BECKHOFF

TF6/01

TwinCAT 3 | ToT Communication (MQTT)

File Edit View projeqt Build

. TRy
Build 40244 (Loaded) - s [+]

a -

£ Solution ‘TwinCAT Project’ (1 project)
4 gi] TWinCAT Project
4 (] SYSTEM
¥ License

[&B] TcCOM Objects
] momoN
] PLc
SAFETY
Ce+
[AnaLymCS
» Eo

=]

olution E PR Tean EX lorer
Solutio! xpl pl

2022-08-11 | Version: 1.10

Debug

TwinCAT TwinSAFE pi¢

@:é

New Project

Team Scope Tools

Release ~ | TwinCATRT (x64)

ED@ TwinCAT Project -

Window Help
" P Attach., v

<Local>

b Recent
Sort by: | Default
4 Installed 1
TinCAT XAE Poject (ML format)

TwinCAT Projects
TwinCAT Controller =

b TwinCAT Measurement
TwinCAT CAD Interface Beta Version
TWinCAT Projects
TwinCATPLC
TcXaeShell Solution

Not finding what you relooking for
Open Visua Studio Instaler

TwinCAT Project

Create new solution

Neme:
Location:
Solution:

T Project
Solution name: Twin

Type: ToinCATPrjects

XAE Stem Mnages

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
1.2 SafEtY INSITUCHIONS ...ttt e e e e e e e e e e eeeaaeeeeesesannsanrnneeaeaeens 6
1.3 Notes on infOrmation SECUNITYcooi i 7

B O Y T 8

B O 4 =3 - 1] = oY 9
3.1 SYSIEM FEQUIMEIMENTSttt e e e e e e e e e e s et eeeeaeaeeeeessannssbassneeeeaaaens 9
R T | 1< =11 =1 o o SR 9
R TR T I oY 13 o T PSPPSR 9

4 Technical iNtrodUCHION.........o s s s e e e e e s s e mnmmnnes 12
4.1 ApPPlICation SAMPIESccoiiieieieee ettt a e e e e e e e aaaa e e e e aearaaaa————— 12

4.1.1 AWS 10T COMB ..ttt ettt e e e e e e et e e e e e st e e e e e b e e e e s e abseeeeeannees 12
4.1.2 [ToETod o I (o IS U (=SSR 13
4.1.3 (1o ToTe SN [) I ©70] LN PSP TP U PPPPP 13
414 1] AT = 1 €= o T T PR 13
4.1.5 MathWorks ThINGSPEAKccuiiiiiiiiiie e e e e eae e 14
4.1.6 Microsoft AZUre 10T HUDooiiiiii e 15
4.1.7 Sending SMS and E-Mail Notificationsc..eeiiiiiiiii 15
S Y [I I PSPPSR 23
4.3 EXponential Dackoff. ... 27
Y 11 | PR SPPRP 28
4.5 JSON WED TOKEN (JWWT)ittt ettt ettt et e e ettt e e et e e e et e e e e e nnbte e e e e enbeeeeeeannees 28
G S 1= o U | 4 1 Y PRSP 28
4.6.1 L= 1] o To T = Y OO REERRRR 29
4.6.2 APPHCALION TEVEL ... eenennnnes 33
4.7 Re-parameteriZation............ooiiiiiiie e 33
T 1L I o 1= o USSP 33
e B = 13 A | o =T o |10 T T PRSP 39
LT o 0 40
S0 B o i (o) = =TT PSR RP 40
5.1.1 S (111 o 1 (11T o | PRSPPSO 40
51.2 S I (o 11/ [o 14T SRR 46
51.3 ST IOtMGETLS oot et e e e e e e e e et e e e s ensaaeeeeennsreeeas 47
51.4 MESSAGE QUUEBUEceiiiieei ettt e e e et e e e e e 48
LT o2 N =1 o) o 1 PRSP 51
5.21 FUNCHON DIOCKS ... e e e e e e e e e e eae s 51
5.2.2 1] (= = Lo =T PP PRPPRRPRR 128

LS - 1121 o (== 134
6.1 1otMqttSampleUSINGQIUEUEoooiiiiiiii et e e et e e e et e e e e nnnre e e e e e nnees 135
6.2 1otMqttSampleUsingCallDacKeiiiiii e 137
6.3 1otMQUESAMPIETISPSK ...t e e e e e e e e e e e e eaaaaeeas 139
6.4 1otMQUESAMPIETISCA.t e e e e et e e e e e e e e e e e aaaaaae s 140
6.5 OtMQIESAMPIEAWSIOT ...t e e e e et e e et e e e et e e e e e 140

TF6701 Version: 1.10 3

Table of contents BEGKHOFF

6.6 1otMQttSamPpPIEAZUrElOtHUD ... 142
6.7 1otMQttSamPIEBOSCRIOT ... et 144
(SIS T 011V, [| 1S 7= T 1 41 o] (=T €T o | L= Lo 1 USSR 145
6.9 1otMqttSamplelbmMWatSONIOTo e e a e 146
6.10 lotMqttSampleMathworkSTRINGSPEAKceiiiiii i e e e e e e 147
6.11 lotMqttSampleAzurelotHUBDEVICETWINcooiiiiiiiiiieeeeee e 148
6.12 JSONXMISAMPIESeeieiiiiiiie ettt e et e e e ettt e e et e e e e bt e e e e e nbee e e e e ennteeeeeeannees 148
6.12.1 Tc3JdsonXmISampleXmIDOMWIIEr ... e e e 148
6.12.2 Tc3JsonXmISampleXmIDOMREAAETuvviiiiiiiieie it 149
6.12.3 Tc3JsonXmISampledSONDOMREAUETooiiiiiiiiieiiiiie e 151
6.12.4 Tc3JsonXmISampledsonNSaxXWIItErccoooiiiiiiiieeeeeee e eeeeaans 152
6.12.5 Tc3JsonXmISampleJsoNSaxXREAETuvviiiiiiiieii it 152
6.12.6 Tc3JsonXmISampledsonDataTyPecooiiiiiiiiiiiiiie e 153

7 - Y o 1= Lo [N 156
4% B = 4 o o o = SO 156
7.2 ADS REIUIMN COUES...coiiiiiiiieeiiiiiee ettt e et e et e e e et e e e e et e e e e e st e e e e ansseeeeeanseeeeeeansbeeeeeennnees 156
AR T =14 (o o 1= o [o 1= £ PRSP RRR 161
A S U o] o T =T o IS T=T Vo= TSR 163
7.5 CIPher SUIES USEAuuiiiiiiiiiiiiee et et a e e e e eaaaaeeas 165

Version: 1.10 TF6701

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

—
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TF6701 Version: 1.10 5

Foreword BECKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

Version: 1.10 TF6701

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TF6701 Version: 1.10 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview BEGKHOFF

2 Overview

The function blocks of the PLC library Tc3_lotBase can be used for publisher/subscriber based data
exchange between the TwinCAT PLC and a message broker via the MQTT communication protocol.
Symbols can be sent (publish mode) and received (subscribe mode). The data format to be used is freely
definable and can be created via additional PLC libraries, e.g. the Tc3_JsonXml library.

In addition to the PLC library, a TwinCAT 1/O device is also available, via which a device-to-device
communication connection can be configured via a message broker. The main application case for this I/O
device is where two TwinCAT-based systems are to exchange data with each other via a message broker.
The data format is by definition a binary format and not freely definable.

MQTT Message Broker

.
" sClientld S7RNG255 & bEmorf—
1 —{sHostName STRIVGsS FESULT hrErrorCode—
" nHostPort (/i ETcioth “ate eConnectionStatef—

ST 7000 bCannected—

|
1

= (8] FB_totMgttCient
[y Execute
ﬁ} OnMgttMessage
[Publish
|_;;|3| Subscribe
54 Unsubscribe

Publisher / Subscriber
oF
4
i
A

SeEcaammy
Sumaunzimiy
SeEs g
>amaaamil

: =3 TF6701 loT Communication
b

Product components

g e e i e e My e

The function TF6701 IoT Communication consists of the following components, which are supplied with
TwinCAT 3 as standard:

* Drivers: TclotDrivers.sys (supplied with TwinCAT 3 XAE and XAR setups)
* PLC library: Tc3_lotBase (supplied with TwinCAT 3 XAE setup)

8 Version: 1.10 TF6701

BEGKHOFF Installation

3 Installation

3.1 System requirements

Technical data Description

Operating system Windows 7/10, Windows Embedded Standard 7, Windows CE 7
Target platform PC architecture (x86, x64 or ARM)

TwinCAT version TwinCAT 3.1 build 4022.0 or higher

Required TwinCAT setup level TwinCAT 3 XAE, XAR

Required TwinCAT license TF6701 TC3 lIoT Communication

3.2 Installation

A separate setup is not required for TF6701 loT Communication. All required components will be delivered
directly within the TwinCAT setup.

* TwinCAT XAE setup: Driver components and PLC library (Tc3_lotBase)
* TwinCAT XAR setup: Driver components

3.3 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

@ A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.

= The licensing settings always refer to the selected target system. When the project is activated on
the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

TF6701 Version: 1.10 9

https://infosys.beckhoff.de/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

Installation

BECKHOFF

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

Solution Explorer * 0 X

@ o-a|s =
Search Solution Explorer (Ctrl+0) P

m Solution TwinCAT SampleProject’ (1 project)
4 Iii TwinCAT SampleProject
4 || SYSTEM
¥ License
b @) Real-Time
b B Tasks
si= Routes
215 Type System
TcCOM Objects

= The TwinCAT 3 license manager opens.

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6.

Order Information (Funtime) Manage Licenses Project Licenses

[] Dizable automatic detection of required licenses for project

Online Licenses

Order Mo License

TF3e01 TC3 Condition Menitoring Level 2
TF3630 TC3 Power Manitoring

TF36280 TC3 Filter

TF3200 TC3 Machine Learning Inference Engine
TF3210 TC3 Meural Metwork Inference Engine
TF3900 TC3 Solar-Position-Algorithm

TF4100 TC3 Controller Toolbox

TR4110 TC3 Temperature-Controller

TF4300 TC3 Speech

Open the Order Information (Runtime) tab.

|Add License

I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license
I_ cpu license

= In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

10

Version: 1.10

TF6701

BECKHOFF

Installation

7. Click 7-Day Trial License... to activate the 7-day trial license.

Order Information (Runtime) ~ Manage Licenses Project Licenses Orline Licenses

License Device Target (Hardware |1d) ~
System Id: Platform:
2DB25408-B4C0-810F-5488-6A305B45EF 15 | other (31)

License Request

Provider: Beckhoff Automation w Generate File. ..
License |d: | Customer Id:
Comment: |
License Activation
7 Days Tral License... I License Response File...

= A dialog box opens, prompting you to enter the security code displayed in the dialog.

Enter Security Code *

Fleaze type the following 5 characters: k.

| Ke8T4 |

8. Enter the code exactly as it is displayed and confirm the entry.

9. Confirm the subsequent dialog, which indicates the successful activation.

= In the tabular overview of licenses, the license status now indicates the expiry date of the license.

10. Restart the TwinCAT system.
= The 7-day trial version is enabled.

TF6701 Version: 1.10

11

Technical introduction BEGKHOFF

4 Technical introduction
4.1 Application samples
411 AWS loT Core

AWS loT Core is a managed cloud service that enables connected devices to easily and securely
communicate bi-directionally with cloud applications and other devices. Special functionalities, such as the
AWS loT Device Shadow Service, enable communication with devices that are not yet connected.

)

AWS loT

AWS loT
Core

TwinCAT PLC

i TwinCAT loT EK9160 loT Coupler

AWS loT Core and TwinCAT loT

AWS loT Core is based on the MQTT transport protocol. It is therefore possible to use TwinCAT loT to send
or receive messages to or from AWS loT Core or AWS loT Greengrass.

Various samples illustrate how to connect to the AWS loT Core service.

Sample Product Description

lotMattSampleAws| |TF6701 This sample demonstrates how you can use MQTT function

oT [» 140] blocks within the PLC logic to connect to AWS loT Core and
exchange data.

Data Agent AWS |TF6720 This sample demonstrates how to configure the TwinCAT loT

loT Data Agent to connect to AWS loT Core and exchange data.

In a similar way, the samples can also be applied to AWS loT Greengrass. The associated AWS loT
Greengrass Core can be installed and operated on a C6015 Industrial PC, for example. Typically, the
Greengrass Core (or a Lambda function provided there) initiates data communication with the controller, e.g.

12 Version: 1.10 TF6701

BECKHOFF Technical introduction

via OPC UA. However, since the Greengrass Core has an integrated message broker, this communication
direction may be reversed. In this case, TwinCAT loT would establish a connection to the Greengrass Core
via an MQTT channel and exchange data accordingly, for example.

@® Further Information
1 Further information about AWS loT Core can be found in the AWS loT Core documentation.

41.2 Bosch loT Suite

The Bosch loT Suite is an loT platform based on open standards and open source and supports seamless
integration into the Bosch IoT eco-system. The Bosch loT Hub provides devices with various communication
interfaces for exchanging data with the Bosch IoT Cloud.

Bosch loT Suite and TwinCAT loT

The Bosch loT Suite includes an MQTT message broker referred to as the Bosch IoT Hub. It is therefore
possible to use TwinCAT IoT to send or receive messages to or from the Bosch IoT Suite.

The following sample illustrates how to establish a connection to the Bosch loT Hub.

Sample Product Description

lotMattSampleBoschloT [» 144] TF6701 This sample demonstrates how
you can use MQTT function
blocks within the PLC logic to
connect to the Bosch loT Hub
and exchange data.

@® Further Information

1 For more information about the Bosch loT Suite please visit the official Bosch [oT Suite website.

41.3 Google loT Core

Google IoT Core is a managed cloud service that enables distributed devices to exchange data with the
Google cloud through a secure transport channel.

Google loT Core and TwinCAT loT

Google IoT Core includes an MQTT message broker. It is therefore possible to use TwinCAT IoT to send or
receive messages to or from Google loT Core.

The following sample illustrates how to connect to Google loT Core.

Sample Product Description

lotMattSampleGoogleloT [» 145] | TF6701 This sample demonstrates how you
can use MQTT function blocks
from within PLC logic to connect to
Google IoT Core and exchange
data.

414 IBM Watson loT

IBM Watson loT is an loT suite in the IBM cloud, which offers several services for connecting loT devices to
IBM Bluemix services, processing incoming messages or sending messages to the devices. From a device
perspective, the functionalities of IBM Watson loT enable simple and safe connection of loT devices with
IBM services by facilitating bidirectional communication between the devices and IBM Watson IoT.

TF6701 Version: 1.10 13

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://www.bosch-iot-suite.com

Technical introduction BEGKHOFF

IBM Watson loT and TwinCAT loT

Since IBM Watson IoT can be reached via the MQTT transport protocol, it is possible to use TwinCAT loT for
sending messages to IBM Watson loT or receiving messages from it.

Various samples illustrate how to connect to IBM Watson loT.

Sample Product Description
lotMattSamplelbmWatsonloT TF6701 This sample demonstrates how you
[» 146] can use MQTT function blocks to

connect to IBM Watson loT and
exchange data.

Publication of data to IBM Watson | TF6720 This sample demonstrates how to
loT configure the TwinCAT loT Data
T Agent to establish a connection to
IBM Watson loT and exchange
data.

41.5 MathWorks ThingSpeak

ThingSpeak™ is an loT platform from The MathWorks®, well known among other things for the software
solutions MATLAB® and Simulink®.

The platform offers (apart from a REST API) an MQTT interface, via which the data from the TwinCAT
runtime can be sent to ThingSpeak™. ThingSpeak™ enables the collection, storage, analysis, visualization of
and reaction to incoming data. An important point that sets it apart from other platforms is the option to write
MATLAB® code in the web browser, which can be used for the analysis and visualization of the data. It is
also possible to use existing licenses for toolboxes from the On-premis programming environment in
ThingSpeak™.

Functioning

The data ingest and the saving of data take place on the basis of so-called channels. Each channel has 8
fields that can be filled with incoming data. Apart from the 8 data fields there are further meta fields available
such as latitude, longitude, altitude or a time stamp. Data published on a channel are stored in a database
with the option of a data export (JSON, XML, CSV). The number of messages per time unit that can be sent
to a channel depends on the stored ThingSpeak™ license. The MQTT interface is currently based on the
sending of strings that are interpreted by the ThingSpeak channel.

Examples of possible actions on ThingSpeak™:
» Send a message to Twitter

» Cyclic execution of Matlab analysis scripts
« Execution of a Matlab analysis script, triggered by channel conditions.

Applications

On account of the data rate — limited by the cloud service — that can currently be sent by the controller to
ThingSpeak™, a pronounced edge computing approach is a constructive strategy. MATLAB®/Simulink®
models can be integrated in the TwinCAT runtime via the Beckhoff product TE1400 and algorithms for
information densification in real time can be executed along with the various TwinCAT functions (Condition
Monitoring, filter, etc.). Furthermore, processes with large time constants such as energy data management,
building automation, etc. can be handled well with ThingSpeak™.

14 Version: 1.10 TF6701

https://infosys.beckhoff.de/content/1033/tf6720_tc3_iot_data_agent/9007207528880011.html?id=3900961857549111786
https://infosys.beckhoff.de/content/1033/tf6720_tc3_iot_data_agent/9007207528880011.html?id=3900961857549111786

BEGKHOFF Technical introduction

41.6 Microsoft Azure loT Hub

The Microsoft Azure IoT Hub is an 10T suite in the Azure cloud, which offers several services for connecting
loT devices with Azure services, processing incoming messages or sending messages to the devices. From
a device perspective, the functionalities of the Microsoft Azure IoT Hub enable simple and safe connection of
loT devices with Azure services by facilitating bidirectional communication between the devices and the
Azure loT Hub.

il Vicrosoft
Hl Azure

Stream
> Analytics

Data ingest loT Hub —» App

Sa 38 SamEiN |

4
|

/

TwinCAT loT

Microsoft Azure loT Hub and TwinCAT loT

The Microsoft Azure loT Hub offers several communication interfaces for receiving or sending messages,
including MQTT. It is therefore possible to use TwinCAT IoT to send messages to or receive messages from
the Microsoft Azure loT Hub or to control the Device Twin or execute method calls to the device.

Various samples illustrate how to connect to the Microsoft Azure loT Hub.

Sample Product Description
lotMattSampleAzurelotHub TF6701 This sample demonstrates how you can
> 142] use MQTT function blocks within the PLC

logic to connect to the Microsoft Azure
loT Hub and exchange data.

Data Agent TF6720 This sample demonstrates how to
configure the TwinCAT loT Data Agent to
establish a connection to the Microsoft
Azure loT Hub and exchange data.

Data Agent Device Twin TF6720 This sample demonstrates how to
configure the TwinCAT loT Data Agent to
establish a connection to the Microsoft
Azure loT Hub and exchange data with
the Device Twin.

4.1.7 Sending SMS and E-Mail notifications

41.71 Overview

For many years, customers have been sending machine status information and alarms via text messages
and emails. Traditionally, either telephone dial-up (via a USB or serial modem) or an SMTP connection
directly from the machine controller was used for this purpose. Although this kind of setup may have worked
OK, the disadvantages of such an architecture are obvious:

« for text messages: special modem hardware and a contract with a mobile phone provider are required

TF6701 Version: 1.10 15

https://infosys.beckhoff.de/content/1031/tf6720_tc3_iot_data_agent/4428475787.html?id=778973592260154115
https://infosys.beckhoff.de/content/1031/tf6720_tc3_iot_data_agent/9007207463394443.html?id=790521806777702019

Technical introduction BEGKHOFF

 for emails: an additional communication channel to a remote (mail) server is required

This documentation describes a more advanced, cloud-based approach to sending text and email
messages. With this approach, the communication channel is derived from the actual message type (text,
email), and the decision whether an incoming message from the machine is to be treated as text or email (or
both) is made in the cloud.

41.7.2 Classic solution

The classic solution to send SMS and E-Mail notifications involves using our TwinCAT SMS/SMTP (TS6350,
TF6350) supplement product. To send SMS notifications, the supplement product communicates with a
GSM modem, which is attached via an RS232 serial connection to the controller. Beckhoff does not sell own
GSM modems and a standard modem has to be bought on the market.

G5M Modem

Dialup
@ T Zonnection ™

TwinCAT System

I

I

:_ COom

PORT
10 Mapgping

M5

T LIB

PLC

TCPAP
ADS

TwinCAT System

SME
Lia

FLC

For E-Mail notifications, the supplement product establishes an SMTP connection to a mail server on the
network. The mail server is then responsible for the message delivery.

41.7.3 Cloud-based solution

41.7.31 Requirements

Please ensure that the following requirements are met before you continue with this documentation.

» Make sure that you have created an AWS account and that you can access the AWS management
console using the account credentials.

Other TwinCAT loT products and protocols

{

1 In this tutorial we will use TF6701 loT Communication to connect to AWS loT Core via MQTT.
Please note that other products from the TwinCAT loT product range can also connect to AWS IoT
Core and that the same principles apply for these products. Also note that MQTT is not the only
transport channel that can be used to connect to AWS loT Core. Another transport option is
HTTPS, which can be implemented with the TwinCAT loT product TF6760 loT HTTPS/REST.

* Install TwinCAT 3.1 Build 4022.0 or higher, so that the product TF6701 loT Communication is
available. We recommend updating to the latest TwinCAT version if possible.

* To understand how TwinCAT is linked to AWS loT Core, please refer to the TF6701 documentation.

We particularly recommend the following articles about getting started with AWS. We will point out when it is
important to read any of these articles before proceeding to the next step.

16 Version: 1.10 TF6701

BECKHOFF Technical introduction

AWS loT Core: https://docs.aws.amazon.com/iot/latest/developerquide/iot-gs.html

Amazon SNS: https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

Using Amazon SNS in an AWS IoT Core rule: https://docs.aws.amazon.com/iot/latest/developerguide/
config-and-test-rules.html

41.7.3.2 Architecture

Cloud systems provide the technical infrastructure that makes the Internet of Things (loT) possible. They
also provide the scalability needed to support millions of connected devices. Cloud service providers like
Microsoft Azure and Amazon Web Services (AWS) offer hundreds of services to support different use cases:
virtual machines, message brokers, databases, serverless functions, etc. Their product portfolio also
includes various functions for processing messages from connected devices. A central message broker
(sometimes referred to as an loT Hub) provides a single, secure endpoint for devices to communicate with
other services in the ecosystem. Rules can be used to filter messages and forward them to other services.
Because the message broker is treated as the single endpoint for all data connectivity scenarios, the firewall
attack surface is minimized.

The following diagram illustrates this concept. It is based on services offered by AWS as an example. Other
cloud platforms such as Microsoft Azure offer similar services.

QS AWS Cloud @
Alexa S3 .‘-ma
A . 10T Shadow
K} g
QuickSight %a 5 Synthesize alarm message
‘%j 3 0 Play back audio on controller
o
<|||||' ¢ Lambda Polly
Prooess data Job tasks . Design model
(@) E?é? * Train model
G"Ufcnﬂ = Download model into TwinCAT
J Database loT Core loT Device SageMaker
(RDS, DynamoDb) Management

0 HTTPS, MQTT

loT Greengrass
% f | Rockwell,
TwinCAT E I‘ I TwinCAT Siemens, ...

Core device
TwinCAT
Modern controller Modern controller Modern controller loT Coupler Legacy controller Third-party device

Focusing on our use case (text messages and emails), the relevant services are:

* AWS loT Core (message broker) for a single, secure endpoint in the cloud
* Amazon SNS for sending text messages and emails

Compared to a traditional setup, a cloud-based solution has the following advantages:

1. The message type (email, text, ...) is transparent for the device that issues the message. The device
simply sends the message, while the decision whether it is sent in the form of an email or text mes-
sage is made in the cloud.

2. Address changes do not have to be forwarded to the device that issues a message. All relevant con-
tact data (email addresses, phone numbers, ...) are managed in the cloud.

3. Secure transport between the device that issues a message and the cloud. Each message of the de-
vice is sent to AWS loT Core over a secure communication channel, either MQTT or HTTPS.

4. The required internet connectivity is based on TCP/IP. No additional modem hardware is required for
sending text messages.

TF6701 Version: 1.10 17

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://docs.aws.amazon.com/iot/latest/developerguide/config-and-test-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/config-and-test-rules.html

Technical introduction BEGKHOFF

5. No contract with a mobile phone provider is required. AWS manages the text message transmission.
Charges are based on usage (pay-per-use).

TwinCAT loT supports MQTT and HTTPS connectivity with AWS IoT Core. The following pages of the
documentation provide a more detailed configuration description for the components involved in this use
case.

41.7.3.3 Setting up AWS loT Core

AWS loT Core is a scalable, managed message broker service in the AWS ecosystem. It facilitates secure
device connection and data ingest management. To use AWS IoT Core, you need:

* An AWS account for signing in to the AWS web-based management console. All required AWS loT
Core features are automatically implemented when the account is created, so service provisioning is
not necessary.

» Device credentials (certificates) and security policies for each connected device. The certificates must
be transferred to the device and used by the device while connecting to the AWS loT Core service. In
other words, the certificates are always used by TwinCAT loT when the connection is established. This
is described in a later chapter.

The setup of AWS loT Core includes the following topics:

Logging into the AWS IoT console

Creating an object

Registering a device

Configuring your machine

Viewing the MQTT messages issued by the device with the AWS loT MQTT client
Configuring and testing rules (next chapter)

o0k wbd==

These steps are described in detail in the tutorial Getting Started with AWS loT Core. This tutorial is a good
source of information and describes the above steps in detail. We recommend that you read this tutorial and
work through the step-by-step instructions before proceeding to the next chapter in this documentation.

Step 6 of the tutorial describes the exact use case we are trying to solve: Configuring an AWS loT Core rule
that uses Amazon SNS to send an email or text message.

41.7.3.4 Setting up Amazon SNS

Amazon SNS allows you to send push notifications to mobile apps, text messages to mobile numbers, and
plain text emails to email addresses. Step 6 ("Configuring and testing rules") of the official Getting Started
with AWS loT Core guide describes in detail how Amazon SNS must be prepared for an AWS IoT rule to
forward a device message to an SNS topic. If you want to learn more about Amazon SNS, we recommend
the tutorial Getting Started with Amazon SNS.

18 Version: 1.10 TF6701

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://docs.aws.amazon.com/iot/latest/developerguide/config-and-test-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/config-and-test-rules.html

BECKHOFF

Technical introduction

IFgRINIEY)

E‘ﬁ | o e
) @ > — :

 — Text messages
 —
Publisher SNS Topic
Amazon SNS . S i
Publishers send messages Topics decouple <, Email
from distributed systems,

message publishers

microservices, and other from subscribers

AWS services

Subscribers
Subscribers can include mobile
apps, mobile phone numbers,

and email addresses

In this official graphic, AWS loT Core acts as an intermediate station between the publisher of a message
(the "device") and Amazon SNS.

Simply follow the steps described in the official Getting Started guide to
» create an Amazon SNS topic and a subscription (use email as "protocol")
« create an AWS IloT Core rule
« test the rule

Note the following: When using "email" as protocol, a one-off message will be sent to the email address

entered by the user to confirm the subscription. This email must be acknowledged before messages can be
sent to this email address. This procedure is similar to that for e-newsletters.

TF6701 Version: 1.10 19

Technical introduction BECKHOFF

o - e S - T, .
T ¥ & T 5 AWS Notification - Subscription Confirmation - Machric... =

Machricht

x £ Antwaorten o > o)

Allen antworten LI~ - -~ _
. Laschen = - QuickSteps Verschieben Markierungen Bearbeiten| Zoom | Anrufen

(£ Weiterleiten E‘!E = o - - - -
Laschen Antworten QuickSteps M Zoam XPhone

My_loT_Topic <no-reph 5.AMazZonaws.com=
AWS Notification - Subscription Confirmation

i Wenn Probleme mit der Darstellungsweise dieser Machricht bestehen, klicken Sie hier, um sie im Webbrowser anzuzeigen.

You have chosen to subscribe to the topic:
arn:aws:sns:eu-central-1:293768152032:My_IoT Topic

To confirm this subscription, click or visit the link below (If this was in error no action is necessary):
Confirm subscription

Please do not reply directly to this email. If you wish to remove yourself from receiving all future SNS subscription
confirmation requests please zend an email to sns-opt-out

Note on service limits: Note that for regular AWS accounts there may be a limit for text messages. This limit
can be increased by calling AWS support. For more information, visit the Amazon SNS service limit web

page.

Once the Amazon SNS Topic/Subscription and the AWS loT rule have been created, the setup can be
tested using the MQTT client integrated into the AWS management console. To do this, simply send a test
message to topic "my/topic" topic specified as a filter in the AWS loT rule and use the following JSON
content:
{ "default": "Hello, from AWS IoT console",

"email": "Hello, from AWS IoT console"

}

All available properties are documented in the Amazon SNS documentation.

20 Version: 1.10 TF6701

https://docs.aws.amazon.com/sns/latest/dg/sns-send-custom-platform-specific-payloads-mobile-devices.html

BEGKHOFF Technical introduction

QWS_' Services ~ Resource Groups ~ * o SvenG-Dev24 Frankfurt v Support v

Publish
ﬁB AWS loT Specify a topic and a message to publish with a QoS of 0.

my/topic Publish to t...

® P

Monitor
Onboard
Manage

Greengrass

Secure
Defend
Act

I Test
Software
Settings

@ Feedback (@ English (US) 0 s, Inc erved. Privecy Policy ~ Terms of Use

The notification email should arrive at the email address used for the Amazon SNS subscription after a few
seconds.

x 52 Antworten eyl " > o)

Allen antworten L - - B N
. Laschen @}_ Qﬁ QuickSteps | Verschieben Markierungen Bearbeiten Zoom = Anrufen
=3 Weiterleiten E‘EE = > - - - -

Laschen Antworten QuickSteps Zoom ¥Phone

My_loT_Topic <no-reply@sns.amazonaws.com =
AWS Notification Message

Hello, from AWS loT console

In the next step we want to enable TwinCAT to send messages to AWS loT Core.

4.1.7.3.5 Setting up TwinCAT

The TwinCAT loT Supplement products facilitate cloud connectivity for different use cases. One of their main
advantages is that they use standard communication protocols to provide connectivity to cloud systems from
different vendors, such as Microsoft Azure, Amazon Web Services, IBM, Google, etc.

In this documentation, we use TF6701 loT Communication to connect to AWS loT Core and publish a
message for the topic "my/topic" that has been set as a filter in the AWS IloT rule to forward the messages
that arrive at Amazon SNS for that particular topic, in order to send a notification email.

TF6701 Version: 1.10 21

Technical introduction BEGKHOFF

Requirements

This chapter is based on the regular TF6701 sample "lotMqgttSampleAwsloT", which illustrates the general
procedure for connecting to AWS IoT Core. Download this sample to establish a common starting point. For
more detailed information about how the sample code works, please refer to the corresponding Infosys
website for this particular sample.

® Important

1 Before you continue please ensure you have completed all the steps described in chapter Setup of
AWS loT Core [P_18].

Establishment of a connection

All certificates created with the AWS Management Console must be referenced in the
FB_lotMqttClient.stTLS data structure (sCA, sCert and sKeyFile). Use the URL of the AWS loT Core
instance as the sHostName, as shown on the AWS Management Console. Since the connection is a secure
MQTT connection, use 8883 as nHostPort. The MQTT client ID (sClientld) is the object name (ThingName)

that was used when the object was created according to the chapter Setup of AWS |oT Core [»_18].

(* TLS settings for AWS IoT connection *)

fbMgttClient.stTLS.sCA := 'c:\certs\AmazonRootCAl.pem';
fbMgttClient.stTLS.sCert := 'c:\certs\6alba937cb-certificate.pem.crt';
fbMgttClient.stTLS.sKeyFile := 'c:\certs\6alba937cb-private.pem.key';

(* Broker settings fiir AWS IoT *)

fbMgttClient.sHostName: 'aXX-ats.iot.eu-central-1l.amazonaws.com';
fbMgttClient.nHostPort:= 8883;

fbMgttClient.sClientId: 'ThingName';

Defining appropriate topics

The standard sample illustrates how to connect to AWS IoT Core for exchange data with this message
broker. It publishes messages for a topic and subscribes to a topic to receive messages. In the sample both
topics are identical, so that TwinCAT receives the same message that it sent to the broker.

In addition to this regular sample behavior, we will now write new code to make the sample send a message
for the topic "my/topic" so that an email is sent. For this purpose we first declare some new variables:

sTopicEmail : STRING(255) := 'my/topic';
bSendEmail : BOOL;
sPayloadEmail : STRING(255) := '{"default": "Hello from TwinCAT","message": "Hello from TwinCAT"}';

Then we will add the following lines of code after the IF query for the timer execution:

IF fbTimer.Q THEN

END IF

IF bSendEmail THEN
bSendEmail := FALSE;

fbMgttClient.Publish (sTopic:= sTopicEmail, pPayload:= ADR (sPayloadEmail), nPayloadSize:=
LEN2 (ADR (sPayloadEmail)), eQoS:= TcIotMgttQos.AtMostOnceDelivery, bRetain:= FALSE, bQueue:= FALSE) ;
END IF

After activating the project, first validate whether the connection with AWS loT Core was successful by
checking the parameter eConnectionState (must be and remain "MQTT_ERR_SUCCESS"). If the
connection status appears to fluctuate or if an TLS error is reported (e.g.
"MQTT_ERR_TLS_VERIFICATIONFAILED"), double-check the steps described in chapter "Setup of AWS
loT Core" and make sure that the device certificate has been activated and the security policy allows the
device to publish data for the topics used.

If the connection is successful, try setting bSendEmail to TRUE. After a few seconds, an email should
appear in the inbox of the email address that was used for the Amazon SNS subscription.

22 Version: 1.10 TF6701

BEGKHOFF Technical introduction

[
E h>) O -7 - AWS Motification Message - Nachricht (Mur-Text)

Machricht T
x £ Antworten 252 ¥ > e}
Lazche

Eﬁ Alle twort [2=5 i
n e = QuickSteps Verschieben Markierungen Bearbeiten | Zoom = Anrufen
9, Weiterleiten E@ - - - - - -

Laschen Antworten QuickSteps Zoom | XPhone

vy_loT_Topic <no-reply@sns.amazonaws.com:
AWS Notification Message

-

Hello from TwinCAT

4.2 MQTT

MQTT(Message Queueing Telemetry Transport) is a publisher/subscriber-based communication protocol,
which enables message-based transfer between applications. A central component of this transfer type is
the so-called message broker, which distributes messages between the individual applications or the sender
and receiver of a message. The message broker decouples the sender and receiver, so that it is not
necessary for the sender and receiver to know their respective address information. During sending and
receiving all communication devices contact the message broker, which handles the distribution of the
messages.

TF6701 Version: 1.10 23

Technical introduction BEGKHOFF

Application

I

Message Broker m Application

4]
i
)
i

<:I-\«IQTT >
MQTT

Application

8 3o0 2ap2etin |

Payload

The content of an MQTT message is referred to as payload. Data of any type can be transferred, e.g. text,
individual numerical values or a whole information structure.

® Message payload formatting

1 Note that the data type and the formatting of the content must be known to the sender and receiver

side, particularly when binary information (alignment) or strings (with or without zero termination)
are sent.

Topics

If a message broker is used that is based on the MQTT protocol, sending (publish mode) and subscribing
(subscribe mode) of messages is organized with the aid of so-called topics. The message broker filters
incoming messages based on these topics for each connected client. A topic may consist of several levels;

the individual levels are separated by “/”.
Example: Campus / Building1 / Floor2 / Room3 / Temperature

When a publisher sends a message, it always specifies for which topic it is intended. A subscriber indicates
which topic it is interested in. The message broker forwards the message accordingly.

24 Version: 1.10 TF6701

BEGKHOFF Technical introduction

W o e

Subscribe (topic2)

Publish (topic1, msg) Message Broker Subscribe (topic1) Application

‘ _,
1 3u8 230 SaE3aHun |

)

Publish (topic2, msg

Application

Communication example 1 from the diagram above:
* An application subscribes to “topic1”.
» A controller publishes a message to “topic1”.
« The message broker forwards the message to the application accordingly.

Communication example 2 from the diagram above:
» A controller subscribes to “topic2”.
* An application publishes a message to “topic2”.
» The message broker forwards the message to the controller accordingly.

Wildcards

It is possible to use wildcards in conjunction with topics. A wildcard is used to represent part of the topic. In
this case a subscriber may receive messages from several topics. A distinction is made between two types
of wildcards:

+ Single-level wildcards
« Multi-level wildcards
Example for single-level wildcard:
The + symbol describes a single-level wildcard. If it is used by the subscriber as described below, for
example, corresponding messages to the topics are either received by the subscriber or not.
» The receiver subscribes to Campus/Building1/Floor2/+/Temperature
The publisher sends to Campus/Building1/Floor2/Room1/Temperature - OK
The publisher sends to Campus/Building1/Floor2/Room2/Temperature - OK
The publisher sends to Campus/Building42/Floor1/Room1/Temperature - NOK
The publisher sends to Campus/Building1/Floor2/Room1/Fridge/Temperature - NOK

Example for multi-level wildcard:

TF6701 Version: 1.10 25

Technical introduction BEGKHOFF

The # symbol describes a multi-level wildcard. If it is used by the subscriber as described below, for
example, corresponding messages to the topics are either received by the subscriber or not. The # symbol
must always be the last symbol in a topic string.

