BECKHOFF

TF6311

TwinCAT 3 | TCP/UDP Realtime

Fle Edt View projeq Buld Debug
.o H N
Build 40244 (Loaded) . r‘;‘@" o
4821 @
Solution Explorer . '

= New Project -
®DE-| B

TwinCAT s
- a- TWinSAFE PLC Tegmn Scope Tools

~ | TwinCATRT (x64)
98 | TuinCAT Project

Vindow Help

P Attach.. v

b Recent

ch Solution Exp

y: | Default
. . 4 Installed
%] Solution ‘TwinCAT Project’ (1 project) et
4 /| TWinCAT Project
4 (@] SvSTEM
¥ License

P Controtes E'.J TwinCAT XAE Project (XML format)
b TwinCAT Measurement
TwinCAT CAD Interface Beta Version

D Real-Time TwinCAT Projects

B Tasks TwinCAT PLC

52 Routes

23 Type System

] TcCOM Objects
[moTIoN
g ric

SAFETY

C++
& AnaLTICS

o
» G0 Not finding what youae loaking o’

TeXaeShell Solution

(Open Visual Studio Installer -
TwinCAT Project
= forsolution
l et e

3 [trol
3] AddtoSource Con

i Create new solution .

ution:
g TwinCAT Project
=

Solution nam

18 | Version: 1.8.1

BEGKHOFF Table of contents

Table of contents

1

L o] =3V o c S 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
L o Yo TN T =Y |V USRS POPPPP 5
1.3 Notes on infOrmation SECUNITYcooi i 7
L0 Y= T PR 8
2.1 Comparison TFB3T0 TEB3TT ...ttt et e e et e e e e bt e e e e e anbeeeeeens 8
2.2 RESIICHONS ..ttt et e e e e e e e e et e ettt e e e e e e e e e e e nnnbeneeeeaaaaaaeaaaan 9
Installation / LICENSINGcuieiiiiieiiiiiiire s nn e e ann e e s e e 10
L LT T QR - g 11
4.1 QUICK Start (PLC / UDP) ..ueeiiiiiiiiiiee ettt ettt e e e et e e e e et ee e e e e st e e e s e snsneeaeeenbaeeeeennnnes 11
4.2 QUICK STArt (CHF / UDP) ...ttt ettt e e et e e e e et e e e et e e e e e e nsae e e e e e nbaeeeeeannees 16
4.3 Quick Start (CH++/ TCP ClENL)ueiiiiiiiiie ettt e e e e e e e ae e e e e eanees 22
Lo 1T 11 - 1o 33
5.1 MUIIPIE NEIWOTK CANASoiiiiiiiiiie ettt e e e st e e e sttt e e e e anneeeeas 35
5.2 Multitask access to @ NEIWOIrK Cardoeiiiiiiiiiiii e e e e e 36
L 111 o 1= 38
6.1 S01: Simple TCP ClENt (PLC / CH4) woiiiiiiiiiiii et s ettt e e sttt e e e s e e e s nsnenaesannneeens 38
6.1.1 S01: SIMple TCP ClENt (CH) o e e s eneeeee s 38
6.1.2 S01: Simple TCP Client (PLC)uviiiiiiiiiii ettt a e ennaeee s 39
6.2 S02: UDP Client SEIVEI (PLC/CH4) ..uiiiiiiiiiiiie ettt ettt e e s st e e e s s e e e e s nnseeeeesannseeens 40
6.2.1 S02: UDP DEMO (PLC) .iiiiiite ettt ettt ettt e e e s e e s annneeeas 40
6.2.2 S02: UDP DEMO (CHF) coiieiiiiie ettt e ettt s ettt e e e e st e e e s anssaeeeeannssneeesensnneens 43
6.2.3 TESE ClIENT. ...ttt e e e e e e e e e e e e e e e e e e 44
6.3 S03: ARP PING DEMO (CHF) ittt ettt e ettt e e e et e e e et e e e s eba e e e e s enseaeeeesansneeens 45
6.4 S04: TCP EChO Server (PLC / CA) ..ottt 46
6.4.1 S04: TCP Server DEMO (PLC)t 47
6.4.2 S04: TCP Server DEmO (C) ..ttt 49
Programmer’'s FefEIr@NCEciviiii e s re s s s n e e e e e e e s s e s s s s s s smssns e e e e e eessas s e s s snmnnneeeneeessansnsnsnnnnnnnns 51
7.1 UDP/IP: ITCloUdPProtOCOI(RECV) ...t 52
7.1.1 Method ITcloUdpProtocolRecv:ReceiveData..............cceieiiiiiiiiiiiiiiie, 53
71.2 Method ITcloUdpProtocol:SendDatacccvvviiiiiiiiee e 53
71.3 Method ITcloUdpProtocol:CheckReceived ... 54
714 Method ITcloUdpProtocol:RegiSterRECIVErcooiiiiiiiiiiiiie e 54
71.5 Method ITcloUdpProtocol:UnregisterReCeIVEr.............ocueiiiiiiiiiiiieiiiee e 55
7.2 TCP/UDP RT TCCOM Parametert e e e e e e e e e e e e aeaaeens 55
7.3 TCP/UDP RT TcComM diagnOSHICSuuuuiiiiiiiiieie e ettt e e e e e e e e e e e e e e 57
7.4 TCP/IP: ITCIOTCPPIOtOCOIRECV) ...ttt e e es 58
7.4.1 Method ITcloTcpProtocolRecv:ReceiveDataeeuieeiiiiiiiiii, 59
74.2 Method ITcloTcpProtocolRecv:ReceiveEvVeNt............eeeiiiiiiiiiiien 60
7.4.3 Method ITcloTcpProtocol: AIOCSOCKEL ... 60
74.4 Method ITcloTcpProtocol:FreeSocket.........cc.uviiviiiiiiiiiiieie e 61
7.4.5 Method ITCloTCPProtoCOl:CONNECL.........coiiiiiiiie e 61
7.4.6 Method ITcloTcpProtocol:IsConnected.........c.uuueiiiiiiiee e 61

TF6311 Version: 1.8.1 3

Table of contents BEGKHOFF

74.7 Method ITClOTCPPIOtOCOICIOSEeviiiiieeee i 62

7.4.8 Method ITClOTCPProtOCOLLISTEN ... 62

74.9 Method ITcloTCPProtOCOLACCEPLcooiiiieeeeeeee e 62

7.4.10 Method ITcloTcpProtocol:SendData..........c.c.uvviiiiiiiiieice e 63

7.4.11 Method ITcloTcpProtocol:CheckReceived....... ... 63

7.4.12 Method ITcloTcpProtocol:GetRemotelpAddr............coooiiiiiiiiiiiieeeeeeeeeeececeeee e, 63

7.4.13 Method ITcloTcpProtocol:GetFreeSendDataSize............coovviiiiiiiiiiiiiiiee e 64

7.5 ARP/Ping: ITCIOArpPINGPIrotOCOI(RECV)eeieiiiiiieie et 64
7.5.1 Method ITcloArpPingProtocolRecV:PINGREPIY......euvveeiiiiiiiiiii e 65

7.5.2 Method ITcloArpPingProtocolRecV:ArPREPIYveiiiiiiiiii e 65

7.5.3 Method ITcloArpPingProtocol:PingReqUEST..........ooo i, 66

754 Method ITcloArpPingProtoCcol:ArpREQUESTvvveiiieeie e 66

7.5.5 Method ITcloArpPingProtocol:RegisterReceiver............oooiiiiiie s 67

7.5.6 Method ITcloArpPingProtocol:UnregisterReceiver ... 67

7.5.7 Method ITcloArpPingProtocol:CheckReceivedcueeiiiiiiiiiiiiiiiieee e 68

AL T (= (1 g 7= 1L =SOSR 68

L= - 11 11 T3 F= L= L= 69
8.1 Start-up: Ip Stack ADS 1823 / OX7 A ...t e e e e e e e e e e e e e 69

L2 T T o1 4 T 1 70
1S Bt B NI S T = (15 T o Lo =SOSR 70

4 Version: 1.8.1 TF6311

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.

If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

and similar applications and registrations in several other countries.

——
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

TF6311 Version: 1.8.1 5

Foreword BECKHOFF

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:

recommendations for action, assistance or further information on the product.

Version: 1.8.1 TF6311

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TF6311 Version: 1.8.1 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview BEGKHOFF

2 Overview

The “TCP/UDP Realtime” Function (TF6311) offers direct access to network cards from the real-time
environment. Access can be either from the PLC (61131-3) or C++.
The following protocols are supported:

« TCP/IP

- UDP/IP

* ARP / Ping

This section describes the concept of interfaces as APl [P 51]. An introduction is provided by means of
sample programs [P 38].

TwinCAT 3

Call

Ethernet
Card

Custom
Project

TCP/UDP RT

Ethernet

v

Regardless of the protocol, the communication between the project using the protocol and TwinCAT is
realized with a pair of interfaces:

» An Interface Pointer provides support for sending data and establishing connections etc.

« The implementation of a receiver interface provides feedback for the project in the form of events or
data, based on callbacks.

The communication partner of these interface pairs is a “TCP/UDP RT” TcCom object, which is instantiated
and configured with the network card.

» Depending on the protocol, the Quickstarts [»_11] provide a good introduction.
+ The configuration process is documented under Configuration [»_33].

+ The interfaces are described in the Programmer’s reference [P 51] and illustrated through samples

[»_38].

2.1 Comparison TF6310 TF6311

The products TF6310 "TCP/IP" and TF6311 "TCP/UDP Realtime" offer similar functionality.

This page provides an overview of similarities and differences of the products:

8 Version: 1.8.1 TF6311

BECKHOFF

Overview

TF 6310 TF 6311
TwinCAT TwinCAT 2/3 TwinCAT 3
Client/Server Both Both
Large / unknown networks ++ +
Determinism + ++
High-volume data transfer ++ +
Programming languages PLC PLC and C++
Operating system Win32/64, CE5/6/7 Win32/64, CE7
UDP-Mutlicast Yes No
Trial license Yes Yes
Protocols TCP, UDP TCP, UDP, Arp/Ping
Hardware requirements Variable TwinCAT-compatible network card

Socket configuration

See operating system (WinSock)

TCP/UDP RT TcCom Parameter
[»55]

The Windows firewall cannot be used, since the TF6311 is directly integrated in the TwinCAT system. In
larger / unknown networks we recommend using the TF6310.

2.2 Restrictions

The following limitations exist for the product:

* No local communication in real-time or between real-time and Windows operating system. (Alternative:
communication via a second network interface.)

* Multicast is not supported.

* The EL6601 and EL6614 cannot be used for TF6311 TCP/UDP real-time.

« If breakpoints are used, we strongly advise to use different network interfaces, since a breakpoint stops
parts of the TwinCAT systems, which may be relevant for the communication with Engineering.

TF6311

Version: 1.8.1

Installation / Licensing BEGKHOFF

3 Installation / Licensing

The Function TF6311 requires no separate installation; all software components are available once TwinCAT
3 has been installed.

+ A“TC3 TCP UDP RT” license is required.
The dependence is entered by adding the “TCP/UDP RT” object to the project as a license. It can also
be specified manually.

» A trial license can be created and used.

10 Version: 1.8.1 TF6311

BEGKHOFF Quick Starts

4 Quick Starts

This section contains detailed step-by-step instructions for some protocols.
They illustrate the use of the product in a simple manner. The samples are intended to facilitate
understanding; they do not provide comprehensive implementation instructions. At the application level, the
handling must be programmed in detail (e.g. the behavior on arrival of corresponding TCP events).
The function TF6311 “TCP/UDP real-time” has extensive capabilities:

« different protocols (TCP, UDP, ARP/Ping)

« different programming languages (PLC / C++) and

« communication directions (client / server)

Step-by-step instructions are not available for all combinations. Once the basic concept [»_8] has been
understood, further implementations can be derived in conjunction with the existing step-by-step instructions

and samples [P 38].

4.1 Quick Start (PLC / UDP)

The sample implements an “echo service”: A UDP server is started on a port (default: 10000). If this server
receives a UDP packet, it returns the content to the sender (with same IP and same port).

The sample is also available for download under Sample 02 [P 40]. In addition to the Quick Start, the
download contains extended code, which does not affect the basic functionality.

Implementation of the UDP echo server in a PLC project
v" A TwinCAT solution was generated
1. If no PLC project exists in the TwinCAT solution, you have to create one.

2. A function block is generated, which implements the interface "ltcloUdpProtocolRecv". This creates a
method, which is called when UDP packets arrive.
By right-clicking on the node "POU" in the PLC project you can allocate names in the Popup window,

TF6311 Version: 1.8.1 11

Quick Starts

BECKHOFF

activate "SampleUdpEchoServer" and "Implements" by ticking, and select the interface mentioned with

the button "...":

Solution Explorer A Bl TwinCAT Projectl & X

& o-d@ &R

General | Plc Settings

Search Solution Explorer (Ctrl+) 2~
fal Solution TwinCAT Projectl’ (1 project) (
4] TWinCAT Project Add POU (=]
bl SYSTEM
MOTION @ Create a new POU (Program Organization Unit)
4 @ PLC
4[] Untitledl
4 Z] Untitled! Project s
b [External Types ISampIEUdpEd‘uoServerI
I -3l References Type:
[3 DUTs
EJ GVLs) Program

4 T POUs

&) MAIN (PRG)
3 VISUs
b G5 PlcTask (PlcTask)
E‘ Untitled] Instance
SAFETY
m C++
4« Fvo
4 *é Devices
4 ¥ Devicel (RT-Ethernet Adapter)
¥ Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)
ﬁ:, Mappings

@ Function Block
["| Extends:
[¥] 1mplements: I [TcloUdpProtocolRecy

Master

Access specifier:

[™
Method implementation language:
[Struch..lred Text (5T)

) Function

Implementation language:
IStructured Text (5T)

[Open][Cancel l

The declaration part of the function block contains several variables in the declaration:
+ 0Oid: Configurable reference to the TCP/UDP RT module
* ipUdp: Interface pointer to the UdpProtocol, which is implemented by the TCP/UDP RT module

+ udpPort: Port used for receiving
3. The declaration part is created in this way:

{attribute 'c++ compatible'}

FUNCTION BLOCK SampleUdpEchoServer IMPLEMENTS ITcIoUdpProtocolRecv

VAR_INPUT

END VAR

VAR OUTPUT

END VAR

VAR
{attribute 'TcInitSymbol'}
oid: OTCID;
ipUdp: ITcIoUdpProtocol;
nUdpPort: UINT := 10000;
nReceivedPakets: UINT;
hrInit HRESULT;
hrSend : HRESULT;

END VAR

The CheckReceive() method of the TCP/UDP RT module must be called in the body of the function block.

4. The body is created in this way:

IF ipUdp <> 0 THEN
ipUdp.CheckReceived () ;
END IF

The method "ReceiveData", which was created through implementation of the interface, will be called
repeatedly via "CheckReceived": one call for each packet received in the meantime.

12

Version: 1.8.1

TF6311

BECKHOFF

Quick Starts

5. The method has both sender information and data as input parameters. In this sample, the "SendData"
method returns an incoming packet as response (with sender/receiver reversed). The implementation is

done as follows:

nReceivedPakets := nReceivedPakets+l;
IF ipUdp <> 0 THEN

hrSend := ipUdp.SendData (ipAddr, udpSrcPort, udpDestPort, nData, pData, TRUE, O0);

data back
END IF

// send

During start and finish, a reference to the "UdpProtocol" interface must be set from the configured OID;
corresponding approvals should be taken care of during shutdown.

6. The function block requires the methods "FB_init", "FB_reinit" and "FB_exit", which can be created by

right-clicking on the function block "Add..." method:

Add Methed

Eﬁ Create a new method

(=]

Mame:
FE_init

Add Method

ﬁa Create a new method

MName:
FE_reinit

Add Method

ﬁ; Create a new method

MName:
FB_exit

Return type:
BOOL

Implementation language:

[StructhEd Text (5T)

Access specifier;
PLBLIC

[Open

J [Cancel

TF6311

Version: 1.8.1 13

Quick Starts BEGKHOFF

Appropriate signatures are generated automatically, so that only the actual body has to be realized. Of
particular significance is the "RegisterReceiver" call, which opens a UDP port for reception.

7. The "FB_init" method requires two local variables:

VAR
ipSrv: ITComObjectServer;
END VAR

8. The "FB_init" method is implemented as follows:

IF NOT bInCopyCode THEN // no online change

IF ipUdp = 0 AND oid <> 0 THEN

hrInit := FW ObjMgr GetObjectInstance (oid:=oid, 1iid:=TC_GLOBAL IID LIST.IID ITcIoUdpProtocol,
pipUnk:=ADR (ipUdp))
IF SUCCEEDED (hrInit) THEN

IF SUCCEEDED (ipUdp.RegisterReceiver (nUdpPort, THIS”)) THEN //open port

FB init := TRUE;

ELSE

FB_init := FALSE;
FW_SafeRelease (ADR (ipUdp)) ;
END IF

END IF

ELSIF oid = 0 THEN

FB init := FALSE;

hrInit := ERR_INVALID PARAM;
END IF

END_IF

In the "FB_reinit" method, which is executed during an OnlineChange, the TCP/UDP RT object must be
supplied with the new address for the callbacks.

9. The "FB_reinit" method is implemented as follows:

IF (ipUdp <> 0) THEN
ipUdp.RegisterReceiver (nUpdPort, THIS");
FB reinit := TRUE:

END_IF

The port must be closed again during shutdown (but not during OnlineChange, cf. biInCopyCode).

10. The "FB_exit" method is implemented as follows:

IF (NOT bInCopyCode AND ipUdp <> 0) THEN //Shutdown
ipUdp.UnregisterReceiver (nUpdPort) ;
FW_SafeRelease (ADR (ipUdp)) ;

FB exit := TRUE;
ELSE

FB exit := FALSE;
END IF

11. Finally, the function block must be called:

PROGRAM MAIN
VAR

udpl : SampleUdpEchoServer;
END VAR

udpl () ;

“TCP/UDP RT” module configuration

M Variable names relating to TCP are used here. They have to be substituted accordingly.

14 Version: 1.8.1 TF6311

BEGKHOFF Quick Starts

1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Object(s)...” in the
context menu.

B2 TwinCAT UM Files
4 Fvo
4 "L Devices

%7 Devicel (RT-Ethernet Adapter)
‘O Add New Item... Ins &* Mappings

*3 Add Existing Item... Shift+Alt+ 4

X Remove Del

Add Object(s)...

Save Devicel (RT-Ethernet Adapter) As...

Online Reset
Online Reload
COnline Delete

2. Then select the “TCP/UDP RT” module:

Insert TeCom Object
Search: Mame: | (] |
Type: E{E Beckhoff Autamation GmbH [Cancel]
- -5 NC Objects

Lalabitiadl
~.Il: TCR/UDP RT [Module]

Multiple: 1 B

e i

[|ngert Instance. .]

[Reload]

= The TCP/UDP RT object is created under the adapter.

4« Fro
4 *f'g Devices

4 [Devicel (RT-Ethernet Adapter)
12 Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

B viodulel.cop Modulelh Untitled] @ X ~ | Solution Explorer
Object | Context | Parameter (int) | Data Area | Interfaces | Interface Pointer | Cofe-s @ -
Search Solution Explorer (Crl+)
PTCID [Neme [oran Object Name o) Type | @ e
0:03002060 CyclicCaller 02010020 =l Task2 0300001E-0000-000... ITeCyclicCaller SAFETY
0x00000002 TcpPort ice1 (RT-Ethernet Adapter)_Objl (Ip 5t.. 03010098-0000-000.. ITcloTcpProtocol 4 ﬂ C++

4 Untitledl
4[] Untitledl Project
b ;5 External Dependencies
b 571 Header Files
7 Source Files
£ TMC Files
#7 TwinCAT RT Files
+ TwinCAT UM Files
a Untitled_Objl (CModulel)
4 Inputs
P B Outputs

4« @vo

v v v

TF6311 Version: 1.8.1 15

Quick Starts BEGKHOFF

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

TwinCAT UdpDemoPlc + X

Objoct | Corteut | Parameter (i) | Data Area | Symbol Intialzaton | cCoM@| e-28|p=
Search Solution Explorer (Ctrl+)
[Thame = [unit] comment | 1] Solution ‘TwinCAT UdpDemoPic’ (1 project)
MAIN.udpL.oid 01010020 | Device (RT-Ethemet Adapte... € 4 [3] TwinCAT UdpDemoPlc
b SYSTEM
MOTION
4 [d pLc
4 [0} UdpDemoPlc
b =] UdpDemoPlc Project
[UdpDemoPlc Instance
SAFETY
[co+
4 Frvo
b “% Devices
& Mappings

= The configuration is thus completed

® Disconnection by the operating system in Promiscuous mode

1 If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

Testing

Once the configuration has been activated, a UDP packet can be sent to the PLC via the UDP Sample Client

[»_44]. It can be observed that each call increments the counter. The client displays the returned packets at
the top.

