BECKHOFF New Automation Technology

Dokumentation | DE KL2692/KS2692

Zyklusüberwachungsklemme (Watchdog-Klemme)

31.01.2022 | Version: 2.1.0

Inhaltsverzeichnis

1	Vorw	vort	5
	1.1	Hinweise zur Dokumentation	5
	1.2	Sicherheitshinweise	6
	1.3	Ausgabestände der Dokumentation	7
2	Prod	uktübersicht	8
	2.1	Einführung	8
	2.2	Technische Daten	9
	2.3	Grundlagen zur Funktion	9
	2.4	LED-Anzeigen 1	1
3	Mont	age und Verdrahtung	2
	3.1	Hinweise zum ESD-Schutz	2
	3.2	Tragschienenmontage1	3
	3.3	Anschluss 1	6
		3.3.1 Anschlusstechnik 1	6
		3.3.2 Verdrahtung 1	7
		3.3.3 Anschlussbelegung 1	9
	3.4	Anwendungsbeispiel 2	0
	3.5	Entsorgung 2	1
4	Konf	igurations-Software KS20002	2
	4.1	KS2000 - Einführung 2	2
	4.2	Parametrierung mit KS2000 2	3
	4.3	Register 2	5
	4.4	Einstellungen 2	6
	4.5	Prozessdaten	6
5	Zugr	iff aus dem Anwenderprogramm 2	8
	5.1	Prozessabbild	8
	5.2	Control- und Status-Byte	8
	5.3	Registerübersicht	0
	5.4	Registerbeschreibung	1
	5.5	Beispiele für die Register-Kommunikation	2
		5.5.1 Beispiel 1: Lesen des Firmware-Stands aus Register 9 3	2
		5.5.2 Beispiel 2: Beschreiben eines Anwender-Registers	2
6	Anha	ing 3	6
	6.1	Support und Service	6

BECKHOFF

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentlichte Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] und XPlanar[®] sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT[®] ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Erklärung der Hinweise

In der vorliegenden Dokumentation werden die folgenden Hinweise verwendet. Diese Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

▲ GEFAHR

Akute Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!

WARNUNG

Verletzungsgefahr!

Wenn dieser Sicherheitshinweis nicht beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen!

▲ VORSICHT

Schädigung von Personen!

Wenn dieser Sicherheitshinweis nicht beachtet wird, können Personen geschädigt werden!

HINWEIS

Schädigung von Umwelt/Geräten oder Datenverlust

Wenn dieser Hinweis nicht beachtet wird, können Umweltschäden, Gerätebeschädigungen oder Datenverlust entstehen.

Tipp oder Fingerzeig

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
2.1.0	Kapitel "Technische Daten" aktualisiert
	Dokumentstruktur aktualisiert
	 Kapitel "Hinweise zum ESD-Schutz" hinzugefügt
	Kapitel "Entsorgung" hinzugefügt
	Neue Titelseite
	Revisionsstand aktualisiert
2.0.0	Migration
1.0.1	Prozessabbild korrigiert
	Grundlagen zur Funktion erweitert
1.0	Beschreibung der Parametrierung der KL2692 mit der Konfigurationssoftware KS2000 erweitert.
0.2	Vorabversion
0.1	interne Vorabversion

Firm- und Hardware-Stände

Dokumentation	KL2692-0000, KS2692-0000			
Version	Firmware	Hardware		
2.1.0	4A	07		
2.0.0	1C	04		
1.0.1	1B	01		
1.0	1B	00		
0.2	-	00		
0.1	-	00		

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der Klemme aufgedruckten Seriennummer entnehmen.

Syntax der Seriennummer

Aufbau der Seriennummer: WW YY FF HH

WW - Produktionswoche (Kalenderwoche)

- YY Produktionsjahr
- FF Firmware-Stand
- HH Hardware-Stand

Beispiel mit Seriennummer 39 04 1B 01:

- 39 Produktionswoche 39
- 04 Produktionsjahr 2004
- 1B Firmware-Stand 1B
- 01 Hardware-Stand 01

2 Produktübersicht

2.1 Einführung

Abb. 1: KL2692

Die Busklemme KL2692 überwacht ein von der Steuerung in jedem Zyklus getoggeltes Bit und schaltet bei Ausfall des Toggle-Signals zwei potentialfreie Relais ab, um Schäden an der Maschine zu verhindern. Ursachen für das Ausbleiben des Toggle-Signals können der Stillstand des SPS-Zyklus, ein Defekt im Buskabel oder -stecker oder ein Fehler in einem Busteilnehmer sein. Die Zyklusüberwachungszeit ist parametrierbar. Die Busklemme verfügt über einen Enable-Eingang, der das Einschalten der Relais bei korrektem Toggle-Signal freigibt.

▲ GEFAHR

Kein Personenschutz!

Die KL2692 darf nur für die Zyklusüberwachung zur Verhinderung von Maschinenschäden eingesetzt werden!

Jegliche Verwendung der KL2692 für die Zyklusüberwachung zum Personenschutz ist verboten!

Die KL2692 darf nicht für Schutzfunktionen wie z. B. Not-Aus, Zugangsschutz, Schutzraumüberwachung, Roboter-Bereichsüberwachung, Pressen-Sicherheitsventil usw. verwendet werden!

