of an incorrect parameter entry.

bMotorProtec: input for the motor protection. There is a motor protection fault if the input bMotorProtec =
FALSE (quiescent current principle). In the event of a fault, the output bMotor = FALSE; the fault is indicated
at the output of the function block by bErrorMotorprotec. The motor can only be restarted if the fault has
been rectified and acknowledged at the input bReset.

bFeedbContactor: feedback from the power section of the motor. The operating feedback is present if the
input bFeedbContactor = TRUE. If, after switching on the motor, this feedback is not present after the time
delay set by tDelayFeedbContactor, the output bErrorFeedbContactor is set in order to indicate the fault. The

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 39Version: 1.2

output bMotor becomes FALSE in the event of a fault. The motor can only be restarted if the fault has been
rectified and acknowledged at the input bReset. If no feedback from the power section of the motor is
present, the output variable bMotor must be applied to the input bFeedbContactor.

If no feedback from the power section of the motor is present, the output variable bMotor must be
applied to the input bFeedbContactor. See application example

bFeedbProcess: a process feedback signal, for example from a v-belt monitor or a flow monitor can be
connected to the input bFeedbProcess. The process feedback is present if the input bFeedbProcess = TRUE
(quiescent current principle). If, in the start-up phase after switching on the motor, the process feedback is
not present after the time set by tFeedbProcessTimer, the drive switches off and indicates a fault at the
output bErrorFeedbProcess. The motor can only be restarted if the fault has been rectified and
acknowledged at the input bReset. In order to avoid undesired switching off of the drive during operation due
to the process monitoring, e.g. in the event of short-term pressure fluctuations, the triggering of the input
bFeedbProcess can be delayed by the time tDelayFeedbProcess.

bRepairSwitch: the state of the repair switch is monitored with the input bRepairSwitch. The motor can only
be switched on if bRepairSwitch= TRUE (quiescent current principle). If the repair switch is switched off,
bRepairSwitch = FALSE and the output bMotor becomes FALSE.

bManSwitch: the state of the manual/emergency switch is monitored with the input bManSwitch. The motor
can only be switched on if bManSwitch = TRUE (quiescent current principle). If the manual/emergency
switch is switched off, bManSwitch= FALSE and the output bMotor becomes FALSE.

bCtrlVoltage: the control voltage is monitored with the input bCtrlVoltage. The motor can only be switched
on if bCtrlVoltage = TRUE (quiescent current principle). If the control voltage is switched off, bCtrlVoltage= =
FALSE and the output bMotor becomes FALSE. In order to avoid a torrent of error messages if the control
voltage fails, the error messages of the function block are suppressed. If the control voltage is restored, the
error messages are enabled again.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bMotor : BOOL;
byState : BYTE;
bStateAuto : BOOL;
bStateRepairSwitch : BOOL;
bStateManSwitch : BOOL;
eStateModeActuator : E_HVACActuatorMode;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorMotorprotec : BOOL;
bErrorFeedbContactor : BOOL;
bErrorFeedbProcess : BOOL;
bInvalidParameter : BOOL;

bMotor: output variable for controlling a 1-stage motor.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable;
byState.1 := bMotor;
byState.2 := bStateAuto;
byState.5 := bStateRepairSwitch;
byState.6 := bStateManSwitch;
byState.7 := bCtrlVoltage;

bStateAuto: indicates the state for automatic preselection if the operation mode eCtrlModeActuator is either
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP and stage 1 was activated via the input
variable bAuto.

bStateRepairSwitch: status message of the repair switch. TRUE indicates that the repair switch is switched
off.

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

Function blocks

TS800040 Version: 1.2

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorMotorprotec, bErrorFeedbContactor or bErrorFeedbProcess = = TRUE. The output bMotor is then set
to FALSE and is only enabled again when the fault has been rectified and acknowledged via bReset.

byError: returns all error messages and warnings of the function block.
byError.1 := bInvalidParameter;
byError.2 := bErrorGeneral;
byError.3 := bErrorMotorprotec;
byError.4 := bErrorFeedbContactor;
byError.5 := bErrorFeedbProcess;

bErrorMotorprotec: error motor protection, see input variable bMotorProtec.

bErrorFeedbContactor: power section feedback error, see input variable bFeedbContactor.

If no feedback from the power section of the motor is present, the output variable bMotor must be
applied to the input bFeedbContactor. See application example

bErrorFeedbProcess: process feedback error, see input variable bFeedbackProcess.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrlModeActuator, tStartDelay, tStopDelay, tDelayFeedbContactor, tFeedbProcessTimer or
tDelayFeedbProcess. An incorrect parameter specification does not lead to a standstill of the function block;
see description of variables. After rectifying the incorrect parameter entry, the message bInvalidParameter
must be acknowledged via bReset.

VAR_IN_OUT
tStartDelay : TIME;
tStopDelay : TIME;
tDelayFeedbContactor : TIME;
tFeedbProcessTimer : TIME;
tDelayFeedbProcess : TIME;

tStartDelay: the start-up of the motor after enabling and switching on via the operation mode of the motor is
delayed by the time tStartDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tStopDelay: the switching off of the motor via the operation mode of the motor is delayed by the time
tStopDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect
parameter entry.

tDelayFeedbContactor: time delay [ms] of the feedback of the power section after switching on the motor. If
this time has elapsed and bFeedbContactor = FALSE, then this is fed back to the controller via the error
message bErrorFeedbContactor (100ms..3600ms). The variable is saved persistently. Preset to 100 ms.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tFeedbProcessTimer: time delay of the process feedback bFeedbProcess [s] after switching on the motor.
If this time has elapsed and bFeedbProcess = FALSE, then this is fed back to the controller via the error
message bErrorFeedbProcess (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbProcess: in order to avoid undesired switching off of the drive during operation due to the
process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering of the
input bFeedbProcess can be delayed by the time tDelayFeedbProcess (0s..3600s). The variable is saved

Function blocks

TS8000 41Version: 1.2

persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.1.6 FB_HVACMotor2Speed

Application

This function block serves to control a two-stage drive in HVAC systems. The function block always runs in
stage 1, the lower power stage. It cannot be switched on directly in stage 2. In the event of a restart,
disablement, an error or switching off of the motor via the operation mode, restart of the motor is blocked for
the duration of tDelaySpeed2ToSpeed1.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bAutoSpeed1 : BOOL;
bAutoSpeed2 : BOOL;
eCtrlModeActuator : E_HVACActuatorMode;
bMotorProtecSpeed1 : BOOL;
bMotorProtecSpeed2 : BOOL;
bFeedbContactorSpeed1 : BOOL;
bFeedbContactorSpeed2 : BOOL;

Function blocks

TS800042 Version: 1.2

bFeedbProcess : BOOL;
bRepairSwitch : BOOL;
bManSwitch : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the drive will be switched off
in the respective switch-on stage with a delay specified in the time variable tStopDelay. If an enable is
present, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1.

bAutoSpeed1: bAutoSpeed1 is only active if the operation mode eCtrlModeActuator is either
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.
If the input variables bAutoSpeed1 = TRUE and bAutoSpeed2 = FALSE, the function block is instructed that
the drive should run at speed 1. If bAutoSpeed1 = FALSE, the drive will be switched off with a delay
specified in the time variable tStopDelay.

bAutoSpeed2: bAutoSpeed2 is only active if the operation mode eCtrlModeActuator is either
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.
If the input variable bAutoSpeed1 and bAutoSpeed2 = TRUE, the function block is instructed to run the drive
in at speed 2. If bAutoSpeed1 andbAutoSpeed2 = FALSE, the drive is switched off with a delay specified in
the time variable tStopDelay.

eCtrlModeActuator: Enum that specifies the operation mode of the motor. In the event of an incorrect entry,
operation continues internally with the last valid operating mode. This is eHVACActuatorMode_Auto_BMS in
the case of initial commissioning. bInvalidParameter will be set in the event of an incorrect parameter entry.

bMotorProtecSpeed1: input for motor protection speed 1. There is a motor protection fault if the input
bMotorProtecSpeed1 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed2 are all FALSE; the fault is indicated at the output of the function block by
bErrorMotorprotecSpeed1. The motor can only be restarted if the fault has been rectified and acknowledged
at the input bReset.

bMotorProtecSpeed2: input for motor protection speed 2. There is a motor protection fault if the input
bMotorProtecSpeed2 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed2 are all FALSE; the fault is indicated at the output of the function block by
bErrorMotorprotecSpeed2. The motor can only be restarted if the fault has been rectified and acknowledged
at the input bReset.

bFeedbContactorSpeed1: feedback from the power section of the motor for speed 1. The operating
feedback is present if the input bFeedbContactorSpeed1 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed1, the output
bErrorFeedbContactorSpeed1 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed2 are all FALSE. The motor can only be restarted if the fault has been

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 43Version: 1.2

rectified and acknowledged at the input bReset. If no feedback from the power section of the motor is
present for speed 1, the output variable bMotorSpeed1 must be applied to the input
bFeedbContactorSpeed1.

If no feedback from the power section of the motor is present, the output variable bMotorSpeed1
must be applied to the input bFeedbContactorSpeed1. See application example

bFeedbContactorSpeed2: feedback from the power section of the motor for speed 2. The operating
feedback is present if the input bFeedbContactorSpeed2 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed2, the output
bErrorFeedbContactorSpeed2 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1 and bMotorSpeed2 are all FALSE. The motor can only be restarted if the fault has been
rectified and acknowledged at the input bReset. If no feedback from the power section of the motor is
present for speed 2, the output variable bMotorSpeed2 must be applied to the input
bFeedbContactorSpeed2.

If no feedback from the power section of the motor is present, the output variable bMotorSpeed2
must be applied to the input bFeedbContactorSpeed2. See application example

bFeedbProcess: a process feedback signal, for example from a v-belt monitor or a flow monitor can be
connected to the input bFeedbProcess. The process feedback is present if the input bFeedbProcess = TRUE
(quiescent current principle). If, in the start-up phase after switching on the motor, the process feedback is
not present after the time set by tFeedbProcessTimer, the drive switches off and indicates a fault at the
output bErrorFeedbProcess. The motor can only be restarted if the fault has been rectified and
acknowledged at the input bReset. In order to avoid undesired switching off of the drive during operation due
to the process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering
of the input bFeedbProcess can be delayed by the time tDelayFeedbProcess.
The process feedback is active if either bMotorSpeed1 or bMotorSpeed2 = TRUE.

bRepairSwitch: the state of the repair switch is monitored with the input bRepairSwitch. The motor can only
be switched on if bRepairSwitch = TRUE (quiescent current principle). If the repair switch is switched off,
bRepairSwitch = FALSE, the outputs bMotorSpeed1 and bMotorSpeed2 are all FALSE. If the state of the
repair switch is TRUE, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1.

bManSwitch: the state of the manual/emergency switch is monitored with the input bManSwitch. The motor
can only be switched on if bManSwitch = TRUE (quiescent current principle). If the manual/emergency
switch is switched off, bManSwitch= FALSE, the outputs bMotorSpeed1 and bMotorSpeed2 are both FALSE.
If the state of the manual/emergency switch is TRUE, a restart of the motor is blocked for the duration of
tDelaySpeed2ToSpeed1.

bCtrlVoltage: the control voltage is monitored with the input bCtrlVoltage. The motor can only be switched
on if bCtrlVoltage = TRUE (quiescent current principle). If the control voltage is switched off, bCtrlVoltage=
FALSE, the outputs bMotorSpeed1 and bMotorSpeed2 are both FALSE. In order to avoid a torrent of error
messages if the control voltage fails, the error messages of the function block are suppressed. If the control
voltage is restored, the error messages are enabled again. If control voltage is present, a restart of the motor
is blocked for the duration of tDelaySpeed2ToSpeed1.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bMotorSpeed1 : BOOL;
bMotorSpeed2 : BOOL;
byState : BYTE;
bStateAutoSpeed1 : BOOL;
bStateAutoSpeed2 : BOOL;
bStateRepairSwitch : BOOL;
bStateManSwitch : BOOL;
eStateModeActuator : E_HVACActuatorMode;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorMotorprotecSpeed1 : BOOL;
bErrorMotorprotecSpeed2 : BOOL;
bErrorFeedbContactorSpeed1 : BOOL;

Function blocks

TS800044 Version: 1.2

bErrorFeedbContactorSpeed2 : BOOL;
bErrorFeedbProcess : BOOL;
bInvalidParameter : BOOL;

bMotorSpeed1: output variable for controlling speed 1 of the two-speed drive.

bMotorSpeed2: output variable for controlling speed 2 of the two-speed drive.

byState: status byte indicating the operating state of the function block
byState.0 := bEnable;
byState.1 := bMotorSpeed1;
byState.2 := bMotorSpeed2;
byState.3 := bStateAutoSpeed1;
byState.4 := bStateAutoSpeed2;
byState.5 := bStateRepairSwitch;
byState.6 := bStateManSwitch;
byState.7 := bCtrlVoltage

bStateAutoSpeed1: indicates the state for automatic preselection speed 1 if the operation mode
eCtrlModeActuator is either eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP and speed
1 was activated via the input variable bAutoSpeed1.

bStateAutoSpeed2: indicates the state for automatic preselection speed 2 if the operation mode
eCtrlModeActuator is either eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP and speed
2 was activated via the input variable bAutoSpeed2.

bStateRepairSwitch: status message of the repair switch. TRUE indicates that the repair switch is switched
off.

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorMotorprotecSpeed1, bErrorMotorprotecSpeed2, bErrorFeedbContactorSpeed1,
bErrorFeedbContactorSpeed2 or bErrorFeedbProcess = TRUE. The outputs bMotorSpeed1 and
bMotorSpeed2 are then set to FALSE and are only enabled again when the fault has been rectified and
acknowledged via bReset. After rectification of the fault a restart of the motor is blocked for the duration of
tDelaySpeed2ToSpeed1.

byError: returns all error messages and warnings of the function block.
byError.1 := bInvalidParameter;
byError.2 := bErrorGeneral;
byError.3 := bErrorMotorprotecSpeed1;
byError.4 := bErrorMotorprotecSpeed2 ;
byError.5 := bErrorFeedbContactorSpeed1 ;
byError.6 := bErrorFeedbContactorSpeed2;
byError.7 := bErrorFeedbProcess;

bErrorMotorprotecSpeed1: error motor protection, see input variable bMotorProtecSpeed1.

bErrorMotorprotecSpeed2: error motor protection, see input variable bMotorProtecSpeed2.

bErrorFeedbContactorSpeed1: power section feedback error, see input variable bFeedbContactorSpeed1

If no feedback from the power section of the motor is present, the output variable bMotorSpeed1
must be applied to the input bFeedbContactorSpeed1. See application example

bErrorFeedbContactorSpeed2: power section feedback error, see input variable bFeedbContactorSpeed2

If no feedback from the power section of the motor is present, the output variable bMotorSpeed2
must be applied to the input bFeedbContactorSpeed2. See application example

Function blocks

TS8000 45Version: 1.2

bErrorFeedbProcess: process feedback error, see input variable bFeedbackProcess

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrlModeActuator, tStartDelay, tStopDelay, tDelayFeedbContactorSpeed1, tDelayFeedbContactorSpeed2,
tFeedbProcessTimer,tDelayFeedbProcess, tDelaySpeed1 or tDelaySpeed1ToSpeed2. An incorrect
parameter specification does not lead to a standstill of the function block; see description of variables. After
rectifying the incorrect parameter entry, the message bInvalidParameter must be acknowledged via bReset.

VAR_IN_OUT
tStartDelay : TIME;
tStopDelay : TIME;
tDelayFeedbContactorSpeed1 : TIME;
tDelayFeedbContactorSpeed2 : TIME;
tFeedbProcessTimer : TIME;
tDelayFeedbProcess : TIME;
tDelaySpeed1 : TIME;
tDelaySpeed1ToSpeed2 : TIME;
tDelaySpeed2ToSpeed1 : TIME;

tStartDelay: the start-up of the motor after enabling and switching on via the operation mode of the motor is
delayed by the time tStartDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect
parameter entry.

tStopDelay: the switching off of the motor in the respective switch-on stage, either by switching the enable
bEnable to FALSE, or by switching off via the operation mode eCtrlModeActuator , or in automatic operation
mode by switching the input variables bAutoSpeed1 and bAutoSpeed2 to FALSE, is delayed by the time
tStopDelay [s]. Once the delayed switch-off of the motor has been activated it can no longer be canceled
(0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect
parameter entry.

tDelayFeedbContactorSpeed1: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed1 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed1 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbContactorSpeed2: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed2 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed2 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect
parameter entry.

tFeedbackProcessTimer: time delay [s]of the process feedback bFeedbProcess [s] after start-up phase of
the motor. If this time has elapsed and bFeedbProcess = FALSE, then this is fed back to the controller via
the error message bErrorFeedbProcess (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbProcess: in order to avoid undesired switching off of the drive during operation due to the
process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering of the
input bFeedbProcess can be delayed by the time tDelayFeedbProcess (0s..3600s). The variable is saved
persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

Function blocks

TS800046 Version: 1.2

tDelaySpeed1: time delay [s] for the start-up phase of the motor in speed 1 (1s..3600s). The variable is
saved persistently. Preset to 3s.
After this time has elapsed, the motor can be switched from the first to the second speed if the operating
mode for speed 2 is selected.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed1ToSpeed2: time delay for the motor switchover phase from speed 1 to speed 2, so that both
outputs bMotorSpeed1 and bMotorSpeed2 are FALSE for a short while (100ms..10s). The variable is saved
persistently. Preset to 250 ms. The time delay serves to protect the motor windings.
If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed2ToSpeed1: time delay [s] for the motor switchover phase from speed 2 to speed 1
(1s..3600s). The variable is saved persistently. Preset to 10 s. In this phase both outputs bMotorSpeed1 and
bMotorSpeed2 are FALSE for the time tDelaySpeed2ToSpeed1 in order to reduce the speed of the motor
when switching to speed 1.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 47Version: 1.2

3.1.7 FB_HVACMotor3Speed

Application

This function block serves to control a three-speed drive in HVAC systems. The function block always runs in
step 1, the lowest power step, and switches to step 2 or step 3 depending on requirements. It cannot be
switched on directly in step 2 or 3. In the event of a restart, disablement, an error or switching off of the
motor via the operation mode, restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1 +
tDelaySpeed3ToSpeed2.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bAutoSpeed1 : BOOL;
bAutoSpeed2 : BOOL;
bAutoSpeed3 : BOOL;
eCtrlModeActuator : E_HVACActuatorMode;
bMotorProtecSpeed1 : BOOL;
bMotorProtecSpeed2 : BOOL;
bMotorProtecSpeed3 : BOOL;
bFeedbContactorSpeed1 : BOOL;
bFeedbContactorSpeed2 : BOOL;

Function blocks

TS800048 Version: 1.2

bFeedbContactorSpeed3 : BOOL;
bFeedbProcess : BOOL;
bRepairSwitch : BOOL;
bManSwitch : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the drive is switched off with
a delay specified in the time variable tStopDelay at the respective switch-on stage.
If an enable is present, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1 +
tDelaySpeed3ToSpeed2.

bAutoSpeed1: bAutoSpeed1 is only active if the operation mode eCtrlModeActuator is either
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.
If the input variables bAutoSpeed1 = TRUE, bAutoSpeed2 = FALSE and bAutoSpeed3 = FALSE, then the
function block is instructed that the drive should run at speed 1.
If bAutoSpeed1 = FALSE, the drive will be switched off with a delay specified in the time variable tStopDelay.

bAutoSpeed2: bAutoSpeed2 is only active if the operation mode eCtrlModeActuator is either
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.
If the input variables bAutoSpeed1 = TRUE, bAutoSpeed2 = TRUE and bAutoSpeed3 = FALSE, then the
function block is instructed that the drive should run at speed 2.
If bAutoSpeed1 and bAutoSpeed2 = FALSE, the drive will be switched off with a delay specified in the time
variable tStopDelay.

bAutoSpeed3: bAutoSpeed3 is only active if the operation mode eCtrlModeActuator is either
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.
If the input variables bAutoSpeed1 = TRUE, bAutoSpeed2 = TRUE and bAutoSpeed3 = TRUE, then the
function block is instructed that the drive should run at speed 3.
If bAutoSpeed1, bAutoSpeed2 and bAutoSpeed3 = FALSE, the drive will be switched off with a delay
specified in the time variable tStopDelay.

eCtrlModeActuator: Enum that specifies the operation mode of the motor. In the event of an incorrect entry,
operation continues internally with the last valid operating mode. This is eHVACActuatorMode_Auto_BMS in
the case of initial commissioning. bInvalidParameter will be set in the event of an incorrect parameter entry.

bMotorProtecSpeed1: input for motor protection speed 1. There is a motor protection fault if the input
bMotorProtecSpeed1 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE; the fault is indicated at the output of the
function block by bErrorMotorprotecSpeed1. The motor can only be restarted if the fault has been rectified
and acknowledged at the input bReset.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 49Version: 1.2

bMotorProtecSpeed2: input for motor protection speed 2. There is a motor protection fault if the input
bMotorProtecSpeed2 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE; the fault is indicated at the output of the
function block by bErrorMotorprotecSpeed2. The motor can only be restarted if the fault has been rectified
and acknowledged at the input bReset.

bMotorProtecSpeed3: input for motor protection speed 3. There is a motor protection fault if the input
bMotorProtecSpeed3 is FALSE (quiescent current principle). In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE; the fault is indicated at the output of the
function block by bErrorMotorprotecSpeed3. The motor can only be restarted if the fault has been rectified
and acknowledged at the input bReset.

bFeedbContactorSpeed1: feedback from the power section of the motor for speed 1. The operating
feedback is present if the input bFeedbContactorSpeed1 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed1, the output
bErrorFeedbContactorSpeed1 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. The motor can only be restarted if the
fault has been rectified and acknowledged at the input bReset. If no feedback from the power section of the
motor is present for speed 1, the output variable bMotorSpeed1 must be applied to the input
bFeedbContactorSpeed1.

If no feedback from the power section of the motor is present, the output variable bMotorSpeed1
must be applied to the input bFeedbContactorSpeed1. See application example

bFeedbContactorSpeed2: feedback from the power section of the motor for speed 2. The operating
feedback is present if the input bFeedbContactorSpeed2 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed2, the output
bErrorFeedbContactorSpeed2 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. The motor can only be restarted if the
fault has been rectified and acknowledged at the input bReset. If no feedback from the power section of the
motor is present for speed 2, the output variable bMotorSpeed2 must be applied to the input
bFeedbContactorSpeed2.

If no feedback from the power section of the motor is present, the output variable bMotorSpeed2
must be applied to the input bFeedbContactorSpeed2. See application example

bFeedbContactorSpeed3: feedback from the power section of the motor for speed 3. The operating
feedback is present if the input bFeedbContactorSpeed3 = TRUE. If, after switching on the motor, this
feedback is not present after the time delay set by tDelayFeedbContactorSpeed3, the output
bErrorFeedbContactorSpeed3 is set in order to indicate a fault. In the event of a fault, the outputs
bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. The motor can only be restarted if the
fault has been rectified and acknowledged at the input bReset. If no feedback from the power section of the
motor is present for speed 3, the output variable bMotorSpeed3 must be applied to the input
bFeedbContactorSpeed3.

If no feedback from the power section of the motor is present, the output variable bMotorSpeed3
must be applied to the input bFeedbContactorSpeed3. See application example

bFeedbProcess: a process feedback signal, for example from a v-belt monitor or a flow monitor can be
connected to the input bFeedbProcess. The process feedback is present if the input bFeedbProcess = TRUE
(quiescent current principle). If, in the start-up phase after switching on the motor, the process feedback is
not present after the time set by tFeedbProcessTimer, the drive switches off and indicates a fault at the
output bErrorFeedbProcess. The motor can only be restarted if the fault has been rectified and
acknowledged at the input bReset. In order to avoid undesired switching off of the drive during operation due
to the process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering
of the input bFeedbProcess can be delayed by the time tDelayFeedbProcess.
The process feedback is active if either bMotorSpeed1, bMotorSpeed2 or bMotorSpeed3 = TRUE.

Function blocks

TS800050 Version: 1.2

bRepairSwitch: the state of the repair switch is monitored with the input bRepairSwitch. The motor can only
be switched on if bRepairSwitch = TRUE (quiescent current principle). If the repair switch is switched off,
bRepairSwitch = FALSE, the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. If
the state of the repair switch is TRUE, a restart of the motor is blocked for the duration of
tDelaySpeed2ToSpeed1 + tDelaySpeed3ToSpeed2.

bManSwitch: the state of the manual/emergency switch is monitored with the input bManSwitch. The motor
can only be switched on if bManSwitch = TRUE (quiescent current principle). If the manual/emergency
switch is switched off, bManSwitch= FALSE, the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3
are all FALSE. If the state of the manual/emergency switch is TRUE, a restart of the motor is blocked for the
duration of tDelaySpeed2ToSpeed1 + tDelaySpeed3ToSpeed2.

bCtrlVoltage: the control voltage is monitored with the input bCtrlVoltage. The motor can only be switched
on if bCtrlVoltage = TRUE (quiescent current principle). If the control voltage is switched off, bCtrlVoltage=
FALSE, the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are all FALSE. In order to avoid a
torrent of error messages if the control voltage fails, the error messages of the function block are
suppressed. If the control voltage is restored, the error messages are enabled again. If control voltage is
present, a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1 +
tDelaySpeed3ToSpeed2 .

bReset: input for acknowledgement of faults via a rising edge.

VAR_OUTPUT
bMotorSpeed1 : BOOL;
bMotorSpeed2 : BOOL;
bMotorSpeed3 : BOOL;
wState : WORD;
bStateAutoSpeed1 : BOOL;
bStateAutoSpeed2 : BOOL;
bStateAutoSpeed3 : BOOL;
bStateRepairSwitch : BOOL;
bStateManSwitch : BOOL;
eStateModeActuator : E_HVACActuatorMode;
bErrorGeneral : BOOL;
wError : WORD;
bErrorMotorprotecSpeed1 : BOOL;
bErrorMotorprotecSpeed2 : BOOL;
bErrorMotorprotecSpeed3 : BOOL;
bErrorFeedbContactorSpeed1 : BOOL;
bErrorFeedbContactorSpeed2 : BOOL;
bErrorFeedbContactorSpeed3 : BOOL;
bErrorFeedbProcess : BOOL;
bInvalidParameter : BOOL;

bMotorSpeed1: output variable for controlling speed 1 of the three-speed drive.

bMotorSpeed2: output variable for controlling speed 2 of the three-speed drive.

bMotorSpeed3: output variable for controlling speed 3 of the three-speed drive.

wState: statusword indicating the operating state of the function block.
wState.0 := bEnable;
wState.1 := bMotorSpeed1;
wState.2 := bMotorSpeed2;
wState.3 := bMotorSpeed3;
wState.4 := bStateAutoSpeed1;
wState.5 := bStateAutoSpeed2;
wState.6 := bStateAutoSpeed3;
wState.7 := bStateRepairSwitch;
wState.8 := bStateManSwitch;
wState.9 := bCtrlVoltage;

bStateAutoSpeed1: indicates the state for automatic preselection speed 1 if the operation mode
eCtrlModeActuator is either eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP and speed
1 was activated via the input variable bAutoSpeed1.

bStateAutoSpeed2: indicates the state for automatic preselection speed 2 if the operation mode
eCtrlModeActuator is either eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP and speed
2 was activated via the input variable bAutoSpeed2.

Function blocks

TS8000 51Version: 1.2

bStateAutoSpeed3: indicates the state for automatic preselection speed 3 if the operation mode
eCtrlModeActuator is either eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP and speed
3 was activated via the input variable bAutoSpeed3.

bStateRepairSwitch: status message of the repair switch. TRUE indicates that the repair switch is switched
off.

bStateManSwitch: status message of the manual/emergency switch. A TRUE signals that the manual/
emergency operating level is activated.

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorMotorprotecSpeed1, bErrorMotorprotecSpeed2, bErrorMotorprotecSpeed3,
bErrorFeedbContactorSpeed1, bErrorFeedbContactorSpeed2, bErrorFeedbContactorSpeed23 or
bErrorFeedbProcess = TRUE. The outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are then set
to FALSE and are only enabled again when the fault has been rectified and acknowledged via bReset. After
rectification of the fault a restart of the motor is blocked for the duration of tDelaySpeed2ToSpeed1 +
tDelaySpeed3ToSpeed2.

wError: returns all error messages and warnings of the function block.
wError.1 := bInvalidParameter;
wError.2 := bErrorGeneral;
wError.3 := bErrorMotorprotecSpeed1;
wError.4 := bErrorMotorprotecSpeed2;
wError.5 := bErrorMotorprotecSpeed3;
wError.6 := bErrorFeedbContactorSpeed1;
wError.7 := bErrorFeedbContactorSpeed2;
wError.8 := bErrorFeedbContactorSpeed3;
wError.9 := bErrorFeedbProcess;

bErrorMotorprotecSpeed1: error motor protection, see input variable bMotorProtecSpeed1.

bErrorMotorprotecSpeed2: error motor protection, see input variable bMotorProtecSpeed2.

bErrorMotorprotecSpeed3: error motor protection, see input variable bMotorProtecSpeed3.

bErrorFeedbContactorSpeed1: power section feedback error, see input variable bFeedbContactorSpeed1

If no feedback from the power section of the motor is present, the output variable bMotorSpeed1
must be applied to the input bFeedbContactorSpeed1. See application example

bErrorFeedbContactorSpeed2: power section feedback error, see input variable bFeedbContactorSpeed2

If no feedback from the power section of the motor is present, the output variable bMotorSpeed2
must be applied to the input bFeedbContactorSpeed2. See application example

bErrorFeedbContactorSpeed3: power section feedback error, see input variable bFeedbContactorSpeed3

If no feedback from the power section of the motor is present, the output variable bMotorSpeed3
must be applied to the input bFeedbContactorSpeed3. See application example

bErrorFeedbProcess: process feedback error, see input variable bFeedbackProcess

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrlModeActuator, tStartDelay, tStopDelay, tDelayFeedbContactorSpeed1, tDelayFeedbContactorSpeed2,
tDelayFeedbContactorSpeed3,tFeedbProcessTimer,tDelayFeedbProcess, tDelaySpeed1, tDelaySpeed2,
tDelaySpeed1ToSpeed2ToSpeed3, tDelaySpeed2ToSpeed1 or tDelaySpeed3ToSpeed2. An incorrect
parameter specification does not lead to a standstill of the function block; see description of variables. After
rectifying the incorrect parameter entry, the message bInvalidParameter must be acknowledged via bReset.

Function blocks

TS800052 Version: 1.2

VAR_IN_OUT
tStartDelay : TIME;
tStopDelay : TIME;
tDelayFeedbContactorSpeed1 : TIME;
tDelayFeedbContactorSpeed2 : TIME;
tDelayFeedbContactorSpeed3 : TIME;
tFeedbProcessTimer : TIME;
tDelayFeedbProcess : TIME;
tDelaySpeed1 : TIME;
tDelaySpeed2 : TIME;
tDelaySpeed1ToSpeed2ToSpeed3 : TIME;
tDelaySpeed2ToSpeed1 : TIME;
tDelaySpeed3ToSpeed2 : TIME;

tStartDelay: the start-up of the motor after enabling and switching on via the operation mode of the motor is
delayed by the time tStartDelay [s] (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect
parameter entry.

tStopDelay: the switching off of the motor in the respective switch-on stage, either by switching the enable
bEnable to FALSE, or by switching off via the operation mode eCtrlModeActuator , or in automatic operation
mode by switching the input variables bAutoSpeed1, bAutoSpeed2 and bAutoSpeed3 to FALSE, is delayed
by the time tStopDelay [s]. Once the delayed switch-off of the motor has been activated it can no longer be
canceled (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbContactorSpeed1: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed1 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed1 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, operation continues with the default value. bInvalidParameter will be set in the event of an
incorrect parameter entry.

tDelayFeedbContactorSpeed2: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed2 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed2 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbContactorSpeed3: time delay of the feedback of the power section after switching on the
motor. If this time has elapsed and bFeedbContactorSpeed3 = FALSE, then this is fed back to the controller
via the error message bErrorFeedbContactorSpeed3 (100ms..3600s). The variable is saved persistently.
Preset to 100 ms.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tFeedbackProcessTimer: time delay [s]of the process feedback bFeedbProcess [s] after start-up phase of
the motor. If this time has elapsed and bFeedbProcess = FALSE, then this is fed back to the controller via
the error message bErrorFeedbProcess (0s..3600s). The variable is saved persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelayFeedbProcess: in order to avoid undesired switching off of the drive during operation due to the
process monitoring bFeedbProcess, e.g. in the event of short-term pressure fluctuations, the triggering of the
input bFeedbProcess can be delayed by the time tDelayFeedbProcess (0s..3600s). The variable is saved
persistently. Preset to 0 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

Function blocks

TS8000 53Version: 1.2

tDelaySpeed1: time delay [s] for the start-up phase of the motor in speed 1 (1s..3600s). The variable is
saved persistently. Preset to 3s.
After this time has elapsed, the motor can be switched from the first to the second speed if the operating
mode for speed 2 is selected.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed2: time delay [s] for the start-up phase of the motor in speed 2 (1s..3600s). The variable is
saved persistently. Preset to 3s.
After this time has elapsed, the motor can be switched from the second to the third speed if the operation
mode for speed 3 is selected.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed1ToSpeed2ToSpeed3: time delay for the motor switchover phase from speed 1 to speed 2 or
from speed 2 to speed 3, so that the outputs bMotorSpeed1, bMotorSpeed2 and bMotorSpeed3 are FALSE
for a short while (1s..3600s). The variable is saved persistently. Preset to 250 ms. The time delay serves to
protect the motor windings.
If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed2ToSpeed1: time delay [s] for the motor switchover phase from speed 2 to speed 1
(1s..3600s). The variable is saved persistently. Preset to 10 s. In this phase the outputs bMotorSpeed1,
bMotorSpeed2 and bMotorSpeed3 are set to FALSE for the duration of tDelaySpeed2ToSpeed1in order to
reduce the speed of the motor when switching to speed 1.
If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

tDelaySpeed3ToSpeed2: time delay [s] for the motor switchover phase from speed 3 to speed 2
(1s..3600s). The variable is saved persistently. Preset to 10 s. In this phase the outputs bMotorSpeed1,
bMotorSpeed2 and bMotorSpeed3 are FALSE for the time tDelaySpeed3ToSpeed2 in order to reduce the
speed of the motor when switching to speed 2.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS800054 Version: 1.2

3.1.8 FB_HVACRedundancyCtrl

Application

This function block serves to control a certain number of actuators, e.g. of pumps, from a pool of 8 actuators.
From all enabled actuators, the logic searches for those with the shortest runtimes and switches them on
according to the runtime order. This continues until the number specified via iCountCtrl is reached. The
actuators are routed internally via a FIFO memory so that they can be switched off again in the same order.
Changeover during operation can be performed with the time specification uiMaxOnLevel or by the trigger
bForceChnage. The actuator that has been switched on longest is switched off, and the one with the shortest
runtime is switched on. In order to avoid a hydraulic stroke in the pumps, an overlap time can be set via
tOverlap1Actuator. This time is only valid for the case when a change between two actuators takes place.
To determine the running times, the function block FB_HVACWork [} 472] is instantiated internally and the IN-
OUT variables are passed on externally (rHours and uiCount). The recording of the operating time is
controlled by the Feedback inputs. If no feedback signal from the actuator is available, the actuator output
must be fed back to the feedback input.

VAR_INPUT

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
iCountCtrl : INT;
bEn1 - bEn8 : BOOL;
bFeedBack1 - bFeedBack8 : BOOL;
bForceChange : BOOL;
dtSystemTime : DT;

Function blocks

TS8000 55Version: 1.2

bSysTakt1Hz : BOOL;
bResetAllHours : BOOL;
bResetAllCounter : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

iCountCtrl: number of actuators to be switched on (0..8).

bEn1 - 8: enables the corresponding actuator.

bFeedBack1 - 8: operating feedback from the actuator. Evaluation only takes place if tNoFeedbActuator >
t#0s .

bForceChange: a positive edge at the input switches off the first actuator in the FIFO and switches on the
actuator from the pool that has the shortest runtime.

dtSystemTime: system time.

bSysTakt1Hz: 1 Hz clock signal as a replacement for dtSystemTime; if dtSystemTime is not available, or
does not change its value for longer than 2 s, then the clock signal is used as a replacement.

bResetAllHours: resets all operating hours counters.

bResetAllCounter: resets all switch-on counters.

bReset: acknowledge input in the event of a fault.

VAR_IN_OUT
rHours : REAL;
uiCount : UINT;
tOverlap1Actuator : TIME;
uiMaxOnLevel : UINT;
tNoFeedbActuator : TIME;

rHours[1..8]: operating hours [h] with a resolution of 1/100 hours (internally with 1 s). The variable is saved
persistently.

uiCount[1..8]: switch-on cycle counter. The variable is saved persistently.

tOverlap1Actuator: overlap time for the case where an exchange between two actuators takes place
(0ms..1min). The variable is saved persistently. Preset to 20 s.

uiMaxOnLevel: max. time in hours [h] that an actuator may be switched on (0h..1000h). Forces an actuator
change only if an actuator is available to be switched on. The variable is saved persistently. Preset to 200 h.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800056 Version: 1.2

tNoFeedbActuator: time that is allowed to elapse before the lack of an operating feedback from the actuator
leads to bErrorGeneral = TRUE (0ms..60s). There is no evaluation if the time = 0. The variable is saved
persistently. Preset to 3 s

VAR_OUTPUT
bQ1 - bQ8 : BOOL;
eErrorCode : E_HVACErrorCodes;
bErrorGeneral : BOOL;
bInvalidParameter : BOOL;

bQ1 - 8: actuator on signal.

eErrorCode: indicates which actuator has not returned an operating feedback within the prespecified
timespan. The detection of this error group is activated by a time greater than 0 in the variable
tNoFeedbActuator. eHVACErrorCodes_Error_NoFeedbackActuator1 := 15,
eHVACErrorCodes_Error_NoFeedbackActuator2 := 16,
eHVACErrorCodes_Error_NoFeedbackActuator3 := 17,
eHVACErrorCodes_Error_NoFeedbackActuator4 := 18,
eHVACErrorCodes_Error_NoFeedbackActuator5 := 19,
eHVACErrorCodes_Error_NoFeedbackActuator6 := 20,
eHVACErrorCodes_Error_NoFeedbackActuator7 := 21,
eHVACErrorCodes_Error_NoFeedbackActuator8 := 22,

bErrorGeneral: error during evaluation of the operating feedback.

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 57Version: 1.2

3.1.9 FB_HVACRedundancyCtrlEx

Application

This function block serves to control a certain number of actuators, e.g. of pumps, from a pool of 8 actuators.
From all enabled actuators, the logic searches for those with the shortest runtimes and switches them on
according to the runtime order. This continues until the number specified via iCountCtrl is reached. The
actuators are routed internally via a FIFO memory so that they can be switched off again in the same order.
Changeover during operation can be performed with the time specification uiMaxOnLevel or by the trigger
bForceChnage. The actuator that has been switched on longest is switched off, and the one with the shortest
runtime is switched on. In order to avoid a hydraulic stroke in the pumps, an overlap time can be set via
tOverlap1Actuator. This time is only valid for the case when a change between two actuators takes place.
In contrast to the FB_HVACRedundancyCtrl [} 54] no internal timer is used for the determination of the
running times, but the times must be applied as hourly values from outside as Var_Input.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
iCountCtrl : INT;
bEn1 - bEn8 : BOOL;
bFeedBack1 - bFeedBack8 : BOOL;
bForceChange : BOOL;
rHours1-rHours8 : REAL;

Function blocks

TS800058 Version: 1.2

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

iCountCtrl : number of actuators to be switched on

bEn1 - 8: enables the corresponding actuator.

bFeedBack1 - 8: operating feedback from the actuator. Evaluation only takes place if tNoFeedbActuator >
t#0s .

bForceChange: a positive edge at the input switches off the first actuator in the FIFO and switches on the
actuator from the pool that has the shortest runtime.

rHours: operating hours

VAR_IN_OUT
tOverlap1Actuator : TIME;
uiMaxOnLevel : UINT;
tNoFeedbActuator : TIME;

tOverlap1Actuator: overlap time for the case where an exchange between two actuators takes place
(0ms..1min). The variable is saved persistently. Preset to 20 s.

uiMaxOnLevel: max. time in hours that an actuator may be switched on (0h..1000h). Forces an actuator
change only if an actuator is available to be switched on. The variable is saved persistently. Preset to 200 h.

tNoFeedbActuator: time that is allowed to elapse before the lack of an operating feedback from the actuator
leads to bErrorGeneral = TRUE (0ms..60s). There is no evaluation if the time = 0. The variable is saved
persistently. Preset to 3 s

VAR_OUTPUT
bQ1 - bQ8 : BOOL;
arrFiFo : Array[1..8] of INT;
eErrorCode : E_HVACErrorCodes;
bErrorGeneral : BOOL;
bInvalidParameter : BOOL;

bQ1 - 8: actuator on signal.

arrFiFo: table containing the information showing which actuator is switched on (actuator number). The
order specifies the switch-off sequence. arFifo[1] = no. of the actuator that will be switched off next.

eErrorCode: indicates which actuator has not returned an operating feedback within the prespecified
timespan. The detection of this error group is activated by a time greater than 0 in the variable
tNoFeedbActuator. eHVACErrorCodes_Error_NoFeedbackActuator1 := 15,
eHVACErrorCodes_Error_NoFeedbackActuator2 := 16,
eHVACErrorCodes_Error_NoFeedbackActuator3 := 17,

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 59Version: 1.2

eHVACErrorCodes_Error_NoFeedbackActuator4 := 18,
eHVACErrorCodes_Error_NoFeedbackActuator5 := 19,
eHVACErrorCodes_Error_NoFeedbackActuator6 := 20,
eHVACErrorCodes_Error_NoFeedbackActuator7 := 21,
eHVACErrorCodes_Error_NoFeedbackActuator8 := 22,

bErrorGeneral: error during evaluation of the operating feedback.

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2 HVAC Analog modules

3.2.1 FB_HVACAnalogInput

Application

This function block serves the acquisition and scaling of analog input signals. Using the KL30xx, KL31xx und
KL32xx terminals, the standard signals 0–20 mA, 4–20 mA, 0–10 V and 10–5000 Ohms can be acquired and
converted to physical values.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
iRawValue : INT;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
bEnableLimitCtrl : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Function blocks

TS800060 Version: 1.2

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

iRawValue: the raw value is transferred from the terminal to the function block with the parameter
iRawValue.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: cycle time with which the function block is processed. This must be greater than or equal to
the TaskCycleTime. The function block uses this input value to calculate internally whether the state and the
output values have to be updated in the current cycle.

bEnableLimitCtrl: limit value monitoring is only activated if the variable bEnableLimitCtrl is TRUE. This way,
limit value monitoring can be delayed with a timer until the heating or air conditioning system is in a
controlled state. In the case of air conditioning systems, this is usually enabled by the system start program.
See also FB_HVACStartAirConditioning regarding this point.

bCtrlVoltage: by means of checking the sensor supply voltage with the input bCtrlVoltage, error messages
are suppressed if the supply voltage to the sensors is absent. If the sensor supply voltage is present, a
TRUE is present at the input bCtrlVoltage.

bReset: acknowledge input in the event of an error. In addition the 2nd order filter can be synchronized via
this input to the present measuring signal, so that this can be output at rPresentValue.

VAR_OUTPUT
rPresentValue : REAL;
byState : BYTE;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bErrorGeneral : BOOL;
byError : BYTE;
bInvalidParameter : BOOL;

rPresentValue: determined output value.

byState: state of the function block.
byState.1:= TRUE, limit value monitoring is activated.
byState.7:= TRUE, sensor voltage supply is present.

bError: the variable bError becomes TRUE in the event of an internal error in the function block.

eErrorCode : contains the specific error code related to the bError.

bErrorHighLimit: TRUE if the upper limit value is reached.

bErrorLowLimit: TRUE if the lower limit value is reached.

bErrorGeneral: TRUE if a single error message from the process is present.

byError: output of the errors as byte.
byError.0:= bError
byError.1:= bInvalidParameter

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 61Version: 1.2

byError.2:= bErrorGeneral
byError.3:= bErrorLowLimit is TRUE if the lower limit value is undershot.
byError.4:= bErrorHighLimit is TRUE if the upper limit value is exceeded.

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
iHighRange : INT;
iLowRange : INT;
rHighRange : REAL;
rLowRange : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
tFilterTime : TIME;
rOffset : REAL;

iHighRange: upper raw value of the input variable iRawValue. The variable is saved persistently. Preset to
32767.

iLowRange: lower raw value of the input variable iRawValue. The variable is saved persistently. Preset to 0.

rHighRange: the upper scaled measured value. The variable is saved persistently. Preset to 100.

rLowRange: the lower scaled measured value. The variable is saved persistently. Preset to 0.

rHighLimit: if the scaled measured value is larger than the upper limit value rHighLimit, an impermissibly
high measured value can be reached. The function block indicates this error by setting the variable
bErrHighLimit to TRUE. The variable is saved persistently. Preset to 100.

rLowLimit: if the scaled measured value is smaller than the lower limit value rLowLimit, an impermissibly
low measured value can be reached. The function block indicates this error by setting the variable
bErrLowLimit to TRUE. The variable is saved persistently. Preset to 0.

tFilterTime: to avoid large fluctuations and jumps in the measuring signal, the function block is provided with
two 1st order filters. Both filters work with the same time constant. The filter constants are determined by the
variable tFilterTime [s] (0..3600). The variable is saved persistently. Preset to 2 s.

rOffset: with this offset the linear equation determined by means of the two conversion points is shifted
parallel upwards or downwards. The variable is saved persistently. Preset to 0.

With the two value pairs iHighRange/rHighRange and iLowRange/rLowRange a linear conversion of the raw
value into the physical unit takes place.iHighRange and iLowRange correspond to the raw values. rHighLimit
and rLowLimit correspond to the scaled values in the physical unit of the signal to be measured.

The output value is given by:

rPresentValue = [{ (rHighRange - rLowRange) / (iHighRange - iLowRange) } x (iRawValue - iHighRange] +
rHighRange + rOffset

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS800062 Version: 1.2

3.2.2 FB_HVACAnalogOutput

Application

This function block serves to control continuous actuators, such as valves or dampers, with positional
feedback.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rSetpoint : REAL;
bCtrlVoltage : BOOL;
eCtrlModeAnalogOutput : E_HVACAnalogOutputMode;
rYManual : REAL;
rFeedb : REAL;
bFrost : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If the function block is not enabled the value zero
is output at the output rY.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 63Version: 1.2

rSetpoint: the setpoint for the analog output is transferred to the function block with the variable rSetpoint.

bCtrlVoltage: the control voltage is present if the bCtrlVoltage variable is TRUE. The feedback control is
deactivated in the event of failure of the control voltage so that no false alarms occur.

eCtrlModeAnalogOutput: Enum that defines the operation mode.
TYPE E_HVACAnalogOutputMode :
(
eHVACAnalogOutputMode_Auto_BMS := 0,
eHVACAnalogOutputMode_Manual_BMS := 1,
eHVACAnalogOutputMode_Auto_OP := 2,
eHVACAnalogOutputMode_Manual_OP := 3
);
END_TYPE

rYManual: analog input value, which is relayed to the output rY in manual mode.

rFeedb: analog position feedback from the actuator.

bFrost: this input serves to protect an air heater against frost. As soon as the input bFrost is TRUE, rY is set
to the maximum size (rRangeHigh) and iYTerminal to 32767. The outputs rY and iYTerminal remain set until
the input bFrost is FALSE again.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
iYTerminal : INT;
eStateModeAnalogOutput : E_HVACAnalogOutputMode;
bManualMode : BOOL;
byState : BYTE;
bErrorFeedb : BOOL;
bErrorGeneral : BOOL;
byError : BYTE;
bInvalidParameter : BOOL;

rY: indicates the current magnitude of the control signal in %.

iYTerminal: represents the size of the output signal scaled to the value range 0 to 32767.

eStateModeAnalogOutput: Enum that indicates the operation mode.

bManualMode: the analog output is in manual operation mode.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable;
byState.1 := bManualMode;
byState.2 := bFrost;
byState.7 := bCtrlVoltage;

bErrorFeedb: error feedback signal.

bErrorGeneral: this is a collective message for all function block errors.

byError: supplies all error messages and warnings.
byError.1 := bInvalidParameter
byError.2 := bErrorGeneral
byError.3 := bErrorFeedb

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rRangeHigh : REAL;
rRangeLow : REAL;
bDirection : BOOL;
bEnableFeedbCtrl : BOOL;
rHysteresisFeedbCtrl : REAL;
tDelayFeedbCtrl : TIME;

Function blocks

TS800064 Version: 1.2

rRangeHigh/rRangeLow: these two variables define the value range of rY (0%..100%). The variable is
saved persistently.

Example: rSetpoint = 100, rRangeLow = 0, rRangeHigh = 200,
==> rY = 50
==> rYTerminal = 16384

rSetpoint = 200, rRangeLow = 0, rRangeHigh = 200,
==> rY = 100
==> rYTerminal = 32767

bDirection: the output signal of rY is inverted by the variable bDirection. FALSE corresponds to the direct
control direction. The variable is saved persistently.

bEnableFeedbCtrl: continuous actuators often have positional feedback. The function of the actuator is
monitored by means of the positional feedback. Positional feedback monitoring is activated if the variable
bEnableFeedbCtrl is TRUE. The variable is saved persistently.

rHysteresisFeedbCtrl: due to the stroke time of typical drives used in heating and air conditioning systems,
the feedback signal always lags in the case of a setpoint step-change for the position of the actuator. Using
the variable rHysteresisFeedbCtrl, a range is specified within which the position setpoint rY of the actuator
may deviate from the feedback signal (0..32767). The variable is saved persistently.

tDelayFeedbCtrl: if the difference between the set position and the actual position of the actuator is greater
than +/- rHysteresisFeedbCtrl, then the response of the output bErrorFeedb is delayed by the time of the
timer tDelayFeedbCtrl [s] (0s..50s). The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2.3 FB_HVACAnalogOutputEx

Application

This function block is used to control continuous actuators such as valves or dampers with a positional
feedback.
Compared to FB_HVACAnalogOutput, a scaling function is integrated in this function block. The function is:
y=m*x +b.

Function blocks

TS8000 65Version: 1.2

Application example:

Damper actuator operating range 2-10 V with the KL4404 (signal voltage 0-10 V)

rX1 = 0 iY1 = 6553
rX2 = 100 iY2 = 32767

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rSetpoint : REAL;
bCtrlVoltage : BOOL;
eCtrlModeAnalogOutput: E_HVACAnalogOutputMode;
rYManual : REAL;
rFeedb : REAL;
bFrost : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800066 Version: 1.2

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If the function block is not enabled the value zero
is output at the output rY.

rSetpoint: the setpoint for the analog output is transferred to the function block with the variable rSetpoint.

bCtrlVoltage: the control voltage is present if the bCtrlVoltage variable is TRUE. The feedback control is
deactivated in the event of failure of the control voltage so that no false alarms occur.

eCtrlModeAnalogOutput: Enum that defines the operation mode.
TYPE E_HVACAnalogOutputMode :
(
eHVACAnalogOutputMode_Auto_BMS := 0,
eHVACAnalogOutputMode_Manual_BMS := 1,
eHVACAnalogOutputMode_Auto_OP := 2,
eHVACAnalogOutputMode_Manual_OP := 3
);
END_TYPE

rYManual: analog input value, which is relayed to the output rY in manual mode.

rFeedb: analog position feedback from the actuator.

bFrost: this input serves to protect an air heater against frost. As soon as the input bFrost is TRUE, rY is set
to the maximum size (rRangeHigh) and iYTerminal to 32767. The outputs rY and iYTerminal remain set until
the input bFrost is FALSE again.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
iYTerminal : INT;
eStateModeAnalogOutput : E_HVACAnalogOutputMode;
bManualMode : BOOL;
byState : BYTE;
bErrorFeedb : BOOL;
bErrorGeneral : BOOL;
byError : BYTE;
bInvalidParameter : BOOL;

rY: indicates the current magnitude of the control signal in % (0%..100%).

iYTerminal: represents the size of the output signal scaled to the value range 0 to 32767.

eStateModeAnalogOutput: Enum that indicates the operation mode.

bManualMode: the analog output is in manual operation mode.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable;
byState.1 := bManualMode;
byState.2 := bFrost;
byState.7 := bCtrlVoltage;

bErrorFeedb: error feedback signal.

bErrorGeneral: this is a collective message for all function block errors.

Function blocks

TS8000 67Version: 1.2

byError: supplies all error messages and warnings.
byError.1 := bInvalidParameter
byError.2 := bErrorGeneral
byError.3 := bErrorFeedb

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rX2 : REAL;
rX1 : REAL;
iY2 : INT;
iY1 : INT;
bDirection : BOOL;
bEnableFeedbCtrl : BOOL;
rHysteresisFeedbCtrl : REAL;
tDelayFeedbCtrl : TIME;

rX2: upper limit value on the X axis (-32767..32767). The variable is saved persistently.

rX1: lower limit value on the X axis (-32767..32767). The variable is saved persistently.

rY2: upper limit value on the Y axis (0..32767). The variable is saved persistently.

rY1: lower limit value on the Y axis (0..32767). The variable is saved persistently.

bDirection: the output signal of rY is inverted by the variable bDirection. FALSE corresponds to the direct
control direction. The variable is saved persistently.

bEnableFeedbCtrl: continuous actuators often have positional feedback. The function of the actuator is
monitored by means of the positional feedback. Positional feedback monitoring is activated if the variable
bEnableFeedbCtrl is TRUE. The variable is saved persistently.

rHysteresisFeedbCtrl: due to the stroke time of typical drives used in heating and air conditioning systems,
the feedback signal always lags in the case of a setpoint step-change for the position of the actuator. Using
the variable rHysteresisFeedbCtrl, a range is specified within which the position setpoint rY of the actuator
may deviate from the feedback signal (0..32767). The variable is saved persistently.

tDelayFeedbCtrl: if the difference between the set position and the actual position of the actuator is greater
than +/- rHysteresisFeedbCtrl, then the response of the output bErrorFeedb is delayed by the time of the
timer tDelayFeedbCtrl (0s..50s). The variable is saved persistently.

Function blocks

TS800068 Version: 1.2

3.2.4 FB_HVACAnalogTo3Point

Application

This function block serves to convert an analog signal into a three-point step signal. Hence three-point
dampers or valves can be controlled by a controller with a continuous control signal. The function block
FB_HVACAnalogTo3Point works with or without a continuous positional feedback signal from the drive.

Function blocks

TS8000 69Version: 1.2

Example: three-point actuator without feedback and limit switch

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rSetpoint : REAL;
rFeedb : REAL;
bLimitSwitchOpen : BOOL;
bLimitSwitchClose : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;
tTaskCycleTime : TIME;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800070 Version: 1.2

bEnable: the function block is enabled if bEnable = TRUE. If control voltage is present and there are no
errors and bEnable = FALSE, then the output bClose = is TRUE and the output bOpen is FALSE. If the
reference mode eReferencingMode = eHVACReferencingMode_Emulation, then the output bClose remains
set until either the limit switch is reached, the enable signal is present again or there is an error.
If the reference mode eReferencingMode = eHVACReferencingMode_AnalogFeedback, then the output
bClose remains set until either the enable signal is present again, or there is a fault or rFeedback =
rMinSetpoint.

rSetpoint: the setpoint for the position of the damper or the valve is transferred to the function block with the
variable rSetpoint. The parameters rMaxSetpoint and rMinSetpoint define the value range of rSetpoint.
If an incorrect variable value is present at rSetpoint, then the last valid variable value is used, if available. If
there is no valid, last value, then work continues internally with rMinSetpoint. bInvalidParameter is set if the
variable value is incorrect, the function block continues to operate normally.

rFeedb: the input variable rFeedb is only active if the referencing mode of the function block
eReferencingMode = eHVACReferencingMode_AnalogFeedback. The actual position of the drive is fed back
with the scaled input signal rFeedb. The scaling of rFeedb must correspond to the scaling of rSetpoint. The
parameters rMaxSetpoint and rMinSetpoint define the value range of rFeedb. rFeedb is returned to the
controller via the output variable rPosition.
If there is an incorrect variable value at rFeedb, then the last valid variable value is taken, if available. If there
is no valid, last value, then work continues internally with rMinSetpoint. bInvalidParameter is set if the
variable value is incorrect, the function block continues to operate normally.

bLimitSwitchOpen/bLimitSwitchClose: if the three-point actuator has limit switches, these can be
connected to the inputs bLimitSwitchOpen and bLimitSwitchClose.
The limit switches are used by the function block in the referencing mode eReferencingMode =
eHVACReferencingMode_Emulation for referencing. Depending on the direction of driving, the currently
calculated position rPosition is automatically set to the corresponding value of rMaxSetpoint/rMinSetpoint by
a falling edge on one of the two inputs bLimitSwitchOpen/bLimitSwitchClose. This also takes place when the
drive is at a standstill..
Regardless of which referencing mode the function block is in, the associated output bOpenor bClose
remains TRUE after the respective limit position switch has been reached.
The limit switches must be connected to the function block as break contacts. If none exist, a TRUE must be
applied to the two inputs bLimitSwitchOpen/bLimitSwitchClose.

bCtrlVoltage: a check via the input variable bCtrlVoltage is made of whether control voltage is present. Both
outputs bOpen and bClose are set to FALSE in the event of failure of the control voltage. Since many error
messages are based on the quiescent current principle, there would be a torrent of error messages following
failure of the control voltage. Therefore all error messages are suppressed in the event of a control voltage
failure in the FB_HVACAnalogTo3Point.
The control voltage is present if a TRUE is present at input bCtrlVoltage.

bReset: acknowledge input in the event of a fault.

tTaskCycleTime: cycle time with which the function block is called. This corresponds to the task cycle time
of the calling task if the function block is called in every cycle.
If an incorrect time value of T#0s is applied to tTaskCycleTime, then tTaskCycleTime is internally set to
T#1ms. bInvalidParameter is set if the variable value is incorrect.

VAR_OUTPUT
bOpen : BOOL;
bClose : BOOL;
byState : BYTE;
rPosition : REAL;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorLimitSwitch : BOOL;
bInvalidParameter : BOOL;

bOpen: output for opening the three-point actuator.

bClose: output for closing the three-point actuator.

byState: status byte indicating the operating state of the function block.
byState.0 := bEnable
byState.1 := bOpen

Function blocks

TS8000 71Version: 1.2

byState.2 := bClose
byState.3 := bLimitSwitchOpen
byState.4 := bLimitSwitchClose
byState.7 := bCtrlVoltage

rPosition: with rPosition either the measured or the calculated position of the drive is fed back to the
controller.
If eReferencingMode = eHVACReferencingMode_AnalogFeedback, then rFeedb is returned to the controller
via the output variable rPosition. If rFeedb > rMaxSetpoint, then rPosition = rMaxSetpoint and
bInvalidParameter is set. If rFeedb < rMinSetpoint, then rPosition = rMinSetpoint and bInvalidParameter is
set.
If eReferencingMode = eHVACReferencingMode_Emulation, then the actual position of the drive will be
emulated on the basis of a calculation and fed back to the controller via rPosition.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as bErrorGeneralLimitSwitch =
TRUE. The outputs bOpen and bClose are then set to FALSE and are only enabled again when the error
has been rectified and acknowledged via bReset.

byError: returns all error messages and warnings of the function block
byError.1:= bInvalidParameter
byError.2:= bErrorGeneral
byError.3:= bErrorLimitSwitch

bErrorLimitSwitch: becomes TRUE if both limit switches are activated simultaneously or if ((rMaxSetpoint -
rThreshold) < rSetpoint) and bOpen = TRUE) or if ((rMinSetpoint + rThreshold) > rSetpoint) and bClose =
TRUE). The error bErrorLimitSwitch can only occur if eReferencingMode = eEmulation.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables rMinSetpoint,
rMaxSetpoint, rThreshold, rTolerance, tPauseMin, tPauseMax, tInterval, tStrokeTime,
tSwitchOverDeadTime, eReferencingMode, rSetpoint or rFeedback. An incorrect parameter entry does not
lead to a standstill of the function block; see description of variables. After rectifying the incorrect parameter
entry, the message bInvalidParameter must be acknowledged via bReset.

VAR_IN_OUT

VAR_IN_OUT
rMinSetpoint : REAL;
rMaxSetpoint : REAL;
rThreshold : REAL;
rTolerance : REAL;
tPauseMin : TIME;
tPauseMax : TIME;
tInterval : TIME;
tStrokeTime : TIME;
tSwitchOverDeadTime : TIME;
eReferencingMode : E_HVACReferencingMode;

rMinSetpoint/rMaxSetpoint: the parameters rMaxSetpoint (0..32767) and rMinSetpoint (0..32767) define
the value range of rSetpoint . rMaxSetpoint must be greater than rMinSetpoint. In addition, the two variables
rMaxSetpoint and rMinSetpoint are included in the calculation of the variable pulse-pause modulation, see
Figure 1.1.
If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, operation continues with the preset value. bInvalidParameter is set if the parameter is
incorrect, the function block continues to operate normally. The variables are stored persistently.
rMinSetpoint preset to 0. rMaxSetpoint preset to 100.

rThreshold/rTolerance: if the difference between the position setpoint rSetpoint and the calculated or
measured actual position value rPosition of the actuator is greater than the threshold value set by the
variable rThreshold (0.001..32767), then the function block begins to correct the position by cycling the
outputs bOpen or bClose, depending on the control deviation value. Correction continues until the deviation
is smaller than the value rTolerance (0.001..32767). A hysteresis loop for the opening and closing movement
of the drive is defined by the value of rThreshold – rTolerance . This is necessary in order to prevent the
drive reacting to the smallest changes of the control value. Wear on the drive and the relay is thus reduced.
rThreshold must be greater than rTolerance.
rSetpoint - rPosition > = rThreshold control of bOpen
rPosition- rSetpoint > = rThreshold control of bClose

Function blocks

TS800072 Version: 1.2

If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the preset value is used. bInvalidParameter is set if the parameter is incorrect, the function
block continues to operate normally. The variables are stored persistently. rThreshold preset to 5.0.
rTolerance preset to 2.0.

tPauseMin/tPauseMax/tInterval: a variable pulse/pause modulation for cycling the three-point actuator can
be set with the parameters tPauseMin [s] (0..3600), tPauseMax [s] (0..3600)and tInterval [s] (0..3600). The
pause length is defined as a function of the control deviation by the parameters tPauseMin and tPauseMax.
In the case of a small deviation the pause time is long in relation to the interval time. Analogously, the pause
time is short if the deviation is large. The effective driving speed of the three-point actuator is thus higher for
larger control deviations than it is for smaller ones; see following fig. The following condition must be fulfilled
in any case: tPauseMin < tPauseMax < tInterval
If a wrong variable value is present, then the last valid variable value is used, if available. If there is no valid
last value, then the preset value is used. bInvalidParameter is set if the parameter is incorrect, the function
block continues to operate normally. The variables are stored persistently. tPauseMin preset to 2s.
tPauseMax preset to 8s. tInterval preset to 10s.

tStrokeTime: the variable tStrokeTime specifies the complete stroke time of the drive. If the drive has no
continuous position feedback, the actual position of the drive will be emulated on the basis of a calculation.
For this reason the precise input of the total stroke time of the actuator is important. The following condition
must be met in any case: tStrokeTime > tInterval
If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, then the preset value is used. bInvalidParameter is set if the parameter is incorrect, the
function block continues to operate normally. The variable is saved persistently. Preset to 200 s.

tSwitchOverDeadTime: dwell time at a change of direction (0..3600). During this time, both outputs are
reset.
If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the preset value is used. bInvalidParameter is set if the parameter is incorrect, the function
block continues to operate normally. The variable is saved persistently. Preset to 500 ms.

eReferencingMode: Enum via which the referencing mode of the function block is specified.
Depending on the equipment of the actuator used, the position is referenced depending on
eReferencingMode.
If eReferencingMode = eHVACReferencingMode_Emulation, then the position of the actuator is calculated
on the basis of the control of bOpen and bClose by means of tStrokeTime. However, as the operating hours
of the three-point valve or three-point damper increase, deviations could occur due to mechanical
inaccuracies in the drive. In order to achieve automatic matching of the actual and calculated positions, one
of the outputs bOpen or bClose will be set to TRUE upon reaching the calculated position rPosition of
rMaxSetpoint or rMinSetpoint and it is correspondingly given the value of the parameter rMaxSetpoint or
rMinSetpoint. A falling edge on the signal inputs bLimitSwitchOpenand bLimitSwitchClose is used to
reference the position of the drive to rMaxSetpoint or rMinSetpoint. After reaching the respective limit switch,
the corresponding output bOpenor bClose will remain set to TRUE.
If eReferencingMode = eHVACReferencingMode_AnalogFeedback the position of the drive is transferred by
means of the signal rFeedback. After reaching the respective limit switch, the corresponding output bOpenor
bClose will remain set to TRUE.
If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, then the preset value is used. bInvalidParameter is set if the parameter is incorrect, the
function block continues to operate normally. The variable is saved persistently. Preset to 0.

Function blocks

TS8000 73Version: 1.2

Fig. 1.1

Example

tInterval 120 seconds
tPauseMin 10 seconds
tPauseMax 60 seconds

rSetpoint 100%
rPosition 50%
tPauseInterval / bClose OR bOpen 35 seconds/85 seconds

rSetpoint 50%
rPosition 25%
tPauseInterval / bClose OR bOpen 47.5 seconds/72.5 seconds

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS800074 Version: 1.2

3.2.5 FB_HVACConfigureKL32xx

Application

With the function block FB_HVACConfigureKL32xx, the type of sensor of a channel of the KL3201/02/04, the
KL3208-0010 or the KL3228 can be set from the PLC. To do this, the variables byStatusKL32xx,
iDataInKL32xx, byCtrlKL32xx and iDataOutKL32xx must be linked in the TwinCAT System Manager with the
variables Status, Data In, Control and Data Out of a channel of the KL3201/02/04 or the KL3228.
The resistor elements specified in Table 1 can be selected with the Enum eSensorType.
The KS2000 configuration software is no longer needed for setting the temperature sensor.

When measuring resistances from 10 to 5000 Ω with the KL32xx, 1 digit = 0.5 Ω, i.e. the indicated
raw value must be divided by 2 in the PLC. Example: 2500 Ω would be represented in the controller
by a raw value of 5000. The raw value must be divided by 2 in the PLC in order to arrive at the
ohmic value of 2500 Ω.

The measurement of resistances from 10 to 10000 Ω is possible only with the special terminal
KL320x-0027. Exclusively the resistance measurement 10...10000 Ω can be performed on this
special terminal.

The EL3692 EtherCAT Terminal is a resistance measurement terminal that covers the measuring
range up to 10 MΩ.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
byStatusKL32xx : BYTE;
iDataInKL32xx : INT;
bSetSensor : BOOL;
bScanSensor : BOOL;
eSensorType : E_HVACSensorType;
tTimeOut : TIME;

byStatusKL32xx: the status byte (Status) of the Bus Terminal must be assigned here in the TwinCAT
System Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor. If scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor,
then this is indicated with a TRUE on bReady and byOutStatus := byStatusKL32xx. If scanning or setting is
activated, bReady = FALSE, then the value of byStatusKL32xx present before activation is output on
byOutStatus.

Function blocks

TS8000 75Version: 1.2

iDataInKL32xx: the raw value (Data In) of the Bus Terminal must be assigned here in the TwinCAT System
Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor. If scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor,
then this is indicated with a TRUE on bReady and iOutDataIn := iDataInKL32xx . If scanning or setting is
activated, bReady = FALSE, then the value of iDataInKL32xx present before activation is output on
iOutDataIn.

bSetSensor: the type of sensor specified on the Enum eSensorType is set in the Bus Terminal with a rising
edge on bSetSensor. If the procedure has been concluded, scanning is activated internally in the function
block and the type of sensor that has been set is indicated via the Enum eStatusScanSensorType.

bScanSensor: the scanning of the respective channel of the Bus Terminal is activated by a rising edge on
bScanSensor. The type of sensor that has been set is indicated via the Enum eStatusScanSensorType.

eSensorType: Enum with which the sensor type for the respective channel is specified for setting via
bSetSensor.

tTimeOut: specifies the time until the abortion of the function and bErrorCommunication goes TRUE. If no
time is specified, then T#5s is used internally in the function block.

VAR_OUTPUT
bReady : BOOL;
byOutStatus : BYTE;
iOutDataIn : INT;
byCtrlKL32xx : BYTE;
iDataOutKL32xx : INT;
eBusTerminalKL32xx : E_HVACBusTerminal_KL32xx;
eStatusScanSensorType : E_HVACSensorType;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorCommunication : BOOL;
bErrorBusTerminalNotSupported: BOOL;
bErrorSensorType : BOOL;
bErrorScanSensor : BOOL;

bReady: if the function block is activated via a rising edge on bSetSensor/bScanSensor, then bReady goes
FALSE. If scanning or the setting of the type of sensor has been concluded, then bReady goes TRUE.

byOutStatus: if scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor,
then this is indicated with a TRUE on bReady and byOutStatus := byStatusKL32xx. If scanning or setting is
activated, bReady = FALSE, then the value of byStatusKL32xx present before activation is output on
byOutStatus.

iOutDataIn: if scanning or setting has been concluded with a rising edge on bSetSensor/bScanSensor, then
this is indicated with a TRUE on bReady and iOutDataIn := iDataInKL32xx . If scanning or setting is
activated, bReady = FALSE, then the value of iDataInKL32xx present before activation is output on
iOutDataIn.

byCtrlKL32xx: the control byte (control) of the Bus Terminal must be assigned here in the TwinCAT System
Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor.

iDataOutKL32xx: the data output (Data Out) of the Bus Terminal must be assigned here in the TwinCAT
System Manager for the respective channel. If this is not the case, then this is indicated as an error with
bErrorCommunication if the function block has been activated with a rising edge on bSetSensor/
bScanSensor.

eBusTerminalKL32xx: Enum that displays the type of Bus Terminal if the function block has been activated
with a rising edge on bSetSensor/bScanSensor.

eStatusScanSensorType: Enum that displays the type of sensor for the respective channel if the function
block has been activated with a rising edge on bSetSensor/bScanSensor.

bErrorGeneral: goes TRUE as soon as either bErrorCommunication, bErrorBusTerminalNotSupported,
bErrorSensorType or bErrorScanSensor is TRUE.

Function blocks

TS800076 Version: 1.2

byError: returns all error messages and warnings of the function block
byError.2 := bErrorGeneral;
byError.3 := bErrorCommunication;
byError.4 := bErrorBusTerminalNotSupported;
byError.5 := bErrorSensorType;
byError.6 := bErrorScanSensor;

bErrorCommunication: goes TRUE if, for example, the variables byCtrlKL32xx, iDataOutKL32xx,
byStatusKL32xx and iDataInKL32xx have not been assigned to a channel of the Bus Terminal.
Communication to the Bus Terminal is then interrupted during scanning or the setting of the type of sensor.
bErrorCommunication likewise goes TRUE if the tTimeOut time is not sufficient when scanning or setting the
sensor type.

bErrorBusTerminalNotSupported: becomes TRUE if the Bus Terminal is not supported by the function
block.

bErrorSensorType: becomes TRUE if the type of sensor specified at eSensorType is not supported by the
Bus Terminal.

bErrorScanSensor: becomes TRUE if, when scanning, the type of sensor is not supported by the Bus
Terminals specified in the Enum eBusTerminalKL32xx.

Table 1: Table 1: types of sensor selectable via the Enum eTemperatureCharacteristic

Sen-
sor
type

KL3201/2/4-0
000

KL3201/2/4-0
010

KL3201/2/4-0
012

KL3201/2/4-0
014

KL3201/2/4-0
016

KL3201/2/4-0
020

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

PT100 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

PT200 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

PT500 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

PT100
0

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

Ni100 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

Ni120 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

Ni100
0(DIN)

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

Ni100
0(Tk50
00,LS)

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

Resist
ance
measu
remen
t 10 ...
1200
Ω

x x x x x x

Resist
ance
measu
remen
t 10 ...
5000
Ω

x x x x x x

Function blocks

TS8000 77Version: 1.2

Sen-
sor
type

KL3201/2/4-0
000

KL3201/2/4-0
010

KL3201/2/4-0
012

KL3201/2/4-0
014

KL3201/2/4-0
016

KL3201/2/4-0
020

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

PT100 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

PT200 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

Resist
ance
measu
remen
t 10 ...
10000
Ω

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

Sensor
type

KL3201/2/4-00
23

KL3201/2/4-00
25

KL3201/2/4-00
29

KL3201/2/4-00
31

KL3228 KL3208-0010

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

PT100 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

not
suppor
ted

not
suppor
ted

PT200 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

not
suppor
ted

not
suppor
ted

PT500 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

not
suppo
rted

not
suppo
rted

PT100
0

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/100
°C

Ni100 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

not
suppo
rted

not
suppo
rted

Ni120 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

not
suppo
rted

not
suppo
rted

Ni100
0(DIN)

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/100
°C

Ni100
0(Tk50
00,LS)

not
suppo
rted

not
suppo
rted

x 1/10 °
C

not
suppo
rted

x 1/10 °
C

x 1/100
°C

Resist
ance
measu
remen
t 10 ...
1200
Ω

x x x x not
suppo
rted

not
suppo
rted

Resist
ance
measu
remen
t 10 ...
5000
Ω

x x x x not
suppo
rted

not
suppo
rted

Function blocks

TS800078 Version: 1.2

Sen-
sor
type

KL3201/2/4-0
000

KL3201/2/4-0
010

KL3201/2/4-0
012

KL3201/2/4-0
014

KL3201/2/4-0
016

KL3201/2/4-0
020

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

Raw
value

PT100 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

PT200 x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

x 1/10 °
C

Resist
ance
measu
remen
t 10 ...
10000
Ω

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

not
suppo
rted

3.2.6 FB_HVACScale

Application

A raw analog value is scaled to the specified measuring range and returned as the function value. If the raw
value extends beyond the upper or lower measuring range, the corresponding limit value is output. There
must be a difference of at least 0.01 between the upper and lower limit values for the raw data. If this is not
the case, the lower limit value is output. The difference between the limits is necessary so as to avoid
division by zero during the internal calculation of the linear equation.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
rRawData : REAL;

Function blocks

TS8000 79Version: 1.2

eDataSecurityType:if eDataSecurityType [} 520]:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

rRawData: raw value from the terminal.

VAR_OUTPUT
rScaledValue : REAL;

rScaledValue: scaled value.

VAR_IN_OUT
rRawDataLowOffLimit : REAL;
rRawDataHighOffLimit : REAL;
rScaleDataLowOffLimit : REAL;
rScaleDataHighOffLimit : REAL;

rRawDataLowOffLimit: lower limit from raw value. Preset to 0.

rRawDataHighOffLimit: upper limit from raw value. Preset to 32767.

rScaleDataLowOffLimit: lower limit of the scaled measured value. Preset to 0.

rScaleDataHighOffLimit: upper limit of the scaled measured value. Preset to 100.

Example in FBD:

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800080 Version: 1.2

3.2.7 FB_HVACScale_nPoint

Application

Curves can be reproduced in the PLC with the function block FB_HVACScale_nPoint. These can be, for
example, positive or negative temperature coefficients (PTC/NTC). The analog raw resistance value of a
PTC/NTC is applied to the input rX and output as a temperature value via the output rY. The individual
parameters and the number of individual points of the X-Y axis of the characteristic curve are specified with
the structure stParameterScale_nPoint.
The KL32xx Bus Terminals can be used to display analog raw resistance values in the PLC. Detailed
information can be found in the documentation on FB_HVACConfigureKL32xx [} 74].

When measuring resistances from 10 to 5000 Ω with the KL32xx, 1 digit = 0.5 Ω, i.e. the indicated
raw value must be divided by 2 in the PLC. Example: 2500 Ω would be represented in the controller
by a raw value of 5000. The raw value must be divided by 2 in the PLC in order to arrive at the
ohmic value of 2500 Ω.

The measurement of resistances from 10 to 10000 Ω is possible only with the special terminal
KL320x-0027. Exclusively the resistance measurement 10...10000 Ω can be performed on this
special terminal.

The EL3692 EtherCAT Terminal is a resistance measurement terminal that covers the measuring
range up to 10 MΩ.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
rX : REAL;
stParameterScale_nPoint: ST_HVACParameterScale_nPoint;

rX: raw value that scales to the indicated measured value of the structure stParameterScale_nPoint and is
output via rY. The raw value can be, for example, the raw resistance value of the KL32xx. The terminal must
be set to resistance measurement for this. Detailed information on the procedure can be found in the
documentation FB_HVACConfigureKL32xx [} 74].

stParameterScale_nPoint: structure via which the individual points of the X-Y coordinates are given their
valency. Regardless of which curve is to be reproduced, the following conditions must be met: either
stParameterScale_nPoint.rX[1] < stParameterScale_nPoint.rX[2] < stParameterScale_nPoint.rX[n] OR
stParameterScale_nPoint.rX[1] > stParameterScale_nPoint.rX[2] > stParameterScale_nPoint.rX[n].
stParameterScale_nPoint.iNumberOfPoint must not be smaller than 2 OR larger than
g_iMaxNoOfScale_nPoint(60).
stParameterScale_nPoint.rX[1..iNumberOfPoint] - array which contains the valence of the single points of
the X axis. The number of points specified depends on iNumberOfPoint.
stParameterScale_nPoint.rY[1..iNumberOfPoint] - array containing the valency of the individual points on
the Y axis. The number of points specified depends on iNumberOfPoint.

Function blocks

TS8000 81Version: 1.2

VAR_OUTPUT
rY : REAL;
stStateParameterScale_nPoint: ST_HVACParameterScale_nPoint;
bErrorNumberOfPoint : BOOL;
bErrorParameter : BOOL;
uiErrorPositionX_Parameter : INT;

rY: rY is the scaled temperature value of the specified raw value rX.

stStateParameterScale_nPoint: state of the structure stParameterScale_nPoint. If bErrorNumberOfPoint or
bErrorParamter = TRUE, the status of the individual parameters in the structure
stStateParameterScale_nPoint = 0. If stParameterScale_nPoint.iNumberofPoint = 20, the individual
parameters of stStateParameterScale_nPoint.rX[1..20] / stStateParameterScale_nPoint.rY[1..20] are
displayed, from 21 to 60 the status = 0.

bErrorNumberOfPoint: If iNumberOfPoint < 2 or iNumberOfPoint > g_iMaxNoOfScale_nPoint, then
bErrorNumberOfPoint = TRUE and 0 is output at the output variable rY. If the error has been rectified, then
bErrorNumberOfPoint goes FALSE.

bErrorParameter: when parameterizing the structure stScaleTemperatureCharacteristic care must be taken
that either
stParameterScale_nPoint.rX[1] > stParameterScale_nPoint.rX[2] > stParameterScale_nPoint.rX[n] OR
stParameterScale_nPoint.rX[1] < stParameterScale_nPoint.rX[2] < stParameterScale_nPoint.rX[n].
If this is not adhered to, bErrorParameter goes TRUE. If the error has been rectified, then bErrorParameter
goes FALSE. The exact field position in the array stParameterScale_nPoint.rX[uiErrorPositionX_Parameter]
is specified via the output variables uiErrorPositionX_Parameter.

uiErrorPositionX_Parameter: if bErrorParameter = TRUE, then the exact field position in the array
stParameterScale_nPoint.rX[uiErrorPositionX_Parameter] at which the error has occurred is indicated by
uiErrorPositionX_Parameter.

VAR_GLOBAL CONSTANT
g_iMaxNoOfScale_nPoint: INT := 60;

g_iMaxNoOfScale_nPoint: global constant that specifies the maximum number of points of the XY
coordinates of the structure SST_HVACParameterScale_nPoint [} 526].

Formulas for the linear equation, two-point form:

m = gradient

m = (Y2 - Y1) / (X2 - X1)

m = (stParameterScale_nPoint.rY[2] - stParameterScale_nPoint.rY[1]) /
(stParameterScale_nPoint.rX[2] - stParameterScale_nPoint.rX[1])

Y = Y1 + m * (X - X1)

rY = rY[1] + m * (rX - stParameterScale_nPoint.rX[1]

Function blocks

TS800082 Version: 1.2

Example curve 1 with calculation

Fig. 1: FB_HVACScale_nPoint_2

m = rM = slope
X = rX = 1199.8
X2 = stParameterScale_nPoint.rX[2] = 1209
X3 = stParameterScale_nPoint.rX[3] = 1163
Y2 = stParameterScale_nPoint.rY[2] = 20
Y3 = stParameterScale_nPoint.rY[3] = 21

m = (Y3 - Y2) / (X3 - X2)

rM = (stParameterScale_nPoint.rY[3] - stParameterScale_nPoint.rY[2]) /
(stParameterScale_nPoint.rX[3] - stParameterScale_nPoint.rX[2])

rM = (21 - 20) / (1163 - 1209) = -0.02174

Y = Y2 + m * (X - X2)

rY = stParameterScale_nPoint.rY[2] + rM * (rX - stParameterScale_nPoint.rX[2])

rY = 20 + -0.02174 * (1199.8 - 1209) = 20.2

Function blocks

TS8000 83Version: 1.2

Example curve 2 with calculation

m = rM = slope
X = rX = 1124
X3 = stParameterScale_nPoint.rX[2] = 1112
X4 = stParameterScale_nPoint.rX[3] = 1142
Y3 = stParameterScale_nPoint.rY[2] = 20
Y4 = stParameterScale_nPoint.rY[3] = 25

m = (Y4 - Y3) / (X4 - X3)

rM = (stParameterScale_nPoint.rY[4] - stParameterScale_nPoint.rY[3]) /
(stParameterScale_nPoint.rX[4] - stParameterScale_nPoint.rX[3])

rM = (25 - 20) / 1142 - 1112) = 0.166

Y = Y3 + m * (X - X3)

rY = stParameterScale_nPoint.rY[3] + rM * (rX - stParameterScale_nPoint.rX[3])

rY = 20 + 0.166 * (1124 - 1112) = 21.992

Function blocks

TS800084 Version: 1.2

Example curve 3

3.2.8 FB_HVACTemperatureCurve

Application

A temperature curve stored internally in the function block is selected from Tables 1 and 2 via the Enum
eTemperatureCurve and output via the structure stParameterScale_nPoint. Characteristic curves can then
be reproduced with this structure in conjunction with the function block FB_HVACScale_nPoint [} 80]. In order
to arrive at the raw resistance value of a sensor, the KL32xx Bus Terminals must be set to resistance
measurement; see FB_HVACConfigureKL32xx [} 74].

When measuring resistances from 10 to 5000 Ω with the KL32xx, 1 digit = 0.5 Ω, i.e. the indicated
raw value must be divided by 2 in the PLC. Example: 2500 Ω would be represented in the controller
by a raw value of 5000. The raw value must be divided by 2 in the PLC in order to arrive at the
ohmic value of 2500 Ω.

The measurement of resistances from 10 to 10000 Ω is possible only with the special terminal
KL320x-0027. Exclusively the resistance measurement 10...10000 Ω can be performed on this
special terminal.

Function blocks

TS8000 85Version: 1.2

The EL3692 EtherCAT Terminal is a resistance measurement terminal that covers the measuring
range up to 10 MΩ.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eTemperatureCurve : E_HVACTemperatureCurve;

eTemperatureCurve: Enum via which a temperature curve stored internally in the function block can be
selected from Tables 1 and 2.

VAR_OUTPUT
stParameterScale_nPoint : ST_HVACParameterScale_nPoint;

stParameterScale_nPoint: structure containing the number of points and their valence of the X-Y
coordinates. stParameterScale_nPoint contains the characteristic curves stored in the tables 1 and 2
depending on the specification via the Enum eTemperatureCurve.

Example:

eTemperatureCurve = eHVACTemperatureCurve_Ni1000Tk5000_TCR
stParameterScale_nPoint.iNumberOfPoint := 56;
stParameterScale_nPoint.rX[1] := 790.8;
stParameterScale_nPoint.rY[1] := -50.0;
stParameterScale_nPoint.rX[2] := 826.8;
stParameterScale_nPoint.rY[2] := -40.0;
.
.
.
stParameterScale_nPoint.rX[56] :=1625.4;
stParameterScale_nPoint.rY[56] := 120.0;
stParameterScale_nPoint.rX[57] :=0;
stParameterScale_nPoint.rY[57] := 0;
.
.
.
stParameterScale_nPoint.rX[60] :=0;
stParameterScale_nPoint.rY[60] := 0;

Table 2: Table 1: specified temperature curves, selectable via the Enum eTemperatureCurve

S+S
Sensor
type
1K3 A1
NTC 1
kOhm

S+S
Sensor
type
1.8K3 A1
NTC 1.8
kOhm

S+S
Sensor
type
2.2K3 A1
NTC 2.2
kOhm

S+S
Sensor
type
3.3K3 A1
NTC 3
kOhm

S+S
Sensor
type
NI1000
DIN

S+S
Sensor
type
PT1000
DIN

S+S
Sensor
type
Ni1000/
TCR
(LAN1)
Ni1000Tk5
000

eHVACTe
mpera-
tureChar-
acteristic_

NTC1k_3_
A1

NTC1k8_3
_A1

NTC2k2_3
_A1

NTC3k3_3
_A1

Ni1000_DI
N

Pt1000_DI
N

Ni1000Tk5
000_TCR

°C Ω Ω Ω Ω Ω Ω Ω
- 50 32886 743 803 790.8
- 40 18641 791 843 826.8

Function blocks

TS800086 Version: 1.2

S+S
Sensor
type
1K3 A1
NTC 1
kOhm

S+S
Sensor
type
1.8K3 A1
NTC 1.8
kOhm

S+S
Sensor
type
2.2K3 A1
NTC 2.2
kOhm

S+S
Sensor
type
3.3K3 A1
NTC 3
kOhm

S+S
Sensor
type
NI1000
DIN

S+S
Sensor
type
PT1000
DIN

S+S
Sensor
type
Ni1000/
TCR
(LAN1)
Ni1000Tk5
000

eHVACTe
mpera-
tureChar-
acteristic_

NTC1k_3_
A1

NTC1k8_3
_A1

NTC2k2_3
_A1

NTC3k3_3
_A1

Ni1000_DI
N

Pt1000_DI
N

Ni1000Tk5
000_TCR

°C Ω Ω Ω Ω Ω Ω Ω
- 30 11130 21695 27886 53093 842 882 871.7
- 20 6777 12987 16502 29125 893 922 913.4
- 15 5341 10153 12844 21887 920 941 934.7
- 10 4247 8011 10070 16599 946 961 956.2
- 5 3390 6347 8134 12698 973 980 978
0 2728 5071 6452 9795 1000 1000 1000
1 2613 4851 6164 9309 1004.4
2 2503 4640 5891 8849 1008.9
3 2399 4441 5631 8415 1013.3
4 2300 4252 5384 8005 1017.8
5 2205 4071 5150 7617 1028 1020 1022.3
6 2115 3899 4927 7251 1026.7
7 2030 3738 4715 6905 1031.2
8 1948 3582 4513 6575 1035.8
9 1870 3434 4321 6265 1040.3
10 1796 3294 4138 5971 1056 1039 1044.8
11 1724 3158 3964 5691 1049.3
12 1656 3029 3797 5427 1053.9
13 1590 2905 3639 5177 1058.4
14 1528 2788 3488 4938 1063
15 1469 2677 3345 4713 1084 1058 1067.6
16 1412 2570 3207 4500 1072.2
17 1358 2468 3076 4298 1076.8
18 1306 2371 2952 4104 1081.4
19 1256 2277 2832 3922 1086
20 1209 2189 2719 3747 1112 1078 1090.7
21 1163 2103 2610 3582 1095.3
22 1120 2023 2506 3426 1100
23 1078 1945 2407 3277 1104.6
24 1038 1871 2289 3135 1109.3
25 1000 1800 2200 3000 1142 1098 1114
26 963 1732 2115 2872 1120
27 928 1667 2034 2750 1123.4
28 894 1604 1957 2634 1128.1
29 862 1545 1883 2522 1132.9
30 831 1488 1812 2417 1171 1117 1137.6
35 694 1235 1500 1960 1200 1136 1161.5
40 583 1031 1248 1597 1230 1155 1185.7

Function blocks

TS8000 87Version: 1.2

S+S
Sensor
type
1K3 A1
NTC 1
kOhm

S+S
Sensor
type
1.8K3 A1
NTC 1.8
kOhm

S+S
Sensor
type
2.2K3 A1
NTC 2.2
kOhm

S+S
Sensor
type
3.3K3 A1
NTC 3
kOhm

S+S
Sensor
type
NI1000
DIN

S+S
Sensor
type
PT1000
DIN

S+S
Sensor
type
Ni1000/
TCR
(LAN1)
Ni1000Tk5
000

eHVACTe
mpera-
tureChar-
acteristic_

NTC1k_3_
A1

NTC1k8_3
_A1

NTC2k2_3
_A1

NTC3k3_3
_A1

Ni1000_DI
N

Pt1000_DI
N

Ni1000Tk5
000_TCR

°C Ω Ω Ω Ω Ω Ω Ω
45 491 865 1043 1310 1261 1175 1210.2
50 416 729 876 1081 1291 1194 1235
55 354 616 738 896 1322 1213 1260.1
60 302 524 626 746 1353 1232 1285.4
65 259 447 532 625 1385 1252 1311.1
70 223 383 454 526 1417 1271 1337.1
75 192 329 390 444 1450 1290 1363.5
80 167 284 335 346 1483 1309 1390.1
85 145 246 289 321 1516 1328 1417.1
90 127 214 251 275 1549 1347 1444.4
95 111 187 218 236 1584 1366 1472
100 97 163 190 204 1618 1385 1500
105 88 143 167 176 1528.3
110 76 126 146 138 1688 1423 1557
115 111 120 1586
120 99 105 1760 1461 1625.4
125 88 92
130 80 1833 1498
140 62 64 1909 1536
150 50 50 1987 1573
160 2066 1611
170 2148 1648
180 2232 1685
190 1722
200 1758
210 1795
220 1832
230 1868
240 1905
250 1941
260 1977
270 2013
280 2049
290 2085
300 2121
310 2156
320 2191
330 2227

Function blocks

TS800088 Version: 1.2

S+S
Sensor
type
1K3 A1
NTC 1
kOhm

S+S
Sensor
type
1.8K3 A1
NTC 1.8
kOhm

S+S
Sensor
type
2.2K3 A1
NTC 2.2
kOhm

S+S
Sensor
type
3.3K3 A1
NTC 3
kOhm

S+S
Sensor
type
NI1000
DIN

S+S
Sensor
type
PT1000
DIN

S+S
Sensor
type
Ni1000/
TCR
(LAN1)
Ni1000Tk5
000

eHVACTe
mpera-
tureChar-
acteristic_

NTC1k_3_
A1

NTC1k8_3
_A1

NTC2k2_3
_A1

NTC3k3_3
_A1

Ni1000_DI
N

Pt1000_DI
N

Ni1000Tk5
000_TCR

°C Ω Ω Ω Ω Ω Ω Ω
340 2262
350 2297
360 2332
370 2367
380 2401
390 2436
400 2470

Table 3: Table 2: specified temperature curves, selectable via the Enum eTemperatureCurve

Thermokon
Sensor type

NTC 1.8 kOhm

Thermokon
Sensor type

Ni1000 Tk5000

eHVACTemperatureCharacteris-
tic_

NTC1K8 Ni1000Tk5000

°C Ω Ω
- 50 790.88
- 40 830.83
- 30 24500 871.69
- 20 14000 913.48
- 10 8400 956.24
0 5200 1000
10 3330 1044.79
20 2200 1090.65
25 1800 1113.99
30 1480 1137.61
40 1040 1185.71
50 740 1234.97
60 540 1285.44
70 402 1337.14
80 306 1390.12
90 240 1444.39
100 187 1500
110 149 1556.98
120 118 1615.36
130 95 1675.18
140 77 1736.47
150 64 1799.26

Function blocks

TS8000 89Version: 1.2

3.2.9 FB_HVACTemperatureSensor

Application

This function block serves the acquisition and further processing of temperature values for sensor types
PT100, PT200, PT1000, NI100, NI120 and NI1000. The function block FB_HVACTemperatureSensor is
matched to the KL320x Bus Terminals. These Bus Terminals can either be ordered preconfigured or set to
the corresponding sensor types in the software.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
iRawValue : INT;
byStatusRawValue : BYTE;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
bEnableLimitCtrl : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

iRawValue: raw value of the temperature sensor in 1/10 °C from the Bus Terminal.

byStatusRawValue: status byte of the temperature sensor from the Bus Terminal. Serves for error
diagnosis, e.g. wire break or short circuit.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800090 Version: 1.2

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task. tTaskCycleTime must be longer than T#0ms.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the 2nd order filter is
processed internally. The cycle time tCtrlCycleTime must be greater than or equal to tTaskCycleTime. If this
is not the case, an error bErrorCycleTime occurs and either the replacement value rReplacementValue or
the last valid measured value will be output at rPresentValue, depending on the mode
eTemperatureSensorMode that is set.

bEnableLimitCtrl: enables rHighLimit and rLowLimit for limit monitoring

bReset: acknowledge input in the event of an error. In addition the 2nd order filter can be synchronized via
this input to the present measuring signal, so that this can be output at rPresentValue.

