BECKHOFF New Automation Technology

Dokumentation | DE

KL6224 IO-Link-Masterklemme

30.08.2023 | Version: 2.2.0

Inhaltsverzeichnis

1	Vorw	orwort			
	1.1	Hinweise zur Dokumentation		5	
	1.2	Sicherheitshinweise		6	
	1.3	Ausgabestände der Dokumentation		7	
2	Prod	oduktübersicht		8	
	2.1	Einführung		8	
	2.2	Technische Daten		9	
	2.3	IO-Link - Grundlagen		0	
3	Mont	ntage und Verdrahtung		2	
	3.1	Hinweise zum ESD-Schutz		2	
	3.2	2 Tragschienenmontage			
	3.3	Entsorgung	1	5	
	3.4	Montagevorschriften für erhöhte mechanische Belastbark	eit 1	6	
	3.5	Anschlusstechnik	1	7	
	3.6	Anschlussbelegung	1	9	
	3.7	LED-Anzeigen		0	
4	Konf	nfigurations-Software KS2000		1	
	4.1	KS2000 - Einführung		1	
	4.2	2 Konfiguration der KL6224			
	4.3	Register		5	
	4.4	Einstellungen		6	
5	Prog	ogrammierung		3	
	5.1	Datenstrukturen		3	
		5.1.1 Prozessabbild		3	
		5.1.2 Control- und Status-Byte		7	
		5.1.3 Registerübersicht	3	8	
		5.1.4 Registerbeschreibung		9	
		5.1.5 Register-Pages für IO-Link-Parameter		0	
	5.2	Beispiele für die Register-Kommunikation		4	
		5.2.1 Beispiel 1: Lesen des Firmware-Stands aus Reg	jister 9 4	4	
		5.2.2 Beispiel 2: Beschreiben eines Anwender-Regist	ers 4	4	
	5.3	Zugriff auf IO-Link Parameter		7	
6	ን Anhang			0	
	6.1	Firmware-Stand der Buskoppler		0	
6.2 Beckhoff Identification Code (BIC)		Beckhoff Identification Code (BIC)		2	
	6.3	Support und Service		4	

BECKHOFF

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentlichte Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] und XPlanar[®] sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT[®] ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

A WARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.: Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.3 Ausgabestände der Dokumentation

Version	Kommentar		
2.2.0	Kapitel TwinCAT-Bibliotheken entfernt		
2.1.0	Kapitel Technische Daten aktualisiert		
	Kapitel Hinweise zum ESD-Schutz hinzugefügt		
	Kapitel Entsorgung hinzugefügt		
	Kapitel TwinCAT-Bibliotheken hinzugefügt		
	 Kapitel Beckhoff Identification Code (BIC) hinzugefügt 		
	Dokumentstruktur aktualisiert		
	Neue Titelseite		
2.0.0	Migration		
1.0.0	Produktübersicht aktualisiert		
	Technische Daten aktualisiert		
	 Beschreibung der Konfigurations-Software KS2000 erweitert 		
	Registerbeschreibung aktualisiert		
0.5	Vorläufige Version		

Firm- und Hardware-Stände

Dokumentation	(L6224		
Version	Firmware	Hardware	
2.2.0	04	05	
2.1.0	04	05	
2.0.0	04	04	
1.0.0	03	02	
0.5	00	01	

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der Klemme aufgedruckten Seriennummer entnehmen.

Die IO-Link-Spezifikation 1.1 wird von der KL6224 ab Firmware-Version 02 unterstützt.

Syntax der Seriennummer

Aufbau der Seriennummer: WW YY FF HH

WW - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr

FF - Firmware-Stand

HH - Hardware-Stand

Beispiel mit Seriennummer 02 13 00 01:

02 - Produktionswoche 02

- 13 Produktionsjahr 2013
- 00 Firmware-Stand 00
- 01 Hardware-Stand 01

2 Produktübersicht

2.1 Einführung

Abb. 1: KL6224 - IO-Link-Masterklemme

Die IO-Link-Masterklemme KL6224 ermöglicht den Anschluss von bis zu vier IO-Link-Teilnehmern, den sogenannten IO-Link-Geräten. Dies können Aktoren, Sensoren oder Kombinationen aus beiden sein. Die Verbindung zwischen der Klemme und dem Teilnehmer erfolgt als Punkt-zu-Punkt-Verbindung.

IO-Link ist als intelligentes Bindeglied zwischen der Feldbusebene und dem Sensor angelegt, wobei Parametrierungsinformationen bidirektional über die IO-Link-Verbindung ausgetauscht werden können. Die Parametrierung der IO-Link-Geräte kann mittels der Konfigurations-Software KS2000 oder aus der SPS heraus über Registerkommunikation erfolgen.

In der Standardeinstellung arbeitet die KL6224 als vierkanalige Eingangsklemme (24 V_{DC}), die bei Bedarf mit angeschlossenen IO-Link-Geräten kommuniziert, sie parametriert und ggf. in der Betriebsart umstellt.

Die Integration der KL6224 in das HD-Gehäuse mit 16 Anschlusspunkten ermöglicht, dass jedes IO-Link-Gerät in 3-Leiteranschlusstechnik betrieben werden kann. Die Direktstecktechnik ermöglicht einen werkzeuglosen Aufbau.

2.2 Technische Daten

Technische Daten	KL6224
Technik	IO-Link
Anzahl Kanäle	4
IO-Link-Schnittstellen	4
Feldspannung	24 V _{DC} (über Powerkontakte)
Anschluss	3-Leiter, HD-Klemme
Übertragungsraten	4,8 kBaud, 38,4 kBaud und 230,4 kBaud
Leitungslänge zwischen IO-Link Master und Device	maximal 20 m
Spannungsversorgung	über K-Bus und Powerkontakte
Versorgungsstrom für Teilnehmer	500 mA je Teilnehmer
Stromaufnahme vom K-Bus	typisch 85 mA
Stromaufnahme aus den Powerkontakten	k. A.
Nennspannung	24 V _{DC} (-15 %/+20 %)
Potenzialtrennung	500 V (IO-Link / K-Bus)
Gewicht	ca. 60 g
Bitbreite im K-Bus	je nach Prozessabbild
Konfiguration	über Feldbus Parameterinterface, DP-V1 oder Buskoppler durch Konfigurations-Software KS2000
zulässige Umgebungstemperatur im Betrieb	0°C +55°C
zulässige Umgebungstemperatur bei Lagerung	-25°C +85°C
zulässige relative Feuchte	95%, keine Betauung
Montage [13]	auf 35 mm Tragschiene nach EN 60715
Erhöhte mechanische Belastbarkeit	ja, siehe <u>Montagevorschriften [▶ 16]</u> für Klemmen mit erhöhter mechanischer Belastbarkeit
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	beliebig
Zulassungen/Kennzeichnungen*	CE, UKCA, cULus, EAC

*) Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

2.3 IO-Link - Grundlagen

IO-Link stellt ein Kommunikationssystem zur Anbindung intelligenter Sensoren und Aktoren an ein Automatisierungssystem in der Norm IEC 61131-9 unter der Bezeichnung "Single-drop digital communication interface for small sensors and actuators" (SDCI) dar.

Sowohl die elektrischen Anschlussdaten als auch das Kommunikationsprotokoll sind standardisiert und in der <u>IO-Link Spec</u> zusammengefasst.

Spezifikation IO-Link

Die Entwicklung der KL6224 unterlag der IO-Link-Spezifikation 1.1. Zum Zeitpunkt der Erstellung dieser Dokumentation geht die IO-Link-Spezifikation in die IEC-Normung ein und wird als IEC 61131-9 in erweiterter Form übernommen. Dabei wird auch die neue Bezeichnung SDCI eingeführt. Beckhoff unterstützt als Teilnehmer in den entsprechenden Gremien die Entwicklung von IO-Link und bildet Spezifikationsänderungen in seinen Produkten ab.

Ein IO-Link-System besteht aus einem IO-Link-Master und einem oder mehreren IO-Link-Geräten, also Sensoren oder Aktoren. Der IO-Link-Master stellt die Schnittstelle zur überlagerten Steuerung zur Verfügung und steuert die Kommunikation mit den angeschlossenen IO-Link-Geräten. Die Beckhoff IO-Link-Masterklemme KL6224 besitzt vier IO-Link-Ports, an dem je ein IO-Link-Gerät angeschlossen werden kann. IO-Link stellt daher keinen Feldbus dar, sondern ist eine Peer-to-Peer Verbindung (siehe Abb. *Peer-to-Peer Kommunikation IO-Link*).

Abb. 2: Peer-to-Peer Kommunikation IO-Link

Die angeschlossenen IO-Link-Geräte besitzen individuelle Parameterinformationen in Form einer IO Device Description (IODD), die mit der Konfigurations-Software KS2000 eingestellt werden (siehe Kapitel KS2000 - Einstellungen [▶_26]).

Parameter-Datenaustausch

Ein intelligentes IO-Link-Gerät kann eine Parametrierung durch SPDU (Service Protocol Data Units) unterstützen. Diese azyklischen Servicedaten müssen von der SPS explizit angefragt oder, als solche gekennzeichnet, gesendet werden.

SPDU-Zugang

TwinCAT unterstützt aktuell nur den Zugriff über ADS.

Über den sogenannten SPDU-Index wird der entsprechende Parameter adressiert, verfügbar sind die folgenden Bereiche.

Index-Bereich	Bezeichnung
0x000x0F	System
0x100x1F	Identification
0x200x2F	Diagnostic
0x300x3F	Communication
0x400xFE	Prefered Idnex
0x01000x3FFF	Extended Index
0x40000xFFFF	n.n. (reserviert)

Die Nutzung und Implementierung dieser Bereiche obliegt dem Sensor/Aktor-Hersteller.

Zur Verdeutlichung seien hier nur einige mögliche Indexe mit Bezeichnung aufgeführt, siehe dazu die Dokumentation des verwendeten IO-Link-Geräts.

Index	Name
0x0010	Vendor Name
0x0011	Vendor Text
0x0012	Product Name
0x0013	Product ID
0x0015	Serial Number
0x0016	Hardware Revision
0x0017	Firmware Revision

3 Montage und Verdrahtung

3.1 Hinweise zum ESD-Schutz

HINWEIS

Zerstörung der Geräte durch elektrostatische Aufladung möglich!

Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

- Sie müssen beim Umgang mit den Komponenten elektrostatisch entladen sein; vermeiden Sie außerdem die Federkontakte (siehe Abb.) direkt zu berühren.
- Vermeiden Sie den Kontakt mit hoch isolierenden Stoffen (Kunstfaser, Kunststofffolien etc.)
- Beim Umgang mit den Komponenten ist auf gute Erdung der Umgebung zu achten (Arbeitsplatz, Verpackung und Personen)
- Jede Busstation muss auf der rechten Seite mit der Endklemme KL9010 abgeschlossen werden, um Schutzart und ESD-Schutz sicher zu stellen.

Abb. 3: Federkontakte der Beckhoff I/O-Komponenten

3.2 Tragschienenmontage

WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Das Busklemmen-System ist für die Montage in einem Schaltschrank oder Klemmkasten vorgesehen.

Montage

Abb. 4: Montage auf Tragschiene

Die Buskoppler und Busklemmen werden durch leichten Druck auf handelsübliche 35 mm Tragschienen (Hutschienen nach EN 60715) aufgerastet:

1. Stecken Sie zuerst den Feldbuskoppler auf die Tragschiene.

2. Auf der rechten Seite des Feldbuskopplers werden nun die Busklemmen angereiht. Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet. Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben ohne das Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

Demontage

Abb. 5: Demontage von Tragschiene

Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:

- 1. Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
- 2. Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen sie aus dem Busklemmenblock heraus.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des K-Bus/E-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmen auf dem Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen
Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (KL91xx, KL92xx bzw. EL91xx, EL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

PE-Powerkontakt

Der Powerkontakt mit der Bezeichnung PE kann als Schutzerde eingesetzt werden. Der Kontakt ist aus Sicherheitsgründen beim Zusammenstecken voreilend und kann Kurzschlussströme bis 125 A ableiten.

BECKHOFF

Abb. 6: Linksseitiger Powerkontakt

HINWEIS

Beschädigung des Gerätes möglich

Beachten Sie, dass aus EMV-Gründen die PE-Kontakte kapazitiv mit der Tragschiene verbunden sind. Das kann bei der Isolationsprüfung zu falschen Ergebnissen und auch zur Beschädigung der Klemme führen (z. B. Durchschlag zur PE-Leitung bei der Isolationsprüfung eines Verbrauchers mit 230 V Nennspannung). Klemmen Sie zur Isolationsprüfung die PE- Zuleitung am Buskoppler bzw. der Einspeiseklemme ab! Um weitere Einspeisestellen für die Prüfung zu entkoppeln, können Sie diese Einspeiseklemmen entriegeln und mindestens 10 mm aus dem Verbund der übrigen Klemmen herausziehen.

WARNUNG

Verletzungsgefahr durch Stromschlag!

Der PE-Powerkontakt darf nicht für andere Potentiale verwendet werden!

3.3 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

3.4 Montagevorschriften für erhöhte mechanische Belastbarkeit

A WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Zusätzliche Prüfungen

Die Klemmen sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung	
Vibration	10 Frequenzdurchläufe, in 3-Achsen	
6 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude		
	60,1 Hz < f < 500 Hz Beschleunigung 5 g , konstante Amplitude	
Schocken	1000 Schocks je Richtung, in 3-Achsen	
	25 <i>g</i> , 6 ms	

Zusätzliche Montagevorschriften

Für die Klemmen mit erhöhter mechanischer Belastbarkeit gelten folgende zusätzliche Montagevorschriften:

- Die erhöhte mechanische Belastbarkeit gilt für alle zulässigen Einbaulagen
- Es ist eine Tragschiene nach EN 60715 TH35-15 zu verwenden
- Der Klemmenstrang ist auf beiden Seiten der Tragschiene durch eine mechanische Befestigung, z.B. mittels einer Erdungsklemme oder verstärkten Endklammer zu fixieren
- Die maximale Gesamtausdehnung des Klemmenstrangs (ohne Koppler) beträgt: 64 Klemmen mit 12 mm oder 32 Klemmen mit 24 mm Einbaubreite
- Bei der Abkantung und Befestigung der Tragschiene ist darauf zu achten, dass keine Verformung und Verdrehung der Tragschiene auftritt, weiterhin ist kein Quetschen und Verbiegen der Tragschiene zulässig
- Die Befestigungspunkte der Tragschiene sind in einem Abstand vom 5 cm zu setzen
- Zur Befestigung der Tragschiene sind Senkkopfschrauben zu verwenden
- Die freie Leiterlänge zwischen Zugentlastung und Leiteranschluss ist möglichst kurz zu halten; der Abstand zum Kabelkanal ist mit ca.10 cm zu einhalten

3.5 Anschlusstechnik

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Übersicht

Mit verschiedenen Anschlussoptionen bietet das Busklemmensystem eine optimale Anpassung an die Anwendung:

- Die Klemmen der Serien ELxxxx und KLxxxx mit Standardverdrahtung enthalten Elektronik und Anschlussebene in einem Gehäuse.
- Die Klemmen der Serien ESxxxx und KSxxxx haben eine steckbare Anschlussebene und ermöglichen somit beim Austausch die stehende Verdrahtung.
- Die High-Density-Klemmen (HD-Klemmen) enthalten Elektronik und Anschlussebene in einem Gehäuse und haben eine erhöhte Packungsdichte.

Standardverdrahtung (ELxxxx / KLxxxx)

Abb. 7: Standardverdrahtung

Die Klemmen der Serien ELxxxx und KLxxxx sind seit Jahren bewährt und integrieren die schraublose Federkrafttechnik zur schnellen und einfachen Montage.

Steckbare Verdrahtung (ESxxxx / KSxxxx)

Abb. 8: Steckbare Verdrahtung

Die Klemmen der Serien ESxxxx und KSxxxx enthalten eine steckbare Anschlussebene.

Montage und Verdrahtung werden wie bei den Serien ELxxxx und KLxxxx durchgeführt.

Im Servicefall erlaubt die steckbare Anschlussebene, die gesamte Verdrahtung als einen Stecker von der Gehäuseoberseite abzuziehen.

Das Unterteil kann, über das Betätigen der Entriegelungslasche, aus dem Klemmenblock herausgezogen werden.

Die auszutauschende Komponente wird hineingeschoben und der Stecker mit der stehenden Verdrahtung wieder aufgesteckt. Dadurch verringert sich die Montagezeit und ein Verwechseln der Anschlussdrähte ist ausgeschlossen.

Die gewohnten Maße der Klemme ändern sich durch den Stecker nur geringfügig. Der Stecker trägt ungefähr 3 mm auf; dabei bleibt die maximale Höhe der Klemme unverändert.

Eine Lasche für die Zugentlastung des Kabels stellt in vielen Anwendungen eine deutliche Vereinfachung der Montage dar und verhindert ein Verheddern der einzelnen Anschlussdrähte bei gezogenem Stecker.

Leiterquerschnitte von 0,08 mm² bis 2,5 mm² können weiter in der bewährten Federkrafttechnik verwendet werden.

Übersicht und Systematik in den Produktbezeichnungen der Serien ESxxxx und KSxxxx werden wie von den Serien ELxxxx und KLxxxx bekannt weitergeführt.

High-Density-Klemmen (HD-Klemmen)

Abb. 9: High-Density-Klemmen

Die Klemmen dieser Baureihe mit 16 Klemmstellen zeichnen sich durch eine besonders kompakte Bauform aus, da die Packungsdichte auf 12 mm doppelt so hoch ist wie die der Standard-Busklemmen. Massive und mit einer Aderendhülse versehene Leiter können ohne Werkzeug direkt in die Federklemmstelle gesteckt werden.

1

Verdrahtung HD-Klemmen

Die High-Density-Klemmen der Serien ELx8xx und KLx8xx unterstützen keine steckbare Verdrahtung.

Ultraschall-litzenverdichtete Leiter

Ultraschall-litzenverdichtete Leiter

An die Standard- und High-Density-Klemmen können auch ultraschall-litzenverdichtete (ultraschallverschweißte) Leiter angeschlossen werden. Beachten Sie die Tabellen zum Leitungsquerschnitt!

3.6 Anschlussbelegung

Abb. 10: KL6224 - Anschlussbelegung

Anschlussbelegung

Klemmstelle		Beschreibung
Bezeichnung	Nr.	
Input 1	1	Eingang 1
+ 24 V	2	+ 24 V
Input 2	3	Eingang 2
+ 24 V	4	+ 24 V
Input 3	5	Eingang 3
+ 24 V	6	+ 24 V
Input 4	7	Eingang 4
+ 24 V	8	+ 24 V
+ 24 V	9	+ 24 V
0 V	10	0 V
+ 24 V	11	+ 24 V
0 V	12	0 V
+ 24 V	13	+ 24 V
0 V	14	0 V
+ 24 V	15	+ 24 V
0 V	16	0 V

3.7 LED-Anzeigen

Abb. 11: KL6224 - LED-Anzeigen

LED-Anzeigen

LED	Farbe	Bedeutung		
RUN grün Diese LEDs geben den Betriebszustand der Klemme wied			den Betriebszustand der Klemme wieder:	
		aus	keine Datenübertragung auf dem K-Bus	
		blinkt Datenübertragung auf dem K-Bus		
Status Ch. 1 - 4 grün an / aus Zustand der out)		an / aus	Zustand der Signalleitung (bei Konfiguration als STD in / out)	
		2 x kurz blinken	IO-Link Kommunikation wird aufgebaut	
		dauerhaft blinkend	IO-Link Kommunikation aufgebaut und in Funktion	

4 Konfigurations-Software KS2000

4.1 KS2000 - Einführung

Die Konfigurations-Software <u>KS2000</u> ermöglicht die Projektierung, Inbetriebnahme und Parametrierung von Feldbuskopplern und den dazugehörigen Busklemmen sowie der Feldbus Box Module. Die Verbindung zwischen Feldbuskoppler / Feldbus Box und PC wird über ein serielles Konfigurationskabel oder über den Feldbus hergestellt.

Abb. 12: Konfigurations-Software KS2000

Projektierung

Sie können mit der Konfigurations-Software KS2000 die Feldbusstationen offline projektieren, das heißt vor der Inbetriebnahme den Aufbau der Feldbusstation mit sämtlichen Einstellungen der Buskoppler und Busklemmen bzw. der Feldbus Box Module vorbereiten. Diese Konfiguration kann später in der Inbetriebnahmephase per Download an die Feldbusstation übertragen werden. Zur Dokumentation wird Ihnen der Aufbau der Feldbusstation, eine Stückliste der verwendeten Feldbus-Komponenten, eine Liste der von Ihnen geänderten Parameter etc. aufbereitet. Bereits existierende Feldbusstationen stehen nach einem Upload zur weiteren Bearbeitung zur Verfügung.

