BECKHOFF

TET000

TwinCAT 3 | PLC Lib: Tc2_System(CX

Fle Edt View projeq Buld Debug
.o H N
Build 40244 (Loaded) . r‘;‘@" o
4821 @
Solution Explorer . '

p New Project -
®DE-| B

TwinCAT s
- a- TWinSAFE PLC Tegmn Scope Tools

~ | TwinCATRT (x64)
98 | TuinCAT Project

Vindow Help

P Attach.. v

b Recent

ch Solution Exp

y: | Default
. . 4 Installed
%] Solution ‘TwinCAT Project’ (1 project) et
4 /| TWinCAT Project
4 (@] SvSTEM
¥ License

P Controtes E'.J TwinCAT XAE Project (XML format)
b TwinCAT Measurement
TwinCAT CAD Interface Beta Version

D Real-Time TwinCAT Projects

B Tasks TwinCAT PLC

52 Routes

23 Type System

] TcCOM Objects
[moTIoN
g ric

SAFETY

C++
& AnaLTICS

ingfor?
» o Not finding what you are looking for’

TeXaeShell Solution

(Open Visual Studio Installer -
TwinCAT Project
= forsolution
l et e

3 [trol
3] AddtoSource Con

i Create new solution .

ution:
g TwinCAT Project
=

Solution nam

2023-12-11 | Version: 1.6.1

BEGKHOFF Inhaltsverzeichnis

Inhaltsverzeichnis
I e =11 o Y P 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
L o Yo TN T =Y |V USRS POPPPP 5
1.3 Notes on infOrmation SECUNITYcooi i 7
2 12 o T T o o 8
B T 1T 4o 1 e TN = o Yo = 9
K Tt B (o] o 1Yo 1= (= [OO PPPRPPTR 9
3.1.1 FB_CxGetDeviceldentificationooi i 9
3.1.2 FB_CxGetDeviceldentificatioNEXoooiuiiiiiiiiiiec e 10
3.1.3 FB_CX1010SetWatChadOgveeieeiiiiiiie ettt 10
3.1.4 FB_CX1020SetWatChdOgueveiiiiiiiie ettt e e e nree e e e ennes 11
3.1.5 FB_CX1030SetWatChdOg ... uueeieeiiiiiie ettt e e 12
I o = T 0% (o) {11 SO SSOR PRSPPI 13
3.3 FB_CXReadKBuUSCyCleUpdateTimeeeiiiiiiieiiiiii e e e e e e 14
3.4 FB_CXREAAKBUSEITOLoutiiiiiiiiei ittt e e e e e e e e e e et eeeeeeaeeeeeesnnssbenaeeeeaaaeens 15
3.5 FB_CXSEITEXIDISPIAYeeeiiiiiiiiiieiiee ettt e e e e e ee e e e nnneeeas 16
3.6 FB_CXSetTextDiSPlayUSBcccoiiiiiieiiiiiie ettt e et e e e st e e s s e e e e s anseeeeeesannneeens 17
3.7 FB_CXGetTextDisplayUSB...........oo ettt e e e e e s neneeees 20
N T = T 09 1141 0] F= LU o LSO 21
3.9 FB_CX50T10SEtWatCRAOQGuveeiiieiiiiiiee ettt e ettt e e e sttt e e e e et e e e s nnneteeeeannnneeeas 23
3.10 FB_CX5020SetWatChdOgvveiiiiiiiiiieeiitiiiee ettt e et e e e st e e e e et e e e s ensaaee e s s ensreeeas 24
3.11 FB_CX7000 _LED _ERR ..ottt ittt ettt ettt e e e sttt e e e e ettt e e e sensseeeeeanssseeaesanssneeeesnnnneeens 25
3.12 FB_CX7000 _LED WDeiiiiiitiiiiee ettt ettt e e sttt e e e sttt e e e s nse et e e e anset e e e e sanseneeeesnnnneeeas 26
3.13 FB_CX7080 LED ERR ...oiiiiitiiiie ittt ettt ettt e st e e e et e e e e s e e e s asa s e e e e s nnssseeeesnnnneeeas 27
3.14 FB_CX7080 _LED WDoiiiiiiiiiiie ettt e et e e e ettt e e e e ettt e e e s msa e e e s enssseeaesanssaeeeesnnnneeeas 28
3.15 FB_CX70XX_RW_EEPROM ...ttt ettt e e st e e e s st e e e s s nneeeeas 29
3.16 FB_CX70xx_ResetONBoardlO ...ttt e e e e e e e eeeaeeeeens 30
S U 1o T o T PSP 32
g N (oo T] (1 (= S 32
411 F GetVersioNTCOXSYSIEMuuiiiiiiiiie e 32
4.1.2 F_GetVersionTcSystemMOXT000coiii i 32
4.1.3 F_GetVersionTeSysteMOXT0T0ueiiiiiiiieee e 32
4.1.4 F_GetVersionTCSysteMOCXT020ccooiiiiiieieeeeee e e e e e e e e 33
4.1.5 F_GetVersionTcSysteMOXT030ueiiiiiiiiiee et 33
4.1.6 F_GetVersionTcSysteMOXE0T0uuiiiiiiiiiee et e e e e enee e e e nees 33
4.1.7 F_GetVersionTCSysSteMOCXE020cccceeiieiciiiieiie e ee et a e e e eaeaeaee s 34
4.1.8 F_GetVersionTcSystemMOCXO000cooiiiiiiiieiiiieiee ettt 34
419 F_GetVersionTcSystemMOXO0T0uiiii ittt e e e 34
4110 F _CXSUDTIMESIAMP ..ttt e et e e e ettt e e e e et e e e e e et e e e e s snaraaeaeans 35
4111 F_CXT1000SetWatCNAOG . .eeeiiieiiiiieiiiiiiee ettt et e e e et e e e s snreaea e e e 35
4112 F_CXO000SEtWALCNAOGeeiiiiiiiiieiiiiiiie ettt e e e e s eneeeee e e 36
4113 F_CXO010SetWatCNAOG . ..ceiiieiiiiie ettt e e e saraae e 37
A S 0 £ 1V S 11 (o o PSPPSR 37

TE1000

Version: 1.6.1 3

Inhaltsverzeichnis BEGKHOFF

4.3 F_CXNAVISWILCRUSBottt et e e e et e e et e e e e e nbae e e e e e nbeeeeeeannees 38
44 F _CXBIXX _ADDRESS ...ttt ettt et e araea e e e anres 39
45 F_CX8180_LED_ERR ...ttt ettt e et e e e e e e e et e e e e e nn e e e e e e nraeeeeeannees 39
4.6 F_CXB1BO_LED _WWD ...iiiiiieiiiiiie ettt ettt e e e et e e e et e e e e e nb e e e e e nbeeeeeeannees 40
47 F_CX8190 LED _ERR ...ttt ettt et e e et e e e e et e e e e et e e e s e nnane e e e e e nbaeaeeeannnes 40
4.8 F_CXBT90 _LED _WVD ...iiiiiiieiiiieiee ettt e e et e e e et e e e e ettt e e e e nnb e e e e e enste e e e e e nbaeeeeeannnes 41

LT T 1 - TR 1/ « 1= 42
LT B (o] o X=To 11 (Y PP RRPPPPPP 42
5.1.1 ST_CX_DeviceldentifiCationooiiiiiiiiiii e 42

51.2 ST_CxDeviceldentifiCatioNEX........cc.uueiieiiee e 42

5.2 ST _CX Profil@rSIrUCE.......vueieiiiiii e e e e e e e e e et eeeaaae s 43
5.3 Datatype E_CX8IXO LED......c..ooiiiiiiiiiiie ittt ettt e e e st e e e e e e e e s anaaree e e e nnnneeaas 44

LS [o =TI oo 3 K53 = | £ 45
L0t B o = VA= T3 (o o PSPPSR 45

4 Version: 1.6.1 TE1000

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.

If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

and similar applications and registrations in several other countries.

——
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

TE1000 Version: 1.6.1 5

Foreword BECKHOFF

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:

recommendations for action, assistance or further information on the product.

Version: 1.6.1 TE1000

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found here.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed.

TE1000 Version: 1.6.1 7

https://infosys.beckhoff.com/content/1033/ipc_security/976055435.html
https://infosys.beckhoff.com/content/1033/ipc_security/976057355.html

Introduction

BECKHOFF

2 Introduction

This library contains functions and function blocks that use features on the devices of the Embedded PC CX

series.

Function blocks

Name

Description

FB_CXProfiler [P 13]

Runtime measurement of PLC code via the CPU
counter

FB CXSetTextDisplay [»_16]

Control of the two-line display of the CX1100

FB CXSetTextDisplayUSB [P 17]

Writing and deleting of rows on the two-line display of
the CX 2100 or the EL6090 terminal.

FB CXGetTextDisplayUSB [P 20]

Reading of rows on the two-line display of the CX
2100 or the EL6090 terminal.

FB CXSimpleUps [» 21]

Control of the UPS CX1190-UPS
(device name CX1100-0900, CX1100-0910,
CX1100-0920)

FB_CX5010SetWatchdog [» 23]

Activates a hardware watchdog on the CX5010.

FB CX5020SetWatchdog [P 24]

Activates a hardware watchdog on the CX5020.

Functions

Name

Description

F CXSubTimeStamp [P 35]

Calculates 64-bit subtraction (time A [100 ns] - time B
[100 ns]) as result in ys; only for differences between
0 and 4294967295 us; see link.

F CXNaviSwitch [P 37]

This function converts the value of the CX1100
navigation switch to an enum value.

F CXNaviSwitchUSB [»_38]

This function converts the value of the CX2100
navigation switch to an enum value.

Version: 1.6.1 TE1000

BECKHOFF

Function Blocks

3 Function Blocks

3.1 [obsolete]
3.1.1 FB_CxGetDeviceldentification
FB_CxGetDeviceldentification
—bExecute bBusy —
—tTimeout bErrarf—
nErrorID —
stDevIdent —

The function block FB_CxGetDeviceldentification can be used to read device ID data of the CX.

® Obsolete functionality

1 - Use the FB_GetDeviceldentificationEx from the Tc2_Utilities library.