» The receiver subscribes to Campus/Building1/Floor2/#

The publisher sends to Campus/Building1/Floor2/Room1/Temperature - OK

The publisher sends to Campus/Building1/Floor2/Room2/Temperature - OK

The publisher sends to Campus/Building42/Floor1/Room1/Temperature - NOK
The publisher sends to Campus/Building1/Floor2/Room1/Fridge/Temperature - OK
The publisher sends to Campus/Building1/Floor2/Room1/Humidity - OK

QoS (Quality of Service)
QoS is an arrangement between the sender and receiver of a message with regard to guaranteeing of the
message transfer. MQTT features three different levels:

* 0 — not more than once

* 1 -—atleast once

» 2 — exactly once
Both types of communication (publish/subscribe) with the message broker must be taken into account and
considered separately. The QoS level that a client uses for publishing a message is set by the respective
client. When the broker forwards the message to client that has subscribed to the topic, the subscriber uses

the QoS level that was specified when the subscription was established. This means that a QoS level that
may have been specified as 2 by the publisher can be “overwritten” with 0 by the subscriber.

QoS-Level 0

At this QoS level the receiver does not acknowledge receipt. The message is not sent a second time.

i =1z
i E Publish QoS 0
= . Message Broker
55
L) i
QoS-Level 1

At this QoS level the system guarantees that the message arrives at the receiver at least once, although the
message may arrive more than once. The sender stores the message internally until it has received an
acknowledgement from the receiver in the form of a PUBACK message. If the PUBACK message fails to
arrive within a certain time, the message is resent.

26 Version: 1.10 TF6701

BEGKHOFF Technical introduction

IIII E Publish QoS 1
1]} :
e g %l puBACK Message Broker
sa EEEEEEEEEEEEEEEEERER
L :
QoS-Level 2

At this QoS level the system guarantees that the message arrives at the receiver no more than once. On the
MQTT side this is realized through a handshake mechanism. QoS level 2 is the safest level (from a message
transfer perspective), but also the slowest. When a receiver receives a message with QoS level 2, it
acknowledges the message with a PUBREC. The sender of the message remembers it internally until it has
received a PUBCOMP. This additional handshake (compared with QoS 1) is important for avoiding duplicate
transfer of the message. Once the sender of the message receives a PUBREC, it can discard the initial
publish information, since it knows that the message was received once by the receiver. In other words, it
remembers the PUBREC internally and sends a PUBREL. Once the receiver has received a PUBREL, it can
discard the previously remembered states and respond with a PUBCOMP, and vice versa. Whenever a
package is lost, the respective communication device is responsible for resending the last message after a
certain time.

Publish QoS 2
i 's| PUBREC
1] ;% PUBREL
m_-. = llllllllllllllllll) Message Br0ker
aa
ﬁ PUBCOMP

Security

When a connection to the message broker is established, it is possible to use security mechanisms such as
TLS, in order to encrypt the communication link or to realize authentication between client and message
broker.

Sources

For further and more detailed information about MQTT we recommend the following blog series:

HiveMq blog: http://www.hivemg.com/blog/mqtt-essentials/ (the main basis for this article)

4.3 Exponential backoff

A feature referred to as "exponential backoff" can be used to avoid burdening the message broker with
unnecessary connection requests in case of a connection error. In the event of a TLS connection error
involving the message broker, the reconnect rate is adjusted multiplicatively. This function can be activated
using the ActivateExponentialBackoff() [» 46] method. The parameters of the method specify the minimum
and maximum time for the algorithm. The minimum time describes the initial delay value for the new

TF6701 Version: 1.10 27

http://www.hivemq.com/blog/mqtt-essentials/

Technical introduction BEGKHOFF

connection attempt. The maximum time describes the highest delay value. The delay values are doubled
until the maximum value is reached. Once a connection has been established, the backoff rate is reset to the
original value. The DeactivateExponentialBackoff() [P 46] method can be used to deactivate this function
programmatically.

44 JSON

Most loT services use the so-called JavaScript Object Notation (JSON) for describing data formats when
transferring message contents. JSON is a slim data format in easily readable text form, in which data are
organized in objects via property/value pairs.

Sample for a JSON object:

{
"Timestamp": "2017-04-04T12:42:42",
"Values": {
"Sensorl": 42.41999816894531,
"Sensor2": 230,
"Sensor3": 3
}I

"MetaData": {
"Sensorl": {
"Unit": "m/s",
"DisplayName": "Speed"
by
"Sensor2": {
"Unit": "vV",
"DisplayName": "Voltage"
by
"Sensor3": {
"Unit": "A",
"DisplayName": "Current"

}
}
}

The library Tc3_JsonXml, which is automatically installed with TwinCAT 3 XAE, facilitates creation and
processing of JSON objects. (See documentation PLC Lib: Tc3 JsonXml)

4.5 JSON Web Token (JWT)

JSON Web Token (JWT) is an open standard (based on RFC 7519) that defines a compact and self-
describing format for securely transmitting information between communication devices in the form of a
JSON object. The authenticity of the transmitted information can be verified and ensured, since a JWT is
provided with a digital signature. The signature can involve a shared secret (via an HMAC algorithm) or a
public/private key (via RSA).

The most common application example for JWT is the authorization of a device or user for a service. Once a
user has logged into the service, all further requests to the service include the JWT. Based on the JWT, the
service can then decide which additional services or resources the user may access. This means, for
example, that single sign-on solutions can be implemented in cloud services.

The PLC library Tc3_JsonXml provides an option to create and sign a JWT via the method FB_JwtEncode.

4.6 Security

When considering protection of data communication, a distinction can be made between two levels:

protection of the transport channel (Transport layer [P 29]) and protection at Application level. Both are
described below.

28 Version: 1.10 TF6701

https://infosys.beckhoff.de/content/1031/tcplclib_tc3_jsonxml/index.html?id=8865943157452222564

BECKHOFF Technical introduction

4.6.1 Transport layer

The Standard Transport Layer Security (TLS) is used in the TwinCAT loT driver for the secure transmission
of data. The following chapter describes the TLS communication flow for TLS version 1.2. The TLS
standard combines symmetric and asymmetric cryptography to protect transmitted data from unauthorized
access and manipulation by third parties. In addition, TLS supports authentication of communication devices
for mutual identity verification.

® Contents of this chapter

1 The information in this chapter refers to the general TLS communication flow, without specific refer-

ence to the implementation in TwinCAT. They are only intended to provide a basic understanding in

order to better comprehend the reference to the TwinCAT implementation explained in the following
sub-chapters.

Cipher suite definition

A cipher suite as defined in TLS version 1.2 is a set of algorithms (key exchange, authentication, encryption,
MAC) for encryption. The client and server agree on these during the TLS connection setup. For more
information on cipher suites please refer to the relevant technical literature.

TLS communication flow

Communication with TLS encryption starts with a TLS handshake between server and client. During the
handshake asymmetric cryptography is used; after successful completion of the handshake the server and
client communicate based on symmetric cryptography, because this is many times faster than asymmetric
cryptography.

There are three different types of authentication for the TLS protocol:

« The server identifies itself through a certificate (see Server certificate [P 30])

« Client and server identify themselves through a certificate (see Client/Server certificate [»_31])
* Pre-shared keys (see Pre-shared keys [P 32])

Please refer to the relevant technical literature for information about the advantages and disadvantages of
the different authentication types.

CIient Server
ClientHello

ServerHello, Certificate®, Server Key Exchange?*, CertificateRequest®*, ServerHelloDone

Certificate*, Client Key Exchange, Certificate Verify*, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application data

® Exemplary explanation based on RSA

All messages marked with * are optional, i.e. not mandatory. The following steps refer to the RSA
procedure and are not generally valid for other procedures.

Client Hello: The client initiates a connection to the server. The TLS version used, a random sequence of
bytes (client random) and the cipher suites supported by the client are transmitted, among other parameters.

Server Hello: The server selects one of the cipher suites offered by the client and specifies it for the
communication. If there is no intersection between the cipher suites supported by the client and server, the
TLS connection establishment is aborted. In addition, the server also communicates a random sequence of
bytes (server random).

TF6701 Version: 1.10 29

Technical introduction BEGKHOFF

Certificate: The server presents its certificate to the client to enable the client to verify that the server is the
expected server. If the client does not trust the server certificate, the TLS connection establishment is
aborted. The server certificate also contains the server's public key.

(Server Key Exchange): For certain key exchange algorithms, the information from the certificate is not
sufficient for the client to generate the so-called pre-master secret. In this case the missing information is
transferred using Server Key Exchange.

Certificate Request: The server requests a certificate from the client to verify the identity of the client.
Server Hello Done: The server notifies the client that sending of the initial information is complete.

Certificate: The client communicates its certificate, including the public key, to the server. The procedure is
the same as in the opposite direction: If the server does not trust the certificate sent by the client, the
connection establishment is aborted.

Client Key Exchange: The client generates an encrypted pre-master secret and uses the server's public
key to send the secret to the server using asymmetric encryption. This pre-master secret, the "server
random" and the "client random" are then used to calculate the symmetric key that is used for
communication after the connection has been established.

Certificate Verify: The client signs the previous handshake messages with its private key. Since the server
has obtained the client's public key by sending the certificate, it can verify that the certificate presented really
"belongs" to the client.

Change Cipher Spec: The client notifies the server that it is switching to symmetric cryptography. From here
on every message from the client to the server is signed and encrypted.

Finished: The client notifies the server in encrypted form that the TLS connection establishment on its side
is complete. The message contains a hash and a MAC relating the previous handshake messages.

Change Cipher Spec: The server decrypts the pre-master secret that the client encrypted with its public key.
Since only the server has its private key, only the server can decrypt this pre-master secret. This ensures
that the symmetric key is only known to the client and the server. The server then calculates the symmetric
key from the pre-master secret and the two random sequences and notifies the client that it too is now
communicating using symmetric cryptography. From here on every message from the server to the client is
signed and encrypted. By generating the symmetric key, the server can decrypt the client's Finished
message and verify both hash and MAC. If this verification fails, the connection is aborted.

Finished: The server notifies the client that the TLS connection establishment on its side is also finished. As
with the client, the message contains a hash and a MAC relating to the previous handshake messages. On
the client side, the same verification is then performed as on the server. Again, if the hash and MAC are not
successfully decrypted, the connection is aborted.

Application Data: Once the TLS connection establishment is complete, client and server communicate
using symmetric cryptography.

4611 Server certificate

This section covers a situation where the client wants to verify the server certificate but the server does not
want to verify the client certificate. In this case the communication flow described in chapter Transport layer
[»_29] is shortened as follows.

30 Version: 1.10 TF6701

BEGKHOFF Technical introduction

(ﬂii&t\t Server
ClientHello

ServerHello, Certificate®, Server Key Exchange*, ServerHelloDone

ClientKeyExchange, CertificateVerify*, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application data

A 4

Verification of the server certificate

The server certificate is verified on the client side. A check is performed to ascertain whether it is signed by a
particular certificate authority. If this is not the case, the client aborts the connection, since it does not trust
the server.

Application in TwinCAT

In TwinCAT, the file path to the CA certificate is specified (.PEM or .DER file) or the content of the .PEM file
as a string. The certificate presented by the server is then checked in the IoT driver. If the certificate chain is
not signed by the specified CA, the connection to the server is aborted. The following code illustrates the
described connection parameters as an example. The sample code refers to the HTTP client, although it is
applicable to both the HTTP client and the MQTT client.

PROGRAM MAIN

VAR
fbClient : FB_IotHttpClient;
END_ VAR
fbClient.stTLS.sCA:= 'C:\TwinCAT\3.1\Config\Certificates\someCA.pem';

If the user does not have the CA certificate, a connection can still be established. A Boolean variable is
available for this purpose, which prevents TwinCAT from verifying the server certificate. Although the
connection is encrypted with the public key of the unverified server certificate, it is more vulnerable to man-
in-the-middle attacks.

fbClient.stTLS.sCA.bNoServerCertCheck:= TRUE;

4.6.1.2 Client/Server certificate

This section considers the case where both the client certificate and the server certificate are verified. The

slightly modified communication flow (compared to the Server certificate [P_30] chapter) is visualized in the
following diagram. The individual steps of the TLS connection establishment are described in chapter
Transport layer [P 29].

CﬂitEIIt Server
ClientHello

ServerHello, Certificate*, Server Key Exchange*, CertificateRequest™®, ServerHelloDone

A

Certificate*, Client Key Exchange, Certificate Verify*, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application data

A

TF6701 Version: 1.10 31

Technical introduction BEGKHOFF

Application in TwinCAT

If a client certificate is used, in TwinCAT the file path (.PEM or .DER file) or the content of the .PEM file is
passed as a string, just as for the CA certificate. TwWinCAT as the client then presents this certificate to the
server. For Certificate Verify the client's private key must also be referenced. Optionally, in the case of
password protection for the private key, this password can also be transferred. The sample code refers to
the HTTP client, although it is applicable to both the HTTP client and the MQTT client.

PROGRAM MAIN

VAR

fbClient : FB_ IotHttpClient;
END VAR
fbClient.stTLS.sCA:= 'C:\TwinCAT\3.1\Config\Certificates\someCA.pem';
fbClient.stTLS.sCert:= 'C:\TwinCAT\3.1l\Config\Certificates\someCRT.pem';
fbClient.stTLS.sKeyFile:= 'C:\TwinCAT\3.1\Config\Certificates\someprivatekey.pem.key';
fbClient.stTLS.sKeyPwd:= 'yourkeyfilepasswordhere';

In principle, the user can also disable the validation of the server certificate in the case described. However,
this is associated with weaker security (see Server certificate [»_30])

4.6.1.3 Pre-shared keys

By default, asymmetric key pairs are used for the TLS connection establishment. Asymmetric cryptography
requires more computing power, so using pre-shared keys (PSK) may be an option in situations with limited
CPU power. Pre-shared keys are previously shared symmetric keys.

Compared to the communication flow with asymmetric encryption, the certificate is omitted when using PSK.
Client and server must agree on a PSK via the so-called identity. By definition the PSK is known in advance
to both parties.

(]iierlt Server
ClientHello

ServerHello, Server Key Exchange*®, ServerHelloDone

A

ClientKeyExchange, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

[y

Application data

[y

Server Key Exchange: In this optional message, the server can give the client a hint about the identity of
the PSK used.

Client Key Exchange: The client specifies the identity of the PSK to be used for encryption.

Application in TwinCAT

In TwinCAT the identity of the PSK is specified as a string; the PSK itself is stored as a byte array in the
controller. The length of the PSK is also specified. The sample code refers to the HTTP client, although it is
applicable to both the HTTP client and the MQTT client.

PROGRAM MAIN

VAR

fbClient : FB_IotHttpClient;

cMyPskKey : ARRAY[1..64] OF BYTE := [16#1B, 16#D0, 16#6F, 16#D2, 16#56, 16#16, 16#7D, 16#C1, 16#
E8, 16#C7, 16#48, 16#2A, 16#8E, 16#F5, 16#FF];
END_ VAR

fbClient.stTLS.sPskIdentity:= identityofPSK';
fbClient.stTLS.aPskKey:= cMyPskKey;
fbClient.stTLS.nPskKeyLen:= 15;

32 Version: 1.10 TF6701

BEGKHOFF Technical introduction

4.6.2 Application level

Various security mechanisms are also available at the application level. Several such security mechanisms
are described below.

4.6.2.1 JSON Web Token (JWT)

JSON Web Token (JWT) is an open standard (based on RFC 7519) that defines a compact and self-
describing format for securely transmitting information between communication devices in the form of a
JSON object. The authenticity of the transmitted information can be verified and ensured, since a JWT is
provided with a digital signature. The signature can involve a shared secret (via an HMAC algorithm) or a
public/private key (via RSA).

The most common application example for JWT is the authorization of a device or user for a service. Once a
user has logged into the service, all further requests to the service include the JWT. Based on the JWT, the
service can then decide which additional services or resources the user may access. This means, for
example, that single sign-on solutions can be implemented in cloud services.

The PLC library Tc3_JsonXml provides an option to create and sign a JWT via the method FB_JwtEncode.

4.7 Re-parameterization

In certain cases, it may be necessary to re-parameterize the MQTT client during operation by means of an
online change. This new parameterization can either take place automatically in the program sequence or be
triggered manually if required. This depends on the implementation.

Example use cases for a re-parameterization: replacement of a token that is about to expire, certificates that
need to be renewed or a changed IP address of the MQTT broker. The following section describes the
procedure for re-parameterization of a connected MQTT client.

In order for the TwinCAT MQTT client to be connected to a message broker, the Execute [P 42] method

must be called cyclically in the background (see FB lotMqttClient [P 40]). When the program starts, the
parameterization of the MQTT client instance is carried out first by calling this method, after which a

connection to the broker is established. In order to carry out a re-parameterization, the call of the Execute

[»_42] method must be negated, the parameters must then be reset and the call must then take place again
as usual. The following code snippet shows a simple re-parameterization using a trigger.

fbMgttClient.Execute (bConnect) ;

IF bReset THEN
bConnect :=FALSE;

fbMgttClient.ClientId:= 'MyTcMgttClient35';
fbMgttClient.sHostName:= '192.168.35.35";
bReset :=FALSE;

ELSE
bConnect :=TRUE;

END IF

The call of the Execute method is negated by the trigger variable bReset, so that the parameters for the
client ID and the host name can be reset afterwards. Once the trigger variable is set to FALSE again, the
execute method is called cyclically again.

4.8 1/0 device

In addition to the Tc3_lotBase PLC library, the loT MQTT controller and loT MQTT device provide two I/O
devices that can be used to establish an MQTT-based communication link between two TwinCAT systems.
Alternatively, an EK9160 IoT coupler can also be integrated into this type of communication.

TF6701 Version: 1.10 33

Technical introduction BEGKHOFF

Insert Device >
Type: (475 EtherCAT A Ok
o

----- uF FealTime Ethernet Adapter [Multiple Protocol Handler] Cancel
----- |-|ﬂ Feal-Time Ethernet Pratocol [BES0x, &%2000-8300)

----- EF ot Mgtt Device
Lo mF ot Mgt Controller

[+]-

. Frofibus DF

--ﬁ? Praofiret
--J.'in CAMopen
--’3;- DeviceMet Target Type
[l =g Etherhet/IP @ FC only
=--fff SERCOS interface
-0 Beckhoff Lightbus () % only
---Bﬁ USE () B anly
- BAChet
--% Beckhoff Hardware . O

M ame: Cevice 1 |

The following diagram shows possible application scenarios. This type of communication link enables both
TwinCAT systems to be coupled to each other and TwinCAT to be coupled to one or more EK9160s.

Message Broker

TwinCAT loT
MQTT Controller

k- T

TwinCAT loT
MQTT Device EK9160

34 Version: 1.10 TF6701

BECKHOFF

Technical introduction

For an loT MQTT Device, symbol information for all configured variables in the process image is stored on

the message broker in a specific topic. An loT MQTT controller then has the ability to scan this symbol

information and create matching variables in its own process image. The EK9160 is automatically always an

loT MQTT device.

EK9160 configuration

The EK9160 is automatically configured as an loT MQTT device in the background as soon as the device is

configured to connect to an MQTT message broker. As a prerequisite, "Binary" must be selected as the data
format and retain messages must be activated. The following screenshot shows the corresponding section of
the EK9160 configuration web page.

Device 1

Connection Type
MQTT Broker

Tep Port

ClientlD

Cycle Time (ms)
Watchdog Mode
Watchdog Timeout (ms)
Retain

Data Format

Main Topic
Publish Topic
Subscribe Topic
Username
Password
SAS-Token
Connection Status

—| v | %
| General MQTT v |
1172.17.98.43 |
11883 |
| |
11000 |
| Disabled v |
15000 |
| Allow retained messages v |
| Binary v |
|EK9160

| EK9160/EK-58CET72/S5tream 1/Bin/Tx/Data

| EK9160/EK-58CET72/5tream 1/Bin/Rx/Data

Publisher Send Count |4 |
Subscriber Receive | 0 |
Count
SSLITLS-Mode | No Certificate v |
All'l/O terminals have been activated for the communication link with the message broker. The following
screenshot shows an example of this process on the configuration interface.
TF6701 Version: 1.10 35

Technical introduction BEGKHOFF

Configure I/O

Select Bus Terminal
ELZEB09 ELZBOD

I TR

BECKHOFF

Bus Terminal - EL 1004 |
Channel 1
Input Slave 1 (EL1004).Channel 1.Input | Device 1 v |
Channel 2
Input Slave 1 (EL1004).Channel 2.Input | Device 1 v |
Channel 3
Input Slave 1 (EL1004).Channel 3.Input | Device 1 v |
Channel 4
Input Slave 1 (EL1004).Channel 4.Input | Device 1 v |

® TwinCAT as loT MQTT device

1 In addition to the EK9160, TwinCAT itself can also act as an loT MQTT device. In this case, the cor-
responding configuration steps must be carried out via the TwinCAT 1/O area in TwinCAT XAE. The
loT MQTT device then behaves identically to the EK9160 with regard to the further process.

Configuration in TwinCAT

In order for TwinCAT to be able to process the symbol information and process values from the EK9160, an
loT MQTT controller must be created in the I/O area of TwinCAT XAE and configured for the connection with
the message broker. It is important that the fields Main Topic, Device and Stream match the configuration
of the EK9160. The following screenshot illustrates this process.

36 Version: 1.10 TF6701

BEGKHOFF Technical introduction

Device 1 — | |+ | =
Connection Type | General MQTT v |
MQTT Broker 1172.17.98 43 |
Tep Port 11883 |
ClientlD | |
Cycle Time (ms) (1000 |
Watchdog Mode | Disabled v |

Watchdog Timeout (ms) | 5000 |

Retain | Allow retained messages v |
Data Format | Binary v|
Main Topic |EK9160 |
Publish Topic |EK9160/EK-58CE72/Stream 1/Bin/Tx/Data |
Subscribe Topic | EK9160/EK-58CET2/Stream 1/Bin/Rx/Data |
15:f“"'—"'!'|v'E—"—'|4"|E| General Mat TLS
Search Solution Explorer (Ctrl+) P~]
Topic
fa] Selution ‘TwinCAT Project’ (1 project) Main- EH’51 &0 |
4 ol TwinCAT Projecti ' -
b [l SYSTEM Device: |EK58CET2 |
MOTION
PLC Stream: |Stream1 |
SAFETY Topic: [EK9160/EK-58CE72/Stream |
E C++
[& anaLvmcs
P Vo Broker
4“2 Devices Port
4 IJI-_J' Device 1 (lot Mgtt Controller) @® Ip Address
j,, Image
[172.17 .98 . 43
b Inputs
bl Outputs (O Hostname
23 Mappings
Usemame: | |
Password: | |

Publishers and Subscribers can then be created below the loT MQTT controller, depending on whether you
want to scan the output or input terminals. Input terminals are operated via the Publisher and output
terminals via the Subscriber.

TF6701 Version: 1.10 37

Technical introduction

BECKHOFF

wil TwinCAT Project
b @ SYSTEM
MOTION
PLC
SAFETY
E C++

& Aanaymcs
4 o
4 "L Devices

4 ®F Device 1 (lot Mgtt Controller)

8 Image
[Inputs
b [Outputs
[Eg Box 1 (Publisher)

b 3% Box 2 (Subscriber)

25 Mappings

Insert Box
Type: EI--%?: Beckhaff Automation GrbH Ok
S Mt Publisher
LS8 Mgt Subscriber Cancel
b Laltipl:

Subsequently, the symbol information can be read out via a scan mechanism and corresponding input/output
variables can be automatically created in the process image of the device.

/0
4 "L Devices

4 &F Device 1 (lot Mgtt Controller)

jg Image
[Inputs
[l Outputs

#
b .ﬁ Box 2 (Subscr id Add Mew ltem... Ins
ﬁ:l Mappings Add Existing lterm... Shift+Alt+A
Insert Mew ltem...
Insert Existing ltem...
X Remove Del
Save Box 1 (Publisher) 4s...
g Scan .
Result (taking the subscriber as an example):
38 Version: 1.10 TF6701

BEGKHDFF Technical introduction

= /0
4 "L Devices
4 ®F Device 1 (lot Mgtt Controller)
B | mage
Inputs
B Outputs
Eﬁ Box 1 (Publisher)
.ﬁ Box 2 (Subscriber)
Inputs
B Outputs
& Slave 1 (EL1004).Channel 1.Input
& Slave 1 (EL1004).Channel 2.Input
&, Slave 1 (EL1004).Channel 3.nput
& Slave 1 (EL1004).Channel 4.Input

VvV V¥

R = v

Further Information

After the configuration has been activated on the EK9160, three topics below the configured Main Topic are
used on the message broker:

1. The Symbol Topic contains the symbol information for the connected I/O terminals and is filled by the
EK9160 after the communication link with the message broker has been established.

2. The Description Topic contains general status information about the device and is filled by the EK9160
after the communication connection with the message broker has been established.

3. The Data Topic contains the pure process data of the connected I/O terminals. This topic is thus cycli-
cally filled with data by the EK9160.

The following screenshot shows a section of the Mosquitto Message Broker in verbose mode, on which you
can see the individual publishes of the EK9160 on the above-mentioned topics.

H
H
H
H
H
H
H
H
H
H

4.9 LastWill handling

The LastWill is a message sent by the broker to all clients subscribed to the matching topic in case of an
irregular connection failure. If the MQTT client in the PLC loses the connection to the broker and a LastWill
was stored when the connection was established, this LastWill is communicated by the broker without the
client having to worry about it.

In the case of a planned disconnect, the LastWill is not necessarily transmitted according to the specification.
From the PLC programmer's point of view, he can decide whether he wants to publish the LastWill before
calling the disconnect. For this purpose, the LastWill message is published again on the LastWill topic. This
is necessary because the broker would not publish the LastWill message due to the regular disconnection.

In the event of a TwinCAT context change and a resulting restart of the MQTT communication, the loT driver
sends the previously specified LastWill to the broker, because at this moment there is no longer any
possibility from the PLC. If no LastWill was defined when the connection was established, no message will
be transmitted before the disconnect.

TF6701 Version: 1.10 39

PLC AP BECKHOFF

5 PLC API

5.1 Tc3 lotBase

51.1 FB_lotMqgttClient

The function block enables communication with an MQTT broker.

A client function block is responsible for the connection to precisely one broker. The Execute() [P 42] method
of the function block must be called cyclically in order to ensure the background communication with this
broker and facilitate receiving of messages.

All connection parameters exist as input parameters and are evaluated when a connection is established.

Syntax
Definition:
FUNCTION BLOCK FBilothttClient
VAR INPUT
sClientId : STRING (255) ; // default is generated during initialization
sHostName : STRING (255) := '127.0.0.1'; // default is local host
nHostPort : UINT := 1883; // default is 1883
sTopicPrefix : STRING(255); // topic prefix for pub and sub of this client (handled interna
1ly)
nKeepAlive : UINT := 60; // in seconds
sUserName : STRING (255) ; // optional parameter
sUserPassword : STRING (255) ; // optional parameter
stWill : ST IotMgttWill; // optional parameter
sStTLS : ST IotMgttTls; // optional parameter

ipMessageFiFo : I IotMgttMessageFiFo; // if received messages should be queued during call of Ex
ecute ()

END VAR
VAR OUTPUT

bError : BOOL;

hrErrorCode : HRESULT;

eConnectionState : ETcIotMgttClientState;

bConnected : BOOL; // TRUE if connection to host is established
END VAR

40 Version: 1.10 TF6701

BECKHOFF

PLC API

* Inputs
Name Type Description
sClientld STRING(255) The client ID can be specified individually and must be
unique for most message brokers. If not specified, an ID
based on the PLC project name is automatically
generated by the TwinCAT driver.
sHostName STRING(255) sHostName can be specified as name or as IP address.
If no information is provided, the local host is used.
nHostPort UINT The host port is specified here. The default is 1883.
sTopicPrefix STRING(255) Here you can specify a topic prefix that will be added
automatically for all publish and subscribe commands.
nKeepAlive UINT Here you can specify the watchdog time (in seconds),
with which the connection between client and broker is
monitored.
sUserName STRING(255) Optionally, a user name can be specified.
sUserPassword STRING(255) A password for the user name can be entered here.
stWill ST lotMqttWill [» 46] If the client is disconnected from the broker irregularly, a
last preconfigured message can optionally be sent from
the broker to the so-called “will topic”. This message is
specified here.
stTLS ST lotMaqttTls [P 47] If the broker offers a TLS-secured connection, the
required configuration can be implemented here.
ipMessageFiFo |_lotMqttMessageFiFo An instance of FB_lotMgttMessageQueue [» 48] can
optionally be assigned here.
This input parameter can be used for storing incoming
new messages in the message queue without
implementing the callback method. (See also
lotMgttSampleUsingQueue [»_135])
No message queue is used if the callback method is
used or overwritten, irrespective of whether
ipMessageQueue was set.
L Outputs
Name Type Description
bError BOOL Becomes TRUE as soon as an error situation occurs.
hrErrorCode HRESULT Returns an error code if the bError output is set. An
explanation of the possible error codes can be found in the
Appendix.
eConnectionState ETclotMqttClientState Indicates the state of the connection between client and
broker as enumeration ETclotMqttClientState.
bConnected BOOL This output is TRUE if a connection exists between client
and broker.

TF6701

Version: 1.10

41

PLC AP BECKHOFF

‘@ Methods
Name Description
Execute [» 42] Method for background communication with the TwinCAT driver. The method
must be called cyclically.
Publish [P 43] Method for executing a publish operation to a MQTT message broker.
Subscribe [P 44] Method for establishing a subscription.
Unsubscribe [P 44] Method for removing a subscription.

ActivateExponentialBackoff |Activates the exponential backoff [» 27] function

[46]

DeactivateExponentialBackof Deactivates the exponential backoff [P 27] function

f[» 461

&

Event-driven methods (callback methods)

Name Description
OnMgttMessage [» 45] Callback method used by the TwinCAT driver when a subscription to a topic
was established and incoming messages are received.

i

ji o

Message payload formatting

Note that the data type and the formatting of the content must be known to the sender and receiver
side, particularly when binary information (alignment) or strings (with or without zero termination)
are sent.

Strings in UTF-8 format

The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3_lotBase

5111 Execute

This method must be called cyclically in order to ensure the background communication with the MQTT
broker.

Syntax

METHOD Execute
VAR INPUT
bConnect : BOOL;

END VAR

42

Version: 1.10 TF6701

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

BECKHOFF PLC API

.*

Inputs
Name Type Description
bConnect BOOL The connection to the broker is established when bConnect is set to TRUE.
bConnect must remain set to maintain the connection.

Any errors are reported at the outputs bError, hrErrorCode and eConnectionState of the function block
instance.

5.1.1.2 Publish

This method is called once, in order to send a message to the broker.

Syntax
METHOD Publish : BOOL
VAR IN OUT
sTopic : STRING; // topic string (UTF-8) with any length (attend that MQTT topics are case
sensitive)
END_ VAR
VAR INPUT
pPayload : PVOID;
nPayloadSize : UDINT;
eQoS : TcIotMgttQos; // quality of service between the publishing client and the broker
bRetain : BOOL; // if TRUE the broker stores the message in order to send it to new subscri
bers
bQueue : BOOL; // for future extension
END_VAR
* Inputs
Name Type Description
sTopic STRING Topic of the MQTT message
pPayload PVOID Address for the payload of the MQTT message
nPayloadSize [UDINT Size of the payload in bytes
eQoS TclotMqttQos |"Quality of Service"
bRetain BOOL If bRetain is TRUE, the broker stores the message in order to make it available
to subsequent subscribers.
bQueue BOOL Reserved parameter that can always be given the value FALSE.
E- Return value
Name Type Description
Publish BOOL The method returns the return value TRUE if the call was successful.

Possible errors are output at the outputs bError and hrErrorCode of the function block instance.

® Message payload formatting

1 Note that the data type and the formatting of the content must be known to the sender and receiver
side, particularly when binary information (alignment) or strings (with or without zero termination)
are sent.

TF6701 Version: 1.10 43

PLC AP BECKHOFF

Strings in UTF-8 format

o
1 The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

51.1.3 Subscribe

This method is used by the client to signal to the broker that it wants to receive all MQTT message with a
particular topic. The method can register an MQTT client instance on multiple topics.

Syntax

METHOD Subscribe : BOOL
VAR _IN OUT
sTopic : STRING; // topic string (UTF-8) with any length (attend that MQTT topics are case
sensitive)
END VAR
VAR INPUT
eQoS : TcIotMgttQos; // quality of service between the publishing client and the broker
END VAR

Inputs

Name Type Description
sTopic STRING Topic of the MQTT message
eQoS TclotMqttQos |"Quality of Service"

E- Return value

Name Type Description
Subscribe BOOL The method returns the return value TRUE if the call was successful.

Possible errors are output at the outputs bError and hrErrorCode of the function block instance.

5114 Unsubscribe

This method is used by the client to signal to the broker that no further messages with the specified topic
should be transferred to it.

Syntax

METHOD Unsubscribe : BOOL
VAR IN OUT
sTopic : STRING; // topic string (UTF-8) with any length (attend that MQTT topics are case
sensitive)
END VAR

44 Version: 1.10 TF6701

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

BECKHOFF PLC API

* Inputs
Name Type Description
sTopic STRING |Topic for which no further messages should be received.

E- Return value

Name Type Description
Unsubscribe |BOOL The method returns the return value TRUE if the call was successful.

Possible errors are output at the outputs bError and hrErrorCode of the function block instance.

5.1.1.5 OnMqttMessage

Callback method

This method must not be called by the user. Instead, the function block FB_lotMqttClient can be used to
derive information and overwrite this method. While the Execute() method is called, the responsible TwinCAT
driver can call the OnMqttMessage() method in the event of new incoming messages. In the event of several
incoming messages the callback method is called several times, once per message. This must be taken into
account when the method is implemented.

The application of the callback method is explained further in the sample lotMgttSampleUsingCallback
»_137].

Syntax

METHOD OnMgttMessage : HRESULT
VAR _IN_OUT CONSTANT

topic : STRING;
END_ VAR
VAR_INPUT
payload : PVOID;
length : UDINT;
qos : TcIotMgttQos;
repeated : BOOL;
END VAR
* Inputs
Name Type Description
Topic STRING Topic of the received MQTT message
payload PVOID Address for the payload of the received MQTT message
length UDINT Size of the payload in bytes
gos TclotMqttQos |"Quality of Service"
repeated BOOL If the user did not respond with S_OK to the last OnMqttMessage() method call,
the message is issued again in the context of the next Execute() call, and the
parameter repeated is set. This indicates that the message was issued more
than once.
E- Return value
Name Type Description

OnMgttMessage [HRESULT |The return value of the method should be S_OK, if the message was
accepted. If the message is to be issued again in the context of the next
Execute() call, the return value can be assigned S_FALSE.

TF6701 Version: 1.10 45

PLC AP BECKHOFF

5.1.1.6 ActivateExponentialBackoff

A feature referred to as "exponential backoff" can be used to avoid burdening the message broker with
unnecessary connection requests in case of a connection error. In the event of a TLS connection error
involving the message broker, the reconnect rate is adjusted multiplicatively. This function can be activated
using the ActivateExponentialBackoff() [» 46] method. The parameters of the method specify the minimum
and maximum time for the algorithm. The minimum time describes the initial delay value for the new
connection attempt. The maximum time describes the highest delay value. The delay values are doubled
until the maximum value is reached. Once a connection has been established, the backoff rate is reset to the
original value. The DeactivateExponentialBackoff() [» 46] method can be used to deactivate this function
programmatically.

Syntax

METHOD ActivateExponentialBackoff
VAR INPUT
tMgttBackoffMinTime: TIME;
tMgttBackoffMaxTime: TIME;

END VAR
* Inputs

Name Type Description

tMqttBackoff | TIME Describes the initial delay value for the new connection attempt.

MinTime

tMqttBackoff | TIME Describes the largest delay value. Once this value has been reached, all new
MaxTime connection attempts are made at these intervals.

5.1.1.7 DeactivateExponentialBackoff

A feature referred to as "exponential backoff" can be used to avoid burdening the message broker with
unnecessary connection requests in case of a connection error. In the event of a TLS connection error
involving the message broker, the reconnect rate is adjusted multiplicatively. This function can be activated
using the ActivateExponentialBackoff() [» 46] method. The parameters of the method specify the minimum
and maximum time for the algorithm. The minimum time describes the initial delay value for the new
connection attempt. The maximum time describes the highest delay value. The delay values are doubled
until the maximum value is reached. Once a connection has been established, the backoff rate is reset to the
original value. The DeactivateExponentialBackoff() [> 46] method can be used to deactivate this function
programmatically.

Syntax
METHOD DeactivateExponentialBackoff

5.1.2 ST_lotMqttwill

The following information can be used to specify a message that is to be sent as the last message from the
client to the broker in the event of an irregular disconnection between client and broker.

Syntax

Definition:

TYPE ST IotMgttWill :
STRUCT
sTopic : STRING(255); // topic string (UTF-8) (attend that MQTT topics are case sensitive)
pPayload : PVOID;
nPayloadSize : UDINT;
eQoS : TclotMgttQos := TclotMgttQos.ExactlyOnceDelivery; // quality of service between the publi
shing client and the broker

46 Version: 1.10 TF6701

BECKHOFF

PLC API

bRetain : BOOL; // if TRUE the broker stores the message in order to send it to new subscribers

END_STRUCT

END_TYPE

Parameter

Name Type Description
sTopic STRING(255) |Message topic

pPayload PVOID

Address for the payload of the message

nPayloadSize |UDINT

Size of the payload in bytes

eQoS TclotMqttQos | The “Quality of Service” parameter offers the following setting options: QoS

level 0, QoS level 1, QoS level 2 (see QoS [P 26])

bRetain BOOL

If bRetain is TRUE, the broker stores the message in order to make it
available to subsequent subscribers.

Message payload formatting

o
1 Note that the data type and the formatting of the content must be known to the sender and receiver
side, particularly when binary information (alignment) or strings (with or without zero termination)

are sent.

5.1.3 ST_lotMqttTLS

TLS security setting for the MQTT client.

