
BECKHOFF New Automation Technology

Handbuch | DE

TE1000

TwinCAT 3 | PLC-Bibliothek: Tc2_EnOcean

Inhaltsverzeichnis

1	Vorw	vort	. 5
	1.1	Hinweise zur Dokumentation	. 5
	1.2	Zu Ihrer Sicherheit	. 6
	1.3	Hinweise zur Informationssicherheit	. 7
2	Einle	eitung	. 8
3	EnO	cean	. 9
	3.1	Reichweitenplanung	. 9
	3.2	Zulassung von EnOcean-Funk-Technologie	10
4	Prog	rammierung	11
	4.1	POUs	12
		4.1.1 KL6021-0023	14
		4.1.2 KL6581	23
	4.2	DUTs	35
		4.2.1 KL6021-0023	36
		4.2.2 KL6581	38
	4.3	Integration in TwinCAT	44
		4.3.1 KL6581 mit CX5120	44
5	Anha	ang	48
	5.1	Support and Service	48

1 Vorwort

1.1 Hinweise zur Dokumentation

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, für jede Installation und Inbetriebnahme die zu dem betreffenden Zeitpunkt veröffentliche Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiter entwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH.

Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.2 Zu Ihrer Sicherheit

Sicherheitsbestimmungen

Lesen Sie die folgenden Erklärungen zu Ihrer Sicherheit.

Beachten und befolgen Sie stets produktspezifische Sicherheitshinweise, die Sie gegebenenfalls an den entsprechenden Stellen in diesem Dokument vorfinden.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.3 Hinweise zur Informationssicherheit

Die Produkte der Beckhoff Automation GmbH & Co. KG (Beckhoff) sind, sofern sie online zu erreichen sind, mit Security-Funktionen ausgestattet, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen. Trotz der Security-Funktionen sind die Erstellung, Implementierung und ständige Aktualisierung eines ganzheitlichen Security-Konzepts für den Betrieb notwendig, um die jeweilige Anlage, das System, die Maschine und die Netzwerke gegen Cyber-Bedrohungen zu schützen. Die von Beckhoff verkauften Produkte bilden dabei nur einen Teil des gesamtheitlichen Security-Konzepts. Der Kunde ist dafür verantwortlich, dass unbefugte Zugriffe durch Dritte auf seine Anlagen, Systeme, Maschinen und Netzwerke verhindert werden. Letztere sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn entsprechende Schutzmaßnahmen eingerichtet wurden.

Zusätzlich sollten die Empfehlungen von Beckhoff zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Informationssicherheit und Industrial Security finden Sie in unserem https://www.beckhoff.de/secguide.

Die Produkte und Lösungen von Beckhoff werden ständig weiterentwickelt. Dies betrifft auch die Security-Funktionen. Aufgrund der stetigen Weiterentwicklung empfiehlt Beckhoff ausdrücklich, die Produkte ständig auf dem aktuellen Stand zu halten und nach Bereitstellung von Updates diese auf die Produkte aufzuspielen. Die Verwendung veralteter oder nicht mehr unterstützter Produktversionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Hinweise zur Informationssicherheit zu Produkten von Beckhoff informiert zu sein, abonnieren Sie den RSS Feed unter https://www.beckhoff.de/secinfo.

2 Einleitung

Die Tc2_EnOcean-Bibliothek ist eine TwinCAT-SPS-Bibliothek zum Datenaustausch mit EnOcean-Geräten. Diese Bibliothek ist nur in Verbindung mit einer KL6021-0023 oder einer KL6581 einzusetzen.

Für den Nutzer dieser Bibliothek werden folgende Grundkenntnisse vorausgesetzt:

- TwinCAT XAE
- · PC und Netzwerkkenntnisse
- Aufbau und Eigenschaften der Beckhoff Embedded-PC und deren Busklemmensystem
- · Technologie von EnOcean-Geräten
- Einschlägige Sicherheitsvorschriften der technischen Gebäudeausrüstung

Diese Softwarebibliothek ist für Gebäudeautomation-Systempartner der Beckhoff Automation GmbH & Co. KG. Die Systempartner sind tätig in dem Bereich Gebäudeautomation und beschäftigen sich mit Errichtung, Inbetriebsetzung, Erweiterung, Wartung und Service von mess-, steuer- und regelungstechnischen Anlagen der technischen Gebäudeausrüstung.

Die Tc2_EnOcean-Bibliothek ist auf allen Hardware-Plattformen einsetzbar, die TwinCAT 3.1 oder höher unterstützen.

Hardware Dokumentation KL6021-0023 und KL6581 im Beckhoff Information System.

3 EnOcean

Die EnOcean-Funktechnik ermöglicht ein weit reichendes Signal mit geringen Mengen Umgebungsenergie. Mit 50 μWs kann ein serienmäßiges EnOcean-Funkmodul ohne weiteres ein Signal über eine Distanz von 300 m (im Freifeld) übertragen. Die Signaldauer für ein EnOcean-Telegramm beträgt ca. 1 tausendstel Sekunde.

- Lizenzfreies 868 MHz Frequenzband mit 1% duty cycle
- · Mehrfach-Telegrammaussendung mit Checksumme
- · Kurze Telegramme (ca. 1 ms) führen zu geringer Kollisionswahrscheinlichkeit
- · Hohe Reichweite: 30 m im Gebäude oder 300 m im Freifeld
- · Repeater verfügbar für Erweiterungen
- · Uni- und bidirektionale Kommunikation
- · Hohe Datenübertragungsraten von 125 kbit/s
- · Geringer "Daten-Overhead"
- ASK-Modulation
- · Funkprotokoll ist definiert und in Modulen integriert
- Sensorprofile festgelegt und von Nutzern eingehalten
- Eindeutige Sende-ID (32 Bit)
- Keine Interferenz mit DECT-, WLAN-, PMR-Systemen etc.
- · Systemdesign verifiziert in Industrieller Umgebung

Protokollaufbau

Protokoll	Beschreibung	Länge
ORG	Telegramm Typ	1 Byte
DB_3	Daten Byte 3	1 Byte
DB_2	Daten Byte 2	1 Byte
DB_1	Daten Byte 1	1 Byte
DB_0	Daten Byte 0	1 Byte
ID_3	Transmitter ID Byte 3	1 Byte
ID_2	Transmitter ID Byte 2	1 Byte
ID_1	Transmitter ID Byte 1	1 Byte
ID_0	Transmitter ID Byte 0	1 Byte
STATUS	Informationsstatus	1 Byte

3.1 Reichweitenplanung

Beachten Sie bei der Platzierung der EnOcean-Geräte die Empfehlungen der EnOcean Alliance (siehe www.enocean.de). Das Einhalten der Empfehlungen unterstützt eine optimale Reichweite und Störunanfälligkeit.

Dämpfung von verschiedenen Materialien

Material	Dämpfung
Holz, Gips, Glas unbeschichtet (ohne Metall)	010 %
Backstein, Pressspanplatten	535 %
Beton mit Armierung aus Eisen	1090 %
Metall, Aluminiumkaschierung	90100 %

Reichweite

Material	Reichweite
Sichtverbindung	Typ 30 m in Gängen, bis zu 100 m in Hallen
Rigipswände/Holz	Typ 30 m, durch maximal 5 Wände
Ziegelwände/Gasbeton	Typ 20 m, durch maximal 3 Wände
Stahlbetonwände/-Decken	Typ 10 m, durch maximal 1 Wand/Decke

Platzierung des KL6583-Moduls

Das KL6583-Modul beinhaltet Sender, Empfänger sowie die Antenne.

Abstände

Der Abstand zu einer Stahlbetondecke sollte mindestens 50 cm betragen, der zu einer Wand 10 cm.

Das KL6583-Modul nicht auf einer Metallplatte verschrauben oder anbringen!

Umweltbedingungen

Des Weiteren sind die Umweltbedingungen einzuhalten:

- · Luftfeuchtigkeit maximal 95% ohne Betauung
- Umgebungstemperatur 0...55°C

3.2 Zulassung von EnOcean-Funk-Technologie

Überprüfen Sie die Zulässigkeit des Betriebs in Ihrem Land

1

Die EnOcean Transceiver KL6583 sind in folgenden Ländern anmelde- und gebührenfrei zu betreiben: **KL6583-0000: Europäische Union** und **Schweiz**

KL6583-0100: USA und Kanada

Die Erlaubnis für den Einsatz in anderen Ländern ist explizit zu klären!

KL6583-0100 für USA und Kanada

Enthält IC: 5731A-TCM320C Enthält FCC ID: SZV-TCM320C

Das betroffene Gerät entspricht Teil 15 der FCC Regeln. Der Betrieb unterliegt den folgenden Bedingungen:

- · dieses Gerät darf keine schädlichen Störungen verursachen und
- dieses Gerät muss alle empfangenen Störungen aufnehmen, auch Störungen, die den Betrieb beeinträchtigen.

4 Programmierung

POUs/KL6021-0023

Bausteine	Beschreibung
FB_EnOceanReceive [▶ 14]	Kommunikation mit einer KL6021-0023

POUs/KL6021-0023/Read

Bausteine	Beschreibung
FB EnOceanPTM100 [▶ 15]	Empfängt die Signale eines PTM100-Moduls
FB EnOceanPTM200 [▶ 17]	Empfängt die Signale eines PTM200-Moduls
FB EnOceanSTM100 [18]	Empfängt die Signale eines STM100-Moduls (veraltet)
FB EnOceanSTM100Generic [▶ 20]	Empfängt die Signale eines STM100-Moduls
FB EnOceanSTM250 [▶ 22]	Empfängt die Signale eines STM250-Moduls

POUs/KL6581

Bausteine	Beschreibung
FB KL6581 [▶ 23]	Kommunikation mit einer KL6581

POUs/KL6581/Read

Bausteine	Beschreibung
FB Rec Generic [24]	Empfängt alle Arten von EnOcean-Telegrammen
FB Rec 1BS [▶ 25]	Empfängt Daten mit ORG-Telegramm 6.Typisches EnOcean-Gerät: Fensterkontakt
FB Rec RPS Switch [▶ 26]	Empfängt Daten mit ORG-Telegramm 5. Typisches EnOcean-Gerät: Taster
FB Rec RPS Window Handle [27]	Empfängt Daten mit ORG-Telegramm 5. Typisches EnOcean-Gerät: Fenstergriff

POUs/KL6581/Send

Bausteine	Beschreibung
FB Send Generic [> 28]	Sendet beliebige EnOcean-Telegramme
FB Send 4BS [> 29]	Sendet EnOcean-Telegramme im 4BS Format
FB Send RPS Switch [▶ 29]	Sendet EnOcean-Telegramme im Format eines Tasters
FB Send RPS SwitchAuto [▶ 30]	Sendet EnOcean-Telegramme im Format eines Tasters

POUs/KL6581/Other

Bausteine	Beschreibung
FB EnOcean Search [▶ 31]	Dieser Baustein erkennt alle EnOcean-Teilnehmer in seiner Reichweite und zeigt diese an.
FB Rec Teach In [▶ 32]	Dieser Baustein zeigt an, wenn in einem EnOcean- Telegramm das LRN-Bit gesetzt ist unabhängig seiner EnOcean-ID.
FB Rec Teach In Ex [▶ 33]	Dieser Baustein zeigt an, wenn bei einem EnOcean- Teilnehmer die Learn-Taste gedrückt wird.