Inputs
VAR INPUT
bExecute : BOOL;
tTimeout : TIME;
END_ VAR
Name Type Description
bExecute BOOL The command is executed with the rising edge.
tTimeout TIME States the time before the function is canceled.
= Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrorID : UDINT;
stDevIdent : ST CxDeviceIdentification;
END_ VAR
Name Type Description
bBusy BOOL The data are read from the CX. After error-free
execution, the data are in the structure stDevldent if
bBusy = FALSE.
bError BOOL Becomes TRUE, as soon as an error occurs.
nErrorID UDINT Supplies the error number when the bError output is
set.
stDevldent ST_CxDeviceldentification Contains the read device data. (Type:
ST CxDeviceldentification [P 42])

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1

CX (WES7/Win7/Win10: TC RT
x86/x64, WECG6/7 :TC TR x86,
WECT7: TC CE7 ARMV7)

Tc2_SystemCX

TE1000

Version: 1.6.1

BECKHOFF

Function Blocks

3.1.2 FB_CxGetDeviceldentificationEx
FB_CxGetDeviceldentificationEx
—bExecute bBusy —
—tTimeout bErrort—
nErrarlD f—
stDevIdent f—

The function block FB_CxGetDeviceldentificationEx can be used to read device ID data of the CX. The
function block is an extension of the function block FB_CxGetDeviceldentification. The read device data are

stored in the variable stDevildent of type ST CxDeviceldentificationEx [P 42].

® Obsolete functionality
1 » Use the FB_GetDeviceldentificationEx from the Tc2_Ultilities library.

Inputs
VAR _INPUT
bExecute BOOL;
tTimeout TIME;
END VAR
Name Type Description
bExecute BOOL The command is executed with a rising edge.
tTimeout TIME States the time before the function is canceled.
E- Qutputs
VAR OUTPUT
bBusy BOOL;
bError BOOL;
nErrorId UDINT;
stDevIdent : ST CxDevicelIdentificationEx;
END VAR
Name Type Description
bBusy BOOL The data are read from the CX. After error-free
execution, the data are in the structure stDevldent if
bBusy = FALSE.
bError BOOL Becomes TRUE, as soon as an error occurs.
nErrorlD UDINT Supplies the error number when the bError output is
set.
stDevldent ST_CxDeviceldentificationEx Contains the read device data (type:
ST CxDeviceldentificationEx [» 42])

Requirements

PLC libraries to include

Development environment

Target platform

TwinCAT v3.1

CX (WES7/Win7/Win10: TC RT
x86/x64, WEC6/7 :TC TR x86,
WECT7: TC CE7 ARMV7)

Tc2_SystemCX

3.1.3

FB_CX1010SetWatchdog

—tTimeOut
—bEnable

FB_CX1010SetWatchdog

bEnabled
bError

10

Version: 1.6.1

TE1000

BEGKHOFF Function Blocks

The function block FB_CX1010SetWatchdog activates a hardware watchdog on the CX1010. The watchdog
is activated via bEnable = TRUE and the tTimeOut time. The tTimeOut time can be a minimum of 2 seconds
and a maximum of 255 seconds.

Once the watchdog has been activated, the function block instance must be called cyclically at shorter
intervals than tTimeOut, since the CX1010 restarts automatically when tTimeOut has elapsed. The watchdog
can therefore be used to automatically reboot systems, which have entered an infinite loop or where the PLC
has become stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = T#0s.

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX1010 would reboot immediately once tTimeOut has elapsed.

L 4

Inputs
VAR INPUT
tTimeOut : TIME;
bEnable : BOOL;
END_VAR
Name Type Description
tTimeOut TIME Watchdog time, after which a restart is performed.
bEnable BOOL Activating/deactivating the watchdog.
= Outputs
VAR OUTPUT
bEnabled : BOOL;
bError : BOOL;
END VAR
Name Type Description
bEnabled BOOL TRUE = Watchdog is active, FALSE = Watchdog is not active.
bError BOOL Error when activating or deactivating the watchdog.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

3.1.4 FB_CX1020SetWatchdog

FB_CX1020SetWatchdog
—tTimeOut bEnabled —
—bEnable bError—

The function block FB_CX1020SetWatchdog activates a hardware watchdog on the CX1020. The watchdog
is activated via bEnable = TRUE and the tTimeOut time. The tTimeOut time can be a minimum of 2 seconds
and a maximum of 255 seconds.

Once the watchdog has been activated, the function block instance must be called cyclically at shorter
intervals than tTimeOut, since the CX1020 restarts automatically when tTimeOut has elapsed. The watchdog
can therefore be used to automatically reboot systems, which have entered an infinite loop or where the PLC
has become stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = T#0s.

TE1000 Version: 1.6.1 1

Function Blocks BEGKHOFF

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX1020 would reboot immediately once tTimeOut has elapsed.

Inputs

VAR INPUT
tTimeOut : TIME;
bEnable : BOOL;

END VAR
Name Type Description
tTimeOut TIME Watchdog time, after which a restart is performed.
bEnable BOOL Activating/deactivating the watchdog.
= Outputs
VAR OUTPUT
bEnabled : BOOL;
bError : BOOL;
END_ VAR
Name Type Description
bEnabled BOOL TRUE = Watchdog is active, FALSE = Watchdog is not active.
bError BOOL Error when activating or deactivating the watchdog.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

3.1.5 FB_CX1030SetWatchdog

FB_CX1030SetWatchdog
—tTimeOut bEnabled —
—bEnable bError—

The function block FB_CX1030SetWatchdog activates a hardware watchdog on the CX1030. The watchdog
is activated via bEnable = TRUE and the tTimeOut time. The tTimeOut time can be a minimum of 2 seconds
and a maximum of 255 seconds.

Once the watchdog has been activated, the function block instance must be called cyclically at shorter
intervals than tTimeOut, since the CX1030 restarts automatically when tTimeOut has elapsed. The watchdog
can therefore be used to automatically reboot systems, which have entered an infinite loop or where the PLC
has become stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = T#0s.

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX1030 would reboot immediately once tTimeOut has elapsed.

&

Inputs
VAR INPUT
tTimeOut : TIME;
bEnable : BOOL;
END VAR

12 Version: 1.6.1 TE1000

BECKHOFF Function Blocks

Name Type Description
tTimeOut TIME Watchdog time, after which a restart is performed.
bEnable BOOL Activating/deactivating the watchdog.
= Outputs
VAR OUTPUT
bEnabled : BOOL;
bError : BOOL;
END_ VAR
Name Type Description
bEnabled BOOL TRUE = Watchdog is active, FALSE = Watchdog is not active.
bError BOOL Error when activating or deactivating the watchdog.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

3.2 FB_CXProfiler

FB_CXProfiler
—bStart bBusy —
—1{bReset stDataf—

The function block FB_CXProfiler can be used to measure the execution time of the PLC code under
Microsoft Windows CE.

o
1 For other operating systems, refer to the Profiler function block in the Tc2_Utilities library.

Internally, an instance of the GETCPUCOUNTER function block is called. The measurement is started by a
rising edge at the bStart input, and is stopped by a falling edge. The measurements are evaluated internally,
and are then made available for further processing at the stData output in a structure of type

ST CX ProfilerStruct [P 43]. As well as the current, minimum and maximum execution times, the function
block calculates the mean execution time for the last 100 measurements. The times measured are given in

microseconds. The output variable stData.dwMeasureCycle [»_43] provides information about the number of
measurements that have already been carried out. In order to measure the execution time for a specific
segment of the PLC program the measurement must be started by a rising edge at the START input when
the segment to be measured starts, and stopped by a falling edge at the START input at the end of the
segment. All values at the DATA output can be reset if a rising edge is generated at the RESET input at the
same time as the rising edge at START. The measured values in the DATA structure that have already been
determined then become invalid, and are re-calculated when the function block is called again.

Comment:

The determined times can deviate from the actual values, since already for the calls of the
GETCPUCOUNTER function block some time is needed. This time depends on the particular computer, and
is included in the determined times. Task interruptions, e.g. by the NC, are not detected and lead to longer
measuring times.

Inputs

VAR _INPUT
bStart : BOOL;
bReset : BOOL;
END VAR

TE1000 Version: 1.6.1 13

https://infosys.beckhoff.de/content/1031/tcplclib_tc2_utilities/35053195.html

Function Blocks BEGKHOFF

Name Type Description

bStart BOOL A positive edge at this input starts the measurement of the
execution time. A negative edge at this input stops the
measurement, and causes the current, minimum, maximum
and mean execution times to be recalculated. The variable
stData.dwMeasureCycle [P 43] is incremented at the same
time.

bReset BOOL All variables at the DATA output are reset if a rising edge is
generated at this input at the same time as a rising edge at
the START input. The old values for the current, minimum,

maximum and mean execution times are reset, and are re-
calculated for following measurements.

- Outputs

VAR _OUTPUT
bBusy : BOOL;
stData : ST CX ProfilerStruct;

END VAR
Name Type Description
bBusy BOOL This input is set at the start of the measuring procedure, and

remains set until the time measurement has been completed.
Once the bBusy output has been reset, the latest times are
available at the stData output.

stData ST_CX_ProfilerStruct Structure of type ST _CX ProfilerStruct [43] with the
measured times [in ps].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1 CX (WEC6/7: TC RT x86, WEC7: |Tc2_SystemCX
TC CE7 ARMV7)

3.3 FB_CXReadKBusCycleUpdateTime

FB_CXReadKBusCydeUpdateTime
—bExecute bBusy —
—bResat bErmort—

nErrorlD—
nkBusMinUpdateTime —
nkBusMaxUpdateTimel—
nKBusLastUpdateTimef—

The function block can be used for all CXs that are operated directly with K-bus terminals. The function block
determines the update time of the K-bus (K-bus runtime) with min. and max. values. The min. and max.
values can be reset.

The K-bus runs task-synchronously with the PLC program. When the PLC program is completed, the K-bus
is started, the outputs are written and the inputs are read. This means that a complete cycle always consists
of the PLC runtime plus the K-bus update time.

« If the sum of both values is smaller than the set task cycle time, your system runs synchronously and
thus optimally.

« If the sum is greater than your task cycle time, your system is no longer running in real time. It is
recommended to avoid this state.
You fix it by adjusting the task time, revising your PLC program or reducing the size of the K-bus.