Either CA (certificate authority) or PSK (PreSharedKey) can be used.

Syntax

Definition:

TYPE ST IotMqgttTls :
STRUCT

sCA : STRING(255); // certificate authority as filename (PEM or DER format) or as
string (PEM)
sCAPath : STRING(255); // for future use
sCert : STRING (255); // client certificate as filename (PEM or DER format) or as st
ring (PEM)
sKeyFile : STRING (255) ;
sKeyPwd : STRING (255) ;
sCrl : STRING (255); // Certificate Revocation List as filename (PEM or DER format)
or as string (PEM)
sCiphers : STRING (255);
sVersion : STRING(80) := 'tlsvl.2'; // “tlsvl’ or ‘tlsvl.l’ or ‘tlsvl.2’ or ‘tlsvl.3’
bNoServerCertCheck : BOOL := FALSE;
sPskIdentity : STRING (255) ;
aPskKey : ARRAY([1..64] OF BYTE;
nPskKeyLen : USINT;
sAzureSas : STRING (511);
END STRUCT
END TYPE
TF6701 Version: 1.10 47

PLC AP BECKHOFF

Parameter

Name Type Description

sCA STRING(255) Certificate of the certificate authority (CA)

sCert STRING(255) Client certificate to be used for authentication at the
broker

sKeyFile STRING(255) Private key of the client

sKeyPwd STRING(255) Password of the private key, if applicable

sCrl STRING(255) Path to the certificate revocation list, which may be
present in PEM or DER format

sCiphers STRING(255) Ciper suites to be used, specified in OpenSSL string
format

sVersion STRING(80) TLS version to be used

bNoServerCertCheck BOOL Disables verification of the server certificate validity

sPskldentity STRING(255) PreSharedKey identity for TLS PSK connection

aPskKey ARRAY[1..64] OF BYTE PreSharedKey for TLS PSK connection

nPskKeyLen USINT Length of the PreSharedKey in bytes

sAzureSAS STRING(511) SAS token for connection to the Microsoft Azure loT
Hub [»_15]

5.1.4 Message Queue

The use of this provided message queue is optional. Alternatively, users can implement a direct evaluation in
the callback method.

5.1.4.1 FB_lotMqgttMessageQueue

This function block offers a message queue for MQTT messages, which can be used with the block

FB lotMgttClient [40]. To this end an instance is declared and transferred at the input of FB_lotMqttClient.
The function block operates based on the first in, first out principle (FIFO).

During the program sequence it is possible to check whether messages were collected in the message
queue, and how many. The Dequeue() method is used for removing messages from the FIFO queue. The
oldest message is output first.

The number of MQTT messages currently held in the queue can be determined via the output
nQueuedMessages (available as a property).

The input bOverwriteOldestEntry (also available as a property) can be used to specify whether a new
messages should overwrite the oldest message when the queue is full. If yes (TRUE), the oldest message is
lost. If no (FALSE), the latest message is lost. It is rare that the queue becomes full.

® Size of the MQTT message queue

1 The maximum number of possible messages in the queue can be set via the parameter cMaxEn-
triesInMgttMessageQueue in the parameter list of the library Tc3_lotBase. The default value is 1000
messages. This value can usually be left unchanged, since prompt message processing is required
in most cases.

The MQTT message queue allocates new memory space for new messages according to the topic
and payload size. By default the maximum size of a message is limited to 100 kB, the size of the
MQTT message queue is limited to 1000 kB. For special cases these values can also be adjusted in
the parameter list.

48 Version: 1.10 TF6701

BECKHOFF PLC API

‘W Methods
Name Description
Dequeue() [P 49] Removes an MQTT message from the queue
ResetQueue() [P 49] Deletes all messages from the queue

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3_lotBase

51411 Dequeue

The method returns the return value TRUE if the removal of an MQTT message from the queue was
successful. The number of MQTT messages currently in the queue (nQueuedMessages property) is reduced
by one through the removal of a message.

Syntax
METHOD Dequeue : BOOL
VAR INPUT
fbMessage : REFERENCE TO FB IotMgttMessage;
END VAR
* Inputs
Name Type Description
foMessage |REFERENCE TO FB_lotMqttMess |For the message itself the reference is transferred to an
age instance of type FB lotMqgttMessage [P 49].

51.41.2 ResetQueue

When this method is called, all accumulated MQTT messages are deleted from the queue.

5.1.4.2 FB_lotMqttMessage

If the TwintCAT MQTT client (EB_lotMqttClient [P 40]) is used in combination with a message queue
(EB_lotMgttMessageQueue [P 48]), an MQTT message is represented by the function block
FB_lotMqttMessage. Incoming messages are collected by the message queue and made available to the
user in the form of a such a function block instance.

The topic, the payload size and the "Quality of Service" parameter of the MQTT message are immediately
available as Properties at the function block output. The topic and the payload can easily be evaluated or
copied via the provided methods CompareTopic(), GetTopic() and GetPayload().

® Message payload formatting

1 Note that the data type and the formatting of the content must be known to the sender and receiver
side, particularly when binary information (alignment) or strings (with or without zero termination)
are sent.

TF6701 Version: 1.10 49

PLC AP BECKHOFF

i

Size of an MQTT message

The maximum size of an MQTT message to be received in the PLC depends on the hardware plat-
form and should not exceed a few MB, even on higher-performance/larger platforms.

The maximum message size can be set with the parameter cMaxSizeOfMqttMessage in the param-
eter list of the library Tc3_lotBase. By default, the message size is limited to 100 kB.

If the MQTT Message Queue is used, it dynamically allocates new memory space for new mes-
sages according to the topic and payload size.

‘@ Methods
Name Description
CompareTopic() [50] Compares a specified topic with the topic in the MQTT message
GetTopic() [P 511 Returns the topic of an MQTT message
GetPayload() [P 51] Returns the content of an MQTT message
® Strings in UTF-8 format

1

The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3 lotBase

5.1.4.21 CompareTopic

This method returns TRUE, if the specified topic is identical to the topic of the MQTT message in the function

block.

Syntax

METHOD CompareTopic : BOOL
VAR IN OUT CONSTANT
sTopic : STRING; // topic string with any length (attend that MQTT topics are case sensitive)

END VAR
* Inputs

Name Type Description

sTopic STRING The topic to be compared is specified here.

50

Version: 1.10 TF6701

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

BECKHOFF PLC API

5.1.4.2.2 GetTopic

Syntax

METHOD GetTopic : BOOL
VAR INPUT

pTopic : POINTER TO STRING; // topic buffer

nTopicSize : UINT; // maximum size of topic buffer in bytes
END VAR

* Inputs

Name Type Description

pTopic POINTER TO |The memory address for the buffer into which the topic is to be copied is
STRING specified here.

nTopicSize UINT The maximum available buffer size (in bytes) is specified here.

51.4.23 GetPayload

Syntax

METHOD GetPayload : BOOL
VAR INPUT

pPayload : PVOID; // payload buffer

nPayloadSize : UDINT; // maximum size of payload buffer in bytes

bSetNullTermination : BOOL; // The publisher specifies the kind of payload. If it is a string, i
t could be null terminated or not. Setting this input to TRUE will force a null termination. One mor
e byte is required for that.

END VAR
* Inputs
Name Type Description
pPayload PVOID The memory address for the buffer into which the payload is to be
copied is specified here.
nPayloadSize UDINT The maximum available buffer size (in bytes) is specified here.
bSetNullTermination BOOL If the payload type requires zero termination (string), this can be

implemented during the copy process. This is not necessary if the
message source (publisher) has already implemented a zero
termination and this was taken into account in the payload size
specification. In many cases no reliable information is available.

5.2 Tc3_JsonXml

5.2.1 Function blocks

5.211 FB_JsonDomParser

This function block is derived from the same internal function block as FB JsonDynDomParser [P 81] and
thus offers the same interface.

The two derived function blocks differ only in their internal memory management. FB_JsonDomParser is
optimized for the fast and efficient parsing and creation of JSON documents that are only changed a little.
The function block FB_JsonDynDomParser [P 81] is recommended for JSON documents to which many
changes are made.

TF6701 Version: 1.10 51

PLC AP BECKHOFF

Use of router memory

The function block occupies new memory with each change, e.g. with the methods SetObject() or SetJ-
son(). As a result, the amount of router memory used can grow enormously after repeated actions. This al-

located memory is only released again by calling the method NewDocument [P_70]().

® Strings in UTF-8 format

1 The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

Requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4022 x86, x64, ARM Tc3_JsonXml

5.21.11 AddArrayMember

This method adds an array member to a JSON object.

Syntax

METHOD AddArrayMember : SJsonValue
VAR _INPUT
v : SJsonValue;
END VAR
VAR IN OUT CONSTANT
member : STRING;
END_ VAR
VAR INPUT
reserve : UDINT;
END VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.AddArrayMember (jsonDoc, 'TestArray', 0);

5.21.1.2 AddBase64Member

This method adds a Base64 member to a JSON object. A structure, for example, can be addressed as an
input parameter. The corresponding Base64 coding is done by the method.

Syntax

METHOD AddBase64Member : SJsonValue
VAR INPUT
v : SJsonValue;
p : PVOID;
n : DINT;
END VAR
VAR _IN OUT CONSTANT
member : STRING;
END VAR

Sample call:

52 Version: 1.10 TF6701

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

BECKHOFF

PLC API

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonBase64 := fbJson.AddBase64Member (jsonDoc, 'TestBase64',

5.21.1.3 AddBoolMember

This method adds a Bool member to a JSON object.

Syntax
METHOD AddBoolMember : SJsonValue
VAR INPUT
v : SJsonValue;
value : BOOL;
END VAR

VAR _IN OUT CONSTANT
member : STRING;

END VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddBoolMember (jsonDoc, 'TestBool', TRUE);

52114 AddDateTimeMember

This method adds a DateTime member to a JSON object.

Syntax
METHOD AddDateTimeMember : SJsonValue
VAR INPUT
v : SJsonValue;
value : DATE AND TIME;
END_VAR

VAR IN OUT CONSTANT
member : STRING;

END VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddDateTimeMember (jsonDoc, 'TestDateTime',

5.21.1.5 AddDcTimeMember

This method adds a DcTime member to a JSON object.

Syntax
METHOD AddDcTimeMember : SJsonValue
VAR INPUT
v : SJsonValue;
value : DCTIME;
END VAR

VAR IN_OUT CONSTANT
member : STRING;

ADR (stStruct), SIZEOF (stStruct)):;

DT#2018-11-22-12:12) ;

END VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJdsonDocument) ;

jsonMem := fbJson.AddDcTimeMember (jsonDoc, 'TestDcTime', 1234);

5.21.1.6 AddDoubleMember

This method adds a Double member to a JSON object.

TF6701 Version: 1.10

53

PLC AP BECKHOFF

Syntax
METHOD AddDoubleMember : SJsonValue
VAR INPUT
v : SJsonValue;
value : LREAL;
END VAR

VAR IN OUT CONSTANT
member : STRING;

END VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;

jsonMem := fbJson.AddDoubleMember (jsonDoc, 'TestDouble', 42.42);

5.21.1.7 AddFileTimeMember

This method adds a FileTime member to a JSON object.

Syntax
METHOD AddFileTimeMember : SJsonValue
VAR INPUT
v : SJsonValue;
value : FILETIME;
END VAR

VAR_IN OUT CONSTANT
member : STRING;

END_ VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;

jsonMem := fbJson.AddFileTimeMember (jsonDoc, 'TestFileTime', ftTime);

5.21.1.8 AddHexBinaryMember

This method adds a HexBinary member to a JSON object.

Syntax

METHOD AddHexBinaryMember : SJsonValue
VAR _INPUT
v : SJsonValue;
p : PVOID;
n : DINT;
END VAR
VAR IN OUT CONSTANT
member : STRING;

END_ VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;

jsonMem := fbJson.AddHexBinaryMember (jsonDoc, 'TestHexBinary', sHexBinary, SIZEOF (sHexBinary));

5.21.1.9 AddInt64Member

This method adds an Int64 member to a JSON object.

Syntax
METHOD AddFileTimeMember : SJsonValue
VAR INPUT
v : SJsonValue;
value : LINT;
END_VAR

VAR IN_OUT CONSTANT
member : STRING;
END VAR

54 Version: 1.10 TF6701

BECKHOFF PLC API
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddInt64Member (jsonDoc, 'TestInt64', 42);
5.2.1.1.10 AddIntMember
This method adds an Int member to a JSSON object.
Syntax
METHOD AddIntMember : SJsonValue
VAR INPUT
v : SJsonValue;
value : DINT;
END VAR
VAR IN OUT CONSTANT
member : STRING;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddIntMember (jsonDoc, 'TestInt', 42);
5.21.1.11 AddJsonMember
This method adds a JSON member to a JSON object.
Syntax
METHOD AddJsonMember : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
VAR IN OUT CONSTANT
member : STRING;
rawdson : STRING;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddJsonMember (jsonDoc, 'TestJson', sJson);
5.21.1.12 AddNullMember
This method adds a NULL member to a JSON object.
Syntax
METHOD AddNullMember : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
VAR IN OUT CONSTANT
member : STRING;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddNullMember (jsonDoc, 'TestJdson');
5.21.1.13 AddObjectMember
This method adds an Object member to a JSON object.
TF6701 Version: 1.10 55

PLC API

BECKHOFF

Syntax

METHOD AddObjectMember
VAR INPUT
v : SJsonValue;
END_ VAR
VAR IN OUT CONSTANT
member : STRING;
END VAR

Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddObjectMember (jsonDoc,

5.21.1.14 AddStringMember

This method adds a String member to a JSON object.

Syntax

METHOD AddStringMember

VAR INPUT
v : SJsonValue;

END VAR

VAR IN OUT CONSTANT
member : STRING;
value : STRING;

END VAR

Sample call:

jsonDoc

5.2.1.1.15 AddUint64Member

This method adds an UInt64 member to a JSON object.

Syntax
METHOD AddUint64Member
VAR INPUT
v : SJsonValue;
value : ULINT;
END VAR

VAR IN OUT CONSTANT
member : STRING;
END VAR

Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddUint64Member (jsonDoc,

SJsonValue

SJsonValue

fbJson.ParseDocument (sExistingJdsonDocument) ;
jsonMem := fbJson.AddStringMember (jsonDoc,

SJsonValue

5.2.1.1.16 AddUintMember

This method adds an UInt member to a JSON object.

Syntax

METHOD AddUintMember
VAR INPUT

v : SJsonValue;
value : UDINT;
END VAR

VAR_IN OUT CONSTANT
member : STRING;
END_ VAR

Sample call:

SJsonValue

'TestObject') ;

'TestString',

'TestUint64"’',

56

Version: 1.10

TF6701

BECKHOFF PLC API

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonMem := fbJson.AddUintMember (jsonDoc, 'TestUint', 42);

5.21.1.17 ArrayBegin

This method returns the first element of an array and can be used together with the methods ArrayEnd() and
NextArray() for iteration through a JSON array.

Syntax

METHOD ArrayBegin : SJsonAlterator

VAR INPUT
v : SJsonValue;

END_ VAR

Sample call:

jsonlIterator := fbJson.ArrayBegin (jsonArray);

jsonlIteratorEnd := fbJson.ArrayEnd(jsonArray);

WHILE jsonIterator <> jsonIteratorEnd DO
sName := fbJson.GetArrayValue (jsonIterator);
jsonlIterator := fbJson.NextArray(jsonlterator);

END WHILE

5.21.1.18 ArrayEnd

This method returns the last element of an array and can be used together with the methods ArrayBegin()
and NextArray() for iteration through a JSON array.

Syntax

METHOD ArrayEnd : SJsonAlterator

VAR INPUT
v : SJsonValue;

END VAR

Sample call:

jsonlIterator := fbJson.ArrayBegin (jsonArray);

jsonIteratorEnd := fbJson.ArrayEnd(jsonArray);

WHILE jsonIterator <> jsonIteratorEnd DO
sName := fbJson.GetArrayValue (jsonlIterator);
jsonlterator := fbJson.NextArray(jsonlterator);

END WHILE

5.21.1.19 ClearArray

This method deletes the content of an array.

Syntax

METHOD ClearArray : BOOL
VAR INPUT

v : SJsonValue;

i : SJsonAlterator;
END VAR

Sample call:

The following JSON document is to be loaded into the DOM memory:
sMessage := '{"serialNumber":"123","batteryVoltage":"1547mv","clickType":"SINGLE", "array":
["Hello",2,31}"';

The values of the JSON array "array" are to be deleted. First of all, the JSON document is searched
iteratively for the "array" property, after which all elements of the array are deleted by calling the ClearArray()
method.

TF6701 Version: 1.10 57

PLC AP BECKHOFF

jsonDoc := fbJson.ParseDocument (sMessage) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonlIteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonIterator <> jsonIteratorEnd DO
sName := fbJson.GetMemberName (jsonIterator) ;
jsonValue := fbJson.GetMemberValue (jsonlIterator);
IF sName = 'array' THEN
jsonArraylterator := fbJson.ArrayBegin (jsonValue);
fbdson.ClearArray (jsonValue, jsonArraylterator);
END IF
jsonlIterator := fbJson.NextMember (jsonIterator);
END WHILE

5.21.1.20 CopyDocument

This method copies the contents of the DOM memory into a variable of data type STRING, which can have
any length. The method returns the length of the string (including null termination). If the target buffer is too
small, it is emptied by a null termination and returned as length 0.

Syntax

METHOD CopyDocument : UDINT
VAR INPUT
nDoc : DINT;
END_VAR
VAR IN OUT CONSTANT
pDoc : STRING;
END VAR

Sample call:

nLen := fbJson.CopyDocument (sJson, SIZEOF (sJson)) ;

5.21.1.21 CopydJson

This method extracts a JSON object from a key and stores it in a variable of data type STRING. This
STRING can be of any length. The method returns the length of the copied JSON object (including null
termination). If the target buffer is too small, it is emptied by a null termination and returned as length 0.

Syntax

METHOD CopyJson : UDINT
VAR INPUT
v : SJsonValue;
END VAR
VAR _IN_OUT CONSTANT
pDoc : STRING;
nDoc : UDINT;
END VAR

Sample call:

The following JSON document is to be loaded into the DOM memory:

sMessage := ' {"serialNumber":"123","meta":{"batteryVoltage":"1547mVv","clickType" :"SINGLE"}}"';

The value of the JSON object "meta"” is to be extracted and stored in a variable of data type STRING. First
the JSON document is searched iteratively for the property "meta", then its value or sub-object is extracted
by calling the method CopydJson().

jsonDoc := fbJson.ParseDocument (sMessage) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonIteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonlIterator <> jsonlteratorEnd DO
sName := fbJson.GetMemberName (jsonlterator);
jsonValue := fbJson.GetMemberValue (jsonIterator);
IF sName = 'meta' THEN
fbdson.CopyJson (jsonValue, sString, SIZEOF (sString));
END IF
jsonIterator := fbJson.NextMember (jsonIterator);
END WHILE

58 Version: 1.10 TF6701

BECKHOFF PLC API

After this run, the sString variable has the following content:

{"batteryVoltage":"1547mv","clickType":"SINGLE"}

5.21.1.22 CopyString

This method copies the value of a key into a variable of the data type STRING, which can be of any length.
The method returns the length of the copied string (including null termination). If the target buffer is too small,
it is emptied by a null termination and returned as length O.

Syntax

METHOD CopyString : UDINT
VAR INPUT
v : SJsonValue;
END_ VAR
VAR IN_OUT CONSTANT
pStr : STRING;
nStr : UDINT;
END_ VAR

Sample call:

The following JSON document is to be loaded into the DOM memory:

sMessage := ' {"serialNumber":"123","batteryVoltage":"1547mV","clickType":"SINGLE"}"';

The value of the key "clickType" is to be extracted and stored in a variable of data type STRING. First, the
JSON document is iteratively searched for the property "clickType".

jsonDoc := fbJson.ParseDocument (sMessage) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonIteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonlIterator <> jsonIteratorEnd DO
sName := fbJson.GetMemberName (jsonIterator);
jsonValue := fbJson.GetMemberValue (jsonIterator);
IF sName = 'clickType' THEN
fbdson.CopyString (jsonValue, sString, SIZEOF (sString)):;
END IF
jsonIterator := fbJson.NextMember (jsonIterator);
END WHILE

After this run, the sString variable has the following content:

SINGLE

5.21.1.23 FindMember

This method searches for a specific property in a JSON document and returns it. 0 is returned if no
corresponding property is found.

Syntax

METHOD FindMember : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
VAR_IN OUT CONSTANT
member : STRING;
END_ VAR

Sample call:

jsonProp := fbJson.FindMember (jsonDoc, 'PropertyName');

5.21.1.24 FindMemberPath

This method searches for a specific property in a JSON document and returns it. The property is specified
according to its path in the document. 0 is returned if no corresponding property is found.

TF6701 Version: 1.10 59

PLC API

BECKHOFF

Syntax

METHOD FindMemberPath : SJsonValue
VAR INPUT
v : SJsonValue
END_ VAR
VAR IN OUT CONSTANT
member : STRING;

END VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMemberPath (jsonDoc, sPath);

5.21.1.25 GetArraySize

This method returns the number of elements in a JSON array.

Syntax
METHOD GetArraySize : UDINT
VAR INPUT
v : SJsonValue;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array'):;
nSize := fbJson.GetArraySize (jsonArray);

5.21.1.26 GetArrayValue

This method returns the value at the current iterator position of an array.

Syntax

METHOD GetArrayValue : SJsonValue

VAR _INPUT
i : SJsonAlterator;

END VAR

Sample call:

jsonlIterator := fbJson.ArrayBegin (jsonArray);

jsonlIteratorEnd := fbJson.ArrayEnd(jsonArray);

WHILE jsonIterator <> jsonIteratorEnd DO
sName := fbJson.GetArrayValue (jsonIterator);
jsonlIterator := fbJson.NextArray(jsonlterator);

END WHILE

5.21.1.27 GetArrayValueByldx

This method returns the value of an array in a specified index.

Syntax

METHOD GetArrayValueByIdx : SJsonValue
VAR INPUT

v : SJsonValue;

idx : UDINT;
END_ VAR

Sample call:

jsonValue := fbJson.GetArrayValueByIdx (jsonArray, 1);

60 Version: 1.10

TF6701

BECKHOFF PLC API

5.2.1.1.28 GetBase64

This method decodes a Base64 value from a JSON property. If the content of a data structure, for example,
is located behind the Base64 value, the decoded content can also be placed on an identical structure again.

Syntax
METHOD GetBase64 : DINT
VAR INPUT
v : SJsonValue;
p : PVOID;
n : DINT;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonBase64 := fbJson.FindMember (jsonDoc, 'base64');
nSize := fbJson.GetBase64 (jsonBase64, ADR(stStruct), SIZEOF (stStruct));

5.2.1.1.29 GetBool

This method returns the value of a property of the data type BOOL.

Syntax

METHOD GetBool : BOOL
VAR _INPUT

v : SJsonValue;
END VAR

5.2.1.1.30 GetDateTime

This method returns the value of a property of the data type DATE_AND_TIME.

Syntax

METHOD GetDateTime : DATE AND TIME
VAR INPUT

v : SJsonValue;
END VAR

5.21.1.31 GetDcTime

This method returns the value of a property of the data type DCTIME.

Syntax
METHOD GetDcTime : DCTIME
VAR INPUT
v : SJsonValue;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJdsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
dcTime := fbJson.GetDcTime (jsonProp) ;

5.2.1.1.32 GetDocument

This method returns the content of the DOM memory as the data type STRING(255). With longer strings, the
method will return a NULL string. In this case the method CopyDocument [P _58]() must be used.

TF6701 Version: 1.10 61

PLC AP BECKHOFF

Syntax

METHOD GetDocument : STRING (255)
Sample call:

sJson := fbJson.GetDocument () ;

5.21.1.33 GetDocumentLength

This method returns the length of a JSON document in the DOM memory.

Syntax
METHOD GetDocumentLength: UDINT

Sample call:

nLen := fbJson.GetDocumentLength () ;

5.21.1.34 GetDocumentRoot

This method returns the root node of a JSON document in the DOM memory.

Syntax

METHOD GetDocumentRoot : SJsonValue
Sample call:

jsonRoot := fbJson.GetDocumentRoot () ;

5.21.1.35 GetDouble

This method returns the value of a property of the data type LREAL.

Syntax

METHOD GetDouble : LREAL
VAR INPUT

v : SJsonValue;
END_ VAR

5.2.1.1.36 GetFileTime

This method returns the value of a property of the data type DCTIME.

Syntax
METHOD GetFileTime : FILETIME
VAR INPUT
v : SJsonValue;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
fileTime := fbJson.GetFileTime (jsonProp) ;

5.21.1.37 GetHexBinary

This method decodes the HexBinary content of a property and writes it to a certain memory address, e.g. to
a data structure.

62 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax

METHOD GetHexBinary : DINT
VAR INPUT

v : SJsonValue;

p : PVOID;

n : DINT;
END VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
nLen := fbJson.GetHexBinary(jsonProp, ADR(stStruct), SIZEOF (stStruct));

5.21.1.38 Getint

This method returns the value of a property of the data type DINT.

Syntax
METHOD GetInt : DINT
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.39 GetInt64

This method returns the value of a property of the data type LINT.

Syntax

METHOD GetInt64 : LINT
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.40 GetJson

This method returns the value of a property as data type STRING(255), if this is a JSON document itself.

With longer strings, the method will return a NULL string. In this case the method CopyJson [P 58]() must be
used.

Syntax
METHOD GetJson : STRING(255)
VAR INPUT
v : SJsonValue;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
sJson := fbdson.GetJson (jsonProp) ;

5.21.1.41 GetJsonLength

This method returns the length of a property if this is a JSON document.

Syntax

METHOD GetJsonLength : UDINT
VAR INPUT

v : SJsonValue;
END VAR

TF6701 Version: 1.10 63

PLC AP BECKHOFF

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
nLen := fbJson.GetJsonLength (jsonProp) ;

5.2.1.1.42 GetMaxDecimalPlaces

This method returns the current setting for MaxDecimalPlaces. This influences the number of decimal places
in the case of floating point numbers.

Syntax

METHOD GetMaxDecimalPlaces : DINT
Sample call:

nDec := fbJson.GetMaxDecimalPlaces() ;

5.21.1.43 GetMemberName

This method returns the name of a JSON property member at the position of the current iterator, e.g. during
the iteration of a child element of a JSON property with the methods MemberBegin(), MemberEnd() and
NextMember().

Syntax
METHOD GetMemberName : STRING
VAR INPUT
i : SJsonlterator;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonIteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonIterator <> jsonIteratorEnd DO
sName := fbJson.GetMemberName (jsonIterator) ;
jsonlterator := fbJson.NextMember (jsonlIterator);
END WHILE

5.2.1.1.44 GetMemberValue

This method returns the value of a JSON property member at the position of the current iterator, e.g. during
the iteration of a child element of a JSON property with the methods MemberBegin(), MemberEnd() and
NextMember().

Syntax
METHOD GetMemberValue : SJsonValue
VAR INPUT
i : SJsonlIterator;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonlteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonlterator <> jsonIteratorEnd DO
jsonValue := fbJson.GetMemberValue (jsonIterator);
jsonlIterator := fbJson.NextMember (jsonlterator);
END WHILE

64 Version: 1.10 TF6701

BECKHOFF

PLC API

5.21.1.45 GetString

This method returns the value of a property of the data type STRING(255). With longer strings, the method

will return a NULL string. In this case the method CopyString [» 59]() must be used.

Syntax

METHOD GetString : STRING(255)
VAR INPUT

v : SJsonValue;
END VAR

5.21.1.46 GetStringLength

This method returns the length of a property if its value is a string.

Syntax
METHOD GetStringLength : UDINT
VAR INPUT
v : SJsonValue
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
nLen := fbJson.GetStringlLength (jsonProp) ;

5.21.1.47 GetType

This method returns the type of a property value. The return value can assume one of the values of the

enum EJsonType.

Syntax

METHOD GetStringLength : EJsonType
VAR INPUT

v : SJsonValue
END_ VAR

TYPE EJsonType :
(

eNullType := O,

eFalseType := 1,

eTrueType := 2,

eObjectType := 3,

eArrayType := 4,

eStringType := 5,

eNumberType := 6
) DINT;
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
edsonType := fbJson.GetType (jsonProp) ;

5.2.1.1.48 GetUint

This method returns the value of a property of the data type UDINT.

Syntax

METHOD GetUint : UDINT
VAR INPUT

v : SJsonValue;
END_ VAR

TF6701 Version: 1.10

65

PLC AP BECKHOFF

5.21.1.49 GetUint64

This method returns the value of a property of the data type ULINT.

Syntax

METHOD GetUinté64 : ULINT
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.50 HasMember

This method checks whether a certain property is present in the DOM memory. If the property is present the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD HasMember : BOOL
VAR INPUT
v : SJsonValue;
END_ VAR
VAR IN OUT CONSTANT
member : STRING;
END VAR

Sample call:

bHasMember := fbJson.HasMember (jsonDoc, 'PropertyName');

5.2.1.1.51 IsArray

This method checks whether a given property is an array. If that is the case, the method returns TRUE,
otherwise it returns FALSE.

Syntax

METHOD IsArray : BOOL
VAR INPUT

v : SJsonValue;
END_VAR

5.2.1.1.52 IsBaseb64

This method checks whether the value of a given property is of the data type Base64. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsBase64 : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.53 IsBool

This method checks whether the value of a given property is of the data type BOOL. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsBool : BOOL
VAR INPUT

v : SJsonValue;
END VAR

66 Version: 1.10 TF6701

BECKHOFF PLC API

5.21.1.54 IsDouble

This method checks whether the value of a given property is of the data type Double (PLC: LREAL). If that is
the case, the method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsDouble : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.55 IsFalse

This method checks whether the value of a given property is FALSE. If that is the case, the method returns
TRUE, otherwise it returns FALSE.

Syntax

METHOD IsFalse : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.56 IsHexBinary

This method checks whether the value of a property is in the HexBinary format. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax
METHOD IsHexBinary: BOOL
VAR INPUT
v : SJsonValue
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
bRet := fbJson.IsHexBinary (jsonProp);

5.2.1.1.57 Isint

This method checks whether the value of a given property is of the data type Integer (PLC: DINT). If that is
the case, the method returns TRUE, otherwise it returns FALSE.

Syntax
METHOD IsInt : BOOL
VAR INPUT

v : SJsonValue;
END_ VAR

5.2.1.1.58 IsInt64

This method checks whether the value of a given property is of the data type LINT. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsInt64 : BOOL
VAR INPUT

v : SJsonValue;
END_ VAR

TF6701 Version: 1.10 67

PLC AP BECKHOFF

5.2.1.1.59 IsiISO8601TimeFormat

This method checks whether the value of a given property has a time format according to ISO8601. If that is
the case, the method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsISO8601TimeFormat : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.60 IsNull

This method checks whether the value of a given property is NULL. If that is the case, the method returns
TRUE, otherwise it returns FALSE.

Syntax

METHOD IsNull : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.61 IsNumber

This method checks whether the value of a given property is a numerical value. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsNumber : BOOL
VAR INPUT

v : SJsonValue;
END_ VAR

5.2.1.1.62 IsObject

This method checks whether the given property is a further JSON object. If that is the case, the method
returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsObject : BOOL
VAR INPUT

v : SJsonValue;
END_ VAR

5.21.1.63 IsString

This method checks whether the value of a given property is of the data type STRING. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsString : BOOL
VAR_INPUT

v : SJsonValue;
END VAR

68 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.1.64 IsTrue

This method checks whether the value of a given property is TRUE. If that is the case, the method returns
TRUE, otherwise it returns FALSE.

Syntax

METHOD IsTrue : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.65 IsUint

This method checks whether the value of a given property is of the data type UDINT. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsUint : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.66 IsUint64

This method checks whether the value of a given property is of the data type ULINT. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsUint64 : BOOL
VAR INPUT

v : SJsonValue;
END VAR

5.2.1.1.67 LoadDocumentFromFile

This method loads a JSON document from a file.

A rising edge on the input parameter bExec triggers the loading procedure. The asynchronous process is
terminated as soon as the reference bExec is set back to FALSE from the method. When the process ends,
the return value of the method indicates for one call whether the loading of the file was successful (TRUE) or
failed (FALSE).

Syntax

METHOD LoadDocumentFromFile : BOOL
VAR IN OUT CONSTANT
sFile : STRING;
END VAR
VAR INPUT
bExec : REFERENCE TO BOOL;
END VAR
VAR OUTPUT
hrErrorCode: HRESULT;
END VAR

Sample call:

IF bLoad THEN
bLoaded := fbJson.LoadDocumentFromFile (sFile, bLoad);
END IF

TF6701 Version: 1.10 69

PLC AP BECKHOFF

5.21.1.68 MemberBegin

This method returns the first child element below a JSON property and can be used by a JSON property
together with the methods MemberEnd() and NextMember() for iteration.

Syntax
METHOD MemberBegin : SJsonIterator
VAR INPUT
v : SJsonValue;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonIteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonIterator <> jsonIteratorEnd DO
sName := fbJson.GetMemberName (jsonlterator);
jsonlIterator := fbJson.NextMember (jsonIterator);
END WHILE

5.2.1.1.69 MemberEnd

This method returns the last child element below a JSON property and can be used by a JSON property
together with the methods MemberBegin() and NextMember() for iteration.

Syntax
METHOD MemberEnd : SJsonlterator
VAR INPUT
v : SJsonValue;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonlIteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonlterator <> jsonIteratorEnd DO
sName := fbJson.GetMemberName (jsonlIterator);
jsonlIterator := fbJson.NextMember (jsonIterator);
END WHILE

5.2.1.1.70 NewDocument

This method generates a new empty JSON document in the DOM memory.

Syntax

METHOD NewDocument : SJsonValue
Sample call:

jsonDoc := fbJson.NewDocument () ;

5.21.1.71 NextArray

5.21.1.72 ParseDocument

This method loads a JSON object into the DOM memory for further processing. The JSON object takes the
form of a string and is transferred to the method as an input. A reference to the JSON document in the DOM
memory is returned to the caller.

70 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax

METHOD ParseDocument : SJsonValue
VAR IN OUT CONSTANT

sdson : STRING;
END VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sJsonString);

5.21.1.73 PushbackBase64Value

This method appends a Base64 value to the end of an array. A structure, for example, can be addressed as
an input parameter. The corresponding Base64 coding is done by the method.

Syntax
METHOD PushbackBase64Value : SJsonValue
VAR INPUT
v : SJsonValue;
p : PVOID;
n : DINT;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackBase64Value (jsonArray, ADR(stStruct), SIZEOF (stStruct));

5.21.1.74 PushbackBoolValue

This method appends a value of the data type BOOL to the end of an array.

Syntax
METHOD PushbackBoolValue : SJsonValue
VAR INPUT
v : SJsonValue;
value : BOOL;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackBoolValue (jsonArray, TRUE) ;

5.21.1.75 PushbackDateTimeValue

This method appends a value of the data type DATE_AND_TIME to the end of an array.

Syntax
METHOD PushbackDateTimeValue : SJsonValue
VAR INPUT
v : SJsonValue;
value : DATE AND TIME;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackDateTimeValue (jsonArray, dtTime);

TF6701 Version: 1.10 71

PLC AP BECKHOFF

5.21.1.76 PushbackDcTimeValue

This method appends a value of the data type DCTIME to the end of an array.

Syntax
METHOD PushbackDcTimeValue : SJsonValue
VAR INPUT
v : SJsonValue;
value : DCTIME;
END_ VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array'):;
jsonValue := fbJson.PushbackDcTimeValue (jsonArray, dcTime);

5.21.1.77 PushbackDoubleValue

This method appends a value of the data type Double to the end of an array.

Syntax
METHOD PushbackDoubleValue : SJsonValue
VAR INPUT
v : SJsonValue;
value : LREAL;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackDoubleValue (jsonArray, 42.42);

5.21.1.78 PushbackFileTimeValue

This method appends a value of the data type FILETIME to the end of an array.

Syntax
METHOD PushbackFileTimeValue : SJsonValue
VAR INPUT
v : SJsonValue;
value : FILETIME;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackFileTimeValue (jsonArray, fileTime) ;

5.21.1.79 PushbackHexBinaryValue

This method appends a HexBinary value to the end of an array. The coding in the HexBinary format is
executed by the method. A data structure, for example, can be used as the source.

Syntax

METHOD PushbackHexBinaryValue : SJsonValue
VAR _INPUT

v : SJsonValue;

p : PVOID;

n : DINT;
END VAR

Sample call:

72 Version: 1.10 TF6701

BECKHOFF PLC API

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackHexBinaryValue (jsonArray, ADR(stStruct), SIZEOF (stStruct));

5.2.1.1.80 Pushbackint64Value

This method appends a value of the data type Int64 to the end of an array.

Syntax

METHOD PushbackInt64Value : SJsonValue
VAR INPUT

v : SJsonValue;

value : LINT;

END_VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackInt64Value (jsonArray, 42);

5.2.1.1.81 PushbackintValue

This method appends a value of the data type INT to the end of an array.

Syntax
METHOD PushbackIntValue : SJsonValue
VAR INPUT
v : SJsonValue;
value : DINT;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackIntValue (jsonArray, 42);

5.2.1.1.82 PushbackJsonValue

This method appends a JSON document to the end of an array.

Syntax

METHOD PushbackJsonValue : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
VAR IN_OUT CONSTANT
rawJson : STRING;

END_ VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackJsonValue (jsonArray, sJson);

5.2.1.1.83 PushbackNullValue

This method appends a NULL value to the end of an array.