2.2 Technische Daten

Technische Daten	KL2692-0000, KS2692-0000
Anzahl der Ausgänge	2 potenzialfreie Relaisausgänge (Schließer)
Nennlastspannung der Ausgänge	230 V _{AC} / 30 V _{DC}
Schaltstrom ohmsch	5 A _{AC} / 5 A _{DC}
Schaltstrom induktiv	2 A _{AC} / 2 A _{DC}
Minimal zulässige Last	10 mA bei 5 V _{DC}
Anzahl der Eingänge	2 digitale Eingänge (24 V)
Nennspannung der Eingänge	24 V _{DC} (-15% / +20%)
Signalspannung "0"	-3 V 5 V (EN 61131-3, Typ 1)
Signalspannung "1"	15 V 30V (EN 61131-3, Typ 1)
Eingangsfilter	3,0 ms
Eingangsstrom	typisch 5 mA
Potenzialtrennung	500 V (K-Bus/Feldspannung)
Spannungsversorgung für Elektronik	über den K-Bus
Stromaufnahme aus dem K-Bus	typisch 165 mA
Bitbreite im Eingangsprozessabbild	2 x 8 Bit Daten, 1 x 8 Bit Status
Bitbreite im Ausgangsprozessabbild	2 x 8 Bit Daten, 1 x 8 Bit Control
Schaltspiele mechanisch	mindestens 2 x 10 ⁷
Schaltspiele elektrisch	mindestens 1 x 10 ⁵ (5 A / 30 V_{DC})
Konfiguration	über den Buskoppler oder die Steuerung
Gewicht	ca. 60 g
zulässiger Umgebungstemperaturbereich im Betrieb	0°C + 55°C
zulässiger Umgebungstemperaturbereich bei Lagerung	-25°C + 85°C
zulässige relative Luftfeuchtigkeit	95%, keine Betauung
Abmessungen (B x H x T)	ca. 15 mm x 100 mm x 70 mm
Montage	auf 35 mm Tragschiene nach EN 60715
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	beliebig
Zulassung/Kennzeichnungen*	CE, UKCA, cULus, EAC

*) Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

2.3 Grundlagen zur Funktion

Impulsfolge-Überwachung (Zyklus)

- 1. Die Überwachungsfreigabe erfolgt bei einer Fallenden Flanke auf den Eingang Input 1.
- Bei zu langsamer Impulsfolge (zu große Zykluszeit t_P) schalten die Ausgangsrelais mindestens f
 ür die minimale Ausschaltzeit t_{Amin} ab. Die minimale Ausschaltzeit k
 önnen Sie mit Register <u>R36 [▶ 31]</u> vorgeben.
- Die Ausgangsrelais schalten bei einer als richtig erkannten Impulsfolge (1 Zyklus) erst dann wieder ein, wenn zuvor die Überwachungsfreigabe erneut ausgeführt wurde. Durch diese Schaltungsweise bleibt ein Auslösen des Watchdogs erkennbar.
- 4. Die beiden Ausgangskontakte sind in den Steuerkreis des Abschalt-Relais eingeschleift. Weil der Abschalt-Baustein durch eine explizite manuelle Intervention (Überwachungsfreigabe) zurückgesetzt werden muss, wird ein automatischer Selbstanlauf verhindert.

1

Überwachungsfreigabe bei fallender Flanke

Die Überwachungsfreigabe erfolgt erst bei fallender Flanke auf den Eingang *Input 1*. Ein dauernd am Eingang *Input 1* anliegendes Signal (high) kann also die Überwachung nicht freigeben!

Beispiel

Abb. 2: Signal-Abfolge

Abfolge

- 1. steigende Flanke an Input 1
- 2. Toggle-Signal auf dem Bus beginnt zu toggeln
- 3. fallende Flanke an Input 1 (Überwachungsfreigabe)
- 4. ein vollständiger Toggle-Zyklus nach der fallenden Flanke schalten die Relais ein (Start)
- 5. Toggle-Signal auf dem Bus hört auf zu toggeln und verbleibt im Zustand low
- 6. nach einem vermissten Toggle-Zyklus schalten die Relais aus (Stop)
- 7. Toggle-Signal auf dem Bus beginnt wieder zu toggeln
- 8. steigende Flanke an Input 1
- 9. fallende flanke an Input 1 (Überwachungsfreigabe)
- 10. ein vollständiger Toggle-Zyklus nach der fallenden Flanke schalten die Relais wieder ein (Re-Start)
- 11. Toggle-Signal auf dem Bus hört auf zu toggeln und verbleibt im Zustand high
- 12. nach einem vermissten Toggle-Zyklus schalten die Relais aus (Stop)
- 13. Toggle-Signal auf dem Bus beginnt wieder zu toggeln
- 14. steigende Flanke an Input 1
- 15. fallende Flanke an Input 1 (Überwachungsfreigabe)
- 16. ein vollständiger Toggle-Zyklus nach der fallenden Flanke schalten die Relais wieder ein (Re-Start)

BECKHOFF

2.4 LED-Anzeigen

Abb. 3: KL2692 - LED-Anzeigen

LED	Anzeige		
Relais 1 (grün)	An	Relaiskontakt 13/14 (Schließer 1) geschlossen	
Relais 2 (grün)	An	Relaiskontakt 23/24 (Schließer 2) geschlossen	
Watchdog OK (grün)	An	Der Watchdog wird regelmäßig getriggert.	
Error (rot)	nicht benutzt		
-	nicht benutzt		
-	nicht benutzt		
Input 1 (grün)	Status Eingang 1 (Watchdog-Enable)		
Input 2 (grün)	Status Eingang 2		

3 Montage und Verdrahtung

3.1 Hinweise zum ESD-Schutz

HINWEIS

Zerstörung der Geräte durch elektrostatische Aufladung möglich!

Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

- Sie müssen beim Umgang mit den Komponenten elektrostatisch entladen sein; vermeiden Sie außerdem die Federkontakte (s. Abb.) direkt zu berühren.
- Vermeiden Sie den Kontakt mit hoch isolierenden Stoffen (Kunstfaser, Kunststofffolien etc.)
- Beim Umgang mit den Komponenten ist auf gute Erdung der Umgebung zu achten (Arbeitsplatz, Verpackung und Personen)
- Jede Busstation muss auf der rechten Seite mit der Endklemme KL9010 abgeschlossen werden, um Schutzart und ESD-Schutz sicher zu stellen.

Abb. 4: Federkontakte der Beckhoff I/O-Komponenten

BECKHOFF

3.2 Tragschienenmontage

MARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Montage

Abb. 5: Montage auf Tragschiene

Die Buskoppler und Busklemmen werden durch leichten Druck auf handelsübliche 35 mm Tragschienen (Hutschienen nach EN 60715) aufgerastet:

- 1. Stecken Sie zuerst den Feldbuskoppler auf die Tragschiene.
- 2. Auf der rechten Seite des Feldbuskopplers werden nun die Busklemmen angereiht. Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet.

Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben ohne das Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

Demontage

Abb. 6: Demontage von Tragschiene

Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:

- 1. Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
- 2. Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen sie aus dem Busklemmenblock heraus.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des K-Bus/E-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmen auf dem Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (KL91xx, KL92xx bzw. EL91xx, EL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

PE-Powerkontakt

Der Powerkontakt mit der Bezeichnung PE kann als Schutzerde eingesetzt werden. Der Kontakt ist aus Sicherheitsgründen beim Zusammenstecken voreilend und kann Kurzschlussströme bis 125 A ableiten.

BECKHOFF

Abb. 7: Linksseitiger Powerkontakt

HINWEIS

Beschädigung des Gerätes möglich

Beachten Sie, dass aus EMV-Gründen die PE-Kontakte kapazitiv mit der Tragschiene verbunden sind. Das kann bei der Isolationsprüfung zu falschen Ergebnissen und auch zur Beschädigung der Klemme führen (z. B. Durchschlag zur PE-Leitung bei der Isolationsprüfung eines Verbrauchers mit 230 V Nennspannung). Klemmen Sie zur Isolationsprüfung die PE- Zuleitung am Buskoppler bzw. der Einspeiseklemme ab! Um weitere Einspeisestellen für die Prüfung zu entkoppeln, können Sie diese Einspeiseklemmen entriegeln und mindestens 10 mm aus dem Verbund der übrigen Klemmen herausziehen.

WARNUNG

Verletzungsgefahr durch Stromschlag!

Der PE-Powerkontakt darf nicht für andere Potentiale verwendet werden!

3.3 Anschluss

3.3.1 Anschlusstechnik

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Übersicht

Mit verschiedenen Anschlussoptionen bietet das Busklemmensystem eine optimale Anpassung an die Anwendung:

- Die Klemmen der Serien ELxxxx und KLxxxx mit Standardverdrahtung enthalten Elektronik und Anschlussebene in einem Gehäuse.
- Die Klemmen der Serien ESxxxx und KSxxxx haben eine steckbare Anschlussebene und ermöglichen somit beim Austausch die stehende Verdrahtung.
- Die High-Density-Klemmen (HD-Klemmen) enthalten Elektronik und Anschlussebene in einem Gehäuse und haben eine erhöhte Packungsdichte.

Standardverdrahtung (ELxxxx / KLxxxx)

Abb. 8: Standardverdrahtung

Die Klemmen der Serien ELxxxx und KLxxxx sind seit Jahren bewährt und integrieren die schraublose Federkrafttechnik zur schnellen und einfachen Montage.

Steckbare Verdrahtung (ESxxxx / KSxxxx)

Abb. 9: Steckbare Verdrahtung

Die Klemmen der Serien ESxxxx und KSxxxx enthalten eine steckbare Anschlussebene.

Montage und Verdrahtung werden wie bei den Serien ELxxxx und KLxxxx durchgeführt.

Im Servicefall erlaubt die steckbare Anschlussebene, die gesamte Verdrahtung als einen Stecker von der Gehäuseoberseite abzuziehen.

Das Unterteil kann, über das Betätigen der Entriegelungslasche, aus dem Klemmenblock herausgezogen werden.

Die auszutauschende Komponente wird hineingeschoben und der Stecker mit der stehenden Verdrahtung wieder aufgesteckt. Dadurch verringert sich die Montagezeit und ein Verwechseln der Anschlussdrähte ist ausgeschlossen.

BECKHOFF

Die gewohnten Maße der Klemme ändern sich durch den Stecker nur geringfügig. Der Stecker trägt ungefähr 3 mm auf; dabei bleibt die maximale Höhe der Klemme unverändert.

Eine Lasche für die Zugentlastung des Kabels stellt in vielen Anwendungen eine deutliche Vereinfachung der Montage dar und verhindert ein Verheddern der einzelnen Anschlussdrähte bei gezogenem Stecker.

Leiterquerschnitte von 0,08 mm² bis 2,5 mm² können weiter in der bewährten Federkrafttechnik verwendet werden.

Übersicht und Systematik in den Produktbezeichnungen der Serien ESxxxx und KSxxxx werden wie von den Serien ELxxxx und KLxxxx bekannt weitergeführt.

High-Density-Klemmen (HD-Klemmen)

Abb. 10: High-Density-Klemmen

Die Klemmen dieser Baureihe mit 16 Klemmstellen zeichnen sich durch eine besonders kompakte Bauform aus, da die Packungsdichte auf 12 mm doppelt so hoch ist wie die der Standard-Busklemmen. Massive und mit einer Aderendhülse versehene Leiter können ohne Werkzeug direkt in die Federklemmstelle gesteckt werden.

Verdrahtung HD-Klemmen

Die High-Density-Klemmen der Serien ELx8xx und KLx8xx unterstützen keine steckbare Verdrahtung.

Ultraschall-litzenverdichtete Leiter

Ultraschall-litzenverdichtete Leiter

An die Standard- und High-Density-Klemmen können auch ultraschall-litzenverdichtete (ultraschallverschweißte) Leiter angeschlossen werden. Beachten Sie die Tabellen zum <u>Leitungsquerschnitt</u> [▶_18]!

3.3.2 Verdrahtung

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Klemmen für Standardverdrahtung ELxxxx/KLxxxx und für steckbare Verdrahtung ESxxxx/KSxxxx

Abb. 11: Anschluss einer Leitung an eine Klemmstelle

Bis zu acht Klemmstellen ermöglichen den Anschluss von massiven oder feindrähtigen Leitungen an die Busklemme. Die Klemmstellen sind in Federkrafttechnik ausgeführt. Schließen Sie die Leitungen folgendermaßen an:

- 1. Öffnen Sie eine Klemmstelle, indem Sie einen Schraubendreher gerade bis zum Anschlag in die viereckige Öffnung über der Klemmstelle drücken. Den Schraubendreher dabei nicht drehen oder hin und her bewegen (nicht hebeln).
- 2. Der Draht kann nun ohne Widerstand in die runde Klemmenöffnung eingeführt werden.
- 3. Durch Rücknahme des Druckes schließt sich die Klemmstelle automatisch und hält den Draht sicher und dauerhaft fest.

Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle.

Klemmengehäuse	ELxxxx, KLxxxx	ESxxxx, KSxxxx
Leitungsquerschnitt (massiv)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 1,5 mm ²	0,14 1,5 mm ²
Abisolierlänge	8 9 mm	9 10 mm

High-Density-Klemmen (<u>HD-Klemmen [▶ 17]</u>) mit 16 Klemmstellen

Bei den HD-Klemmen erfolgt der Leiteranschluss bei massiven Leitern werkzeuglos, in Direktstecktechnik, das heißt der Leiter wird nach dem Abisolieren einfach in die Klemmstelle gesteckt. Das Lösen der Leitungen erfolgt, wie bei den Standardklemmen, über die Kontakt-Entriegelung mit Hilfe eines Schraubendrehers. Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle.

Klemmengehäuse	HD-Gehäuse
Leitungsquerschnitt (massiv)	0,08 1,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,25 1,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 0,75 mm ²
Leitungsquerschnitt (ultraschall-litzenverdichtet)	nur 1,5 mm² (siehe <u>Hinweis [▶ 17]</u>)
Abisolierlänge	8 9 mm

BECKHOFF

677-0 13 14 Relais 1 _____ Watchdog OK 🌫 ,– Relais 2 ∟ Error Eingang 1 / 13 23 Watchdog Enable 🔪 Eingang 2 <u>5</u> 23 1 13. Q φ 14 24 <u>6</u> 24 2 14 9 δ 24 V ⇔ 3 7 24 V ___ Power-= . o v Ó Ŷ 0 V 🗆 EI EZ kontakte _8_ Eingang 2 4 Eingang 1 0 0 Watchdog Enable KL2692 BECKHOFF e.ics Draufsicht Kontaktbelegung

Abb.	12: KL2692	- Anschlussbe	legung

Klemmstelle	Nr.	Anschluss für
13	1	Relaiskontakt 13 (Schließer 1)
14	2	Relaiskontakt 14 (Schließer 2)
+24 V	3	24 V Powerkontakt
Input 1 (Watchdog Enable)	4	Eingang 1 (24 V _{DC}), Freigabe des Watchdogs bei negativer Flanke
23	5	Relaiskontakt 23 (Schließer 1)
24	6	Relaiskontakt 24 (Schließer 2)
0 V	7	0 V Powerkontakt
Input 2	8	Eingang 2 (24 V _{DC})

3.4 Anwendungsbeispiel

▲ GEFAHR

Kein Personenschutz!

Die KL2692 darf nur für die Zyklusüberwachung zur Verhinderung von Maschinenschäden eingesetzt werden!

Jegliche Verwendung der KL2692 für die Zyklusüberwachung zum Personenschutz ist verboten!

Die KL2692 darf nicht für Schutzfunktionen wie z.B. Not-Aus, Zugangsschutz, Schutzraumüberwachung, Roboter-Bereichsüberwachung, Pressen-Sicherheitsventil usw. verwendet werden!

Abschaltung der Spannung für die Powerkontakte

Über die Schließer der KL2692 wird ein Schütz angesteuert, das die Versorgungsspannung (24 V) für die Powerkontakte schaltet.

Abb. 13: Anwendungsbeispiel

Funktion

- Wenn der Watchdog getriggert wird kann über den Taster S1 (fallende Flanke) die Überwachungsfreigabe erfolgen, die Relais der KL2692 schalten ein und das Schütz K1 schaltet die Versorgungsspannung (24 V) für die Powerkontakte ein.
- 2. Wenn der Watchdog für die mit Register <u>R35 [▶ 31]</u> festgelegte Watchdog-Zeit nicht getriggert wird, fallen die Relais der KL2692 ab und das Schütz K1 schaltet die Versorgungsspannung der Powerkontakte aus.
- 3. Wenn nun der Watchdog wieder getriggert wird, muss über den Taster S1 eine erneute Überwachungsfreigabe erfolgen, damit die Relais der KL2692 wieder einschalten!

4. Mit den Öffnern S2 und S3 kann das Schütz K1 und somit die Versorgungsspannung für die Powerkontakte manuell abgeschaltet werden.

3.5 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

4 Konfigurations-Software KS2000

4.1 KS2000 - Einführung

Die Konfigurations-Software <u>KS2000</u> ermöglicht die Projektierung, Inbetriebnahme und Parametrierung von Feldbuskopplern und den dazugehörigen Busklemmen sowie der Feldbus Box Module. Die Verbindung zwischen Feldbuskoppler / Feldbus Box und PC wird über ein serielles Konfigurationskabel oder über den Feldbus hergestellt.

Abb. 14: Konfigurations-Software KS2000

Projektierung

Sie können mit der Konfigurations-Software KS2000 die Feldbusstationen offline projektieren, das heißt vor der Inbetriebnahme den Aufbau der Feldbusstation mit sämtlichen Einstellungen der Buskoppler und Busklemmen bzw. der Feldbus Box Module vorbereiten. Diese Konfiguration kann später in der Inbetriebnahmephase per Download an die Feldbusstation übertragen werden. Zur Dokumentation wird Ihnen der Aufbau der Feldbusstation, eine Stückliste der verwendeten Feldbus-Komponenten, eine Liste der von Ihnen geänderten Parameter etc. aufbereitet. Bereits existierende Feldbusstationen stehen nach einem Upload zur weiteren Bearbeitung zur Verfügung.

Parametrierung

KS2000 bietet auf einfache Art den Zugriff auf die Parameter einer Feldbusstation: Für sämtliche Buskoppler und alle intelligenten Busklemmen sowie Feldbus Box Module stehen spezifische Dialoge zur Verfügung, mit deren Hilfe die Einstellungen leicht modifiziert werden können. Alternativ haben Sie vollen Zugriff auf sämtliche internen Register. Die Bedeutung der Register entnehmen Sie bitte der Registerbeschreibung.

