
Manual | EN

TF6311
TwinCAT 3 | TCP/UDP Realtime

2024-06-18 | Version: 1.8.1

Table of contents

TF6311 3Version: 1.8.1

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7

2 Overview .. 8
2.1 Comparison TF6310 TF6311 .. 8
2.2 Restrictions ... 9

3 Installation / Licensing ... 10

4 Quick Starts ... 11
4.1 Quick Start (PLC / UDP) ... 11
4.2 Quick Start (C++ / UDP).. 16
4.3 Quick Start (C++ / TCP Client) .. 22

5 Configuration... 33
5.1 Multiple network cards .. 35
5.2 Multitask access to a network card ... 36

6 Examples ... 38
6.1 S01: Simple TCP Client (PLC / C++) .. 38

6.1.1 S01: Simple TCP Client (C++) ... 38
6.1.2 S01: Simple TCP Client (PLC) ... 39

6.2 S02: UDP Client Server (PLC/C++) .. 40
6.2.1 S02: UDP Demo (PLC) .. 40
6.2.2 S02: UDP Demo (C++) .. 43
6.2.3 Test client... 44

6.3 S03: ARP PING Demo (C++).. 45
6.4 S04: TCP Echo Server (PLC / C++).. 46

6.4.1 S04: TCP Server Demo (PLC) ... 47
6.4.2 S04: TCP Server Demo (C++) ... 49

7 Programmer's reference... 51
7.1 UDP/IP: ITcIoUdpProtocol(Recv) .. 52

7.1.1 Method ITcIoUdpProtocolRecv:ReceiveData... 53
7.1.2 Method ITcIoUdpProtocol:SendData ... 53
7.1.3 Method ITcIoUdpProtocol:CheckReceived .. 54
7.1.4 Method ITcIoUdpProtocol:RegisterReceiver.. 54
7.1.5 Method ITcIoUdpProtocol:UnregisterReceiver... 55

7.2 TCP/UDP RT TcCom Parameter .. 55
7.3 TCP/UDP RT TcCom diagnostics ... 57
7.4 TCP/IP: ITcIoTcpProtocol(Recv) ... 58

7.4.1 Method ITcIoTcpProtocolRecv:ReceiveData ... 59
7.4.2 Method ITcIoTcpProtocolRecv:ReceiveEvent.. 60
7.4.3 Method ITcIoTcpProtocol:AllocSocket ... 60
7.4.4 Method ITcIoTcpProtocol:FreeSocket.. 61
7.4.5 Method ITcIoTcpProtocol:Connect... 61
7.4.6 Method ITcIoTcpProtocol:IsConnected.. 61

Table of contents

TF63114 Version: 1.8.1

7.4.7 Method ITcIoTcpProtocol:Close... 62
7.4.8 Method ITcIoTcpProtocol:Listen .. 62
7.4.9 Method ITcIoTcpProtocol:Accept ... 62
7.4.10 Method ITcIoTcpProtocol:SendData .. 63
7.4.11 Method ITcIoTcpProtocol:CheckReceived... 63
7.4.12 Method ITcIoTcpProtocol:GetRemoteIpAddr ... 63
7.4.13 Method ITcIoTcpProtocol:GetFreeSendDataSize.. 64

7.5 ARP/Ping: ITcIoArpPingProtocol(Recv) .. 64
7.5.1 Method ITcIoArpPingProtocolRecv:PingReply... 65
7.5.2 Method ITcIoArpPingProtocolRecv:ArpReply .. 65
7.5.3 Method ITcIoArpPingProtocol:PingRequest... 66
7.5.4 Method ITcIoArpPingProtocol:ArpRequest .. 66
7.5.5 Method ITcIoArpPingProtocol:RegisterReceiver.. 67
7.5.6 Method ITcIoArpPingProtocol:UnregisterReceiver .. 67
7.5.7 Method ITcIoArpPingProtocol:CheckReceived .. 68

7.6 Return values .. 68

8 Fault analysis .. 69
8.1 Start-up: Ip Stack ADS 1823 / 0x71f ... 69

9 Appendix.. 70
9.1 ADS Return Codes.. 70

Foreword

TF6311 5Version: 1.8.1

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TF63116 Version: 1.8.1

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF6311 7Version: 1.8.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TF63118 Version: 1.8.1

2 Overview
The “TCP/UDP Realtime” Function (TF6311) offers direct access to network cards from the real-time
environment. Access can be either from the PLC (61131-3) or C++.

The following protocols are supported:

• TCP/IP
• UDP/IP
• ARP / Ping

This section describes the concept of interfaces as API [} 51]. An introduction is provided by means of
sample programs [} 38].

Regardless of the protocol, the communication between the project using the protocol and TwinCAT is
realized with a pair of interfaces:

• An Interface Pointer provides support for sending data and establishing connections etc.
• The implementation of a receiver interface provides feedback for the project in the form of events or

data, based on callbacks.

The communication partner of these interface pairs is a “TCP/UDP RT” TcCom object, which is instantiated
and configured with the network card.

• Depending on the protocol, the Quickstarts [} 11] provide a good introduction.

• The configuration process is documented under Configuration [} 33].

• The interfaces are described in the Programmer’s reference [} 51] and illustrated through samples
[} 38].

2.1 Comparison TF6310 TF6311
The products TF6310 "TCP/IP" and TF6311 "TCP/UDP Realtime" offer similar functionality.

This page provides an overview of similarities and differences of the products:

Overview

TF6311 9Version: 1.8.1

TF 6310 TF 6311
TwinCAT TwinCAT 2 / 3 TwinCAT 3
Client/Server Both Both
Large / unknown networks ++ +
Determinism + ++
High-volume data transfer ++ +
Programming languages PLC PLC and C++
Operating system Win32/64, CE5/6/7 Win32/64, CE7
UDP-Mutlicast Yes No
Trial license Yes Yes
Protocols TCP, UDP TCP, UDP, Arp/Ping
Hardware requirements Variable TwinCAT-compatible network card
Socket configuration See operating system (WinSock) TCP/UDP RT TcCom Parameter

[} 55]

The Windows firewall cannot be used, since the TF6311 is directly integrated in the TwinCAT system. In
larger / unknown networks we recommend using the TF6310.

2.2 Restrictions
The following limitations exist for the product:

• No local communication in real-time or between real-time and Windows operating system. (Alternative:
communication via a second network interface.)

• Multicast is not supported.
• The EL6601 and EL6614 cannot be used for TF6311 TCP/UDP real-time.
• If breakpoints are used, we strongly advise to use different network interfaces, since a breakpoint stops

parts of the TwinCAT systems, which may be relevant for the communication with Engineering.

Installation / Licensing

TF631110 Version: 1.8.1

3 Installation / Licensing
The Function TF6311 requires no separate installation; all software components are available once TwinCAT
3 has been installed.

• A “TC3 TCP UDP RT” license is required.
The dependence is entered by adding the “TCP/UDP RT” object to the project as a license. It can also
be specified manually.

• A trial license can be created and used.

Quick Starts

TF6311 11Version: 1.8.1

4 Quick Starts
This section contains detailed step-by-step instructions for some protocols.
They illustrate the use of the product in a simple manner. The samples are intended to facilitate
understanding; they do not provide comprehensive implementation instructions. At the application level, the
handling must be programmed in detail (e.g. the behavior on arrival of corresponding TCP events).

The function TF6311 “TCP/UDP real-time” has extensive capabilities:

• different protocols (TCP, UDP, ARP/Ping)
• different programming languages (PLC / C++) and
• communication directions (client / server)

Step-by-step instructions are not available for all combinations. Once the basic concept [} 8] has been
understood, further implementations can be derived in conjunction with the existing step-by-step instructions
and samples [} 38].

4.1 Quick Start (PLC / UDP)
The sample implements an “echo service”: A UDP server is started on a port (default: 10000). If this server
receives a UDP packet, it returns the content to the sender (with same IP and same port).

The sample is also available for download under Sample 02 [} 40]. In addition to the Quick Start, the
download contains extended code, which does not affect the basic functionality.

Implementation of the UDP echo server in a PLC project
ü A TwinCAT solution was generated
1. If no PLC project exists in the TwinCAT solution, you have to create one.
2. A function block is generated, which implements the interface "ItcIoUdpProtocolRecv". This creates a

method, which is called when UDP packets arrive.
By right-clicking on the node "POU" in the PLC project you can allocate names in the Popup window,

Quick Starts

TF631112 Version: 1.8.1

activate "SampleUdpEchoServer" and "Implements" by ticking, and select the interface mentioned with
the button "…":

The declaration part of the function block contains several variables in the declaration:

• Oid: Configurable reference to the TCP/UDP RT module
• ipUdp: Interface pointer to the UdpProtocol, which is implemented by the TCP/UDP RT module
• udpPort: Port used for receiving

3. The declaration part is created in this way:
{attribute 'c++_compatible'}
FUNCTION_BLOCK SampleUdpEchoServer IMPLEMENTS ITcIoUdpProtocolRecv
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 {attribute 'TcInitSymbol'}
 oid: OTCID;
 ipUdp: ITcIoUdpProtocol;
 nUdpPort: UINT := 10000;
 nReceivedPakets: UINT;
 hrInit : HRESULT;
 hrSend : HRESULT;
END_VAR

The CheckReceive() method of the TCP/UDP RT module must be called in the body of the function block.

4. The body is created in this way:
IF ipUdp <> 0 THEN
 ipUdp.CheckReceived();
END_IF

The method "ReceiveData", which was created through implementation of the interface, will be called
repeatedly via "CheckReceived": one call for each packet received in the meantime.

Quick Starts

TF6311 13Version: 1.8.1

5. The method has both sender information and data as input parameters. In this sample, the "SendData"
method returns an incoming packet as response (with sender/receiver reversed). The implementation is
done as follows:
nReceivedPakets := nReceivedPakets+1;
IF ipUdp <> 0 THEN
 hrSend := ipUdp.SendData(ipAddr, udpSrcPort, udpDestPort, nData, pData, TRUE, 0); // send
data back
END_IF

During start and finish, a reference to the "UdpProtocol" interface must be set from the configured OID;
corresponding approvals should be taken care of during shutdown.

6. The function block requires the methods "FB_init", "FB_reinit" and "FB_exit", which can be created by
right-clicking on the function block "Add…" method:

Quick Starts

TF631114 Version: 1.8.1

Appropriate signatures are generated automatically, so that only the actual body has to be realized. Of
particular significance is the "RegisterReceiver" call, which opens a UDP port for reception.

7. The "FB_init" method requires two local variables:
VAR
 ipSrv: ITComObjectServer;
END_VAR

8. The "FB_init" method is implemented as follows:
IF NOT bInCopyCode THEN // no online change
IF ipUdp = 0 AND oid <> 0 THEN
hrInit := FW_ObjMgr_GetObjectInstance(oid:=oid, iid:=TC_GLOBAL_IID_LIST.IID_ITcIoUdpProtocol,
pipUnk:=ADR(ipUdp));
IF SUCCEEDED(hrInit) THEN
IF SUCCEEDED(ipUdp.RegisterReceiver(nUdpPort, THIS^)) THEN //open port
FB_init := TRUE;
ELSE
FB_init := FALSE;
FW_SafeRelease(ADR(ipUdp));
END_IF
END_IF
ELSIF oid = 0 THEN
FB_init := FALSE;
hrInit := ERR_INVALID_PARAM;
END_IF
END_IF

In the "FB_reinit" method, which is executed during an OnlineChange, the TCP/UDP RT object must be
supplied with the new address for the callbacks.