TF6701 Version: 1.10 73

PLC AP BECKHOFF
Syntax
METHOD PushbackNullValue : SJsonValue
VAR INPUT
v : SJsonValue;
END_ VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array'):;
jsonValue := fbJson.PushbackNullValue (jsonArray) ;

5.2.1.1.84 PushbackStringValue

This method appends a value of the data type DCTIME to the end of an array.

Syntax

METHOD PushbackStringValue : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
VAR_IN OUT CONSTANT
value : STRING;

END VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array'):;

jsonValue := fbJson.PushbackStringValue (jsonArray, sString);

5.21.1.85 PushbackUint64Value

This method appends a value of the data type UInt64 to the end of an array.

Syntax
METHOD PushbackUint64Value : SJsonValue
VAR INPUT
v : SJsonValue;
value : ULINT;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackUint64Value (jsonArray, 42);

5.2.1.1.86 PushbackUintValue

This method appends a value of the data type Ulnt to the end of an array.

Syntax
METHOD PushbackUintValue : SJsonValue
VAR INPUT

v : SJsonValue;

value : UDINT;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonArray := fbJson.FindMember (jsonDoc, 'array');
jsonValue := fbJson.PushbackUintValue (jsonArray, 42);
74 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.1.87 RemoveAllMembers

This method removes all child elements from a given property.

Syntax
METHOD RemoveAllMembers : BOOL
VAR INPUT
v : SJsonValue;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
bRemoved := fbJson.RemoveAllMembers (jsonProp) ;

5.2.1.1.88 RemoveArray

This method deletes the value of the current array iterator.

Syntax

METHOD RemoveArray : BOOL
VAR INPUT

v : SJsonValue;

i : SJsonAlterator;
END_ VAR

Sample call:

The following JSON document is to be loaded into the DOM memory:

sMessage :=

'{"serialNumber":"123","batteryVoltage":"1547mv", "clickType" :"SINGLE", "array":
["Hello", 2, 3]

L
’

{
}

The first array position is to be deleted. First of all, the JSON document is searched iteratively for the "array"
property, after which the first element of the array is removed by calling the RemoveArray() method.

jsonDoc := fbJson.ParseDocument (sMessage) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonlteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonIterator <> jsonIteratorEnd DO
sName := fbJson.GetMemberName (jsonIterator) ;
jsonValue := fbJson.GetMemberValue (jsonlIterator);
IF sName = 'array' THEN
jsonArraylterator := fbJson.ArrayBegin (jsonValue);
fbJdson.RemoveArray (jsonValue, jsonArraylterator);
END IF
jsonlIterator := fbJson.NextMember (jsonIterator);
END WHILE

5.2.1.1.89 RemoveMember

This method deletes the property at the current iterator.

Syntax
METHOD RemoveMember : BOOL
VAR INPUT
v : SJsonValue;
i : SJsonlterator;
keepOrder : BOOL;
END VAR
Sample call:

The following JSON document is to be loaded into the DOM memory:

sMessage := '{"serialNumber":"123","batteryVoltage":"1547mv","clickType":"SINGLE", "array":
["Hello",2,31}';

TF6701 Version: 1.10 75

PLC AP BECKHOFF

The "array" property is to be deleted. First of all, the JSON document is searched for the "array" property,
after which the property is removed.

jsonDoc := fbJson.ParseDocument (sMessage) ;
jsonlIterator := fbJson.MemberBegin (jsonDoc) ;
jsonlIteratorEnd := fbJson.MemberEnd (jsonDoc) ;
WHILE jsonlIterator <> jsonlteratorEnd DO

sName := fbJson.GetMemberName (jsonIterator);

IF sName = 'array' THEN

fbJson.RemoveMember (jsonDoc, jsonlterator);

END IF

jsonlIterator := fbJson.NextMember (jsonIterator);
END WHILE

5.2.1.1.90 RemoveMemberByName

This method removes a child element from a given property. The element is referenced by its name.

Syntax
METHOD RemoveMemberByName : BOOL
VAR INPUT
v : SJsonValue;
keepOrder : BOOL;
END_ VAR

VAR IN OUT CONSTANT
member : STRING;

END_VAR
Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');

jsonValue := fbJson.RemoveMemberByName (jsonProp, 'ChildName') ;

5.2.1.1.91 SaveDocumentToFile

This method saves a JSON document in a file.

A rising edge at the input parameter bExec triggers the saving procedure. The asynchronous process is
terminated as soon as the reference bExec is set back to FALSE from the method. When the process ends,
the return value of the method indicates for one call whether saving of the file was successful (TRUE) or
failed (FALSE).

Syntax

METHOD SaveDocumentToFile : BOOL
VAR _IN OUT CONSTANT

sFile : STRING;
END VAR
VAR INPUT

bExec : REFERENCE TO BOOL;
END_VAR
VAR OUTPUT

hrErrorCode: HRESULT;

END VAR

Sample call:

IF bSave THEN
bSaved := fbJson.SaveDocumentToFile (sFile, bSave);
END IF

5.21.1.92 SetArray

This method sets the value of a property to the type "Array". New values can now be added to the array with
the Pushback methods.

76 Version: 1.10 TF6701

BECKHOFF

PLC API

Syntax
METHOD SetArray : SJsonValue
VAR INPUT
v : SJsonValue;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetArray(jsonProp);

5.21.1.93 SetBaseb64

This method sets the value of a property to a Base64-coded value. A data structure, for example, can be
used as the source. Coding to the Base64 format takes place inside the method.

Syntax
METHOD SetBase64 : SJsonValue
VAR INPUT
v : SJsonValue;
p : PVOID;
n : DINT;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetBase64 (jsonProp, ADR(stStruct), SIZEOF (stStruct)):;

5.21.1.94 SetBool

This method sets the value of a property to a value of the data type BOOL.

Syntax
METHOD SetBool : SJsonValue
VAR INPUT
v : SJsonValue;
value : BOOL;
END_ VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
jsonValue := fbJson.SetBool (jsonProp, TRUE);

5.2.1.1.95 SetDateTime

This method sets the value of a property to a value of the data type DATE_AND_TIME.

Syntax
METHOD SetDateTime : SJsonValue
VAR INPUT
v : SJsonValue;
value : DATE AND TIME;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetDateTime (jsonProp, dtTime);

TF6701 Version: 1.10

77

PLC AP BECKHOFF

5.2.1.1.96 SetDcTime

This method sets the value of a property to a value of the data type DCTIME.

Syntax
METHOD SetDcTime : SJsonValue
VAR INPUT
v : SJsonValue;
value : DCTIME;
END_ VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
jsonValue := fbJson.SetDcTime (jsonProp, dcTime);

5.21.1.97 SetDouble

This method sets the value of a property to a value of the data type Double.

Syntax
METHOD SetDouble : SJsonValue
VAR INPUT
v : SJsonValue;
value : LREAL;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetDouble (jsonProp, 42.42);

5.2.1.1.98 SetFileTime

This method sets the value of a property to a value of the data type FILETIME.

Syntax
METHOD SetFileTime : SJsonValue
VAR INPUT
v : SJsonValue;
value : FILETIME;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetFileTime (jsonProp, fileTime) ;

5.21.1.99 SetHexBinary

This method sets the value of a property to a HexBinary-coded value. A data structure, for example, can be
used as the source. Coding to the HexBinary format takes place inside the method.

Syntax

METHOD SetHexBinary : SJsonValue
VAR _INPUT

v : SJsonValue;

p : PVOID;

n : DINT;
END VAR

Sample call:

78 Version: 1.10 TF6701

BECKHOFF PLC API

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetHexBinary(jsonProp, ADR(stStruct), SIZEOF (stStruct));

5.2.1.1.100 Setint

This method sets the value of a property to a value of the data type INT.

Syntax

METHOD SetInt : SJsonValue
VAR INPUT

v : SJsonValue;

value : DINT;

END_VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetInt (jsonProp, 42);

5.2.1.1.101 Setint64

This method sets the value of a property to a value of the data type Int64.

Syntax

METHOD SetInt64 : SJsonValue
VAR INPUT

v : SJsonValue;

value : LINT;

END VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
jsonValue := fbJson.SetInt64 (jsonProp, 42);

5.2.1.1.102 SetJson

This method inserts a further JSON document into the value of a property.

Syntax

METHOD SetJson : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
VAR IN_OUT CONSTANT
rawJson : STRING;

END VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
jsonValue := fbJson.SetJson(jsonProp, sJson);

5.2.1.1.103 SetMaxDecimalPlaces

This method sets the current setting for MaxDecimalPlaces. This sets the maximum number of decimal
places to be used with floating point numbers.

TF6701 Version: 1.10 79

PLC AP BECKHOFF

Syntax

METHOD SetMaxDecimalPlaces
VAR INPUT

dp : DINT;
END_ VAR

Sample call:

nDec := fbJson.SetMaxDecimalPlaces () ;

5.2.1.1.104 SetNull

This method sets the value of a property to the value NULL.

Syntax
METHOD SetNull : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetNull (jsonProp) ;

5.2.1.1.105 SetObject

This method sets the value of a property to the type "Object". This enables the nesting of JSON documents.

Syntax

METHOD SetDouble : SJsonValue
VAR INPUT

v : SJsonValue;

value : LREAL;

END_ VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
jsonValue := fbJson.SetObject (jsonProp) ;

5.2.1.1.106 SetString

This method sets the value of a property to a value of the data type STRING.

Syntax

METHOD SetString : SJsonValue
VAR INPUT
v : SJsonValue;
END VAR
VAR IN OUT CONSTANT
value : STRING;

END VAR

Sample call:

jsonDoc := fbJson.ParseDocument (sExistingJdsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
jsonValue := fbJson.SetString(jsonProp, 'Hello World');

5.2.1.1.107 SetUint

This method sets the value of a property to a value of the data type Ulnt.

80 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax
METHOD SetUint : SJsonValue
VAR INPUT
v : SJsonValue;
value : UDINT;
END_ VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property');
jsonValue := fbJson.SetUint (jsonProp, 42);

5.2.1.1.108 SetUint64

This method sets the value of a property to a value of the data type UInt64.

Syntax
METHOD SetUint64 : SJsonValue
VAR INPUT

v : SJsonValue;

value : ULINT;
END_VAR
Sample call:
jsonDoc := fbJson.ParseDocument (sExistingJsonDocument) ;
jsonProp := fbJson.FindMember (jsonDoc, 'property'):;
jsonValue := fbJson.SetUint64 (jsonProp, 42);
5.21.2 FB_JsonDynDomParser

This function block is derived from the same internal function block as FB JsonDomParser [» 51] and thus
offers the same interface.

The two derived function blocks differ only in their internal memory management. FB_JsonDynDomParser is
optimized for JSON documents to which many changes are made. It releases the allocated memory again
after the execution of an action, e.g. for the methods SetObject() or Setdson().

® Strings in UTF-8 format

1 The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

Requirements
TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4024.7 |x86, x64, ARM Tc3_JsonXml 3.3.8.0

TF6701 Version: 1.10 81

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

PLC AP BECKHOFF

5.21.3 FB_JsonSaxReader

Requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4022 x86, x64, ARM Tc3_JsonXml

5.2.1.3.1 DecodeBase64

This method converts a Base64-formated string to binary data. If the conversion was successful the method
returns TRUE, otherwise it returns FALSE.

Syntax
METHOD DecodeBase64 : BOOL
VAR _INPUT
sBase6t4 : STRING;
pBytes : POINTER TO BYTE;
nBytes : REFERENCE TO DINT;
END_VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END_ VAR
Sample call:
bSuccess := fbJson.DecodeBase64 ('SGVsbG8gVHdpbkNBVA=="', ADR (byteArray), byteArraySize);

5.2.1.3.2 DecodeDateTime

This method enables the generation of a PLC variable of the type DATE_AND_TIME or DT from a
standardized ISO8601 time format (e.g. YYYY-MM-DDThh:mm:ss). DT corresponds to the number of
seconds starting from the date 1970-01-01. If the conversion was successful the method returns TRUE,
otherwise it returns FALSE.

Syntax

METHOD DecodeDateTime : BOOL
VAR _IN_OUT CONSTANT
sDT : STRING;
END VAR
VAR _OUTPUT
nDT : DATE_AND TIME;
hrErrorCode : HRESULT;
END VAR

Sample call:

bSuccess := fbJson.DecodeDateTime ('2017-08-09T06:54:00"', nDT => dateTime) ;

5.21.3.3 DecodeDcTime

This method enables the generation of a PLC variable of the type DCTIME from a standardized 1ISO8601
time format (e.g. YYYY-MM-DDThh:mm:ss). DCTIME corresponds to the number of nanoseconds starting
from the date 2000-01-01. If the conversion was successful the method returns TRUE, otherwise it returns
FALSE.

Syntax

METHOD DecodeDcTime : BOOL
VAR IN OUT CONSTANT
sDC : STRING;
END_ VAR
VAR_OUTPUT

82 Version: 1.10 TF6701

BECKHOFF PLC API

nDC : DCTIME;
hrErrorCode : HRESULT;
END VAR

Sample call:

bSuccess := fbJson.DecodeDcTime ('2017-08-09T06:54:00', nDc => dcTime) ;

5.21.34 DecodeFileTime

This method enables the generation of a PLC variable of the type FILETIME from a standardized ISO8601
time format (e.g. YYYY-MM-DDThh:mm:ss). FILETIME corresponds to the number of nanoseconds starting
from the date 1601-01-01 — measured in 100 nanoseconds. If the conversion was successful the method
returns TRUE, otherwise it returns FALSE.

Syntax

METHOD DecodeDateTime : BOOL
VAR_IN OUT CONSTANT
sFT : STRING;
END_ VAR
VAR OUTPUT
nFT : FILETIME;
hrErrorCode : HRESULT;
END_ VAR

Sample call:

bSuccess := fbJson.DecodeFileTime ('2017-08-09T06:54:00"', nFT => fileTime) ;

5.2.1.3.5 DecodeHexBinary

This method converts a string containing hexadecimal values into binary data. If the conversion was
successful the method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD DecodeHexBinary : BOOL
VAR_IN OUT CONSTANT
sHex : STRING;
END_ VAR
VAR INPUT
pBytes : POINTER TO BYTE;
nBytes : REFERENCE TO DINT;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR

Sample call:

bSuccess := fbJson.DecodeHexBinary ('ABCEF93A', ADR(byteArray), byteArraySize);

5.2.1.3.6 GetLastParseResult

Syntax
METHOD GetLastParseResult : BOOL;
VAR INPUT
pOffset : POINTER TO LINT;
pError : POINTER TO DINT;
END VAR

5.21.3.7 IsBaseb64

This method checks whether the transferred string corresponds to the Base64 format. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

TF6701 Version: 1.10 83

PLC AP BECKHOFF

Syntax

METHOD IsBase64 : BOOL
VAR _IN OUT CONSTANT

sBase64 : STRING;
END VAR

Sample call:

bIsBase64 := fbJson.IsBaseb64 ('SGVsbG8gVHApbkNBVA==") ;

5.2.1.3.8 IsHexBinary

This method checks whether the transferred string consists of hexadecimal values. If that is the case, the
method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsHexBinary : BOOL
VAR IN OUT CONSTANT

sHex : STRING;
END VAR

Sample call:

bSuccess := fbJson.IsHexBinary ('ABCEF93A');

5.2.1.3.9 IsiISO8601TimeFormat

This method checks whether the transferred string corresponds to the standardized ISO8601 time format. If
that is the case, the method returns TRUE, otherwise it returns FALSE.

Syntax

METHOD IsISO8601TimeFormat : BOOL
VAR_IN OUT CONSTANT

sDT : STRING;
END_ VAR

Sample call:

bSuccess := fbJson.IsISO08601TimeFormat ('2017-08-09T06:54:00");

5.2.1.3.10 Parse

This method starts the SAX reader parsing procedure. The JSON object to be parsed and a reference to a
function block, which was derived from the interface ITcJsonSaxHandler, are transferred as input
parameters. This function block is then used for the callback methods of the SAX reader.

Syntax

METHOD Parse : BOOL
VAR_IN OUT CONSTANT
sdson : STRING;
END_ VAR
VAR INPUT
ipHdl : ITcJsonSaxHandler;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR

84 Version: 1.10 TF6701

BECKHOFF PLC API

5.21.3.11 ParseValues

This method starts the SAX reader parsing procedure. The JSON object to be parsed and a reference to a
function block, which was derived from the interface ITcJsonSaxValues, are transferred as input parameters.
This function block is then used for the callback methods of the SAX reader. What is special about this
method is that exclusively values are taken into account in the callback methods, i.e. there are no OnKey() or
OnStartObject() callbacks.

Syntax

METHOD ParseValues : BOOL
VAR IN OUT CONSTANT

sdJson : STRING;
END VAR
VAR INPUT

ipHdl : ITcJsonSaxValues;
END VAR
VAR OUTPUT

hrErrorCode : HRESULT;
END_ VAR

5.21.4 FB_JsonSaxWriter

® Strings in UTF-8 format

1 The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

Requirements
TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4022 x86, x64, ARM Tc3_JsonXml

5.2.1.41 AddBase64

This method adds a value of the data type Base64 to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

Syntax

METHOD AddBase6t4

VAR INPUT
pBytes : Pointer TO BYTE;
nBytes : DINT;

END_ VAR

5.2.1.4.2 AddBool

This method adds a value of the data type BOOL to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

TF6701 Version: 1.10 85

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

PLC AP BECKHOFF

Syntax

METHOD AddBool
VAR INPUT

value : BOOL;
END_ VAR

Sample call:

fbJdson.AddKey ('bSwitch') ;
fbJson.AddBool (TRUE) ;

5.2.1.4.3 AddDateTime

This method adds a value of the data type DATE_AND_TIME to a property. Usually, a corresponding
property was created beforehand with the method AddKey() [» 87].

Syntax

METHOD AddDateTime
VAR _INPUT

value : DATE AND TIME;
END VAR

Sample call:

fbJson.AddKey ('Timestamp') ;
fbJson.AddDateTime (dtTime); // dtTime is of type DATE_AND_ TIME

52144 AddDcTime

This method adds a value of the data type DCTIME to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

Syntax

METHOD AddDcTime
VAR INPUT

value : DCTIME;
END VAR

Sample call:

fbJdson.AddKey ('Timestamp') ;
fbJson.AddDcTime (dcTime) ; // dcTime is of type DCTIME

5.2.1.4.5 AddDint

This method adds a value of the data type DINT to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [»_87].

Syntax

METHOD AddDint
VAR INPUT
value : DINT;
END_ VAR
Sample call:

fbJdson.AddKey ('nNumber') ;
fbJson.AddDint (42) ;

5.2.1.4.6 AddFileTime

This method adds a value of the data type FILETIME to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

86 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax

METHOD AddFileTime
VAR INPUT

value : FILETIME;
END_ VAR

Sample call:

fbJdson.AddKey ('Timestamp') ;
fbJson.AddFileTime (ftTime); // ftTime is of type FILETIME

5.21.4.7 AddHexBinary

This method adds a hex binary value to a property. Usually, a corresponding property was created
beforehand with the method AddKey() [»_87].

Syntax

METHOD AddHexBinary

VAR INPUT
pBytes : POINTER TO BYTE;
nBytes : DINT;

END VAR

Sample call:

fbJson.AddKey ('HexBinary') ;
fbJdson.AddHexBinary (ADR (byteHexBin), SIZEOF (byteHexBin)) ;

5.2.1.4.8 AddKey

This method adds a new property key at the current position of the SAX writer. The value of the new property
is usually set afterwards. This can be done using one of the following methods, for example: AddBase64
[»_85], AddBool [» 85], AddDateTime [P 86], AddDcTime [P 86], AddDint [»_86], AddFileTime [»_86],
AddHexBinary [P 87], AddLint [»_89], AddLreal [»_90], AddNull [» 90], AddRawArray [P 90],

AddRawObiject [P 90], AddReal [» 91], AddString [» 911, AddUdint [» 91], AddUlint [» 91].

Syntax

METHOD AddKey

VAR IN OUT CONSTANT
key : STRING;

END VAR

Sample call:

fbJdson.AddKey ('PropertyName') ;

5.21.4.9 AddKeyBool

This method creates a new property key and at the same time a value of the data type BOOL.

Syntax

METHOD AddKeyBool
VAR IN OUT CONSTANT
key : STRING;
END VAR
VAR INPUT
value : BOOL;
END_ VAR

Sample call:

fbdson.AddKeyBool ('bSwitch', TRUE) ;

TF6701 Version: 1.10 87

PLC AP BECKHOFF

5.21.410 AddKeyDateTime

This method creates a new property key and at the same time a value of the data type DATE_AND_TIME.

Syntax

METHOD AddKeyDateTime
VAR_IN_OUT CONSTANT

key : STRING;
END VAR
VAR INPUT

value : DATE AND TIME;
END_ VAR

Sample call:

fbJdson.AddKeyDateTime ('Timestamp', dtTime) ;

5.2.1.411 AddKeyDcTime

This method creates a new property key and at the same time a value of the data type DCTIME.

Syntax

METHOD AddKeyDcTime
VAR IN OUT CONSTANT
key : STRING;
END VAR
VAR INPUT
value : DCTIME;
END VAR

Sample call:

fbJson.AddKeyDcTime ('Timestamp', dcTime);

5.2.1.412 AddKeyFileTime

This method creates a new property key and at the same time a value of the data type FILETIME.

Syntax

METHOD AddKeyFileTime
VAR IN_OUT CONSTANT
key : STRING;
END VAR
VAR_INPUT
value : FILETIME;
END VAR

Sample call:

fbJdson.AddKeyFileTime ('Timestamp', ftTime) ;

5.21.413 AddKeyLreal

This method creates a new property key and at the same time a value of the data type LREAL.

Syntax

METHOD AddKeyLreal
VAR_IN OUT CONSTANT
key : STRING;
END VAR
VAR INPUT
value : LREAL;
END VAR

Sample call:

88 Version: 1.10 TF6701

BECKHOFF PLC API

fbJson.AddKeyLreal ('PropertyName', 42.42);

5.2.1.414 AddKeyNull

This method creates a new property key and initializes its value with zero.

Syntax

METHOD AddKeyNull

VAR_IN OUT CONSTANT
key : STRING;

END_ VAR

Sample call:

fbJson.AddKeyNull ('PropertyName') ;

5.2.1.415 AddKeyNumber

This method creates a new property key and at the same time a value of the data type DINT.

Syntax

METHOD AddKeyNumber
VAR IN OUT CONSTANT
key : STRING;
END VAR
VAR INPUT
value : DINT;
END_VAR

Sample call:

fbJson.AddKeyNumber ('PropertyName', 42);

5.2.1.4.16 AddKeyString

This method creates a new property key and at the same time a value of the data type STRING.

Syntax

METHOD AddKeyString
VAR IN_OUT CONSTANT
key : STRING;
value : STRING;
END VAR

Sample call:

fbJson.AddKeyString ('PropertyName', 'Hello World');

5.2.1.417 AddLint

This method adds a value of the data type LINT to a property. Usually, a corresponding property was created
beforehand with the method AddKey() [»_87].

Syntax

METHOD AddLint
VAR INPUT

value : LINT;
END VAR

Sample call:

fbJdson.AddKey (' PropertyName') ;
fbJson.AddLint (42) ;

TF6701 Version: 1.10 89

PLC AP BECKHOFF

5.2.1.418 AddLreal

This method adds a value of the data type LREAL to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

Syntax

METHOD AddLreal
VAR _INPUT

value : LREAL;
END VAR
Sample call:

fbJson.AddKey ('PropertyName') ;
fbJson.AddLreal (42.42);

5.2.1.4.19 AddNull

This method adds the value zero to a property. Usually, a corresponding property was created beforehand
with the method AddKey() [» 87].

Syntax
METHOD AddNull

Sample call:

fbJson.AddKey ('PropertyName') ;
fbJson.AddNull () ;

5.21.4.20 AddRawArray

This method adds a valid JSON array to a given property as a value. The array to be added must be in a
valid JSON format and may only be added if the SAX writer is at a correspondingly valid position, i.e. for

example, directly after a preceding AddKey() [»_87], StartArray() [» 93] or as the first call after a
ResetDocument() [» 93].

Syntax

METHOD AddRawArray
VAR _IN OUT CONSTANT

rawdJson : STRING;
END VAR

Sample call:

fbJdson.AddKey (' PropertyName') ;
fbJdson.AddRawArray (' [1, 2, {"x":42, "y":42}, 4');

5.21.4.21 AddRawObject

This method adds a valid JSON object to a given property as a value. The object to be added must be in a
valid JSON format and may only be added if the SAX writer is at a correspondingly valid position, i.e. for

example, directly after a preceding AddKey() [P 871, StartArray() [»_ 93] or as the first call after a
ResetDocument() [» 93].

Syntax

METHOD AddRawObject
VAR IN OUT CONSTANT

rawJson : STRING;
END_VAR

Sample call:

90 Version: 1.10 TF6701

BECKHOFF PLC API

fbJson.AddKey ('PropertyName') ;
fbJdson.AddRawObject (' {"x":42, "y":42}");

5.21.4.22 AddReal

This method adds a value of the data type REAL to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

Syntax

METHOD AddReal
VAR INPUT

value : REAL;
END VAR

Sample call:

fbJson.AddKey ('PropertyName') ;
fbJson.AddReal (42.42) ;

5.2.1.4.23 AddString

This method adds a value of the data type STRING to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

Syntax

METHOD AddString
VAR IN OUT CONSTANT
value : STRING;

END_ VAR

Sample call:

fbJdson.AddKey ('PropertyName') ;
fbJson.AddString ('Hello World');

5.2.1.4.24 AddUdint

This method adds a value of the data type UDINT to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [»_87].

Syntax

METHOD AddUdint
VAR INPUT

value : UDINT;
END VAR

Sample call:

fbJdson.AddKey (' PropertyName') ;
fbJson.AddUdint (42) ;

5.2.1.4.25 AddUlint

This method adds a value of the data type ULINT to a property. Usually, a corresponding property was
created beforehand with the method AddKey() [» 87].

Syntax

METHOD AddUlint
VAR INPUT

value : ULINT;
END_ VAR

TF6701 Version: 1.10 91

PLC AP BECKHOFF

Sample call:

fbJson.AddKey ('PropertyName') ;
fbJson.AddUlint (42);

5.21.4.26 CopyDocument

This method copies the content of the current JSON object created with the SAX Writer to a target variable
of the data type STRING, which can be of any length. The method returns the length of the string (including
null termination). If the target buffer is too small, it is emptied by a null termination and returned as length 0.

Syntax

METHOD CopyDocument : UDINT
VAR IN OUT CONSTANT
pDoc : STRING;
END_VAR
VAR INPUT
nDoc : UDINT;
END_ VAR
VAR OUTPUT
hrErrorCode: HRESULT;
END VAR
Sample call:

fbJdson.CopyDocument (sTargetString, SIZEOF (sTargetString));

5.21.4.27 EndArray

This method generates the end of a started JSON array ("square closing bracket") and inserts it at the
current position of the SAX writer.

Syntax
METHOD EndArray : HRESULT

Sample call:

fbJson.EndArray () ;

5.21.4.28 EndObject

This method generates the end of a started JSON object ("curly closing bracket") and inserts it at the current
position of the SAX writer.

Syntax
METHOD EndObject : HRESULT

Sample call:

fbJson.EndObject () ;

5.2.1.4.29 GetDocument

This method returns the content of the JSON object that is currently created with the SAX Writer and returns
it as data type STRING(255).

The maximum size of the string returned by the method is 255 characters. With longer strings, the method
will return a NULL string. In this case the method CopyDocument [P _92]() must be used.

92 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax

METHOD GetDocument : STRING (255)
VAR OUTPUT

hrErrorCode: HRESULT;
END VAR

Sample call:

sTargetString := fbJson.GetDocument () ;

5.21.4.30 GetDocumentLength

This method returns the length of the JSON object that is currently created with the SAX Writer and returns it
as data type UDINT.

Syntax

METHOD GetDocumentLength : UDINT
VAR OUTPUT

hrErrorCode: HRESULT;
END_ VAR

Sample call:

nLength := fbJson.GetDocumentLength () ;

5.2.1.4.31 GetMaxDecimalPlaces

Syntax

METHOD GetMaxDecimalPlaces : DINT

5.2.1.4.32 ResetDocument

This method resets the JSON object currently created with the SAX writer.

Syntax

METHOD ResetDocument : HRESULT

Sample call:

fbJson.ResetDocument () ;

5.2.1.4.33 SetMaxDecimalPlaces

Syntax
METHOD SetMaxDecimalPlaces : HRESULT
VAR INPUT
decimalPlaces: DINT;
END VAR

5.2.1.4.34 StartArray

This method generates the start of a new JSON array ("square opening bracket") and inserts it at the current
position of the SAX writer.

Syntax
METHOD StartArray : HRESULT

Sample call:

TF6701 Version: 1.10 93

PLC AP BECKHOFF

fbJson.StartArray () ;

5.21.4.35 StartObject

This method generates the start of a new JSON object ("curly opening bracket") and inserts it at the current
position of the SAX writer.

Syntax
METHOD StartObject : HRESULT

Sample call:

fbdson.StartObject () ;

5.21.5 FB_JsonReadWriteDataType

In order to use UTF-8 characters, e.g. in the automatic generation of metadata via the function block

FB JsonReadWriteDataType [P 94], the check box for the support of UTF-8 in the symbolism must be
activated in the TwinCAT project. To do this, double-click on SYSTEM in the project tree, open the Settings
tab and activate the corresponding check box.

Y | © - & | » - General | Settings
Search Solution Explorer (Ctrl+) P~ Boot Settings
h:l'_-| Solution "TwinCAT Project18' (1 project) Auto Baat:) Run Mode (Enable) hovly
4 ol TwinCAT Project18 {® Corfig Mode
b] SYSTEM
&2 MOTION Ao logon [
PLC User Name
| SAFETY Password
E C++
b= 1o

User Databaze

Connect with cument user database

Boot File Encryption Method ADS Symbalic

Encryption Key: | Mane |UTF-8 Encoding

Strings in UTF-8 format

The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

ji o

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

94 Version: 1.10 TF6701

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

BECKHOFF PLC API

Requirements
TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4022 x86, x64, ARM Tc3_JsonXml

5.21.5.1 AddJsonKeyPropertiesFromSymbol

With the aid of this method, metadata can be added via PLC attributes to the JSON representation of a PLC
data structure on an FB JsonSaxWriter [P_85] object. The method receives as its input parameters the
instance of the FB_JsonSaxWriter function block, the desired name of the JSON property that is to contain
the metadata, the data type name of the structure and a string variable sProperties, which contains a list of
the PLC attributes to be extracted, separated by a cross bar.

Syntax
METHOD AddJsonValueFromSymbol : BOOL
VAR _IN OUT
fbWriter : FB JsonSaxWriter;
END VAR
VAR _IN OUT CONSTANT
sKey : STRING;
sDatatype : STRING;
sProperties : STRING;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR

The PLC attributes can be specified in the following form on the structure elements:

{attribute 'Unit' := 'm/s'}
{attribute 'DisplayName' := 'Speed'}
Sensorl : REAL;

A complete sample of how to use this method can be found in section Tc3JsonXmlISampleJsonDataType

[» 153].

Sample call:

fbJsonSaxWriter.ResetDocument ()
fbJsonDataType.AddJsonKeyPropertiesFromSymbol (fbJsonSaxWriter, 'MetaData','ST Values', 'Unit|
DisplayName') ;

5.21.5.2 AddJsonKeyValueFromSymbol

This method generates the JSON representation of a PLC data structure on an FB_JsonSaxWriter [P _85]
object. The method receives as its input parameters the instance of the FB_JsonSaxWriter function block,
the data type name of the structure, and the address and size of the source structure instance. As a result,
the FB_JsonSaxWriter instance contains a valid JSON representation of the structure. Unlike the method
AddJsonValueFromSymbol() [» 96], the elements of the source structure are nested here in a JSON sub-
object whose name can be specified via the input/output parameter sKey.

Syntax
METHOD AddJsonValueFromSymbol : BOOL
VAR_IN_OUT
fbWriter : FB JsonSaxWriter;
END VAR
VAR _IN OUT CONSTANT
sKey : STRING;
sDatatype : STRING;
END VAR
VAR _INPUT
nData : UDINT;
pData : PVOID;
END VAR
VAR _OUTPUT
hrErrorCode : HRESULT;
END VAR

TF6701 Version: 1.10 95

PLC AP BECKHOFF

A complete sample of how to use this method can be found in section Tc3JsonXmISampleJsonDataType
[»153].

Sample call:

fbJsonSaxWriter.ResetDocument ()
fbJsonDataType.AddJsonKeyValueFromSymbol (fbJsonSaxWriter, 'Values','ST Values', SIZEOF (stValues),
ADR (stValues)) ;

5.2.1.5.3 AddJsonValueFromSymbol

This method generates the JSON representation of a PLC data structure on an FB JsonSaxWriter [P 85]
object. The method receives as its input parameters the instance of the FB_JsonSaxWriter function block,
the data type name of the structure, and the address and size of the source structure instance. As a result,
the FB_JsonSaxWriter instance contains a valid JSON representation of the structure.

Syntax
METHOD AddJsonValueFromSymbol : BOOL
VAR IN OUT
fbWriter : FB JsonSaxWriter;
END VAR

VAR IN OUT CONSTANT
sDatatype : STRING;
END VAR
VAR INPUT
nData : UDINT;
pData : PVOID;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END_VAR

A complete sample of how to use this method can be found in section Tc3JsonXmlISampleJsonDataType

[»_153].

Sample call:

fbJsonSaxWriter.ResetDocument ()
fbJsonDataType.AddJsonValueFromSymbol (fbJsonSaxWriter, 'ST Values',6 SIZEOF (stValues), ADR(stValues));

5.21.54 CopyJsonStringFromSymbol

This method generates the JSON representation of a symbol and copies it into a variable of the data type
STRING, which can be of any length. The method returns the length of the string (including null termination).
If the target buffer is too small, it is emptied by a null termination and returned as length 0.

Syntax

METHOD CopyJsonStringFromSymbol : UDINT
VAR INPUT
nData : UDINT;
nDoc : UDINT;
pData : PVOID;
END VAR
VAR_IN OUT CONSTANT
pDoc : STRING;
sDatatype : STRING;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END_ VAR

Sample call:

nLen :=
fbJsonDataType.CopyJsonStringFromSymbol ('ST Test',6 SIZEOF (stTest),ADR(stTest),sString, SIZEOF (sString)
) i

96 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.5.5 CopyJsonStringFromSymbolProperties

This method generates a corresponding JSON representation of PLC attributes on a symbol. In contrast to
the AddJsonKeyPropertiesfromSymbol [P 95] method, the result is not written to an instance of the function
block FB_JsonSaxWriter, but to a string variable. The method receives as its input parameters the data type
name of the symbol and a string variable that represents a list of the PLC attributes to be extracted,
separated by a cross bar.

The method copies this JSON representation into a variable of the data type STRING, which can be of any
length. The method returns the length of the string (including null termination). If the target buffer is too small,
it is emptied by a null termination and returned as length 0.

Syntax
METHOD CopyJsonStringFromSymbolProperties : UDINT
VAR INPUT
nDoc : UDINT;
END VAR
VAR IN OUT CONSTANT
pDoc : STRING;
sDatatype : STRING;
sProperties : STRING;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR
Sample call:
nLen := fbJsonDataType.CopyJsonStringFromSymbolProperties ('ST Test', 'Unit]|

DisplayName',sString, SIZEOF (sString)) ;

5.2.1.5.6 CopySymbolNameByAddress

This method returns the complete (ADS) symbol name of a transferred symbol. The method returns the size
of the string (including null termination). If the target buffer is too small, it is emptied by a null termination and
returned as length 0.

Syntax
METHOD CopySymbolNameByAddress : UDINT
VAR _INPUT

nData : UDINT; // size of symbol

pData : PVOID; // address of symbol
END VAR
VAR _IN OUT CONSTANT

sName : STRING; // target string buffer where the symbol name should be copied to
END VAR
VAR INPUT

nName : UDINT; // size in bytes of target string buffer
END VAR
VAR OUTPUT

hrErrorCode : HRESULT;

END_ VAR
Sample call:
nSymbolSize := fbJsonDataType.CopySymbolNameByAddress (nData:=SIZEOF (stValues), pData:=ADR(stValues),

sName :=sSymbolName, nName:=SIZEOF (sSymbolName)) ;

Requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4024.20 |x86, x64, ARM Tc3_JsonXml 3.3.15.0

5.21.5.7 GetDataTypeNameByAddress

This method returns the data type name of a transferred symbol.

TF6701 Version: 1.10 97

PLC AP BECKHOFF

Syntax

METHOD GetDataTypeNameByAddress : STRING
VAR INPUT
nData : UDINT;
pData : PVOID;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR

Sample call:

sBuffer := fbJsonDataType.GetDataTypeNameByAddress (SIZEOF (stValues) ,ADR (stValues)) ;

5.21.5.8 GetJsonFromSymbol

This method generates the corresponding JSON representation of a symbol. In contrast to the
AddJsonValueFromSymbol() [» 96] method, the result is not written to an instance of the function block
FB_JsonSaxWriter, but to a string variable. The method receives as its input parameters the data type name
of the symbol as well as the address and size of the source symbol, e.g. of a structure instance. The address
and size of the destination buffer that contains the JSON representation of the symbol after the call are
transferred as further input parameters.

Syntax

METHOD GetJsonFromSymbol : BOOL
VAR IN OUT CONSTANT
sDatatype : STRING;
END_ VAR
VAR INPUT
nData : UDINT;
pData : PVOID;
ndson : REFERENCE TO UDINT;
pJdson : POINTER TO STRING;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END_ VAR

® Input parameter ndson

The input parameter ndJson contains the size of the target buffer when the method is called, and the
size of the actually written JSON object in the target buffer when the method call is completed.