Inbetriebnahme

KS2000 erleichtert die Inbetriebnahme von Maschinenteilen bzw. deren Feldbusstationen: Projektierte Einstellungen können per Download auf die Feldbus-Module übertragen werden. Nach dem *Login* auf die Feldbusstation besteht die Möglichkeit, Einstellungen an Koppler, Klemmen und Feldbus Box Modulen direkt *online* vorzunehmen. Dazu stehen die gleichen Dialoge und der Registerzugriff wie in der Projektierungsphase zur Verfügung.

KS2000 bietet den Zugriff auf die Prozessabbilder von Buskoppler und Feldbus Box:

- Sie können per Monitoring das Ein- und Ausgangsabbild beobachten.
- Zur Inbetriebnahme der Ausgangsmodule können im Ausgangsprozessabbild Werte vorgegeben werden.

Sämtliche Möglichkeiten des Online-Modes können parallel zum eigentlichen Feldbus-Betrieb der Feldbusstation vorgenommen werden. Das Feldbus-Protokoll hat dabei natürlich stets die höhere Priorität.

4.2 Parametrierung mit KS2000

Verbinden Sie Konfigurationsschnittstelle Ihres Feldbuskopplers über das Konfigurationskabel mit der seriellen Schnittstelle Ihres PCs und starten Sie die Konfigurations-Software *KS2000*.

Klicken Sie auf den Button *Login*. Die Konfigurations-Software lädt nun die Informationen der angeschlossenen Feldbusstation. Im dargestellten Beispiel ist dies

- ein Buskoppler für Ethernet BK9000
- eine digitale Eingangsklemme KL1xx2
- eine Watchdogklemme KL2692
- eine Bus-Endklemme KL9010

K52000 - [StationGraph]				
🎚 Projekt Online Optionen Hilfe				_ 8 ×
dele 🔳 🌶 🦸	8			
		Ethernet TCP/IP LINK ACT ERROR WDG VO RUN VO ERR UO ERR UO ERR		13 23 14 24 14 24 14 24 14 24 15 10 14 24 15 10 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 15 10 16 10 14 24 15 10 14 24 15 10 16 10 17 10 18 10 19 10 10 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 10
Check diagnostic data OK Welcome to KS2000 J				
Status		Online	30.06.2004	12:19

Abb. 15: Darstellung der Feldbusstation in KS2000

Das linke Fenster der KS2000 zeigt die Klemmen der Feldbusstation in einer Baumstruktur an. Das rechte Fenster der KS2000 zeigt die Klemmen der Feldbusstation grafisch an.

Klicken Sie nun in der Baumstruktur des linken Fensters auf das Plus-Zeichen vor der Klemme, deren Parameter sie verändern möchten (im Beispiel Position 2).

Abb. 16: KS2000 Baumzweig für Kanal 1 der KL2692

Für die KL2692 werden die Baumzweige Register, Einstellungen und ProcData angezeigt:

- <u>Register [> 25]</u> erlaubt den direkten Zugriff auf die Register der KL2692.
- Unter <u>Einstellungen [) 26]</u> finden Sie Dialogmasken zur Parametrierung der KL2692.

• <u>ProcData [) 26]</u> zeigt die Prozessdaten der KL2692.

4.3 Register

Unter *Register* können Sie direkt auf die Register der KL2692 zugreifen. Die Bedeutung der Register entnehmen Sie bitte der <u>Registerübersicht [▶ 30]</u>.

Beckhoff K52000		
🏭 Projekt Online Optionen Hilfe		
	7	
⊕ Pos1:KL1xx2-0000 (2 Kanal dig. Eingang)	Register	
🚊 🛛 Pos2: KL2692-0000 (1 Kanal intelligent)	Offset HEX UINT BIN	
🛱 Kanal 1	000 0x0000 0 0000 0000 0000 0000	
Register	001 0x0000 0 0000 0000 0000 0000	
Einstellungen	002 0x0000 0 0000 0000 0000 0000	
ProcData	003 0x0000 0 0000 0000 0000 0000	
	004 0x0000 0 0000 0000 0000 0000	
Pos 3: KL 9010-0000 (Endklemme)	005 0x0000 0 0000 0000 0000 0000	
	006 0x0000 0 0000 0000 0000 0000	
	007 0x0000 0 0000 0000 0000 0000	
	008 0x0884 2692 0000 1010 1000 0100	
	009 0x3141 12609 0011 0001 0100 0001	
	010 0x0118 280 0000 0001 0001 1000	
	011 0x0118 280 0000 0001 0001 1000	
	012 0x1818 6168 0001 1000 0001 1000	
	015 0x7F80 32640 0111 1111 1000 0000	
		I
		_ ,
		▼ <u>R</u> efresh
J		
Online		
Check diagnostic data OK		
Status	0nline 30.06.	2004 12:55 //.

Abb. 17: Registeransicht in KS2000

4.4 Einstellungen

Unter *Einstellungen* finden Sie die Dialogmaske zur Parametrierung der KL2692.

Pos.: 2	Kanal: 0	Firmware: Version 1 B	
Тур: КL2692-0000	(1 Kanal intelligent)		
Registerwerte			
Watchdog-Zeit:	4 <u>*</u> m	8	<u>U</u> bernehr
Minimale Ausschaltz	zeit: 50 🔺 m	8	<u>Abbrech</u>

Abb. 18: Einstellungen über KS2000

Watchdog-Zeit (R<u>35 [▶ 31]</u>)

Hier können Sie die Watchdog-Zeit einstellen (default: 4 ms). Innerhalb der Watchdog-Zeit muss auf dem Toggle Bit des Control-Bytes (<u>CB.0 [▶ 28]</u>) ein Flankenwechsel erfolgen, damit die Ausgangsrelais nicht abfallen.

Minimale Ausschaltzeit (<u>R36 [▶ 31]</u>)

Hier können Sie die minimale Zeit einstellen (default: 50 ms) die die Relais nach einem Auslösen des Watchdogs ausgeschaltet bleiben, auch wenn nach erneuter Überwachungsfreigabe die darauf folgende Impulsfolge eher als richtig erkannt erkannt wird.

4.5 **Prozessdaten**

Unter *ProcData* werden das Status-Byte (Status), das Control-Byte (Ctrl) und die Prozessdaten (Data) in einer Baumstruktur dargestellt.