POUs/KL6581/Function

Bausteine	Beschreibung
<u></u>	Diese Funktion wandelt einen Byte-Rohwert in eine REAL-Variable um.
	Diese Funktion wandelt einen Byte Rohwert in ein Bool Array um.

DUTs/KL6021-0023/Hardware Types

Datentypen	Beschreibung
ST EnOceanInData [> 38]	Prozessabbild der Eingänge der KL6021-0023
ST EnOceanOutData [> 38]	Prozessabbild der Ausgänge der KL6021-0023

DUTs/KL6021-0023

Datentypen	Beschreibung
E EnOceanRotarySwitch [▶ 37]	Stellung des Drehschalters am Raumbediengerät
E EnOceanSensorType [▶ 36]	Sensorentyp
ST EnOceanReceivedData [▶ 37]	Interne Struktur

DUTs/KL6581/Hardware Types

Datentypen	Beschreibung
KL6581_Input [▶ 40]	Prozessabbild der Eingänge der KL6581
KL6581 Output [> 41]	Prozessabbild der Ausgänge der KL6581

DUTs/KL6581

Datentypen	Beschreibung
AR EnOceanWindow [▶ 41]	Zustand des Fensters
E ENOCEAN Org [▶ 39]	Typ des EnOcean Telegramms
E KL6581 Err [▶ 39]	Fehlermeldungen
STR EnOceanSwitch [42]	Zustand der Taster
STR KL6581 [• 42]	Interne Struktur
STR Teach In [▶ 43]	Datenstruktur Hersteller ID, Typ und Profil
STREnOceanTurnSwitch [▶ 44]	Stellung des Drehschalters am Raumbediengerät

4.1 POUs

KL6021-0023

Bausteine	Beschreibung
FB_EnOceanReceive [> 14]	Kommunikation mit einer KL6021-0023

KL6021-0023/Read

Bausteine	Beschreibung
FB_EnOceanPTM100 [▶ 15]	Empfängt die Signale eines PTM100-Moduls
FB EnOceanPTM200 [▶ 17]	Empfängt die Signale eines PTM200-Moduls
FB EnOceanSTM100 [▶ 18]	Empfängt die Signale eines STM100-Moduls (veraltet)
FB_EnOceanSTM100Generic [> 20]	Empfängt die Signale eines STM100-Moduls
FB EnOceanSTM250 [▶ 22]	Empfängt die Signale eines STM250-Moduls

KL6581

Bausteine	Beschreibung
FB KL6581 [> 23]	Kommunikation mit einer KL6581

KL6581/Read

Bausteine	Beschreibung
FB Rec Generic [▶ 24]	Empfängt alle Arten von EnOcean-Telegrammen
FB_Rec_1BS [▶ 25]	Empfängt Daten mit ORG-Telegramm 6.Typisches EnOcean-Gerät: Fensterkontakt
FB Rec RPS Switch [▶ 26]	Empfängt Daten mit ORG-Telegramm 5. Typisches EnOcean-Gerät: Taster
FB Rec RPS Window Handle [27]	Empfängt Daten mit ORG-Telegramm 5. Typisches EnOcean-Gerät: Fenstergriff

KL6581/Send

Bausteine	Beschreibung
FB Send Generic [> 28]	Sendet beliebige EnOcean-Telegramme
FB Send 4BS [> 29]	Sendet EnOcean-Telegramme im 4BS Format
FB Send RPS Switch [29]	Sendet EnOcean-Telegramme im Format eines Tasters
FB Send RPS SwitchAuto [▶ 30]	Sendet EnOcean-Telegramme im Format eines Tasters

KL6581/Other

Bausteine	Beschreibung
FB EnOcean Search [▶ 31]	Dieser Baustein erkennt alle EnOcean-Teilnehmer in seiner Reichweite und zeigt diese an.
FB Rec Teach In [▶ 32]	Dieser Baustein zeigt an, wenn in einem EnOcean- Telegramm das LRN-Bit gesetzt ist unabhängig seiner EnOcean-ID.
FB Rec Teach In Ex [▶ 33]	Dieser Baustein zeigt an, wenn bei einem EnOcean- Teilnehmer die Learn-Taste gedrückt wird.

KL6581/Function

Bausteine	Beschreibung
<u> </u>	Diese Funktion wandelt einen Byte-Rohwert in eine REAL-Variable um.
	Diese Funktion wandelt einen Byte Rohwert in ein Bool Array um.

4.1.1 KL6021-0023

Bausteine	Beschreibung
FB EnOceanReceive [14]	Kommunikation mit einer KL6021-0023

Read

Bausteine	Beschreibung
FB_EnOceanPTM100 [▶ 15]	Empfängt die Signale eines PTM100-Moduls
FB EnOceanPTM200 [▶ 17]	Empfängt die Signale eines PTM200-Moduls
FB EnOceanSTM100 [▶ 18]	Empfängt die Signale eines STM100-Moduls (veraltet)
FB_EnOceanSTM100Generic [> 20]	Empfängt die Signale eines STM100-Moduls
FB EnOceanSTM250 [▶ 22]	Empfängt die Signale eines STM250-Moduls

4.1.1.1 FB_EnOceanReceive

	FB_EnOceanReceive	
_	bEnable	bError
\leftrightarrow	stEnOceanInData	nErrorld
$\stackrel{\leftrightarrow}{}$	stEnOceanOutData	stEnOceanReceivedData

Der Funktionsbaustein FB_EnOceanReceive() ist ein Empfangsbaustein, der die von den EnOcean-Modulen gesendeten Telegramme in der Struktur stEnOceanReceivedData zur Verfügung stellt. Diese Struktur kann dann mit weiteren Bausteinen ausgewertet werden. In der Dokumentation dieser Bausteine sind auch Programmbeispiele aufgeführt, die die Funktionsweise näher erläutern.

VAR INPUT

```
bEnable : BOOL := FALSE;
```

bEnable: Ein positives Signal an diesem Eingang setzt den Baustein aktiv. Bei einem negativen Signal am Eingang wird im Baustein keine Funktion ausgeführt.

VAR_OUTPUT

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *nErrorld* beschrieben.

nErrorld: Beschreibt die Art des Fehlers (siehe <u>Fehlercodes</u> [▶ 23]).

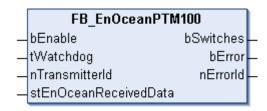
stEnOceanReceivedData: In dieser Struktur werden die empfangenen Daten abgelegt (siehe <u>ST EnOceanReceivedData [▶ 37]</u>).

VAR_IN_OUT

```
stEnOceanInData : ST_EnOceanInData;
stEnOceanOutData : ST_EnOceanOutData;
```

stEnOceanInData: Wird mit den Eingangsadressen der KL6021-0023 im System Manager verknüpft (siehe <u>ST EnOceanInData [▶ 38]</u>).

stEnOceanOutData: Wird mit den Ausgangsadressen der KL6021-0023 im System Manager verknüpft (siehe ST EnOceanOutData [▶ 38]).


Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.1.2 Read

Bausteine	Beschreibung
FB EnOceanPTM100 [15]	Empfängt die Signale eines PTM100-Moduls
FB EnOceanPTM200 [17]	Empfängt die Signale eines PTM200-Moduls
FB_EnOceanSTM100 [▶ 18]	Empfängt die Signale eines STM100-Moduls (veraltet)
FB EnOceanSTM100Generic [> 20]	Empfängt die Signale eines STM100-Moduls
FB EnOceanSTM250 [22]	Empfängt die Signale eines STM250-Moduls

4.1.1.2.1 FB_EnOceanPTM100

Der Funktionsbaustein *FB_EnOceanPTM100()* gibt eine anwenderfreundliche Auswertung über den Zustand eines EnOcean-PTM100-Moduls. Hierzu ist die Verwendung des Funktionsblocks <u>FB_EnOceanReceive()</u> [**\(\)**_14] notwendig.

Im Unterschied zum PTM200- und PTM250-Modul, kann beim PTM100-Modul nur ein Taster gleichzeitig gedrückt werden. Des Weiteren unterstützt das PTM100-Modul acht, statt vier Taster.

Zu jedem verwendeten Tasten-Modul muss eine neue Instanz dieses Bausteines angelegt werden.

VAR_INPUT

bEnable : BOOL := FALSE;
tWatchdog : TIME;
nTransmitterId : UDINT;
stEnOceanReceivedData : ST_EnOceanReceivedData;

bEnable: Ein positives Signal an diesem Eingang setzt den Baustein aktiv. Bei einem negativen Signal am Eingang wird im Baustein keine Funktion ausgeführt und alle Ausgänge werden auf 0 bzw. FALSE gesetzt.

tWatchdog: Überwachungszeit. Innerhalb dieser Zeit müssen neue Informationen über den unten näher beschriebenen Eingang *stEnOceanReceivedData* in diesen Baustein gelangen. Ist diese Zeit auf t#0s gesetzt, so ist die Watchdog-Funktion inaktiv.

nTransmitterId: ID des EnOcean-Modules, auf den der Baustein reagieren soll.

stEnOceanReceivedData: Informationen und notwendige Verbindung zum EnOcean-Empfängerbaustein <u>FB_EnOceanReceive()</u> [▶ 14]. Diese Informationen sind in einer Struktur hinterlegt (siehe <u>ST_EnOceanReceivedData</u> [▶ 37]).

VAR_OUTPUT

bSwitches : ARRAY [0..7] OF BOOL;
bError : BOOL := FALSE;
nErrorId : UDINT := 0;

bSwitches: Dieses Feld von 8 boolschen Werten beschreibt die Zustände der 8 Taster auf dem Taster-Modul

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *nErrorld* beschrieben.

nErrorld: Beschreibt die Art des Fehlers (siehe Fehlercodes [▶ 23]).