Solution Explorer = SampleUdpEchoServ...cRelease [Onling] SampleUdpEchoServer.FB_init [Onling] SampleUdpEchoServer [Online] + X
P pleldp pleldp! P P
m eo-ai TwinCAT_Device.Untitled1.MATN.udp1
Search Solution Explorer (Ctrl+a) P - | Expression Type Value Prepared value Address Comment E
1 Solution ‘TwinCAT Projectl’ (1 project) @ oid UDINT 16842768 £
-EI TwinCAT Projectl @ ipUdp ITcloUdpProtocol 16%810D01760
b (@l SYSTEM § updport UINT 10000
= MOTION I @ nReceivedPa.. UINT 14
4 [rLc
4 Untitledl
4 GF] Untitledl Project
b Cd External Types
I [-5] References
3 DUTs
[J GVLs g ™
4 [POUs a5l UDP Sample Client (== =]
E MAIN (PRG) 05.05.2015 13:52:21: Beckhoff TCP-UDP RT
. 05.05.2015 13:52:21: Beckhoff TCP-UDP RT
i [il 05,05 2015 13:52-21- Beckhoff TCP-UDP RT
Rﬂ FB_exit P 05.05.2015 13:52:21: Beckhoff TCP-UDP RT »
E\} FB_init 05.05.2015 13:52:21: Beckhoff TCP-UDP RT
[ReceiveData He ™ i <> 0 THEN 05.05.2015 13:52.22: Beckhoff TCP-UDP RT
L:;’.' TehddRef z ipUdp.CheckReceived()
E\} TcQuerylnterface 3 END_IFRETURN] Destination: 172.17.36.227 Port: 10000
E\?‘ TcRelease Source: 05-based -
o viss Message: Beokbf TCP-UDP AT |
551 PlcTask (PlcTask]
’ E’:E U ct';sdi tc e Hirt: Client sends/receives on udp port:11000
ntitledl.tmc

[IR S

No local communication

o

1 The UDP sample client must run on a different computer than the PLC with the TCP/UDP RT
object, because no local communication between the Windows operating system and the real-time
is available.
Alternatively, a so-called "loop cable" can be used to connect two network ports. The UDP sample
client can be forced to use a specific port by selecting the source (dropdown menu "Source").

4.2 Quick Start (C++ / UDP)

The example implements an "echo service": A UDP server is started on a port (default: 10000). If this server
receives a UDP packet, it returns the content to the sender (with same IP and same port).

The engineering system must meet the requirements for TwinCAT 3 C++.

16 Version: 1.8.1 TF6311

BECKHOFF

Quick Starts

The example is also available for download under Sample 02 [» 40].

Implementation of the UDP echo server in a C++ project
v" A TwinCAT solution was generated

1. If no C++ project exists in the TwinCAT solution, you have to create one. Please use the template for
“TwinCAT Module Class with Cyclic 10”.

2. Create a task. Under System / Tasks right-click and select “Add new Item...”
A normal task (without image) is sufficient.

3. In the C++ project, open the TMC editor by double-clicking on the TMC file.

Solution Explorer AR Untitledl.tmc [TMC Editor] # X Modulel.cpp

@ o-a8 #
Search Solution Explorer (Ctrl+0) P~
&1 Solution TwinCAT Projectl’ (1 project)
4 o] TwinCAT Projectl
4 (@ SvSTEM
% License
b @ Real-Time
4 Bz
Sl MoUtes
[H] T<COM Objects
MOTION
PLC
SAFETY
4 E C++
4 Untitledl
4 [%] Untitledl Project
P ®3 External Dependencies
B HeaderFiles
4 Lg] Source Files
++ Modulel.cpp
++ TcPch.cpp
O UntitledL.rc
++ Untitled1ClassFactory.

7] Untitledl tmc

b E TN =3
b = TwinCAT UM Files
4 Evo
4 L Devices

4 ¥ Devicel (RT-Ethernet Adapte
"% Devicel (RT-Ethernet Ad:
ﬁ'J Mappings

(/]

4 35 TMC
+* Data Types
« 7] Modules
4 i) CModulel
=% Implemented Interfaces
| B Parameters
[Data Areas
I Data Pointers
I ¢ Interface Pointers
Eq Deployment

Modulel.h TwinCAT Projectl d

H Shows the properties of the Module.

General properties

Name

Class ID (CLSID)

CModulel
2263be75-37b5-4a0a-35a4-3105253035d47

Class Factory Untitled1
Image D [Choose image...] [Reset image...
Init Sequence
Instantiable in RT Context
Define the contexts of the module
do -
D
1
Optional properties
N

|Name Value Description ‘

The module must implement the /TcloUdpProtocolRecyv. This creates a method, which is called when UDP

packets arrive.

TF6311

Version: 1.8.1

17

Quick Starts BEGKHOFF

4. In the TMC editor select “Implemented interfaces” and create them with “+”. A dialog appears, in which
the type ITcloUdpProtocolRecv is selected:

Solutien Explorer >R x Modulel.cpp Modulel.h TwinCAT Projectl -
@ o-d@ & =
Search Solution Explorer (Ctrl+a) P~ 4 {g T™C
137 Solution TwinCAT Projectl’ (L project) 4* Data Types __% Shows the implemented interfaces of the module.
4 7] TwinCAT Projectl # 'fi] Modules
4 [l svsTEM # fefreproeon p !
1 License I i | Name Interface D Contextld Disable Code General
b @ Real-Time I Data freas TComObject {00000012-0000-0000-E000-D00000000064}
- E] Tasks W Data Pointers [TeCyelic {03000010-0000-0000-E00D0-000000000064} [
[En Taskl I =% Interface Pointers ITeADI {03000012-0000-0000-E000-000000000064}
gfz Routes [&] Deployment ITeWatchSource {03000018-0000-0000-E000-000000000064}
[E] T<COM Objects
MOTION Choose data type...
5 Z:IC:ET\" Mame Mamespace Guid Specification Size
M @ Cos ITcAppServices 108500102-0000-0000-2000-000000000064} | Interface 4.0 (8.0)
a Untitledl ITcAppServices? 108500104 -0000-0000-e000-000000000064} | Interface 4.0 (8.0)
4 [Untitled] Project ITcBasellassFactory {00000018-0000-0000-2000-000000000064]} | Interface 4.0 (8.0)
b =2 External Dependencies ITcCyclicCaller 10300001 e-0000-0000-2000-000000000064} | Interface 4.0 (8.0)
b =3 Header Files ITcEthernetAdapter 103010060-0000-0000-e000-000000000064} | Interface 4.0 (8.0)
4 g Source Files ITcFileficcess {74237429-dabd-4cl1d-80d8-398d8c1f1747} | Interface 4.0 (8.0)
++ Modulel.cpp ITcloArpPing {0301009-0000-0000-e000-000000000064] | Interface 4.0 (8.0)
++ TePeh.cpp ITcloArpPingRecy 103010096-0000-0000-e000-000000000064} | Interface 4.0 (8.0}
B UntitledL.rc ITeloCyclic {03000011-0000-0000-e000-000000000064} |Interface 4.0 8.0)
+4 Untitled] ClassFactory. ITcloCyclicCaller {0300001f-0000-0000-000-000000000064} | Interface 4.0 (8.0)
4 5 TMC Files ITcloECatLrwhemory 103021018-0000-0000-2000-000000000064} | Interface 4.0 (8.0)
Untitledl.tme ITcloEthProtocol 103010035-0000-0000-e000-000000000064} | Interface 4.0 (8.0)
=] ﬁvm(AT RT Files ITclolpStackControl {0301009d-0000-0000-000-000000000064} | Interface 4.0 (8.0)
b =@ TwinCAT UM Files ITcloTepProtocol 103010096-0000-0000-2000-000000000064} | Interface 4.0 (8.0)
M Vo ITcloTepProtocolRecy 103010099-0000-0000-e000-000000000064} | Interface 4.0 (8.0)
4 4?3 Devices dl {03010097-0000-0000-e000-000000000064} |Interface 4.0 2.0)
4 & Devicel (RT-Ethemet Adapts | HdoUdmetncolRewJI {03010095-0000-0000-e000-000000000064] | Interface 4.0 (8.0)
% Device1 (RT-Ethernet Adi 105000005-0000-0000-e000-000000000064} | Interface 4.0 (8.0}
ﬁﬁ Mappings ITeMcDeConvert? {05000006-0000-0000-e000-000000000064} |Interface 4.0 8.0)
ITcMcTrafo {05010001 -0000-0000-2000-000000000064]) | Interface 4.0 (8.0)

The module requires an interface pointer to /TcloUdpProtocol, which contains the reference to the TCP/UDP
RT object.

5. In the TMC editor select “Interface Pointer” and press “+”. An interface is created, which can be opened
by double-clicking. Assign a name “UdpProt” and set the pointer type with “..;” and the selection in the
dialog:

Solution Explorer AR I Gl Unititled] tre [TMC Editor]* & X [ELNERGT] Modulel.h TwinCAT Projectl -

& o-aw #[F o &
Search Solution Explorer (Ctrl+a) P~ - g_:: T™C] . .
T Solution TwinCAT Projectl’ (1 project) 4* Data Types —{ Edit the properties of the Interface Pointer.
4 L] TwinCAT Projectl “ Rl;ﬂjw‘es
4 @ sYSTEM 4 [CModulel .
‘ﬂ 1 L ~% Implemented Interfaces EETER FTEEE
. |cens.e I Bg Parameters
3 .é) Real-Time | Data Areas Name
4 B Tasks W Data Pointers -
[Zr Taskl 4 ¢ Interface Pointers Choose interface type
=f= Routes — CyclicCaller
@ TcCOM Objects —¢ udpProt Select [TeUnknown
MOTION o
PLC Choose data type... =]
5 SAFETY MName Namespace Guid Specification Size
4 [l Cov ITcloECatlrwMemory {03021018-0000-0000-£000-000000000064} |Interface 4.0 (8.0)
4 Untitledl) ITcloEthProtacol {03010035-0000-0000-£000-000000000064} |Interface 4.0 (8.0)
4 [%] Untitled1 Project TTclolpStackControl 10301009d-0000-0000-£000-000000000064} | Interface 40 (8.0)
b EE Extemnal Depenidencies MTcloTcpProtocal 103010098-0000-0000-000-000000000064} |Interface wopn]
b & Header Files Lalaloplisiacallocly {03010099-0000-0000-€000-000000000064} [Interface 4.0 (8.0)| |
4 43| Source Files McloUdpProtocol || {03010097-0000-0000-£000-000000000064} [Interface |40 8.0)] |
Rghieduletepn TICTTO TOTOTOTRECT]. {03010095-0000-0000-£000-000000000064} |Interface |40 801 —
*++ TePeh.cpp TcNcDcConvert {05000005-0000-0000-£000-000000000064} |Interface 4.0 (8.0)
O Untitledl.rc ITcNcDeConvert2 105000006-0000-0000-000-000000000064} |Interface 40 (8.0)
edbe ez kacton) ITcNcTrafo {05010001-0000-0000-£000-000000000064} [Interface |40 (8.0)
4 g5 TMC Files ITComCreatelnstance 100000031 -0000-0000-000-000000000064 | Interface 4.0 (8.0)
|3] _Uﬂt‘t‘edl-tfﬂc TTCaml icenseSercer 101010001 0000 -0000 -e000-000000000064 | TInterface anmml T
E g Iwmgi¥ ELT_TS || Show hidden data types Group by | None 0K Cancel
win nes

[= EPPY

6. The TMC code generator is started once. Right-click on the C++ project and select “TMC Code
Generator” in the context menu.

The CheckReceived() method of the TCP/UDP RT module must be called in the CycleUpdate() method in
the CPP file of the module (Module1.cpp). As a result, arriving UDP packets are transferred to the
implemented method ReceiveData() via callback.

18 Version: 1.8.1 TF6311

BEGKHOFF Quick Starts

7. The CycleUpdate() method is implemented as follows

///<RutoGeneratedContent id="ImplementationOf ITcCyclic">
HRESULT CModulel::CycleUpdate (ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
{
HRESULT hr = S OK;
m_counter+=m Inputs.Value;
m_Outputs.Value=m counter;
m_spUdpProt->CheckReceived(); // ADDED
return hr;

}

The method “ReceiveData”, which was created through implementation of the interface, will be called
repeatedly via CheckReceived(): one call for each packet received in the meantime.

8. The method ReceiveData has both sender information and data as input parameters. In this sample, the

SendData method returns an incoming packet as response (with sender/receiver reversed). The
implementation is done as follows:

///<ButoGeneratedContent id="ImplementationOf ITcIoUdpProtocolRecv'">

HRESULT CModulel::ReceiveData (ULONG ipAddr, USHORT udpDestPort, USHORT udpSrcPort, ULONG nData,
PVOID pData, ETYPE VLAN HEADER* pVlan)

{

HRESULT hr = S OK;

// mirror incomming data

hr = m_spUdpProt->SendData (ipAddr, udpSrcPort, udpDestPort, nData, pData, true);

m Trace.Log(tlInfo, FLEAVEA "UDP ReceiveData: IP: %d.%d.%d.%d udpSrcPort: %d DataSize: %d
(hr2=%x) \n",

((PBYTE) &ipAddr) [3], ((PBYTE)&ipAddr) [2], ((PBYTE)&ipAddr)[1l], ((PBYTE)&ipAddr) [0],
udpSrcPort, nData, hr);

return hr;
}
///</RutoGeneratedContent>

During start and finish, a reference to the “UdpProtocol” interface must be set from the configured OID;
corresponding approvals should be taken care of during shutdown.

9. The start is triggered in the transition from SafeOp to Op. During this process, RegisterReceiver is of
particular interest: It opens a UDP port for reception.

HRESULT CModulel::SetObjStateSO ()
{
HRESULT hr = S_OK;
//START EDITING
if (SUCCEEDED (hr) && m spUdpProt.HasOID())
{
m Trace.Log(tlInfo, FLEAVEA "Register UdpProt");
if (SUCCEEDED DBG(hr = m spSrv->TcQuerySmartObjectInterface (m spUdpProt)))
{
m Trace.Log(tlInfo, FLEAVEA "Server: UdpProt listen to Port: %d", 10000);
if (FAILED(hr = m_spUdpProt->RegisterReceiver (10000,
THIS CAST (ITcIoUdpProtocolRecv))))
{
m Trace.Log(tlError, FLEAVEA "Server: UdpProtRegisterReceiver failed on Port:
%d", 10000);
m_spUdpProt = NULL;

}
}

// I1If following call is successful the CycleUpdate method will be
called,

// eventually even before method has been left.

hr = FAILED (hr) ? hr : AddModuleToCaller();

// Cleanup if transition failed at some stage

if (FAILED (hr))

{
if (m_spUdpProt != NULL)

m_spUdpProt->UnregisterReceiver (10000) ;

m_spUdpProt = NULL;
RemoveModuleFromCaller () ;

}

//END EDITING

m Trace.Log(tlVerbose, FLEAVEA "hr=0x%08x", hr);

return hr;

}
10. The stop takes place in the Op to SafeOp transition. The UDP port is closed again:

TF6311 Version: 1.8.1 19

Quick Starts

BECKHOFF

HRESULT CModulel::SetObjStateOS ()
{
m_Trace.Log (tlVerbose,
HRESULT hr S_OK;

FENTERA) ;

if (m_spUdpProt != NULL)

m_spUdpProt->UnregisterReceiver (10000) ;
m_spUdpProt NULL;
m_Trace.Log(tlVerbose,
return hr;

FLEAVEA "hr=0x%08x", hr);

}

Finally, the module has to be instantiated and configured
11. Build the project once. Right-click on the module select “Build”

12. Creating an instance of the module. Right-click on the project to open “Add new item
appropriate module here.

...”. Select the

13. Double-click on the module instance to enable parameterization. First select the task in the “Context” tab.

“TCP/UDP RT” module configuration

Solution Explorer = wiw X Untitledl.tme [TMC Editor] Modulel.cpp Modulel.h TwinCAT Projectl 7 X TcPch.cpp & X
w o-d " @I Context |[Parameter (Ini) | Data Area | [Interface Pointer
Search Solution Explorer (Ctrl+i) P
| | Coter i -
fa] Solution ‘TwinCAT Projectl’ (1 project)
4 57 TwinCAT Projectt Depend On: [Manual Config -
4 ‘ SYSTEM Meed Call From Sync Mapping
[® Licens= Data Areas: Intefaces
4 él Real-Time 710 Tputs
] Tasks .
B Tosk1 [¥]1 Outputs
51z Routes
TcCOM Objects Data Pointer: Inteface Pointer:
MOTION
Bl rLc
SAFETY
Pl ﬂ (e
4 Untitledl Result:
4 B Untitled] Project) | Task Narme Priority | CycleTi.. | TaskPort | Symbol P...| Sort Order |
b &3 External Dependencies
b = Header Files 1 02010020 iFE SN - | 1 10000 350 350 0 (def.. 7|
4 &3] Source Files TS
*++ Modulel.cpp
++ TcPch.cpp
O Untitledl.rc
#+ Untitled] ClassFactory.
4 &) TMC Files
] Untitled] tmc
b &= TwinCAT RT Files
Ly E e S AL LIEd ol
b [&@] Untitled]_Objl (CModulel)

m Variable names relating to TCP are used here. They have to be substituted accordingly.
1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Object(s)...” in the

context menu.

I
4 F 10
4 -a% Devices

TwinCAT UM Files

R

[Devicel (RT-Ethernet Adapter)

‘O Add New Item... Ins ﬁtl Mappings

0O Add Existing Item... Shift+Alt+A

X Remove Del
Add Object(s)...
Save Devicel (RT-Ethernet Adapter) As...
Online Reset
Online Reload
Online Delete

20 Version: 1.8.1 TF6311

BEGKHOFF Quick Starts

2. Then select the “TCP/UDP RT” module:

Insert TeCom Object
Search: Mame: | (] |
Type: Elli‘ Beckhaff Autormation GmbH [Cancel]
- -5 NC Objects
B-

Multiple: 1 B

‘m

[|ngert Instance. .]

[Reload]

= The TCP/UDP RT object is created under the adapter.