VAR_OUTPUT
rPresentValue : REAL;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorShortCircuit : BOOL;
bErrorBrokenSensor : BOOL;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bErrorCycleTime : BOOL;
bInvalidParameter : BOOL;

rPresentValue: temperature output variable with one decimal place, rPresentValue = (iRawValue / 10.0) +
rOffset, if bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue depends on the operation
mode eTemperatureSensorMode.

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorHighLimit, bErrorLowLimit, bErrorCycleTime, bErrorShortCircuit or bErrorBrokenSensor = TRUE. The
value of the output variable rPresentValue is then dependent on the operation mode
eTemperatureSensorMode and is enabled once the error has been rectified and, depending on the operation
mode, acknowledged with bReset.

byError: returns all error messages and warnings,
byError.1 := bInvalidParameter
byError.2 := bErrorGeneral
byError.3 := bErrorHighLimit
byError.4 := bErrorLowLimit
byError.5 := bErrorShortCircuit
byError.6 := bErrorBrokenSensor
byError.7 := bErrorCycleTime

bErrorShortCircuit: error, short circuit at the connected temperature sensor. After rectification of the error,
acknowledgment depends on the operation mode.

bErrorBrokenSensor: error, wire break in the connected temperature sensor. After rectification of the error,
acknowledgment depends on the operation mode.

bErrorHighLimit: warning upper limit value exceeded; becomes TRUE if rPresentValue >= rHighLimit. The
warning that the upper limit value has been exceeded can only be acknowledged if rPresentValue <=
rHighLimit - 1.0 for a time duration of 5 seconds.

bErrorLowLimit: warning lower limit value undershot; becomes TRUE if rPresentValue <= rLowLimit. The
warning that the lower limit value has been undershot can only be acknowledged if rPresentValue >=
rLowLimit + 1.0 for a time duration of 5 seconds

bErrorCycleTime: error caused by an incorrect time input at the input variables tTaskCycleTime and
tCtrlCycleTime, which must be acknowledged after rectification of the error.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables rOffset,
rHighLimit, rLowLimit, rReplacementValue, tFilterTime and eTemperatureSensorMode. An incorrect
parameter specification does not lead to a standstill of the function block; see description of variables. After
rectifying the incorrect parameter entry, the message bInvalidParameter must be acknowledged via bReset.

Function blocks

TS8000 91Version: 1.2

VAR_IN_OUT
rOffset : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
rReplacementValue : REAL;
tFilterTime : TIME;
eTemperatureSensorMode : E_HVACTemperatureSensorMode;

rOffset: temperature compensation in Kelvin (-50..+50), rPresentValue = (iRawValue / 10.0) + rOffset. The
variable is saved persistently. Preset to 0.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used.
bInvalidParameter will be set in the event of an incorrect parameter entry.

rHighLimit: upper limit (-250..+850), if rPresentValue >= rHighLimit, then the output bErrorHighLimit is set.
rHighLimit must be greater than rLowLimit. The variable is saved persistently. Preset to 120.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect
parameter entry.

rLowLimit: lower limit (-250..+850), if rPresentValue <= rLowLimit, then the output bErrorLowLimit is set.
The variable is saved persistently. Preset to -60.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

rReplacementValue: replacement value (-250..+850), that is output at rPresentValue in the case of the
errors bErrorShortCircuit and bErrorBrokenSensor, if the selected operation mode
eTemperatureSensorMode = eHVACTemperatureSensorMode_ReplacementValue or
eTemperatureSensorMode = eHVACTemperatureSensorMode_AutoResetReplacementValue. The variable
is saved persistently. Preset to 0..
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect
parameter entry.

tFilterTime: filter constant (1ms..100s). To avoid large fluctuations and jumps in the measuring signal, the
function block is provided with a 2nd order filter. Upon a restart of the controller, or following correction of the
error bErrorShortCircuit or bErrorBrokenSensor, the 2nd order filter is synchronized immediately and
additionally after 2 seconds with the present measuring signal, so that the latter is output at rPresentValue.
The measuring signal can be synchronized via the input bReset during running operation. The variable is
saved persistently. Preset to 10 s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

eTemperatureSensorMode: Enum that specifies the operation mode of the function block. The variable is
saved persistently. Preset to 3%.

eTemperatureSensorMode = eHVACTemperatureSensorMode_ReplacementValue: if bErrorShortCircuit or
bErrorBrokenSensor = TRUE, then rPresentValue = rReplacementValue. After correction of the error, the
function block must be acknowledged with a rising edge at the input variable bReset.

eTemperatureSensorMode = eHVACTemperatureSensorMode_LastValue: if bErrorShortCircuit or
bErrorBrokenSensor = TRUE, then the last valid temperature value that was present 10 seconds previously
is output at rPresentValue. After correction of the error, it must be acknowledged with a rising edge at the
input variable bReset.

eTemperatureSensorMode = eHVACTemperatureSensorMode_AutoResetReplacementValue : if
bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue = rReplacementValue. The function
block acknowledges itself automatically following correction of the error.

eTemperatureSensorMode = eHVACTemperatureSensorMode_AutoResetLastValue: if bErrorShortCircuit or
bErrorBrokenSensor = TRUE, then the last valid temperature value that was present 10 seconds previously
is output at rPresentValue. The function block acknowledges itself automatically following correction of the
error.

Function blocks

TS800092 Version: 1.2

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2.10 FB_HVACTemperatureSensorEx

Application

This function block is used for the acquisition and subsequent processing of temperature values, e.g. for the
sensor types PT100, PT200, PT1000, NI100, NI120, NI1000, NI1000Tk5000. The function block
FB_HVACTemperatureSensorEx is tailored to the Bus Terminals KL3201/02/04 and KL3228. These Bus
Terminals can either be ordered preconfigured or set to the corresponding sensor types by software.
The raw temperature value is transferred to the function block in 1/10 °C via the input variable iRawValue
and output as a floating point number via rPresentValue.iRawValue can, for example, be linked directly to
the raw temperature value of the following Bus Terminals: KL3201/02/04 and KL3228.

The output value rPresentValue depends on the following smoothing function:

:= ((/ 10 +) - rPresentValueOld) / + rPresentValueOld; rPresentValue iRawValue rOffset rSmoothFactor

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error has
been corrected and bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

The status of the connected temperature sensor is monitored via the input variable byStatusRawValue and
returned to the controller via the variable bErrorSensor in the event of an error. byStatusRawValue can, for
example, be linked directly to the status byte of the following Bus Terminals: KL3201/02/04 and KL3228.
rHighLimit/rLowLimit can be used to specify temperature limit values.

Unlike FB_HVACTemperatureSensor [} 89], this function block has the input variable bEnable, which is useful
when the sensor characteristic curves in the Bus Terminals KL3201/02/04 and KL3228 are to be adjusted
from the PLC via the function block FB_HVACConfigureKL32xx [} 74]. In this function block the second order
filter in FB_HVACTemperatureSensor [} 89] is replaced by the smoothing function described above. The
output bErrorSensor is new and replaces the two outputs bErrorShortCircuit/bErrorBrokenSensor. These
outputs continue to be available in the error byte byError.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

Function blocks

TS8000 93Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
iRawValue : INT;
byStatusRawValue : BYTE;
bEnableLimitCtrl : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the value of
rReplacementValue is output at the rPresentValue output. All error messages and bInvalidParameter are set
to FALSE. If bEnable goes TRUE, then rPresentValue = rPresentValueOld for one PLC cycle.

iRawValue: raw value of the temperature sensor in 1/10 °C from the Bus Terminal.

byStatusRawValue: status byte of the temperature sensor from the Bus Terminal. Serves for error
diagnosis, e.g. wire break or short circuit. If the KL32xx is set to resistance measurement (Ω) there is no
error diagnosis.

bEnableLimitCtrl: enables rHighLimit and rLowLimit for limit monitoring

bReset: acknowledgement input in the event of an error with rising edge from bReset. Depending on
operation mode eTemperatureSensorMode, errors are acknowledged either with bReset or automatically.

VAR_OUTPUT
rPresentValue : REAL;
bErrorGeneral : BOOL;
byError : BYTE;
bErrorSensor : BOOL;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bInvalidParameter : BOOL;

rPresentValue: temperature output variable with one decimal place.
The value for rPresentValue is calculated and output according to the following formula:

rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor + rPresentValueOld;

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error is
rectified and bErrorSensor = FALSE, then for one PLC cycle rPresentValue = rPresentValueOld.
If bErrorSensor = TRUE, then the value of rPresentValue depends on the operation mode
eTemperatureSensorMode.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800094 Version: 1.2

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorHighLimit, bErrorLowLimit or bErrorSensor = = TRUE. The value of the output variable rPresentValue
is then dependent on the operation mode eTemperatureSensorMode and is enabled once the error has been
rectified and, depending on the operation mode eTemperatureSensorMode, acknowledged with bReset.

byError: returns all error messages and warnings,
byError.1 := bInvalidParameter
byError.2 := bErrorGeneral
byError.3 := bErrorHighLimit
byError.4 := bErrorLowLimit
byError.5 := bErrorShortCircuit
byError.6 := bErrorBrokenSensor
byError.7 := bErrorSensor

byError.5 := bErrorShortCircuit: error, short circuit at the connected temperature sensor. After the error has
been rectified, the message is either acknowledged with bReset or automatically, depending on the
operation mode eTemperatureSensorMode.
byError.6 := bErrorBrokenSensor:error, wire break at the connected temperature sensor. Once the fault has
been corrected, the message is acknowledged either with bReset or automatically, depending on mode
eTemperatureSensorMode.

bErrorSensor: becomes TRUE, if byError.5/bErrorShortCircuit or byError.6/bErrorBrokenSensor = TRUE.
Once the fault has been corrected, the message is acknowledged either with bReset or automatically,
depending on mode eTemperatureSensorMode. If bErrorSensor = TRUE, the error has been corrected and
bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

bErrorHighLimit: warning upper limit value exceeded; becomes TRUE if rPresentValue >= rHighLimit. The
warning that the upper limit value has been exceeded can only be acknowledged if rPresentValue <=
rHighLimit - 1.0 for a time duration of 5 seconds. Depending on mode eTemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

bErrorLowLimit: warning lower limit value undershot; becomes TRUE if rPresentValue <= rLowLimit. The
warning that the lower limit value has been undershot can only be acknowledged if rPresentValue >=
rLowLimit + 1.0 for a time duration of 5 seconds. Depending on mode eTemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables rHighLimit,
rLowLimit, rSmoothFactor or eTemperatureSensorMode. An incorrect parameter specification does not lead
to a standstill of the function block; see description of variables. Once the incorrect parameter specification
has been corrected, the message bInvalidParameter is acknowledged either with bReset or automatically,
depending on mode eTemperatureSensorMode.

VAR_IN_OUT
rOffset : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
rReplacementValue : REAL;
rSmoothFactor : REAL;
eTemperatureSensorMode: E_HVACTemperatureSensorMode;

rOffset: temperature compensation in Kelvin, rPresentValue = (iRawValue / 10.0) + rOffset. The variable is
saved persistently. Preset to 0.

rHighLimit: upper limit value. If rPresentValue >= rHighLimit, then the output bErrorHighLimit is set.
rHighLimit must be greater than rLowLimit. The variable is saved persistently. Preset to 120.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter is set if the parameter is incorrect.

rLowLimit: lower limit. The output bErrorLowLimit is set if rPresentValue <= rLowLimit. The variable is saved
persistently. Preset to -60.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter is set if the parameter is incorrect.

Function blocks

TS8000 95Version: 1.2

rReplacementValue: replacement value that is output at rPresentValue in the case of the errors
bErrorShortCircuit and bErrorBrokenSensor, if the selected operation mode eTemperatureSensorMode =
eHVACTemperatureSensorMode_ReplacementValue or eTemperatureSensorMode =
eHVACTemperatureSensorMode_AutoResetReplacementValue. The variable is saved persistently. Preset
to 0.

rSmoothFactor: smoothing factor (>=1) for the output value rPresentValue. The variable is saved
persistently. Preset to 100.
According to the following formula the value for rPresentValue is calculated and output:
rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor + rPresentValueOld;
rPresentValueOld is the value of rPresentValue, which was output one PLC cycle before.
If rSmoothFactor = 1, then rPresentValue:= ((iRawValue / 10 + rOffset)
If there is an incorrect variable value at rSmoothFactor, then the last valid variable value is used, if available.
If there is no valid last value, then the default value is used. bInvalidParameter is set if the parameter is
incorrect.

eTemperatureSensorMode: Enum, via which the operation mode of the function block is specified.
eTemperatureSensorMode = eHVACTemperatureSensorMode_ReplacementValue: if bErrorSensor =
TRUE, then rPresentValue = rReplacementValue. After the error has been corrected, the function block must
be acknowledged by a rising edge at the input variable bReset.
eTemperatureSensorMode = eHVACTemperatureSensorMode_LastValue: if bErrorSensor = TRUE, then the
last valid temperature value that was present 10 seconds before is output at the output variable
rPresentValue. After the error has been corrected, it must be acknowledged by a rising edge at the input
variable bReset.
eTemperatureSensorMode = eHVACTemperatureSensorMode_AutoResetReplacementValue: if
bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue = rReplacementValue. After the
error has been corrected, the function block acknowledges itself automatically.
eTemperatureSensorMode = eHVACTemperatureSensorMode_AutoResetLastValue: if bErrorSensor =
TRUE, then the last valid temperature value that was present 10 seconds before is output at the output
variable rPresentValue. After the error has been corrected, the function block acknowledges itself
automatically.
If there is an incorrect variable value at eTemperatureSensorMode, the default value is used.
bInvalidParameter is set if an incorrect parameter is specified.

The variable is saved persistently. Preset to 3%.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.2.11 FB_HVACTemperatureSensorEx

Function blocks

TS800096 Version: 1.2

Application

This function block is used for the acquisition and subsequent processing of temperature values, e.g. for the
sensor types PT100, PT200, PT1000, NI100, NI120, NI1000, NI1000Tk5000. The function block
FB_HVACTemperatureSensorEx2 is tailored to the Bus Terminals KL3201/02/04, KL3222, KL3228 and
KL3208-0010. These Bus Terminals can either be ordered preconfigured or set to the corresponding sensor
types by software.
The raw temperature value is transferred to the function block in 1/10 °C or 1/100 °C via the input variable
iRawValue and output as a floating point number via rPresentValue. iRawValue can, for example, be linked
directly to the raw temperature value of the following Bus Terminals: KL3201/02/04, KL3222, KL3228 and
KL3208-0010.

The output value rPresentValue depends on one of the following two smoothing functions:

= 0: := ((/ iConversionFactor rPresentValue iRawValue 10 +) - rPresentValueOld) / + rPresentValueOld;
rOffset rSmoothFactor

= 1: := ((/ iConversionFactor rPresentValue iRawValue 100 +) - rPresentValueOld) / + rPresentValueOld;
rOffset rSmoothFactor

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error has
been corrected and bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

The status of the connected temperature sensor is monitored via the input variable byStatusRawValue and
returned to the controller via the variable bErrorSensor in the event of an error. byStatusRawValue can, for
example, be linked directly to the status byte of the following Bus Terminals: KL3201/02/04, KL3222, KL3228
and KL3208-0010.
rHighLimit/rLowLimit can be used to specify temperature limit values.

Unlike FB_HVACTemperatureSensor [} 89], this function block has the input variable bEnable, which is useful
when the sensor characteristic curves in the Bus Terminals KL3201/02/04, KL3222, KL3228 and
KL3208-0010 are to be adjusted from the PLC via the function block FB_HVACConfigureKL32xx [} 74]. In this
function block the second order filter in FB_HVACTemperatureSensor [} 89] is replaced by the smoothing
function described above. The output bErrorSensor is new and replaces the two outputs bErrorShortCircuit/
bErrorBrokenSensor. These outputs continue to be available in the error byte udiError.

Unlike FB_HVACTemperatureSensorEx [} 92], sensors with the raw temperature value 1/10 or 1/100 °C can
be transferred on this function block.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
iRawValue : INT;
byStatusRawValue : BYTE;
iConversionFactor : INT; 0..1
bEnableLimitCtrl : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Function blocks

TS8000 97Version: 1.2

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, the value of
rReplacementValue is output at the rPresentValue output. All error messages and bInvalidParameter are set
to FALSE. If bEnable goes TRUE, then rPresentValue = rPresentValueOld for one PLC cycle.

iRawValue: raw value of the temperature sensor either in 1/10 or 1/100 °C from the Bus Terminal.

byStatusRawValue: status byte of the temperature sensor from the Bus Terminal. Serves for error
diagnosis, e.g. wire break or short circuit. If the KL32xx is set to resistance measurement (Ω) there is no
error diagnosis.

iConversionFactor: conversion factor for the output value rPresentValue.

iConversionFactor = 0: rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

iConversionFactor = 1: rPresentValue := ((iRawValue / 100 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

If a value outside its range of 0 to 1 is specified at iConversionFactor, this is signaled by
bErrorConversionFactor = TRUE.

bEnableLimitCtrl: enables rHighLimit and rLowLimit for limit monitoring

bReset: acknowledgement input in the event of an error with rising edge from bReset. Depending on mode
iTemperatureSensorMode, errors are acknowledged either with bReset or automatically.

VAR_OUTPUT
rPresentValue : REAL;
bErrorGeneral : BOOL;
udiError : UDINT;
bErrorSensor : BOOL;
bErrorHighLimit : BOOL;
bErrorLowLimit : BOOL;
bErrorConversionFactor: BOOL;
bInvalidParameter : BOOL;

rPresentValue: temperature output variable with two decimal places.
The value for rPresentValue is calculated and output according to the following formula:

iConversionFactor = 0: rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

iConversionFactor = 1: rPresentValue := ((iRawValue / 100 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle. If bEnable goes
TRUE, then rPresentValue = rPresentValueOld for one PLC cycle. If bErrorSensor = TRUE, the error is
corrected and bErrorSensor = FALSE, then for one PLC cycle rPresentValue = rPresentValueOld.
If bErrorSensor = TRUE, then the value of rPresentValue depends on the operation mode
iTemperatureSensorMode.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS800098 Version: 1.2

bErrorGeneral: the error message bErrorGeneral becomes TRUE as soon as one of the error messages
bErrorHighLimit, bErrorLowLimit or bErrorSensor = = TRUE. The value of the output variable rPresentValue
is then dependent on the operation mode iTemperatureSensorMode and is enabled once the error has been
rectified and, depending on the operation mode iTemperatureSensorMode, acknowledged with bReset.

udiError: returns all error messages and warnings,
udiError.1 := bInvalidParameter
udiError.2 := bErrorGeneral
udiError.3 := bErrorHighLimit
udiError.4 := bErrorLowLimit
udiError.5 := bErrorShortCircuit
udiError.6 := bErrorBrokenSensor
udiError.7 := bErrorSensor
udiError.8 := bErrorConversionFactor

byError.5 := bErrorShortCircuit: error, short circuit at the connected temperature sensor. After the error has
been corrected, the message is either acknowledged with bReset or automatically, depending on the
operation mode iTemperatureSensorMode.byError.6 := bErrorBrokenSensor:error, wire break at the
connected temperature sensor. Once the fault has been corrected, the message is acknowledged either with
bReset or automatically, depending on mode iTemperatureSensorMode.

bErrorSensor: becomes TRUE, if byError.5 / bErrorShortCircuit or byError.6 / bErrorBrokenSensor = TRUE.
Once the fault has been corrected, the message is acknowledged either with bReset or automatically,
depending on mode iTemperatureSensorMode. If bErrorSensor = TRUE, the error has been corrected and
bErrorSensor = FALSE, then rPresentValue = rPresentValueOld for one PLC cycle.

bErrorHighLimit: warning upper limit value exceeded; becomes TRUE if rPresentValue >= rHighLimit. The
warning that the upper limit value has been exceeded can only be acknowledged if rPresentValue <=
rHighLimit - 1.0 for a time duration of 5 seconds. Depending on mode iTemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

bErrorLowLimit: warning lower limit value undershot; becomes TRUE if rPresentValue <= rLowLimit. The
warning that the lower limit value has been undershot can only be acknowledged if rPresentValue >=
rLowLimit + 1.0 for a time duration of 5 seconds. Depending on mode iTemperatureSensorMode, the
warning is acknowledged either with bReset or automatically.

bErrorConversionFactor: if a value outside its range of 0 to 1 is specified at iConversionFactor, this is
signaled by bErrorConversionFactor = TRUE. The message need not be acknowledged after rectifying the
cause.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables rHighLimit,
rLowLimit, rSmoothFactor, iConversionFactor or iTemperatureSensorMode. An incorrect parameter
specification does not lead to a standstill of the function block; see description of variables. Once the
incorrect parameter specification has been corrected, the message bInvalidParameter is acknowledged
either with bReset or automatically, depending on mode iTemperatureSensorMode.

VAR_IN_OUT
rOffset : REAL;
rHighLimit : REAL;
rLowLimit : REAL;
rReplacementValue : REAL;
rSmoothFactor : REAL;
iTemperatureSensorMode:INT;

rOffset: temperature compensation in Kelvin. The variable is saved persistently. Preset to 0.

rHighLimit: upper limit value. The variable is saved persistently. Preset to 120.
If rPresentValue >= rHighLimit, then the output bErrorHighLimit is set. rHighLimit must be greater than
rLowLimit.
If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, then the default value is used. bInvalidParameter is set if the parameter is incorrect.

rLowLimit: lower limit. The variable is saved persistently. Preset to -60.
If rPresentValue <= rLowLimit, then the output bErrorLowLimit is set.
If an incorrect variable value is present, then the last valid variable value is taken, if available. If there is no
valid last value, then the default value is used. bInvalidParameter is set if the parameter is incorrect.

Function blocks

TS8000 99Version: 1.2

rReplacementValue: replacement value that is output at rPresentValue in the case of the errors
bErrorShortCircuit and bErrorBrokenSensor, if the selected operation mode iTemperatureSensorMode = 0 or
iTemperatureSensorMode = 2.
The variable is saved persistently. Preset to 0.

rSmoothFactor: smoothing factor (>=1) for the output value rPresentValue.
The variable is saved persistently. Preset to 100.

The value for rPresentValue is calculated and output according to the following formula:

iConversionFactor = 0: rPresentValue := ((iRawValue / 10 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

iConversionFactor = 1: rPresentValue := ((iRawValue / 100 + rOffset) - rPresentValueOld) / rSmoothFactor +
rPresentValueOld;

rPresentValueOld is the value of rPresentValue that was output in the previous PLC cycle.

If an incorrect variable value is present at rSmoothFactor , then the last valid variable value is taken, if
available. If there is no valid last value, then the default value is used. bInvalidParameter is set if the
parameter is incorrect.

iTemperatureSensorMode: specifies the operation mode of the function block.
iTemperatureSensorMode = 0: if bErrorSensor = TRUE, then rPresentValue = rReplacementValue. After the
error has been corrected, the function block must be acknowledged by a rising edge at the input variable
bReset.
iTemperatureSensorMode = 1: if bErrorSensor = TRUE, then the last valid temperature value that was
present 10 seconds before is output at the output variable rPresentValue. After the error has been corrected,
it must be acknowledged by a rising edge at the input variable bReset.
iTemperatureSensorMode = 2: if bErrorShortCircuit or bErrorBrokenSensor = TRUE, then rPresentValue =
rReplacementValue. After the error has been corrected, the function block acknowledges itself automatically.
iTemperatureSensorMode = 3: if bErrorSensor = TRUE, then the last valid temperature value that was
present 10 seconds before is output at the output variable rPresentValue. After the error has been corrected,
the function block acknowledges itself automatically.
If there is an incorrect variable value at iTemperatureSensorMode, the default value is used.
bInvalidParameter is set if the parameter is incorrect.
The variable is saved persistently. Preset to 3%.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3 HVAC Room Functions

3.3.1 Air conditioning

3.3.1.1 FB_BAREnergyLevel

Function blocks

TS8000100 Version: 1.2

Application

This function block is for the adaptation of the supply of energy for the use of the building. The type of room
utilization is set by the BMS. The longer a building or room is not used, the further the energy level can be
lowered. The energy level currently selected by the function block is transferred to the room temperature
controller.

Protection:

This operation mode is activated in the case of long absence times e.g. during works holidays or also when a
window is open. The energy level is very low and serves only to protect the building from damage caused by
frost or overheating.

Economy:

The Economy energy level is used for the economy mode. Economy mode is activated, for example, at night
by a timer switch schedule.

PreComfort:

The PreComfort energy level is for an unused room which, however, can be occupied again shortly. The
standby mode is frequently activated by a timer schedule.

Comfort:
If the room is occupied, it is in Comfort mode. Comfort mode can be activated by a timer switch schedule or
by presence recognition.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bWindow : BOOL;
bProtection : BOOL;
bEconomy : BOOL;
bPreComfort : BOOL;
bComfort : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: The function block is activated by a TRUE at this input.

bWindow: The window contact is connected to this input. TRUE means that the window is OPEN. FALSE
means that the window is CLOSED.

bProtection: Protection mode is activated with the input bProtection. Protection mode is active if the input is
TRUE.

bEconomy: economy mode is activated with the input bEconomy. Economy mode is active if the input is
TRUE.

Function blocks

TS8000 101Version: 1.2

bPreComfort: The Pre-comfort level is activated with this input. The Pre-comfort level is active if the input is
TRUE.

bComfort: The Comfort level is activated with this input if the room is occupied.

VAR_OUTPUT
eEnergyLevel : E_BAREnergyLevel;
bStateProtection : BOOL;
bStateEconomy : BOOL;
bStatePreComfort : BOOL;
bStateComfort : BOOL;

eEnergyLevel: this output contains the current energy level.

bStateProtection: the state of the bProtection input is relayed to the outside in the operation modes
eBAREnergyLevel_AUTO_I and eBAREnergyLevel_AUTO_II.

bStateEconomy: the state of the bEconomy input is relayed to the outside in the operation modes
eBAREnergyLevel_AUTO_I and eBAREnergyLevel_AUTO_II.

bStatePreComfort: The state of the bPreComfort input is relayed to the outside in the operation modes
eBAREnergyLevel_AUTO_I and eBAREnergyLevel_AUTO_II.

bStateComfort: the state of the bComfort input is relayed to the outside in the operation modes
eBAREnergyLevel_AUTO_I and eBAREnergyLevel_AUTO_II.

VAR_IN_OUT
eCtrlMode : E_BAREnergyLevel;

eCtrlMode: Using this ENUM the operation mode can be preselected from the building management level.
The variable is saved persistently. Preset to automatic.

3.3.1.2 FB_BARFanCoil

Application

The function block maps a 3-speed fan with the corresponding switching hysteresis, which is the same for all
three speeds. The speed is set stepwise via the control deviation of the actual room temperature value from
the set room temperature value. Furthermore there is a possibility to manually override the fan controller via
the iStageManual or bStageUp or bStageDown input. A minimum switch-on time can be set via the
udiSecMINPowerOnTime input, which is then valid for each stage.

Function blocks

TS8000102 Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
eCtrlFct : E_BARCtrlFct;
rSetpoint : REAL;
rRoomTemp : REAL;
bStageUp : BOOL;
bStageDown : BOOL;
iStageManual : INT;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: The function block is activated if the variable bEnable is TRUE. No fan stage is activated with a
FALSE.

eCtrlFct: this input is connected to the eCtrlFct output of the FB_BARFctSelection. This information is
important in order to know whether the plant is in heating or cooling mode. In automatic mode the fan stages
are only activated, for example, if according to the control deviation the requirement for heating is active and
the system is in heating mode, or if according to the control deviation the requirement for cooling is active
and the system is in cooling mode.

rSetpoint: input for the set temperature.

rRoomTemp: input for the room temperature.

bStageUp: Local adjustment of the fan stage, stepwise increase by push button.

bStageDown: Local adjustment of the fan stage, stepwise decrease by push button.

iStageManual: The manual fan stage can/is set centrally via this input.
iStageManual: = 0 corresponds to fan stage OFF
iStageManual: = 1 corresponds to fan stage AUTO
iStageManual: = 2 corresponds to fan stage01 active
iStageManual: = 3, corresponds to fan stage02 active
iStageManual: = 4, corresponds to fan stage03 active

bReset: Acknowledge input in case of a fault or an incorrect parameter.

VAR_OUTPUT
bStageOff : BOOL;
bStageAuto : BOOL;
bStage01 : BOOL;
bStage02 : BOOL;
bStage03 : BOOL;
bFanCoilActive : BOOL;
bPresence : BOOL;
byState : BYTE;
byError : BYTE;

Function blocks

TS8000 103Version: 1.2

udiSecRT_MINPowerOnTime: UDINT;
udiRT_TimePeriod : UDINT;
bInvalidParameter : BOOL;

bStageOff: TRUE, fan stages are switched off.

bStageAuto: TRUE, fan controller is in automatic mode.

bStage01: TRUE, fan stage01 active.

bStage02: TRUE, fan stage02 active.

bStage03: TRUE, fan stage03 active.

bFanCoilActive: TRUE if one of the three fan stages is active. This output can be/is used to enable
controllers in order to avoid a build up of heat or cold.

bPresence: TRUE means that presence was detected via the bStageUp, bStageDown or iStageManual
inputs.

byState: indicates the state of the fan controller.
byState.0:= function block is activated
byState.3:= manual fan stage setting is active
byState.4:= bReset
byState.5:= fan stage01 active
byState.6:= fan stage02 active
byState.7:= fan stage03 active

byError: output of the errors as byte.
byError.1:= bInvalidParameter

udiSecRT_MINPowerOnTime: Indicates the remaining time of the minimum switch-on time.

udiRT_TimePeriod: Indicates the remaining time of the manual override.

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
rDeviationXW_Stage01 : REAL;
rDeviationXW_Stage02 : REAL;
rDeviationXW_Stage03 : REAL;
rHysteresisRange : REAL;
udiSecMINPowerOnTime : UDINT;
iFctModeFanCoil : INT;
udiTimePeriod : UDINT;

rDeviationXW_Stage01: limit value of the control deviation for fan stage01. The variable is saved
persistently. Preset to 0.7.

rDeviationXW_Stage02: limit value of the control deviation for fan stage02. The variable is saved
persistently. Preset to 1.7.

rDeviationXW_Stage03: limit value of the control deviation for fan stage03. The variable is saved
persistently. Preset to 2.1.

rHysteresisRange: hysteresis range that is placed around the limit value.
Example: a limit value of 0.7 and a hysteresis range of 0.2 results in the fan stage01 being switched on at a
control deviation > 0.8.
And at a control deviation < 0.6 the fan stage01 is switched off.
The variable is saved persistently. Preset to 0.2.

udiSecMINPowerOnTime: Minimum switch-on time that a fan must run for in a stage before switching to a
different stage or switching off. Input in seconds (e.g. 120 corresponds to 120 s). The variable is saved
persistently. Preset to 120 s.

iFctModeFanCoil: The user has the possibility to activate the fan controller for heating mode or cooling
mode or both modes via the valence of this variable. Valid values are 1, 2 or 3. Other values are invalid and
bInvalidParameter is set to TRUE. The variable is saved persistently. Preset to 3%.

Function blocks

TS8000104 Version: 1.2

Cooling Heating Valence
0 1 1 (= fan controller active in heating

mode)
1 0 2 (= fan controller active in cooling

mode)
1 1 3 (= fan controller active in heating

mode and cooling mode)

udiTimePeriod: Timeframe during which the manual override is active in case of presence. Specified in
minutes

Fig. 1: representation of the fan control with the default parameters

3.3.1.3 FB_BARFctSelection

Function blocks

TS8000 105Version: 1.2

Application

This function block is for enabling room heating or room cooling. It can be used for 2-pipe systems
(changeover) or 4-pipe systems.
In the case of a 4-pipe system the changeover from heating to cooling operation takes place automatically
on the basis of a comparison of the setpoint for the room temperature with the actual value for the room
temperature.

Sketch:

In the case of a 2-pipe system the heating operation or cooling operation may only be enabled when heating
or cooling medium is present. The room temperature controller gets this information from the primary units.

In both 2-pipe and 4-pipe systems the changeover between heating operation and cooling operation can be
delayed by a timer. The input variable udiChangeOverDelay must be greater than zero for this.

The following tables describe the interrelationship between the inputs and the eCtrlFct output of the
FB_BARFctSelection function block.

in the 2-pipe system

bEnable bPipeSystem bFeedbHeat
Medium

bFeedbCool
Medium

interim result bDewPoint eCtrlFct

0 0 0 0 OFF TRUE /
FALSE

OFF

1 0 0 0 Heating TRUE /
FALSE

Heating

1 0 0 1 Cooling TRUE OFF
FALSE Cooling

1 0 1 0 Heating TRUE /
FALSE

Heating

1 0 1 1 Heating TRUE /
FALSE

Heating

in the 4-pipe system

bEnable bPipeSystem T_Room < =
Tsetpoint

T_Room >
Tsetpoint

interim result bDewPoint eCtrlFct

0 1 0 0 OFF TRUE /
FALSE

OFF

1 1 0 1 Cooling TRUE OFF
FALSE Cooling

Function blocks

TS8000106 Version: 1.2

1 1 1 0 Heating TRUE /
FALSE

Heating

1 1 1 1 Heating TRUE /
FALSE

Heating

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bPipeSystem : BOOL;
bFeedbHeatMedium : BOOL;
bFeedbCoolMedium : BOOL;
bDewPoint : BOOL;
rRoomTemp : REAL;
stSetpoint : ST_BARSetpointRoom;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: TRUE enables the function block. If FALSE the function block is disabled and eCtrlFct :=
eHVACCtrlFct_Off.

bPipeSystem: FALSE means that a 2-pipe system is present. TRUE means that a 4-pipe system is present.

bFeedbHeatMedium: Signal from the power generation or distribution that heating medium is available.

bFeedbCoolMedium: Signal from the power generation or distribution that cooling medium is available.

bDewPoint: the dew point sensor is connected to this input. If this is triggered the cooling control function is
deactivated and eCtrlFct := eHVACCtrlFct_Off is set.

rRoomTemp: This input variable transfers the current room temperature to the function block.

stSetpoint: STRUCTURE containing the setpoints for the individual energy levels.

VAR_OUTPUT
eCtrlFct : E_BARCtrlFct;
uiReqHeating : UINT;
uiReqCooling : UINT;
udiRT_ChangeOverDelay: UDINT;

eCtrlFct: This output contains the current control function.

uiReqHeating: is 1 if the room/zone requests heating energy. It is 0 if there is no heating requirement.

uiReqCooling: is 1 if the room/zone requests cooling energy. It is 0 if there is no cooling requirement.

udiRT_ChangeOverDelay: Indicates the time remaining until the active control function is changed over.

VAR_IN_OUT
uiChangeOverDelay : UINT;

Function blocks

TS8000 107Version: 1.2

uiChangeOverDelay: changeover time between the control functions. Must be specified in seconds. If the
input is greater than 0 it will always be observed. The variable must be 0 if there is to be no changeover time
between the control functions. The variable is saved persistently. Preset to 0.

3.3.1.4 FB_BARSetpointRoom

Application

The function block FB_BARSetpointRoom assigns setpoints for cooling and heating operation to each of the
energy levels Protection, Economy, PreComfort and Comfort. In connection with the function block
FB_BAREnergyLevel the room temperature controllers are assigned an energetically optimum setpoint in
accordance with the use of the room and the selected heating or cooling operation.

The resulting setpoint for the different energy levels is made up of:

1. the base setpoint value

2. the local setpoint value shift (not in the case of the Protection setpoints)

3. the central setpoint value shift (not in the case of the Protection setpoints)

The local shift due to a room setpoint generator and also the remote adjustment of the setpoints by a
building management system only affect the Comfort and PreComfort energy levels.

Function blocks

TS8000108 Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rSetpointShiftHeat: REAL;
rSetpointShiftCool: REAL;
rSetpointShiftUser: REAL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: The function block is activated if the variable bEnable is TRUE.

Function blocks

TS8000 109Version: 1.2

rSetpointShiftHeat: The rSetpointShiftHeat variable is used for the adaptation of the ComfortHeating
setpoint of the building management system.

If the ComfortHeating setpoint is raised, then the setpoints for the ComfortCooling and PreComfortCooling
are also increased.
Example:

Energy
levels

Protectio
nHeating

Economy
Heating

PreComf
ortHeatin
g

Comfort
Heating

Comfort
Cooling

PreComf
ortCoolin
g

Economy
Cooling

Protectio
nCooling

Base
setpoint
value
[°C]

12 15 19 21 24 28 35 40

Setpoint
ShiftHeat
[K]

+3 - - - +3 +3 +3 - -

Resulting
setpoint
[°C]

12 15 19 24 27 31 35 40

A lowering of the ComfortHeating setpoint affects only the ComfortHeating and PreComfortHeating setpoints.
Example:

Energy
levels

Protectio
nHeating

Economy
Heating

PreComf
ortHeatin
g

Comfort
Heating

Comfort
Cooling

PreComf
ortCoolin
g

Economy
Cooling

Protectio
nCooling

Base
setpoint
value
[°C]

12 15 19 21 24 28 35 40

Setpoint
ShiftHeat
[K]

-3 - - -3 -3 - - - -

Resulting
setpoint
[°C]

12 15 16 18 24 28 35 40

rSetpointShiftCool: The rSetpointShiftCoolvariable is used for the adaptation of the ComfortCooling
setpoint of the building management system.

If the ComfortCooling setpoint is raised, then the setpoint for the PreComfortCooling is also raised.
Example:

Energy
levels

Protectio
nHeating

Economy
Heating

PreComf
ortHeatin
g

Comfort
Heating

Comfort
Cooling

PreComf
ortCoolin
g

Economy
Cooling

Protectio
nCooling

Base
setpoint
value
[°C]

12 15 19 21 24 28 35 40

Setpoint
ShiftCool
[K]

+3 - - - - +3 +3 - -

Resulting
setpoint
[°C]

12 15 19 21 27 31 35 40

Function blocks

TS8000110 Version: 1.2

A lowering of the ComfortCooling setpoint only affects the ComfortCooling. The PreComfortCooling is not
changed.
Example:

Energy
levels

Protectio
nHeating

Economy
Heating

PreComf
ortHeatin
g

Comfort
Heating

Comfort
Cooling

PreComf
ortCoolin
g

Economy
Cooling

Protectio
nCooling

Base
setpoint
value
[°C]

12 15 19 21 24 28 35 40

Setpoint
ShiftCool
[K]

-3 - - - - -3 - - -

Resulting
setpoint
[°C]

12 15 19 21 21 28 35 40

If the setpoint of the PreComfort energy level is shifted beyond the setpoint of the Economy level, then the
setpoint of the Economy level adopts the value of the PreComfort level.
Example:

Energy
levels

Protectio
nHeating

Economy
Heating

PreComf
ortHeatin
g

Comfort
Heating

Comfort
Cooling

PreComf
ortCoolin
g

Economy
Cooling

Protectio
nCooling

Base
setpoint
value
[°C]

12 15 19 21 24 28 35 40

Setpoint
ShiftCool
[K]

+8 - - - - +8 +8 - -

Resulting
setpoint
[°C]

12 15 19 21 32 36 36 40

rSetpointShiftUser: The variable rSetpointShiftUser is used for local setpoint shifting of the user.
A positive value of rSetpointShiftUser affects the setpoint of ComfortHeating, ComfortCooling and
PreComfortColling.
Example:

Energy
levels

Protectio
nHeating

Economy
Heating

PreComf
ortHeatin
g

Comfort
Heating

Comfort
Cooling

PreComf
ortCoolin
g

Economy
Cooling

Protectio
nCooling

Base
setpoint
value
[°C]

12 15 19 21 24 28 35 40

Setpoint
ShiftUser
[K]

+3 - - - +3 +3 +3 - -

Resulting
setpoint
[°C]

12 15 19 24 27 31 35 40

A negative value of rSetpointShiftUser affects the setpoints of PreComfortHeating, ComfortHeating and
ComfortCooling.
Example:

Function blocks

TS8000 111Version: 1.2

Energy
levels

Protectio
nHeating

Economy
Heating

PreComf
ortHeatin
g

Comfort
Heating

Comfort
Cooling

PreComf
ortCoolin
g

Economy
Cooling

Protectio
nCooling

Base
setpoint
value
[°C]

12 15 19 21 24 28 35 40

Setpoint
ShiftUser
[K]

-3 - - -3 -3 -3 - - -

Resulting
setpoint
[°C]

12 15 16 18 21 28 35 40

bReset: Acknowledge input in case of a fault or an incorrect parameter.

VAR_OUTPUT
stSetpoint : ST_BARSetpointRoom;
bInvalidParameter: BOOL;

stSetpoint: Structure containing the setpoints for all energy levels.

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
rSetpointComfortHeat : REAL;
rSetpointPreComfortHeat : REAL;
rSetpointEconomyHeat : REAL;
rSetpointProtectionHeat : REAL;
rSetpointComfortCool : REAL;
rSetpointPreComfortCool : REAL;
rSetpointEconomyCool : REAL;
rSetpointProtectionCool : REAL;

rSetpointComfortHeat: Setpoint for the Comfort heating energy level. The variable is saved persistently.
Preset to 21.0.

rSetpointPreComfortHeat: Setpoint for the PreComfort heating energy level. The variable is saved
persistently. Preset to 19.0.

rSetpointEconomyHeat: Setpoint for the Economy heating energy level. The variable is saved persistently.
Preset to 15.0.

rSetpointProtectionHeat: Setpoint for the Protection heating energy level. The variable is saved
persistently. Preset to 12.0.

rSetpointComfortCool: Setpoint for the Comfort cooling energy level. The variable is saved persistently.
Preset to 24.0.

rSetpointPreComfortCool: Setpoint for the PreComfort cooling energy level. The variable is saved
persistently. Preset to 28.0.

rSetpointEconomyCool: Setpoint for the Economy cooling energy level. The variable is saved persistently.
Preset to 35.0.

rSetpointProtectionCool: Setpoint for the Protection cooling energy level. The variable is saved
persistently. Preset to 40.0.

Function blocks

TS8000112 Version: 1.2

3.3.2 Controller

3.3.2.1 FB_BARPICtrl
Simple PI controller. The control gain has no influence on the I-component.

This PI controller does not work directly with a gain factor Kp, but instead calculates this internally from the
so-called proportional band (input rXp) in relation to the control value limits (rYmin and rYmax), from which
Kp is then determined internally.

Inputs/outputs

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
uiCtrlCycleCall : UINT;
bSync : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 113Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: controller activation

rW : setpoint.

rX : actual value.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

uiCtrlCycleCall : call cycle of the function block as a multiple of the cycle time. . A zero entry is
automatically interpreted as uiCtrlCycleCall =1.
Example: tTaskCycleTime = 20ms, uiCtrlCycleCall =10 -> The control algorithm is called every 200 ms. Thus
the outputs are also updated only every 200 ms.

bSync: a rising edge at this input sets the (internal) I-component such that rSyncValue is output at the
control value output. If the I-component is deactivated by tTn=0ms, however, then this command is ignored.

VAR_OUTPUT
rY : REAL;
rE : REAL;
bARW : BOOL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bError : BOOL;
udiErrorId: UDINT;

rY : control value.

rE : control deviation (calculation dependent on control direction [} 116])

rEMin : lower control deviation limit value, which results from the input proportional band.

rEMax : upper control deviation limit value, which results from the input proportional band.

bARW: anti-Reset-Windup function is active.

bMaxLimit : the control value has reached its upper limit value.

bMinLimit : the control value has reached its lower limit value.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT
bDirection : BOOL;
rXp : REAL;
tTn : TIME;
rYMin : REAL;
rYMax : REAL;
rSyncValue : REAL;

bDirection: the control direction [} 116] of the controller can be changed with the parameter bDirection. If
bDirection is TRUE, then the direct control direction is active for cooling operation of the controller. If
bDirection is FALSE, then the indirect control direction of the controller is activated for heating operation. The
variable is saved persistently. Preset to FALSE.

rXp: proportional band. This defines the internal proportional factor, see below. The proportionality factor or
gain affects only the P-part. The variable is saved persistently. Preset to 100.0.

Function blocks

TS8000114 Version: 1.2

tTn: integral action time in seconds. The I-part corrects the residual control deviation following correction of
the P-part. The smaller tTi is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. A zero value at
this input deactivates the I-component. The variable is saved persistently. Preset to 30 s.

rYMin / rYMax: limiting the working range of the controller. Several other function blocks, e.g. sequencers,
require a symmetrical control range (-100 to +100). In the case of a cascade structure, the working range of
the master controller determines the setpoint of the slave controller. For example, 15° to 25° as the limitation
of the supply air set value for an exhaust/supply air cascade control. The variable is saved persistently.
Preset to 0.0 or 100.0 respectively.

rSyncValue: a rising edge at this input bSync sets the control value rY to this value. In addition, the I-
component is changed internally. If the I-component doesn't exist (PD controller), the D-component is
changed. The variable is saved persistently. Preset to 0.0.

Functional description

Step response of a simple PI controller, where the control gain has no influence on the integral component.
Response of output Y(t) to a control deviation jump by E: when the control deviation jumps by E, output Y
first jumps to KP*E by the proportional component and then grows by a further E in each interval TN.
Note: the controller is designed in such a way that the controller starts at 0, i.e. without the KP*E jump, after
a PLC reset or restart.

Basic function

A TRUE signal at the bEnable input activates the function block. The internal control algorithm is now
processed. The input value uiCtrlCycleCall specifies the number of PLC cycles after which the internal
control algorithm is processed. If uiCtrlCycleCall =1, then the new calculation takes place in each PLC cycle;
if, conversely, it is set to 100, then a new calculation of the output values takes place only every 100 PLC
cycles. The PLC cycle time is also accounted for in the control value calculation. An incorrect input value
leads to incorrect calculation.
The inputs rW (setpoint), rX (actual value), rXp (proportional band) and rTn (integral action time) are the
input values of the PI controller. They are used in each calculation cycle for the determination of the output
values rY (control value) and rE (control deviation). The control value can additionally be limited by the inputs
rYMin and rYMax.

Setting via the proportional band

The adjustment of the gain factor Kp of a controller often harbors the difficulty for the user that there is no
size reference to the application. If a heating controller normally operates within the two-figure range, then a
flow rate controller can accept values in the five-figure range. It therefore makes sense to represent the Kp

Function blocks

TS8000 115Version: 1.2

factor in such a way that it has a reference to the possible control deviation and change of control value. The
P-part of the controller is regarded for the dimensioning of the Kp factor.
The equation for this is:

• Control value = control deviation x gain factor→ Y=E*Kp

this relationship also applies to the changes in the control deviation and the control value:

• Change in control value = change in control deviation • gain factor→ ΔY=ΔE*Kp

Referenced to the minimum and maximum value of the control value, Ymin and Ymax:

• Ymax-Ymin=(E(Ymax)-E(Ymin))*Kp

This difference, E(Ymax)-E(Ymin), is called the proportional band (Xp). Transposed, the equation is then:

• Kp=(Ymax-Ymin)/Xp

The following diagram clarifies the functional interrelationship:

The proportional band Xp therefore indicates the size of the range of the control deviation that leads to an
output of Ymin to Ymax from the controller.
A smaller Xpleads to a steeper function and thus to an increase of the Kp factor. However, the control
deviation limit values E(Ymax)-E(Ymin) are shifted:

Function blocks

TS8000116 Version: 1.2

Control direction

Control direction

If bDirection = FALSE, the control direction of the controller is reversed so that a control deviation of less
than 0 causes a change in the control value in the positive direction. This is achieved by a negative
calculation of the control deviation:

bDirection rE (control deviation) Control direction
TRUE lrX-lrW (actual value-set value) direct (cooling)
FALSE lrW-lrX (set value-actual value) indirect (heating)

Anti-Reset-Windup (ARW)

If the controller “runs” into this limit, then the I-component is held internally at the final value. If this were not
done, then the I-component could adopt very large values without hindrance during the limit case, which
would first have to be eliminated again in case of reversal of the direction of action of the controller. This
function is called “Anti-Reset-Windup” (ARW). The output bARW is set if this function is active.

Special case: Tn=0 as switch-off of the I-component

From the above step response diagram it can be seen that the influence of the I-component becomes all the
weaker, the larger the integral action time Tn is set. As the integral action time approaches infinity, the
influence of the I-component is virtually zero. Conversely, an increasingly smaller integral action time allows
the influence of the I-component to grow; at Tn=0 the control value would approach infinity. However, this
special case is used to cut off the I-component. This is an internally formed exception, since the integral
action time belongs directly to the I-component and should also figuratively result in switch-off due to the
zero entry.

Synchronization

A positive edge on bSync sets the controller output rY directly to rSyncValue, provided that the controller has
been activated by a TRUE signal on bEnable. If this is not the case the positive edge on bSync is ignored.

Error case/function block not activated

If the controller is incorrectly parameterized processing is stopped, the bError output is set and the
corresponding error ID is output at udiErrorID, see error codes [} 237]. The function block is also stopped if
the input bEnable is not set. In both cases the outputs are set as follows:

rY 0.0
rE 0.0
bARW FALSE
bMaxLimit FALSE
bMinLimit FALSE

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.3 Lighting

3.3.3.1 Lighting functions – overview
The lighting is subdivided into two different function groups, which can be combined to form arbitrary
solutions:

• User functions
• Actuator functions

Function blocks

TS8000 117Version: 1.2

The user functions are control and closed loop circuits, which, served by the sensor functions, each output
a light value.

FB_BARLightCircuit [} 133] - simple light switching circuit without dimming function.

FB_BARLightCircuitDim [} 134] - simple light switching circuit with dimming function.

FB_BARAutomaticLight [} 117] - presence-controlled automatic light with switch-off delay.

FB_BARStairwellAutomatic [} 138] - stairwell lighting with early warning sequence.

FB_BARTwilightAutomatic [} 140] - twilight automatic.

FB_BARDaylightControl [} 126] - daylight control without dimming procedures

FB_BARConstantLightControl [} 119] - constant light regulation with continuous output of analog values.

The group of actuator functions is currently represented by only one function block.

FB_BARLightActuator [} 130] - output of a preset proportional dimming value via a ramp function. Output is
alternatively in percent, INTEGER or BOOL. This function block likewise encompasses a light scene memory
of 21 adjustable dimming values.

3.3.3.2 FB_BARAutomaticLight
Function block for an automatic light circuit as used in corridors or sanitary facilities.

Fig. 2: FB_BARAutomaticLight

The function block knows 3 different modes, which can be set via the input uiLightCtrlMode:

• Automatic mode
• Manual On mode
• Manual Off mode

The automatic light circuit is active in automatic mode (uiLightCtrlMode=0). A positive edge on bSwitch sets
the output lrDimValue to the value entered under lrManualDimValue. A negative edge starts the holding time
generator. If the hold time uiHoldTime [s] has expired, the output lrDimValue is reset to 0.0.

Function blocks

TS8000118 Version: 1.2

The sequence can be restarted at any time:

In the manual operation modes the input bSwitch has no function: with uiLightCtrlMode=1 the output value
lrDimValue is constantly set to lrManualDimValue and with uiLightCtrlMode=2 constantly set to 0.0.
Changing to manual mode resets any hold time that had started up to that point.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;
bSwitch : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiLightCtrlMode : operation mode.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 119Version: 1.2

• 0: automatic mode; the automatic light circuit is active and reacts to the input bSwitch.
• 1: Manual On; the automatic light circuit is inactive - the output lrDimValue is set constantly to

lrManualDimValue.
• 2: Manual Off; the automatic light circuit is inactive - the output lrDimValue is set constantly to 0.0.

bSwitch: a rising edge switches the light on in automatic mode (uiLightCtrlMode=0), a falling edge starts the
holding time generator. This input has no function in manual operation mode (uiLightCtrlMode=1 or 2).

VAR_OUTPUT
lrDimValue : LREAL;
uiRemainingHoldTime: UINT;
bError : BOOL;
udiErrorId : UDINT;

lrDimValue : output dimming value for the lighting in percent.

uiRemainingTimeHold : remaining hold time in seconds. If the light is off or if manual operation mode is
active, then this output is "0". With a rising edge on bSwitch in automatic mode, this output initially indicates
the complete number of seconds of the hold time (uiHoldTime), in order to illustrate the countdown of the
hold time, starting with a falling edge on bSwitch. This output is 0 as long as no countdown of the time is
taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiHoldTime : UINT;
lrOnDimValue : LREAL;
lrManualDimValue : LREAL;

uiHoldTime : hold time [s] of the automatic light controller after a falling edge on bSwitch.

lrOnDimValue : on dimming value in automatic mode (uiLightCtrlMode=0).

lrManualDimValue : output dimming value in Manual On mode (uiLightCtrlMode=1).

3.3.3.3 FB_BARConstantLightControl
The constant light regulation function block controls the lighting when the room is occupied such that the
lighting intensity does not fall below a preset minimum. This ensures adequate lighting whilst at the same
time minimizing energy consumption.

The constant light regulation is enabled when the room is entered or by a rising edge on the input
bPresence. Optionally the constant light regulation can also be operated by a button. A short pulse on the
input bToggle enables the constant light regulation or switches it off, depending on the current state. If many
constant light controllers are to be switched on by a central command, for example on an office floor, this can
be realized with the input bCentralOn. A central command to switch off can be connected to the input
bCentralOff.

Actuating the button on bToggle for a longer period manually changes the setpoint value for the room
brightness. Upon a falling edge on bToggle the current room brightness value is saved as a setpoint. The
rate of change when manually increasing or decreasing the room brightness can be set by means of a
parameter.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000120 Version: 1.2

The manually set setpoint value for the constant light regulation is retained until the next time the lighting is
switched off. On restarting the controller by a rising edge on bPresence, a rising edge on bCentralOn or a
pulse on bToggle, the last manually selected setpoint or the value of uiSetpointlValue is adopted, depending
on the setting of the parameter bInitialMode.

In automatic mode the lighting is switched on only if the room brightness lies below an adjustable hysteresis
value (uiTargetRange). As the outdoor brightness increases, the constant light controller reduces the artificial
light portion until a minimum load control value lrMinDimValue lies at the output of the controller lrDimValue.
Subsequently, the controller switches the lighting off following a time delay with the timer uiOffDelay.
The switching on again of the lighting as the outdoor brightness decreases is delayed with the timer
uiOnDealy.

In order to avoid unpleasant visible changes in the brightness, the rate of change of the control signal is
retarded with the parameter uiControlRampTime.

For maintenance and test purposes the automatic constant light regulation can be deactivated and the
lighting can be switched on and off in manual mode. This deactivates the edge detection at the inputs
bCentrolOn,bCentalOff and bToggle.

Fig. 3: FB_BARConstantLightControl

The function block knows 3 different modes, which can be set via the input uiLightCtrlMode:

• Automatic mode
• Manual On mode
• Manual Off mode

Automatic mode

In automatic mode the control can be activated or deactivated in three different ways:

Function blocks

TS8000 121Version: 1.2

1. Via the input bSwitch: a short TRUE signal (shorter than uiSwitchOverTime in milliseconds) at bSwitch
activates the constant light regulation if it had been inactive beforehand. Another short signal at
bSwitch deactivates the constant light regulation again. A long TRUE signal on bSwitch switches the
function block to setpoint adjustment mode; this is described below.

2. Via the input bPresence: switching on via this input must be explicitly enabled by a TRUE signal on
bPresenceOnActive (VAR_IN_OUT). A rising edge then activates the control, while a falling edge
always deactivates the control independent of the state of bPresenceOnActive.

3. The control is explicitly switched on and off via TRUE edges on the inputs bCentralOn and
bCentralOff, independent of the previous state of the control. These inputs do not have an override
function: for example, if switching off has taken place via bCentralOff, bSwitch can be used to switch
on again at any time.

The light output value lrDimValue is initially set in the active state to the start value lrStartDimValue. After
that an actual value/setpoint value comparison takes place continuously. If the actual room value
uiBrightness [lux] thereby leaves the target range uiTargetRange [lux] around the setpoint value
uiSetpointValue [lux], then this is counteracted by dimming the lighting up or down. The control always
operates with a constant, parameterizable dimming ramp uiRamptime [s], which indicates the time of a
complete dimming process from 0% to 100%. The control target values are likewise constant: 0% for
dimming down and 100% for dimming up. In the inactive state the light output value lrDimValue is set to 0.0.

Function blocks

TS8000122 Version: 1.2

Switch-on and switch-off delay, minimum output value

Function blocks

TS8000 123Version: 1.2

If the outdoor brightness increases, then less and less artificial light is necessary in order to obtain the
desired total brightness. If the outdoor brightness is sufficient, the lighting can also be switched off
completely.
However, switch-on and switch-off processes can be perceived as distracting, as can very low output
dimming values. Therefore a switch-on and switch-off delay uiOnDelay/uiOffDelay can be defined in the
function block around a lower limit value lrMinDimValue. If the internally determined output value sinks below
this minimum value, then the output remains at this minimum for the time uiOffDelay [s]. Only after that is 0.0
output at the output lrDimValue. If in the reverse case switching off to 0.0 has taken place, then if artificial
light is required this is only switched on after the expiry of uiOnDelay [s] and then to the value
lrMinDimValue. The following diagram is intended to clarify the behavior:

The yellow areas indicate the ranges where the outdoor brightness permits the lighting to be dimmed down;
in the blue areas, conversely, the outdoor brightness alone is not sufficient to obtain the desired room
brightness. In the white areas the output control value lrDimValue is appropriate for the lighting conditions.

Manual adjustment of the setpoint

In order to be able to adapt the light control to personal brightness needs, there is an option to increase or
decrease the setpoint value. A long TRUE signal on bSwitch (longer than uiSwitchOverTime in milliseconds)
switches the function block to the dimming mode and the light is dimmed up if it had been dimmed down in
the preceding dimming mode and vice versa. If bSwitch resets to FALSE, then the brightness value now
measured on uiBrightness is adopted as the new setpoint value to which control is to take place.

Manual mode

In the manual operation modes the inputs bSwitch, bCentralOn and bCentralOff have no function: with
uiLightCtrlMode=1 the output value lrDimValue is constantly set to lrManualDimValue and with
uiLightCtrlMode=2 it is set constantly to 0.0.
Changing to manual mode resets any control process that had previously started. On re-entering
automatic mode the output value is 0.0 and the control must be restarted.lrDimValue

Function blocks

TS8000124 Version: 1.2

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;
bSwitch : BOOL;
bPresence : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;
uiBrightness : UINT; (*lux*)
uiSetpoint : UINT; (*lux*)

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiLightCtrlMode : operation mode.

• 0: Automatic mode; the commands bSwitch, bCentralOn and bCentralOff are executable and can be
used to switch the controller on and off.

• 1: Manual On mode; constant light regulation is inactive – the value lrManualDimValue is output
without a delay at the output lrDimValueOut, all other command inputs are ineffective.

• 2: Manual Off mode; constant light regulation is inactive – the value 0.0 is output without a delay at the
output lrDimValueOut, all other command inputs are ineffective.

bSwitch : positive edges on this input switch the control on and off alternately. When switching off the output
lrDimValue is set to 0.0. This command input is active only in automatic mode (uiLightCtrlMode=0).

bPresence : a continuous TRUE signal on this input activates the control if the presence function is
activated by bPresenceOnActive=TRUE (VAR_IN_OUT). Conversely, a falling edge on this input always
deactivates the control. This command input is active only in automatic mode (uiLightCtrlMode=0).

bCentralOn : a positive edge on this input switches the control on. This command input is active only in
automatic mode (uiLightCtrlMode=0).

bCentralOff : a positive edge on this input switches the control off and sets the output lrDimValue to 0.0.
This command input is active only in automatic mode (uiLightCtrlMode=0).

uiBrightness : actual light value [lux].

uiSetpointValue : light setpoint [lux].

VAR_OUTPUT
lrDimValue : LREAL;
bControlActive : BOOL;
bAdjustedSetpointActive: BOOL;
uiAdjustedSetpoint : UINT;
diActDeviation : DINT;
bError : BOOL;
udiErrorId : UDINT;

lrDimValue : light output value, 0..100%.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 125Version: 1.2

bControlActive : this output is TRUE if the function block is in automatic mode and the control is activated.
This is intended to serve as an additional feedback signal if switch-on has taken place but the control outputs
a light value of lrDimValue=0.0.

bAdjustedSetpointActive : if the control is active and the setpoint value has been manually adjusted (see
above), then the state of this output changes to TRUE in order to indicate that the setpoint value on the input
uiSetpointValue is no longer active.

uiAdjustedSetpoint : this output indicates the active setpoint value if this has been manually adjusted
(bAdjustedSetpointActive = TRUE). This output is set to 0 if no manually adjusted setpoint value is active.

diActDeviation : current control deviation in lux. This output indicates a valid value only if the function block
is in automatic mode and activated. Otherwise 0.0 is output.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiSwitchOverTime : UINT;
uiAdjustRampTime : UINT;
bPresenceOnActive : BOOL;
bInitialMode : BOOL;
uiTargetRange : UINT;
uiControlRampTime : UINT;
uiOnDelay : UINT;
uiOffDelay : UINT;
lrMinDimValue : LREAL;
lrMaxDimValue : LREAL;
lrStartDimValue : LREAL;
lrManualDimValue : LREAL;

uiSwitchOverTime : switching time in milliseconds for the input bSwitch for the recognition of short and long
signals. (short signal: switch-on/switch-off function; long signal: dimming function)

uiAdjustRampTime : ramp time in seconds with which the setpoint value is changed during manual
adjustment.

bPresenceOnActive : if this input is TRUE, then the control is activated by a positive edge on bPresence if
the function block is in automatic mode (uiLightCtrlMode = 0).

bInitialMode : a TRUE signal on this input makes the function block begin with the setpoint value on
uiSetpoint each time it is activated. If on the other hand this input is FALSE, then the setpoint value that was
last active – i.e. including manually adjusted setpoint values – is adopted on activation of the function block.

uiTargetRange : target range around the setpoint value in which no further control is to take place.

uiControlRampTime : ramp time in seconds (time required to dim from 0% to 100%).

uiOnDelay : switch-on delay in seconds around the minimum value lrMinDimValue.

uiOffDelay : switch-off delay in seconds around the minimum value lrMinDimValue.

lrMinDimValue : lower limit value for dimming, see introduction [} 119].

lrMaxDimValue : upper limit to which the output lrDimValue can be controlled.

lrStartDimValue : value to which the light should jump on activating the control.

lrManualDimValue : output dimming value in Manual On mode (uiLightCtrlMode=1).

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000126 Version: 1.2

3.3.3.4 FB_BARDaylightControl

Daylight switch. Unlike the constant light regulation [} 119], this automatic control operates not with dimming
values, but merely switches the light on or off depending on the measured brightness.

Fig. 4: FB_BARDaylightControl

The function block knows 3 different modes, which can be set via the input uiLightCtrlMode:

• Automatic mode
• Manual On mode
• Manual Off mode

Automatic mode

If the brightness in the room, uiBrightness, falls below the value uiSwitchOnValue [lux] for the time
uiOnDelay [s], then the light is switched on. There is now a delay, uiLightOnTime, to allow the lamps reach
their full luminosity. The measured brightness in the room – assuming constant outdoor brightness – is
then higher than before switching on by the amount of the increase in brightness. Switching the lighting off
again makes sense only after the outdoor brightness has significantly increased again. This limit value is
calculated from the light switch-on value plus the brightness increase plus the parameter uiSwitchOffOffset.
If an increase in the outdoor brightness causes the room brightness to exceed this determined re-switch-off
value for the duration of uiOffDelay [s], then the lighting is switched off again.

Function blocks

TS8000 127Version: 1.2

Function blocks

TS8000128 Version: 1.2

Manual mode

In the manual operation modes, the bSwitch, bCentralOn and bCentralOff inputs have no function: with
uiLightCtrlMode=1, the output value bOn is set to TRUE and with uiLightCtrlMode=2 to FALSE.
A change to manual mode resets a previously started control. On re-entering automatic mode the
output value bOn is FALSE and the control must be restarted.

VAR_INPUT
eDataSecurityTyp: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;
bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;
uiBrightness : UINT;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiLightCtrlMode : operation mode.

• 0: Automatic mode; the commands bSwitch, bCentralOn and bCentralOff are executable and can be
used to switch the controller on and off.

• 1: Manual On mode; constant light regulation is inactive – the value lrManualDimValue is output
without a delay at the output lrDimValueOut, all other command inputs are ineffective.

• 2: Manual Off mode; constant light regulation is inactive – the value 0.0 is output without a delay at the
output lrDimValueOut, all other command inputs are ineffective.

bSwitch : positive edges on this input switch the control on and off alternately. When switching off the output
lrDimValue is set to 0.0. This command input is active only in automatic mode (uiLightCtrlMode=0).

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 129Version: 1.2

bCentralOn : a positive edge on this input switches the control on. This command input is active only in
automatic mode (uiLightCtrlMode=0).

bCentralOff : a positive edge on this input switches the control off and sets the output lrDimValue to 0.0.
This command input is active only in automatic mode (uiLightCtrlMode=0).

uiBrightness : actual light value [lux].

VAR_OUTPUT
lrDimValue : LREAL;
bOn : BOOL;
uiRemainingOnDelay: UINT;
uiRemainingOffDel : UINT;
uiPreOnValue : UINT;
uiLightGain : UINT;
uiSwitchOffValue : UINT;
bControlActive : BOOL;
bError : BOOL;
udiErrorId : UDINT;

lrDimValue : in order to keep this function the same as the other light user functions, a light output value
exists here too in the form of a floating point number in percent, even though the light is only switched on or
off. This means: light off: lrDimValue = 0.0, light on: lrDimValue = 100.0.

bOn : switching output for the lighting.

uiRemainingOnDelay : countdown of the switch-on delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

uiRemainingOffDelay : countdown of the switch-off delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

uiPreOnValue : measured light value immediately before switching the lighting on. This output is "0" if the
controller is switched off or in manual mode.

uiLightGain : calculated brightness increase after switching on the lighting and waiting for the expiry of the
waiting time uiFullLightTime. This output is "0" if the controller is switched off or in manual mode.

uiSwitchOffValue : determined re-switch-off value, wherein the measured brightness must be larger. During
the waiting phase (uiLightOnTime) this value jumps to 65535 in order to avoid the light switching off during
this time. This output is "0" if the controller is switched off or in manual mode.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiSwitchOnValue : UINT;
uiSwitchOffOffset: UINT;
uiLightOnTime : UINT;
uiOnDelay : UINT;
uiOffDelay : UINT;

uiSwitchOnValue : light switch-on value. The lighting is switched on after the expiry of the switch-on delay if
the outdoor brightness is lower than this value.

uiSwitchOffOffset : if the light is switched on for the time uiLightOnTime (see above), the light switch-off
value is calculated from the currently measured luminous intensity plus this value.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000130 Version: 1.2

uiLightOnTime : the lighting does not reach its true switch-on value immediately. In order to judge the
increase in light intensity, this time delay in milliseconds is allowed to elapse before the increase and the
light switch-off value that depends on it are calculated.

uiOnDelay : switch-on delay in seconds. Constant switching on and off of the lighting is perceived as very
distracting. If the outdoor brightness sinks in such a manner that the constant light regulation needs to be
switched on for support, then this should take place only after this time delay.

uiOffDelay : switch-off delay in seconds. If the outdoor brightness increases in such a manner that the
constant light regulation needs to be switched off, then this should take place only after this time delay in
order to mask out short-term fluctuations.

3.3.3.5 FB_BARLightActuator
This function block serves to control a conventional light actuator. The outputs cover the value ranges
0..100%, 0..32767 and On/Off.
On top of that the function block contains a scene memory in which up to 21 different light values can be
saved.

In principle the function block passes the values on the input lrTargetValue through to the output lrDimValue.
Conversely, a positive edge on the input bCallScene sets the output to the light value that is saved in the
scene table arrLightScenes under the index usiSelectedScene. The output bSceneMode then changes to
TRUE. If the scene index usiSelectedScene changes, then the newly selected scene value is adopted only
on another positive edge on bCallScene. The scene mode is quit again by a change of value on the input
lrTargetValue or a positive edge on bStopScene. The output bSceneMode goes back to FALSE and the
output lrDimValue once again follows the input lrTargetValue. A TRUE signal on bSaveScene saves the
current light output value into the scene table arrLightScenes under the index usiSelectedScene.

The light output value lrDimValue always follows the target values specified to it via a ramp. As in the case of
the user function FB_BARLightCircuitDim [} 134], this is defined by a ramp time – in this case uiSecDimTime
– which indicates the time interval in seconds that the light output value should require in order to change by
100%.

Function blocks

TS8000 131Version: 1.2

Since the light sensor function block FB_BARLightCircuitDim [} 134] also contains a ramp function for
presetting the target value, the light actuator function described here is called the "secondary dimtime" -
uiSecDimTime.
If both have different values, then the longer ramp time is always the relevant one:

Example1:

In this constellation the function block FB_BARLightCircuitDim [} 134] will change its output value lrDimValue
from 0% to 100% in 10 s. However, the function block FB_BARLightActuator can follow these continuously
changing setpoint values only with a ramp time of 20 s (related to a change from 0% to 100%). Therefore
this is ultimately the resulting ramp time.

Function blocks

TS8000132 Version: 1.2

Example2:

Conversely the function block FB_BARLightActuator could follow much faster here with a ramp time of 10 s.
However, since the dimming function block FB_BARLightCircuitDim [} 134] presets its setpoints in this
example only with a ramp time of 20 s, this longer time is also relevant in this case.
It must be noted in this example that a short button press on the function block FB_BARLightCircuitDim
immediately changes the output lrDimValue to the internally-saved value (see FB_BARLightCircuitDim
[} 134]). Hence, the ramp time on the FB_BARLightActuator is then relevant.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
lrTargetValue : LREAL;
usiSelectedScene : USINT;
bCallScene : BOOL;
bStopScene : BOOL;
bSaveScene : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

lrTargetValue : target value of light output in 0..100%;

usiSelectedScene : selected lighting scene, 0..20;

bCallScene : sets the output value, controlled by a ramp, to the light value entered in the index
usiSelectedScene (arrLightScenes).

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 133Version: 1.2

bStopScene : resets the output value to the value lrTargetValue. The change is likewise controlled by a
ramp.

bSaveScene : saves the current light value at the output lrDimvalue in the light value table arrLightScenes
under the index usiSelectedScene.

VAR_OUTPUT
lrDimValue: LREAL;
iDimValue : INT;
bOn : BOOL;
bSceneMode: BOOL;
bError : BOOL;
udiErrorId: UDINT;

lrDimValue : output light value in 0..100%.

iDimValue : output light value in 0..32767.

bOn : output light status: lrDimmValue=0.0 => bOn=FALSE - lrDimmValue>0.0 => bOn=TRUE.

bSceneMode : the function block presently outputs a scene value and not the value lrTargetValue on the
input.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiSecDimTime : UINT;
arrLightScenes : ARRAY[0..20] OF LREAL;

uiSecDimTime : ramp time in seconds. This is the time that the light actuator function requires in order to
regulate from 0..100%.

arrLightScenes : table of saved light values.

3.3.3.6 FB_BARLightCircuit
This function block represents a simple light switching circuit without a dimming function.

The function block knows 3 different modes, which can be set via the input uiLightCtrlMode:

• Automatic mode
• Manual On mode
• Manual Off mode

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000134 Version: 1.2

In automatic mode (uiLightCtrlMode=0) the function block can be controlled via the inputs bSwitch,
bCentralOff and bCentralOn. A rising edge on bCentralOff switches the output lrDimValue to 0.0, while a
rising edge on bCentralOn sets the output to 100.0. Rising edges on bSwitch make the output lrDimValue
change each time between 0.0 and 100.0.

In manual operation modes, when uiLightCtrlMode=1, the output value lrDimValueOut is constantly set to the
value 100.0 and when uiLightCtrlMode=2, the output value is constantly set to the value 0.0.

VAR_INPUT
uiLightCtrlMode: UINT;
bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;

uiLightCtrlMode : operation mode.

• 0: automatic mode, the output value lrDimmValue can be influenced by the command inputs bSwitch,
bCentralOn and bCentralOff.

• 1: Manual On mode; the value 100.0 is output without a delay at the output lrDimValueOut, all other
command inputs are ineffective.

• 2: Manual Off mode; the value 0.0 is output without a delay at the output lrDimValueOut, all other
command inputs are ineffective.

bSwitch: rising edges on bSwitch make the output lrDimValue change each time between 0.0 and 100.0.

bCentralOn: switches the output lrDimValueOut to 100.0.

bCentralOff: switches the output lrDimValueOut to 0.0.

All switching commands, bSwitch, bCentralOn and bCentralOff are effective only in automatic
mode.

VAR_OUTPUT
lrDimValue : LREAL;
bLight : BOOL;
bError : BOOL;
udiErrorId : UDINT;

lrDimValue : light output value in percent 0.0, if the light is switched off and 100.0 if the light is switched on.

bLight : FALSE, if lrDimmValue = 0.0, otherwise TRUE.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

3.3.3.7 FB_BARLightCircuitDim
This function block represents a light switching circuit with a dimming function.

Function blocks

TS8000 135Version: 1.2

The function block knows 3 different modes, which can be set via the input uiLightCtrlMode:

• Automatic mode
• Manual On mode
• Manual Off mode

In automatic mode (uiLightCtrlMode=0) the function block can be controlled via the inputs bSwitch,
bCentralOff and bCentralOn. Whereas the output lrDimValue is set to 0.0 or to the value reached before the
last switch-off by rising edges on bCentralOff and bCentralOn, the behavior of the input bSwitch depends on
the duration of the signal. A short TRUE signal that is shorter than uiSwitchOverTime in milliseconds
switches the output lrDimValue. If the output lrDimValue is initially larger than 0.0, then it is switched to 0 and
the previous value is saved. If on the other hand it is 0.0, then the output is set to the previously internally
saved value. This saved value is set to the maximum value in the switch-on state of the program, see below.
Unlike in the case of the inputs bCentralOff and bCentralOn, the falling edge triggers the switching event
here. A long TRUE signal on bSwitch starts the dimming process. In principle dimming takes place only
between the set minimum and maximum values (lrMinDimValue and lrMaxDimValue). The dimming ramp is
defined in seconds by uiRampTime. This dimming time refers to the dimming range from 0 to 100 per cent,
even if the limits lrMinDimValue and lrMaxDimValue are set differently. If the output value lrDimmValue
reaches one of the limits without bSwitch resetting to FALSE, then it remains there for the time uiCycleDelay
in milliseconds, before dimming takes place again to the other limit value.

Exception: a uiCycleDelay value of 0 is not interpreted as an immediate dimming direction reversal, but
instead deactivates this. Only another long TRUE signal on bSwitch starts the dimming in the opposite
direction.

Function blocks

TS8000136 Version: 1.2

In manual operation modes, when uiLightCtrlMode=1, the output value lrDimValueOut is constantly set to the
value lrManualDimValue and when uiLightCtrlMode=2, the output value is constantly set to 0.0.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;
bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

Function blocks

TS8000 137Version: 1.2

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiLightCtrlMode : operation mode.

• 0: automatic mode, the output value lrDimmValue can be influenced by the command inputs bSwitch,
bCentralOn and bCentralOff

• 1: Manual On mode; the value lrManualDimValue is output without a delay at the output
lrDimValueOut, all other command inputs are ineffective.

• 2: Manual Off mode; the value 0.0 is output without a delay at the output lrDimValueOut, all other
command inputs are ineffective.

bSwitch: a short TRUE signal that is shorter than uiSwitchOverTime in milliseconds switches the output
lrDimValue. If the output lrDimValue is initially larger than 0.0, then it is switched to 0 and the previous value
is saved. If on the other hand it is 0.0, then the output is set to the previously internally saved value. This
saved value is set to the maximum value in the switch-on state of the program, see below.
A long TRUE signal that is longer than uiSwitchOverTime in milliseconds starts the dimming process,
wherein the dimming direction changes if two long signals follow one another on the input bSwitch.

bCentralOn: switches the output lrDimValueOut to the previously saved (at the last switch-off) dimming
value, see bSwitch.

bCentralOff: switches the output lrDimValueOut to 0.0.

All switching commands, bSwitch, bCentralOn and bCentralOff are effective only in automatic
mode.

VAR_OUTPUT
lrDimValue : LREAL;
bLight : BOOL;
bError : BOOL;
udiErrorId : UDINT;

lrDimValue : light output value; can adopt values between lrMinDimValue and lrMaxDimValue, see
VAR_IN_OUT, but maximally 0..100%.

bLight : FALSE, if lrDimmValue = 0.0, otherwise TRUE.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000138 Version: 1.2

variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiSwitchOverTime : UINT;
uiDimRampTime : UINT;
uiCycleDelay : UINT;
lrMinDimValue : LREAL;
lrMaxDimValue : LREAL;
lrManualDimValue : LREAL;

uiSwitchOverTime : switching time in milliseconds from button to dimming mode.

uiDimRampTime : ramp time in seconds (time required to dim from 0% to 100%).

uiCycleDelay : switching time in milliseconds of the automatic change between dimming up and dimming
down. The automatic change is inactive if this value is zero.

lrDimMinValue : minimum light value in % that can be reached by dimming.

lrDimMaxValue : maximum light value in %.

lrManualDimValue : output dimming value in Manual On mode (uiLightCtrlMode=1).

.

3.3.3.8 FB_BARStairwellAutomatic
Function block for a stairwell light circuit.

Fig. 5: FB_BARStairwellAutomatic

The function block knows 3 different modes, which can be set via the input uiLightCtrlMode:

• Automatic mode
• Manual On mode
• Manual Off mode

The stairwell control is active in automatic mode (uiLightCtrlMode=0). A positive edge on bSwitch initially
only switches the light on (output bOn). A negative edge starts the holding time generator. If the hold time
uiHoldTime [s] has expired, a flash sequence with a number of flash pulses programmable by
uiNumberPulses begins as a warning of the impending switch-off. These pulses have an on-time of
uiPulseTimeOn [ms] and an off-time of uiPulseTimeOff [ms].

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 139Version: 1.2

The sequence can be restarted at any time:

In the manual operation modes the input bSwitch has no function: with uiLightCtrlMode=1 the output value
bOn is constantly set to TRUE and with uiLightCtrlMode=2 it is constantly set to FALSE.
Changing to manual mode resets any lighting sequence that had started up to that point.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;
bSwitch : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000140 Version: 1.2

uiLightCtrlMode : operation mode.

• 0: automatic mode; the stairwell circuit is active and reacts to the input bSwitch.
• 1: Manual On mode; the stairwell circuit is inactive - the output bOn is set constantly to TRUE.
• 2: Manual Off mode; the stairwell circuit is inactive - the output bOn is set constantly to FALSE.

bSwitch: a rising edge switches the light on in automatic mode (uiLightCtrlMode=0), a falling edge starts the
holding time generator. This input has no function in manual operation mode (uiLightCtrlMode=1 or 2).

VAR_OUTPUT
lrDimValue : LREAL;
bOn : BOOL;
uiRemainingHoldTime: UINT;
bError : BOOL;
udiErrorId : UDINT;

lrDimValue : in order to keep this function the same as the other light user functions, a light output value
exists here too in the form of a floating point number in percent, even though the light is only switched on or
off. This means: light off: lrDimValue = 0.0, light on: lrDimValue = 100.0.

bOn : switching output for the lighting.

uiRemainingTimeHold: remaining hold time in seconds. If the light is off or if manual operation mode is
active, then this output is "0". With a rising edge on bSwitch in automatic mode, this output initially indicates
the complete number of seconds of the hold time (uiHoldTime), in order to illustrate the countdown of the
hold time, starting with a falling edge on bSwitch. This output is 0 as long as no countdown of the time is
taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiHoldTime : UINT;
uiPulseTimeOn : UINT;
uiPulseTimeOff : UINT;
uiNumberPulses : UINT;

uiHoldTime : hold time [s] of the stairwell controller after a falling edge on bSwitch.

uiPulseTimeOn: ON-time of the early warning pulses in milliseconds.

uiPulseTimeOff: OFF-time of the early warning pulses in milliseconds.

uiNumberPulses: number of early warning pulses.

3.3.3.9 FB_BARTwilightAutomatic
Twilight automatic

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 141Version: 1.2

Fig. 6: FB_BARTwilightAutomatic

The function block knows 3 different modes, which can be set via the input uiLightCtrlMode:

• Automatic mode
• Manual On mode
• Manual Off mode

Automatic mode

In automatic mode a positive edge on bSwitch activates the twilight automatic, if it had been inactive
beforehand. A further edge on bSwitch deactivates the twilight automatic again. The automatic function is
explicitly switched on and off with bCentralOn and bCentralOff, independent of the previous state of the
automatic function. If the twilight automatic is activated, then the function block switches the output
lrDimValue to the switch-on value lrDimValueOn when the brightness falls below a switch-on threshold value
uiSwitchOnValue for an entered delay time uiOnDelay. Conversely, if a switch-off threshold value
uiSwitchOffValue is exceeded for an entered time delay uiOffDelay, then the output is switched to the value
lrDimValueOff. In the inactive state the light output value lrDimValue is set to 0.0.

Manual mode

In the manual operation modes the inputs bSwitch, bCentralOn and bCentralOff have no function: with
uiLightCtrlMode=1 the output value lrDimValue is constantly set to lrManualDimValue and with
uiLightCtrlMode=2 it is constantly set to 0.0.

Switch-on and switch-off delay

The switch-on and switch-off delays written in automatic mode are always run through irrespective of the
state of the automatic function (active or inactive) and the operating mode, i.e. the timers are not reset by
these operating states.

VAR_INPUT
eDataSecurityTyp: E_HVACDataSecurityType;
uiLightCtrlMode : UINT;
bSwitch : BOOL;
bCentralOn : BOOL;
bCentralOff : BOOL;
uiBrightness : UINT;

Function blocks

TS8000142 Version: 1.2

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiLightCtrlMode : operation mode.

• 0: Automatic mode; the commands bSwitch, bCentralOn and bCentralOff are executable and can be
used to switch the twilight automatic on and off.

• 1: Manual On mode; twilight automatic is inactive – the value lrManualDimValue is output without a
delay at the output lrDimValueOut, all other command inputs are ineffective.

• 2: Manual Off mode; twilight automatic is inactive – the value 0.0 is output without a delay at the output
lrDimValueOut, all other command inputs are ineffective.

bSwitch : positive edges on this input switch the twilight automatic on and off alternately. When switching off
the output lrDimValue is set to 0.0. This command input is active only in automatic mode
(uiLightCtrlMode=0).

bCentralOn : a positive edge on this input switches the twilight automatic on. This command input is active
only in automatic mode (uiLightCtrlMode=0).

bCentralOff : a positive edge on this input switches the twilight automatic off and sets the output lrDimValue
to 0.0. This command input is active only in automatic mode (uiLightCtrlMode=0).

uiBrightness : actual light value [lux].

VAR_OUTPUT
lrDimValue : LREAL;
uiRemainingOnDelay : UINT;
uiRemainingOffDelay: UINT;
bControlActive : BOOL;
bError : BOOL;
udiErrorId : UDINT;

lrDimValue : light output value, 0..100%.

uiRemainingOnDelay : countdown of the switch-on delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

uiRemainingOffDelay : countdown of the switch-off delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

bControlActive : this output is TRUE if the function block is in automatic mode and the twilight automatic is
activated. This is intended to serve as an additional feedback signal if switch-on has taken place but the
control outputs a light value of lrDimValue=0.0.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 143Version: 1.2

Note If an error should occur, then this automatic function is deactivated and position and angle are
set to 0. This means that if a priority controller is in use, another function with a lower priority (see
Overview) automatically takes over control of the blind. In the case of a direct connection,
conversely, the blind will drive to position/angle 0.

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiSwitchOnValue : UINT;
uiSwitchOffValue : UINT;
uiOnDelay : UINT;
uiOffDelay : UINT;
lrDimOnValue : LREAL;
lrDimOffValue : LREAL;
lrManualDimValue : LREAL;

uiSwitchOnValue: switch-on threshold. This is compared with the brightness value at the input uiBrightness.
This value must be greater than the output threshold value uiSwitchOffValue.

uiSwitchOffValue: switch-off threshold. This is compared with the brightness value at the input uiBrightness.

uiOnDelay: switch-on delay in seconds.

uiOffDelay: switch-off delay in seconds.

lrDimOnValue : switch-on light value in %.

lrDimOffValue : switch-off light value in %.

lrManualDimValue : output dimming value in Manual On mode (uiLightCtrlMode=1).

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000144 Version: 1.2

3.3.4 Sun portection

3.3.4.1 Overview shading

Function blocks

TS8000 145Version: 1.2

Function blocks

TS8000146 Version: 1.2

3.3.4.2 Overview sun protection

Function blocks

TS8000 147Version: 1.2

3.3.4.3 Sun protection: basic principles and definitions
The direct incidence of daylight is regarded as disturbing by persons in rooms. On the other hand, however,
people perceive natural light to be more pleasant in comparison with artificial light. Two options for glare
protection are to be presented here:

• Lamella setpoint tracing
• Height adjustment

Lamella setpoint tracing

A louvered blind that can be adjusted offers the option of intelligent sun protection here. The position of the
slats is cyclically adapted to the current position of the sun, so that no direct daylight enters through the
blinds, but as much diffuse daylight can be utilized as possible.

The illustration shows that diffuse light can still enter from underneath, whereas no further direct daylight, or
theoretically only a single ray, can enter. The following parameters are necessary for the calculation of the
slat angle:

• the current sun elevation (angle of elevation)
• the position of the sun, i.e. the azimuth angle
• the facade orientation
• the slat width
• the slat spacing

The effective angle of elevation is calculated from the first three of the parameters listed above:

If the facade orientation and the position of the sun (azimuth) are equal, then the effective angle is equal to
the current angle of elevation.

However, if the sunlight falls at an angle onto the facade as seen from the sun direction, the effective angle
is larger for the same angle of elevation.

The following three pictures illustrate the relationship between the effective angle of elevation and the
dimensions of the blind and how the resulting slat angle λ changes:

Function blocks

TS8000148 Version: 1.2

Function blocks

TS8000 149Version: 1.2

Height adjustment

With a high position of the sun at midday, the direct rays of sunlight do not penetrate into the full depth of the
room. If direct rays of sunlight in the area of the window sill are regarded as uncritical, the height of the sun
protection can be adapted automatically in such a way that the rays of sunlight only ever penetrate into the
room up to an uncritical depth.

In order to be able to calculate at any time the appropriate blind height that guarantees that the incidence of
sunlight does not exceed a certain value, the following values are necessary.

Required for the calculation of the respective blind height:

• Sun elevation
• Window height
• Distance between the window and the floor

The following illustration shows where these parameters are to be classified:

Function blocks

TS8000150 Version: 1.2

Influence of the facade inclination

In both of the methods of sun protection described, it was assumed that the facade and thus the windows
are perpendicular to the ground. In the case of an inclined facade, however, the incidence of light changes
such that this influence will also be taken into account. The facade inclination is defined as follows:

Function blocks

TS8000 151Version: 1.2

Function blocks

TS8000152 Version: 1.2

3.3.4.4 Shading correction: basic principles and definitions
The shading correction can be used in conjunction with the automatic sun function or lamella setpoint
tracing. The function checks whether a window or a window group that is assigned to a room, for example, is
temporarily placed in the shade by surrounding buildings or parts of its own building. Sun shading for
windows that stand in the shadow of surrounding buildings or trees is not necessary and may even be
disturbing under certain circumstances. On the basis of data entered regarding the facade and its
surroundings, the shading correction determines which parts of the front are in the shade. Hence, it is then
possible to decide whether the sun protection should be active for individual windows or window groups.
Apart from the current position of the sun, the shading of the individual windows depends on three things:

• the orientation of the facade
• the position of the windows
• the positioning of the shading objects

The following illustrations are intended to describe these interrelationships and to present the parameters to
be entered.

Orientation of the facade

Observation from above

For the pure observation of the shadow thrown on the facade, a two-dimensional coordinate system is
ultimately required, therefore the X and Y axis were placed on the facade. The zero point is thereby at the
bottom left on the base, as if one were regarding the facade from the front. For the calculation of the shading
objects the Z component is then also added. Its axis points from away the facade and has the same zero
point as the X and Y axis.

In the northern hemisphere, the horizontal sun position (azimuth angle) is determined from the north
direction by definition. The facade orientation is likewise related to north, wherein the following applies to the
line of sight from a window in the facade:

Line of sight Facade orientation
North β=0°
East β=90°

Function blocks

TS8000 153Version: 1.2

Line of sight Facade orientation
South β=180°
West β=270°

In the southern hemisphere is the sun path is the other way round: although it also rises in the east, ad
midday it is in the north. The facade orientation is adjusted to this path:

Line of sight Facade orientation
South β=0°
East β=90°
North β=180°
West β=270°

For convenience, the other explanations refer to the northern hemisphere. For the later parameterization
(FB_BARShadingCorrection [} 176] / FB_BARShadingCorrectionSouth [} 179]) only the corresponding facade
orientation is necessary anyway, which can be taken from the respective valid table - northern or southern
hemisphere.

The following two illustrations are intended to further clarify the position of the point of origin P0 as well as the
orientation of the coordinate system:

Function blocks

TS8000154 Version: 1.2

Observation from the side

The sun elevation can be represented using this illustration: by definition this is 0° at sunrise (horizontal
incidence of light) and can reach maximally 90°, but this applies only to places within the Tropic of Cancer
and the Tropic of Capricorn.

Observation from the front

Here, the position of the point of origin, P0, at the bottom left base point of the facade is once more very
clear. Beyond that the X-Y orientation is illustrated, which is important later for the entry of the window
elements.

Position of the windows

The position of the windows is defined by the specification of their bottom left corner in relation to the facade
coordinate system. Since a window lies flat on the facade, the entry is restricted to the X and Y coordinates.

Function blocks

TS8000 155Version: 1.2

The width and height must additionally be specified.

Function blocks

TS8000156 Version: 1.2

The position of each window corner on the facade is determined internally from the values entered. A
window is considered to be in the shade if all corners lie in the shade.

Positioning of the shading objects

When describing the shading objects, distinction is made between angular objects (building, column) and
objects that are approximately spherical (e.g. trees). Angular objects can be categorized according to the
shadow they cast into square, shadow-casting facades, wherein one must consider which ones cast the
main shadows over the course of the day:

Function blocks

TS8000 157Version: 1.2

Morning/noon

In the morning and around noon, the shadows are mainly cast by the sides S1 and S4; S2 and S3 need not be
considered if they are not higher.