Anhand des folgenden Programmbeispiels soll die Funktionsweise des Bausteines näher beschrieben werden:

```
PROGRAM MAIN
VAR
    fbEnOceanReceive : FB EnOceanReceive;
    fbEnOceanPTM100 1 : FB EnOceanPTM100;
    fbEnOceanPTM100 2 : FB EnOceanPTM100;
    bSwitches1 : ARRAY
                               [0..7] OF
                                                 BOOT:
    bSwitches2 1 : BOOL;
    bSwitches2 2 : BOOL;
    bSwitches2_3 : BOOL;
bSwitches2 4 : BOOL;
    bSwitches2_5 : BOOL;
    bSwitches2 6 : BOOL;
    bSwitches2 7 : BOOL;
    bSwitches2 8 : BOOL;
END VAR
fbEnOceanReceive(
    bEnable := TRUE,
    stEnOceanInData := stEnOceanInData,
    stEnOceanOutData := stEnOceanOutData);
fbEnOceanPTM100 1(
    bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000000C4,
    tWatchdog:=t#0s,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData);
bSwitches1 := fbEnOceanPTM100 1.bSwitches;
fbEnOceanPTM100 2(
    bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000000C5,
    tWatchdog:=t#0s,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData);
bSwitches2_1 := fbEnOceanPTM100_2.bSwitches[0];
bSwitches2_3 := fbEnOceanPTM100_2.bSwitches[1];
bSwitches2_6 := fbEnOceanPTM100_2.bSwitches[2];
bSwitches2 5 := fbEnOceanPTM100 2.bSwitches[3];
bSwitches2 8 := fbEnOceanPTM100 2.bSwitches[4];
bSwitches2_2 := fbEnOceanPTM100_2.bSwitches[5]; bSwitches2_7 := fbEnOceanPTM100_2.bSwitches[6];
bSwitches2 4 := fbEnOceanPTM100 2.bSwitches[7];
```

In diesem Beispielprogramm werden 2 Sendemodule (PTM100) abgefragt, ein Sendemodul mit der Transmitter-Id 16#C4 und ein anderes mit der Transmitter-Id 16#C5. Für beide Sendemodule wird jeweils ein Funktionsbaustein FB_EnOceanPTM100 angelegt. Beide Funktionsbausteine erhalten ihre Informationen von einem vorangeschalteten Empfängerbaustein FB_EnOceanReceive und sind nur dann aktiv (Eingang bEnable), wenn der Empfängerbaustein aktiv und nicht in Störung ist. Die Taster des ersten Sendemoduls werden zur weiteren Auswertung einem gleich großen boolschen Array bSwitches1 zugeordnet, während die Taster des zweiten Sendemodules einzelnen boolschen Variablen bSwitches2_1 bis bSwitches2_8 zugewiesen werden - beide Möglichkeiten sind denkbar.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.1.2.2 FB EnOceanPTM200

```
FB_EnOceanPTM200

— bEnable bSwitches —
tWatchdog bError —
nTransmitterId nErrorId —
stEnOceanReceivedData
```

Der Funktionsbaustein *FB_EnOceanPTM200()* gibt eine anwenderfreundliche Auswertung über den Zustand eines EnOcean PTM200- oder PTM250-Moduls. Hierzu ist die Verwendung des Funktionsblocks <u>FB_EnOceanReceive()</u> [▶_14] notwendig.

Im Unterschied zum PTM100-Modul, können beim PTM200-Module und beim PTM250-Modul bis zu zwei Taster gleichzeitig gedrückt werden. Des Weiteren unterstützt das PTM200- und PTM250-Modul vier, statt acht Taster.

Zu jedem verwendeten Tasten-Modul muss eine neue Instanz dieses Bausteines angelegt werden.

VAR_INPUT

```
bEnable : BOOL := FALSE;
tWatchdog : TIME;
nTransmitterId : UDINT;
stEnOceanReceivedData : ST_EnOceanReceivedData;
```

bEnable: Ein positives Signal an diesem Eingang setzt den Baustein aktiv. Bei einem negativen Signal am Eingang wird im Baustein keine Funktion ausgeführt und alle Ausgänge werden auf 0 bzw. FALSE gesetzt.

tWatchdog: Überwachungszeit. Innerhalb dieser Zeit müssen neue Informationen über den unten näher beschriebenen Eingang *stEnOceanReceivedData* in diesen Baustein gelangen. Ist diese Zeit auf t#0s gesetzt, so ist die Watchdog-Funktion inaktiv.

nTransmitterId: ID des EnOcean-Modules, auf den der Baustein reagieren soll.

stEnOceanReceivedData: Informationen und notwendige Verbindung zum EnOcean-Empfängerbaustein <u>FB EnOceanReceive()</u> [▶ 14]. Diese Informationen sind in einer Struktur hinterlegt (siehe <u>ST_EnOceanReceivedData</u> [▶ 37]).

VAR_OUTPUT

```
bSwitches: ARRAY [0..3] OF BOOL;
bError: BOOL:= FALSE;
nErrorId: UDINT:= 0;
```

bSwitches: Dieses Feld von 4 boolschen Werten beschreibt die Zustände der 4 Taster auf dem Taster-Modul.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *nErrorld* beschrieben.

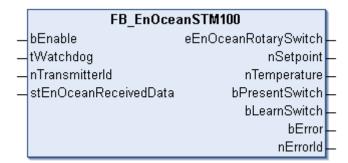
nErrorld: Beschreibt die Art des Fehlers (siehe <u>Fehlercodes</u> [▶ 23]).

Anhand des folgenden Programmbeispiels soll die Funktionsweise des Bausteines näher beschrieben werden:

```
PROGRAM MAIN

VAR

fbEnOceanReceive : FB_EnOceanReceive;
fbEnOceanPTM100_1 : FB_EnOceanPTM200;
fbEnOceanPTM100_2 : FB_EnOceanPTM200;
bSwitches1 : ARRAY [0..3] OF BOOL;
bSwitches2_1 : BOOL;
bSwitches2_2 : BOOL;
bSwitches2_3 : BOOL;
bSwitches2_4 : BOOL;
```



```
END VAR
fbEnOceanReceive(
    bEnable := TRUE,
    stEnOceanInData := stEnOceanInData
    stEnOceanOutData := stEnOceanOutData);
fbEnOceanPTM200 1(
   bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000000C6.
    tWatchdog:=t#0s,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData);
   bSwitches1 := fbEnOceanPTM200 1.bSwitches;
fbEnOceanPTM200 2(
    bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000000C7,
    tWatchdog:=t#0s,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData);
bSwitches2_1 := fbEnOceanPTM200_2.bSwitches[0];
bSwitches2 2 := fbEnOceanPTM200 2.bSwitches[1];
bSwitches2 3 := fbEnOceanPTM200 2.bSwitches[2];
bSwitches2 4 := fbEnOceanPTM200 2.bSwitches[3];
```

In diesem Beispielprogramm werden 2 Sendemodule (PTM200/PTM250) abgefragt, ein Sendemodul mit der Transmitter-Id 16#C6 und ein anderes mit der Transmitter-Id 16#C7. Für beide Sendemodule wird jeweils ein Funktionsbaustein *FB_EnOceanPTM200* angelegt. Beide Funktionsbausteine erhalten ihre Informationen von einem vorangeschalteten Empfängerbaustein <u>FB_EnOceanReceive</u> [▶ 14] und sind nur dann aktiv (Eingang *bEnable*), wenn der Empfängerbaustein aktiv und nicht in Störung ist. Die Taster des ersten Sendemoduls werden zur weiteren Auswertung einem gleich großen boolschen Array *bSwitches1* zugeordnet, während die Taster des zweiten Sendemoduls einzelnen boolschen Variablen *bSwitches2_1* bis *bSwitches2_4* zugewiesen werden - beide Möglichkeiten sind denkbar.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.1.2.3 FB_EnOceanSTM100

Veraltet

Bei neuen Projekten sollte der Baustein <u>FB_EnOceanSTM100Generic()</u> [▶ 20] verwendet werden!

Der Funktionsbaustein FB_EnOceanSTM100() gibt eine anwenderfreundliche Auswertung über die Daten eines EnOcean STM100-Moduls. Hierzu ist die Verwendung des Funktionsblocks FB_EnOceanReceive() [▶ 14] notwendig.

Zu jedem verwendeten STM100-Modul muss eine neue Instanz dieses Bausteines angelegt werden.

VAR INPUT

```
bEnable : BOOL := FALSE;
tWatchdog : TIME;
nTransmitterId : UDINT;
stEnOceanReceivedData : ST EnOceanReceivedData;
```

bEnable: Ein positives Signal an diesem Eingang setzt den Baustein aktiv. Bei einem negativen Signal am Eingang wird im Baustein keine Funktion ausgeführt und alle Ausgänge werden auf 0 bzw. FALSE gesetzt.

tWatchdog: Überwachungszeit. Innerhalb dieser Zeit müssen neue Informationen über den unten näher beschriebenen Eingang *stEnOceanReceivedData* in diesen Baustein gelangen. Ist diese Zeit auf t#0s gesetzt, so ist die Watchdog-Funktion inaktiv.

nTransmitterId: ID des EnOcean-Modules, auf den der Baustein reagieren soll.

stEnOceanReceivedData: Informationen und notwendige Verbindung zum EnOcean-Empfängerbaustein <u>FB_EnOceanReceive()</u> [▶ 14]. Diese Informationen sind in einer Struktur hinterlegt (siehe ST_EnOceanReceivedData [▶ 37]).

VAR_OUTPUT

eEnOceanRotarySwitch: Die Ausgabe an diesem Ausgang beschreibt die Stellung des Drehschalters am Raumbediengerät (siehe E EnOceanRotarySwitch [▶ 37]).

nSetpoint: An dieser Ausgangsvariablen liegt der am Gerät eingestellte Sollwert an. Dieser kann Werte im Bereich von -100 bis +100 annehmen.

nTemperature: Hier wird die gemessene Temperatur in 1/10°C ausgegeben mit einem Messbereich von 0°C bis 40°C. Bei ausgelöstem Watchdog vermutet der Baustein einen drahtbruchähnlichen Fehler und der Wert wird fest auf 850°C gesetzt.

bPresentSwitch: Bei Aktivierung der Anwesenheitstaste am Raumbediengerät wird dieser Ausgang *TRUE*.

bLearnSwitch: Bei Aktivierung der Anlerntaste am Raumbediengerät wird dieser Ausgang TRUE.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *nErrorld* beschrieben.

nErrorld: Beschreibt die Art des Fehlers (siehe <u>Fehlercodes [▶ 23]</u>).

Anhand des folgenden Programmbeispiels soll die Funktionsweise des Bausteines näher beschrieben werden:

```
PROGRAM MAIN
    fbEnOceanReceive : FB EnOceanReceive;
    fbEnOceanSTM100_1 : FB_EnOceanSTM100;
    fbEnOceanSTM100 2 : FB EnOceanSTM100;
    nTemperature : \overline{ARRAY} [\overline{1}..2] OF INT;
    nSetpoint : ARRAY [1..2] OF INT;
    nStateRotarySwitch : ARRAY [1..2] OF E_EnOceanRotarySwitch;
    bPresentSwitch : ARRAY [1..2] OF BOOL;
END VAR
fbEnOceanReceive(
   bEnable := TRUE,
    stEnOceanInData := stEnOceanInData,
    stEnOceanOutData := stEnOceanOutData);
fbEnOceanSTM100 1(
   bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceve.bEnable,
    nTransmitterId := 16#000000C4,
    tWatchdog:=t#1h,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData
  nTemperature => Temperature[1],
```



```
nSetpoint => nSetpoint[1] ,
    eEnOceanRotarySwitch => nStateRotarySwitch[1],
    bPresentSwitch => bPresentSwitch[1]);
fbEnOceanSTM100_2(
    bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000000C5,
    tWatchdog:=t#0s,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData
    nTemperature => Temperature[2],
    nSetpoint => nSetpoint[2] ,
    eEnOceanRotarySwitch => nStateRotarySwitch[2],
    bPresentSwitch => bPresentSwitch[2]);
```

In diesem Beispielprogramm werden 2 Raumbediengeräte abgefragt, einer mit der Transmitter-Id 16#00000C4 und ein anderer mit der Transmitter-Id 16#00000C5. Für beide Module wird jeweils ein Funktionsbaustein FB_EnOceanSTM100 angelegt. Beide Funktionsbausteine erhalten ihre Informationen von einem vorangeschalteten Empfängerbaustein FB_EnOceanReceive [▶ 14] und sind nur dann aktiv (Eingang bEnable), wenn der Empfängerbaustein aktiv und nicht in Störung ist. Das erste Gerät wird durch die Watchdog-Funktion überwacht, wobei innerhalb von 1 Stunde neue Werte an die Steuerung übertragen werden müssen, das zweite Gerät ist ohne Watchdog-Überwachung programmiert. Zur weiteren Auswertung sind die an den Funktionsbausteinen ausgegebenen Werten Merkern zugewiesen.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.1.2.4 FB_EnOceanSTM100Generic

Der Funktionsbaustein FB_EnOceanSTM100Generic() gibt eine anwenderfreundliche Auswertung über die Daten eines EnOcean STM100-Moduls. Hierzu ist die Verwendung des Funktionsblocks FB_EnOceanReceive() [▶_14] notwendig.