4« Flro

4 *f'g Devices

4 [Devicel (RT-Ethernet Adapter)
12 Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

RIS Modulel.cpp Medulel.h UntitledlInterfaces.h Solution Explorer
coR e-s@| k=
Search Solution Explorer (Ctrl+ii)

Object | Context | Parameter (int) | Data Area | Interfaces | Interface Pointer |

PTCID Name | ot Object Name i} Type @rc
0303002060 CyclicCaller 02010020 = Tack2 D300001E-0000-000... ITeCyclicCaller SAFETY
000000002 TepPort Dfvice 1 (RT-Ethernet Adapter) ObjL (Ip St... 03010098-0000-000... ITcloTcpProtocol a e

4 Untitled]
4[] Untitledl Project
& External Dependencies
3+ Header Files
7 Source Files
£ TMC Files
£ TwinCAT RT Files
£ TwinCAT UM Files
a Untitled_Objl (CModulel)
b Inputs
b Outputs
« @wo

vTwvwvwvww

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

TwinCAT UdpDemoPlc + X

Objsct | Gontest | Parsmeter (int) | Dt Area | Symbol Intiaizstion | Co@| s @ &=

Search Solution Explorer (Ctrl+)
| [Name [Pe—— [unit

MAIN.udpl.oid ~ | Device 1 (RT-Ethernet Adapte... C

[1] comment

[] Solution TwinCAT UdpDemoPlc' (1 project)
4[5 TwinCAT UdpDemoPlc
3 SYSTEM
[=] moTion
4 PLC
4 [0 UdpDemoPlc
b =] UdpDemoPlc Project
[&] udpDemoPic Instance

SAFETY

[co s

o

b “Z Devices
&7, Mappings

S

= The configuration is thus completed

® Disconnection by the operating system in Promiscuous mode

1 If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

TF6311 Version: 1.8.1 21

Quick Starts BEGKHOFF

Testing

Once the configuration has been enabled, a UDP packet can be sent to the C++ module via the UDP Sample

Client [»_44]. By activating the corresponding TracelLevel (here at least tlinfo; see C++ Tracing), an output
can be generated in the Visual Studio log. The client displays the returned packets at the top.

Solution Explorer =i w B X TwinCAT Projectl ® X Untitled] tme [TMC Editor] Madulel .cpp Modulel.h TePchepp ® X -
B - o .
& o-a@ Object | Context | Parameter (ini) | Dats Area [Interfaces [Interace Pointer |
Search Solution Explorer (Ctrl+i) P I
- -
fa] Solution 'TwinCAT Projectl’ (1 project] « el | plae #ﬂm | Jitt U Eomment
d E racelevelMax tiVerbose il cTracelevel ontrols the a...
il TWinCAT Projectl 0x03002103 TracelevelM Verbs TcTracelevel | C Is th
Fl SYSTEM + 0x00000001 | Parameter I
|® License
b @ Real-Time 5l UDP Sample Client == =]
4 B Tasks 05,05 2015 15:41:22; Beckhoff TCP-UDP RT
[Task1 05.05 2015 15:41:37: Beckhoff TCP-UDP RT
S Routes 05.05 2015 15:41:38: Beckhoff TCP-UDP RT
— 05.05 2015 15:41:47: Beckhoff TCP-UDP RT
TcCOM Objects 05.05.2015 15:41:47: Beckhoff TCP-UDP RT
= MoTIoN e e T L L R
pLC 05.05.2015 15:41:48: Beckhoff TCP-UDP RT
SAFETY Destinahonl 172.17.36.227 |:‘crt: 10000
4 ﬂ Lo Source: OSbased
4 Untitledl " i —
4 [Untitled1 Project lessage: Beckhoff TCP-UDP RT
b &3 External Dependencies Hint: Client sends/receives on udp port:1 788
4 &g Header Files
Modulel.h
Resource.h 7] Show Online Valies [7] Show Hidden Parmeter | Bmand Al | [Collaos Al |
TcPchh Error List
Pt e Tl acct act T - 0 Errors ! 0Wamings || 14 Messages || Clear Search Error List P-
UntitledlInterfaces
Untitled] Services.h Description F. Line Column P.. *
4 43 Source Files " ReceiveDate: IP: 172.17.36 158 udpSrcPort: 11000 DataSize: 19 (hi2=0)
*+ Modulel.cpp 0 12 05.05.2015 14:46:05 612 ms | 'TCOM Server' (10): CMedulel::ReceiveData() <<< UDP
++ TcPch.cpp BeceiveData 1017017381 - e =
O UntitledL.rc @ 13 05.05.2015 14:46:05 802 ms | 'TCOM Server' (10): CModulel:ReceiveData() <<< UDP
++ UntitledlClassFact: ReceiveData: IP: 17217 36 158 udpSrcPort: 11000 DataSize: 19 (hr2=0]

No local communication

The UDP sample client must run on a different computer than the PLC with the TCP/UDP RT
object, because no local communication between the Windows operating system and the real-time
is available.

Alternatively, a so-called "loop cable" can be used to connect two network ports. The UDP sample
client can be forced to use a specific port by selecting the source (dropdown menu "Source").

jmui o

4.3 Quick Start (C++/ TCP Client)

This Quick Start shows the implementation of a TCP client as a TwinCAT 3 C++ project.

The engineering system must meet the requirements for TWinCAT 3 C++.

The example is also available for download under Sample 01 [»_38].

Creating a TwinCAT C++ project

In this step, a new TwinCAT 3 C++ project is created.

22 Version: 1.8.1 TF6311

BECKHOFF

Quick Starts

1. Create a new TwinCAT project

D¢ Start Page - Microsoft Visual Studio

W‘ EDIT VIEW DEBUG TWINCAT PLC TEAM TOOLS TEST SCOPE AMALYZE WINDOW HELP

[New | i3 Project.. Ctrl+Shift+N ||
Open ‘® Web Site... Shift+Alt+N |
Close T2 Team Project...
Close Solution T File.. Ctrl+
Save Selected temns Ctrl+5 Project From Existing Code...
Save Selected Items As...
Save All Ctrl+Shift+5
Export Template...
Source Control Get Started | Beckhoff News
Page Setup... !
Pt culp " What's New in TwinCAT 3
Account Settings... Learn about the new features of Twin
Recent Files TwinCAT 3 Overview
Recent Projects and Solutions Twi T 3 Documentation

TwinCAT 3 Help Viewer
B Ext Alt+F4
|

Mew Project

b Recent |.NI:—I' Framework 4.5 v| Sort by: |Defau|t - f =

4 Installed

2. Add a TwinCAT C++ project

4 Templates

t Yisual Basic

t Visual C#

t Visual C++

i Visual F#
TypeScript
Python

TwinCAT iject

Samples

Solution Explorer

@ o-- @

S om
Search Solution Explorer (Ctrl+ Q)

fa] Solution TwinCAT Projectl’ (1 project)

4 2] TwinCAT Projectl

b @ SYSTEM
MOTION

PLC

‘O Add New lkem...
0 Add Existing ltem...

ﬁ TwinCAT ¥AE Project (XML format)

TwinCAT Project

Shift+ A+

TF6311

Version: 1.8.1 23

Quick Starts

BECKHOFF

3. Select a Driver project

Click here te go online and find templates.

MName: Untitledl

Location: |

4 Installed Sort by: | Default -
TwinCAT C++ Dri
w el E TwinCAT Driver Project TwinCAT C++ Driver
P Online
E TwinCAT Static Library Project TwinCAT C++ Driver

Search Installed Templates (Ctrl+E) P~

Type: TwinCAT C++ Driver
Creates a TwinCAT driver project.

| add || Cancel

4 Installed Sort by: | Default -
TwinCAT C++ Medule
L = oy q TwinCAT Module Class TWinCAT C++ Module
P Online

TwinCAT Module Class with Cyclic Caller TwinCAT C++ Module
winCAT Module Class with Cyclic 10 TwinCAT C++ Module
TwinCAT Module Class with Data Pointer TwinCAT C++ Module
TwinCAT Module Class with ADS port TwinCAT C++ Module
TwinCAT Module Class for RT Context TwinCAT C++ Module

Click here to go online and find templates.

MName: |

Search Installed Templates (Ctrl+E) P~

Type: TwinCAT C++ Module

Creates a new TwinCAT module class
which implements the cyclic caller
interface and which has an input and
output data area.

Location: |C:\Users\Henningm\Documents\VisuaI Studio 2013\Projects\MNew folder\ TwinCAT Projectl\ TwinC -| Browse... |

[add || Concel

24 Version: 1.8.1

TF6311

BECKHOFF

Quick Starts

= The result is a complete TwinCAT C++ project.

fa] Solution TwinCAT Projectl’ (1 project)
4 [2] TwinCAT Projectl
b [SYSTEM
= MOTION
PLC

SAFETY
F] E C++

4 Untitledl

4 [i7 Untitled1 Project

P

@ External Dependencies

o Header Files

B o Sowrce Files

B TMCFiles

b5 TwinCAT RT Files
P TwinCAT UM Files

= e

TMC editor for creating interfaces, pointers and parameters

After creating the project, the next step involves implementation of the C++ TCP client.

1. The module created by the wizard must implement the interface "ITcloTcpProtocolRecv". Open the TMC
editor by double-clicking on the TMC file for the project. Add the interface to the module under

"Implemented Interfaces".

Choose data type... =
Name Namespace Guid Specification Size K
PRI) [TcAppServices {08500102-0000-0000-£000-000000000064} | Interface |40 8.0)] =
1+ Data Types —o Shows the implem | Treappservices2 {08500104-0000-0000-€000-000000000064] |Interface |40 (8.0)
15 Modules TMcBaseClassFactory {00000018-0000-0000-000-000000000064] | Interface |40 (8.0)
L — TMecCyclicCaller {0300001 -0000-0000-£000-000000000064} [Interface |40 (8.0) B
B TTcEthemetAdapter {03010060-0000-0000-000-000000000064} [Interface |40 80)| |=
| L) Data Areas [TComObject (0000001 | ITcFileAccess {742a7429-da6d-4c1d-80d8-398dBC1FL747} | Interface |40 (B.0)
I Data Pointers ITeCydlic 0300001 | ITeloArpPing {0301009¢-0000-0000-€000-000000000064] | Interface |40 (B.0)
4 =% Interface Pointers ITcADI (0300001 | ITcloArpPingRecv {03010096-0000-0000-€000-000000000064] [Interface |40 (B.0)
~ CydlicCaller [TclatchSource (0300001 | ITeloCyclic {03000011-0000-0000-000-000000000064} | Interface |40 @0)] —
— TepPort TTeloCyclicCaller {0300001-0000-0000-000-000000000064} |Interface |40 (8.0)
2 Deployment TTeloECatLrwMemory {03021018-0000-0000-€000-000000000064] [Interface |40 (B.0)
IMcloEthProtocol {03010035-0000-0000-€000-000000000064] | Interface |40 (B.0)
ITclolpStackControl {03010094-0000-0000-€000-000000000064} | Interface |40 (8.0)
- {03010098-0000-0000-000-000000000064} | Interface |40 (8.0)
l IMeloTcpProtocolRecy {03010099-0000-0000-e000-000000000064} Interface 40 (8.0)
™ = {03010097-0000-0000-€000-000000000064} | Interface
IMcloUdpProtocolRecy | [{03010095-0000-0000-€000-000000000064} |Interface |40 @0)[-
[7] Show hidden data types Group by None | [oc || conea |

Uhdér "Implemented Interfaces”
Select "ITcloTcpProtocolRecv".

2. In addition, an "ITclOTcpProtocol" interface pointer is required.

Solution Explorer
@ -

Search Solution Explorer (Ctrl+)
a1 Solutien TwinCAT Projectl’ (1 project)

4 3] TwinCAT Projectl
b @l SYSTEM

>

eag@ F =

4[] Cor
4 Untitledl
4[] Untitled] Project
b ;5 External Dependencies
Header Files

1 Source Files

Untitledl tmc
b .

b 7 TwinCAT UM Files
o

LT T

Solution Explorer e E]

open a selection of the available interfaces by clicking on the "+" button.

= Solution Explorer

Choose data type...
Al e-2am| s =
Name Namespace Guid Specification Size -
PG) IMelaCyclicCaller {03000011-0000-0000-€000-000000000064} | Interface |40 @0y| » | [2e2/ch Solution Explorer (Crl+u)
4* Data Types —C Editthe properties of | | 17 1oECatl nuMemory {03021018-0000-0000-000-000000000064] |Interface |40 (8.0) [Solution ‘TwinCAT Projectl’ (1 project)
4] Modules ITelaEthPratocal 103010035-0000-0000-£000-000000000064} | Interface 1.0 (8.0) 4 3] TwinCAT Projectl
“ Mf_g“’x‘?ﬂw nted Interfaces | General properties 7 {0301009d-0000-0000-000-000000000064} | Interface |40 (8.0) bl SvSTEM
R oTeppastacel " (050100560000-1000- 0 00tcoonmic) Iaoce 40 . I
© [Data Areas v -0000-0000-£000- Inteface |4.0 (8.0)
IMcloUdpProtocol {03010097-0000-0000-€000-000000000064} | Interface 4.0 (8.0)| | SAFETY
Cheoose interface fype IMTcloUdpProtecolRecy 103010095-0000-0000-€000-000000000064} |Interface |40 G0)| |~ 4[] Cor
ITehlcDeConvert {05000005-0000-0000-€000-000000000064) [Interface |40 (B.) 4 Untitledl
—¢ TepPort Sclect TeNeDcConvert2 105000006-0000-0000-£000-000000000064} | Interface 1080 4[] Untitled1 Project
B8 Deployment Type Information MeNeTrafo {05010001-0000-0000-000-000000000064} [Interface |40 (8.0) by External Dependencies
Namespace ITComCreatelnstance {00000031-0000-0000-€000-000000000064) [Interface |40 (8.0) 3 Header Files
. ITComLicenseServer {01010001-0000-0000-000-000000000064} [Interface |40 (8.0) b 47 SourceFiles
Guid 000 | TTComNoPIcWrspper {00000063-0000-0000-000-000000000064} [Interface |40 (8.0) 4 ;] TMCFiles
ITComObjCon {00000016-0000-0000-€000-000000000064} [Interface |40 B0)| - || Untitled .tmc
Configure the parameter ID b 5 TwinCAT R Files
[7] Show hidden data types Group by | None ~ I oK] Cancel B 1) TwinCAT UM Files
Unique 1D Value #x0000000 [Generats D | Vo

TF6311

Version: 1.8.1

25

Quick Starts BEGKHOFF

3. By creating a parameter the server IP address to be contacted and the port become configurable.

Untitled] tmc [TMC Editor]® + > LRGN

o M@

Modulel.h ~ | Solution Explorer

@ o-2aE £ =

PRI Search Solution Explorer (Ctrl+a)
4* Data Types = Edit the properties of the parameter 1 Solution TwinCAT Projectl’ (L project)
4 [Modules 4 3] TwinCAT Projectl
“] CModulet Genersl pro b [l SvsTEM
—3 lzale geriaces o

Tt a woron
il Wy Name TepServeriphddress PLC
[TopServerlpAddress Specification | Alias: SAFETY
I [Data Areas Choose data type... PR [
_‘(Ff':FD'"';e’Sm Choose dats type Name Namespace Guid Specification Size 4 [ie] Untitled?
4 % Interface Pointers " "
T CyelieCaller INT {18071995-0000-0000-0000-000000000006} | Alias 20 . 4 B Untidled1 Project
— TepPort Select e INTERFACE_TYPE {acaddaal-ddaa-4da2-827b-bd52abb0bfed] | Enumeration |4.0 '; Ll E“E;”E'FD‘EF’E"”E"“E‘
Descripion [Normal Type | fedbellEARES 545077 fbfc-4al7-80ed-066b2ed2784a} | Struct 200 7 Header iles
B9 Deployment escription | Normal Type t o2 cd27gda) Sty b s Source Files
Type Information TOCT_AXISIN MC {c9947563-85c4-4af6-b631-231 cAedfb182} | Struct 80 | 4 tal TMC Files
Namespace — —— ——— == | UntitledLtme
g | &l n J v b 57 TwinCAT RT Files
7] Show hidden data types Group by b 50 TwinCAT UM Files
» Evo
Configure the parameter 1D User dened. = I
i
Fl 34! TMC)
I %% Data Types = Edit the properties of the parameter.
4 B Modules

4 [CTepClient

9 Implemented Interiaces EEliillliis
4 .. Parameters
= TracelevelMax Name TepServerPort
= TcpServerlplddress Specification
ﬁﬁﬁﬁi
Liata Areas Choose data type

B Data Pointers
I —% Interface Fointers Select UINT E]

Eq Deployment
Descripbon | Mormal Type -

Type Information

Mamespace

Guid 118071535-0000-0000-0000-000000000005}

4. Now use the TMC code generator to prepare the code of the C++ module.

Solution Explorer * 0 x
@ o-2a8 & -
Search Solution Explorer (Ctrl+) P~

fa] Solution TwinCAT Projectl’ (1 project)
4 2] TwinCAT Projectl
b SYSTEM
MOTION
OJ PLC
SAFETY
rl E C++

4 Untitledl

TwinCAT TMC Code Generator
TwinCAT Publish Medules

=ndencies

¥ Build

Start the TMC code generator by selecting the appropriate menu item in the context menu (right-click) of
the C++ project.

= All steps in the TMC editor are now completed.

26 Version: 1.8.1 TF6311

BEGKHOFF Quick Starts

Implement TCP client
1. Create two member variables in the module header file (here: Modul1.h).

ULONG m_SockId;

BOOL m_bSendRequest; //set by debugger for sending a http command
ULONG m_connections; //count number of connection attempts
HRESULT m hrSend; //Last hr of SendData

2. These are initialized in the Constructor (Module1.cpp).

CModulel: :CModulel ()
: m_Trace (m _TraceLevelMax, m_spSrv)
, m TraceLevelMax (tlAlways)
, m_hrSend(0)

m_SockId = 0; //added
m_bSendRequest = true; //added
m_connections = 0; //added

3. The interface pointer m_spTcpProt is now initialized in the Transition SO (i.e. in method SetObjStateSO).

HRESULT CTcpClient::SetObjStateSO()
{
m Trace.Log (tlVerbose, FENTERA) ;
RESULT hr = S_OK;

if (SUCCEEDED (hr) && m_spTcpProt.HasOID()) //added
{ //added

hr = m_spSrv->TcQuerySmartObjectInterface (m_spTcpProt); //added
} //added

hr = FAILED (hr) ? hr : AddModuleToCaller () :;

4. In the Transition OS (i.e. method SetObjStateOS) a connection that may exist is closed, and the socket
is released.

L1770 7 7707777777777 777
// State transition from OP to SAFEOP
HRESULT CTcpClient::SetObjStateOS ()
{
//start added code
m Trace.Log (tlVerbose, FENTERA) ;
HRESULT hr = S OK;

if (m_SockId != 0)
{
if (m_spTcpProt->IsConnected(m SockId) == S OK)
{
m_spTcpProt->Close (m_SockId) ;
m_spTcpProt->CheckReceived() ;
}
m_spTcpProt->FreeSocket (m_SockId) ;
m_SockId = 0;
}

RemoveModuleFromCaller () ;

m_Trace.Log(tlVerbose, FLEAVEA "hr=0x%08x", hr);
return hr;
//end added code

5. The actual process is implemented in the "CycleUpdate" method, which is called cyclically. Establishes a
TCP connection to a server (address is provided in parameters "m_TcpServerlpAddress" and
"m_TcpServerPort"). The connection handle is stored in the member variable "m_Sockld". The
connection is used to issue a simple http GET request.

HRESULT CTcpClient::CycleUpdate (ITcTask* ipTask, ITcUnknown* ipCaller, ULONG PTR context)
{
HRESULT hr = S OK;
//start added code
if (m SockId == 0)
{
if (SUCCEEDED DBG(hr = m_spTcpProt->AllocSocket (THIS CAST (ITcIoTcpProtocolRecv),
m_SockId)))
{
if (FAILED(hr = m spTcpProt->Connect (m SockId, ((PULONG)é&m TcpServerIpAddress) [0],
m_TcpServerPort)))

{

TF6311 Version: 1.8.1 27

Quick Starts BEGKHOFF

6.

7.

8.

m_spTcpProt->FreeSocket (m SockId) ;
m_SockId = 0;

else {
m_connections++; //count number of connections
}
}

}

else

{

if (m _bSendRequest && m_spTcpProt->IsConnected(m_SockId) == S OK)

{
PCHAR pRequest = "GET / HTTP/1.1\r\nHOST: beckhoff.com\r\n\r\n ";

ULONG nSendData = 0;
m _hrSend = m_spTcpProt->SendData (m_SockId, strlen(pRequest), pRequest, nSendData);
m_bSendRequest = false;

}

}

m_spTcpProt->CheckReceived() ;

//end added code
return hr;

}

The module implements the interface "ITcloTcpProtocolRecv", as a result of which the TMC code
generator created a "ReceiveEvent" method. This is called when an event is received and must therefore
be able to deal with a wide range of event types.