Parametrierung

KS2000 bietet auf einfache Art den Zugriff auf die Parameter einer Feldbusstation: Für sämtliche Buskoppler und alle intelligenten Busklemmen sowie Feldbus Box Module stehen spezifische Dialoge zur Verfügung, mit deren Hilfe die Einstellungen leicht modifiziert werden können. Alternativ haben Sie vollen Zugriff auf sämtliche internen Register. Die Bedeutung der Register entnehmen Sie bitte der Registerbeschreibung.

Inbetriebnahme

KS2000 erleichtert die Inbetriebnahme von Maschinenteilen bzw. deren Feldbusstationen: Projektierte Einstellungen können per Download auf die Feldbus-Module übertragen werden. Nach dem *Login* auf die Feldbusstation besteht die Möglichkeit, Einstellungen an Koppler, Klemmen und Feldbus Box Modulen direkt *online* vorzunehmen. Dazu stehen die gleichen Dialoge und der Registerzugriff wie in der Projektierungsphase zur Verfügung.

KS2000 bietet den Zugriff auf die Prozessabbilder von Buskoppler und Feldbus Box:

- Sie können per Monitoring das Ein- und Ausgangsabbild beobachten.
- Zur Inbetriebnahme der Ausgangsmodule können im Ausgangsprozessabbild Werte vorgegeben werden.

Sämtliche Möglichkeiten des Online-Modes können parallel zum eigentlichen Feldbus-Betrieb der Feldbusstation vorgenommen werden. Das Feldbus-Protokoll hat dabei natürlich stets die höhere Priorität.

4.2 Konfiguration der KL6224

Verbinden Sie Konfigurationsschnittstelle Ihres Feldbuskopplers über das Konfigurationskabel mit der seriellen Schnittstelle Ihres PCs und starten Sie die Konfigurations-Software *KS2000*.

Klicken Sie auf den Button *Login*. Die Konfigurations-Software lädt nun die Informationen der angeschlossenen Feldbusstation. Im dargestellten Beispiel ist dies

- ein Ethernet-Koppler BK9000
- eine digitale Eingangsklemme KL1xx2
- eine IO-Link-Klemme KL6224
- eine Bus-Endklemme KL9010

Abb. 13: Darstellung der Feldbusstation in KS2000

Das linke Fenster der KS2000 zeigt die Klemmen der Feldbusstation in einer Baumstruktur an. Das rechte Fenster der KS2000 zeigt die Klemmen der Feldbusstation grafisch an.

Klicken Sie nun in der Baumstruktur des linken Fensters auf das Plus-Zeichen vor der Klemme, deren Parameter sie verändern möchten (Im Beispiel Position 1).

Abb. 14: KS2000-Baumzweige für Kanal 1 der KL6224

Für die KL6224 werden die Baumzweige Register, Einstellungen und ProcData angezeigt:

- <u>Register [) 25]</u> erlaubt den direkten Zugriff auf die Register der KL6224.
- Unter Einstellungen [) 26] finden Sie Dialogmasken zur Parametrierung der KL6224.
- ProcData zeigt die Prozessdaten der KL6224.

4.3 Register

Unter *Register* können Sie direkt auf die Register der KL6224 zugreifen. Die Bedeutung der Register entnehmen Sie bitte der <u>Registerübersicht [> 38]</u>.

K52000		_ 🗆 🗙				
Projekt Online Optionen Hilfe						
	7					
Pos 0: BK9000-0000 (BK9000) Pos 1: KL1xx2-0000 (2 Kanal dig. Eingang) Pos 2: KL6224-0000 (1 Kanal Kommunikation) Kanal 1 Fegister Finstellungen ProcData Pos 3: KL9010-0000 (Endklemme)	Diffset HEX UINT BIN Description 000 0x0000 0000 0000 0000 0000 001 0x0000 0000 0000 0000 0000 001 0x0000 0000 0000 0000 0000 002 0x0000 0000 0000 0000 0000 003 0x0000 0000 0000 0000 0000 005 0x0000 0000 0000 0000 0000 006 0x0000 0000 0000 0000 0000 007 0x0000 0000 0000 0000 0000 008 0x1850 6224 0001 10000 0000 009 0x0100 256 0000 0010 0000 010 0x0160 352 0000 0011 0000 011 0x0001 1 0000 0000 0000 013 0x0000 0000 <t< td=""><td><u>E</u>xit <u>B</u>efresh</td></t<>	<u>E</u> xit <u>B</u> efresh				
Online						
Check diagnostic data OK Resume ohne Fehler						
Status	Online 14.01.2013 09:10	0 //.				

Abb. 15: Register Ansicht in KS2000

Der Screenshot zeigt die Register der KL6224.

4.4 Einstellungen

Starten Sie die Konfigurations-Software KS2000.

Beckhoff KS	2000			_ 🗆 🗵
💽 Projekt Onlir	ne Optionen Hil	fe		_ 8 ×
		۶		۱
Welcome to KS20	00 !			
Status	OnlineStatus	18.03.	2014	18:11 //

Abb. 16: KS2000 - Start der Konfigurations-Software

Kommunikationskanal

Die Kommunikation zwischen KS2000 und der KL6224 kenn entweder über den Feldbus (**via ADS**) oder über ein serielles Kabel (**via COM**-Schnittstelle) erfolgen.

Klicken Sie auf Optionen/Kommunikationskanal um den Kommunikationskanal zu wählen.

Abb. 17: KS2000 - Auswahl des Kommunikationskanals

Einloggen

Klicken Sie auf die Schaltfläche Login. ៉

Die Feldbusstation wird als Baumstruktur angezeigt.

Abb. 18: KS2000 - Anzeige der Feldbusstation

Einfügen der IO-Link-Geräte

Es gibt drei Möglichkeiten ein IO-Link-Gerät einzufügen:

- 1. <u>Automatisches Scannen [> 27]</u> der IO-Link-Ports, Schaltfläche [Scan devices]
- 2. <u>Manuelles Einfügen [> 28]</u> über Katalog, Schaltfläche [Catalog]
- 3. Importieren der Gerätebeschreibung [> 30], Schaltfläche [Import Device Description]

General	General	
- Settings	Port1: 0-Link Device	Catalog
Port2	Port2: 0-Link Device	Catalog
- Settings Parameter	Port3: 0-Link Device	Catalog
⊡- Port3	Port4: 0-Link Device	Catalog
Parameter	Import Douise Description	
Settings		
· Parameter	K-Bus Settings	
	C Optimized Mode	
	🔲 Use fix 14 Byte K-Bus	
	V 1,1,0,3	ð IO-Link

Abb. 19: Einfügen der IO-Link-Geräte

Automatisches Scannen der IO-Link-Ports

Schließen Sie den IO-Link-Sensor an die KL6224 an.

Schalten Sie den Buskoppler mit der KL6224 ein.

Klicken Sie auf die Schaltfläche *Login* im um sich mit der Feldbusstation zu verbinden und das geänderte Prozessabbild der KL6224 einzulesen.

Klicken Sie im Dialog General auf die Schaltfläche [Scan devices].

BECKHOFF

General	General	
Settings	Port1: 10-Link Device	Catalog
⊡- Port2	Port2: 10-Link Device	Catalog
Parameter	Port3: IO-Link Device	Catalog
Settings	Port4: IO-Link Device	Catalog
Parameter Port4	Import Device Description Scan Devices	
Parameter	K-Bus Settings	
	C Optimized Mode	
	Use hx 14 Byte K-Bus	
	V 1,1,0,3	IO-Link

Abb. 20: Automatisches Scannen der IO-Link-Ports

Communication Mode Zum Scannen darf der Communication Mode nicht auf Communication stehen (Port1/Settings)!

General → Port1 → Settings → Parameter → Port2 → Port3 → Port4	Settings Information DeviceDescription: VendorID: IO-Link Revision: V 1.0	DeviceID: 0x000000
	Start-up checks Check VendorID Check DeviceID	Cycletime Master Cycletime in ms 2.3 set
	Communication mode communication StdDigIn communication Advanced	Error Reaction Set Input Data to 0

Abb. 21: Anzeige der erkannten IO-Link-Geräte

Die erkannten IO-Link-Geräte werden angezeigt und ihre Prozessdaten angelegt.

Manuelles Einfügen über Katalog

Klicken Sie im Dialog General auf die Schaltfläche [Catalog].

BECKHOFF

General	General	
	Port1: 0-Link Device	Catalog
- Port2	Port2: 0-Link Device	Catalog
Parameter	Port3: 0-Link Device	Catalog
- Port3	Port4: 0-Link Device	Catalog
⊡ Port4	Import Device Description Scan Devices	
- Parameter	K-Bus Settings	
	Optimized Mode	
	Use fix 14 Byte K-Bus	
	V 1,1,0,3	😢 IO-Link

Abb. 22: Manuelles Einfügen über Katalog

Hier können	Sie nu	In
-------------	--------	----

IO-Link Device ca	atalog		×
none Std-I/O dig in dig out			
	create Device	ОК	Abbrechen

Abb. 23: Aufruf des Dialogs create Device

mit dem Dialog create Device manuell ein IO-Link-Gerät

create Device	×
Identification	Processdata lengthSettings
Vendor Name Vendor ID	in 0 bit min Cycle Time 2,3 ms
Device Name Device ID	out 0 bit 🗌 S-Pdu supported
·	OK Abbrechen

Abb. 24: Der Dialog create Device

mit den wichtigsten Kommunikationsparametern anlegen.

Importieren der Gerätebeschreibung

Klicken Sie im Dialog General auf die Schaltfläche [Import Device Description].

General	General	
Settings	Port1: 0-Link Device	Catalog
Port2	Port2: 0-Link Device	Catalog
Parameter	Port3: 0-Link Device	Catalog
Port3	Port4: IO-Link Device	Catalog
⊷ Parameter ⊡ · Port4	Import Device Description Scan Devices	
- Parameter	- K-Bus Settings	
	C Optimized Mode	
	Use fix 14 Byte K-Bus	
	V 1,1,0,3	ð IO-Link

Abb. 25: Importieren der Gerätebeschreibung

Die XML-Dateien der IO-Link-Geräte liegen im IO-Link-Ordner von KS2000 (z. B. unter Windows 7 im Ordner C:\Program Files (x86)\KS2000_V4\IOLink)

Öffnen					? ×
Suchen in:	C KS2000_V4		•	+ 🗈 💣 🎟•	
Zuletzt verwendete D Desktop Eigene Dateien Arbeitsplatz	IOLink Report Resource SnvtTypes TcTerminals TerminalResou test2 test2b TwinCATTermin	rce nals			
Netzwerkumgeb	Dateiname:			•	Öffnen
	Dateityp:	IO-Link description (*.xml)		•	Abbrechen

Abb. 26: Auswahl der XML-Datei

Wählen Sie die XML-Datei des gewünschten Sensors aus und öffnen Sie diese.