Zu jedem verwendeten STM100-Modul muss eine neue Instanz dieses Bausteines angelegt werden.

VAR_INPUT

```
bEnable : BOOL := FALSE;
tWatchdog : TIME;
nTransmitterId : UDINT;
stEnOceanReceivedData : ST_EnOceanReceivedData;
```

bEnable: Ein positives Signal an diesem Eingang setzt den Baustein aktiv. Bei einem negativen Signal am Eingang wird im Baustein keine Funktion ausgeführt und alle Ausgänge werden auf 0 bzw. FALSE gesetzt.

tWatchdog: Überwachungszeit. Innerhalb dieser Zeit müssen neue Informationen über den unten näher beschriebenen Eingang *stEnOceanReceivedData* in diesen Baustein gelangen. Ist diese Zeit auf t#0s gesetzt, so ist die Watchdog-Funktion inaktiv.

nTransmitterId: ID des EnOcean-Modules, auf den der Baustein reagieren soll.

stEnOceanReceivedData: Informationen und notwendige Verbindung zum EnOcean-Empfängerbaustein <u>FB_EnOceanReceive()</u> [\(\bullet_{14}\)]. Diese Informationen sind in einer Struktur hinterlegt (siehe <u>ST_EnOceanReceivedData</u> [\(\bullet_{37}\)]).

VAR OUTPUT

```
nDataBytes : ARRAY [0..3] OF BYTE;
bError : BOOL := FALSE;
nErrorId : UDINT := 0;
```

nDataBytes: 4 Bytes großes Array mit dem Nutzdaten, die das STM100-Modul versendet hat. Die Bedeutung der einzelnen Bytes ist herstellerabhängig.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *nErrorld* beschrieben.

nErrorld: Beschreibt die Art des Fehlers (siehe Fehlercodes [▶ 23]).

Anhand des folgenden Programmbeispiels soll die Funktionsweise des Bausteines näher beschrieben werden:

```
PROGRAM MATN
VAR
    fbEnOceanReceive : FB EnOceanReceive;
    fbEnOceanSTM100 1 : FB EnOceanSTM100Generic;
    fbEnOceanSTM100 2 : FB EnOceanSTM100Generic;
    nTemperature : ARRAY [1..2] OF BYTE;
    nSetpoint : ARRAY [1..2] OF BYTE;
    nStateRotarySwitch : ARRAY [1..2] OF BYTE;
    nPresentSwitch : ARRAY [1..2] OF BYTE;
END VAR
fbEnOceanReceive (
   bEnable := TRUE,
    stEnOceanInData := stEnOceanInData,
    stEnOceanOutData := stEnOceanOutData);
fbEnOceanSTM100 1(
   bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000000C4,
    tWatchdog:=t#1h,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData);
nTemperature[1] := fbEnOceanSTM100 1.nDataBytes[0];
nSetpoint[1] := fbEnOceanSTM100_1.nDataBytes[1];
nStateRotarySwitch[1] := fbEnOceanSTM100 1.nDataBytes[2];
nPresentSwitch[1] := fbEnOceanSTM100 1.nDataBytes[3];
fbEnOceanSTM100 2(
    bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000000C5,
    tWatchdog:=t#0s,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData);
nTemperature[2] := fbEnOceanSTM100 2.nDataBytes[0];
nSetpoint[2] := fbEnOceanSTM100 2.nDataBytes[1];
nStateRotarySwitch[2] := fbEnOceanSTM100_2.nDataBytes[2];
nPresentSwitch[2] := fbEnOceanSTM100 2.nDataBytes[3];
```

In diesem Beispielprogramm werden 2 EnOcean Sendemodule abgefragt, einer mit der Transmitter-Id 16#00000C4 und ein anderer mit der Transmitter-Id 16#00000C5. Für beide Transmitter wird jeweils ein Funktionsbaustein FB_EnOceanSTM100Generic angelegt. Beide Funktionsbausteine erhalten ihre Informationen von einem vorangeschalteten Empfängerbaustein FB_EnOceanReceive [1 14] und sind nur dann aktiv (Eingang bEnable), wenn der Empfängerbaustein aktiv und nicht in Störung ist. Das erste Gerät wird durch die Watchdog-Funktion überwacht, wobei innerhalb von 1 Stunde neue Werte an die Steuerung übertragen werden müssen, das zweite Gerät ist ohne Watchdog-Überwachung programmiert. Zur weiteren Auswertung sind die an den Funktionsbausteinen ausgegebenen Werten Variablen zugewiesen. Für eine weitere Verwendung der Werte müssten diese noch in physikalische Größen skaliert werden. Wie die Umrechnung zu erfolgen hat, ist aus dem Datenblatt des Sensors zu entnehmen.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.1.2.5 FB EnOceanSTM250

```
FB_EnOceanSTM250

— bEnable bState —

tWatchdog bLearn —

nTransmitterId bError —

stEnOceanReceivedData nErrorId —
```

Der Funktionsbaustein FB_EnOceanSTM250() gibt eine anwenderfreundliche Auswertung über die Daten eines EnOcean STM250-Moduls. Hierzu ist die Verwendung des Funktionsblocks FB_EnOceanReceive() [▶ 14] notwendig.

Zu jedem verwendeten STM250-Modul muss eine neue Instanz dieses Bausteines angelegt werden.

VAR INPUT

```
bEnable : BOOL := FALSE;
tWatchdog : TIME;
nTransmitterId : UDINT;
stEnOceanReceivedData : ST_EnOceanReceivedData;
```

bEnable: Ein positives Signal an diesem Eingang setzt den Baustein aktiv. Bei einem negativen Signal am Eingang wird im Baustein keine Funktion ausgeführt und alle Ausgänge werden auf 0 bzw. FALSE gesetzt.

tWatchdog: Überwachungszeit. Innerhalb dieser Zeit müssen neue Informationen über den unten näher beschriebenen Eingang *stEnOceanReceivedData* in diesen Baustein gelangen. Ist diese Zeit auf t#0s gesetzt, so ist die Watchdog-Funktion inaktiv.

nTransmitterId: ID des EnOcean-Modules, auf den der Baustein reagieren soll.

stEnOceanReceivedData: Informationen und notwendige Verbindung zum EnOcean-Empfängerbaustein <u>FB EnOceanReceive() [\rightarrow 14]</u>. Diese Informationen sind in einer Struktur hinterlegt (siehe <u>ST EnOceanReceivedData [\rightarrow 37]</u>).

VAR OUTPUT

```
bState : BOOL;
bLearn : BOOL;
bError : BOOL := FALSE;
nErrorId : UDINT := 0;
```

bState: Bei Aktivierung des Reedkontakts am STM250-Modul wird dieser Ausgang *TRUE* (Kontakt geschlossen).

bLearn: Bei Aktivierung der Lerntaste am STM250-Modul wird dieser Ausgang FALSE.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *nErrorld* beschrieben.

nErrorld: Beschreibt die Art des Fehlers (siehe <u>Fehlercodes</u> [▶ 23]).

Anhand des folgenden Programmbeispiels soll die Funktionsweise des Bausteines näher beschrieben werden:

```
PROGRAM MAIN

VAR

fbEnOceanReceive: FB_EnOceanReceive;
fbEnOceanSTM250: FB_EnOceanSTM250;
bState: BOOL;
bLearn: BOOL;
END_VAR

fbEnOceanReceive(
bEnable:= TRUE,
stEnOceanInData:= stEnOceanInData,
stEnOceanOutData:= stEnOceanOutData);
```



```
fbEnOceanSTM250(
    bEnable := NOT fbEnOceanReceive.bError AND fbEnOceanReceive.bEnable,
    nTransmitterId := 16#000008CA,
    tWatchdog:=t#0s,
    stEnOceanReceivedData := fbEnOceanReceive.stEnOceanReceivedData
    bState => bState,
    bLearn => bLearn);
```

In diesem Beispielprogramm wird ein STM250 Modul mit der Transmitter-Id 16#000008CA abgefragt. Hierzu wird der Funktionsbaustein FB_EnOceanSTM250 angelegt. Dieser Funktionsbaustein erhält Informationen von einem vorangeschalteten Empfängerbaustein FB_EnOceanReceive [▶ 14] und ist nur dann aktiv (Eingang bEnable), wenn der Empfängerbaustein aktiv und nicht in Störung ist. Zur weiteren Auswertung sind die an den Funktionsbaustein ausgegebenen Werten Variablen zugewiesen.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.1.3 Fehlercodes

Wert (hex)	Beschreibung
0x0000	Kein Fehler.
0x0001	Prüfsummenfehler.
0x0002	Watchdogüberwachung.
0x0003	Pufferüberlauf (in der KL6023)
0x0004	Noch keine Daten vom Sensor empfangen.

4.1.2 KL6581

4.1.2.1 FB KL6581

Dieser Funktionsbaustein übernimmt die Kommunikation mit der EnOcean-Busklemme KL6581. Über diesen Baustein wird die KL6581 konfiguriert und der Datenaustausch mit dem EnOcean-Netzwerk gestartet.

•

Einschränkungen

- · Nur ein Aufruf pro Instanz
- · Aufruf muss einmal pro PLC-Zyklus erfolgen
- Instanz muss in derselben PLC-Task aufgerufen werden, wie die ihm zugeordneten Sende- und Empfangsbausteine
- · Maximal 64 Instanzen pro PLC-Projekt zulässig

VAR INPUT

```
bInit : BOOL;
nIdx : USINT := 1;
```

blnit: Aktiviert den Baustein, der die KL6301 als erstes konfiguriert und dann in den Datenaustausch setzt.

nldx: Die idx-Nummer muss beim Einsatz von mehr als einer Busklemme pro PLC-Programm für jede KL6581 eindeutig sein (gültige Werte: 1...64).