9. The "FB_reinit" method is implemented as follows:
IF (ipUdp <> 0) THEN
ipUdp.RegisterReceiver(nUpdPort, THIS^);
FB_reinit := TRUE:
END_IF

The port must be closed again during shutdown (but not during OnlineChange, cf. bInCopyCode).

10. The "FB_exit" method is implemented as follows:
IF (NOT bInCopyCode AND ipUdp <> 0) THEN //Shutdown
 ipUdp.UnregisterReceiver(nUpdPort);
 FW_SafeRelease(ADR(ipUdp));
 FB_exit := TRUE;
ELSE
 FB_exit := FALSE;
END_IF

11. Finally, the function block must be called:
PROGRAM MAIN
VAR
 udp1 : SampleUdpEchoServer;
END_VAR

udp1();

“TCP/UDP RT” module configuration

Notice Variable names relating to TCP are used here. They have to be substituted accordingly.

Quick Starts

TF6311 15Version: 1.8.1

1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Object(s)…” in the
context menu.

2. Then select the “TCP/UDP RT” module:

ð The TCP/UDP RT object is created under the adapter.

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

Quick Starts

TF631116 Version: 1.8.1

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

ð The configuration is thus completed

Disconnection by the operating system in Promiscuous mode
If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

Testing

Once the configuration has been activated, a UDP packet can be sent to the PLC via the UDP Sample Client
[} 44]. It can be observed that each call increments the counter. The client displays the returned packets at
the top.

No local communication
The UDP sample client must run on a different computer than the PLC with the TCP/UDP RT
object, because no local communication between the Windows operating system and the real-time
is available.
Alternatively, a so-called "loop cable" can be used to connect two network ports. The UDP sample
client can be forced to use a specific port by selecting the source (dropdown menu "Source").

4.2 Quick Start (C++ / UDP)
The example implements an "echo service": A UDP server is started on a port (default: 10000). If this server
receives a UDP packet, it returns the content to the sender (with same IP and same port).

The engineering system must meet the requirements for TwinCAT 3 C++.

Quick Starts

TF6311 17Version: 1.8.1

The example is also available for download under Sample 02 [} 40].

Implementation of the UDP echo server in a C++ project
ü A TwinCAT solution was generated
1. If no C++ project exists in the TwinCAT solution, you have to create one. Please use the template for

“TwinCAT Module Class with Cyclic IO”.
2. Create a task. Under System / Tasks right-click and select “Add new Item…”

A normal task (without image) is sufficient.
3. In the C++ project, open the TMC editor by double-clicking on the TMC file.

The module must implement the ITcIoUdpProtocolRecv. This creates a method, which is called when UDP
packets arrive.

Quick Starts

TF631118 Version: 1.8.1

4. In the TMC editor select “Implemented interfaces” and create them with “+”. A dialog appears, in which
the type ITcIoUdpProtocolRecv is selected:

The module requires an interface pointer to ITcIoUdpProtocol, which contains the reference to the TCP/UDP
RT object.

5. In the TMC editor select “Interface Pointer” and press “+”. An interface is created, which can be opened
by double-clicking. Assign a name “UdpProt” and set the pointer type with “..:” and the selection in the
dialog:

6. The TMC code generator is started once. Right-click on the C++ project and select “TMC Code
Generator” in the context menu.

The CheckReceived() method of the TCP/UDP RT module must be called in the CycleUpdate() method in
the CPP file of the module (Module1.cpp). As a result, arriving UDP packets are transferred to the
implemented method ReceiveData() via callback.

Quick Starts

TF6311 19Version: 1.8.1

7. The CycleUpdate() method is implemented as follows
///<AutoGeneratedContent id="ImplementationOf_ITcCyclic">
HRESULT CModule1::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
{
HRESULT hr = S_OK;
 m_counter+=m_Inputs.Value;
 m_Outputs.Value=m_counter;
 m_spUdpProt->CheckReceived(); // ADDED
 return hr;
}

The method “ReceiveData”, which was created through implementation of the interface, will be called
repeatedly via CheckReceived(): one call for each packet received in the meantime.

8. The method ReceiveData has both sender information and data as input parameters. In this sample, the
SendData method returns an incoming packet as response (with sender/receiver reversed). The
implementation is done as follows:
///<AutoGeneratedContent id="ImplementationOf_ITcIoUdpProtocolRecv">
HRESULT CModule1::ReceiveData(ULONG ipAddr, USHORT udpDestPort, USHORT udpSrcPort, ULONG nData,
PVOID pData, ETYPE_VLAN_HEADER* pVlan)
{
 HRESULT hr = S_OK;
 // mirror incomming data
 hr = m_spUdpProt->SendData(ipAddr, udpSrcPort, udpDestPort, nData, pData, true);
 m_Trace.Log(tlInfo, FLEAVEA "UDP ReceiveData: IP: %d.%d.%d.%d udpSrcPort: %d DataSize: %d
(hr2=%x) \n",
 ((PBYTE)&ipAddr)[3], ((PBYTE)&ipAddr)[2], ((PBYTE)&ipAddr)[1], ((PBYTE)&ipAddr)[0],
 udpSrcPort, nData, hr);
 return hr;
}
///</AutoGeneratedContent>

During start and finish, a reference to the “UdpProtocol” interface must be set from the configured OID;
corresponding approvals should be taken care of during shutdown.

9. The start is triggered in the transition from SafeOp to Op. During this process, RegisterReceiver is of
particular interest: It opens a UDP port for reception.
HRESULT CModule1::SetObjStateSO()
{
 HRESULT hr = S_OK;
 //START EDITING
 if (SUCCEEDED(hr) && m_spUdpProt.HasOID())
 {
 m_Trace.Log(tlInfo, FLEAVEA "Register UdpProt");
 if (SUCCEEDED_DBG(hr = m_spSrv->TcQuerySmartObjectInterface(m_spUdpProt)))
 {
 m_Trace.Log(tlInfo, FLEAVEA "Server: UdpProt listen to Port: %d", 10000);
 if (FAILED(hr = m_spUdpProt->RegisterReceiver(10000,
THIS_CAST(ITcIoUdpProtocolRecv))))
 {
 m_Trace.Log(tlError, FLEAVEA "Server: UdpProtRegisterReceiver failed on Port:
%d", 10000);
 m_spUdpProt = NULL;
 }
 }
 }

 // If following call is successful the CycleUpdate method will be
called,
 // eventually even before method has been left.
 hr = FAILED(hr) ? hr : AddModuleToCaller();
 // Cleanup if transition failed at some stage
 if (FAILED(hr))
 {
 if (m_spUdpProt != NULL)
 m_spUdpProt->UnregisterReceiver(10000);
 m_spUdpProt = NULL;
 RemoveModuleFromCaller();
 }
 //END EDITING
 m_Trace.Log(tlVerbose, FLEAVEA "hr=0x%08x", hr);
 return hr;
}

10. The stop takes place in the Op to SafeOp transition. The UDP port is closed again:

Quick Starts

TF631120 Version: 1.8.1

HRESULT CModule1::SetObjStateOS()
{
 m_Trace.Log(tlVerbose, FENTERA);
 HRESULT hr = S_OK;

 if (m_spUdpProt != NULL)
 m_spUdpProt->UnregisterReceiver(10000);
 m_spUdpProt = NULL;
 m_Trace.Log(tlVerbose, FLEAVEA "hr=0x%08x", hr);
 return hr;
}

Finally, the module has to be instantiated and configured

11. Build the project once. Right-click on the module select “Build”
12. Creating an instance of the module. Right-click on the project to open “Add new item…”. Select the

appropriate module here.
13. Double-click on the module instance to enable parameterization. First select the task in the “Context” tab.

“TCP/UDP RT” module configuration

Notice Variable names relating to TCP are used here. They have to be substituted accordingly.
1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Object(s)…” in the

context menu.

Quick Starts

TF6311 21Version: 1.8.1

2. Then select the “TCP/UDP RT” module:

ð The TCP/UDP RT object is created under the adapter.

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

ð The configuration is thus completed

Disconnection by the operating system in Promiscuous mode
If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

Quick Starts

TF631122 Version: 1.8.1

Testing

Once the configuration has been enabled, a UDP packet can be sent to the C++ module via the UDP Sample
Client [} 44]. By activating the corresponding TraceLevel (here at least tlInfo; see C++ Tracing), an output
can be generated in the Visual Studio log. The client displays the returned packets at the top.

No local communication
The UDP sample client must run on a different computer than the PLC with the TCP/UDP RT
object, because no local communication between the Windows operating system and the real-time
is available.
Alternatively, a so-called "loop cable" can be used to connect two network ports. The UDP sample
client can be forced to use a specific port by selecting the source (dropdown menu "Source").

4.3 Quick Start (C++ / TCP Client)
This Quick Start shows the implementation of a TCP client as a TwinCAT 3 C++ project.

The engineering system must meet the requirements for TwinCAT 3 C++.

The example is also available for download under Sample 01 [} 38].

Creating a TwinCAT C++ project

In this step, a new TwinCAT 3 C++ project is created.

Quick Starts

TF6311 23Version: 1.8.1

1. Create a new TwinCAT project

2. Add a TwinCAT C++ project

Quick Starts

TF631124 Version: 1.8.1

3. Select a Driver project

4. Use the wizard for a module class with "Cyclic IO" as the basis for the TCP client.

Quick Starts

TF6311 25Version: 1.8.1

ð The result is a complete TwinCAT C++ project.

TMC editor for creating interfaces, pointers and parameters

After creating the project, the next step involves implementation of the C++ TCP client.

1. The module created by the wizard must implement the interface "ITcIoTcpProtocolRecv". Open the TMC
editor by double-clicking on the TMC file for the project. Add the interface to the module under
"Implemented Interfaces".

Under "Implemented Interfaces" open a selection of the available interfaces by clicking on the "+" button.
Select "ITcIoTcpProtocolRecv".

2. In addition, an "ITcIOTcpProtocol" interface pointer is required.

Quick Starts

TF631126 Version: 1.8.1

3. By creating a parameter the server IP address to be contacted and the port become configurable.

4. Now use the TMC code generator to prepare the code of the C++ module.

Start the TMC code generator by selecting the appropriate menu item in the context menu (right-click) of
the C++ project.
ð All steps in the TMC editor are now completed.

Quick Starts

TF6311 27Version: 1.8.1

Implement TCP client
1. Create two member variables in the module header file (here: Modul1.h).