Fluzessualen						
Pos Typ	E-Adresse	Wert	Bitlänge	A-Adresse	Wert	Bitlänge
2 ■ KL2692-0000	0.0 2.0 (0×00 ೫°° 0×0000	8 16			
Ctrl				0.0	0×00	8
♦↓Data Out				2.0	0×0000	16

Abb. 19: ProcData

D 1.

Die Lesebrille markiert die Daten, die gerade im Feld Verlauf graphisch dargestellt werden.

Abb. 20: Feld Verlauf

Im Feld Wert wird der aktuelle Eingangswert numerisch dargestellt.

- <u>W</u> ert (Hex.) 0x00	
<u>E</u> instellungen	

Abb. 21: Feld Wert

Ausgangswerte könne sie durch Eingabe oder über den Fader verändern.

Wert (Hex.)	
T	
T	
<u>E</u> instellungen	

Abb. 22: Feld Wert

▲ VORSICHT

Gefahr für Personen, Umwelt oder Geräte!

Beachten Sie, das Verändern von Ausgangswerten (Forcen) direkten Einfluss auf Ihre Automatisierungsanwendung haben kann.

Nehmen Sie nur Veränderungen an den Ausgangswerten vor, wenn Sie sich sicher sind, das Ihr Anlagenzustand dies erlaubt und keine Gefährdung von Mensch oder Maschine besteht!

Nach Drücken der Schaltfläche *Einstellungen* können Sie die numerische Darstellungsform auf hexadezimal, dezimal oder binär einstellen.

Einstellungen	×
Anzeige He <u>x</u> adezimal <u>D</u> ezimal <u>B</u> inär	OK Abbrechen

Abb. 23: Einstellungen

5 Zugriff aus dem Anwenderprogramm

5.1 Prozessabbild

Die KL2692 stellt sich im Prozessabbild mit mindestens 3 Byte Ein- und 3 Byte Ausgangsdaten dar. Diese sind wie folgt aufgeteilt:

Byte-0ffset (ohne Word-Ali- gnment)	Byte-0ffset (mit Word-Ali- gnment*)	Format	Eingangsdaten	Ausgangsdaten	
0	0	Byte	<u>SB [} 28]</u>	<u>CB [} 28]</u>	
1	2	Wort	DatalN	DataOUT	

*) Word-Alignment: Der Buskoppler legt Worte auf gerade Byte-Adressen

Legende

SB: Status-Byte CB: Control-Byte DataIN: Eingangswort DataOUT: Ausgangswort

Kein kompaktes Prozessabbild

Ein Betrieb der KL2692 mit kompaktem Prozessabbild (ohne Control- und Status-Bytes) ist nicht möglich, da Control- und Status-Bytes für einen sinnvollen Prozessdatenbetrieb der KL2692 erforderlich sind. Auch wenn Sie Ihren Buskoppler auf kompaktes Prozessabbild einstellen wird die KL2692 mit ihrem kompletten Prozessabbild dargestellt!

5.2 Control- und Status-Byte

Prozessdatenbetrieb

Control-Byte (bei Prozessdatenbetrieb)

Das Control-Byte (CB) befindet sich im <u>Ausgangsabbild [> 28]</u> und wird von der Steuerung zur Klemme übertragen.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	-	-	-	-	-	-	Toggle

Legende

Bit	Name	Beschi	Beschreibung			
CB7	RegAccess	0 _{bin}	Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)			
CB.6 bis CB.1	-	0 _{bin}	reserviert			
CB.0	Toggle	Toggle	Bit			

Status-Byte (bei Prozessdatenbetrieb)

Das Status-Byte (SB) befindet sich im <u>Eingangsabbild</u> [▶ <u>28]</u> und wird von der Klemme zur Steuerung übertragen.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	-	-	-	IN_2	IN_1	WDT_Run	Toggle_St

Legende

Bit	Name	Besc	Beschreibung				
SB.7	RegAccess	0 _{bin}	Quittung für Prozessdatenbetrieb				
SB.6 bis SB.4	-	0 _{bin}	_{bin} reserviert				
SB.3	IN_2	Statu	Status Eingang 2				
SB.2	IN_1	Statu	s Eingang 1				
SB.1	WDT_Run	0 _{bin}	Watchdog-Timer wird nicht getriggert. Die Ausgänge sind nicht gesetzt.				
		1 _{bin}	Watchdog-Timer ist aktiv und gelocked. Die Ausgänge sind gesetzt.				
SB.0	Toggle_St	Diese	Dieses Bit folgt dem Toggle-Bit im Control-Byte				

Registerkommunikation

Control-Byte (bei Registerkommunikation)

Das Control-Byte (CB) befindet sich im <u>Ausgangsabbild [> 28]</u> und wird von der Steuerung zur Klemme übertragen.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	R/W	Reg-Nr.					

Legende

Bit	Name	Besc	hreibung
CB.7	RegAccess	1 _{bin}	Registerkommunikation eingeschaltet
CB.6	R/W	0 _{bin}	Lesezugriff
		1 _{bin}	Schreibzugriff
CB.5 bis CB.0	Reg-Nr.	Regis	sternummer:
		Trage	en Sie hier die Nummer des <u>Registers [▶ 30]</u> ein, das Sie
		- mit	dem Eingangsdatenwort <u>DataIn [▶ 28]</u> lesen oder
		- mit	dem Ausgangsdatenwort <u>DataOut [▶ 28]</u> beschreiben wollen.

Status-Byte (bei Registerkommunikation)

Das Status-Byte (SB) befindet sich im <u>Eingangsabbild</u> [▶ <u>28]</u> und wird von der Klemme zur Steuerung übertragen.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	R/W	Reg-Nr.					

Legende

Bit	Name	Beschreibung	
SB.7	RegAccess	1 _{bin}	Quittung für Registerzugriff
SB.6	R	0 _{bin}	Lesezugriff
SB.5 bis SB.0	Reg-Nr.	Nummer des Registers, das gelesen oder beschrieben wurde.	

5.3 Registerübersicht

Alle Register können über die <u>Registerkommunikation [> 29]</u> ausgelesen oder beschrieben werden. Sie dienen zur Parametrierung der KL2692.