Fahren Sie nun mit dem Scannen der IO-Link Ports fort (siehe oben [> 27]).

Die erkannten IO-Link-Geräte werden angezeigt und ihre Prozessdaten angelegt.

IODD immer Importieren

Auch beim Scannen oder manuellen anlegen von IO-Link-Geräte sollten Sie vorhandene IODD zusätzlich einlesen, um weitere sensorspezifische Informationen zu bekommen.

K-Bus-Interface

Beachten Sie: Beim Wechseln der IO-Link-Geräte kann folgende Meldung auftreten.

Info 🔀
K-Bus interface changed
ОК

Abb. 27: Das K-Bus-Interface der KL6224 hat sich geändert

Diese Meldung zeigt an, dass sich das K-Bus-Interface der KL6224 geändert hat, weil der Anschluss eines weiteren IO-Link-Geräts das Prozessabbild der KL6224 verändert hat. Diese Meldung hat aber keine weiteren Auswirkungen auf die Einbindung der IO-Link-Geräte.

Einstellungen der IO-Link-Ports

Klicken Sie im Dialog *General* auf *Settings* des gewünschten Ports.

General	Settings
Settings	_ Information
Parameter	Device description:
⊡- Port2	Vendor ID: 0x001A Device ID: 0x0FDEF7
Parameter	IO-Link Revision: V 1.0
- Settings Parameter	Start-up checks
⊡ · Port4	Check Vendor ID Master cycle time in ms
Settings Parameter	Check Device ID
	Communication mode Error reaction
	communication 💌
	Advanced

Abb. 28: Einstellungen der IO-Link-Ports?

StartUpChecks

Hier kann ausgewählt werden, ob beim Anlauf des IO-Link Gerätes die Vendor-ID und die Device-ID geprüft werden sollen.

CycleTime

Hier wird die Zykluszeit des IO-Link-Masters angegeben

Communication mode

Hier kann ein IO-Link-Gerät in verschieden Modi betrieben werden. Default-Modus für IO-Link Geräte ist Communication.

Error reaction

Ist diese Checkbox gesetzt, werden im Fehlerfall die Eingangsdaten auf 0 gesetzt.

Advanced

Klicken Sie auf die Schaltfläche [Advanced] um in den Dialog für die erweiterten Einstellungen zu gelangen.

×
Timestamp
🗖 enable Input
Cancel OK

Abb. 29: Erweiterten Einstellungen

Data Storage

Beachten Sie die Version der Sensoren:

- V1.0: Data Storage wird nicht unterstützt
- V1.1: Data Storage wird unterstützt: Im Auslieferungszustand (default) werden Daten (Sensorparameter) gespeichert.

Process Data Format

Hier können Sie das Prozessdatenformat anpassen.

Ist die Checkbox *only Octet String* gesetzt, werden komplexe Datentypen (Prozessdaten) zur Vereinfachung als Octet String angelegt.

5 Programmierung

5.1 Datenstrukturen

5.1.1 Prozessabbild

Das Prozessabbild der KL6224 besteht aus einem 6 Byte großen Parameterdatenblock und einem 6, 8, 18, 30 oder 42 Byte großen Prozessdatenblock.

Es ergibt sich somit ein 12, 14, 24, 36 oder 48 Byte großes Prozessabbild.

Die Größe des Prozessabbilds kann mit der Konfigurations-Software KS2000 oder feldbusspezifisch über den Buskoppler eingestellt werden. Sie wird im Register R27 der KL6224 gespeichert. Nach Änderung des Prozessabbilds müssen Sie den Buskoppler neu starten, damit er das geänderte Prozessabbild übernimmt.

Beachten Sie das Kapitel <u>Firmeware-Stand der Buskoppler</u> [> 50] um zu erfahren, welche Prozessabbilder Ihr Buskoppler unterstützt.

Beschreibung der Prozessabbilder

Auswahl des Prozessabbilds

Wählen Sie das Prozessabbild nicht größer, als zum Betrieb Ihrer IO-Link-Geräte erforderlich ist! Diese Auswahl spart sowohl auf dem übergeordneten Feldbus als auch auf dem K-Bus Bandbreite. Da nur 12 Byte in einem K-Bus Zyklus zur KL6224 übertragen werden können, ist mit minimaler Auswahl auch die Update-Rate der anderen Klemmen optimal schnell.

12 Byte Prozessabbild

Das 12 Byte Prozessabbild besteht aus einem 6 Byte großen Parameterdatenblock und einem 6 Byte großen Prozessdatenblock.

Ausgangsdaten (SPS -> KL6224)

Parameterdatenblock (6 Byte)			Prozessdatenblock (6 Byte)								
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10				Byte 10	Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut5

Eingangsdaten (KL6224 -> SPS)

Paramete	erdatenb	lock (6 Byt	e)			Prozessda	tenblock (6	6 Byte)			
Byte 0	Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5					Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
SB0	SB1	ParaIn0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	Dataln0	DataIn1

Legende

CB n: Control-Byte n der KL6224 SB n: Status-Byte n der KL6224 Para Out n: Ausgangsparameter, Byte n Para In n: Eingangsparameter, Byte n StatusCH n: Statusinformationen des IO-Link-Geräts n DataOut n: Ausgangsdaten-Byte n DataIn n: Eingangsdaten-Byte n

12 Byte Prozessabbild, komprimierter Modus

Der komprimierte Modus verdichtet die Daten, um Platz zu sparen (z. B. für CANopen-Buskoppler). Er kann über den Parameter <u>Master Control (Register R41 auf Register-Page 4)</u> [▶ <u>41</u>] eingeschaltet werden. Wenn der komprimierte Modus eingeschaltet ist, gilt er für alle IO-Link-Ports!

Der komprimierte Modus steht auch für die größeren Prozessabbilder (14, 24, 36 und 48 Byte) zur Verfügung.

Für die größeren Prozessabbilder ist der gemischte Datenblock genau wie hier dargestellt aufgebaut und der Prozessdatenblock beinhaltet dann die weiteren Daten-Bytes ab DataOut2/DataIn2.

Ausgangsdaten (SPS -> KL6224)

gemisch	ter Dater	block (6 B	yte)			Prozessda	tenblock (6	6 Byte)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2 ¹ oder DataOut0 ²	ParaOut3 ¹ oder DataOut1 ²	DataOut2	DataOut3	DataOut4	DataOut5	DataOut6	DataOut7

Eingangsdaten (KL6224 -> SPS)

gemischte	er Datenblo	ck (6 Byt	e)			Prozessda	tenblock (6	6 Byte)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
SB0 ¹ oder StatusCh 1/2 ²	SB1 ¹ oder StatusCh3 /4 ²	Paraln0	Paraln1	Paraln3 ¹ oder Dataln0 ²	Paraln4 ¹ oder Dataln1 ²	DataIn2	Dataln3	DataIn4	Dataln5	Dataln6	DataIn7

¹) bei Registerkommunikation (siehe Kapitel <u>Control- und Status-Byte [) 37]</u>)

²) bei Prozessdatenbetrieb

Legende

CB n: Control-Byte n der KL6224 SB n: Status-Byte n der KL6224 Para Out n: Ausgangsparameter, Byte n Para In n: Eingangsparameter, Byte n StatusCh1/2: Statusinformationen des IO-Link-Geräts n (4-Bit low = Port 1 / 4Bit high = Port 2) StatusCh3/4: Statusinformationen des IO-Link-Geräts n (4-Bit low = Port 3 / 4Bit high = Port 4) DataOut n: Ausgangsdaten-Byte n DataIn n: Eingangsdaten-Byte n

14 Byte Prozessabbild

Das 14 Byte Prozessabbild besteht aus einem 6 Byte großen Parameterdatenblock und einem 8 Byte großen Prozessdatenblock.

Ausgangsdaten (SPS -> KL6224)

Parame	Parameterdatenblock (6 Byte)					Prozess	datenbl	ock (8 By	yte)				
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13
CB0	CB1	ParaOu	ParaOu	ParaOu	ParaOu	DataOu	DataOu	DataOu	DataOut	DataOut4	DataOut5	DataOut6	DataOut7
		tO	t1	t2	t3	tO	t1	t2	3				

Eingangsdaten (KL6224 -> SPS)

Parame	terdaten	block (6	Byte)			Prozess	datenbl	ock (8 B	yte)				
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	Status Ch1	Status Ch2	Status Ch3	StatusC h4	DataIn0	Dataln1	Dataln2	Dataln3

Legende

Siehe 12 Byte Prozessabbild.

24 Byte Prozessabbild (default)

Das 24 Byte Prozessabbild besteht aus einem 6 Byte großen Parameterdatenblock und einem 18 Byte großen Prozessdatenblock. Diese Einstellung ist im Auslieferungszustand der KL6224 aktiviert.

Ausgangsdaten (SPS -> KL6224)

Paramete	erdatenb	lock (6 Byte	e)			Prozessda	tenblock (*	18 Byte)			
Byte 0	yte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5					Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut5

Prozesso	latenblock	c (18 Byte	, Fortsetzi	ung)							
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21	Byte 22	Byte 23
DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut14	DataOut15	DataOut16	DataOut17
6	7	8	9	10	11	12	13				

Eingangsdaten (KL6224 -> SPS)

Paramete	erdatenb	lock (6 Byt	e)			Prozessda	tenblock (1	8 Byte)			
Byte 0	0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5				Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	
SB0	SB1	ParaIn0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	DataIn0	DataIn1

Prozesso	latenblock	(18 Byte	, Fortsetzı	ung)							
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21	Byte 22	Byte 23
DataIn2	DataIn3	DataIn4	DataIn5	DataIn6	Dataln7	Dataln8	Dataln9	DataIn10	Dataln11	Dataln12	Dataln13

Legende

Siehe 12 Byte Prozessabbild.

36 Byte Prozessabbild

Das 36 Byte Prozessabbild besteht aus einem 6 Byte großen Parameterdatenblock und einem 30 Byte großen Prozessdatenblock.