ULONG m_SockId;
BOOL m_bSendRequest; //set by debugger for sending a http command
ULONG m_connections; //count number of connection attempts
HRESULT m_hrSend; //Last hr of SendData

2. These are initialized in the Constructor (Module1.cpp).
CModule1::CModule1()
 : m_Trace(m_TraceLevelMax, m_spSrv)
 , m_TraceLevelMax(tlAlways)
 , m_hrSend(0)
{
 m_SockId = 0; //added
 m_bSendRequest = true; //added
 m_connections = 0; //added
}

3. The interface pointer m_spTcpProt is now initialized in the Transition SO (i.e. in method SetObjStateSO).
HRESULT CTcpClient::SetObjStateSO()
{
 m_Trace.Log(tlVerbose, FENTERA);
 RESULT hr = S_OK;
 if (SUCCEEDED(hr) && m_spTcpProt.HasOID()) //added
 { //added
 hr = m_spSrv->TcQuerySmartObjectInterface(m_spTcpProt); //added
 } //added
 hr = FAILED(hr) ? hr : AddModuleToCaller();

4. In the Transition OS (i.e. method SetObjStateOS) a connection that may exist is closed, and the socket
is released.
///
// State transition from OP to SAFEOP
HRESULT CTcpClient::SetObjStateOS()
{
 //start added code
 m_Trace.Log(tlVerbose, FENTERA);
 HRESULT hr = S_OK;

 if (m_SockId != 0)
 {
 if (m_spTcpProt->IsConnected(m_SockId) == S_OK)
 {
 m_spTcpProt->Close(m_SockId);
 m_spTcpProt->CheckReceived();
 }
 m_spTcpProt->FreeSocket(m_SockId);
 m_SockId = 0;
 }

 RemoveModuleFromCaller();

 m_Trace.Log(tlVerbose, FLEAVEA "hr=0x%08x", hr);
 return hr;
 //end added code
}

5. The actual process is implemented in the "CycleUpdate" method, which is called cyclically. Establishes a
TCP connection to a server (address is provided in parameters "m_TcpServerIpAddress" and
"m_TcpServerPort"). The connection handle is stored in the member variable "m_SockId". The
connection is used to issue a simple http GET request.

HRESULT CTcpClient::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
{
 HRESULT hr = S_OK;
 //start added code
 if (m_SockId == 0)
 {
 if (SUCCEEDED_DBG(hr = m_spTcpProt->AllocSocket(THIS_CAST(ITcIoTcpProtocolRecv),
m_SockId)))
 {
 if (FAILED(hr = m_spTcpProt->Connect(m_SockId, ((PULONG)&m_TcpServerIpAddress)[0],
m_TcpServerPort)))
 {

Quick Starts

TF631128 Version: 1.8.1

 m_spTcpProt->FreeSocket(m_SockId);
 m_SockId = 0;
 }
else {
 m_connections++; //count number of connections
 }
 }
 }
 else
 {
 if (m_bSendRequest && m_spTcpProt->IsConnected(m_SockId) == S_OK)
 {
 PCHAR pRequest = "GET / HTTP/1.1\r\nHOST: beckhoff.com\r\n\r\n ";
 ULONG nSendData = 0;
 m_hrSend = m_spTcpProt->SendData(m_SockId, strlen(pRequest), pRequest, nSendData);
 m_bSendRequest = false;
 }
 }

 m_spTcpProt->CheckReceived();

 //end added code
 return hr;
}

6. The module implements the interface "ITcIoTcpProtocolRecv", as a result of which the TMC code
generator created a "ReceiveEvent" method. This is called when an event is received and must therefore
be able to deal with a wide range of event types.
HRESULT CTcpClient::ReceiveEvent(ULONG socketId, TCPIP_EVENT tcpEvent)
{
//start added code
m_Trace.Log(tlInfo, FLEAVEA "Receive TCP Event: SocketId: %d Event: %d \n", socketId, tcpEvent);

 switch (tcpEvent)
 {
 case TCPIP_EVENT_ERROR:
 case TCPIP_EVENT_RESET:
 case TCPIP_EVENT_TIMEOUT:
 m_Trace.Log(tlInfo, FLEAVEA "Connection to remote server failed!\n");
 m_SockId = 0;
 break;
 case TCPIP_EVENT_CONN_CLOSED:
 m_Trace.Log(tlInfo, FLEAVEA "Close connection: SocketId: %d \n", socketId);
 m_SockId = 0;
 break;
 case TCPIP_EVENT_CONN_INCOMING:
 case TCPIP_EVENT_KEEP_ALIVE:
 case TCPIP_EVENT_CONN_IDLE:
 case TCPIP_EVENT_DATA_SENT:
 case TCPIP_EVENT_DATA_RECEIVED:
 break;
 default:
 break;
 }
 return S_OK;
 //end added code
}

7. Analogous to the "ReceiveEvent" method, a "ReceiveData" method was created from the
"ITcIoTcpProtocolRecv" interface. It is responsible for receiving the data and is implemented as follows:
HRESULT CTcpClient::ReceiveData(ULONG socketId, ULONG nData, PVOID pData)
{
//start added code
 HRESULT hr = S_OK;
 PCHAR pResponse = new CHAR[100];
 memset(pResponse, 0, 100);
 memcpy(pResponse, pData, min(100, nData));
 m_Trace.Log(tlInfo, FLEAVEA "Receive answer w/ length %d : first 100 chars:'%s'", nData,
pResponse);
 return hr;
//end added code
}

8. The module is now ready and can be compiled. (Right-click on "Build" project).

Quick Starts

TF6311 29Version: 1.8.1

9. An instance of the module is created:
Right-click on the C++ project

and select the module

ð The instance is associated with a task, so that the "CycleUpdate" method is called.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

Quick Starts

TF631130 Version: 1.8.1

“TCP/UDP RT” module configuration

Notice Variable names relating to TCP are used here. They have to be substituted accordingly.
1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Object(s)…” in the

context menu.

Quick Starts

TF6311 31Version: 1.8.1

2. Then select the “TCP/UDP RT” module:

ð The TCP/UDP RT object is created under the adapter.

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

ð The configuration is thus completed

Disconnection by the operating system in Promiscuous mode
If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

Quick Starts

TF631132 Version: 1.8.1

Handling
1. The sample is ready to use once you have configured both the TcpServerIpAddress and the

TcpServerPort at the module instance:

Notice Possible source of error: A test web server 62.159.14.51 is queried in the sample. A
corresponding HTTP command is stored in the source code. IP address, port, and this HTTP
command may have to be adjusted.

2. After activating the configuration you can see log messages (see source code) and the first 100 bytes of
the response from the server in the output:

3. To output these messages the “Tracelevel” can be configured (via Info):

The procedure is carried out once when the program starts.

A new request is sent if “m_bSendRequest” is set to TRUE (e.g. through TwinCAT Live Watch). The return of
the SendData method is stored in hrSend. For the sample it can be monitored via the debugger.

Configuration

TF6311 33Version: 1.8.1

5 Configuration
The integration and configuration of the "TCP/UDP RT" object is described here, starting from an existing
TwinCAT project.

The "TCP/UDP RT" object is instantiated and configured. The configuration essentially consists of assigning
the network card to be used.

Windows Firewall
The Windows firewall cannot be used, since the TF6311 is directly integrated in the TwinCAT
system.

The "TCP/UDP RT" object also contributes some parameters, which are documented here [} 55].

“TCP/UDP RT” module configuration

Notice Variable names relating to TCP are used here. They have to be substituted accordingly.
1. Create the “TCP/UDP RT” module under the RT Ethernet adapter by selecting “Add Object(s)…” in the

context menu.

Configuration

TF631134 Version: 1.8.1

2. Then select the “TCP/UDP RT” module:

ð The TCP/UDP RT object is created under the adapter.

3. Parameterize the previously created instance of the module (here: Module1) under “Interface Pointer”
“TcpProt” with the OID of the created “TCP/UDP RT” object:

4. For PLC projects this configuration is also done at the instance, under the tab “Symbol Initialization”:

ð The configuration is thus completed

Disconnection by the operating system in Promiscuous mode
If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

Configuration

TF6311 35Version: 1.8.1

5.1 Multiple network cards
A TCP/UDP RT object is assigned to an RT Ethernet adapter by instantiating it under the objects, for
example. A TCP/UDP RT object therefore always addresses precisely one network port of the controller via
the RT Ethernet adapter.

If several network ports are to be used, a TCP/UDP RT object is created for each RT Ethernet adapter:

The TCP/UDP RT objects relate to the higher-level RT Ethernet adapter, if no other configuration was
specified manually:

These objects have different object IDs:

This object ID is used for referencing, as described above:

PLC:

Configuration

TF631136 Version: 1.8.1

Or for a C++ module:

The use is highly dependent on the application. Some sample scenarios are provided below:

• A C++ module can be instantiated more than once. Each module can then communicate via a
particular network card, based on the configuration with the corresponding object ID.

• Different PLC programs can be assigned separate TCP/UDP RT objects and thus act independently.
• A PLC or C++ program can address several TCP/UDP RT objects (and therefore several network

cards), based on corresponding symbols (C++ is used as an example here):

Object management must be implemented to suit the application. For example, the CheckReceived()
calls must be applied to all objects. This also applies to calls for SendData() / RegisterReceiver() etc.

5.2 Multitask access to a network card
If a network card is to be used from several real-time contexts (tasks), it must be implemented as described
here.

• A TCP/UDP RT object must be created for each real-time context (e.g. task) from which data is to be
received or sent.

• The PassiveMode parameter on all TCP/UDP RT objects specifies whether or not these objects should
fetch frames received from the RT Ethernet adapter. By default, PassiveMode is set to FALSE so that
packets are fetched.
For multitask access, only one TCP/UDP RT object should fetch the data and all other objects should
be configured with PassiveMode to TRUE.
Typically, this can be the object that receives packets in the fastest cycle. Where appropriate, a lower

Configuration

TF6311 37Version: 1.8.1

priority can be used for this in order to make the real-time processes of other tasks more independent
of the incoming frames.

• The function block must call the RegisterReceiver() / Open() method in the same context as it calls the
CheckReceived() method in the cyclic process.

• The callbacks via ReceiveData()/...Event() are called in the same context as the CheckReceived() from
the function block of the application previously.

Examples

TF631138 Version: 1.8.1

6 Examples
These examples provide easy-to-follow demonstrations for dealing with the TCP/UDP RT module.

Sample code and configurations for this product can be obtained from the corresponding repository on
GitHub: https://github.com/Beckhoff/TF6311_Samples. There you have the option to clone the repository or
download a ZIP file containing the sample.

6.1 S01: Simple TCP Client (PLC / C++)
This sample shows the application of a TCP connection as client.
In this sample illustrates opening of a TCP connection with an IP address via port 80. The Beckhoff web
server is used. The sample uses the connection to send an HTTP request to access a test website
62.159.14.51:80.

If the website does not fit into the receive buffer, the ReceiveData() method is called several times.

The client re-establishes a connection, if it was closed by the server, for example.

The sample is available for C++ and for the PLC.

6.1.1 S01: Simple TCP Client (C++)
This example implements a TCP client that issues a simple HTTP request and receives the response.

The download available here is preconfigured to call a test website 62.159.14.51:80.