HRESULT CTcpClient::ReceiveEvent (ULONG socketId, TCPIP_EVENT tcpEvent)

{

//start added code

m_Trace.Log(tlInfo, FLEAVEA "Receive TCP Event: SocketId: %d Event: %d \n", socketId, tcpEvent);

switch (tcpEvent)
{
case TCPIP_EVENT ERROR:
case TCPIP_EVENT RESET:
case TCPIP EVENT TIMEOUT:
m Trace.Log (tlInfo, FLEAVEA "Connection to remote server failed!\n");
m_SockId = 0;
break;
case TCPIP EVENT CONN CLOSED:
m Trace.Log(tlInfo, FLEAVEA "Close connection: SocketId: %d \n", socketId);
m_SockId = 0;
break;
case TCPIP_EVENT CONN_INCOMING:
case TCPIP EVENT KEEP ALIVE:
case TCPIP_EVENT CONN IDLE:
case TCPIP EVENT DATA SENT:
case TCPIP_EVENT DATA RECEIVED:
break;
default:
break;
}
return S OK;
//end added code

Analogous to the "ReceiveEvent" method, a "ReceiveData" method was created from the
"ITcloTcpProtocolRecv" interface. It is responsible for receiving the data and is implemented as follows:

HRESULT CTcpClient::ReceiveData (ULONG socketId, ULONG nData, PVOID pData)
{
//start added code

HRESULT hr = S_OK;

PCHAR pResponse = new CHAR[100];

memset (pResponse, 0, 100);

memcpy (pResponse, pData, min (100, nData));

m Trace.Log (tlInfo, FLEAVEA "Receive answer w/ length %d : first 100 chars:'$s'", nData,
pResponse) ;

return hr;
//end added code
}

The module is now ready and can be compiled. (Right-click on "Build" project).

28

Version: 1.8.1 TF6311

BEGKHOFF Quick Starts

9. An instance of the module is created:
Right-click on the C++ project

d [l Cos
e EEE 0 Add New ltem... s W
b [TcpCh
@Tcp(li X Remove Drel
4 Fvo Rename
4 "L Devices

Save TepClient As...
4 EF Devi
- “,fvl:l}ce () Save TcpClient as Archive...
oo UE
& Mappings _J Send TcpClient by E-Mail...
Compare TcpClient with Target...

= [izable
and select the module
Insert TcCom Object
Search: WE= ntitled1_Obj1 [CModuleT] [k.]
Type: EI-- C++ Module Yendar [Cancel]
EI-- C++ u:u:IuIes

Chodule [M
uleT | Fultiple: 1 o

Inzert [nstance. .

Reload

= The instance is associated with a task, so that the "CycleUpdate" method is called.

P oduiel cpp ModulelLh Untitledlinterfacesh % X ~ [SolmonExplorer
Context | Parameter (int) | Data Area | Interfaces | Interface Pointer @ - @& -=
Search Solution Explorer (Ctrl+a)
Context: [- —
PLC
Depend On: [Manual Cortig - SAFETY
[Need Call From Sync Mapping 4 [Cov
Data Areas Interfaces “ é”“é‘:;ulp)
M
B0 s 3 External [r)?:::danclas
[Outputs’ o
@ b g Header Files
b 4 Source Files
Data Pointer: Interface Poirter: P {8 TMC Files
b TwinCAT RT Files
b 4 TwinCAT UM Files
4[] Untitled!_ObjL (CModulel)
b L Inputs
Resut: b [Outputs
D ame Priority Cycle Time (... | Task Port Symbol Port | Sort Order | « Ero
4 % Devices
1 02010020 [=[fas2 1 10000 350 350 0 (defauk) <] 4 & Device (RT-Ethernet Adapts

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

® Local configuration only

1 Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

TF6311 Version: 1.8.1 29

Quick Starts

BECKHOFF

IpStack_HowTo + X

“TCP/UDP RT” module configuration

Solution Explorer

[Genera]| Adepter [Bos | Swich | Stattics| @l o-sa &=
e Search Solution Explorer (Ctrl+) P~
Description: Local Area Connection (TwinCAT-Intel PCl EBthemet Adapter (Gigabit))
] Solutien ‘IpStack_HowTao' (1 project)
Drevice Mame: \DEVICE\{BD7BF8CO-BFC4-46A7-8201-B3B95D95C66T7} d a IpStack_HowTo
MAC Address: 08 0027 d2 9a de [— | 4 @ svsTEM
 License
IP Address: 1721721465 (255255254 .0) Compatible Devices... 4 Real-Time
Freerun Cycle (ms): 4 = [IO Idle Task
P % Tasks
=f= Routes
[T] Promiscuous Mode (use with Wireshark only) El TcCOM Objects
[#] Virtual Device Names MOTION
PLC
Device Found At SAFETY
A E C++
- — 0K 4 TepClient
tel PCI Ethe apber [Gigakit]] b [l TepClient Project
TepClient_Objl (CTcpClient)
P il P
_ 4 [F Vo
@ Unuged ‘. .
Al P i v Device 1 (RT-Ethernet Adapter) I
= LIEVICE -ETthern apter)_Objl (TCP/UDP RT)
&’ Mappings
Help

m Variable names relating to TCP are used here. They have to be substituted accordingly.

1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Object(s)...” in the
context menu.

[

4 vo
4 4}’% Devices
[Devicel (RT-Ethernet Adapter)

TwinCAT UM Files

b

‘O Add New Item... Ins ﬁ:l Mappings

*q Add Existing Item... Shift+Alt+ 4

XX Remowve Del
Add Objecti(s)...
Save Devicel (RT-Ethernet Adapter) As...
Online Reset
Online Reload
Online Delete

30 Version: 1.8.1 TF6311

BEGKHOFF Quick Starts

2. Then select the “TCP/UDP RT” module:

Insert TeCom Object
Search: Mame: | (] |
Type: Elli‘ Beckhaff Autormation GmbH [Cancel]
- -5 NC Objects
B-

Multiple: 1 B

‘m

[|ngert Instance. .]

[Reload]

= The TCP/UDP RT object is created under the adapter.

4« Flro

4 *f'g Devices

4 [Devicel (RT-Ethernet Adapter)
12 Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

RIS Modulel.cpp Medulel.h UntitledlInterfaces.h Solution Explorer
coR e-s@| k=
Search Solution Explorer (Ctrl+ii)

Object | Context | Parameter (int) | Data Area | Interfaces | Interface Pointer |

PTCID Name | ot Object Name i} Type @rc
0303002060 CyclicCaller 02010020 = Tack2 D300001E-0000-000... ITeCyclicCaller SAFETY
000000002 TepPort Dfvice 1 (RT-Ethernet Adapter) ObjL (Ip St... 03010098-0000-000... ITcloTcpProtocol a e

4 Untitled]
4[] Untitledl Project
& External Dependencies
3+ Header Files
7 Source Files
£ TMC Files
£ TwinCAT RT Files
£ TwinCAT UM Files
a Untitled_Objl (CModulel)
b Inputs
b Outputs
« @wo

vTwvwvwvww

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

TwinCAT UdpDemoPlc + X

Objsct | Gontest | Parsmeter (int) | Dt Area | Symbol Intiaizstion | Co@| s @ &=

Search Solution Explorer (Ctrl+)
| [Name [Pe—— [unit

MAIN.udpl.oid ~ | Device 1 (RT-Ethernet Adapte... C

[1] comment

[] Solution TwinCAT UdpDemoPlc' (1 project)
4[5 TwinCAT UdpDemoPlc
3 SYSTEM
[=] moTion
4 PLC
4 [0 UdpDemoPlc
b =] UdpDemoPlc Project
[&] udpDemoPic Instance

SAFETY

[co s

o

b “Z Devices
&7, Mappings

S

= The configuration is thus completed

® Disconnection by the operating system in Promiscuous mode

1 If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

TF6311 Version: 1.8.1 31

Quick Starts BEGKHOFF

Handling

1. The sample is ready to use once you have configured both the TcpServerlpAddress and the
TcpServerPort at the module instance:

0:00000002 TepServerlpAddress 54247122162 r IPADDR
0:00000003 TepServerPort 20 r UINT

M Possible source of error: A test web server 62.159.14.51 is queried in the sample. A
corresponding HTTP command is stored in the source code. IP address, port, and this HTTP
command may have to be adjusted.

2. After activating the configuration you can see log messages (see source code) and the first 100 bytes of
the response from the server in the output:

M5G | 1/22/2015 3:14:14 PM 671 ms 'TCOM Server' (1@): CTcpClient::ReceiveEvent() <<< Receive TCP Event: SocketId: 1 Event: 1@

MSG | 1/22/2815 3:14:14 PM 671 ms

'TCOM Serwver' (18): CTcpClient::ReceiveEvent() <<< Receive TCP Ewent: SocketId: 1 Event: 8

MsG | 1/22/2815 3:14:14 PM 671 ms

'TCOM Server' (18): CTcpClient::ReceiveEvent() <<< Receiwve TCP Event: SocketId: 1 Event: 18

MsG | 1/22/2815 3:14:14 PM 671 ms
Cache-Control: private
Content-Length: 5366
Content-Type: text/html

Server: Micr: So' |

"TCOM Server' (1@): CTcpClient::ReceiveData() <<< Receive answer w/ length 5642 : 'HTTP/1.1 288 OK

MsG | 1/22/2815 3:14:15 PM 681 ms

'TCOM Serwver' (18): CTcpClient::ReceiwveEvent() <<< Receive TCP Ewvent: SocketId: 1 Event: 7
3. To output these messages the “Tracelevel” can be configured (via Info):

IpStack HowTo Solution Explerer > 1 x

- -
Object | Contest | Paremster (int) | interfaces | Interface Pointer | [>3 Solution '
pStack_HowTo' (1 project)
[pTcD [Name Value c.[unit [Type [Comment \ 4 il Ipstack HowTo
v |l svsTEM
0,03002103 TraceLevelMax | [uverbose M| [TcTraceLevel Controls the amo.. MOTION
0,00000002 TepServerlpAddress STITIITE] 1 IPADDR pLC
0,00000003 TepServerPort 80 - UINT SAFETY

a [o
4 TepClient
4 |] TepClient Project
b (34 External Dependencies
1 [Header Files
4 |7 SourceFiles
& TePeh.cpp
¢ TepClient.cpp
(4 TepClient.rc
¢ TepClientClassFactory.cp|
[TMC Files
& 3 TwinCAT RT Files
¢ 3 TwinCAT UM Files
[TepClient_Objl (CTepClient)
s+ [Fro
b ¥ Devices
&7, Mappings

[Show Online Valuss | [#] Show Hidden Parametar Expand All Collaps Al

The procedure is carried out once when the program starts.

A new request is sent if “m_bSendRequest” is set to TRUE (e.g. through TwinCAT Live Watch). The return of
the SendData method is stored in hrSend. For the sample it can be monitored via the debugger.

32 Version: 1.8.1 TF6311

BEGKHOFF Configuration

5 Configuration

The integration and configuration of the "TCP/UDP RT" object is described here, starting from an existing
TwinCAT project.

TwinCAT 3

Call

Custom
Project

TCP/UDP RT Ethernet

Card

Ethernet

v

The "TCP/UDP RT" object is instantiated and configured. The configuration essentially consists of assigning
the network card to be used.

® Windows Firewall

The Windows firewall cannot be used, since the TF6311 is directly integrated in the TwinCAT
system.

The "TCP/UDP RT" object also contributes some parameters, which are documented here [P 55].

“TCP/UDP RT” module configuration

M Variable names relating to TCP are used here. They have to be substituted accordingly.

1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Obiject(s)...” in the
context menu.

B2 TwinCAT UM Files

4 Vo
F] ‘ﬂ% Devices
M Devicel (RT-Ethernet Adapter)

‘O Add New Item... Ins 4.33 Mappings
‘O Add Existing Item... Shift+Alt+A
XX Remove Del

Add Object(s)...

Save Devicel (RT-Ethernet Adapter) As...
Online Reset

Online Reload

Online Delete

TF6311 Version: 1.8.1 33

Configuration BEGKHOFF

2. Then select the “TCP/UDP RT” module:

Insert TeCom Object
Search: Mame: | (] |
Type: Elli‘ Beckhaff Autormation GmbH [Cancel]
- -5 NC Objects
B-

Multiple: 1 B

‘m

[|ngert Instance. .]

[Reload]

= The TCP/UDP RT object is created under the adapter.

4« Flro

4 *f'g Devices

4 [Devicel (RT-Ethernet Adapter)
12 Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

RIS Modulel.cpp Medulel.h UntitledlInterfaces.h Solution Explorer
coR e-s@| k=
Search Solution Explorer (Ctrl+ii)

Object | Context | Parameter (int) | Data Area | Interfaces | Interface Pointer |

PTCID Name | ot Object Name i} Type @rc
0303002060 CyclicCaller 02010020 = Tack2 D300001E-0000-000... ITeCyclicCaller SAFETY
000000002 TepPort Dfvice 1 (RT-Ethernet Adapter) ObjL (Ip St... 03010098-0000-000... ITcloTcpProtocol a e

4 Untitled]
4[] Untitledl Project
& External Dependencies
3+ Header Files
7 Source Files
£ TMC Files
£ TwinCAT RT Files
£ TwinCAT UM Files
a Untitled_Objl (CModulel)
b Inputs
b Outputs
« @wo

vTwvwvwvww

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

TwinCAT UdpDemoPlc + X

Objsct | Gontest | Parsmeter (int) | Dt Area | Symbol Intiaizstion | Co@| s @ &=

Search Solution Explorer (Ctrl+)
| [Name [Pe—— [unit

MAIN.udpl.oid ~ | Device 1 (RT-Ethernet Adapte... C

[1] comment

[] Solution TwinCAT UdpDemoPlc' (1 project)
4[5 TwinCAT UdpDemoPlc
3 SYSTEM
[=] moTion
4 PLC
4 [0 UdpDemoPlc
b =] UdpDemoPlc Project
[&] udpDemoPic Instance

SAFETY

[co s

o

b “Z Devices
&7, Mappings

S

= The configuration is thus completed

® Disconnection by the operating system in Promiscuous mode

1 If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

34 Version: 1.8.1 TF6311

BEGKHOFF Configuration

5.1 Multiple network cards

A TCP/UDP RT object is assigned to an RT Ethernet adapter by instantiating it under the objects, for
example. A TCP/UDP RT object therefore always addresses precisely one network port of the controller via
the RT Ethernet adapter.

If several network ports are to be used, a TCP/UDP RT object is created for each RT Ethernet adapter:

4 [F Vo
4 "L Devices
4 &Y Devicel (RT-Ethernet Adapter)
2 Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)
F ﬁ',_l‘ Device 2 (RT-Ethernet Adapter)
't Device 2 (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

The TCP/UDP RT objects relate to the higher-level RT Ethernet adapter, if no other configuration was
specified manually:

TwinCAT udppernoplc > [
| Object [Context [Parameter (Init) [Interfaces | Interface Pcinterl

Solution Explorer

co@e-a| s -

Search Solution Explorer (Ctrl+) P~
. Bwo = PTCID | Name |oTcn | Object Name |m [
4 2 Devices 003002040 TTcloEthAdapter 03010010 _v|Device1 (RT-Ethernet Adapter) | 03010034-0..

' Device 2 (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

2 Mappings hd

g

These objects have different object IDs:

Solution Explorer A TwinCAT UdpDemoPlc & X

cof e-a &= Obiect | Conteat | Parameter (int) | Interfaces | Inteface Pointer|
Search Solution Explorer (Ctrl+) P~
Vo Object Id: 001010020 | [T Copy TMIto Target
A TS
4 " Devices Device 1 {RT-Ethemet Ad: [Share TMC Description

4 EF Devicel (RT-Ethernet Adapter TCP/UDP RT

030D0393-6A65-4080-80E1-18D8FEI3436A
03010070-0000-0000-FO00-000000000064

4 ¥ Device 2 (RT-Ethernet Adapter)
1% Device 2 (RT-Ethernet Adapter)_Objl

Solution Explorer
co @ e-a|s -
Search Solution Explorer (Ctrl+) P
4 Fvo -
4 1"f'g[?ﬂ&\.rices

4 ¥ Devicel (RT-Ethernet Adapter)
I Device 1 (RT-Ethernet Adapter)_Objl

Object Id:
Object Name:

Copy TMI to Target
Device 2 (RT-Ethemet Ad: Share TMC Description
TCRAUDP RT

080D0395-6A65-4080-80E1-18DBFETI436A
02010070-0000-0000-F000-000000000064

2 Device 2 (RT-Ethernet Adapter)_Objl

This object ID is used for referencing, as described above:

Solution Explorer X | TwinCAT UdpDemoPlc + X

[0 | ©-a | - | Object [Cortest | Parameter (Init) | Data Area | Symbol Intialization |

Search Solution Explorer (Ctrl+0) o~

[Task4 . | MName m [Unit Type
s Routes MAIN.udpl.oid 01010020 ;I evice 1 (RT-Ethernet Adapter)_Objl (TC... OTCID
[&] TcCOM Objects
4 [rLC
4 UdpDemoPlc_1

[gdolemg giect
dpliemoFIc_.

4 :—gudpDemDP\c_ZPmJect
b [J External Types

TF6311 Version: 1.8.1 35

Configuration BEGKHOFF

Or for a C++ module:

Pl UdpDemo + 3

Solution Explorer

Co@ e-a| s -

[Object | Contexdt | Parameter (init) | Interfaces | Interface Poirter

Search Solution Explorer (Ctrl+ i) P~
PTCID | Name |oTem Object Name D
++ TcPch.cpp
b ++ UdpDemo.cop 003002060 CyclicCaller Task 2 0300001E-00...
[UdpDemo.rc 000000001 UdpProt 01010020 ;I evice 1 (RT-Ethernet Adapter)_Ob... 03010097-00...

++ UdpDemoClassFactory.cpp
TMC Files
TwinCAT RT Files
L Toain o AT LIbA FiL

I UdpDemo_Objl (CUdpDema) I
r & e

b
b

T

T

The use is highly dependent on the application. Some sample scenarios are provided below:

* A C++ module can be instantiated more than once. Each module can then communicate via a
particular network card, based on the configuration with the corresponding object ID.

« Different PLC programs can be assigned separate TCP/UDP RT objects and thus act independently.

* A PLC or C++ program can address several TCP/UDP RT objects (and therefore several network
cards), based on corresponding symbols (C++ is used as an example here):

(V5[0 e LdpDemo.tmc [TMC Editor] UdpDemo.cpp

| Object | Context | Parameter (Ini) | Interfaces | Interface Fointer |

PTCID | Marne | oTCID Object Mame oo Type

003002060 | CyclicCaller 02010020 LI Task 2 0300001E-... ITcCyclicCalle
000000001 UdpProt 01010020 ;I Devicel (RT-Ethernet Adapter)_Objl... 03010097-.. ITcloUdpProtc
0:00000002 | UdpProt2 ILI Device 2 (RT-Ethernet Adapter)_Objl... 03010097-.. ITcloUdpProtc

Object management must be implemented to suit the application. For example, the CheckReceived()
calls must be applied to all objects. This also applies to calls for SendData() / RegisterReceiver() etc.

5.2 Multitask access to a network card

If a network card is to be used from several real-time contexts (tasks), it must be implemented as described
here.

+ A TCP/UDP RT object must be created for each real-time context (e.g. task) from which data is to be
received or sent.

4« F o
4 %DE’UiCES k‘

4 [Device 1 (RT-Ethernet*Adapter)

1% Device 1 (RT-Ethernet Adapter)_Obj1 (TCP/UDP RT)
% Device 1 (RT-Ethernet Adapter)_Obj2 (TCP/UDP RT)

+ The PassiveMode parameter on all TCP/UDP RT objects specifies whether or not these objects should
fetch frames received from the RT Ethernet adapter. By default, PassiveMode is set to FALSE so that
packets are fetched.

For multitask access, only one TCP/UDP RT object should fetch the data and all other objects should
be configured with PassiveMode to TRUE.
Typically, this can be the object that receives packets in the fastest cycle. Where appropriate, a lower

36 Version: 1.8.1 TF6311

BECKHOFF

Configuration

priority can be used for this in order to make the real-time processes of other tasks more independent

of the incoming frames.