14 Version: 1.6.1 TE1000

BEGKHOFF Function Blocks

.*

Inputs
FUNCTION BLOCK FB CXReadKBusCycleUpdateTime
VAR _INPUT
bExecute : BOOL; // rising edge triggers read process
bReset : BOOL; // set TRUE to reset the min. and max. values
END VAR
Name Type Description
bExecute BOOL A positive edge starts the function block.
bReset BOOL Reset of min. and max. values
- Outputs
VAR OUTPUT
bBusy : BOOL; // FB is in process
bError : BOOL; // FB has an error
nErrorID : UDINT; // ADS Error Code
nKBusMinUpdateTime : UINT; // min. cycle update time in [us]
nKBusMaxUpdateTime : UINT; // max. cycle update time in [ps]
nKBusLastUpdateTime : UINT; // last cycle update time in [ps]
END VAR
Name Type Description
bBusy BOOL The function block is active and working.
bError BOOL The function block has an error.
nErrorlD UDINT ADS error code
nKBusMinUpdateTime |[UINT Minimum update time in [us] of the K-bus
nKBusMaxUpdateTime |UINT Maximum update time in [us] of the K-bus
nKBusLastUpdateTime |UINT Last update time in [us] of the K-bus
Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.22 CX (x86, x64, ARM) Tc2_SystemCX (System) >=
34.7.0

3.4 FB_CXReadKBusError

FB_CXReadKBusError
—bEnable bBusy —
bErmor—

nErrorlD —
bKBusErmorp—
nkBusErrorCodet—
nkBusErrorArgument —

The function block enables further information to be read out about a K-bus error in order to obtain a more
precise error image and to enable better diagnosis.

The prerequisite for this is that you use the K-bus terminals directly on your CX.

Example: If you are using the K-bus extension and the cable of the K-bus extension is disconnected, then
you will see a K-bus interruption as nErrorCode = 4 and the position where the K-bus has been
interrupted as nErrorArgument = Position.

Further information on possible K-bus errors using the CX7000 as an example:
https://infosys.beckhoff.com/content/1033/cx7000/9948355595.htmI?id=6787792405096234356

TE1000 Version: 1.6.1 15

https://infosys.beckhoff.com/content/1033/cx7000/9948355595.html?id=6787792405096234356

Function Blocks BEGKHOFF

.*

Inputs

Name Type Description

bEnable BOOL Link this variable to bit 0 of the K-bus state to activate the read process
automatically in case of a K-bus error.
The K-bus State is a Word variable. To mask out bit O of your linked
variables, you can use <VariableName>. 0.

E- Qutputs

Name Type Description

bBusy BOOL The function block is active and working.

bError BOOL The function block has an error.

nErroriD UDINT ADS error code

bKBusError BOOL The K-bus has an error. Further information is available at the outputs
nKBusErrorCode and nKBusErrorArgument.

nKBusErrorCode UINT K-bus error code

nKBusErrorArgument |UINT K-bus error argument

Once the error has been corrected, the K-bus can be restarted via the function block IOF_DeviceReset (from
the PLC library Tc2_loFunctions).

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4024.22 CX (x86, x64, ARM) Tc2_SystemCX (System) >=
3.4.7.0

3.5 FB_CXSetTextDisplay

FB_CXSetTextDisplay
—bExecute bBusy —
—nDevID bErr—
—nMaode nErrarlD —
—stLine
—nCursorPos

The functionblock FB_CXSetTextDisplay can be used to send text messages to the two line display of the
CX1100.

* Inputs
VAR INPUT
bExecute : BOOL;
nDevID : UDINT;
nMode : E_CX1100 DisplayModes;
stLine : STRING (20);
nCursorPos : DWORD;
END VAR
Name Type Description
bExecute BOOL The command is executed with a rising edge.
nDevID UDINT Device ID of the CX1100 device.
nMode E_CX1100_DisplayModes Mode switching
stLine STRING String with 20 characters. This string is shown in the
display with the corresponding command.
nCursorPos DWORD Cursor position. The string is written from this position
in the display.

16 Version: 1.6.1 TE1000

BECKHOFF

Function Blocks

- Outputs
VAR OUTPUT
bBusy : BOOL;
bErr : BOOL;
nErrorID : UDINT;
END VAR
Name Type Description
bBusy BOOL The command is in the process of being transmitted by
ADS. No new command will be accepted as long as
bBusy remains TRUE.
bErr BOOL Becomes TRUE, as soon as an error occurs.
nErroriD UDINT Supplies the error number when the bError output is
set.

E_CX1000_DisplayModes :

E CX1000 DisplayModes : (

e CX1100 DisplayNoAction :

e CX1100 DisplayOn := 1,
e CX1100 DisplayOff,
e CX1100 CursorOn,

e CX1100

CursorOff,

e CX1100 CursorBlinkOn,
e CX1100 CursorBlinkOff,
e CX1100 BackLightOn,

e CX1100 BackLightOff,

e CX1100 ClearDisplay,

e CX1100 _WriteLinel,

)i

e CX1100 WriteLine2

e_CX1100_DisplayNoAction: no action.

e_CX1100_DisplayOn: switch on the display.

e_CX1100_DisplayOff: switch off the display.

e_CX1100_CursorOn: switch on the cursor.

e_CX1100_CursorOff: switch off the cursor.

e_CX1100_CursorBlinkOn: switch on the cursor blinking.

e_CX1100_CursorBlinkOff: switch off the cursor blinking.

e_CX1100_BackLightOn: switch on the backlight.

e_CX1100_BackLightOff: switch off the backlight.

e_CX1100_ClearDisplay: clear display.

e_CX1100_WriteLine1: write the first line.

e_CX1100_WriteLine2: write the second line.

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT v3.1.0

CX (x86) Tc2_SystemCX

3.6 FB_CXSetTextDisplayUSB

The function block is used for the CX2100 and for the EL6090 terminal. When the function block is called,
only the matching NetID and port number for the respective device has to be allocated.

TE1000

Version: 1.6.1 17

Function Blocks

BECKHOFF

nPort: sNetID
CX2100 Is displayed in TwinCAT on the ESB Is the NetID of the PC or is left blank (*).
device tab.
EL6090 Is the EtherCAT address of the terminal |Is the EtherCAT address of the EtherCAT
master.
FB_CXSetTextDisplayUSB
—bExecute bBusy —
—sNetID bErrarf—
—nPort nErroriD —
—leMode
—sLinel
—{sLine2
—nCursorPosx
—nCursorPosyY

The function block FB_CXSetTextDisplayUSB is used to write and delete messages on the two-line display.
The cursor is controlled on the display by switching it on and off or by making it flash. The function block is
also used to switch the backlight on or off.

* Inputs
VAR INPUT
bExecute : BOOL;
sNetID : T _AmsNetID;
nPort : T _AmsPort;
eMode : E CX2100 DisplayModesWr;
sLinel : STRING (80) ;
sLine?2 : STRING (80) ;
nCursorPosX : USINT;
nCursorPosy : USINT;
END VAR
Name Type Description
bExecute BOOL The command is executed with a rising edge.
sNetID T_AmsNetID AMSNEetID of the device
nPort T_AmsPort AmsPort of the device
eMode E_CX2100_DisplayModesRd Mode switching
sLine1 STRING String with 80 characters. This string is displayed
with the corresponding command in the first line. For
strings with more than 16 characters, the text is
displayed as scrolling text.
sLine2 STRING String with 80 characters. This string is displayed
with the corresponding command in the second line.
For strings with more than 16 characters, the text is
displayed as scrolling text.
nCursorPosX |USINT Cursor position on the X axis. The string is written
from this position in the display.
nCursorPosY |[USINT Cursor position on the Y axis. The string is written
from this position in the display.
= Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrorID : UDINT;
END VAR

18

Version: 1.6.1 TE1000

BECKHOFF

Function Blocks

Name Type Description

bBusy BOOL The command is in the process of being transmitted
by ADS. No new command will be accepted as long
as bBusy remains TRUE.

bError BOOL Becomes TRUE, as soon as an error occurs.

nErrorlD UDINT Supplies the error number when the bError output
is set.

E_CX2100_DisplayModesWr:

E CX2100 DisplayModesWr : (

eCX2100 DisplayNoActionWr :

eCX2100 CursorOn,
eCX2100 CursorOff,
eCX2100_ CursorBlinkOn,
eCX2100_ CursorBlinkOff,
eCX2100 BackLightOn,
eCX2100 BackLightOff,
eCX2100 ClearDisplay,
eCX2100 WriteLinel,
eCX2100 WriteLine2,
eCX2100_WriteLines,
eCX2100_ CursorPosX,
eCX2100_ CursorPosY,
eCX2100_CursorPosXY

’

eCX2100_DisplayNoActionWr: no action.

eCX2100_CursorOn: switch on the cursor.

eCX2100_CursorOff: switch off the cursor.

eCX2100_CursorBlinkOn: switch on the cursor blinking.

eCX2100_CursorBlinkOff: switch off the cursor blinking.

eCX2100_BackLightOn: switch on the backlight.

eCX2100_BackLightOff: switch off the backlight.

eCX2100_ClearDisplay: clear display.

eCX2100_WriteLine1: write the first line.

eCX2100_WriteLine2: write the second line.

eCX2100_WriteLines: write lines.

eCX2100_CursorPosX: cursor position on the X axis.

eCX2100_CursorPosY: cursor position on the Y axis.

eCX2100_CursorPosXY: cursor position on the XY axis.

Requirements when using the EL6090

Development environment

Target platform PLC libraries to include

TwinCAT v3.1

PC or CX (WES7/Win7/Win10: TC |Tc2_SystemCX
RT x86/x64, WEC6/7: TC RT x86,
WECT7: TC CE7 ARMV7, TC/BSD:
TC RT x64, TC OS ARMT2)

TE1000

Version: 1.6.1 19

Function Blocks

BECKHOFF

Requirements when using the CX2100

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1

CX (WES7/Win7/Win10: TC RT
x86/x64, WECG6/7: TC RT x86, TC/

Tc2_SystemCX

BSD: TC RT x64)

3.7

FB_CXGetTextDisplayUSB

The function block is used for the CX2100 and for the EL6090 terminal. When the function block is called,
only the matching NetID and port number for the respective device has to be allocated.

nPort: sNetID
CX2100 Is displayed in TwinCAT on the ESB Is the NetID of the PC or is left blank (*).
device tab.
EL6090 Is the EtherCAT address of the terminal |Is the EtherCAT address of the EtherCAT
master.
FB_CXGetTextDisplayUSB
—bExecute bBusy —
—1{sMetID bErrorf—
—nPort nErrorlD F—
—leMaode sLinel —
sLine2 —
nCursorPosx—
nCursorPosY —
nCursorMode —
nBacklight —

The function block FB_CXGetTextDisplayUSB is used to read the lines on the display. In addition, the cursor
status is read, i.e. cursor switched on or off, or is flashing. The function block also indicates whether the
backlight is switched on or off.