Function blocks

TS8000158 Version: 1.2

Afternoon/evening

In the afternoon and in the evening too, the total shade can be determined alone by the observation of S1
and S3. In this case it is therefore sufficient to specify S1 and S3 as shadow casters. The entry is made on the
basis of the four corners or their coordinates in relation to the zero point of the facade:

Function blocks

TS8000 159Version: 1.2

In this sketch only the upper points, P2 and P3, are illustrated due to the plan view. The lower point P1 lies
underneath P2 and P4 lies underneath P3.

The input of shadow-casting sphere elements is done by entering the center of the sphere and its radius:

Function blocks

TS8000160 Version: 1.2

Sphere elements

A "classification" of the sphere element as in the case of the angular building is of course unnecessary, since
the shadow cast by a sphere changes only its direction, but not its size.

3.3.4.5 FB_BARBlindPositionEntry

This function block serves for the input of interpolation points for the function block FB_BARSunProtectionEx
[} 221], if this should be operated in the height positioning mode with the help of a table, see E_BARPosMode
[} 233].

Fig. 7: FB_BARBlindPositionEntry

Function blocks

TS8000 161Version: 1.2

In addition to the operation modes "Fixed blind height" and "Maximum light incidence", the function block
FB_BARSunProtectionEx [} 221] also offers the possibility to control the blind height in relation to the position
of the sun by means of table entries. By entering several interpolation points, the blind height relative to the
respective sun position is calculated by linear interpolation. However, since incorrectly entered values can
lead to malfunctions in FB_BARSunProtectionEx [} 221], this function block is to be preceded by the function
block FB_BARBlindPositionEntry. Four interpolation points can be parameterized on this function block,
whereby a missing entry is evaluated as a zero entry.
The function block does not sort the values entered independently, but instead ensures that the positions of
the sun entered in the respective interpolation points are entered in ascending order. Unintentional
erroneous entries are noticed faster as a result.
The values chosen for rSunElevation1... rSunElevation4 must be unique, for example, the following situation
must be avoided:
[rSunElevation1 = 10 ; uiBlindPosition1 = 50] and simultaneously [rSunElevation2 = 10 ; uiBlindPosition2 =
30].
This would mean that there would be two different target values for one and the same value, which does not
allow a unique functional correlation to be established.
In addition, the entries for the position of the sun and blind height must lie within the valid range.
Mathematically this means that the following conditions must be satisfied:

• rSunElevation1 < rSunElevation2 < rSunElevation3 < rSunElevation4 - (values ascending and unequal)
• 0 ≤rSunElevation≤ 90 (in degrees - range of validity of source values)
• 0 ≤uiBlindPosition≤ 100 (in percent - range of validity of target values)

The function block checks the values entered for these conditions and outputs an error code [} 237] if they
are not met. In addition, the output bValid is set to FALSE.
Furthermore the function block independently ensures that the boundary areas are filled out: internally,
another interpolation point is set up at rSunElevation = 0 with uiBlindPosition1and another one above
rSunElevation4 at rSunElevation = 90 with uiBlindPosition4. This ensures that a sensible target value exists
for all valid input values 0 ≤rSunElevation≤ 90 without the user having to assign an entry for rSunElevation =
0 and rSunElevation = 90:

The actual number of interpolation points transferred to the function block FB_BARSunProtectionEx [} 221]
thus increases to 6, see ST_BARBlindPositionTable [} 234].

The interpolation of the values takes place in the glare protection function block.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

Function blocks

TS8000162 Version: 1.2

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

VAR_OUTPUT
bValid : BOOL;
uiErrorId : UDINT;
stBlindPositionTable: ST_BARBlindPositionTable;

bValid: this output will be TRUE as long as the entries correspond to the criteria listed above.

uiErrorId: contains the error code, if the entries should not correspond to the criteria listed above. See error
codes [} 237].

stBlindPositionTable : transfer structure of the interpolation points, see ST_BARBlindPositionTable [} 234].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
rSunElevation1 : REAL;;
uiBlindPosition1 : UINT;
rSunElevation2 : REAL;
uiBlindPosition2 : UINT;
rSunElevation3 : REAL;
uiBlindPosition3 : UINT;
rSunElevation4 : REAL;
uiBlindPosition4 : UINT;

rSunElevation1: position of the sun of the 1st interpolation point (0°..90°).

uiBlindPosition1: blind position (closing degree) of the 1st interpolation point (0%..100%).

rSunElevation2: position of the sun of the 2nd interpolation point (0°..90°).

uiBlindPosition2: blind position (closing degree) of the 2nd interpolation point (0%..100%).

rSunElevation3: position of the sun of the 3rd interpolation point (0°..90°).

uiBlindPosition3: blind position (closing degree) of the 3rd interpolation point (0%..100%).

rSunElevation4: position of the sun of the 4th interpolation point (0°..90°).

uiBlindPosition4: blind position (closing degree) of the 4th interpolation point (0%..100%).

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 163Version: 1.2

3.3.4.6 FB_BARDelayedHysteresis
This function block represents a threshold switch for brightness. The switch-on and switch-off behavior can
additionally be delayed.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
uiBrightness : UINT;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

uiBrightness: outdoor brightness in lux.

VAR_OUTPUT
bOut : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bOut: binary delayed output of the threshold switch.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000164 Version: 1.2

uiOnValue : UINT;
uiOffValue : UINT;
uiOnDelay : UINT;
uiOnDelay : UINT;

uiOnValue: switch-on threshold value in lux. This must be greater than the switch-off threshold value
usiOffValue.

uiOffValue: switch-off threshold value in lux. This must be smaller than the switch-on threshold value
usiOnValue.

uiOnDelay: switch-on delay in seconds.

uiOffDelay: switch-off delay in seconds.

3.3.4.7 FB_BARFacadeElementEntry
This function block serves the administration of all facade elements (windows) in a facade, which are saved
globally in a list of facade elements [} 237]. It is intended to facilitate the input of the element information -
also with regard to the use of the target visualization. A schematic representation of the objects with
description of the coordinates is shown in Shading correction: principles and definitions [} 152].

The facade elements are declared in the global variables as a two-dimensional field above the window
columns and rows:
 VAR_GLOBAL
 arrFacadeElement : ARRAY[1..iColumnsPerFacade, 1..iRowsPerFacade] OF ST_BARFacadeElement;
END_VAR

Each individual element arrFacadeElement carries the information for one facade element
(ST_BARFacadeElement [} 235]). The information includes the group assignment, the dimensions (width,
height) and the coordinates of the corners. The function block thereby accesses this field directly via the IN-
OUT variable arrFacadeElement.

The fact that the coordinates of corners 2 to 4 are output values arises from the fact that they are
formed from the input parameters and are to be available for use in a visualization.

Function blocks

TS8000 165Version: 1.2

All data in meters!

lrCorner2X = lrCorner1X
lrCorner2Y = lrCorner1Y + lrWindowHeight (window height)
lrCorner3X = lrCorner1X + lrWindowWidth (window width)
lrCorner3Y = lrCorner2Y
lrCorner4X = lrCorner1X + lrWindowWidth (window width)
lrCorner4Y = lrCorner1Y

The function block is used in three steps:

• Read
• Change
• Write

Read

With the entries in iColumn and iRow the corresponding element is selected from the list
arrFacadeElement[iColumn,iRow]. A rising edge on bRead reads the following data from the list element:

• usiGroup Group membership,
• lrCorner1X X-coordinate of corner 1 in meters
• lrCorner1Y Y-coordinate of corner 1 in meters
• lrWindowWidth Window width in meters
• lrWindowHeight Window height in meters

These are then assigned to the corresponding input variables of the function block, which uses them to
calculate the coordinates of corners 2-4 as output variables in accordance with the correlation described
above. It is important here that the input values are not overwritten in the reading step. Hence, all values can
initially be displayed in a visualization.

Change

In a next program step the listed input values can then be changed. The values entered are constantly
checked for plausibility. The output bValid indicates whether the values are valid (bValid=TRUE). If this is not
the case, a corresponding error code [} 237] is output at the output udiErrorId. See also below "Errors
(bValid=FALSE)".

Function blocks

TS8000166 Version: 1.2

Write

The parameterized data are written to the list element with the index nId upon a positive edge on bWrite,
regardless of whether they represent valid values or not. Therefore the element structure
ST_BARFacadeElement [} 235] also contains a plausibility bit, bValue, that relays precisely this information to
the function block FB_BARShadingCorrection [} 176] / FB_BARShadingCorrectionSouth [} 179] and prevents
incorrect calculations there.

Error (bValid=FALSE)

The function block FB_BARShadingCorrection [} 176] / FB_BARShadingCorrectionSouth [} 179], which judges
whether all windows in a group are shaded, will only perform its task if all windows in the examined group
have valid entries.
This means:

• usiGroup must be greater than 0
• lrCorner1X must be greater than or equal to 0.0
• lrCorner1Y must be greater than or equal to 0.0
• lrWindowWidth must be greater than 0
• lrWindowHeight must be greater than 0

If one of these criteria is not met, this is interpreted as an incorrect entry and bValid is set to FALSE at the
function block output of FB_BARFacadeElementEntry and in the window element ST_BARFacadeElement
[} 235].
If, on the other hand, all entries of a facade element are zero, it is regarded as a valid, deliberately omitted
facade element:

Function blocks

TS8000 167Version: 1.2

In the case of a facade of 6x4 windows, the elements window (2.1), window (3.5) and window (4.4) would be
empty elements here.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
iColumn : INT;
iRow : INT;
bWrite : BOOL;
bRead : BOOL;
usiGroup : USINT;
lrCorner1X : LREAL;
lrCorner1Y : LREAL;
lrWindowWidth : LREAL;
lrWindowHeight : LREAL;

iColumn: column index of the selected component on the facade. This refers to the selection of a field
element of the array stored in the IN-OUT variable arrFacadeElement.

iRow: ditto row index.iRow and iColumn must not be zero! This arises from the field definition, see above.

bRead: with a positive edge at this input, the information of the selected element,
arrFacadeElement[iColumn,iRow] is read into the function block and assigned to the input variables
usiGroup to rWindowHeight. This gives rise to the output variables rCorner2X to rCorner4Y. If data are
already present on the inputs usiGroup to rWindowHeight at time of reading, then the data previously read
are immediately overwritten with these data.

bWrite: a positive edge writes the entered as well as calculated values into the selected field element
arrFacadeElement[iColumn,iRow].

Function blocks

TS8000168 Version: 1.2

usiGroup: group membership.

lrCorner1X: X-coordinate of corner 1 in meters.

lrCorner1Y: Y-coordinate of corner 1 in meters.

lrWindowWidth: window width in meters.

lrWindowHeight: window height in meters.

VAR_OUTPUT
lrCorner2X : LREAL;
lrCorner2Y : LREAL;
lrCorner3X : LREAL;
lrCorner3Y : LREAL;
lrCorner4X : LREAL;
lrCorner4Y : LREAL;
bValid : BOOL;
udiErrorId : UDINT;

lrCorner2X: determined X-coordinate of corner 2 of the window in meters. See "Info" above.

lrCorner2Y: determined Y-coordinate of corner 2 of the window in meters. See "Info" above.

lrCorner3X: determined X-coordinate of corner 3 of the window in meters. See "Info" above.

lrCorner3Y: determined Y-coordinate of corner 3 of the window in meters. See "Info" above.

lrCorner4X: determined X-coordinate of corner 4 of the window in meters. See "Info" above.

lrCorner4Y: determined Y-coordinate of corner 4 of the window in meters. See "Info" above.

bValid: result verification for the entered values.

udiErrorId: contains the error code if the values entered are not OK. See error codes [} 237].

VAR_IN_OUT
arrFacadeElement : ARRAY[1..iColumnsPerFacade, 1..iRowsPerFacade] OF ST_BARFacadeElement;

arrFacadeElement: list of facade elements [} 237].

3.3.4.8 FB_BARReadFacadeElementList
With the help of this function block, data for facade elements (windows) can be imported from a pre-defined
Excel table in csv format into the List of facade elements [} 237]. In addition the imported data are checked
for plausibility and errors are written to a log file.

VAR_INPUT
bStart : BOOL;
sDataFile : STRING;
sLogFile : STRING;
sNetId : STRING;

bStart: a TRUE edge on this input starts the reading process.

Function blocks

TS8000 169Version: 1.2

sDataFile: contains the path and file name of the file to be opened. This must have been saved in Excel as
file type "CSV (comma-separated values) (*.csv)". If the file is opened with a simple text editor, then the
values must be displayed separated by semicolons. Example of an entry: sDataFile:= 'C:
\Projects\FacadeElements.csv'

sLogFile: ditto log file for the accumulating errors. This file is overwritten each time the function block is
activated, so that only current errors are contained.

sNetId: a string can be entered here with the AMS Net ID of the TwinCAT computer on which the files are to
be written/read. If it is to be run on the local computer, an empty string can be entered.

The data can be saved only on the control computer itself and on the computers that are connected
by ADS to the control computer. Links to local hard disks in this computer are possible, but not to
connected network hard drives.

VAR_OUTPUT
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
uiAmountOfSetsRead: UINT;

bBusy: this output is TRUE as long as elements are being read from the file.

bError: this output is switched to TRUE if the parameters entered are erroneous or if an error has occurred
while writing to or reading from the file.

udiErrorId: contains the error code of the error that occurred last. See Error codes [} 237] or ADS_Error
codes.

uiAmountOfSetsRead: number of data sets read

VAR_IN_OUT
arrFacadeElement : ARRAY[1..iColumnsPerFacade, 1..iRowsPerFacade] OF ST_BARFacadeElement;

arrFacadeElement: list of facade elements [} 237].

Excel table

The following example shows the Excel table with the entries of the window elements.
All text fields are freely writable, important are the green marked fields, where each line indicates a data set.
The following rules are to be observed:

• A data set must always start with a '@'.

• The indices IndexColumn and IndexRow must lie within the defined limits, see List of facade elements
[} 237]. These indices directly describe the facade element in the list arrFacadeElements to which the
data from the set are saved.

• Window width and window height must be greater than zero
• The corner coordinates P1x and P1y must be greater than or equal to zero.
• Each window element must be assigned to a group 1...255.
• For system-related reasons the total size of the table may not exceed 65534 bytes.
• This must have been saved in Excel as file type "CSV (comma-separated values) (*.csv)".

It is not necessary to describe all window elements that would be possible by definition or declaration. Before
the new list is read in, the function block deletes the entire old list in the program. All elements that are not
described by entries in the Excel table then have pure zero entries and are thus marked as non-existent and
also non-evaluable, since the function block for shading correction, FB_BARSunProtectionEx [} 221], does not
accept elements with the group entry '0'.

Function blocks

TS8000170 Version: 1.2

Log file

Each time the reading function block is restarted, the log file is rewritten and the old contents are deleted. If
there is no log file, it will be automatically created first. The log file then contains either an OK message or a
list of all errors that have occurred. Errors connected with the opening, writing or closing of the log file itself
cannot be written at the same time. Therefore the output udiErrorId of the reading function block must also
always be observed, since it displays the last error code. Since the log file is always closed last during the
reading process, a corresponding alarm is ensured in the event of an error.

Function blocks

TS8000 171Version: 1.2

Program sample

In this sample the variable bInit is initially set to TRUE when the PLC starts. Hence, the input bStart on the
function block fbReadFacadeElementList receives a once-only rising edge that triggers the reading process.
The file "FacadeElements.csv" is read, which is located in the folder "C:\Projects\". The log file "Logfile.txt" is
then saved in the same folder. If this log file does not yet exist it will be created, otherwise the existing
contents are overwritten. Reading and writing take place on the same computer on which the PLC is located.
This is defined by the input sNetID = '' (=local). All data are written to the list arrFacadeElement declared in
the program. The output bBusy is set to TRUE as long as reading and writing is in progress. The error that
occurred last is indicated on udiErrorId; bError is then TRUE. The number of found and read data rows is
displayed at uiAmountOfSetsRead for verification purposes.

The errors marked were "built into" the following Excel list. This gives rise to the log file shown:

Function blocks

TS8000172 Version: 1.2

The first error is in data set 2 and is an index error, since "0" is not permitted.
The next error in data set 6 was found after validation of the data with the internally used function
blockFB_BARShadingObjectsEntry [} 182] and therefore was assigned an error number, which is broken
down in more detail in error codes [} 237]. The third and the fourth errors likewise occurred after the internal
validation. Important here it that the data set numbers (in this case 22 and 24) do not go by the numbers
entered in the list, but by the actual sequential numbers: only 30 data sets were read in here.

Function blocks

TS8000 173Version: 1.2

3.3.4.9 FB_BARReadShadingObjectsList
With the help of this function block, data for shading objects can be imported from a pre-defined Excel table
in csv format into the list of shading objects [} 237]. In addition the imported data are checked for plausibility
and errors are written to a log file.

VAR_INPUT
bStart : BOOL;
sDataFile : STRING;
sLogFile : STRING;
sNetId : STRING;

bStart: a TRUE edge on this input starts the reading process.

sDataFile: contains the path and file name of the file to be opened. This must have been saved in Excel as
file type "CSV (comma-separated values) (*.csv)". If the file is opened with a simple text editor, then the
values must be displayed separated by semicolons. Example of an entry: sDataFile:= 'C:
\Projects\ShadingObjects.csv'

sNetId: a string can be entered here with the AMS Net ID of the TwinCAT computer on which the files are to
be written/read. If it is to be run on the local computer, an empty string can be entered.

The data can be saved only on the control computer itself and on the computers that are connected
by ADS to the control computer. Links to local hard disks in this computer are possible, but not to
connected network hard drives.

VAR_OUTPUT
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
uiAmountOfSetsRead: UINT;

bBusy: this output is TRUE as long as elements are being read from the file.

bError: this output is switched to TRUE if the parameters entered are erroneous or if an error has occurred
while writing to or reading from the file.

udiErrorId: contains the error code of the error that occurred last. See Error codes [} 237] or ADS_Error
codes.

uiAmountOfSetsRead: number of data sets read.

VAR_IN_OUT
arrShadingObject : ARRAY[1..iShadingObjects] OF ST_BARShadingObject;

arrShadingObject: list of shading objects [} 237].

Excel table

The following example shows the Excel table with the entries of the window elements.
All text fields are freely writable, important are the fields marked in green, where each row indicates a data
set. The columns G to J have a different meaning depending on whether the type rectangle or sphere is
concerned. The columns K to M are to be left empty in the case of spheres. With regard to the rectangle

Function blocks

TS8000174 Version: 1.2

coordinates, only the relevant data are entered and the remainder are internally calculated, see
FB_BARShadingObjectsEntry [} 182].
The following rules are to be observed:

• A data set must always start with a '@'.
• The month entries must not be 0 and not be greater than 12, all other combinations are possible.

Examples:
Start=1, End=1: shading in January.
Start=1, End=5: shading from the beginning of January to the end of May.
Start=11, End=5: shading from the beginning of November to the end of May (of the following year).

• Window width and window height must be greater than zero
• The z-coordinates P1z and P3z or Mz must be greater than zero.
• The radius must be greater than zero.
• For system-related reasons the total size of the table may not exceed 65534 bytes.
• This must have been saved in Excel as file type "CSV (comma-separated values) (*.csv)".

It is not necessary to describe all shading objects that are possible per facade. Only those contained in the
list ultimately take effect.

Log file

Each time the reading function block is restarted, the log file is rewritten and the old contents are deleted. If
there is no log file, it will be automatically created first. The log file then contains either an OK message or a
list of all errors that have occurred. However, errors connected with the opening, writing or closing of the log
file itself cannot be written at the same time. Therefore the output udiErrorId of the reading function block
must also always be observed, since it displays the last error code. Since the log file is always closed last
during the reading process, a corresponding alarm is ensured in the event of an error.

Function blocks

TS8000 175Version: 1.2

Program sample

In this sample the variable bInit is initially set to TRUE when the PLC starts. Hence, the input bStart on the
function block fbReadShadingObjectsList receives a once-only rising edge that triggers the reading process.
The file "ShadingObjects.csv" is read, which is located in the folder "C:\Projects\". The log file "Logfile.txt" is
then saved in the same folder. If this log file does not yet exist it will be created, otherwise the existing
contents are overwritten. Reading and writing take place on the same computer on which the PLC is located.
This is defined by the input sNetID = '' (=local). All data are written to the list arrShadingObject declared in
the program. The output bBusy is set to TRUE as long as reading and writing is in progress. The error that
occurred last is indicated on udiErrorId; bError is then TRUE. The number of found and read data rows is
displayed at uiAmountOfSetsRead for verification purposes.

The errors marked were built into the following Excel list. This gives rise to the log file shown:

Function blocks

TS8000176 Version: 1.2

The first error is in data set 3 and is a type error, since "2" is not defined.
The next error in data set 6 was found after validation of the data with the internally used function block
FB_BARShadingObjectsEntry [} 182] and therefore was assigned an error number, which is broken down in
more detail in error codes [} 237]. The third error likewise occurred after the internal validation. Important
here it that the data set number (in this case 11) does not go by the numbers entered in the list, but by the
actual sequential number: only 16 data sets were read in here.

3.3.4.10 FB_BARShadingCorrection
Function block for the shading evaluation of a window group on a facade.

This function block is valid only for the northern hemisphere. The valid function block for the southern
hemisphere is FB_BARShadingCorrectionSouth [} 179].

Function blocks

TS8000 177Version: 1.2

The function block FB_BARShadingCorrection calculates whether a window group lies in the shadow of
surrounding objects. The result, which is output at the output bGroupNotShaded, can be used to judge
whether sun shading makes sense for this window group.
The function block thereby accesses two lists, which are to be defined:

• The data of the elements (window) of the facade in which the group to be regarded is located. This list
of facade elements [} 237] is accessed via the IN-OUT variable arrFacadeElement, which itself is
globally defined.

• The parameters that describe the shading elements that are relevant to the facade on which the
window group is located. This list of shading objects [} 237] is likewise globally defined. The IN-OUT
variable arrShadingObject accesses it directly.

On the basis of the facade orientation (lrFacadeOrientation), the direction of the sun (lrAzimuth) and the sun
elevation (lrElevation), a calculation can be performed for each corner of a window to check whether this lies
in a shaded area. A window group is considered to be completely shaded if all corners are shaded.

In the northern hemisphere, the following applies for the facade orientation (looking out of the window):

Line of sight Facade orientation
North β=0°
East β=90°
South β=180°
West β=270°

The function block performs its calculations only if the sun is actually shining on the facade. If one regards
the drawing presented in the introduction, then this is the case if the following is true:

Facade orientation < azimuth angle < facade orientation + 180°

Function blocks

TS8000178 Version: 1.2

In addition, a calculation is also not required, if the sun has not yet risen, i.e. the sun elevation is below 0°. In
both cases the output bFacadeSunlit is set to FALSE.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
stTimeAct : TIMESTRUCT;
lrAzimuth : LREAL;
lrElevation : LREAL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

stTimeAct: entry of the current time in GMT (Greenwich Mean Time).

rAzimuth: direction of the sun at the time of observation in degrees.

rElevation: sun elevation at the time of observation in degrees.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 179Version: 1.2

VAR_OUTPUT
bGroupNotShaded: BOOL;
bFacadeSunlit : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bGroupNotShaded : is TRUE as long as the window group is not calculated as shaded.

bFacadeSunlit: this output is set to TRUE when the sun shines on the facade. See description above.

bError : this output is set to TRUE if an error is detected during the execution of the function block.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
arrFacadeElement : ARRAY[1..iColumnsPerFacade, 1..iRowsPerFacade] OF ST_BARFacadeElement;
arrShadingObject : ARRAY[1..iShadingObjects] OF ST_BARShadingObject;
lrFacadeOrientation : LREAL;
usiGroupID : USINT;

arrFacadeElement: list of facade elements [} 237].

arrShadingObject: list of shading objects [} 237].

lrFacadeOrientation: facade orientation, see figure above.

usiGroupId: window group regarded. The group 0 is reserved here for unused window elements (see
FB_BARFacadeElementEntry [} 164]). A 0-entry would lead to an error output (bError=TRUE). The function
block is then not executed any further and bGroupNotShaded is set to FALSE.

3.3.4.11 FB_BARShadingCorrectionSouth
Function block for the shading evaluation of a window group on a facade.

This function block is valid only for the southern hemisphere. The valid function block for the northern
hemisphere is FB_BARShadingCorrection [} 176].

The function block FB_BARShadingCorrectionSouth calculates whether a window group lies in the shadow
of surrounding objects. The result, which is output at the output bGroupNotShaded, can be used to judge
whether sun shading makes sense for this window group.
The function block thereby accesses two lists, which are to be defined:

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000180 Version: 1.2

• The data of the elements (window) of the facade in which the group to be regarded is located. This list
of facade elements [} 237] is accessed via the IN-OUT variable arrFacadeElement, which itself is
globally defined.

• The parameters that describe the shading elements that are relevant to the facade on which the
window group is located. This list of shading objects [} 237] is likewise globally defined. The IN-OUT
variable arrShadingObject accesses it directly.

On the basis of the facade orientation (lrFacadeOrientation), the direction of the sun (lrAzimuth) and the sun
elevation (lrElevation), a calculation can be performed for each corner of a window to check whether this lies
in a shaded area. A window group is considered to be completely shaded if all corners are shaded.

In the southern hemisphere, the following applies for the facade orientation (looking out of the window):

Line of sight Facade orientation
South β=0°
East β=90°
North β=180°
West β=270°

The function block performs its calculations only if the sun is actually shining on the facade. If one regards
the drawing presented in the introduction, then this is the case if the following is true:

Facade orientation < azimuth angle < facade orientation + 180°

In addition, a calculation is also not required, if the sun has not yet risen, i.e. the sun elevation is below 0°. In
both cases the output bFacadeSunlit is set to FALSE.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
stTimeAct : TIMESTRUCT;
lrAzimuth : LREAL;
lrElevation : LREAL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

Function blocks

TS8000 181Version: 1.2

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

stTimeAct: entry of the current time in GMT (Greenwich Mean Time).

rAzimuth: direction of the sun at the time of observation in degrees.

rElevation: sun elevation at the time of observation in degrees.

VAR_OUTPUT
bGroupNotShaded: BOOL;
bFacadeSunlit : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bGroupNotShaded : is TRUE as long as the window group is not calculated as shaded.

bFacadeSunlit: this output is set to TRUE when the sun shines on the facade. See description above.

bError : this output is set to TRUE if an error is detected during the execution of the function block.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
arrFacadeElement : ARRAY[1..iColumnsPerFacade, 1..iRowsPerFacade] OF ST_BARFacadeElement;
arrShadingObject : ARRAY[1..iShadingObjects] OF ST_BARShadingObject;
lrFacadeOrientation : LREAL;
usiGroupID : USINT;

arrFacadeElement: list of facade elements [} 237].

arrShadingObject: list of shading objects [} 237].

lrFacadeOrientation: facade orientation, see figure above.

usiGroupId: window group regarded. The group 0 is reserved here for unused window elements (see
FB_BARFacadeElementEntry [} 164]). A 0-entry would lead to an error output (bError=TRUE). The function
block is then not executed any further and bGroupNotShaded is set to FALSE.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000182 Version: 1.2

3.3.4.12 FB_BARShadingObjectsEntry
This function block serves for the administration of all shading elements in a facade, which is globally saved
in a list of shading elements [} 237]. It is intended to facilitate the input of the element information - also with
regard to the use of the target visualization. A schematic representation of the objects with description of the
coordinates is shown in Shading correction: principles and definitions [} 152].

The shading elements are declared in the global variables:
VAR_GLOBAL
 arrShadingObject : ARRAY[1..iShadingObjects] OF ST_BARShadingObject;
END_VAR

Each individual element arrShadingObject[1] to arrShadingObject[iShadingObjects] carries the information
for one shading element (ST_BARShadingObject [} 235]). This information consists of the selected type of
shading (rectangle or sphere) and the respectively associated coordinates. For a rectangle, these are the
corner points (lrP1x, lrP1y, lrP1z), (lrP2x, lrP2y, lrP2z),(lrP3x, lrP3y, lrP3z) and (lrP4x, lrP4y, lrP4z), for a
sphere this are the center point (lrMx, lrMy, lrMz) and the radius lrRadius. In addition, the phase of the
shading can be defined via the inputs usiBeginMonth and usiEndMonth, which is important in the case of
objects such as trees that bear no foliage in winter.

The function block thereby directly accesses the field of this information via the IN-OUT variable
arrShadingObject.

The fact that the rectangle coordinates lrP2x, lrP2z, lrP4x, lrP4y and lrP4z are output values arises
from the fact that they are formed from the input parameters.

lrP2x = lrP1x; lrP2z = lrP1z; lrP4x = lrP3x; lrP4y = lrP1y; lrP4z = lrP3z;

Function blocks

TS8000 183Version: 1.2

That limits the input of a rectangle to the extent that the lateral edges stand vertically on the floor (lrP2x =
lrP1x and lrP4x = lrP3x), that the rectangle has no inclination (lrP2z = lrP1z and lrP4z = lrP3z) and can only
have a different height "upwards", i.e. in the positive y-direction (lrP4y = lrP1y).

The function block is used in three steps:

• Read
• Change
• Write

Read

With the entry to iId the appropriate element is selected from the list arrShadingObject[iId]. A rising edge on
bRead reads the data. These values are assigned to the input and output variables of the function block.
These are the input values lrP1x, lrP1y, lrP1z, lrP2y, lrP3x, lrP3y, lrP3z, lrMx, lrMy, lrMz, rRadius, the object
enumerator eType and the output values lrP2x, lrP2z, lrP4x, lrP4y and lrP4z. It is important here that the
input values are not overwritten in the reading step. Hence, all values can initially be displayed in a
visualization.

Change

In a next program step the listed input values can then be changed. If a rectangle is preselected at input
eType [} 234] via the value "eObjectTypeTetragon", the output values rP2x, rP2z, rP4x, rP4y and rP4z result
from the rectangle coordinates that were entered (see above).

The values entered are constantly checked for plausibility. The output bValid indicates whether the values
are valid (bValid=TRUE). If this is not the case, a corresponding error code [} 237] is output at the udiErrorId
output.
If a rectangle is defined, only the inputs lrP1x, lrP1y, lrP1z, lrP2y, lrP3x, lrP3y and lrP3z have to be
described; the inputs lrMx, lrMy, lrMz and lrRadius do not have to be linked. For a sphere definition, only
lrMx, lrMy, lrMz and lrRadius have to be described; the rectangle coordinates can remain unlinked

The parameterized data are written to the list element with the index iId upon a positive edge on bWrite,
regardless of whether they represent valid values or not. Therefore the element structure
ST_BARShadingObject [} 235] also contains a plausibility bit, bValid, that relays precisely this information to
the function block FB_BARShadingCorrection [} 176] / FB_BARShadingCorrectionSouth [} 179] and prevents
incorrect calculations there.

This approach is to be regarded only as a proposal. It is naturally also possible to parameterize the function
block quite normally in one step and to write the values entered to the corresponding list element with a
rising edge on bWrite.

VAR_INPUT
iId : INT;
bRead : BOOL;
bWrite : BOOL;
lrP1x : LREAL;
lrP1y : LREAL;
lrP1z : LREAL;
lrP2y : LREAL;
lrP3x : LREAL;
lrP3y : LREAL;
lrP3z : LREAL;
lrMx : LREAL;
lrMy : LREAL;
lrMz : LREAL;
lrRadius : LREAL;
usiBeginMonth: USINT;
usiEndMonth : USINT;
eType : E_BARShadingObjectType;

iId: index of the selected element. This refers to the selection of a field element of the array stored in the IN-
OUT variable arrShadingObject. iId may not be zero! This results from the field definition [} 182],
arrShadingObject : ARRAY[1..iShadingObjects] OF ST_BARShadingObject

Function blocks

TS8000184 Version: 1.2

bRead: the information of the selected element, arrShadingObject[iId], is read into the function block with a
positive edge at this input and assigned to the input variables lrP1x to eType and the output variables lrP2x
to lrP4z. If at this time data have already been applied to the inputs lrP1x to eType, the previously read data
are immediately overwritten with these.

bWrite: a positive edge writes the values applied to inputs rP1x to eType and the values determined and
assigned to outputs lrP2x to lrP4z to the selected field element arrShadingObject[iId].

lrP1x: X-coordinate of point 1 of the shading element (rectangle) in meters.

lrP1y: Y-coordinate of point 1 of the shading element (rectangle) in meters.

lrP1z: Z-coordinate of point 1 of the shading element (rectangle) in meters.

lrP2y: Y-coordinate of point 2 of the shading element (rectangle) in meters.

lrP3x: X-coordinate of point 3 of the shading element (rectangle) in meters.

lrP3y: Y-coordinate of point 3 of the shading element (rectangle) in meters.

lrP3z: Z-coordinate of point 3 of the shading element (rectangle) in meters.

lrMx: X-coordinate of the center of the shading element (sphere) [m].

lrMy: Y-coordinate of the center of the shading element (sphere) in meters.

lrMz: Z-coordinate of the center of the shading element (sphere) in meters.

lrRadius: radius of the shading element (sphere) in meters.

usiBeginMonth: beginning of the shading period (month).

usiEndMonth: end of the shading period (month).

eType: selected element type: rectangle or sphere. See E_BARShadingObjectType [} 234].

Comment on shading period:

The month entries must not be 0 and not be greater than 12, all other combinations are possible.
Examples:
Start=1, End=1: shading in January.
Start=1, End=5: shading from the beginning of January to the end of May.
Start=11, End=5: shading from the beginning of November to the end of May (of the following year).

VAR_OUTPUT
lrP2x : LREAL;
lrP2z : LREAL;
lrP4x : LREAL;
lrP4y : LREAL;
lrP4z : LREAL;
bValid : BOOL;
udiErrorId : UDINT;

lrP2x: determined X-coordinate of point 2 of the shading element (rectangle) in meters. See "Info" above.

lrP2z: determined Z-coordinate of point 2 of the shading element (rectangle) in meters. See "Info" above.

lrP4x: determined X-coordinate of point 4 of the shading element (rectangle) in meters. See "Info" above.

lrP4y: determined Y-coordinate of point 4 of the shading element (rectangle) in meters. See "Info" above.

lrP4z: determined Z-coordinate of point 4 of the shading element (rectangle) in meters. See "Info" above.

bValid: result of the plausibility check for the values entered. With respect to a square it is required that the
internal angle is 360° and that the points lie in one plane and in front of the facade regarded. In the case of a
sphere the center must likewise lie in front of the facade and the radius must be greater than zero.

udiErrorId: contains the error code, if the entries should not correspond to the mentioned criteria. See error
codes [} 237].

Function blocks

TS8000 185Version: 1.2

VAR_IN_OUT
arrShadingObject : ARRAY[1..iShadingObjects] OF ST_BARShadingObject;

arrShadingObject: list of shading objects [} 237]. Values are persistently saved.

3.3.4.13 FB_BARSunblindActuator
This function block is used for positioning of a slatted blind via two outputs: up and down. The blind can be
driven to any desired (height) position and slat angle via the positioning telegram stSunblind [} 236]. On top
of that, the positioning telegram stSunblind [} 236] also contains manual commands with which the blind can
be moved individually to certain positions. These manual commands are controlled by the function block
FB_BARSunblindSwitch [} 206].

The total stroke time in milliseconds is limited here by the UINT format to 65535 ms.
FB_BARSunblindActuatorEx [} 190] should be used for longer stroke times as it represents these times in
UDINT format (udiTotalTimeUp/udiTotalTimeDown).

Structure of the blind positioning telegram stSunblind [} 236].
TYPE ST_BARSunblind:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
 bManUp : BOOL;
 bManDown : BOOL;
 bManualMode : BOOL;
 bActive : BOOL;
END_STRUCT
END_TYPE

The current height position and the slat angle are not read in by an additional encoder, but determined
internally by the travel time of the blind. The calculation is based on the following travel profile (regarded
from the highest and lowest position of the blind):

Function blocks

TS8000186 Version: 1.2

Downward travel profile:

More detailed explanations of the terms "backlash" and "turning" are given here in the downward
movement:

The blind normally describes its downward movement with the slat low point directed outwards, as
in fig. 3.
If the blind is in an initial position with the low point directed inwards (i.e. after the conclusion of an
upward movement), then a certain time elapses after a new downward movement begins before the
slats start to turn from the "inward low point" to the "outward low point". During this time the slat
angle does not change; the blind only drives downward (fig. 1 and fig. 2). This time is an important
parameter for the movement calculation and is entered in the function block in ms under
uiBacklashTimeDown. Since it is not known at an arbitrary point after a blind movement of an
arbitrary length whether part of the backlash has already been traveled, the most secure way to
measure the backlash of the downward movement or its travel time is when the blind has initially

Function blocks

TS8000 187Version: 1.2

been driven fully upward. A further important parameter is the timespan of the subsequent turning of
the slats from the "Inward low point" to the "Outward low point". This time is to be entered as
uiTurningTimeDown in ms in the function block.

Upward travel profile:

More detailed explanations of the terms "backlash" and "turning" are given here in the upward
movement:

The circumstances are similar to the downward movement described above: the blind normally
describes its upward movement with the slat low point directed inwards, as in fig. 3.
If the blind is in an initial position with the low point directed outwards (i.e. after the conclusion of a
downward movement), then a certain time elapses after a new upward movement begins before the
slats start to turn from the "Outward low point" to the "Inward low point". During this time the slat
angle does not change; the blind only drives upward (fig. 1 and fig. 2). Alsp this time is an important
parameter for the movement calculation and is entered in the function block in ms under
uiBacklashTimeUp. Since it is not known at an arbitrary point after a blind movement of an arbitrary
length whether part of the backlash has already been traveled, the most secure way to measure the
backlash of the upward movement or its travel time is when the blind has initially been driven fully
downward. A further important parameter is the time interval of the subsequent turning of the slats
from the "Outward low point" to the "Inward low point". This time is to be entered as
uiTurningTimeUp in ms in the function block.

Parameterization

For the calculation of the (height) position and the slat angle, the following times now have to be determined
for both the upward and downward movement:

• the travel time of the backlash (uiBacklashTimeUp / uiBacklashTimeDown in ms)
• the turning duration (uiTurningTimeUp / uiTurningTimeDown in ms)
• the total travel time (uiTotalUpTime / uiTotalDownTime in ms)

Furthermore the following are required for the calculation:

• the total extended blind height (uiBlindHeight in mm)
• the highest slat angle after turning upwards (iAngleLimitUp in degrees)
• the lowest slat angle after turning downwards (iAngleLimitDown in degrees)

Function blocks

TS8000188 Version: 1.2

The slat angle λ is defined by a notional straight line through the end points of the slat to the horizontal.

Functioning

The function block fundamentally controls the blind via the information from the positioning telegram
stSunblind [} 236]. If automatic mode is active (bManualMode=FALSE), the current position and slat angle
are always approached, and changes are immediately taken into account. The positioning to the height has
priority: the entered height is approached first and then the slat angle. For reasons of the simplicity the
position error due to the angle movement is disregarded. In manual mode (bManualMode=TRUE) the
commands bManUp and bManDown control the blind.

Referencing

Secure referencing is ensured if the blind is driven upward for longer than its complete travel-up time. The
position is then in any case "0" and the slat angle is at its maximum. Since a blind positioning without
encoder is naturally always error-prone, it is important to reference automatically as often as possible: every
time the position "0" is to be approached (the angle does not matter), the blind first moves up normally with
continuous position calculation. Once the calculated position value 0% is reached, the output bBlindUp
continues to be held for the complete travel-up time + 5s.
For reasons of flexibility there are now two possibilities to interrupt the referencing procedure: until the
calculated 0% position is reached, a change in position continues to be assumed and executed. Once this
0% position is reached, the blind can still be moved with the manual "blind down" command. These two
sensible limitations make it necessary for the user to ensure that the blind is securely referenced as often as
possible.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bEnable : BOOL;
stSunblind : ST_BARSunblind;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 189Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: enable input for the function block. As long as this input is TRUE, the actuator function block
accepts and executes commands as described above. A FALSE signal on this input resets the control
outputs bBlindUp and bBlindDown and the function block remains in a state of rest.

stSunblind: positioning telegram, see ST_BARSunblind [} 236].

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;
uiActPosition: UINT;
uiActAngle : UINT;
bReferencing : BOOL;
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBlindUp: control output blind up.

bBlindDown: control output blind down.

uiActPosition: current position in percent.

uiActAngle: current slat angle in degrees.

bReferencing: the blind is referencing, i.e. the output bBlindUp is set for the complete travel-up time + 5 s.
Only a manual "down" command can move the blind in the opposite direction and terminate this mode.

bBusy: a positioning or a referencing procedure is in progress.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiBacklashTimeUp : UINT;
uiBacklashTimeDown : UINT;
uiTurningTimeUp : UINT;
uiTurningTimeDown : UINT;
uiTotalTimeUp : UINT;
uiTotalTimeDown : UINT;
uiBlindHeight : UINT;
iAngleLimitUp : INT;
iAngleLimitDown : INT;

uiBacklashTimeUp: time to traverse the backlash in the upward direction in ms.

uiBacklashTimeDown: time to traverse the backlash in the downward direction in ms.

uiTurningTimeUp: time for turning the slats in the upward direction in ms.

uiTurningTimeDown: time for turning the slats in the downward direction in ms.

uiTotalTimeUp: total time for driving up in ms.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000190 Version: 1.2

uiTotalTimeDown: total time for driving down in ms.

uiBlindHeight: blind height in mm.

iAngleLimitUp: highest position of the slats in degrees.

This position is reached once the blind has moved to the top position.

The slat angle λ, as defined above, is then typically greater than zero.

iAngleLimitDown: lowest position of the slats in degrees.

This position is reached once the blind has moved to the bottom position.

The slat angle λ, as defined above, is then typically less than zero.

3.3.4.14 FB_BARSunblindActuatorEx
This function block is used for positioning of a slatted blind via two outputs: up and down. The blind can be
driven to any desired (height) position and slat angle via the positioning telegram stSunblind [} 236]. On top
of that, the positioning telegram stSunblind [} 236] also contains manual commands with which the blind can
be moved individually to certain positions. These manual commands are controlled by the function block
FB_BARSunblindSwitch [} 206].

As opposed to the function block FB_BARSunblindActuator [} 185], this allows the input of longer stroke times
because they are represented here not in UINT, but in the UDINT format (udiTotalTimeUp/
udiTotalTimeDown).

Function blocks

TS8000 191Version: 1.2

Structure of the blind positioning telegram stSunblind [} 236].
TYPE ST_BARSunblind:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
 bManUp : BOOL;
 bManDown : BOOL;
 bManualMode : BOOL;
 bActive : BOOL;
END_STRUCT
END_TYPE

The current height position and the slat angle are not read in by an additional encoder, but determined
internally by the travel time of the blind. The calculation is based on the following travel profile (regarded
from the highest and lowest position of the blind):

Downward travel profile:

Function blocks

TS8000192 Version: 1.2

More detailed explanations of the terms "backlash" and "turning" are given here in the downward
movement:

The blind normally describes its downward movement with the slat low point directed outwards, as
in fig. 3.
If the blind is in an initial position with the low point directed inwards (i.e. after the conclusion of an
upward movement), then a certain time elapses after a new downward movement begins before the
slats start to turn from the "inward low point" to the "outward low point". During this time the slat
angle does not change; the blind only drives downward (fig. 1 and fig. 2). This time is an important
parameter for the movement calculation and is entered in the function block in ms under
uiBacklashTimeDown. Since it is not known at an arbitrary point after a blind movement of an
arbitrary length whether part of the backlash has already been traveled, the most secure way to
measure the backlash of the downward movement or its travel time is when the blind has initially
been driven fully upward. A further important parameter is the timespan of the subsequent turning of
the slats from the "Inward low point" to the "Outward low point". This time is to be entered as
uiTurningTimeDown in ms in the function block.

Upward travel profile:

More detailed explanations of the terms "backlash" and "turning" are given here in the upward
movement:

The circumstances are similar to the downward movement described above: the blind normally
describes its upward movement with the slat low point directed inwards, as in fig. 3.
If the blind is in an initial position with the low point directed outwards (i.e. after the conclusion of a
downward movement), then a certain time elapses after a new upward movement begins before the
slats start to turn from the "Outward low point" to the "Inward low point". During this time the slat
angle does not change; the blind only drives upward (fig. 1 and fig. 2). Alsp this time is an important
parameter for the movement calculation and is entered in the function block in ms under
uiBacklashTimeUp. Since it is not known at an arbitrary point after a blind movement of an arbitrary
length whether part of the backlash has already been traveled, the most secure way to measure the
backlash of the upward movement or its travel time is when the blind has initially been driven fully

Function blocks

TS8000 193Version: 1.2

downward. A further important parameter is the time interval of the subsequent turning of the slats
from the "Outward low point" to the "Inward low point". This time is to be entered as
uiTurningTimeUp in ms in the function block.

Parameterization

For the calculation of the (height) position and the slat angle, the following times now have to be determined
for both the upward and downward movement:

• the travel time of the backlash (uiBacklashTimeUp / uiBacklashTimeDown in ms)
• the turning duration (uiTurningTimeUp / uiTurningTimeDown in ms)
• the total travel time (udiTotalTimeUp / udiTotalTimeDownin ms)

Furthermore the following are required for the calculation:

• the total extended blind height (uiBlindHeight in mm)
• the highest slat angle after turning upwards (iAngleLimitUp in degrees)
• the lowest slat angle after turning downwards (iAngleLimitDown in degrees)

The slat angle λ is defined by a notional straight line through the end points of the slat to the horizontal.

Functioning

The function block fundamentally controls the blind via the information from the positioning telegram
stSunblind [} 236]. If automatic mode is active (bManualMode=FALSE), the current position and slat angle
are always approached, and changes are immediately taken into account. The positioning to the height has
priority: the entered height is approached first and then the slat angle. For reasons of the simplicity the
position error due to the angle movement is disregarded. In manual mode (bManualMode=TRUE) the
commands bManUp and bManDown control the blind.

Referencing

Secure referencing is ensured if the blind is driven upward for longer than its complete travel-up time. The
position is then in any case "0" and the slat angle is at its maximum. Since a blind positioning without
encoder is naturally always error-prone, it is important to reference automatically as often as possible: every
time the position "0" is to be approached (the angle does not matter), the blind first moves up normally with
continuous position calculation. Once the calculated position value 0% is reached, the output bBlindUp
continues to be held for the complete travel-up time + 5s.
For reasons of flexibility there are now two possibilities to interrupt the referencing procedure: until the
calculated 0% position is reached, a change in position continues to be assumed and executed. Once this
0% position is reached, the blind can still be moved with the manual "blind down" command. These two
sensible limitations make it necessary for the user to ensure that the blind is securely referenced as often as
possible.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bEnable : BOOL;
stSunblind : ST_BARSunblind;

Function blocks

TS8000194 Version: 1.2

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: enable input for the function block. As long as this input is TRUE, the actuator function block
accepts and executes commands as described above. A FALSE signal on this input resets the control
outputs bBlindUp and bBlindDown and the function block remains in a state of rest.

stSunblind: positioning telegram, see ST_BARSunblind [} 236].

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;
uiActPosition: UINT;
uiActAngle : UINT;
bReferencing : BOOL;
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBlindUp: control output blind up.

bBlindDown: control output blind down.

uiActPosition: current position in percent.

uiActAngle: current slat angle in degrees.

bReferencing: the blind is referencing, i.e. the output bBlindUp is set for the complete travel-up time + 5 s.
Only a manual "down" command can move the blind in the opposite direction and terminate this mode.

bBusy: a positioning or a referencing procedure is in progress.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiBacklashTimeUp : UINT;
uiBacklashTimeDown : UINT;
uiTurningTimeUp : UINT;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 195Version: 1.2

uiTurningTimeDown : UINT;
udiTotalTimeUp : UDINT;
udiTotalTimeDown : UDINT;
uiBlindHeight : UINT;
iAngleLimitUp : INT;
iAngleLimitDown : INT;

uiBacklashTimeUp: time to traverse the backlash in the upward direction in ms.

uiBacklashTimeDown: time to traverse the backlash in the downward direction in ms.

uiTurningTimeUp: time for turning the slats in the upward direction in ms.

uiTurningTimeDown: time for turning the slats in the downward direction in ms.

udiTotalTimeUp: total time for driving up in ms.

udiTotalTimeDown: total time for driving down in ms.

uiBlindHeight: blind height in mm.

iAngleLimitUp: highest position of the slats in degrees.

This position is reached once the blind has moved to the top position.

The slat angle λ, as defined above, is then typically greater than zero.

iAngleLimitDown: lowest position of the slats in degrees.

This position is reached once the blind has moved to the bottom position.

The slat angle λ, as defined above, is then typically less than zero.

Function blocks

TS8000196 Version: 1.2

3.3.4.15 FB_BARSMISunblindActuator

This function block works like the FB_BARSunblindActuator [} 185] only with the difference that an SMI motor
is controlled directly.

Required library is the TwinCAT 2 PLC Lib: TcSMI.

Download PLC export file: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/

11659719179/.zip https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659719179/.zip

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bEnable : BOOL;
stSunblind : ST_BARSunblind;
tPositionRead : TIME;
dwAddr : DWORD;
eAddrType : E_SMIAddrType;
dwAddrOption : DWORD;
dwMasterDevAddr : DWORD;

eDataSecurityType: if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise, the instanced FB is not internally released.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: enable input for the function block. If this input is TRUE, the actuator function block accepts and
executes commands as described above. A FALSE signal at this input causes the function block to remain in
an idle state.

stSunblind: positioning telegram, see ST_BARSunblind [} 236].

tPositionRead: interval at which the current position is read from the SMI motor when positioning
commands are processed.

dwAddr:manufacturer code (0-15), address of a device (0-15), bit field (16 bits) for the group addressing or
slave ID (32-bit key ID). This input has no meaning if a collective call (broadcast) is sent.

eAddrType: defines whether the dwAddr input is to be evaluated as a manufacturer code, the address of a
device, for group addressing or as a slave ID.

https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074228747.html
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659719179.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659719179.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659719179.zip
https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074348939.html

Function blocks

TS8000 197Version: 1.2

dwAddrOption: if the SMI device is addressed by slave ID (eAddrType = eSMIAddrTypeSlaveId), then the
manufacturer code must be specified via this input.

dwMasterDevAddr: address (0-15) of the SMI motor from which the current position is to be read if
eAddrType != eSMIAddrTypeAddress.

VAR_OUTPUT
uiActPosition: UINT;
iActAngle : INT;
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

uiActPosition: current position in percent.

iActAngle: current slat angle in degrees.

bBusy: a positioning process is taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes.

VAR_IN_OUT
wLouvreRange : WORD;
iAngleLimitUp : INT;
iAngleLimitDown : INT;
stCommandBuffer : ST_SMICommandBuffer;

wLouvreRange: number of steps of the SMI motor from the slats "low point inside" to the "low point
outside".

iAngleLimitUp: highest position of the slats in degrees (-360..360).

iAngleLimitDown: lowest position of the slats in degrees (-360..360).

stCommandBuffer: reference to the structure for communication (buffer) with the
FB_KL6831KL6841Communication() function block.

3.3.4.16 FB_BARSunblindEvent
This function block serves to preset the position and angle for any desired event. It can be used, for
example, in order to drive to a parking position or to drive the blind upward for maintenance.

The function is activated via the input bActivate. If this is the case, then the active flag is set in the
positioning telegram (bActive in stSunblind) at the output stSunblind [} 236] and the values uiPositionEvent
for the blind height in % and iAngleEvent for the slat angle in degrees, which are entered in the In-Out
variables, are passed on in this telegram. If the function is no longer active due to the resetting of bActive,
then the active flag in the positioning telegram stSunblind [} 236] is reset and the positions for height and
angle are set to "0". If the priority function block is used, then a function with a lower priority can take over
the control.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bActivate : BOOL;

https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074284939.html
https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074238859.html

Function blocks

TS8000198 Version: 1.2

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bActivate: a TRUE signal on this input activates the function block and transfers the entered setpoints
together with the active flag in the positioning telegram ST_BARSunblind [} 236]. A FALSE signal resets the
active flag again and sets position and angle to zero.

VAR_OUTPUT
stSunblind : ST_BARSunblind;
bActive : BOOL;

bActive : corresponds to the boolean value bActive in the blind telegram ST_BARSunblind [} 236] and is
solely used to indicate whether the function block sends an active telegram.

stSunblind: output structure of the blind positions, see ST_BARSunblind [} 236]

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiPositionPark : UINT;
iAnglePark : INT;

uiPositionEvent: height position of the blind in % in case of activation.

iAngleEvent: slat angle of the blind in degrees in case of activation.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.4.17 FB_BARSunblindPrioritySwitch
Priority controller for up to 9 positioning telegrams (stSunblind_Prio1 ... stSunblind_Prio9) of the type
ST_BARSunblind [} 236].

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 199Version: 1.2

Fig. 8: FB_BARSunblindPrioritySwitch

Structure of the blind positioning telegram ST_BARSunblind [} 236].
TYPE ST_BARSunblind:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
 bManUp : BOOL;
 bManDown : BOOL;
 bManualMode : BOOL;
 bActive : BOOL;
END_STRUCT
END_TYPE

Up to 9 positioning telegrams from different control function blocks can be applied to this function block. The
telegram on stSunblind_Prio1 has the highest priority and that on stSunblind_Prio9 the lowest. The active
telegram with the highest priority is output at stSunblind. "Active" means that the variable bActive is set within
the structure of the positioning telegram.

This function block is to be programmed in such a way that one of the applied telegrams is always
active. If no telegram is active, an empty telegram is output, i.e. uiPosition=0, iAngle=0,
bManUp=FALSE, bManDown=FALSE, bManualMode=FALSE, bActive=FALSE. Since the blind
function block FB_BARSunblindActuator [} 185] or the roller blind function block FB_BARRollerblind
[} 200] does not take account of the flag bActive, this telegram would be interpreted as movement
command to position "0", i.e. fully open. The absence of an active telegram therefore does not
represent a safety risk for the blind.

VAR_INPUT
stSunblind_Prio1 : ST_BARSunblind;
stSunblind_Prio2 : ST_BARSunblind;
stSunblind_Prio3 : ST_BARSunblind;
stSunblind_Prio4 : ST_BARSunblind;
stSunblind_Prio5 : ST_BARSunblind;
stSunblind_Prio6 : ST_BARSunblind;
stSunblind_Prio7 : ST_BARSunblind;
stSunblind_Prio8 : ST_BARSunblind;
stSunblind_Prio9 : ST_BARSunblind;

stSunblind_Prio1..stSunblind_Prio9 : positioning telegrams available for selection. stSunblind_Prio1 has
the highest priority and stSunBld_Prio9 the lowest.

VAR_OUTPUT
stSunblind : ST_BARSunblind;

stSunblind: resulting positioning telegram.

Function blocks

TS8000200 Version: 1.2

3.3.4.18 FB_BARRollerBlind
This function block is used for positioning of a blind via two outputs: up and down. The blind can be driven to
any desired position with the positioning telegram stSunblind [} 236]. On top of that, the positioning telegram
stSunblind [} 236] also contains manual commands with which the blind can be moved individually to certain
positions. These manual commands are controlled by the function block FB_BARSunblindSwitch [} 206].

Structure of the blind positioning telegram stSunblind [} 236].
TYPE ST_BARSunblind:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
 bManUp : BOOL;
 bManDown : BOOL;
 bManualMode : BOOL;
 bActive : BOOL;
END_STRUCT
END_TYPE

The current height position and the slat angle are not read in by an additional encoder, but are determined
internally by the runtime of the blind.
The two different runtime parameters udiTotalTimeUp (runtime blind up in ms) and udiTotalTimeDown
(runtime blind down in ms) take into account the different travel characteristics.

Functioning

The function block fundamentally controls the blind via the information from the positioning telegram
stSunblind [} 236]. If automatic mode is active (bManualMode=FALSE), the current position is always
approached, and changes are immediately taken into account. In manual mode (bManualMode=TRUE) the
commands bManUp and bManDown control the blind.

Referencing

Secure referencing is ensured if the blind is driven upward for longer than its complete travel-up time. The
position is then always "0". Since a blind positioning without encoder is always error-prone by nature, it is
important to reference automatically as often as possible: every time the position "0" is to be approached, the
blind first moves up normally with continuous position calculation. Once the calculated position value 0% is
reached, the output bBlindUp continues to be held for the complete travel-up time + 5s.
For reasons of flexibility there are now two possibilities to interrupt the referencing procedure: until the
calculated 0% position is reached, a change in position continues to be assumed and executed. Once this
0% position is reached, the blind can still be moved with the manual "blind down" command. These two
sensible limitations make it necessary for the user to ensure that the blind is securely referenced as often as
possible.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bEnable : BOOL;
stSunblind : ST_BARSunblind;

Function blocks

TS8000 201Version: 1.2

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: enable input for the function block. As long as this input is TRUE, the actuator function block
accepts and executes commands as described above. A FALSE signal on this input resets the control
outputs bBlindUp and bBlindDown and the function block remains in a state of rest.

stSunblind: positioning telegram, see ST_BARSunblind [} 236].

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;
uiActPosition: UINT;
bReferencing : BOOL;
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bBlindUp: control output blind up.

bBlindDown: control output blind down.

uiActPosition: current position in percent.

bReferencing: the blind is referencing, i.e. the output bBlindUp is set for the complete travel-up time + 5 s.
Only a manual "down" command can move the blind in the opposite direction and terminate this mode.

bBusy: a positioning or a referencing procedure is in progress.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
udiTotalTimeUp : UDINT;
udiTotalTimeDown : UDINT;

udiTotalTimeUp: total time for driving up in ms.

udiTotalTimeDown: total time for driving down in ms.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000202 Version: 1.2

3.3.4.19 FB_BARSMIRollerBlind

This function block works like the FB_BARRollerBlind [} 200] only with the difference that an SMI motor is
controlled directly.

Required library is the TwinCAT 2 PLC Lib: TcSMI.

Download PLC export file: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/

11659720587/.zip https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659720587/.zip

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bEnable : BOOL;
stSunblind : ST_BARSunblind;
tPositionRead : TIME;
dwAddr : DWORD;
eAddrType : E_SMIAddrType;
dwAddrOption : DWORD;
dwMasterDevAddr : DWORD;

eDataSecurityType: if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise, the instanced FB is not internally released.

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: enable input for the function block. As long as this input is TRUE, the actuator function block
accepts and executes commands as described above. A FALSE signal at this input causes the function
block to remain in an idle state.

stSunblind: positioning telegram, see ST_BARSunblind [} 236].

tPositionRead: interval at which the current position is read from the SMI motor when positioning
commands are processed.

dwAddr:manufacturer code (0-15), address of a device (0-15), bit field (16 bits) for the group addressing or
slave ID (32-bit key ID). This input has no meaning if a collective call (broadcast) is sent.

eAddrType: defines whether the dwAddr input is to be evaluated as a manufacturer code, the address of a
device, for group addressing or as a slave ID.

dwAddrOption: if the SMI device is addressed by slave ID (eAddrType = eSMIAddrTypeSlaveId), then the
manufacturer code must be specified via this input.

dwMasterDevAddr: address (0-15) of the SMI motor from which the current position is to be read if
eAddrType != eSMIAddrTypeAddress.

https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074228747.html
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659720587.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659720587.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659720587.zip
https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074348939.html

Function blocks

TS8000 203Version: 1.2

VAR_OUTPUT
uiActPosition: UINT;
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;

uiActPosition: current position in percent.

bBusy: a positioning process is taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes.

VAR_IN_OUT
stCommandBuffer : ST_SMICommandBuffer;

stCommandBuffer: reference to the structure for communication (buffer) with the
FB_KL6831KL6841Communication() function block.

3.3.4.20 FB_BARSunblindScene

This function block represents an extension of the manual operation FB_BARSunblindSwitch [} 206] by a
scene memory and a call function. The blind actuator FB_BARSunblindActuator [} 185] or the roller blind
actuator FB_BARRollerblind [} 200] can thus be controlled in manual operation mode and can also drive
directly to previously saved positions (scenes). Up to 21 scenes can be saved.

Structure of the blind positioning telegram stSunblind [} 236].
TYPE ST_BARSunblind:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
 bManUp : BOOL;
 bManDown : BOOL;
 bManualMode : BOOL;
 bActive : BOOL;
END_STRUCT
END_TYPE

Mode of operation

In manual mode, the function block controls the blind function block FB_BARSunblindActuator [} 185] or the
roller blind function block FB_BARRollerblind [} 200] via the command inputs bSwitchUp and bSwitchDown;
bSwitchUp has priority. The commands are passed on to the respective commands bManUp and bManDown
of the positioning telegram. If a command input is activated for longer than the entered time

https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074284939.html
https://infosys.beckhoff.com/content/1033/tcplclibsmi/12074238859.html

Function blocks

TS8000204 Version: 1.2

uiSwitchOverTime (in ms), the corresponding control command latches. Activating a command input again
clears this latching.
A rising edge at bSaveScene saves the current position and the slat angle in the scene selected at
usiSelectedScene. This procedure is possible at any time, even during active positioning. The selected
scene is called with bInvokeScene, i.e. the saved position and angle values are approached.

Linking to the blind function block

Like the "normal" manual control function block, FB_BARSunblindSwitch [} 206], the scene selection function
block can be connected to the blind function block either directly or via an upstream priority controller
FB_BARSunblindPrioritySwitch [} 198]. The connection is made via the positioning telegram stSunblind
[} 236]. Furthermore the scene function block requires the current positions from the blind function block for
the reference blind:

Use of a priority controller:

Direct connection:

Function blocks

TS8000 205Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
usiSelectedScene : USINT;
bSwitchUp : BOOL;
bSwitchDown : BOOL;
bInvokeScene : BOOL;
bSaveScene : BOOL;
uiSetpointPosition: UINT;
iSetpointAngle : INT;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable : the function block has no function if this input is FALSE. 0 is output for the position and the angle
in the positioning telegram stSunblind [} 236] - bManualMode and bActive are set to FALSE. For a
connection with priority controller this means that another functionality takes over control of the blind.
Conversely, a direct connection allows the blind to drive directly to the 0 position, i.e. fully up, since the
actuator function block does not evaluate the bit bActive itself.

usiSelectedScene : selected scene which should either be saved (bSaveScene) or called (bInvokeScene).

bSwitchUp: command input blind up.

bSwitchDown: command input blind down.

bInvokeScene : call selected scene.

bSaveScene: save selected scene.

uiSetpointPosition: set position in % that is to be saved in the selected scene. This must be linked to the
actual position of the actuator function block FB_BARSunblindActuator [} 185] or FB_BARRollerblind [} 200] of
the reference blind/roller blind, in order to be able to save a position that was previously approached
manually.

iSetpointAngle : ditto slat angle in degrees.

VAR_OUTPUT
stSunblind : ST_BARSunblind;
bActive : BOOL;
uiPositionActScene : UINT;
iAnglePositionActScene: INT;
bError : BOOL;
udiErrorId : UDINT;

stSunblind: positioning telegram, see ST_BARSunblind [} 236].

bActive : corresponds to the boolean value bActive in the blind telegram ST_BARSunblind [} 236] and is
solely used to indicate whether the function block sends an active telegram.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000206 Version: 1.2

uiPositionActScene : indicates the saved relative blind height position in % for the currently selected scene.

iAnglePositionActScene : ditto slat angle in degrees.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

If an error should occur, then this automatic function is deactivated and position and angle are set to
0. This means that if a priority controller is in use, another function with a lower priority (see
Overview) automatically takes over control of the blind. In the case of a direct connection,
conversely, the blind will drive to position/angle 0.

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiSwitchOverTime : UINT;
arrBlindScenes : ARRAY[0..20] OF ST_BARSunblindScene;

uiSwitchOverTime : time in milliseconds until the corresponding manual command in the positioning
telegram stSunblind [} 236] switches to latching mode, if the command input is activated permanently.

arrBlindScenes : table with the scene entries of the type ST_BARSunblindScene [} 236]. Up to 21 scenes
can be saved: 0..20.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.4.21 FB_BARSunblindSwitch

With the help of this function block the blind controller FB_BARSunblindActuator [} 185] or the roller blind
controller FB_BARRollerblind [} 200] can be controlled in manual operation mode. The connection takes
place via the positioning telegram stSunblind [} 236] either directly or with an additional priority controller.

Fig. 9: FB_BARSunblindSwitch

Structure of the blind positioning telegram stSunblind [} 236].
TYPE ST_BARSunblind:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
 bManUp : BOOL;
 bManDown : BOOL;
 bManualMode : BOOL;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 207Version: 1.2

 bActive : BOOL;
END_STRUCT
END_TYPE

Operation

In manual mode, the function block controls the blind function block FB_BARSunblindActuator [} 185] or the
roller blind function block FB_BARRollerblind [} 200] via the command inputs bSwitchUp and bSwitchDown;
bSwitchUp has priority. The commands are passed on to the respective commands bManUp and bManDown
of the positioning telegram. If a command input is activated for longer than the entered time
uiSwitchOverTime (in ms), the corresponding control command latches. Activating a command input again
releases this latch.

Linking to the blind function block

The manual control function block can be connected to the blind function block either directly or via an
upstream priority controller FB_BARSunblindPrioritySwitch [} 198]. The connection is made via the positioning
telegram stSunblind [} 236].

Use of a priority controller:

Direct connection:

Function blocks

TS8000208 Version: 1.2

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bEnable : BOOL;
bSwitchUp : BOOL;
bSwitchDown : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not internally released.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable : the function block has no function if this input is FALSE. 0 is output for the position and the angle
in the positioning telegram stSunblind [} 236] - bManualMode and bActive are set to FALSE. For a
connection with priority controller this means that another functionality takes over control of the blind.
Conversely, a direct connection allows the blind to drive directly to the 0 position, i.e. fully up, since the
actuator function block does not evaluate the bit bActive itself.

bSwitchUp: command input blind up.

bSwitchDown: command input blind down.

VAR_OUTPUT
stSunblind : ST_BARSunblind;
bActive : BOOL;

stSunblind: positioning telegram, see ST_BARSunblind [} 236].

bActive : corresponds to the boolean value bActive in the blind telegram ST_BARSunblind [} 236] and is
solely used to indicate whether the function block sends an active telegram.

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiSwitchOverTime : UINT;

uiSwitchOverTime : time in milliseconds until the corresponding manual command in the positioning
telegram stSunblind [} 236] switches to latching mode, if the command input is activated permanently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 209Version: 1.2

3.3.4.22 FB_BARSunblindThermoAutomatic
This function block controls the blind in relation to the temperature inside the room if the room is
unoccupied.
The objective is to block radiant heat when cooling and to increase the input of heat by opening the blinds
when heating.

The thermal automatic is active only if there is sufficient sunshine and the room concerned is unoccupied. To
this end, the external brightness value uiBrightness [lux] must have exceeded the activation limit value
uiBrightnessActivateValue for the time uiActivateDelay (in seconds) and the presence input bPresence must
be FALSE. The automatic function is deactivated again if either presence is signaled (bPresence = TRUE) or
the external brightness value uiBrightness falls below the value uiBrightnessDeactivateValue for the time
uiDeactivateDelay.

A structure of the type ST_BARSetpointRoom, which carries the information about the temperature switching
points for the air conditioning of the room, is to be applied at the input stBARSetpointRoom:
TYPE ST_BARSetpointRoom :
STRUCT
 stBARSetpointRoom_ComfortHeat : REAL:= 21.0;
 stBARSetpointRoom_PreComfortHeat : REAL:= 19.0;
 stBARSetpointRoom_EconomyHeat : REAL:= 15.0;
 stBARSetpointRoom_ProtectionHeat : REAL:= 12.0;
 stBARSetpointRoom_ComfortCool : REAL:= 24.0;
 stBARSetpointRoom_PreComfortCool : REAL:= 28.0;
 stBARSetpointRoom_EconomyCool : REAL:= 35.0;
 stBARSetpointRoom_ProtectionCool : REAL:= 40.0;
END_STRUCT
END_TYPE

Once activated, the thermo-automatic function distinguishes between 3 cases:

• Remain in the current position if the room temperature rActRoomTemperature lies between the values
stBARSetpointRoom_ComfortHeat and stBARSetpointRoom_ComfortCool.

• Heating case if the room temperature rActRoomTemperature falls below the value
stBARSetpointRoom_ComfortHeat.

• Cooling case if the room temperature rActRoomTemperature exceeds the value
stBARSetpointRoom_ComfortCool.

Function blocks

TS8000210 Version: 1.2

Once the heating or the cooling case has been reached, the thermal automatic remembers this until it
becomes inactive itself once again due to renewed presence detection or insufficient outdoor brightness (see
above).
In both cases, however – heating or cooling – the mechanism operates like a on-off controller.

Heating case

In the heating case, the blind drives to the heating position uiPositionHeatingMode and iAngleHeatingMode if
the room temperature falls below the lower limit value. If the room temperature exceeds the upper limit value,
then the blind drives to the cooling position uiPositionCoolingMode and iAngleCoolingMode.
The upper limit value is selectable by the parameter bComfortCoolingAsSwitchPointHeating [BOOL], the
lower limit value is not selectable:

bComfortCoolingAsSwitchPointHea
ting = FALSE

bComfortCoolingAsSwitchPointHea
ting = TRUE

upper limit value stBARSetpointRoom_PreComfortC
ool

stBARSetpointRoom_ComfortCool

lower limit value stBARSetpointRoom_ComfortHeat stBARSetpointRoom_ComfortHeat

Function blocks

TS8000 211Version: 1.2

Diagram

Function blocks

TS8000212 Version: 1.2

Cooling case

In the cooling case the blind drives to the cooling position uiPositionCoolingMode and iAngleCoolingMode if
the room temperature exceeds the upper limit value. If the room temperature falls below the lower limit value,
then the blind drives to the heating position uiPositionHeatingMode and iAngleHeatingMode.
The lower limit value is selectable by the parameter bComfortHeatingAsSwitchPointCooling [BOOL], the
upper limit value is not selectable:

bComfortHeatingAsSwitchPointCo
oling = FALSE

bComfortHeatingAsSwitchPointCo
oling = TRUE

upper limit value stBARSetpointRoom_ComfortCool stBARSetpointRoom_ComfortCool
lower limit value stBARSetpointRoom_PreComfortH

eat
stBARSetpointRoom_ComfortHeat

Function blocks

TS8000 213Version: 1.2

Diagram

Function blocks

TS8000214 Version: 1.2

A lower average room temperature is obtained by selecting the Precomfort Cool value instead of the Comfort
Cool value as the upper hysteresis point. This could be perceived as more pleasant when re-entering the
room.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
uiBrightness : UINT;
bPresence : BOOL;
lrActRoomTemperature: LREAL;
stBARSetpointRoom : ST_BARSetpointRoom;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable : the function block has no function if this input is FALSE. In the positioning telegram stSunblind
[} 236], 0 is output for the position and the angle, and bActive is FALSE. This means that another function
takes over control of the blind via the priority controller.

uiBrightness: outdoor brightness in lux.

bPresence: the automatic function is active only if the room is unoccupied, since otherwise the sun
protection takes priority. If this input is FALSE, the room is considered to be unoccupied and the thermal
automatic is active. A TRUE signal at bPresence deactivates the thermal automatic immediately.

lrActRoomTemperature: input for the room temperature in °C.

stBARSetpointRoom: structure of the type ST_BARSetpointRoom [} 209], which contains the information
about the temperature switching points for the air conditioning of the room, see above.

VAR_OUTPUT
stSunblind : ST_BARSunblind;
bActive : BOOL;
uiRemainingTimeActivate : UINT;
uiRemainingTimeDeactivate: UINT;
bHeating : BOOL;
bCooling : BOOL;
lrUpperSwitchPointHeating: LREAL;
lrLowerSwitchPointHeating: LREAL;
lrUpperSwitchPointCooling: LREAL;
lrLowerSwitchPointCooling: LREAL;
bError : BOOL;
udiErrorId : UDINT;

stSunblind: output structure of the blind positions, see ST_BARSunblind [} 236].

bActive : corresponds to the boolean value bActive in the blind telegram ST_BARSunblind [} 236] and is
solely used to indicate whether the function block sends an active telegram.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 215Version: 1.2

uiRemainingTimeActivate: the thermal automatic is active if no presence is detected AND the brightness
lies above the limit value uiBrightnessActivateValue for the time uiActivateDelay (switching delay). This
output indicates the remaining duration of the switching delay in seconds. This output is 0 as long as no
countdown of the time is taking place.

uiRemainingTimeDeactivate: the thermal automatic is not active if presence is detected OR if the
brightness lies below the limit value uiBrightnessDeactivateValue for the time uiDeactivateDelay (switching
delay). This output indicates the remaining duration of the switching delay in seconds. This output is 0 as
long as no countdown of the time is taking place.

bHeating : indicates whether the heating case is active.

bCooling : indicates whether the cooling case is active.

lrUpperSwitchPointHeating : indicates the selected upper switch point in heating mode at which the blind is
driven to the position uiPositionCoolingMode for cooling. This is either stBARSetpointRoom_ComfortCool or
stBARSetpointRoom_PreComfortCool, depending on the preselection (see diagrams above).

lrUpperSwitchPointHeating : indicates the lower switch point in heating mode at which the blind is driven to
the position uiPositionHeatingMode for heating. This is permanently set as the value
stBARSetpointRoom_ComfortHeat (see diagrams above).

lrUpperSwitchPointCooling : indicates the upper switch point in cooling mode at which the blind is driven
to the position uiPositionCoolingMode for cooling. This is permanently set as the value
stBARSetpointRoom_ComfortCool (see diagrams above).

lrLowerSwitchPointCooling : indicates the selected lower switch point in cooling mode at which the blind is
driven to the position uiPositionHeatingMode for heating. This is either stBARSetpointRoom_ComfortHeat or
stBARSetpointRoom_PreComfortHeat, depending on the preselection (see diagrams above).

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

If an error should occur, then this automatic function is deactivated and position and angle are set to
0. This means that if a priority controller is in use, another function with a lower priority (see
Overview) automatically takes over control of the blind. In the case of a direct connection,
conversely, the blind will drive to position/angle 0.

VAR_IN_OUT

The need for entered parameters to be preserved across a control failure makes it necessary for them to be
declared as IN-OUT variables. A reference variable is then assigned to them in the program. Each change in
the value of this reference variable is persistently saved in the function block and written back to the
reference variable after a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiBrightnessActivateValue : UINT;(*lux*)
uiBrightnessDeactivateValue : UINT;(*lux*)
uiActivateDelay : UINT;(*sec*)
uiDeactivateDelay : UINT;(*sec*)
bComfortHeatingAsSwitchPointCooling: BOOL;
bComfortCoolingAsSwitchPointHeating: BOOL;
uiPositionHeatingMode : UINT;
iAngleHeatingMode : INT;
uiPositionCoolingMode : UINT;
iAngleCoolingMode : INT;

uiBrightnessActivateValue / uiActivateDelay : activation limit value. The thermal automatic is active only if
the outdoor brightness is adequate. Otherwise there would be no radiant heat from the sun which could be
utilized or which would need to be blocked. If the outdoor brightness uiBrightness [lux] exceeds the value
uiBrightnessActivateValue [lux] for the time uiActivateDelay [s], then the automatic function becomes active if
in addition no presence is detected (bPresence = FALSE).

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000216 Version: 1.2

uiBrightnessDeactivateValue / uiDeactivateDelay : brightness deactivation limit value: if the outdoor
brightness uiBrightness [lux] falls below the value uiBrightnessDeactivateValue [lux] for the time
uiDeactivateDelay [s] , the automatic system becomes inactive. The value uiBrightnessDeactivateValue must
be smaller than the value uiBrightnessActivateValue. Otherwise an error is output.

bComfortHeatingAsSwitchPointCooling : if this input is TRUE, then the value
stBARSetpointRoom_ComfortHeat is considered to be the lower value in cooling mode from which the blinds
are opened again. If the input is set to FALSE, then the value stBARSetpointRoom_PreComfortHeat applies
(see introductory description).

bComfortCoolingAsSwitchPointHeating : if this input is TRUE, then the value
stBARSetpointRoom_ComfortCool is considered to be the lower value in heating mode from which the blinds
are closed again. If the input is set to FALSE, then the value stBARSetpointRoom_PreComfortCool applies
(see introductory description).

uiPositionHeatingMode : height position of the blind in % in the heating case (intended heat irradiation).
The following applies to the height position: 0% = fully open, 100% = fully closed.

iAngleHeatingMode : slat angle of the blind in degrees in the heating case (intended heat irradiation).

uiPositionCoolingMode : height position of the blind in % in the cooling case (sun protection). The following
applies to the height position: 0% = fully open, 100% = fully closed. The value of the height position must be
higher than in the heating case, i.e. the blind must be closed more in the cooling case than in the heating
case. Otherwise the supply of heat from the sun cannot be meaningfully controlled according to the above
description. In this case an error is output.

iAngleCoolingMode : slat angle of the blind in degrees in the cooling case (sun protection).

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.4.23 FB_BARSunblindTwilightAutomatic
This function block controls the blind if the outdoor brightness has fallen below a limit value.

The twilight automatic operates with both a value hysteresis and a temporal hysteresis: if the outdoor
brightness value usiBrightness [lux] falls below the value usiActivateValue [lux] for the time uiActivateDelay
[s], then the function block is active and will supply the blind positions uiPositionActiveMode (height in %)
and uiAngleActiveMode (slat angle in degrees), which are specified on the IN-OUT variables, at the output in
the positioning telegram stSunblind [} 236]. Conversely, if the outdoor brightness exceeds the value
usiDeactivateValue [lux] for the time uiDeactivateDelay [s], then the automatic function is no longer active.
The active flag in the positioning telegram stSunblind [} 236] is reset and the positions for height and angle
are set to "0". A function with a lower priority can then take over control.

Function blocks

TS8000 217Version: 1.2

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bEnable : BOOL;
uiBrightness : UINT;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable : the function block has no function if this input is FALSE. In the positioning telegram stSunblind
[} 236], 0 is output for the position and the angle, and bActive is FALSE. This means that another function
takes over control of the blind via the priority controller.

uiBrightness: outdoor brightness in lux.

VAR_OUTPUT
stSunblind : ST_BARSunblind;
bActive : BOOL;
uiRemainingTimeActivate : UINT;
uiRemainingTimeDeactivate: UINT;
bError : BOOL;
udiErrorId : UDINT;

stSunblind: output structure of the blind positions, see ST_BARSunblind [} 236].

bActive : corresponds to the boolean value bActive in the blind telegram ST_BARSunblind [} 236] and is
solely used to indicate whether the function block sends an active telegram.

uiRemainingTimeActivate: indicates the time remaining in seconds after falling below the switch value
usiActivateValue until automatic mode is activated. This output is 0 as long as no countdown of the time is
taking place.

uiRemainingTimeDeactivate: indicates the time remaining in seconds after exceeding the switch value
usiDeactivateValue until automatic mode is deactivated. This output is 0 as long as no countdown of the time
is taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

If an error should occur, then this automatic function is deactivated and position and angle are set to
0. This means that if a priority controller is in use, another function with a lower priority (see
Overview) automatically takes over control of the blind. In the case of a direct connection,
conversely, the blind will drive to position/angle 0.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000218 Version: 1.2

VAR_IN_OUT

The need for entered parameters to be preserved across a control failure makes it necessary for them to be
declared as IN-OUT variables. A reference variable is then assigned to them in the program. Each change in
the value of this reference variable is persistently saved in the function block and written back to the
reference variable after a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiActivateValue : UINT;
uiDeactivateValue : UINT;
uiActivateDelay : UINT;
uiDeactivateDelay : UINT;
uiPositionActiveMode : UINT;
iAngleActiveMode : INT;

uiActivateValue: activation limit value in lux.

uiDeactivateValue: deactivation limit value in lux.

uiActivateDelay: activation delay in seconds.

uiDeactivateDelay: deactivation delay in seconds.

uiPositionActiveMode: height position of the blind in % if the twilight automatic is active.

iAngleActiveMode: slat angle of the blind in degrees if the twilight automatic is active.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.4.24 FB_BARSunblindWeatherProtection
The weather protection has the highest priority in the blind controller (see overview) and is intended to
ensure that the blind is not damaged by ice or wind.

The task of the automatic weather protection function is to protect the blind against two impending dangers
and, in order to do so, to drive it to a safe position:

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 219Version: 1.2

• Icing up: impending icing up is detected when the measured outside temperature
rOutsideTemperature falls below the frost limit value rFrostTemperature while at the same time rain is
detected on bRainSensor. This event is saved internally and remains active until it is ensured that the
ice has melted again. In addition, the outside temperature must have exceeded the frost limit value for
the entered deicing time uiDeiceTime (in minutes). For safety reasons the icing event is persistently
saved, i.e. also beyond a PLC failure. Thus, if the controller fails during the icing up or deicing period,
the blind is considered to be newly iced up when then the controller restarts and the deicing timer starts
from the beginning again.

• Storm: if the measured wind speed lies above the value rWindSpeedStormUpcoming for the time
uiDelayStormUpcoming [s], then it is assumed that a storm is directly impending. Only if the wind
speed falls below the value rWindSpeedStormAbating for the time uiDelayStormAbating [s] is the storm
considered to have abated and the driving of the blind considered to be safe. For safety reasons the
storm event is also persistently saved. Thus, if the controller fails during a storm, the storm abating
timer is started again from the beginning when the controller is restarted.

In both cases of danger the blind is driven to the protection position specified by uiPositionProtection (height
position in percent) and iAngleProtection (slat angle in degrees).

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
lrWindSpeed : LREAL;
lrOutsideTemperature: LREAL;
bRainSensor : BOOL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable : the function block has no function if this input is FALSE. In the positioning telegram stSunblind
[} 236], 0 is output for the position and the angle, and bActive is FALSE. This means that another function
takes over control of the blind via the priority controller.

lrWindSpeed: wind speed. The unit of the entry is arbitrary, but it is important that no value is smaller than 0
and that the values become larger with increasing speed.

rOutsideTemperature: outside temperature in degrees Celsius.

bRainSensor: input for a rain sensor.

VAR_OUTPUT
stSunblind : ST_BARSunblind;
bIceAlarm : BOOL;
udiRemainingTimeIceAlarm : UDINT;
bStormAlarm : BOOL;
uiRemainingTimeStormDetect: UINT;
uiRemainingTimeStormAlarm : UINT;
bError : BOOL;
udiErrorId : UDINT;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000220 Version: 1.2

stSunblind: output structure of the blind positions, see ST_BARSunblind [} 236].

bActive : corresponds to the boolean value bActive in the blind telegram ST_BARSunblind [} 236] and is
solely used to indicate whether the function block sends an active telegram.

bIceAlarm: displays the icing-up alarm.

udiRemainingTimeIceAlarm: in the case of impending icing up (bIceAlarm = TRUE), this second counter is
set to the deicing time. As soon as the temperature lies above the frost point entered (rFrostTemperature),
the remaining number of seconds until the 'all-clear' signal is given (bIceAlarm = FALSE) is displayed here.
This output is 0 as long as no countdown of the time is taking place.

bStormAlarm: displays the storm alarm.

uiRemainingTimeStormDetect: in an uncritical case this second counter constantly displays the alarm
delay time uiDelayStormUpcoming. If the measured wind speed rWindSpeed is above the activation limit
value rWindSpeedStormUpcoming, the seconds to the alarm are counted down. This output is 0 as long as
no countdown of the time is taking place.

uiRemainingTimeStormAlarm: as soon as the storm alarm is triggered, this second counter first constantly
displays the deactivation time delay of the storm alarm uiDelayStormAbating. If the measured wind speed
rWindSpeed falls below the deactivation limit value rWindSpeedStormAbating, the seconds to the all-clear
signal (bStormAlarm=FALSE) are counted down. This output is 0 as long as no countdown of the time is
taking place.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

If an error should occur, then this automatic function is deactivated and position and angle are set to
0. This means that if a priority controller is in use, another function with a lower priority (see
Overview) automatically takes over control of the blind. In the case of a direct connection,
conversely, the blind will drive to position/angle 0.

VAR_IN_OUT

The need for entered parameters to be preserved across a control failure makes it necessary for them to be
declared as IN-OUT variables. A reference variable is then assigned to them in the program. Each change in
the value of this reference variable is persistently saved in the function block and written back to the
reference variable after a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
lrFrostTemperature : LREAL;
lrWindSpeedStormUpcoming : LREAL;
lrWindSpeedStormAbating : LREAL;
uiDeiceTime : UINT;
uiDelayStormUpcoming : UINT;
uiDelayStormAbating : UINT;
uiPositionProtection : UINT;
iAngleProtection : INT;

lrFrostTemperature: icing-up temperature limit value in degrees Celsius. This value may not be greater
than 0. Otherwise an error is output.

lrWindSpeedStormUpcoming: wind speed limit value for the activation of the storm alarm. This value may
not be smaller than 0 and must lie above the value for the deactivation. Otherwise an error is output. The unit
of the entry must be the same as that of the input rWindSpeed. A value greater than this limit value triggers
the alarm after the entered time uiDelayStormUpcoming.

lrWindSpeedStormAbating: wind speed limit value for the deactivation of the storm alarm. This value may
be not smaller than 0 and must lie below the value for the activation. Otherwise an error is output. The unit of
the entry must be the same as that of the input rWindSpeed. A value smaller than or equal to this limit value
resets the alarm after the entered time uiDelayStormAbating.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 221Version: 1.2

uiDeiceTime: time until the deicing of the blind after icing up (in minutes). After that the icing up alarm is
reset.

uiDelayStormUpcoming: time delay until the storm alarm is triggered in seconds.

uiDelayStormUpcoming: time delay until the storm alarm is reset in seconds.

uiPositionProtection: height position of the blind in % in the case of protection.

iAngleProtection: slat angle of the blind in degrees in the case of protection.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.4.25 FB_BARSunProtectionEx
Function block for the control of glare protection with the aid of a slatted blind.

Fig. 10: FB_BARSunProtectionEx

The function block FB_BARSunProtectionEx enables glare protection in two ways that operate in parallel:

• Lamella setpoint tracing, so that the direct incident light cannot quite enter through the lowered part of
the blind.

• Control of the blind height, with 3 different possibilities (Adjustable via the enumerator at
ePositioningMode) :
1) fixed blind height, i.e. no change (preset)
2) blind height depending on the sun position, defined via a table (stBlindPosTable [} 234]), see also
description of FB_BARBlindPositionEntry [} 160]
3) maximum desired light incidence

On the basis of the parameters entered, which are described further below, the function block calculates the
necessary slat angle and blind position and transfers them to the output structure stSunblind [} 236]. Of
course, the output does not take place continuously since a constant blind movement would be perceived as
extremely distracting. At the input uiPositioningInterval it is possible to set in seconds the interval at which
new position values are to be output.

Function blocks

TS8000222 Version: 1.2

However, the shading criteria must always be fulfilled between two positioning times: no direct light may
pass through the slats and the desired light incidence through the blind height must remain limited, assuming
initially that the blind height is controlled via the "maximum desired light incidence" mode. Therefore, two
blind and slat positions are calculated internally: the one for the current switching point and the one for the
next switching point. The position in which the blind is more closed is then the valid position.

The positioning in intervals starts precisely when the following three conditions are satisfied:

• the input bEnable must be TRUE.
• the function block must not be in an error state due to incorrect parameterization (bError=TRUE).
• the sun must have risen, i.e. the sun elevation must be greater than 0°. This is an internal safety query

since the limitation to at least 0° should be done by the user by programming the input bEnable; see
Overview of automatic sun protection (shading correction).

If these three conditions are not satisfied, then the active bit (bActive) is set to FALSE, the blind height to 0%
and the slat angle to 0% in the positioning structure.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
stTimeAct : TIMESTRUCT;
stBlindPositionTable: ST_BARBlindPositionTable;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eDataSecurityType_Persistenti. It would lead to early wear of the flash memory.

bEnable: if this input is set to FALSE, the positioning is inactive, i.e. the active bit (bActive) is reset in the
positioning structure stSunblind of the type ST_BARSunblind [} 236] and the function block itself remains in a
standstill mode. If on the other hand the function block is activated, then the active bit is TRUE and the
function block outputs its control values (uiShutterHeight ,iLouvreAngle) in the positioning structure at the
appropriate times.

stTimeAct: entry of the current time in GMT (Greenwich Mean Time).

stBlindPositionTable: table of 6 interpolation points, 4 of which are parameterizable, from which a blind
position is then given in relation to the position of the sun by linear interpolation. Valid if ePositioningMode =
ePosModeFixed (see enumerator E_BARPosMode [} 233]). For a more detailed description please refer to
FB_BARBlindPositionEntry [} 160].

VAR_OUTPUT
stSunblind: ST_BARSunblind;
bError : BOOL;
udiErrorId: UDINT;

stSunblind: output structure of the blind positions, see ST_BARSunblind

bError: this output is switched to TRUE if the parameters entered are erroneous.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 223Version: 1.2

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

If an error should occur, then this automatic function is deactivated and position and angle are set to
0. This means that if a priority controller is in use, another function with a lower priority (see
Overview) automatically takes over control of the blind. In the case of a direct connection,
conversely, the blind will drive to position/angle 0.

VAR_IN_OUT

The need for entered parameters to be preserved across a control failure makes it necessary for them to be
declared as IN-OUT variables. A reference variable is then assigned to them in the program. Each change in
the value of this reference variable is persistently saved in the function block and written back to the
reference variable after a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiPositioningInterva : UINT;
lrDegreeOfLongitude : LREAL;
lrDegreeOfLatitude : LREAL;
lrFacadeOrientation : LREAL;
lrFacadeAngle : LREAL;
uiLouvreWidth : UINT;
uiLouvreSpacing : UINT;
uiFixedShutterHeigh : UINT;
uiMaxLightIncidence : UINT;
uiWindowHeight : UINT;
uiWindowDistanceFloor: UINT;
ePositioningMode : E_BARPOSMODE;

uiPositioningInterval: positioning interval in seconds - time between two blind position outputs. Valid range:
1s..7200s.

lrDegreeOfLongitude: longitude in degrees. Valid range: -180°..180°.

lrDegreeOfLatitude: latitude in degrees. Valid range: -90°..90°.

lrFacadeOrientation: facade orientation in degrees:

In the northern hemisphere, the following applies for the facade orientation (looking out of the window):

Line of sight Facade orientation
North β=0°
East β=90°
South β=180°
West β=270°

The following applies for the southern hemisphere:

Line of sight Facade orientation
South β=0°
East β=90°
North β=180°
West β=270°

lrFacadeAngle: facade inclination in degrees. See Facade inclination [} 150].

uiLouvreWidth: width of the slats in mm, see sketch [} 147].

uiLouvreSpacing: slat spacing in mm, see sketch [} 147].

uiFixedShutterHeight: fixed (constant) shutter height [0..100%]. Valid if ePositioningMode =
ePosModeFixed (see enumerator E_BARPosMode [} 233]).

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000224 Version: 1.2

uiMaxLightIncidence: maximum desired incidence of light in mm measured from the outside of the wall
(see Height adjustment). With the aid of the parameters uiWindowHeight and uiWindowDistanceFloor, a
calculation is performed in relation to the position of the sun to determine how high the blind must be so that
the incidence of light does not exceed the value uiMaxLightIncidence. Valid if ePositioningMode =
ePosModeMaxIncidence (see enumerator E_BARPosMode [} 233]).

uiWindowHeight: window height in mm for the calculation of the blind height if the mode "maximum desired
incidence of light" is selected.

uiWindowDistanceFloor: distance between the floor and the window sill in mm for the calculation of the
blind height if the mode "maximum desired incidence of light" is selected.

ePositioningMode: selection of the positioning mode, see enumerator E_BARPosMode [} 233].

Also see about this
2 Sun protection: basic principles and definitions [} 147]

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.3.4.26 FB_BARWithinRangeAzimuth
This function block checks whether the current azimuth angle (horizontal position of the sun) lies within the
limits entered. As can be seen in the overview [} 146], the function block provides an additionally evaluation
as to whether the sun protection of a window group should be activated. Therefore the observations in the
remainder of the text always apply to one window group.

The sun incidence azimuth angle on a smooth facade will always be facade orientation-90°... facade
orientation+90°.