Sample call:

fbJsonDataType.GetJsonFromSymbol ('ST Values', SIZEOF (stValues), ADR(stValues), nBufferLength,
ADR (sBuffer)) ;

5.2.1.5.9 GetJsonStringFromSymbol

This method generates the corresponding JSON representation of a symbol. In contrast to the
AddJsonValueFromSymbol() [P 96] method, the result is not written to an instance of the function block
FB_JsonSaxWriter, but to a string variable. The method receives as its input parameters the data type name
of the symbol as well as the address and size of the source symbol, e.g., of a structure instance.

The maximum size of the string returned by the method is 255 characters. With longer strings, the method
will return a NULL string. In this case the method CopyJsonStringfromSymbol [P 96]() must be used.

Syntax

METHOD GetJsonStringFromSymbol : STRING (255)
VAR IN_OUT CONSTANT
sDatatype : STRING;
END VAR
VAR_INPUT
nData : UDINT;
pbData : PVOID;
END VAR

98 Version: 1.10 TF6701

BECKHOFF PLC API

VAR OUTPUT
hrErrorCode : HRESULT;
END VAR
Sample call:
sBuffer := fbJsonDataType.GetJsonStringFromSymbol ('ST Values', SIZEOF (stValues), ADR(stValues));

5.21.5.10 GetJsonStringFromSymbolProperties

This method generates a corresponding JSON representation of PLC attributes on a symbol. In contrast to
the AddJsonKeyPropertiesfromSymbol [P 95] method, the result is not written to an instance of the function
block FB_JsonSaxWriter, but to a string variable. The method receives as its input parameters the data type
name of the symbol and a string variable that represents a list of the PLC attributes to be extracted,
separated by a cross bar. The result is returned directly as the return value of the method.

The maximum size of the string returned by the method is 255 characters. With longer strings, the method

will return a NULL string. In this case the method CopyJsonStringFromSymbolProperties [P 97]() must be
used.

Syntax

METHOD GetJsonStringFromSymbolProperties : STRING(255)
VAR _IN OUT CONSTANT
sDatatype : STRING;
sProperties : STRING;
END VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR

Sample call:

sBuffer := fbJsonDataType.GetJsonStringFromSymbolProperties ('ST Values', 'Unit|DisplayName');

5.2.1.5.11 GetSizeJsonStringFromSymbol

This method reads the size of the JSON representation of a symbol. The value is specified with null
termination.

Syntax

METHOD GetSizeJsonStringFromSymbol : UDINT
VAR INPUT
nData :UDINT;
pData :PVOID;
END VAR
VAR IN OUT CONSTANT
sDatatype : STRING;
END_VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR

Sample call:

nlen := fbJsonDataType.GetSizedsonStringFromSymbol ('BOOL', SIZEOF (bBool) , ADR (bBool)) ;

5.21.512 GetSizeJsonStringFromSymbolProperties

This method reads the size of the JSON representation of PLC attributes on a symbol. The value is specified
with null termination.

Syntax

METHOD GetSizeJsonStringFromSymbolProperties : UDINT
VAR IN OUT CONSTANT
sDatatype : STRING;

TF6701 Version: 1.10 99

PLC AP BECKHOFF

sProperties : STRING;
END_VAR
VAR _OUTPUT

hrErrorCode : HRESULT;
END VAR

Sample call:

nLen := fbJsonDataType.GetSizeJsonStringFromSymbolProperties('ST Test', 'DisplayName|Unit');

5.21.513 GetSymbolNameByAddress

This method returns the complete (ADS) symbol name of a transferred symbol.

The maximum size of the string returned by the method is 255 characters. With longer strings, the method
will return a null string. In this case the method CopySymbolNameByAddress() [» 97] must be used.

Syntax

METHOD GetSymbolNameByAddress : STRING (255)
VAR INPUT
nData : UDINT;
pData : PVOID;
END_VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END_ VAR

Sample call:

sBuffer := fbJsonDataType.GetSymbolNameByAddress (SIZEOF (stValues), ADR(stValues));

5.21.5.14 SetSymbolFromJson

This method extracts a string containing a valid JSON message and attempts to save the contents of the
JSON object to an equivalent data structure. The method receives as its input parameters the string with the
JSON object, the data type name of the target structure, and the address and size of the target structure
instance.

Syntax

METHOD SetSymbolFromJson : BOOL
VAR IN OUT CONSTANT
sJson : STRING;
sDatatype : STRING;
END_ VAR
VAR INPUT
nData : UDINT;
pData : PVOID;
END_ VAR
VAR OUTPUT
hrErrorCode : HRESULT;
END VAR

Sample call:

fbJsonDataType.SetSymbolFromJson (sJson, 'ST Values',6 SIZEOF (stValuesReceive), ADR(stValuesReceive));

100 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6 FB_XmIDomParser

@® Strings in UTF-8 format

1 The variables of type STRING used here are based on the UTF-8 format. This STRING formatting
is common for MQTT communication as well as for JSON documents.

In order to be able to receive special characters and texts from a wide range of languages, the char-
acter set in the Tc3_lotBase and Tc3_JsonXml libraries is not limited to the typical character set of
the data type STRING. Instead, the Unicode character set in UTF-8 format is used in conjunction
with the data type STRING.

If the ASCII character set is used, there is no difference between the typical formatting of a STRING
and the UTF-8 formatting of a STRING.

Further information on the UTF-8 STRING format and available display and conversion options can
be found in the documentation for the Tc2 Utilities PLC library.

Requirements
TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4022 x86, x64, ARM Tc3_JsonXml

5.2.1.6.1 AppendAttribute

This method adds a new attribute to an existing node. The name and value of the new attribute and the
existing XML node are transferred to the method as input parameters. The method returns a reference to the
newly added attribute.

Syntax

METHOD AppendAttribute : SXmlAttribute
VAR INPUT
n : SXmlNode;
END_VAR
VAR IN_OUT CONSTANT
name : STRING;
value : STRING;
END_VAR

Sample call:

objAttribute := fbXml.AppendAttribute (objMachine, 'Name', 'some value');

5.2.1.6.2 AppendAttributeAsBool

This method adds a new attribute to an existing node. The value of the attribute has the data type Boolean.
The name and value of the new attribute and the existing XML node are transferred to the method as input
parameters. The method returns a reference to the newly added attribute.

Syntax

METHOD AppendAttributeAsBool : SXmlAttribute
VAR INPUT
n : SXmlNode;
END_VAR
VAR IN_OUT CONSTANT
name : STRING;
END VAR
VAR_INPUT
value : BOOL;
END VAR

Sample call:

objAttribute := fbXml.AppendAttributeAsBool (objMachine, 'Name', TRUE) ;

TF6701 Version: 1.10 101

https://infosys.beckhoff.de/content/1033/tcplclib_tc2_utilities/63050398266130955.html?id=4885121777342449589

PLC AP BECKHOFF

5.2.1.6.3 AppendAttributeAsDouble

This method adds a new attribute to an existing node. The value of the attribute has the data type Double.
The name and value of the new attribute and the existing XML node are transferred to the method as input
parameters. The method returns a reference to the newly added attribute.

Syntax

METHOD AppendAttributeAsDouble : SXmlAttribute
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : LREAL;
END VAR

Sample call:

objAttribute := fbXml.AppendAttributeAsDouble (objMachine, 'Name', 42.42);

5.2.1.6.4 AppendAttributeAsFloat

This method adds a new attribute to an existing node. The value of the attribute has the data type Float. The
name and value of the new attribute and the existing XML node are transferred to the method as input
parameters. The method returns a reference to the newly added attribute.

Syntax

METHOD AppendAttributeAsFloat : SXmlAttribute
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
name : STRING;
END_VAR
VAR INPUT
value : REAL;
END VAR

Sample call:

objAttribute := fbXml.AppendAttributeAsFloat (objMachine, 'Name',6 42.42);

5.2.1.6.5 AppendAttributeAsint

This method adds a new attribute to an existing node. The value of the attribute has the data type Integer.
The name and value of the new attribute and the existing XML node are transferred to the method as input
parameters. The method returns a reference to the newly added attribute.

Syntax

METHOD AppendAttributeAsInt : SXmlAttribute
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : DINT;
END VAR

Sample call:

objAttribute := fbXml.AppendAttributeAsInt (objMachine, 'Name',6 42);

102 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6.6 AppendAttributeAsLint

This method adds a new attribute to an existing node. The value of the attribute has the data type Integer64.
The name and value of the new attribute and the existing XML node are transferred to the method as input
parameters. The method returns a reference to the newly added attribute.

Syntax

METHOD AppendAttributeAsLint : SXmlAttribute
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : LINT;
END VAR

Sample call:

objAttribute := fbXml.AppendAttributeAsLint (objMachine, 'Name', 42);

5.2.1.6.7 AppendAttributeAsUint

This method adds a new attribute to an existing node. The value of the attribute has the data type Unsigned
Integer. The name and value of the new attribute and the existing XML node are transferred to the method
as input parameters. The method returns a reference to the newly added attribute.

Syntax

METHOD AppendAttributeAsUint : SXmlAttribute
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
name : STRING;
END_VAR
VAR INPUT
value : UDINT;
END VAR

Sample call:

objAttribute := fbXml.AppendAttributeAsUint (objMachine, 'Name', 42);

5.2.1.6.8 AppendAttributeAsUlint

This method adds a new attribute to an existing node. The value of the attribute has the data type Unsigned
Integer64. The name and value of the new attribute and the existing XML node are transferred to the method
as input parameters. The method returns a reference to the newly added attribute.

Syntax

METHOD AppendAttributeAsUlint : SXmlAttribute
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : ULINT;
END VAR

Sample call:

objAttribute := fbXml.AppendAttributeAsUlint (objMachine, 'Name', 42);

TF6701 Version: 1.10 103

PLC AP BECKHOFF

5.2.1.6.9 AppendAttributeCopy

This method adds a new attribute to an existing node. The name and value of the new attribute are copied
from an existing attribute. The existing attribute is transferred to the method as input parameter.

Syntax

METHOD AppendAttributeCopy : SXmlAttribute
INPUT VAR

n : SXmlNode;

copy : SXmlAttribute;
END VAR

Sample call:

xmlNewAttribute := fbXml.AppendAttributeCopy (xmlNode, xmlExistingAttribute);

5.2.1.6.10 AppendChild

This method inserts a new node below an existing node. The value of the new node has the data type
STRING. The name and value of the new node and a reference to the existing node are transferred to the
method as input parameters. The method returns a reference to the newly added node. The input parameter
cdata indicates whether the value of the node is to be encapsulated in a CDATA function block, so that
certain special characters such as "<" and ">" are allowed as values.

Syntax

METHOD AppendChild : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
name : STRING;
value : STRING;
END VAR
VAR INPUT
cdata : BOOL;
END VAR

Sample call:

xmlNewNode := fbXml.AppendChild(xmlExisting, 'Controller',6 'CX5120', FALSE);

5.2.1.6.11 AppendChildAsBool

This method inserts a new node below an existing node. The value of the new node has the data type
Boolean. The name and value of the new node and a reference to the existing node are transferred to the
method as input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendChildAsBool : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN_OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : BOOL;
END_ VAR

Sample call:

xmlNewNode := fbXml.AppendChildAsBool (xmlExisting, 'SomeName', TRUE) ;

104 Version: 1.10 TF6701

BECKHOFF PLC API

5.21.6.12 AppendChildAsDouble

This method inserts a new node below an existing node. The value of the new node has the data type
Double. The name and value of the new node and a reference to the existing node are transferred to the
method as input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendChildAsDouble : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : LREAL;
END VAR

Sample call:

xmlNewNode := fbXml.AppendChildAsDouble (xmlExisting, 'SomeName', 42.42);

5.21.6.13 AppendChildAsFloat

This method inserts a new node below an existing node. The value of the new node has the data type Float.
The name and value of the new node and a reference to the existing node are transferred to the method as
input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendChildAsFloat : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
name : STRING;
END_VAR
VAR INPUT
value : REAL;
END VAR

Sample call:

xmlNewNode := fbXml.AppendChildAsFloat (xmlExisting, 'SomeName', 42.42);

5.2.1.6.14 AppendChildAsint

This method inserts a new node below an existing node. The value of the new node has the data type
Integer. The name and value of the new node and a reference to the existing node are transferred to the
method as input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendChildAsInt : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : DINT;
END VAR

Sample call:

xmlNewNode := fbXml.AppendChildAsInt (xmlExisting, 'SomeName', 42);

TF6701 Version: 1.10 105

PLC AP BECKHOFF

5.2.1.6.15 AppendChildAsLint

This method inserts a new node below an existing node. The value of the new node has the data type
Integer64. The name and value of the new node and a reference to the existing node are transferred to the
method as input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendChildAsLint : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : LINT;
END VAR

Sample call:

xmlNewNode := fbXml.AppendChildAsLint (xmlExisting, 'SomeName', 42);

5.21.6.16 AppendChildAsUint

This method inserts a new node below an existing node. The value of the new node has the data type
Unsigned Integer. The name and value of the new node and a reference to the existing node are transferred
to the method as input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendChildAsUint : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
name : STRING;
END_VAR
VAR INPUT
value : UDINT;
END VAR

Sample call:

xmlNewNode := fbXml.AppendChildAsUint (xmlExisting, 'SomeName', 42);

5.2.1.6.17 AppendChildAsUlint

This method inserts a new node below an existing node. The value of the new node has the data type
Unsigned Integer64. The name and value of the new node and a reference to the existing node are
transferred to the method as input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendChildAsUlint : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR
VAR INPUT
value : ULINT;
END VAR

Sample call:

xmlNewNode := fbXml.AppendChildAsUlint (xmlExisting, 'SomeName', 42);

106 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6.18 AppendCopy

This method inserts a new node below an existing node. The name and value of the new node are copied
from an existing node. The references to the existing nodes are transferred to the method as input
parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendCopy : SXmlNode
VAR INPUT

n : SXmlNode;

copy : SXmlNode;
END VAR

Sample call:

xmlNewNode := fbXml.AppendCopy (xmlParentNode, xmlExistingNode) ;

5.2.1.6.19 AppendNode

This method adds a new node to an existing node. The existing node and the name of the new node are
transferred to the method as input parameters. The method returns a reference to the newly added node.

Syntax

METHOD AppendNode : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN_OUT CONSTANT
name : STRING;
END VAR

Sample call:

objMachines := fbXml.AppendNode (objRoot, 'Machines');

5.2.1.6.20 Attributes

This method can be used to read the attribute of a given XML node. The XML node and the name of the
attribute are transferred to the method as input parameters. After the method has been called, further
methods have to be called, for example to read the value of the attribute, e.g. AttributeAsInt().

Syntax

METHOD Attribute : SXmlAttribute
VAR INPUT
n : SXmlNode;
END_ VAR
VAR _IN_ OUT CONSTANT
name : STRING;
END_ VAR

Sample call:

xmlMachinelAttribute := fbXml.Attribute (xmlMachinel, 'Type'):;

5.2.1.6.21 AttributeAsBool

This method returns the value of an attribute as data type Boolean. The attribute is transferred to the method
as input parameter.

Syntax

METHOD AttributeAsBool : BOOL
VAR _INPUT

a : SXmlAttribute;
END VAR

TF6701 Version: 1.10 107

PLC AP BECKHOFF

Sample call:

bValue := fbXml.AttributeAsBool (xmlAttr) ;

5.2.1.6.22 AttributeAsDouble

This method returns the value of an attribute as data type Double. The attribute is transferred to the method
as input parameter.

Syntax
METHOD AttributeAsDouble : LREAL
VAR INPUT
a : SXmlAttribute;
END VAR
Sample call:

lrValue := fbXml.AttributeAsDouble (xmlAttr) ;

5.2.1.6.23 AttributeAsFloat

This method returns the value of an attribute as data type Float. The attribute is transferred to the method as
input parameter.

Syntax
METHOD AttributeAsFloat : REAL
VAR INPUT
a : SXmlAttribute;
END VAR
Sample call:

rValue := fbXml.AttributeAsFloat (xmlAttr);

5.2.1.6.24 AttributeAsint

This method returns the value of an attribute as a data type Integer. The attribute is transferred to the
method as input parameter.

Syntax
METHOD AttributeAsInt : DINT
VAR INPUT
a : SXmlAttribute;
END_ VAR
Sample call:

nValue := fbXml.AttributeAsInt (xmlAttr);

5.2.1.6.25 AttributeAsLint

This method returns the value of an attribute as a data type Integer64. The attribute is transferred to the
method as input parameter.

Syntax

METHOD AttributeAsLint : LINT
VAR INPUT

a : SXmlAttribute;
END VAR

Sample call:

nValue := fbXml.AttributeAsLint (xmlAttr);

108 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6.26 AttributeAsUint

This method returns the value of an attribute as data type Unsigned Integer. The attribute is transferred to
the method as input parameter.

Syntax
METHOD AttributeAsUint : UDINT
VAR _INPUT
a : SXmlAttribute;
END VAR
Sample call:

nValue := fbXml.AttributeAsUint (xmlAttr) ;

5.2.1.6.27 AttributeAsUlint

This method returns the value of an attribute as data type Unsigned Integer64. The attribute is transferred to
the method as input parameter.

Syntax
METHOD AttributeAsUlint : ULINT
VAR _INPUT
a : SXmlAttribute;
END VAR
Sample call:

nValue := fbXml.AttributeAsUlint (xmlAttr);

5.2.1.6.28 AttributeBegin

This method returns an iterator over all attributes of an XML node. The XML node is transferred to the
method as input parameter.

Syntax

METHOD AttributeBegin : SXmlIterator

VAR INPUT
n : SXmlNode;

END VAR

Sample call:

xmlIterator := fbXml.AttributeBegin (xmlNode) ;

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlAttr := fbXml.AttributeFromIterator (xmlIterator);
nAttrValue := fbXml.AttributeAsInt (xmlAttr);
xmlIterator := fbXml.Next (xmlIterator);

END WHILE

5.2.1.6.29 AttributeFromlterator

This method converts the current position of an iterator to an XML attribute object. The iterator is transferred
to the method as input parameter.

Syntax

METHOD AttributeFromIterator : SXmlAttribute
VAR INPUT

it : SXmlIterator;
END_ VAR

Sample call:

TF6701 Version: 1.10 109

PLC AP BECKHOFF

xmlIterator := fbXml.AttributeBegin (xmlNode) ;

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlAttr := fbXml.AttributeFromIterator (xmlIterator);
nAttrValue := fbXml.AttributeAsInt (xmlAttr);
xmlIterator := fbXml.Next (xmlIterator):;

END WHILE

5.2.1.6.30 AttributeName

This method returns the name of a given attribute. The attribute is transferred to the method as input
parameter.

Syntax

METHOD AttributeName : STRING
VAR INPUT

a : SXmlAttribute;
END VAR

Sample call:

sName := fbXml.AttributeName (xmlAttr) ;

5.2.1.6.31 Attributes

This method is used to navigate through the DOM and returns an iterator for all attributes found at an XML
node. The iterator can then be used for further navigation through the elements that were found. The node
and a reference to the iterator are transferred to the method as input parameters.

Syntax

METHOD Attributes : SXmlAttribute
VAR INPUT

n : SXmlNode;

it : REFERENCE TO SXmlIterator;

END VAR

Sample call:

xmlRet := fbXml.Attributes (xmlNode, xmlIterator);

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlMachineAttrRef := fbXml.Attribute (xmlIterator);
xmlMachineAttrText := fbXml.AttributeText (xmlMachineAttrRef) ;
xmlIterator := fbXml.Next (xmlIterator):;

END WHILE

5.2.1.6.32 AttributeText

This method returns the text of a given attribute. The attribute is transferred to the method as input
parameter.

Syntax

METHOD AttributeText : STRING (255)
VAR INPUT
a : SXmlAttribute;
END VAR
Sample call:

sText := fbXml.AttributeText (xmlAttr);

5.2.1.6.33 Begin

This method returns an iterator over all child elements of an XML node, always starting from the first child
element. The XML node is transferred to the method as input parameter.

110 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax

METHOD Begin : SXmlIterator

VAR INPUT
n : SXmlNode;

END_VAR

Sample call:

xmlIterator := fbXml.Begin (xmlNode) ;

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlNodeRef := fbXml.Node (xmlIterator);
xmlNodeValue := fbXml.NodeText (xmlNodeRef) ;
xmlIterator := fbXml.Next (xmlIterator):;

END WHILE

5.2.1.6.34 BeginByName

This method returns an iterator over all child elements of an XML node, starting at a particular element. The
XML node is transferred to the method as input parameter.

Syntax

METHOD BeginByName : SXmlIterator
VAR _INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;

END VAR

Sample call:

xmlNode := fbXml.ChildByName (xmlDoc, 'Machines');

xmlIterator := fbXml.BeginByName (xmlNode, 'NameX') ;

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlNodeRef := fbXml.Node (xmlIterator);
xmlNodeValue := fbXml.NodeText (xmlNodeRef) ;
xmlIterator := fbXml.Next (xmlIterator):;

END WHILE

5.2.1.6.35 Child

This method is used to navigate through the DOM. It returns a reference to the (first) child element of the
current node. The start node is transferred to the method as input parameter.

Syntax

METHOD ChildByName : SXmlNode
VAR INPUT

n : SXmlNode;
END VAR

Sample call:
xmlChild := fbXml.Child (xmlNode) ;

5.2.1.6.36 ChildByAttribute

This method is used to navigate through the DOM. It returns a reference to a child element in the XML
document. The start node and the name and value of the attribute are transferred to the method as input
parameters.

Syntax

METHOD ChildByAttribute : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR_IN OUT CONSTANT

TF6701 Version: 1.10 111

PLC AP BECKHOFF

attr : STRING;
value : STRING;
END_VAR

Sample call:

xmlMachinel := fbXml.ChildByAttribute (xmlMachines, 'Type', '1');

5.2.1.6.37 ChildByAttributeAndName

This method is used to navigate through the DOM. It returns a reference to a child element in the XML
document. The start node, the name and value of the attribute, and the name of the child element are
transferred to the method as input parameters.

Syntax

METHOD ChildByAttributeAndName : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
attr : STRING;
value : STRING;
child : STRING;
END VAR

Sample call:

xmlMachine?2 := fbXml.ChildByAttributeAndName (xmlMachines, 'Type', '2', 'Machine');

5.2.1.6.38 ChildByName

This method is used to navigate through the DOM. It returns a reference to a child element in the XML
document. The start node and the name of the element to be returned are transferred to the method as input
parameters.

Syntax

METHOD ChildByName : SXmlNode
VAR _INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END_ VAR

Sample call:

xmlMachines := fbXml.ChildByName (xmlDoc, 'Machines');

5.2.1.6.39 Children

This method is used to navigate through the DOM. It returns an iterator for several child elements found in
the XML document. The iterator can then be used for further navigation through the elements that were
found. The start node and a reference to the iterator are transferred to the method as input parameters.

Syntax

METHOD Children : SXmlNode
VAR INPUT

n : SXmlNode;

it : REFERENCE TO SXmlIterator;
END VAR

Sample call:

xmlRet := fbXml.Children (xmlNode, xmlIterator);
WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlMachineNodeRef := fbXml.Node (xmlIterator);

112 Version: 1.10 TF6701

BECKHOFF PLC API

xmlMachineNodeText := fbXml.NodeText (xmlMachineNodeRef) ;
xmlIterator := fbXml.Next (xmlIterator);
END WHILE

5.2.1.6.40 ChildrenByName

This method is used to navigate through the DOM. It returns an iterator for several child elements found in
the XML document. The iterator can then be used for further navigation through the elements that were
found. The start node, the name of the child elements to be found and a reference to the iterator are
transferred to the method as input parameters.

Syntax

METHOD ChildrenByName : SXmlNode
VAR INPUT

n : SXmlNode;

it : REFERENCE TO SXmlIterator;
END_ VAR
VAR IN OUT CONSTANT

name : STRING;

END_VAR
Sample call:
xmlMachineNode := fbXml.ChildrenByName (xmlMachines, xmlIterator, 'Machine');
WHILE NOT fbXml.IsEnd(xmlIterator) DO

xmlMachineNodeRef := fbXml.Node (xmlIterator);

xmlMachineNodeText := fbXml.NodeText (xmlMachineNodeRef) ;

xmlIterator := fbXml.Next (xmlIterator):;
END WHILE

5.2.1.6.41 Compare

This method checks two iterators for equality.

Syntax

METHOD Compare : BOOL
VAR INPUT
itl : SXmlIterator;
it2 : SXmlIterator;
END VAR

Sample call:

bResult := fbXml.Compare (xmlItl, xmlIt2);

5.21.6.42 CopyAttributeText

This method reads the value of an XML attribute and writes it to a variable of data type String. The XML
attribute, the target variable and the length to be written are transferred to the method as input parameters.
The method returns the actual size.

Syntax

METHOD CopyAttributeText : UDINT
VAR INPUT
a : SXmlAttribute;
END VAR
VAR IN OUT CONSTANT
sXml : STRING;
END VAR
VAR INPUT
nXml : UDINT;
END_VAR

Sample call:

nLength := fbXml.CopyAttributeText (xmlAttr, sTarget, SIZEOF (sTarget));

TF6701 Version: 1.10 113

PLC AP BECKHOFF

5.21.6.43 CopyDocument

This method copies the contents of the DOM memory into a variable of the data type String. The length to be
written and the variable into which the resulting string is to be written are transferred to the method as input
parameters. The method returns the actually written length. Note that the size of the string variable is at least
equal to the size of the XML document in the DOM.

Syntax

METHOD CopyDocument : UDINT
VAR _IN_OUT CONSTANT
sXml : STRING;
END VAR
VAR _INPUT
nXml : UDINT;
END VAR

Sample call:

nLength := fbXml.CopyDocument (sTarget, SIZEOF (sTarget))

5.2.1.6.44 CopyNodeText

This method reads the value of an XML node and writes it to a variable of data type String. The XML node,
the target variable and the length to be written are transferred to the method as input parameters. The
method returns the actual size.

Syntax

METHOD CopyNodeText : UDINT
VAR INPUT
n : SXmlNode;
END VAR
VAR_IN OUT CONSTANT
sXml : STRING;
END_ VAR
VAR INPUT
nXml : UDINT;
END VAR

Sample call:

nLength := fbXml.CopyNodeText (xmlNode, sTarget, SIZEOF (sTarget));

5.21.6.45 CopyNodeXml

This method reads the XML structure of an XML node and writes it to a variable of data type String. The XML
node, the target variable and the length to be written are transferred to the method as input parameters. The
method returns the actual size.

Syntax

METHOD CopyNodeXml : UDINT
VAR INPUT
a : SXmlNode;
END_VAR
VAR IN OUT CONSTANT
sXml : STRING;
END_VAR
VAR _INPUT
nXml : UDINT;
END VAR

Sample call:

nLength := fbXml.CopyNodeXml (xmlNode, sTarget, SIZEOF (sTarget))

114 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6.46 FirstNodeByPath

This method navigates through an XML document using a path that was transferred to the method. The path
and the start node are transferred to the method as input parameters. The path is specified with "/" as
separator. The method returns a reference to the XML node that was found.

Syntax

METHOD FirstNodeByPath : SXmlNode
VAR INPUT
n : SXmlNode;
path : STRING;
END_VAR
Sample call:

xmlFoundNode := fbXml.FirstNodeByPath (xmlStartNode, 'Levell/Level2/Level3');

5.2.1.6.47 GetAttributeTextLength

This method returns the length of the value of an XML attribute. The XML attribute is transferred to the
method as input parameter.

Syntax

METHOD GetAttributeTextLength : UDINT
VAR INPUT

a : SXmlAttribute;
END VAR

Sample call:

nLength := fbXml.GetAttributeTextLength (xmlAttr);

5.2.1.6.48 GetDocumentLength

This method returns the length of an XML document in bytes.

Syntax

METHOD GetDocumentLength : UDINT
Sample call:

nLength := fbXml.GetDocumentLength();

5.2.1.6.49 GetDocumentNode

This method returns the root node of an XML document. This is not the same as the first XML node in the
document (the method GetRootNode() should be used for this). The method can also be used to create an
empty XML document in the DOM.

Syntax

METHOD GetDocumentNode : SXmlNode
Sample call:

objRoot := fbXml.GetDocumentNode () ;

5.21.6.50 GetNodeTextLength

This method returns the length of the value of an XML node. The XML node is transferred to the method as
input parameter.

TF6701 Version: 1.10 115

PLC AP BECKHOFF

Syntax

METHOD GetNodeTextLength : UDINT
VAR INPUT
n : SXmlNode;
END VAR
Sample call:

nLength := fbXml.GetNodeTextLength (xmlNode) ;

5.2.1.6.51 GetNodeXmlLength

This method returns the length of the XML structure of an XML node. The XML node is transferred to the
method as input parameter.

Syntax

METHOD GetNodeXmlLength : UDINT
VAR INPUT

n : SXmlNode;
END_ VAR

Sample call:

nLength := fbXml.GetNodeXmlLength (xmlNode) ;

5.2.1.6.52 GetRootNode

This method returns a reference to the first XML node in the XML document.

Syntax

METHOD GetRootNode : SXmlNode
Sample call:

xmlRootNode := fbXml.GetRootNode () ;

5.2.1.6.53 InsertAttributeCopy

This method adds an attribute to an XML node. The name and value of an existing attribute are copied. The
attribute can be placed at a specific position. The XML node, the position and a reference to the existing
attribute object are transferred to the method as input parameters. The method returns a reference to the
newly added attribute.

Syntax

METHOD InsertAttributeCopy : SXmlAttribute
VAR INPUT

n : SXmlNode;

before : SXmlAttribute;

copy : SXmlAttribute;
END VAR

Sample call:

xmlNewAttr := fbXml.InsertAttributeCopy (xmlNode, xmlBeforeAttr, xmlCopyAttr);

5.2.1.6.54 InsertAttribute

This method adds an attribute to an XML node. The attribute can be placed at a specific position. The XML

node and the position and name of the new attribute are transferred to the method as input parameters. The
method returns a reference to the newly added attribute. A value for the attribute can then be entered using
the SetAttribute() method, for example.

116 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax

METHOD InsertAttribute : SXmlAttribute
VAR INPUT
n : SXmlNode;
before : SXmlAttribute;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR

Sample call:

xmlNewAttr := fbXml.InsertAttribute (xmlNode, xmlBeforeAttr, 'SomeName'):;

5.2.1.6.55 InsertChild

This method adds a node to an existing XML node. The new node can be placed at a specific location. The
existing XML node and the position and name of the new node are transferred to the method as input
parameters. The method returns a reference to the newly added node. A value for the node can then be
entered using the SetChild() method, for example.

Syntax

METHOD InsertChild : SXmlNode
VAR INPUT
n : SXmlNode;
before : SXmlNode;
END VAR
VAR_IN OUT CONSTANT
name : STRING;
END_ VAR

Sample call:

xmlNewNode := fbXml.InsertChild(xmlNode, xmlBeforeNode, 'SomeName') ;

5.2.1.6.56 InsertCopy

This method adds a new node to an existing XML node and copies an existing node. The new node can be
placed anywhere in the existing node. The XML node, the position and a reference to the existing node
object are transferred to the method as input parameters. The method returns a reference to the newly
added node.

Syntax

METHOD InsertCopy : SXmlNode
VAR _INPUT

n : SXmlNode;

before : SXmlNode;

copy : SXmlNode;
END VAR

Sample call:

xmlNewNode := fbXml.InsertCopy (xmlNode, xmlBeforeNode, xmlCopyNode) ;

5.2.1.6.57 IsEnd

This method checks whether a given XML iterator is at the end of the iteration that is to be performed.

Syntax

METHOD IsEnd : BOOL
VAR INPUT

it : SXmlIterator;
END_ VAR

Sample call:

TF6701 Version: 1.10 117

PLC AP BECKHOFF

xmlIterator := fbXml.Begin (xmlNode) ;

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlNodeRef := fbXml.Node (xmlIterator);
xmlNodeValue := fbXml.NodeText (xmlNodeRef) ;
xmlIterator := fbXml.Next (xmlIterator):;

END WHILE

5.2.1.6.58 LoadDocumentFromFile

This method loads an XML document from a file. The absolute path to the file is transferred to the method as
input parameter.

A rising edge on the input parameter bExec triggers the loading procedure. The asynchronous process is
terminated as soon as the reference bExec is set back to FALSE from the method. When the process ends,
the return value of the method indicates for one call whether the loading of the file was successful (TRUE) or
failed (FALSE).

Syntax

METHOD LoadDocumentFromFile : BOOL
VAR _IN OUT CONSTANT
sFile : STRING;
END VAR
VAR INPUT
bExec : REFERENCE TO BOOL;
END VAR
VAR OUTPUT
hrErrorCode: HRESULT;
END_VAR

Sample call:

IF bLoad THEN
bLoaded := fbXml.LoadDocumentFromFile ('C:\Test.xml', bLoad);
END IF

5.2.1.6.59 NewDocument

This method creates an empty XML document in the DOM memory.

Syntax

METHOD NewDocument : BOOL

Sample call:

fbXml.NewDocument () ;

5.2.1.6.60 Next

This method sets an XML iterator for the next object that is to be processed.

Syntax

METHOD Next : SXmlIterator

VAR _INPUT
it : SXmlIterator;

END VAR

Sample call:

xmlIterator := fbXml.Begin (xmlNode) ;

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlNodeRef := fbXml.Node (xmlIterator);
xmlNodeValue := fbXml.NodeText (xmlNodeRef) ;
xmlIterator := fbXml.Next (xmlIterator):;

END WHILE

118 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6.61 NextAttribute

This method returns the next attribute for a given XML attribute.

Syntax

METHOD NextAttribute : SXmlAttribute
VAR INPUT

a : SXmlAttribute;
END VAR

Sample call:

xmlNextAttr := fbXml.NextAttribute (xmlAttr);

5.2.1.6.62 NextByName

This method sets an XML iterator for the next object that is to be processed, which is identified by its name.

Syntax

METHOD NextByName : SXmlIterator
VAR _INPUT
it : SXmlIterator;
END VAR
VAR _IN OUT CONSTANT
name : STRING;

END_ VAR
Sample call:
xmlIterator := fbXml.Begin (xmlNode) ;
WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlNodeRef := fbXml.Node (xmlIterator);
xmlNodeValue := fbXml.NodeText (xmlNodeRef) ;
xmlIterator := fbXml.NextByName (xmlIterator, 'SomeName');
END WHILE

5.2.1.6.63 NextSibling

This method returns the next direct node for a given XML node at the same XML level.

Syntax

METHOD NextSibling : SXmlNode
VAR INPUT

n : SXmlNode;
END_ VAR

Sample call:

xmlSibling := fbXml.NextSibling (xmlNode) ;

5.2.1.6.64 NextSiblingByName

This method returns the next direct node for a given XML node with a particular name at the same XML
level.

Syntax

METHOD NextSiblingByName : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
name : STRING;
END_VAR

Sample call:

TF6701 Version: 1.10 119

PLC AP BECKHOFF

xmlSibling := fbXml.NextSibling(xmlNode, 'SomeName') ;

5.2.1.6.65 Node

This method is used in conjunction with an iterator to navigate through the DOM. The iterator is transferred
to the method as input parameter. The method then returns the current XML node as return value.

Syntax

METHOD Node : SXmlNode

VAR INPUT
it : SXmlIterator;

END VAR

Sample call:

xmlMachineNode := fbXml.ChildrenByName (xmlMachines, xmlIterator, 'Machine');

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlMachineNode := fbXml.Node (xmlIterator);
xmlMachineNodeValue := fbXml.NodeText (xmlMachineNode) ;
xmlIterator := fbXml.Next (xmlIterator):;

END WHILE

5.2.1.6.66 NodeAsBool

This method returns the text of an XML node as data type Boolean. The XML node is transferred to the
method as input parameter.

Syntax

METHOD NodeAsBool : BOOL
VAR INPUT

n : SXmlNode;
END VAR

Sample call:

bXmlNode:= fbXml.NodeAsBool (xmlMachinel) ;

5.2.1.6.67 NodeAsDouble

This method returns the text of an XML node as data type Double. The XML node is transferred to the
method as input parameter.

Syntax

METHOD NodeAsDouble : LREAL
VAR INPUT

n : SXmlNode;
END VAR

Sample call:

lrXmlNode:= fbXml.NodeAsDouble (xmlMachinel) ;

5.2.1.6.68 NodeAsFloat

This method returns the text of an XML node as data type Float. The XML node is transferred to the method
as input parameter.

Syntax

METHOD NodeAsFloat : REAL
VAR INPUT

n : SXmlNode;
END VAR

120 Version: 1.10 TF6701

BECKHOFF PLC API

Sample call:

rXmlNode:= fbXml.NodeAsFloat (xmlMachinel) ;

5.2.1.6.69 NodeAsInt

This method returns the text of an XML node as a data type Integer. The XML node is transferred to the
method as input parameter.

Syntax
METHOD NodeAsInt : DINT
VAR INPUT
n : SXmlNode;
END_ VAR
Sample call:

nXmlNode:= fbXml.NodeAsInt (xmlMachinel) ;

5.2.1.6.70 NodeAsLint

This method returns the text of an XML node as a data type Integer64. The XML node is transferred to the
method as input parameter.

Syntax
METHOD NodeAsLint : LINT
VAR INPUT
n : SXmlNode;
END VAR
Sample call:

nXmlNode:= fbXml.NodeAsLint (xmlMachinel) ;

5.2.1.6.71 NodeAsUint

This method returns the text of an XML node as data type Unsigned Integer. The XML node is transferred to
the method as input parameter.

Syntax
METHOD NodeAsUint : UDINT
VAR INPUT
n : SXmlNode;
END VAR
Sample call:

nXmlNode:= fbXml.NodeAsUint (xmlMachinel) ;

5.2.1.6.72 NodeAsUlint

This method returns the text of an XML node as data type Unsigned Integer64. The XML node is transferred
to the method as input parameter.