.-*-

Inputs
VAR _INPUT
bExecute : BOOL;
sNetID : T _AmsNetID;
nPort : T AmsPort;
eMode : E CX2100 DisplayModesRd;
END VAR
Name Type Description
bExecute BOOL The command is executed with a rising edge.
sNetID T_AmsNetID AMSNEetID of the device
nPort T_AmsPort AmsPort of the device
eMode E_CX2100_DisplayModesRd Mode switching
E- Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrorID : UDINT;
sLinel : STRING (80) ;
sLine?2 : STRING (80) ;
nCursorPosX : USINT;
nCursorPosY : USINT;
nCursorMode : USINT;
nBacklight : USINT;
END VAR
20 Version: 1.6.1 TE1000

BECKHOFF

Function Blocks

Name Type Description

bBusy BOOL The command is in the process of being transmitted
by ADS. No new command will be accepted as long
as bBusy remains TRUE.

bError BOOL Becomes TRUE, as soon as an error occurs.

nErrorlD UDINT Supplies the error number when the bError output
is set.

sLine1 STRING This string is read with the corresponding command.

sLine2 STRING This string is read with the corresponding command.

nCursorPosX |USINT Cursor position on the X axis

nCursorPosY |[USINT Cursor position on the Y axis

nCursorMode |[USINT Cursor mode

nBacklight USINT Backlight

E_CX2100_DisplayModesRd:

E _CX2100 DisplayModesRd : (
eCX2100 DisplayNoActionRd
eCX2100 ReadCursorInfo,
eCX2100_ReadBackLight,
eCX2100_ReadLinel,
eCX2100 ReadLine2,
eCX2100_ ReadLines

=0,

F
eCX2100_DisplayNoActionRd: no action.
eCX2100_ReadCursorinfo: read values via the cursor.
eCX2100_ReadBackLight: read backlight values.
eCX2100_ReadLine1: read values from the first line.
eCX2100_ReadLine2: read values from the second line.

eCX2100_ReadLines: read values from lines.

Requirements when using the CX2100

Development environment Target platform

PLC libraries to include

TwinCAT v3.1 CX (WES7/Win7/Win10: TC RT
x86/x64, WEC6/7: TC RT x86, TC/

BSD: TC RT x64)

Tc2_SystemCX

Requirements when using the EL6090

Development environment Target platform

PLC libraries to include

TwinCAT v3.1 PC or CX (WES7/Win7/Win10: TC
RT x86/x64, WEC6/7: TC RT x86,
WECT7: TC CE7 ARMV7, TC/BSD:

TC RT x64, TC OS ARMT2)

Tc2_SystemCX

3.8 FB_CXSimpleUps

FB_CXSimpleUps
—bDIPDisable bPowerFailuref—
—iDischargelevel bShutdownActivef—
—tDelay bUpsReady—
b24VInOK|—
bHolding—
tTimeUntilShutdown —
elpsState|—
TE1000 Version: 1.6.1 21

Function Blocks

BECKHOFF

The function block FB_CXSimpleUps can be used on the CX1000 or CX1020 in order to activate the UPS
CX1190-UPS from the PLC. In this case the UPS settings must be deactivated in the TwinCAT System

Manager.
Solution Explorer ves = x [
fl'r| - a K = General | CX1190 UPS
Search Solution Explorer (Ctrl+) P~ [Enable Automatic System Shutdown
fa] Solution 'UPS' (1 project) ‘wait Time (5] 10
4 giues ' -
b @l SvsTEM [No Abor
MOTION [Ovenide DIP Switch
Of PLC : S :
— DIF Switch: 0 =
SAFETY o
E] C++
4 F Vo
4 "L Devices
4 2 Devicel (CX1100)
*B Image
B Inputs
b Outputs
4 { Box2 (CX1190-UPS)
P Inputs
#1 24V State
#| Charge State
4 [y Outputs
- Control
- DIP Ctrl
ﬁj Mappings
* Inputs
VAR INPUT
bDIPDisable : BOOL;
iDischargeLevel : USINT;
tDelay : TIME;
END VAR
Name Type Description
bDIPDisable BOOL If bDIPDIsable = TRUE, then the position of the charge level switch
on the UPS is ignored and iDischargeLevel is used instead.
iDischargeLevel [USINT Discharge switch-off threshold: 0 = 100% (maximum discharge), 9 =
90%, 8 = 80%, ..., 2 = 20%, 1 = 10% (minimum discharge).
tDelay TIME Holding time before the shutdown is carried out. It is used to bridge
short power failures (up to 10 s).
After exceeding the holding time, the holding period is aborted.
Internally the FB waits for 2.5 s.
If the voltage has returned by then, the FB returns to normal
operation, otherwise the system is shut down. If the voltage returns
during or after shutdown, the CX automatically reboots after
discharging and recharging the UPS.
E- Qutputs
VAR OUTPUT
bPowerFailure : BOOL;
bShutdownActive : BOOL;
bUpsReady : BOOL;

22

Version: 1.6.1 TE1000

BECKHOFF Function Blocks

024VINnOK : BOOL;
bHolding : BOOL;
tTimeUntilShutdown : TIME;
eUpsState : E_UPS_STATE;
END VAR
Name Type Description
bPowerFailure |BOOL Becomes TRUE when a power failure of the supply voltage is
detected, becomes FALSE when the input voltage returns.
bShutdownActiv BOOL Becomes TRUE as soon as the stop or shutdown is executed.
e
bUpsReady BOOL Becomes TRUE as soon as the 24 V input voltage is available.
b24VInOK BOOL Becomes TRUE as soon as the UPS provides the output voltage.
bHolding BOOL Becomes TRUE as soon as a failure in the supply voltage has been
detected, and the holding time has not yet elapsed.
tTimeUntilShutd | TIME Indicates the holding time remaining until shutdown.
own
eUpsState E_UPS_STATE Displays the status of the UPS [UNDEF | CHARGING | CHARGED |
DISCHARGE | DISCHARGE_RESTART | OUTPUT_OFF |
OVERLOAD].
Configuration variables
VAR CONFIG
Ii24VState AT $I* : BYTE;
IiChargeState AT $I* : USINT;
QiControl AT %Q* : BYTE;
QiDipControl AT %Q* : USINT;
END VAR
Name Type Description
li24VState BYTE Must be linked with input '24V State', see picture above.
liChargeState |USINT Must be linked with input 'Charge State', see picture above.
QiControl BYTE Must be linked with output 'Contol’, see picture above.
QiDipControl USINT Must be linked with output 'DIP Ctrl', see picture above.
Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

o
1 For other CX and PC please refer to the function block FB_S SUPS_BAPI in the Tc2 SUPS library.

3.9 FB_CX5010SetWatchdog

FB_CX5010SetWatchdog
—{tTimeOut bEnabled —
—1bEnable bErrorf—

The function block FB_CX5010SetWatchdog activates a hardware watchdog on the CX5010. The watchdog
is activated via bEnable = TRUE and the tTimeOut time. The tTimeOut time can be a minimum of 2 seconds
and a maximum of 255 seconds.

Once the watchdog has been activated, the function block instance must be called cyclically at shorter
intervals than tTimeOut, since the CX5010 restarts automatically when tTimeOut has elapsed. The watchdog
can therefore be used to automatically reboot systems, which have entered an infinite loop or where the PLC
has become stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = T#0s.

TE1000 Version: 1.6.1 23

https://infosys.beckhoff.com/content/1031/tcplclib_tc2_sups/27021601480747275.html

Function Blocks BEGKHOFF

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX5010 would reboot immediately once tTimeOut has elapsed.

Inputs

VAR INPUT
tTimeOut : TIME;
bEnable : BOOL;

END VAR
Name Type Description
tTimeOut TIME Watchdog time, after which a restart is performed.
bEnable BOOL Activating/deactivating the watchdog.
= Outputs
VAR OUTPUT
bEnabled : BOOL;
bError : BOOL;
END_ VAR
Name Type Description
bEnabled BOOL TRUE = Watchdog is active, FALSE = Watchdog is not active.
bError BOOL Error when activating or deactivating the watchdog.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

3.10 FB_CX5020SetWatchdog

FB_CX5020SetWatchdog
—{tTimeOut bEnabled —
—1bEnable bErrorf—

The function block FB_CX5020SetWatchdog activates a hardware watchdog on the CX5020. The watchdog
is activated via bEnable = TRUE and the tTimeOut time. The tTimeOut time can be a minimum of 2 seconds
and a maximum of 255 seconds.

Once the watchdog has been activated, the function block instance must be called cyclically at shorter
intervals than tTimeOut, since the CX5020 restarts automatically when tTimeOut has elapsed. The watchdog
can therefore be used to automatically reboot systems, which have entered an infinite loop or where the PLC
has become stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = T#0s.

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX5020 would reboot immediately once tTimeOut has elapsed.

#

Inputs
VAR _INPUT
tTimeOut : TIME;
bEnable : BOOL;
END VAR

24 Version: 1.6.1 TE1000

BECKHOFF

Function Blocks

Name Type Description
tTimeOut TIME Watchdog time, after which a restart is performed.
bEnable BOOL Activating/deactivating the watchdog.
= Outputs
VAR OUTPUT
bEnabled : BOOL;
bError : BOOL;
END_ VAR
Name Type Description
bEnabled BOOL TRUE = Watchdog is active, FALSE = Watchdog is not active.
bError BOOL Error when activating or deactivating the watchdog.

Requirements

PLC libraries to include
Tc2_SystemCX

Development environment
TwinCAT v3.1.0

Target platform
CX (x86)

3.11 FB_CX7000 LED ERR

FE_CX7000_LED_ERR

—elED bErrar f—
—tFlashingTimer1 nErrarID F—
—tFlashingTimeP2

The function block allows the use of the ERR LED on the CX7000. The function block is immediately active
when it is called and controls the ERR LED via the mode.

The ERR LED of the CX7000 can be used to make the states of the PLC program, communication or other
indications externally visible.

The ERR LED has two colors, red and green. If both colors are switched on, the LED lights up yellow. You
can either turn the LED on or make it flash.

® User-specific function of the LEDs

Due to the user-specific usability of the LEDs, Beckhoff Support cannot know the meaning of a
flashing code and cannot support the customer.

* Document the function of the LEDs for your customers.