Object Context Parameter (Int) Parameter (Online) Interfaces Interface Pointer

Mame Value
%TclolpSeﬂ:ings
phaxReceivers 4
IpMaxPendingOnArp 40
IpMacCacheSize 64
IpMTU 1514
IpRecvFrameQueueSize 255
UdpMaxReceivers 4
UdpMTU 1514
UdpCheckCre TRUE
TIL 80
MulticastTTL 0x01
| PassiveMode FASE |
- MulticastipList [l

» The function block must call the RegisterReceiver() / Open() method in the same context as it calls the
CheckReceived() method in the cyclic process.

» The callbacks via ReceiveData()/...Event() are called in the same context as the CheckReceived() from
the function block of the application previously.

TF6311

Version: 1.8.1

37

Examples BEGKHOFF

6 Examples

These examples provide easy-to-follow demonstrations for dealing with the TCP/UDP RT module.

Sample code and configurations for this product can be obtained from the corresponding repository on
GitHub: https://github.com/Beckhoff/TF6311_Samples. There you have the option to clone the repository or
download a ZIP file containing the sample.

Go to file Add file = {> Code ~

Local Codespaces

B3 Clone @)

HTTPS 55H GitHub CLI

https://github.com/Beckhoff/TF6311_Samples.gi L[;]

Use Git or checkout with 5VN using the web URL.

B Open with GitHub Desktop
Open with Visual Studio

() Download ZIP

6.1 S01: Simple TCP Client (PLC / C++)

This sample shows the application of a TCP connection as client.

In this sample illustrates opening of a TCP connection with an IP address via port 80. The Beckhoff web
server is used. The sample uses the connection to send an HTTP request to access a test website
62.159.14.51:80.

If the website does not fit into the receive buffer, the ReceiveData() method is called several times.
The client re-establishes a connection, if it was closed by the server, for example.

The sample is available for C++ and for the PLC.

6.1.1 S01: Simple TCP Client (C++)

This example implements a TCP client that issues a simple HTTP request and receives the response.

The download available here is preconfigured to call a test website 62.159.14.51:80.

Download

Download the sample: https://github.com/Beckhoff/TF6311 Samples/tree/main/S01-IpStackTcpClient

1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system

38 Version: 1.8.1 TF6311

https://github.com/Beckhoff/TF6311_Samples/tree/main/S01-IpStackTcpClient

BECKHOFF

Examples

4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

Description

The example is described in detail on the Quick Start [P 22] page.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

Local configuration only

Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

1

IpStack_HowTo # X

~ | Solution Explorer
@ -

Search Solution Explorer (Ctrl+)

[Genera| Adapter |forts | Switch [Statistics | a s, -
| S

Description:

Local Area Connection (TwinCAT-Intel PC| Bthemet Adapter (Gigabit])

Device Hame: \DEVICE\{BD7BFECO-BFC4-46A7-8201-83B35055C667}

I Search... I
Compatible Devices...

MAC Address: 080027d2%dc

|P Address: 172.17.214.65 (255.255.254.0)

fa Solutien 'IpStack_HowTo' (1 project)
4 zlpStack_HowTo
4 [SYSTEM
¥ License
4 @ Real-Time

[Z 1O Idle Task
4 % Tasks
=Ta Routes
[8] TcCOM Objects
MOTION
PLC
(43 SAFETY
rl E C++
4 TepClient
I [TcpClient Project
@ TepClient_Objl (CTcpClient)
4 vo
4 "L Devices
4| & Device1 (RT-Ethernet Adapte;]J
me Device L (1 -tthernet Adapter)_Objl (TCP/UDP RT)
&, Mappings

Freerun Cycle ms): 4 =

[Promiscuous Mode {use with Wireshark only)
[¥] Wirtual Device Names

Device Found At

QK

@ Unused
Al

Area Connechion [TwinCAT -Intel PCI Ethernet Adapter [Gigabit]]

Help

._I

6.1.2 S01: Simple TCP Client (PLC)

This sample implements a TCP client that issues a simple HTTP request and receives the response.

The download available here is preconfigured to call a test website 62.159.14.51:80.

Download

Download the sample: https://github.com/Beckhoff/TF6311 Samples/tree/main/S01-IpStackTcpClientPlc

. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
. Open the project with TwinCAT XAE

. Select your target system

. Configure the network card (see below) for the target system

. Build the sample on your local machine (e.g. Build->Build Solution)

. Activate the configuration

D oA WN =

TF6311

Version: 1.8.1 39

https://github.com/Beckhoff/TF6311_Samples/tree/main/S01-IpStackTcpClientPlc

Examples BEGKHOFF

Description

After the startup, the PLC program can be used by setting the variable "bSend" to TRUE. The HTTP request
(stored in "sMessage") is sent to the server, once the connection has been established. The first bytes of the
incoming response are provided in "sLastReturnedMessage". The "sLastReturnedMessafeLength" indicates
the whole length of the response.

The server address is defined in the FB_init method.

The same sample is described in detail for C++ on the Quick Start [P 22] page.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

® Local configuration only

1 Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

IpStack_HowTo + X ~ | Solution Explorer
[Generaf| Adapter |forts | Switch [Statistics| @lo--a|& -
 — Search Solution Explarer (Ctrl+0) P~
Description: Local Area Connection (TwinCAT-Intel PC| Bthemet Adapter (Sigabit))
fad Solutien 'IpStack_HowTo' (1 project)
“DEVICE\{ED7BFSCO-BFC4-46A7-2201-B3B95095C667} 4 z IpStack_HowTo
MAC Addhess: 080027 d2%ade e — | 4 @l svsTem
% License
IP Address: 172.17.214.65 (255.255.254.0) Compatible Devices... 4 @ Real-Time
Freerun Cycle ms): 4 = [/O Idle Task
b % Tasks
Sia Routes
[Promiscuous Mode {use with Wireshark only) @ TcCOM Objects
[¥] Wirtual Device Names MOTION
G rLC
Device Found At @ 1| SAFETY
4 E C++
hak0 0K 4 TcpCIient
Local Area Conhection [TwinCAT-Intel PC Ethernet Adapter [Gigakit]) b [TepClient Project
@ TepClient_Objl (CTcpClient)
_ 4 vo
G Uree 4 YL Devices
Cral 4 | & Devicel (RT-Ethernet Adapter)
s LEvICE ~Ethern apter)_Objl (TCP/UDP RT)
&’ Mappings
Help
—

6.2 S02: UDP Client Server (PLC/C++)

This example describes how a TwinCAT project can act as a UDP server. Thus, values can be delivered to
the real-time or from the real-time on request.

The example implements an "echo service": A UDP server is started on a port (default: 10000). If this server
receives a UDP packet, it returns the content to the sender (with same IP and same port). The example is

available in PLC [P 40] and C++ [P 43].
For testing purposes, a UDP client [P 44] (written in .NET) is also available.

The samples are also available in more detail as Quick Starts [P_11].

6.2.1 S02: UDP Demo (PLC)

This example describes a UDP server that is implemented in a PLC project.

40 Version: 1.8.1 TF6311

BEGKHOFF Examples

It receives UDP packets and returns them to the sender ("echo server*).

Download

Download the sample: https://github.com/Beckhoff/TF6311 Samples/tree/main/S02-UdpDemoPIc
. Get the sample from GitHub, unzip the downloaded ZIP file if necessary

. Open the project with TwinCAT XAE

. Select your target system

. Configure the network card (see below) for the target system

. Build the sample on your local machine (e.g. Build->Build Solution)

. Activate the configuration

D OBk WN -

Description
The sample is also available in more detail as Quick Start.

The interface ITcloUdpProtocolRecv [P 52] is implemented and a pointer to a ITcloUdpProtocol [» 52] is
used analogous to the Quick Start [P 22] in this sample.

To this end a PLC block is created, which implements the interface ITcloUdpProtocolRecv [P 52] (“Add
POU” with “Implements”). It is important to realize the connection to the TCP/UDP RT object in the “FB_init”
and “FB_exit” methods. This procedure is described in more detail in Sample 11 of the C++ documentation.

The implementing function block (in sample UdpReceiver) calls the method “CheckReceived”. In this way the
IP stack is enabled to process incoming packets and transmit callbacks on the “ReceiveData” method of the
function block.

The “ReceiveData” method uses the “SendData” method to return the data to the sender (“echo server”).

Understanding

Two methods are used to establish the communication between the function block and the TcCOM object
"TCP/UDP RT":

« "FB_init": This is executed automatically when the PLC is started
* "FB_exit": This is executed automatically when the PLC is stopped

This initialization phase can largely be taken from the sample code.

Two methods are responsible for the actual UDP functionality in the PLC code:

» The "ReceiveData" method in the implemented function block receives the data.
» The "SendData" method in the ITcloUdpProtocol interface sends data.

In the sample, the "SendData" method is used in the "ReceiveData" method to return the received data:

TF6311 Version: 1.8.1 41

https://github.com/Beckhoff/TF6311_Samples/tree/main/S02-UdpDemoPlc
https://infosys.beckhoff.com/content/1033/tc3_c/112603915.html?id=6304664618712591310

Examples BEGKHOFF

UdpReceiver. TeQuerylnterface UdpReceiver.ReceiveData + X LIS MAIN Selution Explorer
@ e-ed| &=
Search Solution Explorer (Ctrl+)
fa] Solution 'TwinCAT UdpDemoPlc' (1 project)
. 4[5 TwinCAT UdpDemoPlc
- . 4 [l svsTEM
7 METHOD ReceiveData : HRESULT ¥ License
= 2| VAR INPOT :
5 _1pAddr : UDINT: 4 @ Real-Time
10 udpDestPort : UINT; [E1 VO Idle Task
11 udpSrcPort : UINT: 4 B Tasks
1z nData : UDINT; &1 PlcTask
13 pData : PVOID; =Tz Routes
14 pVlan : POINTER TO ETYFE VIAN HEADER := 0; - @ TcCOM Objects
1 nReceivedPakets := nReceivedPakets+l: = 4 [PLC
= z IF ipUdp <> 0 THEN _ElpremoPIc
3 ipUdp.SendData (1ipAddr, udpSrcPort, udpDestPort, nData, pData, TRUE, 0); // send dats back 4 =] UdpDemoPlc Project
4 END IF b [External Types
- b -2l References
3 DUT:
[3 GVLs
4 [z POUs
MAIN (PRG)
4 UdpReceiver (FE)
5 FB_eit
54 FBLinit
El\?l ReceiveData
54 TcAddRef

El\?l TcQuerylnterface
El\?l TcRelease
3 vISUs
3 ’,'._'f] PlcTask (PlcTask)
2_'3 UdpDemoPlctme
@ UdpDemoPlc Instance

The TcQueryInterface method must be implemented as follows to ensure that TwinCAT detects that the
corresponding interface was implemented:

VAR

ipUdpRecv : ITcIoUdpProtocolRecv;
ipUnknown : ITcUnknown;

END VAR

IF GuidsEqual (ADR(iid), ADR(TC GLOBAL IID LIST.IID ITcIoUdpProtocolRecv)) THEN

ipUdpRecv := THIS”; // cast to interface pointer

pipItf”® := ITCUNKNOWN TO PVOID (ipUdpRecv) ;

TcAddRef () ;

TcQueryInterface := S OK;

ELSIF GuidsEqual (ADR(iid), ADR(TC GLOBAL IID LIST.IID ITcUnknown)) THEN
ipUnknown := THIS”; // cast to interface pointer

pipItf”® := ITCUNKNOWN TO PVOID (ipUnknown) ;

TcAddRef () ;

TcQueryInterface := S OK;

ELSE

TcQueryInterface := E HRESULTAdsErr.NOINTERFACE ; //Call super if this fb extends some other
END IF

The additionally created methods
« TcAddRef/ TcRelease

are inherited by the ITcUnknown interface and are not relevant in this context. For background information
we suggest reading the chapter on the TcCOM module concept in the C++ domain.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

® Local configuration only

1 Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

42 Version: 1.8.1 TF6311

BEGKHOFF Examples

IpStack HowTo # X ¥ | Solution Explorer

[Genera| Adapter | Poris | Switch | Statistics| @ o- @ &=
e Search Solution Explorer (Ctrl+) P~

Description: Local Area Connection (TwinCAT-Intel PCl EBthemet Adapter (Gigabit))
] Solutien ‘IpStack_HowTao' (1 project)
Drevice Marne: “DEVICE\{BD7BFECO-BRC4-4647-8201-B3B55095C66T} 4 a IpStack_HowTa

MAC Address: 08 00 27 d2 9a dc | Search... I 4 |l sysTeEm

¥ License

IP Address: 172.17.214.65 (255.255.254.0) Compatible Devices ... 4 Real-Time
Freerun Cycle (ms): 4 = [IO Idle Task
P % Tasks

=f= Routes
[Promiscuous Mode (use with Wireshark only) @ TcCOM Objects

[#] Virtual Device Names MOTION
PLC
@ (33 SAFETY
4 E C++
0K 4 TepClient
I [TcpClient Project
@ TepClient_Objl (CTcpClient)
4 o
4

Device Found At

Local Area Connection [TwinCAT-Intel PCI Ethernet &dapter [Gigabit]]

@ Unused
Al

4 | v Devicel (RT-Ethernet Adapter)
= LIEVICE -ETthern apter)_Objl (TCP/UDP RT)
ﬁj Mappings

Help

6.2.2 S02: UDP Demo (C++)

This example describes a UDP server that is implemented in C++.

It receives UDP packets and returns them to the sender ("echo server*).

Download

Download the sample: https://github.com/Beckhoff/TF6311 Samples/tree/main/S02-UdpDemo

. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
. Open the project with TwinCAT XAE
. Select your target system

. Configure the network card (see below) for the target system
. Build the sample on your local machine (e.g. Build->Build Solution)
. Activate the configuration

D o0k WN =

Description

The interface ITcloUdpProtocolRecv [P 52] is implemented and a pointer to a [TcloUdpProtocol [P 52] is
used analogous to the Quick Start [P 22] in this example.

Using "RegisterReceiver" in the Transition SO ensures that the module is registered for the transmitted port
(default: 10000). A corresponding unregistration takes place in the Transition OS.

The "CheckReceived" method is called in the "CycleUpdate" method. In this way the TCP/UDP RT module is
enabled to process incoming packets and transmit callbacks on the "ReceiveData" method to the module.

The "ReceiveData" method uses the "SendData" method to return the data to the sender ("echo server").

The sample is also available in more detail as Quick Start [»_16].

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

TF6311 Version: 1.8.1 43

https://github.com/Beckhoff/TF6311_Samples/tree/main/S02-UdpDemo

Examples BEGKHOFF

® Local configuration only

1 Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

IpStack_HowTo + X Solution Explorer

[Gereral| Adapter |forts | Switch [Statistics | @ o-- T &=
 — Search Solution Explarer (Ctrl+0) P~

Description: Local Area Connection (TwinCAT-Intel PC| Bthemet Adapter (Sigabit))
fad Solutien 'IpStack_HowTo' (1 project)
Device Mame: “DEVICE\{ED7BFSCO-BFC4-46A7-2201-B3B95095C667} 4 a IpStack_HowTo

MAC Address: 080027d2%ade e — | 4 |l svsTem

4 License
IP Address: 172.17.214 .65 (255.255.254.0) Compatible Devices ... 4 @ Real-Time
Freerun Cycle ms): 4 = % IO Idle Task
4 % Tasks
oia Routes
[Promiscuous Mode {use with Wireshark only) TcCOM Objects
[#] Wirtual Device Names MOTION
PLC
Device Found At SAFETY
4 E C++
oK. 4 TepClient

b [TcpClient Project
@ TepClient_Objl (CTcpClient)
4 Vo

. Unet 4 "L Devices

A 4 | & Devicel (RT-Ethernet Adapter) I
s LEvICE ~Ethern apter)_Objl (TCP/UDP RT)

&’ Mappings

Local Area Connection [TwinCAT -Intel PCl Ethemet Adapter [Gigabit]]

Help

6.2.3 Test client

The test client is used to send and receive single UDP data packets to and from a UDP server.

Download
Download the test client.

Unpack the ZIP file; the .exe file runs on a Windows system.

Description

The client itself uses port 11000 for sending. At the same time it opens this port and displays received
messages in the upper part of the interface as a log:

i~ 1

8 UDP Sample Client (o= |[=]

13.04 2015 11:59:34: Beckhoff TCP-UDP RT
13.04 2015 11:59:35: Beckhoff TCP-UDP RT
13.04 2015 11:59:35: Beckhoff TCP-UDP RT
13.04 2015 11:59:35: Beckhoff TCP-UDP RT

Destination: 172.17.36.158 Port: 10000
Source: 1721721555 -
Message: Beckhoff TCP-UDP RT Send

Hint: Client sends/receives on udp port: 11000

44 Version: 1.8.1 TF6311

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TF6311-TCPUDPRT/Sample02-UdpDemo/TF631x-SampleClientUdp.zip

BEGKHOFF Examples

Together with the PLC / C++ samples, this results in an echo sample:
A UDP message is sent from the client port 11000 to the server port 10000, which sends the same data back
to the sender.
The client can be configured via the interface:
 Destination: Destination IP address
« Port: The port that is addressed in the target

» Source: Sender network card (IP address).
"OS-based" operating system deals with selection of the appropriate network card.

* Message

The TF6311 "TCP/UDP Realtime" does not allow local communication. However, for testing purposes a
different network interface can be selected via "Source", so that the UDP packet leaves the computer
through one network card and arrives on the other network card ("loop cable").

6.3 S03: ARP PING Demo (C++)

This example describes an ARP and PING client.

Download

Download the sample: https://github.com/Beckhoff/TF6311 Samples/tree/main/S03-PingClient

. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
. Open the project with TwinCAT XAE
. Select your target system

. Configure the network card (see below) for the target system
. Build the sample on your local machine (e.g. Build->Build Solution)
. Activate the configuration

D 0ok WN =

Description

The interface ARP/Ping: ITcloArpPingProtocol(Recv) [P 64] is implemented and a pointer to a ARP/Ping:
[TcloArpPingProtocol(Recv) [»_65] is used analogous to the Quick Start [P 22] in this example.

Using "RegisterReceiver" in the Transition SO ensures that the module is registered for receiving Arp and
Ping messages. A corresponding unregistration takes place in the Transition OS.

The "CheckReceived" method is called in the "CycleUpdate" method. In this way the TCP/UDP RT module is
enabled to process incoming packets and transmit callbacks on the "ArpReply" und "PingReply" methods to
the module.

Understanding
The procedure is carried out once when the program starts.

If "m_bSendRequest" is set to TRUE (e.g. through TwinCAT Live Watch), a new request (ARP and Ping) is
sent to the IP address defined here:

TwinCAT PingClient + > [lyls[®[I3yalyid - T=451 PingClientServices.h PingModule.cpp PingClient.tmc [TMC Editor] PingModule.h

Object | Context | Parameter {Init) |Data Area | Intefaces | Interface F‘ointer|

PTCID | Name | value
+ 000000001 Parameter
0x00000002 IpAddress 172.17.215.32

The output is in the messages:

TF6311 Version: 1.8.1 45

https://github.com/Beckhoff/TF6311_Samples/tree/main/S03-PingClient

Examples BEGKHOFF

fa

Show output from: | TwinCAT '| | | | =

MSG | 2/9/2815 1:54:85 PM 294 ms | 'TCOM Server® (18): CPingModule::ArpReply() <<< Received ARP Reply from : 172.17.215.32 -> MAC d4:a9:eb:5a:7@:8c

MSG | 2/9/2815 1:54:85 PM 294 ms | 'TCOM Server' (18): CPingModule::PingReply() <<< Received Ping Reply from : 172.17.215.32

To output these messages the "Tracelevel" can be configured (via Info).