Syntax

METHOD NodeAsUlint : ULINT
VAR INPUT

n : SXmlNode;
END_ VAR

Sample call:

nXmlNode:= fbXml.NodeAsUlint (xmlMachinel) ;

TF6701 Version: 1.10 121

PLC AP BECKHOFF

5.21.6.73 NodeName

This method returns the name of an XML node. A reference to the XML node is transferred to the method as
input parameter.

Syntax

METHOD NodeName : STRING
VAR INPUT

n : SXmlNode;
END VAR

Sample call:

sNodeName := fbXml.NodeName (xmlMachinel) ;

5.2.1.6.74 NodeText

This method returns the text of an XML node. The XML node is transferred to the method as input
parameter.

Syntax

METHOD NodeText : STRING(255)
VAR INPUT

n : SXmlNode;
END VAR

Sample call:

sMachinelName := fbXml.NodeText (xmlMachinel) ;

5.2.1.6.75 ParseDocument

This method loads an XML document into the DOM memory for further processing. The XML document
exists as a string and is transferred to the method as input parameter. A reference to the XML document in
the DOM is returned to the caller.

Syntax

METHOD ParseDocument : SXmlNode
VAR IN _OUT CONSTANT

sXml : STRING;
END VAR

Sample call:

xmlDoc := fbXml.ParseDocument (sXmlToParse) ;

5.2.1.6.76 RemoveChild

This method removes an XML child node from a given XML node. The two XML nodes are transferred to the
method as input parameters. The method returns TRUE if the operation was successful and the XML node
was removed.

Syntax

METHOD RemoveChild : BOOL
VAR INPUT

n : SXmlNode;

child : SXmlNode;
END_VAR

Sample call:

bRemoved := fbXml.RemoveChild (xmlParent, xmlChild);

122 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6.77 RemoveChildByName

This method removes an XML child node from a given XML node. The node to be removed is addressed by
its name. If there is more than one child node, the last child node is removed. The method returns TRUE if
the operation was successful and the XML node was removed.

Syntax

METHOD RemoveChildByName : BOOL
VAR INPUT
n : SXmlNode;
END VAR
VAR _IN OUT CONSTANT
name : STRING;
END VAR

Sample call:

bRemoved := fbXml.RemoveChildByName (xmlParent, 'SomeName') ;

5.2.1.6.78 SaveDocumentToFile

This method saves the current XML document in a file. The absolute path to the file is transferred to the
method as input parameter.

A rising edge at the input parameter bExec triggers the saving procedure. The asynchronous process is
terminated as soon as the reference bExec is set back to FALSE from the method. When the process ends,
the return value of the method indicates for one call whether saving of the file was successful (TRUE) or
failed (FALSE).

Syntax

METHOD SaveDocumentToFile : BOOL
VAR _IN OUT CONSTANT
sFile : STRING;
END VAR
VAR INPUT
bExec : REFERENCE TO BOOL;
END VAR
VAR OUTPUT
hrErrorCode: HRESULT;
END_ VAR

Sample call:

IF bSave THEN
bSaved = fbXml.SaveDocumentToFile ('C:\Test.xml', bSave);
END IF

5.2.1.6.79 SetAttribute

This method sets the value of an attribute. The value has the data type String.

Syntax

METHOD SetAttribute : SXmlAttribute
VAR INPUT
a : SXmlAttribute;
END VAR
VAR IN OUT CONSTANT
value : STRING;
END_VAR

Sample call:

xmlAttr := fbXml.SetAttribute (xmlExistingAttr, 'Test');

TF6701 Version: 1.10 123

PLC AP BECKHOFF

5.2.1.6.80 SetAttributeAsBool

This method sets the value of an attribute. The value has the data type Boolean.

Syntax

METHOD SetAttributeAsBool : SXmlAttribute
VAR INPUT
a : SXmlAttribute;
value : BOOL;
END_ VAR
Sample call:

xmlAttr := fbXml.SetAttributeAsBool (xmlExistingAttr, TRUE) ;

5.2.1.6.81 SetAttributeAsDouble

This method sets the value of an attribute. The value here has the data type Double.

Syntax

METHOD SetAttributeAsDouble : SXmlAttribute
VAR INPUT
a : SXmlAttribute;
value : LREAL;
END_VAR
Sample call:

xmlAttr := fbXml.SetAttributeAsDouble (xmlExistingAttr, 42.42);

5.2.1.6.82 SetAttributeAsFloat

This method sets the value of an attribute. The value has the data type Float.

Syntax

METHOD SetAttributeAsFloat : SXmlAttribute
VAR INPUT
a : SXmlAttribute;
value : REAL;
END VAR
Sample call:

xmlAttr := fbXml.SetAttributeAsFloat (xmlExistingAttr, 42.42);

5.2.1.6.83 SetAttributeAsint

This method sets the value of an attribute. The value has the data type Integer.

Syntax

METHOD SetAttributeAsInt : SXmlAttribute
VAR INPUT
a : SXmlAttribute;
value : DINT;
END_VAR
Sample call:

xmlAttr := fbXml.SetAttributeAsInt (xmlExistingAttr, 42);

5.2.1.6.84 SetAttributeAsLint

This method sets the value of an attribute. The value has the data type Integer64.

124 Version: 1.10 TF6701

BECKHOFF PLC API

Syntax

METHOD SetAttributeAsLint : SXmlAttribute
VAR INPUT

a : SXmlAttribute;

value : LINT;
END_ VAR

Sample call:

xmlAttr := fbXml.SetAttributeAsLint (xmlExistingAttr, 42);

5.2.1.6.85 SetAttributeAsUint

This method sets the value of an attribute. The value has the data type Unsigned Integer.

Syntax

METHOD SetAttributeAsUint : SXmlAttribute
VAR INPUT

a : SXmlAttribute;

value : UDINT;
END_ VAR

Sample call:

xmlAttr := fbXml.SetAttributeAsUint (xmlExistingAttr, 42);

5.2.1.6.86 SetAttributeAsUlint

This method sets the value of an attribute. The value has the data type Unsigned Integer64.

Syntax

METHOD SetAttributeAsUlint : SXmlAttribute
VAR INPUT

a : SXmlAttribute;

value : ULINT;
END_ VAR

Sample call:

xmlAttr := fbXml.SetAttributeAsUlint (xmlExistingAttr, 42);

5.2.1.6.87 SetChild

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type String. The input parameter cdata indicates whether the value of the node is to be encapsulated in
a CDATA function block, so that certain special characters such as "<" and ">" are allowed as values.

Syntax

METHOD SetChild : SXmlNode
VAR INPUT
n : SXmlNode;
END VAR
VAR IN OUT CONSTANT
value : STRING;
END VAR
VAR INPUT
cdata : BOOL;
END VAR

Sample call:

xmlNode := fbXml.SetChild(xmlExistingNode, 'SomeText', FALSE);

TF6701 Version: 1.10 125

PLC AP BECKHOFF

5.2.1.6.88 SetChildAsBool

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type Boolean.

Syntax

METHOD SetChildAsBool : SXmlNode
VAR INPUT

n : SXmlNode;

value : BOOL;
END VAR

Sample call:

xmlNode := fbXml.SetChild(xmlExistingNode, TRUE) ;

5.2.1.6.89 SetChildAsDouble

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type Double.

Syntax

METHOD SetChildAsDouble : SXmlNode
VAR INPUT

n : SXmlNode;

value : LREAL;
END VAR

Sample call:

xmlNode := fbXml.SetChildAsDouble (xmlExistingNode, 42.42);

5.2.1.6.90 SetChildAsFloat

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type Float.

Syntax

METHOD SetChildAsFloat : SXmlNode
VAR INPUT

n : SXmlNode;

value : REAL;
END_ VAR

Sample call:

xmlNode := fbXml.SetChildAsFloat (xmlExistingNode, 42.42);

5.2.1.6.91 SetChildAsint

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type Integer.

Syntax

METHOD SetChildAsInt : SXmlNode
VAR INPUT

n : SXmlNode;

value : DINT;
END VAR

Sample call:

xmlNode := fbXml.SetChildAsInt (xmlExistingNode, 42);

126 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.1.6.92 SetChildAsLint

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type Integer64.

Syntax

METHOD SetChildAsLint : SXmlNode
VAR INPUT

n : SXmlNode;

value : LINT;
END VAR

Sample call:

xmlNode := fbXml.SetChildAsLint (xmlExistingNode, 42);

5.2.1.6.93 SetChildAsUint

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type Unsigned Integer.

Syntax

METHOD SetChildAsUint : SXmlNode
VAR INPUT

n : SXmlNode;

value : UDINT;
END VAR

Sample call:

xmlNode := fbXml.SetChildAsUint (xmlExistingNode, 42);

5.2.1.6.94 SetChildAsUlint

This method sets the value of an XML node. The value is transferred to the method as input parameter of
data type Unsigned Integer64.

Syntax

METHOD SetChildAsUlint : SXmlNode
VAR INPUT

n : SXmlNode;

value : ULINT;

END VAR
Sample call:

xmlNode := fbXml.SetChildAsUlint (xmlExistingNode, 42);
5.21.7 FB_JwtEncode

The function block enables the creation and signing of a JSON Web Token (JWT).

Syntax

Definition:

FUNCTION_ BLOCK FB_Jthncode

VAR INPUT
bExecute : BOOL;
sHeaderAlg : STRING (46) ;
sPayload : STRING (1023);
sKeyFilePath : STRING (511);
tTimeout : TIME;
pKey : PVOID;
nKeySize : UDINT;
nJwtSize : UDINT;

TF6701 Version: 1.10 127

PLC API

BECKHOFF

END VAR
VAR IN OUT CONSTANT

sdwt : STRING;

END VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
hrErrorCode
initStatus
END_ VAR

* Inputs

: HRESULT;
: HRESULT;

Name Type

Description

bExecute

BOOL

A rising edge activates processing of the function block.

sHeaderAlg

STRING(46)

The algorithm to be used for the JWT header, e.g.
RS256.

sPayload

STRING(1023)

The JWT payload to be used.

sKeyFilePath

STRING(511)

Path to the private key to be used for the signature of
the JWT.

tTimeout TIME ADS timeout, which is used internally for file access to
the private key.
pKey PVOID Buffer for the private key to be read.
nKeySize UDINT Maximum size of the buffer.
sdwt STRING [» 46] Contains the fully coded and signed JWT after the
function block has been processed.
nJwtSize UDINT [» 471 Size of the generated JWT including zero termination.
L Outputs
Name Type Description
bBusy BOOL Is TRUE as long as processing of the function block is in
progress.
bError BOOL Becomes TRUE as soon as an error situation occurs.
hrErrorCode HRESULT Returns an error code if the bError output is set. An
explanation of the possible error codes [P_156] can be
found in the Appendix.
initStatus HRESULT Returns an error code in case of a failed initialization of the
function block.

Requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4024.4 |x86, x64, ARM Tc3_JsonXml 3.3.6.0
5.2.2 Interfaces

5.2.21 ITcJsonSaxHandler

5.2.21.1 OnBool

This callback method is triggered if a value of the data type BOOL was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by

setting the return value HRESULT to S_FALSE.

128

Version: 1.10

TF6701

BECKHOFF PLC API

Syntax
METHOD OnBool : HRESULT
VAR INPUT
value : BOOL;
END VAR

5.2.21.2 OnDint

This callback method is triggered if a value of the data type DINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax
METHOD OnDint : HRESULT
VAR INPUT
value : DINT;
END VAR

5.2.21.3 OnEndArray

This callback method is triggered if a square closing bracket, which corresponds to the JSON synonym for
an ending array, was found at the position of the SAX reader. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax
METHOD OnEndArray : HRESULT

5.2.21.4 OnEndObject

This callback method is triggered if a curly closing bracket, which corresponds to the JSON synonym for an
ending object, was found at the position of the SAX reader. The SAX parsing procedure is aborted by setting
the return value HRESULT to S_FALSE.

Syntax
METHOD OnEndObject : HRESULT

5.2.21.5 OnKey

This callback method is triggered if a property was found at the position of the SAX reader. The property
name lies on the input/output parameter key and its length on the input parameter len. The SAX parsing
procedure is aborted by setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnKey : HRESULT
VAR IN OUT CONSTANT
key : STRING;
END VAR
VAR INPUT
len : UDINT;
END VAR

5.2.2.1.6 OnLint

This callback method is triggered if a value of the data type LINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

TF6701 Version: 1.10 129

PLC AP BECKHOFF

Syntax
METHOD OnLint : HRESULT
VAR INPUT
value : LINT;
END VAR

5.2.21.7 OnLreal

This callback method is triggered if a value of the data type LREAL was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax
METHOD OnLreal : HRESULT
VAR INPUT
value : LREAL;
END VAR

5.2.2.1.8 OnNull

This callback method is triggered if a NULL value was found at the position of the SAX reader. The SAX
parsing procedure is aborted by setting the return value HRESULT to S_FALSE.

Syntax
METHOD OnNull : HRESULT

5.2.21.9 OnStartArray

This callback method is triggered if a square opening bracket, which corresponds to the JSON synonym for a
starting array, was found at the position of the SAX reader. The SAX parsing procedure is aborted by setting
the return value HRESULT to S_FALSE.

Syntax
METHOD OnStartArray : HRESULT

5.2.21.10 OnStartObject

This callback method is triggered if a curly opening bracket, which corresponds to the JSON synonym for a
starting object, was found at the position of the SAX reader. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax
METHOD OnStartObject : HRESULT

5.2.21.11 OnString

This callback method is triggered if a value of the data type STRING was found at the position of the SAX
reader. The In/Out parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnString : HRESULT
VAR IN OUT CONSTANT

value : STRING;
END VAR

130 Version: 1.10 TF6701

BECKHOFF PLC API

VAR INPUT
len : UDINT;
END VAR

5.2.21.12 OnUdint

This callback method is triggered if a value of the data type UDINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax
METHOD OnUdint : HRESULT
VAR INPUT
value : UDINT;
END VAR

5.2.2.1.13 OnUlint

This callback method is triggered if a value of the data type ULINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnUlint : HRESULT
VAR INPUT

value : ULINT;
END VAR

5.2.2.2 ITcdsonSaxValues

5.2.2.21 OnBoolValue

This callback method is triggered if a value of the data type BOOL was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnBoolValue : HRESULT

VAR INPUT
level : UDINT;
infos : POINTER TO TcJsonLevelInfo;
value : BOOL;

END VAR

5.2.2.2.2 OnDintValue

This callback method is triggered if a value of the data type DINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnDintValue : HRESULT

VAR INPUT
level : UDINT;
infos : POINTER TO TcJsonLevellInfo;
value : DINT;

END VAR

TF6701 Version: 1.10 131

PLC AP BECKHOFF

5.2.2.2.3 OnLintValue

This callback method is triggered if a value of the data type LINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnLintValue : HRESULT

VAR INPUT
level : UDINT;
infos : POINTER TO TcJsonLevelInfo;
value : LINT;

END_VAR

5.2.2.24 OnLrealValue

This callback method is triggered if a value of the data type LREAL was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnLrealValue : HRESULT

VAR INPUT
level : UDINT;
infos : POINTER TO TcJsonlLevelInfo;
value : LREAL;

END_ VAR

5.2.2.2.5 OnNullValue

This callback method is triggered if a NULL value was found at the position of the SAX reader. The SAX
parsing procedure is aborted by setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnNull : HRESULT
VAR INPUT

level : UDINT;

infos : POINTER TO TcJsonLevellInfo;
END VAR

5.2.2.2.6 OnStringValue

This callback method is triggered if a value of the data type STRING was found at the position of the SAX
reader. The input/output parameter value contains the value found. The SAX parsing procedure is aborted
by setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnStringValue : HRESULT
VAR_IN OUT CONSTANT
value : STRING;
END_ VAR
VAR INPUT
len : UDINT;
level : UDINT;
infos : POINTER TO TcJsonLevellInfo;
END VAR

132 Version: 1.10 TF6701

BECKHOFF PLC API

5.2.2.2.7 OnUdintValue

This callback method is triggered if a value of the data type UDINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnUdintValue : HRESULT

VAR INPUT
level : UDINT;
infos : POINTER TO TcJsonLevelInfo;
value : UDINT;

END VAR

5.2.2.2.8 OnUlintValue

This callback method is triggered if a value of the data type ULINT was found at the position of the SAX
reader. The input parameter value contains the value found. The SAX parsing procedure is aborted by
setting the return value HRESULT to S_FALSE.

Syntax

METHOD OnUlintValue : HRESULT

VAR INPUT
level : UDINT;
infos : POINTER TO TcJsonlLevelInfo;
value : ULINT;

END VAR

TF6701 Version: 1.10 133

Samples BEGKHOFF

6 Samples

The following samples illustrate the communication with an MQTT broker. Messages are sent and received.

There are two different implementation options, which can be chosen based on purely subjective criteria.
The two options are compared in the first two samples.

Overview

Sample Link Description

1 lotMgttSampleUsingQueue [» 135] MQTT communication based on a messages
queue

2 lotMgttSampleUsingCallback [» 137] MQTT communication based on a callback
method

3 lotMattSampleTlsPsk [» 139] MQTT communication via a secure TLS
connection and PSK (PreSharedKey)

4 lotMattSampleTlsCa [» 140] MQTT communication via a secure TLS
connection and CA (certificate authority)
certificate

5 lotMgttSampleAwsloT [» 140] MQTT communication with AWS loT

6 lotMgttSampleAzurelotHub [» 142] MQTT communication with the Microsoft Azure
loT Hub

7 lotMgttSamplelbmWatsonloT [» 146] MQTT communication with IBM Watson loT

lotMgttSampleMathworksThingspeak MQTT communication with the ThingSpeak loT
> 147] platform from MathWorks

Downloads

Sample code and configurations for this product can be obtained from the corresponding repository on

GitHub: https://www.github.com/Beckhoff/TF6701 Samples. There you have the option to clone the
repository or download a ZIP file containing the sample.

(3 Clone @

HTTPS 55H GitHub CL

https://github.com/Beckhoff/TF67@1_5am [E]

Use Git or checkout with 5VN using the web URL

X Open with GitHub Desktop

() Download ZIP

134 Version: 1.10 TF6701

https://www.github.com/Beckhoff/TF6701_Samples

BEGKHOFF Samples

6.1 lotMqgttSampleUsingQueue

Sample for MQTT communication via a message queue

This sample illustrates the communication with an MQTT broker. Messages are sent (publish mode) and
received. Receiving of messages involves two steps. First, a general decision is made on which types of
messages are to be received ("Subscribe"). Then, received messages are collected in a message queue,
from where they can be read and evaluated.

Project structure

1.
2.

Create a TwinCAT project with a PLC and add Tc3_lotBase as library reference.

Create a program block and declare an instance of FB_lotMqttClient [P 40] and two auxiliary variables to
control the program sequence, if required.

PROGRAM PrgMgttCom

VAR
fbMgttClient : FB_TotMgttClient;
bSetParameter : BOOL := TRUE;
bConnect : BOOL := TRUE;
END_VAR

. Declare two variables (for topic and payload) for the MQTT message to be sent. In the sample a

message is to be sent every second.

(* published message *)

sTopicPub : STRING (255) := 'MyTopic';
sPayloadPub : STRING(255);

i : UDINT;

fbTimer : TON := (PT:=T#1S);

. For each message receive operation a variable containing the topic to be received should be declared,

plus two further variables indicating the topic and payload of the last received message.
The received messages are to be collected in a queue for subsequent evaluation on a one-by-one basis.

To this end, you should declare an instance of EB_lotMqgttMessageQueue [P 48] and an instance of
FB lotMqgttMessage [P 49].

(* received message *)

bSubscribed : BOOL;

sTopicSub : STRING(255) := 'MyTopic';
{attribute 'TcEncoding':='UTF-8'}
sTopicRcv : STRING (255) ;

{attribute 'TcEncoding':='UTF-8'}
sPayloadRcv : STRING(255);
fbMessageQueue : FB IotMgttMessageQueue;
fbMessage : FB_TIotMgttMessage;

. In the program part, the MQTT client must be triggered cyclically, in order to ensure that a connection to

the broker is established and maintained and the message is received. Set the parameters of the desired
connection and initialize the connection with the transfer parameter bConnect := TRUE.

In the sample the parameters are assigned once in the program code before the client call. Since this is
usually only required once, the parameters can already be specified in the declaration part during
instantiation of the MQTT client. Not all parameters have to be assigned.

In the sample the broker is local. The IP address or the name can also be specified.

IF bSetParameter THEN

bSetParameter := FALSE;
fbMgttClient.sHostName := 'localhost';
fbMgttClient.nHostPort := 1883;

// fbMgttClient.sClientId := 'MyTcMgttClient';
fbMgttClient.sTopicPrefix ="'y

// fbMgttClient.nKeepAlive := 60;

// fbMgttClient.sUserName =

// fbMgttClient.sUserPassword := ;

// fbMgttClient.stWill =

// fbMgttClient.stTLS 3S g
fbMgttClient.ipMessageQueue := fbMessageQueue;

END IF

fbMgttClient.Execute (bConnect) ;

TF6701 Version: 1.10 135

Samples BEGKHOFF

6. As soon as the connection to the broker is established, the client should subscribe to a particular topic. A
message should be sent every second.
In the sample sTopicPub = sTopicSub applies, so that a loop-back occurs. In other applications the
topics usually differ.

IF fbMgttClient.bConnected THEN
IF NOT bSubscribed THEN
bSubscribed := fbMgttClient.Subscribe (sTopic:=sTopicSub, eQoS:=TcIotMgttQos.AtMostOnceDe
livery);
END IF
fbTimer (IN:=TRUE) ;
IF fbTimer.Q THEN // publish new payload every second
fbTimer (IN:=FALSE) ;

i =1+ 1;
sPayloadPub := CONCAT ('MyMessage', TO STRING(i)) ;
fbMgttClient.Publish (sTopic:= sTopicPub,
pPayload:= ADR (sPayloadPub), nPayloadSize:= LEN2 (ADR (sPayloadPub
))+1,
eQoS:= TcIotMgttQos.AtMostOnceDelivery, bRetain:= FALSE, bQueue:
= FALSE);
END IF
END IF

7. The cyclic call of the MQTT client ensures that the messages are received. The client receives all
messages with topics to which it has previously subscribed with the broker and places them in the
message queue. Once messages are available, call the method Dequeue() to gain access to the
message properties such as topic or payload via the message object foMessage.

IF fbMessageQueue.nQueuedMessages > 0 THEN
IF fbMessageQueue.Dequeue (fbMessage:=fbMessage) THEN
fbMessage.GetTopic (pTopic:=ADR (sTopicRcv), nTopicSize:=SIZEOF (sTopicRcv));
fbMessage.GetPayload (pPayload:=ADR (sPayloadRcv), nPayloadSize:=SIZEOF (sPayloadRcv), bSet
NullTermination:=FALSE) ;
END IF
END IF

If message evaluation is implemented as described above, one received message is evaluated per cycle. If
several messages were accumulated in the message queue, the evaluation is distributed over several
cycles.

The sample can be modified for applications in which subscriptions to several topics exist. In this case MQTT
messages with different topics are received. Message evaluation can be expanded as follows:

VAR
(* received payload for each subscribed topic *)
sPayloadRcvl : STRING (255) ;
sPayloadRcv2 : STRING (255);
END_VAR
VAR CONSTANT
(* subscriptions *)

sTopicSubl : STRING(255) := 'my first topic';
sTopicSub2 : STRING(255) := 'my second topic';
END VAR

IF fbMessageQueue.nQueuedMessages > 0 THEN
IF fbMessageQueue.Dequeue (fbMessage:=fbMessage) THEN
IF fbMessage.CompareTopic (sTopic:=sTopicSubl) THEN
fbMessage.GetPayload (pPayload:=ADR (sPayloadRcvl), nPayloadSize:=SIZEOF (sPayloadRcvl), bS
etNullTermination:=FALSE) ;
ELSIF fbMessage.CompareTopic (sTopic:=sTopicSub2) THEN
fbMessage.GetPayload (pPayload:=ADR (sPayloadRcv2), nPayloadSize:=SIZEOF (sPayloadRcv2), bS
etNullTermination:=FALSE) ;
END IF
END IF
END IF

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3_lotBase,
Tc2_Utilities (>= v3.3.19.0)

136 Version: 1.10 TF6701

BECKHOFF

Samples

6.2 lotMgttSampleUsingCallback

Sample for MQTT communication via a callback method

This sample illustrates the communication with an MQTT broker. Messages are sent (publish mode) and
received. This is done in two steps. First, a general decision is made on which types of messages are to be
received ("Subscribe"). Subsequently, new messages are received via a callback method during the cyclic

call of the FB_lotMqttClient.Execute() method.

Project structure

1. Create a TwinCAT project with a PLC and add Tc3_lotBase as library reference.

2. The callback method, in which the received MQTT messages are provided, should be implemented by
users themselves. The inheritance principle is used to ensure that the TwinCAT driver can call this
method. First, create a function block and let the function block FB_lotMqttClient inherit it. Part of the
MQTT communication can already be encapsulated in this function block. In the sample, received
messages are evaluated here. It is therefore advisable to declare variables for topic and payload.

{attribute 'c++ compatible'}

FUNCTION BLOCK FB MyMgtt EXTENDS FB IotMgttClient

VAR
(* received message *)
{attribute 'TcEncoding':='UTF-8'}
sTopicRcv : STRING (255) ;
{attribute 'TcEncoding':='UTF-8'}
sPayloadRcv : STRING(255);

END_ VAR

3. Create the method OnMqttMessage() and overwrite the basic implementation.

B PLC
4 PlclotMgttSampleUsingCallback
F :—ij PlclotMagttSampleUsingCallback Pre
P [l External Types
P [-5] References
A DUTs
A GVls
i POUs
w] FE_MyMaqtt (FE}
] MAIM (PRG)
] PrgMgttCom (PRG)

!_: PlclotMgttsampleUsingCallback

" Add Method

ﬁi‘i Create a new method

Mame:

Execute
FB_exit
FB init

Jra¥Iessade

Fublish
Subscribe

4. The method with the implementation to be carried out by the user is not called in the application, but
implicitly by the driver. This callback takes place during the cyclic triggering of the client and can take
place either not at all, once or several times, depending on the number of messages received since the

last trigger. This sample only implements a simple evaluation, as shown in the following code snippet.

{attribute 'c++ compatible'}

{attribute 'pack mode' := '4'}
{attribute 'show'}
{attribute 'minimal input size' := '4'}

METHOD OnMgttMessage : HRESULT
VAR _IN OUT CONSTANT

topic : STRING;
END VAR
VAR INPUT
payload : PVOID;
length : UDINT;
gos : TcIotMgttQos;
repeated : BOOL;
END VAR
VAR
nPayloadRcvLen : UDINT;
END_ VAR
SUPER”.nMessagesRcv := SUPER”.nMessagesRcv + 1;

TF6701

Version: 1.10

137

Samples BEGKHOFF

STRNCPY (ADR (sTopicRcv), ADR(topic), SIZEOF (sTopicRcv));

nPayloadRcvLen := MIN(length, DINT TO UDINT (SIZEOF (sPayloadRcv))-1);

MEMCPY (ADR (sPayloadRcv), payload, nPayloadRcvLen);

sPayloadRcv[nPayloadRcvLlen] := 0; // ensure a null termination of received string
OnMgttMessage := S_OK;

. The other steps are similar to the sample MQTT communication via a message queue [P_135].
Create a program block and declare an instance of the previously declared function block FB_MyMqtt
and two auxiliary variables to control the program sequence, if required.

PROGRAM PrgMgttCom

VAR
fbMgttClient : FB MyMqtt;
bSetParameter : BOOL := TRUE;
bConnect : BOOL := TRUE;
END VAR

. Declare two variables (for topic and payload) for the MQTT message to be sent. In the sample a
message is to be sent every second.

(* published message *)

sTopicPub : STRING(255) := 'MyTopic';

sPayloadPub : STRING(255);

i: UDINT;

fbTimer : TON := (PT:=T#1S);

. To receive messages, declare a variable that contains the topic to be received.

bSubscribed : BOOL;

sTopicSub : STRING(255) := 'MyTopic';

. In the program part, the MQTT client must be triggered cyclically, in order to ensure that a connection to
the broker is established and maintained and the message is received. Set the parameters of the desired
connection and initialize the connection with the transfer parameter bConnect := TRUE. In the sample
the parameters are assigned once in the program code before the client call. Since this is usually only
required once, the parameters can already be specified in the declaration part during instantiation of the
MQTT client. Not all parameters have to be assigned. In the sample the broker is local. The IP address
or the name can also be specified.

IF bSetParameter THEN

bSetParameter := FALSE;
fbMgttClient.sHostName := 'localhost';
fbMgttClient.nHostPort := 1883;

// fbMgttClient.sClientId := 'MyTcMgttClient';
fbMgttClient.sTopicPrefix := '';

// fbMgttClient.nKeepAlive := 60;

// fbMgttClient.sUserName =
// fbMgttClient.sUserPassword := ;
// fbMgttClient.stWill =
// fbMgttClient.stTLS =
END IF

fbMgttClient.Execute (bConnect) ;

. As soon as the connection to the broker is established, the client should subscribe to a particular topic. A
message should be sent every second.

In the sample sTopicPub = sTopicSub applies, so that a loop-back occurs. In other applications the
topics usually differ.

IF fbMgttClient.bConnected THEN
IF NOT bSubscribed THEN
bSubscribed := fbMgttClient.Subscribe (sTopic:=sTopicSub, eQoS:=TcIlotMgttQos.AtMostOnceDe
livery);
END IF
fbTimer (IN:=TRUE) ;
IF fbTimer.Q THEN // publish new payload every second
fbTimer (IN:=FALSE) ;

i =1+ 1;
sPayloadPub := CONCAT ('MyMessage', TO STRING(i)) ;
fbMgttClient.Publish (sTopic:= sTopicPub,
pPayload:= ADR(sPayloadPub), nPayloadSize:= LEN2 (ADR (sPayloadPub
))+1,
eQoS:= TcIotMgttQos.AtMostOnceDelivery, bRetain:= FALSE, bQueue:
= FALSE);
END IF
END IF

138 Version: 1.10 TF6701

BECKHOFF

Samples

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT v3.1.4022.0

IPC or CX (x86, x64, ARM)

Tc3_lotBase,
Tc2_Utilities (>=v3.3.19.0)

6.3 lotMqttSampleTIsPsk

Sample for MQTT communication via a secure TLS connection and PSK (PreSharedKey)

This sample illustrates the communication with an MQTT broker that requires authentication via TLS PSK.
The sample is basically limited to establishing the connection and publishing of values.

Project structure

1. Create a TwinCAT project with a PLC and add Tc3_lotBase as library reference.

2. Create a program block and declare an instance of FB _lotMqttClient [P 40] and two auxiliary variables to
control the program sequence, if required.

PROGRAM PrgMgttCom

VAR
fbMgttClient : FB_TotMgttClient;
bSetParameter : BOOL := TRUE;
bConnect : BOOL := TRUE;

END_VAR

3. Declare two variables (for topic and payload) for the MQTT message to be sent. In the sample a
message is to be sent every second.

sTopicPub : STRING (255) :=
sPayloadPub : STRING(255);

i : UDINT;

fbTimer : TON := (PT:=T#1S);

'MyTopic';

4. In the program part the MQTT client must be triggered cyclically, in order to ensure that a connection to
the broker is established and maintained. Set the parameters of the desired connection and initialize the
connection with the transfer parameter bConnect := TRUE. In the sample the parameters are
assigned once in the program code before the client call. Since this is usually only required once, the
parameters can already be specified in the declaration part during instantiation of the MQTT client. Not
all parameters have to be assigned. In the sample the broker is local. The IP address or the name can

also be specified.

IF bSetParameter THEN
bSetParameter

fbMgttClient.stTLS.sPskIdentity :

fbMgttClient.stTLS.aPskKey

fbMgttClient.stTLS.nPskKeyLen

fbMgttClient.nHostPort
END IF

FALSE;

'my Identity';
cMyPskKey;

15;

8883;

fbMgttClient.Execute (bConnect) ;

5. The structure element aPskKey receives the PreSharedKey, which is required for establishing a
connection to the broker. Accordingly, this must be specified as an ARRAY OF BYTE with a length of 64.
The actual length of the keys is then transferred to the structure element nPskKeyLen.

6. Once the connection to the broker is established, the client should send a message to a particular topic

every second.

IF fbMgttClient.bConnected THEN

fbTimer (IN:=TRUE) ;

IF fbTimer.Q THEN // publish new payload every second

fbTimer (IN:=FALSE) ;
i =1+ 1;

sPayloadPub := CONCAT ('MyMessage', TO STRING(i)) ;
fbMgttClient.Publish (sTopic:= sTopicPub,
pPayload:= ADR(sPayloadPub),

nPayloadSize:= LEN2 (ADR (sPayloadPub))+1,
eQoS:= TcIotMgttQos.AtMostOnceDelivery,

bRetain:= FALSE,

TF6701

Version: 1.10

139

Samples BEGKHOFF

bQueue:= FALSE) ;

END IF
END IF

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3_lotBase,
Tc2_Utilities (>= v3.3.19.0)

6.4 lotMqttSampleTIsCa

Sample for MQTT communication via a secured TLS connection and CA

This sample illustrates the communication with an MQTT broker that requires authentication via TLS and a
client certificate. This sample is not available as a separate download, since it is essentially based on the
existing samples lotMqgttSampleUsingQueue [>_135] and in particular lotMgttSampleAwsloT [»_140]. The
latter demonstrates the application of client certificates with TF6701 and can be used in the same way for all
other MQTT brokers.

Parameters for establishing a connection

The following code snippet shows the parameters required for establishing a TLS connection to an MQTT
broker via client certificate. The parameters are essentially static parameters. These can also be specified in
the declaration part during instantiation of the MQTT client.

IF bSetParameter THEN

bSetParameter := FALSE;

fbMgttClient.stTLS.sCA := 'c:\TwinCAT\3.1l\Config\Certificates\rootCa.pem';

fbMgttClient.stTLS.sCert := 'c:\TwinCAT\3.1\Config\Certificates\clientCert.pem.crt';

fbMgttClient.stTLS.sKeyFile := 'c:\TwinCAT\3.1\Config\Certificates\clientPrivKey.pem.key';
END IF
Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3_lotBase,

Tc2_Utilities (>= v3.3.19.0)

6.5 lotMqttSampleAwsloT

Sample for MQTT communication with AWS loT Core

This sample illustrates the communication with the AWS IoT Core message broker, which is part of the AWS
loT platform. The message broker requires authentication via a TLS client certificate. As a prerequisite for
this, the corresponding certificate must have been created and be known and activated on the AWS loT
platform.

® |Initial setup of AWS loT Core

1 Information on creating and registering client certificates and the initial setup of AWS IoT Core can

be found in the official AWS loT Core documentation. The certificate created and activated there is

used by the MQTT function blocks to establish a connection with the message broker. Ensure that

you have linked a valid AWS loT policy with the certificate you created. Further information can be
found in the following articles, which are part of the AWS IoT Core documentation:

AWS 10T Core Security and Identity
X.509 Certificates Authentication

140 Version: 1.10 TF6701

https://docs.aws.amazon.com/iot/latest/developerguide/iot-console-signin.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html
https://docs.aws.amazon.com/iot/latest/developerguide/x509-certs.html

BEGKHOFF Samples

® Topic structure

1 The topic structure of the AWS loT Core message broker is essentially freely selectable, although
some restrictions apply. Certain system topics cannot be used. Please refer to the AWS loT Core
documentation for more information. We also recommend the AWS documentation on AWS loT
Core MQTT topic design.

® QoS and Retain

1 AWS loT Core currently does not support QoS 2 or Retain messages. To store persistent mes-
sages, additional services, such as AWS loT Device Shadow or a database service, must be used.

® AWS loT Core Service Limits
1 When using AWS loT Core, please also refer to the notes on AWS Service Limits.

In this sample, messages are sent to and received from the AWS loT Core message broker. Since this

sample is essentially based on the sample lotMgttSampleUsingQueue [P_135], only the parts that are
relevant for establishing a connection to AWS loT Core are explained in this section.

Parameters for establishing a connection

The following code snippet shows the parameters required for establishing a connection to AWS IoT Core.
The parameters are essentially static parameters. These can also be specified in the declaration part during
instantiation of the MQTT client.

The following information is required for establishing a connection to AWS IoT Core.

Parameter Description

foMqttClient.stTLS.sCA Root CA certificate, which is regarded as trusted by the AWS loT
broker. If certificates generated by the AWS loT platform are used
(“one-click certificate”), the corresponding root certificate of AWS loT
can be used. It can be downloaded from the AWS loT website when
certificates are generated.

foMqttClient.stTLS.sCert Certificate of the “thing”, which is required as authentication for
establishing a connection to AWS IoT. If the certificates generated by
the AWS loT platform are used (“one-click certificate”), this certificate
can be downloaded from the AWS loT website, once it has been
generated.

foMqttClient.stTLS.sKeyFile Private key of the “thing”, which is required for securing the
communication link. If the certificates generated by the AWS loT
platform are used (“one-click certificate”), the private key can be
downloaded from the AWS loT website, once it has been generated.

foMqttClient.sHostname FQDN of the AWS IoT broker instance

foMqttClient.nHostPort Since a connection to the AWS loT broker can only be established via
TLS, the default MQTT TLS port must be used here (8883).

foMqttClient.sClientld The MQTT client ID can be the same as the name of the "thing".

Exponential backoff The use of an exponential backoff algorithm, as shown in the code

snippet, is optional but recommended. See below.

