
Manual | EN

TF6720
TwinCAT 3 | IoT Data Agent

2021-03-01 | Version: 1.4

Table of contents

TF6720 3Version: 1.4

Table of contents
1 Foreword .. 5

1.1 Notes on the documentation.. 5
1.2 Safety instructions ... 6

2 Overview... 7

3 Installation.. 8
3.1 System requirements... 8
3.2 Setup scenarios... 8
3.3 Installation ... 10
3.4 Licensing ... 13
3.5 Licensing information... 15

4 Technical introduction .. 17
4.1 Application examples... 17

4.1.1 AWS IoT Core.. 17
4.1.2 Bosch IoT Suite ... 19
4.1.3 Google IoT Core .. 19
4.1.4 IBM Watson IoT ... 19
4.1.5 MathWorks ThingSpeak .. 20
4.1.6 Microsoft Azure IoT Hub .. 20
4.1.7 Node-RED ... 21

4.2 Features .. 22
4.3 Internet connectivity... 24
4.4 MQTT... 25
4.5 Startup modes ... 29
4.6 Security.. 30
4.7 Buffering of data .. 31

5 Configuration ... 33
5.1 Quick Start ... 33
5.2 Configurator ... 35

5.2.1 Topology view.. 37
5.2.2 Tree view ... 37
5.2.3 Mappings ... 38
5.2.4 Target Browser .. 38
5.2.5 Cascading Editor ... 39
5.2.6 Parameter Editor.. 39
5.2.7 Settings.. 41
5.2.8 Error logging .. 47

5.3 System tray.. 48
5.4 Support Information Report ... 48

6 Samples.. 50
6.1 Quick Start ... 50
6.2 Southbound ... 52

6.2.1 Connect to third-party devices via OPC UA... 52
6.2.2 Connect to a BC9191 via ADS .. 54

Table of contents

TF67204 Version: 1.4

6.2.3 Connect to a TwinCAT I/O Task via ADS .. 56
6.2.4 Connect to a TwinCAT TcCOM module via ADS .. 58

6.3 Northbound.. 59
6.3.1 Publish data to AWS IoT Core... 59
6.3.2 Publish data to AWS Greengrass .. 61
6.3.3 Publish data to IBM Watson IoT .. 63
6.3.4 Publish data to Microsoft Azure IoT Hub ... 65
6.3.5 Publish data to MQTT Message Broker... 67
6.3.6 Publish data to TwinCAT IoT Communicator App ... 69
6.3.7 Subscribe to MQTT Message Broker .. 70
6.3.8 Use Microsoft Azure IoT Hub Device Twin .. 72

7 Appendix .. 74
7.1 Error logging .. 74
7.2 Error diagnosis .. 74
7.3 Support and Service .. 76

Foreword

TF6720 5Version: 1.4

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation
GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TF67206 Version: 1.4

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Overview

TF6720 7Version: 1.4

2 Overview
The TwinCAT Function TC3 IoT Data Agent provides bi-directional connectivity to different cloud services. It
is a gateway application that can be installed either on the controller or on a gateway computer. The
TC3 IoT Data Agent can be configured to connect different data sources with each other, e.g. a
TwinCAT 3 PLC (ADS) and a MQTT Message Broker. In addition, public cloud services can be used, for
example AWS IoT and Microsoft Azure IoT Hub. TC3 IoT Data Agent includes an integrated OPC UA client,
which allows to connect third-party devices to the cloud. Legacy applications running TwinCAT 2 can be
connected by running TC3 IoT Data Agent on a gateway computer and by using ADS or OPC UA
connectivity to the TwinCAT 2 system.

When sending or receiving data, users can select from a variety of different data formats, ranging from
efficient binary formats to ASCII-based JSON formats. This allows the use of the TC3 IoT Data Agent in
different scenarios, e.g. to connect devices to TwinCAT Analytics.

Different communication patterns can be configured to optimize traffic congestion, e.g. polling or on-change
patterns.

Components

TC3 IoT Data Agent consists of the following components:

• Core application: background service that provides the logic
• Configurator: graphical tool to create/edit and deploy a configuration for the core application

TwinCAT 3 IoT Data Agent can be installed and used in different setup scenarios, e.g. directly on the
controller or on a gateway computer (see Setup scenarios [} 8]).

Installation

TF67208 Version: 1.4

3 Installation

3.1 System requirements
The following table lists the system requirements for TC3 IoT Data Agent.

Technical data Description
Operating system Windows 7/10, Windows Embedded Standard 7
Target platform PC architecture (x86, x64)
.NET Framework 4.5.2 (only required for configurator)
TwinCAT version 1 TwinCAT 2, TwinCAT 3
TwinCAT installation level 2 3 TwinCAT 3 XAE, XAR, ADS (build 4022.22 and

above)
Required TwinCAT license TF6720 TC3 IoT Data Agent (includes 4 gates)
Additional licenses 4 TF6721 TC3 IoT Data Agent Gate Pack 4

TF6722 TC3 IoT Data Agent Gate Pack 16
TF6723 TC3 IoT Data Agent Gate Pack 64
TF6724 TC3 IoT Data Agent Gate Pack 256

1 Version of the TwinCAT runtime to which TC3 IoT Data Agent can connect (via ADS, alternatively also via
additional functions, e.g. TwinCAT OPC UA)
2 A minimum setup level of TwinCAT 3 ADS is required for licensing purposes.
3 XAE is currently required for the configurator.
4 Every additional license can be acquired once per system and adds to the total amount of gates.

3.2 Setup scenarios
TC3 IoT Data Agent can be used in almost every deployment scenario. It can either be installed and used
directly on the industrial controller (see System Requirements [} 8]) or on a gateway computer that
aggregates multiple devices or connects to legacy applications like TwinCAT 2. Each setup scenario has its
advantages and disadvantages, depending on the system environment and project for which the
TC3 IoT Data Agent is to be used.

TC3 IoT Data Agent running on the controller

This is the default scenario. TC3 IoT Data Agent is installed directly on a Beckhoff industrial controller (IPC
or Embedded-PC) and connects only to the TwinCAT runtime on that system. This is the preferred scenario
because every IoT device should have an own connection to the cloud service, although gateway scenarios
are possible and sometimes also necessary.

Installation

TF6720 9Version: 1.4

TC3 IoT Data Agent running on a gateway computer

In this scenario, TC3 IoT Data Agent is installed on a gateway computer that aggregates multiple devices,
e.g. to connect to existing machine applications in a retrofit scenario. This scenario can also be combined
with other TwinCAT Functions, e.g. a TwinCAT OPC UA Server, which is also able to aggregate multiple
TwinCAT runtimes. A typical hardware device for such a setup scenario is a Beckhoff C6015 Ultra-Compact
Industrial-PC.

Be aware that the network traffic between the TC3 IoT Data Agent and the underlying devices can be very
high in this setup scenario because the TC3 IoT Data Agent needs to sample symbols from every connected
runtime and this sampling is being done via the network.

Installation

TF672010 Version: 1.4

TC3 IoT Data Agent configurator

The TC3 IoT Data Agent configurator [} 35] is a graphical configuration tool. It can be installed on the same
computer that executes the TC3 IoT Data Agent core application or on an engineering computer to remotely
create/edit and deploy the configuration across the network.

3.3 Installation
The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

ü The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run as administrator in the context

menu of the file.
ð The installation dialog opens.

Installation

TF6720 11Version: 1.4

2. Accept the end user licensing agreement and click Next.

3. Enter your user data.

Installation

TF672012 Version: 1.4

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If
you want to install the TwinCAT 3 Function components separately, select Custom.

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

Installation

TF6720 13Version: 1.4

6. Confirm the dialog with Yes.

7. Select Finish to exit the setup.

ð The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [} 13]).

3.4 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

https://infosys.beckhoff.de/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

Installation

TF672014 Version: 1.4

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF6420: TC3 Database Server").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

Installation

TF6720 15Version: 1.4

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

3.5 Licensing information
Licensing of TC3 IoT Data Agent is based on so-called “Gate packs”. Each ADS device or OPC UA server
namespace to which the TC3 IoT Data Agent connects is considered to be a “Gate”. The
TC3 IoT Data Agent base license “TF6720” already includes an amount of four Gates. Additional Gates can
be acquired by buying one of the “Gate pack” licenses (TF6721-TF6724). These licenses are then added to
the base license, e.g. TF6720 + TF6721 = 8 Gates.

Installation

TF672016 Version: 1.4

Technical introduction

TF6720 17Version: 1.4

4 Technical introduction
TC3 IoT Data Agent is a gateway application that connects multiple data sources with each other. A data
source is typically a communication protocol, e.g. ADS, OPC UA or MQTT. The TC3 IoT Data Agent is
configured via a graphical configurator, which creates or edits an XML-based configuration file. On startup,
this file is read by the TC3 IoT Data Agent core application, which is installed as a service and therefore runs
in the background of the operating system.

Simply spoken: The XML file tells the TC3 IoT DataAgent what to do.

• Which data sources should be connected
• Which cloud services should be used
• Which symbols (variables) should be exchanged and in which direction
• Which data rates and sampling modes should be used

A typical installation of TC3 IoT Data Agent on a controller or gateway computer includes only the
TC3 IoT Data Agent core application. The graphical configurator is usually installed on an engineering
computer and used to connect to the core application over the network but can also be installed and used on
the controller or gateway computer.

4.1 Application examples
The following sections provide some application examples in which TC3 IoT Data Agent can be used.

4.1.1 AWS IoT Core
AWS IoT Core is a managed cloud service that enables connected devices to easily and securely
communicate bi-directionally with cloud applications and other devices. Special functionalities, such as the
AWS IoT Device Shadow Service, enable communication with devices that are not yet connected.

Technical introduction

TF672018 Version: 1.4

AWS IoT Core and TwinCAT IoT

AWS IoT Core is based on the MQTT transport protocol. It is therefore possible to use TwinCAT IoT to send
or receive messages to or from AWS IoT Core or AWS IoT Greengrass.

Various samples illustrate how to connect to the AWS IoT Core service.

Sample Product Description
IotMqttSampleAwsI
oT

TF6701 This sample demonstrates how you can use MQTT function
blocks within the PLC logic to connect to AWS IoT Core and
exchange data.

Data Agent AWS IoT
[} 59]

TF6720 This sample demonstrates how to configure the TwinCAT IoT
Data Agent to connect to AWS IoT Core and exchange data.

In a similar way, the samples can also be applied to AWS IoT Greengrass. The associated AWS IoT
Greengrass Core can be installed and operated on a C6015 Industrial PC, for example. Typically, the
Greengrass Core (or a Lambda function provided there) initiates data communication with the controller, e.g.
via OPC UA. However, since the Greengrass Core has an integrated message broker, this communication
direction may be reversed. In this case, TwinCAT IoT would establish a connection to the Greengrass Core
via an MQTT channel and exchange data accordingly, for example.

Further Information
Further information about AWS IoT Core can be found in the AWS IoT Core documentation.

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

Technical introduction

TF6720 19Version: 1.4

4.1.2 Bosch IoT Suite
The Bosch IoT Suite is an IoT platform based on open standards and open source and supports seamless
integration into the Bosch IoT eco-system. The Bosch IoT Hub provides devices with various communication
interfaces for exchanging data with the Bosch IoT Cloud.

Bosch IoT Suite and TwinCAT IoT

The Bosch IoT Suite includes an MQTT message broker referred to as the Bosch IoT Hub. It is therefore
possible to use TwinCAT IoT to send or receive messages to or from the Bosch IoT Suite.

The following sample illustrates how to establish a connection to the Bosch IoT Hub.

Sample Product Description
IotMqttSampleBoschIoT TF6701 This sample demonstrates how

you can use MQTT function
blocks within the PLC logic to
connect to the Bosch IoT Hub
and exchange data.