Download

Download the sample: https://github.com/Beckhoff/TF6311_Samples/tree/main/S01-IpStackTcpClient
1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system

https://github.com/Beckhoff/TF6311_Samples/tree/main/S01-IpStackTcpClient

Examples

TF6311 39Version: 1.8.1

4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

Description

The example is described in detail on the Quick Start [} 22] page.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

6.1.2 S01: Simple TCP Client (PLC)
This sample implements a TCP client that issues a simple HTTP request and receives the response.

The download available here is preconfigured to call a test website 62.159.14.51:80.

Download

Download the sample: https://github.com/Beckhoff/TF6311_Samples/tree/main/S01-IpStackTcpClientPlc
1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system
4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

https://github.com/Beckhoff/TF6311_Samples/tree/main/S01-IpStackTcpClientPlc

Examples

TF631140 Version: 1.8.1

Description

After the startup, the PLC program can be used by setting the variable "bSend" to TRUE. The HTTP request
(stored in "sMessage") is sent to the server, once the connection has been established. The first bytes of the
incoming response are provided in "sLastReturnedMessage". The "sLastReturnedMessafeLength" indicates
the whole length of the response.

The server address is defined in the FB_init method.

The same sample is described in detail for C++ on the Quick Start [} 22] page.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

6.2 S02: UDP Client Server (PLC/C++)
This example describes how a TwinCAT project can act as a UDP server. Thus, values can be delivered to
the real-time or from the real-time on request.

The example implements an "echo service": A UDP server is started on a port (default: 10000). If this server
receives a UDP packet, it returns the content to the sender (with same IP and same port). The example is
available in PLC [} 40] and C++ [} 43].

For testing purposes, a UDP client [} 44] (written in .NET) is also available.

The samples are also available in more detail as Quick Starts [} 11].

6.2.1 S02: UDP Demo (PLC)
This example describes a UDP server that is implemented in a PLC project.

Examples

TF6311 41Version: 1.8.1

It receives UDP packets and returns them to the sender ("echo server“).

Download

Download the sample: https://github.com/Beckhoff/TF6311_Samples/tree/main/S02-UdpDemoPlc
1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system
4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

Description

The sample is also available in more detail as Quick Start.

The interface ITcIoUdpProtocolRecv [} 52] is implemented and a pointer to a ITcIoUdpProtocol [} 52] is
used analogous to the Quick Start [} 22] in this sample.

To this end a PLC block is created, which implements the interface ITcIoUdpProtocolRecv [} 52] (“Add
POU” with “Implements”). It is important to realize the connection to the TCP/UDP RT object in the “FB_init”
and “FB_exit” methods. This procedure is described in more detail in Sample 11 of the C++ documentation.

The implementing function block (in sample UdpReceiver) calls the method “CheckReceived”. In this way the
IP stack is enabled to process incoming packets and transmit callbacks on the “ReceiveData” method of the
function block.

The “ReceiveData” method uses the “SendData” method to return the data to the sender (“echo server”).

Understanding

Two methods are used to establish the communication between the function block and the TcCOM object
"TCP/UDP RT":

• "FB_init": This is executed automatically when the PLC is started
• "FB_exit": This is executed automatically when the PLC is stopped

This initialization phase can largely be taken from the sample code.

Two methods are responsible for the actual UDP functionality in the PLC code:

• The "ReceiveData" method in the implemented function block receives the data.
• The "SendData" method in the ITcIoUdpProtocol interface sends data.

In the sample, the "SendData" method is used in the "ReceiveData" method to return the received data:

https://github.com/Beckhoff/TF6311_Samples/tree/main/S02-UdpDemoPlc
https://infosys.beckhoff.com/content/1033/tc3_c/112603915.html?id=6304664618712591310

Examples

TF631142 Version: 1.8.1

The TcQueryInterface method must be implemented as follows to ensure that TwinCAT detects that the
corresponding interface was implemented:
VAR
ipUdpRecv : ITcIoUdpProtocolRecv;
ipUnknown : ITcUnknown;
END_VAR

IF GuidsEqual(ADR(iid), ADR(TC_GLOBAL_IID_LIST.IID_ITcIoUdpProtocolRecv)) THEN
ipUdpRecv := THIS^; // cast to interface pointer
pipItf^ := ITCUNKNOWN_TO_PVOID(ipUdpRecv);
TcAddRef();
TcQueryInterface := S_OK;
ELSIF GuidsEqual(ADR(iid), ADR(TC_GLOBAL_IID_LIST.IID_ITcUnknown)) THEN
ipUnknown := THIS^; // cast to interface pointer
pipItf^ := ITCUNKNOWN_TO_PVOID(ipUnknown);
TcAddRef();
TcQueryInterface := S_OK;
ELSE
TcQueryInterface := E_HRESULTAdsErr.NOINTERFACE ; //Call super if this fb extends some other
END_IF

The additionally created methods

• TcAddRef / TcRelease

are inherited by the ITcUnknown interface and are not relevant in this context. For background information
we suggest reading the chapter on the TcCOM module concept in the C++ domain.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

Examples

TF6311 43Version: 1.8.1

6.2.2 S02: UDP Demo (C++)
This example describes a UDP server that is implemented in C++.

It receives UDP packets and returns them to the sender ("echo server“).

Download

Download the sample: https://github.com/Beckhoff/TF6311_Samples/tree/main/S02-UdpDemo
1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system
4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

Description

The interface ITcIoUdpProtocolRecv [} 52] is implemented and a pointer to a ITcIoUdpProtocol [} 52] is
used analogous to the Quick Start [} 22] in this example.

Using "RegisterReceiver" in the Transition SO ensures that the module is registered for the transmitted port
(default: 10000). A corresponding unregistration takes place in the Transition OS.

The "CheckReceived" method is called in the "CycleUpdate" method. In this way the TCP/UDP RT module is
enabled to process incoming packets and transmit callbacks on the "ReceiveData" method to the module.

The "ReceiveData" method uses the "SendData" method to return the data to the sender ("echo server").

The sample is also available in more detail as Quick Start [} 16].

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

https://github.com/Beckhoff/TF6311_Samples/tree/main/S02-UdpDemo

Examples

TF631144 Version: 1.8.1

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

6.2.3 Test client
The test client is used to send and receive single UDP data packets to and from a UDP server.

Download

Download the test client.

Unpack the ZIP file; the .exe file runs on a Windows system.

Description

The client itself uses port 11000 for sending. At the same time it opens this port and displays received
messages in the upper part of the interface as a log:

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TF6311-TCPUDPRT/Sample02-UdpDemo/TF631x-SampleClientUdp.zip

Examples

TF6311 45Version: 1.8.1

Together with the PLC / C++ samples, this results in an echo sample:
A UDP message is sent from the client port 11000 to the server port 10000, which sends the same data back
to the sender.

The client can be configured via the interface:

• Destination: Destination IP address
• Port: The port that is addressed in the target
• Source: Sender network card (IP address).

"OS-based" operating system deals with selection of the appropriate network card.
• Message

The TF6311 "TCP/UDP Realtime" does not allow local communication. However, for testing purposes a
different network interface can be selected via "Source", so that the UDP packet leaves the computer
through one network card and arrives on the other network card ("loop cable").

6.3 S03: ARP PING Demo (C++)
This example describes an ARP and PING client.

Download

Download the sample: https://github.com/Beckhoff/TF6311_Samples/tree/main/S03-PingClient
1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system
4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

Description

The interface ARP/Ping: ITcIoArpPingProtocol(Recv) [} 64] is implemented and a pointer to a ARP/Ping:
ITcIoArpPingProtocol(Recv) [} 65] is used analogous to the Quick Start [} 22] in this example.

Using "RegisterReceiver" in the Transition SO ensures that the module is registered for receiving Arp and
Ping messages. A corresponding unregistration takes place in the Transition OS.

The "CheckReceived" method is called in the "CycleUpdate" method. In this way the TCP/UDP RT module is
enabled to process incoming packets and transmit callbacks on the "ArpReply" und "PingReply" methods to
the module.

Understanding

The procedure is carried out once when the program starts.

If "m_bSendRequest" is set to TRUE (e.g. through TwinCAT Live Watch), a new request (ARP and Ping) is
sent to the IP address defined here:

The output is in the messages:

https://github.com/Beckhoff/TF6311_Samples/tree/main/S03-PingClient

Examples

TF631146 Version: 1.8.1

To output these messages the "Tracelevel" can be configured (via Info).

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

6.4 S04: TCP Echo Server (PLC / C++)
This sample describes a TCP server accepting an income connection.
Data sent to this server are simply returned as “echo”.

The same sample is available for C++ and PLC. By default, the server runs on port 11000.

Testing the sample

The sample can be tested via "telnet".
%>telnet 192.168.1.1 11000

If a character is sent via telnet, it is returned immediately. A picture similar to the following emerges:

Examples

TF6311 47Version: 1.8.1

6.4.1 S04: TCP Server Demo (PLC)
This sample describes a TCP server that is implemented in a PLC project.

It accepts a TCP connection, receives TCP packets and returns them to the sender (“echo server”).

Download

Download the sample: https://github.com/Beckhoff/TF6311_Samples/tree/main/S04-TCPServerPlc
1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system
4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

Description

The interface ITcIoTcpProtocolRecv [} 58] is implemented and a pointer to a ITcIoTcpProtocol [} 58] is
used analogous to the Quick Start [} 11]s in this sample.

To this end a PLC block is created, which implements the interface ITcIoUdpProtocolRecv [} 58] (“Add
POU” with “Implements”). It is important to realize the connection to the TCP/UDP RT object in the “FB_init”
and “FB_exit” methods. In particular, the Quick Starts illustrate how this OnlineChange can be implemented
securely. The procedure is described in more detail in Sample 11 of the C++ documentation.

The implementing function block (in sample TCPServer) calls the method “CheckReceived”. In this way the
IP stack is enabled to process incoming packets and transmit callbacks relating to the “ReceiveData” and
“ReceiveEvent” methods of the function block.

In order to take into account incoming connections, a port is opened in FB_init via “AllocSocket” and “Listen”.
“Accept” is called in the “ReceiveEvent”, if an event to establish a connection has occurred.

In this sample the “ReceiveData” method uses the “SendData” method to return the data to the sender
(“echo server”).

https://github.com/Beckhoff/TF6311_Samples/tree/main/S04-TCPServerPlc
https://infosys.beckhoff.com/content/1033/tc3_c/112603915.html?id=6304664618712591310

Examples

TF631148 Version: 1.8.1

Understanding

Two methods are used to establish the communication between the function block and the TcCOM object
“TCP/UDP RT”:

• „FB_init“: This is executed automatically when the PLC is started.
• „FB_exit“: This is executed automatically when the PLC is stopped.

This initialization phase can largely be taken from the sample code.

Two methods are responsible for the actual TCP functionality in the PLC code:

• The “ReceiveData” method in the implemented function block receives the data.
• The “ReceiveEvent” method indicates events occurring at the implemented function block.
• The “SendData” method in the ITcIoTcpProtocol interface sends data.