VAR_OUTPUT

bReady : BOOL;
bBusy : BOOL;
bError : BOOL;
iErrorID : E_KL6581_Err;
str_KL6581 : STR_KL6591;

bReady: Der Baustein ist bereit Daten zu senden und zu empfangen.

bBusy: Der Baustein ist aktiv.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *iErrorld* beschrieben.

iErrorID: Beschreibt die Art des Fehlers (siehe E KL6581 Err [▶ 39]).

str_KL6581: Wird mit den Send- und Receive-Bausteinen verbunden (siehe STR KL6581 [> 42]).

VAR_IN_OUT

```
stKL6581_in : KL6581_Input;
stKL6581_out : KL6581_Output;
```

stKL6581_in: Wird mit den Eingangsadressen der KL6581 im System Manager verknüpft (siehe KL6581_Input [\(\bullet \) 40]).

stKL6581_out: Wird mit den Ausgangsadressen der KL6581 im System Manager verknüpft (siehe KL6581_Output [▶ 41]).

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.2 Read

Bausteine	Beschreibung
FB Rec Generic [▶ 24]	Empfängt alle Arten von EnOcean-Telegrammen
FB Rec 1BS [▶ 25]	Empfängt Daten mit ORG-Telegramm 6.Typisches EnOcean-Gerät: Fensterkontakt
FB Rec RPS Switch [26]	Empfängt Daten mit ORG-Telegramm 5. Typisches EnOcean-Gerät: Taster
FB_Rec_RPS_Window_Handle [▶ 27]	Empfängt Daten mit ORG-Telegramm 5. Typisches EnOcean-Gerät: Fenstergriff

4.1.2.2.1 FB Rec Generic

```
FB_Rec_Generic

— str_KL6581 ar_Value —

— byNode by_Node —

— dw_ID by_STATE —

bReceive —

EnOceanTyp —
```

Dieser Funktionsbaustein empfängt alle Daten, die über EnOcean empfangen wurden. Dieser Baustein kann für alle Arten von EnOcean-Telegrammen verwendet werden.

Die Daten muss der Anwender selbst interpretieren. Dazu ist die Dokumentation des Herstellers des sendenden EnOcean-Gerätes notwendig.

VAR_INPUT

str_KL6581 : STR_KL6581;
byNode : BYTE;
dw_ID : DWORD;

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB_KL6581()</u> [▶ 23] verbunden (siehe <u>STR_KL6581</u> [▶ 42]).

byNode: Filter - bei dem Wert Null werden die EnOcean-Telegramme von allen KL6583 empfangen. Wird ein Wert von 1 bis 8 eingetragen, werden nur die Daten der entsprechenden KL6583 empfangen.

dw_ID: EnOcean-ID, die empfangen werden soll.

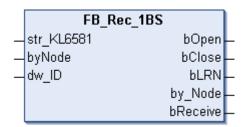
VAR_OUTPUT

ar_Value : ARRAY [0..3] OF BYTE;
by_Node : BYTE;
by_STATE : BYTE;
bReceive : BOOL := TRUE;
EnOceanTyp : E_EnOcean_Org;

ar_Value: EnOcean-Daten 4 Byte.

by_Node: Node Nummer der KL6583, die das EnOcean-Telegramm empfangen hat.

by_STATE: EnOcean STATUS Field.


bReceive: Bei empfangenden EnOcean-Telegramm wird dieser Wert für einen Zyklus auf FALSE gesetzt.

EnOceanTyp: EnOcean ORG Field (siehe E EnOcean Org [▶ 39]).

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.2.2 FB_Rec_1BS

Dieser Funktionsbaustein empfängt Daten, die über EnOcean empfangen wurden. Dieser Baustein wird zum Beispiel zur Anbindung von Fensterkontakten verwendet (ORG FIELD 6).

VAR_INPUT

```
str_KL6581 : STR_KL6581;
byNode : BYTE;
dw_ID : DWORD;
```

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

byNode: Filter - bei dem Wert Null werden die EnOcean-Telegramme von allen KL6583 empfangen. Wird ein Wert von 1 bis 8 eingetragen, werden nur die Daten der entsprechenden KL6583 empfangen.

dw_ID: EnOcean-ID, die empfangen werden soll.

VAR_OUTPUT

bOpen : BOOL;
bClose : BOOL;
bLRN : BOOL;
by_Node : BYTE;
bReceive : BOOL := TRUE;

bOpen: Kontakt offen.

bClose: Kontakt geschlossen. **bLRN:** LRN Taste gedrückt.

by_Node: Node Nummer der KL6583, die das EnOcean-Telegramm empfangen hat.

bReceive: Bei empfangenden EnOcean-Telegramm wird dieser Wert für einen Zyklus auf FALSE gesetzt.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.2.3 FB_Rec_RPS_Switch

Dieser Funktionsbaustein empfängt Daten eines Schalters, die über EnOcean empfangen wurden. Der Baustein gibt die Daten in einer Datenstruktur aus (ORG Field 5).

VAR INPUT

str_KL6581 : STR_KL6581;
byNode : BYTE;
dw_ID : DWORD;

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB_KL6581()</u> [▶ 23] verbunden (siehe <u>STR_KL6581</u> [▶ 42]).

byNode: Filter - bei dem Wert Null werden die EnOcean-Telegramme von allen KL6583 empfangen. Wird ein Wert von 1 bis 8 eingetragen, werden nur die Daten der entsprechenden KL6583 empfangen.

dw_ID: EnOcean-ID, die empfangen werden soll.

VAR_OUTPUT

str_EnOceanSwitch : STR_EnOceanSwitch;
by_Node : BYTE;
bReceive : BOOL := TRUE;

str_EnOceanSwitch: Daten des Schalters (siehe STR EnOceanSwitch [▶ 42]).

by_Node: Node Nummer der KL6583, die das EnOcean-Telegramm empfangen hat.

bReceive: Bei empfangenden EnOcean-Telegramm wird dieser Wert für einen Zyklus auf FALSE gesetzt.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.2.4 FB_Rec_RPS_Window_Handle

```
FB_Rec_RPS_Window_Handle

-- str_KL6581 ar_Data --
byNode by_Node --
dw_ID bReceive --
```

Dieser Funktionsbaustein empfängt Daten eines Fenstergriffes (WINDOW HANDLE), die über EnOcean empfangen wurden. Der Baustein gibt die Daten in einer Datenstruktur aus (ORG Field 5).

VAR_INPUT

str_KL6581 : STR_KL6581;
byNode : BYTE;
dw_ID : DWORD;

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

byNode: Filter - bei dem Wert Null werden die EnOcean-Telegramme von allen KL6583 empfangen. Wird ein Wert von 1 bis 8 eingetragen, werden nur die Daten der entsprechenden KL6583 empfangen.

dw_ID: EnOcean-ID, die empfangen werden soll.

VAR_OUTPUT

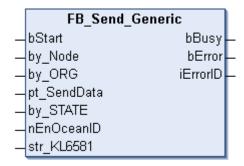
```
ar_Data : AR_EnOceanWindow;
by_Node : BYTE;
bReceive : BOOL := TRUE;
```

ar_Data: Daten des Fenstergriffs (siehe AR EnOceanWindow [▶ 41]).

by Node: Node Nummer der KL6583, die das EnOcean-Telegramm empfangen hat.

bReceive: Bei empfangenden EnOcean-Telegramm wird dieser Wert für einen Zyklus auf FALSE gesetzt.

Voraussetzungen


Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.3 Send

Bausteine	Beschreibung
FB Send Generic [> 28]	Sendet beliebige EnOcean-Telegramme
FB Send 4BS [> 29]	Sendet EnOcean-Telegramme im 4BS Format
FB Send RPS Switch [▶ 29]	Sendet EnOcean-Telegramme im Format eines Tasters
FB Send RPS SwitchAuto [▶ 30]	Sendet EnOcean-Telegramme im Format eines Tasters

4.1.2.3.1 FB_Send_Generic

Dieser Funktionsbaustein sendet Daten über EnOcean. Die Art und der Dateninhalt sind beliebig. Mit diesem Baustein können alle Arten von EnOcean-Daten-Telegrammen versendet werden.

VAR_INPUT

```
bStart : BOOL;
by_Node : BYTE;
by_ORG : E_EnOcean_Org;
pt_SendData : DWORD;
by_STATE : BYTE;
nEnOceanID : BYTE;
str_KL6581 : STR_KL6581;
```

bStart: Positive Flanke sendet die Daten.

by_Node: Adresse des KL6583 Moduls, an die das Telegramm gesendet werden soll (gültige Werte: 1...8).

by_ORG: ORG Field des EnOcean-Telegramms (siehe <u>E_EnOcean_Org_[▶ 39]</u>).

pt_SendData: Pointer auf die Daten, die gesendet werden sollen. Mit ADR wird die Pointeradresse ermittelt. Der Pointer muss auf eine 4 Byte Variable zeigen.

by_STATE: EnOcean STATE. Kann vom TCM Modul verändert werden.

nEnOceanID: Virtuelle EnOcean-ID. Auf die reale EnOcean-ID wird ein Wert von 0...127 addiert (gültige Werte: 0...127).

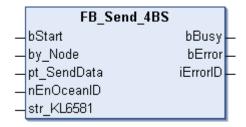
str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

VAR_OUTPUT

```
bBusy : BOOL;
bError : BOOL;
iErrorID : E_KL6581_Err;
```

bBusy: Der Baustein ist aktiv. Es können noch keine neuen Daten gesendet werden.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *iErrorID* beschrieben.


iErrorID: Beschreibt die Art des Fehlers (siehe E_KL6581 Err [▶ 39]).

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2 EnOcean ab v3.3.5.0

4.1.2.3.2 FB_Send_4BS

Dieser Funktionsbaustein sendet Daten über EnOcean. Das ORG Field ist fest auf 7 eingestellt.

VAR_INPUT

```
bStart : BOOL;
by_Node : BYTE;
pt_SendData : DWORD;
nEnOceanID : BYTE;
str_KL6581 : STR_KL6581;
```

bStart: Positive Flanke sendet die Daten.

by_Node: Adresse des KL6583 Moduls, an die das Telegramm gesendet werden soll (gültige Werte: 1...8).

pt_SendData: Pointer auf die Daten, die gesendet werden sollen. Mit ADR wird die Pointeradresse ermittelt. Der Pointer muss auf eine 4 Byte Variable zeigen.

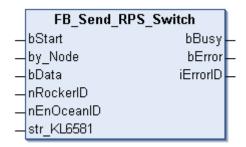
nEnOceanID: Virtuelle EnOcean-ID. Auf die reale EnOcean-ID wird ein Wert von 0...127 addiert (gültige Werte: 0...127).

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

VAR_OUTPUT

```
bBusy : BOOL;
bError : BOOL;
iErrorID : E_KL6581_Err;
```

bBusy: Der Baustein ist aktiv. Es können noch keine neuen Daten gesendet werden.


bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *iErrorID* beschrieben.

iErrorID: Beschreibt die Art des Fehlers (siehe E KL6581 Err [▶ 39]).