.-'-

Inputs
VAR _INPUT
bEnable : BOOL; // set TRUE to enable LED handling; Reset in order to re
set error
eLED : E _CX7000 LED; // LED flashing mode
tFlashingTimeP1l : TIME:=T#250MS; // Flashing Time >=200ms first pulse
tFlashingTimeP2 : TIME:=T#250MS; // Flashing Time >=200ms second pulse
END_ VAR
Name TYPE Description
bEnable BOOL The function block controls the LED as soon as and as long
as the input is TRUE.
eLED E_CX7000_LED LED mode
tFlashingTimeP1 TIME Time for the first pulse (>= 200 ms)
tFlashingTimeP2 TIME Time for the second pulse (>= 200 ms)

TE1000

Version: 1.6.1 25

Function Blocks BEGKHOFF

- Outputs
VAR_OUTPUT
bError : BOOL; // error flag
nErrorID : UDINT; (* ADS Error ID. If nErrorID=DEVICE SRVNOTSUPP probably the image
version need to be updated to support this feature. *)
END VAR
Name Type Description
bError BOOL The function block has an error.
nErrorlD UDINT ADS Error Code
Example:
DEVICE_SRVNOTSUPP: the image version of the CX7000
does not support this feature. An update (>=35695) is
necessary.
Sample:
VAR

BK9000_BoxState AT %I* : WORD;
fPErrorLED : FB CX7000 LED ERR;
END VAR

IF BK9000 BoxState=0 THEN
fbErrorLED.eLED :=E CX7000 LED.LED flashing GREEN OFF;
ELSE
fbErrorLED.eLED :=E CX7000 LED.LED flashing RED OFF;
END IF
fbErrorLED (
bEnable := TRUE,
tFlashingTimePl :
tFlashingTimeP2 : 0
bError => ,
nErrorID =>);

Function block can only be used for CX7000

The function block can and must only be used for the CX7000.

3.12 FB_CX7000_ LED WD

FE_CZ7000_LED WD
—elED bErrar f—
—tFlashingTirmerP 1 nErrariD f—
—tFlashingTimer2

The function block allows the use of the WD LED on the CX7000. The function block is immediately active
with the call and controls the WD LED via the mode.

You can use the WD LED of the CX7000 to make the states of the PLC program, communication or other
indications externally visible. The WD LED has two colors, red and green. If both colors are switched on, the
LED lights up yellow. You can turn on the LED and/or make it flash.

® User-specific function of the LEDs

Due to the user-specific usability of the LEDs, Beckhoff Support cannot know the meaning of a
flashing code and cannot support the customer.

* Document the function of the LEDs for your customers.

#

Inputs
VAR INPUT

bEnable : BOOL; // set TRUE to enable LED handling; Reset in order to re
set error

eLED : E_CX7000_LED; // LED flashing mode

26 Version: 1.6.1 TE1000

BECKHOFF

Function Blocks

tFlashingTimeP1 : TIME:=T#250MS; // Flashing Time >=200ms first pulse
tFlashingTimeP2 : TIME:=T#250MS; // Flashing Time >=200ms second pulse
END_ VAR
Name Type Description
bEnable BOOL The function block controls the LED as soon as and as long
as the input is TRUE.
eLED E_CX7000_LED LED mode
tFlashingTimeP1 TIME Time for the first pulse (>= 200 ms)
tFlashingTimeP2 TIME Time for the second pulse (>= 200 ms)
E- Outputs
VAR OUTPUT
bError : BOOL; // error flag
nErrorID : UDINT; (* ADS Error ID. If nErrorID=DEVICE SRVNOTSUPP probably the image v
ersion need to be updated to support this feature. *)
END VAR
Name Type Description
bError BOOL The function block has an error.
nErrorlD UDINT ADS Error Code

Example:

DEVICE_SRVNOTSUPP: the image version of the CX7000
does not support this feature. An update (>=35695) is
necessary.

NOTICE

Function block can only be used for CX7000
The function block can and must only be used for the CX7000.

3.13 FB_CX7080_LED ERR

FB_CX7080_LED_ERR

—bEnahle
—eLED

bErrorp—
nErroriD p—

You can use the WD/ERR LEDs of the CX7080 to make the states of the PLC program, communication or
other indications externally visible.

The function block enables the ERR LED of the CX7080 to be set. The LED has two colors, red and green. If
both colors are switched on, the LED lights up yellow. You therefore have three colors at your disposal. You
can turn on the LED and/or make it flash.

To use the LED, the corresponding COM port must be included in the configuration. The RS485 interface is
linked to the ERR LED.

® User-specific function of the LEDs

Due to the user-specific usability of the LEDs, Beckhoff Support cannot know the meaning of a
flashing code and cannot support the customer.

* Document the function of the LEDs for your customers.

*# Inputs
VAR INPUT
bEnable : BOOL; // set TRUE to enable LED handling; Reset in order to reset e
rror
eLED : E_CX7080_LED; // LED flashing mode
END_ VAR
TE1000 Version: 1.6.1 27

Function Blocks BEGKHOFF

Name Type Description
bEnable BOOL The function block controls the LED as soon as and as long as the
input is TRUE.
eLED E_CX7080_LED LED mode
= Outputs
VAR OUTPUT
bError : BOOL; // error flag
nErrorID : UDINT; (* ADS Error ID.

If nErrorID=DEVICE NOTFOUND probably the COM port is not set in the TC config.
If nErrorID=DEVICE SRVNOTSUPP probably the image version need to be updated to support this feature.
*)

END_VAR
Name Type Description

bError BOOL The function block has an error.
nErrorlD UDINT ADS Error Code

Examples:
DEVICE_NOTFOUND: probably the COM port is not included in the
TwinCAT system configuration.

DEVICE_SRVNOTSUPP: the image version of the CX7080 does not
support this feature. An update (>=35695) is necessary.

NOTICE

Function block can only be used for CX7080
The function block can and must only be used for the CX7080.

3.14 FB_CX7080 LED WD

FB_CX7080_LED_WD
—bEnahle bErrorf—
—eLED nErroriD p—

You can use the WD/ERR LEDs of the CX7080 to make the states of the PLC program, communication or
other indications externally visible.

The function block enables the WD LED of the CX7080 to be set. The LED has two colors, red and green. If
both colors are switched on, the LED lights up yellow. You therefore have three colors at your disposal. You
can turn on the LED and/or make it flash.

To use the LED, the corresponding COM port must be included in the configuration. The RS232 interface is
linked to the WD LED.

® User-specific function of the LEDs

Due to the user-specific usability of the LEDs, Beckhoff Support cannot know the meaning of a
flashing code and cannot support the customer.

* Document the function of the LEDs for your customers.

&

Inputs
VAR INPUT

bEnable : BOOL; // set TRUE to enable LED handling; Reset in order to reset e
rror

eLED : E_CX7080 LED; // LED flashing mode
END VAR

28 Version: 1.6.1 TE1000

BEGKHOFF Function Blocks

Name Type Description
bEnable BOOL The function block controls the LED as soon as and as long as the
input is TRUE.
eLED E_CX7080_LED LED mode
= Outputs
VAR OUTPUT
bError : BOOL; // error flag
nErrorID : UDINT; (* ADS Error ID.

If nErrorID=DEVICE NOTFOUND probably the COM port is not set in the TC config.
If nErrorID=DEVICE SRVNOTSUPP probably the image version need to be updated to support this feature.
*)

END_VAR
Name Type Description

bError BOOL The function block has an error.
nErrorlD UDINT ADS Error Code

Examples:

DEVICE_NOTFOUND: probably the COM port is not included in the
TwinCAT system configuration.

DEVICE_SRVNOTSUPP: the image version of the CX7080 does not
support this feature. An update (>=35695) is necessary.

NOTICE

Function block can only be used for CX7080
The function block can and must only be used for the CX7080.

3.15 FB_CX70xx_RW_EEPROM

FB_CX70xx_RW_EEPROM
—bExecute bBusy |—
—{eMode bErrorp—
—pSrcBuf nErroriD —
—chSrcBufSize nDataSizeEEPROM f—
—pDstBuf nwritesCydest—
—cbDstBufSize

The function block allows a maximum of 120 bytes to be written to the EEPROM (hardware) of the CX70xx.
The EEPROM may be written to a maximum of 200 times. The memory is intended for one-time writing.

This function block can be used to personalize the CX70xx. That means, in the simplest case you write your
company ID into the EEPROM. When starting the CX70xx program, read the contents of the memory. For
example, if it is empty, you cannot continue to run the program because it is no longer your original CX70xx
that you programmed.

If you want to exchange a CX70xx for a new device, the EEPROM must be written again by you.

* Inputs

VAR INPUT
bExecute : BOOL; // rising edge triggers process with selected mode
eMode : E CX70xx EEPROM Mode; // select RW mode
pSrcBuf : PVOID; // pointer to WRITE EEPROM data buffer
cbSrcBufSize : UINT; // size of WRITE EEPROM data buffer (max.120 Bytes)
pDstBuf : PVOID; // pointer to READ EEPROM data buffer
cbDstBufSize : UINT; // max.size of READ EEPROM data buffer (max.120 Bytes)

END VAR

TE1000 Version: 1.6.1 29

Function Blocks BEGKHOFF

Name Type Description
bExecute BOOL A positive edge starts the function block.
eMode E_CX70xx_ |ReadOnly: EEPROM read
EEPROM_M |WriteOnly: EEPROM write
ode WriteAndRead: EEPROM write and read
pSrcBuf PVOID Pointer to the data buffer to be written.
cbSrcBufLen UINT Length of data to be written (max. 120 bytes)
pDstBuf PVOID Pointer to the data buffer into which the contents of the EEPROM
are to be copied.
cbDstBufLen UINT Length of data to be read. (maximum 120 bytes)
When reading, the length information must be greater than or
equal to the data contained in the EEPROM.

- Outputs

VAR _OUTPUT
bBusy : BOOL; // FB is working
bError : BOOL; // FB has an Error
nErrorID : UDINT; (* Error Code

If nErrorID=DEVICE INVALIDACCESS the EEPROM write cycles reached max. value.

If nErrorID=DEVICE INVALIDPARM the given pointer parameter is invalid/null.

If nErrorID=DEVICE_ INVALIDSIZE the given buffer size is too small or too big.

If nErrorID=DEVICE SRVNOTSUPP probably the image version need to be updated to support this feat
ure. *)

nDataSizeEEPROM : UINT; // current size of (read) EEPROM data in bytes (max.120 Bytes)
nWritesCycles : UINT; // already performed EEPROM write cycles (maximum possible = 20
0)
END_ VAR
Name Type Description
bBusy BOOL The function block is active and working.
bError BOOL The function block has an error.
nErrorlD UDINT ADS Error Code
Examples:

DEVICE_INVALIDACCESS: the EEPROM write cycles have
reached the maximum value. The EEPROM cannot be rewritten.

DEVICE_INVALIDPARM: the allocated pointers are invalid/NULL.