Ausgangsdaten (SPS -> KL6224)

Param	eterdat	enblock (6	Byte)			Prozessda	tenblock (30 Byte)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut25

Prozessdatenblock (30 Byte, Fortsetzung)													
Byte 12 Byt	/te 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21		Byte 35		
DataOut Dat	ataOut	DataOut 8	DataOut 9	DataOut	DataOut11	DataOut12	DataOut13	DataOut14	DataOut15		DataOut29		

Eingangsdaten (KL6224 -> SPS)

Paramete	erdatenblo	ock (6 Byt	e)			Prozessda	tenblock (3	80 Byte)			
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	Dataln0	Dataln1

Prozessdatenblock (30 Byte, Fortsetzung)											
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21		Byte 35
DataIn2	DataIn3	DataIn4	DataIn5	DataIn6	Dataln7	DataIn8	DataIn9	DataIn10	DataIn11		DataIn13

Legende

Siehe 12 Byte Prozessabbild.

48 Byte Prozessabbild

Das 48 Byte Prozessabbild besteht aus einem 6 Byte großen Parameterdatenblock und einem 42 Byte großen Prozessdatenblock.

Ausgangsdaten (SPS -> KL6224)

Parameterdatenblock (6 Byte)						Prozessdatenblock (42 Byte)					
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6 Byte 7 Byte 8 Byte 9 Byte 10					Byte 11
CB0	CB1	ParaOut0	ParaOut1	ParaOut2	ParaOut3	DataOut0	DataOut1	DataOut2	DataOut3	DataOut4	DataOut25

Prozessdatenblock (42 Byte, Fortsetzung)											
Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21		Byte 48
DataOut	DataOut	DataOut	DataOut	DataOut	DataOut	DataOut12	DataOut13	DataOut14	DataOut15		DataOut41
6	7	8	9	10	11						

Eingangsdaten (KL6224 -> SPS)

Paramete	erdatenblock (6 Byte)					Prozessdatenblock (42 Byte)					
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Byte					Byte 11
SB0	SB1	Paraln0	Paraln1	Paraln2	Paraln3	StatusCh1	StatusCh2	StatusCh3	StatusCh4	Dataln0	DataIn1

Prozessdatenblock (42 Byte, Fortsetzung)											
Byte 12 Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte 18 Byte 19 Byte 20 Byte 21 Byte 48											Byte 48
DataIn2	DataIn3	DataIn4	DataIn5	DataIn6	Dataln7	Dataln8	Dataln9	DataIn10	DataIn11		Dataln37

Legende

Siehe 12 Byte Prozessabbild.

5.1.2 Control- und Status-Byte

Registerkommunikation

Control-Byte (bei Registerkommunikation)

Das Control-Byte (CB) befindet sich im <u>Ausgangsabbild [> 33]</u> und wird von der Steuerung zur Klemme übertragen.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	R/W	Reg-Nr.					

Legende

Bit	Name	Beschre	ibung				
CB.7	RegAccess	1 _{bin}	Registerkommunikation eingeschaltet				
CB.6	R/W	0 _{bin} Lesezugriff					
		1 _{bin}	Schreibzugriff				
CB.5 bis CB.0	Reg-Nr.	Registeri	nummer:				
		Tragen S oder bes	ragen Sie hier die Nummer des <u>Registers [▶ 38]</u> ein, das Sie lesen der beschreiben wollen.				

Status-Byte (bei Registerkommunikation)

Das Status-Byte (SB) befindet sich im <u>Eingangsabbild [> 33]</u> und wird von der Klemme zur Steuerung übertragen.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	R/W	Reg-Nr.					

Legende

Bit	Name	Beschre	eschreibung					
SB.7	RegAccess	1 _{bin}	Quittung für Registerzugriff					
SB.6	R	0 _{bin}	Lesezugriff					
SB.5 bis SB.0	Reg-Nr.	Nummer	des Registers, das gelesen oder beschrieben wurde.					

Prozessdatenbetrieb

Control- und Status-Byte im Prozessdatenbetrieb

Zurzeit haben Control- und Status-Byte der KL6224 im Prozessdatenbetrieb keine weitere Funktion.

Control-Byte (im Prozessdatenbetrieb)

Das Control-Byte (CB) befindet sich im <u>Ausgangsabbild [> 33]</u> und wird von der Steuerung zur Klemme übertragen.

Bit	CB.7	CB.6	CB.5	CB.4	CB.3	CB.2	CB.1	CB.0
Name	RegAccess	-	-	-	-	-	-	-

Legende

Bit	Name	Beschre	Beschreibung					
CB.7	RegAccess	0 _{bin}	Registerkommunikation ausgeschaltet (Prozessdatenbetrieb)					
CB.6 bis CB.0	-	0 _{bin}	reserviert					

Status-Byte (im Prozessdatenbetrieb)

Das Status-Byte (SB) befindet sich im <u>Eingangsabbild</u> [▶ <u>33]</u> und wird von der Klemme zur Steuerung übertragen.

Bit	SB.7	SB.6	SB.5	SB.4	SB.3	SB.2	SB.1	SB.0
Name	RegAccess	-	-	-	-	-	-	-

Legende

Bit	Name	Beschreibung		
SB.7	RegAccess	0 _{bin}	Quittung für Prozessdatenbetrieb	
SB.6 to SB.0	Error	0 _{bin}	reserviert	

5.1.3 Registerübersicht

Die Register dienen zur Parametrierung der Klemme und können über die <u>Registerkommunikation [▶ 44]</u> ausgelesen oder beschrieben werden.

Register	Kommentar	Defaultwert		R/W	Speicher
R0 bis R3	reserviert	0x0000	0 _{dez}	-	-
<u>R4 [▶ 39]</u>	Registerpage [▶ 40]	0x0004	4 _{dez}	R/W	
R5 bis R7	reserviert	0x0000	0 _{dez}	-	-
<u>R8 [▶_39]</u>	Klemmenbezeichnung	0x1850	6224 _{dez}	R	ROM
<u>R9 [▶ 39]</u>	Firmware-Stand	z. B. 0x0100	z. B. 256 _{dez}	R	ROM
<u>R10 [) 39]</u>	Multiplex-Schieberegister	0x0160	352 _{dez}	R	ROM
<u>R11 [▶ 39]</u>	Signalkanäle	0x0160	352 _{dez}	R	ROM
<u>R12 [▶ 39]</u>	minimale Datenlänge	0x6060	24672 _{dez}	R	ROM
<u>R13 [▶ 39]</u>	Datenstruktur der Busklemme	0x0001	1 _{dez}	R	ROM
R14	reserviert	-	-	-	-
<u>R15 [) 39]</u>	Alignment-Register	-	-	R/W	RAM
R16 bis R26	reserviert	0x0000	0 _{dez}	-	-
R27	reserviert	0x0001	1 _{dez}	R/W	SEEROM/RAM
R28 bis R30	reserviert	0x0000	0 _{dez}	-	-
<u>R31 [▶ 39]</u>	Kodewort-Register (nicht benutzt)	0x0000	0 _{dez}	R/W	RAM
<u>R32 bis R63</u> [▶ <u>39]</u>	Register zum Einblenden der Registerpages [▶ 40]	-	-	-	-

5.1.4 Registerbeschreibung

Die Register dienen zur Parametrierung der Klemme und können über die <u>Registerkommunikation [} 44]</u> ausgelesen oder beschrieben werden.

Die Register 0 bis 31 haben immer die gleiche Bedeutung. Der Inhalt der Register 32 bis 63 wird über das Register-Page-Auswahlregister (<u>R4 [▶ 39]</u>) festgelegt.

R4: Registerpage-Auswahlregister

Mit diesem Register legen Sie fest, welche <u>Registerpage</u> [▶ <u>40</u>] in die Register R32 bis R63 der KL6224 eingeblendet wird (default: 0x0000).

Über die Registerpages haben Sie Zugriff auf die IO-Link-Konfiguration, -Diagnose und Parametrierung der KL6224.

R8: Klemmenbezeichnung

Im Register R8 steht in hexadezimaler Codierung die Bezeichnung der Klemme: 0x1850 (6224_{dez})

R9: Firmware-Stand

Im Register R9 steht in hexadezimaler Codierung der Firmware-Stand der Klemme, z.B. 0x0100 (256_{dez}).

R10: Schieberegisterlänge

0x0160

R11: Anzahl der Signalkanäle

0x0160

R12: Minimale Datenlänge

0x6060

R13: Datenstruktur der Busklemme

Im Register R13 steht die Datenstruktur der Busklemme.

R15: Alignment-Register

R31: Kodewort-Register

Das Kodewort-Register der KL6224 ist für den Anwender ohne Funktion, da alle Einstellungen die er über die Register R32 bis R63 (Register-Pages) vorgibt sofort von der KL6224 ausgeführt werden.

Register-Pages

In die Register R32 bis R64 blendet die KL6224 die IO-Link-Konfiguration, -Diagnose und Parametrierung der mit Register <u>R4 [▶ 39]</u> ausgewählten <u>Registerpage [▶ 40]</u> ein.

Register-Page 2 (RP2)

Schreiben Sie eine 2 in das Registerpage-Auswahlregister <u>R4 [▶ 39]</u>, um auf das Register RP2.R32 zugreifen zu können.

RP2.R32

Dieses Register legt die Größe des Prozessabbilds der KL6224 fest.

BECKHOFF

Wert	Prozessabbilds	Default
0002 _{hex}	<u>12 Byte Prozessabbild [} 33]</u> (6 Byte Parameter-Interface und 6 Byte IO-Link- Prozessdaten)	0004 _{hex}
0004 _{hex}	24 Byte Prozessabbild [34]	
0005 _{hex}	36 Byte Prozessabbild [35]	
0006 _{hex}	48 Byte Prozessabbild [35]	
weitere	reserviert	

Nach Änderung des Prozessabbilds müssen Sie den Buskoppler neu starten, damit er das geänderte Prozessabbild übernimmt.

Register-Page 4 bis 9

Siehe Kapitel Register-Pages für IO-Link-Parameter [40].

5.1.5 Register-Pages für IO-Link-Parameter

Auf die Parameter der KL6224 kann über Registerkommunikation oder die Konfigurationssoftware <u>KS2000</u> [\blacktriangleright _21] zugegriffen werden. Als Basis dient das Registermodell der Klemmen. Die KL6224 verfügt über 64 Register (Worte). Die Register 0 bis 31 haben immer die gleiche Bedeutung. Der Inhalt der Register 32 bis 63 wird über das Register-Page-Auswahlregister (<u>R4 [\blacktriangleright _39]</u>) festgelegt.