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

® Local configuration only

1 Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

IpStack_ HowTo # X Solution Explorer

[Genera]| Adepter [Bos | Swich | Stattics| @l o-a| &=
e Search Solution Explorer (Ctrl+) P~
Description: Local Area Connection (TwinCAT-Intel PCl EBthemet Adapter (Gigabit))
] Solutien ‘IpStack_HowTao' (1 project)
Drevice Mame: “DEVICE\{BD7BFECO-BRC4-4647-8201-B3B55095C66T} 4 a IpStack_HowTa
MAC Address: 08 0027 d2 9a de [— | 4 @ svsTEM
¥ License
IP Address: 172.17.214.65 (255.255.254.0) Compatible Devices... 4 @ Real-Time
Freerun Cycle (ms): 4 = [IO Idle Task
P % Tasks
)) ! =f= Routes
[T] Promiscuous Mode (use with Wireshark only) TcCOM Objects
[#] Virtual Device Names MOTION
PLC
Device Found At @ SAFETY
F E] C++

oK 4 TepClient
AT-ntel PCI Ethemet Adapter [Gigabit]]

b [TcpClient Project

@ TepClient_Objl (CTcpClient)
_ 4 |2 1/O
@ Unuzed
Coal 4 | 2 Devicel (RT-Ethernet Adapter)
s LEvice -Ethern apter)_Objl (TCP/UDP RT)
&’ Mappings
Help

._I

6.4 S04: TCP Echo Server (PLC / C++)

This sample describes a TCP server accepting an income connection.
Data sent to this server are simply returned as “echo”.

The same sample is available for C++ and PLC. By default, the server runs on port 11000.

Testing the sample

The sample can be tested via "telnet".
%>telnet 192.168.1.1 11000

If a character is sent via telnet, it is returned immediately. A picture similar to the following emerges:

46 Version: 1.8.1 TF6311

BEGKHOFF Examples

BN Telnet172.17.36.227 o || = | ER
Beecckkhhooffff

6.4.1 S04: TCP Server Demo (PLC)

This sample describes a TCP server that is implemented in a PLC project.

It accepts a TCP connection, receives TCP packets and returns them to the sender (“echo server”).

Download

Download the sample: https://github.com/Beckhoff/TF6311 Samples/tree/main/S04-TCPServerPlc

. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
. Open the project with TwinCAT XAE
. Select your target system

. Configure the network card (see below) for the target system
. Build the sample on your local machine (e.g. Build->Build Solution)

D OB~ W N -

. Activate the configuration

Description

The interface [TcloTcpProtocolRecv [P 58] is implemented and a pointer to a [TcloTcpProtocol [P 58] is
used analogous to the Quick Start [P_11]s in this sample.

To this end a PLC block is created, which implements the interface ITcloUdpProtocolRecv [» 58] (“Add
POU” with “Implements”). It is important to realize the connection to the TCP/UDP RT object in the “FB_init”
and “FB_exit” methods. In particular, the Quick Starts illustrate how this OnlineChange can be implemented

securely. The procedure is described in more detail in Sample 11 of the C++ documentation.

The implementing function block (in sample TCPServer) calls the method “CheckReceived”. In this way the
IP stack is enabled to process incoming packets and transmit callbacks relating to the “ReceiveData” and
“ReceiveEvent” methods of the function block.

In order to take into account incoming connections, a port is opened in FB_init via “AllocSocket” and “Listen”.
“Accept” is called in the “ReceiveEvent”, if an event to establish a connection has occurred.

In this sample the “ReceiveData” method uses the “SendData” method to return the data to the sender
(“echo server”).

TF6311 Version: 1.8.1 47

https://github.com/Beckhoff/TF6311_Samples/tree/main/S04-TCPServerPlc
https://infosys.beckhoff.com/content/1033/tc3_c/112603915.html?id=6304664618712591310

Examples BEGKHOFF

Understanding
Two methods are used to establish the communication between the function block and the TcCOM object
“TCP/UDP RT”:

« ,FB_init*: This is executed automatically when the PLC is started.

« ,FB_exit“: This is executed automatically when the PLC is stopped.

This initialization phase can largely be taken from the sample code.

Two methods are responsible for the actual TCP functionality in the PLC code:

» The “ReceiveData” method in the implemented function block receives the data.
* The “ReceiveEvent” method indicates events occurring at the implemented function block.
» The “SendData” method in the ITcloTcpProtocol interface sends data.

In the sample, the “SendData” method is used in the “ReceiveData” method to return the received data:
The TcQuerylnterface method must be implemented as follows to ensure that TwinCAT detects that the
corresponding interface was implemented:

VAR

ipTcpRecv : ITcIoTcpProtocolRecv;

ipUnknown : ITcUnknown;
END VAR

IF GuidsEqual (ADR(iid), ADR(TC GLOBAL IID LIST.IID ITcIoTcpProtocolRecv)) THEN

ipTcpRecv := THIS”; // cast to interface pointer

pipItf” := ITCUNKNOWN TO_ PVOID (ipUdpRecv) ;

TcAddRef () ;

TcQueryInterface := S OK;

ELSIF GuidsEqual (ADR(iid), ADR(TC GLOBAL IID LIST.IID ITcUnknown)) THEN
ipUnknown := THIS"; // cast to interface pointer

pipItf”® := ITCUNKNOWN TO PVOID (ipUnknown) ;

TcAddRef () ;

TcQueryInterface := S OK;

ELSE

TcQueryInterface := E HRESULTAdsErr.NOINTERFACE ; //Call super if this fb extends some other
END IF

The additionally created methods
* TcAddRef/ TcRelease

are inherited by the ITcUnknown interface and are not relevant in this context. For background information
we suggest reading the chapter on the TcCOM module concept in the C++ domain.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

® Local configuration only

1 Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

48 Version: 1.8.1 TF6311

BECKHOFF

Examples

IpStack_HowTo + X

| Generaf| Adapter |forts | Switch | Statistics |
—

Description: Local Area Connection (TwinCAT-Intel PCl EBthemet Adapter (Gigabit))

Drervice Mame: \DEVICE\{BD7BF8CO-BFC4-46A7-8201-B3B95D95C66T7}

I Search... I
Compatible Devices...

MAC Address: 080027d2%dc

|P Address: 172.17.214.65 (255.255.254.0)

¥ | Solution Explorer
@ o-

Search Solution Explorer (Ctrl+)

| &=

] Solutien ‘IpStack_HowTao' (1 project)
4 aIpStack_HowTo
4] SYSTEM
 License
4) Real-Time

[IO Idle Task
P % Tasks
=f= Routes
[&] T<COM Objects
MOTION
PLC
[0 SAFETY
E C++
4 TepClient
I [TcpClient Project
@ TepClient_Objl (CTcpClient)
4 o
F

Freerun Cycle (ms): 4 =

[Promiscuous Mode {use with Wireshark only)
[#] Virtual Device Names

Device Found At
4

(=)
QK

@ Unused
Al

ea Connection [TwinCAT -Intel PCI Ethernet Adapter [Gigabit])

4 | v Devicel (RT-Ethernet Adapter)
=mter)_Objl (TCP/UDP RT)

T Device
&’ Mappings

Help

._I

6.4.2 S04: TCP Server Demo (C++)

This sample describes a TCP server that is implemented in C++,

It accepts a TCP connection, receives TCP packets and returns them to the sender (“echo server”).

Download

Download the sample: https://github.com/Beckhoff/TF6311 Samples/tree/main/S04-TCPServer

. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
. Open the project with TwinCAT XAE
. Select your target system

. Configure the network card (see below) for the target system
. Build the sample on your local machine (e.g. Build->Build Solution)

D o0k WN =

. Activate the configuration

Description

The interface ITcloTcpProtocolRecv is implemented and a pointer to a ITcloTcpProtocol is used analogous
to the Quick Starts in this sample.

The “CheckReceived” method is called in the “CycleUpdate” method. In this way the TCP/UDP RT module is
enabled to process incoming packets and transmit callbacks on the “ReceiveEvent” und “ReceiveData”
methods to the module.

In order to take into account incoming connections, a port is opened in “CycleUpdate” via “AllocSocket” and
“Listen”. “Accept” is called in the “ReceiveEvent”, if an event to establish a connection has occurred.

In this sample the “ReceiveData” method uses the “SendData” method to return the data to the sender
(“echo server”).

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

TF6311 Version: 1.8.1 49

https://github.com/Beckhoff/TF6311_Samples/tree/main/S04-TCPServer

Examples BEGKHOFF

® Local configuration only

1 Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRtelnstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

IpStack_HowTo + X Solution Explorer
[Generaf| Adapter |forts | Switch [Statistics| @lo--a|& -
 — Search Solution Explarer (Ctrl+0) P~
Description: Local Area Connection (TwinCAT-Intel PC| Bthemet Adapter (Sigabit))
fad Solutien 'IpStack_HowTo' (1 project)
Device Mame: “DEVICE\{ED7BFSCO-BFC4-46A7-2201-B3B95095C667} 4 a IpStack_HowTo
MAC Address: 080027d2%ade e — | 4 |l svsTem
4 License
IP Address: 172.17.214.85 (255.255.254.0) Compatible Devices... 4 @ Real-Time
Freerun Cycle ms): 4 = El IO Idle Task
4 % Tasks
oia Routes
[Promiscuous Mode {use with Wireshark only) lil TcCOM Objects
[#] Wirtual Device Names MOTION
PLC
Device Found At SAFETY
4 E C++

0K 4 TepClient

b [TcpClient Project
@ TepClient_Objl (CTcpClient)
4 vo

@ Unused 4 L Devices

A 4 | & Devicel (RT-Ethernet Adapter) I
s LEvICE ~Ethern apter)_Objl (TCP/UDP RT)

&’ Mappings

ea Connection [TwinCaT-Intel FCI Ethermnet &dapter [Gigabit]]

Help

50 Version: 1.8.1 TF6311

BEGKHOFF Programmer's reference

7 Programmer's reference

The programmer's reference provides an overview of the different parameters, interfaces and their methods.
These include:

e TCP/UDP RT TcCOM Parameters [P _55]: The parameters of the actual TCP/UDP RT module enable the
configuration.

The TCP/UDP RT module can be used by different protocols. An InterfacePointer and an interface to be
implemented always go hand in hand:

* ITcloTcpProtocol(Recv): [P 58] TCP/IP protocol
+ |TcloUdpProtocol(Recv) [»_52]: UDP/IP protocol
* |TcloArpPingProtocol(Recv) [P 64]: ARP/Ping protocol

For all uses of IP addresses (e.g. "IpAddr"), the most significant elements are displayed in the last position.
(Example: 192.168.2.1 -> 01 02 A8 CO0)

Performance

The TCP/UDP RT TcCOM object runs in real-time. Thus, the module is also directly dependent on the
cycling of the real-time. The frequency with which data can be communicated can therefore be influenced by
the cycling of the task used (and therefore also the real-time settings):

TwinCAT Projectl = 3 e URSTT TNty Solution Explorer

co@d|e-2a| &=
Search Solution Explorer (Ctrl+) P

fa] Solution ‘TwinCAT Projectl’ {1 project)
4 ;‘I TwinCAT Projectl
4 @ sYsTEM
¥ License
@ Real-Time
4 (B Tasks
[Z1 PlcTask
=tz Routes
[T TcCOM Objects
MOTION

Settings |Oﬂ|\ne | Pricrities | C+s Debuggerl

Router Memory (MByte): 32 EI

Available CPUs (Windows/Cther): 1 ﬂ 0 ﬂ [__Readfrom Tamget | [Setontamst |

CPU RT-CPU I CPU Limit |LatencyWaming
1] |7 Default LI (none)

Untitled2
4 [Z] Untitled2 Project

Type Object RT-CPU | Base Time Cycle Time Cycle Ticks Priority b [External Types
TASK PlcTask Default () ~]1ms 10 ms 10 20 4 g gﬁ?’e”ces

s
TASK PlcAuxTask Default (0} ;I 1ms (none) 0 50 [GVLs

TwinCAT Projectl = X Solution Explorer

Task |Dn|ine | Parameter [Online]l G Ot ‘ e | &=
B — Search Sclution Explorer (Ctrl+i) P~
Name: PlcTask Port: 350 =
1 Solution TwinCAT Projectl’ (1 project)
Auto start Object Id: (02010020 4 gl TwinCAT Projectl
[Auto Priority Management Options 4 ﬂ SYSTEM
Priority: 20 EI [~ Disable ¥ License
Cydeticks:| 10 [| 10000 ms 7 Create symbols . g‘ $Eal|(-Tlme
asks
Start tick {modulo): 0 EI [include extemal symbals E] PlcTask
st it — B tous
o TcCOM Objects
Pre: ticks: _)
L H MOTION
[Waming by exceeding 4 LC
[] Message bax 4 ntitled2
R Flosting point exceptions 2] Untitled2 Project
Watchdog Cycles: = b [Extemal Types
b .3l References
Comment: 3 puts
1 GVLs

e mea

Communication via the network interface depends on this cycle. A corresponding call to the
CheckReceived() methods (see APl documentation [P_51]) must be made in each cycle.

TF6311 Version: 1.8.1 51

BECKHOFF

Programmer's reference

Incoming data: CheckReceived()

® Context of the incoming data

The customer must ensure that the method CheckReceived is called cyclically. Samples illustrate
the procedure in PLC and C++

The CheckReveived() method is called cyclically in order to ensure that the data can be provided in the
same context as the client project. The protocol-dependent Receive() methods of the customer project are
called within this method call, if data have been received.

@® Disconnection of Engineering connection on breakpoints

1 If breakpoints are used, we strongly advise to use different network interfaces, since a breakpoint
stops parts of the TwinCAT systems, which may be relevant for the communication with
Engineering.

71 UDPI/IP: ITcloUdpProtocol(Recv)

The ITcloUdpProtocol and ITcloUdpProtocolRecv interfaces enable UDP/IP communication from the real-
time environment.

A project that uses this interface contains a pointer to an ITcloUdpProtocol object and implements
ITcloUdpProtocolRecv itself. ITcloUdpProtocolRecv serves as callback interface for receiving data from the
TCP/UDP RT module within the application.

® Multiple calls of Receive()

1 During the implementation it should be noted that CheckReceived() will result in the callback to
Receive() occurring several times within a cycle, if multiple packets have arrived between the
cycles.
A buffer in the form a queue may therefore have to be provided.

w ITcloUdpProtocolRecv methods:

Name
ReceiveData [P 53]

Description
Is called by the TCP/UDP RT module as a callback to transfer data

w ITcloUdpProtocol methods:

Name Description
SendData [P 53] Sends data

Must be called cyclically. ReceiveData is used as callback in the context of
this method (server and client functionality).

Registering at the TCP/UDP RT module for receiving data.
Unregistering at the TCP/UDP RT module for receiving UDP data.

CheckReceived [» 54]

RegisterReceiver [» 54]
UnregisterReceiver [P 55]

The client and server implementation process is briefly described here. Only an overview is provided; the
samples illustrate the application.

Implementation of a UDP sender / receiver

Name Description

RegisterReceiver [» 54]

Opens a port for incoming data packets.

ReceiveData [P 53]

Is called when data packets arrive.

SendData [P 53]

Can be used to send data.

UnreqgisterReceiver [P 55]

For logout from (closing of) the port, e.g. during shutdown.

52

Version: 1.8.1

TF6311

BEGKHOFF Programmer's reference

To receive UDP data, registration is required by calling RegisterReceiver. This can be done in
SetObjStateSO or FB_init.

Data is provided by a callback of method ReceiveData from ITcloUdpProtocolRecv.

While TwinCAT switches from RUN mode to Config mode, all modules should unregister via
UnregisterReceiver. This can be done in SetObjStateOS() or FB_exit.

OnlineChange security

For OnlineChange security, RegisterReceiver should be called again.

711 Method ITcloUdpProtocolRecv:ReceiveData
Is called by the TCP/UDP RT module as a callback to transfer data.

Syntax

HRESULT TCOMAPI ReceiveData (ULONG ipAddr, USHORT udpDestPort, USHORT udpSrcPort, ULONG nData, PVOID
pbata, ETYPE VLAN HEADER* pVlan=0)

E- Return value

Type Description

HRESULT Indicates success and must be provided accordingly by the implemented module.

Parameter

Name Type Description

ipAddr ULONG The IP address of the sender.
IP addresses are displayed with the most significant
element in the last position. (Example: 192.168.2.1 -> 01
02 A8 C0)

udpDestPort USHORT Port on which the data was received.

udpSrcPort USHORT Port of the sender.

nData ULONG Number of bytes received.

pData PVOID Pointer to the received data.

pVian ETYPE_VLAN_ HEADER ETYPE_VLAN_HEADER structure - see below.

The VLAN header represents information about the VLAN.

typedef struct ETYPE VLAN HEADER
{

USHORT VLanType;

unsigned short VLanIdH 4
unsigned short reservedl : 1
unsigned short Priority 3
unsigned short VLanIdL 3 B

} ETYPE VLAN HEADER, *PETYPE VLAN HEADER;

7

’
’

7.1.2 Method ITcloUdpProtocol:SendData

Sends data.

Syntax

HRESULT TCOMAPI SendData (ULONG ipAddr, USHORT udpDestPort, USHORT udpSrcPort, ULONG nData, PVOID
pData, bool bCalcUdpCheckSum=0, ETYPE VLAN HEADER* pVlan=0)

TF6311 Version: 1.8.1 53

Programmer's reference BEGKHOFF

E- Return value

Type Description

HRESULT Indicates success, see Return values [> 68].

Parameter

Name Type Description

ipAddr ULONG The IP address of the receiver.
IP addresses are displayed with the most
significant element in the last position. (Example:
192.168.2.1 -> 01 02 A8 CO0)

udpDestPort USHORT The port of the receiver.

udpSrcPort USHORT The port of the sender.

nData ULONG Number of date to be sent in bytes.

pData PVOID Pointer to the data to be sent.

bCalcUdpCheckSum BOOL Indicates whether the checksum should be
calculated.

pVian ETYPE_VLAN_HEADER ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.

typedef struct ETYPE VLAN HEADER

{
USHORT VLanType;

unsigned short VLanIdH 4;
unsigned short reservedl : 1;
unsigned short Priority 3g
unsigned short VLanIdL : 8;

} ETYPE VLAN HEADER, *PETYPE VLAN HEADER;
71.3 Method ITcloUdpProtocol:CheckReceived
Must be called cyclically; ReceiveData is used as callback in the context of this method (send and receive).

Syntax
HRESULT TCOMAPI CheckReceived ()

E- Return value

Type Description
HRESULT Indicates success, see Return values [> 68].

71.4 Method ITcloUdpProtocol:RegisterReceiver
Registering at the TCP/UDP RT module for receiving data.

Syntax

HRESULT TCOMAPI RegisterReceiver (USHORT udpPort, ITcIoUdpProtocolRecv* ipRecv)

E- Return value

Type Description
HRESULT Indicates success, see Return values [» 68].

54 Version: 1.8.1 TF6311

BECKHOFF

Programmer's reference

Parameter

Name Type Description

udpPort USHORT Port on which the data is to be received.
ipRecv ITcloUdpProtocolRecv* Pointer to the receiver (Recv) interface.
71.5 Method ITcloUdpProtocol:UnregisterReceiver

Unregistering at the TCP/UDP RT module for receiving data.

Syntax

HRESULT TCOMAPI UnregisterReceiver (USHORT udpPort)

E- Return value

Type Description

HRESULT Indicates success, see Return values [P 68].

Parameter

Name Type Description

udpPort USHORT Port at which the data should no longer be received.
7.2 TCP/UDP RT TcCom Parameter

In addition to the interfaces, the TcCOM object "TCP/UDP RT" is the main component of the function. An
instantiation usually takes place under the device:

4 [Fvo

F|

L Device

4 &F Devicel (RT-Ethernet Adapter)
12 Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

Double-click to open the instance, so that the parameters documented below can be used:

Object Context Parameter {Int) Parameter {Online) Interfaces Interface Pointer

|Name |‘u‘a|ue
- TclolpSettings
pAddress 0.0.0.0
SubnetMask m 0.0.0.0
Gateway 0.0.0.0

TF6311

Version: 1.8.1

55

Programmer's reference

BECKHOFF

Name Default |Description
value

TclolpSettings.IpAddress 0.0.0.0 |Own (local) IP address used for communication.