Function blocks

TS8000 225Version: 1.2

If the facade has lateral projections, however, this range is limited. This limitation can be checked with the
help of this function block. However, the position of the window group on the facade also plays a role. If it lies
centrally, this gives rise to the following situation (the values are only examples):

The values change for a group at the edge:

The beginning of the range rBeginRange may thereby be larger than the end rEndRange; it is then regarded
beyond 0°:

Sample:

lrAzimuth 10.0°
lrBeginRange 280.0°
lrEndRange 20.0°
bOut TRUE

However, the range regarded may not be greater than 180° or equal to 0° – this would be unrealistic. Such
entries result in an error on the output bError – the test output bOut is then additionally set to FALSE.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
lrAzimuth : LREAL;

Function blocks

TS8000226 Version: 1.2

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

lrAzimuth: current azimuth angle.

VAR_OUTPUT
bOut : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bOut: binary delayed output of the threshold switch.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
lrBeginRange : LREAL;
lrEndRange : LREAL;

lrBeginRange: begin of range in degrees.

lrEndRange: end of range in degrees.

3.3.4.27 FB_BARWithinRangeElevation
This function block checks whether the current angle of elevation (vertical position of the sun) lies within the
limits entered. As can be seen in the overview [} 146], the function block provides an additionally evaluation
as to whether the sun protection of a window group should be activated. Therefore the observations in the
remainder of the text always apply to one window group.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 227Version: 1.2

A normal vertical facade is irradiated by the sun at an angle of elevation of 0° to maximally 90°.

If the facade has projections, however, this range is limited. This limitation can be checked with the help of
this function block. However, the position of the window group on the facade also plays a role. If it lies in the
lower range, this gives rise to the following situation (the values are only examples):

Function blocks

TS8000228 Version: 1.2

The values change for a group below the projection:

The lower observation limit, rLowLimit, may thereby not be greater than or equal to the upper limit,
rHighLimit. Such entries result in an error on the output bError – the test output bOut is then additionally set
to FALSE.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
lrElevation : LREAL;

Function blocks

TS8000 229Version: 1.2

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

lrElevation: current elevation angle in degrees.

VAR_OUTPUT
bOut : BOOL;
bError : BOOL;
udiErrorId : UDINT;

bOut: binary delayed output of the threshold switch.

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

In order for the registered parameters to be retained beyond a controller failure, it is necessary to declare
them as In-Out variables. A reference variable is then assigned to them in the program. Each change of the
value of these reference variables is persistently stored in the function block and written back to the
reference variable following a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
lrLowLimit : LREAL;
lrHighLimit : LREAL;

lrLowLimit: lower limit in degrees.

lrHighLimit: upper limit in degrees.

3.3.5 Program example

3.3.5.1 Program example FB_BARSunblindSwitch
This example is intended to show how a possible activation (input bEnable) of the manual blind controller
might look. The input and output variables (bordered) have the following meaning:

tAutoResetTime : time after which the activation is to be automatically reset.

bSwitchUp : blind up button.

bSwitchDown : blind down button.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000230 Version: 1.2

bPauseClock : pause signal of the property, e.g. lunch break: 12:00-13:00. bPauseClock = TRUE: pause.

bPresenceDetection : occupied message of the room in which the blinds are controlled.
bPresenceDetection= TRUE: room is occupied.

uiSwitchOverTime : time in milliseconds until the corresponding manual command latches in the case of a
continuous active command input.

stSunblind: positioning telegram, see ST_BARSunblind [} 236]. For further linking to a priority selection, see
FB_BARSunblindPrioritySwitch [} 198].

Fig. 11: SwitchWithResetEnable

Functioning

If one of the blind buttons bSwitchUp or bSwitchDown is actuated, the output of the flip-flop will initially be set
to TRUE, but only if there is currently no pause signal applied (bPauseClock) or if the room is currently
occupied (bPresenceDetection). The bEnable input of the function block fbBARSunblindSwitch is thus
TRUE, which activates it. The respective push button signal which has led to the activation can be passed on
by the function block directly in the command telegram stSunblind.
At the same time, a TRUE signal is present at the input of the switch-off delay tofAutoResetTimer and its
output Q is immediately set to TRUE. On releasing the blind button the switch-off delay is started, and after
the expiry of tAutoResetTime the output Q is reset to FALSE. This falling edge is in turn recognized by
ftAutoResetTimer and a trigger pulse is sent that resets the flip-flop. The activation input bEnable is thus
FALSE once again and the function block fbBARSunblindSwitch is passive.

If this function block is linked via the command telegram to a priority selection FB_BARSunblindPrioritySwitch
[} 198], then the telegram will be passed through there to the next priority:

Function blocks

TS8000 231Version: 1.2

3.3.6 Structures and enumeration

3.3.6.1 E_BARCtrlFct
TYPE E_BARCtrlFct:
(
 eBARCtrlFct_Off := 0,
 eBARCtrlFct_Heating := 1,

Function blocks

TS8000232 Version: 1.2

 eBARCtrlFct_Cooling := 2
);
END_TYPE

eBARCtrlFct_Off: function selection OFF acitve.

eBARCtrlFct_Heating: function selection for heating operation active.

eBARCtrlFct_Cooling: function selection for cooling operation active.

3.3.6.2 E_BAREnergyLevel
TYPE E_BAREnergyLevel:
(
 eBAREnergyLevel_AUTO_I := 0,
 eBAREnergyLevel_Protection := 1,
 eBAREnergyLevel_Economy := 2,
 eBAREnergyLevel_PreComfort := 3,
 eBAREnergyLevel_Comfort := 4,
 eBAREnergyLevel_AUTO_II := 5
);
END_TYPE

eBAREnergyLevel_AUTO_I: automatic mode I means that in this operation mode it is only possible to
switch to the next higher energy level if the lower energy levels are already TRUE. In this operation mode the
states of the inputs bProtection, bEconomy, bPreComfort and bComfort are evaluated for the selection of the
energy level. Please see diagram.

eBAREnergyLevel_Protection: in this operation mode, which can be manually set by the building
management level, the room/zone/area is maintained in a minimum energy state. This operation mode is a
pure building protection mode.

eBAREnergyLevel_Economy: in this operation mode, which can be set manually from the building
management level, the room/zone/area is kept in economy mode. This operation mode must be set for
longer periods of absence or at night.

Function blocks

TS8000 233Version: 1.2

eBAREnergyLevel_PreComfort: in this operation mode, which can be set manually from the building
management level, the room/zone/area is kept in standby mode. This operation mode is to be set for short
absence times.

eBAREnergyLevel_Comfort: in this operation mode, which can be set manually from the building
management level, the room/zone/area is kept in comfort mode. This operation mode is to be set in the case
of presence.

eBAREnergyLevel_AUTO_II: Automatic mode II means that in this operation mode the energy level
switches directly from the Protection, Economy or PreComfort energy level to the Comfort energy level on
recognition of presence. Please see diagram.

3.3.6.3 E_BARPosMode
Enumerator for the definition of the positioning mode.
TYPE E_BARPosMode :
(
 ePosModeFixed := 0,
 ePosModeTable,
 ePosModeMaxIncidence
);
END_TYPE

ePosModeFixed: the blind height adopts a fixed value, which is set (in %) via the uiFixedShutterHeight
value on the function block FB_BARSunProtectionEx [} 221];

ePosModeTable: the height positioning takes place with the help of a table of 6 interpolation points, 4 of
which are parameterizable. A blind position in relation to the position of the sun is then calculated from these
points by linear interpolation. For a more detailed description please refer to FB_BARBlindPositionEntry
[} 160].

ePosModeMaxIncidence: the positioning takes place with specification of the maximum desired incidence
of light.

Function blocks

TS8000234 Version: 1.2

3.3.6.4 E_BARShadingObjectType
Enumerator for selection of shading object type.
TYPE E_BARShadingObjectType :
(
 eObjectTypeTetragon := 0,
 eObjectTypeGlobe := 1
);
END_TYPE

eObjectTypeTetragon: Object type is a tetragon.

eObjectTypeGlobe: Object type is a globe.

3.3.6.5 E_HVACDataSecurityType
Enumeration for defining the saving of entered parameters.
TYPE E_HVACDataSecurityType :
(
eDataSecurityType_Persistent := 0,
eDataSecurityType_Idle := 1
);
END_TYPE

eDataSecurityType_Persistent: the parameters entered are persistently saved after each change. The
values are available on the input or output variables following a restart.

eDataSecurityType_Idle: the values are not saved. Following a restart only default values – if existent – are
available.

3.3.6.6 ST_BARBlindPositionTable
Structure of the interpolation point entries for the height adjustment of the blind.
TYPE ST_BARBlindPositionTable:
STRUCT
 lrSunElevation : ARRAY[0..5] OF LREAL;
 uiBlindPosition : ARRAY[0..5] OF UINT;
 bValid : BOOL;
END_STRUCT
END_TYPE

lrSunElevation / uiBlindPosition : the 6 interpolation points that are transferred, wherein the array
elements 0 and 5 represent the automatically generated edge elements mentioned above.

bValid : validity flag for the function block FB_BARSunProtectionEx [} 221]. It is set to TRUE by the function
block FB_BARBlindPositionEntry [} 160] if the data entered correspond to the validity criteria described.

3.3.6.7 ST_BARCorner
Information about window corners
TYPE ST_BARCorner :
STRUCT
 lrX : LREAL;
 lrY : LREAL;
 bShaded : BOOL;
END_STRUCT
END_TYPE

lrX: X-coordinate of the window (on the facade).

lrY: Y-coordinate of the window (on the facade).

bShaded: information whether this corner point is shaded: bShaded=TRUE: corner point is shaded.

Function blocks

TS8000 235Version: 1.2

3.3.6.8 ST_BARFacadeElement
List entry for a facade element (window).
TYPE ST_BARFacadeElement :
STRUCT
 usiGroup : USINT;
 lrWindowWidth : LREAL;
 lrWindowHeight : LREAL;
 stCorner : ARRAY [1..4] OF ST_BARCorner;
 bValid : BOOL;
END_STRUCT
END_TYPE

usiGroup: group membership of en element.

lrWindowWidth: width of the window.

lrWindowHeight: height of the window.

stCorner: coordinates of the window corners and information as to whether this corner point is in the shade;
see ST_BARCorner [} 234].

bValid: plausibility of the entered data: bValid=TRUE: data are plausible.

3.3.6.9 ST_BARSetpointRoom
TYPE ST_BARSetpointRoom :
STRUCT
 stBARSetpointRoom_ComfortHeat : REAL:= 21.0;
 stBARSetpointRoom_PreComfortHeat : REAL:= 19.0;
 stBARSetpointRoom_EconomyHeat : REAL:= 15.0;
 stBARSetpointRoom_ProtectionHeat : REAL:= 12.0;
 stBARSetpointRoom_ComfortCool : REAL:= 24.0;
 stBARSetpointRooom_PreComfortCool : REAL:= 28.0;
 stBARSetpointRoom_EconomyCool : REAL:= 35.0;
 stBARSetpointRoom_ProtectionCool : REAL:= 40.0;
END_STRUCT
END_TYPE

The values in the structure are defined with the preset values.

3.3.6.10 ST_BARShadingObject
List entry for a shading object.
TYPE ST_BARShadingObject :
STRUCT
 lrP1x : LREAL;
 lrP1y : LREAL;
 lrP1z : LREAL;
 lrP2x : LREAL;
 lrP2y : LREAL;
 lrP2z : LREAL;
 lrP3x : LREAL;
 lrP3y : LREAL;
 lrP3z : LREAL;
 lrP4x : LREAL;
 lrP4y : LREAL;
 lrP4z : LREAL;
 lrMx : LREAL;
 lrMy : LREAL;
 lrMz : LREAL;
 lrRadius : LREAL;
 usiBeginMonth : USINT;
 usiEndMonth : USINT;
 eType : E_BARShadingObjectType;
 bValid : BOOL;
END_STRUCT
END_TYPE

lrP1x .. lrP4z : corner coordinates. Of importance only if the element is a rectangle.

lrMx .. lrMz: center coordinates. Of importance only if the element is a sphere.

Function blocks

TS8000236 Version: 1.2

lrRadius: radius of the sphere. Of importance only if the element is a sphere.

usiBeginMonth: beginning of the shading period (month).

usiEndMonth: end of the shading period (month).

eType: object type, see E_BARShadingObjectType [} 234].

bValid: plausibility of the data: bValid=TRUE: data are plausible.

Remark about the shading period:

The month entries must not be 0 and not be greater than 12, all other combinations are possible.
Examples:
Start=1, End=1: shading in January.
Start=1, End=5: shading from the beginning of January to the end of May.
Start=11, End=5: shading from the beginning of November to the end of May (of the following year).

3.3.6.11 ST_BARSunblind
Structure of the blind positioning telegram.
TYPE ST_BARSunblind:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
 bManUp : BOOL;
 bManDown : BOOL;
 bManualMode : BOOL;
 bActive : BOOL;
END_STRUCT
END_TYPE

uiPosition: transferred blind height in %.

iAngle: transferred slat position in degrees.

bManUp: manual command: blind up.

bManDown: manual command: blind down.

bManualMode: TRUE: manual operation mode is active.

FALSE: automatic mode is active.

bActive: the sender of the telegram is active. This bit is evaluated only by the priority controller
FB_BARSunblindPrioritySwitch [} 198]. The sun protection actuators FB_BARSunblindActuator [} 185] and
FB_BARRollerblind [} 200] ignore it.

3.3.6.12 ST_BARSunblindScene
Table entry for a blind scene.
TYPE ST_BARSunblindScene:
STRUCT
 uiPosition : UINT;
 iAngle : INT;
END_STRUCT
END_TYPE

uiPosition: blind height in %.

iAngle: louvre position in degrees.

Function blocks

TS8000 237Version: 1.2

3.3.7 List descriptions

3.3.7.1 List of facade elements
The data of all windows (facade elements) per facade are stored within the program in a field of structural
elements of the type ST_BARFacadeElement [} 235].
The declaration is global, because the management function block FB_BARFacadeElementEntry [} 164] as
well as the shading correction FB_BARShadingCorrection [} 176] / FB_BARShadingCorrectionSouth [} 179]
access this field directly via input/output variable:
VAR_GLOBAL
 arrFacadeElement : ARRAY[1..iColumnsPerFacade, 1..iRowsPerFacade] OF ST_BARFacadeElement;
END_VAR

The variables iColumnsPerFacade and iRowsPerFacade thereby define the upper limit of the available
elements and are to be globally declared as constants:
VAR_GLOBAL CONSTANT
 iRowsPerFacade : INT :=10;
 iColumnsPerFacade : INT :=20;
END_VAR

3.3.7.2 List of shading elements
The shading elements per facade are stored within the program in a field of structural elements of the type
ST_BARShadingObject [} 235].
The declaration is global, because the management function block FB_BARShadingObjectsEntry [} 182] as
well as the shading correction FB_BARShadingCorrection [} 176] / FB_BARShadingCorrectionSouth [} 179]
access this field directly via input/output variable:
VAR_GLOBAL
 arrShadingObject : ARRAY[1..iShadingObjects] OF ST_BARShadingObject;
END_VAR

The variable iShadingObjects thereby represents the upper limit of the available elements and is to be
globally defined as a constant:
VAR_GLOBAL CONSTANT
 iShadingObjects : INT := 20;
END_VAR

3.3.7.3 Error Codes

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x0 0 No error
0x8001 32769 FB_BARBlindPositionEntry [} 160]:

values for rSunElevation are not
ascending or unequal

0x8002 32770 FB_BARBlindPositionEntry [} 160]:
values for rSunElevation are not
within the valid range of 0°..90°

0x8003 32771 FB_BARBlindPositionEntry [} 160]:
values for uiBlindPosition are not
within the valid range of 0%..100%

0x8004 32772 FB_BARSunProtectionEx [} 221]: the
duration of the positioning interval
is equal to zero, or it exceeds
7200 s.

Function blocks

TS8000238 Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x8005 32773 FB_BARSunProtectionEx [} 221]: the
longitude entered is not within the
valid range of -180°..180°.

0x8006 32774 FB_BARSunProtectionEx [} 221]: the
latitude entered is not within the
valid range of -90°..90°.

0x8007 32775 FB_BARSunProtectionEx [} 221]: the
value for the slat spacing
(uiLouvreSpacing) is greater than
or equal to the value for the slat
width (uiLouvreWidth).

0x8008 32776 FB_BARSunProtectionEx [} 221]: the
"Values valid" bit (bValid) in the
stBlindPositionTable positioning
table is not set - invalid values, see
FB_BARBlindPositionEntry [} 160].

0x8009 32777 FB_BARSunProtectionEx [} 221]: the
value entered for the fixed shutter
height (uiFixedShutterHeight)
exceeds 100%

0x801A 32778 FB_BARSunProtectionEx [} 221]: the
value entered for the window
height is equal to zero.

0x801B 32779 FB_BARSunProtectionEx [} 221]: the
value entered for the slat spacing is
zero.

0x801C 32780 FB_BARSunProtectionEx [} 221]: the
value entered for the slat width is
zero.

0x801D 32781 FB_BARShadingObjectsEntry
[} 182]: the sum of the angles of
the rectangle is not 360°. This
means that the corners are not in
the order P1, P2, P3 and P4 but
rather P1, P3, P2 and P4. This
results in a crossed-over rectangle.

0x801E 32782 FB_BARShadingObjectsEntry
[} 182]: the corners of the rectangle
are not on the same level.

0x801F 32783 FB_BARShadingObjectsEntry
[} 182]: the z-component of P1 is
less than zero. This corner would
thus lie behind the facade.

0x8010 32784 FB_BARShadingObjectsEntry
[} 182]: the z-component of P3 is
less than zero. This corner would
thus lie behind the facade.

0x8011 32785 FB_BARShadingObjectsEntry
[} 182]: P1 is equal to P2. The
object entered is thus not a
rectangle.

Function blocks

TS8000 239Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x8012 32786 FB_BARShadingObjectsEntry
[} 182]: P1 is equal to P3. The
object entered is thus not a
rectangle.

0x8013 32787 FB_BARShadingObjectsEntry
[} 182]: P1 is equal to P4. The
object entered is thus not a
rectangle.

0x8014 32788 FB_BARShadingObjectsEntry
[} 182]: P2 is equal to P3. The
object entered is thus not a
rectangle.

0x8015 32789 FB_BARShadingObjectsEntry
[} 182]: P2 is equal to P4. The
object entered is thus not a
rectangle.

0x8016 32790 FB_BARShadingObjectsEntry
[} 182]: P3 is equal to P4. The
object entered is thus not a
rectangle.

0x8017 32791 FB_BARShadingObjectsEntry
[} 182]: the entered radius is equal
to zero

0x8018 32792 FB_BARShadingObjectsEntry
[} 182]: the z-component of the
sphere center is less than zero.
This point would thus lie behind the
facade.

0x8019 32793 FB_BARFacadeElementEntry [} 164]:
the group index is 0, but at the
same time another entry of the
facade element is not zero. Only if
all entries of a facade element are
zero is it considered to be a valid,
deliberately omitted facade
component, otherwise it is
interpreted as an incorrect entry.

0x801A 32794 FB_BARFacadeElementEntry [} 164]:
the x-component of the first corner
(Corner1) is less than zero.

0x801B 32795 FB_BARFacadeElementEntry [} 164]:
the y-component of the first corner
(Corner1) is less than zero.

0x801C 32796 FB_BARFacadeElementEntry [} 164]:
the window width is less than or
equal to zero.

0x801D 32797 FB_BARFacadeElementEntry [} 164]:
the window height is less than or
equal to zero.

0x801E 32798 FB_BARDelayedHysteresis [} 163]:
the switch-on value bOnValue is
smaller than the switch-off value
bOffValue.

Function blocks

TS8000240 Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x801F 32799 FB_BARWithinRangeAzimuth
[} 224]: the beginning of the range
rBeginRange and the end of the
range rEndRange are the same.

0x8020 32800 FB_BARWithinRangeAzimuth
[} 224]: one of the range limits
entered is greater than 360° or less
than 0°

0x8021 32801 FB_BARWithinRangeAzimuth
[} 224]: the entered range is
greater than 180°.

0x8022 32802 FB_BARWithinRangeElevation
[} 226]: the entered lower
limitrLowLimit is greater than or
equal to the upper limit rHighLimit.

0x8023 32803 FB_BARWithinRangeElevation
[} 226]: the upper limit value
rHighLimit is greater than 90° or
the lower limit value rLowLimit is
less than 0°.

0x8024 32804 FB_BARShadingObjectsEntry
[} 182]: the number of the month
when shading begins or when
shading ends is zero or greater
than 12.

0x8025 32805 FB_BARShadingObjectsEntry
[} 182]: index error! iId lies outside
the permissible limits
1..iShadingObjects. See list of
shading elements [} 237].

0x8026 32806 FB_BARSunblindActuator [} 185]/
FB_BARSunblindActuatorEx [} 190]:
the entered blind height is 0.

0x8027 32807 FB_BARSunblindActuator [} 185]/
FB_BARSunblindActuatorEx [} 190]:
the entire "Up" stroke time
(uiTotalTimeUp/udiTotalTimeUp) or
the total "Down" stroke time
(uiTotalTimeDown/
udiTotalTimeDown) is 0 ms.

0x8028 30808 FB_BARSunblindActuator [} 185]/
FB_BARSunblindActuatorEx [} 190]:
the slat "Up" turning time
(uiTurningTimeUp) or the slat
"Down" turning time
(uiTurningTimeDown) is 0 ms.

0x8029 32809 FB_BARSunblindActuator [} 185]/
FB_BARSunblindActuatorEx [} 190]:
the upper slat angle limit value
(iAngleLimitUp) is smaller than or
equal to the lower slat angle limit
value (iAngleLimitDown)

Function blocks

TS8000 241Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x802A 32810 FB_BARSunblindScene [} 203]: the
selected scene number exceeds
the maximum number of 20.

0x802B 32811 FB_BARSunblindThermoAutomatic
[} 209]: the preset room
temperature values are in the
wrong order.

0x802C 32812 FB_BARSunblindThermoAutomatic
[} 209]: the brightness activation
limit value is smaller than or equal
to the deactivation limit value.

0x802D 32813 FB_BARSunblindThermoAutomatic
[} 209]: the blind position (height in
%) of the heating mode is greater
than or equal to that of the cooling
mode.

0x802E 32814 FB_BARSunblindTwilightAutomatic
[} 209]: the brightness limit value
for the activation of the twilight
automatic is greater than or equal
to the deactivation value.

0x802F 32815 FB_BARSunblindWeatherProtection
[} 218]: the frost limit is greater
than 10 °C.

0x8030 32816 FB_BARSunblindWeatherProtection
[} 218]: the limit value for the
activation of the storm alarm is
smaller than or equal to the
deactivation value.

0x8031 32817 FB_BARSunblindWeatherProtection
[} 218]: the input of wind force limit
values of less than 0 is not
permissible.

0x8032 32818 FB_BARShadingCorrection [} 176] /
FB_BARShadingCorrectionSouth
[} 179]: the group index is 0. This
index is intended only for facade
elements that are to be marked as
non-existent, for example if
windows are omitted from an even
facade grid or if a door is installed
instead of a window.

0x8033 32819 FB_BARShadingCorrection [} 176] /
FB_BARShadingCorrectionSouth
[} 179]: a window element of the
selected group is marked as invalid
(bValid=FALSE).

0x8034 32820 FB_BARFacadeElementEntry [} 164]:
index error! iColumn and/or iRow
are outside the permissible limits
1..iColumnsPerFacade or
1..iRowsPerFacade.
See list of facade elements [} 237].

Function blocks

TS8000242 Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x8035 32821 FB_BARSunProtectionEx [} 221]: the
facade inclination entered
(lrFacadeAngle) is not within the
valid range of -90°..90°.

0x8036 32822 FB_BARSunblindActuator [} 185]/
FB_BARSunblindActuatorEx [} 190]:
the time to traverse the backlash
(uiBacklashTimeUp) or
(uiBacklashTimeDown) is 0 ms.

0x8037 32823 FB_BARRollerBlind [} 200]: the total
"up" stroke time (udiTotalTimeUp)
or the total "down" stroke time
(udiTotalTimeDown) is 0 ms.

0x8038 32824 FB_BARSMISunblindActuator
[} 196]: the value for
wLouvreRange must not be 0.

0x8039 32825 FB_BARSMISunblindActuator
[} 196]: the ratio wLouvreRange /
(iAngleLimitUp + iAngleLimitDown)
must be greater than 0.

0x803A..
0x80FF

32826..
33023

reserved for shading function
blocks

0x8100 33024 FB_BARLightCircuit [} 133]: the
operation mode,uiLightCtrlMode, is
greater than 2. However, only 0,1,
2 are permitted.

0x8101 33025 FB_BARLightCircuitDim [} 134]: The
operation mode,uiLightCtrlMode, is
greater than 2. However, only 0,1,
2 are permitted.

0x8102 33026 FB_BARLightCircuitDim [} 134]: the
lower limit value, lrMinDimValue, is
less than zero or greater than
100%.

0x8103 33027 FB_BARLightCircuitDim [} 134]: the
upper limit value, lrMaxDimValue,
is less than zero or greater than
100%.

0x8104 33028 FB_BARLightCircuitDim [} 134]: the
lower limit value, lrMinDimValue, is
greater than the upper limit value
lrMaxDimValue.

0x8105 33029 FB_BARLightCircuitDim [} 134]: the
value for "Manual On",
lrManualDimValue, is less than
zero or greater than 100%.

0x8106 33030 FB_BARAutomaticLight [} 117]: the
operation mode,uiLightCtrlMode, is
greater than 2. However, only 0,1,
2 are permitted.

Function blocks

TS8000 243Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x8107 33031 FB_BARAutomaticLight [} 117]: the
value for "Manual On",
lrManualDimValue, is less than
zero or greater than 100%.

0x8108 33032 FB_BARAutomaticLight [} 117]: the
light switch-on value,
lrOnDimValue, is less than zero or
greater than 100%.

0x8109 33033 FB_BARStairwellAutomatic [} 138]:
the operation
mode,uiLightCtrlMode, is greater
than 2. However, only 0,1, 2 are
permitted.

0x810A 33034 FB_BARTwilightAutomatic [} 140]:
the operation
mode,uiLightCtrlMode, is greater
than 2. However, only 0,1, 2 are
permitted.

0x810B 33035 FB_BARTwilightAutomatic [} 140]:
the value for "Manual On",
lrManualDimValue, is less than
zero or greater than 100%.

0x810C 33036 FB_BARTwilightAutomatic [} 140]:
the ON value for the automatic
function, lrDimOnValue, is less
than zero or greater than 100%.

0x810D 33037 FB_BARTwilightAutomatic [} 140]:
the OFF value for the automatic
function, lrDimOffValue, is less
than zero or greater than 100%.

0x810E 33038 FB_BARTwilightAutomatic [} 140]:
the switch-on threshold value,
uiSwitchOnValue, is greater than or
equal to the switch-off threshold
value, uiSwitchOffValue.

0x810F 33039 FB_BARDaylightControl [} 126]: the
operation mode,uiLightCtrlMode, is
greater than 2. However, only 0,1,
2 are permitted.

0x8110 33040 FB_BARConstantLightControl
[} 119]: the operation
mode,uiLightCtrlMode, is greater
than 2. However, only 0,1, 2 are
permitted.

0x8111 33041 FB_BARConstantLightControl
[} 119]: the lower limit value,
lrMinDimValue, is less than zero or
greater than 100%.

0x8112 33042 FB_BARConstantLightControl
[} 119]: the upper limit value,
lrMaxDimValue, is less than zero or
greater than 100%.

Function blocks

TS8000244 Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x8113 33043 FB_BARConstantLightControl
[} 119]: the lower limit value,
lrMinDimValue, is greater than the
upper limit value lrMaxDimValue.

0x8114 33044 FB_BARConstantLightControl
[} 119]: the starting value of the
controller, lrStartDimValue, is less
than zero or greater than 100%.

0x8115 33045 FB_BARConstantLightControl
[} 119]: the value for "Manual On",
lrManualDimValue, is less than
zero or greater than 100%.

0x8116..
0x81FF

33046..
33279

reserved for light function blocks

0x8200 33280 FB_BARPICtrl [} 112]: the execution
cycle number uiCtrlCycleCall is
zero

0x8201 33281 FB_BARPICtrl [} 112]: the
proportional band rXp is zero.

0x8202 33282 FB_BARPICtrl [} 112]: the lower
control value limit value rYMin is
greater than or equal to the upper
limit value rYMax.

0x8203 33283 FB_BARPICtrl [} 112]: the task cycle
time tTaskCycleTime is set to 0.

0x8204 33284 FB_HVACOptimizedOn [} 431]: the
outside temperature values
rOutsideTemp[i] of the pre-start
function stTempChangeFunction
are not in ascending order or 2
values are the same.

0x8205 33285 FB_HVACOptimizedOn [} 431]: one
or more values of the room
temperature change
rRoomTempChange[i] in the pre-
start function
stTempChangeFunction are higher
than the upper limit value
rMaxTempChange.

0x8206 33286 FB_HVACOptimizedOn [} 431]: one
or more values of the room
temperature change
rRoomTempChange[i] in the pre-
start function
stTempChangeFunction are lower
than the lower limit value
rMinTempChange.

0x8207 33287 FB_HVACOptimizedOn [} 431]: the
control input eCtrlFct is set neither
to heating nor to cooling mode
(eBARCtrlFct_Heating or
eBARCtrlFct_Cooling).

Function blocks

TS8000 245Version: 1.2

udiErrorId
(hex)

udiErrorId
(dec)

Error

0x8208 33288 FB_HVACOptimizedOff [} 441]: the
outside temperature values
rOutsideTemp[i] of the pre-start
function stTempChangeFunction
are not in ascending order or 2
values are the same.

0x8209 33289 FB_HVACOptimizedOff [} 441]: one
or more values of the room
temperature change
rRoomTempChange[i] in the pre-
start function
stTempChangeFunction are higher
than the upper limit value
rMaxTempChange.

0x820A 33290 FB_HVACOptimizedOff [} 441]: one
or more values of the room
temperature change
rRoomTempChange[i] in the pre-
start function
stTempChangeFunction are lower
than the lower limit value
rMinTempChange.

0x820B 33291 FB_HVACOptimizedOff [} 441]: the
control input eCtrlFct is set neither
to heating nor to cooling mode
(eBARCtrlFct_Heating or
eBARCtrlFct_Cooling).

0x820C 33292 FB_HVACTempChangeFunctionEntr
y [} 452]: the outside temperature
values rOutsideTemp[i] of the pre-
start function
stTempChangeFunction are not in
ascending order or 2 values are the
same.

0x8C00..
0x8CFF

35840..
36095

See SMI error codes
0x0C00 to get the SMI specific
error code.

Function blocks

TS8000246 Version: 1.2

3.4 HVAC Controller

3.4.1 FB_HVAC2PointCtrl

Application

This function block represents a 2-point controller. The controller is enabled via bEnable = TRUE and is then
active.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rW : REAL;
rX : REAL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the controller is enabled via a TRUE and is then active.

rW: The setpoint is transferred with the variable rW.

rX: the actual value of the control loop is transferred with the rX variable.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 247Version: 1.2

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bOut : BOOL;
bInvalidParameter : BOOL;

bOut: switching output of the on-off controller.

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rHighLimit : REAL;
rLowLimit : REAL;
bDirection : BOOL;
tDelayOn : TIME;
tDelayOff : TIME;

rHighLimit: upper limit of the control deviation (0..32767). The variable is saved persistently. Preset to 0.

rLowLimit: lower limit of the control deviation (0..32767). The variable is saved persistently. Preset to 0.

bDirection: the control direction of the controller is determined by bDirection. FALSE = heating mode;
TRUE = cooling mode. The variable is saved persistently. Preset to 0.

tDelayOn: switch-on delay [s]. The variable is saved persistently. Preset to 0 s.

tDelayOff: switch-off delay [s]. The variable is saved persistently. Preset to 0 s.

Timing characteristics

Figure 1:

Curve of switching output bOut for a on-off controller in relation to the upper/lower limits of the control
deviation, with no switch-on or switch-off delay.

Function blocks

TS8000248 Version: 1.2

Figure 2:

Curve of switching output bOut for a on-off controller in relation to the upper limit rHighLimit = 3 and the
lower limit rLowLimit = 8 with a switch-on delay of tDelayOn = 4 s and a switch-off delay of tDelayOff = 6 s.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.2 FB_HVACI_CtrlStep

Function blocks

TS8000 249Version: 1.2

Application

Application

The function block serves the sequential control of power generators.

In conjunction with the power range table FB_HVACPowerRangeTable [} 275], the power step controller can
be used for the stepped control of several heating boilers, refrigerating machines or recooling plants.

Switching up or down to the next higher or next lower power step respectively takes place via an integral (rW
- rX) and a time delay. First of all, the actual temperature value rX must have exceeded or fallen below a
threshold value rW_High / rW_Low. Subsequently, the integral starts. If the upper or lower limit value
(rIntegralHigh / rIntegralLow) is reached at the output rI_Ctrl, then a timing element is started upon whose
expiry (udiSecRT_DelayHigh / udiSecRT_DelayLow) the output iStep is incremented or decremented; see
Program flowchart [} 252]

An integration time setting of udiSecTiHigh/udiSecTiLow = 60 seconds means that the I transfer
element changes by one Kelvin per minute. With a control deviation rE = 5, the output of the I
transfer element rI_Ctrl has the value 5 after one minute. Example: bDirection = FALSE;
udiSecTiLow = 60; rE = 2; rIntegralLow = 10 With the remaining control deviation of 2 and the lower
integral limit of 10, after 5 minutes rI_Ctrl = rIntegralLow. The consequence of this is that a timing
element with the delay time udiSecDelayLow is started. After its expiry (udiSecRT_DelayHigh /
udiSecRT_DelayLow),the output iStep is incremented by 1 and the I transfer element and the time
delays are reset.

iStep is set to 1 for one PLC cycle if bEnable = TRUE, bError = FALSE, eCtrlMode =
eHVACCtrlMode_Auto AND iNumberOfStepInProfile > 0.

Conditions

The I transfer element is released, if

bEnable = TRUEAND NOTbErrorANDeCtrlMode = eHVACCtrlMode_AutoAND NOTbBlock
(
(rX >= rW_HighAND ((iStep > 0 ANDNOTbDirection) OR (iStep < iNumberOfStepInProfileANDbDirection))
OR
(rX < rW_LowAND ((iStep < iNumberOfStepInProfileANDNOTbDirection) OR (iStep > 0 ANDbDirection))
)

. If rI_Ctrl =rIntegralHigh / rIntegralLow, then the timing elements of the delay times udiSecDelayHigh /
udiSecDelayLow are activated. After the expiry of the delay times udiSecRT_DelayHigh /
udiSecRT_DelayLow, the steps of the power step sequence are controlled as follows:

iStep = iStep + 1 if

(rX < rW_LowANDiStep < iNumberOfStepInProfileANDNOTbDirection)
OR
(rX >= rW_HighANDiStep < iNumberOfStepInProfileANDbDirection)

iStep = iStep - 1 if

(rX < rW_LowANDiStep > 0 ANDbDirection)
OR
(rX >= rW_HighANDiStep > 0 ANDNOTbDirection)

The I transfer element and the internal time delays (udiSecDelayLow, udiSecDelayHigh) are reset
after each change of iStep.

Function blocks

TS8000250 Version: 1.2

Transfer function of the I transfer element (I_Ctrl)

Program flowchart

Program flowchart

Function blocks

TS8000 251Version: 1.2

Function blocks

TS8000252 Version: 1.2

Program flowchart

Program flowchart

Function blocks

TS8000 253Version: 1.2

Fig. 12: FB_HVACI_CtrlStepDiagramm

Behavior of the different variables

Behavior of the different variables

The figure shows when each variable is used and how.

Function blocks

TS8000254 Version: 1.2

Application example

Fig. 13: FB_HVACI_CtrlStepParameter

The application example shows the function block FB_HVACI_CtrlStep in conjunction with the power range
table FB_HVACPowerRangeTable [} 275]. The example is available in the programming languages ST and
CFC. The program example P_CFC_I_CtrlStep.PRG in CFC can be found in the folder Language CFC >
Controller, the program example P_ST_I_CtrlStep.PRG in ST in the folder Language Structure Text >
Controller.

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rW : REAL;
rX : REAL;
eCtrlMode : E_HVACCtrlMode;
iManualStep : INT; 0..iNumberOfStepInProfile
bStepUp : BOOL;
bStepDown : BOOL;
bDirection : BOOL;
iNumberOfStepInProfile: INT; 0..g_iMaxNumberOfSteps
bBlock : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 255Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then iStep is set constantly to 0. The
check of the variable iNumberOfStepInProfile remains active. If an error occurs, it is displayed with bError =
TRUE and can be acknowledged with bReset once the fault has been corrected.

rW: The setpoint is transferred with the variable rW.

rX: the actual value is transferred with the variable rX.

eCtrlMode: Enum that specifies the operation mode of the function block. If bEnable = TRUEANDbError =
FALSEANDeCtrlMode = eHVACCtrlMode_ManualANDiNumberOfStepInProfile > 0, then the value of the
output iStep can be specified via iManualStep. On starting the PLC, eCtrlMode = eHVACCtrlMode_Auto.

iManualStep: if the operation mode eCtrlMode = eHVACCtrlMode_ManualANDbEnable = TRUEANDbError
= FALSEANDiNumberOfStepInProfile > 0, then the value of the output iStep can be specified via
iManualStep. The input range of iManualStep can be 0 at the least and the value of iNumberOfStepInProfile
at the most.

bStepUp: if bEnable = TRUEANDbError = FALSEANDeCtrlMode =
eHVACCtrlMode_AutoANDbBlock=FALSE, then the value of the output iStep can be incremented by 1 by a
rising edge at the input bStepUp. This can be repeated until iStep = iNumberOfStepInProfile.

bStepDown: if bEnable = TRUEANDbError = FALSEANDeCtrlMode =
eHVACCtrlMode_AutoANDbBlock=FALSE, then the value of the output iStep can be decremented by 1 by a
rising edge at the input bStepDown. This can be repeated until iStep = 0.

bDirection: the control direction of the function block is determined by bDirection. FALSE = heating mode;
TRUE = cooling mode

iNumberOfStepInProfile: number of steps in the power step sequence. iNumberOfStepInProfile can be
minimum 0 and maximum g_iMaxNumberOfSteps [} 531]. If the limit values are not adhered to, an error is
output and displayed by bError = TRUE and iStep becomes 0.

bBlock: using the input variable bBlock, the control of the function block can either be released or the output
iStep is set to the value of the variable iNumberOfStepInProfile.

If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbBlock=FALSE, then
the I transfer element and the internal timing elements are enabled for the control of the output iStep.

If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbBlock=TRUE, then the
I transfer element and the internal timing elements are blocked and iStep = iNumberOfStepInProfile.

bReset: input for acknowledgement of the faults once they have been corrected. Internally the system
responds to a rising edge.

VAR_OUTPUT
iStep : INT; 0..iNumberOfStepInProfile
rI_Ctrl : REAL;
rE : REAL;
rW_High : REAL;
rW_Low : REAL;
b_rW_High : BOOL;
b_rW_Low : BOOL;
udiSecRT_DelayHigh : UDINT; Second Remaining Time Delay High
udiSecRT_DelayLow : UDINT; Second Remaining Time Delay Low
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

Function blocks

TS8000256 Version: 1.2

iStep: the output variable iStep indicates the step in a power step sequence. When the function block is
started, iStep = 1 if bEnable = TRUE, bError = FALSE,eCtrlMode =
eHVACCtrlMode_AutoANDiNumberOfStepInProfile > 0. iStep can be at most the value of
iNumberOfStepInProfile and at least 0.

The value of iStep can be manually specified via iManualStep, if bEnable = TRUE, bError =
FALSEANDeCtrlMode = eHVACCtrlMode_Manual.

The value of iStep can be incremented or decremented via the input variables bStepUp / bStepDown, if
bEnable = TRUE, bError = FALSE, eCtrlMode = eHVACCtrlMode_AutoANDbBlock = FALSE.

If bEnable = TRUE, bError = FALSE, eCtrlMode = eHVACCtrlMode_Auto ANDbBlock = FALSE and the
value of iStep has changed, then the delay timing elements and the I transfer element are reset.

If bEnable = TRUE, bError = FALSE, eCtrlMode = eHVACCtrlMode_Auto, bBlock =
FALSEANDiNumberOfStepInProfile > 0, the output of the I transfer element rI_Ctrl =rIntegralHigh or
rIntegralLow and one of the delay times tRemainingTimeDelayHigh / tRemainingTimeDelayLow =T#0s, then
the output iStep is controlled as follows:

iStep = iStep + 1 if

(rX < rW_LowANDiStep < iNumberOfStepInProfile ANDNOTbDirection)
OR
(rX >= rW_HighANDiStep < iNumberOfStepInProfile ANDbDirection).

iStep = iStep - 1 if

(rX < rW_LowANDiStep > 0 ANDbDirection)
OR
(rX >= rW_HighANDiStep > 0 ANDNOTbDirection), see Program flowchart [} 250]

If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbBlock=TRUE, then the
I transfer element and the internal timing elements are blocked and iStep = iNumberOfStepInProfile.

rI_Ctrl: output of the I transfer element.
If rI_Ctrl >= rIntegralHigh orrIntegralLow and tRemainingTimeDelayHigh or tRemainingTimeDelayLow =
T#0s, then the number of steps is incremented or decremented by 1 via iStep. Subsequently, the I transfer
element and the timing elements for stepping up or down are reset, so that stepping up or down is restarted,
see Program flowchart [} 250].

rE: control deviation with which the internal I transfer element works: rE = rW - rX

rW_High: rW_High := rW + rHysteresisHigh - upper setpoint limit which, when exceeded by rX, causes the I
transfer element to be activated first, followed by the timing element of the delay time udiSecDelayHigh; see
Application [} 249] or Behavior of different variables [} 253].

rW_Low: rW_Low := rW - rHysteresisLow - lower setpoint limit which, when undershot by rX, causes the I
transfer element to be activated first, followed by the timing element of the delay time udiSecDelayLow; see
Application [} 249] or Behavior of different variables [} 253].

b_rW_High: b_rW_High becomes TRUE, if rX > rW_High.

b_rW_Low: b_rW_Low becomes TRUE, if rX < rW_Low.

udiSecRT_DelayHigh: remaining time of delay time udiSecDelayHigh.

udiSecRT_DelayLow: remaining time of delay time udiSecDelayLow.

bError: the output signals with a TRUE that an error is present and an incorrect parameter is present at the
variable iNumberOfStepInProfile. iStep is constantly set to 0 and the Enum eErrorCode indicates the error
number. Once the fault has been corrected the bError message must be acknowledged with bReset.

eErrorCode:returns the error number [} 520] when the bError output is set. The following error can occur in
this function block: eHVACErrorCodes_InvalidParam_NumberOfStepInProfile

Function blocks

TS8000 257Version: 1.2

To access the enum error numbers in the PLC, eErrorCode can be assigned to a variable of the
data type WORD.eHVACErrorCodes_Error_iNumberOfStepInProfil= 32

VAR_IN_OUT
rHysteresisHigh : REAL;
rHysteresisLow : REAL;
udiSecDelayHigh : UDINT;
udiSecDelayLow : UDINT;
udiSecTiHigh : UDINT;
udiSecTiLow : UDINT;
rIntegralHigh : REAL;
rIntegralLow : REAL;

rHysteresisHigh: positive value of the upper limit of the control deviation, see Application [} 249] or
Behavior of different variables [} 253]. rW_High:= rW + rHysteresisHigh. The variable is saved persistently.
Preset to 5.

rHysteresisLow: positive value of the lower limit of the control deviation, see Application [} 249] or Behavior
of different variables [} 253]. rW_Low:= rW - rHysteresisLow. The variable is saved persistently. Preset to 5.

udiSecDelayHigh: delay time after whose expiry iStep is incremented or decremented; see Application
[} 249] or Behavior of different variables [} 253]. The variable is saved persistently. Preset to 300 s.

udiSecDelayLow: delay time after whose expiry iStep is incremented or decremented; see Application
[} 249] or Behavior of different variables [} 253]. The variable is saved persistently. Preset to 300 s.

udiSecTiHigh: integration time for the upper limit of the I transfer element in seconds, see Application
[} 249] or Behavior of different variables [} 253]. udiSecTiHigh must be > 0. Otherwise the default value or
the last valid variable value is used internally. The variable is saved persistently. Preset to 60 s.

udiSecTiLow: integration time for the lower limit of the I transfer element, see Application [} 249] or
Behavior of different variables [} 253]. udiSecTiLow must be > 0. Otherwise the default value or the last valid
variable value is used internally. The variable is saved persistently. Preset to 60 s.

rIntegralHigh: positive value for the upper limit at which the integration of the I transfer element is stopped
(ARW measure, anti-reset-windup) and one of the delay times starts; see Application [} 249] or Behavior of
different variables [} 253]. The variable is saved persistently. Preset to 15.

rIntegralLow: positive value for the lower limit at which the integration of the I transfer element is stopped
(ARW measure, anti-reset-windup) and one of the delay times starts; see Application [} 249] or Behavior of
different variables [} 253]. The variable is saved persistently. Preset to 15.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000258 Version: 1.2

3.4.3 FB_HVACI_CtrlStepEx

Application

Application

The function block serves the sequential control of power generators. It differs from FB_HVACI_CtrlStep
[} 248] in that the value of iStep is specified by the variable iStartStep when starting the function block.

In conjunction with the power range table FB_HVACPowerRangeTable [} 275], the power step controller can
be used for the stepped control of several heating boilers, refrigerating machines or recooling plants.

Switching up or down to the next higher or next lower power step respectively takes place via an integral (rW
- rX) and a time delay. First of all, the actual temperature value rX must have exceeded or fallen below a
threshold value rW_High / rW_Low. Subsequently, the integral starts. If the upper or lower limit value
(rIntegralHigh / rIntegralLow) is reached at the output rI_Ctrl, then a timing element is started upon whose
expiry (udiSecRT_DelayHigh / udiSecRT_DelayLow) the output iStep is incremented or decremented; see
Program flowchart [} 261]

An integration time setting of udiSecTiHigh/udiSecTiLow = 60 seconds means that the I transfer
element changes by one Kelvin per minute. With a control deviation rE = 5, the output of the I
transfer element rI_Ctrl has the value 5 after one minute. Example:bDirection = FALSE;
udiSecTiLow = 60; rE = 2; rIntegralLow = 10 With the remaining control deviation of 2 and the lower
integral limit of 10, after 5 minutes rI_Ctrl = rIntegralLow. The consequence of this is that a timing
element with the delay time udiSecDelayLow is started. After its expiry (udiSecRT_DelayHigh /
udiSecRT_DelayLow),the output iStep is incremented by 1 and the I transfer element and the time
delays are reset.

iStep is set to iStartStep for one PLC cycle if bEnable = TRUEANDbError = FALSE.

Conditions

The I transfer element is released, if

Function blocks

TS8000 259Version: 1.2

bEnable = TRUEAND NOTbErrorANDeCtrlMode = eHVACCtrlMode_AutoAND NOTbBlock
(
(rX >= rW_HighAND ((iStep > 0 ANDNOTbDirection) OR (iStep < iNumberOfStepInProfileANDbDirection))
OR
(rX < rW_LowAND ((iStep < iNumberOfStepInProfileANDNOTbDirection) OR (iStep > 0 ANDbDirection))
)

. If rI_Ctrl =rIntegralHigh / rIntegralLow, then the timing elements of the delay times udiSecDelayHigh /
udiSecDelayLow are activated. After the expiry of the delay times udiSecRT_DelayHigh /
udiSecRT_DelayLow, the steps of the power step sequence are controlled as follows:

iStep = iStep + 1 if

(rX < rW_LowANDiStep < iNumberOfStepInProfileANDNOTbDirection)
OR
(rX >= rW_HighANDiStep < iNumberOfStepInProfileANDbDirection)

iStep = iStep - 1 if

(rX < rW_LowANDiStep > 0 ANDbDirection)
OR
(rX >= rW_HighANDiStep > 0 ANDNOTbDirection)

The I transfer element and the internal time delays (udiSecDelayLow, udiSecDelayHigh) are reset
after each change of iStep.

Transfer function of the I transfer element (I_Ctrl)

Program flowchart

Program flowchart

Function blocks

TS8000260 Version: 1.2

Function blocks

TS8000 261Version: 1.2

Program flowchart

Program flowchart

Function blocks

TS8000262 Version: 1.2

Fig. 14: FB_HVACI_CtrlStepDiagramm

Behavior of the different variables

Behavior of the different variables

The figure shows when each variable is used and how.

Function blocks

TS8000 263Version: 1.2

Application example

Fig. 15: FB_HVACI_CtrlStepParameter

The application example shows the function block FB_HVACI_CtrlStep in conjunction with the power range
table FB_HVACPowerRangeTable [} 275]. The example is available in the programming languages ST and
CFC. The program example P_CFC_I_CtrlStep.PRG in CFC can be found in the folder Language CFC >
Controller, the program example P_ST_I_CtrlStep.PRG in ST in the folder Language Structure Text >
Controller.

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rW : REAL;
rX : REAL;
iStartStep : INT; 0..iNumberOfStepInProfile
eCtrlMode : E_HVACCtrlMode;
iManualStep : INT; 0..iNumberOfStepInProfile
bStepUp : BOOL;
bStepDown : BOOL;
bDirection : BOOL;
iNumberOfStepInProfile : INT; 0..g_iMaxNumberOfSteps
bBlock : BOOL;
bReset : BOOL;

eDataSecurityType: if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000264 Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then iStep is set constantly to 0. The
check of the variable iNumberOfStepInProfile remains active. If an error occurs, it is displayed with bError =
TRUE and can be acknowledged with bReset once the fault has been corrected.

rW: The setpoint is transferred with the variable rW.

rX: the actual value is transferred with the variable rX.

iStartStep: if the function block is enabled (bEnable = TRUE) and there is no error (bError = FALSE), then
iStep = iStartStep for one PLC cycle.

eCtrlMode: Enum that specifies the operation mode of the function block. If bEnable = TRUEANDbError =
FALSEANDeCtrlMode = eHVACCtrlMode_ManualANDiNumberOfStepInProfile > 0, then the value of the
output iStep can be specified via iManualStep. On starting the PLC, eCtrlMode = eHVACCtrlMode_Auto.

iManualStep: if the operation mode eCtrlMode = eHVACCtrlMode_ManualANDbEnable = TRUEANDbError
= FALSEANDiNumberOfStepInProfile > 0, then the value of the output iStep can be specified via
iManualStep. The input range of iManualStep can be 0 at the least and the value of iNumberOfStepInProfile
at the most.

bStepUp: if bEnable = TRUEANDbError = FALSEANDeCtrlMode =
eHVACCtrlMode_AutoANDbBlock=FALSE, then the value of the output iStep can be incremented by 1 by a
rising edge at the input bStepUp. This can be repeated until iStep = iNumberOfStepInProfile.

bStepDown: if bEnable = TRUEANDbError = FALSEANDeCtrlMode =
eHVACCtrlMode_AutoANDbBlock=FALSE, then the value of the output iStep can be decremented by 1 by a
rising edge at the input bStepDown. This can be repeated until iStep = 0.

bDirection: the control direction of the function block is determined by bDirection. FALSE = heating mode;
TRUE = cooling mode

iNumberOfStepInProfile: number of steps in the power step sequence. iNumberOfStepInProfile can be
minimum 0 and maximum g_iMaxNumberOfSteps [} 531]. If the limit values are not adhered to, an error is
output and displayed by bError = TRUE and iStep becomes 0.

bBlock: using the input variable bBlock, the control of the function block can either be released or the output
iStep is set to the value of the variable iNumberOfStepInProfile.

If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbBlock=FALSE, then
the I transfer element and the internal timing elements are enabled for the control of the output iStep.

If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbBlock=TRUE, then the
I transfer element and the internal timing elements are blocked and iStep = iNumberOfStepInProfile.

bReset: input for acknowledgement of the faults once they have been corrected. Internally the system
responds to a rising edge.

VAR_OUTPUT
iStep : INT; 0..iNumberOfStepInProfile
rI_Ctrl : REAL;
rE : REAL;
rW_High : REAL;
rW_Low : REAL;
b_rW_High : BOOL;
b_rW_Low : BOOL;
udiSecRT_DelayHigh : UDINT; Second Remaining Time Delay High
udiSecRT_DelayLow : UDINT; Second Remaining Time Delay Low
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

Function blocks

TS8000 265Version: 1.2

iStep: the output variable iStep indicates the step in a power step sequence. When starting the function
block, iStep = iStartStep, if bEnable = TRUEANDbError = FALSE. iStep can reach at most the value of
iNumberOfStepInProfile and be at least 0.

The value of iStep can be manually specified via iManualStep, if bEnable = TRUE, bError =
FALSEANDeCtrlMode = eHVACCtrlMode_Manual.

The value of iStep can be incremented or decremented via the input variables bStepUp / bStepDown, if
bEnable = TRUE, bError = FALSE, eCtrlMode = eHVACCtrlMode_AutoANDbBlock = FALSE.

If bEnable = TRUE, bError = FALSE, eCtrlMode = eHVACCtrlMode_Auto ANDbBlock = FALSE and the
value of iStep has changed, then the delay timing elements and the I transfer element are reset.

If bEnable = TRUE, bError = FALSE, eCtrlMode = eHVACCtrlMode_Auto, bBlock =
FALSEANDiNumberOfStepInProfile > 0, the output of the I transfer element rI_Ctrl =rIntegralHigh or
rIntegralLow and one of the delay times tRemainingTimeDelayHigh / tRemainingTimeDelayLow =T#0s, then
the output iStep is controlled as follows:

iStep = iStep + 1 if

(rX < rW_LowANDiStep < iNumberOfStepInProfileANDNOTbDirection)
OR
(rX >= rW_HighANDiStep < iNumberOfStepInProfileANDbDirection).

iStep = iStep - 1 if

(rX < rW_LowANDiStep > 0 ANDbDirection)
OR
(rX >= rW_HighANDiStep > 0 ANDNOTbDirection), see Program flowchart [} 259]

If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbBlock=TRUE, then the
I transfer element and the internal timing elements are blocked and iStep = iNumberOfStepInProfile.

rI_Ctrl: output of the I transfer element.
If rI_Ctrl >= rIntegralHigh orrIntegralLow and tRemainingTimeDelayHigh or tRemainingTimeDelayLow =
T#0s, then the number of steps is incremented or decremented by 1 via iStep. Subsequently, the I transfer
element and the timing elements for stepping up or down are reset, so that stepping up or down is restarted,
see Program flowchart [} 259].

rE: control deviation with which the internal I transfer element works: rE = rW - rX

rW_High: rW_High := rW + rHysteresisHigh - upper setpoint limit which, when exceeded by rX, causes the I
transfer element to be activated first, followed by the timing element of the delay time udiSecDelayHigh; see
Application [} 258] or Behavior of different variables [} 262].

rW_Low: rW_Low := rW - rHysteresisLow - lower setpoint limit which, when undershot by rX, causes the I
transfer element to be activated first, followed by the timing element of the delay time udiSecDelayLow; see
Application [} 258] or Behavior of different variables [} 262].

b_rW_High: b_rW_High becomes TRUE, if rX > rW_High.

b_rW_Low: b_rW_Low becomes TRUE, if rX < rW_Low.

udiSecRT_DelayHigh: remaining time of delay time udiSecDelayHigh.

udiSecRT_DelayLow: remaining time of delay time udiSecDelayLow.

bError: the output signals with a TRUE that an error is present and an incorrect parameter is present at the
variable iNumberOfStepInProfile. iStep is constantly set to 0 and the Enum eErrorCode indicates the error
number. Once the fault has been corrected the bError message must be acknowledged with bReset.

eErrorCode: returns the error number [} 520] when the bError output is set. The following error can occur in
this function block: eHVACErrorCodes_InvalidParam_NumberOfStepInProfile

To access the enum error numbers in the PLC, eErrorCode can be assigned to a variable of the
data type WORD.eHVACErrorCodes_Error_iNumberOfStepInProfil= 32

Function blocks

TS8000266 Version: 1.2

VAR_IN_OUT
rHysteresisHigh : REAL;
rHysteresisLow : REAL;
udiSecDelayHigh : UDINT;
udiSecDelayLow : UDINT;
udiSecTiHigh : UDINT;
udiSecTiLow : UDINT;
rIntegralHigh : REAL;
rIntegralLow : REAL;

rHysteresisHigh: positive value of the upper limit of the control deviation, see Application [} 258] or
Behavior of different variables [} 262]. rW_High := rW + rHysteresisHigh The variable is saved persistently.
Preset to 5.

rHysteresisLow: positive value of the lower limit of the control deviation, see Application [} 258] or Behavior
of different variables [} 262]. rW_Low := rW - rHysteresisLow The variable is saved persistently. Preset to 5.

udiSecDelayHigh: delay time after whose expiry iStep is incremented or decremented; see Application
[} 258] or Behavior of different variables [} 262]. The variable is saved persistently. Preset to 300 s.

udiSecDelayLow: delay time after whose expiry iStep is incremented or decremented; see Application
[} 258] or Behavior of different variables [} 262]. The variable is saved persistently. Preset to 300 s.

udiSecTiHigh: integration time for the upper limit of the I transfer element in seconds, see Application
[} 258] or Behavior of different variables [} 262]. udiSecTiHigh must be > 0. Otherwise the default value or
the last valid variable value is used internally. The variable is saved persistently. Preset to 60 s.

udiSecTiLow: integration time for the lower limit of the I transfer element, see Application [} 258] or
Behavior of different variables [} 262]. udiSecTiLow must be > 0. Otherwise the default value or the last valid
variable value is used internally. The variable is saved persistently. Preset to 60 s.

rIntegralHigh: positive value for the upper limit at which the integration of the I transfer element is stopped
(ARW measure, anti-reset-windup) and one of the delay times starts; see Application [} 258] or Behavior of
different variables [} 262]. The variable is saved persistently. Preset to 15.

rIntegralLow: positive value for the lower limit at which the integration of the I transfer element is stopped
(ARW measure, anti-reset-windup) and one of the delay times starts; see Application [} 258] or Behavior of
different variables [} 262]. The variable is saved persistently. Preset to 15.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 267Version: 1.2

3.4.4 FB_HVACPIDCtrl

Application

The PID controller is a standard controller for heating and air conditioning applications. It can be used to
control temperatures, pressures, volumetric flows or humidity. The values of Ti and Tv can be set to zero.
This allows a P, PI, or PD controller characteristic to be set. The controller has an ARW function (Anti-Reset-
Windup). This prevents continuous integration in the event of a perpetual pending control deviation.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
rInitialValue : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000268 Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: input variable for enabling the controller. The controller is active if bEnable = TRUE.

rW: the setpoint is transferred to the controller with the variable rW.

rX: rX acquires the actual value of the control loop..

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

eCtrlMode: the operation mode is selected via this enum.

rYManual: the controller output rY can be overridden for test purposes. The set value of rYManual will be
found at the controller output in manual operation mode.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue. The initial values are
adopted at a rising edge of the controller enable bEnable.
0 = start with the value zero at the output rY
<>0 = start with the value of rInitialValue

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rXW: control deviation.

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

Function blocks

TS8000 269Version: 1.2

VAR_IN_OUT
rDeadRange : REAL;
bDirection : BOOL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rYMin : REAL;
rYMax : REAL;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range (0..32767) can be set for the controller output signal rY. This means that a control
signal change is only active if the change of value is greater than the dead range. A constant change of the
control signal rY is converted to a pulsating drive of the actuator if a dead range is specified. The larger the
dead range the larger the pauses and the control signal jumps will be. The variable is saved persistently.
Preset to 0.

bDirection: the control direction of the controller can be changed with the parameter bDirection. If bDirection
is TRUE, then the direct control direction is active for cooling operation of the controller. If bDirection is
FALSE, then the indirect control direction of the controller is activated for heating operation. The variable is
saved persistently. Preset to 0.

rKp: proportional factor (0.01..100) gain. The variable is saved persistently. Preset to 1.0.

tTi: integral action time [s]. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time [s]. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if
the time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time [s]. The variable is saved persistently. Preset to 0 s.

rYMin / rYMax: limiting the working range of the controller (0..32767). Several other function blocks, e.g.
sequencers, require a symmetrical control range (-100 to +100). In the case of a cascade structure, the
working range of the master controller determines the setpoint of the slave controller. For example, 15° to
25° as the limitation of the supply air set value for an exhaust/supply air cascade control. The variables are
saved persistently. rYMin preset to 0. rYMax preset to 100.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.5 FB_HVACPIDCtrl_Ex
Universal PID controller.

Function blocks

TS8000270 Version: 1.2

Inputs/outputs

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
uiCycleCall : UINT;
bSetSyncValue : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 271Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: controller activation. At the moment of activation the controller reacts directly to the control
deviation without internal synchronization to a value.

rW : setpoint

rX : actual value

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

uiCycleCall : call cycle of the function block as a multiple of the cycle time. A zero entry is automatically
evaluated as uiCycleCall =1.
Example: tTaskCycleTime = 20 ms, uiCycleCall =10 -> The control algorithm is called every 200 ms. Thus
the outputs are also updated only every 200 ms.

bSetSyncValue: a rising edge at this input bSetSyncValue sets the control value rY to the value rSyncValue
(VAR_IN_OUT). In addition, the I-component is changed internally. If the I-component doesn't exist (PD
controller), the D-component is changed.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bDecLimit : BOOL;
bIncLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
b2Ptactive : BOOL;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

rY : control value. Range limited by rYMin and rYMax.

rXW : control deviation (calculation dependent on control direction [} 273])

bMaxLimit : the control value has reached its upper limit value.

bMinLimit : the control value has reached its lower limit value.

bDecLimit : the control value slope has reached its limit value for the maximum decrease, see tMaxToMin
(VAR_IN_OUT).

bIncLimit : the control value slope has reached its limit value for the maximum increase, see tMinToMax
(VAR_IN_OUT).

bActive : the controller is active, i.e. enabled (bEnable = TRUE) and not in the error state (bError = FALSE).

bARWactive : anti-Reset-Windup function is active.

b2Ptactive : the 2-point behavior of the controller is active.

bError: this output is switched to TRUE if the parameters entered are erroneous.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

VAR_IN_OUT
rDeadRange : REAL;
rSyncValue : REAL;
bDirection : BOOL;
rKp : REAL;

Function blocks

TS8000272 Version: 1.2

tTi : TIME;
tTv : TIME;
tTd : TIME;
rYMin : REAL;
rYMax : REAL;
tMinToMax : TIME;
tMaxToMin : TIME;

rDeadRange: a dead range can be set for the control deviation in order to avoid unnecessary movement
and thus premature wear in the valves or damper drives. The P-I-D calculation and thus the control output rY
are "frozen" if the value of the control deviation is smaller than half of the dead range rDeadRange. The
variable is saved persistently. Preset to 0.

rSyncValue: a rising edge at this input bSync sets the control value rY to this value. In addition, the I-
component is changed internally. If the I-component doesn't exist (PD controller), the D-component is
changed. The variable is saved persistently. Preset to 0.

bDirection: the control direction [} 273] of the controller can be changed with the parameter bDirection. If
bDirection is TRUE, then the direct control direction is active for cooling operation of the controller. If
bDirection is FALSE, then the indirect control direction of the controller is activated for heating operation. The
variable is saved persistently. Preset to 0.

rKp: proportional factor gain. Only affects the P-part. The variable is saved persistently. Preset to 1.0.

tTi: integral action time [s]. The I-part corrects the residual control deviation following correction of the P-part.
The smaller tTi is set, the faster the controller corrects. The control loop becomes unstable if the time is too
short. Larger tTi-times must be entered in order to reduce the integration component. The integral action
time should be selected to be longer than the stroke time of the valve or damper drive. A zero value at this
parameter disables the I-part. The variable is saved persistently. Preset to 30 s.

tTv: rate time [s]. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if
the time is too long. Often in normal building automation applications only a PI controller is used. A zero
value at this parameter disables the D-part. The variable is saved persistently. Preset to 0 s.

tTd : damping time [s]. The variable is saved persistently. Preset to 0 s.

rYMin / rYMax: limiting the working range of the controller. Several other function blocks, e.g. sequencers,
require a symmetrical control range (-100 to +100). In the case of a cascade structure, the working range of
the master controller determines the setpoint of the slave controller. For example, 15° to 25° as the limitation
of the supply air set value for an exhaust/supply air cascade control. The variables are saved persistently.
rYMin preset to 0. rYMax preset to 100.

tMinToMax: slope limit [s] of the controller output for increase: tMinToMax in seconds related to a change
from rYMin to rYMax. The variable is saved persistently. Preset to 0 s.

tMaxToMin: slope limit [s] of the controller output for decrease: tMaxToMin in seconds related to a change
from rYMax to rYMin. The variable is saved persistently. Preset to 0 s

Functional description

Passive behavior (bEnable = FALSE or bError = TRUE)

The outputs are set as follows:

rY 0.0
rXW 0.0
bMaxLimit FALSE
bMinLimit FALSE
bDecLimit FALSE
bIncLimit FALSE
bActive FALSE
bARWactive FALSE
b2Ptactive FALSE

Function blocks

TS8000 273Version: 1.2

In case of error bError is TRUE - eErrorCode indicates the current error code. The internal values for the P, I,
and D components are set to 0, also the values for the I and D components of the preceding cycle. This
ensures that the control value is "clean" in the first cycle after a restart, i.e. it is calculated without historical
values.

Active behavior (bEnable = TRUE and bError = FALSE)

In the first cycle, the I and D components are calculated "clean", i.e. without historical values, as already
mentioned. A positive signal on bSetSyncValue sets the I component such that the control value assumes
the value rSyncValue. If bEnable and bSetSyncValue are set at the same time, this method can be used to
set an initial value from which the controller "sets off". If the I component is not active, the D component is
set accordingly. Note that only the rising edge of bSetSyncValue is evaluated internally as this is a setting
action. A TRUE signal must be applied again to the input bSetSyncValue for renewed synchronization, for
instance with a transfer value. If the I component is active, the controller ensures that it is retained, if the
controller output rY is at the limits rYMin or rYMax and about to fall or increase further. This procedure is
referred to as anti-wind-up. It ensures that the I-component is always only just sufficiently large to enable the
control value to assume values within the limit immediately after a control deviation, without having to deal
with an integral component that has become too large.

Control direction

Control direction

If bDirection = FALSE, the control direction of the controller is reversed so that a control deviation of less
than 0 causes a change in the control value in the positive direction. This is achieved by a negative
calculation of the control deviation:

bDirection rXW (control deviation) Control direction
TRUE lrX-lrW (actual value-set value) direct (cooling)
FALSE lrW-lrX (set value-actual value) indirect (heating)

Anti-Reset-Windup when the maximum or minimum value is reached

If the controller reaches its upper limit at the output and the control deviation is still positive, the integral
component will continue to increase, until the control deviation is less than or equal to zero again. This may
lead to an unnecessarily large integral component, which would have to be reduced again, if the sign of the
control deviation changes and would make the control behavior sluggish. The same applies when the
minimum value is reached at the output while the control deviation remains negative.
In order to prevent this, the I part is set in such a way that it reaches the respective limit value lrYmin or
lrYMax at the control output in addition with the P and D part.
The further calculation of the P, I and D values is suspended until the sign of the control deviation allows the
control range to be entered again; i.e. a control deviation of less than 0.0 when persisting at the maximum
limit and or a control deviation of greater than 0.0 when persisting at the minimum limit.

In the PLC cycle of the re-entry also, the output lrY is set by manipulating the I component so that it
doesn't move erratically in the control range, but starts to change from the limit of the preceding
persistence.

Slope limitation

If the controller is set faster than the actuator, it is unable to follow the controller, which can lead to jitter. It is
therefore possible to limit the slope of the control value.

It is based on the following parameters:

tMinToMax : slope limit of controller output for increase: tMinToMax in seconds related to a change from
rYMin to rYMax.

tMaxToMin : slope limit of controller output for decrease: tMaxToMin in seconds related to a change from
rYMax to rYMin.

This can be used to calculate the maximum change per PLC cycle (maximum increment or decrement).

Function blocks

TS8000274 Version: 1.2

If the calculated change of the control signal over a PLC cycle is now higher than that set under tMinToMax
or tMaxToMin, then the control signal is merely increased or decreased respectively by the maximum
increment or decrement.

Internally, the I component is automatically adjusted in the same way (I component of last PLC cycle +
maximum increment or I component of the last PLC cycle - maximum decrement).

Dead band

A value of rDeadRange> 0.0 enables the dead range function. If the absolute value of the control deviation is
then less than 1/2 rDeadRange, the neutral zone is active, and the P, I and D parts are no longer calculated,
resulting in a constant control signal. The components are calculated again and the output signal of the
controller changes again when the control deviation is larger again.

This function is intended to avoid an unnecessarily large number of actuating pulses.

2-point control behavior

If the control parameters Ir, rKp, tTn, tTv and tTd are set to 0.0 or t#0s, then the controller has by definition a
2-point behavior.
The dead range rDeadRange defines the hysteresis. Switching to the maximum value at the output rY
fundamentally takes place when the control deviation rXW is larger than half of the hysteresis value
rDeadRange, while switching to the minimum value always takes place when the control deviation rXW is
smaller than the negative half of the hysteresis value rDeadRange:

The different calculation methods for the control deviation for direct and indirect control direction result in the
following switching behavior in relation to the actual value rX:

• direct control direction (cooling): control deviation = actual value-setpoint rXW = rX-rW

Function blocks

TS8000 275Version: 1.2

• indirect control direction (heating): control deviation = actual value-setpoint rXW = rW-rX
•

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.6 FB_HVACPowerRangeTable

Function blocks

TS8000276 Version: 1.2

Application

Application

This function block represents a power range table and serves the sequential control of power generators
such as boilers or refrigerating machines. The power steps are determined by the upstream controller
FB_HVACI_Ctrl_Step [} 248] and transferred to the power range table via the input iStep.

All information or parameters relevant to system control are summarized in the power range table ARRAY
arrPowerRangeTable. The power range table is a two-dimensional array with the structure
ST_HVACPowerRange [} 527]. The power range table can be compared to a normal table. An individual
element is clearly designated by naming line and column. The columns are marked by the field range
1..g_iMaxNumberOfProfiles [} 531]. This range is called the profile and is addressed via the input variable
iProfile. The field range 0..g_iMaxNumberOfSteps [} 531] represents the lines. This range is called the step
and is addressed via the input variable iStep.

The power range table consists of 16 profiles. Each profile can have up to 33 steps, from 0 to 32. Each
individual step contains the parameter structure ST_HVACPowerRange [} 527] needed for system control.
The parameters indicated here are transferred via the output structures stI_Ctrl and stAggregate1-6 to the
function block FB_HVACI_CtrlStep [} 248] for controlling the steps and to the function blocks for power
generation.

How many steps are in a profile is specified via the output variable iNumberOfStepInProfile.The number
depends on the entries in the power range table and on the specification of the selected profile
iCurrentProfile.Internally, the selected profile is checked from step 1 to the step in which all variables of the
structure ST_HVACPowerRange [} 527] have the value 0. iNumberOfStepInProfile is always determined for
the given profile only. iNumberOfStepInProfile can thus be used as a limitation of the steps in a profile for
other function blocks such as for the input iNumberOfStepInProfile of the FB_HVACI_CtrlStep [} 248], which
could control the individual steps of the FB_HVACPowerRangeTable via its output iStep. The step 0 is not
taken into account when evaluating the number of steps via iNumberOfStepInProfile, because the power
generators are switched off in this step; it can be considered to be a standby step. The values of the
variables of the output structures stAggregate1-6 then output the value 0. In the standby step, the
parameters required for starting the power step sequence of the energy generators are transferred to the
upstream controller FB_HVACI_Ctrl_Step [} 248] via the output structure stI_Ctrl.

Table example for the power range table arrPowerRangeTable

Within a profile (table columns), an aggregate is assigned to each power step.
This determines the order in which the power generators are switched on or off within a sequence.
The power of the aggregates is specified from 0 to 6 for stepped power generators or from 0 to 100% for
constant power generators.
After switching to a higher or lower power step, the integral component of the upstream function block
FB_HVACI_Ctrl_Step [} 248] is reinitialized. The current values for the step-up and step-down integrals are
then transferred to the controller by means of the structure stI_Ctrl.
It is possible to switch to a different profile for a change of order of the aggregates within the sequence. By
skilfully entering different orders of the aggregates in the profiles, it is possible to react with the utmost
flexibility to all requirements with regard to the control of power generators.
The switching of the power profiles (iCurrentProfile) usually takes place on the basis of time or operating
hours so that all power generators in a plant are utilized evenly.
For power generators with different nominal power, the power profile is changed depending on the load.

If an aggregate within a generator group is faulty, it is possible to switch to a profile in which the
faulty generator is placed at the end of the power order.

Function blocks

TS8000 277Version: 1.2

The power range table shows three power profiles. The order of the power generators is entered in each
power profile.

Profile 1:
in profile 1, aggregate 1 is switched to the first power step in power step 1. In the second power step,
aggregate 2 is added with its first power step.

Profile 2:
in profile 2, aggregate 3 is switched to the first power step in power step 1. In the second power step,
aggregate 3 is switched in its second power step. In the third power step, aggregate 1 is added with its first
power step.

Function blocks

TS8000278 Version: 1.2

Profile 3:
in profile 3, aggregate 5 is switched to the first power step in power step 1. In the second power step,
aggregate 4 is added with its first power step. In the third power step, aggregate 3 is added with its first
power step.

By skillful arrangement of the power profiles, it is possible to react to faults in individual aggregates, the
operating-hour dependent change of order or the load-optimized change of power orders.

The relationship between the power range table arrPowerRange and the output structures stAggregate1-6
and stI_Ctrl is to be described in greater detail on the basis of the table example:

1. The column iCurrentProfile= 1 is intended to represent the first profile of the power range table
arrPowerRange. In this profile the output iNumberOfStepInProfile has the value 2, because in the line
iCurrentStep= 3 no variable value of the structure ST_HVACPowerRange [} 527](marked red) is
greater than 0.
If we assume that the current power step iCurrentStep has the value 2, the variable values are output
at the output structures as follows:

arrPowerRangeTable[] iCurrentProfile,iCurrentStep;

stAggregate1.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep11;
stAggregate1.rY_Max := arrPowerRangeTable[,].rY_Max11;
stAggregate1.rY_Min :=arrPowerRangeTable[,].rY_Min11;
stAggregate1.bBlock := arrPowerRangeTable[,].bBlock11;

stAggregate2.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep12;
stAggregate2.rY_Max := arrPowerRangeTable[,].rY_Max12;
stAggregate2.rY_Min :=arrPowerRangeTable[,].rY_Min12;
stAggregate2.bBlock := arrPowerRangeTable[,].bBlock12;
stI_Ctrl.rIntegralHigh := arrPowerRangeTable[,].rIntegralHigh12;
stI_Ctrl.rIntegralLow := arrPowerRangeTable[,].rIntegralLow12;
stI_Ctrl.udiSecDelayHigh :=arrPowerRangeTable[,].udiSecDelayHigh12;
stI_Ctrl.udiSecDelayLow :=arrPowerRangeTable[,].udiSecDelayLow12;
Contents of the output structures stAggregate1, stAggregate2 and stI_Ctrl. The variables of the
output structures stAggregate3-6 have the value 0.
stAggregate1.iAggregateStep :=1;
stAggregate1.rY_Max := 0;
stAggregate1.rY_Min :=0;
stAggregate1.bBlock := FALSE;
stAggregate2.iAggregateStep :=1;
stAggregate2.rY_Max := 0;
stAggregate2.rY_Min :=0;
stAggregate2.bBlock := TRUE;
stI_Ctrl.rIntegralHigh := 10;
stI_Ctrl.rIntegralLow := 10;
stI_Ctrl.udiSecDelayHigh :=300;
stI_Ctrl.udiSecDelayLow :=300;

2. The column iCurrentProfile= 2 is intended to represent the second profile of the power range table
arrPowerRange. In this profile the output iNumberOfStepInProfile has the value 3, because in the line
iCurrentStep= 4 no variable value of the structure ST_HVACPowerRange [} 527](marked red) is
greater than 0.
If we assume that the current power step iCurrentStep has the value 3, the variable values are output
at the output structures as follows:

arrPowerRangeTable[] iCurrentProfile,iCurrentStep;

stAggregate1.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep23;
stAggregate1.rY_Max := arrPowerRangeTable[,].rY_Max23;

Function blocks

TS8000 279Version: 1.2

stAggregate1.rY_Min :=arrPowerRangeTable[,].rY_Min23;
stAggregate1.bBlock := arrPowerRangeTable[,].bBlock23;

stAggregate3.iAggregateStep :=arrPowerRangeTable[,.iAggregateStep22];
stAggregate3.rY_Max := arrPowerRangeTable[,].rY_Max22;
stAggregate3.rY_Min :=arrPowerRangeTable[,].rY_Min22;
stAggregate3.bBlock := arrPowerRangeTable[,].bBlock22;
stI_Ctrl.rIntegralHigh := arrPowerRangeTable[,].rIntegralHigh23;
stI_Ctrl.rIntegralLow := arrPowerRangeTable[,].rIntegralLow23;
stI_Ctrl.udiSecDelayHigh :=arrPowerRangeTable[,].udiSecDelayHigh23;
stI_Ctrl.udiSecDelayLow :=arrPowerRangeTable[,].udiSecDelayLow23;
Contents of the output structures stAggregate1, stAggregate3 and stI_Ctrl. The variables of the
output structures stAggregate2 and stAggregate4-6 have the value 0.
stAggregate1.iAggregateStep :=1;
stAggregate1.rY_Max := 0;
stAggregate1.rY_Min :=0;
stAggregate1.bBlock := FALSE;
stAggregate3.iAggregateStep :=2;
stAggregate3.rY_Max := 60;
stAggregate3.rY_Min :=30;
stAggregate3.bBlock := FALSE;
stI_Ctrl.rIntegralHigh := 8;
stI_Ctrl.rIntegralLow := 8;
stI_Ctrl.udiSecDelayHigh :=23;
stI_Ctrl.udiSecDelayLow :=123;

3. The column iCurrentProfile= 3 is intended to represent the third profile of the power range table
arrPowerRange. In this profile the output iNumberOfStepInProfile has the value 3, because in the line
iCurrentStep= 4 no variable value of the structure ST_HVACPowerRange [} 527](marked red) is
greater than 0.
If we assume that the current power step iCurrentStep has the value 3, the variable values are output
at the output structures as follows:

arrPowerRangeTable[] iCurrentProfile,iCurrentStep;

stAggregate3.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep33;
stAggregate3.rY_Max := arrPowerRangeTable[,].rY_Max33;
stAggregate3.rY_Min :=arrPowerRangeTable[,].rY_Min33;
stAggregate3.bBlock := arrPowerRangeTable[,].bBlock33;

stAggregate4.iAggregateStep :=arrPowerRangeTable[,.iAggregateStep32];
stAggregate4.rY_Max := arrPowerRangeTable[,].rY_Max32;
stAggregate4.rY_Min :=arrPowerRangeTable[,].rY_Min32;
stAggregate4.bBlock := arrPowerRangeTable[,].bBlock32;

stAggregate5.iAggregateStep :=arrPowerRangeTable[,.iAggregateStep31];
stAggregate5.rY_Max := arrPowerRangeTable[,].rY_Max31;
stAggregate5.rY_Min :=arrPowerRangeTable[,].rY_Min31;
stAggregate5.bBlock := arrPowerRangeTable[,].bBlock31;
stI_Ctrl.rIntegralHigh := arrPowerRangeTable[,].rIntegralHigh33;
stI_Ctrl.rIntegralLow := arrPowerRangeTable[,].rIntegralLow33;
stI_Ctrl.udiSecDelayHigh :=arrPowerRangeTable[,].udiSecDelayHigh33;
stI_Ctrl.udiSecDelayLow :=arrPowerRangeTable[,].udiSecDelayLow33;
Contents of the output structures stAggregate3, stAggregate4, stAggregate5 and stI_Ctrl. The
variables of the output structures stAggregate1, stAggregate2 and stAggregate6 have the value 0.
stAggregate3.iAggregateStep :=1;
stAggregate3.rY_Max := 0;
stAggregate3.rY_Min :=0;
stAggregate3.bBlock := FALSE;

Function blocks

TS8000280 Version: 1.2

stAggregate4.iAggregateStep :=1;
stAggregate4.rY_Max := 0;
stAggregate4.rY_Min :=0;
stAggregate4.bBlock := TRUE;
stAggregate5.iAggregateStep :=1;
stAggregate5.rY_Max := 0;
stAggregate5.rY_Min :=0;
stAggregate5.bBlock := FALSE;
stI_Ctrl.rIntegralHigh := 7;
stI_Ctrl.rIntegralLow := 7;
stI_Ctrl.udiSecDelayHigh :=400;
stI_Ctrl.udiSecDelayLow :=200;

Output structure stI_Ctrl adjusted to the example

Output structures stAggregate1-6 adjusted to the example

Function blocks

TS8000 281Version: 1.2

Application example

The application example shows the function block FB_HVACPowerRangeTable in conjunction with the I
transfer element FB_HVACI_CtrlStep [} 248]. The example is illustrated in the programming languages ST
and CFC. The program example P_CFC_I_CtrlStep.PRG for the CFC programming languages can be found
in the folder Language CFC > Controller, the program example P_ST_I_CtrlStep.PRG for the ST
programming languages in the folder Language Structured Text > Controller.

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
iNumberOfProfiles : INT;
iProfile : INT;
iStep : INT;
eCtrlModeProfile : E_HVACCtrlMode;
iManualProfile : INT;
eCtrlModeStep : E_HVACCtrlMode;
iManualStep : INT;
iNumberOfAggregates : INT;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000282 Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then all output variables and output
structures are set constantly to 0. The checking of the variables iNumberOfProfiles, iProfile, iStep,
iNumberOfStepInProfile, iNumberOfAggregates, arrPowerRangeTable[X,X].iAggregate,
arrPowerRangeTable[X,X].iAggregateSteps, arrPowerRangeTable[iP,iS].udiSecDelayHigh, and
arrPowerRangeTable[iP,iS].udiSecDelayLow remains active. If an error occurs, it is displayed with bError =
TRUE and can be acknowledged with bReset once the fault has been corrected.

iNumberOfProfiles: number of parameterized profiles in the power range table arrPowerRangeTable. The
indication of the number of profiles must not be lower than g_iMinNumberOfProfiles [} 531] and must not be
greater than g_iMaxNumberOfProfiles [} 531]. Otherwise an error is indicated by bError = TRUE and the
execution of the function block is stopped.

iProfile: indicates the current profile with which the function block from the power range table
arrPowerRangeTable[iCurrentProfile,iCurrentStep] is working. If eCtrlModeProfile = eHVACCtrlMode_Auto,
then iCurrentProfile = iProfile. The indication of the profile must not be lower than g_iMinNumberOfProfiles
[} 531] and must not be greater than iNumberOfProfiles. Otherwise an error is indicated by bError = TRUE
and the execution of the function block is stopped.

iStep: indicates the current step with which the function block from the power range table
arrPowerRangeTable[iCurrentProfile,]iCurrentStep is working. If eCtrlModeStep = eHVACCtrlMode_Auto,
then iCurrentStep = iStep. The indication of the steps must not be lower than g_iMinNumberOfStep [} 531]
and must not be greater than iNumberOfStepInProfile. Otherwise an error is indicated by bError = TRUE and
the execution of the function block is stopped.

eCtrlModeProfile: the input variable via which the profile from the power range table
arrPowerRangeTable[iCurrentProfile,iCurrentStep] is specified is decided via this enum. If eCtrlModeProfile
= eHVACCtrlMode_Auto, then iCurrentProfile = iProfile. If eCtrlModeProfile = eHVACCtrlMode_Manual, then
iCurrentProfile = iManualProfile.

iManualProfile: indicates which profile from the power range table
arrPowerRangeTable[iCurrentProfile,iCurrentStep] is in use. If eCtrlModeProfile =
eHVACCtrlMode_Manual, then iCurrentProfile = iManualProfile. The indication of the profile must not be
lower than g_iMinNumberOfProfiles [} 531] and must not be greater than iNumberOfProfiles. Otherwise
iManualProfile is set internally to g_iMinNumberOfProfiles [} 531] if it is lower than g_iMinNumberOfProfiles
[} 531] or to iNumberOfProfiles if it is greater than iNumberOfProfiles.

eCtrlModeProfile: the input variable via which the steps from the power range table
arrPowerRangeTable[iCurrentProfile,]iCurrentStep are specified is decided via this enum. If eCtrlModeStep
= eHVACCtrlMode_Auto, then iCurrentStep = iStep. If eCtrlModeStep = eHVACCtrlMode_Manual, then
iCurrentStep = iManualStep.

iManualStep: indicates which step from the power range table
arrPowerRangeTable[iCurrentProfile,]iCurrentStep is in use. If eCtrlModeStep = eHVACCtrlMode_Manual,
then iCurrentStep = iManualStep. The indication of the steps must not be lower than g_iMinNumberOfStep
[} 531] and must not be greater than iNumberOfStepInProfile. Otherwise iManualStep is set internally to
g_iMinNumberOfSteps [} 531] if it is lower than g_iMinNumberOfProfiles [} 531] or to
iNumberOfStepInProfile if it is greater than iNumberOfStepInProfile.

iNumberOfAggregates: iNumberOfAggregates specifies the number of aggregates in the power generator
sequence. For example, if iNumberOfAggregates = 4, then the parameters from the array
arrPowerRangeTable are written to the output structures stAggregate1-4, depending on the specification of
iCurrentStep/iCurrentProfile. The indication must not be lower than g_iMinNumberOfAggregates [} 531] and
must not be greater than g_iMaxNumberOfAggregates [} 531]. Otherwise an error is indicated by bError =
TRUE and the execution of the function block is stopped.

bReset: input for acknowledgement of the faults once they have been corrected. Internally the system
responds to a rising edge.

Function blocks

TS8000 283Version: 1.2

VAR_OUTPUT
bEnablePowerRangeTable: BOOL;
iNumberOfStepInProfile: INT;
iCurrentProfile : INT;
iCurrentStep : INT;
stI_Ctrl : ST_HVACI_Ctrl;
stAggregate1 : ST_HVACAggregate;
stAggregate2 : ST_HVACAggregate;
stAggregate3 : ST_HVACAggregate;
stAggregate4 : ST_HVACAggregate;
stAggregate5 : ST_HVACAggregate;
stAggregate6 : ST_HVACAggregate;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
iErrorPosArrayProfile : INT;
iErrorPosArrayStep : INT;

bEnablePowerRangeTable: indicates that the function block is enabled. bEnablePowerRangeTable is
TRUE if bEnable = TRUEANDbError = FALSE.

iNumberOfStepInProfile: indicates the number of parameterized steps from the specified profile
iCurrentProfile of the power range table arrPowerRangeTable. Each individual step contains the parameter
structure ST_HVACPowerRange [} 527] needed for system control. Each profile can have up to 33 steps. The
field for the steps in the power range table arrPowerRangeTable begins with 0 and ends with 32. The
number of parameterized steps in a profile iNumberOfStepInProfile is determined from step 1 upwards to
step 32. The counting of the parameterized steps ends in the step in which all variables of the parameter
structure ST_HVACPowerRange [} 527] have the value 0. The minimum value that iNumberOfStepInProfile
can have is 1 and the maximum is 32. Step 0 is not taken into account, because the power generators are
switched off in this step. The step can be considered to be a standby step. The values of the variables of the
output structures stAggregate1-6 then output the value 0. In the standby step, the parameters required for
starting the power step sequence of the energy generators are transferred to the upstream controller
FB_HVACI_Ctrl_Step [} 248] via the output structure stI_Ctrl.

iNumberOfStepInProfile can be used to limit the steps for other function blocks, such as for the
input iNumberOfStepInProfile of the function block FB_HVACI_CtrlStep. In turn, the output variable
iStep of FB_HVACI_CtrlStep can be used to specify the step of the power range table
FB_HVACPowerRangeTable via the input iStep.

iCurrentProfile: indicates the current profile with which the function block from the power range table
arrPowerRangeTable[iCurrentProfile,iCurrentStep] is working. The indication depends on the input
variables iProfile, iManualProfile and eCtrlModeProfile. If eCtrlModeProfile = eHVACCtrlMode_Auto, then
iCurrentProfile = iProfile. If eCtrlModeProfile = eHVACCtrlMode_Manual, then iCurrentProfile =
iManualProfile.

iCurrentStep: indicates the current power step with which the function block from the power range table
arrPowerRangeTable[iCurrentProfile,iCurrentStep] is working. The most current step is always the highest
step viewed from 1 upward. The indication depends on the input variables iStep, iManualStep and
eCtrlModeStep. If eCtrlModeStep = eHVACCtrlMode_Auto, then iCurrentStep = iStep. If eCtrlModeStep =
eHVACCtrlMode_Manual, then iCurrentStep = iManualStep.

stI_Ctrl: output structure of the parameters ST_HVACI_Ctrl [} 526] for the function block FB_HVACI_CtrlStep
[} 248].
Which values the variables of the output structure stI_Ctrl take from the power range table
arrPowerRangeTable depends on the selected profile and the current step. If the selected profile =
2iCurrentProfile and the step = 3iCurrentStep, then the contents of the following variables from the power
range table are written to the structure stI_Ctrl:

stI_Ctrl.rIntegralHigh := arrPowerRangeTable[,].rIntegralHighiCurrentProfileiCurrentStep;
stI_Ctrl.rIntegralLow := arrPowerRangeTable[,].rIntegralLowiCurrentProfileiCurrentStep;
stI_Ctrl.udiSecDelayHigh :=arrPowerRangeTable[,].udiSecDelayHighiCurrentProfileiCurrentStep;
stI_Ctrl.udiSecDelayLow :=arrPowerRangeTable[,].udiSecDelayLowiCurrentProfileiCurrentStep;

stI_Ctrl.rIntegralHigh := arrPowerRangeTable[,].rIntegralHigh23;
stI_Ctrl.rIntegralLow := arrPowerRangeTable[,].rIntegralLow23;
stI_Ctrl.udiSecDelayHigh :=arrPowerRangeTable[,].udiSecDelayHigh23;
stI_Ctrl.udiSecDelayLow :=arrPowerRangeTable[,].udiSecDelayLow23;

Function blocks

TS8000284 Version: 1.2

stI_Ctrl.rIntegralHigh: positive value for the upper limit at which the integration of the I transfer element is
stopped.

stI_Ctrl.rIntegralLow: positive value for the lower limit at which the integration of the I transfer element is
stopped.

stI_Ctrl.udiSecDelayHigh: delay time after whose expiry the I transfer element is activated.

stI_Ctrl.udiSecDelayLow: delay time after whose expiry the I transfer element is activated.

stAggregate1-6: output structures of the parameters ST_HVACAggregate [} 524] for controlling the
aggregates 1 to 6. iNumberOfAggregates determines the number of aggregates in the power generator
sequence. The values adopted by the variables of the output structures stAggregate1-6 from the power
range table arrPowerRangeTable depend on the selected profile and the current step. If the selected profile
= 8iCurrentProfile and the step = 5iCurrentStep, then it is crucial that the variable
arrPowerRangeTable[,].iAggregate85 has the value 1. The values parameterized in the power range table
are then output via the output structure stAggregate1.

stAggregate1.rY_Max := arrPowerRangeTable[,].rY_MaxiCurrentProfileiCurrentStep;
stAggregate1.rY_Min :=arrPowerRangeTable[,].rY_MiniCurrentProfileiCurrentStep;
stAggregate1.iAggregateStep :=arrPowerRangeTable[,].iAggregateStepiCurrentProfileiCurrentStep;
stAggregate1.bBlock := arrPowerRangeTable[,].bBlockiCurrentProfileiCurrentStep;

stAggregate1.rY_Max := arrPowerRangeTable[,].rY_Max85;
stAggregate1.rY_Min :=arrPowerRangeTable[,].rY_Min85;
stAggregate1.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep83;
stAggregate1.bBlock := arrPowerRangeTable[,].bBlock85;

If the value of the variable arrPowerRangeTable[,].iAggregate83 is also 1, then the values of the highest
power step iCurrentStep = 5 are written to the corresponding output structure stAggregate1, because
arrPowerRangeTable[,].iAggregate85 is also 1 here. Only if iCurrentStep = 3 does this mean that following
values are output via the output structure stAggregate1:

stAggregate1.rY_Max := arrPowerRangeTable[,].rY_Max83;
stAggregate1.rY_Min :=arrPowerRangeTable[,].rY_Min83;
stAggregate1.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep83;
stAggregate1.bBlock := arrPowerRangeTable[,].bBlock83;

If iCurrentStep = 4 andarrPowerRangeTable[,].iAggregate84 = 2, then this means that the following values
are output via the output structures stAggregate1 and stAggregate2:

stAggregate2.rY_Max := arrPowerRangeTable[,].rY_Max84;
stAggregate2.rY_Min :=arrPowerRangeTable[,].rY_Min84;
stAggregate2.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep84;
stAggregate2.bBlock := arrPowerRangeTable[,].bBlock84;

stAggregate1.rY_Max := arrPowerRangeTable[,].rY_Max83;
stAggregate1.rY_Min :=arrPowerRangeTable[,].rY_Min83;
stAggregate1.iAggregateStep :=arrPowerRangeTable[,].iAggregateStep83;
stAggregate1.bBlock := arrPowerRangeTable[,].bBlock83;

bError: this output indicates with a TRUE that there is an error. The execution of the function block is
stopped. The enum eErrorCode indicates the error number.
After the error has been corrected, the message bError must be acknowledged with bReset.

eErrorCode: returns the error number [} 520] when the bError output is set.