Eine Register-Page ist 32 Register (64 Byte) groß. Folgende Register-Pages werden genutzt:

- <u>Register-Page 4 [) 41]</u>: Parameter für Kanal 1 (IO-Link-Gerät 1)
- Register-Page 5: Parameter für Kanal 2 (IO-Link-Gerät 2)
- Register-Page 6: Parameter für Kanal 3 (IO-Link-Gerät 4)
- Register-Page 7: Parameter für Kanal 4 (IO-Link-Gerät 4)
- Register-Page 8 [) 43]: CMD/Status-Interface und azyklische Daten für IO-Link-Geräte
- <u>Register-Page 9 [▶ 43]</u>: azyklische Daten

Zuordnung der IO-Link-Parameter zu Registerpage und Klemmenregister

Register-Page 4	(RP4):	Parameter für	[•] Kanal 1	(IO-Link-Gerät 1	I)
------------------------	--------	---------------	----------------------	------------------	----

Register der KL6224	Beschrei- bung	Name		Komm	entar		
RP4.R32	IO-Link-	IO-Link De	eviceID LowWord	Geräte	Geräte-ID des IO-Link-Gerätes		
RP4.R33	Master-	IO-Link De	eviceID HighWord	-			
RP4.R34	Konfiguratio	IO-Link Ve	endorID LowWord	Hersteller-ID des IO-Link-Gerätes			
RP4.R35	Hier werden	IO-Link Ve	endorID HighWord				
RP4.R36	6 die Masterpara meter zum	LowByte	IO-Link Revision: Bit 03: MinorRev Bit 47: MajorRev	Kennze nach de	Kennzeichnung der Version der Spezifikation, nach der das IO-Link Gerät kommuniziert.		
	Betrieb eines IO- Link-Gerätes eingetragen	Betrieb eines IO- Link-Gerätes eingetragen HighByte FrameCapability: Der Fra Bit 0: SPDU Bit 1: Type1 SPDU s		ame Cap onalitäte supporte	pability n des ed).	v kennzeichnet bestimmte IO-Link Gerätes (wie z.B.:	
RP4.R37	0x8000 der EL6224).	LowByte	owByte minCycleTime: Bit 6, 7: Time Base Bit 05: Multiplier		olgende	Tabe	lle (<u>Time Base [▶ 41]</u>)
		HighByte	OffsetTime	reservi	ert		
RP4.R38		LowByte	ProcDataLenght	Bit 7	Byte	0 _{bin}	Length wird in Bit gezählt
		Input (im IO-Link-Format)			1 _{bin}	Length wird in Byte gezählt	
			Bit 6	SIO	1 _{bin}	das Gerät unterstützt den Standard-IO-Modus	
				Bit 0 4	Length		Länge der Prozessdaten
		HighByte	ProcDataLenght Output (im IO-Link-Format)	siehe LowByte			
RP4.R39		Compatibl	eld	zur Zei	Zeit nicht genutzt		
RP4.R40		-		reservi	reserviert		
RP4.R41		MasterCor	ntrol	0	Kanal 1	l ist in	aktiv
				1	Kanal 1	l ist di	gitaler Eingang
				2	Kanal 1	l ist di	gitaler Ausgang
				3	Kanal 1 über da	l ist IC as IO-L	-Link Port und kommuniziert Link-Protokoll
				4	reserviert		
				5	Kanal 1 über da	l ist IC as IO-L	D-Link Port und kommuniziert Link-Protokoll mit
					Kompri Hinweis für Kan Kanäle eingeso	<u>mierte</u> s: Wer ial 1 ei , die a chaltet	m Modus [▶_33]. nn der komprimierte Modus ngeschaltet ist, ist er für alle Is IO-Link Ports arbeiten !

Time Base

Time Base	Bedeutung Time base	Berechnung	Min. Cycle Time
00 _{bin}	0,1 ms	Multiplier x Time Base	0,06,3 ms
01 _{bin}	0,4 ms	6,4 ms + Multiplier x Time Base	6,431,6 ms
10 _{bin}	1,6 ms	32,0 ms + Multiplier x Time Base	32,0132,8 ms
11 _{bin}	6,4 ms	134,4 ms + Multiplier x Time Base	134,4537,6 ms

Register der KL6224	Beschrei- bung	Name		Komm	entar		
RP4.R42	IO-Link	IO-Link DeviceID LowWord		Geräte	-ID des	IO-Lin	k-Gerätes
RP4.R43	IstDaten:	IO-Link De	eviceID HiWord				
RP4.R44	die	IO-Link Ve	endorID LowWord	Herstel	ler-ID d	es IO-	Link-Gerätes
RP4.R45	tatsächliche	IO-Link Ve	endorID HiWord				
RP4.R46	n Daten des IO-Link- Gerätes	LowByte	IO-Link Revision Bit 03: MinorRev Bit 47: MajorRev	Kennzeichnung der Version der Spezifikation, nach der das IO-Link Gerät kommuniziert.			/ersion der Spezifikation, Gerät kommuniziert.
	angezeigt das angeschloss en ist. Dies	HighByte	FrameCapability: Bit 0: SPDU Bit 1: Type1 Bit 7: PHY1	Der Frame Capability kennzeichnet bestimmte Funktionalitäten des IO-Link Gerätes (wie z. B.: SPDU supported).			/ kennzeichnet bestimmte IO-Link Gerätes (wie z. B.:
RP4.R47	Vergleich mit den oben beschrieben	LowByte	minCycleTime: Bit 6, 7: Time Base Bit 05: Multiplier	Siehe folgende Tabelle (<u>Time Base [▶ 42]</u>)			
	en	HighByte	OffsetTime	reservi	ert		
RP4.R48	Masterpara	rpara LowByte	ProcDataLenght Input (im IO-Link-Format)	Bit 7	Byte	0_{bin}	Length wird in Bit gezählt
	meter (wie					1 _{bin}	Length wird in Byte gezählt
	0x9000 der EL6224).) der		Bit 6	SIO	1 _{bin}	das Gerät unterstützt den Standard-IO-Modus
				Bit 0 4	Length		Länge der Prozessdaten
		HighByte	ProcDataLenght Output (im IO-Link-Format)	siehe LowByte			
RP4.R49]	-		reserviert			
RP4.R50		-		reservi	ert		
RP4.R51		-		reservi	ert		

Time Base	Bedeutung Time base	Berechnung	Min. Cycle Time
00 _{bin}	0,1 ms	Multiplier x Time Base	0,06,3 ms
01 _{bin}	0,4 ms	6,4 ms + Multiplier x Time Base	6,431,6 ms
10 _{bin}	1,6 ms	32,0 ms + Multiplier x Time Base	32,0132,8 ms
11 _{bin}	6,4 ms	134,4 ms + Multiplier x Time Base	134,4537,6 ms

Register der KL6224	Beschrei- bung	Name		Kommentar	
RP4.R52	IO-Link	LowByte	IO-Link-State	0	Inactive
	Diagnose		Der Wert des IO-	1	DigInput
		Link State entspricht	2	DigOutput	
			IO-Link Master Statemachine (wie Objekt 0xA000	3	EstablishComm
				4	InitMaster
				5	InitDevice
			der EL6224).	6	reserviert
				7	reserviert
				8	Operate
				9	Stop
HighByte LostFrames F IG b a	Hier werden die Anzahl der verloren gegangenen IO-Link Telegramme mitgezählt. Dieser Wert wird bei jedem Hochlauf von IO-Link gelöscht, ansonsten immer weiter gezählt.				

Register-Page 5 (RP5): Parameter für Kanal 2 (IO-Link-Gerät 2)

Aufbau wie Register-Page 4 [▶ 41]

Register-Page 6 (RP6): Parameter für Kanal 3 (IO-Link-Gerät 3)

Aufbau wie <u>Register-Page 4 [▶ 41]</u>

Register-Page 7 (RP7): Parameter für Kanal 4 (IO-Link-Gerät 4)

Aufbau wie <u>Register-Page 4 [▶ 41]</u>

Register-Page 8 (RP8): CMD/Status-Interface und azyklische Daten für IO-Link-Gerät

Register der	Beschreibung			Kommentar
KL6224		Name		
RP8.R32	Cmd	TACYCLICKBUSCMD_	CMD_START	0x0000001
		TACYCLICKBUSCMD_CMD_ACK		0x0000002
		TACYCLICKBUSCMD_	CMD_READ_CH1	0x00000010
		TACYCLICKBUSCMD_	CMD_READ_CH2	0x0000020
		TACYCLICKBUSCMD_	CMD_READ_CH3	0x0000030
		TACYCLICKBUSCMD_	CMD_READ_CH4	0x00000040
		TACYCLICKBUSCMD_	CMD_WRITE_CH1	0x00000100
		TACYCLICKBUSCMD_	CMD_WRITE_CH2	0x00000200
		TACYCLICKBUSCMD_	CMD_WRITE_CH3	0x00000300
		TACYCLICKBUSCMD_	CMD_WRITE_CH4	0x00000400
		TACYCLICKBUSCMD_	CMD_SCAN_CH1	0x00001000
		TACYCLICKBUSCMD_	CMD_SCAN_CH2	0x00002000
		TACYCLICKBUSCMD_	0x00003000	
		TACYCLICKBUSCMD_	0x00004000	
RP8.R33	Status	TACYCLICKBUSCMD_	STATUS_IDLE	0x0000000
		TACYCLICKBUSCMD_	0x0000001	
		TACYCLICKBUSCMD_	0x0000002	
		TACYCLICKBUSCMD_	STATUS_DATAERROR	0x0000003
RP8.R34		SPDU / ISDU SubIdx		Index der SPDU / ISDU
RP8.R35		LowByte	Length	Länge der Daten
		HighByte	SPDU / ISDU SubIdx	Subindex der SPDU / ISDU
RP8.R36	azyklische Daten für			
	das IO-Link-Gerät			
RP8.R61				

Register-Page 9 (RP9): Weitere azyklische Daten für IO-Link-Gerät

Register der KL6224	Beschreibung	Wert	Kommentar
RP9.R0	Weitere azyklische Daten für das IO-Link-Gerät		
RP9.R61			

Ablauf für eine azyklische Anfrage

Der Ablauf für eine azyklische Anfrage zu einem IO-Link-Gerät ist wie folgt:

1. Auslesen von Register-Page 8 R33 (Status) ob Status = Idle ist

- Wenn Status = Idle ist, dann TACYCLICKBUSCMD_CMD_START in Register-Page 8 R32 (Cmd) schreiben
- 3. Bei Bedarf azyklische Daten in den Puffer ab Register-Page 8, R36 schreiben
- 4. Dienst starten mit schreiben des entsprechenden Dienstes in Register-Page 8 R32 (Cmd)
- 5. Register-Page 8 R33 (Status) auslesen bis nicht mehr Busy
- 6. Bei Bedarf azyklische Daten aus dem Puffer ab Register-Page 8, R36 lesen
- Abschließen des Dienstes durch schreiben von TACYCLICKBUSCMD_CMD_ACK in Register-Page 8 R32 (Cmd)

5.2 Beispiele für die Register-Kommunikation

Die Nummerierung der Bytes in den Beispielen entspricht der Darstellung ohne Word-Alignment.