TclolpSettings.SubnetMask 0.0.0.0 |Own subnet mask

TclolpSettings.Gateway 0.0.0.0 |Gateway used to reach communication partners outside
your own network.

TclolpSettings.DhcpEnable FALSE |Not yet implemented.

TclolpSettings.ManualSettings FALSE |Setto FALSE: The operating system uses the current IP
configuration of the referenced adapter.
Set to TRUE: Parameters of TclolpSettings™ are used.

IpMaxReceivers 4 Maximum number of permitted IP-based protocols.

IpMaxPendingOnArp 40 Maximum number of entries in the ARP Request Table.

IpMacCacheSize 64 Number of entries in MAC cache, i.e. IP address to MAC
address allocations. Caching is implemented as LRU.

IpMTU 1514 Not yet implemented. (Maximum transport unit size for IP
packets)

IpRecvFrameQueueSize 255 Number of entries in the queue for receiving Udp packets.

UdpMaxReceivers 4 Maximum number of UDP receivers

UdpMTU 1514 From TwinCAT 3.1 Build 4026:
Maximum Transport Unit size for UDP.
Fragmentation is ready.
In earlier versions (<= Build 4024) this parameter has no
function

UdpCheckCrc TRUE Set to TRUE means that UDP packets with incorrect
checksum are discarded.

TTL 0x80 TTL in the IP header of the frames to be sent.

MultiCastTTL 0x01 TTL of the MultiCast frames to be sent.

PassiveMode FALSE |If TRUE, no frames are fetched from the RT network
adapter frames by this instance. See Multitask access to a
network card [P 36]

MulticastlpList 1 Multicast addresses for receiving MultiCast packets.

TcpMTU 1514 Not yet implemented. (Maximum transport unit size for
TCP)

TcpCheckCrc TRUE Incoming TCP frames are checked for valid checksum and
discarded, if the checksum is incorrect.

TcpMaxSocketCount 32 Maximum number of sockets that are managed by the IP
stack.

TcpReceiveBufferSize 16192 Number of received bytes that can be cached with a TCP
connection.

TcpTransmitBufferSize 16192 Number of bytes to be sent that can be cached in the TCP
stack with a connection.

TcpMaxRetry 5 Number of retries of TCP packets until the connection is
terminated.

TcpTimeoutCon 5000 Timeout for TCP connection establishment and
disconnection.

TcpTimeoutWait 60000 Timespan for storing handles internally after an
unexpected termination of the connection.

TcpTimeoutldle 1000 Time to callback (ReveiveEvent), if no response.

TcpRoundTripTime 3000 Start value for the timeout of data packets. Is adjusted

dynamically depending on the connection quality
(depending on the packet round-trip time).

Times are given in milliseconds.

56

Version: 1.8.1

TF6311

BEGKHOFF Programmer's reference

7.3 TCP/UDP RT TcCom diagnostics

The TcCOM object TCP/UDP RT represents the coupling of customer project with the hardware.

4 Vo
4 "L Device
4 & Devicel (RT-Ethernet Adapter)
% Devicel (RT-Ethernet Adapter)_Objl (TCP/UDP RT)

In addition to parameters, it therefore also contains diagnostic information, which is described here. Once
Engineering can communicate with the target system and the program runs smoothly, various information is
provided via the received and sent packets:

File Edit Image Options View Help

@X| (B2EY Q- | QQaewn [l X ¥

TwinCAT TCPServer X BRSS! TCPServer.cpp
| Object | Cortest | Parameter (init) | Parameter (Oniine} | Interfaces | Interface Poirter |
| PTCID | Name Online
0:403011108 IpStackDiagnosis
Jip.nSendCnt 13
Jdp.nSendFailCnt 0
Jip.nRecvCnt 20
Jip.nRecvFailCnt 0
Name Value |Description
IpStackDiagnosis Diagnostic information of the IP stack
.ip.nSendCnt 18 Number of IP packets sent
.ip.nSendFailCnt 0 Number of IP packets not sent
.ip.nRecvCnt 20 Number of packets received
.ip.nRecvFailCnt 0 Number of packets not received
.arpRequest.nSendCnt 0 Arp-Requests: Number of packets sent
.arpRequest.nSendFailCnt 0 Arp-Requests: Number of packets not sent
.arpRequest.nRecvCnt 12 Arp-Requests: Number of packets received
.arpRequest.nRecvFailCnt 0 Arp-Requests: Number of packets not received
.arpReply.nSendCnt 12 Arp-Reply: Number of packets sent

.arpReply.nSendFailCnt 0 Arp-Reply: Number of packets not sent
.arpReply.nRecvCnt 0 Arp-Reply: Number of packets received
.arpReply.nRecvFailCnt 0 Arp-Reply: Number of packets not received
.pingRequest.nSendCnt 0 Ping-Request: Number of packets sent
.pingRequest.nSendFailCnt 0 Ping-Request: Number of packets not sent
.pingRequest.nRecvCnt 0 Ping-Request: Number of packets received
.pingRequest.nRecvFailCnt 0 Ping-Request: Number of packets not received
.pingReply.nSendCnt 0 Ping-Reply: Number of packets sent
.pingReply.nSendFailCnt 0 Ping-Reply: Number of packets not sent
.pingReply.nRecvCnt 0 Ping-Reply: Number of packets received
.pingReply.nRecvFailCnt 0 Ping-Reply: Number of packets not received
.nLinkStatusChangedCnt 1 Number of link changes

.nAllocFailCnt 0 Number of failed allocations
.nArpTimeoutFrames 0 Number of arp frames in the timeout
.nDroppedFrames 0 Number of discarded packages

TF6311 Version: 1.8.1 57

Programmer's reference

BECKHOFF

7.4

TCPI/IP: ITcloTcpProtocol(Recv)

The ITcloTcpProtocol and ITcloTcpProtocolRecyv interfaces enable TCP/IP communication from the real-time

environment.

A project that uses this interface contains a pointer to an ITcloTcpProtocol object and implements
ITcloTcpProtocolRecyv itself. ITcloTcpProtocolRecv serves as a callback interface for receiving data and
events from the TCP/IP module within the application. The interfaces are based on a socket API.
Before a socket can be used, it must be allocated with AllocSocket().

‘W ITcloTcpProtocolRecv methods:

Name

Description

ReceiveData [P 59]

Is called by the TCP/UDP RT module as a callback to transfer data.

ReceiveEvent [» 60]

Is called by the TCP/UDP RT module as a callback if an event has occurred.

‘W ITcloTcpProtocol methods:

Name

Description

AllocSocket [» 60]

Allocates a socket.

FreeSocket [» 61]

Enables a socket.

Connect [P 61]

Establishes a connection to a remote terminal.

IsConnected [» 611

Indicates whether a socket is connected (for inbound and outbound
connections).

Close [P 62] Closes a socket.
Listen [P 62] Opens a TCP port for incoming connections (see remarks).

Accept [» 62]

For server functionality: Accepts incoming connections (see remarks).

SendData [» 63]

Sends data (server and client functionality).

CheckReceived [» 63]

Must be called cyclical; ReceiveEvent and ReceiveData are used as callback
in the context of this method (server and client functionality).

GetRemotelpAddr [P 63]

Returns the remote IP address of a communication partner.

GetFreeSendDataSize [P 64]

Returns the number of free bytes in the TCP send buffer.

1 Call CheckReceived() continuously.

1

target.

Perhaps call AllocSocket() again in the event of an OnlineChange, in order to refresh the callback

The client and server implementation process is described here, independent of programming languages.
Only an overview is provided; the samples illustrate the application.

58

Version: 1.8.1 TF6311

BEGKHOFF Programmer's reference

Implementation of an TCP server:

Name Description
AllocSocket Opens a socket.
[»_60]

Listen [» 62] Opens a port on which connections are expected.

Accept [» 62] Is called in the ReceiveEvent() method in order to accept a connection.
ReceiveData Is called when data are received.

591
SendData [P 63] |Can be used to send data.

FreeSocket On the Listen socket and all connection sockets for stopping.
61l

Code diagram for accepting a connection:

HRESULT CIpStackDemo: :ReceiveEvent (ULONG socketId, TCPIP EVENT tcpEvent)...
case TCPIP_EVENT CONN_INCOMING:

m_spTcpProt->Accept (socketId);

break;

Implementation of a TCP client:

Name Description
AllocSocket Opens a socket.
[» 601
Connect [» 61] |Starts connection establishment.

IsConnected Checks whether the connection was established successfully.
[611
ReceiveData Is called when data are received.
[»59]
SendData [P 63] |Can be used to send data.

FreeSocket On the Listen socket and all connection sockets for stopping.

P61l

® Disconnection by the operating system in Promiscuous mode

1 If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

7.41 Method ITcloTcpProtocolRecv:ReceiveData
Is called by the TCP/UDP RT module as a callback to transfer data.

Syntax
HRESULT TCOMAPI ReceiveData (ULONG socketId, ULONG nData, PVOID pData)

E- Return value

Name Type Description
ReceiveData HRESULT Indicates success and must be provided accordingly by the implemented
module.

TF6311 Version: 1.8.1 59

Programmer's reference

BECKHOFF

Parameter

Name Type Description

socketld ULONG The socket on which data was received.

nData ULONG Number of data received.

pData PVOID Pointer to the received data.

7.4.2 Method ITcloTcpProtocolRecv:ReceiveEvent

Is called by the TCP/UDP RT module as a callback if an event has occurred.

Syntax

HRESULT TCOMAPI ReceiveEvent (ULONG socketId, TCPIP EVENT tcpEvent)

E- Return value

Name Type Description

ReceiveEvent HRESULT Indicates success and must be provided accordingly by the implemented
module.

Parameter

Name Type Description

socketld ULONG The socket on which data was received.

tcpEvent TCP_EVENT An element of the Enum.

The enumeration TCP_EVENT refers to different events, which can occur with a TCP connection:

enum TCPIP EVENT : ULONG {
TCPIP_EVENT NONE = O,
TCPIP_EVENT ERROR 1,
TCPIP_EVENT RESET 2,

TCPIP EVENT TIMEOUT = 3,
TCPIP_EVENT CONN ESTABLISHED = 4,
TCPIP EVENT CONN INCOMING = 5,
TCPIP EVENT CONN CLOSED = 6,
TCPIP_EVENT CONN IDLE = 7,

TCPIP EVENT DATA RECEIVED = 8,
TCPIP EVENT DATA SENT = 9,

TCPIP EVENT KEEP ALIVE = 10,
TCPIP_EVENT LINKCONNECT = 11,
TCPIP EVENT LINKDISCONNECT = 12

};

An implementation of the method should provide a switch case over all elements, so that the system can
respond according to the event.

The application of events for a TCP server is described in the interface overview.

7.4.3 Method ITcloTcpProtocol:AllocSocket

Allocates a socket.

Syntax

HRESULT TCOMAPI AllocSocket (ITcIoTcpProtocolRecv* ipRecv, ULONG& socketId)

E- Return value

Description
Indicates success, see Return values [» 68].

Type
HRESULT

60 Version: 1.8.1 TF6311

BECKHOFF

Programmer's reference

Parameter

Name Type Description

ipRecv ITcloTcpProtocolRecv Pointer to the receiver (Recv) interface.
socketld |ULONG& The generated socket.

7.4.4 Method ITcloTcpProtocol:FreeSocket

Enables a socket.

Syntax

HRESULT TCOMAPI AllocSocket (ULONG socketId)

E- Return value

Type Description

HRESULT Indicates success, see Return values [P 68].
Parameter

Name Type Description

socketld ULONG The socket to be enabled.

7.4.5 Method ITcloTcpProtocol:Connect

Establishes a connection to a remote terminal.

Syntax

HRESULT TCOMAPI Connect (ULONG socketId, ULONG ipRemoteAddress,

E- Return value

USHORT tcpPort)

Type Description

HRESULT Indicates success, see Return values [> 68].

Parameter

Name Type Description

socketld ULONG The socket to be used.

ipRemoteAddress ULONG IP address of the remote terminal to be contacted.
IP addresses are displayed with the most significant element in the
last position. (Example: 192.168.2.1 -> 01 02 A8 C0)

tcpPort USHORT Port of the remote terminal to be contacted.

7.4.6 Method ITcloTcpProtocol:lsConnected

Indicates whether a socket is connected (for inbound and outbound connections).

Syntax

HRESULT TCOMAPI IsConnected(ULONG socketId)

TF6311

Version: 1.8.1

Programmer's reference

BECKHOFF

E- Return value

Type Description

HRESULT Indicates success, see Return values [> 68].
Parameter

Name Type Description

socketld ULONG The socket to be used.

7.4.7 Method ITcloTcpProtocol:Close

Closes a socket.

Syntax

HRESULT TCOMAPI Close (ULONG socketId)

E- Return value

Type Description

HRESULT Indicates success, see Return values [» 68].
Parameter

Name Type Description

socketld ULONG The socket to be closed.
7.4.8 Method ITcloTcpProtocol:Listen

Opens a TCP port for incoming connections. The application is described in the interface overview.

Syntax

HRESULT TCOMAPI Listen (ULONG socketId, USHORT tcpPort)

E- Return value

Type Description

HRESULT Indicates success, see Return values [>_68].

Parameter

Name Type Description

socketld ULONG The socket to be used.

tcpPort USHORT The port which is scanned for incoming connections.
7.4.9 Method ITcloTcpProtocol:Accept

Accepts income connections. The application is described in the interface overview.

Syntax

HRESULT TCOMAPI Accept (ULONG socketId)

62

Version: 1.8.1

TF6311

BEGKHOFF Programmer's reference

E- Return value

Type Description

HRESULT Indicates success, see Return values [> 68].

Parameter

Name Type Description

socketld ULONG The socket to be used.

7.4.10 Method ITcloTcpProtocol:SendData

Sends data (server and client functionality).

Syntax
HRESULT TCOMAPI SendData (ULONG socketId, ULONG nData, PVOID pData, ULONG& nSendData)

E- Return value

Type Description

HRESULT Indicates success, see Return values [» 68].

Parameter

Name Type Description

socketld ULONG The socket to be used.

nData ULONG Length of the data to be sent.

pData PVOID Pointer to the data to be sent.

nSendData ULONG& Returns the number of sent bytes. If this is smaller than nData, the data
should be re-sent.

7.4.11 Method ITcloTcpProtocol:CheckReceived

Must be called cyclical; ReceiveEvent and ReceiveData are used as callback in the context of this method
(server and client functionality).

Syntax
HRESULT TCOMAPI CheckReceived ()

E- Return value

Type Description
HRESULT Indicates success, see Return values [>_68].
Parameter

7.4.12 Method ITcloTcpProtocol:GetRemotelpAddr

Returns the remote IP address of a communication partner.

Syntax
HRESULT TCOMAPI GetRemoteIpAddr (ULONG socketId, ULONG& remoteIpAddr)

TF6311 Version: 1.8.1 63

Programmer's reference BEGKHOFF

E- Return value

Type Description

HRESULT Indicates success, see Return values [> 68].
Parameter

Name Type Description

socketld ULONG The socket to be used.

7.413 Method ITcloTcpProtocol:GetFreeSendDataSize

Returns the number of free bytes in the TCP send buffer.

Syntax
HRESULT TCOMAPI GetRemoteIpAddr (ULONG socketId, ULONG& nData)

E- Return value

Type Description

HRESULT Indicates success, see Return values [» 68].
Parameter

Name Type Description

socketld ULONG The socket to be used.

nData ULONG& Returns the free bytes in the buffer.

7.5 ARP/Ping: ITcloArpPingProtocol(Recv)

The interfaces ITcloArpPingProtocol and ITcloArpPingProtocolRecv enable sending of ARP and Ping
messages from the real-time environment.

A project that uses this interface contains a pointer to an ITcloArpPingProtocol object and implements
ITcloArpPingProtocolRecyv itself. ITcloArpPingProtocolRecv serves as callback interface for receiving data
from the TCP/UDP RT module within the application.

w ITcloArpPingProtocolRecv methods:

Name Description
ArpReply [» 65] Callback function that is invoked when an ArpReply message is received.

PingReply [» 65] Callback function that is invoked when an PingReply message is received.

If these methods return S_OK, the packet is regarded as processed and is not forwarded to the operating
system. If necessary, S _FALSE should be returned.

64 Version: 1.8.1 TF6311

BEGKHOFF Programmer's reference

‘“w ITcloArpPingProtocol methods:

Name Description

ArpRequest [P 66] Sends an ArpRequest

PingRequest [P 66] Sends a PingRequest

RegisterReceiver [» 67] Registering at the TCP/UDP RT module for receiving data.

UnregisterReceiver [P 67] Unregistering at the TCP/UDP RT module for receiving data.

CheckReceived [P 68] Must be called cyclically; ArpReply and PingReply are used as callback in
the context of this method

To receive ARP or Ping data, registration is required by calling RegisterReceiver. This can be done in
SetObjStateSO().

Data is provided by a callback of method ArpReceive or PingReceive from ITcloArpPingProtocolRecv.

During the shutdown, all modules should unregister via UnregisterReceiver. This can be done in
SetObjStateOS().

7.51 Method ITcloArpPingProtocolRecv:PingReply

Callback function that is invoked when an PingReply message is received.

Syntax

HRESULT TCOMAPI PingReply (ULONG ipAddr, ULONG nData, PVOID pData, ETYPE VLAN HEADER* pVlan=0)

E- Return value

Type Description

HRESULT Indicates success and must be provided accordingly by the implemented module. If this is
not S_OK, the response continues to be transferred to the operating system.

Parameter

Name Type Description

ipAddr ULONG The IP address of the search.

nData ULONG Number of bytes received.

pData PVOID Pointer to the received data.

pVian ETYPE_VLAN_HEADER* ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.

typedef struct ETYPE VLAN HEADER

{
USHORT VLanType;

unsigned short VLanIdH 4;
unsigned short reservedl : 1;
unsigned short Priority 3;
unsigned short VLanIdL 3 ©p

} ETYPE VLAN HEADER, *PETYPE VLAN HEADER;

7.5.2 Method ITcloArpPingProtocolRecv:ArpReply

Callback function that is invoked when an ArpReply message is received.

Syntax
HRESULT TCOMAPI ArpReply (ULONG ipAddr, ETHERNET ADDRESS macAddr, ETYPE VLAN HEADER* pVlan=0)

TF6311 Version: 1.8.1 65

Programmer's reference BEGKHOFF

E- Return value

Type Description

HRESULT Indicates success and must be provided accordingly by the implemented module. If this is
not S_OK, the response continues to be transferred to the operating system.

Parameter

Name Type Description

ipAddr ULONG The IP address of the search.

macAddr ETHERNET_ADDRESS Determined MAC address.

pVlan ETYPE_VLAN_ HEADER* ETYPE_VLAN_ HEADER structure, see below.

The VLAN header represents information about the VLAN.

typedef struct ETYPE VLAN HEADER
{

USHORT VLanType;

unsigned short VLanIdH 4;
unsigned short reservedl : 1;
unsigned short Priority 3p
unsigned short VLanIdL g B

} ETYPE VLAN HEADER, *PETYPE VLAN HEADER;

7.5.3 Method ITcloArpPingProtocol:PingRequest

Sends a ping request.

Syntax
HRESULT TCOMAPI PingRequest (ULONG ipAddr, ULONG nData=0, PVOID pData=0, ETYPE VLAN HEADER* pVlan=0)

E- Return value

Type Description

HRESULT Indicates success, see Return values [» 68].

Parameter

Name Type Description

ipAddr ULONG The IP address of the target.

nData ULONG Number of bytes received.

pData PVOID Pointer to the received data.

pVlan ETYPE_VLAN_ HEADER* ETYPE_VLAN_ HEADER structure, see below.