Further Information
For more information about the Bosch IoT Suite please visit the official Bosch IoT Suite website.

4.1.3 Google IoT Core
Google IoT Core is a managed cloud service that enables distributed devices to exchange data with the
Google cloud through a secure transport channel.

Google IoT Core and TwinCAT IoT

Google IoT Core includes an MQTT message broker. It is therefore possible to use TwinCAT IoT to send or
receive messages to or from Google IoT Core.

The following sample illustrates how to connect to Google IoT Core.

Sample Product Description
IotMqttSampleGoogleIoT TF6701 This sample demonstrates how you

can use MQTT function blocks
from within PLC logic to connect to
Google IoT Core and exchange
data.

4.1.4 IBM Watson IoT
IBM Watson IoT is an IoT suite in the IBM cloud, which offers several services for connecting IoT devices to
IBM Bluemix services, processing incoming messages or sending messages to the devices. From a device
perspective, the functionalities of IBM Watson IoT enable simple and safe connection of IoT devices with
IBM services by facilitating bidirectional communication between the devices and IBM Watson IoT.

IBM Watson IoT and TwinCAT IoT

Since IBM Watson IoT can be reached via the MQTT transport protocol, it is possible to use TwinCAT IoT for
sending messages to IBM Watson IoT or receiving messages from it.

Various samples illustrate how to connect to IBM Watson IoT.

https://www.bosch-iot-suite.com

Technical introduction

TF672020 Version: 1.4

Sample Product Description
IotMqttSampleIbmWatsonIoT TF6701 This sample demonstrates how you

can use MQTT function blocks to
connect to IBM Watson IoT and
exchange data.

Publication of data to IBM Watson
IoT

TF6720 This sample demonstrates how to
configure the TwinCAT IoT Data
Agent to establish a connection to
IBM Watson IoT and exchange
data.

4.1.5 MathWorks ThingSpeak
ThingSpeakTM is an IoT platform from The MathWorks®, well known among other things for the software
solutions MATLAB® and Simulink®.

The platform offers (apart from a REST API) an MQTT interface, via which the data from the TwinCAT
runtime can be sent to ThingSpeakTM. ThingSpeakTM enables the collection, storage, analysis, visualization of
and reaction to incoming data. An important point that sets it apart from other platforms is the option to write
MATLAB® code in the web browser, which can be used for the analysis and visualization of the data. It is
also possible to use existing licenses for toolboxes from the On-premis programming environment in
ThingSpeakTM.

Functioning

The data ingest and the saving of data take place on the basis of so-called channels. Each channel has 8
fields that can be filled with incoming data. Apart from the 8 data fields there are further meta fields available
such as latitude, longitude, altitude or a time stamp. Data published on a channel are stored in a database
with the option of a data export (JSON, XML, CSV). The number of messages per time unit that can be sent
to a channel depends on the stored ThingSpeakTM license. The MQTT interface is currently based on the
sending of strings that are interpreted by the ThingSpeak channel.

Examples of possible actions on ThingSpeakTM:

• Send a message to Twitter
• Cyclic execution of Matlab analysis scripts
• Execution of a Matlab analysis script, triggered by channel conditions.

Applications

On account of the data rate – limited by the cloud service – that can currently be sent by the controller to
ThingSpeakTM, a pronounced edge computing approach is a constructive strategy. MATLAB®/Simulink®
models can be integrated in the TwinCAT runtime via the Beckhoff product TE1400 and algorithms for
information densification in real time can be executed along with the various TwinCAT functions (Condition
Monitoring, filter, etc.). Furthermore, processes with large time constants such as energy data management,
building automation, etc. can be handled well with ThingSpeakTM.

4.1.6 Microsoft Azure IoT Hub
The Microsoft Azure IoT Hub is an IoT suite in the Azure cloud, which offers several services for connecting
IoT devices with Azure services, processing incoming messages or sending messages to the devices. From
a device perspective, the functionalities of the Microsoft Azure IoT Hub enable simple and safe connection of
IoT devices with Azure services by facilitating bidirectional communication between the devices and the
Azure IoT Hub.

https://infosys.beckhoff.de/content/1033/tf6720_tc3_iot_data_agent/9007207528880011.html?id=3900961857549111786
https://infosys.beckhoff.de/content/1033/tf6720_tc3_iot_data_agent/9007207528880011.html?id=3900961857549111786

Technical introduction

TF6720 21Version: 1.4

Microsoft Azure IoT Hub and TwinCAT IoT

The Microsoft Azure IoT Hub offers several communication interfaces for receiving or sending messages,
including MQTT. It is therefore possible to use TwinCAT IoT to send messages to or receive messages from
the Microsoft Azure IoT Hub or to control the Device Twin or execute method calls to the device.

Various samples illustrate how to connect to the Microsoft Azure IoT Hub.

Sample Product Description
IotMqttSampleAzureIotHub TF6701 This sample demonstrates how you can

use MQTT function blocks within the PLC
logic to connect to the Microsoft Azure
IoT Hub and exchange data.

Data Agent TF6720 This sample demonstrates how to
configure the TwinCAT IoT Data Agent to
establish a connection to the Microsoft
Azure IoT Hub and exchange data.

Data Agent Device Twin TF6720 This sample demonstrates how to
configure the TwinCAT IoT Data Agent to
establish a connection to the Microsoft
Azure IoT Hub and exchange data with
the Device Twin.

4.1.7 Node-RED
Node-RED is a popular tool that enables workflow-based programming for wiring together hardware devices,
APIs and online services in new and interesting ways. It runs on a variety of platforms, e.g. PLC controllers,
edge devices, virtual machines or even native services in the cloud. It is a simple open source visual editor
for wiring Internet-of-Things services and devices.

The system contains so-called “nodes” that look like icons that can be placed on the canvas and wired
together by using drag-and-drop. Each node offers a different functionality. For example, there are simple
debug nodes to analyze/check the data flow or MQTT nodes that subscribe to data on a MQTT message
broker and insert this data into the workflow. Node-RED can be extended by plugins to enrich its
functionalities.

TwinCAT IoT can be used to send machine data to Node-RED and receive commands from the Node-RED
workflow. In addition, other TwinCAT functions may be used as well, e.g. the TwinCAT TCP/IP Server.

Node-RED includes built-in support for multiple communication protocols, e.g. MQTT, HTTP, Raw TCP/IP,
and so on.

https://infosys.beckhoff.de/content/1033/tf6720_tc3_iot_data_agent/4428475787.html?id=778973592260154115
https://infosys.beckhoff.de/content/1033/tf6720_tc3_iot_data_agent/9007207463394443.html?id=5716135869412675610

Technical introduction

TF672022 Version: 1.4

In order to connect TwinCAT IoT via MQTT with a Node-RED workflow, a message broker is required as an
intermediate. Another alternative would be to use TwinCAT IoT HTTPS/REST with the built-in HTTPS/REST
web server of Node-RED.

Sources

• https://nodered.org/

• https://learn.adafruit.com/raspberry-pi-hosting-node-red/what-is-node-red

4.2 Features
The following table gives an overview of the TC3 IoT Data Agent features. The features can be categorized
as follows:

• General: Basic features of the TC3 IoT Data Agent, e.g. sampling patterns, etc.
• Gates: Supported cloud services and protocols, e.g. ADS, MQTT, OPC UA, etc.
• Data Format: Supported data formats when sending/receiving data to/from a cloud service
• Symbol: Supported data types and additional symbol-related features

https://nodered.org/
https://learn.adafruit.com/raspberry-pi-hosting-node-red/what-is-node-red

Technical introduction

TF6720 23Version: 1.4

Gates

Description Version
ADS ADS devices can be used either via symbolic access or Igrp/

Ioff combination. TwinCAT 2/3 I/O channels as well as
TwinCAT 2/3 PLC runtimes, TwinCAT 3 TcCOM modules and
BC Controllers can be accessed via ADS.

0.7.0.1 and above

OPC UA The TC3 IoT Data Agent can connect to any OPC UA server
that supports the opc.tcp transport channel. In addition,
OPC UA certificates and username/password authentication
can be used to secure the communication channel to the
server.

0.7.0.1 and above

MQTT [} 25] Generic MQTT message brokers can be used to send/receive
data. The message broker needs to support the MQTT TCP
transport (no web socket connections are supported at the
moment). TLS 1.2 can be used to secure the communication
channel either via CA certificate, a client certificate or via a
PSK.

0.7.0.1 and above

Microsoft Azure IoT
Hub

Public cloud service by Microsoft. Can be used to send/receive
telemetry data. The communication channel is secured via the
primary or secondary key of the IoT Hub device. The device
can be created on the Azure IoT Hub configuration website.
In addition, the Azure IoT Hub Device Twin service can be
used to update the twin document or retrieve desired updates
by backend applications.

0.7.0.1 and above
1.3.2.1 and above for
Device Twin feature

AWS IoT Public Cloud service by AWS. Can be used to send/receive
data. Configuration is based on specific settings in MQTT gate.
TLS 1.2 with a client certificate is mandatory to secure the
communication channel. The certificate can be obtained on the
AWS IoT configuration website.

0.16.2.2 and above

Data formats

Description Version
ADS binary Binary ADS data format.

Can be used for send/receive operations.
0.7.0.1 and above

Simple JSON “Flat” JSON format which consists of a timestamp and key/
value pairs that represent the variables.
Can be used for send/receive operations.

0.16.2.2 and above

TwinCAT JSON Common JSON data format in all TwinCAT IoT and Analytics
products as well as the EK9160. See separate documentation
article about TwinCAT IoT JSON data format specification.
Can be used for send/receive operations.

0.7.0.1 and above

TwinCAT Analytics Common binary data format in all TwinCAT Analytics products
as well as the EK9160.

0.26.2.8 and above

https://infosys.beckhoff.de/content/1033/tf6701_tc3_iot_communication_mqtt/54043199056614539.html?id=387317172333416663
https://infosys.beckhoff.de/content/1033/tf6701_tc3_iot_communication_mqtt/54043199056614539.html?id=387317172333416663
https://infosys.beckhoff.de/content/1033/tf6701_tc3_iot_communication_mqtt/18014402027881483.html?id=6252066407270553323

Technical introduction

TF672024 Version: 1.4

Symbols

Description Version
Simple data types Simple data types are supported:

Int16, Int32, Int64, UInt16, UInt32, Float, Double, …
0.7.0.1 and above

Strings Strings are supported 0.7.0.1 and above
Arrays Arrays with simple and complex data types are supported for

publish direction
1.2.17.7 and above

Structured Types Structured types are supported for publish direction 1.2.17.7 and above
Trigger Symbol TriggerSymbols can be used to set up a “send on demand” use

case
0.8.2.21 and above

Type Conversion Type conversion can be used to convert between different data
types

0.8.2.21 and above

Multi-link Link one subscriber symbol with multiple publisher symbols.
(not the other way around)

0.24.1.4 and above

Units Units are supported as meta-data on a symbol. This setting
depends on the data format and gate.

0.26.2.8 and above

Rounding float types Rounding of float types to a specified amount of decimal places
is supported

1.3.2.1 and above

4.3 Internet connectivity
One of the main advantages of TwinCAT IoT and the EK9160 IoT coupler is that the cloud-related
communication protocols are based on publisher/subscriber (“pub/sub”) and broker-based connectivity
principles.

From a firewall point-of-view, publisher/subscriber is based on only outgoing data communications. This not
only allows an easy integration into the existing IT infrastructure, but is also very convenient for security
reasons, as no incoming firewall ports need to be opened (“port forwarding”) to send and receive data.
Because of this technical advantage, it is not required or not recommended to place TwinCAT IoT and
EK9160 products on the internet edge or untrusted network. Instead, these products can and should be used
within local, trusted network boundaries – secured by a firewall from the Internet.