5.2.1 Beispiel 1: Lesen des Firmware-Stands aus Register 9

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte
0x89 (1000 1001 _{bin})	0xXX	0xXX

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 nicht gesetzt bedeutet: lesen des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 00 1001_{bin} die Registernummer 9 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim Lesezugriff ohne Bedeutung. Will man ein Register verändern, so schreibt man in das Ausgangswort den gewünschten Wert hinein.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DatalN1, Low-Byte	
0x89	0x33	0x41	

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung den Wert des Control-Bytes zurück.
- Die Klemme liefert im Eingangsdatenwort (Byte 1 und Byte 2) den Firmware-Stand 0x3341 zurück. Dies ist als ASCII-Code zu interpretieren:
 - ASCII-Code 0x33 steht für die Ziffer 3
 - ASCII-Code 0x41 steht f
 ür den Buchstaben A Die Firmware-Version lautet also 3A.

5.2.2 Beispiel 2: Beschreiben eines Anwender-Registers

Code-Wort

Im normalen Betrieb sind bis auf das Register 31, alle Anwender-Register schreibgeschützt. Um diesen Schreibschutz aufzuheben, müssen Sie das Code-Wort (0x1235) in Register 31 schreiben. Das Schreiben eines Wertes ungleich 0x1235 in Register 31 aktiviert den Schreibschutz wieder. Beachten Sie, dass Änderungen an einigen Registern erst nach einem Neustart (Power-Off/Power-ON) der Klemme übernommen werden.

I. Schreiben des Code-Worts (0x1235) in Register 31

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte	
0xDF (1101 1111 _{bin})	0x12	0x35	

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 gesetzt bedeutet: schreiben des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 01 1111_{bin} die Registernummer 31 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) enthält das Code-Wort (0x1235) um den Schreibschutz zu deaktivieren.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DataIN1, Low-Byte	
0x9F (1001 1111 _{bin})	0xXX	0xXX	

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung einen Wert zurück der sich nur in Bit 0.6 vom Wert des Control-Bytes unterscheidet.
- Das Eingangsdatenwort (Byte 1 und Byte 2) ist nach dem Schreibzugriff ohne Bedeutung. Eventuell noch angezeigte Werte sind nicht gültig!

II. Lesen des Register 31 (gesetztes Code-Wort überprüfen)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte	
0x9F (1001 1111 _{bin})	0xXX	0xXX	

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 nicht gesetzt bedeutet: lesen des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 01 1111_{bin} die Registernummer 31 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim Lesezugriff ohne Bedeutung.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DatalN1, Low-Byte	
0x9F (1001 1111 _{bin})	0x12	0x35	

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung den Wert des Control-Bytes zurück.
- Die Klemme liefert im Eingangsdatenwort (Byte 1 und Byte 2) den aktuellen Wert des Code-Wort-Registers zurück.

III. Schreiben des Register 32 (Inhalt des Feature-Registers ändern)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DataIN1, Low-Byte		
0xE0 (1110 0000 _{bin})	0x00	0x02		

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 gesetzt bedeutet: schreiben des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 10 0000_{bin} die Registernummer 32 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) enthält den neuen Wert für das Feature-Register.

Beachten Sie die Registerbeschreibung!

Der hier angegebene Wert 0x0002 ist nur ein Beispiel! Die Bits des Feature-Registers verändern die Eigenschaften der Klemme und haben je nach Klemmen-Typ unterschiedliche Bedeutung. Informieren Sie sich in der Beschreibung des Feature-Registers ihrer Klemme (Kapitel *Registerbeschreibung*) über die Bedeutung der einzelnen Bits, bevor Sie die Werte verändern.

Eingangsdaten (Antwort der Busklemme)

Byte 0: Status-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DatalN1, Low-Byte	
0xA0 (1010 0000 _{bin})	0xXX	0xXX	

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung einen Wert zurück der sich nur in Bit 0.6 vom Wert des Control-Bytes unterscheidet.
- Das Eingangsdatenwort (Byte 1 und Byte 2) ist nach dem Schreibzugriff ohne Bedeutung. Eventuell noch angezeigte Werte sind nicht gültig!

IV. Lesen des Register 32 (geändertes Feature-Register überprüfen)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte	
0xA0 (1010 0000 _{bin})	0xXX	0xXX	

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- Bit 0.6 nicht gesetzt bedeutet: lesen des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 10 0000_{bin} die Registernummer 32 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) ist beim Lesezugriff ohne Bedeutung.

Eingangsdaten (Antwort der Busklemmen)

Byte 0: Status-Byte	Byte 1: DataIN1, High-Byte	Byte 2: DataIN1, Low-Byte	
0xA0 (1010 0000 _{bin})	0x00	0x02	

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung den Wert des Control-Bytes zurück.
- Die Klemme liefert im Eingangsdatenwort (Byte 1 und Byte 2) den aktuellen Wert des Feature-Registers zurück.

V. Schreiben des Register 31 (Code-Wort zurücksetzen)

Ausgangsdaten

Byte 0: Control-Byte	Byte 1: DataOUT1, High-Byte	Byte 2: DataOUT1, Low-Byte	
0xDF (1101 1111 _{bin})	0x00	0x00	

Erläuterung:

- Bit 0.7 gesetzt bedeutet: Register-Kommunikation eingeschaltet.
- · Bit 0.6 gesetzt bedeutet: schreiben des Registers.
- Bit 0.5 bis Bit 0.0 geben mit 01 1111_{bin} die Registernummer 31 an.
- Das Ausgangsdatenwort (Byte 1 und Byte 2) enthält 0x0000 um den Schreibschutz wieder zu aktivieren.

Eingangsdaten (Antwort der Busklemmen)

Byte 0: Status-Byte	Byte 1: DatalN1, High-Byte	Byte 2: DatalN1, Low-Byte	
0x9F (1001 1111 _{bin})	0xXX	0xXX	

Erläuterung:

- Die Klemme liefert im Status-Byte als Quittung einen Wert zurück der sich nur in Bit 0.6 vom Wert des Control-Bytes unterscheidet.
- Das Eingangsdatenwort (Byte 1 und Byte 2) ist nach dem Schreibzugriff ohne Bedeutung. Eventuell noch angezeigte Werte sind nicht gültig!

5.3 Zugriff auf IO-Link Parameter

Über den Parameterdaten-Block erfolgt der Zugriff auf die Parameter der KL6224 IO-Link Master Klemme. In Folgenden sind der Schreibzugriff und der Lesezugriff mit Beispielen dokumentiert.

Schreiben eines Parameters

Um einen Parameter zu schreiben ist folgende Sequenz einzuhalten:

Überprüfen Sie Zunächst, ob der vorherige Zugriff vollständig abgeschlossen wurde. Werten Sie hierzu Status-Byte 1 aus: Bits 4 bis 7 müssen 0_{bin} sein. Falls nicht, sind Control-Byte 0 und Control-Byte 1 auf 0 zu setzen bis die Bits 4 bis 7 im Status-Byte 1 auf 0_{bin} gesetzt sind.

Schreibzugriff (SPS->KL6224): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control-Byte 0	Control-Byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Wert	$01_{bin}A_5A_4A_3A_2A_1A_0$	$0100_{bin} A_9 A_8 A_7 A_6$	P ₀ P ₇	P ₈ P ₁₅	P ₁₆ P ₂₃	P ₂₄ P ₃₁

A₀ bis A₉: Bits der Parameteradresse

P₀ bis P₃₁: Bits des Parameter-Werts

Antwort auf Schreibzugriff (KL6224->SPS): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status-Byte 0	Status-Byte 1	Paraln0	Paraln1	Paraln2	Paraln3
Wert	XXXX XXXX _{bin}	01F1 xxx1 _{bin}	Error-Code	Error-Code	Error-Code	Error-Code

x: Bits können beliebige Werte annehmen

F: Fehler-Bit.

F=0_{bin}: Schreibzugriff war erfolgreich.

F=1_{bin}: Schreibzugriff war nicht erfolgreich. Die Bytes 2 bis 5 enthalten einen Error-Code, der Aufschluss über die Fehlerursache gibt.

Die Schreib-Sequenz wird durch Nullsetzen der Control-Bytes abgeschlossen:

Abschluss Schreibzugriff (SPS->KL6224): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control-Byte 0	Control-Byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Wert	0000 0000 _{bin}	0000 0000 _{bin}	х	x	x	х

x: Die Parameterwerte werden nicht ausgewertet wenn die Control-Bytes 0x00 sind.

Beispiel

Die Liste der projektierten Slaves (LPS) soll beschrieben werden. Der IO-Link Master soll gezielt mit den IO-Link Slaves mit den Knoten-Nummern 1, 2, 3, 4, 12, 16, 17 und 30 kommunizieren. Es soll also der Wert 0x4003101E (0100 0000 0000 0011 0001 0000 0001 1110_{bin}) auf den Parameter 0xA8 (1010 1000_{bin}) geschrieben werden.

Schreibzugriff (SPS->KL6224): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control-Byte 0	Control-Byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Wert	0110 1000 _{bin} (0x68)	0100 0010 _{bin} (0x42)	0x1E	0x10	0x03	0x40

Im Parameterdaten-Block zur KL6224 muss also die Bytefolge 0x68 42 1E 10 03 40 geschrieben werden.