The VLAN header represents information about the VLAN.

typedef struct ETYPE VLAN HEADER

{

USHORT VLanType;

unsigned short VLanIdH 4;

unsigned short reservedl : 1;

unsigned short Priority 3p

unsigned short VLanIdL g B

} ETYPE VLAN_ HEADER, *PETYPE VLAN HEADER;

7.5.4 Method ITcloArpPingProtocol:ArpRequest
Sends an ARP request.

Syntax

HRESULT TCOMAPI ArpRequest (ULONG ipAddr, ETHERNET ADDRESS* macAddr=0, ETYPE VLAN HEADER* pVlan=0)

66 Version: 1.8.1 TF6311

BEGKHOFF Programmer's reference

E- Return value

Type Description

HRESULT Indicates success, see Return values [> 68].

Parameter

Name Type Description

ipAddr ULONG The IP address of the target.

macAddr ETHERNET ADDRESS* Restriction of the MAC address.

pVian ETYPE_VLAN_HEADER* ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.

typedef struct ETYPE VLAN HEADER

{
USHORT VLanType;

unsigned short VLanIdH 4;
unsigned short reservedl : 1;
unsigned short Priority 3¢
unsigned short VLanIdL : 85

} ETYPE VLAN HEADER, *PETYPE VLAN HEADER;

7.5.5 Method ITcloArpPingProtocol:RegisterReceiver
Registering at the TCP/UDP RT module for receiving responses (ARP / Ping).

Syntax
HRESULT TCOMAPI RegisterReceiver (ITcIoArpPingRecv* ipRecv)

E- Return value

Type Description

HRESULT Indicates success, see Return values [68].

Parameter

Name Type Description

ipRecv [TcloArpPingRecv* Pointer to the receiver (Recv) interface.
7.5.6 Method ITcloArpPingProtocol:UnregisterReceiver

Unregistering at the TCP/UDP RT module for receiving responses (ARP / Ping).

Syntax

HRESULT TCOMAPI UnregisterReceiver (ITcIoArpPingRecv* ipRecv)

E- Return value

Type Description

HRESULT Indicates success, see Return values [» 68].

Parameter

Name Type Description

ipRecv ITcloArpPingRecv Reference to the receiver to be unregistered

TF6311 Version: 1.8.1

67

Programmer's reference BEGKHOFF

7.5.7 Method ITcloArpPingProtocol:CheckReceived

Must be called cyclically; ArpReply and PingReply are used as callback in the context of this method.

Syntax

HRESULT TCOMAPI CheckReceived ()

E- Return value

Type Description
HRESULT Indicates success, see Return values [> 68].

7.6 Return values

The interface functions have HRESULT as return values. The returned values are derived from the ADS
Return Codes [P _70]. Their meaning for TF6311:

Value Value Description
(Enum) (Numeric)
ADS_E_INVALI |0x9811070B Socket not allocated/known, transferred pointer NULL
DPARM
ADS E NOMO |0x98110716 No free sockets available.
REHDLS Default: 32
see TCP/UDP RT TcCom Parameter [P 55]
ADS E INCOM |0x9811070E Socket in wrong state.
PATIBLE E.g. Connect() attempt, if a socket was previous used with Listen();

Close() without previous connection; Send() without connection; Socket
Listen(), if a Listen() call was already issued.

ADS_E_INVALI |0x98110712 TCP/UDP RT object is not in OP mode
DSTATE
ADS_E_INVALI |0x98110706 Problem with parameter.
DDATA E.g. pData==NULL for SendData
ADS E EXIST |0x9811070F Port already used otherwise
S
ADS_E_PENDI |[0x9811071E Not all data were sent (SendData)
NG
S OK 0x0 Call successful.

IsConnected(): Connection exists
S _FAIL 0x1 Call not successful, general error

IsConnected(): Connection does not exist

The values from the range 0x9811 are defined in the enumeration "E_ HRESULTAdsEr™" (PLC) and
corresponding ADS_E_* (C++) "defines".

68 Version: 1.8.1 TF6311

BEGKHOFF Fault analysis

8 Fault analysis

At this point, it is usual practice to list problems or situations in connection with handling the product,
together with an error description.

8.1 Start-up: Ip Stack ADS 1823 / 0x71f

If ADS error 1823 (0x71f) occurs when an IP stack TcCOM object is started, the configuration of the network
card is probably incorrect.

Target systern reports a fatal error @

IQI 1/26/2015 8:33:04 AM 375 ms | TwinCAT System’ (10000): Sending ams
S command == Initl N0 Set State TComObj SAFEQP: Set Object Device
~ 1(RT-Ethernet Adapter)_Objl (Ip Stack) to SAFEQOP == Ads\Warning:

1823 (0x71f, ADS ERROR: device aborted the action) =< failed!

Check the settings under "Adapter" for the network card in the Solution:

UdpDemo -+ > Ul[ay I8! UdpDemo.cpp ~ | Solution Explorer

| General | Adapter |Ports [Switch [Statistics| @l o~ @ &=
Search Solution Explorer (Ctrl+a)
Description:
] Solution 'UdpDermo’ (1 project)
Device Name: 4 a UdpDemo
WAC Addess: 00000000000 >l SwTeM
MOTION
IP Address: 0.0.0.0 (0.0.0.0) Compatible Devices... pLC
Freerun Cycle fms): 4 = (3 SAFETY
[@ C++
| . « @o
[Promiscuous Mode (use with Wireshark only) 4 #‘t_"g Devices
[Virtual Device Names 4 & Devicel (RT-Ethernet Adapter)

L% Devicel (RT-Ethernet Adapter)_Objl (Ip Stack)
&%) Mappings

Device Found At @

Local Area Connection [TwinCAT -Intel PCI Ethernet Adapter [Gigabit]]
Local Area Connection 2 [TwinCAT -Intel PCI Ethernet Adapter [Gigabit]
@ Unused
(@1
Help

The configuration of the network card for the TCP/UDP RT module is documented in more detail here [P_14].

TF6311 Version: 1.8.1 69

BECKHOFF

Appendix

9 Appendix

9.1 ADS Return Codes

Grouping of error codes:
Global error codes: ADS Return Codes [P 70]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [P_70]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [» 71]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [P 73]... (0x9811_1000 ...)

Global error codes

Hex Dec HRESULT Name Description

0x0 0 0x98110000 |ERR_NOERROR No error.

0x1 1 0x98110001 ERR_INTERNAL Internal error.

0x2 2 0x98110002 |ERR_NORTIME No real time.

0x3 3 0x98110003 |ERR_ALLOCLOCKEDMEM Allocation locked — memory error.

0x4 4 0x98110004 |ERR_INSERTMAILBOX Mailbox full — the ADS message could not be sent.
Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 |ERR_WRONGRECEIVEHMSG Wrong HMSG.

0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found — ADS server is not started, not
reachable or not installed.

0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found — AMS route was not found.

0x8 8 0x98110008 ERR_UNKNOWNCMDID Unknown command ID.

0x9 9 0x98110009 |ERR_BADTASKID Invalid task ID.

0xA 10 0x9811000A |ERR_NOIO No 10.

0xB 11 0x9811000B |ERR_UNKNOWNAMSCMD Unknown AMS command.

0xC 12 0x9811000C |ERR_WIN32ERROR Win32 error.

0xD 13 0x9811000D |ERR_PORTNOTCONNECTED Port not connected.

OxE 14 0x9811000E |ERR_INVALIDAMSLENGTH Invalid AMS length.

OxF 15 0x9811000F |ERR_INVALIDAMSNETID Invalid AMS Net ID.

0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low —TwinCAT 2 license error.

0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.

0x12 18 0x98110012 |ERR_PORTDISABLED Port disabled — TwinCAT system service not started.

0x13 19 0x98110013 |ERR_PORTALREADYCONNECTED Port already connected.

0x14 20 0x98110014 |ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.

0x15 |21 0x98110015 |ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.

0x16 |22 0x98110016 |ERR_AMSSYNC_AMSERROR AMS Sync error.

0x17 |23 0x98110017 |ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.

0x18 |24 0x98110018 |ERR_INVALIDAMSPORT Invalid AMS port.

0x19 25 0x98110019 |ERR_NOMEMORY No memory.

0x1A |26 0x9811001A |ERR_TCPSEND TCP send error.

0x1B |27 0x9811001B |ERR_HOSTUNREACHABLE Host unreachable.

0x1C |28 0x9811001C |ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.

0x1D |29 0x9811001D |ERR_TLSSEND TLS send error — secure ADS connection failed.

Ox1E |30 0x9811001E |ERR_ACCESSDENIED Access denied — secure ADS access denied.

Router error codes

70

Version: 1.8.1

TF6311

BEGKHOFF Appendix
Hex Dec HRESULT Name Description

0x500 (1280 |0x98110500 |ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 [1281 |0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 [1282 |0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 [1283 |0x98110503 |ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 [1284 |0x98110504 |ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.

0x505 [1285 |0x98110505 |ROUTERERR_NOTINITIALIZED The router is not initialized.

0x506 [1286 |0x98110506 |ROUTERERR_PORTALREADYINUSE The port number is already assigned.

0x507 [1287 |0x98110507 |ROUTERERR_NOTREGISTERED The port is not registered.

0x508 (1288 |0x98110508 |ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.

0x509 [1289 |0x98110509 |ROUTERERR_INVALIDPORT The port is invalid.

0x50A [1290 |0x9811050A |ROUTERERR_NOTACTIVATED The router is not active.

0x50B [1291 |0x9811050B |ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for
fragmented messages.

0x50C [1292 |0x9811050C |ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.

0x50D (1293 |0x9811050D |ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

TF6311

Version: 1.8.1

71

Appendix BEGKHOFF

Hex Dec HRESULT Name Description
0x700 |1792 |0x98110700 |ADSERR_DEVICE_ERROR General device error.
0x701 |[1793 |0x98110701 |ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 |0x98110702 |ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 |0x98110703 |ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 |1796 |0x98110704 |ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 |1797 |0x98110705 |ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 |1798 |0x98110706 |ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 |1799 |0x98110707 |ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 |1800 |0x98110708 |ADSERR_DEVICE_BUSY Device is busy.
0x709 [1801 |0x98110709 |ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A |1802 |0x9811070A |ADSERR_DEVICE_NOMEMORY Insufficient memory.

0x70B |1803 |0x9811070B |ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 |0x9811070C |ADSERR_DEVICE_NOTFOUND Not found (files, ...).

0x70D |1805 |0x9811070D |ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E |1806 |0x9811070E |ADSERR_DEVICE_INCOMPATIBLE Objects do not match.

0x70F [1807 |0x9811070F |ADSERR_DEVICE_EXISTS Object already exists.

0x710 |1808 |0x98110710 |ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.

0x711 1809 |0x98110711 |ADSERR_DEVICE_SYMBOLVERSIONINVALID |Invalid symbol version. This can occur due to an
online change. Create a new handle.

0x712 |1810 |0x98110712 |ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 |0x98110713 |ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 |1812 |0x98110714 |ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 |1813 |0x98110715 |ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 |1814 |0x98110716 |ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 |0x98110717 |ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 |0x98110718 |ADSERR_DEVICE_NOTINIT Device not initialized.

0x719 |1817 |0x98110719 |ADSERR_DEVICE_TIMEOUT Device has a timeout.

0x71A |1818 |0x9811071A |ADSERR_DEVICE_NOINTERFACE Interface query failed.

0x71B |1819 |0x9811071B |ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C (1820 |0x9811071C |ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.

0x71D 1821 |0x9811071D |ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.

0x71E |1822 |0x9811071E |ADSERR_DEVICE_PENDING Request pending.

0x71F (1823 |0x9811071F |ADSERR_DEVICE_ABORTED Request is aborted.

0x720 (1824 |0x98110720 |ADSERR_DEVICE_WARNING Signal warning.

0x721 (1825 |0x98110721 |ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.

0x722 |1826 |0x98110722 |ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.

0x723 1827 |0x98110723 |ADSERR_DEVICE_ACCESSDENIED Access denied.

0x724 (1828 |0x98110724 |ADSERR_DEVICE_LICENSENOTFOUND Missing license.

0x725 (1829 |0x98110725 |ADSERR_DEVICE_LICENSEEXPIRED License expired.

0x726 (1830 |0x98110726 |ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.

0x727 |1831 |0x98110727 |ADSERR_DEVICE_LICENSEINVALID Invalid license.

0x728 1832 |0x98110728 |ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.

0x729 |1833 |0x98110729 |ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A |1834 |0x9811072A |ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B (1835 |0x9811072B |ADSERR_DEVICE_LICENSETIMETOLONG License period too long.

0x72C |1836 |0x9811072C |ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D (1837 |0x9811072D |ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.

0x72E |1838 |0x9811072E |ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.

Ox72F |1839 |0x9811072F |ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.

0x730 |1840 |0x98110730 |ADSERR_DEVICE_LICENSEOEMNOTFOUND |Public key not known from OEM.
0x731 |1841 |0x98110731 |ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 (1842 |0x98110732 |ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.

0x733 (1843 |0x98110733 |ADSERR_DEVICE_INVALIDFNCID Invalid function ID.

0x734 (1844 |0x98110734 |ADSERR_DEVICE_OUTOFRANGE Outside the valid range.

0x735 |1845 |0x98110735 |ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

0x736 |1846 |0x98110736 |ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

72 Version: 1.8.1 TF6311

BECKHOFF Appendix
Hex Dec HRESULT Name Description

0x737 |1847 |0x98110737 |ADSERR_DEVICE_FORWARD_PL Context — forward to passive level.

0x738 |1848 |0x98110738 |ADSERR_DEVICE_FORWARD_ DL Context — forward to dispatch level.

0x739 1849 |0x98110739 |ADSERR_DEVICE_FORWARD_RT Context — forward to real time.

0x740 (1856 |0x98110740 |ADSERR_CLIENT_ERROR Client error.

0x741 |1857 |0x98110741 |ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.

0x742 |1858 |0x98110742 |ADSERR_CLIENT_LISTEMPTY Polling list is empty.

0x743 |1859 |0x98110743 |ADSERR_CLIENT_VARUSED Var connection already in use.

0x744 1860 |0x98110744 |ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.

0x745 |1861 |0x98110745 |ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred — the remote terminal is not
responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 (1862 |0x98110746 |ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.

0x747 |1863 |0x98110747 |ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.

0x748 |1864 |0x98110748 |ADSERR_CLIENT_PORTNOTOPEN Port not open.

0x749 |1865 |0x98110749 |ADSERR_CLIENT_NOAMSADDR No AMS address.

0x750 |1872 |0x98110750 |ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.

0x751 |1873 |0x98110751 |ADSERR_CLIENT_ADDHASH Hash table overflow.

0x752 (1874 |0x98110752 |ADSERR_CLIENT_REMOVEHASH Key not found in the table.

0x753 |1875 |0x98110753 |ADSERR_CLIENT_NOMORESYM No symbols in the cache.

0x754 |1876 |0x98110754 |ADSERR_CLIENT_SYNCRESINVALID Invalid response received.

0x755 |1877 |0x98110755 |ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

0x756 |1878 |0x98110756 |ADSERR_CLIENT_REQUESTCANCELLED The request was cancelled.

RTime error codes

Hex Dec HRESULT Name Description

0x1000 4096 |0x98111000 |RTERR_INTERNAL Internal error in the real-time system.

0x1001 |4097 |0x98111001 |RTERR_BADTIMERPERIODS Timer value is not valid.

0x1002 4098 |0x98111002 |RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).

0x1003 4099 |0x98111003 |RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).

0x1004 [4100 |0x98111004 |RTERR_PRIOEXISTS The request task priority is already assigned.

0x1005 |4101 |0x98111005 |RTERR_NOMORETCB No free TCB (Task Control Block) available. The
maximum number of TCBs is 64.

0x1006 (4102 |0x98111006 |RTERR_NOMORESEMAS No free semaphores available. The maximum number of
semaphores is 64.

0x1007 4103 |0x98111007 |RTERR_NOMOREQUEUES No free space available in the queue. The maximum
number of positions in the queue is 64.

0x100D [4109 |0x9811100D |RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.

0x100E 4110 |0x9811100E |RTERR_EXTIRQNOTDEF No external sync interrupt applied.

0x100F 4111 |0x9811100F |RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has
failed.

0x1010 4112 |0x98111010 |RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context

0x1017 |4119 |0x98111017 |RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.

0x1018 4120 |0x98111018 |RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.

0x1019 4121 |0x98111019 |RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.

0x101A |4122 |0x9811101A |RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

HRESULT Name Description

0x0000_0000 S OK No error.

0x0000_0001 S _FALSE No error.
Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.
Example: successful processing, but a timeout occurred.

TCP Winsock error codes

TF6311

Version: 1.8.1

73

Appendix BEGKHOFF
Hex Dec Name Description

0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the
connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.

More Winsock error codes: Win32 error codes
74

Version: 1.8.1 TF6311

More Information:
www.beckhoff.com/tf6311

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.com?subject=TF6311
https://www.beckhoff.com
https://www.beckhoff.com/tf6311

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	2.1 Comparison TF6310 TF6311
	2.2 Restrictions

	3 Installation / Licensing
	4 Quick Starts
	4.1 Quick Start (PLC / UDP)
	4.2 Quick Start (C++ / UDP)
	4.3 Quick Start (C++ / TCP Client)

	5 Configuration
	5.1 Multiple network cards
	5.2 Multitask access to a network card

	6 Examples
	6.1 S01: Simple TCP Client (PLC / C++)
	6.1.1 S01: Simple TCP Client (C++)
	6.1.2 S01: Simple TCP Client (PLC)

	6.2 S02: UDP Client Server (PLC/C++)
	6.2.1 S02: UDP Demo (PLC)
	6.2.2 S02: UDP Demo (C++)
	6.2.3 Test client

	6.3 S03: ARP PING Demo (C++)
	6.4 S04: TCP Echo Server (PLC / C++)
	6.4.1 S04: TCP Server Demo (PLC)
	6.4.2 S04: TCP Server Demo (C++)

	7 Programmer's reference
	7.1 UDP/IP: ITcIoUdpProtocol(Recv)
	7.1.1 Method ITcIoUdpProtocolRecv:ReceiveData
	7.1.2 Method ITcIoUdpProtocol:SendData
	7.1.3 Method ITcIoUdpProtocol:CheckReceived
	7.1.4 Method ITcIoUdpProtocol:RegisterReceiver
	7.1.5 Method ITcIoUdpProtocol:UnregisterReceiver

	7.2 TCP/UDP RT TcCom Parameter
	7.3 TCP/UDP RT TcCom diagnostics
	7.4 TCP/IP: ITcIoTcpProtocol(Recv)
	7.4.1 Method ITcIoTcpProtocolRecv:ReceiveData
	7.4.2 Method ITcIoTcpProtocolRecv:ReceiveEvent
	7.4.3 Method ITcIoTcpProtocol:AllocSocket
	7.4.4 Method ITcIoTcpProtocol:FreeSocket
	7.4.5 Method ITcIoTcpProtocol:Connect
	7.4.6 Method ITcIoTcpProtocol:IsConnected
	7.4.7 Method ITcIoTcpProtocol:Close
	7.4.8 Method ITcIoTcpProtocol:Listen
	7.4.9 Method ITcIoTcpProtocol:Accept
	7.4.10 Method ITcIoTcpProtocol:SendData
	7.4.11 Method ITcIoTcpProtocol:CheckReceived
	7.4.12 Method ITcIoTcpProtocol:GetRemoteIpAddr
	7.4.13 Method ITcIoTcpProtocol:GetFreeSendDataSize

	7.5 ARP/Ping: ITcIoArpPingProtocol(Recv)
	7.5.1 Method ITcIoArpPingProtocolRecv:PingReply
	7.5.2 Method ITcIoArpPingProtocolRecv:ArpReply
	7.5.3 Method ITcIoArpPingProtocol:PingRequest
	7.5.4 Method ITcIoArpPingProtocol:ArpRequest
	7.5.5 Method ITcIoArpPingProtocol:RegisterReceiver
	7.5.6 Method ITcIoArpPingProtocol:UnregisterReceiver
	7.5.7 Method ITcIoArpPingProtocol:CheckReceived

	7.6 Return values

	8 Fault analysis
	8.1 Start-up: Ip Stack ADS 1823 / 0x71f

	9 Appendix
	9.1 ADS Return Codes

		documentation@beckhoff.com
	2024-06-18T16:19:17+0200
	Beckhoff Automation, Verl
	Documentation Publishing