In the sample, the “SendData” method is used in the “ReceiveData” method to return the received data:
The TcQueryInterface method must be implemented as follows to ensure that TwinCAT detects that the
corresponding interface was implemented:
VAR
ipTcpRecv : ITcIoTcpProtocolRecv;
ipUnknown : ITcUnknown;
END_VAR

IF GuidsEqual(ADR(iid), ADR(TC_GLOBAL_IID_LIST.IID_ITcIoTcpProtocolRecv)) THEN
ipTcpRecv := THIS^; // cast to interface pointer
pipItf^ := ITCUNKNOWN_TO_PVOID(ipUdpRecv);
TcAddRef();
TcQueryInterface := S_OK;
ELSIF GuidsEqual(ADR(iid), ADR(TC_GLOBAL_IID_LIST.IID_ITcUnknown)) THEN
ipUnknown := THIS^; // cast to interface pointer
pipItf^ := ITCUNKNOWN_TO_PVOID(ipUnknown);
TcAddRef();
TcQueryInterface := S_OK;
ELSE
TcQueryInterface := E_HRESULTAdsErr.NOINTERFACE ; //Call super if this fb extends some other
END_IF

The additionally created methods

• TcAddRef / TcRelease

are inherited by the ITcUnknown interface and are not relevant in this context. For background information
we suggest reading the chapter on the TcCOM module concept in the C++ domain.

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

Examples

TF6311 49Version: 1.8.1

6.4.2 S04: TCP Server Demo (C++)
This sample describes a TCP server that is implemented in C++.

It accepts a TCP connection, receives TCP packets and returns them to the sender (“echo server”).

Download

Download the sample: https://github.com/Beckhoff/TF6311_Samples/tree/main/S04-TCPServer
1. Get the sample from GitHub, unzip the downloaded ZIP file if necessary
2. Open the project with TwinCAT XAE
3. Select your target system
4. Configure the network card (see below) for the target system
5. Build the sample on your local machine (e.g. Build->Build Solution)
6. Activate the configuration

Description

The interface ITcIoTcpProtocolRecv is implemented and a pointer to a ITcIoTcpProtocol is used analogous
to the Quick Starts in this sample.

The “CheckReceived” method is called in the “CycleUpdate” method. In this way the TCP/UDP RT module is
enabled to process incoming packets and transmit callbacks on the “ReceiveEvent” und “ReceiveData”
methods to the module.

In order to take into account incoming connections, a port is opened in “CycleUpdate” via “AllocSocket” and
“Listen”. “Accept” is called in the “ReceiveEvent”, if an event to establish a connection has occurred.

In this sample the “ReceiveData” method uses the “SendData” method to return the data to the sender
(“echo server”).

Preparing the network card

For the TCP/UDP RT module, make sure that the RT Ethernet adapter in the TwinCAT solution is connected
with the correct network card (with TwinCAT driver).

https://github.com/Beckhoff/TF6311_Samples/tree/main/S04-TCPServer

Examples

TF631150 Version: 1.8.1

Local configuration only
Installation of the driver on compatible network cards via the button "Compatible Devices" always
takes place locally. On a controller with TwinCAT XAR, the program TcRteInstall.exe can be used.
It is included in the installation (usually under C:TwinCAT\3.1\System).

Programmer's reference

TF6311 51Version: 1.8.1

7 Programmer's reference
The programmer's reference provides an overview of the different parameters, interfaces and their methods.

These include:

• TCP/UDP RT TcCOM Parameters [} 55]: The parameters of the actual TCP/UDP RT module enable the
configuration.

The TCP/UDP RT module can be used by different protocols. An InterfacePointer and an interface to be
implemented always go hand in hand:

• ITcIoTcpProtocol(Recv): [} 58] TCP/IP protocol

• ITcIoUdpProtocol(Recv) [} 52]: UDP/IP protocol

• ITcIoArpPingProtocol(Recv) [} 64]: ARP/Ping protocol

For all uses of IP addresses (e.g. "IpAddr"), the most significant elements are displayed in the last position.
(Example: 192.168.2.1 -> 01 02 A8 C0)

Performance

The TCP/UDP RT TcCOM object runs in real-time. Thus, the module is also directly dependent on the
cycling of the real-time. The frequency with which data can be communicated can therefore be influenced by
the cycling of the task used (and therefore also the real-time settings):

Communication via the network interface depends on this cycle. A corresponding call to the
CheckReceived() methods (see API documentation [} 51]) must be made in each cycle.

Programmer's reference

TF631152 Version: 1.8.1

Incoming data: CheckReceived()

Context of the incoming data
The customer must ensure that the method CheckReceived is called cyclically. Samples illustrate
the procedure in PLC and C++

The CheckReveived() method is called cyclically in order to ensure that the data can be provided in the
same context as the client project. The protocol-dependent Receive() methods of the customer project are
called within this method call, if data have been received.

Disconnection of Engineering connection on breakpoints
If breakpoints are used, we strongly advise to use different network interfaces, since a breakpoint
stops parts of the TwinCAT systems, which may be relevant for the communication with
Engineering.

7.1 UDP/IP: ITcIoUdpProtocol(Recv)
The ITcIoUdpProtocol and ITcIoUdpProtocolRecv interfaces enable UDP/IP communication from the real-
time environment.

A project that uses this interface contains a pointer to an ITcIoUdpProtocol object and implements
ITcIoUdpProtocolRecv itself. ITcIoUdpProtocolRecv serves as callback interface for receiving data from the
TCP/UDP RT module within the application.

Multiple calls of Receive()
During the implementation it should be noted that CheckReceived() will result in the callback to
Receive() occurring several times within a cycle, if multiple packets have arrived between the
cycles.
A buffer in the form a queue may therefore have to be provided.

 ITcIoUdpProtocolRecv methods:

Name Description
ReceiveData [} 53] Is called by the TCP/UDP RT module as a callback to transfer data

 ITcIoUdpProtocol methods:

Name Description
SendData [} 53] Sends data

CheckReceived [} 54] Must be called cyclically. ReceiveData is used as callback in the context of
this method (server and client functionality).

RegisterReceiver [} 54] Registering at the TCP/UDP RT module for receiving data.

UnregisterReceiver [} 55] Unregistering at the TCP/UDP RT module for receiving UDP data.

The client and server implementation process is briefly described here. Only an overview is provided; the
samples illustrate the application.

Implementation of a UDP sender / receiver

Name Description
RegisterReceiver [} 54] Opens a port for incoming data packets.

ReceiveData [} 53] Is called when data packets arrive.

SendData [} 53] Can be used to send data.

UnregisterReceiver [} 55] For logout from (closing of) the port, e.g. during shutdown.

Programmer's reference

TF6311 53Version: 1.8.1

To receive UDP data, registration is required by calling RegisterReceiver. This can be done in
SetObjStateSO or FB_init.

Data is provided by a callback of method ReceiveData from ITcIoUdpProtocolRecv.

While TwinCAT switches from RUN mode to Config mode, all modules should unregister via
UnregisterReceiver. This can be done in SetObjStateOS() or FB_exit.

NOTICE
OnlineChange security
For OnlineChange security, RegisterReceiver should be called again.

7.1.1 Method ITcIoUdpProtocolRecv:ReceiveData
Is called by the TCP/UDP RT module as a callback to transfer data.

Syntax
HRESULT TCOMAPI ReceiveData(ULONG ipAddr, USHORT udpDestPort, USHORT udpSrcPort, ULONG nData, PVOID
pData, ETYPE_VLAN_HEADER* pVlan=0)

 Return value

Type Description
HRESULT Indicates success and must be provided accordingly by the implemented module.

Parameter

Name Type Description
ipAddr ULONG The IP address of the sender.

IP addresses are displayed with the most significant
element in the last position. (Example: 192.168.2.1 -> 01
02 A8 C0)

udpDestPort USHORT Port on which the data was received.
udpSrcPort USHORT Port of the sender.
nData ULONG Number of bytes received.
pData PVOID Pointer to the received data.
pVlan ETYPE_VLAN_HEADER ETYPE_VLAN_HEADER structure - see below.

The VLAN header represents information about the VLAN.
typedef struct _ETYPE_VLAN_HEADER
{
USHORT VLanType;
unsigned short VLanIdH : 4;
unsigned short reserved1 : 1;
unsigned short Priority : 3;
unsigned short VLanIdL : 8;
} ETYPE_VLAN_HEADER, *PETYPE_VLAN_HEADER;

7.1.2 Method ITcIoUdpProtocol:SendData
Sends data.

Syntax
HRESULT TCOMAPI SendData(ULONG ipAddr, USHORT udpDestPort, USHORT udpSrcPort, ULONG nData, PVOID
pData, bool bCalcUdpCheckSum=0, ETYPE_VLAN_HEADER* pVlan=0)

Programmer's reference

TF631154 Version: 1.8.1

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
ipAddr ULONG The IP address of the receiver.

IP addresses are displayed with the most
significant element in the last position. (Example:
192.168.2.1 -> 01 02 A8 C0)

udpDestPort USHORT The port of the receiver.
udpSrcPort USHORT The port of the sender.
nData ULONG Number of date to be sent in bytes.
pData PVOID Pointer to the data to be sent.
bCalcUdpCheckSum BOOL Indicates whether the checksum should be

calculated.
pVlan ETYPE_VLAN_HEADER ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.
typedef struct _ETYPE_VLAN_HEADER
{
USHORT VLanType;
unsigned short VLanIdH : 4;
unsigned short reserved1 : 1;
unsigned short Priority : 3;
unsigned short VLanIdL : 8;
} ETYPE_VLAN_HEADER, *PETYPE_VLAN_HEADER;

7.1.3 Method ITcIoUdpProtocol:CheckReceived
Must be called cyclically; ReceiveData is used as callback in the context of this method (send and receive).

Syntax
HRESULT TCOMAPI CheckReceived()

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

7.1.4 Method ITcIoUdpProtocol:RegisterReceiver
Registering at the TCP/UDP RT module for receiving data.

Syntax
HRESULT TCOMAPI RegisterReceiver(USHORT udpPort, ITcIoUdpProtocolRecv* ipRecv)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Programmer's reference

TF6311 55Version: 1.8.1

Parameter

Name Type Description
udpPort USHORT Port on which the data is to be received.
ipRecv ITcIoUdpProtocolRecv* Pointer to the receiver (Recv) interface.

7.1.5 Method ITcIoUdpProtocol:UnregisterReceiver
Unregistering at the TCP/UDP RT module for receiving data.

Syntax
HRESULT TCOMAPI UnregisterReceiver(USHORT udpPort)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
udpPort USHORT Port at which the data should no longer be received.

7.2 TCP/UDP RT TcCom Parameter
In addition to the interfaces, the TcCOM object "TCP/UDP RT" is the main component of the function. An
instantiation usually takes place under the device:

Double-click to open the instance, so that the parameters documented below can be used:

Programmer's reference

TF631156 Version: 1.8.1

Name Default
value

Description

TcIoIpSettings.IpAddress 0.0.0.0 Own (local) IP address used for communication.
TcIoIpSettings.SubnetMask 0.0.0.0 Own subnet mask
TcIoIpSettings.Gateway 0.0.0.0 Gateway used to reach communication partners outside

your own network.
TcIoIpSettings.DhcpEnable FALSE Not yet implemented.
TcIoIpSettings.ManualSettings FALSE Set to FALSE: The operating system uses the current IP

configuration of the referenced adapter.
Set to TRUE: Parameters of TcIoIpSettings* are used.