Die Klemme antwortet mit folgenden Daten:

Antwort auf Schreibzugriff (KL6224->SPS): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status-Byte 0	Status-Byte 1	ParaIn0	Paraln1	Paraln2	Paraln3
Wert	XXXX XXXX _{bin}	0101 xxx1 _{bin}	0	0	0	0

Die Schreib-Sequenz wird mit dieser Bytefolge abgeschlossen: 0x00 00 00 00 00 00 00

Lesen eines Parameters

Um einen Parameter zu lesen ist folgende Sequenz einzuhalten:

Zunächst überprüfen, ob vorheriger Zugriff vollständig abgeschlossen wurde. Hierzu muss Status1 ausgewertet werden, Bits 4 bis 7 müssen 0 sein. Falls nicht, sind Control-Byte 0 und Control-Byte 1 auf 0 zu setzen bis die Bits 4 bis 7 im Status1 auf 0 gesetzt sind.

Lesezugriff (SPS->KL6224): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control-Byte 0	Control-Byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Wert	$00_{bin} A_5 A_4 A_3 A_2 A_1 A_0$	$0100_{bin} A_9 A_8 A_7 A_6$	x	x	x	x

A₀ bis A₉: Bits der Parameteradresse

x: Die Parameterwerte werden nicht ausgewertet

Antwort auf Lesezugriff (KL6224->SPS): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status-Byte 0	Status-Byte 1	Paraln0	Paraln1	Paraln2	Paraln3
Wert	XXXX XXXX _{bin}	01F1 xxx0 _{bin}	P ₀ P ₇	P ₈ P ₁₅	P ₁₆ P ₂₃	P ₂₄ P ₃₁

x: Bits können beliebige Werte annehmen

F: Fehler-Bit.

F=0_{bin}: Lesezugriff war erfolgreich. Die Bytes 2 bis 5 enthalten den Parameterwert.

F=1_{bin}: Lesezugriff war nicht erfolgreich. Die Bytes 2 bis 5 enthalten einen Error-Code, der Aufschluss über die Fehlerursache gibt.

P₀ bis P₃₁: Bits des Parameter-Werts oder Error-Codes

Die Lese-Sequenz wird durch Null-setzen der Control-Bytes abgeschlossen:

Abschluss Lesezugriff (SPS->KL6224): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control-Byte 0	Control-Byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Wert	0000 0000 _{bin}	0000 0000 _{bin}	х	х	х	х

x: Die Parameterwerte werden nicht ausgewertet wenn die Control-Bytes 0x00 sind.

Beispiel

Die Liste der erkannten Slaves (LES) soll ermittelt werden. Hierfür muss der Parameter 0xB0 (1011 0000_{bin}) gelesen werden.

Lesezugriff (SPS->KL6224): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Control-Byte 0	Control-Byte 1	ParaOut0	ParaOut1	ParaOut2	ParaOut3
Wert	0011 0000 _{bin} (0x30)	0100 0010 _{bin} (0x42)	0x00	0x00	0x00	0x00

Im Parameterdaten-Block zur KL6224 muss also die Bytefolge 0x30 42 00 00 00 00 geschrieben werden. Die Klemme antwortet mit folgenden Daten:

Antwort auf Schreibzugriff (KL6224->SPS): Parameterdaten-Block

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Name	Status-Byte 0	Status-Byte 1	Paraln0	Paraln1	Paraln2	Paraln3
Wert	xxxx xxxx _{bin}	0101 xxx0 _{bin}	0x4C	0x02	0x80	0x83

Der IO-Link Master soll in diesem Beispiel die Slaves mit den Knoten-Nummern 2, 3, 6, 9, 23, 24, 25 und 31 erkannt haben. Er antwortet also mit den Parameterdaten 0x8380024C (1000 0011 1000 0000 0000 0010 0100 1100_{bin})

Die Lese-Sequenz wird mit der Bytefolge 0x00 00 00 00 00 00 abgeschlossen.

6 Anhang

6.1 Firmware-Stand der Buskoppler

Erforderliche Firmware

Zum Betrieb der IO-Link-Klemme KL6224 kann auf dem Buskoppler / Busklemmen Controller ein bestimmter Firmware-Stand erforderlich sein (siehe untenstehende <u>Tabelle! [> 51]</u>)

Im Auslieferungszustand ist die KL6224 auf ein Prozessabbild von 24 Byte eingestellt.

Die meisten in der Tabelle aufgeführten Buskoppler und Busklemmen Controller unterstützen das Prozessabbild von 12 Byte.

Nicht aufgeführte Buskoppler / Busklemmen Controller sind noch nicht für den Betrieb des 24 Byte und oder größerer Prozessabbilder vorbereitet.

Der ausgelieferte Firmware-Stand ist auf der Rückseite des Buskopplers angegeben (siehe untenstehendes Beispiel für CANopen).

Abb. 30: Angabe des Firmware-Standes auf einem Buskoppler

Bei Bedarf kann ein Firmware-Update über die serielle Schnittstelle (KS2000-Kabel erforderlich) oder - je nach Bussystem - auch über den Feldbus erfolgen. Die aktuellen Firmware-Stände und das Programm für das Firmware-Update erhalten Sie vom Beckhoff <u>Support [▶ 54]</u>.

Unterstützung der verschiedenen Prozessabbilder durch die Firmware-Versionen der Buskoppler / Busklemmen Controller

Feldbus- System	Buskoppler / Busklemmen	Auf dem Buskoppler Stand zum Betrieb de	/ Busklemmen Co es	ontroller erforderli	icher Firmware-
	Controller	12 Byte Prozessab- bild	24 Byte Pro- zessabbild	36 Byte Pro- zessabbild	48 Byte Pro- zessabbild
EtherCAT	BK1120		ab 08 (B8)	ab 08 (B8)	ab 08 (B8)
	BK1250	-	alle	alle	alle
Lightbus	BK2020		ab B1	in Vorbereitung	in Vorbereitung
PROFIBUS	BK3120		ab B9	ab BB	ab BB
	BK3150		alle	alle	alle
	BK3500		ab B9	ab BB	-
	BK3520		ab B9	ab BB	-
	BC3100	-	ab C3	ab C4	-
	BC3150	-	alle	alle	alle
	BX3100	-	alle	alle	alle
Interbus	BK4020	-	ab B0	in Vorbereitung	in Vorbereitung
	BC4000	-	ab B3	in Vorbereitung	in Vorbereitung
CANopen	BK5120	-	ab C4	ab C5	-
	BK5150	-	alle	alle	-
	BC5150	-	alle	alle	alle
	BX5100		alle	alle	alle
DeviceNet	BK5220	-	(ab B3)*	in Vorbereitung	-
	BC5250	Diese Buskoppler und	alle	alle	alle
	BX5200	Busklemmen	alle	alle	alle
ControlNet	BK7000	Controller	ab BC	ab BC	-
Modbus	BK7300	unterstützen das	ab B2	ab B4	-
Fip IO	BK7420	der KI 6204	ab B1	ab B1	-
RS485	BK8000		ab C2	in Vorbereitung	in Vorbereitung
RS232	BK8100	-	ab C2	in Vorbereitung	in Vorbereitung
	BC8150	-	alle	alle	alle
	BX8000	-	alle	alle	alle
Ethernet	BK9000	-	ab B7	ab BA	ab BA
	BK9100	-	ab B1	ab B1	ab B1
	BC9000	-	ab B9	ab BB	ab BB
	BC9100	-	ab B1	ab B1	ab B1
	BC9050	-	alle	alle	alle
	BX9000	-	alle	alle	alle
PROFINET	BK9103	in Vorbereitung	in Vorbereitung	in Vorbereitung	in Vorbereitung
EtherNet/IP	BK9105	alle	alle	alle	alle
USB	BK9500	Dieser Buskoppler unterstützt das 12 Byte Prozessabbild der KL6204.	(ab B1)*	in Vorbereitung	in Vorbereitung

*) Nur wenn der Buskoppler (z. B. mit der Konfigurationssoftware KS2000) auf *komplettes Mapping der Busklemmen* eingestellt wird. Im Auslieferungszustand sind diese Buskoppler auf *kompaktes Mapping der Busklemmen* eingestellt.

6.2 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 31: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- auf der Verpackungseinheit
- direkt auf dem Produkt (bei ausreichendem Platz)
- auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	<mark>S</mark> BTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10…	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	<mark>51S</mark> 678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 32: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

6.3 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: <u>www.beckhoff.com</u>

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline:	+49 5246 963 157
E-Mail:	support@beckhoff.com
Internet:	www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- Hotline-Service

Hotline:	+49 5246 963 460
E-Mail:	service@beckhoff.com
Internet:	www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon:	+49 5246 963 0
E-Mail:	info@beckhoff.com
Internet:	www.beckhoff.com

Abbildungsverzeichnis

Abb. 1	KL6224 - IO-Link-Masterklemme	8
Abb. 2	Peer-to-Peer Kommunikation IO-Link	10
Abb. 3	Federkontakte der Beckhoff I/O-Komponenten	12
Abb. 4	Montage auf Tragschiene	13
Abb. 5	Demontage von Tragschiene	14
Abb. 6	Linksseitiger Powerkontakt	15
Abb. 7	Standardverdrahtung	17
Abb. 8	Steckbare Verdrahtung	17
Abb. 9	High-Density-Klemmen	18
Abb. 10	KL6224 - Anschlussbelegung	19
Abb. 11	KL6224 - LED-Anzeigen	20
Abb. 12	Konfigurations-Software KS2000	21
Abb. 13	Darstellung der Feldbusstation in KS2000	23
Abb. 14	KS2000-Baumzweige für Kanal 1 der KL6224	24
Abb. 15	Register Ansicht in KS2000	25
Abb. 16	KS2000 - Start der Konfigurations-Software	26
Abb. 17	KS2000 - Auswahl des Kommunikationskanals	26
Abb. 18	KS2000 - Anzeige der Feldbusstation	26
Abb. 19	Einfügen der IO-Link-Geräte	27
Abb. 20	Automatisches Scannen der IO-Link-Ports	28
Abb. 21	Anzeige der erkannten IO-Link-Geräte	28
Abb. 22	Manuelles Einfügen über Katalog	29
Abb. 23	Aufruf des Dialogs create Device	29
Abb. 24	Der Dialog create Device	29
Abb. 25	Importieren der Gerätebeschreibung	30
Abb. 26	Auswahl der XML-Datei	30
Abb. 27	Das K-Bus-Interface der KL6224 hat sich geändert	31
Abb. 28	Einstellungen der IO-Link-Ports?	31
Abb. 29	Erweiterten Einstellungen	32
Abb. 30	Angabe des Firmware-Standes auf einem Buskoppler	50
Abb. 31	BIC als Data Matrix Code (DMC, Code-Schema ECC200)	52
Abb. 32	Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294	53

Mehr Informationen: www.beckhoff.de/KL6224

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