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.3.3 FB_Send_RPS_Switch

Dieser Baustein sendet EnOcean-Telegramme im Format eines Tasters. Mit der positiven Flanke von *bStart* wird der Wert von *bData* gesendet. Um einen Tastendruck zu simulieren, muss der Baustein üblicherweise 2-mal gestartet werden, einmal mit *bData* = TRUE, und einmal mit *bData* = FALSE. Für eine einfachere Handhabung kann der Baustein FB Send RPS SwitchAuto() [▶ 30] verwendet werden.

VAR_INPUT

```
bStart : BOOL;
by_Node : BYTE;
bData : BOOL;
nRockerID : INT;
nEnOceanID : BYTE;
str_KL6581 : STR_KL6581;
```

bStart: Positive Flanke sendet die Daten.

by_Node: Adresse des KL6583-Moduls, an die das Telegramm gesendet werden soll (gültige Werte: 1...8).

bData: Wert, der übertragen werden soll.

nRockerID: Tasternummer, gültige Werte 0..3.

nEnOceanID: Virtuelle EnOcean-ID. Auf die reale EnOcean-ID wird ein Wert von 0...127 addiert (gültige Werte: 0...127).

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

VAR_OUTPUT

```
bBusy : BOOL;
bError : BOOL;
iErrorID : E_KL6581_Err;
```

bBusy: Der Baustein ist aktiv. Es können noch keine neuen Daten gesendet werden.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *iErrorID* beschrieben.

iErrorID: Beschreibt die Art des Fehlers (siehe <u>E_KL6581_Err [▶ 39]</u>).

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.3.4 FB_Send_RPS_SwitchAuto

Dieser Baustein sendet EnOcean-Telegramme im Format eines Tasters. Mit der positiven Flanke von *bStart* wird der Wert von *bData* gesendet. Nach Ablauf der Zeit *t_SwitchDelay* wird das Signal "Taster loslassen" gesendet.

VAR_INPUT

bStart : BOOL;
bData : BOOL;
by_Node : BYTE;
t_SwitchDelay : TIME := T#100ms;
nRockerID : INT;
nEnOceanID : BYTE;
str_KL6581 : STR_KL6581;

bStart: Positive Flanke sendet die Daten.

bData: Wert der Übertragen werden soll.

by_Node: Adresse des KL6583 Moduls an die das Telegramm gesendet werden soll (gültige Werte: 1...8).

t_SwitchDelay: Wie lange der Taster gedrückt werden muss.

nRockerID: Tasternummer, gültige Werte 0..3.

nEnOceanID: Virtuelle EnOcean-ID. Auf die reale EnOcean-ID wird ein Wert von 0...127 addiert (gültige Werte: 0...127).

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

VAR_OUTPUT

bBusy : BOOL;
bError : BOOL;
iErrorID : E_KL6581_Err;

bBusy: Der Baustein ist aktiv. Es können noch keine neuen Daten gesendet werden.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable *iErrorID* beschrieben.

iErrorlD: Beschreibt die Art des Fehlers (siehe <u>E_KL6581_Err [▶ 39]</u>).

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.4 Other

Bausteine	Beschreibung
FB_EnOcean_Search [▶ 31]	Baustein erkennt alle EnOcean-Teilnehmer in seiner Reichweite und zeigt diese an.
FB Rec Teach In [▶ 32]	Dieser Baustein zeigt an wenn in einem EnOcean- Telegramm das LRN Bit gesetzt ist unabhängig seiner EnOcean-ID.
FB Rec Teach In Ex [> 33]	Dieser Baustein zeigt an, wenn bei einem EnOcean- Teilnehmer die Learn-Taste gedrückt wird.

4.1.2.4.1 FB_EnOcean_Search

Dieser Funktionsbaustein zeigt alle EnOcean IDs an, die er empfangen hat und trägt diese in ein Empfangsarray ein (ar_ID). Es können bis zu 256 EnOcean Teilnehmer erkannt werden. Wahlweise kann der Baustein auch für jede KL6583 einzeln angelegt werden. Damit kann man erkennen ob ein EnOcean Teilnehmer von mehreren KL6583 empfangen wird.

VAR_INPUT

```
bStart : BOOL;
str_KL6581 : STR_KL6581;
byNode : BYTE;
```

bStart: Bei TRUE ist der Baustein aktiviert, bei FALSE deaktiviert.

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

byNode: Filter - bei dem Wert Null werden die EnOcean-Telegramme von allen KL6583 empfangen. Wird ein Wert von 1 bis 8 eingetragen, werden nur die Daten der entsprechenden KL6583 empfangen.

VAR OUTPUT

```
bReceive : BOOL := TRUE;
iDevices : INT;
ar_ID : ARRAY [0..255] OF DWORD;
```

bReceive: Bei empfangenden EnOcean-Telegramm wird dieser Wert für einen Zyklus auf FALSE gesetzt.

iDevices: Anzahl an gefundenen EnOcean-Teilnehmern.

ar_ID: EnOcean-IDs, die gefunden wurden.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.4.2 FB_Rec_Teach_In

```
FB_Rec_Teach_In

— bStart bLearnType —

— byNode by_Node —

— str_KL6581 dw_ID —

str_Teach_In —

bReceive —
```

Dieser Funktionsbaustein zeigt an, wenn bei einem EnOcean-Teilnehmer die Learn-Taste gedrückt wird. Wenn das Flag *bLearnType* gesetzt ist, können weitere Informationen des EnOcean-Teilnehmers ausgelesen werden. Dies ist eine Funktion, die das EnOcean-Gerät liefern muss, die aber bisher von den wenigsten EnOcean-Geräten unterstützt wird.

VAR_INPUT

```
bStart : BOOL;
byNode : BYTE;
str_KL6581 : STR_KL6581;
```

bStart: Bei TRUE ist der Baustein aktiviert, bei FALSE deaktiviert.

byNode: Filter - bei dem Wert Null werden die EnOcean-Telegramme von allen KL6583 empfangen. Wird ein Wert von 1 bis 8 eingetragen, werden nur die Daten der entsprechenden KL6583 empfangen.

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

VAR_OUTPUT

```
bLearnType : BOOL;
by_Node : BYTE;
dw_ID : DWORD;
str_Teach_In : STR_Teach_In;
bReceive : BOOL := TRUE;
```

bLearnType: Ist das Bit gesetzt, finden Sie weitere Daten in der Struktur str Teach In.

by_Node: Anzahl an gefundenen EnOcean-Teilnehmern.

dw_ID: EnOcean-ID, bei dem die Learn-Taste gedrückt wurde.

str Teach In: Datenstruktur, Profil, Typ und Hersteller-ID (siehe STR Teach In [42]).

bReceive: Bei empfangenden EnOcean-Telegramm wird dieser Wert für einen Zyklus auf FALSE gesetzt.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.4.3 FB_Rec_Teach_In_Ex

```
FB_Rec_Teach_In_Ex
-bStart bLearnType -
byNode by_Node
-str_KL6581 dw_ID -
str_Teach_In bReceive -
```

Dieser Funktionsbaustein zeigt an, wenn bei einem EnOcean-Teilnehmer die Learn-Taste gedrückt wird. Wenn das Flag *bLearnType* gesetzt ist, können weitere Informationen des EnOcean-Teilnehmers ausgelesen werden. Dies ist eine Funktion, die das EnOcean-Gerät liefern muss, die aber bisher von den wenigsten EnOcean-Geräten unterstützt wird.

Zusätzlich zum <u>FB Rec Teach In()</u> [▶ <u>32]</u>-Funktionsblock wird noch geprüft, ob es sich um ein EEP-Telegramm handelt.

VAR_INPUT

```
bStart : BOOL;
byNode : BYTE;
str_KL6581 : STR_KL6581;
```

bStart: Bei TRUE ist der Baustein aktiviert, bei FALSE deaktiviert.

byNode: Filter - bei dem Wert Null werden die EnOcean-Telegramme von allen KL6583 empfangen. Wird ein Wert von 1 bis 8 eingetragen, werden nur die Daten der entsprechenden KL6583 empfangen.

str_KL6581: Wird mit der Datenstruktur des Bausteins <u>FB KL6581()</u> [▶ 23] verbunden (siehe <u>STR KL6581</u> [▶ 42]).

VAR OUTPUT

```
bLearnType : BOOL;
by_Node : BYTE;
dw_ID : DWORD;
str_Teach_In : STR_Teach;
bReceive : BOOL := TRUE;
```

bLearnType: Ist das Bit gesetzt, finden Sie weitere Daten in der Struktur str_Teach_In.

by_Node: Anzahl an gefundenen EnOcean-Teilnehmern.

dw_ID: EnOcean-ID, bei dem die Learn-Taste gedrückt wurde.

str Teach In: Datenstruktur, Funktion, Typ und Hersteller-ID (siehe STR Teach [> 43]).

bReceive: Bei empfangenden EnOcean-Telegramm wird dieser Wert für einen Zyklus auf FALSE gesetzt.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.32	Tc2_EnOcean ab v3.4.6.0

4.1.2.5 Function

Bausteine	Beschreibung
<u> </u>	Diese Funktion wandelt einen Byte-Rohwert in eine REAL-Variable um.
<u> </u>	Diese Funktion wandelt einen Byte Rohwert in ein Bool Array um.

4.1.2.5.1 F_Byte_To_Temp

```
F_Byte_To_Temp
— byData F_Byte_To_Temp —
— minTemp
— maxTemp
```

Diese Funktion wandelt einen Byte-Rohwert in eine REAL-Variable um.

Bei EnOcean werden Temperaturdaten in einem bestimmten Format übertragen, das ein Byte groß ist. Diese Daten sind meist auf einen bestimmten Temperaturwert skaliert.

Zum Beispiel wird ein Wert aus einem Wertebereich von 0...40°C übertragen. Der Funktion wird der minimale und maximale Wert der Daten und der Rohwert übergeben. Der Ausgang der Funktion gibt dann die Temperatur als REAL-Variable aus.

VAR_INPUT

```
byData : BYTE;
minTemp : REAL := 0;
maxTemp : REAL := 40;
```

byData: Rohdaten.

minTemp: Minimale Temperatur.maxTemp: Maximale Temperatur.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.5.2 F_Byte_To_TurnSwitch

```
F_Byte_To_TurnSwitch
byData F_Byte_To_TurnSwitch
```

Diese Funktion wandelt einen Byte-Rohwert in ein Bool-Array um, das als Datenstruktur vorliegt (siehe <u>STREnOceanTurnSwitch</u> [• 44]).