The following errors can occur in this function block:

eHVACErrorCodes_InvalidParam_iStep: error when checking the specified steps. The value of iStep must
be greater than or equal to g_iMinNumberOfSteps [} 531] or smaller than or equal to
iNumberOfStepInProfile.

Function blocks

TS8000 285Version: 1.2

eHVACErrorCodes_InvalidParam_iNumberOfStepInProfile: error while checking the number of profiles
whether each of the specified profiles has parameterized steps. The profiles are checked in step 0. If no
variable value of the structure ST_HVACPowerRange [} 527] is greater than 0, an error has occurred.
The variable iErrorPosArrayProfile is used to specify the incorrect profile in the power range table
arrPowerRangeTable[x1,x2]: x1 = iErrorPosArrayProfile;

eHVACErrorCodes_InvalidParam_iNumberOfAggregates: error when checking the specified number of
aggregates. The value of iNumberOfAggregates must be smaller than g_iMinNumberOfAggregates [} 531]
and larger than g_iMaxNumberOfAggregates [} 531].

eHVACErrorCodes_InvalidParam_iAggregateSteps: error when checking the specified steps for the
aggregate. The value of arrPowerRangeTable[x1,x2]. iAggregateStep must be greater than or equal to
g_iAggregateMinNumberOfSteps [} 531] and smaller than or equal to g_iAggregateMaxNumberOfSteps
[} 531].
The variables iErrorPosArrayProfile and iErrorPosArrayStep are used to specify the incorrect point in the
power range table arrPowerRangeTable[x1,x2]: x1 = x2 = iErrorPosArrayProfile;iErrorPosArrayStep

eHVACErrorCodes_InvalidParam_iNumberOfProfiles: error when checking the number of profiles. The value
of iNumberOfProfiles must be greater than g_iMinNumberOfProfiles [} 531] and smaller than or equal to
g_iMaxNumberOfProfiles [} 531].

eHVACErrorCodes_InvalidParam_iProfile: error when checking the specified profiles. The value of iProfile
must be greater than g_iMinNumberOfProfiles [} 531] and smaller than or equal to iNumberOfProfiles.

eHVACErrorCodes_InvalidParam_iAggregate: error when checking the specified aggregates. The value of
arrPowerRangeTable[x1,x2].iAggregate must be greater than or equal to g_iMinNumberOfAggregates
[} 531] and less than or equal to g_iMaxNumberOfAggregates [} 531].
The variables iErrorPosArrayProfile and iErrorPosArrayStep are used to specify the incorrect point in the
power range table arrPowerRangeTable[x1,x2]: x1 = x2 = iErrorPosArrayProfile;iErrorPosArrayStep

eHVACErrorCodes_InvalidParam_udiSecDelayUp: error when checking
arrPowerRangeTable[x1,x2].udiSecDelayUp. The value of arrPowerRangeTable[x1,x2].udiSecDelayUp
must not be greater than g_udiMaxSec [} 531].
The variables iErrorPosArrayProfile and iErrorPosArrayStep are used to specify the incorrect point in the
power range table arrPowerRangeTable[x1,x2]: x1 = x2 = iErrorPosArrayProfile;iErrorPosArrayStep

eHVACErrorCodes_InvalidParam_udiSecDelayDown: error when checking arrPowerRangeTable[x1,x2].
udiSecDelayDown. The value of arrPowerRangeTable[x1,x2].udiSecDelayDown must not be greater than
g_udiMaxSec [} 531].
The variablen iErrorPosArrayProfile and iErrorPosArrayStep are used to specify the incorrect point in the
power range table arrPowerRangeTable[x1,x2]: x1 = x2 = iErrorPosArrayProfile;iErrorPosArrayStep

To get the error numbers of the enum in the PLC, eErrorCode can be assigned to a variable of data
type WORD.eHVACErrorCodes_InvalidParam_iStep = 31
eHVACErrorCodes_InvalidParam_iNumberOfStepInProfil =
32eHVACErrorCodes_InvalidParam_iNumberOfAggregates =
33eHVACErrorCodes_InvalidParam_iAggregateSteps =
34eHVACErrorCodes_InvalidParam_iNumberOfProfiles =
35eHVACErrorCodes_InvalidParam_iProfile = 36eHVACErrorCodes_InvalidParam_iAggregate =
39 eHVACErrorCodes_InvalidParam_udiSecDelayUp = 40
eHVACErrorCodes_InvalidParam_udiSecDelayDown = 41

iErrorPosArrayProfile: the variable iErrorPosArrayProfile specifies the profile in which the incorrect position
in the power range table arrPowerRangeTable[iErrorPosArrayProfile,iErrorPosArrayStep] can be found.
If iErrorPosArrayProfile > 0, then one of the following errors is present at eErrorCode:
- eHVACErrorCodes_InvalidParam_iNumberOfStepInProfile
- eHVACErrorCodes_InvalidParam_iAggregateSteps
- eHVACErrorCodes_InvalidParam_iAggregate
- eHVACErrorCodes_InvalidParam_udiSecDelayUp
- eHVACErrorCodes_InvalidParam_udiSecDelayDown

The exact position of the step can be determined with the aid of the variable iErrorPosArrayStep.

Function blocks

TS8000286 Version: 1.2

Sample 1 for locating an error:
The following values are present at the output variables:

bError =TRUE;
eErrorCode= eHVACErrorCodes_InvalidParam_iNumberOfStepInProfile;
iErrorPosArrayProfile = 2;

In the power range table arrPowerRangeTable[2,x]in the profile 2 in step 0 no variable value of the structure
ST_HVACPowerRange [} 527] is greater than 0. iErrorPosArrayStep is not taken into account with this error.

Sample 2 for locating an error:
The following values are present at the output variables:

bError =TRUE;
eErrorCode= eHVACErrorCodes_InvalidParam_iAggregateSteps;
iErrorPosArrayProfile = 2;
iErrorPosArrayStep = 3;

There is an incorrect value on the following variable in the power range table arrPowerRangeTable:

arrPowerRangeTable[2,3].iAggregateStep

iErrorPosArrayStep: if iErrorPosArrayProfile > 0, then the variable iErrorPosArrayStep indicates the step in
the profile in which the incorrect place in the power range table is to be found.

Sample for locating an error:
The following values are present at the output variables:

bError =TRUE;
eErrorCode= eHVACErrorCodes_InvalidParam_iAggregate;
iErrorPosArrayProfile = 5;
iErrorPosArrayStep = 15;

There is an incorrect value on the following variable in the power range table arrPowerRangeTable:

arrPowerRangeTable[5,15].iAggregate

VAR_IN_OUT
arrPowerRangeTable : ARRAY [1..g_iMaxNumberOfProfiles,0..g_iMaxNumberOfSteps] OF ST_HVACPowerRang
e; X

arrPowerRangeTable: all information or parameters relevant to system control are summarized in the power
range table arrPowerRangeTable. The power range table is a two-dimensional field (array) with the structure
ST_HVACPowerRange [} 527]. The power range table can be compared to a normal table in that the
horizontal entries are called lines and the vertical entries columns. An individual element is thus clearly
designated by naming line and column. The field range 1..g_iMaxNumberOfProfiles [} 531] of the power
range table would be the vertical part, i.e. the columns. This range is called the profile and iCurrentProfile
indicates which profile is being addressed. The field range 0..g_iMaxNumberOfSteps [} 531] is regarded as
the horizontal part, i.e. the lines. This range is called the step and iCurrentStep indicates which step is being
addressed.

The power range table consists of 16 profiles. Each profile can have up to 33 steps. Each individual step
contains the parameter structure ST_HVACPowerRange [} 527] needed for system control. The parameters
indicated here are transferred via the output structures stI_Ctrl to the function block FB_HVACI_CtrlStep
[} 248] for controlling the steps and via stAggregate1-6 to the function blocks for power generation.

The number of steps in a profile is indicated by the output variable iNumberOfStepInProfile. The number
depends on the entries in the power range table and on the selected profile iCurrentProfile. The selected
profile is checked internally in the function block from step 1 to the step in which all variables of the structure
ST_HVACPowerRange [} 527] have the value 0. iNumberOfStepInProfile is always determined for the
specified profile only. Each profile can have up to 33 steps from 0 to 32; step 0 is not taken into account
when evaluating the number of steps via iNumberOfStepInProfile.

Structure ST_HVACPowerRange [} 527]

Function blocks

TS8000 287Version: 1.2

arrPowerRangeTable[x,x].iAggregate: parameter that specifies to which output structure stAggregate1-6 of
the function block FB_HVACPowerRangeTable [} 275] the variables rY_Min, rY_Max, iAggregateStep and
bBlock are written.

arrPowerRangeTable[x,x].iAggregateStep: parameter that specifies the step in which the addressed
aggregate should be fixed or should regulate; see bBlock.
iAggregateStep is output via the structure stAggregateX.

arrPowerRangeTable[x,x].rY_Max: parameter specification for continuous aggregates. rY_Max is output via
the structure stAggregateX.

arrPowerRangeTable[x,x].rY_Min: parameter specification for continuous aggregates. rY_Min is output via
the structure stAggregateX.

arrPowerRangeTable[x,x].rIntegralHigh: positive value for the upper limit at which the integration of the I
transfer element is stopped, see the VAR_IN_OUT variable rIntegralHigh in FB_HVACI_CtrlStep [} 248].
rIntegralHigh is output via the structure stI_Ctrl.

arrPowerRangeTable[x,x].rIntegralLow : positive value for the lower limit at which the integration of the I
transfer element is stopped, see the VAR_IN_OUT variable rIntegralHigh in FB_HVACI_CtrlStep [} 248].
rIntegralLow is output via the structure stI_Ctrl.

arrPowerRangeTable[x,x].udiSecDelayHigh: delay time after which the I transfer element is activated, see
the VAR_IN_OUT variable udiSecDelayHigh in FB_HVACI_CtrlStep [} 248].
udiSecDelayHigh is output via the structure stI_Ctrl.

arrPowerRangeTable[x,x].udiSecDelayLow: delay time after which the I transfer element is activated, see the
VAR_IN_OUT variable udiSecDelayHigh in FB_HVACI_CtrlStep [} 248].
udiSecDelayLow is output via the structure stI_Ctrl.

arrPowerRangeTable[x,x].bBlock: if bBlock = FALSE, then the addressed aggregate is fixed in the specified
step via iAggregateStep. If bBlock = TRUE, then the control of the addressed aggregate is released from the
off step (0) to the specified step via iAggregateStep.
bBlock is output via the structure stAggregateX.

The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.7 Sequence-Controller

Introduction – sequence controller

In heating, ventilation and air conditioning systems, it is often the case that several actuators, working in a
so-called controller sequence, are used in order to achieve a control variable. In the air conditioning system
shown below, four actuators are involved in the regulation of the supply air temperature. A dedicated
sequence controller is instanced for each of these actuators in the HVAC library. During active control only
one of these sequence controllers is active. The other, non-active controllers fix their control signal so that it
is energetically optimal for the tempering of the supply air temperature. Depending on the control direction of
the individual controller, this means either the maximum or the minimum for the control value rY.

If the effect of the active actuator (controller) is not sufficient when reaching a end position, the active
controller switches to the adjacent controller to the left or right in the controller sequence. This then takes
over control. The previously active controller remains in the end position of rYmax or rYmin depending on the
control direction.
The same procedure is followed with the other actuators until the setpoint or the right or left end of the
sequence is reached.

In the sequence of the illustrated air conditioning system, all actuators that influence the control variable are
shown
from left to right. At the far left is the actuator that enables the greatest possible reduction of the control
variable; at the far right is the actuator that effects the greatest possible increase of the control variable.

Function blocks

TS8000288 Version: 1.2

Actuators that should drive in parallel or in opposite directions, e.g. outside air and circulating air dampers
(HS2) are implemented once only. The individual actuators can have a positive control direction (more
actuation results in a larger control variable, e.g. a heater) or a negative control direction (more actuation
results in a smaller control variable, e.g. a cooler). Some actuators, e.g. a circulating air damper (HS1 &
HS2), change their control direction during operation.

Example: Supply air temperature regulation in an air conditioning system with an air cooler, a heat recovery
unit, a mixed air chamber and an air heater, as shown in the figure above.
iMyNumberInSequence

1. KS1 cooler 1
2. HS1 heat recovery 2
3. HS2 mixed air dampers 3
4. HS3 preheater 4

Each sequence controller gets the number of the total controllers in the sequence.
In this example 4. The PLC variable is called iNumberOfSequences in the function blocks. In addition each
function block is given its own number. In the sequence iMyNumberInSequence. The controllers are

Function blocks

TS8000 289Version: 1.2

numbered from left to right in ascending order. Hence each controller knows which position it occupies within
the sequence. The outer sequence controllers know that switching to a further sequence controller should
not take place in the event of a residual control deviation.

In the example, the controller FB_HVACPIDEnergyRecovery [} 309] would start controlling with the heat
recovery unit in the event of the control variable being too small. All other actuators are closed. If the
maximum or minimum position of the heat recovery unit has been reached, the controller switches to the
damper controller FB_HVACPIDMixedAir [} 317]. This increases the parametereHVACSequenceCtrlMode to
3. If the control effect has still not been achieved and the mixed air damper has reached its limit (e.g.
minimum outside air rate), the mixed air controller raises the value of eHVACSequenceCtrlMode to 4. As a
result the preheater or rather the sequence controller FB_HVACPIDPreHeating [} 320] is activated. If the
control variable is too high, the sequence is reversed until the cooler is activated by means of
FB_HVACPIDCooling [} 303] being enabled.

If the control value is at the lower or upper limit of a controller, the actual value of the controlled system
oscillates around the setpoint with a small amplitude, frequent switching back and forth between two
sequence controllers can be damped by an additional parameter for the switchover. To this end, the
difference between the actual values and the setpoints of the controlled system is integrated after the
sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place if
the sum of this integration is greater than the value of rDeadRange.

Table of operation modes

Another special feature of the sequence controllers is their control with the enum E_HVACSequenceCtrlMode
[} 522]
By means of the enum E_HVACSequenceCtrlMode [} 522] is used not only to enable control, but also to
transmit the operation mode of the air conditioning system to the control function blocks in the sequence.
Depending on the operation modes, each sequence controller hence reacts specially to the Enum
E_HVACSequenceCtrlMode [} 522] as illustrated in the table.

Value of:
E_HVACSe-
quenceC-
trlMode

0 (Stop) 1 (On) 2 (night
cooling)

3 (support
operation)

4 (overheat-
ing protec-
tion)

5 (night
cooling and
overheating
protection)

FB_HVACMa
sterSequenc
eCtrl
master
controller

disabled 0 % Enable disabled 0 % Enable
rY=Supply air
max. temp.

Enable
rY=Supply air
min. temp.

Enable
rY=Supply air
min. temp.

FB_HVACPI
DPreHeating
preheater

disabled 0 % Enable disabled 0 % Enable 0 % -
100 %

disabled 0 % disabled 0 %

FB_HVACPI
DReHeating
reheater

disabled 0 % Enable disabled 0 % disabled 0 % disabled 0 % disabled 0 %

FB_HVACPI
DCooling
cooler

disabled 0 % Enable disabled 0 % disabled 0 % Enable 0 % -
100 %

Enable 0 % -
100 %

FB_HVACPI
DEnergyRec
overy
heat recovery

disabled 0 % Enable disabled 0 % disabled 0 % disabled 0 % disabled 0 %

FB_HVACPI
DMixedAir
mixed air
dampers

disabled 0 % Enable max. outside
air rate 100
%

0 % air
circulation
only

0 % air
circulation
only

max. outside
air rate 100
%

Function blocks

TS8000290 Version: 1.2

3.4.7.1 FB_HVAC2PointCtrlSequence

Application

This function block represents a 2-point sequence controller. It is used for sequential staged control of
discontinuous aggregates. If can be used for cascades of vessels and in sequences of refrigerating
machines or recooling plants for controlling the power stages. For each power stage an instance of the
function block is used.

FB_HVAC2PointCtrlSequence can be used in a control sequence with other sequence controllers
from TcHVAC.lib.

Depending on the application several actuators (stages) are used for reaching a controlled variable, which
operate in a so-called control sequence. In the control sequence shown below four stages are enabled via
the respective output bOut = TRUE of FB_HVAC2PointCtrlSequence. With active control only one of the 2-
point sequence controllers is active at a time. The outputs of the non-active 2-point sequence controller are
fixed. This means that depending on the control direction bDirection of the individual controller; bOut is either
TRUE or FALSE.

If the action of the active step is insufficient in the switched-on state, the active 2-point controller switches
over to the neighboring 2-point controller on the left or right in the controller sequence via iCurrentSequence.
This then takes over control of the steps. The previously active controller remains in the end position bOut =
TRUE or FALSE, depending on the control direction.

Transfer function of the internal I transfer element

Transfer function of the internal I transfer element

Through an internal AND link of the I transfer element consisting of (tCtrl_I_Ti_HighLimit,
tCtrl_I_Ti_LowLimit, rCtrl_I_HighLimit, rCtrl_I_LowLimit, st2PointCtrlSequence.rCtrl_I_Out) and the delay
times tDelayIncreaseSequence/tDelayDecreaseSequence switching in the control sequence to the right or
left is controlled via iCurrentSequence. The active sequence controller is indicated via bActiveCtrl = TRUE
(iCurrentSequence = iMyNumberInSequence).

Function blocks

TS8000 291Version: 1.2

The I transfer element and the timing elements for the delay times tDelayIncreaseSequence/
tDelayDecreaseSequence are activated if

bActiveCtrl = TRUEAND
((*Decrease*)
(
rX > st2PointCtrlSequence.rW_MaxAND ((iMyNumberInSequence <= 1) = FALSE) AND
(
(bDirection = TRUEANDbOut = TRUE) OR
(bDirection = FALSEANDbOut = FALSE)
)
)
OR
((*Increase*)
rX < st2PointCtrlSequence.rW_MinAND((iMyNumberInSequence >= iNumberOfSequences) = FALSE) AND
(
(bDirection = FALSEANDbOut = TRUE) OR
(bDirection = TRUEANDbOut = FALSE)
)
)
)

Once the I transfer element (st2PointCtrlSequence.rCtrl_I_Out output of the internal I transfer element) AND
the timing elements for the delay times tDelayIncreaseSequence/tDelayDecreaseSequence have been
activated, switching in the control sequence to the right or left via iCurrentSequence is controlled as follows:

iCurrentSequence = iCurrentSequence - 1 if st2PointCtrlSequence.rCtrl_I_Out <=
st2PointCtrlSequence.rCtrl_I_LowLimitANDst2PointCtrlSequence.tRemainingTimeDecreaseSequence =
T#0s.

iCurrentSequence = iCurrentSequence + 1 if st2PointCtrlSequence.rCtrl_I_Out >=
st2PointCtrlSequence.rCtrl_I_HighLimitANDst2PointCtrlSequence.tRemainingTimeIncreaseSequence =
T#0s.

Function blocks

TS8000292 Version: 1.2

Behavior of the outputs of four FB_HVAC2PointCtrlSequence in a control sequence

Fig. 16: FB_HVAC2PointCtrlSequence_1

In the control sequence of four FB_HVAC2PointCtrlSequence controllers shown above there may
be no gap in the allocation of iMyNumberInSequence (1,2,3,4) and iNumberOfSequence (4), since
otherwise automatic switching of the controllers from the active controller to the adjacent controller
to the right or left in the control sequence would not work.

If bEnable =FALSEODERbError = TRUEODER (e2PointCtrlMode
=eHVAC2PointCtrlMode_On_BMSODEReHVAC2PointCtrlMode_On_OPODEReHVAC2PointCtrlM
ode_Off_BMSODEReHVAC2PointCtrlMode_Off_OP), automatic switching of the controllers from
the active controller to the adjacent controller to the right or left in the control sequence is still
operational. The switching mode is therefore always active. The active function block is displayed
with bActiveCtrl = TRUE. Depending on the control deviation rE up- or down-switching of the
sequence via iCurrentSequence is directly executed. If rX >= rW, then iCurrentSequence =
iCurrentSequence - 1. If rX < rW, then iCurrentSequence = iCurrentSequence + 1.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
e2PointCtrlMode : E_HVAC2PointCtrlMode;
bDirection : BOOL;
rW : REAL;
rX : REAL;
iNumberOfSequences : INT; 1..32
iMyNumberInSequence: INT; 1..32
bReset : BOOL;

Function blocks

TS8000 293Version: 1.2

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, the 2-point sequence controller is
disabled. Validation of the variables iNumberOfSequences, iMyNumberInSequence, iCurrentSequence and
tTi_Ctrl_I is still active. If an error occurs, it is displayed with bError = TRUE and can be acknowledged with
bReset once the fault has been corrected.

If bEnable =FALSEODERbError = TRUEODER (e2PointCtrlMode
=eHVAC2PointCtrlMode_On_BMSODEReHVAC2PointCtrlMode_On_OPODEReHVAC2PointCtrlM
ode_Off_BMSODEReHVAC2PointCtrlMode_Off_OP), automatic switching of the controllers from
the active controller to the adjacent controller to the right or left in the control sequence is still
operational. The switching mode is therefore always active. The active function block is displayed
with bActiveCtrl = TRUE. Depending on the control deviation rE up- or down-switching of the
sequence via iCurrentSequence is directly executed. If rX >= rW, then iCurrentSequence =
iCurrentSequence - 1. If rX < rW, then iCurrentSequence = iCurrentSequence + 1.

e2PointCtrlMode: Enum that specifies the operation mode of the 2-point sequence controller. If bEnable =
TRUEANDbError = FALSE, the output bOut can be switched on or off directly via the Enum. When starting
the PLC, e2PointCtrlMode = eHVAC2PointCtrlMode_Auto_BMS.
Switching the sequence up or down via iCurrentSequence is not dependent on the operating mode
e2PointCtrlMode of the 2-point sequence controller.

If bEnable =FALSEODERbError = TRUEODER (e2PointCtrlMode
=eHVAC2PointCtrlMode_On_BMSODEReHVAC2PointCtrlMode_On_OPODEReHVAC2PointCtrlM
ode_Off_BMSODEReHVAC2PointCtrlMode_Off_OP), automatic switching of the controllers from
the active controller to the adjacent controller to the right or left in the control sequence is still
operational. The switching mode is therefore always active. The active function block is displayed
with bActiveCtrl = TRUE. Depending on the control deviation rE up- or down-switching of the
sequence via iCurrentSequence is directly executed. If rX >= rW, then iCurrentSequence =
iCurrentSequence - 1. If rX < rW, then iCurrentSequence = iCurrentSequence + 1.

bDirection: bDirection determines the control direction of the internal 2-point controller. FALSE = heating
mode; TRUE = cooling mode.

rW: The setpoint is transferred with the variable rW.

rX: the actual value is transferred with the variable rX.

iNumberOfSequences: number of controllers in the sequence. If iNumberOfSequences <= 0 an error is
issued and indicated with bError = TRUE. The number of devices in a sequence is not exceeded by the
active sequence controller via iCurrentSequence.

iMyNumberInSequence: the 2-point controller's own number in the sequence. If iMyNumberInSequence >
iNumberOfSequencesORiMyNumberInSequence <= 0, an error is issued and indicated with bError = TRUE.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000294 Version: 1.2

bReset: input for acknowledgement of the faults once they have been corrected. Internally the system
responds to a rising edge.

VAR_OUTPUT
bOut : BOOL;
bActiveCtrl : BOOL;
b_rW_Max : BOOL;
b_rW_Min : BOOL;
rE : REAL;
e2PointCtrlState : E_HVAC2PointCtrlMode;
st2PointCtrlSequence: ST_HVAC2PointCtrlSequence;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

bOut: output of the 2-point sequence controller.

bOut becomes TRUE, if

1.
bEnable = TRUEANDbError = FALSEAND
(e2PointCtrlMode = eHVAC2PointCtrlMode_Auto_BMSORe2PointCtrlMode =
eHVAC2PointCtrlMode_Auto_OP) AND
bActiveCtrl = TRUEAND
(
(bDirection = TRUEAND (rX > st2PointCtrlSequence.rW_Max)) OR (bDirection = FALSEAND (rX <
st2PointCtrlSequence.rW_Min))
)

2.
bEnable = TRUEANDbError = FALSEAND
(e2PointCtrlMode = eHVAC2PointCtrlMode_Auto_BMSORe2PointCtrlMode =
eHVAC2PointCtrlMode_Auto_OP) AND
(
(bDirection = TRUEAND (iCurrentSequence < iMyNumberInSequence)) OR (bDirection = FALSEAND
(iCurrentSequence > iMyNumberInSequence))
)

3.
bEnable = TRUEANDbError = FALSEAND
(e2PointCtrlMode = eHVAC2PointCtrlMode_On_BMSORe2PointCtrlMode =
eHVAC2PointCtrlMode_On_OP)

bOut becomes FALSE, if

1.
bEnable = FALSEORbError = TRUE

2.
bEnable = TRUEANDbError = FALSEAND
(e2PointCtrlMode = eHVAC2PointCtrlMode_Auto_BMSORe2PointCtrlMode =
eHVAC2PointCtrlMode_Auto_OP) AND
bActiveCtrl = TRUEAND
(
(bDirection = TRUEAND (rX < st2PointCtrlSequence.rW_Min)) OR (bDirection = FALSEAND (rX >
st2PointCtrlSequence.rW_Max))
)

3.
bEnable = TRUEANDbError = FALSEAND
(e2PointCtrlMode = eHVAC2PointCtrlMode_Auto_BMSORe2PointCtrlMode =
eHVAC2PointCtrlMode_Auto_OP) AND
(
(bDirection = TRUEAND (iCurrentSequence > iMyNumberInSequence)) OR (bDirection = FALSEAND
(iCurrentSequence < iMyNumberInSequence))
)

Function blocks

TS8000 295Version: 1.2

4.
bEnable = TRUEANDbError = FALSEAND
(e2PointCtrlMode = eHVAC2PointCtrlMode_Off_BMSORe2PointCtrlMode =
eHVAC2PointCtrlMode_Off_OP)

bActiveCtrl: bActiveCtrl indicates with TRUE that the function block is the active one in the sequence.
bActiveCtrl becomes TRUE, if bEnable = TRUE, bError = FALSEANDiCurrentSequence =
iMyNumberInSequence.

b_rW_Max: b_rW_Max becomes TRUE, if rX > st2PointCtrlSequence.rW_Max.

b_rW_Min: b_rW_Min becomes TRUE, if rX < st2PointCtrlSequence.rW_Min.

rE: control deviation: rE = rW - rX

e2PointCtrlState: Enum indicating the state of the operation mode e2PointCtrlModeof the 2-point sequence
controller

st2PointCtrlSequence: the structure indicates various states, inputs and outputs of the function block.
Furthermore the remaining times of the VAR_IN_OUT variables tDelayIncreaseSequence and
tDelayDecreaseSequence are output if their function is active. Via st2PointCtrlSequence.rCtrl_I_Out the
output signal of the internal I transfer element is displayed.

st2PointCtrlSequence.tRemainingTimeIncreaseSequence: remaining delay time
tDelayIncreaseSequence.

st2PointCtrlSequence.tRemainingTimeDecreaseSequence: remaining delay time
tDelayDecreaseSequence.

st2PointCtrlSequence.rX: state of rX

st2PointCtrlSequence.rW_Max: st2PointCtrlSequence.rW_Max := rW + rW_HighLimit – upper setpoint
limit; if rX exceeds it, the internal I transfer element and the timing elements of the delay times
tDelayIncreaseSequence/tDelayDecreaseSequence can be activated or deactivated respectively, see
Transfer function of the internal I transfer element [} 290] in this document

st2PointCtrlSequence.rW_Min: st2PointCtrlSequence.rW_Min := rW - rW_LowLimit - lower setpoint limit; if
rX falls below it, the internal I transfer element and the timing elements of the delay times
tDelayIncreaseSequence/tDelayDecreaseSequence can be activated or deactivated respectively, see
Transfer function of the internal I transfer element [} 290] in this document

st2PointCtrlSequence.rE: control deviation: rE = rW - rX

st2PointCtrlSequence.rCtrl_I_HighLimit: upper limit at which the integration of the internal I transfer
element is stopped. st2PointCtrlSequence.rCtrl_I_HighLimit = rCtrl_I_HighLimit

st2PointCtrlSequence.rCtrl_I_LowLimit: lower limit at which the integration of the internal I transfer
element is stopped. st2PointCtrlSequence.rCtrl_I_Low = rCtrl_I_LowLimit * (-1)

st2PointCtrlSequence.rCtrl_I_Out: output of the internal I transfer element.
If st2PointCtrlSequence.rCtrl_I_Out = st2PointCtrlSequence.rCtrl_I_HighLimitOR
st2PointCtrlSequence.rCtrl_I_LowLimitAND
either st2PointCtrlSequence.tRemainingTimeIncreaseSequenceOR
st2PointCtrlSequence.tRemainingTimeDecreaseSequence = T#0sAND
bActive = TRUE, then the number of the active controller iCurrentSequence is incremented or decremented
by 1, depending on bDirection.

st2PointCtrlSequence.e2PointCtrlState: see e2PointCtrlState

st2PointCtrlSequence.iNumberOfSequences: see iNumberOfSequences

st2PointCtrlSequence.iMyNumberInSequence: see iMyNumberInSequence

st2PointCtrlSequence.iCurrentSequence: see iCurrentSequence

st2PointCtrlSequence.bEnable: see bEnable

st2PointCtrlSequence.bError: see bError

Function blocks

TS8000296 Version: 1.2

st2PointCtrlSequence.bOut: see bOut

st2PointCtrlSequence.bActiveCtrl: see bActiveCtrl

st2PointCtrlSequence.b_rW_Max: see b_rW_Max

st2PointCtrlSequence.b_rW_Min: see b_rW_Min

bError: the output is TRUE if an error is active and one of the variables iNumberOfSequences,
iMyNumberInSequence or iCurrentSequence has an incorrect parameter. Once the fault has been corrected
the bError message must be acknowledged with bReset. The eErrorCode enum indicates the error number.
If bError = TRUE, then the output bOut = FALSE.

If bEnable =FALSEODERbError = TRUEODER (e2PointCtrlMode
=eHVAC2PointCtrlMode_On_BMSODEReHVAC2PointCtrlMode_On_OPODEReHVAC2PointCtrlM
ode_Off_BMSODEReHVAC2PointCtrlMode_Off_OP), automatic switching of the controllers from
the active controller to the adjacent controller to the right or left in the control sequence is still
operational. The switching mode is therefore always active. The active function block is displayed
with bActiveCtrl = TRUE. Depending on the control deviation rE up- or down-switching of the
sequence via iCurrentSequence is directly executed. If rX >= rW, then iCurrentSequence =
iCurrentSequence - 1. If rX < rW, then iCurrentSequence = iCurrentSequence + 1.

eErrorCode:returns the error number [} 520] when the bError output is set. The following errors may occur
in this function block: eHVACErrorCodes_Error_iMyNumberInSequence,
eHVACErrorCodes_Error_iNumberOfSequences, eHVACErrorCodes_Error_iCurrentSequences

To get the error numbers of the enum in the PLC, eErrorCode can be assigned to a variable of data
type WORD.eHVACErrorCodes_Error_iNumberOfSequences = 27
eHVACErrorCodes_Error_iMyNumberInSequence = 28
eHVACErrorCodes_Error_iCurrentSequences = 29

VAR_IN_OUT
rW_HighLimit : REAL;
rW_LowLimit : REAL;
tDelayIncreaseSequence : TIME;
tDelayDecreaseSequence : TIME;
tCtrl_I_Ti_HighLimit : TIME;
tCtrl_I_Ti_LowLimit : TIME;
rCtrl_I_HighLimit : REAL;
rCtrl_I_LowLimit : REAL;
iCurrentSequence : INT;

rW_HighLimit: positive value of the upper limit of the control deviation. st2PointCtrlSequence.rW_Max
=rW_Max := rW + rW_HighLimit.
The variable is saved persistently. Preset to 5.

rW_LowLimit: positive value of the lower limit of the control deviation. st2PointCtrlSequence.rW_Min
=rW_Min := rW - rW_LowLimit.
The variable is saved persistently. Preset to 5.

tDelayIncreaseSequence: delay time after which iCurrentSequence is increased by 1, see Transfer function
of the internal I transfer element [} 290] in this document. The variable is saved persistently. Preset to 5 min.

tDelayDecreaseSequence: delay time after which iCurrentSequence is decreased by 1, see Transfer
function of the internal I transfer element [} 290] in this document. The variable is saved persistently. Preset
to 5 min.

tCtrl_I_Ti_HighLimit: integration time for the upper limit of the internal I transfer element, see Transfer
function of the internal I transfer element [} 290] in this document. tCtrl_I_Ti_HighLimit must be > T#0s. The
variable is saved persistently. Preset to 10 min.

tCtrl_I_Ti_LowLimit: integration time for the lower limit of the internal I transfer element, see Transfer
function of the internal I transfer element [} 290] in this document. tCtrl_I_Ti_LowLimit must be > T#0s. The
variable is saved persistently. Preset to 10 min.

Function blocks

TS8000 297Version: 1.2

rCtrl_I_HighLimit: positive value for the upper limit at which the integration of the internal I transfer element
is stopped (ARW measure, anti-reset windup), see Transfer function of the internal I transfer element [} 290]
in this document. The variable is saved persistently. Preset to 10.

rCtrl_I_LowLimit: negative value for the lower limit at which the integration of the internal I transfer element
is stopped (ARW measure, anti-reset windup), see Transfer function of the internal I transfer element [} 290]
in this document. The variable is saved persistently. Preset to -10.

iCurrentSequence: number of the active controller in the sequence (0..32). The number of devices in a
sequence iNumberOfSequences is not exceeded by the active sequence controller via iCurrentSequence.
If iCurrentSequence > iNumberOfSequences or iCurrentSequence < 0, an error is indicated with bError =
TRUE.
The sequence is switched up or down via iCurrentSequence depending on the control deviation rE if the
function block is active in the sequence bActiveCtrl = TRUE.

1. iCurrentSequence = iCurrentSequence - 1 if st2PointCtrlSequence.rCtrl_I_Out >=
st2PointCtrlSequence.rLimit_Ctrl_I_MinUNDst2PointCtrlSequence.tRemainingTimeDecreaseSequence =
T#0sUNDbActiveCtrl = TRUE

2. iCurrentSequence = iCurrentSequence + 1 if st2PointCtrlSequence.rCtrl_I_Out >=
st2PointCtrlSequence.rLimit_Ctrl_I_MaxUNDst2PointCtrlSequence.tRemainingTimeIncreaseSequence =
T#0sUNDbActiveCtrl = TRUE

To ensure correct functioning of the automatic switchover of the controller from the active controller
to the neighboring controller on the left or right in the control sequence, iCurrentSequence may not
be written to continuously from the outside in a control sequence. When starting a control sequence
it must be defined which sequence controller is active. iCurrentSequence must be written for a PLC
cycle and be > 0 and <= iNumberOfSequences.

If bEnable =FALSEODERbError = TRUEODER (e2PointCtrlMode
=eHVAC2PointCtrlMode_On_BMSODEReHVAC2PointCtrlMode_On_OPODEReHVAC2PointCtrlM
ode_Off_BMSODEReHVAC2PointCtrlMode_Off_OP), automatic switching of the controllers from
the active controller to the adjacent controller to the right or left in the control sequence is still
operational. The switching mode is therefore always active. The active function block is displayed
with bActiveCtrl = TRUE. Depending on the control deviation rE up- or down-switching of the
sequence via iCurrentSequence is directly executed. If rX >= rW, then iCurrentSequence =
iCurrentSequence - 1. If rX < rW, then iCurrentSequence = iCurrentSequence + 1.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000298 Version: 1.2

3.4.7.2 FB_HVACBasicSequenceCtrl

Application

Unlike the sequence controllers FB_HVACPIDCooling, FB_HVACDehumidify, FB_HVACEnergyRecovery,
FB_HVACPIDHumidify, FB_HVACPIDMixedAir, FB_HVACPIDPreHeating and FB_HVACPIDReHeating, the
function block FB_HVACBasicSequenceCtrl has no special system-specific extensions or application. It is
more general. The control direction of the controller is not automatically determined depending on the room
air and outside air as is the case with the function blocks for heat recovery or the mixed air chamber.

A sequence of static heating and cooling ceiling can be implemented in the field of room automation with this
function block.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
rInitialValue : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Function blocks

TS8000 299Version: 1.2

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: input variable for enabling the controller. The controller is active if bEnable = TRUE.

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: own number in the controller in the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: cycle time with which the control loop is processed. This must be greater than or equal to
the TaskCycleTime. The function block uses this input value to calculate internally whether the state and the
output values have to be updated in the current cycle.

eCtrlMode: the operation mode is selected via this enum.

rYManual: manual value.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rXW: control deviation

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000300 Version: 1.2

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes. [} 520]

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
bDirection : BOOL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rDeadBand : REAL;
rYMin : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range (0..32767) can be set for the controller output signal rY. This means that a control
signal change is only active if the change of value is greater than the dead range. A constant change of the
control signal rY is converted to a pulsating drive of the actuator if a dead range is specified. The larger the
dead range the larger the pauses and the control signal jumps will be. The variable is saved persistently.
Preset to 0.

bDirection: the control direction of the controller can be changed with the parameter bDirection. If bDirection
is TRUE, the direct control direction for cooling operation of the controller is active.
If bDirection is FALSE, the indirect control direction of the controller is activated for heating operation.
The variable is saved persistently. Preset to FALSE.

rKp: proportional factor gain. The variable is saved persistently. Preset to 1.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after
the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: currently active controller in the sequence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 301Version: 1.2

3.4.7.3 FB_HVACMasterSequenceCtrl

Application

Improved controllability can be achieved with the aid of the exhaust air or room temperature cascade control.
The master controller measures the room or exhaust air temperature and adapts the setpoint for the supply
air temperature to the room conditions. The setpoint for the supply air is limited by a minimum and a
maximum value.

In backup mode of the air conditioning system(eModeSeqCtrl =
eHVACSequenceCtrlMode_FreezeProtection) the value of rYMaxis switched directly through to the output
rY.If overheating protection is active(eModeSeqCtrl = eHVACSequenceCtrlMode_OverheatingProtection) the
value of rYMinis switched directly through to the output rY.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000302 Version: 1.2

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: the plant operation mode is transferred to the controller with the enum eModeSeqCtrl.

rX: acquires the actual value of the control loop.

rW: the setpoint is transferred to the controller with the variable rW.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: cycle time with which the control loop is processed. This must be greater than or equal to
tTaskCycleTime. The function block uses this input value to calculate internally whether the state and the
output values have to be updated in the current cycle.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value for the manual operation mode.

bResetController: the internal variables of the PID controller are reset.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: temperature setpoint for the supply air temperature controller.

rXW: control deviation.

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rInitialValue : REAL;
rKp : REAL;

Function blocks

TS8000 303Version: 1.2

tTi : TIME;
tTv : TIME;
tTd : TIME;
rYMin : REAL;
rYMax : REAL;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range (0..32767) can be set for the controller output signal rY. This means that a control
signal change is only active if the change of value is greater than the dead range. A constant change of the
control signal rY is converted to a pulsating drive of the actuator if a dead range is specified. The larger the
dead range the larger the pauses and the control signal jumps will be. The variable is saved persistently.
Preset to 0.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue (0..32767). The variable is
saved persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 1.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time. The variable is saved persistently. Preset to 0 s.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 16.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 25.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.7.4 FB_HVACPIDCooling

PID controller cooler

The control direction of the cooling controller is inverted compared to the heating controller. If the inlet air
temperature set value is reduced, the sequence controller raises its control signal. In the operation mode
Overheating Protection, the cooler regulates the supply air temperature to the minimum. Outside the normal
sequence control operation the controller is also activated if overheating protection is active.

Function blocks

TS8000304 Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 305Version: 1.2

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: among other things, control is enabled via this enum. In addition, the operation mode of the
VAC system is transmitted to the controller blocks in the sequence. See also Table operation modes. [} 531]

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: the controller's own number in the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value that is set at the output rY if eCtrlMode = eHVACCtrlMode_Manual.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rXW: control deviation.

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactive is TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: E_HVACErrorCodes. See error codes [} 520].

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rInitialValue : REAL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;

Function blocks

TS8000306 Version: 1.2

rDeadBand : REAL;
rYMin : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range can be set for the controller output signal rY. This means that a control signal change is
only active if the change of value is greater than the dead range. A constant change of the control signal rY
is converted to a pulsating drive of the actuator if a dead range is specified. The larger the dead range the
larger the pauses and the control signal jumps will be. The variable is saved persistently. Preset to 0.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue. The variable is saved
persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 0.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd: damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after
the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: number of the active controller in the sequence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.7.5 FB_HVACPIDDehumidify

PID dehumidification controller

In order to dehumidify the supply air, it is cooled down by the cooler. The dehumidification is constantly
controlled by dosing the coolant at the cooling register with the cooler valve. Two controllers,
FB_HVACPIDCooling [} 303] and FB_HVACPIDDehumidify, act on the cooler valve. First of all the control
signal rY is relayed by FB_HVACPIDCooling [} 303] to the dehumidification sequence controller
FB_HVACPIDDehumidify. Inside the FB_HVACPIDDehumidify function block, the larger of the two control
signals is routed through to the controller output. If the air humidity is too high, the dehumidification controller
takes precedence over the cooling controller. However, in order that the correct supply air temperature can
still be achieved, the preheater is disabled if dehumidification is in operation. The reheater is put into
operation in order to reheat the air.

Function blocks

TS8000 307Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
rYFromPIDCooling : REAL;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
bResetcontroller : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000308 Version: 1.2

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: among other things, control is enabled via this enum. In addition, the operation mode of the
VAC system is transmitted to the controller function block in the sequence. See also Table operation modes.
[} 531]

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: the controller's own number in the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

rYFromPIDCooling: in the case of a VAC system with dehumidification, the output of the cooling controller
is connected to this input. Inside the function block FB_HVACPIDDehumidify there is a MAX selection that
relays the larger of the control signals from the two controllers FB_HVACPIDDehumidify and
FB_HVACPIDCooling to the cooler actuator valve.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value that is set at the output rY if eCtrlMode = eHVACCtrlMode_Manual.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rYDehumidify : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rYDehumidify: control signal output of the dehumidification controller.

rXW: control deviation.

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes. [} 520]

Function blocks

TS8000 309Version: 1.2

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rInitialValue : REAL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rDeadBand : REAL;
rYMin : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range can be set for the controller output signal rY. This means that a control signal change is
only active if the change of value is greater than the dead range. A constant change of the control signal rY
is converted to a pulsating drive of the actuator if a dead range is specified. The larger the dead range the
larger the pauses and the control signal jumps will be. The variable is saved persistently. Preset to 0.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue. The variable is saved
persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 0.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after
the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: number of the active controller in the sequence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.7.6 FB_HVACPIDEnergyRecovery

PID heat recovery controller

One of the special features of the heat recovery controller is the reversal of its control direction depending on
the outside temperature and the exhaust air temperature. The enthalpies of the outside air and the exhaust
air can be used instead of their temperatures.

If the outside temperature is higher than the exhaust air temperature, the heat recovery system can use the
exhaust air or room air, which was cooled with a high expenditure of energy, to cool the outside air. A
reduction of the supply air temperature, leads in cooling mode to an increase in the control value for the heat

Function blocks

TS8000310 Version: 1.2

recovery (curve falls from left to right). If the outside temperature is lower than the exhaust air temperature,
the heat recovery system is used to feed the exhaust air heat back to the supply air. The heat recovery
system is then in heating mode (curve rises from left to right).

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
rOutsideTemp : REAL;
rReturnAirTemp : REAL;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 311Version: 1.2

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: among other things, control is enabled via this enum. In addition, the operation mode of the
VAC system is transmitted to the controller function block in the sequence. See also Table operation modes.
[} 531]

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: the controller's own number in the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

rOutsideTemp: outside temperature.

rReturnAirTemp: exhaust air temperature.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value that is set at the output rY if eCtrlMode = eHVACCtrlMode_Manual.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rXW: control deviation

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

Function blocks

TS8000312 Version: 1.2

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rInitialValue : REAL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rDeadBand : REAL;
rYMin : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range can be set for the controller output signal rY. This means that a control signal change is
only active if the change of value is greater than the dead range. A constant change of the control signal rY
is converted to a pulsating drive of the actuator if a dead range is specified. The larger the dead range the
larger the pauses and the control signal jumps will be. The variable is saved persistently. Preset to 0.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue. The variable is saved
persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 0.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after
the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: number of the active controller in the sequence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 313Version: 1.2

3.4.7.7 FB_HVACPIDHumidify

Humidity control

Besides the temperature, the humidity of the air is also controlled in some air conditioning systems. Steam
humidifiers or air washers are used for humidification. For dehumidification the supply air can be cooled
down to the dew point by a cooler. As a result, the moisture in the air condenses on the air cooler. The
control of humidification and dehumidification is realized with a sequence comprising a humidification
controller and a dehumidification controller.

PID humidification controller

This function block is a special application of a PID controller. The humidity controller is only enabled if the
function block input bHumidistat is TRUE.

Function blocks

TS8000314 Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
bHumidistat : BOOL;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
bResetContoller : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 315Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: among other things, this Enum enables the controller.°In addition, the operation mode of the
VAC system is transmitted to the controller blocks in the sequence. See also Table operation modes. [} 531]

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: the own number from the controller in the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

bHumidistat: a TRUE on this input enables the humidity control. The hygrostat is connected to this input so
that over-humidification cannot occur.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value that is set at the output rY if eCtrlMode = eHVACCtrlMode_Manual.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rXW: control deviation.

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

Function blocks

TS8000316 Version: 1.2

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rInitialValue : REAL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rDeadBand : REAL;
rYMin : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range can be set for the controller output signal rY. This means that a control signal change is
only active if the change of value is greater than the dead range. A constant change of the control signal rY
is converted to a pulsating drive of the actuator if a dead range is specified. The larger the dead range the
larger the pauses and the control signal jumps will be. The variable is saved persistently. Preset to 0.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue. The variable is saved
persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 0.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd: damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after
the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: number of the active controller in the sequence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 317Version: 1.2

3.4.7.8 FB_HVACPIDMixedAir

PID mixed air chamber controller

One of the special features of the mixed air controller is the reversal of its control direction depending on the
outside temperature and the exhaust air temperature. The enthalpies of the outside air and the exhaust air
can be used instead of their temperatures.

If the outside temperature is lower than the exhaust air temperature, the air can be used for cooling in the
case of high thermal loads inside the building. Hence, the outside air rate increases as the control variable or
the supply air temperature set value decreases (curve falls from left to right).

If the outside temperature is higher than the exhaust air temperature, the outside air proportion can be
increased in the event of the supply air temperature set value being increased (curve rises from left to right).
The outside air temperature is applied to the input variable rOutsideTemp. The variable rReturnAirTemp is
for the exhaust air or room temperature. The Night Cooling operating mode
(eHVACSequenceCtrlMode_NightCooling) is transmitted to the function block by means of the Enum
eModeSeqCtrl. During night cooling the control is deactivated and 100% control value is output at rY. Further
information on the Summer Night Cooling function can be found under FB_HVACSummerNightCooling
[} 461].

The maximum and minimum outside air rates can be set with the parameters rYMax and rYMin.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;

Function blocks

TS8000318 Version: 1.2

rOutsideTemp : REAL;
rReturnAirTemp : REAL;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
rYMin : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: among other things, control is enabled via this enum. In addition, the operation mode of the
VAC system is transmitted to the controller blocks in the sequence. See also Table operation modes. [} 531]

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: the own number from the controller from the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

rOutsideTemp: outside temperature

rReturnAirTemp: exhaust air temperature

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value that is set at the output rY if eCtrlMode = eHVACCtrlMode_Manual.

rYMin: lower limit of the working range of the controller.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 319Version: 1.2

bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rXW: control deviation

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rInitialValue : REAL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rDeadBand : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range can be set for the controller output signal rY. This means that a control signal change is
only active if the change of value is greater than the dead range. A constant change of the control signal rY
is converted to a pulsating drive of the actuator if a dead range is specified. The larger the dead range the
larger the pauses and the control signal jumps will be. The variable is saved persistently. Preset to 0.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue. The variable is saved
persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 0.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after

Function blocks

TS8000320 Version: 1.2

the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: number of the active controller in the sequence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.7.9 FB_HVACPIDPreHeating

PID controller preheater

The function block is a special application of a PID controller.
In addition to the PID control algorithm, the conditions of switching to the sequence of the upstream or
downstream sequence controller are included. A special feature of the pre-heater controller is the input
rYDehumidify. As soon as the signal of rYDehumidify is greater than zero, the preheater is disabled and the
value of iCurrentSequence is incremented by one. This activates the reheater FB_HVACPIDReHeating [} 323]
[} 323]instead of the preheater. If the value of rYDehumidify returns to zero, the preheater is automatically
reactivated. Outside the normal sequence control operation the controller is also activated in the case of
backup operation (freeze protection).

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;

Function blocks

TS8000 321Version: 1.2

rYDehumidify : REAL;
eCtrlMode : E_HVACCtrlMode;
rYManual : REAL;
rInitialValue : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: among other things, control is enabled via this enum. In addition, the operation mode of the
VAC system is transmitted to the controller function block in the sequence. See also Table operation modes.
[} 531]

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: the controller's own number in the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable rCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

rYDehumidify: in the case of an VAC system with dehumidification, the control value of the dehumidification
controller FB_HVACPIDDehumidify [} 306] is connected to this input. If the value of rYDehumidify > 0, then
the VAR_IN_OUT variable iCurrentSequence will be increased automatically by one. In dehumidification
mode the system will thus be switched from the preheater FB_HVACPIDPreHeating to the reheater
FB_HVACPIDReHeating.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value that is set at the output rY if eCtrlMode = eHVACCtrlMode_Manual.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000322 Version: 1.2

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

rXW: control deviation

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rDeadBand : REAL;
rYMin : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range can be set for the controller output signal rY. This means that a control signal change is
only active if the change of value is greater than the dead range. A constant change of the control signal rY
is converted to a pulsating drive of the actuator if a dead range is specified. The larger the dead range the
larger the pauses and the control signal jumps will be. The variable is saved persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 0.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after

Function blocks

TS8000 323Version: 1.2

the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: number of the active controller in the sequence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.4.7.10 FB_HVACPIDReHeating

PID controller reheater

The reheater is used to reheat the supply air that was cooled down by the cooler for dehumidification. The
controller can only be enabled within the normal sequence control operation.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
eModeSeqCtrl : E_HVACSequenceCtrlMode;
iNumberOfSequences : INT;
iMyNumberInSequence: INT;
rW : REAL;
rX : REAL;
tTaskCycleTime : TIME;
tCtrlCycleTime : TIME;
rYDehumidify : REAL;
eCtrlMode : E_HVACCtrlMode;

Function blocks

TS8000324 Version: 1.2

rYManual : REAL;
bResetController : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

eModeSeqCtrl: among other things, control is enabled via this enum. In addition, the operation mode of the
VAC system is transmitted to the controller blocks in the sequence. See also Table operation modes. [} 531]

iNumberOfSequences: number of sequence controllers in the system.

iMyNumberInSequence: the controller's own number in the sequence.

rW: the setpoint is transferred to the controller with the variable rW.

rX: actual value of the control loop.

tTaskCycleTime: cycle time with which the function block is called. If the function block is called in every
cycle this corresponds to the task cycle time of the calling task.

tCtrlCycleTime: the variable tCtrlCycleTime specifies the cycle time with which the PID controller is
processed. The shortest possible cycle time is that of the controller. Since the controlled systems in building
automation are predominantly slow, the cycle time of the controller can be several times that of the control
cycle time.

rYDehumidify: constant value.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rYManual: manual value that is set at the output rY if eCtrlMode = eHVACCtrlMode_Manual.

bResetController: a positive edge on the input bResetController resets the PID controller.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rY : REAL;
rXW : REAL;
bMaxLimit : BOOL;
bMinLimit : BOOL;
bActive : BOOL;
bARWactive : BOOL;
eState : E_HVACState;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;
bInvalidParameter: BOOL;

rY: control signal output of the PID controller.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 325Version: 1.2

rXW: control deviation.

bMaxLimit: the output bMaxLimit is TRUE, if the output rY has reached the value rYMax.

bMinLimit: the output bMinLimit is TRUE, if the output rY has reached the value rYMin.

bActive: bActive is TRUE, if the controller is active and enabled.

bARWactive: bARWactiveis TRUE, if the integral component of the controller has reached the lower or
upper control value limit.

eState: state of the controller. See E_HVACState. [} 523]

bError: this output indicates with a TRUE that there is an error.

eErrorCode: contains the command-specific error code. See E_HVACErrorCodes [} 520].

bInvalidParameter: TRUE if an error occurs during the plausibility check. The message must be
acknowledged with bReset.

VAR_IN_OUT
rDeadRange : REAL;
rInitialValue : REAL;
rKp : REAL;
tTi : TIME;
tTv : TIME;
tTd : TIME;
rDeadBand : REAL;
rYMin : REAL;
rYMax : REAL;
iCurrentSequence: INT;

rDeadRange: in order to avoid unnecessary driving and hence premature wear of the valves or damper
drives, a dead range can be set for the controller output signal rY. This means that a control signal change is
only active if the change of value is greater than the dead range. A constant change of the control signal rY
is converted to a pulsating drive of the actuator if a dead range is specified. The larger the dead range the
larger the pauses and the control signal jumps will be. The variable is saved persistently. Preset to 0.

rInitialValue: the restart behavior of the controller is influenced by rInitialValue. The variable is saved
persistently. Preset to 0.

rKp: proportional factor gain. The variable is saved persistently. Preset to 0.

tTi: integral action time. The I-part corrects the residual control deviation following correction of the P-part.
The smaller the tTi time is set, the faster the controller corrects. The control loop becomes unstable if the
time is too short. Larger tTi-times must be entered in order to reduce the integration component. The integral
action time should be selected to be longer than the stroke time of the valve or damper drive. The variable is
saved persistently. Preset to 30 s.

tTv: rate time. The larger tTv is, the stronger the controller corrects. The control loop becomes unstable if the
time is too long. Often in normal building automation applications only a PI controller is used. In this case
zero must be entered for tTv. The variable is saved persistently. Preset to 0 s.

tTd : damping time. The variable is saved persistently. Preset to 0 s.

rDeadBand: if the control value is at the lower or upper limit of a controller and the actual value of the
controlled system oscillates around the setpoint with a small amplitude, frequent switching back and forth
between two sequence controllers can be damped by an additional parameter for the switchover. To this
end, the difference between the actual values and the setpoints of the controlled system is integrated after
the sequence controller has reached its lower or upper limit. Switching to the next sequence only takes place
if the sum of this integration is greater than the value of rDeadband (see sample). [} 530] The variable is
saved persistently. Preset to 0.

rYMin: lower limit of the working range of the controller. The variable is saved persistently. Preset to 0.

rYMax: upper limit of the working range of the controller. The variable is saved persistently. Preset to 100.

iCurrentSequence: number of the active controller in the sequence.

Function blocks

TS8000326 Version: 1.2

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.5 HVAC Setpoint modules

3.5.1 FB_HVACHeatingCurve

Application

The four-point heating curve serves to determine the setpoint for the flow temperature of a heating circuit,
depending on the outside temperature.

For functional reasons, this function block must be used together with FB_HVACSetpointHeating. The
reason for this is that the value for the night setback is taken into account in FB_HVACHeatingCurve.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
rOutsideTempDamped: REAL;
bDayOperation : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 327Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

rOutsideTempDamped: this input variable transfers the current damped outside temperature to the function
block.

bDayOperation: TRUE = day operation, FALSE = night operation.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rTempSetpoint : REAL; 0 .. 500 ° C
bInvalidParameter: BOOL;

rTempSetpoint: the calculated setpoint for the flow temperature.

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
rMinTemp : REAL;
rMaxTemp : REAL;
rNightSetback : REAL;
rTempSetpoint_Y1 : REAL;
rTempSetpoint_Y2 : REAL;
rTempSetpoint_Y3 : REAL;
rTempSetpoint_Y4 : REAL;
rOutsideTemp_X1 : REAL;
rOutsideTemp_X2 : REAL;
rOutsideTemp_X3 : REAL;
rOutsideTemp_X4 : REAL;

rMinTemp: the minimum value for the setpoint of the flow temperature is defined by this variable. The
variable is saved persistently. Preset to 0.

rMaxTemp: the maximum value for the setpoint of the flow temperature is defined by this variable. The
variable is saved persistently. Preset to 500.

rNightSetback: the value for the night setback is specified by this variable. The variable is saved
persistently. Preset to 20.

rTempSetpoint_Y1 / rOutsideTemp_X1: the course of point 1 of the heating curve is parameterized by this
value pair. The variable is saved persistently. Preset to 20.

rTempSetpoint_Y2 / rOutsideTemp_X2: the course of point 2 of the heating curve is parameterized by this
value pair. The variable is saved persistently. Preset to 65 and 0.

rTempSetpoint_Y3 / rOutsideTemp_X3: the course of point 3 of the heating curve is parameterized by this
value pair. The variable is saved persistently. Preset to 74 and -10.

rTempSetpoint_Y4 / rOutsideTemp_X4: the course of point 4 of the heating curve is parameterized by this
value pair. The variable is saved persistently. Preset to 80 and -20.

Function blocks

TS8000328 Version: 1.2

Course of the heating characteristic curves

Conditions

The following applies to the input of the values:°X1 > X 2 > X3 > X4 and Y1 < Y2 < Y3 < Y4.

Furthermore the minimum value for the setpoint of the flow temperature must be <= rTempSetpoint_Y1 and
>= 0. The maximum value for the setpoint of the flow temperature must be >= rTempSetpoint_Y4.

If one of these conditions is not met, the variable bInvalidParameter will be set to TRUE and the default
values of the VAR_IN_OUT variables will be adopted.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.5.2 FB_HVACHeatingCurveEx

Function blocks

TS8000 329Version: 1.2

Application

The heating curve serves to determine the setpoint for the flow temperature of a heating circuit, depending
on the outside temperature. Compared with the FB_HVACHeatingCurve, the heating curve is shown as a
function.

z = 20 - rDesignTemp;

u = 20 - rOutsideTemp;

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
rOutsideTempDamped : REAL;
bDayOperation : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eDataSecurityType_Persistent . It would lead to early wear of the flash memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

rOutsideTempDamped: this input variable transfers the current damped outside temperature to the function
block.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rTempSetpoint : REAL; ° C
bInvalidParameter : BOOL;

rTempSetpoint: the calculated setpoint for the flow temperature.

bInvalidParameter: indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000330 Version: 1.2

VAR_IN_OUT
rMinTempSetpoint : REAL;
rMaxTempSetpoint : REAL;
rDesignTemp : REAL;
rSlope : REAL;
rCurve : REAL;

rMinTempSetpoint: the minimum value for the setpoint of the flow temperature [°C] is defined by this
variable. The variable is saved persistently. Preset to 20.

rMaxTempSetpoint: the maximum value for the setpoint of the flow temperature [°C] is defined by this
variable. The variable is saved persistently. Preset to 90.

rDesignTemp: design temperature [°C] for the dimensioning of a heating system. Typical values for
Germany lie between -12 ° C and -16 ° C. The variable is saved persistently. Preset to -16.

rSlope: factor for the slope. The variable is saved persistently. Preset to 1.

rCurve: factor for the curve. The variable is saved persistently. Preset to 0.5.

Course of the heating characteristic curves

Flow temperature of 50 °C at approx. -9.2 °C

Flow temperature of 50 °C at approx. -9.4 °C

Function blocks

TS8000 331Version: 1.2

Flow temperature of 50 °C at approx. -7.8 °C

Flow temperature of 50 °C at approx. -8.3 °C

Flow temperature of 60 °C at approx. 0.2 °C

Flow temperature of 60 °C at approx. 3.0 °C

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000332 Version: 1.2

3.5.3 FB_HVACOutsideTempDamped

Application

This function block serves to determine the average or damped outside temperature. In automatic mode the
mean outside temperature is calculated from the outside temperature values at 7:00, 14:00 and 21:00. The
measurement taken at 21:00 receives double the weighting.

VAR_INPUT
bEnable : BOOL;
rOutsideTemp : REAL;
dtSystemTime : DT;
bResetInternalValue : BOOL;
eCtrlMode : E_HVACCtrlMode;
rManualValue : REAL;

bEnable: the function block is enabled by the PLC program with the input variable bEnable. If bEnable =
FALSE, the last valid value of the damped outside temperature is output.

rOutsideTemp: this input variable transfers the current outside temperature to the function block.

dtSystemTime: this input variable transfers the date and time to the function block.

bResetInternalValues: using this input variable, the internally stored outside temperatures are reset and the
current outside temperature is then adopted.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rManualValue: manual value that is set at the output rOutsideTempDamped if eCtrlMode =
eHVACCtrlMode_Manual.

VAR_OUTPUT
rOutsideTempDamped : REAL;

rOutsideTempDamped: damped outside temperature.

Function blocks

TS8000 333Version: 1.2

3.5.4 FB_HVACSetpointHeating

Application

Using this function block a heating circuit can be switched through different operation modes. Depending on
the operation mode a corresponding setpoint for controlling the inlet temperature of a static heating circuit is
output from the function block. The output bHeating is set or reset depending on the operation mode and the
state of the parameters described below.

For functional reasons, this function block must be used together with FB_HVACHeatingCurve. The reason
for this is that the value for the night setback is taken into account in FB_HVACHeatingCurve.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rSetpointIn : REAL;
rOutsideTempDamped : REAL;
dtSystemTime : DT;
bDayOperation : BOOL;
bFreezeProtec : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000334 Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is activated if the variable bEnable is TRUE. If it is FALSE, zero will be output at
rSetpointOut and the pump output remains FALSE.

rSetpointIn: in the case of a heating circuit controlled by the room temperature, the value of a room setpoint
module is applied at rSetpointIn. If the heating circuit is controlled by the outside temperature, the setpoint
comes from the heating characteristic curve. See FB_HVACHeatingCurve [} 326].

rOutsideTempDamped: short-term fluctuations in the outside temperature must not be allowed to have an
unfiltered effect on the setpoint of the flow temperature. For this reason the outside temperature must not be
connected directly, but rather via a damping function block. See also FB_HVACOutsideTempDamped [} 332]
regarding this point.

dtSystemtime: this variable transfers the computer system time to the function block.

bDayOperation: the output variable of the timer program is transferred at this input variable. If
bDayOperation is TRUE, then the heating circuit is in day operation mode. The night setback of the flow
temperature is hence deactivated.

bFreezeProtec: input to which the frost protection signal is applied.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rSetpointOut : REAL;
bHeating : BOOL;
bReqOutsideTemp : BOOL;
bReqDate : BOOL;
bReqPermanent : BOOL;
bReqFreezeProtec : BOOL;
bReqNight : BOOL;
bReqDay : BOOL;
bInvalidParameter : BOOL;

rTempSetpoint: setpoint for the flow temperature control.

bHeating: the output bHeating is set (TRUE) or reset (FALSE) immediately or after a delay, depending on
the selected operating mode as well as the switch-on and switch-off delays. The output can be used to
enable the controller.

bReqOutsideTemp: the heating circuit is in the operation mode 'heating period according to outside
temperature'.

bReqDate: the heating circuit is in the operation mode 'heating period according to date'.

bReqPermanent: the heating circuit is in the operation mode 'heating circuit always on'.

bReqFreezeProtec: the heating circuit is in frost protection mode.

bReqNight: the heating circuit is in the night operation mode.

bReqDay: the heating circuit is in the day operation mode.

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
eSetpointHeatingMode : E_HVACSetpointHeatingMode;
rHeatingLimit : REAL;
uiOn_Day : UINT;
uiOn_Month : UINT;
uiOff_Day : UINT;

Function blocks

TS8000 335Version: 1.2

uiOff_Month : UINT;
rFreezeProtecSetpoint : REAL;
rNightSetback : REAL;
tDelayHeatingOn : TIME;
tDelayHeatingOff : TIME;

eSetpointHeatingMode: Enum that specifies the operation mode of the heating circuit. The variable is
saved persistently. Preset to 1.

rHeatingLimit: heating limit (-60°C..100°C). Necessary for the operation modes of the heating circuit;
heating period according to the outside temperature and heating period according to the date. The variable is
saved persistently. Preset to 19.

uiOn_Day: switch-on day of the month. Necessary for the operation mode 'heating period according to date'.
The variable is saved persistently. Preset to 1.

uiOn_Month: switch-on month of the year. Necessary for the operation mode 'heating period according to
date'. The variable is saved persistently. Preset to 9.

uiOff_Day: switch-off day of the month. Necessary for the operation mode 'heating period according to date'.
The variable is saved persistently. Preset to 1.

uiOff_Month: switch-off month of the year. Necessary for the operation mode 'heating period according to
date'. The variable is saved persistently. Preset to 5.

rFreezeProtecSetpoint: setpoint for the heating circuit during frost protection (0°C..100°C). The variable is
saved persistently. Preset to 8.

rNightSetback: with rNightSetback the amount of night setback in °C is specified (0°C..100°C).
rNightSetback is considered in the operation mode eHVACSetpointHeatingMode_OnNight. The variable is
saved persistently. Preset to 10.

tDelayHeatingOn: time delay for the setting of the output bHeating to TRUE after the damped outside
temperature has undershot the heating limit or the date has been reached (0h..100h). The variable is saved
persistently. Preset to 0.

tDelayHeatingOff: time delay for the resetting of the output bHeating to FALSE after the damped outside
temperature has exceeded the heating limit or the date has been reached (0h..100h). The variable is saved
persistently. Preset to 0.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.5.5 FB_HVACSetpointRamp

Application

The function block generates a sliding setpoint ramp. This function block must be called in every PLC cycle,
because the calculation for reaching the final setpoint depends on the TaskTime.

Function blocks

TS8000336 Version: 1.2

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rSetpointIn : REAL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: enable of the function block.

rSetpointIn: setpoint to which the output rSetpopintOut is regulated, depending on the absolute temperature
change rSetpointSlide per time change tRampTime. Each change of the setpoint starts a new calculation of
the setpoint to the target value of the ramp. The target value is the current value of rSetpointIn. The start
value of the ramp is the last value before changing rSetpointIn to the new target value, see Figure 1.1.
The parameters rMaxSetpoint and rMinSetpoint define the value range of rSetpointIn.
If an incorrect variable value is present at rSetpointIn, then the last valid variable value is taken, if available.
If there is no valid, last value, then work continues internally with rMinSetpoint. bInvalidParameter is set if the
variable value is incorrect, the function block continues to operate normally.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rSetpointOut : REAL;
tRemainingTime : TIME;
bValueReached : BOOL;
bInvalidParameter : BOOL;

rSetpointOut: output of the ramp generator

tRemainingTime: time duration in which the output rSetpointOut has reached the target value rSetpointIn.

bValueReached: a TRUE at this output indicates that the output rSetpointOut has reached the target value
rSetpointIn.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables rSetpointSlide or
tRampTime. An incorrect parameter entry does not lead to a standstill of the function block; see description
of variables. After rectifying the incorrect parameter entry, the message bInvalidParameter must be
acknowledged via bReset.

VAR_IN_OUT
rMinSetpoint : REAL;
rMaxSetpoint : REAL;
rSetpointSlide : REAL;
tRampTime : TIME;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 337Version: 1.2

rMinSetpoint/rMaxSetpoint: the parameters rMaxSetpoint and rMinSetpoint define the value range
(-10000..10000) of rSetpointIn. rMaxSetpoint must be greater than rMinSetpoint.

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally. The variable is saved persistently. Preset to 10 or 40
respectively.

rSetpointSlide: absolute temperature change in [Kelvin / tRampTime] with which the output is converted in
sliding steps from a lower to a higher value or from a higher to a lower value, see fig. 1.1

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally. The variable is saved persistently. Preset to 1.

tRampTime: ramp time (1s..24h) during which the final setpoint is reached in sliding steps, depending on
the absolute temperature change rSetpointSlide, see fig. 1.1

If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally. The variable is saved persistently. Preset to 3600 s.

Fig. 1.1:

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.5.6 FB_HVACSummerCompensation

Function blocks

TS8000338 Version: 1.2

Application

This function block is a set value generator for the exhaust air temperature or room temperature of an air
conditioning system. With the aid of this summer compensation, overly large temperature differences
between the outside temperature and the exhaust air/room temperature are avoided. This helps to save
energy whilst at the same time increasing comfort.

If the outside temperature increases to the point where the difference between it and the room temperature
is greater than the set difference of rSetpointShiftAbsolute, then the room temperature setpoint
(rSetpointOut) is raised. The permissible difference can be set from 0 to 10 Kelvin.

A check is performed in the function block that the maximum room temperature setpoint is not exceeded if
eSetpointMode:= eHVACSetpointMode_DINLimited.

Example I:

Room setpoint (rSetpointIn):= 21 °C

external setpoint (rSetpointExternal):= 2K (e.g. +/- 3K can be set via a potentiometer, but are not taken into
account because eExternalMode:= eHVACExternalMode_Off)

set differential value between outside temperature and room temperature (rSetpointShiftAbsolute):= 6 K

Outside temperature (rOutsideTemp):= 28°C

eExternalMode:= eHVACExternalMode_Off

eSetpointMode:= eHVACSetpointMode_DIN

calculated room temperature setpoint (rSetpointOut):= 22

Example II:

Room setpoint (rSetpointIn):= 20 °C

external setpoint (rSetpointExternal):= -2K (e.g. +/- 3K can be set via a potentiometer)

set differential value between outside temperature and room temperature (rSetpointShiftAbsolute):= 6 K

Outside temperature (rOutsideTemp):= 28°C

eExternalMode:= eHVACExternalMode_On

eSetpointMode:= eHVACSetpointMode_DIN

calculated room temperature setpoint (rSetpointOut):= 20

Example III:

Room setpoint (rSetpointIn):= 23 °C

external setpoint (rSetpointExternal):= 3K (e.g. +/- 3K can be set via a potentiometer)

set differential value between outside temperature and room temperature (rSetpointShiftAbsolute):= 6 K

Outside temperature (rOutsideTemp):= 34°C

rSetpointHighLimit:= 35°C

eExternalMode:= eHVACExternalMode_On

eSetpointMode:= eHVACSetpointMode_DINLimited

calculated room temperature setpoint (rSetpointOut):= 31

Example IV:

Room setpoint (rSetpointIn):= 24 °C

external setpoint (rSetpointExternal):= 3K (e.g. +/- 3K can be set via a potentiometer)

Function blocks

TS8000 339Version: 1.2

set differential value between outside temperature and room temperature (rSetpointShiftAbsolute):= 6 K

Outside temperature (rOutsideTemp):= 36°C

rSetpointHighLimit:= 30°C

eExternalMode:= eHVACExternalMode_On

eSetpointMode:= eHVACSetpointMode_DINLimited

calculated room temperature setpoint := 31 °C, but is limited to 30 °C on account of rSetpointHighLimit being
set to 30 °C ==> rSetpointOut:=30 °C

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
rSetpointIn : REAL;
rSetpointExternal : REAL;
rOutsideTemp : REAL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

rSetpointIn: the setpoint for the room is applied to this input.

rSetpointExternal: the setpoint adjustment or correction, e.g. from a potentiometer, is applied to this input.

rOutsideTemp: input for the outside temperature.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
rSetpointOut : REAL;
bInvalidParameter : BOOL;

rSetpointOut: calculated room temperature setpoint.

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT

rSetpointHighLimit : REAL;
rSetpointShiftAbsolute : REAL;
eExternalMode : E_HVACExternalMode;
eSetpointMode : E_HVACSetpointMode;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000340 Version: 1.2

rSetpointHighLimit: upper limit for the room temperature setpoint (0°C..100°C). The variable is saved
persistently. Preset to 35.

rSetpointShiftAbsolute: parameter value that defines the permissible difference between the outside
temperature and the room temperature. The permissible difference can be set from 0 to 10 Kelvin. If the
difference between the outside temperature and the room temperature is greater than the set parameter
value, the room temperature setpoint is raised. The variable is saved persistently. Preset to 6.

eExternalMode: the ENUM E_HVACExternalMode is used to activate/deactivate the external setpoint
specification.
eHVACExternalMode_Off, corresponds to the external setpoint specification via potentiometer in the panel
being deactivated.
eHVACExternaMode_On, corresponds to the external setpoint specification being activated, e.g. +/- 3 °C
eHVACExternalMode_ShiftAbsolut, corresponds to external setpoint specification absolute in °C

eSetpointMode: Enum that specifies the type of setpoint determination.

This increase of the setpoint in the case of high outside temperatures can be unlimited or limited according
to DIN. Selection takes place with the ENUM E_HVACSetpointMode. Besides these two modes for summer
compensation it is also possible to specify a fixed setpoint.

1. According to DIN (eHVACSetpointMode_DIN). The room temperature setpoint follows the outside
temperature, guided by a difference.

2. Limited (eHVACSetpointMode_DINLimited). The room temperature setpoint follows the outside
temperature, guided by a difference. However, it is limited. The limit value is rSetpointHighLimit.

3. Constant (eHVACSetpointMode_ConstantValueBase). The room temperature setpoint is specified as
a constant value; the outside temperature does not exert any influence.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6 HVAC Special functions

3.6.1 FB_HVACAirConditioning2Speed

Application

The function block FB_HVACAirConditioning2Speed controls switching to the second stage of air
conditioning systems with two-speed fans. Switching to the second stage via the output variable bSpeed2
can be performed either by a schedule via the input variable bTimeScheduler or load-dependent via a
difference between the setpoint of the room or exhaust temperature, rSetpoint, and the actual value of the
room or exhaust temperature, rActualValue, depending on the time delays tDelayHysteresisOn/
tDelayHysteresisOff, the switch-on and switch-off hystereses rHysteresisOn/rHysteresisOff and the setting of
the operation mode via the Enum eAirConditioning2SpeedMode.

Function blocks

TS8000 341Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bTimeScheduler : BOOL;
rSetpoint : REAL;
rActualValue : REAL;
bReset : BOOL;

eDataSecurityType: if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled by the PLC program with the input variable bEnable = TRUE. The
output variable bSpeed2 is FALSE if the function block is not enabled.

bTimeScheduler: request by a timer program for the second fan stage. If bEnable and bTimeScheduler are
TRUE, then bSpeed2 and bRequestScheduler are also TRUE.

rSetpoint: setpoint of room or exhaust air temperature

rActualValue: actual value of room or exhaust air temperature

bReset: input for acknowledging an incorrect parameter entry or an error via a rising edge.

VAR_OUTPUT
bSpeed2 : BOOL;
bRequestScheduler : BOOL;
bRequestTemperature: BOOL;
bInvalidParameter : BOOL;

bSpeed2: output for controlling the second fan stage.

bRequestScheduler: request for the second fan stage via the input variable bTimeScheduler.

bRequestTemperature: request for the second stage, depending on the load, via a difference between the
setpoint of the room or exhaust air temperature rSetpoint and the actual value of the room or exhaust air
temperature rActualValue depending on the time delays tDelayHysteresisOn/tDelayHysteresisOff , the
switch-on and switch-off hystereses rHysteresisOn/rHysteresisOff and the setting of the mode via the Enum
eAirConditioning2SpeedMode.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables rHysteresisOn,
rHysteresisOff and eAirConditioning2SpeedMode. An incorrect parameter entry does not lead to a standstill
of the function block; see description of variables. After rectifying the incorrect parameter entry, the message
bInvalidParameter must be acknowledged via bReset.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000342 Version: 1.2

VAR_IN_OUT
rHysteresisOn : REAL;
rHysteresisOff : REAL;
tDelayHyteresisOn : TIME;
tDelayHyteresisOff : TIME;
eAirConditioning2SpeedMode : E_HVACAirConditioning2SpeedMode;

rHysteresisOn: to switch on the second fan stage via a hysteresis loop, load-dependent, via the output
variable bSpeed2 depending on the enum eAirConditioning2SpeedMode (0..1000). rHysteresisOn must be
greater than rHysteresisOff, if the operation mode is
eAirConditioning2SpeedMode=eHVACAirConditioning2SpeedModeHeatingAndCooling.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally. The variable is saved persistently. Preset to 5.

rHysteresisOff: parameter to switch off the second fan stage via a hysteresis loop, load-dependent, via the
output variable bSpeed2 depending on the enum eAirConditioning2SpeedMode (0..1000).
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally. The variable is saved persistently. Preset to 1.

tDelayHysteresisOn: switch-on delay of the output variable bSpeed2 in the event of a load-dependent
request for the second fan stage. The variable is saved persistently. Preset to 300 s.

tDelayHysteresisOff: switch-off delay of the output variable bSpeed2 in the event of a load-dependent
request for the second fan stage. The variable is saved persistently. Preset to 300 s.

eAirConditioning2SpeedMode: Enum used to specify the load-dependent operation mode for switching on
the second fan stage via the output variable bSpeed2.
eAirConditioning2SpeedMode = eHVACAirConditioning2SpeedMode_Off: operation mode off
eAirConditioning2SpeedMode = eHVACAirConditioning2SpeedMode_Heating: heating operation mode. This
is an air conditioning system with heating operation only.
eAirConditioning2SpeedMode = eHVACAirConditioning2SpeedMode_Cooling: cooling operation mode. This
is an air conditioning system with cooling operation only.
eAirConditioning2SpeedMode = eHVACAirConditioning2SpeedMode_HeatingAndCooling: heating and
cooling operation mode. This is an air conditioning system with heating and cooling operation. The variable
is saved persistently. Preset to 1.

Operation mode eAirConditioning2SpeedMode = eHVACAirConditioning2SpeedMode_Heating

Function blocks

TS8000 343Version: 1.2

Operation mode eAirConditioning2SpeedMode = eHVACAirConditioning2SpeedMode_Cooling

Operation mode eAirConditioning2SpeedMode =
eHVACAirConditioning2SpeedMode_HeatingAndCooling

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)
2 fb_hvacairconditioning2speeddrawingheating.gif (Resources/gif/11659721995.gif)
2 fb_hvacairconditioning2speeddrawingcooling.gif (Resources/gif/11659723403.gif)
2 fb_hvacairconditioning2speeddrawingheatingandcooling.gif (Resources/gif/11659724811.gif)

Function blocks

TS8000344 Version: 1.2

3.6.2 FB_HVACAlarm

Application

A TRUE on the input bAlarmIn indicates that an alarm signal is present. The alarm is passed on to the output
bAlarm only if bAlarmIn is present for longer than the preset time tAlarmDelay. Furthermore, the input
bCtrlVoltage must be TRUE in order for an alarm to be announced. Output bAlarm remains set to TRUE until
bAlarmIn = FALSE and the alarm is acknowledged by a positive edge on bReset.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bAlarmIn : BOOL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bAlarmIn: a TRUE on the input bAlarmIn indicates that an alarm signal is present.

bCtrlVoltage: a check via the input bCtrlVoltage is made of whether control voltage is present.

bReset: acknowledge input.

VAR_OUTPUT
bAlarm : BOOL;

bAlarm: TRUE if an alarm is announced.

VAR_IN_OUT
tAlarmDelay : TIME;

tAlarmDelay: delay after the alarm is first signaled if, during the preset time, bAlarmIn was constantly
present (0s..500s). The variable is saved persistently. Preset to 500s..

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 345Version: 1.2

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.3 FB_HVACAntiBlockingDamper

Application

This function block prevents the blocking of an actuator over long time intervals with an unchanged control
value. When activated, the blocking protection forces the actuator to drive from fully closed to fully open.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bDisable : BOOL;
ryDamper : REAL; 0 .. 100 %
dtSystemTime : DT;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function AntiBlocking is enabled with the input variable bEnable. If bEnable = FALSE, only the
input value will be applied at the output; the AntiBlocking function is not active.

bDisable: resets the outputs rQDamper, iQDamper and bQAntiBlocking to 0.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000346 Version: 1.2

ryDamper: control value from the controller to the valve, which is passed on to the outputs rQDamper and
iQDamper. The value must be smaller than 1 % in order for the function block to recognize this as standstill
time. No standstill time will be determined for a valve with a control value >= 1 %.

dtSystemTime: system time

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter.

VAR_IN_OUT
eAntiBlockingMode : E_HVACAntiBlockingMode;
iHoursDowntime : INT;
iDayWeekly : INT;
iHour : INT;
iMinute : INT;
iLengthImpulse : INT;

eHVACAntiBlockingMode: enumeration value that specifies the type of Antiblocking method.

eHVACAntiBlockingMode_Off:= 0 : off

eHVACAntiBlockingMode_Downtime:= 1 : after the expiry of a standstill time in hours, the Antiblocking pulse
will be passed on to the bOut output.

eHVACAntiBlockingMode_Weekly:= 2 : the antiblocking pulse is only generated on a certain day of the
week and at a certain time, independent of how long the standstill has lasted.

The variable is saved persistently.

iHoursDowntime: for eHVACAntiBlockingMode_Downtime, the time in hours for which the input bIn may not
be active until the AntiBlocking pulse is formed (0h..6000h). The variable is saved persistently. Preset to 24.

iDayWeekly: for eHVACAntiBlockingMode_Weekly,AntiBlocking pulse is formed on this day. Sun=0, Mon=1,
Tue=2, Wed=3, Thu=4, Fri=5, Sat=6

The variable is saved persistently. Preset to 6.

iHour: switch-on time in hours (0h..23 h). The variable is saved persistently. Preset to 12.

iMinute: switch-on time in minutes (0min..59min). The variable is saved persistently. Preset to 0.

iLengthImpulse: switch-on time in seconds (0s..600s). The variable is saved persistently. Preset to 150.

VAR_OUTPUT
rQDamper : REAL; 0 .. 100 %
iQDamper : INT; 0 .. 32767
bQAntiBlocking : BOOL;
bInvalidParameter: BOOL;

rQDamper: this output corresponds to the input value of the control value. As soon as the input bEnable = is
TRUE, the Antiblocking pulse is additionally applied to the output. 100% is present at the output when the
Antiblocking state is reached.

iQDamper: this output behaves like rQDamper, but in order to suit an analog output it is output as an integer
value from 0 - 32767, corresponding to 0 - 100%.

bQAntiBlocking: this output is independent of the switch-on signal and shows only the Antiblocking pulse.

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 347Version: 1.2

3.6.4 FB_HVACAntiBlockingPump

Application

This function block relays the switch-on condition for a pump drive and can generate an additional switch-on
pulse, depending on the mode and the switch-off time, in order e.g. to prevent the blockage of a pump.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
bDisable : BOOL;
bIn : BOOL;
dtSystemTime : DT;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function AntiBlocking is enabled with the input variable bEnable. If bEnable = FALSE, only the
switch-on condition will be applied at the output; the AntiBlocking function is not active.

bDisable: resets the outputs bOut , bOutAndAntiBlocking and bQAntiBlocking to 0. (See example below)

bIn: switch-on condition that is passed on to the output bOut.

dtSystemTime: system time

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000348 Version: 1.2

VAR_IN_OUT

eAntiBlockingMode: E_HVACAntiBlockingMode;
iHoursDowntime : INT;
iDayWeekly : INT;
iHour : INT;
iMinute : INT;
iLengthImpulse : INT;

eHVACAntiBlockingMode: enumeration value that specifies the type of Antiblocking method.

eHVACAntiBlockingMode_Off:= 0 : off

eHVACAntiBlockingMode_Downtime:= 1 : after the expiry of a standstill time in hours, the Antiblocking pulse
will be passed on to the bOut output.

eHVACAntiBlockingMode_Weekly:= 2 : the antiblocking pulse is only generated on a certain day of the
week and at a certain time, independent of how long the standstill has lasted.

The variable is saved persistently.

iHoursDowntime: for eHVACAntiBlockingMode_Downtime, the time in hours for which the input bIn may not
be active until the AntiBlocking pulse is formed (0h..6000h). The variable is saved persistently. Preset to 24.

iDayWeekly: for eHVACAntiBlockingMode_Weekly,AntiBlocking pulse is formed on this day. Sun=0, Mon=1,
Tue=2, Wed=3, Thu=4, Fri=5, Sat=6

The variable is saved persistently. Preset to 6.

iHour: switch-on time in hours (0h..23 h). The variable is saved persistently. Preset to 12.

iMinute: switch-on time in minutes (0min..23min). The variable is saved persistently. Preset to 0.

iLengthImpulse: switch-on time in seconds (0s..600s). The variable is saved persistently. Preset to 150.

VAR_OUTPUT
bOut : BOOL;
bOutAndAntiBlocking: BOOL;
bQAntiBlocking : BOOL;
bInvalidParameter : BOOL;

bOut: if TRUE, then the request comes from the pump function block. This output corresponds to the switch-
on condition independent of the state of the Antiblocking pulse and the input bEnable.

bOutAndAntiBlocking: the output can go TRUE if the request comes from the pump function block OR
from the antiblocking function. The pump is connected to this output.
This output corresponds to the switch-on condition independent of the state of the Antiblocking pulse and the
inputs bEnable and bDisable. IfbEnable = FALSE the output corresponds to the output bOut. If bEnable =
TRUE, then the output corresponds to the output bOut and is additionally Ored° with the Antiblocking pulse.

bQAntiBlocking: if TRUE, then the request comes from the antiblocking function. This output is
independent of the switch-on signal and shows only the Antiblocking pulse.

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

Example of a combination of a pump block and the FB_HVACAntiBlocking:
• The pump output bPump is applied to bIn of the FB_HVACAntiBlocking also without bEnable.
• If the input bPumpProtec goes to FALSE, bPump is switched off and bDisable becomes active via the

message bErrorPumpProtec, so that bOut is switched off.

Function blocks

TS8000 349Version: 1.2

Example of the control of several pumps via one AntiBlocking instance:
• Enable fbHVACAntiBlocking via bEnable.
• Select weekly mode (e.g. Monday at 18:30 for 10 secs)

Documents about this

Function blocks

TS8000350 Version: 1.2

2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.5 FB_HVACBlink

Application

The function block delivers a flash sequence at the output bBlink that is dependent on the two adjustable
times tTimeOn and tTimeOff.

VAR_INPUT
bEnable :REAL;
tTimeOn :TIME;
tTimeOff :TIME;

bEnable: enable of the function block.

tTimeOn: switch-on time of the flash pulse, bBlink = TRUE.

tTimeOff: switch-off time of the flash pulse, bBlink = FALSE.

VAR_OUTPUT
bBlink :BOOL;
tNextSwitching :TIME;

bBlink: flash output

tNextSwitching: time until the next change of state of the output bBlink .

Behavior of the output value

Function blocks

TS8000 351Version: 1.2

3.6.6 FB_HVACCmdCtrl_8

Application

With this function block, individual aggregates in a system can be sequentially switched on (bQ_Cmd > bQ1
> bQ2 ... bQ8) or switched off (bQ8 > bQ7 > bQ6 ... bQ_Cmd). FB_HVACCmdCtrl_8 can be used as the
starting function block of a ventilation system.

An event and a parameter structure with time variables belong to each output. These can be used to define a
switch-on or switch-off delay as well as a minimum switch-on or minimum switch-off duration of the output.

Switch-on condition if and are TRUE: bEn bCmd

Q(n) = Q(n - 1) AND Event(n) AND (DelayOn(n) = 0 AND (MinOff(n) = 0 ANDstState.udiStep = n

Example for the output bQ_Cmd

bQ_Cmd = bCmdANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[0] = 0
ANDstState.udiStep = 0

Example for the output bQ2

bQ2 = bQ1ANDbEvt2ANDstState.udiSecRT_DelayOn = 0 ANDstState[2].udiSecRT_MinOff = 0
ANDstState.udiStep = 2

Switch-off condition if and are TRUE: bEn bCmd

Q(n) = NOT Q(n + 1) AND (DelayOff(n) = 0 AND (MinOn(n) = 0 ANDstState.udiStep = n

Example for the output bQ8

bQ8 = stState.udiSecRT_DelayOff = 0 ANDstState[7].udiSecRT_MinOn = 0 ANDstState.udiStep = 8

Example for the output bQ_Cmd

bQ_Cmd = NOTbQ1 AND stState.udiSecRT_DelayOff = 0 ANDstState[0].udiSecRT_MinOn = 0
ANDstState.udiStep = 0

Current step

On the basis of the status variable stState.udiStep it is possible to see which step the function block is
currently in.

Function blocks

TS8000352 Version: 1.2

Switch-on and switch-off sequence

If bEn and bCmd are TRUE, the switch-on sequence is (bQ_Cmd > bQ1 > bQ2 ... bQ8). The switch-off
sequence (bQ8 > bQ7 > bQ6 ... bQ_Cmd) is active ifbEn = TRUE and bCmd = FALSE.

If an output has been set in the switch-on sequence, then it remains latched and is only reset in the switch-
off phase. In the switch-off sequence, no event (bEvt1-8) has any effect on the switch-off conditions of the
outputs.

If the function block is in the switch-off sequence and the switch-on phase is activated by bCmd = TRUE,
then the function block starts in step 0 with the switch-on conditions of bQ_Cmd. For the other outputs the
minimum switch-on or switch-off times are active until their expiry.

Function blocks

TS8000 353Version: 1.2

Time responses of an individual step

The diagram shows the time responses of step 1 or the output bQ1.

Function blocks

TS8000354 Version: 1.2

Function blocks

TS8000 355Version: 1.2

Application example

The application example shows the function block FB_HVACCmdCtrl_8 in conjunction with
FB_HVACPriority_INT_8 as the system start program for a ventilation system. The example
AC03_StartAC.PRG can be found in the folder Language CFC > SpecialFunctions > Start.