DEVICE_INVALIDSIZE: the allocated buffer size is too small or
too large.

DEVICE_SRVNOTSUPP: the image version of the CX70xx does
not support this feature. An update (>=35695) is necessary.

nDataSizeEEPROM UINT Current size in bytes of the read EEPROM data
nWritesCycles UINT Number of write operations still available

3.16 FB_CX70xx_ResetOnBoardIlO

FB_CX70xx_ResetOnBoardIO
—{bExecute bBusy —
—shetld bErrorg—
—tTimeout nErrorID p—

The function block allows to execute a reset from the OnBoard I/O of the CX70xx Embedded PC.

Typical use case is after an error in the communication to the OnBoard 1/0s (CX7028). Such an error occurs
when the power supply (Up) of the OnBoard 1/Os is interrupted.

State of the I/0s

Outputs that are still set in the process image are switched on again immediately after a reset.

30 Version: 1.6.1 TE1000

BEGKHOFF Function Blocks

Further details on the OnBoard I/O can be found in the documentation of the CX70xx Embedded PC.

* Inputs
VAR INPUT
bExecute : BOOL; // rising edge triggers process
sNetId : T AmsNetID; // BAMS Net ID of the OnBoard IOs
tTimeout : TIME := DEFAULT ADS_ TIMEOUT; // maximum time allowed for execution of this ADS c
ommand
END VAR
Name Type Description
bExecute BOOL A positive edge starts the function block.
sNetld T_AmsNetID AMS Net ID of the OnBoard 1/Os
tTimeout TIME States the length of the timeout that may not be exceeded by execution of
the ADS command.
= Outputs
VAR OUTPUT
bBusy : BOOL; // FB is working
bError : BOOL; // FB has an Error
nErrorID : UDINT; (* Error Code. If nErrorID=DEVICE SRVNOTSUPP probably the image versio
n need to be updated to support this feature. *)
END VAR
Name Type Description
bBusy BOOL The function block is active and working.
bError BOOL The function block has an error.
nErrorlD UDINT ADS Error Code
Examples:
DEVICE_SRVNOTSUPP: the image version of the CX70xx does not
support this feature. An update (>=47912) is necessary.
Sample:
FUNCTION BLOCK FB Test ResetOnboardIO
VAR
AMSNetID : T_AmsNetIdArr; // link to the AMS Net ID of the OnBoard IOs
State : WORD; // link to the State of the OnBoard IOs
bReset : BOOL; // if Ready to Reset you can reset the OnBoard IOs
fbReset : FB CX70xx ResetOnBoardIO;
END VAR

IF State<>8 AND NOT State.8 AND State.4 THEN // if OnBoard IO device signals an error and is not OP
but present

bReset := TRUE;
ELSE

bReset := FALSE;
END IF

IF NOT fbReset.bBusy AND bReset THEN

fbReset (bExecute:=TRUE, sNetId:=F CreateAmsNetId (AMSNetID)) ;
ELSE

fbReset (bExecute:=FALSE) ;
END IF

TE1000 Version: 1.6.1 31

https://infosys.beckhoff.com/content/1033/cx7000/981352551510374264587.html?id=6432051110933484151

Functions

BECKHOFF

4 Functions

4.1 [obsolete]

411 F_GetVersionTcCXSystem

F GetVersionTeldystemC
nWersionElement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:
* 1 : major number;
e 2 : minor number;
* 3 :revision number;

4.1.2 F_GetVersionTcSystemCX1000

F GetVersionTedystemCXl1000

nverzsionElement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX1000 : UINT

VAR_INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:
* 1 : major number;
e 2 :minor number;
* 3 : revision number;

41.3 F_GetVersionTcSystemCX1010

F GetVersionToe3ystemCE1010
nWersionE lement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX1010 : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:

32 Version: 1.6.1

TE1000

BECKHOFF

Functions

* 1 : major number;
e 2 :minor number;
e 3 :revision number;

41.4 F_GetVersionTcSystemCX1020

F GetVersionTeldystemCI1020
nVerzsionklement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX1020 : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:
* 1 : major number;
* 2 : minor number;
» 3 : revision number;

41.5 F_GetVersionTcSystemCX1030

F GetVersionTelystemCEi030

nWVersionklement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX1030 : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:
* 1 : major number;
* 2 : minor number;
* 3 : revision number;

4.1.6 F_GetVersionTcSystemCX5010

F GetVersionTel3ystemCX5010

nWVersionE lement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX5010 : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:

* 1 : major number;

TE1000 Version: 1.6.1

33

Functions BEGKHOFF

e 2 :minor number;
* 3 :revision number;

4.1.7 F_GetVersionTcSystemCX5020

F GetVersionTel3ystemCX5020
nWVersionElement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX5020 : UINT

VAR_INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:
* 1 : major number;
e 2 :minor number;
* 3 : revision number;

4.1.8 F_GetVersionTcSystemCX9000

F GetVersionTe3ystemCX23000
—nWersionElement F GetVersionTeSystemCEQOO00D—

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX9000 : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:

* 1 : major number;
e 2 :minor number;
* 3 :revision number;

41.9 F_GetVersionTcSystemCX9010

F GetVersionTedystemCE2010
nVerzionE lement

The function returns library version info.

FUNCTION F_GetVersionTcSystemCX9010 : UINT

VAR _INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element:

34 Version: 1.6.1 TE1000

BEGKHOFF Functions

* 1 : major number;
e 2 :minor number;
e 3 :revision number;

4.1.10 F_CXSubTimeStamp

@ For subtraction TwinCAT3.1 also offers 64-bit data types (LINT/ULINT, LWORD) that can be
executed directly (A-B) or there are TC2-compatible functions for 64-bit operations that should be
1 used as an alternative to F_CXSubTimeStamp.

F_CXSubTimeStamp
—nTimeStampLoDW_A F_CXSubTimeStamp—
—nTimeStampHIDW _A
—nTimeStampLoDW_B
—nTimeStampHIDW _B

The function F_CXSubTimeStamp executes a 64-bit subtraction time stamp A - time stamp B and converts
the result to us. The required 64-bit time stamps with 100 ns resolution can be read from the system with the
function block GETCPUCOUNTER.

If the difference between time stamp A and time stamp B is negative or greater than 4294967295 us, the
maximum value 4294967295 us is returned. This corresponds to 71 minutes, 34 seconds, 967 milliseconds
and 295 microseconds. In such cases the function UInt64Sub64() from TcUltilities.lib can be used to execute
a complete 64-bit subtraction with 64-bit result in [100 ns].

FUNCTION F_CXSubTimeStamp: UDINT

VAR INPUT
nTimeStampLoDW A : UDINT; (* 2*32 bit time stamp A: low DWORD *)
nTimeStampHiDW A : UDINT; (* 2*32 bit time stamp A: high DWORD *)
nTimeStampLoDW B : UDINT; (* 2*32 bit time stamp B: low DWORD *)
nTimeStampHiDW B : UDINT; (* 2*32 bit time stamp B: high DWORD *)
END_END VAR

nTimeStampLoDW_A: lower 32bit of time stamp A.
nTimeStampHiDW_A: upper 32bit of time stamp A.
nTimeStampLoDW_B: lower 32bit of time stamp B.
nTimeStampHiDW_B: upper 32bit of time stamp B.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1 CX (WES7/Win7/Win10: TC RT Tc2_SystemCX
x86/x64, WECG6/7 :TC TR x86,
WECT7: TC CE7 ARMV7)

4.1.11 F_CX1000SetWatchdog

F_CX1000SetWatchdog
—tTimeOut F_CX1000Setwatchdogf—
—1bEnable

The function F_CX1000SetWatchdog activates a hardware watchdog on the CX1000. The watchdog is
activated via bEnable = TRUE and the tTimeout time. The tTimeout time can be a minimum of several PLC
task cycles (multiple of the call time of the function F_CX1000SetWatchdog) and a maximum of 65 s and
535 ms.

TE1000 Version: 1.6.1 35

Functions BEGKHOFF

Once the watchdog has been activated, the function must be called cyclically at shorter intervals than
tTimeOut, since the CX1000 restarts automatically when tTimeOut has elapsed. The watchdog can therefore
be used to automatically reboot systems, which have entered an infinite loop or where the PLC has become
stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = 0.

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX1000 would reboot immediately once the timeout has elapsed.

FUNCTION F_CX1000SetWatchdog: BOOL

VAR INPUT
tTimeout : TIME;
bEnable : BOOL;
END VAR
tTimeOut: Watchdog time, if expired a reboot is automatically executed.

bEnable: Activate or deactivate the watchdog.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

4.1.12 F_CX9000SetWatchdog

F_CX9000SetWatchdog
—tTimeOut F_CX9000SetWatchdogf—
—bEnable

The function F_CX9000SetWatchdog activates a hardware watchdog on the CX9000. The watchdog is
activated via bEnable = TRUE and the tTimeOut time. The tTimeOut time can be a maximum of 65 seconds
and 535 milliseconds.

Once the watchdog has been activated, the function must be called cyclically at shorter intervals than
tTimeOut, since the CX9000 restarts automatically when tTimeOut has elapsed. The watchdog can therefore
be used to automatically reboot systems, which have entered an infinite loop or where the PLC has become
stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = T#0s.

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX9000 would reboot immediately once tTimeOut has elapsed.

FUNCTION F_CX9000SetWatchdog: BOOL

VAR INPUT
tTimeout : TIME;
bEnable : BOOL;
END VAR
tTimeOut: Watchdog time, if expired a reboot is automatically executed.

bEnable: Activate or deactivate the watchdog.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.0 CX (ARM) Tc2_SystemCX

36 Version: 1.6.1 TE1000

BEGKHOFF Functions

41.13 F_CX9010SetWatchdog

F_CX9010SetWatchdog
—tTimeOut F_CX9010SetWatchdogf—
—bEnable

The function F_CX9010SetWatchdog activates a hardware watchdog on the CX9000. The watchdog is
activated via bEnable = TRUE and the tTimeOut time. The tTimeOut time can be a maximum of 65 seconds
and 535 milliseconds.

Once the watchdog has been activated, the function must be called cyclically at shorter intervals than
tTimeOut, since the CX9010 restarts automatically when tTimeOut has elapsed. The watchdog can therefore
be used to automatically reboot systems, which have entered an infinite loop or where the PLC has become
stuck.

The watchdog can be deactivated via bEnable = FALSE or tTimeOut = T#0s.