Technical introduction

TF6720 25Version: 1.4

The following table gives an overview about the commonly used communication protocols and their
corresponding network ports. Note that this port overview depends on the specific environment and scenario
and is based on commonly used default settings.

Service Protocol Network port Notes
MQTT Message Broker MQTT 1883/tcp
MQTT Message Broker MQTT with TLS 8883/tcp
Microsoft Azure IoT Hub AMQP 5671/tcp
Microsoft Azure IoT Hub MQTT with TLS 8883/tcp
AWS IoT MQTT with TLS 8883/tcp
AWS Greengrass MQTT with TLS 8883/tcp

Microsoft Azure IoT Hub
TC3 IoT Data Agent uses AMQP when establishing a connection with the Microsoft Azure IoT Hub.

4.4 MQTT
MQTT(Message Queueing Telemetry Transport) is a publisher/subscriber-based communication protocol,
which enables message-based transfer between applications. A central component of this transfer type is
the so-called message broker, which distributes messages between the individual applications or the sender
and receiver of a message. The message broker decouples the sender and receiver, so that it is not
necessary for the sender and receiver to know their respective address information. During sending and
receiving all communication devices contact the message broker, which handles the distribution of the
messages.

Technical introduction

TF672026 Version: 1.4

Payload

The content of an MQTT message is referred to as payload. Data of any type can be transferred, e.g. text,
individual numerical values or a whole information structure.

Message payload formatting
Note that the data type and the formatting of the content must be known to the sender and receiver
side, particularly when binary information (alignment) or strings (with or without zero termination)
are sent.

Topics

If a message broker is used that is based on the MQTT protocol, sending (publish mode) and subscribing
(subscribe mode) of messages is organized with the aid of so-called topics. The message broker filters
incoming messages based on these topics for each connected client. A topic may consist of several levels;
the individual levels are separated by “/”.

Example: Campus / Building1 / Floor2 / Room3 / Temperature

When a publisher sends a message, it always specifies for which topic it is intended. A subscriber indicates
which topic it is interested in. The message broker forwards the message accordingly.

Technical introduction

TF6720 27Version: 1.4

Communication example 1 from the diagram above:

• An application subscribes to “topic1”.
• A controller publishes a message to “topic1”.
• The message broker forwards the message to the application accordingly.

Communication example 2 from the diagram above:

• A controller subscribes to “topic2”.
• An application publishes a message to “topic2”.
• The message broker forwards the message to the controller accordingly.

Wildcards

It is possible to use wildcards in conjunction with topics. A wildcard is used to represent part of the topic. In
this case a subscriber may receive messages from several topics. A distinction is made between two types
of wildcards:

• Single-level wildcards
• Multi-level wildcards

Example for single-level wildcard:

The + symbol describes a single-level wildcard. If it is used by the subscriber as described below, for
example, corresponding messages to the topics are either received by the subscriber or not.

• The receiver subscribes to Campus/Building1/Floor2/+/Temperature
• The publisher sends to Campus/Building1/Floor2/Room1/Temperature - OK
• The publisher sends to Campus/Building1/Floor2/Room2/Temperature - OK
• The publisher sends to Campus/Building42/Floor1/Room1/Temperature - NOK
• The publisher sends to Campus/Building1/Floor2/Room1/Fridge/Temperature - NOK

Example for multi-level wildcard:

Technical introduction

TF672028 Version: 1.4

The # symbol describes a multi-level wildcard. If it is used by the subscriber as described below, for
example, corresponding messages to the topics are either received by the subscriber or not. The # symbol
must always be the last symbol in a topic string.

• The receiver subscribes to Campus/Building1/Floor2/#
• The publisher sends to Campus/Building1/Floor2/Room1/Temperature - OK
• The publisher sends to Campus/Building1/Floor2/Room2/Temperature - OK
• The publisher sends to Campus/Building42/Floor1/Room1/Temperature - NOK
• The publisher sends to Campus/Building1/Floor2/Room1/Fridge/Temperature - OK
• The publisher sends to Campus/Building1/Floor2/Room1/Humidity - OK

QoS (Quality of Service)

QoS is an arrangement between the sender and receiver of a message with regard to guaranteeing of the
message transfer. MQTT features three different levels:

• 0 – not more than once
• 1 – at least once
• 2 – exactly once

Both types of communication (publish/subscribe) with the message broker must be taken into account and
considered separately. The QoS level that a client uses for publishing a message is set by the respective
client. When the broker forwards the message to client that has subscribed to the topic, the subscriber uses
the QoS level that was specified when the subscription was established. This means that a QoS level that
may have been specified as 2 by the publisher can be “overwritten” with 0 by the subscriber.

QoS-Level 0

At this QoS level the receiver does not acknowledge receipt. The message is not sent a second time.

QoS-Level 1

At this QoS level the system guarantees that the message arrives at the receiver at least once, although the
message may arrive more than once. The sender stores the message internally until it has received an
acknowledgement from the receiver in the form of a PUBACK message. If the PUBACK message fails to
arrive within a certain time, the message is resent.

Technical introduction

TF6720 29Version: 1.4

QoS-Level 2

At this QoS level the system guarantees that the message arrives at the receiver no more than once. On the
MQTT side this is realized through a handshake mechanism. QoS level 2 is the safest level (from a message
transfer perspective), but also the slowest. When a receiver receives a message with QoS level 2, it
acknowledges the message with a PUBREC. The sender of the message remembers it internally until it has
received a PUBCOMP. This additional handshake (compared with QoS 1) is important for avoiding duplicate
transfer of the message. Once the sender of the message receives a PUBREC, it can discard the initial
publish information, since it knows that the message was received once by the receiver. In other words, it
remembers the PUBREC internally and sends a PUBREL. Once the receiver has received a PUBREL, it can
discard the previously remembered states and respond with a PUBCOMP, and vice versa. Whenever a
package is lost, the respective communication device is responsible for resending the last message after a
certain time.

Security

When a connection to the message broker is established, it is possible to use security mechanisms such as
TLS, in order to encrypt the communication link or to realize authentication between client and message
broker.

Sources

For further and more detailed information about MQTT we recommend the following blog series:

HiveMq blog: http://www.hivemq.com/blog/mqtt-essentials/ (the main basis for this article)

4.5 Startup modes
TC3 IoT Data Agent is automatically installed as a Windows service that runs under the local system context
(and is therefore independent of the user account logged in) and starts automatically during system boot.

http://www.hivemq.com/blog/mqtt-essentials/

Technical introduction

TF672030 Version: 1.4

After starting the TC3 IoT Data Agent, the core application waits for a trigger command to start the
communication. The trigger command is usually send via the configurator or the system tray application (see
Configurator [} 35] and System tray [} 48]). You can also configure an AutoStart option per configuration
file by using the graphical configurator tool.

Command line

As an alternative, the TC3 IoT Data Agent can be executed as a standalone application on the Windows
command line. To do so, start the TC3 IoT Data Agent executable file (TcIotDataAgent.exe) in the
installation directory. You can set different startup options by specifying parameters to the process call, e.g.
a path to the configuration file or logging settings. Use the parameter “-h” for a list of all startup options.

Examples:

Process call Description
TcIotDataAgent.exe The configuration file TcIotDataAgentConfig.xml from the

default config directory %TC_BOOTDIR% is used. Waits for a
trigger command to start the communication.

TcIotDataAgent.exe -a Starts the communication after startup automatically. Takes the
config file automatically from %TC_BOOTDIR%.

TcIotDataAgent.exe -c PathToConfig Specifies the configuration file to be used. Waits for a trigger
command to start the communication.

TcIotDataAgent.exe -a -c PathToConfig Specifies the configuration file to be used. Starts the
communication automatically without waiting for a trigger
command.

TcIotDataAgent.exe -l VERBOSE The configuration file is retrieved from the TwinCAT boot
directory and logging is activated in verbose mode. The
Windows command line is used as log output.

TcIotDataAgent.exe -l VERBOSE -o
PathToFile

The configuration file is retrieved from the TwinCAT boot
directory and logging is activated in verbose mode. A file is
used as log output.

4.6 Security
Depending on the functionality of each gate, TC3 IoT Data Agent supports several security mechanisms to
secure data communication, for example the encryption of messages and client/server authentication.

The following table gives an overview of the different security mechanisms in each supported Gate.

Technical introduction

TF6720 31Version: 1.4

Gate Security mechanisms Description
ADS none ADS communication should be treated as none secure.
OPC UA Client/Server authentication

Username/password
authentication
Authorization
Data encryption

Depending on the functionalities of the OPC UA server that
the TC3 IoT Data Agent should connect to, the following
security mechanisms may can be used:
• Client/Server authentication can be used via X.509

certificates (public/private key) and establishing a trust
relationship between the communication participants.

• Username/password authentication can be used by an
OPC UA client to connect to an OPC UA server.

• Authorization can be used on the server to define access
levels on OPC UA nodes to configure which user identity
may access which nodes on an OPC UA server.

• Data encryption can be used to encrypt OPC UA
messages on the wire.

MQTT Client/Server authentication
Username/password
authentication
Authorization
Data encryption

Depending on the functionalities of MQTT message broker
that the TC3 IoT Data Agent should connect to, the following
security mechanisms may be used.
• Client/Server authentication can be used via X.509

certificates (public/private key) and establishing a trust
relationship between the communication participants
(client and message broker)

• Username/password authentication can be used by a
client to connect to the message broker

• Authorization can be used on the message broker to
define access levels on topics in order to configure which
user identity may access which topic on the message
broker

• Data encryption can be used to encrypt messages on the
wire.

The TC3 IoT Data Agent uses TLS version 1.2 for securing
the communication channel.

Microsoft Azure
IoT Hub

Device authentication
Data encryption

Every Azure IoT Hub client needs to be registered as a
device on the IoT Hub instance. During device registration, a
DeviceId and SharedAccessKey is generated, which need to
be used during connection establishment for authenticating
the device to the IoT Hub instance. In addition, messages
are encrypted on the wire.

AWS IoT Device authentication
Authorization
Data encryption

Every AWS IoT client needs to be registered as a “thing”. A
thing/device is configured with X.509 certificates that
authenticates the device at AWS IoT and can also be linked
with security policies to authorize the device to perform
certain actions. In addition, messages are encrypted on the
wire. TLS version 1.2 is used to secure the communication
channel.

4.7 Buffering of data
The Data Agent offers a buffer function for short-term network failures. It is very important to note that
buffering takes place exclusively in RAM. Accordingly, an eye should always be kept on the RAM with this
buffer function. If a connection to the target has been restored, the Data Agent begins to process the buffer.

Another point to note is the restrictions of a message brokers to which data are sent. There are message
brokers that are limited to a certain number of messages per time unit. Care must be taken when conceiving
a Data Agent application that this upper limit is not exceeded when processing a buffer.

Technical introduction

TF672032 Version: 1.4

Configuration in the Data Agent

A Publisher channel offers the possibility to set the size of a buffer. This size is related to the number of
messages to be buffered.

For this reason there is a setting option InhibitTime on this Publisher channel. This specifies the time interval
with which the messages are to be collected from the buffer as soon as the connection to the target has
been restored. In the case of a cyclic Publisher channel the InhibitTime must be smaller than the CycleTime,
as otherwise the buffer can never be emptied. In the case of an OnChange or Trigger channel, the
InhibitTime indicates the cycle time with which the data are collected from the buffer and published to the
Message Broker. If the InhibitTime is set to 0, the messages are sent to the target by the Data Agent as
quickly as possible.

If new messages arrive during the processing of the buffer, they are appended to the end of the buffer. This
ensures the correct order of the data.