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDST : E_HVACDataSecurityType;
bEn : BOOL;
bCmd : BOOL;
bEvt1 : BOOL;
bEvt2 : BOOL;
bEvt3 : BOOL;
bEvt4 : BOOL;
bEvt5 : BOOL;
bEvt6 : BOOL;
bEvt7 : BOOL;
bEvt8 : BOOL;

eDST:if eDST := eHVACDataSecurityType_Persistent, the persistent VAR_IN_OUT variables of the function
block are stored in the flash of the computer if a value changes. For this to work, the function block
FB_HVACPersistentDataHandling must be instanced once in the main program, which is called cyclically.
Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDST:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a fail-safe
manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block, if eDST:=
eHVACDataSecurityType_Persistent. It would lead to early wear of the flash memory.

bEn: enable of the function block. The function block is disabled if bEn is FALSE. All outputs go to FALSE
and the timers for the switch-on and switch-off delays as well as the minimum switch-on and switch-off times
are reset. A collective error message or an emergency stop switch for immediately switching off a system
can be connected to the input bEn.

bCmd: the switch-on or switch-off sequence of the function block is defined with bCmd. If bCmd is TRUE,
then the function block is in the switch-on sequence of the outputs. The switching on of a system could
come, for example, from a timer program. If bCmd is FALSE, then the function block is in the switch-off
sequence of the outputs.

bCmd counts as one of the switch-on conditions of bQ_Cmd.

bEvt1: the event bEvt1 counts as one of the switch-on conditions of bQ1. In the switch-on phase of bQ1,
the switch-on delay of the output is active only if bEvt1 is TRUE.

Switch-on condition:

bQ1 = bQ_CmdANDbEvt1ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[1] = 0
ANDstState.udiStep = 1

The event bEvt1 has no effect on the switch-off condition of bQ1.

bEvt2: the event bEvt2 counts as one of the switch-on conditions of bQ2. In the switch-on phase of bQ2, the
switch-on delay of the output is active only if bEvt2 is TRUE.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000356 Version: 1.2

Switch-on condition:

bQ2 = bQ1ANDbEvt2ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[2] = 0
ANDstState.udiStep = 2

The event bEvt2 has no effect on the switch-off condition of bQ2.

bEvt3: the event bEvt3 counts as one of the switch-on conditions of bQ3. In the switch-on phase of bQ3, the
switch-on delay of the output is active only if bEvt3 is TRUE.

Switch-on condition:

bQ3 = bQ2ANDbEvt3ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[3] = 0
ANDstState.udiStep = 3

The event bEvt3 has no effect on the switch-off condition of bQ3.

bEvt4: the event bEvt4 counts as one of the switch-on conditions of bQ4. In the switch-on phase of bQ4, the
switch-on delay of the output is active only if bEvt4 is TRUE.

Switch-on condition:

bQ4 = bQ3ANDbEvt4ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[4] = 0
ANDstState.udiStep = 4

The event bEvt4 has no effect on the switch-off condition of bQ4.

bEvt5: the event bEvt5 counts as one of the switch-on conditions of bQ5. In the switch-on phase of bQ5, the
switch-on delay of the output is active only if bEvt5 is TRUE.

Switch-on condition:

bQ5 = bQ4ANDbEvt5ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[5] = 0
ANDstState.udiStep = 5

The event bEvt5 has no effect on the switch-off condition of bQ5.

bEvt6: the event bEvt6 counts as one of the switch-on conditions of bQ6. In the switch-on phase of bQ6, the
switch-on delay of the output is active only if bEvt6 is TRUE.

Switch-on condition:

bQ6 = bQ5ANDbEvt6ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[6] = 0
ANDstState.udiStep = 6

The event bEvt6 has no effect on the switch-off condition of bQ6.

bEvt7: the event bEvt7 counts as one of the switch-on conditions of bQ7. In the switch-on phase of bQ7, the
switch-on delay of the output is active only if bEvt7 is TRUE.

Switch-on condition:

bQ7 = bQ6ANDbEvt7ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[7] = 0
ANDstState.udiStep = 7

The event bEvt7 has no effect on the switch-off condition of bQ7.

bEvt8: the event bEvt8 counts as one of the switch-on conditions of bQ8. In the switch-on phase of bQ8, the
switch-on delay of the output is active only if bEvt8 is TRUE.

Switch-on condition:

bQ8 = bQ7ANDbEvt8ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[8] = 0
ANDstState.udiStep = 8

The event bEvt8 has no effect on the switch-off condition of bQ8.

Function blocks

TS8000 357Version: 1.2

VAR_OUTPUT
bQ_Cmd : BOOL;
bQ1 : BOOL;
bQ2 : BOOL;
bQ3 : BOOL;
bQ4 : BOOL;
bQ5 : BOOL;
bQ6 : BOOL;
bQ7 : BOOL;
bQ8 : BOOL;
stState : ST_HVACCmdCtrl_8State;

bQ_Cmd: output to enable a device. If the output bQ_Cmd has been set in the switch-on sequence, then it
remains latched and is only reset in the switch-off phase.

To bQ_Cmd belongs the input variable bCmd and the parameter structure stParamCmd. bCmd is one of the
switch-on conditions of bQ_Cmd. The time variables of the parameter structure can be used to define a
switch-on or switch-off delay as well as a minimum switch-on or minimum switch-off duration for the output.
The state of the time responses is indicated with the output structure stState.

Switch-on condition

bQ_Cmd = bCmdANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[0] = 0
ANDstState.udiStep = 0

Switch-off condition

bQ_Cmd = NOTbQ1ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[0] = 0
ANDstState.udiStep = 0

bQ1: output to enable a device. If the output bQ1 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

To bQ1 belongs the event 1 bEvt1 and the parameter structure stParam1. bEvt1 is one of the switch-on
conditions of bQ1. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ1 = bEvt1ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[1] = 0 ANDstState.udiStep =
1

Switch-off condition

bQ1 = NOTbQ1ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[1] = 0
ANDstState.udiStep = 1

bQ2: output to enable a device. If the output bQ2 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

To bQ2 belongs the event 2 bEvt2 and the parameter structure stParam2. bEvt2 is one of the switch-on
conditions of bQ2. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ2 = bEvt2ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[2] = 0 ANDstState.udiStep =
2

Switch-off condition

bQ2 = NOTbQ2ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[2] = 0
ANDstState.udiStep = 2

bQ3: output to enable a device. If the output bQ3 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

Function blocks

TS8000358 Version: 1.2

To bQ3 belongs the event 3 bEvt3 and the parameter structure stParam3.bEvt3 is one of the switch-on
conditions of bQ3. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ3 = bEvt3ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[3] = 0 ANDstState.udiStep =
3

Switch-off condition

bQ3 = NOTbQ3ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[3] = 0
ANDstState.udiStep = 3

bQ4: output to enable a device. If the output bQ4 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

To bQ4 belongs the event 4 bEvt4 and the parameter structure stParam4. bEvt4 is one of the switch-on
conditions of bQ4. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ4 = bEvt4ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[4] = 0 ANDstState.udiStep =
4

Switch-off condition

bQ4 = NOTbQ4ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[4] = 0
ANDstState.udiStep = 4

bQ5: output to enable a device. If the output bQ5 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

To bQ5 belongs the event 5 bEvt5 and the parameter structure stParam5. bEvt5 is one of the switch-on
conditions of bQ5. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ5 = bEvt5ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[5] = 0 ANDstState.udiStep =
5

Switch-off condition

bQ5 = NOTbQ5ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[5] = 0
ANDstState.udiStep = 5

bQ6: output to enable a device. If the output bQ6 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

To bQ6 belongs the event 6 bEvt6 and the parameter structure stParam6. bEvt6 is one of the switch-on
conditions of bQ6. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ6 = bEvt6ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[6] = 0 ANDstState.udiStep =
6

Switch-off condition

bQ6 = NOTbQ6ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[6] = 0
ANDstState.udiStep = 6

Function blocks

TS8000 359Version: 1.2

bQ7: output to enable a device. If the output bQ7 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

To bQ7 belongs the event 7 bEvt7 and the parameter structure stParam7. bEvt7 is one of the switch-on
conditions of bQ7. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ7 = bEvt7ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[7] = 0 ANDstState.udiStep =
7

Switch-off condition

bQ7 = NOTbQ7ANDstState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[7] = 0
ANDstState.udiStep = 7

bQ8: output to enable a device. If the output bQ8 has been set in the switch-on sequence, then it remains
latched and is only reset in the switch-off phase.

To bQ8 belongs the event 8 bEvt8 and the parameter structure stParam8. bEvt8 is one of the switch-on
conditions of bQ8. The time variables of the parameter structure can be used to define a switch-on or switch-
off delay as well as a minimum switch-on or minimum switch-off duration for the output. The state of the time
responses is indicated with the output structure stState.

Switch-on condition

bQ8 = bEvt8ANDstState.udiSecRT_DelayOn = 0 ANDstState.udiSecRT_MinOff[8] = 0 ANDstState.udiStep =
8

Switch-off condition

bQ8 = stState.udiSecRT_DelayOff = 0 ANDstState.udiSecRT_MinOn[8] = 0 ANDstState.udiStep = 8

stState: this structure indicates the remaining time of the switch-on or switch-off delay of the active step and
the minimum switch-on and switch-off duration of the outputs.

stState.udiSecRT_DelayOn: in the switch-on phase of the outputs (bCmd = TRUE), the remaining time of the
switch-on delay of the current step stState.udiStep is indicated by stState.udiSecRT_DelayOn.

Example: If stState.udiStep = 5, then the function block is in step 5. The time variable of the parameter
structure stParam5.udiSecDelayOn is used for the switch-on delay of the output bQ5 and the remaining time
is indicated by udiSecRT_DelayOn.

stState.udiSecRT_DelayOff: in the switch-off phase of the outputs (bCmd = FALSE), the remaining time of
the switch-off delay of the current step stState.udiStep is indicated by udiSecRT_DelayOff.

Example: If stState.udiStep = 0, then the function block is in step 0. The time variable
stParamCmd.udiSecDelayOff is used for the switch-off delay of the output bQ_Cmd and the remaining time
is indicated by udiSecRT_DelayOff.

stState.udiStep: state indicating which step the function block is in.

Examples:

- If stState.udiStep = 0, then the function block is in the switch-on or switch-off sequence of the output
bQ_Cmd.

- If stState.udiStep = 1, then the function block is in the switch-on or switch-off sequence of the output bQ1.

- If stState.udiStep = 8, then the function block is in the switch-on or switch-off sequence of the output bQ8

stState.udiSecRT_MinOn[0]: .. g_iNumOfCmdCtrl_8 [} 531] The remaining time of the minimum switch-on
duration of the outputs is indicated in the one-dimensional field (table)
stState.udiSecRT_MinOn[0..g_iNumOfCmdCtrl_8 [} 531]]. Following the expiry of the minimum switch-on
duration of an output, the output can be switched off in the current step stState.udiStep.

Function blocks

TS8000360 Version: 1.2

stState.udiSecRT_MinOff[0]: .. g_iNumOfCmdCtrl_8 [} 531] The remaining time of the minimum switch-off
duration of the outputs is indicated in the one-dimensional field (table)
stState.udiSecRT_MinOff[0..g_iNumOfCmdCtrl_8 [} 531]]. Following the expiry of the minimum switch-off
duration of an output, the output can be switched on in the current step stState.udiStep.

VAR_IN_OUT
stParamCmd : ST_HVACCmdCtrl_8Param;
stParam1 : ST_HVACCmdCtrl_8Param;
stParam2 : ST_HVACCmdCtrl_8Param;
stParam3 : ST_HVACCmdCtrl_8Param;
stParam4 : ST_HVACCmdCtrl_8Param;
stParam5 : ST_HVACCmdCtrl_8Param;
stParam6 : ST_HVACCmdCtrl_8Param;
stParam7 : ST_HVACCmdCtrl_8Param;
stParam8 : ST_HVACCmdCtrl_8Param;

stParamCmd: The structure contains time variables that can be used to define a switch-on or switch-off
delay as well as a minimum switch-on or minimum switch-off duration of the output bQ_CMD. The variable is
saved persistently.

stParam1: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ1. The variable is saved
persistently.

stParam2: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ2. The variable is saved
persistently.

stParam3: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ3. The variable is saved
persistently.

stParam4: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ4. The variable is saved
persistently.

stParam5: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ5. The variable is saved
persistently.

stParam6: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ6. The variable is saved
persistently.

stParam7: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ7. The variable is saved
persistently.

stParam8: the structure contains time variables that can be used to define a switch-on or switch-off delay as
well as a minimum switch-on or minimum switch-off duration of the output bQ8. The variable is saved
persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 361Version: 1.2

3.6.7 FB_HVACCmdCtrlSystem1Stage

Application

This function block FB_HVACCmdCtrlSystem1Stage is a system switch. It is used, for example, to switch a
single-stage ventilation system to automatic or manual operation mode. In automatic operation mode the
system can be controlled via a timer program or via the request from a control panel. The function block
FB_HVACCmdCtrlSystem1Stage is active if the input variable bEnable is TRUE and eCtrlModeActuator =
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
eCtrlModeActuator : E_HVACActuatorMode;
bExternalRequest : BOOL;
bTimeScheduler : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, then bOn = FALSE.

eCtrlModeActuator: enum that specifies the system operation modes Manual, Auto and Off. In the event of
an incorrect entry, operation continues internally with the last valid operating mode. This is
eHVACActuatorMode_Auto_BMS in the case of initial commissioning. bInvalidParameter will be set in the
event of an incorrect parameter entry.

bExternalRequest: external request for the system, e.g. from a control panel via a button or switch.

bTimeScheduler: request for the system via a timer program.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000362 Version: 1.2

bReset: acknowledge input in the event of an error

VAR_OUTPUT
bOn : BOOL;
eStateModeActuator: E_HVACActuatorMode;
bRequestScheduler : BOOL;
bRequestExternal : BOOL;
bInvalidParameter : BOOL;

bOn: this output variable enables the system.

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bRequestScheduler: this output indicates that the system is requested by the input variable
bTimeScheduler.

bRequestExternal: this output indicates that the system is requested by the input variable
bExternalRequest.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrlModeActuator,ePlantMode or eExternalRequestMode. An incorrect parameter entry does not lead to a
standstill of the function block; see description of variables. After rectifying the incorrect parameter entry, the
message bInvalidParameter must be acknowledged via bReset.

VAR_IN_OUT
ePlantMode : E_HVACPlantMode;
eExternalRequestMode : E_HVACExternalRequestMode;
tOffDelay : TIME;

ePlantMode: with this enumeration variable various functions of the system can be performed in automatic
operation mode, depending on the input variables bExternalRequest and bTimeScheduler.
ePlantMode = eHVACPlantMode_TimeSchedulingOnly: the plant is switched on and off exclusively via the
input variable bTimeScheduler.
ePlantMode = eHVACPlantMode_TimeScheduling_And_ExternalRequest: the plant is switched on if the
input variables bTimeScheduler AND bExternalRequest = TRUE.
ePlantMode = eHVACPlantMode_TimeScheduling_Or_ExternalRequest: the plant is switched on by the
input variables bTimeScheduler OR bExternalRequest.
ePlantMode = eHVACPlantMode_ExternalRequestOnly: the plant is switched on and off exclusively via the
input variable bExternalRequest.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, operation continues with the default value. bInvalidParameter will be set in the event of an
incorrect parameter entry. The variable is saved persistently. Preset to 0.

eExternalRequestMode: the enum eExternalRequestMode defines the mode of operation of the input
variable bExternalRequest in automatic mode depending on the enum ePlantMode.
eExternalRequestMode = eHVACExternalRequestMode_ButtonOn_Off: the external request is set to TRUE
after a rising edge of bExternalRequest. Another rising edge resets the request to FALSE again.
eExternalRequestMode = eHVACExternalRequestMode_ButtonOffDelay: the external request extends or
sets the utilization time of the plant after a rising edge at the input variable bExternalRequest by the set time
of tOffDelay.
eExternalRequestMode = eHVACExternalRequestMode_SwitchOn_Off: the external request is active if
bExternalRequest = TRUE. It is deactivated if bExternalRequest = FALSE.
If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, operation continues with the default value. bInvalidParameter will be set in the event of an
incorrect parameter entry. The variable is saved persistently. Preset to 0.

tOffDelay: time value for the extension of the system utilization time. The extension of the utilization time can
only be activated if eModeExternalRequest = 2. The variable is saved persistently. Preset to 30 min.

Function blocks

TS8000 363Version: 1.2

Behavior of the output value

Function blocks

TS8000364 Version: 1.2

Function blocks

TS8000 365Version: 1.2

Function blocks

TS8000366 Version: 1.2

Function blocks

TS8000 367Version: 1.2

Function blocks

TS8000368 Version: 1.2

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 369Version: 1.2

3.6.8 FB_HVACCmdCtrlSystem2Stage

Application

This function block FB_HVACCmdCtrlSystem2Stage is a system switch. It is used, for example, to switch a
two-stage ventilation system to automatic or manual operation mode. In automatic operation mode the
system can be controlled via a timer program or via the request from a control panel. The function block
FB_HVACCmdCtrlSystem2Stage is active if the input variable bEnable is TRUE and eCtrlModeActuator =
eHVACActuatorMode_Auto_BMS or eHVACActuatorMode_Auto_OP.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
eCtrlModeActuator : E_HVACActuatorMode;
bExternalRequest1 : BOOL;
bExternalRequest2 : BOOL;
bTimeScheduler1 : BOOL;
bTimeScheduler2 : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE. If bEnable = FALSE, then bOn1 and bOn2 =
FALSE.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000370 Version: 1.2

eCtrlModeActuator: enum that specifies the system operation modes Manual, Auto and Off. In the event of
an incorrect entry, operation continues internally with the last valid operating mode. This is
eHVACActuatorMode_Auto_BMS in the case of initial commissioning. bInvalidParameter will be set in the
event of an incorrect parameter entry.

bExternalRequest1: external request for the system in stage 1, e.g. from a control panel via a button or
switch.

bExternalRequest2: external request for the system in stage 2, e.g. from a control panel via a button or
switch.

bTimeScheduler1: request for the system in stage 1 via a timer program.

bTimeScheduler2: request for the system in stage 2 via a timer program.

bReset: acknowledge input in the event of an error.

VAR_OUTPUT
bOn1 : BOOL;
bOn2 : BOOL;
eStateModeActuator : E_HVACActuatorMode;
bRequestScheduler1 : BOOL;
bRequestScheduler2 : BOOL;
bRequestExternal1 : BOOL;
bRequestExternal2 : BOOL;
bInvalidParameter : BOOL;

bOn1: this output variable enables the system for stage 1.

bOn2: this output variable enables the system for stage 2. If stage 2 is enabled, then stage 1 is automatically
also enabled.

eStateModeActuator: Enum via which the state of the operation mode of the motor is fed back to the
controller.

bRequestScheduler1: this output indicates that the system is requested by the input variable
bTimeScheduler1.

bRequestScheduler2: this output indicates that the system is requested by the input variable
bTimeScheduler2.

bRequestExternal1: this output indicates that the system is requested by the input variable
bExternalRequest1.

bRequestExternal2: this output indicates that the system is requested by the input variable
bExternalRequest2.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables
eCtrlModeActuator,ePlantMode or eExternalRequestMode. An incorrect parameter entry does not lead to a
standstill of the function block; see description of variables. After rectifying the incorrect parameter entry, the
message bInvalidParameter must be acknowledged via bReset.

VAR_IN_OUT
ePlantMode : E_HVACPlantMode;
eExternalRequestMode: E_HVACExternalRequestMode;
tOffDelay1 : TIME;
tOffDelay2 : TIME;

ePlantMode: this enumeration variable can be used to perform various functions of the plant in automatic
mode depending on the input variables bExternalRequest1, bExternalRequest2, bTimeScheduler1 and
bTimeScheduler2.
ePlantMode = eHVACPlantMode_TimeSchedulingOnly: the plant is switched on exclusively via the input
variables bTimeScheduler1 or bTimeScheduler2into the respective stage.
ePlantMode = eHVACPlantMode_TimeScheduling_And_ExternalRequest: the plant is switched on in stage 1
if the input variables bTimeScheduler1 AND bExternalRequest1 = TRUE. If the input variables
bTimeScheduler2 AND bExternalRequest2 = TRUE, the plant is switched on in stage 2.
ePlantMode = eHVACPlantMode_TimeScheduling_Or_ExternalRequest: the plant is switched on in the
respective stage via the input variables bExternalRequest1, bExternalRequest2, OR bTimeScheduler1,

Function blocks

TS8000 371Version: 1.2

bTimeScheduler2.
ePlantMode = eHVACPlantMode_ExternalRequestOnly: the plant is switched on exclusively via the input
variable bExternalRequest1or bExternalRequest2 into the respective stage.
If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, operation continues with the default value. bInvalidParameter will be set in the event of an
incorrect parameter entry.

The variable is saved persistently. Preset to 0.

eExternalRequestMode: the enum eExternalRequestMode defines the mode of operation of the input
variable bExternalRequest1 and bExternalRequest2 in automatic mode depending on the enum ePlantMode.
eExternalRequestMode = eHVACExternalRequestMode_ButtonOn_Off: the external request is set to TRUE
after a rising edge of bExternalRequest1 or bExternalRequest2. Another rising edge resets the request to
FALSE again.
eExternalRequestMode = eHVACExternalRequestMode_ButtonOffDelay. The external request extends or
sets the utilization time of the plant in the respective stage after a rising edge at the input variable
bExternalRequest1 or bExternalRequest2 by the set time of tOffDelay1 or tOffDelay2.
eExternalRequestMode = eHVACExternalRequestMode_SwitchOn_Off: the external request is active if
bExternalRequest1 or bExternalRequest2 = TRUE. It is deactivated if bExternalRequest1 or
bExternalRequest2 = FALSE.
If an incorrect variable value is present, then the last valid variable value is used, if available. If there is no
valid last value, operation continues with the default value. bInvalidParameter will be set in the event of an
incorrect parameter entry.

The variable is saved persistently. Preset to 0.

tOffDelay1: time value for the utilization time extension of the plant in stage 1. The utilization time extension
can only be activated if eModeExternalRequest = 2. The variable is saved persistently. Preset to 30 min.

tOffDelay2: time value for the utilization time extension of the plant in stage 2. The utilization time extension
can only be activated if eModeExternalRequest = 2. The variable is saved persistently. Preset to 30 min.

Function blocks

TS8000372 Version: 1.2

Behavior of the output value

Function blocks

TS8000 373Version: 1.2

Function blocks

TS8000374 Version: 1.2

Function blocks

TS8000 375Version: 1.2

Function blocks

TS8000376 Version: 1.2

Function blocks

TS8000 377Version: 1.2

Function blocks

TS8000378 Version: 1.2

Function blocks

TS8000 379Version: 1.2

Function blocks

TS8000380 Version: 1.2

Function blocks

TS8000 381Version: 1.2

Function blocks

TS8000382 Version: 1.2

Function blocks

TS8000 383Version: 1.2

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.9 FB_HVACConvertEnum

Application

This function block converts an Enum into an integer value and vice versa. This conversion is particularly
suitable for Enums that are used as VAR_IN_OUT variables on function blocks.

VAR_INPUT
pEnum : UDINT;
udiLenEnum : UDINT;
pInt : UDINT;
udiLenInt : UDINT;

pEnum: address of the Enum to be converted. The address is determined with the ADR operator.

udiLenEnum: number of bytes of which the data type Enum consists. The number is determined with the
SIZEOF operator.

pInt: address of the integer variable to be converted. The address is determined with the ADR operator.

Function blocks

TS8000384 Version: 1.2

udiLenInt: number of bytes of which the data type Integer consists. The number is determined with the
SIZEOF operator.

VAR_OUTPUT
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

bError: this output indicates with a TRUE that there is an error. (The number of bytes of which the data
types Integer or Enum consist is wrong.)

eErrorCode: returns the error number [} 520] when the bError output is set. The following errors can occur
in this function block: eHVACErrorCodes_Error_LEN_Int (43), eHVACErrorCodes_Error_LEN_Enum (44)

Application example

Download Required library
https://infosys.beckhoff.com/content/1033/
tcplclibhvac/Resources/11659726219/.zip

TcHVAC.lib

3.6.10 FB_HVACEnthalpy

Application

This function block is used to calculate the dew point, the specific enthalpy and the absolute humidity. The
temperature, the relative humidity and the barometric air pressure are required for the calculation of these
parameters.
Enthalpy is a measure of the energy of a thermodynamic system.

VAR_INPUT
rTemperature : REAL; [°C]
rRelativeHumidity : REAL; [%] 1..100
rBarometricPressure : REAL; [hPa]

rTemperature: input for the temperature value, in degrees Celsius.

rRelativeHumidity: input for relative humidity, in percent. The value must equal or greater 1.

rBarometricPressure: input for air pressure, in hectopascal.

VAR_OUTPUT
rDewPoint : REAL; [°C]
rEnthalpy : REAL; [kJ/kg]
rAbsoluteHumidity : REAL; [kg/kg]
rRho : REAL; [kg/m³]
rYpsilon : REAL; [m³/kg]
bInvalidParameter : BOOL;

rDewPoint: DEW point [°C].

rEnthalpy: enthalpy [kJ / kg].

rAbsoluteHumidity: absolute humidity [kg/kg]. The result must be multiplied by 1000 in order to obtain the
absolute humidity in [g/kg].

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659726219.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659726219.zip

Function blocks

TS8000 385Version: 1.2

rRho: density of humid air, showing the weight of the mass of the mixture in relation to volume. The unit is
[kg mixture / m³].

rYpsion: specific volume per 1 kg of dry air. The unit is [m³ / kg dry air].

bInvalidParameter: set to TRUE if the input variable rRelativeHumidity or rBarometricPressure is smaller
than or equal to zero.

Fig. 1 h,x diagram [www.air2000.de]

Example 1:

rTemperature:= 20 °C
rRelativeHumidity:= 50 %
rBarometricPressure:= 1013.15 hPa

Results from function block: rDewPoint:= 9.4 °C
rEnthalpy:= 38.6 kJ/kg
rAbsoluteHumidity:= 0.0072 kg/kg , converted to g/kg ==> 7.2 g/kg

Example 2:

rTemperature:= 25 °C
rRelativeHumidity:= 60 %
rBarometricPressure:= 1013.15 hPa

Results from function block: rDewPoint:= 17 °C
rEnthalpy:= 55.6 kJ/kg
rAbsoluteHumidity:= 0.0119 kg/kg , converted to g/kg ==> 11.9 g/kg

Function blocks

TS8000386 Version: 1.2

3.6.11 FB_HVACFixedLimit

Application

This function block represents a limit switch, whose output signal is switched depending on the time
delaystDealyHighLimit / tDelayLowLimit, the mode bModeFixedLimit, the limit values rHighLimit / rLowLimit
and the input signal rInputValue.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rInputValue : REAL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: the default values of the VAR_IN_OUT variables are adopted with a rising edge at this input
variable.

bEnable: the function block is enabled if bEnable = TRUE.

rInputValue: input signal

bReset: input for acknowledging an incorrect parameter entry via a rising edge.

VAR_OUTPUT
bEvent : BOOL;
bEdgeHighLimit : BOOL;
bEdgeLowLimit : BOOL;
bInvalidParameter: BOOL;

bEvent: output signal which is switched depending on the time delays tDelayHighLimit / tDelayLowLimit, the
mode bModeFixedLimit, the input signal rInputValue and the limit values rHighLimit / rLowLimit is switched.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 387Version: 1.2

bEdgeHighLimit: is TRUE for one PLC cycle after the input signal rInputValue has exceeded the variable
rHighLimit for the duration of tDelayHighLimit.

bEdgeLowLimit: is TRUE for one PLC cycle after the input signal rInputValue has undershot the variable
rLowLimit for the duration of tDelayLowLimit.

bInvalidParameter: indicates that an incorrect parameter is present at one of the variables rHighLimit,
rLowLimit, tDelayHighLimit or tDelayHighLimit. An incorrect parameter entry does not lead to a standstill of
the function block; see description of variables. After rectifying the incorrect parameter entry, the message
bInvalidParameter must be acknowledged via bReset.

VAR_IN_OUT
bModeFixedLimit : BOOL;
rHighLimit : REAL;
rLowLimit : REAL;
tDelayHighLimit : TIME;
tDelayLowLimit : TIME;

bModeFixedLimit: if bModeFixedLimit = TRUE, then the output variable bEvent becomes TRUE, if the input
signal rInputValue has exceeded the variable rHighLimit for the duration of tDelayHighLimit. If bEvent =
TRUE, then bEdgeHighLimit is set for one PLC cycle. If the input signal rInputValue falls below the variable
rLowLimit for the duration of tDelayLowLimit, then bEvent becomes FALSE and bEdgeLowLimit is set for
one PLC cycle.
If bModeFixedLimit = FALSE, then the output variable bEvent becomes TRUE if the input signal rInputValue
has fallen below the variable rLowLimit for the duration of tDelayLowLimit. If bEvent = TRUE, then
bEdgeLowLimit is set for one PLC cycle. If the input signal rInputValue exceeds the variable rHighLimit for
the duration of tDelayHighLimit, then bEvent becomes FALSE and bEdgeHighLimit is set for one PLC cycle.

The variable is saved persistently. Preset to 1.

rHighLimit: upper limit value.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally.

The variable is saved persistently. Preset to 22.

rLowLimit: lower limit value.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally.

The variable is saved persistently. Preset to 18.

tDelayHighLimit: switching delay [s] when the upper limit value is exceeded.
If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally.

The variable is saved persistently. Preset to 1 s.

tDelayLowLimit: switching delay [s] when falling below the lower limit value.
If an incorrect variable value is present, the last valid variable value is used, if available. If there is no valid
last value, then the default value is used. bInvalidParameter will be set in the event of an incorrect parameter
entry. The function block continues to operate normally.

The variable is saved persistently. Preset to 1 s.

Function blocks

TS8000388 Version: 1.2

Behavior of the output value

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.12 FB_HVACFreezeProtectionHeater

Application

This function block is for the frost protection monitoring of an air heater in an air conditioning system. Frost
protection monitoring takes place both on the air side via a frost protection thermostat and on the water side
via a temperature sensor in the heater return flow.

The frost protection program becomes active when the return temperature of the air heater
rReturnWaterTemp is lower than the limit value rReturnWaterAlarmLimit or the input bThermostat is FALSE
= fault.
For each of these faults, the respective message bAlarmReturnWaterTemp and/or bAlarmThermostat is sent
to the output of the function block TRUE. Similarly, the output bAlarmFrost becomes TRUE and the
activation of the frost protection program is indicated by a TRUE at the output variable
bFrostProtectionRunning.

Function blocks

TS8000 389Version: 1.2

In order to avoid the air heater freezing up when the frost protection is activated, the heater pump must be
switched on and the heater valve compulsorily opened. In many systems this function is implemented not
only on the software side, but for reasons of safety on the hardware side also by means of a relay circuit in
the control cabinet. In the normal case the frost protection relay is self-latched, since the frost protection
circuit is based on the quiescent current principle. Following an error the frost protection relay is normally
brought back to its self-latched state by a reset button on the control cabinet. This function is implemented
automatically by means of a short pulse at the output bHardwareReset. The condition for this is that the frost
protection thermostat has returned to its normal state, the temperature in the return flow of the heater has
reached the value of rReturnWaterNormalLimit and the time tDelayFirstWarning has elapsed.

After the system has restarted after an automatic acknowledgement, the timer tMonitoringAfterReset is
started.
If another frost warning occurs within this time, the output bAlarmFrost becomes TRUE again. It is only
possible to reset the frost alarm by means of a rising edge at the input bReset.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bThermostat : BOOL;
rReturnWaterTemp : REAL;
bCtrlVoltage : BOOL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bThermostat: signal from the frost protection thermostat. In the normal case TRUE.

rReturnWaterTemp: water temperature in the return flow of the air heater.

bCtrlVoltage:control voltage monitoring. If control voltage is present bCtrlVoltage = TRUE.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
byState : BYTE;
bFrostProtecRunning : BOOL;
bHardwareReset : BOOL;
bErrorGeneral : BOOL;
bAlarmFrost : BOOL;
bAlarmReturnWaterTemp: BOOL;
bAlarmThermostat : BOOL;
byError : BYTE;
bInvalidParameter : BOOL;

byState: output of the state as a byte.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000390 Version: 1.2

byState.0 := bFrostProtecRunning;
byState.1 := bHardwareReset;
byState.2 := bThermostat;
byState.7 := bCtrlVoltage;

bFrostProtecRunning: TRUE, if the frost protection program is active.

bHardwareReset: output that indicates with a 1s pulse that the frost protection relay is latched again
following an error.

bErrorGeneral: there is a general error.

bAlarmFrost: TRUE if there is a frost warning.

bAlarmReturnWaterTemp: the water temperature limit in the return flow of the air heater was undershot.

bAlarmThermostat: TRUE if there is an error in the frost protection thermostat.

byError: output of the error as a byte.

byError.1 := bInvalidParameter;
byError.2 := bErrorGeneral;
byError.3 := bAlarmFrost;
byError.4 := bAlarmReturnWaterTemp;
byError.5 := bAlarmThermostat;

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
rReturnWaterAlarmLimit : REAL;
rReturnWaterNormalLimit : REAL;
tDelayHardwareReset : TIME;
tMonitoringAfterReset : TIME;

rReturnWaterAlarmLimit: the frost alarm is activated below the temperature value rReturnWaterAlarmLimit
in the return flow of the air heater (0°C..22°C). The variable is saved persistently.

rReturnWaterNormalLimit: the air heater returns to its normal state when the temperature is once again
above bReturnWaterNormalLimit
following the temperature having been undershot (0 °C..70 °C). The variable is saved persistently.

tDelayHardwareReset: time that elapses, after input, between the input of the frost error and output of an
acknowledgement pulse in order to return the system to normal operation. The variable is saved persistently.

tMonitoringAfterReset: monitoring time after the first frost warning. The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.13 FB_HVACMux8

Function blocks

TS8000 391Version: 1.2

Application

This function block evaluates the FIFO memory from FB_HVACRedundancyCtrlEx. The inputs are mapped
to the respective outputs according to a FIFO table.

If this function block is used, for example, to control speed-controlled fans, then the setpoints from a
controller cascade can be assigned to the respective outputs (drives). To do this, the setpoints are applied to
the inputs of FB_HVACMux8. The processing takes place with the aid of information from the FIFO memory
(which drive is running and in which order did switch-on take place).

Example:

There are 4 drives with speed controllers (SetFC1 – SetFC4), of which a maximum of three should be
running. The control range of 0 to 300% is divided into 3 setpoints (Set1 to Set3). The output arrFiFo of
FB_HVACRedundancyCtrlEx supplies FB_HVACMux8 with the assignment description. In the sample the
array contains: 2,3,0,0,0,0,0,0. Therefore Q2 was switched on first and then Q3. As a result rIn1 is now
output on rQ2 and rIn2 on rQ3 in FB_HVACMux8.

VAR_INPUT
arrFiFo : Array[1..8] of INT; 0 - 8
rIn1 - rIn8 : REAL;

arrFiFo:contains the assignment table. The first value indicates where the first input will be copied to, the
second value indicates where the second value will be copied to, etc. Identical values are permitted. No
assignment is made for "0.

rIn1 - 8: setpoints to be mapped.

Function blocks

TS8000392 Version: 1.2

VAR_OUTPUT
rQ1 - rQ8 : REAL;
bErr : BOOL;

rQ1 -rQ8: actuator setpoint, input value mapped according to the FIFO table.

bErr: value range in the FIFO table was exceeded; 0 to 8 is permissible.

3.6.14 FB_HVACMUX_INT_16

Application

Application

This function block contains two different types of multiplexers, one each for the operation modes
eHVACCtrlMode_Auto or eHVACCtrlMode_Manual. This selection is made with the help of the enum
eCtrlMode.
The following conditions must be met in advance:

bEnable = TRUEANDbError = FALSE

If eCtrlMode = eHVACCtrlMode_Auto, the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.

If eCtrlMode = eHVACCtrlMode_Manual, the output iValueNumber is determined by the variable
iManualValue. The variables iNumberOfValues, bEdgeNewValue and bDirection are not taken into account
in this operation mode.

The output iValueNumber always indicates the number of the variable iValueX, whose content is output in
the output variable iValueOut.

Examples of eCtrlMode = eHVACCtrlMode_Auto

- If bDirection = FALSEAND iNumberOfValues = 12 and there is a rising edge on bEdgeNewValue, then
iValueNumber increments. If iValueNumber = 6, then iValueOut = iValue6. If iValueNumber=
iNumberOfValues(12) and there is a rising edge on bEdgeNewValue, then iValueNumber = 1 and hence
iValueOut = iValue1.

Function blocks

TS8000 393Version: 1.2

- If bDirection = TRUEANDiNumberOfValues = 8 and there is a rising edge on bEdgeNewValue, then
iValueNumber decrements. If iValueNumber = 5, then iValueOut = iValue5. If iValueNumber= 1 and there is
a rising edge on bEdgeNewValue, then iValueNumber = iNumberOfValues(8) and hence iValueOut =
iValue8.

The start behavior of the outputs iValueNumber and iValueOut is as follows:

- If bDirection = FALSEANDiNumberOfValues > 0, then iValueNumber = 1 and hence iValueOut = iValue1.

- If bDirection = TRUEANDiNumberOfValues = 12, then iNumberOfValues = 12 and hence iValueOut =
iValue12.

Examples of eCtrlMode = eHVACCtrlMode_Manual

- The value of iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7,
which then means that iValueOut = iValue7.

The start behavior of the outputs iValueNumber and iValueOut is as follows:

- If iManualValue = 13, then iValueNumber = 13 and hence iValueOut = iValue13.

- If iManualValue = 0, then iValueNumber = 0 and hence iValueOut = 0.

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables iValue1-16 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables iValue1-16 change frequently and are not
to be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
iNumberOfValues : INT; 1..16
bEdgeNewValue : BOOL;
bDirection : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..16

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000394 Version: 1.2

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then iValueOut and iValueNumber
are set constantly to 0.

iNumberOfValues: indicates the number of variables iValue1-16 that can be output via iValueOut. If
iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. Then for the output iValueOut the
variables iValue1 to iValue8 are taken into account, see Application [} 392]
iNumberOfValues determines the start behavior of the outputs iValueOut and iValueNumber, see Application
[} 392]
iNumberOfValues is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.
iNumberOfValues must not fall below 1 and must not exceed 16. Otherwise an error is indicated by bError =
TRUE and the execution of the function block is stopped.

bEdgeNewValue: if there is a rising edge at bEdgeNewValue, then iValueNumber increments or
decrements.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then iValueOut = iValue6. If iValueNumber= iNumberOfValues and there is
a rising edge at bEdgeNewValue, then iValueNumber = 1 and thusiValueOut = iValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
TRUEANDiNumberOfValues = 12 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then iValueOut = iValue5. If iValueNumber= 1 and there is a rising edge at
bEdgeNewValue, then iValueNumber = iNumberOfValues(12) and thus iValueOut = iValue12.
bEdgeNewValue is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

bDirection: bDirection determines the control direction of the function block.
bDirection = FALSE means that iValueNumber increments in ascending order from 1 to iNumberOfValues
and thereby determines the output value iValueOut see Application [} 392]
bDirection = TRUE means, that iValueNumber decrements in decreasing order from iNumberOfValues to 1
and thereby determines the output value iValueOut, see Application [} 392]
bDirection is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

eCtrlMode: the operation mode of the function block is specified by means of the enum, see Application
[} 392]
If the operation mode is eCtrlMode = eHVACCtrlMode_Auto, the variable iManualValue is not taken into
account.
If the operation mode is eCtrlMode = eHVACCtrlMode_Manual, then the variables iNumberOfValues,
bEdgeNewValue and bDirection are not taken into account.

iManualValue: if the operation mode eCtrlMode = eHVACCtrlMode_ManualANDbEnable = TRUEANDbError
= FALSEANDiManualValue = 15, then iValueNumber = 15. The content of the variable iValue15 is then
output via iValueOut, see Application [} 392].
iManualValue is only taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual. The
value of iValueNumber is determined by iManualValue. iManualValue should be in the range of 0 and 16. If
iManualValue falls below the value 0, then 0 is output via iValueNumber. If iManualValue exceeds the value
16, then 16 is output via iValueNumber. If iManualValue = 0, then iValueNumber = 0 and hence iValueOut =
0.

VAR_OUTPUT
iValueOut : INT;
bActive : BOOL;
bEdgeNewValueOut : BOOL;
iValueNumber : INT;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

iValueOut: the value of the variable iValue1-16 is output via iValueOut.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then iValueOut = iValue6. If iValueNumber= iNumberOfValues and there is
a rising edge at bEdgeNewValue, then iValueNumber = 1 and thusiValueOut = iValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
TRUEANDiNumberOfValues = 12 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then iValueOut = iValue5. If iValueNumber= 1 and there is a rising edge at
bEdgeNewValue, then iValueNumber = iNumberOfValues(12) and thus iValueOut = iValue12.

Function blocks

TS8000 395Version: 1.2

If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of
iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7, which then
means that iValueOut = iValue7.

The start behavior of the output iValueOut looks like this, if bEnable = TRUEANDbError = FALSEAND

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDiNumberOfValues > 0, so iValueNumber =
1 and iValueOut = iValue1.

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDiNumberOfValues = 12, so
iNumberOfValues = 12 and iValueOut = iValue12.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 13, so iValueNumber = 13 and iValueOut =
iValue13.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 0, so iValueNumber = 0 and iValueOut = 0.

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Auto.

2. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0.

bEdgeNewValueOut: is TRUE for one PLC cycle if bEnable = TRUEANDbError =
FALSEANDiValueNumber changes its value.

iValueNumber: the output iValueNumber always indicates the number of the variable iValueX, whose
content is output in the output variable iValueOut.
If eCtrlMode = eHVACCtrlMode_Auto the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.
If eCtrlMode = eHVACCtrlMode_Manual the value of iValueNumber is determined by iManualValue.

bError: the output signals with a TRUE that an error is present and an incorrect parameter is present at the
variable iNumberOfValues. iValueOut and iValueNumber are constantly set to 0 and the enum eErrorCode
indicates the error number. The message bError does not have to be acknowledged after rectification of the
error.

eErrorCode: returns the error number [} 520] when the bError output is set. The following error can occur in
this function block:

eHVACErrorCodes_InvalidParam_iNumberOfValues: there is an incorrect value at iNumberOfValues.
iNumberOfValues must not fall below 1 and not exceed 16.

To access the enum error numbers in the PLC, eErrorCode can be assigned to a variable of the
data type WORD. eHVACErrorCodes_InvalidParam_iNumberOfValues = 42

VAR_IN_OUT
iValue1-16 : INT;

iValue1-16: the value of the output variable iValueOut is determined by the variables iValue1 to iValue16. If
iValueNumber = 6, then iValueOut = iValue6.
If iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. The variables iValue1 to iValue8
are then taken into account for the output iValueOut if the operation mode is eCtrlMode =
eHVACCtrlMode_Auto, see Application [} 392]

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000396 Version: 1.2

3.6.15 FB_HVACMUX_INT_8

Application

Application

This function block contains two different types of multiplexers, one each for the operation modes
eHVACCtrlMode_Auto or eHVACCtrlMode_Manual. This selection is made with the help of the enum
eCtrlMode.
The following conditions must be met in advance:

bEnable = TRUEANDbError = FALSE

If eCtrlMode = eHVACCtrlMode_Auto, the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.

If eCtrlMode = eHVACCtrlMode_Manual, the output iValueNumber is determined by the variable
iManualValue. The variables iNumberOfValues, bEdgeNewValue and bDirection are not taken into account
in this operation mode.

The output iValueNumber always indicates the number of the variable iValueX, whose content is output in
the output variable iValueOut.

Examples of eCtrlMode = eHVACCtrlMode_Auto

- If bDirection = FALSEAND iNumberOfValues = 7 and there is a rising edge on bEdgeNewValue, then
iValueNumber increments. If iValueNumber = 4, then iValueOut = iValue4. If iValueNumber=
iNumberOfValues(7) and there is a rising edge on bEdgeNewValue, then iValueNumber = 1 and hence
iValueOut = iValue1.

- If bDirection = TRUEANDiNumberOfValues = 8 and there is a rising edge on bEdgeNewValue, then
iValueNumber decrements. If iValueNumber = 3, then iValueOut = iValue3. If iValueNumber= 1 and there is
a rising edge on bEdgeNewValue, then iValueNumber = iNumberOfValues(8) and hence iValueOut =
iValue8.

The start behavior of the outputs iValueNumber and iValueOut is as follows:

- If bDirection = FALSEANDiNumberOfValues > 0, then iValueNumber = 1 and iValueOut = iValue1.

- If bDirection = TRUEANDiNumberOfValues = 6, then iNumberOfValues = 6 and hence iValueOut =
iValue6.

Examples of eCtrlMode = eHVACCtrlMode_Manual

- The value of iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7,
which then means that iValueOut = iValue7.

Function blocks

TS8000 397Version: 1.2

The start behavior of the outputs iValueNumber and iValueOut is as follows:

- If iManualValue = 13, then iValueNumber = 13 and iValueOut = iValue13.

- If iManualValue = 0, then iValueNumber = 0 and iValueOut = 0.

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables iValue1-8 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables iValue1-8 change frequently and are not to
be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
iNumberOfValues : INT; 1..8
bEdgeNewValue : BOOL;
bDirection : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..8

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then iValueOut and iValueNumber
are set constantly to 0.

iNumberOfValues: indicates the number of variables iValue1-8 that can be output via iValueOut. If
iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. Then for the output iValueOut the
variables iValue1 to iValue8 are taken into account, see Application [} 396]
iNumberOfValues determines the start behavior of the outputs iValueOut and iValueNumber, see Application
[} 396]
iNumberOfValues is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.
iNumberOfValues must not fall below 1 and must not exceed 8. Otherwise an error is indicated by bError =
TRUE and the execution of the function block is stopped.

bEdgeNewValue: if there is a rising edge at bEdgeNewValue, then iValueNumber increments or
decrements.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then iValueOut = iValue6. If iValueNumber= iNumberOfValues and there is

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000398 Version: 1.2

a rising edge at bEdgeNewValue, then iValueNumber = 1 and thus iValueOut = iValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
TRUEANDiNumberOfValues = 6 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then iValueOut = iValue5. If iValueNumber= 1 and there is a rising edge at
bEdgeNewValue, then iValueNumber = iNumberOfValues(6) and thus iValueOut = iValue6.
bEdgeNewValue is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

bDirection: bDirection determines the control direction of the function block.
bDirection = FALSE means that iValueNumber increments in ascending order from 1 to iNumberOfValues
and thereby determines the output value iValueOut see Application [} 396]
bDirection = TRUE means, that iValueNumber decrements in decreasing order from iNumberOfValues to 1
and thereby determines the output value iValueOut, see Application [} 396]
bDirection is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

eCtrlMode: the operation mode of the function block is specified by means of the enum, see Application
[} 396]
If the operation mode is eCtrlMode = eHVACCtrlMode_Auto, the variable iManualValue is not taken into
account.
If the operation mode is eCtrlMode = eHVACCtrlMode_Manual, then the variables iNumberOfValues,
bEdgeNewValue and bDirection are not taken into account.

iManualValue: if the operation mode eCtrlMode = eHVACCtrlMode_ManualANDbEnable = TRUEANDbError
= FALSEANDiManualValue = 15, then iValueNumber = 15. The content of the variable iValue15 is then
output via iValueOut, see Application [} 396].
iManualValue is only taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual. The
value of iValueNumber is determined by iManualValue. iManualValue should be in the range of 0 and 16. If
iManualValue falls below the value 0, then 0 is output via iValueNumber. If iManualValue exceeds the value
16, then 16 is output via iValueNumber. If iManualValue = 0, then iValueNumber = 0 and iValueOut = 0.

VAR_OUTPUT
iValueOut : INT;
bActive : BOOL;
bEdgeNewValueOut : BOOL;
iValueNumber : INT;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

iValueOut: the value of the variable iValue1-8 is output via iValueOut.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then iValueOut = iValue6. If iValueNumber= iNumberOfValues and there is
a rising edge at bEdgeNewValue, then iValueNumber = 1 and thus iValueOut = iValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
TRUEANDiNumberOfValues = 7 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then iValueOut = iValue5. If iValueNumber= 1 and there is a rising edge at
bEdgeNewValue, then iValueNumber = iNumberOfValues(7) and thus iValueOut = iValue7.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of
iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7, which then
means that iValueOut = iValue7.

The start behavior of the output iValueOut looks like this, if bEnable = TRUEANDbError = FALSEAND

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDiNumberOfValues > 0, so iValueNumber =
1 and iValueOut = iValue1.

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDiNumberOfValues = 7, so
iNumberOfValues = 7 and iValueOut = iValue7.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 13, so iValueNumber = 13 and iValueOut =
iValue13.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 0, so iValueNumber = 0 and iValueOut = 0.

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Auto.

Function blocks

TS8000 399Version: 1.2

2. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0.

bEdgeNewValueOut: is TRUE for one PLC cycle if bEnable = TRUEANDbError =
FALSEANDiValueNumber changes its value.

iValueNumber: the output iValueNumber always indicates the number of the variable iValueX, whose
content is output in the output variable iValueOut.
If eCtrlMode = eHVACCtrlMode_Auto the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.
If eCtrlMode = eHVACCtrlMode_Manual the value of iValueNumber is determined by iManualValue.

bError: the output signals with a TRUE that an error is present and an incorrect parameter is present at the
variable iNumberOfValues. iValueOut and iValueNumber are constantly set to 0 and the enum eErrorCode
indicates the error number. The message bError does not have to be acknowledged after rectification of the
error.

eErrorCode: returns the error number [} 520] when the bError output is set. The following error can occur in
this function block:

eHVACErrorCodes_InvalidParam_iNumberOfValues: there is an incorrect value at iNumberOfValues.
iNumberOfValues must not fall below 1 and must not exceed 8.

To access the enum error numbers in the PLC, eErrorCode can be assigned to a variable of the
data type WORD. eHVACErrorCodes_InvalidParam_iNumberOfValues = 42

VAR_IN_OUT
iValue1-8 : INT;

iValue1-8: the value of the output variable iValueOut is determined by the variables iValue1 to iValue8. If
iValueNumber = 6, then iValueOut = iValue6.
If iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. The variables iValue1 to iValue8
are then taken into account for the output iValueOut if the operation mode is eCtrlMode =
eHVACCtrlMode_Auto, see Application [} 396]

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000400 Version: 1.2

3.6.16 FB_HVACMUX_REAL_16

Application

Application

This function block contains two different types of multiplexers, one each for the operation modes
eHVACCtrlMode_Auto or eHVACCtrlMode_Manual. This selection is made with the help of the enum
eCtrlMode.
The following conditions must be met in advance:

bEnable = TRUEANDbError = FALSE

If eCtrlMode = eHVACCtrlMode_Auto, the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.

If eCtrlMode = eHVACCtrlMode_Manual, the output iValueNumber is determined by the variable
iManualValue. The variables iNumberOfValues, bEdgeNewValue and bDirection are not taken into account
in this operation mode.

The output iValueNumber always indicates the number of the variable rValueX, whose content is output in
the output variable rValueOut.

Examples of eCtrlMode = eHVACCtrlMode_Auto

- If bDirection = FALSEAND iNumberOfValues = 12 and there is a rising edge on bEdgeNewValue, then
iValueNumber increments. If iValueNumber = 6, then rValueOut = rValue6. If iValueNumber=
iNumberOfValues(12) and there is a rising edge on bEdgeNewValue, then iValueNumber = 1 and thus
rValueOut = rValue1.

- If bDirection = TRUEANDiNumberOfValues = 8 and there is a rising edge on bEdgeNewValue, then
iValueNumber decrements. If rValueNumber = 5, then rValueOut = rValue5. If iValueNumber= 1 and there is
a rising edge on bEdgeNewValue, then iValueNumber = iNumberOfValues(8) and thus rValueOut = rValue8.

The start behavior of the outputs iValueNumber and rValueOut is as follows:

- If bDirection = FALSEANDiNumberOfValues > 0, then iValueNumber = 1 and hence rValueOut = rValue1.

Function blocks

TS8000 401Version: 1.2

- If bDirection = TRUEANDiNumberOfValues = 12, then iNumberOfValues = 12 and hence rValueOut =
rValue12.

Examples of eCtrlMode = eHVACCtrlMode_Manual

- The value of iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7,
which then means that rValueOut = rValue7.

The start behavior of the outputs iValueNumber and rValueOut is as follows:

- If iManualValue = 13, then iValueNumber = 13 and rValueOut = rValue13.

- If iManualValue = 0, then iValueNumber = 0 and rValueOut = 0.

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables rValue1-16 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables rValue1-16 change frequently and are not
to be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
iNumberOfValues : INT; 1..16
bEdgeNewValue : BOOL;
bDirection : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..16

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then rValueOut and iValueNumber
are set constantly to 0.

iNumberOfValues: indicates the number of variables rValue1-16 that can be output via rValueOut. If
iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. The variables rValue1 to rValue8
are then taken into account for the output rValueOut, see Application [} 400]
iNumberOfValues determines the start behavior of the outputs rValueOut and iValueNumber, see
Application [} 400]

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000402 Version: 1.2

iNumberOfValues is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.
iNumberOfValues must not fall below 1 and must not exceed 16. Otherwise an error is indicated by bError =
TRUE and the execution of the function block is stopped.

bEdgeNewValue: if there is a rising edge at bEdgeNewValue, then iValueNumber increments or
decrements.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then rValueOut = rValue6. If iValueNumber= iNumberOfValues and there is
a rising edge at bEdgeNewValue, then iValueNumber = 1 and thus rValueOut = rValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
TRUEANDiNumberOfValues = 12 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then rValueOut = rValue5. If iValueNumber= 1 and there is a rising edge
at bEdgeNewValue, then iValueNumber = iNumberOfValues(12) and thus rValueOut = rValue12.
bEdgeNewValue is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

bDirection: bDirection determines the control direction of the function block.
bDirection = FALSE means that iValueNumber increments in ascending order from 1 to iNumberOfValues
and thereby determines the output value rValueOut see Application [} 400]
bDirection = TRUE means, that iValueNumber decrements in decreasing order from iNumberOfValues to 1
and thereby determines the output value rValueOut, see Application [} 400]
bDirection is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

eCtrlMode: the operation mode of the function block is specified by means of the enum, see Application
[} 400]
If the operation mode is eCtrlMode = eHVACCtrlMode_Auto, the variable iManualValue is not taken into
account.
If the operation mode is eCtrlMode = eHVACCtrlMode_Manual, then the variables iNumberOfValues,
bEdgeNewValue and bDirection are not taken into account.

iManualValue: if the operation mode eCtrlMode = eHVACCtrlMode_ManualANDbEnable = TRUEANDbError
= FALSEANDiManualValue = 15, then iValueNumber = 15. The content of the variable rValue15 is then
output via rValueOut, see Application [} 400].
iManualValue is only taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual. The
value of iValueNumber is determined by iManualValue. iManualValue should be in the range of 0 and 16. If
iManualValue falls below the value 0, then 0 is output via iValueNumber. If iManualValue exceeds the value
16, then 16 is output via iValueNumber. If iManualValue = 0, then iValueNumber = 0 and rValueOut = 0.

VAR_OUTPUT
rValueOut : REAL;
bActive : BOOL;
bEdgeNewValueOut : BOOL;
iValueNumber : INT;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

rValueOut: the value of the variable rValue1-16 is output via rValueOut.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then rValueOut = rValue6. If iValueNumber= iNumberOfValues and there is
a rising edge at bEdgeNewValue, then iValueNumber = 1 and thus rValueOut = rValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
TRUEANDiNumberOfValues = 12 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then rValueOut = rValue5. If iValueNumber= 1 and there is a rising edge
at bEdgeNewValue, then iValueNumber = iNumberOfValues(12) and thus rValueOut = rValue12.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of
iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7, which then
means that rValueOut = rValue7.

The start behavior of the output rValueOut looks like this, if bEnable = TRUEANDbError = FALSEAND

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDiNumberOfValues > 0, so iValueNumber =
1 and rValueOut = rValue1.

Function blocks

TS8000 403Version: 1.2

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDiNumberOfValues = 12, so
iNumberOfValues = 12 and rValueOut = rValue12.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 13, so iValueNumber = 13 and rValueOut =
rValue13.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 0, so iValueNumber = 0 and rValueOut = 0.

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Auto.

2. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0.

bEdgeNewValueOut: is TRUE for one PLC cycle if bEnable = TRUEANDbError =
FALSEANDiValueNumber changes its value.

iValueNumber: the output iValueNumber always indicates the number of the variable rValueX, whose
content is output in the output variable rValueOut.
If eCtrlMode = eHVACCtrlMode_Auto the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.
If eCtrlMode = eHVACCtrlMode_Manual the value of iValueNumber is determined by iManualValue.

bError: the output signals with a TRUE that an error is present and an incorrect parameter is present at the
variable iNumberOfValues. rValueOut and iValueNumber are constantly set to 0 and the enum eErrorCode
indicates the error number. The message bError does not have to be acknowledged after rectification of the
error.

eErrorCode: returns the error number [} 520] when the bError output is set. The following error can occur in
this function block:

eHVACErrorCodes_InvalidParam_iNumberOfValues: there is an incorrect value at iNumberOfValues.
iNumberOfValues must not fall below 1 and not exceed 16.

To access the enum error numbers in the PLC, eErrorCode can be assigned to a variable of the
data type WORD. eHVACErrorCodes_InvalidParam_iNumberOfValues = 42

VAR_IN_OUT
rValue1-16 : REAL;

rValue1-16: the value of the output variable rValueOut is determined by the variables rValue1 to rValue16. If
iValueNumber = 6, then rValueOut = rValue6.
If iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. The variables rValue1 to rValue8
are taken into account for the output rValueOut if the operation mode is eCtrlMode = eHVACCtrlMode_Auto,
see Application [} 400]: the variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000404 Version: 1.2

3.6.17 FB_HVACMUX_REAL_8

Application

Application

This function block contains two different types of multiplexers, one each for the operation modes
eHVACCtrlMode_Auto or eHVACCtrlMode_Manual. This selection is made with the help of the enum
eCtrlMode.
The following conditions must be met in advance:

bEnable = TRUEANDbError = FALSE

If eCtrlMode = eHVACCtrlMode_Auto, the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.

If eCtrlMode = eHVACCtrlMode_Manual, the output iValueNumber is determined by the variable
iManualValue. The variables iNumberOfValues, bEdgeNewValue and bDirection are not taken into account
in this operation mode.

The output iValueNumber always indicates the number of the variable rValueX, whose content is output in
the output variable rValueOut.

Examples of eCtrlMode = eHVACCtrlMode_Auto

- If bDirection = FALSEAND iNumberOfValues = 7 and there is a rising edge on bEdgeNewValue, then
iValueNumber increments. If iValueNumber = 4, then rValueOut = rValue4. If iValueNumber=
iNumberOfValues(7) and there is a rising edge on bEdgeNewValue, then iValueNumber = 1 and thus
rValueOut = rValue1.

- If bDirection = TRUEANDiNumberOfValues = 8 and there is a rising edge on bEdgeNewValue, then
iValueNumber decrements. If iValueNumber = 3, then rValueOut = rValue3. If iValueNumber= 1 and there is
a rising edge on bEdgeNewValue, then iValueNumber = iNumberOfValues(8) and thus rValueOut = rValue8.

The start behavior of the outputs iValueNumber and rValueOut is as follows:

- If bDirection = FALSEANDiNumberOfValues > 0, then iValueNumber = 1 and hence rValueOut = rValue1.

- If bDirection = TRUEANDiNumberOfValues = 6, then iNumberOfValues = 6 and hence rValueOut =
rValue6.

Examples of eCtrlMode = eHVACCtrlMode_Manual

- The value of iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7,
which then means that rValueOut = rValue7.

The start behavior of the outputs iValueNumber and rValueOut is as follows:

Function blocks

TS8000 405Version: 1.2

- If iManualValue = 13, then iValueNumber = 13 and rValueOut = rValue13.

- If iManualValue = 0, then iValueNumber = 0 and rValueOut = 0.

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables rValue1-8 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables rValue1-8 change frequently and are not to
be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
iNumberOfValues : INT; 1..8
bEdgeNewValue : BOOL;
bDirection : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..8

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then rValueOut and iValueNumber
are set constantly to 0.

iNumberOfValues: indicates the number of variables rValue1-8 that can be output via rValueOut. If
iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. The variables rValue1 to rValue8
are then taken into account for the output rValueOut, see Application [} 404]
iNumberOfValues determines the start behavior of the outputs rValueOut and iValueNumber, see
Application [} 404]
iNumberOfValues is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.
iNumberOfValues must not fall below 1 and must not exceed 8. Otherwise an error is indicated by bError =
TRUE and the execution of the function block is stopped.

bEdgeNewValue: if there is a rising edge at bEdgeNewValue, then iValueNumber increments or
decrements.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then rValueOut = rValue6. If iValueNumber= iNumberOfValues and there is
a rising edge at bEdgeNewValue, then iValueNumber = 1 and rValueOut = rValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000406 Version: 1.2

TRUEANDiNumberOfValues = 6 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then rValueOut = rValue5. If iValueNumber= 1 and there is a rising edge
at bEdgeNewValue, then iValueNumber = iNumberOfValues(6) and rValueOut = rValue6.
bEdgeNewValue is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

bDirection: bDirection determines the control direction of the function block.
bDirection = FALSE means that iValueNumber increments in ascending order from 1 to iNumberOfValues
and thereby determines the output value rValueOut see Application [} 404]
bDirection = TRUE means, that iValueNumber decrements in decreasing order from iNumberOfValues to 1
and thereby determines the output value rValueOut, see Application [} 404]
bDirection is not taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual.

eCtrlMode: the operation mode of the function block is specified by means of the enum, see Application
[} 404]
If the operation mode is eCtrlMode = eHVACCtrlMode_Auto, the variable iManualValue is not taken into
account.
If the operation mode is eCtrlMode = eHVACCtrlMode_Manual, then the variables iNumberOfValues,
bEdgeNewValue and bDirection are not taken into account.

iManualValue: if the operation mode eCtrlMode = eHVACCtrlMode_ManualANDbEnable = TRUEANDbError
= FALSEANDiManualValue = 15, then iValueNumber = 15. The content of the variable rValue15 is then
output via rValueOut, see Application [} 404].
iManualValue is only taken into account in the operation mode eCtrlMode = eHVACCtrlMode_Manual. The
value of iValueNumber is determined by iManualValue. iManualValue should be in the range of 0 and 16. If
iManualValue falls below the value 0, then 0 is output via iValueNumber. If iManualValue exceeds the value
16, then 16 is output via iValueNumber. If iManualValue = 0, then iValueNumber = 0 and rValueOut = 0.

VAR_OUTPUT
rValueOut : INT;
bActive : BOOL;
bEdgeNewValueOut : BOOL;
iValueNumber : INT;
bError : BOOL;
eErrorCode : E_HVACErrorCodes;

rValueOut: the value of the variable rValue1-8 is output via rValueOut.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDiNumberOfValues > 0 and there is a rising edge at bEdgeNewValue, then iValueNumber
increments. If iValueNumber = 6, then rValueOut = rValue6. If iValueNumber= iNumberOfValues and there is
a rising edge at bEdgeNewValue, then iValueNumber = 1 and rValueOut = rValue1.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
TRUEANDiNumberOfValues = 7 and there is a rising edge at bEdgeNewValue, then iValueNumber
decrements. If iValueNumber = 5, then rValueOut = rValue5. If iValueNumber= 1 and there is a rising edge
at bEdgeNewValue, then iValueNumber = iNumberOfValues(7) and rValueOut = rValue7.
If bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of
iValueNumber is determined by iManualValue. If iManualValue = 7, then iValueNumber = 7, which then
means that rValueOut = rValue7.

The start behavior of the output rValueOut looks like this, if bEnable = TRUEANDbError = FALSEAND

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDiNumberOfValues > 0, so iValueNumber =
1 and rValueOut = rValue1.

- eCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDiNumberOfValues = 7, so
iNumberOfValues = 7 and rValueOut = rValue7.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 13, so iValueNumber = 13 and rValueOut =
rValue13.

- eCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 0, so iValueNumber = 0 and rValueOut = 0.

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_Auto.

2. bEnable = TRUEANDbError = FALSEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0.

Function blocks

TS8000 407Version: 1.2

bEdgeNewValueOut: is TRUE for one PLC cycle if bEnable = TRUEANDbError =
FALSEANDiValueNumber changes its value.

iValueNumber: the output iValueNumber always indicates the number of the variable rValueX, whose
content is output in the output variable rValueOut.
If eCtrlMode = eHVACCtrlMode_Auto the variable bDirection determines whether the output variable
iValueNumber is incremented or decremented when using the input bEdgeNewValue. If bDirection = FALSE
it is incremented, if bDirection = TRUE it is decremented.
If eCtrlMode = eHVACCtrlMode_Manual the value of iValueNumber is determined by iManualValue.

bError: the output signals with a TRUE that an error is present and an incorrect parameter is present at the
variable iNumberOfValues. rValueOut and iValueNumber are constantly set to 0 and the enum eErrorCode
indicates the error number. The message bError does not have to be acknowledged after rectification of the
error.

eErrorCode: returns the error number [} 520] when the bError output is set. The following error can occur in
this function block:

eHVACErrorCodes_InvalidParam_iNumberOfValues: there is an incorrect value at iNumberOfValues.
iNumberOfValues must not fall below 1 and must not exceed 8.

To access the enum error numbers in the PLC, eErrorCode can be assigned to a variable of the
data type WORD. eHVACErrorCodes_InvalidParam_iNumberOfValues = 42

VAR_IN_OUT
rValue1-8 : INT;

rValue1-8: the value of the output variable rValueOut is determined by the variables rValue1 to rValue8. If
iValueNumber = 6, then rValueOut = rValue6.
If iNumberOfValues = 8, the output iValueNumber moves between 1 and 8. The variables rValue1 to rValue8
are taken into account for the output rValueOut if the operation mode is eCtrlMode = eHVACCtrlMode_Auto,
see Application [} 404]: the variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.18 FB_HVACOverwriteAnalog

Application

This function block overrides the input rValueIn if eCtrlMode = eHVACCtrlMode_Manual and forwards
rManualValueIn to the output rValueOut.

VAR_INPUT
rValueIn :REAL;
eCtrlMode :E_HVACCtrlMode;
rManualValueIn :REAL;

rValueIn: analog input value forwarded to output rValueOut if eCtlrMode = eHVACCtrlMode_Auto.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

rManualValueIn: analog manual input value forwarded to output rValueOut if eCtrlMode =
eHVACCtrlMode_Manual.

Function blocks

TS8000408 Version: 1.2

VAR_OUTPUT
rValueOut :REAL;

rValueOut: analog output value.

3.6.19 FB_HVACOverwriteDigital

Application

This function block overrides the state of the input bIn if eCtrlMode = eHVACCtrlMode_Manual and forwards
it to the output bOut.

VAR_INPUT
bIn :BOOL;
eCtrlMode :E_HVACCtrlMode;
bManualIn :BOOL;

bIn: digital input variable whose state is forwarded to output bOut if eCtlrMode = eHVACCtrlMode_Auto.

eCtrlMode: the operation mode is selected via this enum. Manual or automatic operation mode.

bManualIn: digital input variable whose state is forwarded to the output bOut if eCtrlMode =
eHVACCtrlMode_Manual.

VAR_OUTPUT
bOut :BOOL;

bOut: digital output variable.

3.6.20 FB_HVACPowerMeasurementKL3403

Application

This function block serves to control a 3-phase power measurement terminal (KL/KS3403). The terminal
data is read out and all variables that depend on it are derived. The Bus Terminal KL3403 enables the
measurement of all relevant electrical data of the supply network. The voltage is measured via the direct
connection of L1, L2, L3 and N. The current of the three phases L1, L2 and L3 is fed via simple current
transformers. All measured currents and voltages are available as RMS values. In the KL3403 version, the
active power and the energy consumption for each phase are calculated. Through the relationship of the
RMS values of voltage U * current I and the active power P, all other information such as apparent power or
phase shift angle cos φ can be derived. For each fieldbus, KL3403 provides a comprehensive network

Function blocks

TS8000 409Version: 1.2

analysis and an energy management option. The data is read out in 8 groups one after the other. Dependent
values are calculated cyclically. The energy measurement is read out from the terminal as a 32-bit value with
the overflow from register 1. The input bDelEnergyConsumption can be used to delete this value.

The results of the power measurement are available in the output structure ST_HVACPowerMeasurement.
The structure is 120 bytes long.

The input and output variables wDataL1, wDataL2, wDataL3, bySBL1, bySBL2, bySBL3, byCBL1,
byCBL2, byCBL3, iDataOutL1, iDataOutL2 and iDataOutL3 must be linked with the KL3403 Bus
Terminal. They are needed in order to obtain all the data from the terminal.

TYPE ST_HVACPowerMeasurement
Name : Type Unit Description

STRUCT
 diIL1, diIL2, diIL3 : DINT; A Ieff Strom (Effektivwert) Auflösung: 0,1 A
 diUL1, diUL2, diUL3 : DINT; V Ueff Spannung (Effektivwert) Auflösung: 0,1 V
 diPL1, diPL2, diPL3 : DINT; kW P Wirkleistung pro Phase Auflösung: 0,1 kW
 diPg : DINT; kW Pges Wirkleistung Auflösung: 0,1 kW
 diCosPhiL1, diCosPhiL2, diCosPhiL3 : DINT; cosPhi Leistungsfaktor pro Phase Auflösung: 0,
01
 diCosPhi : DINT; cosPhiges Leistungsfaktor Auflösung: 0,01
 diWL1, diWL2, diWL3 : DINT; kWh Energieverbrauch Auflösung: 1 kWh
 diWg : DINT; kWh Energieverbrauch Auflösung: 1 kWh
 diImaxL1, diImaxL2, diImaxL3 : DINT; A Imax Spitzenwert des Stroms Auflösung: 0,1 A
 diUmaxL1, diUmaxL2, diUmaxL3 : DINT; V Umax Spitzenwert der Spannung Resolution: 0,1
V
 diPmaxL1, diPmaxL2, diPmaxL3 : DINT; kW Pmax Spitzenwert der Wirkleistung Resolution:
0,1 kW
 diSg : DINT; kVA Sges Scheinleistung Resolution: 0,1 kVA
 diQg : DINT; kvar Qges Blindleistung Resolution: 0,1 kvar
 dummy : DINT; Reserve, füllt die Struktur auf 120Bytes auf
END_STRUCT

VAR_INPUT
wDataL1, wDataL2, wDataL3 : WORD;
bySBL1, bySBL2, bySBL3 : BYTE;
diCurrTransFactor : DINT;
eModePowerMeasurement : E_HVACPowerMeasurementMode;
bDelEnergyConsumption : BOOL;

wDataLx: input data from the three channels of the KL3403.

bySBLx: status byte of the three channels of the KL3403. Reports which value can be read via the input
(wDataLx).

diCurrTransFactor: transformation factor of the current transformer, used for conversion to the actual string
current and the associated values.
Since the measured end value always results in dec. 1000 (100.0%) regardless of the terminal type, the
primary end value of the transformer must be specified for the factor.

Example KL3403-0000: a 400/1A transformer results in a diCurrTransFactor of 400 With an internal
resolution of 0.001 A, a measured value of max. 1 A results in an end value of dec. 1000 (100.0%) *
diCurrTransFactor = 400 A.

Example KL3403-0010: a 400/5A transformer results in a diCurrTransFactor of 400. With an internal
resolution of 0.005 A, a measured value of max. 5 A results in an end value of dec. 1000 (100.0%) *
diCurrTransFactor = 400 A.

eModePowerMeasurement: if the value of this parameter lies between 1 and 8, the automatic read-out of
all data is interrupted. Only the corresponding selected measured variable is read per cycle.
TYPE E_HVACPowerMeasurementMode:
(
eHVACPowerMeasurementMode_AutoAllValues := 0,
eHVACPowerMeasurementMode_Current := 1,
eHVACPowerMeasurementMode_Voltage := 2,
eHVACPowerMeasurementMode_EffectivePower := 3,

Function blocks

TS8000410 Version: 1.2

eHVACPowerMeasurementMode_PowerFactor := 4,
eHVACPowerMeasurementMode_EnergyConsumption := 5,
eHVACPowerMeasurementMode_PeakCurrentValu := 6, 1)
eHVACPowerMeasurementMode_PeakVoltageValue := 7, 1)
eHVACPowerMeasurementMode_PeakPowerValue := 81)
);
END_TYPE

bDelEnergyConsumption : a positive edge at this input deletes the energy consumption in the EEPROM.
The energy consumption is counted in RAM and saved every 15 minutes in the EEPROM. It is retained there
even if the KL3403 is switched off.
1) The minimum and peak values are deleted when the KL3403 is switched off.

VAR_OUTPUT
BDelEnergyMeasuredValuesBusy : BOOL;
bError : BOOL;
iErrID : UDINT;
byCBL1, byCBL2, byCBL3 : BYTE;
iDataOutL1, iDataOutL2, iDataOutL3: INT;
stQ_PowerMeasurement : ST_HVACPowerMeasurement;

bDelEnergyMeasuredValuesBusy: since the measured energy values are deleted from the internal
EEPROM, no value is updated during this time and the flag bDelEnergyMeasuredValuesBusy shows TRUE.

bError: if TRUE, an error has occurred in the register communication.

iErrID: error ID in the register communication

0x100 Timeout error. The permissible execution time has been exceeded.
0x200 Parameter error (e.g. with an invalid register number).
0x300 The read value differs from the written value (write access to this register possibly not allowed or
failed)

byCBLx: this output serves the selection of the desired input value and register communication in order to
delete the energy consumption.

iDataOutLx: this output serves the register communication in order to delete the energy consumption.

stQ_PowerMeasurement: the results of the power measurement as an output data structure.

The example shows how a KL3403 terminal must be linked with the input and output variables of the PLC

Function blocks

TS8000 411Version: 1.2

3.6.21 FB_HVACPowerMeasurementKL3403Ex

Application

This function block serves to control a 3-phase power measurement terminal (KL/KS3403). The terminal
data is read out and all variables that depend on it are derived. The Bus Terminal KL3403 enables the
measurement of all relevant electrical data of the supply network. The voltage is measured via the direct

Function blocks

TS8000412 Version: 1.2

connection of L1, L2, L3 and N. The current of the three phases L1, L2 and L3 is fed via simple current
transformers. All measured currents and voltages are available as RMS values. In the KL3403 version, the
active power and the energy consumption for each phase are calculated. Through the relationship of the
RMS values of voltage U * current I and the active power P, all other information such as apparent power or
phase shift angle cos φ can be derived. For each fieldbus, KL3403 provides a comprehensive network
analysis and an energy management option. The data is read out in 8 groups one after the other. Dependent
values are calculated cyclically. The energy measurement is read out from the terminal as a 32-bit value with
the overflow from register 1. The input bDelEnergyConsumption can be used to delete this value.

The results of the power measurement are available in the output structure
ST_HVACPowerMeasurementEx.

The difference compared with the previous function block FB_HVACPowerMeasurementKL3403 lies in the
output format for the results. The results are available in the structure ST_HVACPowerMeasurementEx in
LREAL format. The output was extended by the frequencies of the three phases.

The input and output variables wDataL1, wDataL2, wDataL3, bySBL1, bySBL2, bySBL3, byCBL1,
byCBL2, byCBL3, iDataOutL1, iDataOutL2 and iDataOutL3 must be linked with the KL3403 Bus
Terminal. They are needed in order to obtain all the data from the terminal.

TYPE ST_HVACPowerMeasurementEx
Name : Type Unit Description

STRUCT
 fIL1, fIL2, fIL3 : LREAL; A Ieff Strom (Effektivwert)
 fIg : LREAL; A Gesamt Strom (Effektivwert)
 fUL1, fUL2, fUL3 : LREAL; V Ueff Spannung (Effektivwert)
 fPL1, fPL2, fPL3 : LREAL; kW P Wirkleistung pro Phase
 fPg : LREAL; kW Pges Wirkleistung
 fCosPhiL1, fCosPhiL2, fCosPhiL3 : LREAL; cosPhi Leistungsfaktor pro Phase
 fCosPhi : LREAL; cosPhiges Leistungsfaktor
 fWL1, fWL2, fWL3 : LREAL; kWh Energieverbrauch
 fWg : LREAL; kWh Energieverbrauch
 fImaxL1, fImaxL2, fImaxL3 : LREAL; A Imax Spitzenwert des Stroms
 fUmaxL1, fUmaxL2, fUmaxL3 : LREAL; V Umax Spitzenwert der Spannung
 fPmaxL1, fPmaxL2, fPmaxL3 : LREAL; kW Pmax Spitzenwert der Wirkleistung
 fSg : LREAL; kVA Sges Scheinleistung
 fQg : LREAL; kvar Qges Blindleistung
 fFrequencyL1, fFrequencyL2, fFrequencyL3 : LREAL; Hz Frequenz
END_STRUCT

VAR_INPUT
wDataL1, wDataL2, wDataL3 : WORD;
bySBL1, bySBL2, bySBL3 : BYTE;
diCurrTransFactor : LREAL;
bDelEnergyConsumption : BOOL;

wDataLx: input data from the three channels of the KL3403.

bySBLx: status byte of the three channels of the KL3403. Reports which value can be read via the input
(wDataLx).

diCurrTransFactor: transformation factor of the current transformer, used for conversion to the actual string
current and the associated values.

Since the measured end value is always dec. 1000 (100.0%) irrespective of the terminal type, the primary
end value of the transformer must be specified for the factor.

Example KL3403-0000: a 400/1A transformer results in a diCurrTransFactor of 400. With an internal
resolution of 0.001 A, a measured value of max. 1 A results in an end value of dec. 1000 (100.0%) *
diCurrTransFactor = 400 A.

Example KL3403-0010: a 400/5A transformer results in a diCurrTransFactor of 400. With an internal
resolution of 0.005 A, a measured value of max. 5 A results in an end value of dec. 1000 (100.0%) *
diCurrTransFactor = 400 A.

bDelEnergyConsumption : a positive edge at this input deletes the energy consumption in the EEPROM.
The energy consumption is counted in RAM and saved every 15 minutes in the EEPROM. It is retained there
even if the KL3403 is switched off.

Function blocks

TS8000 413Version: 1.2

1) The minimum and peak values are deleted when the KL3403 is switched off.

VAR_OUTPUT
BDelEnergyMeasuredValuesBusy : BOOL;
bError : BOOL;
iErrID : UDINT;
byCBL1, byCBL2, byCBL3 : BYTE;
iDataOutL1, iDataOutL2, iDataOutL3: INT;
stQ_PowerMeasurementEx : ST_HVACPowerMeasurementEx;

bDelEnergyMeasuredValuesBusy: since the measured energy values are deleted from the internal
EEPROM, no value is updated during this time and the flag bDelEnergyMeasuredValuesBusy shows TRUE.

bError: if TRUE, an error has occurred in the register communication.

iErrID: error ID in the register communication

0x100 Timeout error. The permissible execution time has been exceeded.
0x200 Parameter error (e.g. with an invalid register number).
0x300 The read value differs from the written value (write access to this register possibly not allowed or
failed)

byCBLx: this output serves the selection of the desired input value and register communication in order to
delete the energy consumption.

iDataOutLx: this output serves the register communication in order to delete the energy consumption.

stQ_PowerMeasurementEx: the results of the power measurement as an output data structure.

Function blocks

TS8000414 Version: 1.2

3.6.22 FB_HVACPriority_INT_16

Application

This function block can be used to prioritize events or as a multiplexer. This selection is made with the help
of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
iValueOut is controlled by the occurring events of the inputs bEvent1-16, iValue1-16 and the control direction
of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 have a higher priority. If bEnable
= TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent15 = TRUE (highest
occurred event in Table 1 [} 415] column 1), then iValueOut has the value of iValue15.
bDirection = TRUE means that the events in descending order from 16 to 1 have a higher priority. If bEnable
= TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest
occurring event in Table 2 [} 415] column 1), then iValueOut has the value of iValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables iValue1-16, whose value is output via iValueOut. If
bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then iValueOut =
iValue2, see Table 3 [} 416].

Function blocks

TS8000 415Version: 1.2

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables iValue1-16 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables iValue1-16 change frequently and are not
to be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Table 1: Prioritization of events in ascending order from 1 to 16

Table 1

It can be seen in Table 1 that bDirection = FALSE. This means that the events determine the output value
iValueOut in ascending order from 1 to 16. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent15 = TRUE (highest occurring event in column 1),
then iValueOut = iValue15.

Table 2: Prioritization of events in descending order from 16 to 1

Table 2

It can be seen in Table 2 that bDirection = TRUE. This means that the events determine the output value
iValueOut in descending order from 16 to 1. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest occurring event in Table 2
[} 415] column 1), then iValueOut = iValue1.

Function blocks

TS8000416 Version: 1.2

Table 3: Multiplexer

Table 3

If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 2, then iValueOut = 2.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
bEvent1 - bEvent8 : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..16
bDirection : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 417Version: 1.2

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then iValueOut is set constantly to 0.

eCtrlMode: the operation mode of the function block is specified by means of the enum.
If eCtrlMode = eHVACCtrlMode_Auto, the function block represents a prioritization of events. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Auto then the output iValueOut is controlled by the occurring
events of the inputs bEvent1-16, iValue1-16 and the control direction of the prioritization bDirection, see
Table 1 [} 415] and Table 2 [} 415]
If eCtrlMode = eHVACCtrlMode_Manual, the function block represents a multiplexer. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of output iValueOut is controlled by
iManualValue. If iManualProfile = 5, then iValueOut = iValue5, see Table 3 [} 416]

iManualProfile: if the operation mode eCtrlMode = eHVACCtrlMode_Manual (multiplexer) ANDbEnable =
TRUEANDbError = FALSE, then the value of the output iValueOut is controlled by iManualValue. If
iManualProfile = 5, then iValueOut = iValue5, see Table 3 [} 416]

bEvent1-16: the output iValueOut is controlled by the occurring events of the inputs bEvent1-16, iValue1-16
and the control direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDbEvent15 = TRUE (highest event occurred in Table 1 [} 415] column 1), then iValueOut =
iValue15.
bDirection = TRUE means that the events in descending order from 16 to 1 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 415] column 1), then iValueOut = iValue1.
The variables bEvent1-16 and bDirection are only taken into account if eCtrlMode = eHVACCtrlMode_Auto.

bDirection: the function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The
output iValueOut is controlled by the occurring events of the inputs bEvent1-16, iValue1-16 and the control
direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDbEvent15 = TRUE (highest event occurred in Table 1 [} 415] column 1), then iValueOut =
iValue15.
bDirection = TRUE means that the events in descending order from 16 to 1 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 415] column 1), then iValueOut = iValue1.
The variables bEvent1-16 and bDirection are only taken into account if eCtrlMode = eHVACCtrlMode_Auto.

VAR_OUTPUT
iValueOut : INT;
bActive : BOOL;
bEdgeNewEvent : BOOL;
iValueNumber : INT;

iValueOut: this function block can be used to prioritize events or as a multiplexer. This selection is made
with the help of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
iValueOut is controlled by the occurring events of the inputs bEvent1-16, iValue1-16 and the control direction
of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDbEvent15 = TRUE (highest event occurred in Table 1 [} 415] column 1), then iValueOut =
iValue15.

Function blocks

TS8000418 Version: 1.2

bDirection = TRUE means that the events in descending order from 16 to 1 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurring event in Table 2 [} 415] column 1), then iValueOut = iValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables iValue1-16, whose value is output via iValueOut. If
bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then iValueOut =
iValue2, see Table 3 [} 416].

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and one of the input variables bEvent1-16 =
TRUE.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0

bEdgeNewEvent: is TRUE for one PLC cycle if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and the decisive event (bEvent1-16) has
changed to control the output iValueOut using iValue1-16.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Manual and with each change of iManualValue

iValueNumber: the variable iValueNumber indicates the variable from which the value on iValueOut is
output. If iValueOut = iValue7, then iValueNumber = 7, see Table 1 [} 415], Table 2 [} 415] and Table 3
[} 416]

VAR_IN_OUT
Name : Type Persistent

iValue1-16 : INT; X

iValue1-16: the value of the output variable iValueOut is determined by the variables iValue1 to iValue16.
iValueOut = iValueX

If the function block is used to prioritize events, each of the variables iValue1-16 is assigned to an event.
iValue1 is assigned to the event bEvent1, iValue2 to the event bEvent2, iValue3 to the event bEvent3,...,
iValue16 to the event bEvent16

If the function block is used as a multiplexer, then each of the variables iValue1-16 is assigned to the value
of iManualValue. If iManualValue = 1, then iValueOut = iValue1. If iManualValue = 2, then iValueOut =
iValue2.... If iManualValue = 16, then iValueOut = iValue16.

The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 419Version: 1.2

3.6.23 FB_HVACPriority_INT_8

Application

This function block can be used to prioritize events or as a multiplexer. This selection is made with the help
of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
iValueOut is controlled by the occurring events of the inputs bEvent1-8, iValue1-8 and the control direction of
the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 have a higher priority. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7 = TRUE (highest
occurred event in Table 1 [} 419] column 1), then iValueOut has the value of iValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 have a higher priority. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest
occurring event in Table 2 [} 419] column 1), then iValueOut has the value of iValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables iValue1-8, whose value is output via iValueOut. If
bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then iValueOut =
iValue2, see Table 3 [} 420].

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables iValue1-8 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables iValue1-8 change frequently and are not to
be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Table 1: Prioritization of events in ascending order from 1 to 8

Table 1

It can be seen in Table 1 that bDirection = FALSE. This means that the events determine the output value
iValueOut in ascending order from 1 to 8. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7 = TRUE (highest occurring event in column 1),
then iValueOut = iValue7.

Function blocks

TS8000420 Version: 1.2

Table 2: Prioritization of events in descending order from 8 to 1

Table 2

It can be seen in Table 2 that bDirection = TRUE. This means that the events determine the output value
iValueOut in descending order from 8 to 1. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest occurring event in Table 2
[} 420] column 1), then iValueOut = iValue1.

Table 3: Multiplexer

Table 3

If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 2, then iValueOut = 2.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

Function blocks

TS8000 421Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
bEvent1 - bEvent8 : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..8
bDirection : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then iValueOut is set constantly to 0.

eCtrlMode: the operation mode of the function block is specified by means of the enum.
If eCtrlMode = eHVACCtrlMode_Auto, the function block represents a prioritization of events. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Auto the output iValueOut is controlled by the occurring events of
the inputs bEvent1-8, iValue1-8 and the control direction of the prioritization bDirection, see Table 1 [} 419]
and Table 2 [} 420]
If eCtrlMode = eHVACCtrlMode_Manual, the function block represents a multiplexer. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of output iValueOut is controlled by
iManualValue. If iManualProfile = 5, then iValueOut = iValue5, see Table 3 [} 420]

iManualProfile: if the operation mode eCtrlMode = eHVACCtrlMode_Manual (multiplexer) ANDbEnable =
TRUEANDbError = FALSE, then the value of the output iValueOut is controlled by iManualValue. If
iManualProfile = 5, then iValueOut = iValue5, see Table 3 [} 420]

bEvent1-8: the output iValueOut is controlled by the occurring events of the inputs bEvent1-8, iValue1-8 and
the control direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7
= TRUE (highest event occurred in Table 1 [} 419] column 1), then iValueOut = iValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 419] Column 1), then iValueOut = iValue1.
The variables bEvent1-8 and bDirection are only taken into account if eCtrlMode = eHVACCtrlMode_Auto.

bDirection: the function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The
output iValueOut is controlled by the occurring events of the inputs bEvent1-8, iValue1-8 and the control
direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7
= TRUE (highest event occurred in Table 1 [} 419] column 1), then iValueOut = iValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 419] Column 1), then iValueOut = iValue1.
The variables bEvent1-8 and bDirection are only taken into account if eCtrlMode = eHVACCtrlMode_Auto.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000422 Version: 1.2

VAR_OUTPUT
iValueOut : INT;
bActive : BOOL;
bEdgeNewEvent : BOOL;
iValueNumber : INT;

iValueOut: this function block can be used to prioritize events or as a multiplexer. This selection is made
with the help of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
iValueOut is controlled by the occurring events of the inputs bEvent1-8, iValue1-8 and the control direction of
the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7
= TRUE (highest event occurred in Table 1 [} 419] column 1), then iValueOut = iValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 determine the output value
iValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurring event in Table 2 [} 419] column 1), then iValueOut = iValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables iValue1-8, whose value is output via iValueOut. If
bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then iValueOut =
iValue2, see Table 3 [} 420].

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and one of the input variables bEvent1-8 =
TRUE.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0

bEdgeNewEvent: is TRUE for one PLC cycle if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and the decisive event (bEvent1-8) has
changed to control the output iValueOut using iValue1-8.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Manual and with each change of iManualValue

iValueNumber: the variable iValueNumber indicates the variable from which the value on iValueOut is
output. If iValueOut = iValue7, then iValueNumber = 7, see Table 1 [} 419], Table 2 [} 420] and Table 3
[} 420]

VAR_IN_OUT
iValue1-8 : INT;

iValue1-8: the value of the output variable iValueOut is determined by the variables iValue1 to iValue8.
iValueOut = iValueX

If the function block is used to prioritize events, each of the variables iValue1-8 is assigned to an event.
iValue1 is assigned to the event bEvent1, iValue2 to the event bEvent2, iValue3 to the event bEvent3,...,
iValue8 to the event bEvent8

If the function block is used as a multiplexer, then each of the variables iValue1-8 is assigned to the value of
iManualValue. If iManualValue = 1, then iValueOut = iValue1. If iManualValue = 2, then iValueOut =
iValue2.... If iManualValue = 8, then iValueOut = iValue8.

The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 423Version: 1.2

3.6.24 FB_HVACPriority_REAL_16

Application

This function block can be used to prioritize events or as a multiplexer. This selection is made with the help
of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
rValueOut is controlled by the occurring events of the inputs bEvent1-16, rValue1-16 and the control
direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 have a higher priority. If bEnable
= TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent15 = TRUE (highest
occurred event in Table 1 [} 424] column 1), then rValueOut has the value of rValue15.
bDirection = TRUE means that the events in descending order from 16 to 1 have a higher priority. If bEnable
= TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest
occurring event in Table 2 [} 424] column 1), then rValueOut has the value of rValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables rValue1-16, whose value is output via rValueOut.
If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then rValueOut =
rValue2, see Table 3 [} 425].

Function blocks

TS8000424 Version: 1.2

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables rValue1-16 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables rValue1-16 change frequently and are not
to be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Table 1: Prioritization of events in ascending order from 1 to 16

Table 1

It can be seen in Table 1 that bDirection = FALSE. This means that the events determine the output value
rValueOut in ascending order from 1 to 16. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent15 = TRUE (highest occurring event in column 1),
then rValueOut = rValue15.

Table 2: Prioritization of events in descending order from 16 to 1

Table 2

It can be seen in Table 2 that bDirection = TRUE. This means that the events determine the output value
rValueOut in descending order from 16 to 1. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest occurring event in Table 2
[} 424] column 1), then rValueOut = rValue1.

Function blocks

TS8000 425Version: 1.2

Table 3: Multiplexer

Table 3

If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 2, then rValueOut = 2.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
bEvent1 - bEvent8 : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..16
bDirection : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000426 Version: 1.2

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then rValueOut is set constantly to 0.

eCtrlMode: the operation mode of the function block is specified by means of the enum.
If eCtrlMode = eHVACCtrlMode_Auto, the function block represents a prioritization of events. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Auto the output rValueOut is controlled by the events of the inputs
bEvent1-16, rValue1-16 and the control direction of the prioritization bDirection, see Table 1 [} 424] and
Table 2 [} 424]
If eCtrlMode = eHVACCtrlMode_Manual, the function block represents a multiplexer. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of output rValueOut is controlled by
iManualValue. If iManualProfile = 5, then rValueOut = rValue5, see Table 3 [} 425]

iManualProfile: if the operation mode eCtrlMode = eHVACCtrlMode_Manual (multiplexer) ANDbEnable =
TRUEANDbError = FALSE, then the value of the output rValueOut is controlled by iManualValue. If
iManualProfile = 5, then rValueOut = rValue5, see Table 3 [} 425]

bEvent1-16: the output rValueOut is controlled by the occurring events of the inputs bEvent1-16, rValue1-16
and the control direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDbEvent15 = TRUE (highest event occurred in Table 1 [} 424] column 1), then rValueOut =
rValue15.
bDirection = TRUE means that the events in descending order from 16 to 1 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 424] column 1), then rValueOut = rValue1.
The variables bEvent1-16 and bDirection are only taken into account if eCtrlMode = eHVACCtrlMode_Auto.

bDirection: the function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The
output rValueOut is controlled by the occurring events of the inputs bEvent1-16, rValue1-16 and the control
direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDbEvent15 = TRUE (highest event occurred in Table 1 [} 424] column 1), then rValueOut =
rValue15.
bDirection = TRUE means that the events in descending order from 16 to 1 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 424] column 1), then rValueOut = rValue1.
The variables bEvent1-16 and bDirection are only taken into account if eCtrlMode = eHVACCtrlMode_Auto.