The watchdog must be deactivated before breakpoints are used, before a PLC reset or an overall reset,
before a TwinCAT stop, before switching to Config mode or before the configuration is activated, because
otherwise the CX9010 would reboot immediately once tTimeOut has elapsed.

FUNCTION F_CX9010SetWatchdog: BOOL

VAR INPUT
tTimeout : TIME;
bEnable : BOOL;
END VAR

tTimeOut: Watchdog time, if expired a reboot is automatically executed.

bEnable: Activate or deactivate the watchdog.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.0 CX (ARM) Tc2_SystemCX

4.2 F_CXNaviSwitch

F_CXNaviSwitch
—iCX1100_IN F_CxMNavisSwitch —

The function F_CXNaviSwitch converts the value of the CX1100 navigation switch into an enum value of
type E_CX1100_NaviSwitch.

FUNCTION F_CXNaviSwitch: E_CX1100_NaviSwitch

VAR _INPUT
iCX1100 IN : USINT
END VAR

E_CX1100_NaviSwitch: Value of the CX1100 input 'IN’

Enum E_CX1100_NaviSwitch

TYPE E CX1100 NaviSwitch : (
e CX1100 NaviSwitch IDLE := O,
e CX1100 NaviSwitch MIDDLE := 16,
(* clockwise in 45 degree steps *)
e CX1100 NaviSwitch TOP := 1,
e CX1100 NaviSwitch TOPRIGHT := 9,
e CX1100 NaviSwitch RIGHT := 8,

e_CXllOO:NaviSwitch BOTTOMRIGHT := 10,

e CX1100 Naviswitch BOTTOM := 2,

TE1000 Version: 1.6.1 37

Functions

BECKHOFF

e CX1100 NaviSwitch BOTTOMLEFT := 6,
e CX1100_NaviSwitch LEFT := 4,
e CX1100 Naviswitch TOPLEFT := 5,

(* clockwise in 45 degree steps with middle switch pressed ¥*)

e CX1100 NaviSwitch MIDDLE TOP := 17,
e CX1100 NaviSwitch MIDDLE TOPRIGHT := 25,
e CX1100 NaviSwitch MIDDLE RIGHT := 24,
e CX1100 NaviSwitch MIDDLE BOTTOMRIGHT := 26,
e CX1100 NaviSwitch MIDDLE BOTTOM := 18,
e CX1100 NaviSwitch MIDDLE BOTTOMLEFT := 22,
e CX1100 NaviSwitch MIDDLE LEFT := 20,
e CX1100 NaviSwitch MIDDLE TOPLEFT := 21
END VAR

Values other than those defined in enum (e.g. 11) are displayed as

Wkkk

INVALID: value ***" in online mode

(e.g. "™** INVALID: 11 ***"). The function F_CXNaviSwitch then returns the invalid value (e.g. 11).

Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

4.3 F_CXNaviSwitchUSB

F_CXNaviSwitchUSB
—iCX2100_IN

F_CxXNaviswitchUSB —

The function F_CXNaviSwitchUSB converts the value of the CX2100 navigation switch or an EL6090 into an

enum value of type E_CX2100_NaviSwitch.

FUNCTION F_CXNaviSwitchUSB: E_CX2100_NaviSwitch

VAR INPUT
icx2100 IN
END VAR

USINT;

icx2100_IN: Value of the CX2100 input "IN’

Enum E_CX2100_NaviSwitch

TYPE E _CX2100_NaviSwitch : (
e CX2100 Naviswitch IDLE := 0,

e CX2100 NaviSwitch MIDDLE 15,
e CX2100 NaviSwitch ENTER := 16,
e CX2100 NaviSwitch ENTER MIDDLE := 31,

(* clockwise in 45 degree steps, 1-2 switches on *)

e CX2100 NaviSwitch TOP := 1,

e CX2100 NaviSwitch TOPRIGHT := 9,

e CX2100 Naviswitch RIGHT := 8,

e CX2100 Naviswitch BOTTOMRIGHT := 10,
e CX2100 NaviSwitch BOTTOM := 2,

e CX2100 NaviSwitch BOTTOMLEFT := 6,

e CX2100 Naviswitch LEFT := 4,

e CX2100 Naviswitch TOPLEFT := 5,

(* clockwise in 90 degree,
e CX2100 NaviSwitch TOPLEF
e CX2100 Naviswitch RIGHTT
e CX2100 NaviSwitch BOTTOM
e CX2100 NaviSwitch LEFTTO

3 switches on¥*)
TRIGHT = 13,
OPBOTTOM = 11,
LEFTRIGHT = 14,
PBOTTOM := 7,

(* clockwise in 45 degree steps with enter switch pressed, 1-2 switches on *)

e CX2100 NaviSwitch ENTER
e CX2100 NaviSwitch ENTER
e CX2100 NaviSwitch ENTER .
e CX2100 NaviSwitch ENTER
e CX2100 NaviSwitch ENTER |
e CX2100 NaviSwitch ENTER .
e CX2100 NaviSwitch ENTER
e CX2100 NaviSwitch ENTER '

TOP := 17,
TOPRIGHT := 25,
RIGHT := 24,
BOTTOMRIGHT := 26,
BOTTOM := 18,
BOTTOMLEFT := 22,
LEFT := 20,
TOPLEFT := 21

38

Version: 1.6.1

TE1000

BECKHOFF Functions

(* clockwise in 90 degree steps with enter switch pressed, 3 switches on ¥*)

e CX2100 Naviswitch ENTER TOPLEFTRIGHT := 29,
e CX2100 NaviSwitch ENTER RIGHTTOPBOTTOM := 27,

e CX2100 NaviSwitch ENTER BOTTOMLEFTRIGHT := 30,
e CX2100 NaviSwitch ENTER LEFTTOPBOTTOM := 23,

)

Requirements when using the CX2100

Development environment Target platform PLC libraries to include
TwinCAT v3.1 CX (WES7/Win7/Win10: TC RT Tc2_SystemCX

x86/x64, WEC6/7: TC RT x86, TC/
BSD: TC RT x64)

Requirements when using the EL6090

Development environment Target platform PLC libraries to include

TwinCAT v3.1 PC or CX (WES7/Win7/Win10: TC |Tc2_SystemCX
RT x86/x64, WECG6/7: TC RT x86,
WECTY7: TC CE7 ARMV7, TC/BSD:
TC RT x64, TC OS ARMT2)

44 F_CX81xx_ADDRESS

F_CX81xx_ADDRESS
—(ICX_Typ F_CXBlwx ADDRESSF—

This function reads the position of the address selection switch of the CXxxxx. One possible application is
that you can activate different program parts in the PLC depending on the switch position.

This function reads the position of the DIP switch of the CXxxxx. One possible application is that you can
activate different program parts in the PLC depending on the switch position.

VAR_INPUT

VAR INPUT
iCX Typ ¢ INT; (* Use product code without ‘CX’ e.g.: CX8180 -> 8180 *)
END VAR

VAR_OUTPUT

F CX80xx ADDRESS : INT;

F_CX80xx_ADDRESS : -1, non-implemented CX, address of the switch

Requirements

Development environ- | Target platform Hardware PLC libraries to include
ment

TwinCAT v3.1 Build ARM CXxxxx Tc2_SystemCX

4022.30

45 F_CX8180 LED ERR

F_(X8180_LED_ERR
—leMode F_CX8180_LED_ERR}—

Since the CX8180 supports various protocols, the two LEDs WD and ERR on the CX8180 are not used by
the firmware. This allows the user to create his own diagnosis messages. The LEDs can be used to indicate,
for example, whether the CX8180 has received an IP address from the DHCP server or whether devices are
exchanging data.

TE1000 Version: 1.6.1 39

Functions BEGKHOFF

The F_CX8180_LED ERR function controls the ERR LED on the CX8180. Various color and flashing modes
can be used here. The possible LED colors are red and green.

VAR_INPUT

VAR_INPUT
eMode : E_CX81x0_LED;
END VAR

eMode: The way in which the LED lights up, see also Data type E CX81x0 LED [» 44].

Return Value
F_F CX8180 LED ERR : INT;

F_CX8180_LED_ERR: -1, not implemented flash code, 0 OK

Requirements

Development environ- | Target platform Hardware PLC libraries to include
ment

TwinCAT v3.1 Build ARM CXxxxx Tc2_SystemCX

4022.30

4.6 F_CX8180 LED WD

F_CX8180_LED_WD
—leMade 7 F_CXB8180_LED_WD}—

Since the CX8180 supports various protocols, the two LEDs WD and ERR on the CX8180 are not used by
the firmware. This allows the user to create his own diagnosis messages. The LEDs can be used to indicate,
for example, whether the CX8180 has received an IP address from the DHCP server or whether devices are
exchanging data.

The F_CX8180_LED_ WD function controls the WD LED on the CX8180. Various color and flashing modes
can be used here. The possible LED colors are red and green.

VAR_INPUT

VAR INPUT
eMode : E_CX81x0_LED;
END_ VAR

eMode: The way in which the LED lights up, see also Data type E CX81x0 LED [»_44].

Return value
F_ CX8180 LED WD : INT;

F_CX8180_LED_WD: -1, not implemented flash code, 0 OK

Requirements

Development environ- | Target platform Hardware PLC libraries to include
ment

TwinCAT v3.1 Build ARM CXxxxx Tc2_SystemCX

4022.30

47 F_CX8190 LED ERR

F_OX8190_LED_ERR
—leMode £ F_CX8190_LED _ERR}—

40 Version: 1.6.1 TE1000

BECKHOFF Functions

Since the CX8190 supports various protocols, the two LEDs WD and ERR on the CX8190 are not used by
the firmware. This allows the user to create his own diagnosis messages. The LEDs can be used to indicate,
for example, whether the CX8190 has received an IP address from the DHCP server or whether devices are
exchanging data.

The F_CX8190_LED_ERR function controls the ERR LED on the CX8190. Various color and flashing modes
can be used here. The possible LED colors are red and green.

VAR_INPUT

VAR INPUT
eMode : E_CX81x0_LED;
END VAR

eMode: The way in which the LED lights up, see also Data type E CX81x0 LED [»_44].

Return value
F_ F_CX8190_LED_ERR : INT;

F_CX8190_LED_ERR: -1, not implemented flash code, 0 OK

Requirements

Development environ- | Target platform Hardware PLC libraries to include
ment

TwinCAT v3.1 Build ARM CXxxxx Tc2_SystemCX

4022.30

4.8 F_CX8190 LED WD

F_CX8190_LED_WD
—leMade 21 F_CXB190_LED WD }—

Since the CX8190 supports various protocols, the two LEDs WD and ERR on the CX8190 are not used by
the firmware. This allows the user to create his own diagnosis messages. The LEDs can be used to indicate,
for example, whether the CX8190 has received an IP address from the DHCP server or whether devices are
exchanging data.