VAR_INPUT

byData : BYTE;

byData: Rohdaten.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.1.2.6 Fehlercodes

Wert (hex)	Wert (dez)	Wert (enum)	Beschreibung
0x0000	0	NO_ERROR	Am Baustein liegt kein Fehler an.
0x000A	10	KL6581_WrongTerminal	Falsche Klemme angeschlossen.
0x0010	16	KL6581_WatchdogError	Zeitüberschreitung beim Initialisierungsvorgang des Bausteins FB KL6581() [▶ 23].
0x0011	17	KL6581_NoComWithKL6581	Üblicherweise gibt es bei dieser Meldung keine Verbindung zur Klemme. Klemme im System Manager mit den Variablen verknüpft? Klemme falsch gesteckt? Alles bereinigen, alles Übersetzen und im System Manager neu eingelesen?
0x0012	18	KL6581_idx_number_not_OK	Die Eingangsvariable nldx des Bausteins FB_KL6581() ist größer als 64.
0x0013	19	KL6581_Switch_to_Stopp	Die Klemme ist aus dem Datenaustausch
			mit der EnOcean-Sender und -Empfänger
			<u>KL6583-0000</u> gegangen, es wurden keine EnOcean Daten gesendet oder empfangen.
0x0014	20	KL6581_not_ready	Interne Meldung für die Funktionsblöcke, die an den FB_KL6581() angeschlossen sind.
0x0015	21	KL6581_No_KL6853_Found	Es ist keine KL6583 an der EnOcean- Masterklemme KL6581 angeschlossen oder die Kommunikation ist nicht vorhanden!
0x0016	22	KL6581_TransmissionError	Daten konnten nicht gesendet werden, Adresse der KL6583 prüfen oder KL6583 nicht betriebsbereit.

4.2 DUTs

KL6021-0023/Hardware Types

Datentypen	Beschreibung
ST EnOceanInData [> 38]	Prozessabbild der Eingänge der KL6021-0023
ST_EnOceanOutData [▶ 38]	Prozessabbild der Ausgänge der KL6021-0023

KL6021-0023

Datentypen	Beschreibung
E_EnOceanRotarySwitch [▶ 37]	Stellung des Drehschalters am Raumbediengerät
E EnOceanSensorType [▶ 36]	Sensorentyp
ST EnOceanReceivedData [> 37]	Interne Struktur

KL6581/Hardware Types

Datentypen	Beschreibung
KL6581 Input [▶ 40]	Prozessabbild der Eingänge der KL6581
KL6581_Output [▶ 41]	Prozessabbild der Ausgänge der KL6581

KL6581

Datentypen	Beschreibung
AR EnOceanWindow [▶ 41]	Zustand des Fensters
E ENOCEAN Org [▶39]	Typ des EnOcean Telegramms
E KL6581 Err [▶ 39]	Fehlermeldungen
STR EnOceanSwitch [> 42]	Zustand der Taster
STR KL6581 [> 42]	Interne Struktur
STR Teach [▶ 43]	Datenstruktur Hersteller ID, Typ und Funktion
STR_Teach_In [• 43]	Datenstruktur Hersteller ID, Typ und Profil
STREnOceanTurnSwitch [44]	Stellung des Drehschalters am Raumbediengerät

4.2.1 KL6021-0023

Hardware Types

Datentypen	Beschreibung
ST EnOceanInData [> 38]	Prozessabbild der Eingänge der KL6021-0023
ST EnOceanOutData [▶ 38]	Prozessabbild der Ausgänge der KL6021-0023

Datentypen	Beschreibung
E EnOceanRotarySwitch [▶ 37]	Stellung des Drehschalters am Raumbediengerät
E EnOceanSensorType [▶ 36]	Sensorentyp
ST_EnOceanReceivedData [> 37]	Interne Struktur

4.2.1.1 Enums

4.2.1.1.1 E_EnOceanSensorType

Sensorentyp.

eEnOceanSensorTypePTM: PTM.

eEnOceanSensorTypeSTM1Byte: STM 1 Byte. **eEnOceanSensorTypeSTM4Byte:** STM 4 Byte.

eEnOceanSensorTypeCTM: CTM.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.1.1.2 E_EnOceanRotarySwitch

E EnOceanRotarySwitch beschreibt die Stellung des Drehschalters am Raumbediengerät.

```
TYPE E_EnOceanRotarySwitch :
  (
   eEnOceanRotarySwitchStep0 := 0,
   eEnOceanRotarySwitchStep1 := 1,
   eEnOceanRotarySwitchStep2 := 2,
   eEnOceanRotarySwitchStep3 := 3,
   eEnOceanRotarySwitchAuto := 4
)
END_TYPE
```

eEnOceanRotarySwitchStep0: Schalter in Stellung "0".

eEnOceanRotarySwitchStep1: Schalter in Stellung "1".

eEnOceanRotarySwitchStep2: Schalter in Stellung "2".

eEnOceanRotarySwitchStep3: Schalter in Stellung "3".

eEnOceanRotarySwitchAuto: Schalter in Stellung "Auto".

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.1.2 Structures

4.2.1.2.1 ST_EnOceanReceivedData

Interne Struktur.

Über diese Struktur wird der Baustein FB EnOceanReceive() [▶ 14] mit den Empfangsbausteinen verbunden.

```
TYPE ST_EnOceanReceivedData:

STRUCT

bReceived : BOOL;

nLength : BYTE;

eEnOceanSensorType : E_EnoceanSensorType;

nData : ARRAY[0..3] OF BYTE;

nStatus : BYTE;

nTransmitterId : UDINT;

END_STRUCT
END_TYPE
```

bReceived: Daten empfangen.

nLength: Länge.

eEnOceanSensorType: Sensortyp (siehe <u>E_EnOceanSensorType [▶ 36]</u>).

nData: Daten Bytes. nStatus: Status.

nTransmitterId: Transmitter-ID.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.1.2.2 ST_EnOceanInData

Prozessabbild der Eingänge der KL6021-0023.

Wird im System Manager mit der Klemmen verknüpft.

```
TYPE ST_EnOceanInData:
STRUCT

nStatus: BYTE;

nData: ARRAY[0..10] OF BYTE;
END_STRUCT
END_TYPE
```

nStatus: Status Byte.

nData: 11 Bytes für die Eingangsdaten.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.1.2.3 ST_EnOceanOutData

Prozessabbild der Ausgänge der KL6021-0023.

Wird im System Manager mit der Klemmen verknüpft.

```
TYPE ST_EnOceanOutData:
STRUCT
nCtrl: BYTE;
nData: ARRAY[0..10] OF BYTE;
END_STRUCT
END_TYPE
```

nCtrl: Control Byte.

nData: 11 Bytes für die Ausgangsdaten.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.2 KL6581

Hardware Types

Datentypen	Beschreibung
KL6581 Input [▶ 40]	Prozessabbild der Eingänge der KL6581
KL6581 Output [▶ 41]	Prozessabbild der Ausgänge der KL6581

Datentypen	Beschreibung
AR EnOceanWindow [▶ 41]	Zustand des Fensters
E ENOCEAN Org [▶ 39]	Typ des EnOcean Telegramms
E_KL6581_Err [▶ 39]	Fehlermeldungen
STR EnOceanSwitch [42]	Zustand der Taster
STR KL6581 [▶ 42]	Interne Struktur
STR Teach [▶ 43]	Datenstruktur Hersteller ID, Typ und Funktion
STR Teach In [43]	Datenstruktur Hersteller ID, Typ und Profil
STREnOceanTurnSwitch [> 44]	Stellung des Drehschalters am Raumbediengerät

4.2.2.1 Enums

4.2.2.1.1 E_ENOCEAN_ORG

Typ des EnOcean Telegramms.

```
TYPE E_ENOCEAN_Org :

(
PTM_TELEGRAM := 5,
STM_1BYTE_TELEGRAM := 6,
STM_4BYTE_TELEGRAM := 7,
CTM_TELEGRAM := 8,
MODEM_TELEGRAM := 16#A,
MODEM_ACK_TELEGRAM := 16#B
)
END_TYPE
```

PTM_TELEGRAM: PTM Telegramm.

STM_1BYTE_TELEGRAM: 1 Byte Telegramm. **STM_4BYTE_TELEGRAM:** 4 Byte Telegramm.

CTM_TELEGRAM: CTM Telegramm.

MODEM_TELEGRAM: Modem Telegramm.

MODEM_ACK_TELEGRAM: Modem Telegramm mit Bestätigung.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2 EnOcean ab v3.3.5.0

4.2.2.1.2 E_KL6581_Err

Fehlermeldungen.

NO_ERROR: Am Baustein liegt kein Fehler an.

KL6581_WrongTerminal: Falsche Klemme angeschlossen.

KL6581 WatchdogError: Zeitüberschreitung beim Initialisierungsvorgang des Bausteins "FB KL6581".

KL6581_NoComWithKL6581: Üblicherweise gibt es bei dieser Meldung keine Verbindung zur Klemme. Klemme im System Manager mit den Variablen verknüpft? Klemme falsch gesteckt? Alles bereinigen, alles Übersetzen und im System Manager neu eingelesen?

KL6581_idx_number_not_OK: Die Eingangsvariable *nldx* des Bausteins <u>FB KL6581() [▶ 23]</u> ist größer als 64.

KL6581_Switch_to_Stopp: Die Klemme ist aus dem Datenaustausch mit der KL6583 gegangen. Es sind keine EnOcean-Daten gesendet oder empfangen worden.

KL6581_not_ready: Interne Meldung für die Funktionsblöcke, die an den FB KL6581() angeschlossen sind.

KL6581_No_KL6853_Found: Es ist keine KL6583 an der KL6581 angeschlossen oder die Kommunikation ist nicht vorhanden!

KL6581_TransmissionError: Daten konnten nicht gesendet werden, Adresse der KL6583 prüfen oder KL6583 nicht betriebsbereit.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.2.2 Structures

4.2.2.2.1 KL6581 Input

Prozessabbild der Eingänge der KL6581.

Wird im System Manager mit der Klemme verknüpft.

```
TYPE KL6581 Input:
STRUCT
  nStatus : BYTE;
  CNODE : BYTE;
  ORG
         : BYTE;
  DB0
          : BYTE;
  DB1
         : BYTE;
  DB2
          : BYTE:
  DB3
          : BYTE;
  ID0
          : BYTE;
  ID1
          : BYTE;
  ID2
         : BYTE;
  TD3
          : BYTE;
 STATUS : BYTE;
END_STRUCT
END TYPE
```

nStatus: Status Byte.

CNODE: Daten Byte.

ORG: Daten Byte.

DB0: Daten Byte.

DB1: Daten Byte.

DB2: Daten Byte.

DB3: Daten Byte.

ID0: Daten Byte.

ID1: Daten Byte.

ID2: Daten Byte.

ID3: Daten Byte.

STATUS: Daten Byte.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.2.2.2 KL6581_Output

Prozessabbild der Ausgänge der KL6581.

Wird im System Manager mit der Klemme verknüpft.

```
TYPE KL6581_Output :
STRUCT
  nControl : BYTE;
  CNODE : BYTE;
            : BYTE;
: BYTE;
  ORG
  DB0
           : BYTE;
: BYTE;
: BYTE;
: BYTE;
: BYTE;
  DB1
  DB2
  DB3
  TDO
  ID1
  ID2
            : BYTE;
 ID3 : BYTE;
STATUS : BYTE;
END_STRUCT
END TYPE
```

nControl: Control Byte.

CNODE: Daten Byte.

ORG: Daten Byte.

DB0: Daten Byte.

DB1: Daten Byte.

DB2: Daten Byte.

DB3: Daten Byte.

ID0: Daten Byte.

ID1: Daten Byte.

ID2: Daten Byte.

ID3: Daten Byte.