Configuration

TF6720 33Version: 1.4

5 Configuration

5.1 Quick Start
This section describes how to get started quickly with the TC3 IoT Data Agent.

The communication scenario is a typical use case for the Data Agent: Variables from a southbound device
(TwinCAT PLC runtime) are sampled and published to a northbound service (MQTT Message Broker). In this
example, the message broker is running on the same computer as the PLC runtime.

To set up this scenario, the following steps are required. All steps are performed on the same computer.

• Install the software [} 33]

• Prepare the PLC program [} 33]

• Configure the TC3 IoT Data Agent [} 33]

• Display the published messages [} 35]

Install the software

1. Install TF6720 IoT Data Agent as described in the Installation [} 10] section.
2. Install Mosquitto MQTT Message Broker with its default setup settings. The Message Broker can be

installed anywhere and is connected to via its hostname or IP address.
3. Open a Windows Console, navigate to the installation directory of the Mosquitto MQTT Message Bro-

ker (typically C:\Program Files (x86)\mosquitto) and start the Broker in verbose mode by executing the
following command: mosquitto.exe -v

Mosquitto MQTT Message Broker
The Mosquitto MQTT Message Broker can be downloaded from www.mosquitto.org. Make sure to
follow any installation instructions provided by the Mosquitto installer.

Mosquitto startup
By default, the Mosquitto MQTT Message Broker is installed as a Windows service. You can also
start the mosquitto.exe from a command line and specify parameters like "-v" for verbose output. If
you want to start the broker from a command line, make sure that the Mosquitto Windows service is
not running.

Prepare the PLC program

Set up a TwinCAT 3 PLC project and activate trial licenses for TC1200 (PLC) and TF6720
(TC3 IoT Data Agent). In this sample the PLC program should include the following variables:
PROGRAM MAIN
VAR
 nCounter1 : INT;
 nCounter2 : LREAL;
END_VAR

These two variables should be incremented cyclically. Add the following implementation code for the PLC
program:
nCounter1 := nCounter1 + 1;
nCounter2 := nCounter2 + 0.1;

Activate the project and start TwinCAT into run mode. Make sure that the PLC program is running by logging
in.

Configure TwinCAT IoT Data Agent
1. Start the TwinCAT IoT Data Agent configurator, either via its link on the Windows start menu or via the

system tray application (see Configurator [} 35]).

http://www.mosquitto.org

Configuration

TF672034 Version: 1.4

2. Follow the step-by-step instructions below to create a Data Agent configuration. As an alternative you
can also open the configuration file "Sample_QuickStart.xml", which can be found in the Data Agent
installation directory, and directly move on with step (m).

3. Start a new configuration by clicking on the New icon in the configurator toolbar.
4. In the topology view, right-click a blank area and select Add Gate (ADS).
5. Select the new gate and make sure that the local AmsNetId and ADS port 851 are selected in the

properties window
6. In the topology view, right-click the new gate and select Add Channel (Subscriber).
7. Select the new channel and make sure that sampling mode “cyclic” and cycle time “1000” are selected in

the properties window.
8. Open the target browser and navigate to your local PLC runtime (port 851).
9. Select the variables “nCounter1” and “nCounter2” and drag them to the subscriber channel in the

topology view.
10. In the topology view, right-click a blank area and select Add Gate (MQTT).
11. Select the new gate and make sure that the URL is set to 127.0.0.1 and Port 1883 is being used.
12. In the topology view, right-click the new gate and select Add Channel (Publisher).
13. Select the new channel and make sure that the sampling mode is set to “cyclic”. Set the cycle time to

“1000” and the formatter to “TwinCAT JSON”. The MQTT topic can be set to a topic of your choice, e.g.
“TestTopic”.

14. Hold the CTRL key and drag the subscriber channel to the publisher channel in order to create a
mapping between the source and destination symbols. Note that the destination symbols are
automatically created.

15. Activate the configuration by clicking on the Activate Configuration button in the toolbar.

Configuration

TF6720 35Version: 1.4

Display the published messages

Open a command line window and navigate to the installation directory of the
Mosquitto MQTT Message Broker (typically "C:\Program Files\mosquitto" or "C:\Program Files
(x86)\mosquitto"). Start the Mosquitto Subscriber tool by executing the following command:
mosquitto_sub.exe -t TestTopic.

The Mosquitto Subscriber tool will now receive the messages that are published from the TwinCAT
IoT Data Agent.

5.2 Configurator
The TC3 IoT Data Agent configurator is an easy-to-use, graphical user interface that abstracts the XML
configuration file and provides a modern interface that includes all functionalities to easily configure symbols
that should be send to or received from a cloud service.

The configurator is also used to configure TC3 IoT Functions.

Configuration

TF672036 Version: 1.4

Standard components

The TC3 IoT Data Agent configurator consists of the following areas:

Menu and toolbar Provides commands for saving and opening files and for starting and stopping
the application

Hierarchical TreeView Gives a hierarchical overview of the configuration to create and edit a
configuration

Topology view Gives a graphical overview of the configuration to create and edit a configuration
Properties window Shows the properties of an activated component in the topology or tree view.
Logging Provides log information from the configurator.
Cascading Editor Helps to navigate through large and complex navigations by providing filtering

mechanisms for symbols
Mapping Links Gives an overview of all links between symbols in the configuration
Target Browser Is used to provide symbolic access for ADS and OPC UA target runtimes

Installation

The configurator is automatically installed by the setup and is available as a shortcut on the Windows start
menu.

When starting the configurator the first time, it asks for the generation of an OPC UA client certificate. This
certificate is used by the configurator in its integrated OPC UA target browser to connect to a server and
browse its namespace. After the certificate has been generated, the configurator UI is shown.

Configuration

TF6720 37Version: 1.4

5.2.1 Topology view
The topology view (or “canvas”) is the central graphical configuration area of the TC3 IoT Data Agent
configurator. It shows the following components of a configuration:

• The configured gates, channels and symbols
• The relationship (mapping) between gates, channels and symbols
• The cardinality on each relationship

The topology view can be used to create and edit a configuration. Simply right-click the canvas to open the
context menu and select from the variety of configuration options, e.g. to create a new gate, attach a new
channel to a gate or remove a component from the configuration.

You can move any object in the topology view by dragging it to a new position. Each attached subcomponent
is moved together with its parent. Optionally, you can also hide a subcomponent by clicking the expand
button of its parent. When saving a configuration, the position of each object is saved in the configuration file.

In order to make navigational tasks a little easier, the topology view supports the following functionalities:

• Scrollbars for vertical and horizontal navigation
• Vertical navigation via mouse wheel
• Horizontal navigation via mouse wheel and SHIFT key (press and hold)
• ZoomIn/ZoomOut via mouse wheel and CTRL key (press and hold)

Instead of the topology view you can also use the tree view for configuration, but the topology view might
give a better graphical overview of the currently configuration (see Tree view [} 37])

5.2.2 Tree view
The tree view provides a hierarchical view of the currently opened configuration. It shows the following
components of a configuration:

• The configured gates, channels and symbols
• The existence of a relationship (mapping) between symbols

Configuration

TF672038 Version: 1.4

The tree view can also be used to edit the configuration, but you might find it easier to use the topology view
instead (see Topology view [} 37]).

5.2.3 Mappings
The mappings window gives an overview of all links between symbols in the currently opened configuration.
When a link is selected, it is automatically highlighted in the topology view.

5.2.4 Target Browser
The Target Browser is used to provide symbolic access for ADS and OPC UA target runtimes. It can be used
to configure symbols for a target runtime by drag-and-drop.

Fig. 1:

Configuration

TF6720 39Version: 1.4

5.2.5 Cascading Editor
The Cascading Editor helps to navigate through large and complex configurations by providing filtering
mechanisms for symbols. Starting from left to right you can select gates and channels in order to display the
corresponding symbols. In addition, you can also search for symbol names using free text. When a
component is selected, it is automatically highlighted in the topology view.

5.2.6 Parameter Editor
The Parameter Editor allows to configure symbol meta data for symbols in a publisher channel. As a
prerequisite, the publisher channel has to be configured to use the "TwinCAT JSON" data format. You can
then add new symbol parameters by right clicking a symbol and select Add Symbol Parameter.

This will add a new symbol parameter entry to the Parameter Editor. You can then specify the data type,
name and value of the new parameter.

Configuration

TF672040 Version: 1.4

A result of the above configuration may look as follows when using the TwinCAT JSON data format. In this
configuration, the variable "GVL_nodes_dynamic.dyn_scalar_UI8" has been configured with the symbol
parameters Min, Max and Unit. These parameters will be added to the "MetaData" section of the TwinCAT
JSON formatted message.
{
 "Timestamp": "2020-09-28T12:32:49.0370000+02:00",
 "GroupName": "Publisher",
 "Values": {
 "GVL_nodes_dynamic.dyn_scalar_UI8": 259096147,
 "GVL_nodes_dynamic.dyn_scalar_UI1": 83,
 "GVL_nodes_dynamic.dyn_scalar_UI2": 32339,
 "GVL_nodes_dynamic.dyn_scalar_UI4": 259096147
 },
 "MetaData": {
 "GVL_nodes_dynamic.dyn_scalar_UI8": {
 "Timestamp": "2020-09-28T12:32:49.0350000+02:00",
 "Min": -10,
 "Max": 100,
 "Unit": "Celsius"
 },
 "GVL_nodes_dynamic.dyn_scalar_UI1": {
 "Timestamp": "2020-09-28T12:32:49.0350000+02:00"
 },
 "GVL_nodes_dynamic.dyn_scalar_UI2": {
 "Timestamp": "2020-09-28T12:32:49.0350000+02:00"
 },
 "GVL_nodes_dynamic.dyn_scalar_UI4": {
 "Timestamp": "2020-09-28T12:32:49.0350000+02:00"
 }
 }
}

In addition, you can also add parameters to a channel, which will add meta data properties to the root
message. Example:

As a result, the root message now contains a static meta data property called "Room", which has the value
"LivingRoom":
{
 "Timestamp": "2020-09-30T09:55:58.1160000+02:00",
 "GroupName": "Publisher",
 "Room": "LivingRoom",
 "Values": {
 "GVL_nodes_dynamic.dyn_scalar_UI8": 267266470,
 "GVL_nodes_dynamic.dyn_scalar_UI1": 166,

Configuration

TF6720 41Version: 1.4

 "GVL_nodes_dynamic.dyn_scalar_UI2": 10662,
 "GVL_nodes_dynamic.dyn_scalar_UI4": 267266470
 },
 "MetaData": {
 "GVL_nodes_dynamic.dyn_scalar_UI8": {
 "Timestamp": "2020-09-30T09:55:58.1140000+02:00",
 "Min": -10,
 "Max": 100,
 "Unit": "Celsius"
 },
 "GVL_nodes_dynamic.dyn_scalar_UI1": {
 "Timestamp": "2020-09-30T09:55:58.1140000+02:00"
 },
 "GVL_nodes_dynamic.dyn_scalar_UI2": {
 "Timestamp": "2020-09-30T09:55:58.1140000+02:00"
 },
 "GVL_nodes_dynamic.dyn_scalar_UI4": {
 "Timestamp": "2020-09-30T09:55:58.1140000+02:00"
 }
 }
}

5.2.7 Settings
This section provides some detailed information about the different configuration parameters that can be set
on gates, channels and symbols.

5.2.7.1 Gates

A Gate represents a communication protocol or specific connectivity service, e.g. ADS, OPC UA, MQTT,
AWS IoT or Microsoft Azure IoT Hub. Each Gate is configured with parameters that are specific for the
corresponding Gate type.