IpMaxReceivers 4 Maximum number of permitted IP-based protocols.
IpMaxPendingOnArp 40 Maximum number of entries in the ARP Request Table.
IpMacCacheSize 64 Number of entries in MAC cache, i.e. IP address to MAC

address allocations. Caching is implemented as LRU.
IpMTU 1514 Not yet implemented. (Maximum transport unit size for IP

packets)
IpRecvFrameQueueSize 255 Number of entries in the queue for receiving Udp packets.
UdpMaxReceivers 4 Maximum number of UDP receivers
UdpMTU 1514 From TwinCAT 3.1 Build 4026:

Maximum Transport Unit size for UDP.
Fragmentation is ready.
In earlier versions (<= Build 4024) this parameter has no
function

UdpCheckCrc TRUE Set to TRUE means that UDP packets with incorrect
checksum are discarded.

TTL 0x80 TTL in the IP header of the frames to be sent.
MultiCastTTL 0x01 TTL of the MultiCast frames to be sent.
PassiveMode FALSE If TRUE, no frames are fetched from the RT network

adapter frames by this instance. See Multitask access to a
network card [} 36]

MulticastIpList [] Multicast addresses for receiving MultiCast packets.
TcpMTU 1514 Not yet implemented. (Maximum transport unit size for

TCP)
TcpCheckCrc TRUE Incoming TCP frames are checked for valid checksum and

discarded, if the checksum is incorrect.
TcpMaxSocketCount 32 Maximum number of sockets that are managed by the IP

stack.
TcpReceiveBufferSize 16192 Number of received bytes that can be cached with a TCP

connection.
TcpTransmitBufferSize 16192 Number of bytes to be sent that can be cached in the TCP

stack with a connection.
TcpMaxRetry 5 Number of retries of TCP packets until the connection is

terminated.
TcpTimeoutCon 5000 Timeout for TCP connection establishment and

disconnection.
TcpTimeoutWait 60000 Timespan for storing handles internally after an

unexpected termination of the connection.
TcpTimeoutIdle 1000 Time to callback (ReveiveEvent), if no response.
TcpRoundTripTime 3000 Start value for the timeout of data packets. Is adjusted

dynamically depending on the connection quality
(depending on the packet round-trip time).

Times are given in milliseconds.

Programmer's reference

TF6311 57Version: 1.8.1

7.3 TCP/UDP RT TcCom diagnostics
The TcCOM object TCP/UDP RT represents the coupling of customer project with the hardware.

In addition to parameters, it therefore also contains diagnostic information, which is described here. Once
Engineering can communicate with the target system and the program runs smoothly, various information is
provided via the received and sent packets:

Name Value Description
IpStackDiagnosis … Diagnostic information of the IP stack
.ip.nSendCnt 18 Number of IP packets sent
.ip.nSendFailCnt 0 Number of IP packets not sent
.ip.nRecvCnt 20 Number of packets received
.ip.nRecvFailCnt 0 Number of packets not received
.arpRequest.nSendCnt 0 Arp-Requests: Number of packets sent
.arpRequest.nSendFailCnt 0 Arp-Requests: Number of packets not sent
.arpRequest.nRecvCnt 12 Arp-Requests: Number of packets received
.arpRequest.nRecvFailCnt 0 Arp-Requests: Number of packets not received
.arpReply.nSendCnt 12 Arp-Reply: Number of packets sent
.arpReply.nSendFailCnt 0 Arp-Reply: Number of packets not sent
.arpReply.nRecvCnt 0 Arp-Reply: Number of packets received
.arpReply.nRecvFailCnt 0 Arp-Reply: Number of packets not received
.pingRequest.nSendCnt 0 Ping-Request: Number of packets sent
.pingRequest.nSendFailCnt 0 Ping-Request: Number of packets not sent
.pingRequest.nRecvCnt 0 Ping-Request: Number of packets received
.pingRequest.nRecvFailCnt 0 Ping-Request: Number of packets not received
.pingReply.nSendCnt 0 Ping-Reply: Number of packets sent
.pingReply.nSendFailCnt 0 Ping-Reply: Number of packets not sent
.pingReply.nRecvCnt 0 Ping-Reply: Number of packets received
.pingReply.nRecvFailCnt 0 Ping-Reply: Number of packets not received
.nLinkStatusChangedCnt 1 Number of link changes
.nAllocFailCnt 0 Number of failed allocations
.nArpTimeoutFrames 0 Number of arp frames in the timeout
.nDroppedFrames 0 Number of discarded packages

Programmer's reference

TF631158 Version: 1.8.1

7.4 TCP/IP: ITcIoTcpProtocol(Recv)
The ITcIoTcpProtocol and ITcIoTcpProtocolRecv interfaces enable TCP/IP communication from the real-time
environment.

A project that uses this interface contains a pointer to an ITcIoTcpProtocol object and implements
ITcIoTcpProtocolRecv itself. ITcIoTcpProtocolRecv serves as a callback interface for receiving data and
events from the TCP/IP module within the application. The interfaces are based on a socket API.
Before a socket can be used, it must be allocated with AllocSocket().

 ITcIoTcpProtocolRecv methods:

Name Description
ReceiveData [} 59] Is called by the TCP/UDP RT module as a callback to transfer data.

ReceiveEvent [} 60] Is called by the TCP/UDP RT module as a callback if an event has occurred.

 ITcIoTcpProtocol methods:

Name Description
AllocSocket [} 60] Allocates a socket.

FreeSocket [} 61] Enables a socket.

Connect [} 61] Establishes a connection to a remote terminal.

IsConnected [} 61] Indicates whether a socket is connected (for inbound and outbound
connections).

Close [} 62] Closes a socket.

Listen [} 62] Opens a TCP port for incoming connections (see remarks).

Accept [} 62] For server functionality: Accepts incoming connections (see remarks).

SendData [} 63] Sends data (server and client functionality).

CheckReceived [} 63] Must be called cyclical; ReceiveEvent and ReceiveData are used as callback
in the context of this method (server and client functionality).

GetRemoteIpAddr [} 63] Returns the remote IP address of a communication partner.

GetFreeSendDataSize [} 64] Returns the number of free bytes in the TCP send buffer.

Call CheckReceived() continuously.

Perhaps call AllocSocket() again in the event of an OnlineChange, in order to refresh the callback
target.

The client and server implementation process is described here, independent of programming languages.
Only an overview is provided; the samples illustrate the application.

Programmer's reference

TF6311 59Version: 1.8.1

Implementation of an TCP server:

Name Description
AllocSocket
[} 60]

Opens a socket.

Listen [} 62] Opens a port on which connections are expected.

Accept [} 62] Is called in the ReceiveEvent() method in order to accept a connection.

ReceiveData
[} 59]

Is called when data are received.

SendData [} 63] Can be used to send data.

FreeSocket
[} 61]

On the Listen socket and all connection sockets for stopping.

Code diagram for accepting a connection:
HRESULT CIpStackDemo::ReceiveEvent(ULONG socketId, TCPIP_EVENT tcpEvent)...
case TCPIP_EVENT_CONN_INCOMING:
m_spTcpProt->Accept(socketId);
break;

Implementation of a TCP client:

Name Description
AllocSocket
[} 60]

Opens a socket.

Connect [} 61] Starts connection establishment.

IsConnected
[} 61]

Checks whether the connection was established successfully.

ReceiveData
[} 59]

Is called when data are received.

SendData [} 63] Can be used to send data.

FreeSocket
[} 61]

On the Listen socket and all connection sockets for stopping.

Disconnection by the operating system in Promiscuous mode
If Promiscuous mode is active at the RT Ethernet adapter in the “Adapter” tab, any TCP connection
attempts are blocked by the operating system, since it does not recognize a port opened in the
TCP/UDP RT object.

7.4.1 Method ITcIoTcpProtocolRecv:ReceiveData
Is called by the TCP/UDP RT module as a callback to transfer data.

Syntax
HRESULT TCOMAPI ReceiveData(ULONG socketId, ULONG nData, PVOID pData)

 Return value

Name Type Description
ReceiveData HRESULT Indicates success and must be provided accordingly by the implemented

module.

Programmer's reference

TF631160 Version: 1.8.1

Parameter

Name Type Description
socketId ULONG The socket on which data was received.
nData ULONG Number of data received.
pData PVOID Pointer to the received data.

7.4.2 Method ITcIoTcpProtocolRecv:ReceiveEvent
Is called by the TCP/UDP RT module as a callback if an event has occurred.

Syntax
HRESULT TCOMAPI ReceiveEvent(ULONG socketId, TCPIP_EVENT tcpEvent)

 Return value

Name Type Description
ReceiveEvent HRESULT Indicates success and must be provided accordingly by the implemented

module.

Parameter

Name Type Description
socketId ULONG The socket on which data was received.
tcpEvent TCP_EVENT An element of the Enum.

The enumeration TCP_EVENT refers to different events, which can occur with a TCP connection:
enum TCPIP_EVENT : ULONG {
TCPIP_EVENT_NONE = 0,
TCPIP_EVENT_ERROR = 1,
TCPIP_EVENT_RESET = 2,
TCPIP_EVENT_TIMEOUT = 3,
TCPIP_EVENT_CONN_ESTABLISHED = 4,
TCPIP_EVENT_CONN_INCOMING = 5,
TCPIP_EVENT_CONN_CLOSED = 6,
TCPIP_EVENT_CONN_IDLE = 7,
TCPIP_EVENT_DATA_RECEIVED = 8,
TCPIP_EVENT_DATA_SENT = 9,
TCPIP_EVENT_KEEP_ALIVE = 10,
TCPIP_EVENT_LINKCONNECT = 11,
TCPIP_EVENT_LINKDISCONNECT = 12
};

An implementation of the method should provide a switch case over all elements, so that the system can
respond according to the event.

The application of events for a TCP server is described in the interface overview.

7.4.3 Method ITcIoTcpProtocol:AllocSocket
Allocates a socket.

Syntax
HRESULT TCOMAPI AllocSocket(ITcIoTcpProtocolRecv* ipRecv, ULONG& socketId)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Programmer's reference

TF6311 61Version: 1.8.1

Parameter

Name Type Description
ipRecv ITcIoTcpProtocolRecv Pointer to the receiver (Recv) interface.
socketId ULONG& The generated socket.

7.4.4 Method ITcIoTcpProtocol:FreeSocket
Enables a socket.

Syntax
HRESULT TCOMAPI AllocSocket(ULONG socketId)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be enabled.

7.4.5 Method ITcIoTcpProtocol:Connect
Establishes a connection to a remote terminal.

Syntax
HRESULT TCOMAPI Connect(ULONG socketId, ULONG ipRemoteAddress, USHORT tcpPort)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be used.
ipRemoteAddress ULONG IP address of the remote terminal to be contacted.