STATUS: Daten Byte.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.2.2.3 AR_EnOceanWindow

Diese Struktur zeigt den Zustand des Fensters an.

```
TYPE AR_EnOceanWindow:
STRUCT
bUp : BOOL;
bOpen : BOOL;
```



```
bClose: BOOL;
END_STRUCT
END_TYPE
```

bUp: Das Fenster ist gekippt.bOpen: Das Fenster ist offen.

bClose: Das Fenster ist geschlossen.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.2.2.4 STR_EnOceanSwitch

Zustand der Taster.

```
TYPE STR_EnOceanSwitch:

STRUCT

bT1_ON: BOOL;

bT1_OFF: BOOL;

bT2_ON: BOOL;

bT3_OFF: BOOL;

bT3_OFF: BOOL;

bT4_ON: BOOL;

bT4_OFF: BOOL;

bT4_OFF: BOOL;
```

bT1_ON: Taster 1 an.

bT1_OFF: Taster 1 aus.

bT2_ON: Taster 2 an.

bT2_OFF: Taster 2 aus.

bT3_ON: Taster 3 an.

bT3_OFF: Taster 3 aus.

bT4_ON: Taster 4 an.

bT4_OFF: Taster 4 aus.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.2.2.5 STR_KL6581

Interne Struktur.

Über diese Struktur wird der Baustein <u>FB_KL6581()</u> [▶ <u>23]</u> mit den Sende-Empfangsbausteinen verbunden.

```
TYPE STR_KL6581:

STRUCT

by_Status: BYTE;

by_Node: BYTE;

by_ORG: BYTE;

ar_DB: ARRAY[0..3] OF BYTE;

_Dummy: BYTE;

dw_ID: DWORD;

ptData: PVOID;

iErrorId: E_KL6581_Err;

by_STATE: BYTE;
```



```
bError : BOOL;
idx : USINT;
END_STRUCT
END_TYPE
```

by_Status: Status.

by_Node: Node Nummer der KL6583, die das EnOcean-Telegramm empfangen hat.

by_ORG: Typ des EnOcean-Telegramms.

ar_DB: Daten Bytes.

_Dummy: Platzhalter, ohne weitere Bedeutung.

dw_ID: Transmitter-ID.

ptData: Pointer.

iErrorld: Beschreibt die Art des Fehlers (siehe <u>E KL6581 Err [▶ 39]</u>).

by_STATE: State.

bError: Der Ausgang wird TRUE, sobald ein Fehler auftritt. Dieser Fehler wird über die Variable iErrorld

beschrieben.

idx: Index.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.2.2.2.6 STR_Teach

Datenstruktur Hersteller-ID, Typ und Funktion.

```
STRUCT

nManufacturerID : WORD;

nTYPE : BYTE;

nFunc : BYTE;

END_STRUCT

END_TYPE
```

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.32	Tc2_EnOcean ab v3.4.6.0

4.2.2.2.7 STR_Teach_In

Datenstruktur Hersteller-ID, Typ und Profil.

```
TYPE STR_Teach_In :
STRUCT

nManufacturerID : WORD;
nTYPE : BYTE;
nProfile : BYTE;
END_STRUCT
END_TYPE
```

nManufacturerID: Hersteller-ID.

nTYPE: Typ.
nProfile: Profil.

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek	
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0	

4.2.2.2.8 STREnOceanTurnSwitch

STREnOceanTurnSwitch beschreibt die Stellung des Drehschalters am Raumbediengerät.

```
TYPE STREnOceanTurnSwitch:

STRUCT

bStageAuto: BOOL;

bStage_0: BOOL;

bStage_1: BOOL;

bStage_2: BOOL;

bStage_3: BOOL;

END_STRUCT

END_TYPE
```

bStageAuto: Schalter in Stellung "Auto".

bStage_0: Schalter in Stellung "0".

bStage_1: Schalter in Stellung "1".

bStage_2: Schalter in Stellung "2".

bStage_3: Schalter in Stellung "3".

Voraussetzungen

Entwicklungsumgebung	erforderliche TC3 SPS-Bibliothek
TwinCAT ab v3.1.4020.14	Tc2_EnOcean ab v3.3.5.0

4.3 Integration in TwinCAT

4.3.1 KL6581 mit CX5120

Dieses Beispiel beschreibt, wie ein einfaches SPS-Programm für EnOcean in TwinCAT geschrieben werden kann und wie es mit der Hardware verknüpft wird. Es sollen vier Tastersignale eines EnOcean Funkschaltmoduls empfangen werden.

Beispiel: https://infosys.beckhoff.com/content/1031/tcplclib_tc2_enocean/Resources/6200373771.zip

Hardware

Einrichtung der Komponenten

Es wird folgende Hardware benötigt:

- 1x Embedded-PC CX5120
- 1x EnOcean-Masterklemme KL6581
- 1x EnOcean-Sender und –Empfänger KL6583-0000
- 1x Endklemme KL9010

Richten Sie die Hardware sowie die EnOcean-Komponenten wie in den entsprechenden Dokumentationen beschrieben ein.

Dieses Beispiel geht davon aus, das die Id vom Funkschaltmodul bekannt ist.

Software

Erstellung des SPS-Programms

Erstellen Sie ein neues "TwinCAT XAE Project" und legen Sie ein "Standard PLC Project" an. Fügen Sie im SPS-Projekt unter "References" die Bibliothek Tc2_EnOcean hinzu. Erzeugen Sie eine globale Variablenliste mit den Namen GVL_EnOcean und legen Sie die folgenden Variablen an:

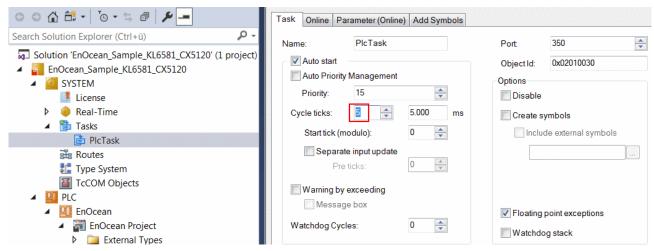
stKL6581Input: Eingangsvariable für die EnOcean-Klemme (siehe <u>KL6581 Input [• 40]</u>).

stKL6581Output: Ausgangsvariable für die EnOcean-Klemme (siehe KL6581_Output [> 41]).

stKL6581: Wird für die Kommunikation mit EnOcean benötigt (siehe STR KL6581 [▶ 42]).

Alle EnOcean-Bausteine müssen in derselben Task aufgerufen werden.

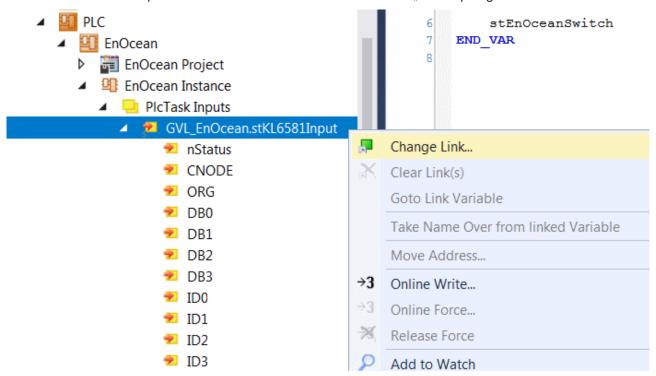
Legen Sie ein MAIN-Programm (CFC) an, in dem die Bausteine <u>FB KL6581 [▶ 23]</u> und <u>FB Rec RPS Switch [▶ 26]</u> aufgerufen werden. Achten Sie beim Kommunikationsbaustein darauf, ihn mit den Strukturen *stKL6581Input*, *stKL6581Output* und *stKL6581*zu verknüpfen.



Der Eingang dw_ID des Empfangsbausteins wird mit der lokalen Variable dwld (ID vom Funkschaltmodul) verknüpft und str_KL6581 mit der globalen Variable stKL6581.

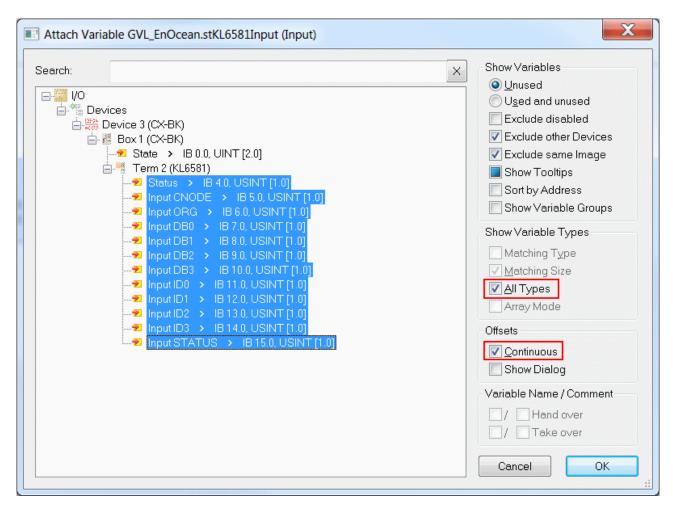
Gehen Sie in die Taskkonfiguration und geben Sie der Task eine niedrigere Intervall-Zeit.

Weitere Bedingungen finden Sie in der Beschreibung des Bausteins FB KL6581 [▶ 23].


E/A Konfiguration

Wählen Sie als Zielsystem den CX und lassen Sie nach dessen Hardware suchen. Im Bereich der SPS, in der Instanz des Projekts sehen Sie, dass die Ein- und Ausgangsvariablen der Task zugeordnet sind.

Verknüpfen Sie die globalen Variablen nun mit den Ein- und Ausgängen der Busklemmen.


Im Folgenden ist die Verknüpfung der EnOcean-Variablen ausführlich beschrieben.

Die Struktur stKL6581Input mit der rechten Maustaste anklicken und "Verknüpfung ändern" auswählen.

In der "E/A Konfiguration" die Klemme auswählen, "Alle Typen" und "Kontinuierlich" wählen und von "Status" bis "InputStatus" mit der linken Maustaste und >SHIFT< Taste markieren. Anschließend "OK" drücken.

Sie können die Verknüpfung jetzt kontrollieren. Gehen Sie dazu auf die KL6581 und öffnen Sie diese. Alle Daten der Klemme müssen jetzt mit einem Pfeil markiert sein. Ist dies der Fall, fahren Sie genauso mit den Ausgängen fort.

5 Anhang

5.1 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Downloadfinder

Unser <u>Downloadfinder</u> beinhaltet alle Dateien, die wir Ihnen zum Herunterladen anbieten. Sie finden dort Applikationsberichte, technische Dokumentationen, technische Zeichnungen, Konfigurationsdateien und vieles mehr.

Die Downloads sind in verschiedenen Formaten erhältlich.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den <u>lokalen Support und Service</u> zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unserer Internetseite: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- · umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963-157
E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- · Hotline-Service

Hotline: +49 5246 963-460
E-Mail: service@beckhoff.com

Beckhoff Unternehmenszentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963-0
E-Mail: info@beckhoff.com
Internet: www.beckhoff.com

Mehr Informationen: www.beckhoff.de/te1000

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