ADS

A Beckhoff ADS device represents either a TwinCAT 2/3 or a Beckhoff BC device. ADS is the common
Beckhoff communication protocol and can be used to access many parts of the TwinCAT system. The most
common application scenarios for TC3 IoT Data Agent involve access to a TwinCAT 2/3 PLC, C++, TcCOM
modules or the I/O process image, which is done via ADS.

When configuring an ADS gate, the following settings are required by the TC3 IoT Data Agent to access the
underlying ADS device:

Setting Description
AmsNetId AmsNetId of the target device, e.g. 127.0.0.1.1.1 for the local device.
AdsPort AdsPort of the target device, e.g. 801 (TwinCAT 2 PLC) or 851 (TwinCAT 3 PLC)
IoMode Specifies how the TC3 IoT Data Agent should communicate with the ADS device. The

following options can be set:
• Direct: accesses every symbol with a separate ADS command. Mandatory for BC

controllers but increases ADS traffic
• Batched: accesses symbols batched into an ADS sum command, which optimizes

ADS traffic and can be used for TwinCAT 2 and 3 PLC or C++ runtimes

OPC UA

OPC UA is a standardized, industrial, client/server communication protocol and adopted by many vendors
for different use cases. The TC3 IoT Data Agent can access OPC UA server devices to connect variables
(so-called “nodes”) on those devices with IoT services.

When configuring an OPC UA gate, the following settings are required by the TC3 IoT Data Agent to access
the underlying OPC UA device:

Configuration

TF672042 Version: 1.4

Setting Description
Server URL The OPC UA Server URL, e.g. opc.tcp://localhost:4840
Security policy The OPC UA security policy that the TC3 IoT Data Agent should use during

connection establishment with the OPC UA server
Security mode The OPC UA message security mode that the TC3 IoT Data Agent should use

during connection establishment with the OPC UA server
Authentication mode The OPC UA authentication mode that the TC3 IoT Data Agent should use

during connection establishment with the OPC UA server

MQTT

MQTT can be used for connecting to a generic message broker, e.g. Mosquitto, HiveMQ or similar broker
types.

Setting Description
Broker address The IP address or hostname of the MQTT message broker
Port MQTT specifies port 1883 for unencrypted communication and 8883 for

encrypted communication
ClientId A numeric or string-based value that identifies the client. Depending on

the message broker type, this ID should be unique
Authentication mode Specifies if the TC3 IoT Data Agent should authenticate to the broker by

using a username/password combination
TLS mode Specifies if TLS should be used to secure the communication channel to

the message broker. Note that the message broker also needs to support
TLS in order for this to work. Different options are available for TLS:
• CA certificate: Only uses the CA certificate for server authentication
• Client certificate: Uses a client certificate for mutual client/server

authentication
• PSK: Used a common PSK-Identity and PSK-Key that is known to the

message broker and the client

Microsoft Azure IoT Hub

With Azure IoT Hub the Microsoft Azure cloud platform offers a connectivity service in the cloud that provides
bi-directional communication, device security and automatic scalability. In the TC3 IoT Data Agent, the IoT
Hub can be configured as a special gate type.

Setting Description
HostName URL of the Azure IoT Hub instance
DeviceId DeviceId of the device that has been created on the IoT Hub configuration

website
SharedAccessKey Either the primary or secondary device key that has been generated together

with the device on the IoT Hub configuration website
CA file CA file that is used for server authentication. At the time writing this article, three

certificates are in play during the server authentication, which form part of the
certificate chain and are linked together.
• Root CA: Baltimore CyberTrust Root
• Intermediate CA: Baltimore CyberTrust
• Wilcard certificate
During the initial TLS handshake, only the first two are sent by the server to the
client. The client will normally only validate the Root CA of the chain and will
determine if it is trusted.
In order to acquire the CA file for the Root CA, you can open the Windows
certificate store (certmgr.msc), browse to the trusted root authorities and export
the Baltimore CyberTrust Root certificate.

Configuration

TF6720 43Version: 1.4

AWS IoT

With AWS IoT the Amazon Web Services cloud platform offers a message broker service in the cloud that
provides bi-directional communication, device security and automatic scalability. In the TC3 IoT Data Agent,
AWS IoT is configured as a regular MQTT gate. However, some special MQTT settings have to be
configured to successfully connect to an AW IoT instance.

Setting Description
Broker address The URL of the AWS IoT instance
Port Port 8883 for encrypted TLS communication is mandatory
ClientId Can be set to anything but needs to be unique. Typically this could be the

AWS IoT thing name.
Authentication mode Set to “No authentication”. Authentication on AWS IoT is done via the

TLS client certificate.
TLS mode Automatically set to “Client certificate” by the configurator. Select path to

CA file, client certificate file and client key file. These are the files that can
be generated and downloaded on the AWS IoT configuration website.

5.2.7.2 Channels

Channels are configured on a Gate to send (“publisher”) or receive (“subscriber”) data to/from a Gate.

• Source: This Gate is the source of data, meaning the TC3 IoT Data Agent connects to the Gate and
retrieves data from it in order to send this data somewhere else (to a “Destination Gate”). Technically,
this is also referred to as the “Subscriber Channel”.

• Destination: This Gate is the target of data, meaning the TC3 IoT Data Agent connects to the Gate and
sends data to it, which has been acquired from another Gate (from a “Source Gate”). Technically, this
is also referred to as the “Publisher Channel”.

Every channel has different settings that either describe the data format that should be used for this channel
or the sampling settings that the TC3 IoT Data Agent should use for gathering data. These settings can also
depend on the gate type that the channel has been configured for.

The following tables list all available settings.

Setting Description Applicable to Gate type
Direction Sets whether the channel should either be a publisher

(sender) or subscriber (receiver) channel. Depending
on the selection and gate type, other settings are
required or pre-selected.

All Gates

Setting Description Applicable to Gate type
SamplingMode Selects if the channel should use either cyclic or

event-based sampling mechanisms when gathering
data from a source. Note that, depending on the
direction, not all Gates might support both types. An
MQTT Gate, for example, uses when receiving data
always SamplingMode “event” (because of the Pub/
Sub principle it is always event-based).

All Gates

CycleTime Only applicable for SamplingMode “cyclic”. Sets the
sampling rate in [ms].

All Gates

Timeout The timeout for a communication with the Gate in [ms]. All Gates
PartialUpdate Enable/Disable partial updates on this channel. When

enabled (default), a publish includes only the updated
symbol. When disabled, a publish includes all symbols
of a channel with their last known value.
Only applicable to publisher channels.

All Gates

BufferSize Sets the size (amound of messages) of the ringbuffer
on connection loss.

MQTT, AWS IoT, Azure IoT
Hub

Configuration

TF672044 Version: 1.4

Setting Description Applicable to Gate type
Formatter Sets the data format that should be used for this

channel, e.g. binary or JSON. Note that some Gates
require their Channels to use a fixed data format, e.g.
ADS or OPC UA Gates, because the communication
with those devices requires a specific format. In this
case the Formatter is fixed and not changeable via the
configurator.

MQTT, AWS IoT, Azure IoT
Hub

FormatterType Sets the formatter type on this channel. In most cases
the formatter type is an InOut type. Consult our
documentation article about writing custom plugins via
the formatter interface for more information about this
setting.

MQTT, AWS IoT, Azure IoT
Hub

Setting Description Applicable to Gate type
Topic Specifies the MQTT topic that should be used to

publish or subscribe to.
MQTT

QoS Specifies the QoS (Quality-of-Service) level that
should be used when publishing or subscribing.

MQTT, AWS IoT

Retain Specifies if a message should be send as retain.
(only relevant for publisher channel)

MQTT

SendStateInfo When activated, the TC3 IoT Data Agent publishes its
“OnlineState” to the sub topic /Desc/ as well as uses
this sub topic in its LastWill. When the
TC3 IoT Data Agent connects to the Message Broker,
a JSON message will be published to this topic,
which contains
{ “OnlineState” : true }
When the TC3 IoT Data Agent disconnects orderly
from the Message Broker, the following message is
sent to this topic:
{ “OnlineState” : false }
When the Message Broker detects, that the
TC3 IoT Data Agent lost connection, the following
message is sent to this topic (LastWill):
{ “OnlineState” : false }

MQTT, AWS IoT

Sampling Modes

The TC3 IoT Data Agent includes different sampling modes that influence the way data is acquired from a
source or written to a destination. The sampling mode can be set on a channel. The following sampling
modes are currently available:

• Cyclic
• OnChange
• TriggerSymbol

Cyclic

Cyclic sampling means that the TC3 IoT Data Agent is cyclically sampling the gate for data (subscriber
channel) or cyclically writing data to a gate (publisher channel). On a subscriber channel, this results in cyclic
read commands whereas on a publisher channel this results in cyclic write commands, e.g. on an ADS or
OPC UA gate. On gate types that are based on publisher/subscriber concepts, e.g. MQTT, AWS IoT and
Azure IoT Hub gates, cyclic requests on a subscriber channel are automatically replaced by subscriptions
whereas on a publisher channel this results in cyclic publish commands.

OnChange

OnChange sampling means that the TC3 IoT Data Agent only communicates data with a gate if the value of
a variable has changed.

https://infosys.beckhoff.de/content/1033/tf6701_tc3_iot_communication_mqtt/36028800537505163.html?id=5154995239585613726

Configuration

TF6720 45Version: 1.4

Trigger symbols

Trigger symbols enable “on demand” sampling, e.g. if a certain condition for a specified symbol (the so-
called “trigger symbol”) is fullfilled. Different condition types can be set. They are configured as part of a
channel and allow to specify the following condition types.

Condition type Description
EQ Trigger symbol value equals a given value
NE Trigger symbol value differs from a given value
LE Trigger symbol value is less than or equals a given value
GE Trigger symbol value is greater than or equals a given value
LT Trigger symbol value is less than given value
GT Trigger symbol value is greater than given value

If the condition is fullfilled, all symbols in that channel are published to the corresponding gate. In addition
you can specify how often the symbol values should be send.

Send behavior Description
risingEdge Symbols are only send once when the condition is fullfilled
continuous Symbols are send as long as the condition is fullfilled

Usage of trigger symbols
Trigger symbols can only be configured for ADS and OPC UA subscriber symbols.
• Add the symbol that should act as trigger symbol to the ADS or OPC UA subscriber channel.
• Configure the linked publisher channel with SamplingMode “OnTrigger” to specify the previously

added symbol as trigger symbol.

5.2.7.3 Symbols

Symbols represent variables from a gate, e.g. a TwinCAT PLC variable. The symbol configuration includes
the address information that the Data Agent requires in order to read a symbol’s value or write to it. This
address information is therefore depending on the gate type.

On gates that support a target browser [} 38], the browser will automatically detect the correct address
information for a symbol. For all other gates, this information needs to be entered manually.

Configuration

TF672046 Version: 1.4

Gate type Setting Description
ADS URN Symbol name address information of the ADS variable. Might

not work with all ADS devices, e.g. BC devices do not
support symbol names.

ADS IndexGroup
IndexOffset

IndexGroup/IndexOffset combination can be used to access
data of an ADS device that does not support symbolic
address information. In case of the TwinCAT PLC, the
IndexGroup/IndexOffset combination directly represents a
memory address, e.g. from a PLC variable, which may
change after a re-compilation of the TwinCAT project. It is
therefore common practice to use the TwinCAT PLC symbol
server instead, which provides symbolic information for its
PLC variables, which means that a variable can be accessed
via its symbol name instead, which stays valid even after a
re-compilation or online change (if the symbol still exists).
However, some ADS services do not include such a symbol
server, e.g. small Beckhoff BC devices. In those cases the
IndexGroup/IndexOffset combination needs to be used.

ADS DataType Data type of the symbol
ADS Conversion Specifies conversion mode for this symbol.
OPC UA Name Descriptive name of the OPC UA node. Only used in

Configurator, does not represent any online address
information.