IF bSetParameter THEN

bSetParameter := FALSE;

fbMgttClient.stTLS.sCA := 'c:\TwinCAT\3.1\Config\Certificates\root.pem';
fbMgttClient.stTLS.sCert := 'c:\TwinCAT\3.1\Config\Certificates\7613eeel8a-certificate.pem.crt’';
fbMgttClient.stTLS.sKeyFile := 'c:\TwinCAT\3.1\Config\Certificates\7613eeelB8a-private.pem.key';
fbMgttClient.sHostName:= 'a35raby201lxp77.iot.eu-west-1.amazonaws.com';

fbMgttClient.nHostPort:= 8883;

fbMgttClient.sClientId:= 'CX-12345"';

fbMgttClient.ipMessageQueue := fbMessageQueue;

fbMgttClient.ActivateExponentialBackoff (T#1S, T#30S);

END IF

TF6701 Version: 1.10 141

https://d1.awsstatic.com/whitepapers/Designing_MQTT_Topics_for_AWS_IoT_Core.pdf
https://d1.awsstatic.com/whitepapers/Designing_MQTT_Topics_for_AWS_IoT_Core.pdf
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Samples BEGKHOFF

Exponential backoff

A feature referred to as "exponential backoff" can be used to avoid burdening the message broker with
unnecessary connection requests in case of a connection error. In the event of a TLS connection error
involving the message broker, the reconnect rate is adjusted multiplicatively. This function can be activated
using the ActivateExponentialBackoff() [>_46] method. The parameters of the method specify the minimum
and maximum time for the algorithm. The minimum time describes the initial delay value for the new
connection attempt. The maximum time describes the highest delay value. The delay values are doubled
until the maximum value is reached. Once a connection has been established, the backoff rate is reset to the
original value. The DeactivateExponentialBackoff() [> 46] method can be used to deactivate this function
programmatically.

Device Shadow Service

The AWS loT Device Shadow Service enables persistent storage of status information of a connected
device. A separate shadow is managed for each device. The shadow of a device can be read and updated
via MQTT. Certain system topics of the AWS loT Core must be used for this purpose. For example, the
following topic enables updating the shadow.

sTopicShadowUpdate : STRING(255) := 'SSaws/things/CX-12345/shadow/update’;

The message sent to this topic describes the new shadow of the device. It is specified in JSON notation and
corresponds to a particular format, e.g.:

{
"state": {
"reported": {
"Vendor": "Beckhoff Automation",
"CpuTemperature": 42,
"OperatingSystem": "Windows 10"
}
}
}

The PLC library Tc3_JsonXml can be used to create and adapt this format to suit your application.

In the PLC code provided here, the device shadow is updated once at the start of the sample and then on
request (depending on the variable bUpdateShadow).

For more information about the AWS loT Device Shadow Service and its topics and data formats see the
AWS |oT Device Shadow Service documentation.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3_lotBase,
Tc2_Utilities (>= v3.3.19.0)

6.6 lotMqttSampleAzurelotHub

Sample for MQTT communication with the Microsoft Azure loT Hub

This sample illustrates the communication with the Microsoft Azure loT Hub, which is part of the Microsoft
Azure cloud. The message broker can be reached via MQTT and requires authentication via an SAS token,
which can be generated via the Azure loT Hub platform, e.g. using the Azure IoT Explorer.

® Initial setup of Azure loT Hub

1 For information on the initial setup of the Microsoft Azure loT Hub and corresponding access data
for devices to be connected, see the official Microsoft Azure 1oT Hub documentation. We also rec-
ommend the Microsoft documentation article on using MQTT with the Azure loT Hub.

142 Version: 1.10 TF6701

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html
https://docs.microsoft.com/en-us/azure/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support

BEGKHOFF Samples

® Topic structure

1 The topic structure for sending and receiving messages is predefined by the Microsoft Azure loT
Hub.

® SAS token

1 The use of an SAS token is a basic requirement for connecting to the Azure IoT Hub via MQTT.
This token can be generated with the Azure loT Explorer, for example.

® QoS and Retain
1 The Azure loT Hub does not support QoS 2 and Retain messages.

In this sample messages are sent to the Azure loT Hub and received from it. Since this sample is essentially
based on the sample lotMqgttSampleUsingQueue [»_135], only the parts that are relevant for establishing a
connection to the loT Hub are explained in this section.

Parameters for establishing a connection

The following code snippet shows the parameters required for establishing a connection to the Azure loT
Hub. The parameters are essentially static parameters. These can also be specified in the declaration part
during instantiation of the MQTT client.

IF bSetParameter THEN

bSetParameter := FALSE;
// fbMgttClient.stTLS.sCA := 'c:\TwinCAT\3.1\Config\Certificates\azure.crt';
fbMgttClient.stTLS.sAzureSas := 'HostName=xxx.azure-

devices.net;Deviceld=xxx;SharedAccessSignature=SharedAccessSignature sr=xxx.azure-
devices.net%2fdevices$2fXXX&sig=121b5gJZxujK5pV%2bsFIFc2nddtpuhRuY7Tjfn8kJbtA%$3d&se=1490275463";
END IF

The structure element foMqttClient.stTLS.sAzureSas enables transfer of the SAS token, which can be
generated with the Azure loT Explorer. The use of the structure element fbMqttClient.stTLS.sCA is optional.
By default the driver uses the path specified above in the background. A root CA that is accepted by the
Azure loT Hub should be stored under this path. The topics for publish and subscribe are specified by the
Azure loT Hub and cannot be changed.

@® CA certificate

1 When establishing a connection to the Microsoft Azure IoT Hub via MQTT, the specification of a CA
certificate is mandatory. The Baltimore Cyber Trust Root CA can be used as CA certificate. The cor-
responding public key can be extracted from the Microsoft Windows certificate console
(Start > Run > mmc.exe, then add the Snapln certificate). The Baltimore CA can then be found un-
der the heading Trusted Root Certification Authorities.

7= Konsole! - [Konsolenstamm\Zertifikate - Aktueller Benutzer\Vertrauenswiirdige Stammzertifizierungsstellen\Zertifikate]

& Datei Aktion Ansicht Favoriten Fenster 7
= amoldE| B

~] Konsolenstamm Ausgestellt fiir Ausgestellt von Ablaufdatum Beabsichtigte Zwec... Anzeigename Status Zertifikatvorlage
v (5} Zerifikate - Aktueller Benutzer

= i Fertifik [l AddTrust Faternal CA Roat AddTrust External CA Root 30.05.2020 Serverauthentifizier.. The USERTrust Net...
- V'Q:"E ertifl Zte a . el [l Baltimore CyberTrust Roat Baltimore CyberTrust Root 13.05.2025 Serverauthentifizier... DigiCert Baltimore ...
v 1 Verrsuenswirdige Stammzertifizierungsstellen = TBeckhoff Corporate [ssuing CA Beckhoff Corporate Root CA 26.09.2028 <Alle> <Keine>» Untergeordnet...

“| Zertifikate
I ClRarkhnff Carmarate Rant CA Rarlkhnff Marnnrata Rant A M oNd 2788 wAllaw Kainas

Publish
When data are published to the loT Hub, the topic must be specified in the following form:
devices / deviceld / messages / events / readpipe

The Deviceld corresponds to the Deviceld of the registered device, as specified in the Azure loT Explorer,
for example.

TF6701 Version: 1.10 143

Samples BEGKHOFF

EE Nevice Fxalarer —_ D X
Configuration Management Data Messages To Device

Actions

Create Refresh Update Delete SAS Token...

SA5TokenForm

Tota
; DevicelD |CX-12345 |
DeviceKeys | Cd70P40qn/4c50X0mJ6yeFo 7arg 230 YvrHwo 15 = «| d
sd | 16.03.2017
TTL (Days) o | d |09.032017
Subscribe

For subscribing to data from the IoT Hub, the topic must be specified in the following form:
devices / deviceld / messages / devicebound / #

The Deviceld corresponds to the Deviceld of the registered device, as specified in the Azure loT Explorer,
for example.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3 lotBase,
Tc2_Utilities (>= v3.3.19.0)

6.7 lotMqttSampleBoschloT

Sample for MQTT communication with the Bosch loT Hub

This sample shows the communication with the Bosch loT Hub, which is part of the Bosch loT Suite. This
message broker requires the use of TLS and user name/password authentication.

® |Initial setup of the Bosch loT Hub

1 Information on the initial setup of the Bosch loT Hub can be found in the official Bosch IoT Suite
documentation.

® Topic structure

1 The topic structure for sending and receiving messages is predefined by the message broker of the
Bosch IoT Suite.

In this sample messages are sent to the Bosch loT Hub and received from it. Since this sample is essentially

based on the sample lotMqgttSampleUsingQueue [»_135], only the parts that are relevant for establishing a
connection to the Bosch loT Hub are explained in this section.

Parameters for establishing a connection

The following code snippet shows the parameters required for establishing a connection to the Bosch loT
Hub. The parameters are essentially static parameters. These can also be specified in the declaration part
during instantiation of the MQTT client.

144 Version: 1.10 TF6701

https://www.bosch-iot-suite.com/documentation/
https://www.bosch-iot-suite.com/documentation/

BEGKHOFF Samples

IF bSetParameter THEN

bSetParameter := FALSE;

fbMgttClient.stTLS.sCA := 'C:\TwinCAT\3.1l\Config\Certificates\BoschIotHub.crt';
fbMgttClient.sHostName:= 'mgtt.bosch-iot-hub.com';

fbMgttClient.nHostPort:= 8883;

fbMgttClient.sClientId:= 'CX-12345"';

fbMgttClient.sUserName:= 'com.someName CX@t42c3e689c5c64c34b13084b9504ed3c8_hub';
fbMgttClient.sUserPassword:= 'somePassword';
END IF

The parameters required for authentication can be generated on the Bosch loT platform.

6.8 lotMqttSampleGoogleloT

Sample for MQTT communication with Google loT Core

This sample illustrates the communication to the Google IoT Core message broker, which is part of the
Google Cloud. The message broker requires TLS and authentication via a JSON Web Token (JWT).

® |Initial setup of Google IoT Core

1 Information on creating and registering devices and the initial setup of Google IoT Core can be
found in the official Google IoT Core documentation.

® JSON Web Token (JWT)

1 The JSON Web Token (JWT) feature is used to connect to Google IoT Core. Tokens can be gener-
ated via the function block FB_JwtEncode from the library Tc3_JsonXml.

® QoS and Retain
1 Google loT Core currently does not support QoS 2 or Retain messages.

In this sample, messages are sent to and received from the Google loT Core message broker. Since this

sample is essentially based on the sample lotMgttSampleUsingQueue [»_135], only the parts that are
relevant for establishing a connection to Google IoT Core are explained in this section.

Parameters for establishing a connection

The following code snippet shows the parameters required for establishing a connection to Google 10T Core.
The parameters are essentially static parameters. These can also be specified in the declaration part during
instantiation of the MQTT client.

IF bSetParameter THEN
bSetParameter := FALSE;
fbMgttClient.sHostName:
fbMgttClient.nHostPort:
fbMgttClient.sClientId:

devices/%deviceName%';

'mgtt.googleapis.com';
8883;
'projects/%projectName%/locations/europe-westl/registries/%registryName%/

fbMgttClient.sUserName:= 'unused';

fbMgttClient.sUserPassword:= sJwt;

fbMgttClient.stTLS.sCA := 'c:\TwinCAT\3.1l\Config\Certificates\Google\roots.pem';
END IF

The MQTT client ID is derived from the above string and contains the project name, registry name and
device name. These three parameters are generated when the Google IoT Core service is first set up and a
device is created there. The user name is not used. According to the Google documentation, "unused" can
be used. The password is a JSON Web Token (JWT) [P 28], which can be generated from the Tc3_JsonXml
library via the function block FB_JwtEncode and signed with the private key of the device certificate. The CA
certificate can be obtained from the Google IoT Core website.

Renewal of the JSON web token

As mentioned earlier in this article, a JWT is used for authentication with the Google IoT Core Broker. This
JWT has an expiration date after which it can no longer be used for authentication and is therefore obsolete.
This is the case after a maximum of 24 hours.

TF6701 Version: 1.10 145

https://cloud.google.com/iot/docs/

Samples BEGKHOFF

To renew the JWT, the existing connection to the message broker must be terminated, the token exchanged
and the connection re-established. The following code snippet shows this workflow (not included in the
sample above).

//Cycle Time is set to 10 ms
refreshCounter:=refreshCounter+1;
//Refreshing every 5 minutes
IF refreshCounter>30000 THEN
refreshCounter:=0;
bConnect :=FALSE;
fbMgttClient.Execute (bConnect) ;
ELSE
bConnect :=TRUE;
fbMgttClient.Execute (bConnect) ;
END IF

6.9 lotMqttSamplelbomWatsonloT

Sample for MQTT communication with IBM Watson loT

This sample shows the communication with IBM Watson loT.

® Topic structure

The topic structure for sending and receiving messages is predefined by the IBM Watson loT mes-
sage broker.

Messages are sent to and received from IBM Watson IoT. Since this sample is essentially based on the

sample lotMgttSampleUsingQueue [P _135], only the parts that are relevant for establishing a connection are
explained in this section.

Parameters for establishing a connection

The following code snippet shows the parameters required for establishing a connection to IBM Watson loT.
The parameters are essentially static parameters. These can also be specified in the declaration part during
instantiation of the MQTT client.

IF bSetParameter THEN
bSetParameter := FALSE;
fbMgttClient.sHostName
fbMgttClient.nHostPort
fbMgttClient.sClientId

'orgid.messaging.internetofthings.ibmcloud.com’;
1883;
'd:orgid:IPC:devicelId’';

fbMgttClient.sUserName := 'use-token-auth';
fbMgttClient.sUserPassword := '12342y?cl2Gfqg 8rl2';
END IF

The topics for publish and subscribe are specified by IBM Watson loT and cannot be changed. The “orgID”
placeholder must be replaced with the organization ID of the IBM Watson account. The “devicelD”
placeholder is replaced with the ID of the device, as created in IBM Watson.

Publish
When data are published to IBM Watson loT, the topic must be specified in the following form:
iot-2 / evt / eventld / fmt / json

The event ID corresponds to the event ID as configured and expected by IBM Watson IoT. If an IBM Watson
dashboard is used, the event ID is generated dynamically and can be linked to a chart on IBM Watson IoT.

Subscribe

When subscribing to IBM Watson loT commands, the topic must be specified in the following form:
iot-2 / cmd / cmdld / fmt / json

The Cmd ID corresponds to the ID of the command sent by IBM Watson loT to the device.

146 Version: 1.10 TF6701

BEGKHOFF Samples

Requirements
Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3 lotBase,

Tc2_Utilities (>=v3.3.19.0)

6.10 lotMgttSampleMathworksThingspeak

Communication with the MathWorks ThingSpeak Cloud is illustrated in this sample. Since this sample is
essentially based on the sample lotMqgttSampleUsingQueue [»_135], only the parts that are relevant for
establishing a connection to the ThingSpeak Cloud are explained in this section.

Sample code can be downloaded as archive here: https://infosys.beckhoff.com/content/1033/
tf6701_tc3_iot_communication_mqtt/Resources/11990435339/.zip.

MQTT device configuration

To transfer MQTT data to ThingSpeak, you must first register your MQTT device. Log in to ThingSpeak with
your MathWorks account and select Devices > MQTT from the top menu. Select Add new Device. Name
your device and authorize publish and subscribe on the appropriate ThingSpeak channels. Save your
credentials.

Parameters for establishing a connection

The following code snippet illustrates the parameters that are necessary for establishing a connection with
the MathWorks ThingSpeak Cloud. The parameters are essentially static parameters. These can also be
specified in the declaration part during instantiation of the MQTT client. The data to be used in the following
<Client ID>, <Username> and <Password> will be provided to you when you configure an MQTT device on
ThingSpeak.

IF bSetParameter THEN
bSetParameter := FALSE;
fbMgttClient.sHostName:
fbMgttClient.nHostPort:
fbMgttClient.sClientId: '<Client ID as provided by MQTT Device on ThingSpeak>';
fbMgttClient.sUsername:= '<username as provided by MQTT Device on ThingSpeak>';
fbMgttClient.UserPassword:= '<password as provided by MQTT Device on ThingSpeak>';

END IF

'mgtt3.thingspeak.com';
1883;

ThingSpeak also supports protection of the communication connection via TLS. The CA certificate must be
downloaded from ThingSpeak and referenced in the function block via the TLS structure. For more
information about the ThingSpeak CA certificate we recommend referring to the Mathworks ThingSpeak
documentation.

IF bSetParameter THEN

bSetParameter := FALSE;

fbMgttClient.sHostName:= 'mgtt3.thingspeak.com';

fbMgttClient.nHostPort:= 8883;
fbMgttClient.sClientId:= '<Client ID as provided by MQTT Device on ThingSpeak>"';
fbMgttClient.sUsername:= '<username as provided by MQTT Device on ThingSpeak>';
fbMgttClient.UserPassword:= '<password as provided by MQTT Device on ThingSpeak>';
stMgttTls.sVersion:= 'tlsvl.2';
StMgttTls.sCA:= 'C:\TwinCAT\3.1\Config\Certificates\<thingSpeakCert.pem>;
fbMgttClient.stTLS := stMgttTls;

END IF

Publish

When publishing data to the MathWorks ThingSpeak Cloud, the topic must be specified in the following form:
channels / <channellD> / publish

<channellD> corresponds here to the ID of the channel that was designated and configured for data
reception in the MathWorks ThingSpeak portal.

TF6701 Version: 1.10 147

https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/11990435339.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/11990435339.zip

Samples BEGKHOFF

Your device must be authorized for publish on the specified channel. You can change the authorization via
Devices > MQTT in the top menu if you are logged in to the ThingSpeak website.

Subscribe
When subscribing to data, the topic must be specified in the following form:
channels / <channellD> / subscribe / fields / <fieldKey>

<channellD> corresponds here to the ID of the channel that was designated and configured for data
reception in the MathWorks ThingSpeak portal.

<fieldKey> corresponds to the name of the field from which a value is to be received.

Your device must be authorized for a subscribe on the specified channel. You can change the authorization
via Devices > MQTT in the top menu when you are logged in to the ThingSpeak website

Data format

The MathWorks ThingSpeak Cloud uses its own string-based data format as payload. This data format is
generated in the sample code referenced above in the F_Mqtt_ThingSpeak_CreatePayloadStr() function and
can be used directly.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v3.1.4022.0 IPC or CX (x86, x64, ARM) Tc3_lotBase,
Tc2_Utilities (>= v3.3.19.0)

6.11 lotMqttSampleAzurelotHubDeviceTwin

Sample for MQTT communication with the Device Twin of the Azure loT Hub

This sample illustrates the communication with the Device Twin. The Device Twin is accessible via the Azure
loT Hub, which is part of the Microsoft Azure Cloud. The message broker can be reached via MQTT and
requires authentication via an SAS token, which can be generated via the Azure loT Hub platform, e.g. using
the Azure loT Explorer.

The following sample connects to the Azure IoT Hub, just like the sample lotMqgttSampleAzurelotHub

[»_142]. All relevant information for establishing the connection and further configuration options can be
found in this article.

The official MQTT documentation from Microsoft can be downloaded from here:

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support

6.12 JsonXmlSamples

6.12.1 Tc3JsonXmlISampleXmIDomWriter

This sample illustrates how an XML document can be created programmatically based on DOM. The
function block FB_XmIDomParser is used as a basis.

Download: https://infosys.beckhoff.com/content/1033/tf6701_tc3 iot communication_mqtt/Resources/
5529228299/ .zip

148 Version: 1.10 TF6701

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/5529228299.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/5529228299.zip

BEGKHOFF Samples

Declaration range

PROGRAM MAIN

VAR
fbXml : FB XmlDomParser;
objRoot : SXmlNode;
objMachines : SXmlNode;
objMachine : SXmlNode;
objControllers : SXmlNode;
objController : SXmlNode;
objAttribute : SXmlAttribute;
sXmlString : STRING(1000) ;
bCreate : BOOL := FALSE;
bSave : BOOL := TRUE;
nLength : UDINT;
newAttr : SXmlAttribute;

END_VAR

Implementation range

The implementation section shows various options for creating an XML document.

IF bCreate THEN
(* Create an empty XML document *)
objRoot := fbXml.GetDocumentNode () ;

(* Create a new XML node 'Machines' and add to the empty document *)
objMachines := fbXml.AppendNode (objRoot, 'Machines');

(* Create a new XML node 'Machine' and add an attribute to this node. Append node to 'Machines'

objMachine := fbXml.AppendNode (objMachines, 'Machine');
objAttribute := fbXml.AppendAttribute (objMachine, 'Name', 'Wilde Nelli');

(* Create a new XML node 'Controllers' and add to the 'Machine' node *)

objControllers := fbXml.AppendNode (objMachine, 'Controllers');

(* Create a new XML node 'Controller' and add some attributes. Append node to 'Controllers'. *)
objController := fbXml.AppendChild (objControllers, 'Controller', 'CX5120', FALSE);

objAttribute := fbXml.AppendAttribute (objController, 'Type', 'EPC');

objAttribute := fbXml.AppendAttribute (objController, 'OS', 'Windows Embedded Compact 7'");

(* Create a new XML node 'Controller' and add some attributes. Append node to 'Controllers'. *)
objController := fbXml.AppendChild (objControllers, 'Controller', 'CX2040', FALSE);

objAttribute := fbXml.AppendAttribute (objController, 'Type', 'EPC');

objAttribute := fbXml.AppendAttribute (objController, 'OS', 'Windows Embedded Standard 7');

(* Create a new XML node 'Controller' and add some attributes. Append node to 'Controllers'. *)
objController := fbXml.AppendChild(objControllers, 'Controller', 'C6015', FALSE);

objAttribute := fbXml.AppendAttribute (objController, 'Type', 'IPC');

objAttribute := fbXml.AppendAttribute (objController, 'OS', 'Windows 10 IoT Enterprise');

(* Create a new XML node 'Machine' and add an attribute to this node. Append node to 'Machines'

objMachine := fbXml.AppendNode (objMachines, 'Machine');
objAttribute := fbXml.AppendAttribute (objMachine, 'Name', 'Stanze Oscar');

(* Create a new XML node 'Controllers' and add to the 'Machine' node *)

objControllers := fbXml.AppendNode (objMachine, 'Controllers');

(* Create a new XML node 'Controller' and add some attributes. Append node to 'Controllers'. *)
objController := fbXml.AppendChild(objControllers, 'Controller', 'C6017', FALSE);

objAttribute := fbXml.AppendAttribute (objController, 'Type', 'IPC');

objAttribute := fbXml.AppendAttribute (objController, 'OS', 'Windows 10 IoT Enterprise');
newAttr := fbXml.InsertAttribute (objController, objAttribute, 'AddAttribute');

fbXml.SetAttribute (newAttr, 'Hola');

(* Retrieve XML document and store in a variable of data type STRING(1000) *)

nLength := fbXml.CopyDocument (sXmlString, SIZEOF (sXmlString));
bCreate := FALSE;
END IF

6.12.2 Tc3JsonXmiSampleXmiDomReader

This sample illustrates how an XML document can be processed programmatically based on DOM. The
function block FB_XmIDomParser is used as a basis.

*)

*)

TF6701 Version: 1.10

149

Samples

BECKHOFF

Download: https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/

5529225227/.zip

Declaration range

PROGRAM MAIN

VAR
fbXml
xmlDoc
xmlMachines
xmlMachinel
xmlMachine?2
xmlIterator
xmlMachineNode
xmlMachineNodeValue
xmlMachineAttribute
xmlMachinelAttribut
xmlMachine2Attribut
sMachinelName
sMachine2Name
nMachineAttribute
nMachinelAttribute
nMachine2Attribute
sMessageToParse : S

FB_XmlDomPa
SXmlNode;

SXmlT

ESEr;

SXmlNode;
SXmlNode;
SXmlNode;

terator;

SXmlNode;

STRING;
Ref
e : SXmlAttribute;
e : SXmlAttribute;

STRING;
STRING;

DINT;
DINT;
DINT;
TRING (255) :=

SXmlAttribute;

Machine><Machine Type="2">Huber8</Machine></Machines>";

END_ VAR

Implementation range

The implementation section shows various options for parsing an XML document.

(* Load XML content *)
xmlDoc := fbXml.ParseDocument (sMessageToParse) ;

(* Parse XML nodes - Option 1 ¥*)
xmlMachines := fbXml.ChildByName (xmlDoc, 'Machines');
xmlMachinel := fbXml.ChildByAttribute (xmlMachines,

(* Parse XML nodes - Option 2 *)

xmlMachines := fbXml.ChildByName (xmlDoc, 'Machines');

xmlMachineNode := fbXml.Children (xmlMachines,

WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlMachineNode := fbXml.Node (xmlIterator);

xmlMachineNodeValue := fbXml.NodeText (xmlMachineNode) ;
xmlIterator);

xmlMachineNode :=
END WHILE

fbXml.Children (xmlMachines,

(* Parse XML nodes - Option 3 *)
xmlMachines := fbXml.ChildByName (xmlDoc,
xmlIterator := fbXml.Begin (xmlMachines) ;
WHILE NOT fbXml.IsEnd(xmlIterator) DO
xmlMachineNode := fbXml.Node (xmlIterator);
xmlMachineNodeValue :=
xmlIterator := fbXml.Next (xmlIterator);
xmlIterator := fbXml.End(xmlMachines) ;
END WHILE

'Machines') ;

(* Parse XML attributes - Option 1%*)
xmlMachinelAttribute := fbXml.Attribute (xmlMachinel,
xmlMachine2Attribute := fbXml.Attribute (xmlMachine2,

(* Parse XML attributes - Option 2*)
xmlIterator := fbXml.AttributeBegin (xmlMachinel) ;
WHILE NOT fbXml.IsEnd(xmlIterator) DO

lTypel o
xmlMachine2 := fbXml.ChildByAttributeAndName (xmlMachines,

fbXml.NodeText (xmlMachineNode) ;

1)
'Type',

xmlIterator) ;

'Type');
'Type');

|2|,

xmlMachineAttributeRef := fbXml.AttributeFromIterator (xmlIterator);

nMachineAttribute :=
xmlIterator := fbXml.Next (xmlIterator);
END WHILE

(* Retrieve node values *)
sMachinelName := fbXml.NodeText (xmlMachinel) ;
sMachine2Name := fbXml.NodeText (xmlMachine?2) ;

(* Retrieve attribute values ¥*)

fbXml.AttributeAsInt (xmlMachineAttributeRef) ;

'Machine') ;

'<Machines><Machine Type="1" Test="3">Wilde Nelli</

nMachinelAttribute := fbXml.AttributeAsInt (xmlMachinelAttribute);
nMachine2Attribute := fbXml.AttributeAsInt (xmlMachine2Attribute) ;
150 Version: 1.10 TF6701

https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/5529225227.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/5529225227.zip

BEGKHOFF Samples

6.12.3 Tc3JsonXmlSampleJsonDomReader

This sample illustrates how a JSON message can be run through programmatically on the basis of DOM.
The function block FB_JsonDomParser is used as the basis.

Download: https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot _communication_mqtt/Resources/
3916597387/.zip

Declaration range
PROGRAM MAIN

VAR

fbJson : FB JsonDomParser;

jsonDoc : SJsonValue;

jsonProp : SJsonValue;

jsonValue : SJsonValue;

bHasMember : BOOL;

sMessage : STRING(255) := '{"serialNumber":"GO30PT028191AC4R", "batteryVoltage":"1547mVv","clickTy
pe" :"SINGLE"}"';

stReceivedData : ST ReceivedData;
END VAR

Implementation range

The JSON message is loaded into the DOM tree using the ParseDocument() method. You can subsequently
check whether it contains a certain property using the HasMember() method. The FindMember() method
selects the property. The GetString() method extracts its value.

jsonDoc := fbJson.ParseDocument (sMessage) ;
bHasMember := fbJson.HasMember (jsonDoc, 'serialNumber'):;
IF (bHasMember) THEN
bHasMember := FALSE;
jsonProp := fbJson.FindMember (jsonDoc, 'serialNumber');
stReceivedData.serialNumber := fbJson.GetString(jsonProp);
END IF
bHasMember := fbJson.HasMember (jsonDoc, 'batteryVoltage');
IF (bHasMember) THEN
bHasMember := FALSE;
jsonProp := fbJson.FindMember (jsonDoc, 'batteryVoltage');
stReceivedData.batteryVoltage := fbJson.GetString(jsonProp);
END IF
bHasMember := fbJson.HasMember (jsonDoc, 'clickType');
IF (bHasMember) THEN
bHasMember := FALSE;
jsonProp := fbJson.FindMember (jsonDoc, 'clickType'):;
stReceivedData.clickType := fbJson.GetString(jsonProp) ;
END IF

The use of the method HasMember() is not absolutely necessary, since the method FindMember() already
returns 0 if a property was not found. The code shown above can also be implemented as follows:

jsonDoc := fbJson.ParseDocument (sMessage) ;
jsonProp := fbJson.FindMember (jsonDoc, 'serialNumber'):;
IF (jsonProp <> 0) THEN
stReceivedData.serialNumber := fbJson.GetString(jsonProp);
END IF
jsonProp := fbJson.FindMember (jsonDoc, 'batteryVoltage');
IF (jsonProp <> 0) THEN
stReceivedData.batteryVoltage := fbJson.GetString(jsonProp) ;
END IF
jsonProp := fbJson.FindMember (jsonDoc, 'clickType'):;
IF (jsonProp <> 0) THEN
stReceivedData.clickType := fbJson.GetString (jsonProp) ;
END IF

Nested JSON objects

The approach is similar with nested JSON objects. Since the entire document is located in the DOM, it is
simple to navigate. Let's take a JSON object that looks like this:

TF6701 Version: 1.10 151

https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3916597387.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3916597387.zip

Samples BEGKHOFF

sMessage : STRING(255) := '{"Values":{"serial":"GO30PT028191AC4R"}}"';

The property we are looking for is located in the sub-object "Values". The following code shows how to
extract the property.

jsonDoc := fbJson.ParseDocument (sMessage) ;
bHasMember := fbJson.HasMember (jsonDoc, 'Values');
IF (bHasMember) THEN
bHasMember := FALSE;
jsonProp := fbJson.FindMember (jsonDoc, 'Values');
IF jsonProp <> 0 THEN
jsonSerial := fbJson.FindMember (jsonProp, 'serial');
stReceivedData.serialNumber := fbJson.GetString(jsonSerial);
END IF
END IF

6.12.4 Tc3JsonXmlISampleJsonSaxWriter

Sample of the creation of JSON documents via SAX Writer

This sample illustrates how a JSON message can be created over the DAX mechanism. The function block
FB_JsonSaxWriter is used as the basis.

Download: https://infosys.beckhoff.com/content/1033/tf6701_tc3 iot_communication_mqtt/Resources/
3664753419/.zip

Declaration range
PROGRAM MAIN

VAR
dtTimestamp : DATE AND TIME := DT#2017-04-04-12:42:42;
fbJson : FB JsonSaxWriter;
sJsonDoc : STRING (255) ;

END_VAR

Implementation range

The SAX mechanism runs sequentially through the JSON document to be created, i.e. the corresponding
elements are run though and created one after the other.

fbJson.StartObject () ;
fbJson.AddKey ('Timestamp') ;
fbJdson.AddDateTime (dtTimestamp) ;
fbJdson.AddKey ('Values') ;
fbJson.StartObject () ;
fbJson.AddKey ('Sensorl') ;
fbJdson.AddReal (42.42);
fbJdson.AddKey ('Sensor2"') ;
fbJson.AddDint (42) ;
fbJson.AddKey ('Sensor3"') ;
fbJson.AddBool (TRUE) ;
fbdson.EndObject () ;
fbJdson.EndObject () ;

sJsonDoc := fbJson.GetDocument () ;
fbJson.ResetDocument () ;

Resulting JSON message
{

"Timestamp": "2017-04-04T12:42:42",
"Values": {

"Sensorl": 42.42,

"Sensor2": 42,

"Sensor3": true

6.12.5 Tc3JsonXmlISampleJsonSaxReader

Sample of the parsing of JSON documents via SAX Reader

152 Version: 1.10 TF6701

https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3664753419.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3664753419.zip

BEGKHOFF Samples

This sample illustrates how a JSON message can be run through programmatically. The function block
FB_JsonSaxReader is used as the basis.

Download: https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/
3664750475/.zip

Declaration range
PROGRAM MAIN

VAR

fbJson : FB_JsonSaxReader;

pJdsonParse : JsonSaxHandler;

sJsonDoc : STRING (255) := '{"Values":
{"Timestamp":"2017-04-04T12:42:42","Sensorl":42.42,"Sensoxr2":42}}"';
END VAR

Implementation range

Through the calling of the Parse() method, the transfer of the JSON message as a STRING and the interface
pointer to a function block instance that implements the interface ltcJsonSaxHandler, the SAX Reader is
activated and the corresponding callback methods are run through.

fbJdson.Parse (sJson := sdsonDoc, ipHdl := pJsonParse);

Callback methods

The callback methods are called on the instance of the function block that implements the interface
ltcJsonSaxHandler. Each callback method represents a "found" element in the JSON message. For
example, the callback method OnStartObject() is called as soon as an opening curly bracket has been
detected. According to the example JSON message mentioned above, therefore, the following callback
methods are run through in this order:

OnStartObject(), due to the first opening curly bracket
OnKey(), due to the property "Values"

OnStartObject(), due to the second opening curly bracket
OnKey(), due to the property "Timestamp"

OnString(), due to the value of the property "Timestamp"
OnKey(), due to the property "Sensor1"

OnLreal(), due to the value of the property "Sensor1"
OnKey(), due to the property "Sensor2"

OnUdint(), due to the value of the property "Sensor2"
OnEndObiject(), due to the first closing curly bracket
OnEndObiject(), due to the second closing curly bracket

SO0 XN ORON =

—_

Within the callback methods the current state is defined and saved via an instance of the enum
E_JsonStates. This can also be used to determine whether the JSON message is valid. For example, if the
callback method OnLreal() is called and the state is not the expected State 70 (JSON_STATE_ONLREAL),
the return value S_FALSE can be returned to the method. The SAX Reader then automatically cancels the
further processing.

6.12.6 Tc3JsonXmlSampleJsonDataType

Sample of the automatic conversion of structures into a JSON message

This sample illustrates how a data structure can be converted into a JSON message (and vice versa). In the
conversion the layout of a structure is converted one-to-one into a corresponding JSON equivalent.
Additional metadata can be created via PLC attributes on the member variables of the structure.

Download: https://infosys.beckhoff.com/content/1033/tf6701_tc3 iot_communication_mqtt/Resources/
3664376331/.zip

TF6701 Version: 1.10 153

https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3664750475.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3664750475.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3664376331.zip
https://infosys.beckhoff.com/content/1033/tf6701_tc3_iot_communication_mqtt/Resources/3664376331.zip

Samples BEGKHOFF

Layout of the data structure to be converted
TYPE ST Values

STRUCT
{attribute 'Unit' := 'm/s'}
{attribute 'DisplayName' := 'Speed'}

Sensorl : REAL;

{attribute 'Unit' := 'V'}
{attribute 'DisplayName' := 'Voltage'}
Sensor2 : DINT;

{attribute 'Unit' := 'A'}
{attribute 'DisplayName' := 'Current'}
Sensor3 : DINT;

END_STRUCT

END TYPE

Declaration range
PROGRAM MAIN

VAR
dtTimestamp : DATE AND TIME := DT#2017-04-04-12:42:42;
fbJson : FB _JsonSaxWriter;
fbJsonDataType : FB JsonReadWriteDataType;
sdsonDoc : STRING (255) ;
sJsonDoc?2 : STRING (2000) ;
stValues : ST Values;
END_ VAR

Implementation range

Two ways of generating the JSON message are shown, starting with the instance fbJson of the function
block FB_JsonSaxWriter. The GetDocument() method can be used with a JSON message with no more than
255 characters. However, the CopyDocument() method must be used with larger JSON messages.

fbJson.ResetDocument () ;

fbdson.StartObject () ;

fbjson.AddKeyDateTime ('Timestamp', dtTimestamp) ;

fbJsonDataType.AddJsonKeyValueFromSymbol (fbJson, 'Values', 'ST Values', SIZEOF (stValues), ADR(stValu
es));

fbJsonDataType.AddJsonKeyPropertiesFromSymbol (fbJson, 'MetaData', 'ST Values', 'Unit|DisplayName');
fbdson.EndObject () ;

sJsonDoc := fbJson.GetDocument () ;

fbJson.CopyDocument (sJsonDoc2, SIZEOF (sJsonDoc2));

Resulting JSON message
{

"Timestamp": "2017-04-04T12:42:42",
"Values": {

"Sensorl": 0.0,

"Sensor2": 0,

"Sensor3": 0

}l
"MetaData": {

"Sensorl": {
"Unit": "m/s",
"DisplayName": "Speed"
}I
"Sensor2": {
"Unit": "V",
"DisplayName": "Voltage"
}I
"Sensor3": {
"Unit": "A",
"DisplayName": "Current"

}

154 Version: 1.10 TF6701

BEGKHOFF Samples

Alternative

As an alternative, the method AddJsonValueFromSymbol() can also be used to generate a JSON format
directly from a data structure.

fbJson.ResetDocument () ;

fbJsonDataType.AddJsonValueFromSymbol (fbJson, 'ST Values', SIZEOF (stValues), ADR(stValues));

sJsonDoc := fbJson.GetDocument () ;
fbJdson.CopyDocument (sJsonDoc2, SIZEOF (sJsonDoc2)) ;

The resulting JSON object looks like this:
{

"Sensorl": 0.0,
"Sensor2": 0,
"Sensor3": 0

}

Conversion of a JSON message back to a data structure

The above samples show how a JSON object can be generated from a data structure in a simple manner.
There is also a corresponding method in the Tc3_JsonXml library for the reverse process, i.e. the extraction
of values from a (received) JSON object back into a data structure. This application is made possible by
calling the method SetSymbolFromJson().

fbJsonDataType.SetSymbolFromJson (someJson, 'ST Values', SIZEOF (stValuesReceive),
ADR (stValuesReceive)) ;

The string variable sdsonDoc2 contains the JSON object, which is transferred into the structure instance
stValuesReceive by calling the method.