Register-Nr.	Kommentar	Default-Wert	:	R/W	Speicher
R0	reserviert	-	-	-	-
R5	reserviert	-	-	-	-
R6	Diagnose-Register (nicht benutzt)	0x0000	0 _{dez}	R	RAM
R7	Kommando-Register (nicht benutzt)	0x0000	0 _{dez}	R/W	RAM
<u>R8 [• 31]</u>	Klemmentyp	0x0A84	2692 _{dez}	R	ROM
<u>R9 [} 31]</u>	Firmware-Stand	z. B. 0x3141	z. B. 1A _{ASCII}	R	ROM
R10	Multiplex-Schieberegister	0x0118	280 _{dez}	R	ROM
R11	Signalkanäle	0x0118	280 _{dez}	R	ROM
R12	minimale Datenlänge	0x1818	6168 _{dez}	R	ROM
R13	Datenstruktur	0x0000	0 _{dez}	R	ROM
R14	reserviert	-	-	-	-
R15	Alignment-Register	variabel	variabel	R/W	RAM
<u>R16 [) 31]</u>	Hardware-Versionsnummer	z. B. 0x0000	z. B. 0 _{dez}	R/W	SEEPROM
R17	reserviert	-	-	-	-
		-	-	-	-
R30	reserviert	-	-	-	-
<u>R31 [• 31]</u>	Kodewort-Register	0x0000	0 _{dez}	R/W	RAM
<u>R32 [} 31]</u>	Feature-Register	0x0000	0 _{dez}	R/W	SEEPROM
R33	reserviert	-	-	-	-
R34	reserviert	-	-	-	-
<u>R35 [) 31]</u>	Watchdog-Zeit t _P	0x0004	4 _{dez}	-	SEEPROM
<u>R36 [▶ 31]</u>	Minimale Ausschaltzeit t _{Amin}	0x0064	100 _{dez}	-	SEEPROM
R37	reserviert	-	-	-	-
R63	reserviert	-	-	-	-

5.4 Registerbeschreibung

Alle Register können über die <u>Registerkommunikation</u> [▶ <u>29</u>] ausgelesen oder beschrieben werden. Sie dienen zur Parametrierung der KL2692.

R8: Klemmenbezeichnung

Im Register R8 steht die Bezeichnung der Klemme. KL2692: 0x0A84 (2692_{dez})

R9: Firmware-Stand

Im Register R9 steht in ASCII-Codierung der Firmware-Stand der Klemme, z.B. **0x3141 = '1A'**. Hierbei entspricht die **'0x31'** dem ASCII-Zeichen **'1'** und die **'0x41'** dem ASCII-Zeichen **'A'**. Dieser Wert kann nicht verändert werden.

R16: Hardware-Versionsnummer

Im Register R16 steht der Hardware-Stand der Klemme.

R31: Kodewort-Register

- Wenn Sie in die Anwender-Register Werte schreiben ohne zuvor das Anwender-Kodewort (0x1235) in das Kodewort-Register eingetragen zu haben, werden diese Werte von der Klemme nicht übernommen.
- Wenn Sie in die Anwender-Register Werte schreiben und haben zuvor das Anwender-Kodewort (0x1235) in das Kodewort-Register eingetragen, werden diese Werte in die RAM-Register und in die SEEPROM-Register gespeichert und bleiben somit bei einem Neustart der Klemme erhalten.

Das Kodewort wird bei einem Neustart der Klemme zurückgesetzt.

R32: Feature-Register

Das Feature-Register legt die Konfiguration der Klemme fest (in Vorbereitung).

R35: Watchdog-Zeit t_P

Damit der Watchdog nicht abfällt, muss ein Flankenwechsel innerhalb der Watchdog-Zeit erfolgen. Skalierung: 500 μ s / Bit Defaultwert: 8_{dez} (4 ms).

R36: Minimale Ausschaltzeit t_{Amin}

Minimale Zeit, die die Relais nach einem Auslösen des Watchdogs ausgeschaltet bleiben, auch wenn nach erneuter Überwachungsfreigabe die darauf folgende Impulsfolge eher als richtig erkannt erkannt wird. Skalierung: 500 µs / Bit Defaultwert: 100_{dez} (50 ms).

5.5 Beispiele für die Register-Kommunikation

Die Nummerierung der Bytes in den Beispielen entspricht der Darstellung ohne Word-Alignment.

5.5.1 Beispiel 1: Lesen des Firmware-Stands aus Register 9

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte
0x89 (1000 1001 _{bin})	0xXX	0xXX

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 nicht gesetzt bedeutet: lesen des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 00 1001_{bin} die Registernummer 9 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim Lesezugriff ohne Bedeutung. Will man ein Register verändern, so schreibt man in das Ausgangswort den gewünschten Wert hinein.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DataIN1, Low-Byte
0x89	0x33	0x41

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung den Wert des Control-Bytes zurück.
- Die Klemme liefert im Eingangsdatenwort (Byte 1 und Byte 2) den Firmware-Stand 0x3341 zurück. Dies ist als ASCII-Code zu interpretieren:
 - ASCII-Code 0x33 steht f
 ür die Ziffer 3
 - ASCII-Code 0x41 steht für den Buchstaben A Die Firmware-Version lautet also 3A.

5.5.2 Beispiel 2: Beschreiben eines Anwender-Registers

Code-Wort

Im normalen Betrieb sind bis auf das Register 31, alle Anwender-Register schreibgeschützt. Um diesen Schreibschutz aufzuheben, müssen Sie das Code-Wort (0x1235) in Register 31 schreiben. Das Schreiben eines Wertes ungleich 0x1235 in Register 31 aktiviert den Schreibschutz wieder. Beachten Sie, dass Änderungen an einigen Registern erst nach einem Neustart (Power-Off/Power-ON) der Klemme übernommen werden.

I. Schreiben des Code-Worts (0x1235) in Register 31

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte
0xDF (1101 1111 _{bin})	0x12	0x35

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 gesetzt bedeutet: schreiben des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 01 1111_{bin} die Registernummer 31 an.