OPC UA Identifier Identifier of OPC UA symbol on the server, e.g.:
• s = MAIN.nCounter (if the IdentifierType is “String”)
• n = 42 (if the IdentifierType is “Numeric”)

OPC UA NsName Namespace name in which the symbol is located. This
corresponds to the namespace index, which is part of an
OPC UA NodeId. The translation can be done via the
NamespaceArray.

OPC UA AttributeId The AttributeId defines the OPC UA attribute that should be
used by the Data Agent when reading a symbol. In most
scenarios, this is the “Value” of a symbol.

OPC UA Conversion Specifies conversion mode for this symbol.
MQTT URN Name of the MQTT symbol. This represents the name that is

being used in the JSON format as a key, also when receiving
data from the MQTT Gate.

MQTT DataType Data type of the symbol
MQTT Conversion Specifies conversion mode for this symbol.
IoT Hub URN Name of the IoT Hub symbol. This represents the name that

is being used in the JSON format as a key, also when
receiving data from IoT Hub.

IoT Hub DataType Data type of the symbol
IoT Hub Conversion Specifies conversion mode for this symbol.

When configuring a Channel, symbols can be added via a target browser or manually by providing the
correct address information. Note that not all gate types include target browser functionalities. In this case
symbols need to be configured manually.

Manual symbol configuration

If the target device is not online or does not provide any symbolic address information (e.g. the BC9191),
symbols may also be added manually by entering the symbol address. The tables at the beginning of this
document show which information is required in this case.

Configuration

TF6720 47Version: 1.4

Type conversion

The TC3 IoT Data Agent supports data type conversion before the data is published to a Gate. Type
conversion occurs on symbol level, which means that different Symbols can use different conversion modes.
The following table shows the different conversion modes available.

Conversion mode Description
Losless Default setting. “Smaller” types can be converted into “larger” types. For

example, a subscriber symbol of data type INT can be published to a
symbol of data type Int32 (2 byte to 4 byte).

Lossy If required, “larger” symbols can also be converted into “smaller” symbols.
For example, a subscriber symbol of data type DINT can be published to a
symbol of data type Int16 (4 byte to 2 byte). Depending on the value of the
subscriber symbol, this can of course result in cut-off values.

Strict If required, symbols can also be configured to use “strict mode”. In this
conversion mode, the data type size of a subscriber symbol needs to
match exactly the data type of the mapped publisher symbol. For example,
a subscriber symbol of data type INT can only be published to a symbol of
data type Int16 (2 byte to 2 byte).

5.2.8 Error logging
For troubleshooting purposes, the TC3 IoT Data Agent can generate a logfile, which can be populated based
on different logging levels. All necessary settings can be configured via the properties window of the
configurator. Simply click on an empty spot on the topology view and configure the logging settings in the
properties window.

Note that all settings are tied to the currently opened configuration and have to be set individually for every
configuration. The default directory in which the logfile is created, is the TwinCAT boot directory. The
placeholder [BootDir] automatically selects the TwinCAT boot directory.

Logging window
The logging window inside of the configurator is only showing log events that are related to the con-
figurator. In order to create a log for the TC3 IoT Data Agent background service, the settings above
are required.

Configuration

TF672048 Version: 1.4

5.3 System tray
Local TC3 IoT Data Agent functionalities are also available via the Windows system tray, e.g. starting or
stopping the locally running TC3 IoT Data Agent. The TF6720 setup automatically installs a system tray
application that provides these functionalities via the context menu.

In addition, the system tray icon shows the current state of the TC3 IoT Data Agent.

Mode Symbol Description
Idle
mode

No configuration is currently loaded and active

Run
mode

A configuration is currently loaded and active

Stop
mode

A configuration is loaded but currently not active, e.g. due to
an error

5.4 Support Information Report
The Support Information Report is a tool for collecting product information for submission to Beckhoff
technical support. Collecting product-related data such as TwinCAT version/build, product version, image
version and device type reduces email traffic significantly and enables more efficient advice.

Plug-in mechanism

Various Beckhoff products interface with the Support Information Report via a plug-in mechanism. These
products, such as the TwinCAT Database Server, have a Support Information Report entry in the
corresponding product menu.

Creating and submitting a Support Information Report
ü A Support Information Report is open.
1. Use the Behaviour text field to describe the behavior that occurred in as much detail as possible.
2. In the Attachment area, you can add files (screenshots etc.) to the report via the Add Attachment

button, if required. Files can optionally be selected via remote access. To do this, select a target from the
Remote System dropdown list. Depending on the selected target, it may be possible to browse Windows
CE devices.

3. Enter your contact details and select a Beckhoff subsidiary for your country.
This information is obligatory for submitting the Support Information Report.

4. You will be offered the option to store your contact details for future Support Information Reports. To do
this, tick the Store personal data check box.

5. The product-specific plug-ins can be found in the lower section of the Support Information Report. Tick
the Include in report check box. The information required for the product is added automatically, if it is
available. The screenshot shows the current configuration of a TwinCAT Database Server in the form of
an XML file as an example.

Configuration

TF6720 49Version: 1.4

6. Submitting the Support Information Report:
• If the device has an email connection, you can submit the Support Information Report directly to the

Beckhoff subsidiary for your country via the Send Report button.
• If the device does not have an email connection, you can save the Support Information Report locally

as a .zip file via the Save .zip button and then make it available via FTP, USB etc.

Samples

TF672050 Version: 1.4

6 Samples
This section provides configuration examples that demonstrate how to use the TwinCAT IoT Data Agent to
connect to specific device types and cloud services. The section is categorized into "Southbound" and
"Northbound" samples.

• Southbound: connections to underlying devices, e.g. via ADS to TwinCAT or OPC UA to third-party
devices.

• Northbound: connections to cloud services

Also see about this
2 Application examples [} 17]

6.1 Quick Start
This section describes how to get started quickly with the TC3 IoT Data Agent.

The communication scenario is a typical use case for the Data Agent: Variables from a southbound device
(TwinCAT PLC runtime) are sampled and published to a northbound service (MQTT Message Broker). In this
example, the message broker is running on the same computer as the PLC runtime.

To set up this scenario, the following steps are required. All steps are performed on the same computer.

• Install the software [} 50]

• Prepare the PLC program [} 50]

• Configure the TC3 IoT Data Agent [} 51]

• Display the published messages [} 52]

Install the software

1. Install TF6720 IoT Data Agent as described in the Installation [} 10] section.
2. Install Mosquitto MQTT Message Broker with its default setup settings. The Message Broker can be

installed anywhere and is connected to via its hostname or IP address.
3. Open a Windows Console, navigate to the installation directory of the Mosquitto MQTT Message Bro-

ker (typically C:\Program Files (x86)\mosquitto) and start the Broker in verbose mode by executing the
following command: mosquitto.exe -v

Mosquitto MQTT Message Broker
The Mosquitto MQTT Message Broker can be downloaded from www.mosquitto.org. Make sure to
follow any installation instructions provided by the Mosquitto installer.

Mosquitto startup
By default, the Mosquitto MQTT Message Broker is installed as a Windows service. You can also
start the mosquitto.exe from a command line and specify parameters like "-v" for verbose output. If
you want to start the broker from a command line, make sure that the Mosquitto Windows service is
not running.

Prepare the PLC program

Set up a TwinCAT 3 PLC project and activate trial licenses for TC1200 (PLC) and TF6720
(TC3 IoT Data Agent). In this sample the PLC program should include the following variables:
PROGRAM MAIN
VAR
 nCounter1 : INT;
 nCounter2 : LREAL;
END_VAR

http://www.mosquitto.org

Samples

TF6720 51Version: 1.4

These two variables should be incremented cyclically. Add the following implementation code for the PLC
program:
nCounter1 := nCounter1 + 1;
nCounter2 := nCounter2 + 0.1;

Activate the project and start TwinCAT into run mode. Make sure that the PLC program is running by logging
in.

Configure TwinCAT IoT Data Agent
1. Start the TwinCAT IoT Data Agent configurator, either via its link on the Windows start menu or via the

system tray application (see Configurator [} 35]).
2. Follow the step-by-step instructions below to create a Data Agent configuration. As an alternative you

can also open the configuration file "Sample_QuickStart.xml", which can be found in the Data Agent
installation directory, and directly move on with step (m).

3. Start a new configuration by clicking on the New icon in the configurator toolbar.
4. In the topology view, right-click a blank area and select Add Gate (ADS).
5. Select the new gate and make sure that the local AmsNetId and ADS port 851 are selected in the

properties window
6. In the topology view, right-click the new gate and select Add Channel (Subscriber).
7. Select the new channel and make sure that sampling mode “cyclic” and cycle time “1000” are selected in

the properties window.
8. Open the target browser and navigate to your local PLC runtime (port 851).
9. Select the variables “nCounter1” and “nCounter2” and drag them to the subscriber channel in the

topology view.
10. In the topology view, right-click a blank area and select Add Gate (MQTT).
11. Select the new gate and make sure that the URL is set to 127.0.0.1 and Port 1883 is being used.
12. In the topology view, right-click the new gate and select Add Channel (Publisher).
13. Select the new channel and make sure that the sampling mode is set to “cyclic”. Set the cycle time to

“1000” and the formatter to “TwinCAT JSON”. The MQTT topic can be set to a topic of your choice, e.g.
“TestTopic”.

14. Hold the CTRL key and drag the subscriber channel to the publisher channel in order to create a
mapping between the source and destination symbols. Note that the destination symbols are
automatically created.

15. Activate the configuration by clicking on the Activate Configuration button in the toolbar.

Samples

TF672052 Version: 1.4

Display the published messages

Open a command line window and navigate to the installation directory of the
Mosquitto MQTT Message Broker (typically "C:\Program Files\mosquitto" or "C:\Program Files
(x86)\mosquitto"). Start the Mosquitto Subscriber tool by executing the following command:
mosquitto_sub.exe -t TestTopic.

The Mosquitto Subscriber tool will now receive the messages that are published from the TwinCAT
IoT Data Agent.

6.2 Southbound

6.2.1 Connect to third-party devices via OPC UA
Most of the step-by-step instructions in this sample section are based on an OPC UA subscriber channel, but
the same principles can also be applied to data acquisition from another device type.

Samples

TF6720 53Version: 1.4

The following section describes step-by-step how to configure the TC3 IoT Data Agent to sample data from
an OPC UA Server and to publish it to a MQTT Message Broker by using a JSON data format.

Configure OPC UA gate, channel and symbols

Follow the step-by-step instructions to create an OPC UA gate and a subscriber channel and add OPC UA
nodes to the channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (OPC UA).
2. Select the new gate and configure OPC UA specific settings in the properties window (Server URL,

Security Policy, Message Security Mode, …).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “OnChange”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the OPC UA namespace and add some symbols to the configuration by dragging them to the

subscriber channel.
ð A OPC UA gate and a subscriber channel have been created. OPC UA nodes have been added to the

configuration.

ServerURL
Make sure that the ServerURL that you specified in the gate settings equals the ServerURL that is
used in the target browser.

Configure MQTT gate and channel

Follow the step-by-step instructions to create a MQTT gate and a publisher channel.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (MQTT).
2. Select the new gate and configure MQTT-related settings in the properties window (Broker address, …).
3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange”, “Formatter” to “Simple JSON” and

“Topic” to “TestTopic”. Leave all other fields on their default settings.
ð A MQTT gate and a publisher channel have been created.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Samples

TF672054 Version: 1.4

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.
2. Click the Activate Configuration button.

ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.
3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

The resulting configuration looks like this:

6.2.2 Connect to a BC9191 via ADS
In order to configure the TC3 IoT Data Agent to access a BC9191 controller via ADS, the symbols must be
configured manually in the TC3 IoT Data Agent configurator, since the BC9191 controller does not provide
any symbolic information via ADS. The target browser mechanism cannot be used. The IndexGroup /
IndexOffset information must be configured for each symbol to be configured for IoT communication.

In case of input/output variables, this information can be found in the “ADS Info” part in the
TwinCAT System Manager.

Samples

TF6720 55Version: 1.4

In case of internal variables, these variables can be configured for ADS access in different ways. Consult the
BC9191 documentation for more information.

The following PLC code snippet provides an example:
VAR_GLOBAL
 iCounter1 AT%MB100 : INT;
 iCounter2 AT%MB200 : INT;
 iCounter3 AT%IB100 : INT;
 iCounter4 AT%IB200 : INT;
END_VAR

The corresponding IndexGroup/IndexOffset combinations for these two variables are:

Variable IndexGroup IndexOffset
iCounter1 0x4020 (16416) 0x64 (100)
iCounter2 0x4020 (16416) 0xC8 (200)
iCounter3 0xF020 (61472) 0x64 (100)
iCounter4 0xF020 (61472) 0xC8 (200)

The BC9191 can be added as a regular ADS gate to the TC3 IoT Data Agent configuration. The ADS port
must be set to 800, the IoMode is then automatically set to “direct”.

As described, the symbols must be added manually using the corresponding IndexGroup/IndexOffset
information. The URN can be set to a spoken name of your choice.

After mapping these subscriber symbols to corresponding publisher symbols, e.g. on an MQTT gate, the
variables are shown on the publisher’s side.

Samples

TF672056 Version: 1.4

6.2.3 Connect to a TwinCAT I/O Task via ADS
In order to configure the TC3 IoT Data Agent to access a TwinCAT I/O Task (with process image) via ADS,
the symbols can be configured manually in the TC3 IoT Data Agent configurator, if the I/O Task has not been
configured to create symbol information, or via the target browser.

TwinCAT I/O Task

A TwinCAT I/O Task can be configured with a process image in order to link variables from that image
directly to I/Os. TC3 IoT Data Agent can then access the I/O Task via its ADS port.

Manual symbol configuration

The process image variables can be accessed via their IndexGroup/IndexOffset combination. This
information must be entered into the TC3 IoT Data Agent.

Samples

TF6720 57Version: 1.4

Configuration via target browser

Symbolic information can be generated for a TwinCAT I/O Task by activating the corresponding option in the
I/O Task configuration.

After activating this configuration, the symbolic information can be accessed via the target browser and the
symbols can be added to the TC3 IoT Data Agent configuration.

Samples

TF672058 Version: 1.4

6.2.4 Connect to a TwinCAT TcCOM module via ADS
In order to configure the TC3 IoT Data Agent to access a TwinCAT 3 TcCOM Module via ADS, the symbols
can be configured manually in the TC3 IoT Data Agent configurator, if the TcCOM Module has not been
configured to create symbol information, or via the target browser.

TwinCAT 3 TcCOM Module

A TwinCAT 3 TcCOM Module can be accessed via ADS via its corresponding ADS port. This is usually the
port of the task.

Manual symbol configuration

The process image variables of the TcCOM Module can be accessed via their IndexGroup/IndexOffset
combination. This information must be entered into the TC3 Io Data Agent.

Samples

TF6720 59Version: 1.4

Configuration via target browser

Symbolic information can be generated for a TwinCAT 3 TcCOM Module via the TMC Code Generator.

After activating this configuration, the symbolic information can be accessed via the target browser and the
symbols can be added to the TC3 IoT Data Agent configuration.

6.3 Northbound

6.3.1 Publish data to AWS IoT Core
The following section describes step-by-step how to use the configurator to sample data from a
TwinCAT 3 PLC runtime and to publish it to AWS IoT by using a JSON data format.

Samples

TF672060 Version: 1.4

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a subscriber channel and add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS specific settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “Cyclic”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the ADS device and add some symbols to the configuration by dragging them to the

subscriber channel.
ð An ADS gate and a subscriber channel have been created. Symbols have been added to the channel.

AMS Net ID
Make sure that the AMS Net ID, which has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

Configure AWS IoT gate and channel

Follow the step-by-step instructions to create an AWS IoT gate and a publisher channel.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (AWS IoT).
2. Select the new gate and configure AWS IoT related settings in the properties window (Broker address,

TLS settings).
3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange”, “Formatter” to “Simple JSON” and

“Topic” to “TestTopic”. Leave all other fields on their default settings.
ð An AWS IoT gate and a publisher channel have been created.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.

Samples

TF6720 61Version: 1.4

2. Click the Activate Configuration button.
ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.

3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

The resulting configuration looks like this:

6.3.2 Publish data to AWS Greengrass
The following section describes step-by-step how to use the configurator to sample data from a
TwinCAT 3 PLC runtime and to publish it to AWS Greengrass by using a JSON data format.

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a subscriber channel and add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS specific settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “Cyclic”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the ADS device and add some symbols to the configuration by dragging them to the

subscriber channel.
ð An ADS gate and a subscriber channel have been created. Symbols have been added to the channel.

Samples

TF672062 Version: 1.4

AMS Net ID
Make sure that the AMS Net ID, which has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

Configure AWS IoT gate and channel

A connection to AWS Greengrass can basically be configured like a connection to AWS IoT. Follow the step-
by-step instructions to create an AWS Greengrass gate and a publisher channel.

CA certificate
Make sure to use the correct CA certificate, which can be obtained via the AWS CLI.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (AWS IoT).
2. Select the new gate and configure AWS Greengrass related settings in the properties window (IP

address or hostname of the Greengrass Core device and the TLS settings).
3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange”, “Formatter” to “Simple JSON” and

“Topic” to “TestTopic”. Make sure to set “QoS” to “0”. Leave all other fields on their default settings.
ð An AWS Greengrass gate and a publisher channel have been created.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.
2. Click the Activate Configuration button.

ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.
3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

The resulting configuration looks like this:

Samples

TF6720 63Version: 1.4

6.3.3 Publish data to IBM Watson IoT
The following section describes step-by-step how to use the configurator to sample data from a TwinCAT 3
PLC runtime and publish it to IBM Watson IoT by using a JSON data format.

IBM Watson IoT settings
For IBM-specific configuration settings, please consult the IBM Watson IoT documentation. A good
Getting Started article can be found here: https://www.ibm.com/support/knowledgecenter/
SSQP8H/iot/platform/devices/mqtt.html

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a subscriber channel and add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS specific settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “Cyclic”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the ADS device and add some symbols to the configuration by dragging them to the

subscriber channel.
ð An ADS gate and a subscriber channel have been created. Symbols have been added to the channel.

AMS Net ID
Make sure that the AMS Net ID, which has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

https://www.ibm.com/support/knowledgecenter/SSQP8H/iot/platform/devices/mqtt.html
https://www.ibm.com/support/knowledgecenter/SSQP8H/iot/platform/devices/mqtt.html

Samples

TF672064 Version: 1.4

Configure MQTT gate and channel

MQTT is the transport protocol used by IBM Watson IoT. Follow the step-by-step instructions to create an
MQTT gate and a publisher channel.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (MQTT).
2. Select the new gate and configure IBM Watson IoT related settings in the properties window (Broker

address, TLS settings, Username/Password, ClientID) as described in the IBM Watson IoT
documentation.

3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange”, “Formatter” to “Simple JSON” and

“Topic” to “iot-2/evt/<eventId>/fmt/<format>”. Leave all other fields on their default settings. Replace
<eventId> and <format> as described in the IBM Watson IoT documentation.

ð An AWS IoT gate and a publisher channel have been created.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.
2. Click the Activate Configuration button.

ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.
3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

The resulting configuration may look like this:

Samples

TF6720 65Version: 1.4

6.3.4 Publish data to Microsoft Azure IoT Hub
The following section describes step-by-step how to use the configurator to sample data from a TwinCAT 3
PLC runtime and to publish it to the Microsoft Azure IoT Hub by using a JSON data format.

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a subscriber channel and add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS specific settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “Cyclic”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the ADS device and add some symbols to the configuration by dragging them to the

subscriber channel.
ð An ADS gate and a subscriber channel have been created. Symbols have been added to the channel.

AMS Net ID
Make sure that the AMS Net ID, which has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

Configure Azure IoT Hub gate and channel

Follow the step-by-step instructions to create an Azure IoT Hub gate and a publisher channel.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (IoT Hub).
2. Select the new gate and configure IoT Hub related settings in the properties window (device name,

primary key, CA certificate).

Samples

TF672066 Version: 1.4

3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange” and “Formatter” to “Simple JSON”.

Leave all other fields on their default settings.
ð An Azure IoT Hub gate and a publisher channel have been created.

CA certificate
When establishing a connection to the Microsoft Azure IoT Hub, it is required to set a CA certificate.
The Baltimore Cyber Trust Root CA can be used as a CA certificate. The associated public key can
be extracted from the Microsoft Windows certificate console (Start > Run > mmc.exe, then add the
„Certificates“ snap-in). The Baltimore CA can then be found under the heading „Trusted Root Certi-
fication Authorities“.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.
2. Click the Activate Configuration button.

ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.
3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

The resulting configuration looks like this:

Samples

TF6720 67Version: 1.4

6.3.5 Publish data to MQTT Message Broker
The following section describes step-by-step how to use the configurator to sample data from a TwinCAT 3
PLC runtime and to publish it to a MQTT Message Broker by using a JSON data format.

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a subscriber channel and add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS specific settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “Cyclic”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the ADS device and add some symbols to the configuration by dragging them to the

subscriber channel.
ð An ADS gate and a subscriber channel have been created. Symbols have been added to the channel.

AMS Net ID
Make sure that the AMS Net ID, which has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

Configure MQTT gate and channel

Follow the step-by-step instructions to create a MQTT gate and a publisher channel.

Samples

TF672068 Version: 1.4

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (MQTT).
2. Select the new gate and configure MQTT-related settings in the properties window (Broker address, …).
3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange”, “Formatter” to “Simple JSON” and

“Topic” to “TestTopic”. Leave all other fields on their default settings.
ð A MQTT gate and a publisher channel have been created.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.
2. Click the Activate Configuration button.

ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.
3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

The resulting configuration looks like this:

Samples

TF6720 69Version: 1.4

6.3.6 Publish data to TwinCAT IoT Communicator App
The following section describes step-by-step how to use the configurator to sample data from a
TwinCAT 3 PLC runtime and publish it to an MQTT Message Broker by using a TwinCAT JSON data format
in order to be visualized by the TwinCAT IoT Communicator smartphone app.

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a subscriber channel and add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS specific settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “Cyclic”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the ADS device and add some symbols to the configuration by dragging them to the

subscriber channel.
ð An ADS gate and a subscriber channel have been created. Symbols have been added to the channel.

AMS Net ID
Make sure that the AMS Net ID, which has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

Samples

TF672070 Version: 1.4

Configure MQTT gate and channel

Follow the step-by-step instructions to create a MQTT gate and a publisher channel. The channel is
configured so that it represents the topic structure and data format for the TwinCAT IoT Communicator.

1. Right-click the canvas and select Add Gate (MQTT).
2. Select the new gate and configure MQTT related settings on the new gate (Broker address, …).
3. Right-click the new gate and select Add channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange” and “Formatter” to “TwinCAT JSON”.

Set “Topic” to <MainTopic>/<DeviceName>/TcIotCommunicator/Json/Tx/Data . The parts <MainTopic>
and <DeviceName> must be replaced according to your Communicator setup.

5. Set “StatusInfo Topic” to <MainTopic>/<DeviceName>/TcIotCommunicator/Desc. The parts <MainTopic>
and <DeviceName> must be replaced according to your Communicator setup.