@® Target data structure

The target data structure must match the structure of the JSON document. Otherwise SetSymbol-
FromJson() returns FALSE.

TF6701 Version: 1.10 155

Appendix BEGKHOFF

7 Appendix

7.1 Error Codes

In the event of an error, the function block FB lotMgttClient [P 40] sets the output bError and indicates the
error with hrErrorCode. All errors are listed in section "ADS Return Codes [»_156]".

In addition, the output eConnectionState indicates the state of the connection between the client and the
MQTT broker at all times. The enumeration offers the following possible states:

TYPE ETcIotMgttClientState :
(
MOTT ERR CONN_ PENDING:=-1,
MQTT ERR SUCCESS:=0,
MOTT ERR NOMEM:=1,
MQTT ERR PROTOCOL:=2,
MQTT ERR INVAL:=3,
MQTT ERR NO CONN:=4,
MQTT ERR CONN REFUSED:=5,
MOTT ERR NOT FOUND:=6,
MQTT ERR CONN_LOST:=7,
MQOTT ERR TLS:=8,
MQTT ERRiPAYLOAD7$IZE:=9,
MOTT ERR NOT SUPPORTED:=10,
MOTT ERR AUTH:=11,
MOTT ERR ACL DENIED:=12,
MQTTiERRiUNKNOWN:=13,
MOTT ERR ERRNO:=14,
MOTT ERR EATI:=15,
MOTT ERR PROXY:=16
) DINT;
END TYPE

7.2 ADS Return Codes

Grouping of error codes: 0x000 [»_156]..., 0x500 [»_157]..., 0x700 [»_158]..., 0x1000 [»_160]...

Global error codes

156 Version: 1.10 TF6701

BECKHOFF Appendix
Hex Dec HRESULT Name Description

0x0 0 0x9811 0000 |ERR_NOERROR No error.

0x1 1 0x9811 0001 |ERR_INTERNAL Internal error.

0x2 2 0x9811 0002 |ERR_NORTIME No real-time.

0x3 3 0x9811 0003 |ERR_ALLOCLOCKEDMEM Allocation locked — memory error.

0x4 4 0x9811 0004 |ERR_INSERTMAILBOX Mailbox full — the ADS message could not be sent.
Reducing the number of ADS messages per cycle
will help.

0x5 5 0x9811 0005 |ERR_WRONGRECEIVEHMSG Wrong HMSG.

0x6 6 0x9811 0006 |ERR_TARGETPORTNOTFOUND Target port not found — ADS server is not started or
is not reachable.

0x7 7 0x9811 0007 |ERR_TARGETMACHINENOTFOUND Target computer not found — AMS route was not
found.

0x8 8 0x9811 0008 |ERR_UNKNOWNCMDID Unknown command ID.

0x9 9 0x9811 0009 |ERR_BADTASKID Invalid task ID.

OxA 10 0x9811 000A |ERR_NOIO No I0.

0xB 11 0x9811 000B |ERR_UNKNOWNAMSCMD Unknown AMS command.

0xC 12 0x9811 000C |ERR_WIN32ERROR Win32 error.

0xD 13 0x9811 000D |ERR_PORTNOTCONNECTED Port not connected.

OxE 14 0x9811 000E |ERR_INVALIDAMSLENGTH Invalid AMS length.

OxF 15 0x9811 000F |ERR_INVALIDAMSNETID Invalid AMS Net ID.

0x10 16 0x9811 0010 |ERR_LOWINSTLEVEL Installation level is too low —TwinCAT 2 license er-
ror.

0x11 17 0x9811 0011 |ERR_NODEBUGINTAVAILABLE No debugging available.

0x12 18 0x9811 0012 |ERR_PORTDISABLED Port disabled — TwinCAT system service not
started.

0x13 19 0x9811 0013 |ERR_PORTALREADYCONNECTED Port already connected.

0x14 20 0x9811 0014 |ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.

0x15 21 0x9811 0015 |ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.

0x16 22 0x9811 0016 |ERR_AMSSYNC_AMSERROR AMS Sync error.

0x17 23 0x9811 0017 |ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.

0x18 24 0x9811 0018 |ERR_INVALIDAMSPORT Invalid AMS port.

0x19 25 0x9811 0019 |ERR_NOMEMORY No memory.

0x1A 26 0x9811 001A |ERR_TCPSEND TCP send error.

0x1B 27 0x9811 001B |[ERR_HOSTUNREACHABLE Host unreachable.

0x1C 28 0x9811 001C |ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.

0x1D 29 0x9811 001D |ERR_TLSSEND TLS send error — secure ADS connection failed.

Ox1E 30 0x9811 001E |ERR_ACCESSDENIED Access denied — secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description

0x500 |1280 |0x9811 0500 |ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x9811 0501 |ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 (1282 |0x9811 0502 |ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 |0x9811 0503 |ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 |0x9811 0504 |ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.

0x505 |1285 |0x9811 0505 |ROUTERERR_NOTINITIALIZED The router is not initialized.

0x506 |1286 |0x9811 0506 |ROUTERERR_PORTALREADYINUSE The port number is already assigned.

0x507 |1287 |0x9811 0507 |ROUTERERR_NOTREGISTERED The port is not registered.

0x508 |1288 |0x9811 0508 |ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.

0x509 1289 |0x9811 0509 |ROUTERERR_INVALIDPORT The port is invalid.

0x50A |1290 |0x9811 050A |ROUTERERR_NOTACTIVATED The router is not active.

0x50B 1291 0x9811 050B |ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for
fragmented messages.

0x50C |1292 |0x9811 050C |ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.

0x50D 1293 |0x9811 050D |ROUTERERR_TOBEREMOVED The port is removed.

TF6701 Version: 1.10 157

Appendix BECKHOFF

General ADS error codes

158 Version: 1.10 TF6701

BEGKHOFF Appendix

Hex Dec HRESULT Name Description
0x700 1792 |0x9811 0700 |ADSERR_DEVICE_ERROR General device error.
0x701 1793 |0x9811 0701 |ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 |0x9811 0702 |ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 |1795 |0x9811 0703 |ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 |0x9811 0704 |ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 |0x9811 0705 |ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 |1798 |0x9811 0706 |ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 |0x9811 0707 |ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 |0x9811 0708 |ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 |0x9811 0709 |ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS function blocks in different tasks. It
may be possible to resolve this through Multi-task
data access synchronization in the PLC.

0x70A 1802 |0x9811 070A |ADSERR_DEVICE_NOMEMORY Insufficient memory.

0x70B 1803 |0x9811070B |ADSERR_DEVICE_INVALIDPARM Invalid parameter values.

0x70C |1804 |0x9811 070C |ADSERR_DEVICE_NOTFOUND Not found (files, ...).

0x70D |1805 |0x9811 070D |ADSERR_DEVICE_SYNTAX Syntax error in file or command.

0x70E |1806 |0x9811 070E |ADSERR_DEVICE_INCOMPATIBLE Objects do not match.

0x70F 1807 |0x9811 070F |ADSERR_DEVICE_EXISTS Object already exists.

0x710 |1808 |0x9811 0710 |ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.

0x711 1809 |0x9811 0711 |ADSERR_DEVICE_SYMBOLVERSIONIN- Invalid symbol version. This can occur due to an on-
VALID line change. Create a new handle.

0x712 1810 |0x9811 0712 |ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.

0x713 1811 |0x9811 0713 |ADSERR_DEVICE_TRANSMODENOTSUPP |AdsTransMode not supported.
0x714 1812 |0x9811 0714 |ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.

0x715 1813 |0x9811 0715 |ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 |1814 |0x9811 0716 |ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 |0x9811 0717 |ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 |1816 |0x9811 0718 |ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 |0x9811 0719 |ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 |0x9811 071A |ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B |1819 |0x9811 071B |ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 |0x9811 071C |ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.

0x71D 1821 |0x9811 071D |ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.

0x71E 1822 |0x9811 071E |ADSERR_DEVICE_PENDING Request pending.

0x71F 1823 |0x9811 071F |ADSERR_DEVICE_ABORTED Request is aborted.

0x720 1824 |0x9811 0720 |ADSERR_DEVICE_WARNING Signal warning.

0x721 1825 |0x9811 0721 |ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.

0x722 1826 |0x9811 0722 |ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.

0x723 1827 |0x9811 0723 |ADSERR_DEVICE_ACCESSDENIED Access denied.

0x724 1828 |0x9811 0724 |ADSERR_DEVICE_LICENSENOTFOUND Missing license.

0x725 1829 |0x9811 0725 |ADSERR_DEVICE_LICENSEEXPIRED License expired.

0x726 |1830 |0x9811 0726 |ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.

0x727 1831 |0x9811 0727 |ADSERR_DEVICE_LICENSEINVALID Invalid license.

0x728 1832 |0x9811 0728 |ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 |0x9811 0729 |ADSERR_DEVICE_LICENSENOTIMELIMIT |License not limited in time.

0x72A 1834 |0x9811 072A |ADSERR_DEVICE_LICENSEFUTUREISSUE |License problem: Time in the future.
0x72B |1835 |0x9811072B |ADSERR_DEVICE_LICENSETIMETOLONG |License period too long.

0x72C |1836 |0x9811072C |ADSERR_DEVICE_EXCEPTION Exception at system startup.

0x72D 1837 |0x9811 072D |ADSERR_DEVICE_LICENSEDUPLICATED |License file read twice.

0x72E 1838 |0x9811 072E |ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.

0x72F 1839 |0x9811 072F |ADSERR_DEVICE_CERTIFICATEINVALID |Invalid certificate.

0x730 1840 |0x9811 0730 |ADSERR_DEVICE_LICENSEOEMNOT- Public key not known from OEM.
FOUND

0x731 1841 |0x9811 0731 |ADSERR_DEVICE_LICENSERESTRICTED |License not valid for this system ID.
0x732 1842 |0x9811 0732 |ADSERR_DEVICE_LICENSEDEMODENIED |Demo license prohibited.

0x733 1843 |0x9811 0733 |ADSERR_DEVICE_INVALIDFNCID Invalid function ID.

0x734 1844 |0x9811 0734 |ADSERR_DEVICE_OUTOFRANGE Outside the valid range.

0x735 1845 |0x9811 0735 |ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

TF6701 Version: 1.10 159

Appendix BEGKHOFF
Hex Dec HRESULT Name Description

0x736 1846 |0x9811 0736 |ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

0x737 1847 |0x9811 0737 |ADSERR_DEVICE_FORWARD_PL Context — forward to passive level.

0x738 1848 |0x9811 0738 |ADSERR_DEVICE_FORWARD_DL Context — forward to dispatch level.

0x739 1849 |0x9811 0739 |ADSERR_DEVICE_FORWARD_RT Context — forward to real-time.

0x740 |1856 |0x9811 0740 |ADSERR_CLIENT_ERROR Client error.

0x741 1857 |0x9811 0741 |ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.

0x742 1858 |0x9811 0742 |ADSERR_CLIENT_LISTEMPTY Polling list is empty.

0x743 1859 |0x9811 0743 |ADSERR_CLIENT_VARUSED Var connection already in use.

0x744 1860 |0x9811 0744 |ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.

0x745 1861 |0x9811 0745 |ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred — the remote terminal is not
responding in the specified ADS timeout. The route
setting of the remote terminal may be configured in-
correctly.

0x746 1862 |0x9811 0746 |ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.

0x747 1863 |0x9811 0747 |ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.

0x748 |1864 |0x9811 0748 |ADSERR_CLIENT_PORTNOTOPEN Port not open.

0x749 1865 |0x9811 0749 |ADSERR_CLIENT_NOAMSADDR No AMS address.

0x750 1872 |0x9811 0750 |ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.

0x751 1873 |0x9811 0751 |ADSERR_CLIENT_ADDHASH Hash table overflow.

0x752 1874 |0x9811 0752 |ADSERR_CLIENT_REMOVEHASH Key not found in the table.

0x753 1875 |0x9811 0753 |ADSERR_CLIENT_NOMORESYM No symbols in the cache.

0x754 1876 |0x9811 0754 |ADSERR_CLIENT_SYNCRESINVALID Invalid response received.

0x755 1877 |0x9811 0755 |ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

RTime error codes

Hex Dec HRESULT Name Description

0x1000 |4096 |0x9811 1000 |RTERR_INTERNAL Internal error in the real-time system.

0x1001 |4097 |0x9811 1001 |RTERR_BADTIMERPERIODS Timer value is not valid.

0x1002 |4098 |0x9811 1002 |RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).

0x1003 |4099 |0x9811 1003 |RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).

0x1004 |4100 |0x9811 1004 |RTERR_PRIOEXISTS The request task priority is already assigned.

0x1005 |4101 |0x9811 1005 |RTERR_NOMORETCB No free TCB (Task Control Block) available. The
maximum number of TCBs is 64.

0x1006 [4102 |0x9811 1006 |RTERR_NOMORESEMAS No free semaphores available. The maximum num-
ber of semaphores is 64.

0x1007 |4103 |0x9811 1007 |RTERR_NOMOREQUEUES No free space available in the queue. The maximum
number of positions in the queue is 64.

0x100D |4109 |0x9811 100D |RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already ap-
plied.

0x100E |4110 |0x9811 100E |RTERR_EXTIRQNOTDEF No external sync interrupt applied.

0x100F (4111 0x9811 100F |RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt
has failed.

0x1010 (4112 |0x9811 1010 |RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context

0x1017 |4119 |0x9811 1017 |RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.

0x1018 |4120 |0x9811 1018 |RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.

0x1019 (4121 |0x9811 1019 |RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.

0x101A (4122 |0x9811 101A |RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

TCP Winsock error codes

Hex

Dec

Name

Description

0x274C

10060

WSAETIMEDOUT

spond.

A connection timeout has occurred - error while establishing the connection, because
the remote terminal did not respond properly after a certain period of time, or the es-
tablished connection could not be maintained because the connected host did not re-

0x274D

10061

WSAECONNREFUSED

tion is running.

Connection refused - no connection could be established because the target computer
has explicitly rejected it. This error usually results from an attempt to connect to a ser-
vice that is inactive on the external host, that is, a service for which no server applica-

0x2751

10065

WSAEHOSTUNREACH

No route to host - a socket operation referred to an unavailable host.

More Winsock error codes: Win32 error codes

160

Version: 1.10

TF6701

BEGKHOFF Appendix

7.3 Error diagnosis

The following chapter provides useful information for error diagnosis, if application scenarios are not
functioning as expected.

TF6701 Version: 1.10 161

Appendix BEGKHOFF
Behavior Category Description

Connection to message |Establishing the Check whether the message broker can be reached in
broker cannot be connection principle from the system on which the Tc3_lotBase is

established

executed (e.g. using another MQTT client).

If the message broker cannot be reached, check your
firewall settings. For an MQTT communication, the
outgoing TCP port (1883 or 8883 if TLS is used) must
be open by default on the MQTT client (the computer
that runs the Tc3_lotBase). On the message broker
side, these ports must be open for incoming messages.

If the Tc3_lotBase is used, the port configuration can
be checked via the input parameter nHostPort at the

function block FB lotMgttClient [40].

Connection to AWS loT

[»_12] cannot be
established

Establishing the
connection

Check whether the AWS IoT URL can be reached in
principle from the system on which the Tc3_lotBase is
executed (e.g. using another MQTT client). This also
provides an opportunity for verifying the certificates for
the connection. If the other MQTT client cannot
establish a connection, check on the AWS loT
management website whether the certificates are valid
and active.

If AWS loT cannot be reached, check your firewall
settings. For an MQTT communication with AWS loT,
the outgoing TCP port (8883) must be open by default
on the MQTT client (the computer that runs the
Tc3_lotBase).

If the Tc3_lotBase is used, the port configuration can
be checked via the input parameter nHostPort at the

function block FB lotMqttClient [»_40].

Connection to Azure loT
Hub [»_15] cannot be

established

Establishing the
connection

Check whether the AWS loT URL can be reached in
principle from the system on which the Tc3_lotBase is
executed (e.g. using another MQTT client). This also
provides an opportunity for verifying the CA certificate
for the connection. If the other MQTT client cannot
establish a connection, check whether the CA
certificate is valid.

If the Azure loT Hub cannot be reached, check your
firewall settings. For an MQTT communication with the
Azure IoT Hub, the outgoing TCP port (8883) must be
open by default on the MQTT client (the computer that
runs the Tc3_lotBase).

If the Tc3_lotBase is used, the port configuration can
be checked via the input parameter nHostPort at the

function block FB lotMgttClient [» 40].

The connection cannot
be established after a
CRL update. The
variable
eConnectionState shows
the following value:
MQTT_ERR_TLS_VERI
FY_FAIL

Establishing the
connection

The certificate of the message broker was revoked. In
this case, please contact the operator of the message
broker for further information.

162

Version: 1.10

TF6701

BEGKHOFF Appendix

Behavior Category Description

After using an invalid Establishing the After using an invalid topic TwinCAT must be restarted.

topic in the meantime connection Please make sure that no invalid topics are used.

(e.g. a wildcard at the

wrong position

"testtopic#") the

connection of the MQTT

client to the broker

toggles

Messages do not arrive |Publish Check whether the messages are published to the

at the Azure loT Hub correct topic. The topic structure is fixed for the Azure

> 15] loT Hub, based on a naming scheme that cannot be
changed.
Check whether your MQTT settings are valid and
whether the Azure l1oT Hub supports them.
For further information consult the Beckhoff notes on
establishing a connection to the Azure loT Hub [»_15]
or the MSDN documentation.

Messages do not arrive |Publish Check whether the messages are published to the

at IBM Watson loT [P 13] correct topic. The topic structure is fixed for IBM
Watson IoT, based on a naming scheme that cannot be
changed.
Check whether your MQTT settings are valid and
whether IBM Watson loT supports them.
For further information consult the Beckhoff notes on
establishing a connection to IBM Watson [oT [» 13] or
the IBM Watson documentation.

Messages content is not |Publish Check whether the JSON document you are trying to

detected as a valid JSON send is valid. The Tc3_JsonXml library from Beckhoff

message by the provides support for creating valid JSON documents.

subscriber Check whether the correct length information
(nPayloadSize) is transferred when the publish method
is called and that not too many data (null) are located
after the actual payload.

No properties for the Publish Check whether the correct length information

corresponding event are (nPayloadSize) is transferred when the publish method

detected at IBM Watson is called and that not too many data (null) are located

loT after the actual payload, in which case IBM Watson
may not be able to recognize the message as a valid
JSON message.

During the conversion of |Publish Check whether the correct length information

incoming MQTT (nPayloadSize) is transferred when the publish method

messages, Node-RED is called and that not too many data (null) are located

reports to the JSSON after the actual payload, in which case Node-RED may

function "Ignored non- not be able to recognize the message as a valid JSON

object payload" message.

7.4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

TF6701 Version: 1.10 163

https://www.beckhoff.com/support

Appendix BEGKHOFF

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support
Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

e support

+ design, programming and commissioning of complex automation systems

« and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com
Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
* spare parts service
* hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG
Huelshorstweg 20

33415 Verl

Germany

Phone: +49 5246 963 0

Fax: +49 5246 963 198

e-mail: info@beckhoff.com

web: https://www.beckhoff.com

164 Version: 1.10 TF6701

https://www.beckhoff.com
https://www.beckhoff.com

BECKHOFF Appendix

7.5 Cipher suites used

The TwinCAT loT driver supports secure transmission using version 1.2 of the TLS standard. Up to this

version, a cipher suite is a set of algorithms (key exchange, authentication, encryption, MAC) for secure
transmission.

All cipher suites currently supported by the loT driver are listed below. The information provided here refers
to TwinCAT version 3.1.4024.12.

Cipher suite
DHE-RSA-AES256-SHA256
ECDHE-ECDSA-AES256-SHA
ECDHE-RSA-AES256-SHA
DHE-RSA-AES256-SHA
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA256
ECDHE-RSA-AES128-SHA256
DHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES128-SHA
DHE-RSA-AES128-SHA
ECDHE-ECDSA-DES-CBC3-SHA
ECDHE-RSA-DES-CBC3-SHA
EDH-RSA-DES-CBC3-SHA
AES256-SHA256

AES256-SHA
AES128-GCM-SHA256
AES128-SHA256

AES128-SHA

DES-CBC3-SHA
PSK-AES256-CBC-SHA
PSK-AES128-GCM-SHA256
PSK-AES128-CBC-SHA256
PSK-AES128-CBC-SHA
PSK-3DES-EDE-CBC-SHA

TF6701 Version: 1.10 165

More Information:
www.beckhoff.com/tf6701.html

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TF6701
https://www.beckhoff.com
https://www.beckhoff.com/tf6701.html

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System requirements
	3.2 Installation
	3.3 Licensing

	4 Technical introduction
	4.1 Application samples
	4.1.1 AWS IoT Core
	4.1.2 Bosch IoT Suite
	4.1.3 Google IoT Core
	4.1.4 IBM Watson IoT
	4.1.5 MathWorks ThingSpeak
	4.1.6 Microsoft Azure IoT Hub
	4.1.7 Sending SMS and E-Mail notifications
	4.1.7.1 Overview
	4.1.7.2 Classic solution
	4.1.7.3 Cloud-based solution
	4.1.7.3.1 Requirements
	4.1.7.3.2 Architecture
	4.1.7.3.3 Setting up AWS IoT Core
	4.1.7.3.4 Setting up Amazon SNS
	4.1.7.3.5 Setting up TwinCAT

	4.2 MQTT
	4.3 Exponential backoff
	4.4 JSON
	4.5 JSON Web Token (JWT)
	4.6 Security
	4.6.1 Transport layer
	4.6.1.1 Server certificate
	4.6.1.2 Client/Server certificate
	4.6.1.3 Pre-shared keys

	4.6.2 Application level
	4.6.2.1 JSON Web Token (JWT)

	4.7 Re-parameterization
	4.8 I/O device
	4.9 LastWill handling

	5 PLC API
	5.1 Tc3_IotBase
	5.1.1 FB_IotMqttClient
	5.1.1.1 Execute
	5.1.1.2 Publish
	5.1.1.3 Subscribe
	5.1.1.4 Unsubscribe
	5.1.1.5 OnMqttMessage
	5.1.1.6 ActivateExponentialBackoff
	5.1.1.7 DeactivateExponentialBackoff

	5.1.2 ST_IotMqttWill
	5.1.3 ST_IotMqttTLS
	5.1.4 Message Queue
	5.1.4.1 FB_IotMqttMessageQueue
	5.1.4.1.1 Dequeue
	5.1.4.1.2 ResetQueue

	5.1.4.2 FB_IotMqttMessage
	5.1.4.2.1 CompareTopic
	5.1.4.2.2 GetTopic
	5.1.4.2.3 GetPayload

	5.2 Tc3_JsonXml
	5.2.1 Function blocks
	5.2.1.1 FB_JsonDomParser
	5.2.1.1.1 AddArrayMember
	5.2.1.1.2 AddBase64Member
	5.2.1.1.3 AddBoolMember
	5.2.1.1.4 AddDateTimeMember
	5.2.1.1.5 AddDcTimeMember
	5.2.1.1.6 AddDoubleMember
	5.2.1.1.7 AddFileTimeMember
	5.2.1.1.8 AddHexBinaryMember
	5.2.1.1.9 AddInt64Member
	5.2.1.1.10 AddIntMember
	5.2.1.1.11 AddJsonMember
	5.2.1.1.12 AddNullMember
	5.2.1.1.13 AddObjectMember
	5.2.1.1.14 AddStringMember
	5.2.1.1.15 AddUint64Member
	5.2.1.1.16 AddUintMember
	5.2.1.1.17 ArrayBegin
	5.2.1.1.18 ArrayEnd
	5.2.1.1.19 ClearArray
	5.2.1.1.20 CopyDocument
	5.2.1.1.21 CopyJson
	5.2.1.1.22 CopyString
	5.2.1.1.23 FindMember
	5.2.1.1.24 FindMemberPath
	5.2.1.1.25 GetArraySize
	5.2.1.1.26 GetArrayValue
	5.2.1.1.27 GetArrayValueByIdx
	5.2.1.1.28 GetBase64
	5.2.1.1.29 GetBool
	5.2.1.1.30 GetDateTime
	5.2.1.1.31 GetDcTime
	5.2.1.1.32 GetDocument
	5.2.1.1.33 GetDocumentLength
	5.2.1.1.34 GetDocumentRoot
	5.2.1.1.35 GetDouble
	5.2.1.1.36 GetFileTime
	5.2.1.1.37 GetHexBinary
	5.2.1.1.38 GetInt
	5.2.1.1.39 GetInt64
	5.2.1.1.40 GetJson
	5.2.1.1.41 GetJsonLength
	5.2.1.1.42 GetMaxDecimalPlaces
	5.2.1.1.43 GetMemberName
	5.2.1.1.44 GetMemberValue
	5.2.1.1.45 GetString
	5.2.1.1.46 GetStringLength
	5.2.1.1.47 GetType
	5.2.1.1.48 GetUint
	5.2.1.1.49 GetUint64
	5.2.1.1.50 HasMember
	5.2.1.1.51 IsArray
	5.2.1.1.52 IsBase64
	5.2.1.1.53 IsBool
	5.2.1.1.54 IsDouble
	5.2.1.1.55 IsFalse
	5.2.1.1.56 IsHexBinary
	5.2.1.1.57 IsInt
	5.2.1.1.58 IsInt64
	5.2.1.1.59 IsISO8601TimeFormat
	5.2.1.1.60 IsNull
	5.2.1.1.61 IsNumber
	5.2.1.1.62 IsObject
	5.2.1.1.63 IsString
	5.2.1.1.64 IsTrue
	5.2.1.1.65 IsUint
	5.2.1.1.66 IsUint64
	5.2.1.1.67 LoadDocumentFromFile
	5.2.1.1.68 MemberBegin
	5.2.1.1.69 MemberEnd
	5.2.1.1.70 NewDocument
	5.2.1.1.71 NextArray
	5.2.1.1.72 ParseDocument
	5.2.1.1.73 PushbackBase64Value
	5.2.1.1.74 PushbackBoolValue
	5.2.1.1.75 PushbackDateTimeValue
	5.2.1.1.76 PushbackDcTimeValue
	5.2.1.1.77 PushbackDoubleValue
	5.2.1.1.78 PushbackFileTimeValue
	5.2.1.1.79 PushbackHexBinaryValue
	5.2.1.1.80 PushbackInt64Value
	5.2.1.1.81 PushbackIntValue
	5.2.1.1.82 PushbackJsonValue
	5.2.1.1.83 PushbackNullValue
	5.2.1.1.84 PushbackStringValue
	5.2.1.1.85 PushbackUint64Value
	5.2.1.1.86 PushbackUintValue
	5.2.1.1.87 RemoveAllMembers
	5.2.1.1.88 RemoveArray
	5.2.1.1.89 RemoveMember
	5.2.1.1.90 RemoveMemberByName
	5.2.1.1.91 SaveDocumentToFile
	5.2.1.1.92 SetArray
	5.2.1.1.93 SetBase64
	5.2.1.1.94 SetBool
	5.2.1.1.95 SetDateTime
	5.2.1.1.96 SetDcTime
	5.2.1.1.97 SetDouble
	5.2.1.1.98 SetFileTime
	5.2.1.1.99 SetHexBinary
	5.2.1.1.100 SetInt
	5.2.1.1.101 SetInt64
	5.2.1.1.102 SetJson
	5.2.1.1.103 SetMaxDecimalPlaces
	5.2.1.1.104 SetNull
	5.2.1.1.105 SetObject
	5.2.1.1.106 SetString
	5.2.1.1.107 SetUint
	5.2.1.1.108 SetUint64

	5.2.1.2 FB_JsonDynDomParser
	5.2.1.3 FB_JsonSaxReader
	5.2.1.3.1 DecodeBase64
	5.2.1.3.2 DecodeDateTime
	5.2.1.3.3 DecodeDcTime
	5.2.1.3.4 DecodeFileTime
	5.2.1.3.5 DecodeHexBinary
	5.2.1.3.6 GetLastParseResult
	5.2.1.3.7 IsBase64
	5.2.1.3.8 IsHexBinary
	5.2.1.3.9 IsISO8601TimeFormat
	5.2.1.3.10 Parse
	5.2.1.3.11 ParseValues

	5.2.1.4 FB_JsonSaxWriter
	5.2.1.4.1 AddBase64
	5.2.1.4.2 AddBool
	5.2.1.4.3 AddDateTime
	5.2.1.4.4 AddDcTime
	5.2.1.4.5 AddDint
	5.2.1.4.6 AddFileTime
	5.2.1.4.7 AddHexBinary
	5.2.1.4.8 AddKey
	5.2.1.4.9 AddKeyBool
	5.2.1.4.10 AddKeyDateTime
	5.2.1.4.11 AddKeyDcTime
	5.2.1.4.12 AddKeyFileTime
	5.2.1.4.13 AddKeyLreal
	5.2.1.4.14 AddKeyNull
	5.2.1.4.15 AddKeyNumber
	5.2.1.4.16 AddKeyString
	5.2.1.4.17 AddLint
	5.2.1.4.18 AddLreal
	5.2.1.4.19 AddNull
	5.2.1.4.20 AddRawArray
	5.2.1.4.21 AddRawObject
	5.2.1.4.22 AddReal
	5.2.1.4.23 AddString
	5.2.1.4.24 AddUdint
	5.2.1.4.25 AddUlint
	5.2.1.4.26 CopyDocument
	5.2.1.4.27 EndArray
	5.2.1.4.28 EndObject
	5.2.1.4.29 GetDocument
	5.2.1.4.30 GetDocumentLength
	5.2.1.4.31 GetMaxDecimalPlaces
	5.2.1.4.32 ResetDocument
	5.2.1.4.33 SetMaxDecimalPlaces
	5.2.1.4.34 StartArray
	5.2.1.4.35 StartObject

	5.2.1.5 FB_JsonReadWriteDataType
	5.2.1.5.1 AddJsonKeyPropertiesFromSymbol
	5.2.1.5.2 AddJsonKeyValueFromSymbol
	5.2.1.5.3 AddJsonValueFromSymbol
	5.2.1.5.4 CopyJsonStringFromSymbol
	5.2.1.5.5 CopyJsonStringFromSymbolProperties
	5.2.1.5.6 CopySymbolNameByAddress
	5.2.1.5.7 GetDataTypeNameByAddress
	5.2.1.5.8 GetJsonFromSymbol
	5.2.1.5.9 GetJsonStringFromSymbol
	5.2.1.5.10 GetJsonStringFromSymbolProperties
	5.2.1.5.11 GetSizeJsonStringFromSymbol
	5.2.1.5.12 GetSizeJsonStringFromSymbolProperties
	5.2.1.5.13 GetSymbolNameByAddress
	5.2.1.5.14 SetSymbolFromJson

	5.2.1.6 FB_XmlDomParser
	5.2.1.6.1 AppendAttribute
	5.2.1.6.2 AppendAttributeAsBool
	5.2.1.6.3 AppendAttributeAsDouble
	5.2.1.6.4 AppendAttributeAsFloat
	5.2.1.6.5 AppendAttributeAsInt
	5.2.1.6.6 AppendAttributeAsLint
	5.2.1.6.7 AppendAttributeAsUint
	5.2.1.6.8 AppendAttributeAsUlint
	5.2.1.6.9 AppendAttributeCopy
	5.2.1.6.10 AppendChild
	5.2.1.6.11 AppendChildAsBool
	5.2.1.6.12 AppendChildAsDouble
	5.2.1.6.13 AppendChildAsFloat
	5.2.1.6.14 AppendChildAsInt
	5.2.1.6.15 AppendChildAsLint
	5.2.1.6.16 AppendChildAsUint
	5.2.1.6.17 AppendChildAsUlint
	5.2.1.6.18 AppendCopy
	5.2.1.6.19 AppendNode
	5.2.1.6.20 Attributes
	5.2.1.6.21 AttributeAsBool
	5.2.1.6.22 AttributeAsDouble
	5.2.1.6.23 AttributeAsFloat
	5.2.1.6.24 AttributeAsInt
	5.2.1.6.25 AttributeAsLint
	5.2.1.6.26 AttributeAsUint
	5.2.1.6.27 AttributeAsUlint
	5.2.1.6.28 AttributeBegin
	5.2.1.6.29 AttributeFromIterator
	5.2.1.6.30 AttributeName
	5.2.1.6.31 Attributes
	5.2.1.6.32 AttributeText
	5.2.1.6.33 Begin
	5.2.1.6.34 BeginByName
	5.2.1.6.35 Child
	5.2.1.6.36 ChildByAttribute
	5.2.1.6.37 ChildByAttributeAndName
	5.2.1.6.38 ChildByName
	5.2.1.6.39 Children
	5.2.1.6.40 ChildrenByName
	5.2.1.6.41 Compare
	5.2.1.6.42 CopyAttributeText
	5.2.1.6.43 CopyDocument
	5.2.1.6.44 CopyNodeText
	5.2.1.6.45 CopyNodeXml
	5.2.1.6.46 FirstNodeByPath
	5.2.1.6.47 GetAttributeTextLength
	5.2.1.6.48 GetDocumentLength
	5.2.1.6.49 GetDocumentNode
	5.2.1.6.50 GetNodeTextLength
	5.2.1.6.51 GetNodeXmlLength
	5.2.1.6.52 GetRootNode
	5.2.1.6.53 InsertAttributeCopy
	5.2.1.6.54 InsertAttribute
	5.2.1.6.55 InsertChild
	5.2.1.6.56 InsertCopy
	5.2.1.6.57 IsEnd
	5.2.1.6.58 LoadDocumentFromFile
	5.2.1.6.59 NewDocument
	5.2.1.6.60 Next
	5.2.1.6.61 NextAttribute
	5.2.1.6.62 NextByName
	5.2.1.6.63 NextSibling
	5.2.1.6.64 NextSiblingByName
	5.2.1.6.65 Node
	5.2.1.6.66 NodeAsBool
	5.2.1.6.67 NodeAsDouble
	5.2.1.6.68 NodeAsFloat
	5.2.1.6.69 NodeAsInt
	5.2.1.6.70 NodeAsLint
	5.2.1.6.71 NodeAsUint
	5.2.1.6.72 NodeAsUlint
	5.2.1.6.73 NodeName
	5.2.1.6.74 NodeText
	5.2.1.6.75 ParseDocument
	5.2.1.6.76 RemoveChild
	5.2.1.6.77 RemoveChildByName
	5.2.1.6.78 SaveDocumentToFile
	5.2.1.6.79 SetAttribute
	5.2.1.6.80 SetAttributeAsBool
	5.2.1.6.81 SetAttributeAsDouble
	5.2.1.6.82 SetAttributeAsFloat
	5.2.1.6.83 SetAttributeAsInt
	5.2.1.6.84 SetAttributeAsLint
	5.2.1.6.85 SetAttributeAsUint
	5.2.1.6.86 SetAttributeAsUlint
	5.2.1.6.87 SetChild
	5.2.1.6.88 SetChildAsBool
	5.2.1.6.89 SetChildAsDouble
	5.2.1.6.90 SetChildAsFloat
	5.2.1.6.91 SetChildAsInt
	5.2.1.6.92 SetChildAsLint
	5.2.1.6.93 SetChildAsUint
	5.2.1.6.94 SetChildAsUlint

	5.2.1.7 FB_JwtEncode

	5.2.2 Interfaces
	5.2.2.1 ITcJsonSaxHandler
	5.2.2.1.1 OnBool
	5.2.2.1.2 OnDint
	5.2.2.1.3 OnEndArray
	5.2.2.1.4 OnEndObject
	5.2.2.1.5 OnKey
	5.2.2.1.6 OnLint
	5.2.2.1.7 OnLreal
	5.2.2.1.8 OnNull
	5.2.2.1.9 OnStartArray
	5.2.2.1.10 OnStartObject
	5.2.2.1.11 OnString
	5.2.2.1.12 OnUdint
	5.2.2.1.13 OnUlint

	5.2.2.2 ITcJsonSaxValues
	5.2.2.2.1 OnBoolValue
	5.2.2.2.2 OnDintValue
	5.2.2.2.3 OnLintValue
	5.2.2.2.4 OnLrealValue
	5.2.2.2.5 OnNullValue
	5.2.2.2.6 OnStringValue
	5.2.2.2.7 OnUdintValue
	5.2.2.2.8 OnUlintValue

	6 Samples
	6.1 IotMqttSampleUsingQueue
	6.2 IotMqttSampleUsingCallback
	6.3 IotMqttSampleTlsPsk
	6.4 IotMqttSampleTlsCa
	6.5 IotMqttSampleAwsIoT
	6.6 IotMqttSampleAzureIotHub
	6.7 IotMqttSampleBoschIoT
	6.8 IotMqttSampleGoogleIoT
	6.9 IotMqttSampleIbmWatsonIoT
	6.10 IotMqttSampleMathworksThingspeak
	6.11 IotMqttSampleAzureIotHubDeviceTwin
	6.12 JsonXmlSamples
	6.12.1 Tc3JsonXmlSampleXmlDomWriter
	6.12.2 Tc3JsonXmlSampleXmlDomReader
	6.12.3 Tc3JsonXmlSampleJsonDomReader
	6.12.4 Tc3JsonXmlSampleJsonSaxWriter
	6.12.5 Tc3JsonXmlSampleJsonSaxReader
	6.12.6 Tc3JsonXmlSampleJsonDataType

	7 Appendix
	7.1 Error Codes
	7.2 ADS Return Codes
	7.3 Error diagnosis
	7.4 Support and Service
	7.5 Cipher suites used

		documentation@beckhoff.com
	2022-08-11T13:29:52+0200
	Beckhoff Automation, Verl
	Documentation Publishing