VAR_OUTPUT
rValueOut : REAL;
bActive : BOOL;
bEdgeNewEvent : BOOL;
iValueOut : INT;

rValueOut: this function block can be used to prioritize events or as a multiplexer. This selection is made
with the help of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
rValueOut is controlled by the occurring events of the inputs bEvent1-16, rValue1-16 and the control
direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 16 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection =
FALSEANDbEvent15 = TRUE (highest event occurred in Table 1 [} 424] column 1), then rValueOut =
rValue15.

Function blocks

TS8000 427Version: 1.2

bDirection = TRUE means that the events in descending order from 16 to 1 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurring event in Table 2 [} 424] column 1), then rValueOut = rValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables rValue1-16, whose value is output via rValueOut.
If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then rValueOut =
rValue2, see Table 3 [} 425].

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and one of the input variables bEvent1-16 =
TRUE.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0

bEdgeNewEvent: is TRUE for one PLC cycle if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and the decisive event (bEvent1-16) has
changed to control the output rValueOut using rValue1-16.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Manual and with each change of iManualValue

iValueNumber: the variable iValueNumber indicates the variable from which the value on rValueOut is
output. If rValueOut = rValue7, then iValueNumber = 7, see Table 1 [} 424], Table 2 [} 424] and Table 3
[} 425]

VAR_IN_OUT
rValue1-16 : REAL;

rValue1-16: the value of the output variable rValueOut is determined by the variables rValue1 to rValue16.
rValueOut = rValueX

If the function block is used to prioritize events, each of the variables rValue1-16 is assigned to an event.
rValue1 is assigned to the event bEvent1, rValue2 to the event bEvent2, rValue3 to the event bEvent3,...,
rValue16 to the event bEvent16

If the function block is used as a multiplexer, then each of the variables rValue1-16 is assigned to the value
of iManualValue. If iManualValue = 1, then rValueOut = rValue1. If iManualValue = 2, then rValueOut =
rValue2.... If iManualValue = 16, then rValueOut = rValue16.

The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000428 Version: 1.2

3.6.25 FB_HVACPriority_REAL_8

Application

This function block can be used to prioritize events or as a multiplexer. This selection is made with the help
of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
rValueOut is controlled by the occurring events of the inputs bEvent1-8, rValue1-8 and the control direction
of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 have a higher priority. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7 = TRUE (highest
occurred event in Table 1 [} 428] column 1), then rValueOut has the value of rValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 have a higher priority. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest
occurring event in Table 2 [} 428] column 1), then rValueOut has the value of rValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables rValue1-8, whose value is output via rValueOut. If
bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then rValueOut =
rValue2, see Table 3 [} 429].

NOTICE
A frequently changing variable may not be applied to the VAR_IN_OUT variables rValue1-8 if
eDataSecurityType = eHVACDataSecurityType_Persistent. This would lead to premature wear of the
storage medium of the controller. If the VAR_IN_OUT variables rValue1-8 change frequently and are not to
be stored persistently, then eDataSecurityType must be eDataSecurityType_Idle.

Table 1: Prioritization of events in ascending order from 1 to 8

Table 1

It can be seen in Table 1 that bDirection = FALSE. This means that the events determine the output value
rValueOut in ascending order from 1 to 8. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7 = TRUE (highest occurring event in column 1),
then rValueOut = rValue7.

Function blocks

TS8000 429Version: 1.2

Table 2: Prioritization of events in descending order from 8 to 1

Table 2

It can be seen in Table 2 that bDirection = TRUE. This means that the events determine the output value
rValueOut in descending order from 8 to 1. If bEnable = TRUEANDeCtrlMode =
eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1 = TRUE (lowest occurring event in Table 2
[} 429] column 1), then rValueOut = rValue1.

Table 3: Multiplexer

Table 3

If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue = 2, then rValueOut = 2.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

Function blocks

TS8000430 Version: 1.2

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bEnable : BOOL;
bEvent1 - bEvent8 : BOOL;
eCtrlMode : E_HVACCtrlMode;
iManualValue : INT; 0..8
bDirection : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bEnable: the function block is enabled via TRUE. If bEnable = FALSE, then rValueOut is set constantly to 0.

eCtrlMode: the operation mode of the function block is specified by means of the enum.
If eCtrlMode = eHVACCtrlMode_Auto, the function block represents a prioritization of events. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Auto the output rValueOut is controlled by the events of the inputs
bEvent1-8, rValue1-8 and the control direction of the prioritization bDirection, see Table 1 [} 428] and Table 2
[} 429]
If eCtrlMode = eHVACCtrlMode_Manual, the function block represents a multiplexer. If bEnable =
TRUEANDeCtrlMode = eHVACCtrlMode_Manual, then the value of output rValueOut is controlled by
iManualValue. If iManualProfile = 5, then rValueOut = rValue5, see Table 3 [} 429]

iManualProfile: if the operation mode eCtrlMode = eHVACCtrlMode_Manual (multiplexer) ANDbEnable =
TRUEANDbError = FALSE, then the value of the output rValueOut is controlled by iManualValue. If
iManualProfile = 5, then rValueOut = rValue5, see Table 3 [} 429]

bEvent1-8: the output rValueOut is controlled by the occurring events of the inputs bEvent1-8, rValue1-8
and the control direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7
= TRUE (highest event occurred in Table 1 [} 428] column 1), then rValueOut = rValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 428] column 1), then rValueOut = rValue1.
The variables bEvent1-8 and bDirection are only considered if eCtrlMode = eHVACCtrlMode_Auto.

bDirection: the function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The
output rValueOut is controlled by the occurring events of the inputs bEvent1-8, rValue1-8 and the control
direction of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7
= TRUE (highest event occurred in Table 1 [} 428] column 1), then rValueOut = rValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurred event in Table 2 [} 428] column 1), then rValueOut = rValue1.
The variables bEvent1-8 and bDirection are only considered if eCtrlMode = eHVACCtrlMode_Auto.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 431Version: 1.2

VAR_OUTPUT
rValueOut : REAL;
bActive : BOOL;
bEdgeNewEvent : BOOL;
iValueNumber : INT;

rValueOut: this function block can be used to prioritize events or as a multiplexer. This selection is made
with the help of the Enum eCtrlMode.

The function block can be used to prioritize events if eCtrlMode = eHVACCtrlMode_Auto. The output
rValueOut is controlled by the occurring events of the inputs bEvent1-8, rValue1-8 and the control direction
of the prioritization bDirection.
bDirection = FALSE means that the events in ascending order from 1 to 8 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = FALSEANDbEvent7
= TRUE (highest event occurred in Table 1 [} 428] column 1), then rValueOut = rValue7.
bDirection = TRUE means that the events in descending order from 8 to 1 determine the output value
rValueOut. If bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_AutoANDbDirection = TRUEANDbEvent1
= TRUE (lowest occurring event in Table 2 [} 428] column 1), then rValueOut = rValue1.

The function block can be used as a multiplexer if eCtrlMode = eHVACCtrlMode_Manual. The value of
iManualValue refers to one of the VAR_IN_OUT variables rValue1-8, whose value is output via rValueOut. If
bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualAND iManualValue = 2, then rValueOut =
rValue2, see Table 3 [} 429].

bActive: bActive becomes TRUE , if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and one of the input variables bEvent1-8 =
TRUE.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_ManualANDiManualValue > 0

bEdgeNewEvent: is TRUE for one PLC cycle if

1. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Auto and the decisive event (bEvent1-8) has
changed to control the output rValueOut using rValue1-8.

2. bEnable = TRUEANDeCtrlMode = eHVACCtrlMode_Manual and with each change of iManualValue

iValueNumber: the variable iValueNumber indicates the variable from which the value on rValueOut is
output. If rValueOut = rValue7, then iValueNumber = 7, see Table 1 [} 428], Table 2 [} 429] and Table 3
[} 429]

VAR_IN_OUT
rValue1-8 : REAL;

rValue1-8: the value of the output variable rValueOut is determined by the variables rValue1 to rValue8.
rValueOut = rValueX

If the function block is used to prioritize events, each of the variables rValue1-8 is assigned to an event.
rValue1 is assigned to the event bEvent1, rValue2 to the event bEvent2, rValue3 to the event bEvent3,...,
rValue8 to the event bEvent8

If the function block is used as a multiplexer, then each of the variables rValue1-8 is assigned to the value of
iManualValue. If iManualValue = 1, then rValueOut = rValue1. If iManualValue = 2, then rValueOut =
rValue2.... If iManualValue = 8, then rValueOut = rValue8.

The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.26 FB_HVACOptimizedOn
Function block for the optimized switch-on of heating boilers and air conditioning systems in conjunction with
switching time function blocks.

Function blocks

TS8000432 Version: 1.2

The explanations in this document relate to the heating behavior. The function block is used in the same way
in conjunction with cooling devices.

Fig. 17: FB_HVACOptimizedOn

Calculation of the pre-start time

Company buildings and public facilities are generally unoccupied overnight and at weekends, so the heating
boilers there often run only in standby mode. The goal of optimized switch-on is to start the heating boiler
early enough for the building to have been heated sufficiently at a certain point in time. Conversely, this also
applies to the cooling of the building during the summer months. This pre-start time is in fact not constant,
but always dependent on various factors, such as outside temperature, room temperature difference (actual
value to setpoint), and structural conditions, for example the building mass and the thermal insulation. The
development of a universal equation valid for all buildings would be a very complex task and would fail just
on account of the input of innumerable parameters. A self-learning (adaptive) approximation method is
simpler and ultimately absolutely sufficient.

The flow temperature of the heating boiler depends on the outside temperature. Thus, different outside
temperatures result in different heating curves, which essentially correspond to an exponential function:

Function blocks

TS8000 433Version: 1.2

The flow temperature is always considerably higher than the room temperature to be reached. To determine
the pre-start time it is assumed that the area of the functions between the room temperature start value and
room temperature set value is linear. This results in a characteristic temperature change ΔT/Δt for each
outside temperature, which is shown here by the dotted line.

With the structure variable stTempChangeFunction [} 529], the function block FB_HVACOptimizedOn is
based on a table in which the respectively expected room temperature change is assigned for 10 discrete
outside temperatures. During the commissioning or the initial starting of the system, the pre-start function
must be coarsely predefined - firstly to define the outside temperature range and secondly to accelerate the
adaptation procedure. This entry is done with the function block FB_HVACTempChangeFunctionEntry [} 452].
The pre-start time can be determined approximately with these values. This temperature change function
f(AT) typically adopts the following course:

Function blocks

TS8000434 Version: 1.2

Function values within these 10 points are defined by linear equations, while values outside correspond to
the function value f(AT1) or f(AT10) respectively:

• AT < AT1: f(AT) = f(AT1)
• AT > AT10: f(AT) = f(AT10)

The pre-start time is then determined in accordance with the following sequence:

The input and output variables of the function block are shown here in red. Shown in purple here is the
internal flag uiActualPrestartTime which contains the current pre-start time at each point in time. The output
uiPrestartTime corresponds to this flag, but is "frozen" during the pre-start phase. This is explained in more
detail below.

Function block linking and pre-start phase

From these parameters the function block will then continuously calculate a pre-start time, which it specifies
to the timer function block. If, for example, a boiler is then to have heated up the building at 6 o'clock on
Monday morning and the pre-start function block determines 60 minutes pre-start time at 5 o'clock in the
morning, the time switch will immediately set the boiler to the appropriate heating mode. The heating
behavior is then observed in a reference room over the pre-start phase and the pre-start curve is corrected
accordingly.

The pre-start function block specifies a pre-start time for the time switch. If the timer switches the output
bOutput, this is indicated to the pre-start function block via its input bSchedulerActive. Internally the pre-start
function block then starts a countdown with the previously output pre-start time uiPrestartTime [min]. The

Function blocks

TS8000 435Version: 1.2

countdown either runs through to the end or is completed prematurely when the room setpoint temperature
is reached and represents the pre-start phase. During the countdown, the output bPrestartActive is set ,
which can then be used, for example, for a quick start of the boiler.
The output uiPrestartTime follows continuously the above calculation - during a started countdown, however,
it is kept constant so that a fluctuation in the outside temperature does not indicate a lower pre-start time and
suddenly switch off the boiler.

If, in the case of a pre-start, the timer function block still sends the adaptation order as an edge (red line) to
the optimization function block, then the latter will decide following the pre-start phase whether the previously
determined pre-start time was precisely within a tolerance, or too short or too long, and correct the
temperature change function accordingly. In doing so the pre-start time of the point whose outside
temperature was nearest to the actual one at the beginning of the countdown is corrected upwards or
downwards respectively. This process is called "adaptation [} 438]".

Temperature changes are only corrected if the outside temperature was within the interpolation
points, i.e. the function range, at the beginning of the pre-start; see "Adaptation [} 438]".

If adaptation is desired, the inputs bWithAdaption and bSchedulerActive must be set simultaneously. A pure
trigger pulse is sufficient for bWithApation. A previously started countdown is interrupted immediately if the
input bSchedulerActive releases. The adaptation can be suppressed by the input bDisableAdaption. This
option should be selected if the temperature change function is no longer to be changed after a certain
number of adaptation procedures.

The following program flowchart is intended to better illustrate the behavior; the input and output variables of
the function block are shown in red here:

The internal flag "Current pre-start time" is the continuously refreshed result of the calculation in accordance
with the diagram shown above.

Function blocks

TS8000436 Version: 1.2

Function blocks

TS8000 437Version: 1.2

Function blocks

TS8000438 Version: 1.2

The input bEnable, the function of which is not shown here, effectively disables the function block if it is set
to FALSE: "0" is output as the pre-start time uiPrestartTime and the sequence shown above is not started or
is immediately reset.

Adaptation

Adaptation

If an adaptation is selected and the pre-start phase has ended (countdown = 0 or room temperature
reached), then three cases can occur:

1. The countdown has elapsed and the room temperature difference lies below the tolerance limit value
rAdaptionTolerance -> no adaptation takes place.

2. The countdown has not yet elapsed, but the set temperature for the room has been reached -> the
pre-start time uiPrestartTime was too long.

3. The countdown has elapsed, but there is still a positive temperature difference -> the pre-start time
uiPrestartTime was too short.

The value ΔT/Δt can now be re-determined on the basis of the elapsed countdown time and the change in
the room temperature difference that has taken place

1. no change.
2. too much time was calculated - new value: "room temperature difference at the beginning" / "time

elapsed so far"
3. too little time was calculated – new value: ("Room temperature difference at start" - "Room

temperature difference at end") / "Countdown time"

The temperature change function is now corrected at the interpolation point whose outside temperature
value was closest to that at the start of the pre-stop phase. The relevant point for this was saved before the
start of the countdown, see program flow chart.

However, the previously calculated value ΔT/Δt is not necessarily adopted 100% as the new value at the
interpolation point. In fact there is an option to mix the new value from a weighting of old and calculated
value. This weighting takes place with the aid of the so-called adaptation factor rAdaptionFactor:

With an adaptation factor of 100% the newly calculated value is adopted fully, while with 0% the old value is
retained.

Function blocks

TS8000 439Version: 1.2

Because the pre-start time is always changed at the nearest point, an adaptation can only take
place if the outside temperature at the beginning of the pre-start phase lies inside AT1 to AT10.

Input/output variables

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
eCtrlFct : E_BARCtrlFct;
bEnable : BOOL;
bSchedulerActive : BOOL;
bWithAdaption : BOOL;
bDisableAdaption : BOOL;
rOutsideTemperature: REAL;
rRoomTemperature : REAL;
rRoomSetpointValue : REAL;

Function blocks

TS8000440 Version: 1.2

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eDataSecurityType_Persistenti. It would lead to early wear of the flash memory.

eCtrlFct : eCtrlFct = eBARCtrlFct_Heating indicates to the function block that it is to be used in heating
mode. Cooling mode is indicated by eCtrlFct = eBARCtrlFct_Cooling. Any other entry at this input is
impermissible and leads to an error message. The two possible entries are for the different calculation of the
temperature difference between actual room value and set room value.

bEnable : a FALSE signal at this input suppresses the optimized switch-on of the connected timers. The
output value of the pre-start time is also set directly to "0". No countdown starts, nor is an adaptation carried
out – the function block is reset.

bSchedulerActive : a rising edge at this input starts the internal countdown of the pre-start time. The output
bPrestartMode is set to TRUE while the countdown of a pre-start time is running down. If the output
bSchedulerActive is switched to FALSE again during the countdown, the countdown is interrupted
immediately and the output bPrestartMode is set to FALSE. The countdown is also stopped and
bPrestartMode set to FALSE when the room set value is reached.

bWithAdaption : if this input is set simultaneously with the input bSchedulerActive, an adaptation takes
place after the expiry of the countdown. A trigger pulse together with the rising edge of bSchedulerActive is
sufficient for this. This input can only be used in conjunction with bSchedulerActive; setting it alone has no
effect at all.

bDisableAdaption : a TRUE signal at this input merely suppresses the adaptation that follows the
countdown.

rOutsideTemperature : outside temperature in degrees Celsius.

rRoomTemperature : room temperature in degrees Celsius.

rRoomSetpointValue : room temperature setpoint in degrees Celsius.

VAR_OUTPUT
uiPrestartTime : UINT;
bPrestartActive : BOOL;
udiCountdownTime : UDINT;
bError : BOOL;
udiErrorID : UDINT;

uiPrestartTime : output value of the optimized pre-start time to the timers concerned in minutes. This value
is formed continuously from the pre-start function that is dependent on the outside temperature. Conversely,
if the input bDisableOptimization is set to TRUE, then this output is set to "0".

bPrestartActive : the function block is in pre-start mode as long as the internal countdown is running and
has not been ended by the expiry of the pre-start time, by the reaching of the room temperature setpoint or
by an interruption (bSchedulerActive = FALSE). This is indicated by a TRUE signal at this output.

udiCountdownTime : this output indicates the elapsing of the internal countdown in seconds. This output is
set to "0" if the function block is no longer in pre-start mode (see bPrestartMode).

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 441Version: 1.2

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

The need for entered parameters to be preserved across a control failure makes it necessary for them to be
declared as IN-OUT variables. A reference variable is then assigned to them in the program. Each change in
the value of this reference variable is persistently saved in the function block and written back to the
reference variable after a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiMaxPrestartTime : UINT;
rAdaptionFactor : REAL;
rAdaptionTolerance : REAL;
stTempChangeFunction: ST_HVACTempChangeFunction;

uiMaxPrestartTime : due to the adaptation the pre-start times are shortened and lengthened within the
temperature change function. While they are logically automatically limited to 0 minutes in the downward
direction, the upward limit in minutes can be defined by this input.

rAdaptionFactor : in the adaptation step the temperature change ΔT/Δt that has taken place is calculated
for the nearest outside temperature interpolation point. However, this is not necessarily adopted 100% as the
new value. In fact there is an option to mix the new value from a weighting of old and calculated value. The
adaptation factor (in percent) thereby represents the weighting.

With an adaptation factor of 100% the newly calculated value is adopted fully, while with 0% the old value is
retained.

rAdaptionTolerance : if the countdown has expired and the room temperature setpoint has been reached
with adaptation activated, no adaptation is carried out because the pre-start time is precisely right. The value
rAdaptionTolerance defines a tolerance range: if the actual value lies within the range rRoomSetpointValue ..
rRoomSetpointValue + rAdaptionTolerance, then this is regarded as reaching the setpoint.

stTempChangeFunction : structure variable of type ST_HVACTempChangeFunction [} 529], which contains
the 10 value pairs (outside temperature, internal temperature change). These value pairs, which have to be
entered in the field variable in ascending order of the outside temperature, define the 9 pitch lines of the
temperature change function. Initial entry through FB_HVACTempChangeFunctionEntry [} 452].

3.6.27 FB_HVACOptimizedOff
Function block for the optimized switch-off (pre-stop) of heating boilers and air conditioning systems in
conjunction with switching time function blocks.

The explanations in this document relate to the heating behavior. The function block is used in the same way
in conjunction with cooling devices.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000442 Version: 1.2

Fig. 18: FB_HVACOptimizedOff

Calculation of the pre-stop time

Buildings and parts of buildings that are occupied at a specific and predictable time, such as schools or
conference rooms, do not need to be heated for the entire occupancy period. Due to the fact that the
buildings store heat, it is possible to turn off the heating a little earlier. The room temperature then drops to a
barely noticeable lower temperature level by the end of occupancy. This is a deliberate drop to a target
temperature - the drop difference is an input parameter of the function block and is called
rRequestedTempDeviation.

The flow temperature of the heating boiler depends on the outside temperature. Thus, different outside
temperatures result in different cooling curves, which essentially correspond to an exponential function:

Function blocks

TS8000 443Version: 1.2

To determine the pre-stop time it is assumed that the area of the functions between the room temperature
start value and room temperature setpoint is linear. This results in a characteristic temperature change ΔT/Δt
for each outside temperature, which is shown here by the dotted line.

With the structure variable stTempChangeFunction [} 529], the function block FB_HVACOptimizedOff is
based on a table in which the respectively expected room temperature change is assigned for 10 discrete
outside temperatures. During the commissioning or the initial starting of the system, the pre-start function
must be coarsely predefined - firstly to define the outside temperature range and secondly to accelerate the
adaptation procedure. This entry is done with the function block FB_HVACTempChangeFunctionEntry [} 452].
The pre-stop time can be determined approximately with these values. This temperature change function
f(AT) typically takes the following course, where the change is shown as magnitude, i.e. positive:

Function blocks

TS8000444 Version: 1.2

Function values within these 10 points are defined by linear equations, while values outside correspond to
the function value f(AT1) or f(AT10) respectively:

• AT < AT1: f(AT) = f(AT1)
• AT > AT10: f(AT) = f(AT10)

The pre-stop time is then determined in accordance with the following sequence:

The input and output variables of the function block are shown here in red. Shown in purple here is the
internal flag uiActualPrestopTime which contains the current pre-stop time at each point in time. The output
uiPrestopTime corresponds to this flag, but is "frozen" during the pre-stop phase. This is explained in more
detail below.

Function block linking and pre-stop phase

From these parameters the function block will then continuously calculate a pre-stop time, which it specifies
to the timer function block. Then if, for example, a heating boiler is to be switched off at 8 pm and the pre-
stop function block determines at 7 pm that the temperature level would drop by the desired value
rRequestedTempDeviation on switching off the boiler in 60 minutes, the boiler is switched off immediately.
The cooling behavior is then observed in a reference room over the pre-stop phase and the temperature
change curve is corrected accordingly.

The pre-stop function block specifies a pre-stop time for the timer. If the timer switches the output bOutput
back to FALSE, this is indicated to the pre-stop function block via its input bSchedulerOff. Internally the pre-
stop function block then starts a countdown with the previously output pre-stop time uiPrestopTime [min].

Function blocks

TS8000 445Version: 1.2

The countdown either runs to the end or is prematurely ended on reaching the requested or tolerated room
temperature. During the countdown, the bPrestopActive output is set.
The uiPrestopTime output continuously follows the above calculation - however, during a started countdown
it is kept constant so that a fluctuation in the outdoor temperature does not indicate a lower pre-stop time and
suddenly turn the boiler back on.

If, in the case of a pre-stop, the timer function block still sends the adaptation order as an edge (red line) to
the optimization function block, then the latter will decide following the pre-stop phase whether the previously
determined pre-stop time was precisely within a tolerance, or too short or too long, and correct the
temperature change function accordingly. In doing so the pre-stop time of the point whose outside
temperature was nearest to the actual one at the beginning of the countdown is corrected upwards or
downwards respectively. This process is called "adaptation [} 448]".

Temperature changes are only corrected if the outside temperature was within the interpolation
points, i.e. the function range, at the beginning of the pre-stop; see "Adaptation [} 448]".

If adaptation is desired, the inputs bWithAdaption and bSchedulerOff must be set simultaneously. A pure
trigger pulse is sufficient for bWithApation. A previously started countdown is interrupted immediately if the
input bSchedulerOff releases. The adaptation can be suppressed by the input bDisableAdaption. This option
should be selected if the temperature change function is no longer to be changed after a certain number of
adaptation procedures.

The following program flowchart is intended to better illustrate the behavior; the input and output variables of
the function block are shown in red here:

The internal flag "Current pre-stop time" is the continuously refreshed result of the calculation in accordance
with the diagram shown above.

Function blocks

TS8000446 Version: 1.2

Function blocks

TS8000 447Version: 1.2

The input bEnable, the function of which is not shown here, effectively disables the function block if it is set
to FALSE: "0" is output as the pre-stop time uiPrestopTime and the sequence shown above is not started or
is immediately reset.

Function blocks

TS8000448 Version: 1.2

Adaptation

Adaptation

The goal of the adaptation is to adapt the temperature change function so precisely that the requested or
tolerated temperature decrease rRequestedTempDeviation is reached in the determined pre-stop time (in
cooling mode it would be the temperature increase after switching off the cooling devices).

If an adaptation is selected and the pre-stop phase has ended (countdown = 0 or room temperature
reached), then three cases can occur:

1. The countdown has elapsed and the requested deviation rRequestedDeviation is exhausted up to a
tolerance rAdaptionTolerance -> no adaptation takes place.

2. The countdown has not yet elapsed, but the requested deviation rRequestedDeviation has been
exceeded -> the pre-stop time uiPrestopTime was too long.

3. The countdown has elapsed, but the requested deviation rRequestedDeviation is not yet fully
exhausted -> the pre-stop time uiPrestopTime was too short, i.e. switch-off can take place even
earlier.

The value ΔT/Δt can now be re-determined on the basis of the elapsed countdown time and the change in
the room temperature difference that has taken place

1. no change.
2. too much time was calculated - new value: "desired deviation rRequestedDeviation" / "time elapsed so

far"
3. too much time was calculated - new value: ("requested deviation rRequestedDeviation" - "Deviation at

the end") / "Countdown time"

The temperature change function is now corrected at the interpolation point whose outside temperature
value was closest to that at the start of the pre-stop phase. The relevant point for this was saved before the
start of the countdown, see program flow chart.

However, the previously calculated value ΔT/Δt is not necessarily adopted 100% as the new value at the
interpolation point. In fact there is an option to mix the new value from a weighting of old and calculated
value. This weighting takes place with the aid of the so-called adaptation factor rAdaptionFactor:

Function blocks

TS8000 449Version: 1.2

With an adaptation factor of 100% the newly calculated value is adopted fully, while with 0% the old value is
retained.

Note: Because the pre-stop time is always changed at the nearest point, an adaptation can only take place if
the outside temperature at the beginning of the pre-stop phase lies inside AT1 to AT10.

Function blocks

TS8000450 Version: 1.2

Input/output variables

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
eCtrlFct : E_BARCtrlFct;
bEnable : BOOL;
bSchedulerOff : BOOL;
bWithAdaption : BOOL;
bDisableAdaption : BOOL;
rOutsideTemperature : REAL;
rRoomTemperature : REAL;
rRequestedTempDeviation: REAL;

eDataSecurityType:if eDataSecurityType:= eDataSecurityType_Persistent, the persistent VAR_IN_OUT
variables of the function block are stored in the flash of the computer if a value changes. For this to work, the
function block FB_HVACPersistentDataHandling must be instanced once in the main program, which is
called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eDataSecurityType_Idle the persistently declared variables are not saved in a fail-
safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eDataSecurityType_Persistenti. It would lead to early wear of the flash memory.

eCtrlFct : eCtrlFct = eBARCtrlFct_Heating indicates to the function block that it is to be used in heating
mode. Cooling mode is indicated by eCtrlFct = eBARCtrlFct_Cooling. Any other entry at this input is
impermissible and leads to an error message. The two possible entries are for the different evaluation of the
deviation rRequestedTempDeviation.

bEnable : a FALSE signal at this input suppresses the optimized switch-off of the connected timers. The
output value of the pre-stop time is also set directly to "0". No countdown starts, nor is an adaptation carried
out – the function block is reset.

bSchedulerOff : a rising edge at this input starts the internal countdown of the pre-stop time. The output
bPrestopMode is set to TRUE while the countdown of a pre-stop time is running down. If the output
bSchedulerOff is switched to FALSE again during the countdown, the countdown is interrupted immediately
and the output bPrestopMode is set to FALSE. The countdown is also stopped and bPrestopMode set to
FALSE when the room set value is reached.

bWithAdaption : if this input is set simultaneously with the input bSchedulerOff, an adaptation takes place
after the expiry of the countdown. A trigger pulse together with the rising edge of bSchedulerOff is sufficient
for this. This input can only be used in conjunction with bSchedulerOff; setting it alone has no effect at all.

bDisableAdaption : a TRUE signal at this input merely suppresses the adaptation that follows the
countdown.

rOutsideTemperature : outside temperature in degrees Celsius.

rRoomTemperature : room temperature in degrees Celsius.

rRequestedTempDeviation : tolerated downward (heating mode) or upward (cooling mode) temperature
deviation after switching off the boiler or the air conditioning system respectively until leaving the room.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 451Version: 1.2

VAR_OUTPUT
uiPrestopTime : UINT;
bPrestopActive : BOOL;
udiCountdownTime: UDINT;
bError : BOOL;
udiErrorID : UDINT;

uiPrestopTime : output value of the optimized pre-stop time to the timers concerned in minutes. This value
is formed continuously from the pre-stop function that is dependent on the outside temperature. Conversely,
if the input bDisableOptimization is set to TRUE, then this output is set to "0".

bPrestopActive : the function block is in pre-stop mode as long as the internal countdown is running and
has not been ended by the expiry of the pre-stop time, by the reaching of the room temperature setpoint or
by an interruption (bSchedulerOff = FALSE). This is indicated by a TRUE signal at this output.

udiCountdownTime : this output indicates the elapsing of the internal countdown in seconds. This output is
set to "0" if the function block is no longer in pre-stop mode (see bPrestopMode).

bError: this output is switched to TRUE if the parameters entered are erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT

The need for entered parameters to be preserved across a control failure makes it necessary for them to be
declared as IN-OUT variables. A reference variable is then assigned to them in the program. Each change in
the value of this reference variable is persistently saved in the function block and written back to the
reference variable after a controller failure and restart. If the parameters were only declared as input
variables, they would not be able to write a reference variable.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip.
uiMaxPrestopTime : UINT;
rAdaptionFactor : REAL;
rAdaptionTolerance : REAL;
stTempChangeFunction : ST_HVACTempChangeFunction;

uiMaxPrestopTime : due to the adaptation the pre-stop times are shortened and lengthened within the
temperature change function. While they are logically automatically limited to 0 minutes in the downward
direction, the upward limit in minutes can be defined by this input.

rAdaptionFactor : in the adaptation step the temperature change ΔT/Δt that has taken place is calculated
for the nearest outside temperature interpolation point. However, this is not necessarily adopted 100% as the
new value. In fact there is an option to mix the new value from a weighting of old and calculated value. The
adaptation factor (in percent) thereby represents the weighting.

With an adaptation factor of 100% the newly calculated value is adopted fully, while with 0% the old value is
retained.

rAdaptionTolerance : if the countdown has elapsed and the requested deviation rRequestedDeviation is
exhausted, no adaptation is carried out because the pre-stop time is precisely right. The value
rAdaptionTolerance defines an additional tolerance range:

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000452 Version: 1.2

stTempChangeFunction : structure variable of type ST_HVACTempChangeFunction [} 529], which contains
the 10 value pairs (outside temperature, internal temperature change). These value pairs, which have to be
entered in the field variable in ascending order of the outside temperature, define the 9 pitch lines of the
temperature change function. Initial entry through FB_HVACTempChangeFunctionEntry [} 452].

3.6.28 FB_HVACTempChangeFunction
Function block for the input of the interpolation points of the pre-start function.

Function blocks

TS8000 453Version: 1.2

Fig. 19: FB_HVACTempChangeFunctionEntry

To keep the function blocks FB_HVACOptimizedOn [} 431] and FB_HVACOptimizedOff [} 441] uncluttered,
they do not contain any input of the individual value pairs for the temperature change function - the function
blocks access the structure variable of the temperature change function (ST_HVACTempChangeFunction
[} 529]) via an IN-OUT variable. The function block FB_HVACTempChangeFunction enables the writing of
the structure variable in a clear form and also makes sure that the value pairs, as required, are entered in
ascending order of the outside temperature and that there are no two points with the same outside
temperature. Mathematically speaking, there would be no unambiguous functional correlation in this case.
The value pairs are to be entered at the corresponding inputs rOutsideTemperature_1..
rOutsideTemperature_10 (outside temperature) and rRoomTempChange_1..rRoomTempChange_10 (room
temperature change). The function block continuously checks whether the described requirement for
ascending order of the outside temperature is fulfilled and whether two value pairs exist with the same
outside temperature.

The writing of the temperature change functions should take place once in order to give the pre-
start/pre-stop function blocks basic values, which are then continually improved by these function
blocks over the course of time.

VAR_INPUT
bWrite : BOOL;
rOutsideTemp_1 : REAL;
rRoomTempChange_1 : REAL;
rOutsideTemp_2 : REAL;
rRoomTempChange_2 : REAL;
rOutsideTemp_3 : REAL;
rRoomTempChange_3 : REAL;
rOutsideTemp_4 : REAL;
rRoomTempChange_4 : REAL;

Function blocks

TS8000454 Version: 1.2

rOutsideTemp_5 : REAL;
rRoomTempChange_5 : REAL;
rOutsideTemp_6 : REAL;
rRoomTempChange_6 : REAL;
rOutsideTemp_7 : REAL;
rRoomTempChange_7 : REAL;
rOutsideTemp_8 : REAL;
rRoomTempChange_8 : REAL;
rOutsideTemp_9 : REAL;
rRoomTempChange_9 : REAL;
rOutsideTemp_10 : REAL;
rRoomTempChange_10 : REAL;

bWrite : a rising edge at this input copies the values entered at the inputs to the pre-start function.

(rOutsideTemp_1 - rRoomTempChange1) ... (rOutsideTemp_10 - rRoomTempChange10): value pairs of
the pre-start function: room temperature change (rRoomTempChange) in degrees Kelvin per minute at
outside temperature (rOutsideTemp) in degrees Celsius.

VAR_OUTPUT
bValid : BOOL;
udiErrorID : UDINT;

bValid : this output is switched to TRUE if the parameters entered are not erroneous.

udiErrorId : contains the error code if the values entered should be erroneous. See error codes [} 237].

VAR_IN_OUT
stTempChangeFunction : ST_HVACTempChangeFunction;

stTempChangeFunction : structure variable of type ST_HVACTempChangeFunction [} 529], which contains
the 10 value pairs (outside temperature, room temperature change). These value pairs, which have to be
entered in the field variable in ascending order of the outside temperature, define the 9 pitch lines of the pre-
start function.

3.6.29 FB_HVACPWM

Application

This function block generates a pulse width modulated signal from the analog input signal rYIn. Furthermore,
a minimum switch-on time can be parameterized.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rYIn : REAL; 0 .. 100 %
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

Function blocks

TS8000 455Version: 1.2

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled if bEnable = TRUE.

rYIn: analog input value of the function block.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bOut : BOOL;
rYOut : REAL; 0 .. 100 %
bInvalidParameter: BOOL;

bOut: PWM signal.

rYOut: output of the input value of the function block.

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
tPWMPeriod : TIME;
tMINPowerOnTime : TIME;

tPWMPeriod: period of the PWM signal. The variable is saved persistently. Preset to 30 min.

tMINPowerOnTime: minimum switch-on time of the pulsed output bOut. The variable is saved persistently.
Preset to 0 s.

Fig.1: Scope2 recording for additional explanation of the mode of operation of the function block. The output
(bOut = TRUE) is set on enabling the function block (bEnable = TRUE). See also sections 1 and 5.
A change in the input value during a running period is only taken into account in the next period. See also
sections 2, 3 and 4.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000456 Version: 1.2

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000 457Version: 1.2

3.6.30 FB_HVACStartAirConditioning

Application

The air conditioning system is started up stepwise with the start program FB_HVACStartAirConditioning. The
shut-off dampers, the fans, the controller and the limit value monitoring of the analog inputs are thereby
enabled one after the other.

In the case of low outside temperatures below the value of rPreRinseOutsideTemp, the heating coil is initially
rinsed through with hot water before the outside and exhaust air dampers are opened. In VAC-systems with
a temperature sensor in the return flow from the heating coil, the rinsing procedure continues until the
temperature rReturnWaterTemp has exceeded the value of the input variable rPreRinseLimitTemp. The
outside and exhaust air dampers are opened when the specified temperature in the return flow from the air
heater is reached. If the temperature is not exceeded after the timer tPreRinseMaxTime has elapsed, the
fault is indicated by a TRUE at the output bErrorNoHotWater.

If there is no temperature sensor in the return flow from the heater, a constant of -100 is applied to the input
rReturnWaterTemp. The function block FB_HVACStartAirConditioning then knows that the pre-rinse
procedure must be executed without return flow monitoring. In this case, rinsing is performed until the timer
tPreRinseMaxTime expires. Hence, there is no monitoring of the rinsing procedure!

The outside and exhaust air dampers are opened after completion of the pre-rinsing procedure. The output
bDampersOpen becomes TRUE as a result.
In order to avoid damage to the air ducts and the dampers, the start-up of the fans is delayed until the
feedback "Open" from the dampers is present at the input bDampersFeedbOpen. In addition the timer
tDelaySupplyVent must have elapsed. The set time must be longer than the stroke time of the damper drive.
Since this timer is also effective when the plant is switched off, shutdown ramps of frequency
converters must also be taken into account!
If there is no feedback from the damper drives within the set time, the output bErrorDampersbecomes TRUE.
In order to avoid high start-up currents, the switching on of the exhaust air fan is delayed by the timer
tDelayExhaustVent.

Function blocks

TS8000458 Version: 1.2

In systems with a mixed air chamber it makes sense to enable the controller only after the supply air
temperature rSupplyAirTemp has reached approximately the value of the exhaust air temperature. The
maximum deviation is specified by the parameter rDifferenceTemp. In systems without a mixed air system a
very large value is simply entered here as a constant, e.g. 100. The controller is then enabled without a
delay.

After the timer tDelayLimitCtrlhas expired, the output bEnableLimitCtrlis enabled and thus the limit value
monitoring of the analog inputs is activated.

If the outside temperature lies below the value of rPreRinseOutsideTemp, the value of iCurrentSequence is
set equal to that of iStartSeqWinter at the output. The number of the pre-heater controller must be entered
here (see the chapter on sequence controllers). (See the chapter on sequence controllers). If the outside
temperature is higher than rPreRinseOutsideTemp, start-up can commence with the heat recovery unit or
the mixed air chamber. Hence, the number of the sequence controller for the mixed air chamber or for the
heat recovery unit is entered at the input iStartSeqSummer.

The start-up circuit becomes active in the event of operating requirements of the automatic programs, the
time schedules, summer night cooling, back-up operation and overheating protection.
To control the sequence controllers, the enumeration variable eModeSeqCtrlis set at the output of the
function block as follows:

TYPE E_HVACSequenceCtrlMode :
(
eHVACSequenceCtrlMode_Stop := 0,
eHVACSequenceCtrlMode_On := 1,
eHVACSequenceCtrlMode_NightCooling := 2,
eHVACSequenceCtrlMode_FreezeProtection := 3,
eHVACSequenceCtrlMode_OverheatingProtection := 4,
eHVACSequenceCtrlMode_NightCoolingAndOverheatingProtection := 5
);
END_TYPE

Requests from all automatic programs are transferred to the system start program via the input variables
bTimeScheduler, bNightCooling, bFreezeProtec and bOverHeatingProtec. Requests from retention functions
are only applied if there is no request from a timer program at the input variable bTimeScheduler.

The programs for summer night cooling (bNightCooling), cooling protection (bFreezeProtect) and
overheating protection (bOverHeatingProtec) are only usable if a room temperature sensor is used in place
of an exhaust air temperature sensor. The cooling protection program always has priority over the other
automatic programs unless the operation request from the timer program is present.

Since summer night cooling can take place as forced ventilation with fans or as convection ventilation
without fans, the command from the program FB_HVACSummerNightCooling is transferred with the counter
variable E_HVACConvectionMode. This output must be applied to the input variable eConvection.

A collection of all air conditioning system error messages that lead to the system switching off is applied to
the input bEmergencyStop.

When the air conditioning system is switched off, the order of the switch-on steps is reversed.

- Deactivating the limit monitoring at the analog inputs
- Deactivating the controllers (resetting iCurrentSequence:= 0)
- Switching off the fans
- Closing the dampers after the timer has expired tDelaySupplyVent.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
iStartSeqWinter : INT;
iStartSeqSummer : INT;
bTimeScheduler : BOOL;
bNightCooling : BOOL;
bFreezeProtec : BOOL;
bOverHeatingProtec : BOOL;
rOutsideTemp : REAL;
rReturnWaterTemp : REAL;
rSupplyAirTemp : REAL;

Function blocks

TS8000 459Version: 1.2

rReturnAirTemp : REAL;
bDampersFeedbOpen : BOOL;
bEmergencyStop : BOOL;
bReset : BOOL;

eDataSecurityType: if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

iStartSeqWinter: the number of the sequence controller for the preheater must be entered here.

iStartSeqSummer: the number of the sequence controller for the mixed air chamber or for the heat recovery
unit must be entered here.

bTimeScheduler: input for the timer switch command.

bNightCooling: input for the night cooling function.

bFreezeProtec: input for the frost protection function.

bOverHeatingProtec: input for the overheating protection function.

rOutsideTemp: input for the outside temperature.

rReturnWaterTemp: input for the water temperature from the return flow of the air heater.

rSupplyAirTemp: input for the supply air temperature.

rReturnAirTemp: input for the room temperature or the exhaust air temperature.

bDampersFeedbOpen: input for the feedback from the dampers.

bEmergencyStop: this input can be used to create a collection of all fault messages of the VAC system,
which then lead to the emergency shutdown of the system.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
eModeSeqCtrl : E_HVACSequenceCtrlMode;
bPreRinse : BOOL;
bDampersOpen : BOOL;
bSupplyVentilation : BOOL;
bExhaustVentilation : BOOL;
bStartPIDControllers: BOOL;
bEnableLimitCtrl : BOOL;
bErrorGeneral : BOOL;
bErrorNoHotWater : BOOL;
bErrorDampers : BOOL;
byError : BYTE;
bInvalidParameter : BOOL;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000460 Version: 1.2

eModeSeqCtrl: Enum that notifies the operation request.

bPreRinse: TRUE if the pre-rinsing procedure is active.

bDampersOpen: if TRUE, then the outside and exhaust air dampers are open.

bSupplyVentilation: switch on supply air fan if TRUE.

bExhaustVentilation: switch on exhaust air fan if TRUE.

bStartPIDControllers: enable control.

bEnableLimitCtrl: after the timer tDelayLimitCtrlhas expired, the output bEnableLimitCtrlis enabled and thus
the limit value monitoring of the analog inputs is activated.

bErrorGeneral: there is a general error.

bErrorNoHotWater: is set to TRUE if the rinsing procedure has ended and the set temperature in the return
flow has not been reached.

bErrorDampers: there is an error in the dampers.

byError: output of the error as a byte.

byError.1:= bInvalidParameter;
byError.2:= bErrorGeneral;
byError.3:= bErrorNoHotWater;
byError.4:= bErrorDampers;

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
eConvection : E_HVACConvectionMode;
tDelaySupplyVent : TIME;
tDelayExhaustVent : TIME;
tDelayTempCtrl : TIME;
rDifferenceTemp : REAL;
tDelayLimitCtrl : TIME;
rPreRinseOutsideTemp : REAL;
rPreRinseLimitTemp : REAL;
tPreRinseMaxTime : TIME;
iCurrentSequence : INT;

eConvection: ENUM via which summer night cooling can take place as forced ventilation with fans or as
convection ventilation without fans.

TYPE E_HVACConvectionMode :
(
eHVACConvectionMode_WithFan := 0,
eHVACConvectionMode_WithoutFan := 1
);
END_TYPE

The variable is saved persistently. Preset to 1.

tDelaySupplyVent: time delay that delays the start-up of the supply air fans. The variable is saved
persistently. Preset to 120 s.

tDelayExhaustVent: time delay that delays the start-up of the exhaust air fans. The variable is saved
persistently. Preset to 5 s.

tDelayTempCtrl: time delay for the controller. The variable is saved persistently. Preset to 10 s.

rDifferenceTemp: the controller is enabled if the difference between the room temperature and the supply
air temperature is smaller than rDifferenceTemp. The variable is saved persistently. Preset to 5 K.

tDelayLimitCtrl: time delay before limit monitoring of the temperature sensors is enabled. See the variable
bEnableLimitCtrl in FB_HVACTemperature regarding this point. The variable is saved persistently. Preset to
360 s.

Function blocks

TS8000 461Version: 1.2

rPreRinseOutsideTemp: outside temperature below which the VAC system should start up with the
prerinsing of the heating coil. The variable is saved persistently. Preset to 10 K.

rPreRinseLimitTemp: temperature of the return flow from the heating coil that must be reached in order to
end the pre-rinsing procedure and continue with the opening of the dampers. The variable is saved
persistently. Preset to 30 K.

tPreRinseMaxTime: maximum time of the pre-rinse process. The variable is saved persistently. Preset to
300 s.

iCurrentSequence: the starting controller at controller enable is specified here. The value is written by the
start program in one cycle only, since afterwards in system operation this parameter must be freely writeable
again for the switching on or off of the sequence controllers. The variable is saved persistently.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.31 FB_HVACSummerNightCooling

Application

With this function block, rooms that were heated up on the day before can be cooled down during the night
using cool outside air. The summer night cooling function serves to improve the quality of the air and to save
electrical energy. Electrical energy for cooling is saved during the first hours of the next summer day.

The start conditions for the summer night cooling are defined by parameterizing the
FB_HVACSummerNightCooling function block. The function block can be used to open motor-driven
windows or to switch air conditioning systems to summer night cooling mode outside their normal hours of
operation. Summer night cooling mode is active if the output variable bOn is TRUE.

The following conditions must be met to enable summer night cooling:
- bEnable = TRUE
- rOutsideTemp > (rMinimumOutsideTemp + 0.2K)
- ((rRoomTemp - rOutsideTemp) > rDifferOutsideRoomTempOn)
- ((rRoomTemp - rSetpointRoomTemp) > rDifferRoomSetpointTemp)
- the system time dtSystemtime must lie within the timeframe todStartTime to 12:00 noon

It is sufficient to disable summer night cooling bOn = FALSE if one of the following conditions is met:
- bEnable = FALSE
- (rOutsideTemp < (rMinimumOutsideTemp - 0.2K))
- ((rRoomTemp - rOutsideTemp) < rDifferOutsideRoomTempOff)

Function blocks

TS8000462 Version: 1.2

- the system time dtSystemtime is outside of the timeframe from todStartTime to 12:00 noon
- the summer night cooling had been activated for the maximum time tMaxRuntime within the timeframe of
todStartTime to 12:00 noon. Summer night cooling can be switched on several times within this timeframe.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rOutsideTemp : REAL;
rRoomTemp : REAL;
rSetpointRoomTemp: REAL;
dtSystemTime : DT;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled by the PLC program with the input variable bEnable.

rOutsideTemp: input for the outside temperature.

rRoomTemp: input for the room temperature.

rSetpointRoomTemp: setpoint for the room temperature

dtSystemTime: this variable transfers the computer system time to the function block.

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bOn : BOOL;
bInvalidParameter: BOOL;

bOn: if bOn = TRUE, the summer night cooling is activated.
The following conditions must be met to activate summer night cooling:
bEnable = TRUEANDrOutsideTemp > (rMinimumOutsideTemp + 0.2K) AND ((rRoomTemp - rOutsideTemp)
> rDifferOutsideRoomTempOn) AND
((rRoomTemp - rSetpointRoomTemp) > rDifferRoomSetpointTemp) AND the system time dtSystemtime
must lie within the timeframe todStartTime until 12:00 noon.

It is sufficient to disable the summer night cooling bOn = FALSE if one of the following conditions is met:
bEnable = FALSEOR (rOutsideTemp < (rMinimumOutsideTemp - 0.2K)) OR ((rRoomTemp - rOutsideTemp)
< rDifferOutsideRoomTempOff) OR the system time dtSystemtime is outside of the timeframe from
todStartTime to 12:00 noon OR the summer night cooling had been activated for the maximum time
tMaxRuntime within the system time of todStartTime to 12:00 noon. Summer night cooling can be switched
on several times within this timeframe.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 463Version: 1.2

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
rMinimumOutsideTemp : REAL;
rDifferOutsideRoomTempOn : REAL;
rDifferOutsideRoomTempOff : REAL;
rDifferRoomSetpointTemp : REAL;
todStartTime : TOD;
tMaxRuntime : TIME;

rMinimumOutsideTemp: if the outside temperature rOutsideTemp falls below the limit value
(rMinimumOutsideTemp - 0.2 K), the summer night cooling function is disabled, i.e. bOn = FALSE. If the
outside temperature rOutsideTemp exceeds the limit value (rMinimumOutsideTemp + 0.2K), then one of the
conditions for activating the summer night cooling bOn = TRUE is satisfied (4..100). The variable is saved
persistently. Preset to 10 °C.

rMinimumOutsideTemp must be within its range.
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect.

rDifferOutsideRoomTempOn: the difference rRoomTemp - rOutsideTemp must be greater than the amount
of rDifferOutsideRoomTempOn so that one of the conditions for activating summer night cooling bOn =
TRUE is met (0. .100).
((rRoomTemp - rOutsideTemp) > rDifferOutsideRoomTempOn)

rDifferOutsideRoomTempOn must be 0.4 K higher than rDifferOutsideRoomTempOff. In addition,
rDifferOutsideRoomTempOn must be within its range.
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect.

The variable is saved persistently. Preset to 5 °C.

rDifferOutsideRoomTempOff: the difference rRoomTemp - rOutsideTemp must be less than the amount of
rDifferOutsideRoomTempOff to disable summer night cooling bOn = FALSE.
((rRoomTemp - rOutsideTemp) < rDifferOutsideRoomTempOff)

rDifferOutsideRoomTempOff must be 0.4 K smaller than rDifferOutsideRoomTempOn. In addition,
rDifferOutsideRoomTempOff must be within its range (0..100).
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable is
saved persistently. Preset to 2 °C.

rDifferRoomSetpointTemp: the room temperature must be greater than the room temperature setpoint by
this amount so that one of the conditions for activating summer night cooling bOn = TRUE is met.
((rRoomTemp - rSetpointRoomTemp) > rDifferRoomSetpointTemp)

rDifferRoomSetpointTemp must be within its range (0..100).
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect.

The variable is saved persistently. Preset to 2 °C.

todStartTime: start time for the timeframe within which the summer night cooling can be activated (0..24).
The timeframe for enabling summer night cooling starts with todStartTime and ends at 12 noon.

todStartTime must be within its range.
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable is
saved persistently. Preset to 2 o'clock.

tMaxRuntime: maximum runtime of the summer night cooling function within the timeframe between
todStartTime and 12 noon (>0s). Summer night cooling can be switched on several times within this
timeframe, but the total time cannot exceed tMaxRuntime.

Function blocks

TS8000464 Version: 1.2

tMaxRuntime must be grater thanT#0s.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable
is saved persistently. Preset to 20 min.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.32 FB_HVACSummerNightCoolingEx

Application

With this function block, rooms that were heated up on the day before can be cooled down during the night
using cool outside air. The summer night cooling function serves to improve the quality of the air and to save
electrical energy. Electrical energy for cooling is saved during the first hours of the next summer day.

The start conditions for the summer night cooling are defined by parameterizing the
FB_HVACSummerNightCooling function block. The function block can be used to open motor-driven
windows or to switch air conditioning systems to summer night cooling mode outside their normal hours of
operation. Summer night cooling mode is active if the output variable bOn is TRUE.

The following conditions must be met to activate summer night cooling:
- bEnable = TRUE
- rOutsideTemp > (rMinimumOutsideTemp + 0.2K); the value of 0.2K is an internal constant of the function
block.
- (rRoomTemp - rOutsideTemp) > rDifferOutsideTempRoomTempOn
-(rRoomTemp - rSetpointRoomTemp) > rDifferRoomTempSetpointRoomTempOn
- udiSecRT_MaxRuntime > 0

It is sufficient to disable the summer night cooling bOn = FALSE if one of the following conditions is met:
- bEnable = FALSE
- rOutsideTemp < (rMinimumOutsideTemp - 0.2K); the value of 0.2K is an internal constant of the function
block.
- (rRoomTemp - rOutsideTemp) < rDifferOutsideTempRoomTempOff
-udiSecRT_MaxRuntime = 0

Attention Summer night cooling can be switched on and off several times within the time
udiSecMaxRuntime. Once udiSecRT_MaxRuntime has elapsed the summer night cooling function
can only be reactivated if bEnable is FALSE for at lease one PLC cycle. The function block and the
summer night cooling function can be enabled via a timer.

Function blocks

TS8000 465Version: 1.2

Program flowchart

Function blocks

TS8000466 Version: 1.2

Function blocks

TS8000 467Version: 1.2

Application example

The application example shows the function block FB_HVACSummerNightCoolingEx in conjunction with the
weekly timer FB_HVACScheduler1ch. The example is available in the programming languages ST and CFC.
The program example P_CFC_SummernightCoolingEx.PRG for the CFC programming languages can be
found in the folder Language CFC > SpecialFunctions, the program example
P_ST_SummernightCoolingEx.PRG for the ST programming languages in the folder Language Structur
Text > SpecialFunctions.

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
rOutsideTemp : REAL;
rRoomTemp : REAL;
rSetpointRoomTemp: REAL;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000468 Version: 1.2

bEnable: the function block is enabled by the PLC program with the input variable bEnable. Once the time
udiSecMaxRuntime has elapsed the summer night cooling function can only be reactivated if bEnable is
FALSE for at lease one PLC cycle. The function block could be enabled via a timer.

rOutsideTemp: input for the outside temperature.

rRoomTemp: input for the room temperature

rSetpointRoomTemp: setpoint for the room temperature

bReset: acknowledge input in the event of a fault.

VAR_OUTPUT
bOn : BOOL;
bStateDifferOutsideTempMinOutsideTemp: BOOL;
rStateDifferOutsideTempMinOutsideTemp: REAL;
bStateDifferRoomTempOutsideTemp : BOOL;
rStateDifferRoomTempOutsideTemp : REAL;
bStateDifferRoomTempSetpointRoomTemp : BOOL;
rStateDifferRoomTempSetpointRoomTemp : REAL;
udiSecRT_MaxRuntime : UDINT;
bInvalidParameter : BOOL;

bOn: if bOn = TRUE summer night cooling is active.

The following conditions must be met to activate summer night cooling:
- bEnable = TRUE
- rOutsideTemp > (rMinimumOutsideTemp + 0.2K); the value of 0.2K is an internal constant of the function
block.
- (rRoomTemp - rOutsideTemp) > rDifferOutsideTempRoomTempOn
-(rRoomTemp - rSetpointRoomTemp) > rDifferRoomTempSetpointRoomTempOn
- udiSecRT_MaxRuntime > 0

It is sufficient to disable the summer night cooling bOn = FALSE if one of the following conditions is met:
- bEnable = FALSE
- rOutsideTemp < (rMinimumOutsideTemp - 0.2K); the value of 0.2K is an internal constant of the function

Function blocks

TS8000 469Version: 1.2

block.
- (rRoomTemp - rOutsideTemp) < rDifferOutsideTempRoomTempOff
-udiSecRT_MaxRuntime = 0

bStateDifferOutsideTempMinOutsideTemp: state display. bStateDifferOutsideTempMinOutsideTemp is
TRUE if rOutsideTemp > (rMinimumOutsideTemp + 0.2). bStateDifferOutsideTempMinOutsideTemp is
FALSE if rOutsideTemp < (rMinimumOutsideTemp - 0.2).

rStateDifferOutsideTempMinOutsideTemp: value of difference rOutsideTemp - rMinimumOutsideTemp

bStateDifferRoomTempOutsideTemp: state display. bStateDifferRoomTempOutsideTempis TRUE if
(rRoomTemp - rOutsideTemp) > rDifferOutsideTempRoomTempOn. bStateDifferRoomTempOutsideTempis
FALSE if (rRoomTemp - rOutsideTemp) < rDifferOutsideTempRoomTempOff is.

rStateDifferRoomTempOutsideTemp: value of difference rRoomTemp - rOutsideTemp

bStateDifferRoomTempSetpointRoomTemp: state display. bStateDifferRoomTempSetpointRoomTemp is
TRUE if (rRoomTemp - rSetpointRoomTemp) > rDifferRoomTempSetpointRoomTempOn.
bStateDifferRoomTempSetpointRoomTemp is FALSE if (rRoomTemp - rSetpointRoomTemp) <=
rDifferRoomTempSetpointRoomTempOn is.

rStateDifferRoomTempSetpointRoomTemp: value of difference rRoomTemp - rSetpointRoomTemp

udiSecRT_MaxRuntime: remaining summer night cooling time. If udiSecRT_MaxRuntime = 0, the summer
night cooling function can be enabled again only if bEnable is FALSE for at least one PLC cycle

bInvalidParameter: Indicates that an incorrect input parameter is present. bInvalidParameter must be
acknowledged with bReset.

VAR_IN_OUT
rMinimumOutsideTemp : REAL;
rDifferOutsideTempRoomTempOn : REAL;
rDifferOutsideTempRoomTempOff : REAL;
rDifferRoomTempSetpointRoomTempOn: REAL;
udiSecMaxRuntime : UDINT;

rMinimumOutsideTemp: if the outside temperature rOutsideTemp falls below the limit value
(rMinimumOutsideTemp - 0.2 K), the summer night cooling function is disabled, i.e. bOn = FALSE. If the
outside temperature rOutsideTemp exceeds the limit value (rMinimumOutsideTemp + 0.2K), then one of the
conditions for activating the summer night cooling bOn = TRUE is satisfied (4..100).

rMinimumOutsideTemp must be within its range.
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable is
saved persistently. Preset to 10 °C.

rDifferOutsideTempRoomTempOn: the difference rRoomTemp - rOutsideTemp must be greater than the
amount of rDifferOutsideTempRoomTempOn so that one of the conditions for activating summer night
cooling bOn = TRUE is met (0..10).
((rRoomTemp - rOutsideTemp) > rDifferOutsideRoomTempOn)

rDifferOutsideRoomTempOn must be 0.4 K higher than rDifferOutsideRoomTempOff. In addition,
rDifferOutsideRoomTempOn must be within its range.
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable is
saved persistently. Preset to 5 °C.

rDifferOutsideTempRoomTempOff: the difference rRoomTemp - rOutsideTemp must be less than the
amount of rDifferOutsideTempRoomTempOff to disable summer night cooling bOn = FALSE.
((rRoomTemp - rOutsideTemp) < rDifferOutsideRoomTempOff)

rDifferOutsideRoomTempOff must be 0.4 K smaller than rDifferOutsideRoomTempOn. In addition,
rDifferOutsideRoomTempOff must be within its range (0..10).
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable is
saved persistently. Preset to 2 °C.

Function blocks

TS8000470 Version: 1.2

rDifferRoomTempSetpointRoomTempOn: the room temperature must be greater than the room
temperature setpoint by this amount so that one of the conditions for activating summer night cooling bOn =
TRUE is met (0..10).
((rRoomTemp - rSetpointRoomTemp) > rDifferRoomSetpointTemp)

rDifferRoomSetpointTemp must be within its range.
If a variable value is not correct, the last valid variable value is used, if available. If there is no valid last
value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable is
saved persistently. Preset to 2 °C.

udiSecMaxRuntime: maximum runtime of the summer night cooling function. Summer night cooling can be
switched on and off several times within the time. The remaining summer night cooling time is indicated via
the variable udiSecRT_MaxRuntime.

udiSecMaxRuntime must be grater than 0.
If an incorrect variable value is present, the last valid variable value, if available, is used. If there is no valid
last value, then the default value is used. bInvalidParameter is set if the parameter is incorrect. The variable
is saved persistently. Preset to 180.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.6.33 FB_HVACTimeCon

Application

This function block converts a TIME variable tTime into the three UDINT variables udiSec, udiMin and
udiHour, which indicate the seconds, minutes and hours. This conversion is reversible, so that a TIME
variable can be formed from seconds, minutes and hours.

VAR_IN_OUT
udiSec : UDINT;
udiMin : UDINT;
udiHour : UDINT;
tTime : TIME;

udiSec: variable that displays the seconds (0..59).

udiMin: variable that displays the minutes (0..59).

udiHour: variable that displays the hours (0..1191).

tTime: variable of the type Time.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

Function blocks

TS8000 471Version: 1.2

3.6.34 FB_HVACTimeConSec

Application

This function block converts a TIME variable tTime into a UDINT variable udiSec, which indicates the
seconds. This conversion is reversible, so that a TIME variable can be formed from seconds.

VAR_IN_OUT
udiSec : UDINT;
tTime : TIME;

udiSec: variable that displays the seconds (0..4294967)

tTime: variable of the type Time

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

3.6.35 FB_HVACTimeConSecMs

Application

This function block converts a TIME variable tTime into two UDINT variables,udiSec and udiMs, which
indicate the seconds and milliseconds respectively. The conversion is also reversible, so that a TIME
variable can be formed from the seconds and milliseconds.

VAR_IN_OUT
udiMs : UDINT;
udiSec : UDINT;
tTime : TIME;

udiSec: variable that displays the milliseconds (0..999).

udiSec: variable that displays the seconds (0..4294966).

tTime: variable of the type Time.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

Function blocks

TS8000472 Version: 1.2

3.6.36 FB_HVACWork

Application

This function block serves the recording of the operating hours and the switch-on cycles. Furthermore it is
possible to report specified operating times being reached.

Recording of operating hours

As soon as the input bOn reports operation, the operating time is recorded with an internal resolution of
1 sec. The output is in the form of a real value in hours to two decimal places (1/100 h). If no system time
with second resolution is available, or if this is disrupted, the clock input bSysTakt1Hz is used instead after
2 s. Triggering takes place on a rising edge at this input. The variant with the system time is more exact than
the variant with the clock generator on account of the possibility of synchronization via the network.

Every positive edge at bOn is counted as a switch-on cycle and is available at the output as iCount.

VAR_INPUT
eDataSecurityType : E_HVACDataSecurityType;
bSetDefault : BOOL;
bOn : BOOL;
bResetHours : BOOL;
bResetCount : BOOL;
dtSystemtime : DT;
bStartWarnLevel : BOOL;
bStartAlarmLevel : BOOL;
bSysTakt1Hz : BOOL;
bReset : BOOL;

NOTICE
If E_HVACDataSecurityType := eHVACDataSecurityType_Persistent has been selected, the procedure
deviates from the standard. After a change, the data are not written to the flash memory with a delay
equivalent to g_tHVACWriteBackupDataTime (default t#5s), but constantly only once per hour. This serves
to protect the flash memory, as otherwise all persistent data would be written to it every 5 sec if the
operating hour counter were to be running.

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Function blocks

TS8000 473Version: 1.2

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bOn: operating message; the operating time is totaled up as long as the signal is present. The rising edge is
counted as the switch-on cycle.

bResetHours: a rising edge sets the operating hours counter to 0.

bResetCount: a rising edge sets the switch-on cycle counter to 0.

dtSystemtime: system time with seconds display.

bStartWarnLevel: a rising edge at the input resets the output bQWarnLevel and restarts the time
measurement for this.

bStartWarnLevel: a rising edge at the input resets the output bQAlarmLevel and restarts the time
measurement for this.

bSysTakt1Hz: 1 Hz clock signal as a replacement for dtSystemTime; if dtSystemTime is not available, or
does not change its value for longer than 2 s, then the clock signal is used as a replacement.

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter.

VAR_IN_OUT
rHours : REAL;
uiCount : UINT;
uiWarnLevel : UINT;
uiAlarmLevel : UINT;
bEnableWarnLevel : BOOL;
bEnableAlarmLevel : BOOL;

rHours: operating hours with a resolution of 1/100 hours (internally with 1 s). The variable is saved
persistently.

uiCount: switch-on cycle counter. The variable is saved persistently.

uiWarnLevel: number of operating hours after which a warning is output (0..50000). Upon a rising edge at
the input bStartWarnLevel the current operating hours count is added to the value uiWarnLevel and saved as
an absolute operating time. As soon as the operating hours counter has reached this value and the signal is
enabled via bEnableWarnLevel, the output bQWarnLevel is set to TRUE. The variable is saved persistently.
Preset to 0 h.

uiAlarmLevel: number of operating hours after which an alarm is output (0..50000). Upon a rising edge at
the input bStartAlarmLevel the current operating hours count is added to the value uiAlarmLevel and saved
as an absolute operating time. As soon as the operating hours counter has reached this value and the signal
is enabled via bEnableAlarmLevel, the output bQAlarmLevel is set to TRUE. The variable is saved
persistently. Preset to 0 h.

bEnableWarnLevel: enables the output bQWarnLevel. The variable is saved persistently. Preset to FALSE.

bEnableAlarmLevel: enables the output bQAlarmLevel. The variable is saved persistently. Preset to
FALSE.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000474 Version: 1.2

VAR_OUTPUT
bQAlarmLevel : BOOL;
bQWarnLevel : BOOL;
bInvalidParameter: BOOL;

bQAlarmLevel:operating hours counter has reached the alarm level.

bQWarnLevel:operating hours counter has reached the warning level.

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

3.7 HVAC Time schedule

3.7.1 FB_HVACScheduler1ch

Application

This function block is a weekly timer switch with one timer switch channel. Any desired combination of days
of the week can be assigned to the timer switch channel. The timer switch channel can be defined for one-
shot or recurring events. Besides the switching signal, the switch-on and switch-off edges plus the next
switch-on or switch-off time as a countdown are available as outputs. The data of the timer switch channel is
transferred as a reference. The function block is therefore able to check the data for changes and to save it
as persistent data. After booting, the data are thus available to the BMS again. The switch-on and switch-off
points can be specified to the exact second via the variables tiOn_ss and tiOff_ss of the respective time
channel.

If the input variable bEnable = FALSE, then the output bOutput = FALSE. The timer switch channel
stTimeChannel remains active.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
dtSystemTime : DT;
uiOffsetBefore : UINT; 0 .. 240 min
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 475Version: 1.2

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled with bEnable. If bEnable = FALSE there is no switching at the output
bOutput.

dtSystemTime: the variable dtSystemTime transfers the computer system time to the timer program.

uiOffsetBefore: the switch-on time is brought forward by this number of minutes. This function is useful for
the time-optimized switching on of heating circuits. A maximum of 240 min, i.e. 4 hours, may be entered. If
the resulting switch-on time is before midnight on the previous day, then midnight will be chosen as the
switch-on time. The switch-off time is not affected.

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter

Example 1

Switch-on time from 1:30 to 5:30, uiOffsetBefor has the value 150 min. The switch-on time is only advanced
by 90 min to 00:00.

Example 2:

Switch-on time from 13:30 to 17:30; uiOffsetBefor has the value 150 min. The switch-on time is brought
forward by 150 minutes to 11:00.

VAR_IN_OUT
stTimeChannel : ST_HVACTimeChannel;

stTimeChannel: with the variable stTimeChannel it is possible to generate one switch-on time per day of the
week.
TYPE ST_HVACTimeChannel :
STRUCT
 uiOn_hh : UINT;
 uiOn_mm : UINT;
 uiOn_ss : UINT;
 uiOff_hh : UINT;
 uiOff_mm : UINT;
 uiOff_ss : UINT;
 bEnable : BOOL;
 bAllDays : BOOL;
 bMonday : BOOL;
 bTuesday : BOOL;

Function blocks

TS8000476 Version: 1.2

 bWednesday : BOOL;
 bThursday : BOOL;
 bFriday : BOOL;
 bSaturday : BOOL;
 bSunday : BOOL;
 bResetAfterOn: BOOL;
 bQ : BOOL;
END_STRUCT
END_TYPE

Special notes regarding time input

The following applies:

• Switch-on time 00:00:00: switch-on begins at 0:00 on the selected day.
• Switch-off time 00:00:00:° switch-off takes place at 23:59:59 on the selected day.

The following applies:

If the switch-on time is later than the switch-off time, the switch-on period is extended through midnight into
the next day, regardless of whether the next day is selected.

This setting produces:

For each instance of the function block FB_HVACScheduler1ch it is necessary to create a structure
variable of type ST_HVACTimeChannel, which is transferred as a reference (VAR_IN_OUT).

Sample:
VAR_GLOBAL
 stTimeChannel : ST_HVACTimeChannel;
END_VAR

Within the weekly planner each timer switch channel is enabled via the variable bEnable (On/Off). If bEnable
= FALSE, then the timer switch channel is deactivated and the times entered have no effect. If bAllDays
(Mon-Sun) = TRUE, then the times set in uiOn_hh, uiOn_mm, uiOff_hh and uiOff_mm apply to all days of
the week from Monday to Sunday. If bAllDays is FALSE, then the days of the week can be selectively
assigned to a timer switch channel using the variables bMonday to bSunday. For one-shot events, the
variable bResetAfterOn (non-recurring) is activated. After the time set in this channel has elapsed, the
entries created under uiOn_hh, uiOn_mm, uiOff_hh, uiOff_mm and the days of the week are retained.
However, the variable bEnable (On/Off) is reset to FALSE. In this manner a one-shot event can be defined
once and reactivated whenever it is required.

Function blocks

TS8000 477Version: 1.2

Visualization template for the Target VISU with one timer switch channel: https://infosys.beckhoff.com/
content/1033/tcplclibhvac/Resources/11659727627/.zip

VAR_OUTPUT
bOutput : BOOL;
bEdgeOn : BOOL;
bEdgeOff : BOOL;
tNextOn : TIME; 0 .. 10080 min (* Nächster Einschaltpunkt, max 7 Tage * 24 h * 6
0 min = 10080 *)
tNextOff : TIME; 0 .. 1440 min (* Nächster Ausschaltpunkt, max gleicher Tage 24
h * 60 min = 1440 *)
bInvalidParameter: BOOL;

bOutput: is TRUE if one of the timer switch channels has switched on.

bEdgeOn: is TRUE for one PLC cycle after bOutput switches on.

bEdgeOff: is TRUE for one PLC cycle after bOutput switches off.

tNextOn: time until the next switch-on of the timer program. Maximum value 10080 minutes (1 week).

tNextOff: time until the next switch-off of the timer program. Maximum forecast until midnight.

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

3.7.2 FB_HVACScheduler7ch

Application

This function block is a weekly timer switch with 7 timer switch channels. Any desired combination of days of
the week can be assigned to any timer switch channel. The timer switch channels can be defined for non-
recurring or recurring events. Besides the switching signal, the switch-on and switch-off edges plus the next
switch-on or switch-off time as a countdown are available as outputs. The data of the timer switch channels
is transferred as a reference. The function block is therefore able to check the data for changes and to save
it as persistent data. After booting, the data are thus available to the BMS again. The switch-on and switch-
off points can be specified to the exact second via the variables tiOn_ss and tiOff_ss of the respective time
channel.

If the input variable bEnable = FALSE, then the output bOutput = FALSE. The timer switch channels
arrTimeChannel remain active.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
dtSystemTime : DT;
uiOffsetBefore : UINT; 0 .. 240 min
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659727627.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659727627.zip

Function blocks

TS8000478 Version: 1.2

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled with bEnable. If bEnable = FALSE there is no switching at the output
bOutput.

dtSystemTime: the variable dtSystemTime transfers the computer system time to the timer program.

uiOffsetBefore: the switch-on time is brought forward by this number of minutes. This function is useful for
the time-optimized switching on of heating circuits. A maximum of 240 min, i.e. 4 hours, may be entered. If
the resulting switch-on time is before midnight on the previous day, then midnight will be chosen as the
switch-on time. The switch-off time is not affected.

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter.

Example 1

Switch-on time from 1:30 to 5:30, uiOffsetBefore has the value 150 min. The switch-on time is only advanced
by 90 min to 00:00.

Example 2:

Switch-on period from 13:30 to 17:30; uiOffsetBefor has the value 150 min. The switch-on time is brought
forward by 150 minutes to 11:00.

VAR_IN_OUT
arrTimeChannel : ARRAY[1..7] OF ST_HVACTimeChannel;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 479Version: 1.2

arrScheduleWeekly: the variable arrScheduleWeekly is an array with 7 declarations of the structure
variable ST_HVACTimeChannel. It is possible to generate 1 switch-on time per day of the week with the 7
channels.
TYPE ST_HVACTimeChannel :
STRUCT
 uiOn_hh : UINT;
 uiOn_mm : UINT;
 uiOn_ss : UINT;
 uiOff_hh : UINT;
 uiOff_mm : UINT;
 uiOff_ss : UINT;
 bEnable : BOOL;
 bAllDays : BOOL;
 bMonday : BOOL;
 bTuesday : BOOL;
 bWednesday : BOOL;
 bThursday : BOOL;
 bFriday : BOOL;
 bSaturday : BOOL;
 bSunday : BOOL;
 bResetAfterOn: BOOL;
 bQ : BOOL;
END_STRUCT
END_TYPE

Special notes regarding time input

The following applies:

• Switch-on time 00:00:00: switch-on begins at 0:00 on the selected day.
• Switch-off time 00:00:00: switch-off takes place at 23:59:59 on the selected day.

The following applies:

If the switch-on time is later than the switch-off time, the switch-on period is extended through midnight into
the next day, regardless of whether the next day is selected.

This setting produces:

For each instance of the function block FB_HVACSchedulerWeekly it is necessary to create an array of
type ST_HVACTimeChannel. The size of the array must be 7, since the function block processes a total of 7
weekly timer switch cycles and expects these as a reference (VAR_IN_OUT).

Function blocks

TS8000480 Version: 1.2

Sample
VAR_GLOBAL
 arrTimeChannel : ARRAY[1..7] OF ST_HVACTimeChannel;
END_VAR

Within the weekly planner each timer switch channel is enabled via the variable bEnable (On/Off). If bEnable
= FALSE, then the timer switch channel is deactivated and the times entered have no effect. If bAllDays
(Mon-Sun) = TRUE, then the times set in uiOn_hh, uiOn_mm, uiOff_hh and uiOff_mm apply to all days of the
week from Monday to Sunday. If bAllDays is FALSE, then the days of the week can be selectively assigned
to a timer switch channel using the variables bMonday to bSunday. For one-shot events, the variable
bResetAfterOn (non-recurring) is activated. After the time set in this channel has elapsed, the entries created
under uiOn_hh, uiOn_mm, uiOff_hh, uiOff_mm and the days of the week are retained. However, the variable
bEnable (On/Off) is reset to FALSE. In this manner a one-shot event can be defined once and reactivated
whenever it is required.

Example

Monday switched on from 07:20 until 17:30

Tuesday switched on from 16:40 until 00:00

Wednesday switched on from 00:00 until 23:59:59 (around the clock – 24 hours!)

Thursday switched on from 15:00 until 03:00 Friday morning, non-recurring!

Friday Timer switch channel not activated, always switched off!

VAR_OUTPUT
bOutput : BOOL;
bEdgeOn : BOOL;
bEdgeOff : BOOL;
tNextOn : TIME; 0 .. 10080 min (* Nächster Einschaltpunkt, max 7 Tage * 24 h * 6
0 min = 10080 *)
tNextOff : TIME; 0 .. 1440 min (* Nächster Ausschaltpunkt, max gleicher Tage 24
h * 60 min = 1440 *)
bInvalidParameter: BOOL;

bOutput: is TRUE if one of the timer switch channels has switched on.

bEdgeOn: is TRUE for one PLC cycle after bOutput switches on.

bEdgeOff: is TRUE for one PLC cycle after bOutput switches off.

tNextOn: time until the next switch-on of the timer program. Maximum value 10080 minutes (1 week).

tNextOff: time until the next switch-off of the timer program. Maximum forecast until midnight.

Function blocks

TS8000 481Version: 1.2

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.7.3 FB_HVACScheduler7TCHandling

Application

This function block can be used to select and modify an individual line from the data array of a weekly timer.
Thus, it is possible to edit the data sets very easily even with a visualization that offers only a low graphical
resolution, without having to display all the data of the array.
The data set from arr7TimeChannel with the index iCurrChannelNumber is copied into data structure
stCurrChannel. Modifications of the data in structure stCurrChannel take effect immediately and are
transferred to array arr7TimeChannel .

VAR_INPUT
bGoChannelUp : BOOL;
bGoChannelDown : BOOL;

bGoChannelUp: a positive edge shifts the focus to the next higher index in the data array
arr7TimeChannel.

bGoChannelDown: a positive edge shifts the focus to the next lower index in the data array
arr7TimeChannel.

VAR_IN_OUT
arr7TimeChannel : ARRAY[1..7] OF ST_HVACTimeChannel;
stCurrChannel : ST_HVACTimeChannel;
iCurrChannelNumber : INT;
iNumOfChannelsToUse: INT;

arr7TimeChannel : data set array for timer FB_HVACScheduler7CH.

stCurrChannel: contains the contents of the data set from the array arr7TimeChannel, which is selected
via the variable iCurrChannelNumber.

iCurrChannelNumber: index for the array arr7TimeChannel.

iNumOfChannelsToUse : maximum permissible index for iCurrChannelNumber in case not all channels
are needed.

Function blocks

TS8000482 Version: 1.2

3.7.4 FB_HVACScheduler28ch

Application

This function block is a weekly timer switch with 28 timer switch channels. Any desired combination of days
of the week can be assigned to any timer switch channel. The timer switch channels can be defined for non-
recurring or recurring events. Besides the switching signal, the switch-on and switch-off edges plus the next
switch-on or switch-off time as a countdown are available as outputs. The data of the timer switch channels
is transferred as a reference. The function block is therefore able to check the data for changes and to save
it as persistent data. After booting, the data are thus available to the BMS again. The switch-on and switch-
off points can be specified to the exact second via the variables tiOn_ss and tiOff_ss of the respective time
channel.

If the input variable bEnable = FALSE, then the output bOutput = FALSE. The timer switch channels
arrTimeChannel remain active.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
dtSystemTime : DT;
uiOffsetBefore : UINT; 0 .. 240 min
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled with bEnable. If bEnable = FALSE there is no switching at the output
bOutput.

dtSystemTime: the variable dtSystemTime transfers the computer system time to the timer program.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 483Version: 1.2

uiOffsetBefore: the switch-on time is brought forward by this number of minutes. This function is useful for
the time-optimized switching on of heating circuits. A maximum of 240 min, i.e. 4 hours, may be entered. If
the resulting switch-on time is before midnight on the previous day, then midnight will be chosen as the
switch-on time. The switch-off time is not affected.

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter.

Example 1

Switch-on time from 1:30 to 5:30, uiOffsetBefore has the value 150 min. The switch-on time is only advanced
by 90 min to 00:00.

Example 2

Switch-on period from 13:30 to 17:30; uiOffsetBefor has the value 150 min. The switch-on time is brought
forward by 150 minutes to 11:00.

VAR_IN_OUT
arrTimeChannel : ARRAY[1..28] OF ST_HVACTimeChannel;

arrTimeChannel: the variable arrTimeChannel is an array with 28 declarations of the structure variable
ST_HVACTimeChannel. It is possible to generate up to 3 switch-on times per day of the week with the 28
channels.
TYPE ST_HVACTimeChannel :
STRUCT
 uiOn_hh : UINT;
 uiOn_mm : UINT;
 uiOn_ss : UINT;
 uiOff_hh : UINT;
 uiOff_mm : UINT;
 uiOff_ss : UINT;
 bEnable : BOOL;
 bAllDays : BOOL;
 bMonday : BOOL;
 bTuesday : BOOL;
 bWednesday : BOOL;
 bThursday : BOOL;
 bFriday : BOOL;
 bSaturday : BOOL;
 bSunday : BOOL;
 bResetAfterOn: BOOL;
 bQ : BOOL;
END_STRUCT
END_TYPE

Special notes regarding time input

The following applies:

Function blocks

TS8000484 Version: 1.2

• Switch-on time 00:00:00: switch-on begins at 0:00 on the selected day.
• Switch-off time 00:00:00: switch-off takes place at 23:59:59 on the selected day.

The following applies:

If the switch-on time is later than the switch-off time, the switch-on period is extended through midnight into
the next day, regardless of whether the next day is selected.

This setting produces:

For each instance of the function block FB_HVACScheduler28ch it is necessary to create an array of type
ST_HVACTimeChannel. The size of the array must be 28, since the function block processes a total of 28
weekly timer switch cycles and expects these as a reference (VAR_IN_OUT).

Example
VAR_GLOBAL
 arrTimeChannel : ARRAY[1..28] OF ST_HVACTimeChannel;
END_VAR

Within the weekly planner each timer switch channel is enabled via the variable bEnable (On/Off). If bEnable
= FALSE, then the timer switch channel is deactivated and the times entered have no effect. If bAllDays
(Mon-Sun) = TRUE, then the times set in uiOn_hh, uiOn_mm, uiOff_hh and uiOff_mm apply to all days of the
week from Monday to Sunday. If bAllDays is FALSE, then the days of the week can be selectively assigned
to a timer switch channel using the variables bMonday to bSunday. For one-shot events, the variable
bResetAfterOn (non-recurring) is activated. After the time set in this channel has elapsed, the entries created
under uiOn_hh, uiOn_mm, uiOff_hh, uiOff_mm and the days of the week are retained. However, the variable
bEnable (On/Off) is reset to FALSE. In this manner a one-shot event can be defined once and reactivated
whenever it is required.

Function blocks

TS8000 485Version: 1.2

Example

Monday switched on from 07:20 until 17:30

Tuesday switched on from 16:40 until 00:00

Wednesday switched on from 00:00 until 23:59:59 (around the clock – 24 hours!)

Thursday switched on from 15:00 until 03:00 Friday morning, non-recurring!

Friday Timer switch channel not activated, always switched off!

VAR_OUTPUT
bOutput : BOOL;
bEdgeOn : BOOL;
bEdgeOff : BOOL;
tNextOn : TIME; 0 .. 10080 min (* Nächster Einschaltpunkt, max 7 Tage * 24 h * 6
0 min = 10080 *)
tNextOff : TIME; 0 .. 1440 min (* Nächster Ausschaltpunkt, max gleicher Tage 24
h * 60 min = 1440 *)
bInvalidParameter: BOOL;

bOutput: is TRUE if one of the timer switch channels has switched on.

bEdgeOn: is TRUE for one PLC cycle after bOutput switches on.

bEdgeOff: is TRUE for one PLC cycle after bOutput switches off.

tNextOn: time until the next switch-on of the timer program. Maximum value 10080 minutes (1 week).

tNextOff: time until the next switch-off of the timer program. Maximum forecast until midnight.

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

Function blocks

TS8000486 Version: 1.2

3.7.5 FB_HVACScheduler28TCHandling

Application

This function block can be used to select and modify an individual line from the data array of a weekly timer.
Thus, it is possible to edit the data sets very easily even with a visualization that offers only a low graphical
resolution, without having to display all the data of the array.
The data set from arr7TimeChannel with the index iCurrChannelNumber is copied into data structure
stCurrChannel. Modifications of the data in structure stCurrChannel take effect immediately and are
transferred to array arr28TimeChannel .

VAR_INPUT
bGoChannelUp : BOOL;
bGoChannelDown : BOOL;

bGoChannelUp: a positive edge shifts the focus to the next higher index in the data array
arr28TimeChannel.

bGoChannelDown: a positive edge shifts the focus to the next lower index in the data array
arr28TimeChannel.

VAR_IN_OUT

arr28TimeChannel : ARRAY[1..28]OF ST_HVACTimeChannel;
stCurrChannel : ST_HVACTimeChannel;
iCurrChannelNumber : INT;
iNumOfChannelsToUse : INT;

arr28TimeChannel : data set array for timer FB_HVACScheduler28CH.

stCurrChannel: contains the contents of the data set from the array arr28TimeChannel, which is selected
via the variable iCurrChannelNumber.

iCurrChannelNumber: index for the array arr28TimeChannel.

iNumOfChannelsToUse : maximum permissible index for iCurrChannelNumber in case not all channels
are needed.

3.7.6 FB_HVACSchedulerSpecialPeriods

Function blocks

TS8000 487Version: 1.2

Application

This function block is a yearly scheduler in which, e.g., school holidays or factory shutdowns can be entered.
The function block is enabled by the input variable bEnable. The input dtSystemTime is linked to the current
system time. The output bOutput is set if the timer switch conditions are satisfied. Besides the switching
signal, the switch-on and switch-off edges plus the next switch-on or switch-off time as a countdown are
available as outputs. The data of the timer switch channels is transferred as a reference. The function block
is therefore able to check the data for changes and to save it as persistent data. After booting, the data are
thus available to the BMS again. The switch-on and switch-off times on the respective day can be entered to
the exact minute.

If the input variable bEnable = FALSE, then the output bOutput = FALSE. The timer switch channels
arrPeriod remain active.

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
dtSystemTime : DT;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled with bEnable. If bEnable = FALSE there is no switching at the output
bOutput.

dtSystemTime: the variable dtSystemTime transfers the computer system time to the timer program.

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter.

VAR_IN_OUT
arrPeriod : ARRAY[1..20] OF ST_HVACPeriod;

arrPeriod: the variable arrPeriod is an array with 20 declarations of the structure variable ST_HVACPeriod.

For each instance of the function block FB_HVACSchedulerSpecialPeriods it is necessary to create an
array of type ST_HVACPeriod. The size of the array must be 20, since the function block processes a total
of 20 time channels and expects these as a reference (VAR_IN_OUT).

TYPE ST_HVACTimeChannel :
STRUCT
 uiOn_hh : UINT;
 uiOn_mm : UINT;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000488 Version: 1.2

 uiOn_ss : UINT;
 uiOff_hh : UINT;
 uiOff_mm : UINT;
 uiOff_ss : UINT;
 bEnable : BOOL;
 bAllDays : BOOL;
 bMonday : BOOL;
 bTuesday : BOOL;
 bWednesday : BOOL;
 bThursday : BOOL;
 bFriday : BOOL;
 bSaturday : BOOL;
 bSunday : BOOL;
 bResetAfterOn: BOOL;
 bQ : BOOL;
END_STRUCT
END_TYPESpecial notes regarding time input

The following applies:

Switch-on time 00:00:00: switch-on begins at 0:00 on the selected day.

Switch-off time 00:00:00: switch-off takes place at 23:59:59 on the selected day.

Each timer switch channel is enabled via the variable bEnable (On/Off). If bEnable = FALSE, then the timer
switch channel is deactivated and the times entered have no effect. For one-shot events, the variable
bResetAfterOn (non-recurring) is activated. After the time set in this channel has elapsed, the entries created
under uiOn_hh, uiOn_mm, uiOff_hh, uiOff_mm , uiOn_Day, uiOff_Day, uiOn_Month and uiOff_Month are
retained. However, the variable bEnable (On/Off) is reset to FALSE. In this manner a one-shot event can be
defined once and reactivated whenever it is required.

Example:

switched on from 12/01 12:20 until 14/01 at 12:00

switched on from 23/06 00:00 until 25/08 23:59:59

Function blocks

TS8000 489Version: 1.2

switched on from 03/10 12:00 until 03/10 at 18:00, non-recurring!

1.1. to 1.1. Timer switch channel not activated, always switched off!

Visualization template for the Target VISU with one timer switch channel: https://infosys.beckhoff.com/
content/1033/tcplclibhvac/Resources/11659729035/.zip

VAR_OUTPUT
bOutput : BOOL;
bEdgeOn : BOOL;
bEdgeOff : BOOL;
tNextOn : TIME; 0 .. t#71582m47s295msmin (* Nächster Einschaltpunkt, Range max. =
Obergrenze von Time ca.50 Tage *)
tNextOff : TIME; 0 .. t#71582m47s295msmin (* Nächster Ausschaltpunkt, Range max. =
Obergrenze von Time ca.50 Tage *)
bInvalidParameter: BOOL;

bOutput: is TRUE if one of the timer switch channels has switched on.

bEdgeOn: is TRUE for one PLC cycle after bOutput switches on.

bEdgeOff: is TRUE for one PLC cycle after bOutput switches off.

tNextOn: time until the next switch-on of the timer program.

tNextOff: time until the next switch-off of the timer program.

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.7.7 FB_HVACSchedulerPublicHolidays

Application

This function block is a yearly scheduler in which, e.g., school holidays or factory shutdowns can be entered.
The function block is enabled by the input variable bEnable. The input dtSystemTime is linked to the current
system time. The output bOutput is set if the timer switch conditions are satisfied. Besides the switching
signal, the switch-on and switch-off edges plus the next switch-on or switch-off time as a countdown are
available as outputs. The data of the timer switch channels is transferred as a reference. The function block
is therefore able to check the data for changes and to save it as persistent data. After booting, the data are
thus available to the BMS again. As opposed to the FB_HVACSchedulerSpecialPeriods, only daily
switching is possible here.

If the input variable bEnable = FALSE, then the output bOutput = FALSE. The timer switch channels
arrHoliday remain active.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659729035.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659729035.zip

Function blocks

TS8000490 Version: 1.2

VAR_INPUT
eDataSecurityType: E_HVACDataSecurityType;
bSetDefault : BOOL;
bEnable : BOOL;
dtSystemTime : DT;
bReset : BOOL;

eDataSecurityType:if eDataSecurityType:= eHVACDataSecurityType_Persistent, the persistent
VAR_IN_OUT variables of the function block are stored in the flash of the computer if a value changes. For
this to work, the function block FB_HVACPersistentDataHandling must be instanced once in the main
program, which is called cyclically. Otherwise the instanced FB is not released internally.

A change of value can be initiated by the building management system, a local operating device or via a
write access from TwinCAT. When the computer is restarted, the saved data are automatically read back
from the flash into the RAM.

Application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

If eDataSecurityType:= eHVACDataSecurityType_Idle the persistently declared variables are not saved in a
fail-safe manner.

NOTICE
A cyclically changing variable must never be linked with the IN_OUT variable of a function block,
if eDataSecurityType:= eHVACDataSecurityType_Persistent. It would lead to early wear of the flash
memory.

bSetDefault: If the variable is TRUE, the default values of the VAR_IN_OUT variables are adopted.

bEnable: the function block is enabled with bEnable. If bEnable = FALSE there is no switching at the output
bOutput.

dtSystemTime: the variable dtSystemTime transfers the computer system time to the timer program.

bReset: acknowledge input in the event of a fault. Resets the flag bInvalidParameter.

VAR_IN_OUT
arrHoliday : ARRAY[1..20] OF ST_HVACHoliday;

arrHoliday: the variable arrHoliday is an array with 20 declarations of the structure variable
ST_HVACHoliday.

For each instance of the function block FB_HVACSchedulerPublicHolidays it is necessary to create an
array of type ST_HVACHoliday. The size of the array must be 20, since the function block processes a total
of 20 time channels and expects these as a reference (VAR_IN_OUT).

TYPE ST_HVACTimeChannel :
STRUCT
 uiOn_hh : UINT;
 uiOn_mm : UINT;
 uiOn_ss : UINT;
 uiOff_hh : UINT;
 uiOff_mm : UINT;
 uiOff_ss : UINT;
 bEnable : BOOL;
 bAllDays : BOOL;
 bMonday : BOOL;
 bTuesday : BOOL;
 bWednesday : BOOL;
 bThursday : BOOL;
 bFriday : BOOL;
 bSaturday : BOOL;
 bSunday : BOOL;
 bResetAfterOn: BOOL;

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000 491Version: 1.2

 bQ : BOOL;
END_STRUCT
END_TYPE

Each timer switch channel is enabled via the variable bEnable (On/Off). If bEnable = FALSE, then the timer
switch channel is deactivated and the times entered have no effect. For one-shot events, the variable
bResetAfterOn (non-recurring) is activated. After the time set in this channel has elapsed, the entries created
under uiOn_Day, uiOff_Day, uiOn_Month and uiOff_Month are retained. However, the variable bEnable (On/
Off) is reset to FALSE. In this manner a one-shot event can be defined once and reactivated whenever it is
required.