IP addresses are displayed with the most significant element in the
last position. (Example: 192.168.2.1 -> 01 02 A8 C0)

tcpPort USHORT Port of the remote terminal to be contacted.

7.4.6 Method ITcIoTcpProtocol:IsConnected
Indicates whether a socket is connected (for inbound and outbound connections).

Syntax
HRESULT TCOMAPI IsConnected(ULONG socketId)

Programmer's reference

TF631162 Version: 1.8.1

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be used.

7.4.7 Method ITcIoTcpProtocol:Close
Closes a socket.

Syntax
HRESULT TCOMAPI Close(ULONG socketId)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be closed.

7.4.8 Method ITcIoTcpProtocol:Listen
Opens a TCP port for incoming connections. The application is described in the interface overview.

Syntax
HRESULT TCOMAPI Listen(ULONG socketId, USHORT tcpPort)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be used.
tcpPort USHORT The port which is scanned for incoming connections.

7.4.9 Method ITcIoTcpProtocol:Accept
Accepts income connections. The application is described in the interface overview.

Syntax
HRESULT TCOMAPI Accept(ULONG socketId)

Programmer's reference

TF6311 63Version: 1.8.1

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be used.

7.4.10 Method ITcIoTcpProtocol:SendData
Sends data (server and client functionality).

Syntax
HRESULT TCOMAPI SendData(ULONG socketId, ULONG nData, PVOID pData, ULONG& nSendData)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be used.
nData ULONG Length of the data to be sent.
pData PVOID Pointer to the data to be sent.
nSendData ULONG& Returns the number of sent bytes. If this is smaller than nData, the data

should be re-sent.

7.4.11 Method ITcIoTcpProtocol:CheckReceived
Must be called cyclical; ReceiveEvent and ReceiveData are used as callback in the context of this method
(server and client functionality).

Syntax
HRESULT TCOMAPI CheckReceived()

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

-

7.4.12 Method ITcIoTcpProtocol:GetRemoteIpAddr
Returns the remote IP address of a communication partner.

Syntax
HRESULT TCOMAPI GetRemoteIpAddr(ULONG socketId, ULONG& remoteIpAddr)

Programmer's reference

TF631164 Version: 1.8.1

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be used.

7.4.13 Method ITcIoTcpProtocol:GetFreeSendDataSize
Returns the number of free bytes in the TCP send buffer.

Syntax
HRESULT TCOMAPI GetRemoteIpAddr(ULONG socketId, ULONG& nData)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
socketId ULONG The socket to be used.
nData ULONG& Returns the free bytes in the buffer.

7.5 ARP/Ping: ITcIoArpPingProtocol(Recv)
The interfaces ITcIoArpPingProtocol and ITcIoArpPingProtocolRecv enable sending of ARP and Ping
messages from the real-time environment.

A project that uses this interface contains a pointer to an ITcIoArpPingProtocol object and implements
ITcIoArpPingProtocolRecv itself. ITcIoArpPingProtocolRecv serves as callback interface for receiving data
from the TCP/UDP RT module within the application.

 ITcIoArpPingProtocolRecv methods:

Name Description
ArpReply [} 65] Callback function that is invoked when an ArpReply message is received.

PingReply [} 65] Callback function that is invoked when an PingReply message is received.

If these methods return S_OK, the packet is regarded as processed and is not forwarded to the operating
system. If necessary, S_FALSE should be returned.

Programmer's reference

TF6311 65Version: 1.8.1

 ITcIoArpPingProtocol methods:

Name Description
ArpRequest [} 66] Sends an ArpRequest

PingRequest [} 66] Sends a PingRequest

RegisterReceiver [} 67] Registering at the TCP/UDP RT module for receiving data.

UnregisterReceiver [} 67] Unregistering at the TCP/UDP RT module for receiving data.

CheckReceived [} 68] Must be called cyclically; ArpReply and PingReply are used as callback in
the context of this method

To receive ARP or Ping data, registration is required by calling RegisterReceiver. This can be done in
SetObjStateSO().

Data is provided by a callback of method ArpReceive or PingReceive from ITcIoArpPingProtocolRecv.

During the shutdown, all modules should unregister via UnregisterReceiver. This can be done in
SetObjStateOS().

7.5.1 Method ITcIoArpPingProtocolRecv:PingReply
Callback function that is invoked when an PingReply message is received.

Syntax
HRESULT TCOMAPI PingReply(ULONG ipAddr, ULONG nData, PVOID pData, ETYPE_VLAN_HEADER* pVlan=0)

 Return value

Type Description
HRESULT Indicates success and must be provided accordingly by the implemented module. If this is

not S_OK, the response continues to be transferred to the operating system.

Parameter

Name Type Description
ipAddr ULONG The IP address of the search.
nData ULONG Number of bytes received.
pData PVOID Pointer to the received data.
pVlan ETYPE_VLAN_HEADER* ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.
typedef struct _ETYPE_VLAN_HEADER
{
USHORT VLanType;
unsigned short VLanIdH : 4;
unsigned short reserved1 : 1;
unsigned short Priority : 3;
unsigned short VLanIdL : 8;
} ETYPE_VLAN_HEADER, *PETYPE_VLAN_HEADER;

7.5.2 Method ITcIoArpPingProtocolRecv:ArpReply
Callback function that is invoked when an ArpReply message is received.

Syntax
HRESULT TCOMAPI ArpReply(ULONG ipAddr, ETHERNET_ADDRESS macAddr, ETYPE_VLAN_HEADER* pVlan=0)

Programmer's reference

TF631166 Version: 1.8.1

 Return value

Type Description
HRESULT Indicates success and must be provided accordingly by the implemented module. If this is

not S_OK, the response continues to be transferred to the operating system.

Parameter

Name Type Description
ipAddr ULONG The IP address of the search.
macAddr ETHERNET_ADDRESS Determined MAC address.
pVlan ETYPE_VLAN_HEADER* ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.
typedef struct _ETYPE_VLAN_HEADER
{
USHORT VLanType;
unsigned short VLanIdH : 4;
unsigned short reserved1 : 1;
unsigned short Priority : 3;
unsigned short VLanIdL : 8;
} ETYPE_VLAN_HEADER, *PETYPE_VLAN_HEADER;

7.5.3 Method ITcIoArpPingProtocol:PingRequest
Sends a ping request.

Syntax
HRESULT TCOMAPI PingRequest(ULONG ipAddr, ULONG nData=0, PVOID pData=0, ETYPE_VLAN_HEADER* pVlan=0)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
ipAddr ULONG The IP address of the target.
nData ULONG Number of bytes received.
pData PVOID Pointer to the received data.
pVlan ETYPE_VLAN_HEADER* ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.
typedef struct _ETYPE_VLAN_HEADER
{
USHORT VLanType;
unsigned short VLanIdH : 4;
unsigned short reserved1 : 1;
unsigned short Priority : 3;
unsigned short VLanIdL : 8;
} ETYPE_VLAN_HEADER, *PETYPE_VLAN_HEADER;

7.5.4 Method ITcIoArpPingProtocol:ArpRequest
Sends an ARP request.

Syntax
HRESULT TCOMAPI ArpRequest(ULONG ipAddr, ETHERNET_ADDRESS* macAddr=0, ETYPE_VLAN_HEADER* pVlan=0)

Programmer's reference

TF6311 67Version: 1.8.1

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
ipAddr ULONG The IP address of the target.
macAddr ETHERNET_ADDRESS* Restriction of the MAC address.
pVlan ETYPE_VLAN_HEADER* ETYPE_VLAN_HEADER structure, see below.

The VLAN header represents information about the VLAN.
typedef struct _ETYPE_VLAN_HEADER
{
USHORT VLanType;
unsigned short VLanIdH : 4;
unsigned short reserved1 : 1;
unsigned short Priority : 3;
unsigned short VLanIdL : 8;
} ETYPE_VLAN_HEADER, *PETYPE_VLAN_HEADER;

7.5.5 Method ITcIoArpPingProtocol:RegisterReceiver
Registering at the TCP/UDP RT module for receiving responses (ARP / Ping).

Syntax
HRESULT TCOMAPI RegisterReceiver(ITcIoArpPingRecv* ipRecv)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
ipRecv ITcIoArpPingRecv* Pointer to the receiver (Recv) interface.

7.5.6 Method ITcIoArpPingProtocol:UnregisterReceiver
Unregistering at the TCP/UDP RT module for receiving responses (ARP / Ping).

Syntax
HRESULT TCOMAPI UnregisterReceiver(ITcIoArpPingRecv* ipRecv)

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

Parameter

Name Type Description
ipRecv ITcIoArpPingRecv Reference to the receiver to be unregistered

Programmer's reference

TF631168 Version: 1.8.1

7.5.7 Method ITcIoArpPingProtocol:CheckReceived
Must be called cyclically; ArpReply and PingReply are used as callback in the context of this method.

Syntax
HRESULT TCOMAPI CheckReceived()

 Return value

Type Description
HRESULT Indicates success, see Return values [} 68].

7.6 Return values
The interface functions have HRESULT as return values. The returned values are derived from the ADS
Return Codes [} 70]. Their meaning for TF6311:

Value
(Enum)

Value
(Numeric)

Description

ADS_E_INVALI
DPARM

0x9811070B Socket not allocated/known, transferred pointer NULL

ADS_E_NOMO
REHDLS

0x98110716 No free sockets available.
Default: 32
see TCP/UDP RT TcCom Parameter [} 55]

ADS_E_INCOM
PATIBLE

0x9811070E Socket in wrong state.
E.g. Connect() attempt, if a socket was previous used with Listen();
Close() without previous connection; Send() without connection; Socket
Listen(), if a Listen() call was already issued.

ADS_E_INVALI
DSTATE

0x98110712 TCP/UDP RT object is not in OP mode

ADS_E_INVALI
DDATA

0x98110706 Problem with parameter.
E.g. pData==NULL for SendData

ADS_E_EXIST
S

0x9811070F Port already used otherwise

ADS_E_PENDI
NG

0x9811071E Not all data were sent (SendData)

S_OK 0x0 Call successful.
IsConnected(): Connection exists

S_FAIL 0x1 Call not successful, general error
IsConnected(): Connection does not exist

The values from the range 0x9811 are defined in the enumeration "E_HRESULTAdsErr" (PLC) and
corresponding ADS_E_* (C++) "defines".

Fault analysis

TF6311 69Version: 1.8.1

8 Fault analysis
At this point, it is usual practice to list problems or situations in connection with handling the product,
together with an error description.

8.1 Start-up: Ip Stack ADS 1823 / 0x71f
If ADS error 1823 (0x71f) occurs when an IP stack TcCOM object is started, the configuration of the network
card is probably incorrect.

Check the settings under "Adapter" for the network card in the Solution:

The configuration of the network card for the TCP/UDP RT module is documented in more detail here [} 14].

Appendix

TF631170 Version: 1.8.1

9 Appendix

9.1 ADS Return Codes
Grouping of error codes:
Global error codes: ADS Return Codes [} 70]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [} 70]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [} 71]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [} 73]... (0x9811_1000 ...)