The F_CX8190_LED_ WD function controls the WD LED on the CX8190. Various color and flashing modes
can be used here. The possible LED colors are red and green.

VAR_INPUT

VAR INPUT
eMode : E_CX81x0_LED;
END VAR

eMode: The way in which the LED lights up, see also Data type E CX81xQ LED [»_44].

Return value
F_ CX8190 LED WD : INT;

F_CX8190_LED_WD: -1, not implemented flash code, 0 OK

Requirements

Development environ- | Target platform Hardware PLC libraries to include
ment

TwinCAT v3.1 Build ARM CXxxxx Tc2_SystemCX

4022.30

TE1000 Version: 1.6.1 41

Data Types BEGKHOFF

5 Data Types

5.1 [obsolete]

5.1.1 ST_CX_Deviceldentification

TYPE ST CxDeviceldentification :

STRUCT
strTargetType : STRING(20);
strHardwareModel : STRING (10) ;
strHardwareSerialNo : STRING(12);
strHardwareVersion : STRING(4);
strHardwareDate : STRING (10) ;
strHardwareCPU : STRING (10) ;
strImageDevice : STRING(20) ;
strImageVersion : STRING (10);
strImageLevel : STRING (10) ;
strImageOsName : STRING (20) ;
strImageOsVersion : STRING (8);
strTwinCATVersion : STRING(4) ;
strTwinCATRevision : STRING (4) ;
strTwinCATBuild : STRING(8) ;
strTwinCATLevel : STRING(20) ;
strAmsNetId : STRING (23);

END_ STRUCT

END_TYPE

strTargetType: Type of the target system, e.g. 'CX1000-CE/, ...
strHardwareModel: Hardware model, e.g. 1001

strHardwareSerialNo: Hardware serial number, e.g. '123'
strHardwareVersion: Hardware version, e.g. '1.7'

strHardwareDate: Hardware production date, e.g. '18.8.06'
strHardwareCPU: Hardware CPU architecture, e.g. 'INTELx86', '"ARM', 'UNKNOWN' or " (empty string)
strimageDevice: Software platform, e.g. 'CX1000', ...

strimageVersion: Version of the software platform, e.g. '2.15'
strimageVersion: Version of the software platform, e.g. 'HMI'
strimageOsVersion: Name of the operating system, e.g. 'Windows CE'
strimageOsVersion: Version of the operating system, e.g. '5.0'
strTwinCATVersion: TwinCAT version, e.g. for TwinCAT 2.10.1307: '2'
strTwinCATRevision: TwinCAT Reversion, e.g. for TwinCAT 2.10.1307: '10'
strTwinCATBuild: TwinCAT Build, e.g. for TwinCAT 2.10.1307: '1307"
strTwinCATLevel: Registered TwinCAT level, e.g. 'PLC', 'NC-PTP', 'NC-I',
strAmsNetld: TwinCAT AMS-NetID, e.g. '5.0.252.31.1.1'

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

5.1.2 ST_CxDeviceldentificationEx

TYPE ST CxDeviceldentificationEx :
STRUCT
strTargetType : STRING(30);

42 Version: 1.6.1 TE1000

BEGKHOFF Data Types

strHardwareModel : STRING(16);
strHardwareSerialNo : STRING(16) ;
strHardwareVersion : STRING(8) ;
strHardwareDate : STRING(12) ;
strHardwareCPU : STRING (20);
strImageDevice : STRING (48) ;
strImageVersion : STRING (32);
strImagelLevel : STRING (32);
strImageOsName : STRING(438);
strImageOsVersion : STRING (8) ;
strTwinCATVersion : STRING (4) ;
strTwinCATRevision : STRING (4);
strTwinCATBuild : STRING(8) ;
strTwinCATLevel : STRING (20) ;
strAmsNetId : T _AMSNetId;

END_STRUCT

END TYPE

strTargeType: Type of the target system, e.g. 'CX1000-CE', ...
strHardwareModel: Hardware model, e.g. '1001"

strHardwareSerialNo: Hardware serial number, e.g. '123'
strHardwareVersion: Hardware version, e.g. "1.7'

strHardwareDate: Hardware production date, e.g. '18.8.06'
strHardwareCPU: Hardware CPU architecture, e.g. 'INTELx86', 'ARM', 'UNKNOWN' or " (empty string)
strimageDevice: Software platform, e.g. 'CX1000', ...

strimageVersion: Version of the software platform, e.g. '2.15'
strimageVersion: Version of the software platform, e.g. 'HMI'
strimageOsVersion: Name of the operating system, e.g. 'Windows CE'
strimageOsVersion: Version of the operating system, e.g. '5.0'
strTwinCATVersion: TwinCAT version, e.g. for TwinCAT 2.10.1307: '2'
strTwinCATRevision: TwinCAT Reversion, e.g. for TwinCAT 2.10.1307: '10'
strTwinCATBuild: TwinCAT Build, e.g. for TwinCAT 2.10.1307: '1307"
strTwinCATLevel: Registered TwinCAT level, e.g. 'PLC', 'NC-PTP', 'NC-I',
strAmsNetld: TwinCAT AMS-NetID, e.g. '56.0.252.31.1.1'

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.0 CX (x86) Tc2_SystemCX

5.2 ST_CX ProfilerStruct

TYPE ST CX ProfilerStruct:

STRUCT

dwLastExecTime : DWORD;
dwMinExecTime : DWORD;
dwMaxExecTime : DWORD;
dwAverageExecTime : DWORD;
dwMeasureCycle : DWORD;
END_ STRUCT

END TYPE

dwLastExecTime: The most recently measured value for the execution time in [us]
dwMinExecTime: The minimum execution time in [us]

dwMaxExecTime: The maximum execution time in [us]

TE1000 Version: 1.6.1

43

Data Types

BECKHOFF

dwAverageExecTime: The mean execution time for the last 100 measurements in [us]

dwMeasureCycle: The number of measurements that have already been carried out

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1.0

CX (x86)

Tc2_ SystemCX

5.3

TYPE E_CX81x0 LED : (

)i

eCxX81x0 LED GREEN OFF,
eCX81x0 LED GREEN ON,

eCx81x0 LED GREEN FLASHING Quick,
eCx81x0 LED GREEN FLASHING 200ms,
eCx81x0_LED GREEN FLASHING 500ms,
eCx81x0 LED GREEN FLASHING Pulse,
eCx81x0 LED RED OFF:=20,
eCx81x0_LED RED ON,

eCxX81x0_ LED RED FLASHING Quick,
eCX81x0 LED RED FLASHING 200ms,
eCx81x0 LED RED FLASHING 500ms,
eCx81x0 LED RED FLASHING Pulse,
eCx81x0_LED GREEN RED OFF:=100,

eCX81x0 LED GREEN RED FLASHING 200ms,
eCx81x0 LED GREEN RED FLASHING 500ms

END TYPE

Data type E_CX81x0_LED

44

Version: 1.6.1

TE1000

BEGKHOFF Global constants

6 Global constants

6.1 Library version

All libraries have a specific version. This version is inter alia shown in the PLC library repository too.
A global constant contains the library version information:
Global_Version

VAR GLOBAL CONSTANT
stLibVersion Tc2 SystemCX : ST LibVersion;
END VAR

stLibVersion_Tc2_SystemCX: version information of the Tc2_SystemCX library (type: ST_LibVersion).

To compare the existing version to a required version the function F_CmpLibVersion (defined in Tc2_System
library) is offered.

(
1 All other possibilities known from TwinCAT 2 to query a library version are obsolete!

TE1000 Version: 1.6.1 45

More Information:
www.beckhoff.com/te1000

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TE1000
https://www.beckhoff.com
https://www.beckhoff.com/te1000

	 Inhaltsverzeichnis
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Introduction
	3 Function Blocks
	3.1 [obsolete]
	3.1.1 FB_CxGetDeviceIdentification
	3.1.2 FB_CxGetDeviceIdentificationEx
	3.1.3 FB_CX1010SetWatchdog
	3.1.4 FB_CX1020SetWatchdog
	3.1.5 FB_CX1030SetWatchdog

	3.2 FB_CXProfiler
	3.3 FB_CXReadKBusCycleUpdateTime
	3.4 FB_CXReadKBusError
	3.5 FB_CXSetTextDisplay
	3.6 FB_CXSetTextDisplayUSB
	3.7 FB_CXGetTextDisplayUSB
	3.8 FB_CXSimpleUps
	3.9 FB_CX5010SetWatchdog
	3.10 FB_CX5020SetWatchdog
	3.11 FB_CX7000_LED_ERR
	3.12 FB_CX7000_LED_WD
	3.13 FB_CX7080_LED_ERR
	3.14 FB_CX7080_LED_WD
	3.15 FB_CX70xx_RW_EEPROM
	3.16 FB_CX70xx_ResetOnBoardIO

	4 Functions
	4.1 [obsolete]
	4.1.1 F_GetVersionTcCXSystem
	4.1.2 F_GetVersionTcSystemCX1000
	4.1.3 F_GetVersionTcSystemCX1010
	4.1.4 F_GetVersionTcSystemCX1020
	4.1.5 F_GetVersionTcSystemCX1030
	4.1.6 F_GetVersionTcSystemCX5010
	4.1.7 F_GetVersionTcSystemCX5020
	4.1.8 F_GetVersionTcSystemCX9000
	4.1.9 F_GetVersionTcSystemCX9010
	4.1.10 F_CXSubTimeStamp
	4.1.11 F_CX1000SetWatchdog
	4.1.12 F_CX9000SetWatchdog
	4.1.13 F_CX9010SetWatchdog

	4.2 F_CXNaviSwitch
	4.3 F_CXNaviSwitchUSB
	4.4 F_CX81xx_ADDRESS
	4.5 F_CX8180_LED_ERR
	4.6 F_CX8180_LED_WD
	4.7 F_CX8190_LED_ERR
	4.8 F_CX8190_LED_WD

	5 Data Types
	5.1 [obsolete]
	5.1.1 ST_CX_DeviceIdentification
	5.1.2 ST_CxDeviceIdentificationEx

	5.2 ST_CX_ProfilerStruct
	5.3 Data type E_CX81x0_LED

	6 Global constants
	6.1 Library version

		documentation@beckhoff.com
	2023-12-11T16:38:42+0100
	Beckhoff Automation, Verl
	Documentation Publishing