ð A MQTT gate and a publisher channel have been created.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.
2. Click the Activate Configuration button.

ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.
3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

6.3.7 Subscribe to MQTT Message Broker
The following section describes step-by-step how to use the configurator to subscribe to an
MQTT Message Broker and to write received data into ADS variables.

Configure MQTT gate, channel and symbols

Follow the step-by-step instructions to create an MQTT gate and a subscriber channel and add symbols to
the channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (MQTT).
2. Select the new gate and configure MQTT related settings in the properties window (Broker address, …).
3. Right-click the new gate and select Add Channel (Subscriber).

Samples

TF6720 71Version: 1.4

4. Select the new channel and set “SamplingMode” to “OnChange” and “Formatter” to “Simple JSON”.
Leave all other fields on their default settings. Make sure that the MQTT topic matches the topic name on
which you receive data.

5. Right-click the channel and select Add Symbol. Configure the symbol related settings, e.g. the symbol
name. In case of a JSON data format, the name must match a JSON key in the JSON document
received by the TC3 IoT Data Agent. Make sure to set the correct data type.

ð A MQTT gate and a subscriber channel have been created. Symbols have been added to the channel.

Data format
Make sure that the data format of the received message payload corresponds to the configured
data format. Otherwise, the TC3 IoT Data Agent cannot parse the content of the message and
process the data.

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a publisher channel. Add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS related settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set “SamplingMode” to “OnChange”. Leave all other fields on their default

settings
5. Open the Target Browser.
6. Navigate to the ADS device and add the symbols to the configuration by dragging them to the publisher

channel.
ð An ADS gate and a publisher channel have been created. Symbols have been added to the channel.

AMS Net ID
Make sure that the AMS Net ID, that has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.

Samples

TF672072 Version: 1.4

2. Click the Activate Configuration button.
ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.

3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

6.3.8 Use Microsoft Azure IoT Hub Device Twin
The following section describes step-by-step how to use the configurator to set up a connection to Microsoft
Azure IoT Hub and the Microsoft Azure IoT Hub Device Twin service.

Configure ADS gate, channel and symbols

Follow the step-by-step instructions to create an ADS gate and a subscriber channel and add symbols to the
channel’s configuration.

ü The topology view is activated.
1. Right-click the canvas and select Add Gate (ADS).
2. Select the new gate and configure ADS specific settings in the properties window (AmsNetId, AdsPort,

…).
3. Right-click the new gate and select Add Channel (Subscriber).
4. Select the new channel and set “SamplingMode” to “Cyclic”. Leave all other fields on their default

settings.
5. Open the Target Browser.
6. Navigate to the ADS device and add some symbols to the configuration by dragging them to the

subscriber channel.
ð An ADS gate and a subscriber channel have been created. Symbols have been added to the channel.

AMS Net ID
Make sure that the AMS Net ID, which has been configured on the ADS gate, matches the ADS de-
vice that you selected with the target browser.

Configure Azure IoT Hub gate and Device Twin channel

Follow the step-by-step instructions to create an Azure IoT Hub gate and channels for telemetry data and the
Device Twin.

ü The topology view is activated
1. Right-click the canvas and select Add Gate (IoT Hub).
2. Select the new gate and configure IoT Hub related settings in the properties window (device name,

primary key, CA certificate).
3. Right-click the new gate and select Add Channel (Publisher).
4. Select the new channel and set "SamplingMode" to "OnChange", "Formatter" to "Simple JSON" and

"Name" to "Telemetry Data" (optional). Leave all other fields on their default settings.
5. Right-click the new gate and select Add Channel (Device Twin Publisher).
6. Select the new channel and set "SamplingMode" to "OnChange", "Formatter" to "Simple JSON" and

"Name" to "Device Twin" (optional). Leave all other fields on their default settings.
7. Right-click the new gate and select Add Channel (Device Twin Subscriber).
8. Select the new channel and set "SamplingMode" to "OnChange", "Formatter" to "Simple JSON" and

"Name" to "Device Twin GET" (optional). Leave all other fields on their default settings.
ð You have configured an Azure IoT Hub connection and three channels - one for telemetry data and two

for the Device Twin. In the step you have to decide which source symbols from the ADS gate will be
treated as telemetry data and which symbols should be send to the Device Twin via the Device Twin
Publisher channel. The Device Twin Subscriber channel can be used to retrieve updates to the Device
Twin from cloud-based backenend applications (so-called "desired" updates). Every property expected
has to be added as a symbol to that channel, using the property name as symbol name and URN.

Samples

TF6720 73Version: 1.4

Create mapping

Follow the step-by-step instructions to create a mapping between source and destination symbols. Note that
a mapping can only be created between channels that have different roles (e.g. between a subscriber and a
publisher channel and vice versa).

Drag-and-drop - Channel:

While holding the CTRL key, drag the subscriber channel to the publisher channel.

The configurator automatically creates new symbols on the publisher channel and a mapping between the
source and destination symbol.

Drag-and-drop – Symbol:

While holding the CTRL key, drag a symbol from the subscriber channel to either an existing symbol on the
publisher channel or to the publisher channel itself.

The configurator creates a link between source and destination symbol or, if the symbol has been dragged to
a channel object, creates the destination symbol automatically

Activate configuration

Follow the step-by-step instructions to activate the currently opened configuration.

1. Select the target system via the toolbar.
2. Click the Activate Configuration button.

ð A dialog opens asking if you want to switch the target TC3 IoT Data Agent into run mode.
3. Confirm the dialog with Yes if you want to switch the mode. Otherwise, choose No.
ð The configuration is activated.

The resulting configuration may look like this:

Appendix

TF672074 Version: 1.4

7 Appendix

7.1 Error logging
For troubleshooting purposes, the TC3 IoT Data Agent can generate a logfile, which can be populated based
on different logging levels. All necessary settings can be configured via the properties window of the
configurator. Simply click on an empty spot on the topology view and configure the logging settings in the
properties window.

Note that all settings are tied to the currently opened configuration and have to be set individually for every
configuration. The default directory in which the logfile is created, is the TwinCAT boot directory. The
placeholder [BootDir] automatically selects the TwinCAT boot directory.

Logging window
The logging window inside of the configurator is only showing log events that are related to the con-
figurator. In order to create a log for the TC3 IoT Data Agent background service, the settings above
are required.

7.2 Error diagnosis
This documentation article explains some common configuration or setup mistakes and might provide a good
way to troubleshoot your setup. It might also help to create an error logfile [} 74].

Appendix

TF6720 75Version: 1.4

Behavior Description
System tray icon turns RED after start Double-check all settings and turn on logging [} 74]. In addition

check the following things:
• Is the TC3 IoT Data Agent able to connect to all configured

gates (see below)?
• Are there enough licenses available?

Connection to MQTT Message Broker
could not be established

Check the following things:
• Make sure that the Message Broker is reachable for the

device that executes TC3 IoT Data Agent. The default MQTT
port for an unencrypted MQTT communication is 1883/tcp
and 8883/tcp if MQTT-TLS is used. Make sure that these
ports are opened in your firewall (on the Message Broker
side for incoming access and on the TC3 IoT Data Agent
side for outgoing access).

• Make sure that you use the correct access credentials (if
applicable) for the message broker

• Check connectivity with the message broker by using
another MQTT client, e.g. Mqtt.Fx, MqttSpy or the Mosquitto
command line tools.

Connection to ADS device could not be
established

Check the following things:
• Make sure that you use the correct ADS port and AmsNetID

for the remote device
• Make sure that the remote device does not have any firewall

settings in place that prohibit ADS access.
• Make sure that the computer that executes the

TC3 IoT Data Agent has an ADS route configured to the
corresponding TwinCAT target device. (Only applicable if the
TC3 IoT Data Agent and ADS target runtime are on different
computers)

Connection to OPC UA Server could not be
established

Check the following things:
• Make sure that the computer that executes the

OPC UA Server does not have any firewall settings in place
that prohibit remote access to the server.

• Check any local firewall settings on the TC3 IoT Data Agent
device.

Connection to Azure IoT Hub could not be
established

Check the following things:
• Make sure that you use the correct IoT Hub hostname
• Make sure that you have created a device on Azure IoT Hub,

e.g. by using the Azure Device Explorer, and that you have
entered the correct device credentials for that device in the
TC3 IoT Data Agent configurator

• Make sure that you have used the correct CA certificate for
Azure IoT Hub and that the CA certificate is used in a
Base64-encoded file format.

• Make sure that you do not use the same access credentials
on another device. Only one connection can be established
to IoT Hub with the same set of access credentials.

Connection to AWS IoT could not be
established

Check the following things:
• Check connectivity with AWS IoT by using another MQTT

client, e.g. Mqtt.Fx, MqttSpy or the Mosquitto command line
tools.

• Make sure that no firewalls are blocking the TCP port 8883
(outgoing), which is required for connectivity with AWS IoT.

• Make sure that you have used the correct set of certificates
(as supplied by the AWS IoT management website)

Appendix

TF672076 Version: 1.4

7.3 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages:
http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49(0)5246/963-0
Fax: +49(0)5246/963-198
e-mail: info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157
Fax: +49(0)5246/963-9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49(0)5246/963-460
Fax: +49(0)5246/963-479
e-mail: service@beckhoff.com

http://www.beckhoff.de/english/support/default.htm
http://www.beckhoff.com
http://www.beckhoff.com/english/download/default.htm

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf6720

mailto:info@beckhoff.de?subject=TF6720
https://www.beckhoff.com
https://www.beckhoff.com/tf6720

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	3 Installation
	3.1 System requirements
	3.2 Setup scenarios
	3.3 Installation
	3.4 Licensing
	3.5 Licensing information

	4 Technical introduction
	4.1 Application examples
	4.1.1 AWS IoT Core
	4.1.2 Bosch IoT Suite
	4.1.3 Google IoT Core
	4.1.4 IBM Watson IoT
	4.1.5 MathWorks ThingSpeak
	4.1.6 Microsoft Azure IoT Hub
	4.1.7 Node-RED

	4.2 Features
	4.3 Internet connectivity
	4.4 MQTT
	4.5 Startup modes
	4.6 Security
	4.7 Buffering of data

	5 Configuration
	5.1 Quick Start
	5.2 Configurator
	5.2.1 Topology view
	5.2.2 Tree view
	5.2.3 Mappings
	5.2.4 Target Browser
	5.2.5 Cascading Editor
	5.2.6 Parameter Editor
	5.2.7 Settings
	5.2.7.1 Gates
	5.2.7.2 Channels
	5.2.7.3 Symbols

	5.2.8 Error logging

	5.3 System tray
	5.4 Support Information Report

	6 Samples
	6.1 Quick Start
	6.2 Southbound
	6.2.1 Connect to third-party devices via OPC UA
	6.2.2 Connect to a BC9191 via ADS
	6.2.3 Connect to a TwinCAT I/O Task via ADS
	6.2.4 Connect to a TwinCAT TcCOM module via ADS

	6.3 Northbound
	6.3.1 Publish data to AWS IoT Core
	6.3.2 Publish data to AWS Greengrass
	6.3.3 Publish data to IBM Watson IoT
	6.3.4 Publish data to Microsoft Azure IoT Hub
	6.3.5 Publish data to MQTT Message Broker
	6.3.6 Publish data to TwinCAT IoT Communicator App
	6.3.7 Subscribe to MQTT Message Broker
	6.3.8 Use Microsoft Azure IoT Hub Device Twin

	7 Appendix
	7.1 Error logging
	7.2 Error diagnosis
	7.3 Support and Service

		documentation@beckhoff.com
	2021-03-01T01:05:06-0800
	Beckhoff Automation, Verl
	Documentation Publishing