• Das Ausgangsdatenwort (Byte 1 und Byte 2) enthält das Code-Wort (0x1235) um den Schreibschutz zu deaktivieren.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DatalN1, High-Byte	Byte 2: DataIN1, Low-Byte
0x9F (1001 1111 _{bin})	0xXX	0xXX

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung einen Wert zurück der sich nur in Bit 0.6 vom Wert des Control-Bytes unterscheidet.
- Das Eingangsdatenwort (Byte 1 und Byte 2) ist nach dem Schreibzugriff ohne Bedeutung. Eventuell noch angezeigte Werte sind nicht gültig!

II. Lesen des Register 31 (gesetztes Code-Wort überprüfen)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte
0x9F (1001 1111 _{bin})	0xXX	0xXX

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 nicht gesetzt bedeutet: lesen des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 01 1111_{bin} die Registernummer 31 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim Lesezugriff ohne Bedeutung.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DatalN1, High-Byte	Byte 2: DatalN1, Low-Byte
0x9F (1001 1111 _{bin})	0x12	0x35

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung den Wert des Control-Bytes zurück.
- Die Klemme liefert im Eingangsdatenwort (Byte 1 und Byte 2) den aktuellen Wert des Code-Wort-Registers zurück.

III. Schreiben des Register 32 (Inhalt des Feature-Registers ändern)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DatalN1, Low-Byte
0xE0 (1110 0000 _{bin})	0x00	0x02

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 gesetzt bedeutet: schreiben des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 10 0000_{bin} die Registernummer 32 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) enthält den neuen Wert für das Feature-Register.

Beachten Sie die Registerbeschreibung!

Der hier angegebene Wert 0x0002 ist nur ein Beispiel!

Die Bits des Feature-Registers verändern die Eigenschaften der Klemme und haben je nach Klemmen-Typ unterschiedliche Bedeutung. Informieren Sie sich in der Beschreibung des Feature-Registers ihrer Klemme (Kapitel *Registerbeschreibung*) über die Bedeutung der einzelnen Bits, bevor Sie die Werte verändern.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DatalN1, High-Byte	Byte 2: DatalN1, Low-Byte
0xA0 (1010 0000 _{bin})	0xXX	0xXX

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung einen Wert zurück der sich nur in Bit 0.6 vom Wert des Control-Bytes unterscheidet.
- Das Eingangsdatenwort (Byte 1 und Byte 2) ist nach dem Schreibzugriff ohne Bedeutung. Eventuell noch angezeigte Werte sind nicht gültig!

IV. Lesen des Register 32 (geändertes Feature-Register überprüfen)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte
0xA0 (1010 0000 _{bin})	0xXX	0xXX

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 nicht gesetzt bedeutet: lesen des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 10 0000_{bin} die Registernummer 32 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim Lesezugriff ohne Bedeutung.

Eingangsdaten (Antwort der Busklemmen)

Byte 0: Status-Byte	Byte 1: DatalN1, High-Byte	Byte 2: DatalN1, Low-Byte
0xA0 (1010 0000 _{bin})	0x00	0x02

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung den Wert des Control-Bytes zurück.
- Die Klemme liefert im Eingangsdatenwort (Byte 1 und Byte 2) den aktuellen Wert des Feature-Registers zurück.

V. Schreiben des Register 31 (Code-Wort zurücksetzen)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte
0xDF (1101 1111 _{bin})	0x00	0x00

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 gesetzt bedeutet: schreiben des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 01 1111_{bin} die Registernummer 31 an.

Das Ausgangsdatenwort (Byte 1 und Byte 2) enthält 0x0000 um den Schreibschutz wieder zu aktivieren.

Eingangsdaten (Antwort der Busklemmen)

Byte 0: Status-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DataIN1, Low-Byte
0x9F (1001 1111 _{bin})	0xXX	0xXX

- Die Klemme liefert im Status-Byte als Quittung einen Wert zurück der sich nur in Bit 0.6 vom Wert des Control-Bytes unterscheidet.
- Das Eingangsdatenwort (Byte 1 und Byte 2) ist nach dem Schreibzugriff ohne Bedeutung. Eventuell noch angezeigte Werte sind nicht gültig!

6 Anhang

6.1 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den <u>lokalen Support und</u> <u>Service</u> zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: <u>https://www.beckhoff.de</u>

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline:	+49(0)5246 963 157
Fax:	+49(0)5246 963 9157
E-Mail:	support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- Hotline-Service

Hotline:	+49(0)5246 963 460
Fax:	+49(0)5246 963 479
E-Mail:	service@beckhoff.com

Beckhoff Firmenzentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon:	+49(0)5246 963 0
Fax:	+49(0)5246 963 198
E-Mail:	info@beckhoff.com
Internet:	https://www.beckhoff.de

Abbildungsverzeichnis

Abb. 1	KL2692	8
Abb. 2	Signal-Abfolge	10
Abb. 3	KL2692 - LED-Anzeigen	11
Abb. 4	Federkontakte der Beckhoff I/O-Komponenten	12
Abb. 5	Montage auf Tragschiene	13
Abb. 6	Demontage von Tragschiene	14
Abb. 7	Linksseitiger Powerkontakt	15
Abb. 8	Standardverdrahtung	16
Abb. 9	Steckbare Verdrahtung	16
Abb. 10	High-Density-Klemmen	17
Abb. 11	Anschluss einer Leitung an eine Klemmstelle	18
Abb. 12	KL2692 - Anschlussbelegung	19
Abb. 13	Anwendungsbeispiel	20
Abb. 14	Konfigurations-Software KS2000	22
Abb. 15	Darstellung der Feldbusstation in KS2000	24
Abb. 16	KS2000 Baumzweig für Kanal 1 der KL2692	24
Abb. 17	Registeransicht in KS2000	25
Abb. 18	Einstellungen über KS2000	26
Abb. 19	ProcData	26
Abb. 20	Feld Verlauf	27
Abb. 21	Feld Wert	27
Abb. 22	Feld Wert	27
Abb. 23	Einstellungen	27

Mehr Informationen: www.beckhoff.de/KL2692

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.de www.beckhoff.de