Example

switched on from 24/12 00:00 until 26/12 23:59:59

switched on from 03/10 00:00 until 03/10 23:59:59

switched on from 18/07 00:00 until 19/07 23:59:59

1.1. to 1.1. Timer switch channel not activated, always switched off!

Visualization template for the Target VISU with one timer switch channel: https://infosys.beckhoff.com/
content/1033/tcplclibhvac/Resources/11659730443/.zip

VAR_OUTPUT
bOutput : BOOL;
bEdgeOn : BOOL;
bEdgeOff : BOOL;
tNextOn : TIME; 0 .. t#71582m47s295msmin (* Nächster Einschaltpunkt, Range max.
= Obergrenze von Time ca.50 Tage *)
tNextOff : TIME; 0 .. t#71582m47s295msmin (* Nächster Ausschaltpunkt, Range max.
= Obergrenze von Time ca.50 Tage *)
bInvalidParameter: BOOL;

bOutput: is TRUE if one of the timer switch channels has switched on.

bEdgeOn: is TRUE for one PLC cycle after bOutput switches on.

bEdgeOff: is TRUE for one PLC cycle after bOutput switches off.

tNextOn: time until the next switch-on of the timer program.

tNextOff: time until the next switch-off of the timer program.

bInvalidParameter: an error occurred during the plausibility check. It is deleted again by bReset.

Documents about this

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659730443.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659730443.zip

Function blocks

TS8000492 Version: 1.2

2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.8 HVAC System

3.8.1 FB_HVACGetSystemTime

Application

With this function block an internal clock (Real Time Clock RTC) can be implemented in the TwinCAT PLC.
When the function block is enabled via bEnable, the RTC clock is initialized with the current NT system time.
One system cycle of the CPU is used to calculate the current RTC time. The function block must be called
once per PLC cycle in order for the current time to be calculated. Internally an instance of the function blocks
NT_GetTime and RTC_EX2 is called in the function block from the Utilities library.

Note Due to system characteristics the RTC time deviates from a reference time. The difference
depends on the PLC's cycle time, the value of the basic system ticks, and on the hardware being
used. The RTC is therefore synchronized internally in the function block with the NT system time
depending on the input variables sNETID and tGetSystemTime. The local NT system time can, in
turn, be synchronized with a reference time with the aid of the SNTP protocol. More information can
be found in the Beckhoff Information System under:Beckhoff Information System > Embedded PC >
Operating systems > CE > SNTP: Simple Network Time Protocol

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
bEnable : BOOL;
sNETID : T_AmsNetId;
tGetSystemTime: TIME;
bGetSystemTime: BOOL;

bEnable: enable of the function block. If bEnable = TRUE, then the RTC clock is initialized with the NT
system time.

sNETID: this parameter can be used to specify the AmsNetID of the TwinCAT computer, whose NT system
time is to be determined. If it is to be run on the local computer, an empty string can be entered.

tGetSystemTime: time specification with which the RTC clock is regularly synchronized with the NT system
time. This time specification must be greater than or equal to 5 seconds, otherwise the RTC clock will not be
synchronized. Parallel to the time specification tGetSystemTime, the RTC clock can be synchronized via the
input variable bGetSystemTime.

Function blocks

TS8000 493Version: 1.2

bGetSystemTime: the RTC clock is synchronized with the NT system time with a rising edge at this input.
This takes place in parallel with the time specification tGetSystemTime.

VAR_OUTPUT
bReadyGetSystemTime : BOOL;
bReadyRTC : BOOL;
stSystemTime : TIMESTRUCT;
dtSystemTime : DT;
uiYear : UINT;
uiMonth : UINT;
uiDay : UINT;
uiDayOfWeek : UINT;
uiHour : UINT;
uiMinute : UINT;
uiSecond : UINT;
uiMilliseconds : UINT;
bErrorGetSystemTime : BOOL;
udiErrorIdGetSystemTime: UDINT;

bReadyGetSystemTime: the function block was successfully initialized or synchronized with the NT system
time.

bReadyRTC: this output is set if the function block has been initialized at least once. If this output is set,
then the values for date, time and milliseconds at the outputs are valid.

stSystemTime: structure with the current RTC time.

dtSystemTime: date and time of day of the RTC time.

uiYear: the year: 1970 ~ 2106;

uiMonth: the month: 1 ~ 12 (January = 1, February = 2, etc.);

uiDay: the day of the month: 1 ~ 31;

uiDayOfWeek: the day of the week: 0 ~ 6 (Sunday = 0, Monday = 1 etc.);

uiHour: hour: 0 ~ 23;

uiMinute: minute: 0 ~ 59;

uiSecond: second: 0 ~ 59;

uiMilliseconds: millisecond: 0 ~ 999;

bErrorGetSystemTime: this output is set if an ADS error occurs when transmitting the command. The
output indicates with a TRUE that an error has occurred during initialization or synchronization with the NT
system time. The function block continues to attempt to initialize or synchronize the RTC clock until the error
has been rectified. The RTC clock starts with an incorrect date and time specification and must therefore be
synchronized with the NT system time.

udiErrorIdGetSystemTime: returns the ADS error number when the bErrorGetSystemTime output is set.

3.8.2 FB_HVACNOVRAMDataHandling

https://infosys.beckhoff.com/content/1033/tcadscommon/374277003.html

Function blocks

TS8000494 Version: 1.2

Application

PLC variables are written fail-safe to NOVRAM with this function block. Following a power failure or a restart
of the controller, the NOVRAM will be read out completely.

The behavior of the function block looks as follows if everything was correct at startup:
udiStatus:= 1;
iNovRamReadCount:= 1;
iNovRamWriteCount:= 0;
bDone:= TRUE

Note In the case of ARM-based runtime systems, please make sure that the memory addresses of
the PLC variables are divisible by 4!

Comments

The globally declared variables g_dwHVACVarConfigStart and g_dwHVACVarConfigEnd are allocated to
the start address and end address of the memory area. The user must take care to ensure that there are no
memory overlaps. The block size is then determined internally from the two addresses. The entire flag area
is written automatically to NOVRAM in the event of changes to the flag variables.

see also application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659731851/.zip

VAR_INPUT
sNETID : T_AmsNetId;
TMOUT : TIME;
udiDevID : UDINT;
usiBlockSize : USINT;

sNETID : AmsNetId of the TwinCAT computer on which the function should be executed. If it is to be run on
the local computer, an empty string can be entered.

TMOUT : states the length of the timeout that may not be exceeded by execution of the ADS command.

udiDevID : the Device ID specifies the NOVRAM of the CX90xx or CX10xx to be accessed with the function
block for reading or writing. The device IDs are specified by the TwinCAT System Manager during hardware
configuration.

usiBlockSize : the block size to be accessed per read/write cycle is given in percent; e.g. 20, i.e 5 read/write
cycles will be required in order to access the entire flag area.

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659731851.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659731851.zip

Function blocks

TS8000 495Version: 1.2

VAR_OUTPUT
udiStatus : UDINT;
iNovramReadCount : INT;
iNovramWriteCount : INT;
bDone : BOOL;
bBusy : BOOL;
bError : BOOL;
udiErrorID : UDINT;

udiStatus : = 0 , no status

= 1, valid data at last reading of NOVRAM

= 2, invalid data at last reading of NOVRAM. Data were discarded.

iNovramReadCount : counter that is incremented by 1 when NOVRAM is read from.

iNovramWriteCount: counter that is incremented by 1 when NOVRAM is written to.

bDone: will be set to TRUE if the function block is executed.

bBusy: when the function block is activated the output is set, and it remains active until execution of the
command has been completed.

bError: this output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in udiErrorID.

udiErrorID: contains the command-specific error code. Please see ADS Return Codes.

Example of handling inside TwinCAT PLC

1st step
• Creating a new project
• Insertion of TcHVAC.lib; this takes place via the tab Resources in object Organizer

https://infosys.beckhoff.com/content/1033/tcadscommon/374277003.html

Function blocks

TS8000496 Version: 1.2

2nd step
• Translate project; two warnings are received, since two incompletely defined addresses exist in

TcHVAC.lib. The user must define the start and end addresses of the memory area via these two
addresses.

3rd step
• The menu command All Instance Paths in the Insert menu can be used via the tab Resources in

Object Organizer under Variables_Configuration. The user can define the start and end addresses
after performing this step.

4th step
• Define the addresses in Variables_Configuration under the Global Variables.

On ARM-based platforms (e.g. CX90xx) care must be taken that the addresses of the allocated
variables are divisible by 4.

5th step
• In this example 0 was defined as the start address and 56 as the end address.

6th step
• The project must be translated again after performing steps 1 to 5.

Function blocks

TS8000 497Version: 1.2

• For reasons of performance it is useful to address the allocated variables (VAR_CONFIG Object)
without gaps.

• If the variable configuration (VAR_CONFIG) is subsequently changed, it is compulsory to load
the changes to the target system via an « Online Change » and not via « Load All ». Only an
« Online Change » ensures that the NOVRAM data is retained correctly. The NOVRAM data
would be recognized as invalid in the case of « Load All ».

Sample for declaration of allocated variables:
Heizkurve.fbRealMinTemp_NOVRAM.rVar_N AT %MB12 : REAL;
Heizkurve.fbRealMaxTemp_NOVRAM.rVar_N AT %MB16 : REAL;
Heizkurve.fbRealNightSetback_NOVRAM.rVar_N AT %MB20 : REAL;
Heizkurve.fbRealSetpoint_Y1_NOVRAM.rVar_N AT %MB24 : REAL;
Heizkurve.fbRealSetpoint_Y2_NOVRAM.rVar_N AT %MB28 : REAL;
Heizkurve.fbRealSetpoint_Y3_NOVRAM.rVar_N AT %MB32 : REAL;
Heizkurve.fbRealSetpoint_Y4_NOVRAM.rVar_N AT %MB36 : REAL;
Heizkurve.fbRealOutsideTemp_X1_NOVRAM.rVar_N AT %MB40 : REAL;
Heizkurve.fbRealOutsideTemp_X2_NOVRAM.rVar_N AT %MB44 : REAL;
Heizkurve.fbRealOutsideTemp_X3_NOVRAM.rVar_N AT %MB48 : REAL;
Heizkurve.fbRealOutsideTemp_X4_NOVRAM.rVar_N AT %MB52 : REAL;

.g_dwHVACVarConfigStart AT %MB0 : DWORD;

.g_dwHVACVarConfigEnd AT %MB56 : DWORD;

3.8.3 FB_HVACPersistentDataHandling

Application

With this function block, all PLC variables that are declared as persistent (VAR PERSISTENT) are written
fail-safe to a file. The PLC variables declared as persistent within the function blocks from the TcHVAC.lib
are written to this file in case of a change. This file is saved under ..\TwinCAT\Boot directory and is named
as follows: TCPLC_T_x.wbp (x = number of the runtime system). So that the new status is not saved
immediately after a change of the persistent variables, a timeframe of 5 sec is built into the standard setting.
This timeframe can be changed by the user. He must assign the new time to the globally-declared constant
variable g_tHVACWriteBackupDataTime : TIME := t#5s.

The new status is only saved after the timeframe has elapsed. In the worst case this can mean that changes
made within the last timeframe are not saved if a power failure occurs during that time.

Each time the controller is restarted, the status of the persistent data is read from the file. The output variable
udiStatus indicates whether or not the data is valid.

In order to secure the persistent variables inside the function block voltage failure safe, it is necessary to
start an instance of the FB_HVACPersistentDataHandling block in the MAIN program. The handling of this
function is described in more detail on the basis of the following application example.

see also application example: https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/
11659716235/.zip

The behavior of the function block looks as follows if everything was correct at startup:
udiStatus:= 1;
iPersistCount:= 1;
bDone:= FALSE

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659716235.zip

Function blocks

TS8000498 Version: 1.2

If the result of the query of usiStatus=1 this means that the persistent variables have been read from
memory. bDone becomes TRUE only when the persistent variables have been written successfully.

The following setting must be made in the TwinCAT System Manager:

Under PLC Configuration in the PLC Settings (Target System) tab

the option Delete invalid persistent data must be disabled!! The deactivation must be performed using the
Apply button.

VAR_INPUT
sNETID : T_AmsNetId;
TMOUT : TIME;
ePersistentMode : E_PersistentMode;

sNETID : AmsNetId of the TwinCAT computer on which the function should be executed. If it is to be run on
the local computer, an empty string can be entered.

TMOUT : states the length of the timeout that may not be exceeded by execution of the ADS command.

ePersistentMode: mode in which the persistent data should be written. See also E_PersistentMode.

VAR_OUTPUT
udiStatus : UDINT;
iPersistCount : INT;
bDone : BOOL;
bBusy : BOOL;
bError : BOOL;
udiErrorID : UDINT;

udiStatus : 0 = No status
1 = Persistent data read successfully
2 = Backup from persistent data read
3 = Neither persistent nor backup data read

iPersistCount: counter that is incremented by 1 after successful writing.

https://infosys.beckhoff.com/content/1033/tcplclibutilities/11850943627.html

Function blocks

TS8000 499Version: 1.2

bDone: will be set to TRUE if the function block is executed.

bBusy: when the function block is activated the output is set, and it remains active until execution of the
command has been completed.

bError: this output is set to TRUE if an error occurs during the execution of a command.

udiErrorID: contains the command-specific error code. Please see ADS Return Codes.

Documents about this
2 example_persistent_e.zip (Resources/zip/11659714827.zip)

3.8.4 FB_HVACPersistentDataFileCopy

Application

This function block can be used, for instance, to copy binary files on the local TwinCAT PC or from a remote
TwinCAT PC to the local TwinCAT PC. The function block cannot be used to access network drives. The
following steps are executed upon a rising edge at the input bExecute:

a) Open the source and destination files;

b) Read the source file into a buffer;

c) Write the bytes that have been read from the buffer into the destination file;

d) Check whether the end of the source file has been reached. If not, then repeat b) and c). If yes, then jump
to e);

e) Close the source and destination files;

The file is copied one segment at a time. In this function block, the size of the buffer has been specified as
100 bytes, but this can be modified.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
srcNETID : T_AmsNetId;
srcFileName : T_MaxString;
destNETID : T_AmsNetId;
destFileName: T_MaxString;
bExecute : BOOL;
tAdsTimeOut : TIME;

srcNETID: AmsNetId of the TwinCAT computer on which the function should be executed. If it is to be run
on the local computer, an empty string can be entered.

srcFileName: contains the path and file name of the file to be opened.

The path can only point to the local computer’s file system! This means that network paths cannot be
used here!

Function blocks

TS8000500 Version: 1.2

destNETID: AmsNetId of the TwinCAT computer on which the file should be copied.

destFileName: contains the path and file name of the destination file. Note: the path can only point to the
local computer’s file system! This means that network paths cannot be used here!

bExecute : the steps listed above are executed upon a rising edge at the input bExecute.

tAdsTimeOut : states the length of the timeout that may not be exceeded by execution of the ADS
command.

VAR_OUTPUT
bDone : BOOL;
bBusy : BOOL;
bError : BOOL;
udiErrorID : UDINT;

bDone: will be set to TRUE if the function block is executed.

bBusy: when the function block is activated the output is set, and it remains active until execution of the
command has been completed.

bError: this output is switched to TRUE if an error occurs during the execution of a command.

udiErrorID: contains the command-specific error code. Please see ADS Return Codes.

Documents about this
2 tchvac.zip (Resources/zip/11659726219.zip)

3.8.5 FB_HVACSetLocalTime

Application

The local NT system time and the date of a TwinCAT system can be set with the function block
FB_HVACSetLocalTime (the local NT system time is shown in the taskbar). The system time can be
specified either via the individual variables uiYear, uiMonth, uiDay, uiHour, uiMinute and uiSecond or the
structure stSystemtime, see bEnableStruct.
Internally, an instance of the function block NT_SetLocalTime from the TcUtilities library is called in the
function block.

Note The local NT system time can also be synchronized with a reference time with the aid of the
SNTP protocol. More information can be found in the Beckhoff Information System under: Beckhoff
Information System > Embedded PC > Operating systems > CE > SNTP: Simple Network Time
Protocol

https://infosys.beckhoff.com/content/1033/tcadscommon/374277003.html

Function blocks

TS8000 501Version: 1.2

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

VAR_INPUT
sNetId : T_AmsNetId;
bSetLocalTime : BOOL;
uiYear : UINT; 1970 - 2106
uiMonth : UINT; 1 - 12
uiDay : UINT; 1 - 31
uiHour : UINT; 0 - 23
uiMinute : UINT; 0 - 59
uiSecond : UINT; 0 - 59
bEnableStruct : BOOL;
stSystemtime : TIMESTRUCT;
tTimeout : TIME;

sNETID: this parameter can be used to specify the AmsNetID of the TwinCAT computer, whose local NT
system time is to be set. If applicable, an empty string sNetId := ''; can be specified for the local computer.

bSetLocalTime: activation of the function block with a rising edge.

uiYear: the year: 1970 ~ 2106; ; the variable is active if bEnableStruct = FALSE. If specified incorrectly,
bInvalidParameter = TRUE and the new local NT system time was not set.

uiMonth: the month: 1 ~ 12 (January = 1, February = 2 and so on); the variable is active if bEnableStruct =
FALSE. If specified incorrectly, bInvalidParameter = TRUE and the new local NT system time was not set.

uiDay: day of the month: 1 ~ 31; February with 28 or 29 days and the months with 30 or 31 days are
checked. The variable is active if bEnableStruct = FALSE. If specified incorrectly, bInvalidParameter = TRUE
and the new local NT system time was not set.

uiHour: hour: 0 ~ 23; ; the variable is active if bEnableStruct = FALSE. If specified incorrectly,
bInvalidParameter = TRUE and the new local NT system time was not set.

uiMinute: minute: 0 ~ 59; ; the variable is active if bEnableStruct = FALSE. If specified incorrectly,
bInvalidParameter = TRUE and the new local NT system time was not set.

uiSecond: second: 0 ~ 59; ; the variable is active if bEnableStruct = FALSE. If specified incorrectly,
bInvalidParameter = TRUE and the new local NT system time was not set.

Function blocks

TS8000502 Version: 1.2

bEnableStruct: if bEnableStruct = TRUE, the new local NT system time is set via the input variable
stSystemtime. If bEnableStruct = FALSE, the new local NT system time is set via the input variables uiYear,
uiMonth, uiDay, uiHour, uiMinute and uiSecond.

stSystemtime: structure with the new local NT system time. The structure is active if bEnableStruct =
TRUE. The same ranges apply to the structure as to the input variables uiYear, uiMonth, uiDay, uiHour,
uiMinute and uiSecond. If specified incorrectly, bInvalidParameter = TRUE and the new local NT system time
was not set.

tTimeout: indicates the timeout time, which must not be exceeded during execution.

VAR_OUTPUT
bBusy : BOOL;
bError : BOOL;
udiErrorId : UDINT;
bInvalidParameter: BOOL;

bBusy: if the function block is activated via a rising edge at bSetLocalTime, this output is set and remains
set until feedback occurs.

bError: if an error occurs during the transfer of the NT system time, this output is set. bError is reset with the
activation of the function block via the input variable bSetLocalTime.

udiErrorId: returns the ADS error code if bError is set.

bInvalidParameter: bInvalidParameter is TRUE if the ranges of the variables for the time and date were not
observed: uiYear, uiMonth, uiDay, uiHour, uiMinute and uiSecond. The same ranges apply to the time
structure stSystemtime as to the input variables. If bInvalidParameter = TRUE, the new local NT system time
was not set. bInvalidParameter is reset with the activation of the function block via the input variable
bSetLocalTime.

3.8.6 FB_HVACSystemTaskInfo

The function block determines system variables of the task with a resolution of 1 ms, in which it is currently
called. If the current cycle time is less than 1 ms, the set task cycle time tTaskCycleTime is output on the
output variable tCycleTime.

NOTICE
The tTaskCycleTime of the PLC program must not be longer than 100 ms, as otherwise the digital outputs
will be deactivated.
This is because the internal K-bus of the Bus Terminals runs synchronously with the PLC program, which is
no longer triggered early enough
and the watchdog of the Bus Terminals becomes active.

VAR_OUTPUT
bReady : BOOL;
tTaskCycleTime : TIME;
tCycleTime : TIME;
usiSystemTask : USINT;

bReady: the variable is TRUE if the system information has been read out.

tTaskCycleTime: set task cycle time.

tCycleTime: cycle time required for the last cycle.

usiSystemTask: task index of the task.

https://infosys.beckhoff.com/content/1033/tcadscommon/374277003.html

Backup Function blocks

TS8000 503Version: 1.2

4 Backup Function blocks

4.1 BackupVar NOVRAM
The user can use standard data types (see table) and integrate them in his application in order to save
defined PLC variables voltage failure safe.

Data type BackupVar NOVRAM block
BOOL FB_HVACNOVRAM_Bool [} 503]
BYTE FB_HVACNOVRAM_Byte [} 503]
DINT FB_HVACNOVRAM_Dint [} 504]
DWORD FB_HVACNOVRAM_Dword [} 504]
INT FB_HVACNOVRAM_Int [} 505]
LREAL FB_HVACNOVRAM_Lreal [} 505]
REAL FB_HVACNOVRAM_Real [} 505]
TIME FB_HVACNOVRAM_Time [} 506]
SINT FB_HVACNOVRAM_Sint [} 506]
UDINT FB_HVACNOVRAM_Udint [} 506]
UINT FB_HVACNOVRAM_Uint [} 507]
USINT FB_HVACNOVRAM_Usint [} 507]
WORD FB_HVACNOVRAM_Word [} 507]

4.1.1 FB_HVACNOVRAM_Bool

VAR_INPUT
bSetDefault : BOOL;
bVar_Default : BOOL;

bSetDefault: if the variable is TRUE, the value of the input variable bVar_Default is adopted.

bVar_Default: default value defined by the user. The variable is of the data type BOOL.

VAR_IN_OUT
Name : Type

bVar : BOOL;

bVar: variable that is programmed fail-safe by the user.

4.1.2 FB_HVACNOVRAM_Byte

Backup Function blocks

TS8000504 Version: 1.2

VAR_INPUT
bSetDefault : BOOL;
byVar_Default : BYTE;

bSetDefault: if the variable is TRUE, the value of the input variable byVar_Default is adopted.

byVar_Default: default value defined by the user. The variable is of the data type BYTE.

VAR_IN_OUT
byVar : BYTE;

byVar: variable that is programmed fail-safe by the user.

4.1.3 FB_HVACNOVRAM_Dint

VAR_INPUT
bSetDefault : BOOL;
diVar_Default : DINT;

bSetDefault: if the variable is TRUE, the value of the input variable diVar_Default is adopted.

diVar_Default: default value defined by the user. The variable is of the data type DINT.

VAR_IN_OUT
diVar : DINT;

diVar: variable that is programmed fail-safe by the user.

4.1.4 FB_HVACNOVRAM_Dword

VAR_INPUT
bSetDefault : BOOL;
dwVar_Default : DWORD;

bSetDefault: if the variable is TRUE, the value of the input variable dwVar_Default is adopted.

dwVar_Default: default value defined by the user. The variable is of the data type DWORD.

VAR_IN_OUT
dwVar : DWORD;

dwVar: variable that is programmed fail-safe by the user.

Backup Function blocks

TS8000 505Version: 1.2

4.1.5 FB_HVACNOVRAM_Int

VAR_INPUT
bSetDefault : BOOL;
iVar_Default : INT;

bSetDefault: if the variable is TRUE, the value of the input variable iVar_Default is adopted.

iVar_Default: default value defined by the user. The variable is of the data type INT.

VAR_IN_OUT
iVar : INT;

iVar: variable that is programmed fail-safe by the user.

4.1.6 FB_HVACNOVRAM_Lreal

VAR_INPUT
bSetDefault : BOOL;
lrVar_Default : LREAL;

bSetDefault: if the variable is TRUE, the value of the input variable lrVar_Default is adopted.

lrVar_Default: default value defined by the user. The variable is of the data type LREAL.

VAR_IN_OUT
lrVar : LREAL;

lrVar: variable that is programmed fail-safe by the user.

4.1.7 FB_HVACNOVRAM_Real

VAR_INPUT
bSetDefault : BOOL;
rVar_Default : REAL;

bSetDefault: if the variable is TRUE, the value of the input variable rVar_Default is adopted.

rVar_Default: default value defined by the user. The variable is of the data type REAL.

VAR_IN_OUT
rVar : REAL;

Backup Function blocks

TS8000506 Version: 1.2

rVar: variable that is programmed fail-safe by the user.

4.1.8 FB_HVACNOVRAM_Sint

VAR_INPUT
bSetDefault : BOOL;
siVar_Default : SINT;

bSetDefault: if the variable is TRUE, the value of the input variable siVar_Default is adopted.

siVar_Default: default value defined by the user. The variable is of the data type SINT.

VAR_IN_OUT
siVar : SINT;

siVar: variable that is programmed fail-safe by the user.

4.1.9 FB_HVACNOVRAM_Time

VAR_INPUT
bSetDefault : BOOL;
tVar_Default : TIME;

bSetDefault: if the variable is TRUE, the value of the input variable tVar_Default is adopted.

tVar_Default: default value defined by the user. The variable is of the data type TIME.

VAR_IN_OUT
tVar : TIME;

tVar: variable that is programmed fail-safe by the user.

4.1.10 FB_HVACNOVRAM_Udint

VAR_INPUT
bSetDefault : BOOL;
udiVar_Default : UDINT;

bSetDefault: if the variable is TRUE, the value of the input variable udiVar_Default is adopted.

udiVar_Default: default value defined by the user. The variable is of the data type UDINT.

Backup Function blocks

TS8000 507Version: 1.2

VAR_IN_OUT
udiVar : UDINT;

udiVar: variable that is programmed fail-safe by the user.

4.1.11 FB_HVACNOVRAM_Uint

VAR_INPUT
bSetDefault : BOOL;
uiVar_Default : UINT;

bSetDefault: if the variable is TRUE, the value of the input variable uiVar_Default is adopted.

uiVar_Default: default value defined by the user. The variable is of the data type UINT.

VAR_IN_OUT
uiVar : UINT;

uiVar: variable that is programmed fail-safe by the user.

4.1.12 FB_HVACNOVRAM_Usint

VAR_INPUT
bSetDefault : BOOL;
usiVar_Default : USINT;

bSetDefault: if the variable is TRUE, the value of the input variable usiVar_Default is adopted.

usiVar_Default: default value defined by the user. The variable is of the data type USINT.

VAR_IN_OUT
usiVar : USINT;

usiVar: variable that is programmed fail-safe by the user.

4.1.13 FB_HVACNOVRAM_Word

VAR_INPUT
bSetDefault : BOOL;
wVar_Default : WORD;

bSetDefault: if the variable is TRUE, the value of the input variable wVar_Default is adopted.

Backup Function blocks

TS8000508 Version: 1.2

wVar_Default: default value defined by the user. The variable is of the data type WORD.

VAR_IN_OUT
wVar : WORD;

wVar: variable that is programmed fail-safe by the user.

4.2 BackupVar Persistent
The user can use standard data types (see table) and integrate them in his application in order to save
defined PLC variables fail-safe.

Data type BackupVar Persistent function block
BOOL FB_HVACPersistent_Bool [} 508]
BYTE FB_HVACPersistent_Byte [} 509]
DINT FB_HVACPersistent_Dint [} 509]
DWORD FB_HVACPersistent_Dword [} 509]
INT FB_HVACPersistent_Int [} 510]
LREAL FB_HVACPersistent_Lreal [} 510]
REAL FB_HVACPersistent_Real [} 510]
SINT FB_HVACPersistent_Sint [} 511]
STRING FB_HVACPersistent_String [} 511]
STRUCT FB_HVACPersistent_Struct [} 512]
TIME FB_HVACPersistent_Time [} 513]
UDINT FB_HVACPersistent_Udint [} 513]
UINT FB_HVACPersistent_Uint [} 514]
USINT FB_HVACPersistent_Usint [} 514]
WORD FB_HVACPersistent_Word [} 514]

4.2.1 FB_HVACPersistent_Bool

VAR_INPUT
bSetDefault : BOOL;
bVar_Default : BOOL;

bSetDefault: if the variable is TRUE, the value of the input variable bVar_Default is adopted.

bVar_Default: default value defined by the user. The variable is of the data type BOOL.

VAR_IN_OUT
bVar : BOOL;

bVar: variable that is programmed fail-safe by the user.

Backup Function blocks

TS8000 509Version: 1.2

4.2.2 FB_HVACPersistent_Byte

VAR_INPUT
bSetDefault : BOOL;
byVar_Default : BYTE;

bSetDefault: if the variable is TRUE, the value of the input variable byVar_Default is adopted.

byVar_Default: default value defined by the user. The variable is of the data type BYTE.

VAR_IN_OUT
byVar : BYTE;

byVar: variable that is programmed fail-safe by the user.

4.2.3 FB_HVACPersistent_Dint

VAR_INPUT
bSetDefault : BOOL;
diVar_Default : DINT;

bSetDefault: if the variable is TRUE, the value of the input variable diVar_Default is adopted.

diVar_Default: default value defined by the user. The variable is of the data type DINT.

VAR_IN_OUT
diVar : DINT;

diVar: variable that is programmed fail-safe by the user.

4.2.4 FB_HVACPersistent_Dword

VAR_INPUT
bSetDefault : BOOL;
dwVar_Default : DWORD;

bSetDefault: if the variable is TRUE, the value of the input variable dwVar_Default is adopted.

dwVar_Default: default value defined by the user. The variable is of the data type DWORD.

VAR_IN_OUT
dwVar : DWORD;

Backup Function blocks

TS8000510 Version: 1.2

dwVar: variable that is programmed fail-safe by the user.

4.2.5 FB_HVACPersistent_Int

VAR_INPUT
bSetDefault : BOOL;
iVar_Default : INT;

bSetDefault: if the variable is TRUE, the value of the input variable iVar_Default is adopted.

iVar_Default: default value defined by the user. The variable is of the data type INT.

VAR_IN_OUT
iVar : INT;

iVar: variable that is programmed fail-safe by the user.

4.2.6 FB_HVACPersistent_Lreal

VAR_INPUT
bSetDefault : BOOL;
lrVar_Default : LREAL;

bSetDefault: if the variable is TRUE, the value of the input variable lrVar_Default is adopted.

lrVar_Default: default value defined by the user. The variable is of the data type LREAL.

VAR_IN_OUT
lrVar : LREAL;

lrVar: variable that is programmed fail-safe by the user.

4.2.7 FB_HVACPersistent_Real

VAR_INPUT
bSetDefault : BOOL;
rVar_Default : REAL;

bSetDefault: if the variable is TRUE, the value of the input variable rVar_Default is adopted.

rVar_Default: default value defined by the user. The variable is of the data type REAL.

Backup Function blocks

TS8000 511Version: 1.2

VAR_IN_OUT
rVar : REAL;

rVar: variable that is programmed fail-safe by the user.

4.2.8 FB_HVACPersistent_Sint

VAR_INPUT
bSetDefault : BOOL;
siVar_Default : SINT;

bSetDefault: if the variable is TRUE, the value of the input variable siVar_Default is adopted.

siVar_Default: default value defined by the user. The variable is of the data type SINT.

VAR_IN_OUT
siVar : SINT;

siVar: variable that is programmed fail-safe by the user.

4.2.9 FB_HVACPersistent_String

VAR_INPUT
bSetDefault : BOOL;
dwAdrString : DWORD;
udiSizeOfString : UDINT;
dwAdrString_Default: DWORD;

bSetDefault: if the variable is TRUE, the default values of the declared variable dwAdrString_Default are
adopted and copied to the dwAdrString address.

dwAdrString: address of the declared variable to be persistently saved.

udiSizeOfString: size of the declared variable in bytes. (1 byte per character (size at declaration) + 1 byte
for null termination)

dwAdrString_Default: address from the string with the default value.

VAR_OUTPUT
bInvalidParameter : BOOL;

bInvalidParameter: TRUE if udiSizeOfString > g_udiMaxSizeOfString OR dwAdrString = 0 OR
dwAdrString_Default = 0

VAR_GLOBAL CONSTANT
Name : Type

g_udiMaxSizeOfString: UDINT := 255; (* size in number of characters *)

Backup Function blocks

TS8000512 Version: 1.2

g_udiMaxSizeOfString: any size of the string can be specified via this globally declared constant. Preset
value is 255.

Sample:
VAR
 fbBackupString : FB_HVACPersistent_STRING;
 bSetDefault : BOOL; (* default flag *)
 sVar : STRING(55); (* normal value *)
 sVar_Default : STRING(55) := 'Store the default String Value'; (* default value *)
 bInvalidParameter : BOOL;
END_VAR

4.2.10 FB_HVACPersistent_Struct

VAR_INPUT
bSetDefault : BOOL;
dwAdrStruct : DWORD;
udiSizeOfStruct : UDINT;
dwAdrStruct_Default: DWORD;

bSetDefault: if the variable is TRUE, the default values of the allocated structure instance
dwAdrStruct_Default are adopted and copied to the dwAdrStruct address.

dwAdrStruct: address of the declared structure variable to be persistently saved.

udiSizeOfStruct: size of the instantiated structure in bytes.

dwAdrStruct_Default: address of the allocated structure instance with the default values.

VAR_OUTPUT
bInvalidParameter : BOOL;

bInvalidParameter: TRUE if udiSizeOfStruct > g_udiMaxNoOfBytesInStruct OR dwAdrStruct = 0 OR
dwAdrStruct_Default = 0

VAR_GLOBAL CONSTANT
g_udiMaxNoOfBytesInStruct : UDINT := 16; (* size in number of bytes *)

g_udiMaxNoOfBytesInStruct: this globally declared constant defines the size of the structure in bytes. By
default 16 bytes are defined. This constant can be adapted to the requirements.

Sample:
VAR
 fbBackupStruct : FB_HVACPersistent_STRUCT;
 bSetDefault : BOOL; (* default flag *)
 stTemp : ST_Temp; (* structure values *)
 stTemp_Default : ST_Temp; (* default Values *)
 bInvalidParameter : BOOL;
END_VAR

Backup Function blocks

TS8000 513Version: 1.2

ST_Temp:
TYPE ST_Temp :
STRUCT
 (* total of 8 bytes *)
 byVar1 : BYTE;
 byVar2 : BYTE;
 byVar3 : BYTE;
 byVar4 : BYTE;
 iVar1 : INT;
 iVar2 : INT;
END_STRUCT
END_TYPE

stTemp_Default.byVar1:= 11; (* one byte *)
stTemp_Default.byVar2:= 22; (* one byte *)
stTemp_Default.byVar3:= 33; (* one byte *)
stTemp_Default.byVar4:= 44; (* one byte *)
stTemp_Default.iVar1:= 55; (* two bytes *)
stTemp_Default.iVar2:= 66; (* two bytes *)

4.2.11 FB_HVACPersistent_Time

VAR_INPUT
bSetDefault : BOOL;
tVar_Default : TIME;

bSetDefault: if the variable is TRUE, the value of the input variable tVar_Default is adopted.

tVar_Default: default value defined by the user. The variable is of the data type TIME.

VAR_IN_OUT
tVar : TIME;

tVar: variable that is programmed fail-safe by the user.

4.2.12 FB_HVACPersistent_Udint

VAR_INPUT
bSetDefault : BOOL;
udiVar_Default : UDINT;

bSetDefault: if the variable is TRUE, the value of the input variable udiVar_Default is adopted.

udiVar_Default: default value defined by the user. The variable is of the data type UDINT.

Backup Function blocks

TS8000514 Version: 1.2

VAR_IN_OUT
udiVar : UDINT;

udiVar: variable that is programmed fail-safe by the user.

4.2.13 FB_HVACPersistent_Uint

VAR_INPUT
bSetDefault : BOOL;
uiVar_Default : UINT;

bSetDefault: if the variable is TRUE, the value of the input variable uiVar_Default is adopted.

uiVar_Default: default value defined by the user. The variable is of the data type UINT.

VAR_IN_OUT
uiVar : UINT;

uiVar: variable that is programmed fail-safe by the user.

4.2.14 FB_HVACPersistent_Usint

VAR_INPUT
bSetDefault : BOOL;
usiVar_Default : USINT;

bSetDefault: if the variable is TRUE, the value of the input variable usiVar_Default is adopted.

usiVar_Default: default value defined by the user. The variable is of the data type USINT.

VAR_IN_OUT
usiVar : USINT;

usiVar: variable that is programmed fail-safe by the user.

4.2.15 FB_HVACPersistent_Word

VAR_INPUT
bSetDefault : BOOL;
wVar_Default : WORD;

bSetDefault: if the variable is TRUE, the value of the input variable wVar_Default is adopted.

Backup Function blocks

TS8000 515Version: 1.2

wVar_Default: default value defined by the user. The variable is of the data type WORD.

VAR_IN_OUT
wVar : WORD;

wVar: variable that is programmed fail-safe by the user.

Functions

TS8000516 Version: 1.2

5 Functions

5.1 F_RoundLREAL

Application

The function F_RoundLREAL rounds the input variable IrIN of data type LREAL to 1 decimal place. This
function can also be used for REAL data types.

VAR_INPUT
lrIN : LREAL;

5.2 F_RoundLREAL_EX

Application

The function F_RoundLREAL_EX rounds the input variable lrIN of the data type LREAL to the number of
decimal places specified by iPrecision. This function can also be used for REAL data types. An instance of
the function LTRUNC from the library TcMath.lib is used internally in the function.

VAR_INPUT
lrIN : LREAL;
iPrecision : INT; 0..5

lrIN: floating point number that is to be formatted.

- If lrIN < 0.1 AND lrIN >= 0.05, then the return value of the function is 0.1

iPrecision: precision. The value determines the number of digits after the decimal point. The range of
decimal places begins with 0 and ends with 5.

Application example

Download Required library
TcHVAC.pro [} 531] TcHVAC.lib

Enumerations and Structures

TS8000 517Version: 1.2

6 Enumerations and Structures

6.1 E_HVAC2PointActuatorMode
TYPE E_HVAC2PointActuatorMode:
(
 eHVAC2PointActuatorMode_Auto_BMS := 0,
 eHVAC2PointActuatorMode_Open_BMS := 1,
 eHVAC2PointActuatorMode_Close_BMS := 2,
 eHVAC2PointActuatorMode_Auto_OP := 3,
 eHVAC2PointActuatorMode_Open_OP := 4,
 eHVAC2PointActuatorMode_Close_OP := 5
);
END_TYPE

.._BMS: Building Management System; remote control of the actuator from an BMS.

..OP: Operator Panel; local operation of the actuator from an OP.

6.2 E_HVAC2PointCtrlMode
TYPE E_HVAC2PointCtrlMode:
(
 eHVAC2PointCtrlMode_Auto_BMS := 0,
 eHVAC2PointCtrlMode_On_BMS := 1,
 eHVAC2PointCtrlMode_Off_BMS := 2,
 eHVAC2PointCtrlMode_Auto_OP := 3,
 eHVAC2PointCtrlMode_On_OP := 4,
 eHVAC2PointCtrlMode_Off_OP := 5
);
END_TYPE

.._BMS: Building Management System; remote control of the actuator from an BMS.

..OP: Operator Panel; local operation of the actuator from an OP.

6.3 E_HVAC3PointActuatorMode
TYPE E_HVAC3PointActuatorMode:
(
 eHVAC3PointActuatorMode_Auto_BMS := 0,
 eHVAC3PointActuatorMode_Open_BMS := 1,
 eHVAC3PointActuatorMode_Close_BMS := 2,
 eHVAC3PointActuatorMode_Stop_BMS := 3,
 eHVAC3PointActuatorMode_Auto_OP := 4,
 eHVAC3PointActuatorMode_Open_OP := 5,
 eHVAC3PointActuatorMode_Close_OP := 6,
 eHVAC3PointActuatorMode_Stop_OP := 7
);
END_TYPE

.._BMS: Building Management System; remote control of the actuator from an BMS.

..OP: Operator Panel; local operation of the actuator from an OP.

6.4 E_HVACActuatorMode
TYPE E_HVACActuatorMode :
(
 eHVACActuatorMode_Auto_BMS := 0,
 eHVACActuatorMode_Off_BMS := 1,
 eHVACActuatorMode_Speed1_BMS := 2,
 eHVACActuatorMode_Speed2_BMS := 3,
 eHVACActuatorMode_Speed3_BMS := 4,
 eHVACActuatorMode_Speed4_BMS := 5,

Enumerations and Structures

TS8000518 Version: 1.2

 eHVACActuatorMode_Auto_OP := 6,
 eHVACActuatorMode_Off_OP := 7,
 eHVACActuatorMode_Speed1_OP := 8,
 eHVACActuatorMode_Speed2_OP := 9,
 eHVACActuatorMode_Speed3_OP := 10,
 eHVACActuatorMode_Speed4_OP := 11
);
END_TYPE

.._BMS: Building Management System; remote control of the actuator from an BMS.

..OP: Operator Panel; local operation of the actuator from an OP.

6.5 E_HVACAirConditioning2SpeedMode
TYPE E_HVACAirConditioning2SpeedMode:
(
 eHVACAirConditioning2SpeedMode_Off := 0,
 eHVACAirConditioning2SpeedMode_Heating := 1,
 eHVACAirConditioning2SpeedMode_Cooling := 2,
 eHVACAirConditioning2SpeedMode_HeatingAndCooling := 3
);
END_TYPE

6.6 E_HVACAnalogOutputMode
TYPE E_HVACAnalogOutputMode :
(
 eHVACAnalogOutputMode_Auto_BMS := 0,
 eHVACAnalogOutputMode_Manual_BMS := 1,
 eHVACAnalogOutputMode_Auto_OP := 2,
 eHVACAnalogOutputMode_Manual_OP := 3
);
END_TYPE

.._BMS: Building Management System; remote control of the actuator from an BMS.

..OP: Operator Panel; local operation of the actuator from an OP.

6.7 E_HVACAntiBlockingMode
TYPE E_HVACAntiBlockingMode:
(
 eHVACAntiBlockingMode_Off := 0,
 eHVACAntiBlockingMode_Downtime := 1,
 eHVACAntiBlockingMode_Weekly := 2
);
END_TYPE

6.8 E_HVACBusTerminal_KL32xx
TYPE E_HVACBusTerminal_KL32xx :
(
 eHVACBusTerminal_None := 0,
(*==*)
 eHVACBusTerminal_KL3201_0000 := 1,(*Standard PT100*)
 eHVACBusTerminal_KL3201_0010 := 2,(*PT200*)
 eHVACBusTerminal_KL3201_0011 := 3,(*not supported, PT200 Siemens format*)
 eHVACBusTerminal_KL3201_0012 := 4,(*PT500*)
 eHVACBusTerminal_KL3201_0013 := 5,(*not supported, PT500 Siemens format*)
 eHVACBusTerminal_KL3201_0014 := 6,(*PT1000*)
 eHVACBusTerminal_KL3201_0015 := 7,(*not supported, PT1000 Siemens format*)
 eHVACBusTerminal_KL3201_0016 := 8,(*Ni100*)
 eHVACBusTerminal_KL3201_0017 := 9,(*not supported, Ni100 Siemens format*)
 eHVACBusTerminal_KL3201_0018 := 10,(*not supported*)
 eHVACBusTerminal_KL3201_0020 := 11,(*Ohm10_1200*)
 eHVACBusTerminal_KL3201_0021 := 12,(*not supported, PT100 Siemens format*)
 eHVACBusTerminal_KL3201_0023 := 13,(*Ni120*)
 eHVACBusTerminal_KL3201_0024 := 14,(*not supported, Ni120 Siemens format*)

Enumerations and Structures

TS8000 519Version: 1.2

 eHVACBusTerminal_KL3201_0025 := 15,(*Ni1000*)
 eHVACBusTerminal_KL3201_0026 := 16,(*not supported, Ni1000 Siemens format*)
 eHVACBusTerminal_KL3201_0027 := 17,(*not supported, Ohm10_10000*)
 eHVACBusTerminal_KL3201_0028 := 18,(*not supported, high resolution 0,01°C*)
 eHVACBusTerminal_KL3201_0029 := 19,(*Ni1000_LS, Landis&Stefa, TK5000*)
 eHVACBusTerminal_KL3201_0030 := 20,(*not supported*)
 eHVACBusTerminal_KL3201_0031 := 21,(*PT1000,2 wire connection*)
(*==*)
 eHVACBusTerminal_KL3202_0000 := 22,(*Standard PT100*)
 eHVACBusTerminal_KL3202_0010 := 23,(*PT200*)
 eHVACBusTerminal_KL3202_0011 := 24,(*not supported, PT200 Siemens format*)
 eHVACBusTerminal_KL3202_0012 := 25,(*PT500*)
 eHVACBusTerminal_KL3202_0013 := 26,(*not supported, PT500 Siemens format*)
 eHVACBusTerminal_KL3202_0014 := 27,(*PT1000*)
 eHVACBusTerminal_KL3202_0015 := 28,(*not supported, PT1000 Siemens format*)
 eHVACBusTerminal_KL3202_0016 := 29,(*Ni100*)
 eHVACBusTerminal_KL3202_0017 := 30,(*not supported, Ni100 Siemens format*)
 eHVACBusTerminal_KL3202_0018 := 31,(*not supported*)
 eHVACBusTerminal_KL3202_0020 := 32,(*Ohm10_1200*)
 eHVACBusTerminal_KL3202_0021 := 33,(*not supported, PT100 Siemens format*)
 eHVACBusTerminal_KL3202_0023 := 34,(*Ni120*)
 eHVACBusTerminal_KL3202_0024 := 35,(*not supported, Ni120 Siemens format*)
 eHVACBusTerminal_KL3202_0025 := 36,(*Ni1000*)
 eHVACBusTerminal_KL3202_0026 := 37,(*not supported, Ni1000 Siemens format*)
 eHVACBusTerminal_KL3202_0027 := 38,(*not supported, Ohm10_10000*)
 eHVACBusTerminal_KL3202_0028 := 39,(*not supported, high resolution 0,01°C*)
 eHVACBusTerminal_KL3202_0029 := 40,(*Ni1000_LS, Landis&Stefa, TK5000*)
 eHVACBusTerminal_KL3202_0030 := 41,(*not supported*)
 eHVACBusTerminal_KL3202_0031 := 42,(*PT1000,2 wire connection*)
(*==*)
 eHVACBusTerminal_KL3204_0000 := 43,(*Standard PT100*)
 eHVACBusTerminal_KL3204_0010 := 44,(*PT200*)
 eHVACBusTerminal_KL3204_0011 := 45,(*not supported, PT200 Siemens format*)
 eHVACBusTerminal_KL3204_0012 := 46,(*PT500*)
 eHVACBusTerminal_KL3204_0013 := 47,(*not supported, PT500 Siemens format*)
 eHVACBusTerminal_KL3204_0014 := 48,(*PT1000*)
 eHVACBusTerminal_KL3204_0015 := 49,(*not supported, PT1000 Siemens format*)
 eHVACBusTerminal_KL3204_0016 := 50,(*Ni100*)
 eHVACBusTerminal_KL3204_0017 := 51,(*not supported, Ni100 Siemens format*)
 eHVACBusTerminal_KL3204_0018 := 52,(*not supported*)
 eHVACBusTerminal_KL3204_0020 := 53,(*Ohm10_1200*)
 eHVACBusTerminal_KL3204_0021 := 54,(*not supported, PT100 Siemens format*)
 eHVACBusTerminal_KL3204_0023 := 55,(*Ni120*)
 eHVACBusTerminal_KL3204_0024 := 56,(*not supported, Ni120 Siemens format*)
 eHVACBusTerminal_KL3204_0025 := 57,(*Ni1000*)
 eHVACBusTerminal_KL3204_0026 := 58,(*not supported, Ni1000 Siemens format*)
 eHVACBusTerminal_KL3204_0027 := 59,(*not supported, Ohm10_10000*)
 eHVACBusTerminal_KL3204_0028 := 60,(*not supported, high resolution 0,01°C*)
 eHVACBusTerminal_KL3204_0029 := 61,(*Ni1000_LS, Landis&Stefa, TK5000*)
 eHVACBusTerminal_KL3204_0030 := 62,(*not supported*)
(*==*)
 eHVACBusTerminal_KL3228_0000 := 63,(*Standard PT1000*)
(*==*)
 eHVACBusTerminal_NotSupported := 64,(*error, bus terminal not supported*)
 eHVACBusTerminal_KL3201_NotSupported := 65,(*error, bus terminal not supported*)
 eHVACBusTerminal_KL3202_NotSupported := 66,(*error, bus terminal not supported*)
 eHVACBusTerminal_KL3204_NotSupported := 67,(*error, bus terminal not supported*)
 eHVACBusTerminal_KL3228_NotSupported := 68 (*error, bus terminal not supported*)
(*==*)
 eHVACBusTerminal_KL3208_0010 := 69,(*Standard PT1000*)
 eHVACBusTerminal_KL3208_NotSupported := 70(*error, bus terminal not supported*)
);
END_TYPE

6.9 E_HVACCtrlMode
TYPE E_HVACCtrlMode :
(
 eHVACCtrlMode_Auto := 0,
 eHVACCtrlMode_Manual := 1
);
END_TYPE

Enumerations and Structures

TS8000520 Version: 1.2

6.10 E_HVACConvectionMode
TYPE E_HVACConvectionMode :
(
 eHVACConvectionMode_WithFan := 0,
 eHVACConvectionMode_WithoutFan := 1
);
END_TYPE

6.11 E_HVACDataSecurityType
TYPE E_HVACDataSecurityType:
(
 eHVACDataSecurityType_Persistent := 0,
 eHVACDataSecurityType_Idle := 1
);
END_TYPE

6.12 E_HVACErrorCodes
TYPE E_HVACErrorCodes :
(
eHVACErrorCodes_NoError := 0,
eHVACErrorCodes_Error_tTaskCycleTime := 1,
eHVACErrorCodes_Error_tCtrlCycleTime := 2,
eHVACErrorCodes_InvalidParam_rDeadRange := 3,
eHVACErrorCodes_InvalidParam_rDeadBand := 4,
eHVACErrorCodes_InvalidParam_rKpIsLessThanZero := 5,
eHVACErrorCodes_InvalidParam_tTi := 6,
eHVACErrorCodes_InvalidParam_tTv := 7,
eHVACErrorCodes_InvalidParam_tTd := 8,
eHVACErrorCodes_InvalidParam_fBaseTime := 9,
eHVACErrorCodes_InvalidParam_rYMaxIsLessThanrYMin := 10,
eHVACErrorCodes_Error_MEMCPY := 11,
eHVACErrorCodes_Error_ModeNotSupported := 12,
eHVACErrorCodes_Error_rErrHighLimitOverrun := 13,
eHVACErrorCodes_Error_rErrLowLimitUnderrun := 14,
eHVACErrorCodes_Error_NoFeedbackActuator1 := 15,
eHVACErrorCodes_Error_NoFeedbackActuator2 := 16,
eHVACErrorCodes_Error_NoFeedbackActuator3 := 17,
eHVACErrorCodes_Error_NoFeedbackActuator4 := 18,
eHVACErrorCodes_Error_NoFeedbackActuator5 := 19,
eHVACErrorCodes_Error_NoFeedbackActuator6 := 20,
eHVACErrorCodes_Error_NoFeedbackActuator7 := 21,
eHVACErrorCodes_Error_NoFeedbackActuator8 := 22,
eHVACErrorCodes_InvalidParam_tOverlap1Actuator := 23,
eHVACErrorCodes_InvalidParam_iCountCtrl := 24,
eHVACErrorCodes_iMaxOnLevel := 25,
eHVACErrorCodes_tNoFeedbActuator := 26,
eHVACErrorCodes_Error_iNumberOfSequences := 27,
eHVACErrorCodes_Error_iMyNumberOfSequences := 28,
eHVACErrorCodes_Error_iCurrentSequences := 29,
eHVACErrorCodes_Error_MEMSET := 30
);
END_TYPE

6.13 E_HVACExternalMode
TYPE E_HVACExternalMode :
(
 eHVACExternalMode_Off := 0,
 eHVACExternalMode_On := 1,
 eHVACExternalMode_ShiftAbsolute := 2
);
END_TYPE

Enumerations and Structures

TS8000 521Version: 1.2

6.14 E_HVACExternalRequestMode
TYPE E_HVACExternalRequestMode:
(
 eHVACExternalRequestMode_ButtonOn_Off := 0,
 eHVACExternalRequestMode_ButtonOffDelay := 1,
 eHVACExternalRequestMode_SwitchOn_Off := 2
);
END_TYPE

6.15 E_HVACPlantMode
TYPE E_HVACPlantMode:
(
 eHVACPlantMode_TimeSchedulingOnly := 0,
 eHVACPlantMode_ExternalRequestOnly := 1,
 eHVACPlantMode_TimeScheduling_And_ExternalRequest := 2,
 eHVACPlantMode_TimeScheduling_Or_ExternalRequest := 3
);
END_TYPE

6.16 E_HVACPowerMeasurementMode
TYPE E_HVACPowerMeasurementMode:
(
 eHVACPowerMeasurementMode_AutoAllValues := 0,
 eHVACPowerMeasurementMode_Current := 1,
 eHVACPowerMeasurementMode_Voltage := 2,
 eHVACPowerMeasurementMode_EffectivePower := 3,
 eHVACPowerMeasurementMode_EnergyConsumption := 4,
 eHVACPowerMeasurementMode_PeakCurrentValue := 5,
 eHVACPowerMeasurementMode_PeakVoltageValue := 6,
 eHVACPowerMeasurementMode_PeakPowerValue := 7
);
END_TYPE

6.17 E_HVACReferencingMode
TYPE E_HVACReferencingMode :
(
 eHVACReferencingMode_Emulation := 0,
 eHVACReferencingMode_AnalogFeedback := 1
);
END_TYPE

6.18 E_HVACRegOutsideTemp
TYPE E_HVACRegOutsideTemp:
(
 eHVACReqOutsideTemp_NoRequest := 0,
 eHVACReqOutsideTemp_OTLowerLimit := 1,
 eHVACReqOutsideTemp_OTHigherLimit := 2
);
END_TYPE

6.19 E_HVACReqPump
TYPE E_HVACReqPump:
(
 eHVACReqPump_No := 0,
 eHVACReqPump_OT_LL := 1,
 eHVACReqPump_OT_HL := 2,
 eHVACReqPump_VP := 3,
 eHVACReqPump_OT_LL_OR_VP := 4,
 eHVACReqPump_OT_HL_OR_VP := 5,
 eHVACReqPump_OT_LL_AND_VP := 6,
 eHVACReqPump_OT_HL_AND_VP := 7
END_TYPE

eHVACReqPump_No: There is no request on the part of the Enum to control the pump

Enumerations and Structures

TS8000522 Version: 1.2

eHVACReqPump_OT_LL: The outside temperature (OT = rOutsideTemp) must be smaller than
rOutsideTempLowLimit (LL = Lower Limit)

eHVACReqPump_OT_HL: The outside temperature (OT = rOutsideTemp) must be larger than
rOutsideTempHighLimit (HL = Higher Limit)

eHVACReqPump_VP: The valve position (VP = rValvePosition) must be larger than rValvePositionLimitOn

eHVACReqPump_OT_LL_OR_VP: The outside temperature (OT = rOutsideTemp) must be smaller than
rOutsideTempLowLimit (LL = Lower Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_HL_OR_VP: The outside temperature (OT = rOutsideTemp) must be larger than
rOutsideTempHighLimit (HL = Higher Limit) OR the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_LL_AND_VP: The outside temperature (OT = rOutsideTemp) must be smaller than
rOutsideTempLowLimit (LL = Lower Limit) AND the valve position (VP = rValvePosition) must be larger than
rValvePositionLimitOn

eHVACReqPump_OT_HL_AND_VP: The outside temperature (OT = rOutsideTemp) must be larger than
rOutsideTempHighLimit (HL = Higher Limit) AND the valve position (VP = rValvePosition) must be larger
than rValvePositionLimitOn

6.20 E_HVACRegValve
TYPE E_HVACRegValve:
(
 eHVACReqValve_NoRequest := 0,
 eHVACReqValve_OrValvePosHigherLimit := 1,
 eHVACReqValve_AndValvePosHigherLimit := 2
);
END_TYPE

6.21 E_HVACSensorType
TYPE E_HVACSensorType :
(
 eHVACSensorType_None := 0,
 eHVACSensorType_PT100 := 1,
 eHVACSensorType_PT200 := 2,
 eHVACSensorType_PT500 := 3,
 eHVACSensorType_PT1000 := 4,
 eHVACSensorType_NI100 := 5,
 eHVACSensorType_NI120 := 6,
 eHVACSensorType_NI1000 := 7,(*Ni1000,DIN*)
 eHVACSensorType_NI1000_LS := 8,(*Ni1000_LS, Landis&Staefa, TK5000*)
 eHVACSensorType_Ohm10_1200 := 9,
 eHVACSensorType_Ohm10_5000 := 10,
 eHVACSensorType_Ohm10_10000 := 11,
 eHVACSensorType_NotSupported := 12
);
END_TYPE

6.22 E_HVACSequenceCtrlMode
The controller is enabled and controlled within the sequence via this ENUM, depending on the system
operating modes.
TYPE E_HVACSequenceCtrlMode :
(
 eHVACSequenceCtrlMode_Stop := 0,
 eHVACSequenceCtrlMode_On := 1,
 eHVACSequenceCtrlMode_NightCooling := 2,
 eHVACSequenceCtrlMode_FreezeProtection := 3,
 eHVACSequenceCtrlMode_OverheatingProtection := 4,
 eHVACSequenceCtrlMode_NightCoolingAndOverheatingProtection := 5
);
END_TYPE

Enumerations and Structures

TS8000 523Version: 1.2

6.23 E_HVACSetpointHeatingMode
TYPE E_HVACSetpointHeatingMode :
(
 eHVACSetpointHeatingMode_Off := 0,
 eHVACSetpointHeatingMode_OnOutsideTemp := 1,
 eHVACSetpointHeatingMode_OnDate := 2,
 eHVACSetpointHeatingMode_OnPermanent := 3,
 eHVACSetpointHeatingMode_OnFreezeProtec := 4,
 eHVACSetpointHeatingMode_OnNight := 5,
 eHVACSetpointHeatingMode_OnDay := 6
);
END_TYPE

eHVACSetpointHeatingMode_Off: the heating circuit is completely switched off.

The frost protection function is also deactivated in this operation mode!

eHVACSetpointHeatingMode_OnOutsideTemp: heating period according to outside temperature. The
heating circuit is switched on if the average outside temperature rOutsideTempDamped is smaller
than the value of rHeatingLimit. The flow temperature setpoint calculated by the heating characteristic curve
or the
room setpoint module is passed through to the output rSetpoint.
The output bHeatingPump becomes TRUE and thus the heating circuit pump is switched on. Switching on or
off following the heating limits being undershot or exceeded can be delayed by the parameters
tDelayHeatingOn
and tDelayHeatingOff.

eHVACSetpointHeatingMode_OnDate: heating period by date. The heating circuit is enabled from the date
iOn_Day / iOn_Month to iOff_Day / iOff_Month
. The switching on or off of the heating circuit pump after the switch-on or switch-off limits are reached can
be
delayed.

eHVACSetpointHeatingMode_OnPermanent: the heating circuit is always switched on.

eHVACSetpointHeatingMode_OnFreezeProtec: the heating circuit is in frost protection mode. If the input
variable bFreezProtec is TRUE ,
the value applied to rFreezeProtecSetpoint is passed through to the output rSetpointOut.

eHVACSetpointHeatingMode_OnNight: the setpoint for the flow temperature is calculated depending on
the outside temperature. The heating circuit is on continuously, and remains in night setback mode. In this
operation mode, the value from the input variable rNightSetback is subtracted from the rSetpointIn.

eHVACSetpointHeatingMode_OnDay: the heating circuit is in day operation.

6.24 E_HVACSetpointMode
TYPE E_HVACSetpointMode :
(
 eHVACSetpointMode_DIN := 0,
 eHVACSetpointMode_DINLimited := 1,
 eHVACSetpointMode_ConstantValueBase := 2
);
END_TYPE

6.25 E_HVACState
TYPE E_HVACState :
(
 eHVACState_Idle := 0,
 eHVACState_Active := 1,
 eHVACState_Error := 2
);
END_TYPE

Enumerations and Structures

TS8000524 Version: 1.2

This output indicates the current internal state of the block.

eHVACState_Idle: The block has successfully been reset, and is now waiting for selection of the operating
mode.
eHVACState_Active: The block is in the active state, which is the normal operating state.
eHVACState_Error: An error has occurred; the block is not executed when in this state.

6.26 E_HVACTemperatureCurve
TYPE E_HVACTemperatureCurve :
(
 eHVACTemperatureCurve_None := 0,
 eHVACTemperatureCurve_NTC1k8 := 1,(*NTC 1.8k, negative, Thermokon*)
 eHVACTemperatureCurve_Ni1000Tk5000 := 2,(*Ni1000 Tk5000, positive, Thermokon*)
 eHVACTemperatureCurve_NTC1k_3_A1 := 3,(*NTC1k, 1K3 A1, negative, S+S*)
 eHVACTemperatureCurve_NTC1k8_3_A1 := 4,(*NTC1.8k, 1.8K3 A1, negative, S+S*)
 eHVACTemperatureCurve_NTC2k2_3_A1 := 5,(*NTC2.2k, 2.2K3 A1, negative, S+S*)
 eHVACTemperatureCurve_NTC3k3_3_A1 := 6,(*NTC3.3k, 3.3K3 A1, negative, S+S*)
 eHVACTemperatureCurve_Ni1000Tk5000_TCR := 7,(*Ni1000 Tk5000 TCR, positive, S+S*)
 eHVACTemperatureCurve_Ni1000_DIN := 8,(*Ni1000 DIN, positive, S+S*)
 eHVACTemperatureCurve_Pt1000_DIN := 9 (*Ni1000 DIN, positive, S+S*)
);
END_TYPE

6.27 E_HVACTemperatureSensorMode
E_HVACTemperatureSensorMode
TYPE E_HVACTemperatureSensorMode :
(
 eHVACTemperatureSensorMode_ReplacementValue := 0,
 eHVACTemperatureSensorMode_LastValue := 1,
 eHVACTemperatureSensorMode_AutoResetReplacementValue := 2,
 eHVACTemperatureSensorMode_AutoResetLastValue := 3
);
END_TYPE

6.28 ST_HVAC2PointCtrlSequence
TYPE ST_HVAC2PointCtrlSequence :
STRUCT
 tRemainingTimeIncreaseSequence : TIME;
 tRemainingTimeDecreaseSequence : TIME;
 rX : REAL;
 rW_Max : REAL;
 rW_Min : REAL;
 rE : REAL;
 rCtrl_I_HighLimit : REAL;
 rCtrl_I_LowLimit : REAL;
 rCtrl_I_Out : REAL;
 e2PointCtrlState : E_HVAC2PointCtrlMode;
 iNumberOfSequences : INT;
 iMyNumberInSequence : INT;
 iCurrentSequence : INT;
 bEnable : BOOL;
 bError : BOOL;
 bOut : BOOL;
 bActiveCtrl : BOOL;
 b_rW_Max : BOOL;
 b_rW_Min : BOOL;
END_STRUCT
END_TYPE

6.29 ST_HVACAggregate
TYPE ST_HVACAggregate :
STRUCT
 rY_Max : REAL;
 rY_Min : REAL;
 iAggregateStep : INT;

Enumerations and Structures

TS8000 525Version: 1.2

 bBlock : BOOL;
END_STRUCT
END_TYPE

rY_Max: Parameter specification for constant units.

rY_Min: Parameter specification for constant units.

iAggregateStep: Parameter that specifies the step in which the addressed unit should be fixed or should
regulate; see bBlock.

bBlock: If bBlock = FALSE, then the addressed unit is fixed in the specified step via iAggregateStep. If
bBlock = TRUE, then the control of the addressed unit is released from the off step (0) to the specified step
via iAggregateStep.

6.30 ST_HVACCmdCtrl_8Param
TYPE ST_HVACCmdCtrl_8Param :
STRUCT
 udiSecDelayOn : UDINT;
 udiSecDelayOff : UDINT;
 udiSecMinOn : UDINT;
 udiSecMinOff : UDINT;
END_STRUCT
END_TYPE

udiSecDelayOn: switch-on delay in seconds

udiSecDelayOff: switch-off delay in seconds

udiSecMinOn: minimum switch-on time in seconds

udiSecMinOff: minimum switch-off time in seconds

6.31 ST_HVACCmdCtrl_8State
TYPE ST_HVACCmdCtrl_8State :
STRUCT
 udiSecRT_DelayOn : UDINT;
 udiSecRT_DelayOff : UDINT;
 udiStep : UDINT;
 udiSecRT_MinOn : ARRAY[0..g_iNumOfCmdCtrl_8] OF UDINT;
 udiSecRT_MinOff : ARRAY[0..g_iNumOfCmdCtrl_8] OF UDINT;
END_STRUCT
END_TYPE

udiSecRT_DelayOn: The remaining time of the switch-on delay of the current step udiStep is indicated.

udiSecRT_DelayOff: The remaining time of the switch-off delay of the current step udiStep is indicated.

udiStep: Status indicating which step the function block is in.

udiSecRT_MinOn[0.. g_iNumOfCmdCtrl_8 [} 531]]: The remaining time of the minimum switch-on duration
of the outputs is indicated in the one-dimensional field (Table) udiSecRT_MinOn[0..g_iNumOfCmdCtrl_8
[} 531]] .

udiSecRT_MinOff[0.. g_iNumOfCmdCtrl_8 [} 531]]: The remaining time of the minimum switch-off duration
of the outputs is indicated in the one-dimensional field (Table) udiSecRT_MinOff[0..g_iNumOfCmdCtrl_8
[} 531]] .

6.32 ST_HVACHoliday
TYPE ST_HVACHoliday :
STRUCT
 uiOn_Day : UINT;
 uiOn_Month : UINT;
 uiOff_Day : UINT;

Enumerations and Structures

TS8000526 Version: 1.2

 uiOff_Month : UINT;
 bEnable : BOOL;
 bResetAfterOn : BOOL;
 bQ : BOOL;
END_STRUCT
END_TYPE

6.33 ST_HVACI_Ctrl
TYPE ST_HVACI_Ctrl :
STRUCT
 rIntegralHigh : REAL;
 rIntegralLow : REAL;
 udiSecDelayHigh : UDINT;
 udiSecDelayLow : UDINT;
END_STRUCT
END_TYPE

rIntegralHigh: Positive value for the upper limit at which the integration of the I-transfer element is stopped

rIntegralLow: Positive value for the lower limit at which the integration of the I-transfer element is stopped.

udiSecDelayHigh: Delay time after whose expiry the I-transfer elelment is activated.

udiSecDelayLow: Delay time after whose expiry the I-transfer elelment is activated.

6.34 ST_HVACPeriod
TYPE ST_HVACPeriod :
STRUCT
 uiOn_hh : UINT;
 uiOn_mm : UINT;
 uiOn_Day : UINT;
 uiOn_Month : UINT;
 uiOff_hh : UINT;
 uiOff_mm : UINT;
 uiOff_Day : UINT;
 uiOff_Month : UINT;
 bEnable : BOOL;
 bResetAfterOn : BOOL;
 bQ : BOOL;
END_STRUCT
END_TYPE

6.35 ST_HVACParameterScale_nPoint
TYPE ST_HVACParameterScale_nPoint :
STRUCT
 rX : ARRAY [1..g_iMaxNoOfScale_nPoint] OF REAL;
 rY : ARRAY [1..g_iMaxNoOfScale_nPoint] OF REAL;
 iNumberOfPoint : INT;
END_STRUCT
END_TYPE

rX[1..g_iMaxNoOfScale_nPoint]: Array that includes the values of the single points of the X-axis. The
number of points depends on iNumberOfPoint.

Enumerations and Structures

TS8000 527Version: 1.2

NOTICE
Please note: The value rX[1] must be higher then rX[2], rX[2] must be higher then rX[n] OR rX[1] must be
lesser then rX[2], rX[2] must be lesser then rX[n].

rY[1..g_iMaxNoOfScale_nPoint]: Array that includes the values of the single points of the Y-axis. The
number of points depends on iNumberOfPoint.

iNumberOfPoint: Number of the single values of the X-Y-coordinates.

NOTICE
Please note: iNumberOfPoint must not be lesser then 2 or bigger then g_iMaxNoOfScale_nPoint(60).

6.36 ST_HVACPowerMeasurement
TYPE ST_HVACPowerMeasurement :
STRUCT
 diIL1, diIL2, diIL3 : DINT;
 diUL1, diUL2, diUL3 : DINT;
 diPL1, diPL2, diPL3 : DINT;
 diPg : DINT;
 diCosPhiL1, diCosPhiL2, diCosPhiL3 : DINT;
 diCosPhi : DINT;
 diWL1, diWL2, diWL3 : DINT;
 diWg : DINT;
 diImaxL1, diImaxL2, diImaxL3 : DINT;
 diUmaxL1, diUmaxL2, diUmaxL3 : DINT;
 diPmaxL1, diPmaxL2, diPmaxL3 : DINT;
 diSg : DINT;
 diQg : DINT;
 dummy : DINT;
END_STRUCT
END_TYPE

6.37 ST_HVACPowerMeasurementEx
TYPE ST_HVACPowerMeasurementEx :
STRUCT
 fIL1, fIL2, fIL3 : LREAL;
 fIg : LREAL;
 fUL1, fUL2, fUL3 : LREAL;
 fPL1, fPL2, fPL3 : LREAL;
 fPg : LREAL;
 fCosPhiL1, fCosPhiL2, fCosPhiL3 : LREAL;
 fCosPhi : LREAL;
 fWL1, fWL2, fWL3 : LREAL;
 fWg : LREAL;
 fImaxL1, fImaxL2, fImaxL3 : LREAL;
 fUmaxL1, fUmaxL2, fUmaxL3 : LREAL;
 fPmaxL1, fPmaxL2, fPmaxL3 : LREAL;
 fSg : LREAL;
 fQg : LREAL;
 fFrequencyL1, fFrequencyL2, fFrequencyL3 : LREAL;
END_STRUCT
END_TYPE

6.38 ST_HVACPowerRangeTable
TYPE ST_HVACPowerRangeTable :
STRUCT
iAggregate : INT;
iAggregateStep : INT;
rY_Max : REAL;

Enumerations and Structures

TS8000528 Version: 1.2

rY_Min : REAL;
rIntegralHigh : REAL;
rIntegralLow : REAL;
udiSecDelayHigh : UDINT;
udiSecDelayLow : UDINT;
bBlock : BOOL;
END_STRUCT
END_TYPE

iAggregate: Parameter that specifies to which output structure stAggregate1-6 of the function block
FB_HVACPowerRangeTable [} 275] the variables rY_Min, rY_Max, iAggregateStep and bBlock are written.

iAggregateStep: Parameter that specifies the step in which the addressed unit should be fixed or should
regulate, depending on bBlock. This variable is output via the structure stAggregateX.

rY_Max: Parameter specification for constant units. The variable value must not be smaller than g_rY_Min
[} 531] and must not exceed g_rY_Max [} 531] and rY_Max must not be smaller than rY_Min. Otherwise an
error is indicated by bError = TRUE and the execution of the function block FB_HVACPowerRangeTable
[} 275] is stopped. This variable is output via the structure stAggregateX.

rY_Min: Parameter specification for constant units. The variable value must not be smaller than g_rY_Min
[} 531] and must not exceed g_rY_Max [} 531] and rY_Max must not be smaller than rY_Min. Otherwise an
error is indicated by bError = TRUE and the execution of the function block FB_HVACPowerRangeTable
[} 275] is stopped. This variable is output via the structure stAggregateX.

rIntegralHigh: Positive value for the upper limit at which the integration of the I-transfer element is stopped;
see the VAR_IN_OUT-Variable rIntegralHigh in the FB_HVACI_CtrlStep [} 248]. This variable is output via the
structure stI_Ctrl.

rIntegralLow: Positive value for the lower limit at which the integration of the I-transfer element is stopped;
see the VAR_IN_OUT-Variable rIntegralHigh in the FB_HVACI_CtrlStep [} 248]. This variable is output via the
structure stI_Ctrl.

udiSecDelayHigh: Delay time after whose expiry the I-transfer element is activated; see the VAR_IN_OUT-
Variable udiSecDelayHigh in the FB_HVACI_CtrlStep [} 248]. This variable is output via the structure stI_Ctrl.

udiSecDelayLow: Delay time after whose expiry the I-transfer element is activated; see the VAR_IN_OUT-
Variable udiSecDelayHigh in the FB_HVACI_CtrlStep [} 248]. This variable is output via the structure stI_Ctrl.

bBlock: If bBlock = FALSE, then the addressed unit is fixed in the specified step via iAggregateStep. If
bBlock = TRUE, then the control of the addressed unit is released from the off step (0) to the specified step
via iAggregateStep. This variable is output via the structure stAggregateX.

6.39 ST_HVACTimeChannel
TYPE ST_HVACTimeChannel :
STRUCT
 uiOn_hh : UINT;
 uiOn_mm : UINT;
 uiOn_ss : UINT;
 uiOff_hh : UINT;
 uiOff_mm : UINT;
 uiOff_ss : UINT;
 bEnable : BOOL;
 bAllDays : BOOL;
 bMonday : BOOL;
 bTuesday : BOOL;
 bWednesday : BOOL;
 bThursday : BOOL;
 bFriday : BOOL;
 bSaturday : BOOL;
 bSunday : BOOL;
 bResetAfterOn : BOOL;
 bQ : BOOL;
END_STRUCT
END_TYPE

Enumerations and Structures

TS8000 529Version: 1.2

6.40 ST_HVACTempChangeFunction
Stucture of the node points for the temperature change function in the modules FB_HVACOptimizedOn
[} 431] and FB_HVACOptimizedOff [} 441].
TYPE ST_HVACPrestartFunction :
STRUCT
 rOutsideTemp : ARRAY[1..10] OF REAL; (*[degC]*)
 rRoomTempChange : ARRAY[1..10] OF REAL; (*[degK/min]*)
END_STRUCT
END_TYPE

rOutsideTemp / rRoomTempChange : The 10 node points (outdoor temperature in degree Celsius to room
temperature change in degree Kelvin / minute), which are passed.

Appendix

TS8000530 Version: 1.2

7 Appendix

7.1 Calculation of switching time when changing sequence
Example of the determination of the switching time from one sequence to the next.

Appendix

TS8000 531Version: 1.2

7.2 Example project
Download Required library
 https://infosys.beckhoff.com/content/1033/
tcplclibhvac/Resources/11659726219/.zip

 TcHVAC.lib

7.3 VAR_GLOBAL CONSTANT
VAR_GLOBAL CONSTANT
 g_tHVACWriteBackupDataTime : TIME := T#5s;
 g_udiMaxNoOfBytesInStruct : UDINT := 16; (* Size in number of bytes *)
 g_udiMaxSizeOfString : UDINT := 256; (* Size in number of characters(as in string de
claration) + 1 byte for termination*)
 g_iMaxNoOfScale_nPoint : INT := 60; (* FB_HVACScale_nPoint*)
 g_iMaxNumberOfSteps : INT := 32; (*FB_HVACI_CtrlStep/FB_HVACPowerRangeTable*)
 g_iMinNumberOfSteps : INT := 0; (*FB_HVACI_CtrlStep/FB_HVACPowerRangeTable*)
 g_iMaxNumberOfProfiles : INT := 16; (*FB_HVACPowerRangeTable*)
 g_iMinNumberOfProfiles : INT := 1; (*FB_HVACPowerRangeTable*)
 g_iMaxNumberOfAggregates : INT := 6; (*FB_HVACPowerRangeTable*)
 g_iMinNumberOfAggregates : INT := 1; (*FB_HVACPowerRangeTable*)
 g_rYMin : REAL := -1000; (*FB_HVACPowerRangeTable*)
 g_rYMax : REAL := 1000; (*FB_HVACPowerRangeTable*)
 g_iAggregateMinNumberOfSteps : INT := 0; (*FB_HVACPowerRangeTable*)
 g_iAggregateMaxNumberOfSteps : INT := 6; (*FB_HVACPowerRangeTable*)
 g_udiMaxSec : UDINT := 4294967; (*FB_HVACI_CtrlStep / FB_HVACPowerRangeTable*)
 g_iMinNumberOfSequences : INT := 1; (*FB_HVAC2PointCtrlSequence*)
 g_iMaxNumberOfSequences : INT := 16; (*FB_HVAC2PointCtrlSequence*)
 g_iNumOfCmdCtrl_8 : INT := 8; (*FB_HVACCmdCtrl_8*)
END_VAR

7.4 Table of sequence controller operating modes
Operating modes

A further special feature of the sequence controller is its control by the Enum E_HVACSequenceCtrlMode
[} 522]
Not only is the controller enabled by the Enum E_HVACSequenceCtrlMode [} 522], it also transmits the
operating mode of the air conditioning system to the controller blocks in the sequence. Depending on the
operating modes, each sequence controller hence reacts specially to the Enum E_HVACSequenceCtrlMode
[} 522] as illustrated in the table.

Value of:
E_HVACSe-
quenceC-
trlMode

0 (Stop) 1 (On) 2 (night
cooling)

3 (support
operation)

4 (overheat-
ing protec-
tion)

5 (night
cooling and
overheating
protection)

FB_HVACMa
sterSequenc
eCtrl
Master
controller

disabled 0 % Enable disabled 0 % Enable

rY=ZuluftMax
.Temp

Enable

rY=ZuluftMin.
Temp

Enable

rY=ZuluftMin.
Temp

FB_HVACPI
DPreHeating
Pre-heater

disabled 0 % Enable disabled 0 % Enable 0 % -
100 %

disabled 0 % disabled 0 %

FB_HVACPI
DReHeating
Re-heater

disabled 0 % Enable disabled 0 % disabled 0 % disabled 0 % disabled 0 %

https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659726219.zip
https://infosys.beckhoff.com/content/1033/tcplclibhvac/Resources/11659726219.zip

Appendix

TS8000532 Version: 1.2

Value of:
E_HVACSe-
quenceC-
trlMode

0 (Stop) 1 (On) 2 (night
cooling)

3 (support
operation)

4 (overheat-
ing protec-
tion)

5 (night
cooling and
overheating
protection)

FB_HVACPI
DCooling
Cooler

disabled 0 % Enable disabled 0 % disabled 0 % Enable 0 % -
100 %

Enable 0 % -
100 %

FB_HVACPI
DEnergyRec
overy
Heat
recovery

disabled 0 % Enable disabled 0 % disabled 0 % disabled 0 % disabled 0 %

FB_HVACPI
DMixedAir
Mixed air
flaps

disabled 0 % Enable max. outside
air rate 100
%

0 % air
circulation
only

0 % air
circulation
only

max. outside
air rate 100
%

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/ts8000

mailto:info@beckhoff.de?subject=TS8000
https://www.beckhoff.com
https://www.beckhoff.com/ts8000

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Introduction
	2.1 Target groups
	2.2 User requirement profile
	2.3 General technical characteristics
	2.3.1 Integration into TwinCAT
	2.3.2 Hardware requirements
	2.3.3 Remanent data
	2.3.4 Default values
	2.3.5 Value range monitoring

	3 Function blocks
	3.1 HVAC Actuators
	3.1.1 FB_HVAC2PointActuator
	3.1.2 FB_HVAC3PointActuator
	3.1.3 FB_HVACCirculationPump
	3.1.4 FB_HVACCirculationPumpEx
	3.1.5 FB_HVACMotor1Speed
	3.1.6 FB_HVACMotor2Speed
	3.1.7 FB_HVACMotor3Speed
	3.1.8 FB_HVACRedundancyCtrl
	3.1.9 FB_HVACRedundancyCtrlEx

	3.2 HVAC Analog modules
	3.2.1 FB_HVACAnalogInput
	3.2.2 FB_HVACAnalogOutput
	3.2.3 FB_HVACAnalogOutputEx
	3.2.4 FB_HVACAnalogTo3Point
	3.2.5 FB_HVACConfigureKL32xx
	3.2.6 FB_HVACScale
	3.2.7 FB_HVACScale_nPoint
	3.2.8 FB_HVACTemperatureCurve
	3.2.9 FB_HVACTemperatureSensor
	3.2.10 FB_HVACTemperatureSensorEx
	3.2.11 FB_HVACTemperatureSensorEx

	3.3 HVAC Room Functions
	3.3.1 Air conditioning
	3.3.1.1 FB_BAREnergyLevel
	3.3.1.2 FB_BARFanCoil
	3.3.1.3 FB_BARFctSelection
	3.3.1.4 FB_BARSetpointRoom

	3.3.2 Controller
	3.3.2.1 FB_BARPICtrl

	3.3.3 Lighting
	3.3.3.1 Lighting functions – overview
	3.3.3.2 FB_BARAutomaticLight
	3.3.3.3 FB_BARConstantLightControl
	3.3.3.4 FB_BARDaylightControl
	3.3.3.5 FB_BARLightActuator
	3.3.3.6 FB_BARLightCircuit
	3.3.3.7 FB_BARLightCircuitDim
	3.3.3.8 FB_BARStairwellAutomatic
	3.3.3.9 FB_BARTwilightAutomatic

	3.3.4 Sun portection
	3.3.4.1 Overview shading
	3.3.4.2 Overview sun protection
	3.3.4.3 Sun protection: basic principles and definitions
	3.3.4.4 Shading correction: basic principles and definitions
	3.3.4.5 FB_BARBlindPositionEntry
	3.3.4.6 FB_BARDelayedHysteresis
	3.3.4.7 FB_BARFacadeElementEntry
	3.3.4.8 FB_BARReadFacadeElementList
	3.3.4.9 FB_BARReadShadingObjectsList
	3.3.4.10 FB_BARShadingCorrection
	3.3.4.11 FB_BARShadingCorrectionSouth
	3.3.4.12 FB_BARShadingObjectsEntry
	3.3.4.13 FB_BARSunblindActuator
	3.3.4.14 FB_BARSunblindActuatorEx
	3.3.4.15 FB_BARSMISunblindActuator
	3.3.4.16 FB_BARSunblindEvent
	3.3.4.17 FB_BARSunblindPrioritySwitch
	3.3.4.18 FB_BARRollerBlind
	3.3.4.19 FB_BARSMIRollerBlind
	3.3.4.20 FB_BARSunblindScene
	3.3.4.21 FB_BARSunblindSwitch
	3.3.4.22 FB_BARSunblindThermoAutomatic
	3.3.4.23 FB_BARSunblindTwilightAutomatic
	3.3.4.24 FB_BARSunblindWeatherProtection
	3.3.4.25 FB_BARSunProtectionEx
	3.3.4.26 FB_BARWithinRangeAzimuth
	3.3.4.27 FB_BARWithinRangeElevation

	3.3.5 Program example
	3.3.5.1 Program example FB_BARSunblindSwitch

	3.3.6 Structures and enumeration
	3.3.6.1 E_BARCtrlFct
	3.3.6.2 E_BAREnergyLevel
	3.3.6.3 E_BARPosMode
	3.3.6.4 E_BARShadingObjectType
	3.3.6.5 E_HVACDataSecurityType
	3.3.6.6 ST_BARBlindPositionTable
	3.3.6.7 ST_BARCorner
	3.3.6.8 ST_BARFacadeElement
	3.3.6.9 ST_BARSetpointRoom
	3.3.6.10 ST_BARShadingObject
	3.3.6.11 ST_BARSunblind
	3.3.6.12 ST_BARSunblindScene

	3.3.7 List descriptions
	3.3.7.1 List of facade elements
	3.3.7.2 List of shading elements
	3.3.7.3 Error Codes

	3.4 HVAC Controller
	3.4.1 FB_HVAC2PointCtrl
	3.4.2 FB_HVACI_CtrlStep
	3.4.3 FB_HVACI_CtrlStepEx
	3.4.4 FB_HVACPIDCtrl
	3.4.5 FB_HVACPIDCtrl_Ex
	3.4.6 FB_HVACPowerRangeTable
	3.4.7 Sequence-Controller
	3.4.7.1 FB_HVAC2PointCtrlSequence
	3.4.7.2 FB_HVACBasicSequenceCtrl
	3.4.7.3 FB_HVACMasterSequenceCtrl
	3.4.7.4 FB_HVACPIDCooling
	3.4.7.5 FB_HVACPIDDehumidify
	3.4.7.6 FB_HVACPIDEnergyRecovery
	3.4.7.7 FB_HVACPIDHumidify
	3.4.7.8 FB_HVACPIDMixedAir
	3.4.7.9 FB_HVACPIDPreHeating
	3.4.7.10 FB_HVACPIDReHeating

	3.5 HVAC Setpoint modules
	3.5.1 FB_HVACHeatingCurve
	3.5.2 FB_HVACHeatingCurveEx
	3.5.3 FB_HVACOutsideTempDamped
	3.5.4 FB_HVACSetpointHeating
	3.5.5 FB_HVACSetpointRamp
	3.5.6 FB_HVACSummerCompensation

	3.6 HVAC Special functions
	3.6.1 FB_HVACAirConditioning2Speed
	3.6.2 FB_HVACAlarm
	3.6.3 FB_HVACAntiBlockingDamper
	3.6.4 FB_HVACAntiBlockingPump
	3.6.5 FB_HVACBlink
	3.6.6 FB_HVACCmdCtrl_8
	3.6.7 FB_HVACCmdCtrlSystem1Stage
	3.6.8 FB_HVACCmdCtrlSystem2Stage
	3.6.9 FB_HVACConvertEnum
	3.6.10 FB_HVACEnthalpy
	3.6.11 FB_HVACFixedLimit
	3.6.12 FB_HVACFreezeProtectionHeater
	3.6.13 FB_HVACMux8
	3.6.14 FB_HVACMUX_INT_16
	3.6.15 FB_HVACMUX_INT_8
	3.6.16 FB_HVACMUX_REAL_16
	3.6.17 FB_HVACMUX_REAL_8
	3.6.18 FB_HVACOverwriteAnalog
	3.6.19 FB_HVACOverwriteDigital
	3.6.20 FB_HVACPowerMeasurementKL3403
	3.6.21 FB_HVACPowerMeasurementKL3403Ex
	3.6.22 FB_HVACPriority_INT_16
	3.6.23 FB_HVACPriority_INT_8
	3.6.24 FB_HVACPriority_REAL_16
	3.6.25 FB_HVACPriority_REAL_8
	3.6.26 FB_HVACOptimizedOn
	3.6.27 FB_HVACOptimizedOff
	3.6.28 FB_HVACTempChangeFunction
	3.6.29 FB_HVACPWM
	3.6.30 FB_HVACStartAirConditioning
	3.6.31 FB_HVACSummerNightCooling
	3.6.32 FB_HVACSummerNightCoolingEx
	3.6.33 FB_HVACTimeCon
	3.6.34 FB_HVACTimeConSec
	3.6.35 FB_HVACTimeConSecMs
	3.6.36 FB_HVACWork

	3.7 HVAC Time schedule
	3.7.1 FB_HVACScheduler1ch
	3.7.2 FB_HVACScheduler7ch
	3.7.3 FB_HVACScheduler7TCHandling
	3.7.4 FB_HVACScheduler28ch
	3.7.5 FB_HVACScheduler28TCHandling
	3.7.6 FB_HVACSchedulerSpecialPeriods
	3.7.7 FB_HVACSchedulerPublicHolidays

	3.8 HVAC System
	3.8.1 FB_HVACGetSystemTime
	3.8.2 FB_HVACNOVRAMDataHandling
	3.8.3 FB_HVACPersistentDataHandling
	3.8.4 FB_HVACPersistentDataFileCopy
	3.8.5 FB_HVACSetLocalTime
	3.8.6 FB_HVACSystemTaskInfo

	4 Backup Function blocks
	4.1 BackupVar NOVRAM
	4.1.1 FB_HVACNOVRAM_Bool
	4.1.2 FB_HVACNOVRAM_Byte
	4.1.3 FB_HVACNOVRAM_Dint
	4.1.4 FB_HVACNOVRAM_Dword
	4.1.5 FB_HVACNOVRAM_Int
	4.1.6 FB_HVACNOVRAM_Lreal
	4.1.7 FB_HVACNOVRAM_Real
	4.1.8 FB_HVACNOVRAM_Sint
	4.1.9 FB_HVACNOVRAM_Time
	4.1.10 FB_HVACNOVRAM_Udint
	4.1.11 FB_HVACNOVRAM_Uint
	4.1.12 FB_HVACNOVRAM_Usint
	4.1.13 FB_HVACNOVRAM_Word

	4.2 BackupVar Persistent
	4.2.1 FB_HVACPersistent_Bool
	4.2.2 FB_HVACPersistent_Byte
	4.2.3 FB_HVACPersistent_Dint
	4.2.4 FB_HVACPersistent_Dword
	4.2.5 FB_HVACPersistent_Int
	4.2.6 FB_HVACPersistent_Lreal
	4.2.7 FB_HVACPersistent_Real
	4.2.8 FB_HVACPersistent_Sint
	4.2.9 FB_HVACPersistent_String
	4.2.10 FB_HVACPersistent_Struct
	4.2.11 FB_HVACPersistent_Time
	4.2.12 FB_HVACPersistent_Udint
	4.2.13 FB_HVACPersistent_Uint
	4.2.14 FB_HVACPersistent_Usint
	4.2.15 FB_HVACPersistent_Word

	5 Functions
	5.1 F_RoundLREAL
	5.2 F_RoundLREAL_EX

	6 Enumerations and Structures
	6.1 E_HVAC2PointActuatorMode
	6.2 E_HVAC2PointCtrlMode
	6.3 E_HVAC3PointActuatorMode
	6.4 E_HVACActuatorMode
	6.5 E_HVACAirConditioning2SpeedMode
	6.6 E_HVACAnalogOutputMode
	6.7 E_HVACAntiBlockingMode
	6.8 E_HVACBusTerminal_KL32xx
	6.9 E_HVACCtrlMode
	6.10 E_HVACConvectionMode
	6.11 E_HVACDataSecurityType
	6.12 E_HVACErrorCodes
	6.13 E_HVACExternalMode
	6.14 E_HVACExternalRequestMode
	6.15 E_HVACPlantMode
	6.16 E_HVACPowerMeasurementMode
	6.17 E_HVACReferencingMode
	6.18 E_HVACRegOutsideTemp
	6.19 E_HVACReqPump
	6.20 E_HVACRegValve
	6.21 E_HVACSensorType
	6.22 E_HVACSequenceCtrlMode
	6.23 E_HVACSetpointHeatingMode
	6.24 E_HVACSetpointMode
	6.25 E_HVACState
	6.26 E_HVACTemperatureCurve
	6.27 E_HVACTemperatureSensorMode
	6.28 ST_HVAC2PointCtrlSequence
	6.29 ST_HVACAggregate
	6.30 ST_HVACCmdCtrl_8Param
	6.31 ST_HVACCmdCtrl_8State
	6.32 ST_HVACHoliday
	6.33 ST_HVACI_Ctrl
	6.34 ST_HVACPeriod
	6.35 ST_HVACParameterScale_nPoint
	6.36 ST_HVACPowerMeasurement
	6.37 ST_HVACPowerMeasurementEx
	6.38 ST_HVACPowerRangeTable
	6.39 ST_HVACTimeChannel
	6.40 ST_HVACTempChangeFunction

	7 Appendix
	7.1 Calculation of switching time when changing sequence
	7.2 Example project
	7.3 VAR_GLOBAL CONSTANT
	7.4 Table of sequence controller operating modes

		documentation@beckhoff.com
	2023-08-31T12:58:18+0200
	Beckhoff Automation, Verl
	Documentation Publishing