Global error codes

Hex Dec HRESULT Name Description
0x0 0 0x98110000 ERR_NOERROR No error.
0x1 1 0x98110001 ERR_INTERNAL Internal error.
0x2 2 0x98110002 ERR_NORTIME No real time.
0x3 3 0x98110003 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0x4 4 0x98110004 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started, not

reachable or not installed.
0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not found.
0x8 8 0x98110008 ERR_UNKNOWNCMDID Unknown command ID.
0x9 9 0x98110009 ERR_BADTASKID Invalid task ID.
0xA 10 0x9811000A ERR_NOIO No IO.
0xB 11 0x9811000B ERR_UNKNOWNAMSCMD Unknown AMS command.
0xC 12 0x9811000C ERR_WIN32ERROR Win32 error.
0xD 13 0x9811000D ERR_PORTNOTCONNECTED Port not connected.
0xE 14 0x9811000E ERR_INVALIDAMSLENGTH Invalid AMS length.
0xF 15 0x9811000F ERR_INVALIDAMSNETID Invalid AMS Net ID.
0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license error.
0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.
0x12 18 0x98110012 ERR_PORTDISABLED Port disabled – TwinCAT system service not started.
0x13 19 0x98110013 ERR_PORTALREADYCONNECTED Port already connected.
0x14 20 0x98110014 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0x15 21 0x98110015 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0x16 22 0x98110016 ERR_AMSSYNC_AMSERROR AMS Sync error.
0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0x18 24 0x98110018 ERR_INVALIDAMSPORT Invalid AMS port.
0x19 25 0x98110019 ERR_NOMEMORY No memory.
0x1A 26 0x9811001A ERR_TCPSEND TCP send error.
0x1B 27 0x9811001B ERR_HOSTUNREACHABLE Host unreachable.
0x1C 28 0x9811001C ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0x1D 29 0x9811001D ERR_TLSSEND TLS send error – secure ADS connection failed.
0x1E 30 0x9811001E ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Appendix

TF6311 71Version: 1.8.1

Hex Dec HRESULT Name Description
0x500 1280 0x98110500 ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 1282 0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 0x98110503 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 0x98110504 ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.
0x505 1285 0x98110505 ROUTERERR_NOTINITIALIZED The router is not initialized.
0x506 1286 0x98110506 ROUTERERR_PORTALREADYINUSE The port number is already assigned.
0x507 1287 0x98110507 ROUTERERR_NOTREGISTERED The port is not registered.
0x508 1288 0x98110508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 1289 0x98110509 ROUTERERR_INVALIDPORT The port is invalid.
0x50A 1290 0x9811050A ROUTERERR_NOTACTIVATED The router is not active.
0x50B 1291 0x9811050B ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for

fragmented messages.
0x50C 1292 0x9811050C ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D 1293 0x9811050D ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

Appendix

TF631172 Version: 1.8.1

Hex Dec HRESULT Name Description
0x700 1792 0x98110700 ADSERR_DEVICE_ERROR General device error.
0x701 1793 0x98110701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 0x98110702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 0x98110703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 0x98110704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 0x98110705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 1798 0x98110706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 0x98110707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 0x98110708 ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 0x98110709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A 1802 0x9811070A ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B 1803 0x9811070B ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 0x9811070C ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D 1805 0x9811070D ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E 1806 0x9811070E ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F 1807 0x9811070F ADSERR_DEVICE_EXISTS Object already exists.
0x710 1808 0x98110710 ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 1809 0x98110711 ADSERR_DEVICE_SYMBOLVERSIONINVALID Invalid symbol version. This can occur due to an

online change. Create a new handle.
0x712 1810 0x98110712 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 0x98110713 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 1812 0x98110714 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 1813 0x98110715 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 1814 0x98110716 ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 0x98110717 ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 0x98110718 ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 0x98110719 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 0x9811071A ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B 1819 0x9811071B ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 0x9811071C ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D 1821 0x9811071D ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E 1822 0x9811071E ADSERR_DEVICE_PENDING Request pending.
0x71F 1823 0x9811071F ADSERR_DEVICE_ABORTED Request is aborted.
0x720 1824 0x98110720 ADSERR_DEVICE_WARNING Signal warning.
0x721 1825 0x98110721 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 1826 0x98110722 ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 1827 0x98110723 ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 1828 0x98110724 ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 1829 0x98110725 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 1830 0x98110726 ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 1831 0x98110727 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 1832 0x98110728 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 0x98110729 ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A 1834 0x9811072A ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B 1835 0x9811072B ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
0x72C 1836 0x9811072C ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D 1837 0x9811072D ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.
0x72E 1838 0x9811072E ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.
0x72F 1839 0x9811072F ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.
0x730 1840 0x98110730 ADSERR_DEVICE_LICENSEOEMNOTFOUND Public key not known from OEM.
0x731 1841 0x98110731 ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 1842 0x98110732 ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.
0x733 1843 0x98110733 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0x734 1844 0x98110734 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0x735 1845 0x98110735 ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.
0x736 1846 0x98110736 ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

Appendix

TF6311 73Version: 1.8.1

Hex Dec HRESULT Name Description
0x737 1847 0x98110737 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0x738 1848 0x98110738 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0x739 1849 0x98110739 ADSERR_DEVICE_FORWARD_RT Context – forward to real time.
0x740 1856 0x98110740 ADSERR_CLIENT_ERROR Client error.
0x741 1857 0x98110741 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0x742 1858 0x98110742 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0x743 1859 0x98110743 ADSERR_CLIENT_VARUSED Var connection already in use.
0x744 1860 0x98110744 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0x745 1861 0x98110745 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 1862 0x98110746 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0x747 1863 0x98110747 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0x748 1864 0x98110748 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0x749 1865 0x98110749 ADSERR_CLIENT_NOAMSADDR No AMS address.
0x750 1872 0x98110750 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0x751 1873 0x98110751 ADSERR_CLIENT_ADDHASH Hash table overflow.
0x752 1874 0x98110752 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0x753 1875 0x98110753 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0x754 1876 0x98110754 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0x755 1877 0x98110755 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.
0x756 1878 0x98110756 ADSERR_CLIENT_REQUESTCANCELLED The request was cancelled.

RTime error codes

Hex Dec HRESULT Name Description
0x1000 4096 0x98111000 RTERR_INTERNAL Internal error in the real-time system.
0x1001 4097 0x98111001 RTERR_BADTIMERPERIODS Timer value is not valid.
0x1002 4098 0x98111002 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0x1003 4099 0x98111003 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0x1004 4100 0x98111004 RTERR_PRIOEXISTS The request task priority is already assigned.
0x1005 4101 0x98111005 RTERR_NOMORETCB No free TCB (Task Control Block) available. The

maximum number of TCBs is 64.
0x1006 4102 0x98111006 RTERR_NOMORESEMAS No free semaphores available. The maximum number of

semaphores is 64.
0x1007 4103 0x98111007 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0x100D 4109 0x9811100D RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.
0x100E 4110 0x9811100E RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0x100F 4111 0x9811100F RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has

failed.
0x1010 4112 0x98111010 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 0x98111017 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0x1018 4120 0x98111018 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0x1019 4121 0x98111019 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0x101A 4122 0x9811101A RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

HRESULT Name Description
0x0000_0000 S_OK No error.
0x0000_0001 S_FALSE No error.

Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.
Example: successful processing, but a timeout occurred.

TCP Winsock error codes

Appendix

TF631174 Version: 1.8.1

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the

connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf6311

mailto:info@beckhoff.com?subject=TF6311
https://www.beckhoff.com
https://www.beckhoff.com/tf6311

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	2.1 Comparison TF6310 TF6311
	2.2 Restrictions

	3 Installation / Licensing
	4 Quick Starts
	4.1 Quick Start (PLC / UDP)
	4.2 Quick Start (C++ / UDP)
	4.3 Quick Start (C++ / TCP Client)

	5 Configuration
	5.1 Multiple network cards
	5.2 Multitask access to a network card

	6 Examples
	6.1 S01: Simple TCP Client (PLC / C++)
	6.1.1 S01: Simple TCP Client (C++)
	6.1.2 S01: Simple TCP Client (PLC)

	6.2 S02: UDP Client Server (PLC/C++)
	6.2.1 S02: UDP Demo (PLC)
	6.2.2 S02: UDP Demo (C++)
	6.2.3 Test client

	6.3 S03: ARP PING Demo (C++)
	6.4 S04: TCP Echo Server (PLC / C++)
	6.4.1 S04: TCP Server Demo (PLC)
	6.4.2 S04: TCP Server Demo (C++)

	7 Programmer's reference
	7.1 UDP/IP: ITcIoUdpProtocol(Recv)
	7.1.1 Method ITcIoUdpProtocolRecv:ReceiveData
	7.1.2 Method ITcIoUdpProtocol:SendData
	7.1.3 Method ITcIoUdpProtocol:CheckReceived
	7.1.4 Method ITcIoUdpProtocol:RegisterReceiver
	7.1.5 Method ITcIoUdpProtocol:UnregisterReceiver

	7.2 TCP/UDP RT TcCom Parameter
	7.3 TCP/UDP RT TcCom diagnostics
	7.4 TCP/IP: ITcIoTcpProtocol(Recv)
	7.4.1 Method ITcIoTcpProtocolRecv:ReceiveData
	7.4.2 Method ITcIoTcpProtocolRecv:ReceiveEvent
	7.4.3 Method ITcIoTcpProtocol:AllocSocket
	7.4.4 Method ITcIoTcpProtocol:FreeSocket
	7.4.5 Method ITcIoTcpProtocol:Connect
	7.4.6 Method ITcIoTcpProtocol:IsConnected
	7.4.7 Method ITcIoTcpProtocol:Close
	7.4.8 Method ITcIoTcpProtocol:Listen
	7.4.9 Method ITcIoTcpProtocol:Accept
	7.4.10 Method ITcIoTcpProtocol:SendData
	7.4.11 Method ITcIoTcpProtocol:CheckReceived
	7.4.12 Method ITcIoTcpProtocol:GetRemoteIpAddr
	7.4.13 Method ITcIoTcpProtocol:GetFreeSendDataSize

	7.5 ARP/Ping: ITcIoArpPingProtocol(Recv)
	7.5.1 Method ITcIoArpPingProtocolRecv:PingReply
	7.5.2 Method ITcIoArpPingProtocolRecv:ArpReply
	7.5.3 Method ITcIoArpPingProtocol:PingRequest
	7.5.4 Method ITcIoArpPingProtocol:ArpRequest
	7.5.5 Method ITcIoArpPingProtocol:RegisterReceiver
	7.5.6 Method ITcIoArpPingProtocol:UnregisterReceiver
	7.5.7 Method ITcIoArpPingProtocol:CheckReceived

	7.6 Return values

	8 Fault analysis
	8.1 Start-up: Ip Stack ADS 1823 / 0x71f

	9 Appendix
	9.1 ADS Return Codes

		documentation@beckhoff.com
	2024-06-18T16:19:17+0200
	Beckhoff Automation, Verl
	Documentation Publishing

